
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

6-30-2020 2:00 PM

Extensions of Classification Method Based on Quantiles Extensions of Classification Method Based on Quantiles

Yuanhao Lai, The University of Western Ontario

Supervisor: McLeod, Ian, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Statistics and Actuarial Sciences

© Yuanhao Lai 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Statistical Models Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Lai, Yuanhao, "Extensions of Classification Method Based on Quantiles" (2020). Electronic Thesis and
Dissertation Repository. 7114.
https://ir.lib.uwo.ca/etd/7114

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=ir.lib.uwo.ca%2Fetd%2F7114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F7114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7114?utm_source=ir.lib.uwo.ca%2Fetd%2F7114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

This thesis deals with the problem of classification in general, with a particular focus on heavy-tailed
or skewed data. The classification problem is first formalized by statistical learning theory and
several important classification methods are reviewed, where the distance-based classifiers, including
the median-based classifier and the quantile-based classifier (QC), are especially useful for the
heavy-tailed or skewed inputs. However, QC is limited by its model capacity and the issue of
high-dimensional accumulated errors. Our objective of this study is to investigate more general
methods while retaining the merits of QC.

We present four extensions of QC, which appear in chronological order and preserve the
ideas driving our research. The first extension, ensemble quantile classifier (EQC), treats QC
as a base learner in ensemble learning to increase model capacity and introduces weight decay
regularization to mitigate high-dimensional accumulated errors. The second extension, multiple
quantile classifier (MQC), enhances the model capacity of EQC by allowing multiple quantile-
difference transformations to be conducted for each variable. The third extension, factorized multiple
quantile classifier (FMQC), adds higher-order interactions to MQC via a computationally efficient
approach of adaptive factorization machines. The fourth extension, deep multiple quantile classifier
(DeepMQC), embeds the MQC into the flexible framework of deep neural networks and opens more
possibilities of applications to various tasks. We discuss the theoretical motivation for each method.
Numerical studies on synthetic and real datasets are used to demonstrate the improvement of the
proposed methods.

Keywords: Classification; Quantile-based classifier; Ensemble learning; Factorization machines;
Deep neural network

ii

Summary for Lay Audience

Classification is ubiquitous in real life such as determining whether an email is a spam or whether it
is going to rain tomorrow. There are many classification methods developed for different purposes.
In particular, we are interested in the quantile-based classifier (QC) which is one of the recent
classification methods. QC performs well when the data contains skewed variables. For example, we
may want to classify a person’s BMI category based on his/her family income. The family income
can be a skewed variable if some families are extremely wealthy compared to the majority. In this
research, we point out several limitations of QC and propose four extensions that progressively stress
these problems and enhance the predictive ability.

In the first extension, we use a meta-learner to combine QC, where meta-learner represents some
other classification methods. This is a kind of ensemble learning that was first derived from the
idea popularly known as Wisdom of the Crowd. In the second extension, we further adjust the EQC
to allow more realistic hypotheses. In the third extension, we provide a computationally efficient
way of incorporating variable interactions into MQC. In the fourth extension, we integrate the
aforementioned methods with deep learning, which has gained success in many different domains
including image and speech recognition. Numerical studies on synthetic and real datasets are used
to demonstrate the improvement of the proposed methods.

iii

Co-authorship Statement

Chapter 2, 3 and 4 of this thesis are based on two papers co-authored with my supervisor Dr. McLeod.
Specifically, the content of Chapter 2 has been published in the in Computational Statistics & Data
Analysis, and the contents of Chapter 3 and 4 will be submitted for publication in the near future. I
certify that I am the lead author for all these articles by developing the theory and performing the
experiments. Dr. McLeod supervised the findings, provided critical feedback and helped shape the
research, analysis and manuscript.

iv

Acknowledgments

Time flies. Seven years ago, I arrived at Western University as an undergraduate exchange
student. I obtained my MSc degree and continued my PhD study at the Department of Statistical and
Actuarial Sciences here. It is still hard to believe that I am already near the end of it now. Western
University becomes my second home. I would like to thank all the people who have made my time
at Western.

First of all, I am deeply indebted to my supervisor Dr. Ian McLeod for his guidance and support
during my studies. It was pleasant to work with him. He is open-minded and concerned with new
developments of statistical methodology, giving me the freedom to explore diverse domains and
learn to do independent research. It was really motivating every time I met with him to discuss our
research and the other exciting topics in machine learning. I also want to thank Mrs.McLeod for
arranging wonderful Thanksgiving dinners.

Secondly, I would like to thank Dr. Anita Christie for being the examination chair and the
committee members Dr. Paul McNicholas, Dr. Boyu Wang, Dr. Wenqing He, and Dr.Hao Yu for
their constructive comments, which significantly improved my thesis.

I am also grateful to all the friends at Western. Special thanks to Junhe Chen, Qiaosong Chen,
Lingzhi Chen, Boquan Cheng, Xing Gu, Zhongye He, Tianpei Jiang, Ang Li, Jiaying Li Yifan Li,
Yaohui Liang, Qing Liu, Kexin Luo, Yang Miao, Rui Sun, Jinkun Xiao, Junquan Xiao, Heng Xiong,
Li Yi, Yixing Zhao, Guangdong Zhang, Ruixi Zhang and many others.

Finally, I would like to thank my parents and my brothers for their unconditional support and
encouragement.

This manuscript is typeset using the LATEX2Y document preparation system. Most simulations
reported in the thesis were made possible by the facilities of the Shared Hierarchical Academic
Research Computing Network (SHARCNET:www.sharcnet.ca) and Compute/Calcul Canada.

v

To my family

vi

Contents

Abstract ii

Summary for Lay Audience iii

Co-authorship Statement iv

Acknowledgments v

Dedication vi

List of Figures xi

List of Tables xii

1 Introduction 1
1.1 Classification . 2

1.1.1 Generative vs Discriminative Classifiers 2
1.1.2 Overfitting and Regularization . 4
1.1.3 Performance Measures . 5
1.1.4 Cross-Validation . 7

Repeated Cross-Validation . 8
Nested Cross-validation . 8

1.2 Generative Models . 9
1.2.1 Naive Bayes Classifier . 9
1.2.2 Gaussian Discriminant Analysis . 9

vii

1.3 Discriminative Models . 10
1.3.1 Multinomial Logistic Regression . 10
1.3.2 Support Vector Machine . 11
1.3.3 -Nearest Neighbors . 12

1.4 Distance-based Models . 13
1.4.1 Centroid Classifier . 13
1.4.2 Median-based Classifier . 13
1.4.3 Quantile-based Classifier . 13

1.5 Quantile-Difference Transformation . 14
1.5.1 Reformulation of Quantile-based Classifier 15
1.5.2 Limitations of Quantile-based Classifier 16

1.6 Summary of Contributions . 17

2 Ensemble Quantile Classifier 19
2.1 Introduction . 19
2.2 Methodology . 20

2.2.1 EQC for Binary Case . 20
2.2.2 Multiclass EQC . 22

2.3 Asymptotic Consistency . 24
2.4 Numerical Study . 25

2.4.1 Experimental Setup . 25
2.4.2 Test Error Rates . 27
2.4.3 Comparing EQC/RIDGE with QC for Fixed \ 30

2.5 Reuters-21578 text categorization . 31
2.5.1 Binary Classification . 31
2.5.2 Multiclass Classification . 32

2.6 Discussion and Conclusion . 33

3 Multiple Quantile Classifier 35
3.1 Motivation . 35
3.2 Methodology . 35
3.3 Bayes Optimality of MQC . 37
3.4 Comparison with MARS . 40
3.5 Simulation Experiment . 41

viii

3.6 Discussion and Conclusion . 44

4 Factorized Multiple Quantile Classifier 45
4.1 Introduction . 45
4.2 Factorization Machines . 46
4.3 Methodology . 47

4.3.1 Model Formulation . 47
4.3.2 Linear-time Evaluation . 48
4.3.3 Parameter Estimation . 51

4.4 Simulation Experiment . 52
4.5 Application . 55
4.6 Discussion and Conclusion . 57

5 Deep Multiple Quantile Classifier 58
5.1 Introduction . 58
5.2 Preliminary . 59

5.2.1 Feedforward Neural Networks . 59
5.2.2 Training Neural Networks . 60

5.3 Methodology . 64
5.3.1 Formulation of DeepMQC . 64
5.3.2 Model Training . 64

5.4 Simulation Experiment . 68
5.4.1 Data Generation . 68
5.4.2 DeepMQC Setting . 70
5.4.3 Baseline Methods . 71
5.4.4 Experiment Results . 72

5.5 Application . 73
5.6 Conclusion . 74

6 Summary and Future Work 75

Bibliography 78

A Properties of Quantile-Difference Transformation 86
A.1 Expectation of Quantile-Difference Transformation 86

ix

A.2 Expectation of Generalized Quantile-Difference Transformation 87

B Proofs and Results regarding EQC 88
B.1 Relationship to Asymmetric Laplace Distribution 88
B.2 Maximum Likelihood Estimation of Multiclass EQC 89
B.3 Proof of Consistency of Estimating EQC . 91
B.4 Misclassification Rates of Simulation . 94

C Proofs regarding MQC 101
C.1 Proof of Theorem 3.3.1 . 101
C.2 Proof of Corollary 3.3.2 . 102
C.3 Proof of Theorem 3.3.3 . 102

D Proofs related to Quantile ANOVA Kernels 104
D.1 Proof of Multi-Linearity . 104
D.2 Proof of Multi-Convexity . 105

Curriculum Vitae 106

x

List of Figures

1.1 Procedure of 3-fold cross-validation. 7
1.2 Quantile-difference transformation for classes 1 and 2 when @1(\) < @2(\). 15
1.3 Architecture of QC using the QD transformation. 16
1.4 An example of the log-odds function that has a unique root. 16

2.1 Architecture of EQC using the QD transformation. 20
2.2 Low dimensional scenario test error rates, = = 200, ? = 50. 28
2.3 High dimensional scenario test error rates, = = 100, ? = 200. EQC/LOGISTIC is

not available in the high dimensional scenario. 29
2.4 Comparison of test error rates with independent and correlated input variables in

the low dimensional scenario, = = 200, ? = 50. 29
2.5 Mean test error rates of the QC and the EQC/RIDGE against \ for fixed = = 100,

the three distributional scenarios, number of variables ? = 100, 200 and NOISE =
0%, 50%. 30

3.1 Architecture of MQC using the QD transformation. 36
3.2 Visualizations of the log-odds function 6(G) = log(c2/c1) + log(52(G)/ 51(G)) and

the function �̃ (G) = c2
c1
�2(G) − �1(G) for each case by columns. 42

4.1 Architecture of FMQC using the QD transformation. 47
4.2 Test error rates in 200 simulations for two synthetic log-odds functions and three

different numbers of irrelevant variables, where = = 200. 54

5.1 Caption for LOF . 60
5.2 Architecture of DeepMQC. 65

xi

List of Tables

1.1 Confusion matrix of a binary classifier, where the elements TP, FP, FN, TN
respectively count the four combinations of outcomes. 5

2.1 Summary of the Reuters-21578 subset. 31
2.2 Mean classification error rates, and their standard errors in parentheses, from 5

repetitions of 10-fold cross-validations for the Reuters-21578 subset. 32
2.3 Summary of the Reuters-21578 subset R8 with 1367 features. 33
2.4 Test error and sensitivities for each multiclass classifier on the Reuters-21578 subset

R8. 33

3.1 Test suite of density functions 5: (G), G ∈ [0, 1], and priors c: for the compared two
classes, : = 1, 2. A is the number of roots of 6(G) = log(c2/c1)+log(52(G)/ 51(G)). '
is the number of roots of �̃ (G) = c2

c1
�2(G) − �1(G), where �: (G) =

∫ G

0 5: (D)dD, : =
1, 2. B(·, ·) is the beta function. 41

3.2 Test classification error rates for each classifier, where the standard errors are in the
parenthesis. The column “Bayes” tells the Bayes errors. The training sample size is
104. 43

3.3 Mean test classification error rates for each classifier, where the standard errors are
in the parenthesis. The column “Bayes” tells the Bayes errors. The training sample
size is 25. 43

4.1 Test suite of the log-odds functions for multivariate simulations 53
4.2 Mean test error rates in the multivariate simulations, where the standard errors are

in the parenthesis. The column “Bayes” is the error rate if the true 6(x) is used. The
best classifier for each column is in boldface. 54

xii

4.3 Summary of two UCI datasets. 55

4.4 Spam dataset: mean error rates, AUC, sensitivities and specificities and their standard
errors in parentheses, from 5 repetitions of 10-fold outer cross-validations. Hyper-
parameters were selected by minimizing the 8-fold inner cross-validation error.
Boldfaces indicate best four methods. 56

4.5 Magic dataset: mean error rates, AUC, sensitivities and specificities and their
standard errors in parentheses, from 5 repetitions of 10-fold outer cross-validations.
Hyper-parameters were selected by minimizing the 8-fold inner cross-validation
error. Boldfaces indicate best four methods. 56

5.1 Mean test error rates for each method under the case with or without interactions,
where the standard errors are in the parenthesis, estimated from 20 simulations. The
last row “Bayes” is the error rate using Equation (5.16) with true parameters. The
best four among the other classifiers for each column are in boldface. 72

5.2 Summary of the magic data. 73

5.3 Magic dataset: Mean error rates, AUC, sensitivities and specificities and their
standard errors in parentheses, estimated from 20 random splits of the full data
into training, validation and test sets of sizes 10000, 4020, and 5000, respectively.
Boldfaces indicate best four methods. 74

B.1 Simulation study: the mean test classification error rates, and their standard errors
in parentheses, of each method for the independent T3 scenario. All numbers are
in percentages and rounded to one digit. The third line indicates the percentage of
irrelevant variables within ? variables. 95

B.2 Simulation study: the mean test classification error rates, and their standard errors
in parentheses, of each method for the dependent T3 scenario. All numbers are
in percentages and rounded to one digit. The third line indicates the percentage of
irrelevant variables within ? variables. 96

B.3 Simulation study: the mean test classification error rates, and their standard errors
in parentheses, of each method for the independent LOGNORMAL scenario. All
numbers are in percentages and rounded to one digit. The third line indicates the
percentage of irrelevant variables within ? variables. 97

xiii

B.4 Simulation study: the mean test classification error rates, and their standard errors
in parentheses, of each method for the dependent LOGNORMAL scenario. All
numbers are in percentages and rounded to one digit. The third line indicates the
percentage of irrelevant variables within ? variables. 98

B.5 Simulation study: the mean test classification error rates, and their standard errors in
parentheses, of each method for the independent HETEROGENEOUS scenario.
All numbers are in percentages and rounded to one digit. The third line indicates the
percentage of irrelevant variables within ? variables. 99

B.6 Simulation study: the mean test classification error rates, and their standard errors
in parentheses, of each method for the dependent HETEROGENEOUS scenario.
All numbers are in percentages and rounded to one digit. The third line indicates the
percentage of irrelevant variables within ? variables. 100

xiv

Chapter 1

Introduction

Classification problems involve assigning an object into one of several categories. They are common
in many fields and industries. Examples include filtering spam emails, identifying fraudulent
transactions and calibrating customer credit risks in banking, detecting tumor cells from medical
images, topic categorization for text documents, and forecasting the probability of raining in
meteorology. As opposed to manually designing instructions of classification for specific applications,
machine learning provides an automated tool for learning good rules for classification from data.

The fundamental of modern machine learning is the statistical framework formalized by statistical
learning theory (Blumer et al. 1989, Vapnik 1999, Kulkarni & Harman 2011). In statistical learning
theory, the future (test) data and the past (training) data are assumed to be generated from the same
underlying probability distribution. This assumption allows us to make a meaningful inference on
the unobserved data given a machine learning model learned from the training data. A key issue
in statistical learning theory is a trade-off between misfit on the data and the model complexity or
capacity. While a complex model is expected to fit a training data better, it may also memorize the
noise due to the random data generation process, and hence lead to poor performance on unobserved
data. This should be kept in mind when developing a new classification model.

In this thesis, we extend the quantile-based classifier (QC) proposed by Hennig & Viroli (2016a).
The QC was shown to be especially useful when the underlying distributions are skewed. However,
we notice that the QC may have a relatively low model capacity which limits its effectiveness for
modeling complex relationships between inputs and outputs. Our extensions focus on retaining the
advantage of the QC on skewed inputs and increasing the model capacity by applying the ideas from

1

2 Chapter 1. Introduction

the ensemble learning (Hastie et al. 2009, Dietterich 2000, Zhou 2012, Lior 2019), the factorization
machines (Rendle 2010), and neural networks (Goodfellow et al. 2016). Regularization, introduced
later, is used to ensure the generalization ability of the model on unseen data.

The rest of this chapter is structured as follows. First, the statistical formalization of a classification
problem and the important concepts such as overfitting and regularization are introduced. Next, we
give a brief review of some common classification models as the baseline classifiers that will be
compared with our proposed methods. We then introduce the quantile-difference transformation and
how it can be used to reformulate the QC, where the limitations of the QC are listed. Finally, we
conclude the contributions with a summary of each chapter.

1.1 Classification

Given a ?-dimensional input x = (G1, . . . , G?)ᵀ and an output label H ∈ K, where K = {1, . . . , },
a classifier is defined as a mapping from the input x to the output H. It is called a binary classifier if
 = 2 or a multiclass classifier if > 2. In statistical learning theory, a training data set {(x8, H8)}=8=1
is obtained by sampling observations independently from an unknown joint probability distribution.
We assume x are continuous random variables. For each class : ∈ K , %: = P(x | H = :) denotes the
joint probability density function, and %:, 9 = P(G 9 | H = :) denotes the marginal density function
of G 9 for 9 = 1, . . . , ?, and c: B P(H = :) denotes the prior probability. Data are independently
sampled from the joint probability distribution.

Our main objective is to learn a classifier from a training data set {(x8, H8)}=8=1 so that it can
make good predictions on unobserved test data from the same underlying distribution under some
performance measures. In other words, an ideal classifier should have a good ability of generalization.
The performance measure is specific to the real problem. For example, the accuracy or its counterpart,
the classification error rate, measures the proportions of correctly or incorrectly predicted labels
for a given data. Accuracy is often used when the proportions of different labels are approximately
equal and there is not specific accuracy preference for some labels. Most algorithms or models
used to learn the classifier can be derived from either a generative perspective or a discriminative
perspective, described next.

1.1.1 Generative vs Discriminative Classifiers

If one knows the actual probability distribution that generates the data, then a posterior probability
of an output class H = : ∈ K , given an input observation x, can be computed according to the Bayes’

1.1. Classification 3

rule,
P(H = : | x) = P(x, H = :)

P(x) =
P(x | H = :)P(H = :)∑
:=1 P(x | H = :)P(H = :)

.

An oracle classifier that achieves the minimal classification error rate can be shown to be a classifier
that assigns an observation x to the most probable class,

ĤBayes = arg max
:∈K

P(H = : | x),

which is known as the Bayes classifier and the associated classification error rate is known as the
Bayes error rate.

Though the actual data generating process is always unknown in practice, we may still obtain
an approximated Bayes classifier by replacing the actual joint probability distribution P(x, H)
with its sample estimate. Such classifiers are described as generative classifiers because they
specify the form of the joint probability distribution P(x, H) that generates the data in either a
parametric or non-parametric way usually with some simplified assumptions that allow for efficient
estimation. Examples include the naive Bayes classifier and the Gaussian discriminant analysis that
are introduced in Section 1.2. For a parametric generative model, maximum likelihood estimation
(MLE) is always used.

Instead of estimating the joint probability distribution P(x, H) in generative classifiers, discrimi-
nant classifiers aims to estimate the conditional probability distribution P(H | x) or the mapping
function from x to H directly. For example, given the training data (^, y) = {(x8, H8)}=8=1, one
assumes a form of the classifier Ĥ = 6(x | w) that depends on the parameter w ∈ �. w can then be
estimated by minimizing an objective function,

Obj(w | ^, y) = ! (w | ^, y) +Ω(w), (1.1)

where ! =
∑=
8=1 ; (Ĥ8, H8) is the loss component that measures how different the estimated classifier

is from the training data known as the empirical risk, and Ω(w) is the regularization component
that measures the complexity of the specified model. In linear regression, the squared loss,
; (Ĥ, H) = (Ĥ − H)2, is often used. For a binary classification problem, logistic regression uses the
binomial loss and support vector machines (SVMs) use the hinge loss, which are introduced in
Section 1.3.

Since the training loss will keep decreasing as the model becomes increasingly complex in
Equation (1.1), there is a trade-off between the training loss and the model complexity when
minimizing the objective function, which encourages a model to reduce the low training loss yet
maintain a simple structure. At first glance, this implied principle does not match exactly the ultimate

4 Chapter 1. Introduction

objective, which is to have a model that can be generalized well beyond the training data since it is
much less interesting to have a model that can only perform well for something already known. We
discuss how this trade-off in the objective function can help improve the model generalization in the
next section.

In summary, a generative classifier learns the joint probability distribution of its input and the
associated output label while a discriminative classifier learns only the posterior distribution of the
output given the input. Comparison of these two methodologies is an ever-lasting topic (Rubinstein
et al. 1997, O’neill 1980, Ng & Jordan 2002, Raina et al. 2004, Xue & Titterington 2008, Liang
& Jordan 2008, Wang et al. 2012) regarding their performances with respect to the sample size
and model misspecification. In this dissertation, we mainly focus on the discriminative framework,
where we propose our new classification methods.

1.1.2 Overfitting and Regularization

A model capacity (complexity or flexibility) can be described by the richness of its hypothesis space
or the functional class, which is the set of functions that the classifier can represent. In statistical
learning theory, the capacity of a binary classifier can be measured by the Vapnik–Chervonenkis
(VC) dimension (Vapnik & Chervonenkis 1971), which is defined as the maximum number of
data points where a perfect classification can always be achieved within the hypothesis space. For
example, logistic regression model is a linear classifier where the hypothesis space of the assumed
log-odds function contains all linear functions of ? input variables, and its VC dimension is ? + 1. Its
model capacity can be enlarged by including quadratic terms of the input variables. The richness of
the hypothesis space also increases as the size of input variables increases. In an extreme case, when
the size of the input variables ? exceeds the number of training observations =, even a linear classifier
such as the logistic regression model can achieve zero training error rate by memorizing the exact
outcome of each observation. However, such a classifier may have a poor ability of generalization
because the model may try to learn the minor variations caused by the random noises instead of
the true signals. The phenomenon where the generalization error is much higher than the training
error is called overfitting. Overfitting is a severe problem for high-dimensional data and those highly
flexible models such as SVMs and neural networks . On the contrary, a too small model capacity
may induce underfitting, where the training loss can not be reduced sufficiently. We can not expect a
linear classifier to perform well if the true relationship is quadratic no matter how many training
data are given.

Neither overfitting or underfitting is desirable. A model with ‘moderate‘ complexity is preferred.

1.1. Classification 5

When the classification problem is complex that can not be easily learned by a linear classifier, a
typical strategy is to first choose a sufficiently rich hypothesis space that can overfit the training data,
and then use some techniques to reduce the capacity gradually until no generalization improvement.
Such techniques of reducing model capacity are regarded as regularization. Usually they give the
classifier a preference for some functions in its hypothesis space to another. One justification of
regularization is the principle of parsimonious known as Occam’s razor (c. 1287-1347), which states
one should select the simplest solution among competing hypotheses that predict equally well.

Weight decay is one of the well known regularization techniques. If the regularization termΩ(w)
in Equation (1.1) is _‖w‖2 =

∑
9 (F 9)2, then the model with the smallest weights w is preferred

among functions of the same training loss. _ > 0 is a hyper-parameter or tuning parameter that
is prespecified to control the trade-off between the training loss and the model complexity. The
hyper-parameter _ can not be determined from the training data as one can set it to be zero to have a
lower value of the objective function. Instead, the selection of _ is always guided by the performance
of the fitted classifier on an independent validation data set.

1.1.3 Performance Measures

The choice of the performance measure is important for fairly assessing and comparing different
classifiers so that an effective classifier can be selected concerning the real problem. In this section,
we introduce several popular performance measures of a binary classifier and their extensions for
evaluating a multiclass classifier. We will use these performance measures to evaluate our proposed
methods in both the simulation study and the real data application.

Suppose that given the data {(x8, H8)}=8=1, the fitted classifier makes predictions Ĥ8 ∈ {1, 2},
8 = 1, . . . , =. H = 1 is considered as a negative instance and H = 2 is considered as a positive instance.
The comparison between the true labels and the predicted labels can be summarized by the confusion
matrix in Table 1.1, which is a contingency table of H8 and Ĥ8, 8 = 1, . . . , =.

Table 1.1: Confusion matrix of a binary classifier, where the elements TP, FP, FN, TN respectively
count the four combinations of outcomes.

True
2 1

∑
Predicted

2 True positive (TP) False positive (FP) =̂+ = TP+FP
1 False negative (FN) True negative (TN) =̂− = FN+TN∑

=+ = TP+FN =− = FP+TN =

6 Chapter 1. Introduction

The off-diagonal elements in the confusion matrix indicate two types of mistakes, namely, a
false positive (FP) and a false negative (FN), also known as type I error and type II error. They
are respectively measured by the false positive rate, FPR = FP/=−, and the false negative rate,
FNR = FN/=+. Equivalently, we can compute the sensitivity or the true positive rate (TPR) as
(1 − FNR), and the specificity or the true negative rate (TNR) as (1 − FPR). When there are more
than two classes, we can compute the TPR and the TNR for each class using the same approach in
the binary case by treating the target class as the positive instance and all the others as the negative
instance.

For classifiers that are able to produce estimated posterior probabilities or similar scores, there is
a trade-off between FPR and FNR. Since these classifiers require a decision threshold for converting
a probability to a label, one of the mistakes can then be reduced at the expense of increasing the
other by adjusting the threshold. The determination of the threshold depends on which mistakes
we care more about. For example, in determining whether a bank transaction is fraudulent or not,
incorrectly classifying a valid transaction as fraudulent may be more non-desired than incorrectly
ignoring fraudulent transactions. In this situation, we can fix the FNR at a certain level and try to
minimize the FPR. If no preference is given for either mistakes, then one may measure the overall
performance of a classifier by the classification error rate, which is defined as the proportion of
incorrectly predicted outcomes,

ERR =
1
=

=∑
8=1

1{Ĥ8≠H8},

where 1{(} is an indicator of the condition (. Equivalently, the accuracy, ACC = 1 − ERR, can
be used instead. The classification error rate or Accuracy can be applied for multiclass problems
directly.

Unfortunately, when the data is imbalanced, where the number of one class is disproportionately
lower or higher than the others, accuracy can be misleading. Again for the fraudulent transaction
example, the rate of fraudulent transactions can be as small as 2%, so a classifier can achieve 98%
accuracy by predicting non-fraudulent transactions no matter what inputs present. Such a classifier
is useless as it fails to learn the relationship between H and x. So we should instead monitor the
specificity and the sensitivity. A receiver operating characteristic (ROC) curve is defined as a plot of
TPR against FPR, which depicts the relationship between TPR and FPR for a binary classifier by
varying the thresholds. The overall quality of a ROC curve is summarized by the area under the
curve (AUC). The AUC can be interpreted as the probability that the classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative one. It is a performance measure
that is immune to class imbalanced.

1.1. Classification 7

1.1.4 Cross-Validation

Our objective in classification is to use a training set (^train,_train) to build up a model 5̂ (G) that
performs well on an independent test data (^test,_test) regarding some evaluation metrics mentioned
in Section 1.1.3. Taking classification error rate as the evaluation metric, we are interested in the
expected prediction error, which can be estimated by the error rate on the test data (^test,_test).
However, real test data are not available because by definition they are not observed when training
the model. In practice, if we have a large dataset, we can split the available data into a training set
and a test set, where the test set is only used to evaluate the model learned from the training set. This
is generally known as the holdout method.

Alternatively, if the data are scarce and no predefined train/test split is available, the probably
simplest and most widely used method to split up the data and estimate the prediction error is -fold
cross-validation (CV).

To perform -fold cross-validation, data are first randomly split into approximately equal
sized groups, known as ’folds’. We train the model on − 1 folds and evaluate the classification
error rate on the remaining one fold. This process is repeated until each fold has been used as the
test set once. The cross-validated estimated error is then computed as the average of the error rates
of folds. Figure 1.1 gives a schematic of 3-fold cross-validation.

Figure 1.1: Procedure of 3-fold cross-validation.

When is equal to =, the number of observations, we call it leave-one-out-cross-validation
(LOOCV). It is generally known that the LOOCV estimated error can have small bias and high
variance while 5- or 10-fold CV estimated error can have higher bias and lower variance, depending
on the stability of the classification method regarding the training sample size (Hastie et al. 2009,

8 Chapter 1. Introduction

Kohavi et al. 1995). In particular, LOOCV requires repeating the training procedure for = times,
which may be infeasible when = is large or training the model is time-consuming. In practice, 5- or
10-fold cross-validation is often recommended as a good compromise between variance and bias
(Hastie et al. 2009, 7.10)

Repeated Cross-Validation

When computation power is affordable, we can repeat the -fold CV multiple times and take the
average of the CV errors. This is known as the repeated CV estimator which can further reduce the
variance (Kim 2009). We will use the repeated CV to estimate prediction errors for applications in
Section 4.5.

Nested Cross-validation

When the classification model contains hyper-parameters or tuning parameters that are preset by
the users and are not estimated from the training data, cross-validation can be used to select the
hyper-parameters. However, when we also use cross-validation to estimate the prediction error of the
trained model, we need to ensure that the data used for evaluation was not used to train the model or
to select the hyper-parameters. Otherwise, the assumption that the test data are first or never seen is
violated.

To conduct a proper cross-validation involving hyper-parameter selection and model evaluation,
we need the nested cross-validation (Hastie et al. 2009, Joshi 2016). One can define the nested
cross-validation as a composition of an inner !-fold CV and an outer -fold CV. For the outer
 -fold CV, we use − 1 folds to train the model with the hyper-parameters selected by the inner
!-fold CV, and the remaining one fold for evaluation; For the inner !-fold CV, the −1 folds of data
are further partitioned into ! folds; We then select the hyper-parameters that have the corresponding
lowest !-fold CV error. The classifier is then trained on all the − 1 folds with the hyper-parameters
selected from the inner !-fold CV.

Since all our proposed methods involve hyper-parameters, we always select the hyper-parameters
with the lowest cross-validated error or with the lowest error on a validation set. The cross-validation
and the validation set are obtained by further partitioning the training data so the selection of the
hyper-parameters can be considered as a part of model training procedure. See Algorithm 1 for an
example.

It is noteworthy that the terminologies “validation data” and “test data” are usually used inter-
changeably. In this dissertation, “validation data” represents an independent set for tuning/selecting

1.2. Generative Models 9

the hyper-parameter of a classification model, and “test data” represents an independent set for
evaluating the performance of the fine-tuned classification model.

1.2 Generative Models

1.2.1 Naive Bayes Classifier

Naive Bayes classifiers make an assumption that the variables are conditionally independent given
the class label. Thus, there exists a factorization, for : ∈ K,

P(x | H = :) =
?∏
9=1
P(G 9 | H = :).

From the Bayes’ rule, a naive Bayes classifier makes a prediction,

ĤnaiveBayes = arg max
:∈K

c:

?∏
9=1
P(G 9 | H = :).

While the conditional independence assumption simplifies the computation and estimation of
the joint probability distribution, it does not hold in general indicated by its prefix “naive”. For
continuous variables, the class conditional marginal distribution can be estimated by a Gaussian
distribution or a one-dimensional kernel density estimate. For categorical variables, a multinomial
distribution may be used instead. The simple structure also makes the model relatively immune to
overfitting.

1.2.2 Gaussian Discriminant Analysis

A Gaussian discriminant analysis assumes data are generated from class conditional multivariate
Gaussian distributions. Though it is called “discriminant”, it is a generative classifier.

The density function of a ?-dimensional Gaussian distribution N(-, Σ) is

5 (x | -, Σ) = 1
(2c)?/2 det(Σ)1/2

exp
[
−1

2
(x − -)ᵀΣ−1(x − -)

]
, x ∈ R?,

where - is a p-dimension vector of the means and Σ is a ? × ? covariance matrix.
Without loss of generality, assume there are two classes, x1 ∼ N(-1, Σ1) and x2 ∼ N(-2, Σ2)

with priors c1 and c2. The log-odds of class 2 is then given by,

log(P(H = 2 | x)
P(H = 1 | x)) = log(c2P(x | H = 2)

c1P(x | H = 1)) =
1
2
x
ᵀ
Ωx + Xx + b, (1.2)

10 Chapter 1. Introduction

where Ω = Σ−1
1 − Σ

−1
2 , X = Σ−1

2 -2 − Σ−1
1 -1, and b are some constants depending on `: , Σ: and c: ,

: = 1, 2. The Bayes rule will then predict class 1 or 2 according as B(z) 6 0 or > 0.
A Gaussian discriminant classifier is obtained by replacing the unknown parameters -: , Σ:

and c: , : = 1, 2, with their sample estimates. It is also called a quadratic discriminant classifier.
Specifically, if the (8, 9) off-diagonal element in Ω is non-zero, then an interaction between G8 and
G 9 will present in Equation (1.2). If Σ1 = Σ2 is assumed, then the quadratic term 1

2x
ᵀ
Ωx disappears

and the resulted classifier is known as a linear discriminant classifier.

1.3 Discriminative Models

1.3.1 Multinomial Logistic Regression

In general, the multinomial logistic regression model of > 2 classes assumes the log-odds function
between each two classes of H ∈ {1, . . . , } is a linear function of the inputs x. The model has the
form,

log
P(H = : | x)
P(H = | x) = F:,0 + w

ᵀ
: x, : = 1, . . . , − 1,

 ∑
:=1
P(H = : | x) = 1,

where F:,0 ∈ R?,w: = (F1, . . . , F?)ᵀ ∈ R? for : = 1, . . . , − 1. When = 2, this model reduces
to the logistic regression model for a binary output.

The class in the denominator of the odds ratios is called a “pivot”. The choice the pivot does not
influence the final estimated model, so H = is often chosen for convenience. The model can be
simplified as,

P(H = :0 | x) =
exp(F:0,0 + w

ᵀ
:0
x)

1 +∑ −1
:=1 exp(F:,0 + wᵀ: x)

, :0 = 1, . . . , − 1,

P(H = :0 | x) =
1

1 +∑ −1
:=1 exp(F:,0 + wᵀ: x)

.

Thus, a maximum likelihood estimator of) = {F:,0, w: , : = 1, . . . , − 1} can be obtained by
minimizing the negative log-likelihood function,

NLL()) = −
=∑
8=1

logP(H = H8 | x8).

1.3. Discriminative Models 11

In a high-dimensional case, minimizing the above function may cause overfitting to the training
data, a regularized estimator is hence preferred, which can be estimated byminimizing a weight-decay
regularized negative log-likelihood function,

�NLL()) = 1
=
NLL()) + _

2
‖) ‖; .

It is called a (multinomial) LASSO logisitc regression when ‖) ‖1 =
∑ −1
:=1

∑?

9=1 |F:, 9 | or a RIDGE
(multinomial) logisitc regression when ‖) ‖2 =

∑ −1
:=1

∑?

9=1 F
2
:, 9
. The hyper-parameter _ > 0 can be

tuned via cross-validation.

1.3.2 Support Vector Machine

A support vector machine (SVM) was first proposed as a linear classifier and later extended to handle
non-linearity with kernel tricks (Cortes & Vapnik 1995). Consider the outputs H8 ∈ {−1, 1} and the
inputs x8 ∈ R?, 8 = 1, . . . , =, the linear SVM assumes the discriminant function has the form,

5 (x) = w
ᵀ
x + 1,

where w ∈ R?, 1 ∈ R, and hence Ĥ8 = sign(5 (x8)).
The initial idea of support vector machines is to find a linear hyperplane 5 (G) = 0 that perfectly

separates data points of two classes, with the largest margin, which is defined as the perpendicular
distance from the hyperplane to the closest points in each class. By introducing slack variables b8 > 0
for allowing the classifier to make mistakes for a wider margin, this large margin principle can be
applied to non-linear separable data. SVMs is then formularized as solving the convex optimization
problem,

min
w,1

1
2
‖w‖2 + c

=∑
8=1

b8, s.t. b8 > 0, H8 (w
ᵀ
x8 + 1) > 1 − b8, (1.3)

where the “cost” c > 0 is a hyper-parameter that controls the penalty on the the upper bound of the
number of misclassified points

∑=
8=1 b8.

The optimization problem in Equation (1.3) is equivalent to minimizing the L2 regularized hinge
loss (Hastie et al. 2009, Equation 12.25),

min
w,1

1
=

=∑
8=1
(1 − H8 5 (xi))+ +

1
2=c
‖w‖2 (1.4)

where [G]+ indicates the positive part of G.

12 Chapter 1. Introduction

To deal with non-linearity, SVMs are applied to the transformed inputs ℎ(x) leading to a
non-linear discriminant function, 5 (x) = w

ᵀ
ℎ(x) + 1. The non-linear transformation is imposed by

the kernel trick that results from observing that the solution to Equation (1.3) has the form,

5̂ (G) = V +
=∑
8=1

U8H8^(x, x8),

where ^(x, x′) = 〈ℎ(x), ℎ(x′)〉 is a kernel function, which is the inner product of ℎ(x) and ℎ(x′).
The kernel trick means we only need to consider the inner products between inputs instead of the
inputs themselves. Popular kernels include the linear kernel ^(x, x′) = 〈x, x′〉, the polynomial kernel
^(x, x′) = 〈x, x′〉3 , and the radial basis function (RBF) kernel ^(x, x′) = exp(− ‖x−x

′‖2
2f2).

To apply the SVM on the multiclass problems, one can always use the indirect strategy of
building a set of one-versus-all (OVA) binary classifiers or a set of one-versus-one (OVO) binary
classifiers (Hastie et al. 2009, p. 658). There also exist some direct multiclass extensions of SVMs
that cast the multiclass problem into a single optimization problem such as Crammer & Singer
(2001) who generalized the definition of margin for more than two classes.

1.3.3 -Nearest Neighbors

Let #: (x) denote the set of : closest points in the training data {(x8, H8)}=8=1 to the test point x. The
closeness of two points is measured by a distance metric, usually Euclidean distance for continuous
variables or Hamming distance for discrete variables. The :-nearest neighbors (K-NN) classifier then
estimates the posterior probability of class 2 for x as the corresponding proportion within #: (x),

P(H = 2 | x) = 1
:

∑
8∈#: (x)

1{H8=2} .

The K-NN classifier is a non-parametric classifier, which approximates the posterior probability
locally. Cover & Hart (1967) proved that the test error rate of the 1-NN classifier is bounded by twice
the Bayes error rate as the sample size tends to infinity. However, the K-NN classifier is vulnerable
to high-dimensional data because of the curse of dimensionality, where there is little difference in
Euclidean distances from a test point to a set of training points in high dimensions.

1.4. Distance-based Models 13

1.4 Distance-based Models

The family of component-wise distance-based discriminant rules is defined by,

�: =

?∑
9=1

3 (G 9 , %:, 9), (1.5)

where G 9 ∈ R is a test input, %:, 9 is the distribution of G 9 given H = : ∈ K, and 3 (G 9 , %:, 9) is the
distance between G 9 and %:, 9 (Hennig & Viroli 2016a, Hall et al. 2009, Tibshirani et al. 2003). The
optimal prediction is

Ĥ = argmin:∈K�: . (1.6)

It is a kind of discriminative classifiers.

1.4.1 Centroid Classifier

The centroid classifier may be defined by 3 (G 9 , %:, 9) = (G 9 − `:, 9)2 where `:, 9 is the mean of %:, 9 .
This classifier is a special case of the naive Bayes classifier (Hastie et al. 2009), also known as the
diagonal linear discriminant classifier. It provides an effective classifier for large ? and many types
of high dimensional data inputs (Dudoit et al. 2002, Bickel & Levina 2004, Fan & Fan 2008).

1.4.2 Median-based Classifier

When the input x includes symmetric random variables with fat tails, the median classifier (MC),
3 (G 9 , %:, 9) = |G 9 − <:, 9 |, where <:, 9 = median(%:, 9), : ∈ K and 9 = 1, . . . , ?, often has better
performance. Hall et al. (2009) proved that under suitable regularity conditions MC produced
asymptotically correct predictions.

1.4.3 Quantile-based Classifier

It sometimes happens that the distribution of two variables is similar near the center but differs in
the tails due to skewness or other characteristics. Quantile regression makes use of this phenomenon
(Koenker & Bassett 1978). The Tukey mean difference plot (Cleveland 1993, p.21) was invented to
compare data from such distributions. Hennig & Viroli (2016a) extended MC to the quantile-based
classifier (QC) defined by 3 (G 9 , %:, 9) = d\ 9 (G 9 − @:, 9 (\ 9)), where @:, 9 (\ 9) is the \ 9 -quantile of
%:, 9 for 0 < \ 9 < 1 and

d\ (D) = D(\ − 1{D<0}) (1.7)

14 Chapter 1. Introduction

is the quantile distance function (Koenker & Bassett 1978, Koenker 2005). When \ = 0.5, QC
reduces to MC. Hennig & Viroli (2016a) showed that the QC can provide the Bayes optimal
prediction with skewed input distributions. The usefulness of QC was demonstrated by simulation
as well as an application (Hennig & Viroli 2016a). An R package which implements the centroid,
median and quantile classifiers is available (Hennig & Viroli 2016b). More details are discussed in
Section 1.5.1.

1.5 Quantile-Difference Transformation

We introduce the quantile-difference (QD) transformation in this section, which is the basis for all
our proposed methods.

Let) = (\1, . . . , \?) ∈ (0, 1)?, and @:, 9 (\ 9) be the \ 9 -quantile of %:, 9 for : ∈ K and
9 = 1, . . . , ?. The derived inputs to the metalearner are obtained from the QD transformation of
x = (G1, . . . , G?) defined by,

Q(:1,:2)
) (x) =

(
Q(:1,:2)
\1

(G1), . . . ,Q(:1,:2)
\?

(G?)
)
, (1.8)

where,

Q(:1,:2)
\ 9

(G 9) = d\ 9 (G 9 − @:1, 9 (\ 9)) − d\ 9 (G 9 − @:2, 9 (\ 9)), 9 = 1, . . . , ?,

and d\ (D) = D(\ − 1{D<0}) is the quantile-distance function. The superscript (:1, :2) is omitted if
:1 = 1 and :2 = 2. In particular, as shown in Equation (1.9) and Figure 1.2, the QD transformation is
piecewise linear with constant tails, which makes it insensitive to outliers. In practice, the population
quantiles are replaced by their sample estimates with a computation cost $ (= log(=)).

Q\ (G) =


(1 − \) (@1(\) − @2(\)), G 6 @min(\)
(−1)1{@1 (\)>@2 (\) } [G − \@1(\) − (1 − \)@2(\)], @min(\) < G < @max(\)
\ (@2(\) − @1(\)), G > @max(\)

, (1.9)

where @min(\) = min(@1(\), @2(\)) and @max(\) = max(@1(\), @2(\))

1.5. Quantile-Difference Transformation 15

@1(\) @2(\) G

−[@2(\) − @1(\)] (1 − \)

[@2(\) − @1(\)]\

@2(\) − @1(\)

Figure 1.2: Quantile-difference transformation for classes 1 and 2 when @1(\) < @2(\).

The QD transformation has a property that its expectation under %2 is larger than its expectation
under %1 as shown in Appendix A.1. So a prediction Ĥ = 2 is preferred if Q\ (G) is large. Meanwhile,
the QD transformation can be viewed as a special combination of the piecewise linear splines used
in multivariate adaptive regression splines (MARS) (Friedman 1991) because it can be expanded to,

Q\ (G 9) = \ (G 9 − @1, 9 (\))+ + (1 − \) (@1, 9 (\) − G 9)+ (1.10)
− [\ (G 9 − @2, 9 (\))+ + (1 − \) (@2, 9 (\) − G 9)+],

where the subscript “+” means the positive part. The connection between our usage of the QD
transformation and the MARS will be discussed thoroughly after we introduce the multiple quantile
classifier in Section 3.4.

1.5.1 Reformulation of Quantile-based Classifier

With the QD-transformation, the binary QC discriminant function can be expressed by,

B(x |)) =
∑
9

Q\ 9
(G 9), (1.11)

where x = (G1, . . . , G?) is a test input and) = (\1, . . . , \?). The classifier predicts class 1 or 2
according as B(x |)) 6 0 or > 0. Hennig & Viroli (2016a) estimated the parameter) by minimizing
the misclassification rate on the training data using a grid search. In most cases they found that
using the same value of \ 9 = \, 9 = 1, . . . , ? for all input variables worked well for the QC, which
means a restriction) = {\, . . . , \} ∈ � ⊆ (0, 1)?. For simplicity and computational expediency,
this restriction was always imposed. A graph representation of the QC is shown in Figure 1.3.

16 Chapter 1. Introduction

Figure 1.3: Architecture of QC using the QD transformation.

In the univariate input G case, Hennig & Viroli (2016a, Lemma 2) proved that the QC can achieve
the Bayes error rate if the log-odds of class 2 conditioned on G, 6(G) = log(c2/c1)+log(52(G)/ 51(G)),
has a unique root A, where 51(G) and 52(G) are respectively the continuous density functions of %1

and %2. In other words, the Bayes decision boundary is only a single point at A . Figure 1.4 shows one
possibility of such log-odds functions. In particular, it includes the case of the logistic regression
with a univariate input, log(?2/(1 − ?2)) = V0 + V1G where ?2 = P(H = 2|G).

Figure 1.4: An example of the log-odds function that has a unique root.

1.5.2 Limitations of Quantile-based Classifier

Although QC is effective for discriminating high-dimensional data with heavy-tailed or skewed
inputs, we observe the following four limitations from the additive representation in Equation (1.11),

1.6. Summary of Contributions 17

repeated below.

B(x |)) =
∑
9

Q\ 9
(G 9). (1.11 revisited)

1. The QC suffers from the restriction of assigning each variable the same importance, which
limits its effectiveness when there are irrelevant extraneous inputs;

2. The QC lacks of regularization for tackling noise accumulation of high dimensional data.
Fan & Fan (2008, Theorem 1a) proved that the centroid classifier may perform no better
than random guessing due to noise accumulation with high dimensional data. We observed a
similar property for the QC in the simulation study;

3. The QC can represent the Bayes decision boundary if and only if the log-odds function has a
unique root in the univariate case;

4. No interactions of variables are considered.

Points 1, 3 and 4 indicate a need to increase the model capacity of the QC, and Point 2 indicates
a need to prevent overfitting. Our research thus focuses on how to improve the QC motivated by
these limitations.

1.6 Summary of Contributions

This chapter gives a preliminary introduction to mathematical formalization of a classification
problem and some common classification methods. In the following chapters, we propose four
improved methods that emphasize different aspects of the aforementioned limitations of the QC
in Section 1.5.2. Each of them corresponds to one of the improved methods, which appear in
chronological order and preserve the ideas driving our research. The organization and the contribution
of each chapter are briefly summarized below.

• Chapter 2: We introduce the ensemble quantile classifier (EQC) which can retain the
advantage of the QC on skewed inputs and overcome the limitation of the QC with high-
dimensional data that include noisy inputs. We prove that the estimated parameters of the EQC
consistently estimate the minimal population loss under suitable general model assumptions.
The improvement using the EQC is demonstrated in simulation experiments as well as with

18 Chapter 1. Introduction

an application to text categorization. The content of this chapter has been published in
Computational Statistics & Data Analysis (Lai & McLeod 2020).

• Chapter 3: We introduce the multiple quantile classifier (MQC) which has a more general
Bayes optimality compared to the EQC. It is shown that the MQC representation includes the
Bayes decision boundary when the log-odds function has multiple roots. Numerical study on
synthetic datasets is used to demonstrate the situations where MQC is preferred. The close
connection between the MQC and the MARS is also discussed.

• Chapter 4: We introduce the factorized multiple quantile classifier (FMQC) which further
considers the higher-order interaction effect by using the factorization machines (FMs) (Rendle
2010, 2012, Blondel, Fujino, Ueda & Ishihata 2016). FMs assume that interactions can be
represented with a low-rank matrix in factorized form. We show how to adapt FMs to the
MQC, which leads to the FMQC. The FMQC can be evaluated in both linear time and space.
Numerical studies on synthetic and real datasets are used to demonstrate the improvement of
the FMQC compared to our previous methods under some complex settings.

• Chapter 5: We introduce the deep multiple quantile classifier (DeepMQC). DeepMQC
considers the interactions differently from the FMQC. A deep forward neural network is used
to generate non-linear hidden units. MQC is then applied with these non-linear hidden units.
Due to the flexibility of neural networks, DeepMQC is expected to model various complex
non-linear relationships. Numerical study on synthetic datasets is used to demonstrate when
the DeepMQC may be useful.

• Chapter 6: We summarize all the proposed methods and discuss possible directions for future
work.

Chapter 2

Ensemble Quantile Classifier

2.1 Introduction

Ensemble predictors were derived from the idea popularly known asWisdom of the Crowd (Hastie
et al. 2009, Silver 2012). Newbold & Granger (1974) showed that economic time series forecasts
could be improved by using a weighted average of forecasts from a heterogeneous variety of time
series models. Many advanced ensemble prediction methods for supervised learning problems have
been developed such as random forests (Breiman 2001) and various boosting algorithms (Freund &
Schapire 1997, Schapire & Freund 2012). The ensemble stacking method introduced by Wolpert
(1992) and Breiman (1996b) has also been widely used, which uses a meta-learner to combine base
learners. Comprehensive surveys of ensemble learning algorithms are given by Hastie et al. (2009),
Dietterich (2000), Zhou (2012) and Lior (2019).

In Section 1.5, we re-expressed the discriminant function of the QC using the quantile-difference
(QD) transformation,

B(x |)) =
∑
9

Q\ 9
(G 9), (1.11 revisited)

and observed that QC lacked of variable importance and regularization. To overcome these
two limitations, we propose a method using regularized logistic regression to combine quantile
classifiers, referred to as ensemble quantile classifier (EQC). EQC can provide better performance
with high-dimensional data, asymmetric data or when there are many irrelevant extraneous inputs.

19

20 Chapter 2. Ensemble Quantile Classifier

The remainder of this chapter is structured as follows. We introduce the binary EQC for
discriminating two classes and then extend it to the multiclass EQC in Section 2.2. In Theorem 2.3.2
of Section 2.3, it is shown that sample loss function of EQC converges to the population value when
the sample size increases. In Section 2.4 and Section 2.5, the improved performance of EQC is
demonstrated by a simulation study and an application to text categorization. Section 2.6 makes a
concluding remark.

2.2 Methodology

2.2.1 EQC for Binary Case

The discriminant function for QC is simply an additive sum Q\ 9
(G 9) for 9 = 1, . . . , ? but in practice,

it is often the case that several of the variables are more important and should be given more weight.
EQC is proposed to extend QC by providing an effective classifier that takes this into account. The
discriminate function for the EQC binary case may be written,

B(x |) , V0, #) = C
(
Q) (x) | V0, #

)
, (2.1)

where Q) (x) is the QD transformation defined in Equation (1.8) and C(z | V0, #) is the ensemble
function with the intercept term V0 ∈ R and the weight vector # ∈ R?. (V0, #) along with the ?
quantile parameters) ∈ (0, 1)? may be estimated by minimizing a suitable regularized loss function
with the regularization parameter " using cross-validation.

A graph representation of the EQC is shown in Figure 2.1.

Figure 2.1: Architecture of EQC using the QD transformation.

2.2. Methodology 21

For simplicity, the length of # is set to ? but this is not necessary as a complicate ensemble
function C(z | V0, #) will require more parameters, which makes EQC highly flexible. C(z | V0, #)
can be replaced with the discriminant function of most regularized classifiers such as the penalized
logistic regression (Park & Hastie 2007) or the support vector machine (SVM) (Cortes & Vapnik
1995). For the penalized logistic regression " = _, where _ is the penalty defined in Equation (2.3)
while for the SVM model with the linear kernel defined in Equation (2.4), " = c, where c is the cost
penalty. As a default choice for C, the penalized (Ridge) logistic regression is recommended since it
often performs well. For high-dimensional data where ? > =, it is preferable to treat) as a tuning
parameter and estimate it together with " using cross-validation.

When the quantiles are substituted into their estimates, the estimated discriminant function is
denoted by Ĝ(x |) , V0, #) and the estimated quantile transformation is denoted by Q̂) (x8).

Using the penalized logistic regression for C,

C
(
Q) (x) | V0, #

)
= V0 +

?∑
9=1

V 9 Q\ 9
(G 9). (2.2)

We let " = _ be the penalty parameter in the regularized binomial loss function (Friedman et al.
2010). So given _ and the input Q) (x), (V0, #) may be estimated by minimizing,

Lossbinomial

(
V0, #

�� _,Q) (x8), 8 = 1, . . . , =
)
= − 1

=

=∑
8=1

[
(H8 − 1)C

(
Q) (x8) | V0, #

)
−

log(1 + 4C(Q) (x8) |V0,#))
]
+ _

2
‖#‖; , (2.3)

where ‖#‖1 =
∑?

9=1 |V 9 | for LASSO and ‖#‖2 =
∑?

9=1 V
2
9
for Ridge regression. Using the SVM with

the linear kernel (LSVM) has the same linear discriminant function as Equation (2.2), but (V0, #) is
estimated by minimizing the regularized hinge loss (Hastie et al. 2009, Equation 12.25),

Losshinge
(
V0, #

�� c,Q) (x8), 8 = 1, . . . , =
)
=

1
=

=∑
8=1

[
1 − (H8 − 1)C

(
Q) (x8) | V0, #

)]
+
+ 1

2=c
‖#‖2,

(2.4)

where [G]+ indicates the positive part of G and c is the cost tuning parameter.
If V0 = 0 and V 9 = 1 for 9 = 1, . . . , ?, then EQC has the same decision boundary as QC.

In Appendix B.1, it is shown that EQC with C defined in Equation (2.2) has the same form
as the Bayes decision boundary when %1 and %2 consist of independent asymmetric Laplace
distributions. This motivates further exploration and development of the EQC. The estimation
of (V0, #) by Ridge/LASSO penalized logistic regression and LSVM are all capable of dealing

22 Chapter 2. Ensemble Quantile Classifier

with high dimensional data. The associated ensemble classifiers used in this paper are denoted by
EQC/Ridge, EQC/LASSO and EQC/LSVM. A non-negative constraint of # was also investigated but
we did not find an experimentally significant accuracy improvement, which agrees with a previous
study of stacking classifiers (Ting & Witten 1999).

Algorithm 1 shows the entire process of tuning and training EQC. Here the misclassification
rate is used as a criterion to choose the tuning parameters but in some cases other criteria
such as the AUC or cross-entropy may be appropriate. The time complexity of Algorithm 1 is
$

(
() + 1) (?= log(=) + =(? + 1)��)

)
if the coordinate descent is used in optimization with the

penalized logistic regression (Friedman et al. 2010). � is the total iterations of the optimization and
� is the size of the tuning set �. The time complexity for sorting each variable to obtain sample
quantiles is $ (?= log(=)) which is manageable unless = or ? is large though the computational
burden for cross-validation can be reduced by using parallel computation (Kuhn & Johnson 2013).

2.2.2 Multiclass EQC

A practical method to extend the binary classifier to multiclass (> 2) is to build a set of
one-versus-all classifiers or a set of one-versus-one classifiers (Hastie et al. 2009, p. 658). A less
heuristic approach, similar to the multinomial logistic regression, is to use the − 1 log-odd-ratios
to implement maximum likelihood estimation (MLE). The multinomial logistic regression requires
estimation of (− 1) (? + 1) coefficients but here the multiclass EQC only requires ? + − 1
coefficients including ? weights V 9 , 9 = 1, . . . , ?, and − 1 intercept terms V0,: , : = 1, . . . , − 1.

Let # = (V1, . . . , V?). Assume for an observation x,

log
P(H = 1 | x,) , #, {V0,: } −1

:=1)
P(H = | x,) , #, {V0,: } −1

:=1)
= −C

(
Q(1,)) (x) | V0,1, #

)
log
P(H = 2 | x,) , #, {V0,: } −1

:=1)
P(H = | x,) , #, {V0,: } −1

:=1)
= −C

(
Q(2,)) (x) | V0,2, #

)
...

log
P(H = − 1 | x,) , #, {V0,: } −1

:=1)
P(H = | x,) , #, {V0,: } −1

:=1)
= −C

(
Q(−1,)
) (x) | V0, −1, #

)
,

and
∑
:=1 P(H = : | x,) , #, {V0,: } −1

:=1) = 1. The negative sign prior to C is used because class is
used in the denominator of the log-odd-ratios and is the alternative class in Q(:,)) (x), which implies
that the smaller C

(
Q(:,)) (x) | V0,: , #

)
is, the closer x is to class : compared to class and hence

2.2. Methodology 23

Algorithm 1: Tune and train EQC.
Data: (= {(x1, H1), . . . , (x=, H=)}, ? = the number of variables within x.
Input: � = tuning set of) ∈ (0, 1)?, A = tuning set of ",) = the number of

cross-validation folds.
begin Tuning parameters:

Randomly divide (into) non-overlap folds, (1, . . . , () .
for C = 1, . . . ,) do fit C on (\ (C ,

foreach) in � do
Estimate quantiles @̂:, 9 (\ 9) for : = 1, 2 and 9 = 1, . . . , ? from (\ (C .
Compute Q̂) (x8) for 8 = 1, . . . , =, based on the estimated quantiles.
foreach " in A do

Estimate (V0, #) of C
(
Q) (x) | V0, #

)
by minimizing some loss functions

such as Equation (2.3) on Q̂) (x8) for (x8, H8) ∈ (\ (C with the tuning
parameter ".

Apply the estimated Ĉ on Q̂) (x8) for (x8, H8) ∈ (C and return the
misclassification rate.

end
end

end
Average the misclassification rate over folds for each combination of) and ". Denote
()̂ , "̂) as the combination with the minimum average misclassification rate.

end
Output: Refit C with ()̂ , "̂) on the full data (.

the larger the the log-odd-ratios between class : and class . Thus,

P(H = :0 | x,) , #, {V0,: } −1
:=1) =

4
−C

(
Q(:0 ,)) (x)

��� V0,:0 ,#
)

∑
:=1 4

−C
(

Q(:,)) (x)
��� V0,: ,#

) , for :0 = 1, . . . , , (2.5)

where V0, = 0.
Given the tuning parameter _, the L2 regularized log-likelihood function may be written,

ℓ̃(#, {V0,: } −1
:=1 |) , _) =

1
=

=∑
8=1

logP(H = H8 | x8,) , #, {V0,: } −1
:=1) −

_

2

?∑
9=1

V2
9 . (2.6)

It can be shown that ℓ̃(#, {V0,: } −1
:=1 |) , _) is a concave function so it is amenable to optimization

24 Chapter 2. Ensemble Quantile Classifier

based on gradients or Newton’s method. For further details see Appendix B.2 and the R package eqc
Lai & McLeod (2018) for implementation details.

2.3 Asymptotic Consistency

In this section, the theoretical result is derived in a slightly different set-up as the practical procedure
in Algorithm 1. It is assumed that ? is fixed while = increases, so) and (V0, #) may be estimated by
maximum likelihood. In addition, " is neglected as the asymptotic properties of the selection of the
tuning parameter are not discussed.

Let ()̃ , Ṽ0, #̃) be the parameters that minimize the population binomial loss function,

Ψ() , V0, #) = c1

∫
log(1 + 4C(Q) (x) |V0,#)) d%1(x)−

c2

∫ [
C
(
Q) (x) | V0, #

)
− log(1 + 4C(Q) (x) |V0,#))

]
d%2(x), (2.7)

where c1 and c2 are prior probabilities of the two classes.
Let ()̂=, V̂=0, #̂=) be the parameters that minimize the empirical binomial loss function,

Ψ= () , V0, #) = −
1
=

=∑
8=1

[
(H8 − 1)C

(
Q̂) (x8) | V0, #

)
− log(1 + 4C(Q̂) (x8) |V0,#))

]
. (2.8)

It is shown that under suitable assumptions, ()̂=, V̂=0, #̂=) is a consistent estimator of ()̃ , Ṽ0, #̃).
The proofs are available in Appendix B.3. These results have been proved by Hennig & Viroli
(2016a) for the quantile-based classifier with the 0-1 loss function. The proof given by them has
been adapted to take into account the additional parameters (V0, #) and the change of the loss
function from the 0-1 loss function to the binomial loss function. Assumption 2 is added in addition
to Assumption 1 made by Hennig & Viroli (2016a). The linear ensemble function in Equation (2.2),
the ensemble function with multiplicative interactions, and the polynomial ensemble function used
in polynomial kernel SVM all satisfy Assumption 2. These assumptions ensure convergence can still
hold with (V0, #). The use of the binomial loss function simplifies the proof and the computation.
Since the 0-1 loss function is not a convex or a continuous function, its minimization is NP-hard so
the binomial loss function or the hinge loss function are used instead. Assumption 2 of Hennig &
Viroli (2016a) is not needed since the binomial loss function is used.

Assumption 1. ∀ 9 = 1, . . . , ?, : = 1, 2, the quantile function @:, 9 (\ 9) is a continuous function of
\ 9 ∈ Θ 9 ⊂ (0, 1).

2.4. Numerical Study 25

Assumption 2. C(z | V0, #) is required to be differentiable with respect to z, V0 and #. In addition,
Ṽ0 and #̃ are required to be bounded. That is, ∃� > 0 such that | Ṽ 9 | 6 �, for 9 = 0, 1, . . . , ?.

Theorem 2.3.1. Under Assumptions 1 and 2, ∀n > 0,

lim
=→∞
P{|Ψ()̃ , Ṽ0, #̃) − Ψ()̂=, V̂=0, #̂=) | > n} = 0.

Assumption 2 is needed to ensure that the estimation of (V0, #) converges. Theorem 2.3.1
shows that the estimated parameters are consistent in achieving the minimal population loss. Beside,
Theorem 2.3.2 below states that the empirical minimal loss will converge to the population minimal
loss asymptotically as =→∞ with ? fixed.

Theorem 2.3.2. Under Assumptions 1 and 2, ∀n > 0,

lim
=→∞
P{|Ψ()̃ , Ṽ0, #̃) − Ψ= ()̂=, V̂=0, #̂=) | > n} = 0.

Based on Theorem 2.3.1 and Theorem 2.3.2, when = is large relative to ?, Algorithm 1 can be
modified to estimate \ by minimizing the training loss function instead of using cross-validation
approach.

2.4 Numerical Study

2.4.1 Experimental Setup

Simulation experiments are presented to demonstrate the improved performance of EQC over QC
with high-dimensional skewed inputs as well as other classifiers. The following thirteen classifiers
were compared:

QC quantile-based classifier (Hennig & Viroli 2016a);

MC median-based classifier (Hall et al. 2009);

EMC EQC with \ = 0.5 with RIDGE logistic regression;

EQC/LOGISTIC EQC with logistic regression;

EQC/RIDGE EQC with RIDGE logistic regression;

EQC/LASSO EQC with LASSO logistic regression;

26 Chapter 2. Ensemble Quantile Classifier

EQC/LSVM EQC with linear SVM;

NB naive Bayes classifier;

LDA linear discriminant analysis;

LASSO LASSO logistic regression (Friedman et al. 2010);

RIDGE RIDGE logistic regression (Friedman et al. 2010);

LSVM SVM with linear kernel (Cortes & Vapnik 1995);

RSVM SVM with radial basis kernel (Cortes & Vapnik 1995).

Tuning parameters were selected by minimizing the 5-fold cross-validation errors. QC, MC and
EQC were fit using the R implementation (Lai & McLeod 2018) while NB, LSVM, RSVM used the
algorithms in Meyer et al. (2018). The LDA from (Venables & Ripley 2002) was used. RIDGE and
LASSO used the package glmnet (Friedman et al. 2010). EQC/LOGISTIC used the base R function
stats::glm.

Three location-shift input distributions, corresponding to heavy-tails, highly skewed and a
heterogeneous skewed, were examined as discussed by Hennig & Viroli (2016a):

T3 C distribution on 3 degrees of freedom;

LOGNORMAL log-normal distribution;

HETEROGENEOUS equal number of , , exp(,), log(|, |), ,2 and |, |0.5 in order, where
, ∼ N(0, 1).

All generated variables were statistically independent and the distributions were adjusted to have
mean zero and variance 1. The classification error rates were estimated using 100 simulations with
independent test samples of size 104.

For each of the three distributions a location-shift vector % was used to produce the sec-
ond class where % = (0.32, . . . , 0.32) for T3, % = (0.06, . . . , 0.06) for LOGNORMAL and
% = (0.14, . . . , 0.14) for HETEROGENEOUS. The additive shift was chosen to make the misclas-
sification rate of the QC close to 10% for samples of size = = 100.

Simulation experiments to demonstrate the effectiveness of prediction algorithms with high-
dimensional data typically use a large number of non-informative features or noise variables. For
example, the models of Hastie et al. (2009, Equation 18.37) and Fan & Fan (2008, Section 5.1)

2.4. Numerical Study 27

used 95% and 98% of the variables to represent informationless random noise. We considered the
influence of these irreverent variables by including independent Gaussian predictors.

For each simulation scenario, the following settings were used,

1. Training sample size =: 100, 200;

2. Number of all variables ?: 50, 100, 200;

3. Standard Gaussian noises with the percentage of noise variables within the ? variables set to
0%, 50%, 90%, which corresponds to 0, ?/2 and 0.9 × ? variables being non-informative.
The corresponding simulation parameter setting will be denoted as NOISE = 0%, 50%, 90%.
For example, when NOISE = 90% there are respectively 5, 10 and 20 informative variables
when ? = 50, 100, 200.

In addition to the case where the input variables were statistical independent, the correlated variables
case was also investigated. Correlation was imposed by using the Gaussian copula with the correlation
matrix uniformly sampled from the space of positive-definite correlation matrices (Joe 2006) with
equal correlations distributed as beta(0.5, 0.5). The implementation is available in the R package
clusterGeneration (Qiu & Joe. 2015).

2.4.2 Test Error Rates

The mean test error rates for each of the 100 simulations are tabulated in Appendix B.4.
The boxplots of the test error rates for the independent variables in the low dimensional,

= = 200, ? = 50, and high dimensional, = = 100, ? = 200, scenarios are displayed in Figure 2.2
and Figure 2.3 respectively. The scenario with extraneous noise present is shown in the bottom
two rows of Figure 2.2 and Figure 2.3 and here it is seen that in both the LOGNORMAL and
HETEROGENEOUS cases, the EQC methods outperform all the other methods.

Focusing on Figure 2.2, in the symmetric thick-tailed case, T3, MC is best but QC, EMC
and EQC/RIDGE closely approximate the MC performance as might be expected. While in the
skewed cases, LOGNORMAL and HETEROGENEOUS, the four regularized EQC methods
outperform all others. It is also interesting that EQC/LOGISITC has a lower error rate than QC
in the HETEROGENEOUS case as shown in the panels in the right-most column. This implies
that the addition of weights using the ensemble method can help improve performance when the
importance of variables varies. However, even in this case the regularized EQC methods are still best
and the relative performance of the regularized methods over QC improves as the proportion of noise

28 Chapter 2. Ensemble Quantile Classifier

variables increases. Next in the LOGNORMAL case shown in the middle panels in Figure 2.2,
EQC/RIDGE has overall the best performance though when there is no extraneous noise, QC is
about the same. But as extraneous noise is added, all EQC methods improve relative to QC though
as might be expected EQC/LOGISTIC’s performance is slightly worse than the EQC regularized
logistic methods.

T3 LOGNORMAL HETEROGENEOUS

N
O

IS
E

=
0%

N
O

IS
E

=
50%

N
O

IS
E

=
90%

Q
C

M
C

E
M

C

E
Q

C
/L

O
G

IS
T

IC

E
Q

C
/R

ID
G

E

E
Q

C
/L

A
S

S
O

E
Q

C
/L

S
V

M N
B

LD
A

R
ID

G
E

LA
S

S
O

LS
V

M

R
S

V
M

Q
C

M
C

E
M

C

E
Q

C
/L

O
G

IS
T

IC

E
Q

C
/R

ID
G

E

E
Q

C
/L

A
S

S
O

E
Q

C
/L

S
V

M N
B

LD
A

R
ID

G
E

LA
S

S
O

LS
V

M

R
S

V
M

Q
C

M
C

E
M

C

E
Q

C
/L

O
G

IS
T

IC

E
Q

C
/R

ID
G

E

E
Q

C
/L

A
S

S
O

E
Q

C
/L

S
V

M N
B

LD
A

R
ID

G
E

LA
S

S
O

LS
V

M

R
S

V
M

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Method

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

Figure 2.2: Low dimensional scenario test error rates, = = 200, ? = 50.

In the high-dimensional case in Figure 2.3 the conclusions are broadly similar to the low-
dimensional case in Figure 2.2 but with two notable differences. First, QC is much worse than the
EQC/RIDGE in the LOGNORMAL scenario even when all variables are informative. Since QC
lacks regularization, it becomes a victim of the accumulated noise phenomenon (Fan & Fan 2008).
Second, EQC/LASSO is much worse than EQC/RIDGE and EQC/LSVM with the low (0%) and
medium (50%) level of noises since the assumption of sparse predictors made by LASSO (Hastie
et al., 2009, Section 16.2.2; James et al., 2013, Section 6.2.2.3) does not hold. Conversely, when
the noise level is 90%, EQC/LASSO becomes competitive to EQC/RIDGE and EQC/LSVM in
the scenarios of T3 and LOGNORMAL, and it becomes dominant in the HETEROGENEOUS
scenario.

Figure 2.4 shows that the difference in classifier performance between the independent case and
the dependent case is negligible in the skewed scenariosLOGNORMAL andHETEROGENEOUS.
In the T3 scenario, LDA performance is best and is greatly improved over the case with independent

2.4. Numerical Study 29

variables. This improvement is not surprising since the correlations induce different weights on
variables for the LDA (Hastie et al. 2009, Equation 4.9).

T3 LOGNORMAL HETEROGENEOUS

N
O

IS
E

=
0%

N
O

IS
E

=
50%

N
O

IS
E

=
90%

Q
C

M
C

E
M

C

E
Q

C
/R

ID
G

E

E
Q

C
/L

A
S

S
O

E
Q

C
/L

S
V

M N
B

LD
A

R
ID

G
E

LA
S

S
O

LS
V

M

R
S

V
M

Q
C

M
C

E
M

C

E
Q

C
/R

ID
G

E

E
Q

C
/L

A
S

S
O

E
Q

C
/L

S
V

M N
B

LD
A

R
ID

G
E

LA
S

S
O

LS
V

M

R
S

V
M

Q
C

M
C

E
M

C

E
Q

C
/R

ID
G

E

E
Q

C
/L

A
S

S
O

E
Q

C
/L

S
V

M N
B

LD
A

R
ID

G
E

LA
S

S
O

LS
V

M

R
S

V
M

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Method

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

Figure 2.3: High dimensional scenario test error rates, = = 100, ? = 200. EQC/LOGISTIC is not
available in the high dimensional scenario.

T3 LOGNORMAL HETEROGENEOUS

independent
dependent

Q
C

M
C

E
M

C

E
Q

C
/L

O
G

IS
T

IC

E
Q

C
/R

ID
G

E

E
Q

C
/L

A
S

S
O

E
Q

C
/L

S
V

M N
B

LD
A

R
ID

G
E

LA
S

S
O

LS
V

M

R
S

V
M

Q
C

M
C

E
M

C

E
Q

C
/L

O
G

IS
T

IC

E
Q

C
/R

ID
G

E

E
Q

C
/L

A
S

S
O

E
Q

C
/L

S
V

M N
B

LD
A

R
ID

G
E

LA
S

S
O

LS
V

M

R
S

V
M

Q
C

M
C

E
M

C

E
Q

C
/L

O
G

IS
T

IC

E
Q

C
/R

ID
G

E

E
Q

C
/L

A
S

S
O

E
Q

C
/L

S
V

M N
B

LD
A

R
ID

G
E

LA
S

S
O

LS
V

M

R
S

V
M

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Method

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

Figure 2.4: Comparison of test error rates with independent and correlated input variables in the low
dimensional scenario, = = 200, ? = 50.

30 Chapter 2. Ensemble Quantile Classifier

2.4.3 Comparing EQC/RIDGE with QC for Fixed \

Figure 2.5 shows the mean test rate of QC and EQC/RIDGE trained on a a sample of size = = 100 and
evaluated over a grid for \ ∈ (0, 1), where 200 simulations for 104 test samples for each parameter
setting and grid point were used. The confidence limits are too narrow to show. Looking along the
first row of panels corresponding to the C3-distribution, the performance of EQC/RIDGE and QC
is about the same for all \. Since \ = 0.5 corresponds to the Bayes optimal median centroid (Hall
et al. 2009), both QC and EQC/RIDGE provide optimal performance in the T3 cases when \ = 0.5.
For the LOGNORMAL and HETEROGENOUS scenarios EQC/RIDGE outperforms QC. This
figure demonstrates that the estimation of a suitable \ is important in achieving a low test error rate.

p=100,NOISE=0% p=100,NOISE=50% p=200,NOISE=0% p=200,NOISE=50%

T
3

LO
G

N
O

R
M

A
L

H
E

T
E

R
O

G
E

N
E

O
U

S

0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

θ

M
ea

n
te

st
 e

rr
or

 r
at

e

Method QC EQC/RIDGE

Figure 2.5: Mean test error rates of the QC and the EQC/RIDGE against \ for fixed = = 100, the
three distributional scenarios, number of variables ? = 100, 200 and NOISE = 0%, 50%.

2.5. Reuters-21578 text categorization 31

2.5 Reuters-21578 text categorization

2.5.1 Binary Classification

As in Hall et al. (2009) we used a subset of the Reuters-21578 text categorization test collection
(Lewis 1997, Sebastiani 2002) to demonstrate the usefulness of EQC and its improved performance
over MC and QC. The improved performance was expected since this data set is high-dimensional,
sparse and the variables are highly skewed.

The subset contains two topics, “acq” and “crude”, which can be found from the R package tm
(Feinerer & Hornik 2017). The subset has 70 observations (documents), where =1 = 50 are of the
topic “acq” and =2 = 20 are of the topic “crude”. The raw data set was preprocessed to first remove
digits, punctuation marks, extra white spaces, then convert to lower case, and remove stop words and
reduce to their stem. It ended up with a 70 × 1517 document-term matrix, where a row represents a
document and a column represents a term and records the frequency of a term. A summary of the
processed data set is shown in Table 2.1.

The performance of a classifier was assessed by the mean classification error rate estimated by 5
repetitions of 10-fold cross-validations with each fold containing 5 documents of the topic “acq”
and 2 documents of the topic “crude”.

Since the performances of some classifiers such as the naive Bayes classifier and the LDA could
be much improved by using external feature selection strategies, three external strategies for variable
selection were investigated. The first strategy was to use a subset of the data by removing low
frequency terms that only appear in one document denoted by removeLowFreq. This produced a
70 × 766 document-term matrix. The second and third strategies used Fisher’s exact test to select
! = 50 or ! = 1000 terms with the smallest p-values within each fold of the cross-validation.

Table 2.1: Summary of the Reuters-21578 subset.
#Classes #Samples #Samples(acq) #Samples(crude) #Features

2 (acq vs crude) 70 50 20 1517

Table 2.2 shows the estimated error rates and their estimated standard error for each classifier.
The second column indicates the situation where no external feature selection was used. The four
EQC methods, including the EMC, performed the best even without any external feature selections,
followed by the QC and the MC. It was found that most quantile-difference transformed variables
were constants, which could be removed. This sparsity explains the improved performance of EQC.

32 Chapter 2. Ensemble Quantile Classifier

Table 2.2: Mean classification error rates, and their standard errors in parentheses, from 5 repetitions
of 10-fold cross-validations for the Reuters-21578 subset.

Method
Classification Error Rates

Overall RemoveLowFreq ! = 50 ! = 1000
QC 0.069(0.013) 0.06(0.012) 0.049(0.01) 0.063(0.012)
MC 0.06(0.012) 0.063(0.014) 0.054(0.012) 0.063(0.014)
EMC 0.034(0.01) – – –
EQC/RIDGE 0.034(0.01) – – –
EQC/LASSO 0.037(0.011) – – –
EQC/LSVM 0.034(0.01) – – –
NB 0.714(0) 0.714(0) 0.117(0.015) 0.134(0.015)
LDA 0.191(0.014) 0.18(0.019) 0.086(0.014) 0.183(0.014)
RIDGE 0.203(0.012) 0.186(0.012) 0.097(0.013) 0.203(0.012)
LASSO 0.051(0.013) 0.049(0.013) 0.066(0.014) 0.049(0.013)
LSVM 0.109(0.013) 0.1(0.013) 0.091(0.014) 0.1(0.013)
RSVM 0.217(0.012) 0.203(0.016) 0.097(0.014) 0.191(0.018)

2.5.2 Multiclass Classification

To see how the EQC performs on the multiclass problem, a larger subset of Reuters-21578, denoted
by R8 (Cardoso-Cachopo 2007) was tried. This data set contains a training set and a test set that
were obtained by applying the modApte train/test split on the raw data (Lewis 1997). This resulted
in retaining 8 classes with the highest number of positive training examples. In order to classify
those 8 classes, the same preprocessing procedure as in Section 2.5.1 on the R8 data set was applied.
The terms were preprocessed to first remove digits, punctuation marks, extra white spaces, then
convert to lower case, and remove stop words and reduce to their stem. Terms that appeared in less
than 0.5% of documents were also removed, resulting in a 5485 × 1367 document-term matrix for
training and a 2189 × 1367 document-term matrix for testing. The number of samples for each class
are summarized in Table 2.3.

Classifiers in the binary case were used but with the RIDGE logistic regression and the LASSO
logistic regression extended to the multinomial regressions, SVM extended to multi-class SVM
by the one-against-one method (Hastie et al. 2009). Table 2.4 shows the mean test error and the
sensitivities of different classes. The EQC still outperformed the other methods on the larger subset
but the EMC, the QC and the MC performed poorly this time. With a much larger sample size, the
LSVM and the RIDGE multinomial regression were competitive with EQC.

2.6. Discussion and Conclusion 33

Table 2.3: Summary of the Reuters-21578 subset R8 with 1367 features.

Class
#Samples

train test
acq 1596 696
crude 253 121
earn 2840 1083
grain 41 10
interest 190 81
money-fx 206 87
ship 108 36
trade 251 75
Total 5485 2189

Table 2.4: Test error and sensitivities for each multiclass classifier on the Reuters-21578 subset R8.

Method Test Error
Sensitivities

acq crude earn grain interest money-fx ship trade
QC 0.144 0.963 0.745 0.857 0.333 0.763 0.663 0.481 0.757
MC 0.392 0.820 0.899 0.864 0.000 0.102 0.000 0.059 0.000
EMC 0.309 0.750 0.925 0.875 1.000 0.700 0.316 0.091 0.908
EQC 0.044 0.956 0.964 0.985 0.692 0.865 0.805 0.757 0.910
NB 0.994 0.000 0.000 0.000 0.005 1.000 1.000 0.000 1.000
LDA 0.109 0.896 0.883 0.906 1.000 0.732 0.709 0.759 0.906
Ridge 0.060 0.934 0.944 0.956 0.833 0.946 0.839 0.923 0.850
LASSO 0.168 0.908 0.932 0.780 0.000 0.955 1.000 1.000 1.000
LSVM 0.083 0.960 0.847 0.938 0.667 0.855 0.778 0.641 0.747
RSVM 0.131 0.739 0.951 0.975 1.000 1.000 0.775 0.900 0.889

2.6 Discussion and Conclusion

In this chapter we introduce the ensemble quantile classifier, the aim of which is to derive a
regularized weighted quantile-based classifier that can best retain the advantage of QC on skewed
inputs and overcome the limitation of the QC with high-dimensional data that includes noisy inputs.
The improvement using EQC has been demonstrated in simulation experiments as well as with an
application to text categorization. We implement the EQC methods with the R package eqc (Lai &
McLeod 2018), where a vignette is available for reproducing the simulations and the Reuters text
categorization application.

34 Chapter 2. Ensemble Quantile Classifier

As the basis of the EQC, the quantile-difference transformation still has an unfulfilled potential.
In the subsequent chapters, we propose extensions of the EQC which have a more flexible decision
boundary.

Chapter 3

Multiple Quantile Classifier

3.1 Motivation

Recall that in Section 1.5.1, we mention that the quantile-based classifier (QC) has a limitation
that it is Bayes optimal in the univariate input case only if the Bayes decision boundary is a single
point (Hennig & Viroli 2016a, Lemma 2). The EQC introduced in the previous chapter reduces to
the QC in the univariate case and hence has the same limitation. In this chapter, we prove that the
unique root restriction comes from the fact that QC or EQC uses only one \-quantile-difference
transformation for each variable. The results also indicate that this restriction can be relaxed by
including multiple \;-quantile-difference transformations of G for ; ∈ [<] B {1, . . . , <} as the input
to the linear metalearner. This leads to the multiple quantile classifier (MQC), presented next.

3.2 Methodology

We only discuss the derivation of the MQC in the binary case. The multiclass MQC can be derived
in the same way as the multiclass EQC by forming a set of log-odds-ratios and using the maximum
likelihood estimation. The discriminant function of a binary MQC is defined,

B(x |) , 10, H) = 10 +
?∑
9=1

<∑
;=1

1 9 ,; Q\;
(G 9), (3.1)

35

36 Chapter 3. Multiple Quantile Classifier

where) = {\1, . . . , \<} ∈ (0, 1)<, 10 ∈ R, H = {1 9 ,;}?×< ∈ R?×<, and Q\ (G) is the \-QD
transformation defined in Equation (1.8). The number of components in the right-hand side of
Equation (3.1) becomes huge if either < or ? is large, thus a simple structure such as the linear
metalearner is used here to prevent overfitting.

A graph representation of the MQC is shown in Figure 3.1.

Figure 3.1: Architecture of MQC using the QD transformation.

Despite the generalization of the Bayes optimality as implied by Corollary 3.3.2 in the next
section, another practical advantage of MQC over EQC is that MQC simplifies the selection of
) because we can supply all {\;}<;=1-quantiles of interest to MQC at once without repeating the
cross-validation to examine each \; at a time. The parameters 10 and H can be estimated by
minimizing the regularized binomial loss,

Lossbinomial

(
10, H

�� _,)) (3.2)

= − 1
=

=∑
8=1

[
(H8 − 1)B(x |) , 10, H) − log(1 + 4B(x |) ,10,H))

]
+ _

2
‖H‖; ,

where ‖H‖1 =
∑?

9=1
∑<
;=1 |1 9 ,; | for LASSO or ‖H‖2 =

∑?

9=1
∑<
;=1(1 9 ,;)2 for RIDGE penalty. and

_ > 0 is a hyper-parameter that balances between the training loss and the weight decay.

3.3. Bayes Optimality of MQC 37

3.3 Bayes Optimality of MQC

The sufficient conditions for achieving the Bayes optimality of MQC are discussed in this section.
All the results are restricted to a univariate input G and hence ? = 1. The proofs are available in
Appendix C. Assumption 3 is always assumed through this section.

Assumption 3. Let �: (G) be the cumulative distribution function (CDF) of %: for : = 1, 2. Denote
their quantile functions (inverse CDF) as @: (\) for \ ∈ (0, 1) and : = 1, 2. Assume that �: (G) is
continuous and strictly monotonic with a continuous derivative (density) �′

:
(G) = 5: (G), for : = 1, 2.

Further assume that 51(G) and 52(G) have the same support G ∈ [!,*] ⊆ (−∞, +∞).

Under Assumption 3, the (conditional) log-odds of class 2 can be written as a continuous function
of G,

6(G) B log
P(H = 2 | G)
P(H = 1 | G) = log(c2/c1) + log(52(G)/ 51(G)). (3.3)

Then the optimal strategy regarding minimizing the classification error is to predict Ĥ = 2 whenever
6(G) > 0 according to the Bayes rule. Therefore, a classifier can achieve the Bayes error rate if its
approximated log-odds have the same signs or same roots as 6(G).

For a linear log-odds function assumed in the logistic regression with only one input, there
is a unique root and hence QC is optimal. When 6(G) = 0 has multiple roots such as < > 1, the
optimality of QC fails but a <-th degree polynomial logistic regression may work for locating those
roots.

Below Theorem 3.3.1 and Corollary 3.3.2 show that MQC in Equation (3.1) can overcome the
Bayes optimality limitation of QC when the log-odds function has multiple roots. It may be preferred
over the the polynomial logistic regression because the polynomial logistic regression may struggle
to approximate the whole function curve while MQC only uses a finite number of simple piece-wise
linear bases to approximate the function locally and hence attenuates overfitting.

Theorem 3.3.1. Suppose Assumption 3 holds. Let � (G) B �2(G) − �1(G) for G ∈ [!,*]. Suppose
that � (G) has < > 0 roots '; for ; ∈ [<], which satisfy ! < '1 < . . . < '< < * and further denote
'0 = ! and '<+1 = *. Then,

1. For each ; ∈ [< + 1], ∃A; ∈ (';−1, ';), s.t., �′(A;) = 52(A;) − 51(A;) = 0. Such A; is unique if
� (G) is locally convex or concave within (';−1, ';), ; ∈ [< + 1].

2. ∀2 ∈ R and ∀A; ∈ (';−1 + (−1);−12, '; + (−1);−12) for ; ∈ [< + 1], there exists 10 ∈ R,
H = (11, . . . , 1<+1) ∈ R<+1, and) = {\;}<+1;=1 where \; ∈ (�1(';−1), �1(';)), s.t., the

38 Chapter 3. Multiple Quantile Classifier

equation,

10 +
<+1∑
;=1

1; Q\;
(G) = 0,

has < + 1 roots A; , ; ∈ [< + 1].

Corollary 3.3.2. Suppose Assumption 3 holds and c1 = c2 = 0.5. Let � (G) B �2(G) − �1(G) for
G ∈ [!,*]. Suppose that� (G) has< > 0 roots '; for ; ∈ [<], which satisfy ! < '1 < . . . < '< < *

and denote '0 = ! and '<+1 = *. Further assume that the root of �′(G) = 0 for G ∈ (';−1, ';) is
unique for each ; ∈ [< + 1] or � (G) is locally convex or concave for G ∈ (';−1, ';). Then

1. The log-odds function 6(G) = log(c2/c1) + log(52(G)/ 51(G)) has the same < + 1 roots
A; ∈ (';−1, ';) as �′(G).

2. There exists) = {\;}<+1;=1 where \; ∈ (�1(';−1), �1(';)), s.t., the equation,

<+1∑
;=1

Q\;
(G) = 0,

has the same < + 1 roots A; of 6(G) = 0, ; ∈ [< + 1]. Thus, MQC with) achieves the Bayes
error rate.

Theorem 3.3.1 implies that if � (G) = �2(G) − �1(G) has < + 2 roots {';}<+2;=1 and the log-
odds 6(G) has < + 1 > 1 roots {';}<+1;=1 , each of which falls in different constant shifted regions
(';−1 + (−1);−12, '; + (−1);−12), then we can find 10 ∈ R, H ∈ R<+1 and) = {\;}<+1;=1 ∈ (0, 1)

<+1

which makes the roots of the MQC discriminant function in Equation (3.1) the same as the roots of
6(G) = 0. So the Bayes error rate can still be reached by MQC. Corollary 3.3.2 illustrates a situation
where this condition always holds in the balanced case (c1 = c2 = 0.5).

Although Corollary 3.3.2 only requires an MQC that has equal weights 1; = 1, ; ∈ [< + 1]
and zero intercept 10 = 0, adding these parameters to the discriminant function of MQC can help
compensate the bias from the fact that the priors are not always balanced and it is unlikely that we
can choose the appropriate) that satisfies the requirement of Theorem 3.3.1. A practical strategy is
to choose a lengthy) with dense values and apply a regularized estimation of V; so that the influence
of some unqualified \′B-quantile-difference transformed variables can be attenuated.

Theorem 3.3.3 as follows is a straightforward extension of Theorem 3.3.1 and Corollary 3.3.2 in
order to investigate the imbalanced case (c1 ≠ c2).

3.3. Bayes Optimality of MQC 39

Theorem 3.3.3. Suppose Assumption 3 holds. Let �̃ (G) B c2
c1
�2(G) −�1(G) for G ∈ [!,*]. Suppose

that �̃ (G) has < > 1 roots '; for ; ∈ [<], which satisfy ! < '1 < . . . < '< < * and further denote
'0 = !. Then,

1. For each ; ∈ [<], ∃A; ∈ (';−1, ';), s.t., �̃′(A;) = c2
c1
52(A;) − 51(A;) = 0. Such A; is unique if

�̃ (G) is locally convex or concave within (';−1, ';), ; ∈ [<].

2. ∀2 ∈ R and ∀A; ∈ (';−1 + (−1);−12, '; + (−1);−12) for ; ∈ [<], there exists 10 ∈ R,
H = (11, . . . , 1<) ∈ R<, and) = {\;}<;=1 where \; ∈ (�1(';−1), �1(';)) if c1 6 c2, or
\; ∈ (�2(';−1), �2(';)) if c1 6 c2, s.t., the equation,

10 +
<∑
;=1

1;Q̃(\; , c1
c2
\;) (G) = 0,

has < roots A; , ; ∈ [<] if c1 > c2, or the equation,

10 +
<∑
;=1

1;Q̃(c2
c1
\; ,\;) (G) = 0,

has < roots A; , ; ∈ [<] if c1 > c2,

Theorem 3.3.3 is based on roots of the modified function �̃ (G) = (c2/c1)�2(G) − �1(G) and the
generalized (\1, \2)-quantile-difference transformation of G, which is defined,

Q̃(\1,\2) (G) = \̄ (G − @1(\1))+ + (1 − \̄) (@1(\1) − G)+ (3.4)
− [\̄ (G − @2(\2))+ + (1 − \̄) (@2(\2) − G)+],

where 0 < \1, \2 < 1, \̄ = (\1 + \2)/2, @: (\:) is the \:-quantile of %: for : = 1, 2, and“+” means
the positive part.

The generalized quantile-difference transformation still produces a piecewise linear spline with
constant tails, and it reduces to the the quantile-difference transformation in Equation (1.10) when
\1 = \2. It may be used to defined an imbalanced multiple quantile classifier (IMQC),

B(G | c1
c2
,) , 10, H) =


10 +

∑<
;=1 1;Q̃(\; , c1

c2
\;) (G), if c1

c2
6 1

10 +
∑<
;=1 1;Q̃(c2

c1
\; ,\;) (G), if c1

c2
> 1

, (3.5)

where c: is the prior of the population %: , : = 1, 2,) = {\;}<;=1 ∈ (0, 1)
<, 10 ∈ R, and

H = (11, . . . , 1<) ∈ R<.
However, the generalized quantile-difference transformation has a drawback that its expectation

under %2 is not necessary larger than its expectation under %1 as shown in Appendix A.2.

40 Chapter 3. Multiple Quantile Classifier

Meanwhile, the sufficient condition for the Bayes optimality of imbalanced extension in
Equation (3.5) requires that �̃ (G) has < + 1 roots if the true log-odds 6(G) has < > 1 roots, which
is much more restrictive than the similar requirement for � (G) of Theorem 3.3.1 especially when
c2/c1 is too extreme. In Section 3.5, we investigate the performances of QC and MQC in several
univariate situations including an illustrative imbalanced example where Theorem 3.3.1 holds but
Theorem 3.3.3 fails.

3.4 Comparison with MARS

Multivariate adaptive regression splines (MARS) (Friedman 1991, Hastie et al. 2009) is an adaptive
procedure for regression. It uses a stepwise approach similar to classification and regression trees
(CART) (Breiman et al. 1984) to do automatic variable selection and fitting but produces a continuous
model. It can be extended for classification with a proper link function.

Given data {(x8, H8)}=8=1, MARS uses a collection of piecewise linear basis functions

C = {(G 9 − C)+, (C − G 9)+, C = G1 9 , . . . , G= 9 } 9=1,... .?,

where "+" means the positive part.
Then MARS models data by the function

5 (G) = V0 +
"∑
<=1

V<ℎ< (G),

where ℎ< (G) is a function in C or a product of two or more such functions.
In contrast, let =: denote the sample size of observations in class : ∈ {1, 2} and let G([=:\]), 9 ,: ,

: ∈ {1, 2} denote the [=:\]-th order statistic of the variable G 9 in the sample of class : , where [·]
takes the close integer value. If we plug the order statistic G([=:\]), 9 ,: into the the quantile function
@:, 9 (\), in Equation (1.10), then the \-quantile-difference transformation becomes

Q\ (G 9) = \ (G 9 − G([=1\]), 9 ,1)+ + (1 − \) (G([=1\]), 9 ,1 − G 9)+
− [\ (G 9 − G([=2\]), 9 ,2)+ + (1 − \) (G([=2\]), 9 ,2 − G 9)+],

which can be formed by aggregating every four such piecewise linear basis functions of C. So
the usage of the quantile-difference transformation in QC, EQC, MQC and FMQC (introduced in
Chapter 4) makes them variants of MARS. But the size of the basis set is reduced by a factor of four.
Moreover, the set of knots in quantile methods is selected according to) instead of iterating over

3.5. Simulation Experiment 41

all possible values as in MARS, which can further reduce the size of the basis set. Theorem 3.3.1
ensures that such reduction in MQC is still sufficient to achieve the Bayes error rate for a univariate
input. The theorems proved for MQC in Section 3.3 also reveals why MARS may perform well from
a finer perspective.

Another important difference is the variable regularization procedure. MARS uses a combination
of forward and backward stepwise variable selections but regularization using L1 or L2 penalty
functions often provides improved predictive performance (Hastie et al. 2009, Breiman 1996a).

QC, EQC and MQC are comparable with one-degree MARS because they do not consider
interactions but FMQC introduced in the next chapter is comparable with higher-degree MARS.
Both of them put a restriction to avoid the formation of higher-order powers of input and interactions
between basis functions from the same variable. To solve the computation issues related to high
order interactions, FMQC uses the technique of factorization machines.

3.5 Simulation Experiment

A simulation experiment is conducted to validate the Bayes optimality of MQC in Theorem 3.3.1 as
well as compare it with the other general classifiers including the logistic regression, the polynomial
logistic regression, and degree-one MARS. We examine five sets of binary populations, which have
different number of roots of the log-odds function 6(G), or priors, as shown in Table 3.1.

Table 3.1: Test suite of density functions 5: (G), G ∈ [0, 1], and priors c: for the compared two classes,
: = 1, 2. A is the number of roots of 6(G) = log(c2/c1) + log(52(G)/ 51(G)). ' is the number of roots
of �̃ (G) = c2

c1
�2(G) − �1(G), where �: (G) =

∫ G

0 5: (D)dD, : = 1, 2. B(·, ·) is the beta function.
Case 51(G) 52(G) c1/c2 A '

1 G3(1 − G)2/B(4, 3) G−0.5(1 − G)3/B(1.5, 4) 1 1 2
2 G−0.4(1 − G)−0.4/B(0.6, 0.6) G1(1 − G)2/B(2, 3) 1 2 3
3 1 + 0.24c cos(4cG) 1 1 4 5
4 1 + 0.30c cos(6cG) 1 1 6 7
5 1 + 0.24c cos(4cG) 1 2 4 1
6 1 − 8c/30c sin(8cG) 1 − 6c/30c sin(6cG) 1 9 2

42 Chapter 3. Multiple Quantile Classifier

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

g(x)

G
~(x)

0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

−5

0

5

10

15

−0.3

0.0

0.3

0.6

x

Figure 3.2: Visualizations of the log-odds function 6(G) = log(c2/c1) + log(52(G)/ 51(G)) and the
function �̃ (G) = c2

c1
�2(G) − �1(G) for each case by columns.

The log-odds functions 6(G) = log(c2/c1) + log(52(G)/ 51(G)) and the differences of their
cumulative distribution functions �̃ (G) = c2

c1
�2(G) − �1(G) are visualized in Figure 3.2. Case

5 is an imbalanced example where the condition in Theorem 3.3.1 holds but the condition in
Theorem 3.3.3 fails. Case 6 is an example where the number of roots of 6(G) is larger than the
number of roots of �̃ (G), A > ', and hence both Theorem 3.3.1 and Theorem 3.3.3 fail. For
training the MQC, we set) to be {0.01, 0.11, . . . , 0.91} and select the penalty parameter within
{0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} via cross-validation. A sample of size 104 is used to
train the classifiers and a sample of size 107 is used to obtain the test errors of the fitted classifiers.
Table 3.2 summarizes the test error rates, where the Bayes error rate for each case is also provided.

We can see that in all cases, the test error rates of MQC, MARS and polynomial logistic
regression are close to the Bayes error rate, but the test error rates of the (linear) logistic regression
and QC are much higher than the Bayes error rate when the roots of the log-odds function does not
have a unique root. Even for case 6 where the conditions of both Theorem 3.3.1 and Theorem 3.3.3
fail, MQC and MARS still outperform the polynomial logistic regression although MARS is closer
in performance to the Bayes error rate.

3.5. Simulation Experiment 43

Table 3.2: Test classification error rates for each classifier, where the standard errors are in the
parenthesis. The column “Bayes” tells the Bayes errors. The training sample size is 104.

Case Bayes Logistic Poly-Logisic QC MQC MARS(degree=1)
1 0.2041 0.205(1e-04) 0.205(1e-04) 0.2043(1e-04) 0.204(1e-04) 0.2043(1e-04)
2 0.3034 0.4278(2e-04) 0.3066(1e-04) 0.3656(2e-04) 0.3037(1e-04) 0.3091(1e-04)
3 0.3800 0.4713(2e-04) 0.3917(2e-04) 0.4707(2e-04) 0.3838(2e-04) 0.3855(2e-04)
4 0.3500 0.5015(2e-04) 0.3673(2e-04) 0.4753(2e-04) 0.3584(2e-04) 0.4126(2e-04)
5 0.3033 0.3334(1e-04) 0.3334(1e-04) 0.409(2e-04) 0.3046(1e-04) 0.3136(1e-04)
6 0.3472 0.4667(2e-04) 0.3758(2e-04) 0.4367(2e-04) 0.3617(2e-04) 0.3528(2e-04)

Another simulation experiment is conducted to investigate the performance of the above classifiers
when the training sample size is as small as 25. The test sample size is set as 105 and 103 simulations
are used for each case to estimate the test error rate. The final result of the mean test error rates is
summarized in Table 3.3.

Table 3.3: Mean test classification error rates for each classifier, where the standard errors are in the
parenthesis. The column “Bayes” tells the Bayes errors. The training sample size is 25.

Case Bayes Logistic Poly-Logisic QC MQC MARS(degree=1)
1 0.2041 0.2166(6e-04) 0.2166(6e-04) 0.2252(9e-04) 0.2445(0.0017) 0.2325(0.0016)
2 0.3034 0.4585(0.0021) 0.3402(0.0014) 0.4238(0.0018) 0.388(0.0021) 0.4238(0.0024)
3 0.3800 0.4996(6e-04) 0.4572(0.0013) 0.4892(6e-04) 0.4774(0.001) 0.4978(3e-04)
4 0.3500 0.4996(5e-04) 0.4532(0.0013) 0.4913(5e-04) 0.4778(0.001) 0.4986(3e-04)
5 0.3033 0.3647(0.0012) 0.3831(0.0014) 0.4717(0.0022) 0.3598(0.0013) 0.3442(0.0011)
6 0.3472 0.4873(9e-04) 0.4439(0.0013) 0.481(0.0011) 0.4685(0.0012) 0.4946(5e-04)

For the first four cases and case 6 where classes are balanced, the polynomial logistic regression
with the correct degree always has the lowest test errors among all the methods, followed by the
MQC except for case 1, where QC and MARS have a lower mean test error rate than MQC. The
performance of QC, logistic regression and MARS are much worse than MQC in cases 2, 3, 4, and
6. Thus it may be difficult for MARS to identify the correct set of basis components with a limited
sample in these scenarios. For the imbalanced case 5, MARS has the lowest test error but MQC has
a competitive performance.

44 Chapter 3. Multiple Quantile Classifier

3.6 Discussion and Conclusion

In this chapter we introduce an extension of the ensemble quantile classifier, referred to as the
multiple quantile classifier which can account for a more flexible Bayes decision boundary. The
advantage has been justified by theories and validated by a simulation experiment. MQC can be
viewed as a special case of a degree-one MARS, yet MQC may outperform MARS in a small sample.
However, due to the limitation of the linear metalearner, MQC still can not express the interactions
among variables. The factorized multiple quantile classifier (FMQC), introduced in the next chapter,
is dedicated for handling higher-order interactions in a computationally efficient way. MQC is further
compared to EQC and FMQC in numerical study on both synthetic and real data in the next chapter.

Chapter 4

Factorized Multiple Quantile Classifier

4.1 Introduction

In some applications, identifying interactions among variables may be important for a task and
including interactions may also help improve the model predictive performance. By default the
multiple quantile classifier (MQC) introduced in Chapter 3 does not consider interactions as it is
constructed as an additive model of the piecewise linear splines of each input variable. To make
MQC account for interactions, we can replace the linear metalearner with a non-linear one such as
the radial kernel support vector machine (SVM) (Cortes & Vapnik 1995). But since the binary MQC
augments ? variables to <? quantile-difference transformed variables where < is the size of) , then
directly adding �-way interactions will cost a severe explosive computation burden. Meanwhile, we
want to exclude the interactions among terms that are quantile-difference transformed from the same
variable because it is likely that most components of the interaction term are constant. It is thus
crucial to develop a dedicated metalearner for considering interactions in MQC.

We introduce the factorized multiple quantile classifier (FMQC) for binary classification which
can efficiently and sparsely learn the high-order interactions by adapting the technique of the
factorization machine (Rendle 2010, 2012, Blondel, Fujino, Ueda & Ishihata 2016). Factorization
machines (FMs) were firstly proposed by Rendle (2010, 2012) as a substitute of SVMwhen modeling
interactions for high-dimensional sparse data such as in the recommendation systems, where SVM
may fail. Instead of directly estimating the weights of the interaction of each variable combinations,

45

46 Chapter 4. Factorized Multiple Quantile Classifier

FMs assume that those weights can be factorized into products of the elements in a low-rank matrix.
For a linear model with ? variables and �-way interactions, the factorization not only reduces the
number of estimated parameters from$ (?�) to$ (?�), but also reduces the time complexity of the
function evaluation from $ (?�) to $ (?�). So by avoiding the exponentially increasing demand
of memory and run-time, FMs provide a computational feasible way of dealing with high-order
interactions. The factorization structure also imposes a sparse structure for high-order interactions
that allows the FMs to infer the weights of unseen interactions of variable combinations that did not
appear in the training data. This is the key feature of FM’s which has proved useful in building a
recommendation system.

In the following sections, we first introduce the original second-order FMs (Rendle 2010), which
explains how factorization can avoid exponential time complexity of evaluating the interactions.
Next, we present the formulation of the FMQC for higher-order interactions as well as the efficient
algorithms for the evaluation and estimation. Numerical study on synthetic and real datasets is then
used to demonstrate the improvement of the FMQC.

4.2 Factorization Machines

The second-order FMs (Rendle 2010) assume a regression model,

5 (x) = F0 +
?∑
9=1
F?G 9 +

?∑
91=1

?∑
92= 91+1

G 91G 92

(:∑
5=1

E 91, 5 E 92, 5

)
,

where
∑:
5=1 E 91, 5 E 92, 5 can be viewed as a summation of : rank-one 2-way tensors.

The magic of FMs is based on the computation of the interactions,

?∑
91=1

?∑
92= 91+1

G 91G 92

(:∑
5=1

E 91, 5 E 92, 5

)
=

1
2

:∑
5=1

[
(
?∑
9=1
E 9 , 5 G 9)2 −

?∑
9=1
E2
9 , 5 G

2
9

]
,

where computing the left hand side is in$ (: ?2) while computing the right hand side is only in$ (: ?).
Thus, the exponentially computation cost is reduced to be linear in ?. Similarly, Blondel, Fujino,
Ueda & Ishihata (2016) proposed an iterative algorithm which allows for evaluating higher-order
interactions in linear time. We adapt their methods as the metalearner for the MQC but exclude the
interactions among terms that are quantile-difference transformed from the same variable.

4.3. Methodology 47

4.3 Methodology

4.3.1 Model Formulation

The discriminant function of �-order factorized multiple quantile classifier (FMQC) can be defined,

B(x |) , 10, H,V
(3) , 2 6 3 6 �) (4.1)

= 10 +
?∑
9=1

<∑
;=1

1 9 ,; Q\;
(G 9) +

:2∑
5=1

∑
91< 92

∑
;1,;2

2∏
C=1

E
(2)
9C ,;C , 5

Q\;C
(G 9C)

+ . . . +
:�∑
5=1

∑
91<...< 9�

∑
;1,...,;�

�∏
C=1

E
(�)
9C ,;C , 5

Q\;C
(G 9C)

where ∑
91<...< 93

∑
;1,...,;3

B

?−3+1∑
91=1

?−3+2∑
92= 91+1

. . .

?∑
93= 93−1+1

<∑
;1=1

. . .

<∑
;3=1

,

Q\ (G) is the \-QD transformation defined in Equation (1.8),) = {\;}<;=1 ∈ (0, 1)
<, 10 ∈ R,

H = {1 9 ,;}?×< ∈ R?×<, and V (3) = {E (3)
9 ,;, 5
}?×<×:3 ∈ R?×<×:3 , for :3 > 0 and 3 = 1, . . . , �. The

weight component
:3∑
5=1

3∏
C=1

E
(3)
9C ,;C , 5

=

:3∑
5=1

(
v (3)·,;1, 5 ⊗ . . . ⊗ v (3)·,;3 , 5

)
91,..., 93

,

can be considered as an element of a summation of :3 rank-one 3-way tensors, where v (3)·,;C , 5 =

(E1,;C , 5 , . . . , E?,;C , 5)
ᵀ and ⊗ is the outer product.

A graph representation of the FMQC is shown in Figure 4.1.

Figure 4.1: Architecture of FMQC using the QD transformation.

48 Chapter 4. Factorized Multiple Quantile Classifier

4.3.2 Linear-time Evaluation

The factorization structure reduces the number of parameters to $ (<?�), but a direct evaluation
of Equation (4.1) still takes $ (<� ?�). In order make the computation feasible, we adapted the
algorithm from Blondel, Fujino, Ueda & Ishihata (2016) and let

Q0(v, x) B 1,

Q1(v, x) B
?∑
9=1

<∑
;=1

E 9 ,; Q\;
(G 9),

Q3 (v, x) B
∑

91<...< 93

∑
;1,...,;3

3∏
C=1

E 9C ,;C Q\;C
(G 9C) for 3 = 2, . . . , �,

where v = {E 9 ,;}?×<.
Q3 (v, x) is similar to the ANOVA kernel used in (Blondel, Fujino, Ueda & Ishihata 2016) for

representing the high-order FMs as well as deriving the recursive computation. The difference
is that Q3 (v, x) does not include the interactions between the terms that are quantile-difference
transformed from the same variable. For distinction, Q3 (v, x) is called the quantile ANOVA kernel.
Using the quantile ANOVA kernel, Equation (4.1) can be rewritten,

B(x |) , 10, H,V
(3) , 2 6 3 6 �) (4.2)

= 10 + Q1(H, x) +
�∑
3=2

:3∑
5=1
Q3 (v (3)·,·, 5 , x),

where v (3)·,·, 5 = {E
(3)
9 ,;, 5
}?×<. So FMQC in Equation (4.1) can be computed in linear time if Q3 (v, x)

can be so.
A function 5 (G1, . . . , G?) is called multi-linear (resp. multi-convex) if it is linear (resp. convex)

w.r.t. G1, . . . , G? separately. Similar to Blondel, Ishihata, Fujino & Ueda (2016), we show that
quantile ANOVA kernels are still multi-linear in Lemma 4.3.1 and Equation (4.2) is multi-convex in
Theorem 4.3.2. Their proofs are available in Appendix D.1 and Appendix D.2. The multi-linearity
enables the recursive linear-time computation of Q3 (v, x). The muti-convexity of Equation (4.2)
ensures the sub-optimality if a coordinate descent (CD) algorithm is used for estimation.

Lemma 4.3.1. Let v = {E 9 ,;}?×< and x ∈ R?. Q3 (v, x) is multi-linear w.r.t. F 9 =
∑<
;=1 E 9 ,; Q\;

(G 9),
9 ∈ [?] and hence {E 9 ,;}<;=1 for a fixed 9 . In particular, for 1 6 3 6 � and a fixed 9 ∈ [?],

Q3 (v, x) = F 9Q3−1(v¬ 9 ,·, x¬ 9) + Q3 (v¬ 9 ,·, x¬ 9), (4.3)

4.3. Methodology 49

where v¬ 9 ,· is a ? − 1 by < matrix with the 9-th row of v removed, and x¬ 9 is a (? − 1)-dimensional
vector with G 9 removed.

Theorem 4.3.2. B(x |) , 10, H,V
(3) , 2 6 3 6 �) in Equation (4.2) is multi-convex in 10, 1 9 ,; and

E
(3)
9 ,;, 5

for ; ∈ [<], 5 ∈ [:3] and 2 6 3 6 �, for each fixed 9 ∈ [?], which are the 9-th row of H and
the 9-th first dimensional slice ofV (3) , 2 6 3 6 �.

We now show how to use Equation (4.3) in Lemma 4.3.1 to recursively compute quantile
ANOVA kernels. Let v1: 9 ,· ∈ R 9×< denote a submatrix of v and x1: 9 ∈ R 9 denote a subvector of x.
Let 0 9 ,3 B Q3 (v1: 9 ,·, x1: 9). From Equation (4.3),

0 9 ,3 = F 90 9−1,3−1 + 0 9−1,3 , ∀1 6 3 6 9 6 �, (4.4)

where F 9 =
∑<
;=1 E 9 ,; Q\;

(G 9), 9 ∈ [?]. Further let 0 9 ,0 = 1 ∀ 9 ∈ [?] because Q0(v, x) = 1 and let
0 9 ,3 = 0 for 3 > 9 because there is no 3-order interaction of 9 variables. Algorithm 2 summarizes
the recursive approach to compute 0?,� = Q� (v, x) by Equation (4.4), which takes $ ((< + �)?)
for time and memory given the quantile-difference transformed variables.

Meanwhile, in order to use gradient based optimizer for parameter estimation, the gradient of
Q� (v, x) w.r.t v should also be computed efficiently. Define 0̃ 9 ,3 B

m0?,�
m0 9 ,3

. From Equation (4.4),
using the chain rule, we can obtain,

0̃ 9 ,3 =
m0?,�

m0 9+1,3

m0 9+1,3
m0 9 ,3

+
m0?,�

m0 9+1,3+1

m0 9+1,3+1
m0 9 ,3

(4.5)

= 0̃ 9+1,3 + 0̃ 9+1,3+1F 9+1, ∀1 6 3 6 9 6 (? − 1).

Define Ẽ 9 ,; B
m0?,�
mE 9 ,;

, ∀ 9 ∈ [?] and ; ∈ [<]. Since E 9 ,; influences 0 9 ,3 , ∀3 ∈ [�], then

Ẽ 9 ,; =

�∑
3=1

m0?,�

m0 9 ,3

m0 9 ,3

mF 9

mF 9

mE 9 ,;
=

�∑
3=1

0̃ 9 ,3 0 9−1,3−1 Q\;
(G 9). (4.6)

Algorithm 3 utilizes Equation (4.5) and Equation (4.6) to compute the gradient ∇Q� (v, x) =
{Ẽ 9 ,;}?×< starting from 0̃?,� =

m0?,�
m0?,�

= 1. Assuming the results in Algorithm 2 has been stored,
then Algorithm 3 only takes extra $ ((< + �)?) for time and memory. Thus, the gradient of
B(x |) , 10, H,V

(3) , 2 6 3 6 �) is

mB

mW
=


1, if W = 10

Q\;
(G 9), if W = 1 9 ,; ,∀ 9 [?], ; ∈ [<]

{∇Q3 (v (3)·,·, 5 , x)} 9 ,; , if W = E (3)
9 ,;, 5

,∀ 9 [?], ; ∈ [<], 5 ∈ [:3], 2 6 3 6 �
. (4.7)

50 Chapter 4. Factorized Multiple Quantile Classifier

Algorithm 2: Computation of Q� (v, x)
Input: x ∈ R?, v ∈ R?×<,) ∈ (0, 1)<.
begin Initialization:

0 9 ,3 ← 0, ∀3 ∈ [�] and ∀ 9 ∈ [?] ∪ {0}
0 9 ,0 ← 1, ∀ 9 ∈ [?] ∪ {0}
I 9 ,; ← Q\;

(G 9), ∀ 9 ∈ [?] and ∀; ∈ [<]
F 9 ←

∑<
;=1 E 9 ,;I 9 ,; , ∀ 9 ∈ [?]

end
begin Recursion:

for 3 = 1, . . . , � do
for 9 = 3, . . . , ? do

0 9 ,3 ← F 90 9−1,3−1 + 0 9−1,3

end
end

end
Output: Q� (v, x) = 0?,�

Algorithm 3: Computation of ∇Q� (v, x)
Input: {0 9 ,3}?,�9=0,3=0, {F 9 }?9=1, {I 9 ,;}

?,<

9=1,;=1 from Algorithm 2.
begin Initialization:

0̃ 9 ,3 ← 0, ∀3 ∈ [� + 1] and ∀ 9 ∈ [?]
0̃?,� ← 1

end
begin Recursion:

for 3 = �, . . . , 1 do
for 9 = ? − 1, . . . , 3 do

0̃ 9 ,3 ← 0̃ 9+1,3 + 0̃ 9+1,3+1F 9+1

end
end

end
Ẽ 9 ,; ←

∑�
3=1 0̃ 9 ,3 0 9−1,3−1I 9 ,; , ∀ 9 ∈ [?] and ∀; ∈ [<]

Output: ∇Q� (v, x) = {Ẽ 9 ,;}?×<

4.3. Methodology 51

4.3.3 Parameter Estimation

The parameters of FMQC in Equation (4.1) consist of) = {\;}<;=1 ∈ (0, 1)
<, 10 ∈ R, H =

{1 9 ,;}?×< ∈ R?×<, and V (3) = {E (3)
9 ,;, 5
}?×<×:3 ∈ R?×<×:3 , for :3 > 0 and 3 = 1, . . . , �. Among

them,) is treated as hyper-parameters for performing quantile-difference transformations, and the
other parameters 10, H and V (3) , 2 6 3 6 � are estimated by minimizing the regularized binomial
loss function,

Lossbinomial

(
10, H,V

(3) , 2 6 3 6 �
�� _1, _2, _3,)

)
(4.8)

= − 1
=

=∑
8=1

[
(H8 − 1)B(x8 |) , 10, H,V

(3) , 2 6 3 6 �)

− log(1 + 4B(x8 |) ,10,H,V
(3) ,2636�))

]
+ _1

2
‖H‖2 +

_2
2

�∑
3=2
‖V (3) ‖2 + _3

[
‖H‖1 +

�∑
3=2
‖V (3) ‖1

]
,

where

‖H‖1 =
?∑
9=1

<∑
;=1
|1 9 ,; |,

‖H‖2 =
?∑
9=1

<∑
;=1
(1 9 ,;)2,

‖V (3) ‖1 =
:3∑
5=1

?∑
9=1

<∑
;=1
|E 9 ,;, 5 |,

‖V (3) ‖2 =
:3∑
5=1

?∑
9=1

<∑
;=1
(E 9 ,;, 5)2.

_1 and _2 are respectively the L2 penalty for the linear term and the interaction terms. _3 is the L1
penalty for both terms in order to make a sparse solution. The hyper-parameters {_: }3:=1 can be
chosen by cross-validation. We prefer choosing a large set for) = {\;}<;=1 without tuning it because
those quantile-difference transformed variables w.r.t improper \;’s will be shrunk to zeros with the
L1 and L2 regularization.

To minimize Equation (4.8), we use the Limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) optimization algorithms if _3 is set to zero, or use the Orthant-Wise Limited-memory
Quasi-Newton (OWL-QN) optimization algorithm if _3 is not zero (Andrew & Gao 2007, Coppola

52 Chapter 4. Factorized Multiple Quantile Classifier

et al. 2014). Both optimizations require calculating the gradient of the loss function. The gradient of
Equation (4.8) for _3 = 0 can be computed by using Equation (4.7) and the chain rule. That is,

mLossbinomial
mW

=



mLossbinomial
mB

, W = 10
mLossbinomial

mB
Q\;
(G 9) + _11 9 ,; , W = 1 9 ,;

mLossbinomial
mB

{∇Q3 (v (3)·,·, 5 , x)} 9 ,; + _2E
(3)
9 ,;, 5

, W = E
(3)
9 ,;, 5

1
2 ‖H‖2, if W = _1
1
2
∑�
3=2‖V (3) ‖2, if W = _2

where
mLossbinomial

mB
= −1

=

=∑
8=1
(H8 − 1 − 4B

1 + 4B).

4.4 Simulation Experiment

In practice, there are always multiple variables that are available for identifying the label of interest.
Some variables may be irrelevant to the label and some may have an interaction effect on the label.
A simulation experiment is presented here to compare the performance of the following classifiers in
the situations where the number of irrelevant variables is large, or there are (high-order) interactions.

QC Quantile-based classifier (Hennig & Viroli 2016a);

EQC Ensemble quantile classifier with RIDGE logistic regression;

MQC Multiple quantile classifier with RIDGE logistic regression;

FMQC Factorized multiple quantile classifier;

MARS Multivariate adaptive regression splines (Friedman 1991);

NB Naive Bayes classifier;

LDA or QDA Linear or Quadratic discriminant analysis;

RIDGE or LASSO RIDGE or LASSO logistic regression (Friedman et al. 2010);

LSVM or RSVM SVM with a linear or radial kernel (Cortes & Vapnik 1995);

1-NN or 3-NN One/three-nearest neighbor classification.

4.4. Simulation Experiment 53

Hyper-parameters were selected by minimizing the 10-fold cross-validation errors. MQC
and FMQC were fit by the R package fmqc (Lai & McLeod 2019). QC and EQC used the
package eqc in (Lai & McLeod 2018). The ranges of) for all the quantile-based methods were
in {0.01, 0.11, . . . , 0.91}. The interactions ranks for FMQC were specified as (:2, :3) = (3, 1).
RIDGE and LASSO used the package glmnet (Friedman et al. 2010). The penalized parameters
for RIDGE, LASSO, EQC and MQC were in {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. For
FMQC, _1 ∈ {5 × 10−6, 5 × 10−5, 5 × 10−4} and _2 ∈ {5 × 10−4, 5 × 10−3}. LDA and QDA used the
package MASS (Venables & Ripley 2002). MARS used the package earth (Milborrow 2019) where
the range of the degrees is in {1, 2, . . . , 5}. NB, LSVM and RSVM used the package e1071 (Meyer
et al. 2018), where the range of the cost parameter was {0.5, 1, 2, 4} and the range of the gamma
parameter was {0.001, 0.01, 0.1}.

The synthetic input x ∈ R? was generated from ? independent Uniform(0,1) distributions, and
the corresponding label H was generated from a binomial distribution with mean 46(x)/(1 + 46(x)),
where 6(x) is the log-odds function. Two synthetic functions of 6(x) were examined as listed in
Table 4.1, where the first scenario is non-linear additive, and the second scenario is non-linear with
interactions. Most components of 6(x) are not monotonic. The numbers of relevant variables for
both scenarios were 5. The coefficients were chosen so that the median value of 6(x) was close to
zero and hence the produced sample was nearly balanced, where all the non-constant terms had
approximately the same standard deviations. The influence of noises was examined by varying the
number of irreverent uniform variables among 0, 2, 5. The training sample size was 200 and the test
sample size was 104. 200 simulations were done to estimate the mean test error for each scenario.

Table 4.1: Test suite of the log-odds functions for multivariate simulations
61(x) 2.4[cos(2cG1) + cos(2cG2) − cos(4cG3) + cos(4cG4) − cos(6cG5)] − 0.04

62(x)
2.4[cos(2cG1) + cos(2cG2) − sin(2cG3) + sin(2cG4) − sin(2cG5)]
+4 cos(2cG1) cos(2cG2) − 4 sin(2cG3) sin(2cG4) − 0.64

Table 4.2 summarizes the mean test errors for each method and Figure 4.2 shows the boxplot of
the test errors from 200 simulations. MQC, FMQC and MARS have much lower test errors than
the other methods in all scenarios. For the non-linear additive scenario 61(x), MQC performs the
best, followed by FMQC and MARS, while the common linear classifiers including LDA, RIDGE,
LASSO and LSVM are the same as random guessing. For the non-linear interaction scenario 62(x),
FMQC performs the best, followed by MARS and MQC. As mentioned previously, MQC and
FMQC can be viewed as variants of MARS. When there are irrelevant variables, the performance

54 Chapter 4. Factorized Multiple Quantile Classifier

differences between MQC, FMQC and MARS becomes smaller for 61(x), and the performance
differences between FMQC and MARS becomes smaller for 62(x).

#noise = 0 #noise = 2 #noise = 5

g1(x)

g2(x)

B
ay

es Q
C

E
Q

C
M

Q
C

F
M

Q
C

M
A

R
S

N
B

LD
A

Q
D

A
R

id
ge

LA
S

S
O

R
S

V
M

LS
V

M
1N

N
3N

N

B
ay

es Q
C

E
Q

C
M

Q
C

F
M

Q
C

M
A

R
S

N
B

LD
A

Q
D

A
R

id
ge

LA
S

S
O

R
S

V
M

LS
V

M
1N

N
3N

N

B
ay

es Q
C

E
Q

C
M

Q
C

F
M

Q
C

M
A

R
S

N
B

LD
A

Q
D

A
R

id
ge

LA
S

S
O

R
S

V
M

LS
V

M
1N

N
3N

N

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

method

te
st

 e
rr

or

Figure 4.2: Test error rates in 200 simulations for two synthetic log-odds functions and three different
numbers of irrelevant variables, where = = 200.

Table 4.2: Mean test error rates in the multivariate simulations, where the standard errors are in the
parenthesis. The column “Bayes” is the error rate if the true 6(x) is used. The best classifier for
each column is in boldface.

61 (x) 62 (x)
?noise = 0 ?noise = 2 ?noise = 5 ?noise = 0 ?noise = 2 ?noise = 5

Bayes 0.1306(2e-04) 0.1307(2e-04) 0.1306(2e-04) 0.1212(2e-04) 0.1217(2e-04) 0.1215(2e-04)
QC 0.4117(0.001) 0.4171(0.0012) 0.4218(0.0011) 0.3315(0.0015) 0.3385(0.0015) 0.3507(0.0013)
EQC 0.4147(0.0011) 0.4179(0.0011) 0.4216(0.0012) 0.3246(0.0014) 0.3344(0.0016) 0.3422(0.0016)
MQC 0.2225(0.0012) 0.2411(0.0013) 0.2629(0.0015) 0.2745(0.0012) 0.2883(0.0013) 0.2981(0.0015)
FMQC 0.2578(0.0012) 0.267(0.0014) 0.2817(0.0013) 0.245(0.0017) 0.2573(0.0018) 0.2719(0.0018)
MARS 0.2633(0.0018) 0.2666(0.0018) 0.2744(0.0022) 0.2547(0.002) 0.261(0.002) 0.2671(0.0023)
NB 0.359(0.0017) 0.3705(0.0017) 0.3835(0.0014) 0.3131(0.001) 0.319(0.001) 0.3276(0.001)
LDA 0.4978(0.001) 0.4995(6e-04) 0.5(5e-04) 0.352(9e-04) 0.3578(0.0011) 0.365(0.0011)
QDA 0.3916(0.0013) 0.4153(0.0012) 0.4379(9e-04) 0.3052(0.0011) 0.3277(0.0013) 0.3565(0.0011)
RIDGE 0.5004(6e-04) 0.4993(5e-04) 0.5001(5e-04) 0.3753(0.0025) 0.3858(0.0025) 0.3988(0.0027)
LASSO 0.4992(7e-04) 0.4997(4e-04) 0.4998(4e-04) 0.3711(0.0023) 0.3806(0.0029) 0.3838(0.0029)
RSVM 0.373(0.0022) 0.4047(0.0022) 0.4418(0.0021) 0.2829(0.0016) 0.3112(0.0016) 0.3441(0.0013)
LSVM 0.4952(0.001) 0.4976(7e-04) 0.4984(5e-04) 0.3525(0.0012) 0.359(0.0013) 0.3655(0.0011)
1-NN 0.3936(8e-04) 0.4363(7e-04) 0.4619(5e-04) 0.2948(8e-04) 0.3459(8e-04) 0.3887(8e-04)
3-NN 0.3925(9e-04) 0.4332(8e-04) 0.4589(6e-04) 0.2797(8e-04) 0.3314(9e-04) 0.3744(9e-04)

4.5. Application 55

4.5 Application

Two data sets, the Spam data set and the MAGIC Gamma telescope data set from the University of
California at Irvine (UCI) machine learning repository (Dua & Graff 2017), were used to examine
the proposed methods. The summary of the two data sets are available in Table 4.3. The classification
error rates on these two datasets of the classifiers used in Section 4.4 were estimated by 5 repetitions
of 10-fold outer cross-validation, where hyper-parameters were selected by minimizing the 8-fold
inner cross-validation error. Table 4.4 and Table 4.5 summarize the mean classification error rates,
where the area under the ROC curve (AUC), the sensitivity and the specificity are provided as well.
For the Spam dataset, MQC, FMQC and MARS achieve the lowest error rates and the highest
AUC’s. For the Magic dataset, the FMQC and the RSVM have the lowest error rates and the highest
AUC’s, followed by MARS and MQC. The improvement of FMQC over MQC by considering the
interactions is substantial for the Magic dataset. Although MARS also considers interactions, it is
not as accurate as FMQC for this example.

Table 4.3: Summary of two UCI datasets.
Data #Samples #Samples(negative) #Samples(positive) #Features
Spam 4601 2788 1813 57
Magic 19020 6688 12332 10

56 Chapter 4. Factorized Multiple Quantile Classifier

Table 4.4: Spam dataset: mean error rates, AUC, sensitivities and specificities and their standard
errors in parentheses, from 5 repetitions of 10-fold outer cross-validations. Hyper-parameters were
selected by minimizing the 8-fold inner cross-validation error. Boldfaces indicate best four methods.

Method Error rate AUC Sensitivity Specificity
QC 0.2989(4e-04) Not applicable 0.6805(0.0012) 0.7153(8e-04)

EQC 0.0658(2e-04) 0.9759(1e-04) 0.8996(4e-04) 0.957(3e-04)
MQC 0.0538(2e-04) 0.9824(1e-04) 0.9234(4e-04) 0.9613(3e-04)

FMQC 0.0558(2e-04) 0.9823(1e-04) 0.9225(4e-04) 0.9586(3e-04)
MARS 0.0550(2e-04) 0.9799(1e-04) 0.9223(4e-04) 0.9598(2e-04)

NB 0.2867(4e-04) 0.8871(3e-04) 0.9511(3e-04) 0.5588(5e-04)
LDA 0.1135(3e-04) 0.9517(2e-04) 0.7849(6e-04) 0.953(2e-04)
QDA 0.1687(4e-04) 0.9472(2e-04) 0.9517(3e-04) 0.7534(5e-04)

RIDGE 0.0781(3e-04) 0.9701(1e-04) 0.8743(5e-04) 0.953(2e-04)
LASSO 0.0741(2e-04) 0.9715(1e-04) 0.8825(5e-04) 0.9543(3e-04)
RSVM 0.0634(2e-04) 0.9772(1e-04) 0.9042(5e-04) 0.9579(2e-04)
LSVM 0.0732(2e-04) 0.9717(1e-04) 0.8833(5e-04) 0.9553(3e-04)
1-NN 0.1737(3e-04) 0.8185(3e-04) 0.7786(5e-04) 0.8578(5e-04)
3-NN 0.1918(3e-04) 0.8654(3e-04) 0.7508(7e-04) 0.8462(4e-04)

Table 4.5: Magic dataset: mean error rates, AUC, sensitivities and specificities and their standard
errors in parentheses, from 5 repetitions of 10-fold outer cross-validations. Hyper-parameters were
selected by minimizing the 8-fold inner cross-validation error. Boldfaces indicate best four methods.

Method Error rate AUC Sensitivity Specificity
QC 0.243(2e-04) Not available 0.7868(3e-04) 0.7018(4e-04)

EQC 0.2017(2e-04) 0.833(2e-04) 0.9114(3e-04) 0.5897(6e-04)
MQC 0.1446(2e-04) 0.9033(2e-04) 0.9268(2e-04) 0.7238(4e-04)

FMQC 0.1276(1e-04) 0.9287(1e-04) 0.9399(1e-04) 0.7478(3e-04)
MARS 0.1401(2e-04) 0.9099(2e-04) 0.9325(2e-04) 0.7262(4e-04)

NB 0.2732(2e-04) 0.757(2e-04) 0.9168(2e-04) 0.3765(4e-04)
LDA 0.2158(2e-04) 0.8382(2e-04) 0.9063(2e-04) 0.559(4e-04)
QDA 0.2156(2e-04) 0.8705(2e-04) 0.9434(1e-04) 0.4912(4e-04)

RIDGE 0.2114(2e-04) 0.8388(2e-04) 0.9039(2e-04) 0.5759(4e-04)
LASSO 0.2106(2e-04) 0.8372(2e-04) 0.9033(2e-04) 0.5793(4e-04)
RSVM 0.1269(1e-04) 0.9218(1e-04) 0.9395(1e-04) 0.7508(4e-04)
LSVM 0.2099(2e-04) 0.835(2e-04) 0.8975(2e-04) 0.592(4e-04)
1-NN 0.2163(2e-04) 0.7513(2e-04) 0.8607(2e-04) 0.6417(3e-04)
3-NN 0.1996(2e-04) 0.8225(2e-04) 0.9015(2e-04) 0.6137(3e-04)

4.6. Discussion and Conclusion 57

4.6 Discussion and Conclusion

In this chapter, we proposed the FMQC which can handle higher-order interactions in a compu-
tationally efficient way. Experimental results show that the MQC and FMQC are competitive to
MARS and outperform the QC, EQC, and some usual classifiers. The implementations of both
MQC and FMQC are available in the R package fmqc (Lai & McLeod 2019), where a vignette is
provided for reproducing the simulation and application. The R package also implements the popular
Adam optimizer (Kingma & Ba 2014) for estimating the FMQC and allows for an early stopping
regularization (Goodfellow et al. 2016, Section 7.8) to prevent overfitting.

In the next chapter, we tackle complex interactions in a different perspective from the FMQC by
utilizing the flexibility of (deep) feedforward neural network.

Chapter 5

Deep Multiple Quantile Classifier

5.1 Introduction

For the past few years, deep learning which mainly focus on deep neural networks (DNNs) has
gained success in many applications including but not limited to time series forecasting (Luo et al.
2018, Zhang et al. 2018), object recognition (Jiao et al. 2019) and natural language processing
(Vaswani et al. 2017, Otter et al. 2018). There are numerous hybrid methods that combine classical
approaches and deep neural networks. For example, Tang (2013) investigated using the linear SVM
as the last layer of the neural network, and Dorfer et al. (2015) proposed DeepLDA which put
Fisher’s linear discriminant (Fisher 1936) as the last layer. These methods were trained either in
end-to-end fashion or in multiple stages. They were shown to achieve state-of-the-art performances
for some tasks.

The multiple quantile classifier (MQC) introduced in Chapter 3 extracts the quantiles of features
from different populations and makes a direct comparison among them. It was shown to have a Bayes
decision boundary under a general distribution condition. Numerical experiments also validated its
usefulness for discriminating observations with variables of heterogeneous distribution shapes. In
Chapter 4, MQC was extended to FMQC by considering higher-order interactions with a metalearner
of adaptive factorization machines. But in this chapter, a different approach to modeling interactions
based on DNN is investigated as inspired by Tsang et al. (2017) who illustrated complex interactions
could be detected from neural network weights. We propose DeepMQC, an end-to-end DNN version

58

5.2. Preliminary 59

of MQC, which integrates the MQC with deep neural networks. Representations of interactions are
first learned by DNN and are then processed by MQC.

The rest of this chapter is organized as follows. The next section introduces the preliminaries
of feedforward neural networks that are used to formulate DeepMQC in Section 5.3. A simulation
experiment is present in Section 5.4 to investigate if DeepMQC can be beneficial from interactions.
Section 5.6 concludes this chapter.

5.2 Preliminary

5.2.1 Feedforward Neural Networks

A feedforward neural network (FNN), also known as the multi-layer perceptrons (MLPs), is the
most widely used architecture of multi-layer neural networks. Given the input x ∈ R? and the output
label H ∈ {0, 1}, consider an !-layer feedforward neural network for binary classification, which is a
parametric function mapping the input x ∈ R? to the posterior probability Ĥ = P(H = 1 | x) ∈ (0, 1),

h(0) = x, (5.1)
h(;) = q(;) (] (;)h(;−1) + b (;)), ; = 1, . . . , !, (5.2)
Ĥ = f(wᵀh(!) + 1), (5.3)

where h(;) is a vector denoting the ;-th hidden layer with ?; hidden units for ; = 1, . . . , ! and we let
?0 = ?,] (;) ∈ R?;×?;−1 is the weight matrix between layer ; − 1 and layer ;, b (;) is the vector of
biases for layer ;, q(;) (·) is an element-wise nonlinear function referred to as the activation function,
w ∈ R?! and 1 ∈ R are the coefficients for the final output, and f(I) = 1/(1 + exp(−I)) is the
logistic sigmoid function. For our study, we fix all the activation functions to be the rectified linear
units (ReLUs), q(I) (;) = max(0, I), ; = 1, . . . , !, which have been used with great success in many
applications regarding computer vision (Glorot et al. 2011, Krizhevsky et al. 2012) and speech
recognition (Maas et al. 2013).

Feedforward neural networks can be viewed as a combination of function composition and
matrix multiplication, which be expressed as a simple chain of layers displayed in Figure 5.1. We
see that two consecutive layers are fully connected with each node in one layer connected to every
node in its subsequent layer. Such layers are called fully or densely connected layers. In contrast, a
partially connected layer can be obtained by setting some elements in the weight matrix to be zeros.

60 Chapter 5. Deep Multiple Quantile Classifier

Figure 5.1: An example of a feedforward neural network with 3 hidden fully connected layers, drawn
by NN-SVG1.

It is known that feedforward neural networks with at least one hidden layer are universal
approximators (Hornik et al. 1989, Cybenko 1989, Hornik 1991, Leshno et al. 1993), meaning
that they can approximate any continuous function on a closed and bounded subset of R= with
arbitrary small error under mild assumptions of the activation functions. However, the universal
approximation property of neural networks does not guarantee that the training algorithm can learn
the parameters accurately from the data. For a long time being, researchers only used shallow
networks especially with single-layer feedforward neural networks, mainly because fitting deep
neural networks was difficult and no explicit advantage was gained by increasing the network depth.
It was until recent advances of computing power and the success of using deep neural network
architectures in ImageNet competition (Krizhevsky et al. 2012, He et al. 2016), deep networks began
to stand out. One theoretical argument for using deep networks is that a narrow deep network can
approximate some classes of functions more efficiently as using a shallow network will require an
infeasible width with an exponential number of hidden units to achieve the same accuracy (Montufar
et al. 2014, Lu et al. 2017). In the next section, we will briefly review how to train neural networks
with backpropagation and stochastic gradient descent algorithm.

5.2.2 Training Neural Networks

Denote the parameters of a feedforward neural networks in Equations (5.1) to (5.3) by (=

({] (;)}, {b (;)}, w, 1), and the overall network by the function 5 (x | (). Treating the neural network
for classification as a discriminative classifier, the philosophy of estimating the parameters follows
from Section 1.1.1. Given the data x8 ∈ R? and H8 ∈ {0, 1}, 8 = 1, . . . , =, our goal is to find the

1http://alexlenail.me/NN-SVG

http://alexlenail.me/NN-SVG

5.2. Preliminary 61

parameters that minimize the objective function,

� (() =
=∑
8=1

! (5 (x8 | (), H8) +Ω((), (5.4)

where we can use the cross entropy as the loss function for binary classification,

! (5 (x | (), H) = −H log(5 (x | ()) − (1 − H) log(1 − 5 (x | ()),

and the weight decay such as Ω(() = _(∑; ‖] (;) ‖ + ‖w‖) to regularize the parameters to prevent
overfitting.

The optimization of Equation (5.4) is difficult for two reasons. Firstly neural nets can have
enormous parameters which prevents the use of algorithms that require computation of the hessian
as this can be both time and space consuming. Secondly neural nets are non-convex and hence there
is no guarantee that a global minimum can be found. As a result, the basic algorithm to minimize
Equation (5.4) is (mini-batch) stochastic gradient descent (SGD) (Nemirovski & Yudin 1978)
displayed in Algorithm 4, where the regularization term Ω(() is omitted for ease of understanding.
SGD requires less memory cost as it only uses the sub-sample at each iteration. It does not need to
compute the hessian either but its convergence speed and quality depend heavily on the learning
rate. In practice, SGD with adaptive learning rates is frequently used for its fast convergence and
robustness to initial values. One of the popular choices is the Adam algorithm (Kingma & Ba 2014),
displayed in Algorithm 5. It uses the bias-corrected estimates of the first-order moments and the
second-order moments of the gradient to adjust the learning rate. Meanwhile, the early stopping
rule is another regularization technique that is always used along with training neural networks by
SGD. It is a stopping criterion of SGD which terminates the iteration if the performance of neural
networks on a separate (validation) data set is not improved within a pre-specified number of steps.
We use Adam with the early stopping rule to train FNNs as well as our proposed DeepMQC model
in the numerical study.

62 Chapter 5. Deep Multiple Quantile Classifier

Algorithm 4: Stochastic Gradient Descent (SGD)
Input: Training data (= {(x8, H8)}=8=1, mini-batch size <, initialization f, learning rate n .
begin Initialization model parameters (:
{b (;)}, 1 ← 0
{] (;)}, w ∼ N(0, f2)

end
while stopping criterion not met do

Randomly sample a mini-batch of < observations {(x (8) , H (8))}<
8=1 from (.

Update the parameters with (← (− n (1
<

∑<
8=1

m
(! (5 (x

(8) | (), H (8))
end
Output: (= ({] (;)}, {b (;)}, w, 1)

Algorithm 5: Adaptive Moment Estimation (Adam)
Input: Training data (= {(x8, H8)}=8=1, mini-batch size <,
Small constant W = 10−8 for avoiding numerical overflow, initialization f,
learning rate n , exponential decay rates d1, d2 ∈ [0, 1).
begin Initialization

Time step C = 0, 1st and 2nd moment s = 0, r = 0
{b (;)}, 1 ← 0
{] (;)}, w ∼ N(0, f2)

end
while stopping criterion not met do

Randomly sample a mini-batch of < observations {(x (8) , H (8))}<
8=1 from (.

Compute the gradient g = 1
<

∑<
8=1

m
(! (5 (x

(8) | (), H (8)

Update the parameters with:
C ← C + 1
s← d1s + (1 − d1)g
r ← d2r + (1 − d2)g � g, where � stands for the entrywise (Hadamard) product
(← (− n s/(1−dC1)√

r/(1−dC2)+W

end
Output: (= ({] (;)}, {b (;)}, w, 1)

It is noteworthy that the gradient-based optimization algorithm requires evaluating the gradient
m
(! (5 (x

(8) | (), H (8)) frequently. The efficient computation of the gradient of neural networks is
made feasible by the backpropagation algorithm (Rumelhart et al. 1986), which uses the chain

5.2. Preliminary 63

rule and evaluate the gradient with respect to parameters from the output layer to the input layers,
recursively. In case of the feedforward neural networks in Equations (5.1) to (5.3), the gradient of
! (5 (x | (), H) with respect to] (;) can be expressed as,

∇] (;) ! = h(;) · (q(;))′ ·] (;+1) · (q(;+1))′ · · ·] (!) · (q(!))′ · wᵀ · (f)′ · ∇Ĥ!.

If we denote the gradient of ! with respect to the activation q(;) by X(;) , then we find,

∇] (;) ! = h(;) · X(;) , (5.5)
X(;−1) =] (;−1) · (q(;−1))′ · X(;) . (5.6)

Thus by evaluating Equation (5.6) from ; = ! to ; = 2 recursively, one can compute the gradient of
weights efficiently using Equation (5.5). However, it is still tedious and error-prone to derive the
gradient using the chain rule above during the implementation of NNs. Fortunately, most software
libraries for deep learning such as Tensorflow (Abadi et al. 2016) and Theano (Bastien et al. 2012)
use symbolic representations to do automatic differentiation for training the NNs with the above
procedures. We can then focus on designing the architectures of NNs without worrying about how
to program the computation of gradients.

64 Chapter 5. Deep Multiple Quantile Classifier

5.3 Methodology

In this section, we introduce DeepMQC. Differing from the FMQC of the previous Chapter
which uses factorization machines to express the interactions after the quantile-difference (QD)
transformation is applied, the DeepMQC utilizes the hidden layers of the FNN to capture feature
interactions prior to the QD transformation. The powerful representation ability of neural networks
enhances the multiple quantile classifier though it also increases the computational complexity.

5.3.1 Formulation of DeepMQC

We discuss the DeepMQC in the binary case and assume the input x ∈ R? and the output H ∈ {1, 2}.
The derivation for the multiclass case is similar to the multiclass EQC. The discriminant function of
a binary DeepMQC is defined,

B(x |) , 1,]main,] inter) = 1 +
?∑
9=1

<∑
;=1

Fmain
9 ,; Q\;

(G 9) +
?!∑
9=1

<∑
;=1

Finter
9 ,; Q\;

(ℎ(!)
9
), (5.7)

where) = {\1, . . . , \<} ∈ (0, 1)<, 1 ∈ R,]main = {Fmain
9 ,;
}?×< ∈ R?×<,] inter = {Finter

9 ,;
}?!×< ∈

R?!×<, h(!) = (ℎ(!)1 , . . . , ℎ
(!)
?!) are hidden units produced by an !-layer feedforward neural network

in Equation (5.2), and Q\ (G) is the \-QD transformation defined in Equation (1.8).
A graph representation of the DeepMQC is shown in Figure 5.2. The left and the right halved of

the figure are dedicated to modeling the main effects and interactions, respectively. In particular, the
FNN allows for extracting complicated interactions, and the resulted hidden units are processed
further by the QD transformation.

5.3.2 Model Training

As illustrated by Algorithm 6, we treat the QD transformation as a specific layer where the parameter
) is pre-specified and the quantile parameters @�,1 and @�,2 are updated by the order statistics. When
the QD transformation is an initial layer as in the left half of Figure 5.2, we only need to conduct the
transformation once and then forward the transformed values to the network for later evaluations.
But when the QD transformation is an intermediate layer as in the right half of Figure 5.2, @�,1
and @�,2 need to be updated at every iteration of the SGD because the input hidden units change
at every iteration. Since computing the order statistics requires sorting the input, adding the QD
transformation as an intermediate layer becomes computationally expensive. To reduce the time

5.3. Methodology 65

Figure 5.2: Architecture of DeepMQC.

consumed by the quantile estimation procedure, we may use a relatively small mini-batch for SGD
at the cost of reduced estimation accuracy, or force a small size of the output hidden units produced
by the neural network module. It is noteworthy that mini-batch can not be too small, otherwise the
estimation of quantiles will be quite inaccurate and the resulted QD transformation becomes useless
in discriminating between the two classes. In an extreme case where the mini-batch size is one, the
quantile estimation fails.

Algorithm 6: Empirical Mini-Batch \-Quantile-Difference (QD) Transformation
Input: Mini-batch of training inputs {ℎ8}<8=1 associated with outputs {H8}

<
8=1 ∈ {1, 2},

and probability of the quantile \ ∈ (0, 1).
begin Estimating quantiles with their mini-batch order statistics:

@�,1 ← ℎ([<1\]),1 and @�,2 ← ℎ([<2\]),2,
where [·] takes the close integer value and ℎ([<1\]),: denote the [<1\]-th order statistic
over the mini-batch with label : ∈ {1, 2}.

end
for 8 = 1, . . . , < do

I8 ← d\ (ℎ8 − @�,1(\)) − d\ (ℎ8 − @�,2(\)) B Q\ (ℎ8), where d\ (D) = D(\ − 1{D<0})
end
Output: I8 = Q\ (ℎ8), 8 = 1, . . . , <

The estimation of the DeepMQC in Equation (5.7) can be done in the same way as training

66 Chapter 5. Deep Multiple Quantile Classifier

classification FFNs by minimizing the regularized cross entropy or binomial loss in Equation (5.4).
To enable an end-to-end training of the model via backpropagation, we provide the (sub)gradient of
the loss ! through the QD transformation as listed in Equation (5.8) to Equation (5.13). We assume
@�,1 < @�,2 and there are no ties when using the order statistic to estimate the quantiles. If any, linear
interpolation may be used and the gradient will be modified accordingly automatically. In practice,
the QD transformation layer was implemented by Tensorflow (Abadi et al. 2016) which can handle
the corresponding gradient backpropagation and the optimization automatically.

mI8

mℎ8
= 1{@�,1<ℎ8<@�,2}, (5.8)

mI8

m@�,1
= (1 − \)1{@�,1>ℎ8} − \1{@�,1<ℎ8}, (5.9)

mI8

m@�,2
= −(1 − \)1{@�,2>ℎ8} + \1{@�,26ℎ8}, (5.10)

m!

m@�,:
=

<∑
8=1

m!

mI8

mI8

m@�,:
, : = 1, 2, (5.11)

m@�,:

mℎ8
= 1{ℎ8=@�,: ,H8=:}, : = 1, 2, (5.12)

m!

mℎ8
=
m!

mI8

mI8

mℎ8
+ m!

m@�,1

m@�,1

mℎ8
+ m!

m@�,2

m@�,2

mℎ8
. (5.13)

However, there is a still a problem with Algorithm 6 when conducting inference for a single test
observation as the quantile estimation fails. In fact, the implementation of the QD transformation
is similar to the batch normalization (BN) layer (Ioffe & Szegedy 2015), which enables a higher
learning rate for accelerating training. During training, BN uses the batch moments from the
mini-batch to normalize the input and it also records moving averages of the batch moments, which
estimate the population moments. When conducting inference, BN normalizes the test input by
using the moving average estimates instead of estimating them from the test data. We thus use the
same approach for inference with our QD transformation, illustrated by Algorithm 7 for a univariate
input and single \.

5.3. Methodology 67

Algorithm 7: Training and Inference with a QD Transformation Network
Input: Mini-batch size <, initialization f, learning rate n ,
training inputs {G8}=8=1 associated with outputs {H8}

=
8=1 ∈ {1, 2},

probability of the quantile \ ∈ (0, 1), decay rate d (Default:0.9), and test input Gtest.
begin Initialization model parameters:

Let (= (1,]main,] inter, {b (;)}, {] (;)}).
Population estimates of quantiles: @̃�,1 = @̃�,2 = 0
{b (;)}, 1 ← 0
{] (;)},]main,] inter ∼ N(0, f2)

end
begin Training:

while stopping criterion not met do
Randomly sample a mini-batch of < observations {(G (8) , H (8))}<

8=1.
Use Algorithm 6 to evaluate the QD transformation module of B(G (8) | () which
computes the mini-batch quantiles @�,1 and @�,2.
Update the population estimates with
@̃�,1 ← d@̃�,1 + (1 − d)@�,1, @̃�,2 ← d@̃�,2 + (1 − d)@�,2

Update the parameters with (← (− n [1
<

∑<
8=1

m
(! (B(G

(8) | (), H (8))]
end

end
begin Inference:

Use @̃�,1 and @̃�,2 to conduct QD transformation when evaluating B(Gtest | ().
end
Output: (, @̃�,1, @̃�,2, and B(Gtest | ()

68 Chapter 5. Deep Multiple Quantile Classifier

5.4 Simulation Experiment

To investigate whether DeepMQC can deal with complex interactions, we conduct a simulation
study where the data generation procedure resulted in inputs with skewed distributions and a Bayes
decision boundary with complex interactions. The implementation codes can be found in the GitHub
page 2.

5.4.1 Data Generation

As mentioned in Section 1.2.2, if there are two classes, x1 ∼ N(-1, Σ1) and x2 ∼ N(-2, Σ2) with
priors c1 and c2, then the Bayes decision boundary is given by

{x :
1
2
x
ᵀ
Ωx + Xx + b = 0}, (5.14)

where Ω = Σ−1
1 − Σ

−1
2 , X = Σ−1

2 -2 − Σ−1
1 -1, and b are some constants depending on `: , Σ: and c: ,

: = 1, 2.
Equation (5.14) indicates that an interaction exists between G8 and G 9 for 8 ≠ 9 if the (8, 9)

element in Ω is non-zero. Following this idea, to simulate a situation where the Bayes decision
boundary contains non-linear complicated interactions, we can generate data of two classes that
are non-linearly transformed from multivariate Gaussian distributions with different covariances,
illustrated by Algorithm 8. For class : ∈ {1, 2}, a vector z ∈ R? of zero mean unit variance random
variables is first sampled from amultivariate Gaussian distributionN(0, Σ:) where diag(Σ:) = �. The
9-th variable is then transformed to G 9 = `:, 9 + �−1

AL(Φ(z 9) | ? 9) that follows a shifted standardized
asymmetric Laplace distribution. Thus G 9 ∈ R has an asymmetric distribution shape determined by
? 9 with E[G 9] = `:, 9 and Var[G 9] = 1. Here Φ(·) is the Gaussian cumulative distribution function
(CDF) and �−1

AL(· | ? 9) is the inverse CDF of the standardized asymmetric Laplace distribution with
a corresponding density function,

5AL(G | ? 9) =
√
?2
9
+ (1 − ? 9)2


exp

((G−< 9)
√
?2
9
+(1−? 9)2

? 9

)
, G 6 < 9

exp
(−(G−< 9)

√
?2
9
+(1−? 9)2

1−? 9

)
, G > < 9

, (5.15)

where < 9 = (2? 9 − 1)/
√
?2
9
+ (1 − ? 9)2, 9 = 1, . . . , ?.

2https://github.com/CliffordLai/DeepMQC

https://github.com/CliffordLai/DeepMQC

5.4. Simulation Experiment 69

Knowing the true parameters, the log-odds of class 2 (Bayes discriminant function) for the
simulated data can be derived,

B(x) = 1
2
{
[6(x − -2)]

ᵀ (� − Σ−1
2) [6(x − -2)] − [6(x − -1)]

ᵀ (� − Σ−1
1) [6(x − -1)]

}
(5.16)

+
?∑
9=1

log
5AL(G 9 − `2, 9 | ? 9)
5AL(G 9 − `2, 9 | ? 9)

− 1
2

log
detΣ2
detΣ1

+ log
c2
c1
,

where 6(x − `:) transforms each G 9 to Φ(��! (G 9 − `:, 9 | ? 9)), 9 = 1, . . . , ?, : = 1, 2, and ��! (·)
is the corresponding CDF of the density 5AL(·) defined in Equation (5.15). Equation (5.16) implies
the simulation scenario has a non-linear Bayes decision boundary, where the interactions present if
the first term is non-zero. When variables are independent (both Σ1 and Σ2 are diagonal), the first
term disappears resulting in the case discussed by Appendix B.1, where the EQC introduced in
Chapter 2 can produce a Bayes decision boundary by setting \ 9 = ? 9 , 9 = 1, . . . , ?.
Algorithm 8: Simulate samples from two populations with non-linear Bayes decision
boundary involving complicated interactions
Input: Sample size =1 and =2, variable dimension ?,
correlation matrix Σ1 and Σ2,
skewed parameter p ∈ (0, 1)?,
shift parameter -1 ∈ R? and -2 ∈ R?.
begin Initialization:

G
(:)
8, 9
← 0 for : ∈ {1, 2}, 8 = 1, . . . , =: and 9 = 1, . . . , ?

end
begin Generation:

for : = 1, 2 do
for 8 = 1, . . . , =: do

Sample z ∼ N(0, Σ:).
for 9 = 1, . . . , ? do

G
(:)
8, 9
← `:, 9 + �−1

AL(Φ(I 9) | ? 9)
end

end
end

end
Y← concatenate {G (1)

8, 9
}=1×? and {G

(2)
8, 9
}=2×? by rows

Output: Y

70 Chapter 5. Deep Multiple Quantile Classifier

We used Algorithm 8 to generate the data according to and considered two simulation scenarios,
one without interactions and one with interactions. For the one without interactions, we set the
correlation matrices Σ1 = Σ2 = �. For the one with interactions, we let Σ1 = � and Σ2 have a sparse
inverse generated by Algorithm 9 where the non-sparse rate was A = 0.3 and the correlation intensity
was q = 1. For both scenarios, we set the shifts -1 = 0 and -2 = 0.2, and sample the skewed
parameters ? 9 , 9 = 1, . . . , ?, from beta(1.5, 1.5). The training, validation and test sample sizes were
respectively 5000, 2000 and 5000, where two classes were balanced. The validation data was used
for the classifiers involving hyper-parameters . The number of informative variables was ? = 25
while 10 extra standard Gaussian random noises were added. Different Classifiers were evaluated by
the mean test classification error rates estimated from 20 simulations under each simulation scenario.
Algorithm 9: Generate a correlation matrix with sparse inverse (precision matrix)
Input: Variable dimension ?, correlation intensity q,
non-sparsity rate A ∈ [0, 1] (non-zero rate of off-diagonal elements in the precision matrix).
begin Generation:

Simulate a lower triangular matrix !?×? with elements distributed by U(−q, q).
Compute ' = d1/2 +

√
4A ?(? − 1) + 1/2e and randomly make ' rows of !?×? be zeros.

Compute Σ2 = (I + !!ᵀ)−1 and standardize Σ2 to make it a correlation matrix:
Σ = �−1Σ2�

−1, where � =
√
diag(Σ).

end
Output: Correlation matrix Σ

5.4.2 DeepMQC Setting

The implementation of DeepMQC in Equation (5.7) depends on the structure of the FFN. To
avoid overfitting and too much computational demand, we only investigated two neural network
configurations, FFN consisting of one hidden layer with size ?1 = 14, and FFN consisting of two
hidden layer with size (?1, ?2) = (14, 14). ReLUs were used as the activation functions. The resulted
DeepMQC models were respectively denoted by DeepMQC1 and DeepMQC2. L2 regularization
was applied where the L2 constant for the weights of the final linear classifier was tuned within the
range from 1×10−4 to 1×10−2 and the L2 constant for the weights of the FFN component was tuned
within the range from 1 × 10−3 to 1 × 10−1 based on the validation error.) = {0.05, 0.15, . . . , 0.95}
was set for the QD transformation. Both DeepMQC1 and DeepMQC2 were trained by an Adam
optimizer with learning rate 0.05 and early stopping. Batch normalization (Ioffe & Szegedy 2015)
was added for each fully connected layer to increase convergence speed.

5.4. Simulation Experiment 71

5.4.3 Baseline Methods

We compared our proposed DeepMQC methods with the following thirteen classifiers, where most
were used in the simulation study for FMQC in Section 4.4.

EQC Ensemble quantile classifier with RIDGE logistic regression;

MQC Multiple quantile classifier with RIDGE logistic regression;

FMQC Factorized multiple quantile classifier;

MARS Multivariate adaptive regression splines (Friedman 1991);

NB Naive Bayes classifier;

LDA or QDA Linear or Quadratic discriminant analysis;

RIDGE RIDGE logistic regression (Friedman et al. 2010);

RSVM SVM with a radial kernel (Cortes & Vapnik 1995);

1-NN or 3-NN One/three-nearest neighbour classification;

MLP1 FFN consisting of one hidden layer with size ?1 = 70;

MLP2 FFN consisting of two hidden layer with sizes (?1, ?2) = (70, 70).

Hyper-parameters for the above methods were selected by minimizing the validation classification
error rate. The range of) for all the quantile-based methods is in {0.05, 0.15, . . . , 0.95}. The
interactions rank for FMQCwas fixed at :2 = 3. The penalized parameters for RIDGE, EQC andMQC
were in {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. For FMQC, _1 ∈ {5×10−6, 5×10−5, 5×10−4}
and _2 ∈ {5 × 10−4, 5 × 10−3}. For RSVM, the range of the cost parameter was {0.5, 1, 2, 4} and the
range of the gamma parameter was {0.001, 0.01, 0.1}. MARS used the package earth (Milborrow
2019) where the range of the degrees is in {1, 2, . . . , 6}. For MLP1 and MLP2, the range of L2
regularization constants were from 1× 10−4 to 1× 10−2, and they were trained by an Adam optimizer
with learning rate 0.0005 and early stopping.

72 Chapter 5. Deep Multiple Quantile Classifier

5.4.4 Experiment Results

Table 5.1 summarizes the mean test errors for each method. In the case without interactions, the best
four methods are MQC, FMQC, DeepMQC1, and DeepMQC2. Their test error rates are close to the
Bayes error, which is not surprising as they can have the same form as the Bayes decision boundary
with properly selected), while EQC fails because it is restricted to a single optimal \. In the case
with interactions, DeepMQC1 and DeepMQC2 have the lowest test errors followed by FMQC and
MARS. It is noteworthy that MLP1 and MLP2 have relatively higher error rates compared to the
methods of DeepMQC. We also tried increasing/decreasing the hidden layer width of MLP1 and
MLP2 with different activation functions but there was not a significant improvement. This implies
that the configuration of FFNs was not able to efficiently learn the distinction between two classes for
the particular simulation scenario even though FFNs are universal approximator. Since DeepMQC1
and DeepMQC significantly outperform MQC, MLP1 and MLP2, we may conclude that DeepMQC
successfully utilizes FFNs to extend MQC to deal with interactions. Meanwhile, the difference of
the test errors between DeepMQC1 and DeepMQC2 is negligible.

Table 5.1: Mean test error rates for each method under the case with or without interactions, where
the standard errors are in the parenthesis, estimated from 20 simulations. The last row “Bayes” is
the error rate using Equation (5.16) with true parameters. The best four among the other classifiers
for each column are in boldface.

Method Case without interactions Case with interactions
EQC 0.2177(0.004) 0.2194(0.004)
MQC 0.1864(0.004) 0.1863(0.004)
FMQC 0.1882(0.004) 0.1615(0.003)
MARS 0.2083(0.005) 0.1766(0.004)
RIDGE 0.307(0.001) 0.3067(0.002)
LDA 0.3079(0.001) 0.3063(0.002)
QDA 0.3436(0.002) 0.2158(0.004)
NB 0.3195(0.002) 0.3164(0.003)
1-NN 0.4344(0.002) 0.3959(0.002)
3-NN 0.4094(0.002) 0.3669(0.002)
RSVM 0.2874(0.002) 0.2103(0.003)
MLP1 0.2742(0.004) 0.1863(0.004)
MLP2 0.3215(0.002) 0.2361(0.004)
DeepMQC1 0.1854(0.004) 0.1647(0.003)
DeepMQC2 0.1860(0.004) 0.1603(0.004)
Bayes 0.1764(0.004) 0.1076(0.003)

5.5. Application 73

5.5 Application

To assess if DeepMQC is useful in practice, we applied the method to the the MAGIC Gamma
telescope data set which was used in the previous experiment for FMQC in Section 4.5. In our
previous experiment, we observed that methods considering interactions such as FMQC and RSVM
performed the best for this data set. Thus one may expect that DeepMQC can also perform well.

Table 5.2: Summary of the magic data.
#Samples #Samples(negative) #Samples(positive) #Features
19020 6688 12332 10

We set up the number of hidden units to be 30 in each layer for DeepMQC1, DeepMQC2, MLP1
and MLP2. Regarding the hyper-parameters of DeepMQC, the learning rate is 0.005, and the L2
regularization for the final linear layer and the FNN component was tuned within the range from
1 × 10−1 to 5. As for MLP, the learning rate is 0.0005 and the L2 regularization of the weights was
tuned within the range from 1 × 10−5 to 1. The hyper-parameter set-up for the other classifiers were
the same as in Section 4.5. An independent validation subset was used to select the hyper-parameters.

The performance metrics include the average test error rates, the area under the ROC curve
(AUC), the sensitivity and the specificity estimated from 20 random splits of the data. For each
split, the data was divided into training, validation, and test sets of sample sizes 10000, 4020, and
5000, respectively. Table 5.3 summaries the evaluation for each method. MLP2 and DeepMQC2
achieve the lowest error rates and nearly the highest sensitivities and specificities while their
one-layer counterparts, MLP1 and DeepMQC1, perform poorly. In particular, DeepMQC1 has a
much larger error rate than MLP1 and MQC. These findings may indicate that the good performance
of DeepMQC2 was mainly contributed by the two-layer FFN component instead of the usage of the
multiple quantile-difference transformation. In fact, adding a one-layer FFN to MQC could cause
downward performance by comparing DeepMQC1 and MQC. This may due to the difficulty in
optimizing the neural network. In particular, although DeepMQC2 has the lowest error rate and
the highest sensitivity and specificity, it has a relatively low AUC compared to the other methods.
MLP2 has a better balance among the assessed criterion.

74 Chapter 5. Deep Multiple Quantile Classifier

Table 5.3: Magic dataset: Mean error rates, AUC, sensitivities and specificities and their standard
errors in parentheses, estimated from 20 random splits of the full data into training, validation and
test sets of sizes 10000, 4020, and 5000, respectively. Boldfaces indicate best four methods.

Method Error rate AUC Sensitivity Specificity
EQC 0.201(0.001) 0.8337(0.001) 0.901(0.001) 0.6101(0.002)
MQC 0.1473(0.001) 0.8989(0.001) 0.9279(0.002) 0.7134(0.005)
FMQC 0.1296(0.001) 0.9253(0.001) 0.9372(0.001) 0.7466(0.002)
MARS 0.1384(0.001) 0.9111(0.001) 0.9338(0.001) 0.7277(0.002)
RIDGE 0.2088(0.001) 0.84(0.001) 0.8999(0.001) 0.5898(0.003)
LDA 0.215(0.001) 0.8392(0.001) 0.9062(0.001) 0.5605(0.003)
QDA 0.2153(0.001) 0.8709(0.001) 0.9445(0.001) 0.4887(0.003)
NB 0.2715(0.001) 0.7588(0.002) 0.9181(0.002) 0.3773(0.002)
1-NN 0.1897(0.001) 0.7779(0.001) 0.8859(0.001) 0.6702(0.001)
3-NN 0.1716(0.001) 0.8521(0.001) 0.9249(0.001) 0.6497(0.002)
RSVM 0.1282(0.001) 0.9198(0.001) 0.945(0.001) 0.736(0.002)
MLP1 0.1708(0.002) 0.8823(0.002) 0.9281(0.003) 0.6462(0.005)
MLP2 0.1269(0.001) 0.9186(0.002) 0.9442(0.002) 0.7411(0.003)
DeepMQC1 0.1912(0.001) 0.8612(0.002) 0.8889(0.002) 0.6603(0.005)
DeepMQC2 0.125(0.001) 0.8988(0.003) 0.9461(0.002) 0.7433(0.003)

5.6 Conclusion

In this chapter, we proposed an end-to-end hybrid method of MQC and DNN, referred to as
DeepMQC, for classification tasks involving interactions. Following Tsang et al. (2017), the
proposed architecture contains the main effect component and the interaction component, where
feedforward neural network is used to learn representations of interactions. We demonstrated that
adding MQC to the deep learning framework was helpful by comparing the DeepMQC with MQC
and feedforward neural networks via a simulation experiment. However, for a real data application,
DeepMQC did not show a significant advantage over the MQC and the feedforward neural network
even if the interactions were important. Further investigation will be needed to examine practical
cases where DeepMQC is effective.

Chapter 6

Summary and Future Work

Throughout this dissertation, we have progressively proposed four extensions of the quantile-based
classifier (QC) and stressed the importance in terms of model capacity and generalization ability.
Specifically, we conclude each chapter as follows.

The ensemble quantile classifier (EQC) considered in Chapter 2 introduces weights of different
variables to the QC to enlarge model capacity and uses weight decay regularization to mitigate
overfitting.

The multiple quantile classifier (MQC) considered in Chapter 3 increases model capacity
by using multiple quantile-difference transformations for each variable as compared to a single
transformation per variable in QC and EQC. The relationship between the Bayes decision boundary
and the quantile-difference transformation is depicted thoroughly, which necessitates the revision of
the MQC.

The factorized multiple quantile classifier (FMQC) considered in Chapter 4 uses an adaptive
factorization machines as the meta-leaner of the quantile-difference transformed variables. MQC is
thus extended with variable interactions learned efficiently yet parsimoniously.

The deepmultiple quantile classifier (DeepMQC) considered in Chapter 5 presents an approach of
embedding the MQC or more specifically, the quantile-difference transformation, into the framework
of deep neural networks, where the neural network component is used to capture the interactions.
This broadens both the family of quantile-based methods and the neural network architecture.

There are several issues that have been ignored in this work, which may give some potential
directions of future work, discussed as follows.

75

76 Chapter 6. Summary and Future Work

Stepwise selection of): For the MQC, FMQC and DeepMQC, we recommended using a sparse
yet wide range of) to cover the range (0, 1) for performing multiple)-QD transformations for each
variable. A weight decay regularization was then imposed to the resulted transformed variables to
mitigate overfitting or conduct variable selection if L1 penalty were used. We also showed that MQC
could be treated as a restricted MARS with weight decay regularization instead of stepwise variable
selection. Although we pointed that stepwise methods could cause unstable selected variables, the
gain in the computational speed of switching from weight decay regularization to stepwise selection
might be weighted more than the deficiency especially for big data. The fast MARS algorithm
(Friedman 1993) may be adapted to perform a stepwise MQC efficiently.

Clustering: Recently, Hennig et al. (2019) proposed a new clustering method which applied the
quantile-based classification metric to the clustering problem. They suggested a penalization of the
quantile in order to make a meaningful estimation, which may also be helpful for the supervised
quantile-based classifier. However, their clustering method still used one \-quantile for each variable.
In Chapter 3, we have shown that using one \-quantile for each variable may not achieve optimal
classification performance and thus proposed the improved method MQC. Our MQC may give a
clue to further improve their quantile-based clustering method.

Online learning: Streaming data has become ubiquitous these days, raising the need of efficiently
updating the model in real time. Although the SGD algorithm used in the optimization for FMQC
and DeepMQC can support online learning, updating the model for streaming data, we have not
explored the potentiality of our proposed quantile-based methods under the online learning setting.
We also need to investigate the regret minimization (Zinkevich 2003, Blum & Mansour 2007) which
is often considered as the objective in online learning. Meanwhile, online learning raises a problem
of how to consistently estimate quantiles for the QD transformation.

More complicated data structures: The data discussed in this thesis consists of independent
observations x’s each of which is defined by ? variables. In particular, we assumed that the 9-th
variable of all observations were from the same statistical distribution according to the statistical
learning theory in Chapter 1. However, this may be not true when an observation stands for a time
series or an image. When x stands for a time series such as the gait cycle of a patient measured
by pressure sensors, there is no reason to expect that two observations x1 and x2 will be well
aligned by each time step. When x stands for an image of either a cat or a dog, it is difficult to
assign a specific meaning to each variable (pixel or location) because the locations of the cat or dog
can vary from image to image. Traditionally, such domain-specific data were first processed via
handcrafted engineering and were transformed to some meaningful features/variables as used in the
statistical learning theory. In contrast, deep neural networks are good at automatic feature extraction.

77

Specifically, the convolutional neural network (CNN) (LeCun et al. 1989) and its variants have been
widely used for processing images and videos. They have achieved state-of-the-art performance
in various tasks in place of traditional handcrafted feature engineering. Meanwhile our proposed
method, DeepMQC, linked the MQC to the framework of deep neural networks. The investigation
of DeepMQC with the domain-specific data such as images is still in progress.

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A.,
Dean, J., Devin, M. et al. (2016), ‘Tensorflow: Large-scale machine learning on heterogeneous
distributed systems’, arXiv preprint arXiv:1603.04467 .

Andrew, G. & Gao, J. (2007), Scalable training of l 1-regularized log-linear models, in ‘Proceedings
of the 24th International Conference on Machine Learning’, ACM, pp. 33–40.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard, N.,
Warde-Farley, D. & Bengio, Y. (2012), ‘Theano: new features and speed improvements’, arXiv
preprint arXiv:1211.5590 .

Bickel, P. J. & Levina, E. (2004), ‘Some theory for Fisher’s linear discriminant function, ‘naive
Bayes’, and some alternatives when there are many more variables than observations’, Bernoulli
10(6), 989–1010.
URL: https://doi.org/10.3150/bj/1106314847

Blondel, M., Fujino, A., Ueda, N. & Ishihata, M. (2016), Higher-order factorization machines, in
‘Advances in Neural Information Processing Systems’, pp. 3351–3359.

Blondel, M., Ishihata, M., Fujino, A. & Ueda, N. (2016), ‘Polynomial networks and factorization
machines: New insights and efficient training algorithms’, arXiv preprint arXiv:1607.08810 .

Blum, A. & Mansour, Y. (2007), ‘Learning, regret minimization, and equilibria’, Algorithmic Game
Theory pp. 79–102.

Blumer, A., Ehrenfeucht, A., Haussler, D. & Warmuth, M. K. (1989), ‘Learnability and the
vapnik-chervonenkis dimension’, Journal of the ACM (JACM) 36(4), 929–965.

78

BIBLIOGRAPHY 79

Breiman, L. (1996a), ‘Heuristics of instability and stabilization in model selection’, The Annals of
Statistics 24(6), 2350–2383.

Breiman, L. (1996b), ‘Stacked regressions’, Machine learning 24(1), 49–64.

Breiman, L. (2001), ‘Random forests’, Machine Learning 45(1), 5–32.

Breiman, L., Friedman, J., Olshen, R. & Stone, C. (1984), ‘Classification and regression trees’.

Cardoso-Cachopo, A. (2007), ‘Improving Methods for Single-label Text Categorization’, PdD
Thesis, Instituto Superior Tecnico, Universidade Tecnica de Lisboa.

Cleveland, W. S. (1993), Visualizing data, Hobart Press.

Coppola, A., Stewart, B. & Okazaki, N. (2014), ‘lbfgs: Limited-memory bfgs optimization’. R
package version 1.2.1.
URL: https://CRAN.R-project.org/package=lbfgs

Cortes, C. & Vapnik, V. (1995), ‘Support-vector networks’, Machine Learning 20(3), 273–297.

Cover, T. & Hart, P. (1967), ‘Nearest neighbor pattern classification’, IEEE Transactions on
Information Theory 13(1), 21–27.

Crammer, K. & Singer, Y. (2001), ‘On the algorithmic implementation of multiclass kernel-based
vector machines’, Journal of Machine Learning Research 2(Dec), 265–292.

Cybenko, G. (1989), ‘Approximation by superpositions of a sigmoidal function’,Mathematics of
Control, Signals and Systems 2(4), 303–314.

Dietterich, T. G. (2000), Ensemble methods in machine learning, in ‘International Workshop on
Multiple Classifier Systems’, Springer, pp. 1–15.

Dorfer, M., Kelz, R. & Widmer, G. (2015), ‘Deep linear discriminant analysis’, arXiv preprint
arXiv:1511.04707 .

Dua, D. & Graff, C. (2017), ‘UCI machine learning repository’.
URL: http://archive.ics.uci.edu/ml

Dudoit, S., Fridlyand, J. & Speed, T. P. (2002), ‘Comparison of discrimination methods for the
classification of tumors using gene expression data’, Journal of the American Statistical Association
97(457), 77–87.

80 BIBLIOGRAPHY

Fan, J. & Fan, Y. (2008), ‘High dimensional classification using features annealed independence
rules’, Annals of statistics 36(6).

Feinerer, I. & Hornik, K. (2017), ‘tm: Text mining package’, https://CRAN.R-project.org/
package=tm. R package version 0.7-3.

Fisher, R. A. (1936), ‘The use of multiple measurements in taxonomic problems’, Annals of Eugenics
7(2), 179–188.

Freund, Y. & Schapire, R. E. (1997), ‘A decision-theoretic generalization of on-line learning and an
application to boosting’, Journal of computer and system sciences 55(1), 119–139.

Friedman, J. (1991), ‘Multivariate adaptive regression splines’, The annals of statistics 19(1), 1–67.

Friedman, J. H. (1993), Fast MARS.

Friedman, J., Hastie, T. & Tibshirani, R. (2010), ‘Regularization paths for generalized linear models
via coordinate descent’, Journal of Statistical Software 33(1), 1–22.
URL: http://www.jstatsoft.org/v33/i01/

Glorot, X., Bordes, A. & Bengio, Y. (2011), Deep sparse rectifier neural networks, in ‘Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics’, pp. 315–323.

Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep Learning, MIT press.

Hall, P., Titterington, D. M. & Xue, J.-H. (2009), ‘Median-based classifiers for high-dimensional
data’, Journal of the American Statistical Association 104(488), 1597–1608.

Hastie, T., Tibshirani, R. & Friedman, J. (2009), The Elements of Statistical Learning, 2 edn,
Springer Series in Statistics. Springer-Verlag, New York.

He, K., Zhang, X., Ren, S. & Sun, J. (2016), Deep residual learning for image recognition, in
‘Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition’, pp. 770–778.

Hennig, C. & Viroli, C. (2016a), ‘Quantile-based classifiers’, Biometrika 103(2), 435–446.
URL: + http://dx.doi.org/10.1093/biomet/asw015

Hennig, C. & Viroli, C. (2016b), ‘quantileda: Quantile classifier’, https://CRAN.R-project.
org/package=quantileDA. R package version 1.1.

https://CRAN.R-project.org/package=tm
https://CRAN.R-project.org/package=tm
https://CRAN.R-project.org/package=quantileDA
https://CRAN.R-project.org/package=quantileDA

BIBLIOGRAPHY 81

Hennig, C., Viroli, C. & Anderlucci, L. (2019), ‘Quantile-based clustering’, Electron. J. Statist.
13(2), 4849–4883.
URL: https://doi.org/10.1214/19-EJS1640

Hornik, K. (1991), ‘Approximation capabilities of multilayer feedforward networks’,Neural Networks
4(2), 251–257.

Hornik, K., Stinchcombe, M. & White, H. (1989), ‘Multilayer feedforward networks are universal
approximators’, Neural Networks 2(5), 359–366.

Ioffe, S. & Szegedy, C. (2015), ‘Batch normalization: Accelerating deep network training by reducing
internal covariate shift’, arXiv preprint arXiv:1502.03167 .

James, G., Witten, D., Hastie, T. & Tibshirani, R. (2013), An Introduction to Statistical Learning,
Springer Series in Statistics. Springer-Verlag, New York.

Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z. &Qu, R. (2019), ‘A survey of deep learning-based
object detection’, IEEE Access 7, 128837–128868.

Joe, H. (2006), ‘Generating random correlation matrices based on partial correlations’, Journal of
Multivariate Analysis 97(10), 2177 – 2189.
URL: http://www.sciencedirect.com/science/article/pii/S0047259X05000886

Joshi, P. (2016), Python machine learning cookbook, Packt Publishing Ltd.

Kim, J.-H. (2009), ‘Estimating classification error rate: Repeated cross-validation, repeated hold-out
and bootstrap’, Computational statistics & data analysis 53(11), 3735–3745.

Kingma, D. P. & Ba, J. (2014), ‘Adam: A method for stochastic optimization’, arXiv preprint
arXiv:1412.6980 .

Koenker, R. (2005), Quantile Regression, Econometric Society Monographs, Cambridge University
Press.

Koenker, R. & Bassett, G. (1978), ‘Regression quantiles’, Econometrica 46(1), 33–50.

Kohavi, R. et al. (1995), A study of cross-validation and bootstrap for accuracy estimation and
model selection, in ‘Ijcai’, Vol. 14, Montreal, Canada, pp. 1137–1145.

82 BIBLIOGRAPHY

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012), Imagenet classification with deep convolutional
neural networks, in ‘Advances in Neural Information Processing Systems’, pp. 1097–1105.

Kuhn, M. & Johnson, K. (2013), Applied Predictive Modeling, Springer.

Kulkarni, S. & Harman, G. (2011), An elementary Introduction to Statistical Learning Theory, Vol.
853, John Wiley & Sons.

Kulpa, W. (1997), ‘The poincaré-miranda theorem’, The American Mathematical Monthly
104(6), 545–550.
URL: http://www.jstor.org/stable/2975081

Lai, Y. & McLeod, A. I. (2018), ‘eqc: Ensemble quantile classifier’, https://github.com/
CliffordLai/eqc. R package version 1.0-5.

Lai, Y. & McLeod, A. I. (2019), ‘eqc: Ensemble quantile classifier’, https://github.com/
CliffordLai/fmqc. R package version 1.0-2.

Lai, Y. & McLeod, I. (2020), ‘Ensemble quantile classifier’, Computational Statistics & Data
Analysis 144, 106849.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. & Jackel, L. D.
(1989), ‘Backpropagation applied to handwritten zip code recognition’, Neural Computation
1(4), 541–551.

Leshno, M., Lin, V. Y., Pinkus, A. & Schocken, S. (1993), ‘Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function’, Neural Networks 6(6), 861–867.

Lewis, D. (1997), ‘Reuters-21578 text categorization collection distribution 1.0’.
URL: http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

Liang, P. & Jordan, M. I. (2008), An asymptotic analysis of generative, discriminative, and
pseudolikelihood estimators, in ‘Proceedings of the 25th International Conference on Machine
Learning’, pp. 584–591.

Lior, R. (2019), Ensemble Learning: Pattern Classification Using Ensemble Methods, 2 edn, World
Scientific Publishing Company.

Lu, Z., Pu, H., Wang, F., Hu, Z. & Wang, L. (2017), The expressive power of neural networks: A
view from the width, in ‘Advances in Neural Information Processing Systems’, pp. 6231–6239.

https://github.com/CliffordLai/eqc
https://github.com/CliffordLai/eqc
https://github.com/CliffordLai/fmqc
https://github.com/CliffordLai/fmqc

BIBLIOGRAPHY 83

Luo, R., Zhang, W., Xu, X. &Wang, J. (2018), A neural stochastic volatility model, in ‘Thirty-second
AAAI Conference on Artificial Intelligence’.

Maas, A. L., Hannun, A. Y. & Ng, A. Y. (2013), Rectifier nonlinearities improve neural network
acoustic models, in ‘Proc. icml’, Vol. 30, p. 3.

Mason, D. M. (1982), ‘Some characterizations of almost sure bounds for weighted multidimensional
empirical distributions and a Glivenko-Cantelli theorem for sample quantiles’, Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete 59(4), 505–513.
URL: https://doi.org/10.1007/BF00532806

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. & Leisch, F. (2018), ‘e1071: Misc
functions of the department of statistics, probability theory group (formerly: E1071), tu wien.’,
https://CRAN.R-project.org/package=e1071. R package version 1.7-0.

Milborrow, S. (2019), earth: Multivariate Adaptive Regression Splines. R package version 5.1.1.
URL: https://CRAN.R-project.org/package=earth

Montufar, G. F., Pascanu, R., Cho, K. & Bengio, Y. (2014), On the number of linear regions of deep
neural networks, in ‘Advances in Neural Information Processing Systems’, pp. 2924–2932.

Nemirovski, A. & Yudin, D. (1978), On cezari’s convergence of the steepest descent method
for approximating saddle point of convex-concave functions, in ‘Soviet Math. Dokl’, Vol. 19,
pp. 258–269.

Newbold, P. & Granger, C. W. T. (1974), ‘Experience with forecasting univariate time series and the
combination of forecasts’, Journal of the Royal Statistical Society A 137(2), 131–165.

Ng, A. Y. & Jordan, M. I. (2002), On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes, in ‘Advances in Neural Information Processing Systems’,
pp. 841–848.

O’neill, T. J. (1980), ‘The general distribution of the error rate of a classification procedure with
application to logistic regression discrimination’, Journal of the American Statistical Association
75(369), 154–160.

Otter, D. W., Medina, J. R. & Kalita, J. K. (2018), ‘A survey of the usages of deep learning in natural
language processing’, arXiv preprint arXiv:1807.10854 .

https://CRAN.R-project.org/package=e1071

84 BIBLIOGRAPHY

Park, M. Y. & Hastie, T. (2007), ‘Penalized logistic regression for detecting gene interactions’,
Biostatistics 9(1), 30–50.

Qiu, W. & Joe., H. (2015), ‘clustergeneration: Random cluster generation (with specified degree of
separation)’. R package version 1.3.4.
URL: https://CRAN.R-project.org/package=clusterGeneration

Raina, R., Shen, Y., Mccallum, A. & Ng, A. Y. (2004), Classification with hybrid genera-
tive/discriminative models, in ‘Advances in Neural Information Processing Systems’, pp. 545–552.

Rendle, S. (2010), Factorization machines, in ‘2010 IEEE International Conference on Data Mining’,
IEEE, pp. 995–1000.

Rendle, S. (2012), ‘Factorization machines with libfm’, ACM Transactions on Intelligent Systems
and Technology (TIST) 3(3), 57.

Rubinstein, Y. D., Hastie, T. et al. (1997), Discriminative vs informative learning., in ‘KDD’, Vol. 5,
pp. 49–53.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986), ‘Learning representations by back-
propagating errors’, Nature 323(6088), 533–536.

Schapire, R. & Freund, Y. (2012), Boosting: Foundations and Algorithms, MIT Press.

Sebastiani, F. (2002), ‘Machine learning in automated text categorization’, ACM Comput. Surv.
34(1), 1–47.
URL: http://doi.acm.org/10.1145/505282.505283

Silver, N. (2012), The Signal and the Noise, Penguin Publishing Group.

Tang, Y. (2013), ‘Deep learning using linear support vector machines’, arXiv preprint
arXiv:1306.0239 .

Tibshirani, R., Hastie, T., Narasimhan, B. & Chu, G. (2003), ‘Class prediction by nearest shrunken
centroids, with applications to DNA microarrays’, Statistical Science 18(1), 104–117.
URL: http://www.jstor.org/stable/3182873

Ting, K.M. &Witten, I. H. (1999), ‘Issues in stacked generalization’, Journal of Artificial Intelligence
Research 10, 271–289.

BIBLIOGRAPHY 85

Tsang, M., Cheng, D. & Liu, Y. (2017), ‘Detecting statistical interactions from neural network
weights’, arXiv preprint arXiv:1705.04977 .

Vapnik, V. N. (1999), ‘An overview of statistical learning theory’, IEEE Transactions on Neural
Networks 10(5), 988–999.

Vapnik, V. N. & Chervonenkis, A. Y. (1971), ‘On the uniform convergence of relative frequencies
of events to their probabilities’, Theory of Probability & Its Applications 16(2), 264–280.
URL: https://doi.org/10.1137/1116025

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. & Polosukhin,
I. (2017), Attention is all you need, in ‘Advances in Neural Information Processing Systems’,
pp. 5998–6008.

Venables, W. N. & Ripley, B. D. (2002), Modern Applied Statistics with S, fourth edn, Springer,
New York. ISBN 0-387-95457-0.
URL: http://www.stats.ox.ac.uk/pub/MASS4

Wang, K., Zong, C. & Su, K.-Y. (2012), ‘Integrating generative and discriminative character-based
models for chinese word segmentation’, ACM Transactions on Asian Language Information
Processing (TALIP) 11(2), 1–41.

Wolpert, D. H. (1992), ‘Stacked generalization’, Neural networks 5(2), 241–259.

Xue, J.-H. & Titterington, D. M. (2008), ‘Comment on “on discriminative vs. generative classifiers:
A comparison of logistic regression and naive bayes”’, Neural Processing Letters 28(3), 169.

Zhang, Q., Luo, R., Yang, Y. & Liu, Y. (2018), ‘Benchmarking deep sequential models on volatility
predictions for financial time series’, arXiv preprint arXiv:1811.03711 .

Zhou, Z.-H. (2012), Ensemble Methods: Foundations and Algorithms, Chapman and Hall/CRC.

Zinkevich, M. (2003), Online convex programming and generalized infinitesimal gradient ascent, in
‘Proceedings of the 20th International Conference on Machine Learning (icml-03)’, pp. 928–936.

Appendix A

Properties of Quantile-Difference
Transformation

A.1 Expectation of Quantile-Difference Transformation

Below we show that the expectation of the quantile-difference transformed variable Q\ (G) in
Equation (1.8) is positive if H = 2 or negative if H = 1. This may provide a support for the QC
criteria. If independent identical sample of G can be obtained, then we can use them to form a test
statistic by the central limit theorem to determine whether G is from %1 or %2.

Without loss of generality, assume @1(\) < @2(\), then from Equation (1.10),

E[Q\ (G) | H = :]
=E[\ (G − @1(\))+ + (1 − \) (@1(\) − G)+
− \ (G − @2(\))+ − (1 − \) (@2(\) − G)+ | H = :]

=E[G1{@1 (\)<G<@2 (\)} | H = :] + [�: (@1(\)) − \]@1(\) + [\ − �: (@2(\))]@2(\)

=

{
E[G1{@1 (\)<G<@2 (\)} | H = 1] + [\ − �1(@2(\))]@2(\), : = 1
E[G1{@1 (\)<G<@2 (\)} | H = 2] + [�2(@1(\)) − \]@1(\), : = 2

.

In addition, plug the following inequality to the above.

@1(\) [�: (@2(\) − �: (@1(\))] < E[G1{@1 (\)<G<@2 (\)} | H = :] < @2(\) [�: (@2(\) − �: (@1(\))] .

We then reach the conclusion E[Q\ (G) | H = 1] < 0 < E[Q\ (G) | H = 2].

86

A.2. Expectation of Generalized Quantile-Difference Transformation 87

A.2 Expectation of Generalized Quantile-Difference
Transformation

There may exist several ways to extend the quantile-difference transformation. Here we present two
possible extensions. However, both of them have a problem that the expectation under %2 is not
necessary larger than the expectation under %1.

The first definition of the generalized quantile-difference transformation of G is

Q̃(1)(\1,\2) (G) = \̄ (G − @1(\1))+ + (1 − \̄) (@1(\1) − G)+
− [\̄ (G − @2(\2))+ + (1 − \̄) (@2(\2) − G)+],

and the second definition is

Q̃(2)(\1,\2) (G) = \̄ (G − @1(\1))+ + (1 − \̄) (@1(\1) − G)+
− [\̄ (G − @2(\2))+ + (1 − \̄) (@2(\2) − G)+],

where 0 < \1, \2 < 1, \̄ = (\1 + \2)/2, @: (\:) is the \: -quantile of %: for : = 1, 2, and the subscript
“+” means the positive part.

With similar discussions as Appendix A.1, we can show their expectations satisfy the following
inequalities.

For Q̃(1)(\1,\2) (G),

E[Q̃(1)(\1,\2) (G) | H = 1] < (\1 − \2) (E1 [G] − @2(\2)),

E[Q̃(1)(\1,\2) (G) | H = 2] > (\1 − \2) (E2 [G] − @1(\1)).

For Q̃(2)(\1,\2) (G),

E[Q̃(2)(\1,\2) (G) | H = 1] < −0.5(\1 − \2) (@1(\1) − @2(\2)),

E[Q̃(2)(\1,\2) (G) | H = 2] > 0.5(\1 − \2) (@1(\1) − @2(\2)).

So it is not hard to find situations where the expectation under %2 is larger than the expectation
under %1.

Appendix B

Proofs and Results regarding EQC

B.1 Relationship to Asymmetric Laplace Distribution

A random variable G is said to follow the asymmetric Laplace distribution, denoted as G ∼ AL(<, ^, _),
if its probability density function has the form,

5 (G) = _

^ + 1/^

{
4
_
:
(G−<) , if G < <

4−_: (G−<) , if G > <
, (B.1)

where < ∈ R, _ > 0 and ^ > 0 respectively are the location, the scale and the skewness parameters.
Let c1 and c2 be the prior probabilities of %1 and %2. If %1 and %2 consists of independent

asymmetric Laplace distribution with parameters (m1, +, ,) and (m2, +, ,), then the Bayes decision
boundary becomes { x : B�! (x) = 0 } with,

B�! (x) = log(c2/c1) +
?∑
9=1
_ 9 (^ 9 + ^−1

9)(0; (G 9 , <1 9 , <2 9 , ^ 9 , _ 9), (B.2)

where for <1 < <2,

(0; (G, <1, <2, ^, _) =


− 1
^2+1 (<2 − <1), if G < <1

G − ^2

^2+1<1 − 1
^2+1<2, if <1 6 G < <2

^2

^2+1 (<2 − <1), if G > <2

.

Since < is also the [^2/(1 + ^2)]-quantile of an asymmetric Laplace distribution, if we let
\ 9 = ^

2
9
/(1 + ^2

9
), Equation (B.2) will become the C

(
Q) (x) | V0, #

)
of EQC in Equation (2.2) with

88

B.2. Maximum Likelihood Estimation of Multiclass EQC 89

V0 = log(c2/c1) and V 9 = _ 9
√
[\ 9 (1 − \ 9)]−1 for 9 = 1, . . . , ?. If G 9 ’s are rescaled by its standard

deviation
√

1 + ^4/(_^) first, then the # will become

V 9 =

√
2

\ 9 (1 − \ 9)

√
(\ 9 −

1
2
)2 + 1

4
, for 9 = 1, . . . , ?. (B.3)

Therefore, we can see that the decision boundary given by the EQC is the Bayes decision
boundary in this special case while QC can not be if + is not homogeneous.

B.2 Maximum Likelihood Estimation of Multiclass EQC

In this section, we formulate the log-likelihood function of for the multiclass EQC in a matrix
form as well as its gradient vector and Hessian function. This is useful for further investigation of
theoretical properties and the ease of computation. At the end, we will show that the Hessian matrix
is semi-negative-definite so the log-likelihood function has a single, unique maximum.

Without loss of generality, we let V0,: = 0 for all : = 1, . . . , − 1 and disregard them. Define
1 = (1)1× , 1= = (1)1×=, _ = (H:,8) ×=, where H:,8 = 1 if H8 = : and 0 otherwise. We also define,

W8 =
©­­«
−Q(1,)) (x8)

...

−Q(,)) (x8)

ª®®¬, for 8 = 1, . . . , =,

W =
©­­«
W1
...

W=

ª®®¬,
= (V1, . . . , V?)

ᵀ
,

and

I =

(
�1(#), . . . , �= (#)

)ᵀ
=

©­­«
1 exp[W1#]

...

1 exp[W=#]

ª®®¬
= H1 exp[W#],

where exp[·] is the entrywise exponential operation and H1 = diag= (1 , . . . , 1) is a block diagonal
matrix consisting of = repetitions of 1 .

90 Chapter B. Proofs and Results regarding EQC

Then the log-likelihood function of EQC given) can be expressed,

ℓ(#) = vec[_]ᵀW# − 1= log[I]

= vec[_]ᵀW# − 1= log
[
�1 exp[W#]

]
, (B.4)

where log[·] is the entrywise natural logarithm operation and vec[·] is a matrix vectorization
operation which creates a column vector by appending all columns of the matrix.

The gradient vector can be expressed,

∇ℓ(#) = vec[_]ᵀW − 1=
[
G � K2

]
, (B.5)

where
G = H1 [,

[= W � K1,

� stands for the entrywise multiplication or the Hadamard product and � stands for the entrywise
division, K1 is an = × ? matrix with ? repeated columns of exp[W#], which is,

K1 =
(
exp[W#] . . . exp[W#]

)︸ ︷︷ ︸
? repeated columns

,

and K2 is an = × ? matrix with ? repeated columns of I = H1 exp[W#], which is,

K2 =
(
I . . . I

)︸ ︷︷ ︸
? repeated columns

.

In particular, the 9-th element of ∇ℓ(#) is, for 9 = 1, . . . , ?,

∇ 9ℓ(#) = vec[_]ᵀWe 9 − 1=
[
G 9 � �

]
,

where
G 9 = Ge 9 = H1

[
We 9 � exp(W#)

]
,

e 9 is a unit column vector of length ? where the 9-th element is 1 and the other elements are 0’s.
The 9-th row of the Hessian matrix can be expressed as, for 9 = 1, . . . , ?,

∇
(
∇ 9ℓ(#)

)
= L9 G − [1= � I

ᵀ] H1M 9 , (B.6)

where
L9 =

[
G 9 � [I � I]

]ᵀ
,

B.3. Proof of Consistency of Estimating EQC 91

and
M 9 = [� K3, 9 ,

and
K3, 9 =

(
We 9 . . . We 9

)︸ ︷︷ ︸
? repeated columns

.

Then the Hessian matrix can be expressed,

∇2ℓ(#) =
©­­«
L1
...

L?

ª®®¬G − H2
©­­«
M1
...

M ?

ª®®¬ (B.7)

where H2 = diag?
(
[1= � I

ᵀ] H1, . . . , [1= � I
ᵀ] H1

)
is a block diagonal matrix consists of ?

repetitions of [1= � I
ᵀ] H1.

If we let]1 = diag=
(
exp(W#)

)
,]2 = diag= (1= � I

ᵀ), and

]3 = diag= (
1

�1(#)
, . . . ,

1
�1(#)︸ ︷︷ ︸

, . . . ,
1

�= (#)
, . . . ,

1
�= (#)︸ ︷︷ ︸

),

then G can be expressed,
G = H1]1W,

and Equation (B.5) and Equation (B.7) can also be expressed,

∇ℓ(#) = vec[_]ᵀW − 1=]2G,

and

∇2ℓ(#) = G
ᵀ
]2

2 G − W
ᵀ
]3]1W

= W
ᵀ
]
ᵀ
1
[
H
ᵀ
1]

2
2H1 −]−1

1]3
]
]1W.

In particular,
[
H
ᵀ
1]

2
2H1 −]−1

1]3
]
is a negative semi-definite diagonal matrix as its eigenvalues

are all non-positive. We can then conclude that the Hessian of ℓ(#) is a negative semi-definite matrix
and so is its L2 regularized version.

B.3 Proof of Consistency of Estimating EQC

Without loss of generality, we set V0 = 0 and disregard it in the following discussions.

92 Chapter B. Proofs and Results regarding EQC

Proof of Theorem 2.3.1. For abbreviation, denote (= () , #). From the continuity implied by
Lemma B.3.1 later on, we only need to show the following converges to zero,

|Ψ((̃) − Ψ((̂=) | 6 |Ψ((̃) − Ψ= ((̃) | + |Ψ= ((̃) − Ψ= ((̂=) | + |Ψ= ((̂=) − Ψ((̂=) |. (B.8)

By Lemma B.3.2 later on, under Assumptions 1 and 2, ∀n > 0,

lim
=→∞
P{sup

(∈S
|Ψ= (() − Ψ(() | > n} = 0, (B.9)

where S ⊂ (0, 1)? × R?.
So Equation (B.9) forces the first and the third term of the right hand side of Equation (B.8) to

converge to 0 in probability.
Consider the second term now. By definitions of (̃ and (̂,

Ψ((̃) > Ψ((̂=), Ψ= ((̃) 6 Ψ= ((̂=).

So

|Ψ= ((̃) − Ψ= ((̂=) | =Ψ= ((̂=) − Ψ= ((̃)
=[Ψ= ((̂=) − Ψ((̂=)] + [Ψ((̂=) − Ψ= ((̃)]
6[Ψ= ((̂=) − Ψ((̂=)] + [Ψ((̃) − Ψ= ((̃)] .

Using Equation (B.9) again, then both |Ψ= ((̂=) − Ψ((̂=) | and |Ψ((̃) − Ψ= ((̃) | will converge
to zero in probability. This makes |Ψ= ((̃) − Ψ= ((̂=) | converge to zero in probability. Therefore,
Equation (B.8) converges to zero in probability. That is,

lim
=→∞
P{|Ψ((̃) − Ψ((̂=) | > n} = 0.

�

Proof of Theorem 2.3.2. For abbreviation, denote (= () , #). We will investigate

|Ψ((̃) − Ψ= ((̂=) | 6 |Ψ((̃) − Ψ((̂=) | + |Ψ((̂=) − Ψ= ((̂=) |. (B.10)

By Theorem 2.3.1, the first term of the right hand side above converges to zero in probability.
By Lemma B.3.2, the second term of the right hand side above converges to zero in probability.
Therefore, |Ψ((̃) − Ψ= ((̂=) | converges to zero in probability and we complete the proof. �

B.3. Proof of Consistency of Estimating EQC 93

Lemma B.3.1. Under the assumption that \1 6 \2 and @1 6 @2, or \1 > \2 and @1 > @2, the
following inequality holds,

|d\1 (G 9 − @1(\1)) − d\2 (G 9 − @2(\2)) | 6 |G 9 | |\2 − \1 | + 4|@1 − @2 |, 9 = 1, . . . , ?,

which further implies the continuity of C(Q) (x) | #) under Assumptions 1 and 2, and hence the
continuity of Ψ() , #).

Proof. The inequality follows directly from the Lemma 3 in the supplementary material of Hennig
& Viroli (2016a).

It implies that the quantile -based transformation Q) (x) is a continuous function of) . Futhermore,
since empirical quantiles are strongly consistent, # is bounded and C(z | #) is required to be
differentiable with respect to z and # by Assumption 2, then C(Q) (x) | #) is bounded and a
continuous function of) and #. So the dominated convergence theorem still makes the integrals of
the differentiable transformation of C(Q) (x) | #) continuous with respect to) and #.

�

Lemma B.3.2. Under Assumptions 1 and 2, ∀n > 0,

lim
=→∞
P{sup

(∈S
|Ψ= (() − Ψ(() | > n} = 0,

where (= () , #) and S ⊂ (0, 1)? × R?,

Proof. Assuming that the conclusion does not hold, since (is bounded according to Assumption 2,
then ∃n > 0, X > 0, there is a convergent subsequence {(∗<}∞<=1 with limit (∗ = lim<→∞ (∗< such
that for < = 1, . . . ,

P{|Ψ< ((∗<) − Ψ((∗<) | > n} > X. (B.11)

Consider

|Ψ< ((∗<) − Ψ((∗<) | 6 |Ψ< ((∗<) − Ψ< ((∗) | + |Ψ< ((∗) − Ψ((∗) | + |Ψ((∗) − Ψ((∗<) |. (B.12)

Firstly, continuity of Ψ(() implies that the third term of the right side of Equation (B.12) converges
to 0 as < →∞.

Consider the second term, we define a new Ψ= with the true quantiles below, where the
empirical decision rule C(Q̂) (x) | #) in Equation (2.8) is replaced by the population decision rule
C(Q) (x) | #).

Ψ∗< (() = −
1
<

<∑
8=1

{
(H8 − 1)C

(
Q) (x8) | #

)
− log(1 + 4C(Q) (x8) |#))

}
.

94 Chapter B. Proofs and Results regarding EQC

Consider

|Ψ< ((∗) − Ψ((∗) | 6 |Ψ< ((∗) − Ψ∗< ((∗) | + |Ψ∗< ((∗) − Ψ((∗) |.

Following the strong law of large numbers, |Ψ∗< ((∗) − Ψ((∗) |
a.s.→ 0 as < →∞.

Since empirical quantiles are strongly consistent and C(z | #) is required to be differentiable
with respect to z and # by Assumption 2, then |C

(
Q̂)∗ (x) | #∗

)
− C

(
Q)∗ (x) | #∗

)
| a.s.→ 0 as < →∞,

and hence |Ψ< ((∗) − Ψ∗< ((∗) |
a.s.→ 0 as < →∞.

Now consider the first term of the right hand side of Equation (B.12). Firstly, for 9 = 1, . . . , ?,

|@̂:, 9 ,< (\∗9 ,<)−@̂:, 9 ,< (\∗9) | 6 |@̂:, 9 ,< (\∗9 ,<)−@:, 9 (\∗9 ,<) |+|@:, 9 (\∗9 ,<)−@̂:, 9 (\∗9) |+|@:, 9 (\∗9)−@̂:, 9 ,< (\∗9) |.

From Theorem 3 in Mason (1982) and Assumption 1, all terms on the right side of the above
inequality converge to zero almost surely, and hence |@̂:, 9 ,< (\∗9 ,<) − @̂:, 9 ,< (\∗9) |

a.s.→ 0 as < →∞ for
9 = 1, . . . , ?. Thus | |Q̂)∗< (x) − Q̂)∗ (x) | |

a.s.→ 0 as < →∞, where | | · | | represents L2 norm.

Furthermore, since C(z | #) is required to be differentiable with respect to z and # by
Assumption 2, then |C

(
Q̂)∗< (x) | #

∗
<

)
− C

(
Q̂)∗ (x) | #

)
| a.s.→ 0 as < →∞. Thus the first term of the

right hand side of Equation (B.12) converges to zero almost surely, |Ψ< ((∗<) − Ψ< ((∗) |
a.s.→ 0 as

< →∞.
To sum up, |Ψ∗< ((=8) − Ψ((∗<) |

a.s.→ 0, which is contradictory to Equation (B.11) and hence we
conclude that, under Assumptions 1 and 2, ∀n > 0,

lim
=→∞
P{sup

(∈S
|Ψ= (() − Ψ(() | > n} = 0,

where S ⊂ (0, 1)? × R?. �

B.4 Misclassification Rates of Simulation

In Section 2.4.2, we presented boxplots of the test misclassification error rates for each classifier.
Their averages and standard deviations are tabulated in tables B.1 to B.6, for the T3, LOGNORMAL
and HETEROGENEOUS distribution cases with independent or dependent variables.

B.4. Misclassification Rates of Simulation 95

Table B.1: Simulation study: the mean test classification error rates, and their standard errors in
parentheses, of each method for the independent T3 scenario. All numbers are in percentages
and rounded to one digit. The third line indicates the percentage of irrelevant variables within ?
variables.

= = 100
? = 50 ? = 100 ? = 200

0% 50% 90% 0% 50% 90% 0% 50% 90%
QC 27.1(0.3) 35.9(0.4) 47.2(0.2) 18.5(0.2) 30.4(0.3) 46(0.2) 10(0.1) 22.3(0.3) 43.9(0.3)
MC 25.5(0.1) 33.9(0.2) 46(0.2) 17.6(0.1) 28.5(0.2) 44.4(0.1) 9.1(0.1) 20.8(0.1) 42.2(0.1)
EMC 26.1(0.2) 35(0.2) 46.6(0.2) 18.2(0.2) 29.7(0.2) 45.2(0.2) 9.5(0.1) 21.9(0.2) 43(0.2)
EQC/LOGISTIC 32.1(0.4) 40.3(0.4) 47.9(0.2) 24.7(0.3) 35.4(0.3) 47.6(0.2) - - -
EQC/RIDGE 28.4(0.4) 37.9(0.5) 48(0.2) 19.4(0.3) 32(0.4) 47.1(0.2) 10.6(0.2) 23.9(0.4) 44.6(0.2)
EQC/LASSO 33.5(0.5) 40.2(0.4) 47.8(0.2) 28.6(0.3) 37.2(0.3) 47(0.2) 25.8(0.4) 32.7(0.4) 46(0.2)
EQC/LSVM 33.5(0.4) 40.5(0.4) 48.4(0.2) 24.5(0.3) 35.9(0.3) 47.6(0.2) 14.1(0.3) 26.8(0.3) 45.4(0.2)
NB 41.5(0.1) 43.8(0.2) 48.2(0.1) 39.8(0.1) 42.3(0.1) 47.6(0.1) 37.8(0.1) 40.5(0.1) 46.7(0.1)
LDA 35.8(0.2) 41.3(0.2) 48.2(0.2) 44.9(0.3) 47.1(0.2) 49.2(0.1) 31.4(0.3) 38.3(0.2) 47.4(0.1)
RIDGE 31(0.2) 38.4(0.2) 47.3(0.2) 25.3(0.1) 34.4(0.2) 46.3(0.1) 18.4(0.1) 28.9(0.2) 44.8(0.1)
LASSO 45.5(0.5) 47.7(0.4) 49(0.2) 44.3(0.6) 46.4(0.4) 49(0.2) 42.5(0.7) 45.5(0.5) 49.2(0.2)
LSVM 36.2(0.3) 41.9(0.2) 48.1(0.2) 29.8(0.2) 38.2(0.2) 47.3(0.1) 21.3(0.1) 32(0.2) 45.9(0.1)
RSVM 32.1(0.2) 39.2(0.2) 47.6(0.2) 26.3(0.2) 35.3(0.2) 46.6(0.1) 18.7(0.2) 29.6(0.2) 45.2(0.1)

= = 200
? = 50 ? = 100 ? = 200

0% 50% 90% 0% 50% 90% 0% 50% 90%
QC 23.5(0.1) 32.6(0.2) 45.9(0.2) 15.1(0.1) 25.8(0.2) 43.7(0.2) 7.4(0.1) 17.8(0.1) 41.1(0.2)
MC 22.8(0.1) 31.6(0.1) 44.5(0.1) 14.5(0.1) 25(0.1) 42.5(0.1) 6.8(0) 17.1(0.1) 39.5(0.1)
EMC 23.2(0.1) 32.3(0.1) 45(0.1) 14.8(0.1) 25.7(0.2) 43.3(0.1) 7.3(0.1) 18.1(0.1) 40.5(0.1)
EQC/LOGISTIC 26.8(0.3) 35.1(0.2) 46.9(0.2) 20.6(0.2) 31.9(0.3) 46(0.2) 13.3(0.1) 24.7(0.2) 43.9(0.2)
EQC/RIDGE 23.7(0.2) 33.1(0.2) 46.6(0.2) 15.5(0.2) 26.5(0.2) 44.9(0.2) 7.7(0.1) 18.7(0.2) 42.2(0.3)
EQC/LASSO 26.8(0.2) 34.9(0.3) 46.3(0.2) 22.3(0.2) 30.9(0.3) 45.2(0.2) 18.8(0.2) 26.3(0.2) 43.3(0.2)
EQC/LSVM 28.1(0.2) 35.8(0.3) 47.1(0.2) 22.1(0.2) 32.6(0.3) 46.5(0.2) 11.9(0.1) 24.1(0.2) 44.1(0.2)
NB 39.8(0.1) 42.8(0.2) 47.5(0.1) 37.9(0.1) 40.5(0.1) 46.7(0.1) 35.3(0.1) 38.7(0.1) 45.6(0.1)
LDA 30.6(0.1) 37.8(0.2) 46.9(0.1) 28.5(0.2) 36.3(0.2) 46.3(0.1) 43.8(0.3) 46.7(0.3) 49(0.1)
RIDGE 28.8(0.1) 36.3(0.2) 46.4(0.1) 22.7(0.1) 31.7(0.1) 44.9(0.1) 15.7(0.1) 26(0.1) 43(0.1)
LASSO 44.9(0.6) 46.8(0.4) 48.7(0.2) 41.1(0.9) 45.8(0.5) 48.3(0.3) 32.9(1) 44.1(0.5) 47.7(0.3)
LSVM 31.6(0.1) 38.3(0.2) 47(0.1) 28.1(0.2) 37.1(0.2) 46.6(0.1) 19.6(0.1) 30.5(0.1) 45(0.1)
RSVM 29.4(0.1) 37(0.2) 46.7(0.1) 22.8(0.1) 32.2(0.1) 45.2(0.1) 15.2(0.1) 26.7(0.1) 43.7(0.1)

96 Chapter B. Proofs and Results regarding EQC

Table B.2: Simulation study: the mean test classification error rates, and their standard errors in
parentheses, of each method for the dependent T3 scenario. All numbers are in percentages and
rounded to one digit. The third line indicates the percentage of irrelevant variables within ? variables.

= = 100
? = 50 ? = 100 ? = 200

0% 50% 90% 0% 50% 90% 0% 50% 90%
QC 28.9(0.3) 36.9(0.3) 46.9(0.2) 20.8(0.2) 30.9(0.3) 45.6(0.2) 11.8(0.2) 24(0.3) 43.7(0.2)
MC 27.3(0.2) 35.1(0.2) 45.8(0.1) 19.9(0.2) 29.4(0.2) 44.2(0.1) 11(0.1) 22.5(0.1) 42.3(0.1)
EMC 25.1(0.3) 34.6(0.3) 46(0.2) 18.2(0.2) 29.1(0.2) 44.6(0.1) 10.2(0.1) 22.6(0.2) 42.9(0.1)
EQC/LOGISTIC 28.3(0.4) 38.1(0.4) 47.4(0.2) 21.5(0.3) 32.4(0.3) 47.1(0.2) - - -
EQC/RIDGE 26.5(0.4) 36(0.4) 47.3(0.2) 19.4(0.3) 31(0.3) 46.5(0.2) 10.8(0.2) 24.2(0.3) 44.6(0.2)
EQC/LASSO 29.2(0.5) 37.5(0.5) 47.3(0.2) 26.2(0.3) 33.6(0.4) 46.9(0.2) 24.9(0.3) 32.3(0.4) 45.9(0.3)
EQC/LSVM 28.5(0.3) 37.6(0.4) 47.7(0.2) 20.8(0.3) 32.9(0.3) 46.9(0.2) 12(0.2) 25.4(0.3) 45.4(0.2)
NB 41.4(0.2) 43.9(0.2) 48(0.1) 39.6(0.1) 42.5(0.1) 47.6(0.1) 37.6(0.1) 40.4(0.1) 46.7(0.1)
LDA 21.7(0.5) 29.5(0.6) 44.1(0.5) 38.6(0.5) 42.4(0.4) 48.3(0.2) 31.8(0.3) 40.8(0.2) 47.9(0.1)
RIDGE 28.4(0.4) 38(0.3) 47.2(0.1) 23.3(0.3) 34.3(0.2) 46.2(0.1) 17(0.2) 29.1(0.2) 44.7(0.1)
LASSO 43.7(0.9) 46.4(0.7) 49.3(0.3) 43.6(0.7) 46.9(0.4) 49.4(0.2) 44.3(0.7) 46.1(0.5) 49.5(0.1)
LSVM 23.2(0.5) 32.6(0.5) 45.6(0.4) 21.5(0.3) 33.2(0.3) 46.2(0.2) 17.2(0.2) 29.3(0.2) 45.1(0.1)
RSVM 26.1(0.4) 36(0.4) 46.9(0.1) 22.4(0.3) 33.4(0.2) 46.2(0.1) 17(0.2) 29(0.2) 44.9(0.1)

= = 200
? = 50 ? = 100 ? = 200

0% 50% 90% 0% 50% 90% 0% 50% 90%
QC 24.6(0.2) 33.6(0.2) 45.9(0.2) 16.7(0.2) 26.8(0.2) 43.8(0.2) 8.4(0.1) 18.9(0.2) 41(0.2)
MC 23.9(0.2) 32.5(0.2) 44.6(0.1) 15.8(0.1) 25.9(0.1) 42.6(0.1) 7.8(0.1) 18.2(0.1) 39.7(0.1)
EMC 20.5(0.2) 30.2(0.3) 44(0.2) 13.4(0.1) 24.8(0.2) 42.9(0.2) 6.6(0.1) 17.4(0.2) 40.3(0.1)
EQC/LOGISTIC 23.6(0.5) 31.3(0.3) 45.5(0.3) 15.8(0.2) 27.9(0.3) 45(0.3) 9.8(0.2) 20.4(0.3) 43.2(0.2)
EQC/RIDGE 21.5(0.3) 31.1(0.3) 45.6(0.3) 14.2(0.2) 26(0.3) 44(0.2) 7.1(0.1) 18(0.2) 41.9(0.3)
EQC/LASSO 22.4(0.3) 31.1(0.3) 45.4(0.3) 18(0.2) 26.4(0.3) 43.3(0.3) 16(0.2) 22.5(0.2) 41.6(0.4)
EQC/LSVM 23.4(0.3) 32(0.3) 45.7(0.3) 16.7(0.2) 28.8(0.3) 44.9(0.2) 8.6(0.1) 20.4(0.2) 43.1(0.2)
NB 39.8(0.2) 42.4(0.2) 47.6(0.1) 37.3(0.1) 40.5(0.1) 46.9(0.1) 35.1(0.1) 38.4(0.1) 45.7(0.1)
LDA 16.1(0.4) 24(0.5) 42.1(0.5) 14.1(0.3) 22.9(0.4) 41(0.5) 39.4(0.4) 41.9(0.3) 47.9(0.2)
RIDGE 19.9(0.5) 31.8(0.5) 46.3(0.1) 15.5(0.3) 28.1(0.3) 45.1(0.1) 10.8(0.1) 23.1(0.2) 43.2(0.1)
LASSO 21.9(1.1) 30.8(1.2) 48.9(0.4) 22.5(1.1) 33(1.3) 48(0.5) 23.9(1) 39.1(1.1) 47.9(0.3)
LSVM 18(0.4) 24.9(0.4) 40.9(0.6) 15.5(0.2) 26.3(0.4) 43.1(0.3) 11.4(0.1) 23.6(0.2) 43.6(0.2)
RSVM 19.2(0.4) 29.3(0.4) 44.9(0.3) 15.3(0.3) 26.9(0.3) 44.6(0.2) 11(0.2) 22.8(0.2) 43.1(0.1)

B.4. Misclassification Rates of Simulation 97

Table B.3: Simulation study: the mean test classification error rates, and their standard errors in
parentheses, of each method for the independent LOGNORMAL scenario. All numbers are in
percentages and rounded to one digit. The third line indicates the percentage of irrelevant variables
within ? variables.

= = 100
? = 50 ? = 100 ? = 200

0% 50% 90% 0% 50% 90% 0% 50% 90%
QC 23.3(0.5) 45.7(0.3) 49.5(0.1) 17.9(0.5) 44.6(0.2) 49.4(0.1) 12.5(0.3) 42.4(0.3) 49(0.1)
MC 43(0.2) 47.6(0.1) 49.5(0.1) 40(0.2) 46.7(0.1) 49.4(0.1) 35.8(0.2) 45.2(0.1) 49.2(0.1)
EMC 43.4(0.2) 46.3(0.2) 49(0.1) 40.1(0.2) 44.9(0.2) 49(0.1) 35.8(0.2) 42.4(0.1) 48.4(0.1)
EQC/LOGISTIC 25.5(0.7) 39.4(0.7) 48.6(0.2) 15.2(0.3) 28.2(0.6) 46.9(0.3) - - -
EQC/RIDGE 15.3(0.3) 28.2(0.4) 47(0.3) 8.1(0.2) 20.8(0.3) 45.8(0.3) 2.8(0.1) 12.3(0.3) 41.9(0.4)
EQC/LASSO 24(0.4) 33.4(0.6) 47.3(0.3) 20.8(0.4) 28.2(0.6) 45.7(0.4) 20.3(0.3) 24(0.4) 42.2(0.5)
EQC/LSVM 22.5(0.4) 34(0.5) 47.4(0.2) 12.1(0.3) 26.2(0.4) 46.7(0.3) 4.2(0.1) 15(0.3) 43.3(0.4)
NB 49.3(0.1) 49.4(0.1) 49.7(0.1) 49.4(0.1) 49.4(0) 49.7(0.1) 49.3(0.1) 49.3(0.1) 49.6(0.1)
LDA 47.8(0.1) 48.7(0.1) 49.7(0.1) 49.3(0.1) 49.6(0.1) 50(0.1) 47(0.2) 48.3(0.1) 49.6(0.1)
RIDGE 46.8(0.1) 48.2(0.1) 49.6(0.1) 45.6(0.1) 47.6(0.1) 49.5(0.1) 43.9(0.1) 46.6(0.1) 49.4(0.1)
LASSO 49.7(0.1) 49.7(0.1) 50(0) 49.5(0.1) 49.9(0.1) 49.9(0) 49.4(0.1) 49.8(0.1) 50(0)
LSVM 47.9(0.1) 48.8(0.1) 49.7(0.1) 47.2(0.1) 48.4(0.1) 49.6(0.1) 45.1(0.1) 47.2(0.1) 49.5(0.1)
RSVM 46.3(0.1) 48.2(0.1) 49.6(0.1) 45.8(0.1) 47.9(0.1) 49.6(0.1) 44.3(0.1) 46.9(0.1) 49.5(0.1)

= = 200
? = 50 ? = 100 ? = 200

0% 50% 90% 0% 50% 90% 0% 50% 90%
QC 13.9(0.1) 41.7(0.4) 49.3(0.1) 7.2(0.1) 41.3(0.3) 49.1(0.1) 2.7(0.1) 38.2(0.2) 48.7(0.1)
MC 41(0.1) 46.8(0.1) 49.5(0.1) 37.4(0.1) 45.5(0.1) 49.2(0.1) 32.5(0.1) 43.7(0.1) 48.9(0.1)
EMC 41(0.1) 45.1(0.1) 48.9(0.1) 37.9(0.2) 43.5(0.2) 48.5(0.1) 32.8(0.2) 40.6(0.1) 47.9(0.1)
EQC/LOGISTIC 20.2(0.9) 28.2(0.4) 44.9(0.3) 10.2(0.2) 24.8(0.6) 46.2(0.3) 5.9(0.1) 13.4(0.2) 41.1(0.4)
EQC/RIDGE 12.3(0.1) 23.3(0.2) 44.4(0.3) 5.8(0.1) 14.9(0.2) 41.6(0.3) 1.9(0) 7.8(0.1) 37(0.3)
EQC/LASSO 16.9(0.2) 24.6(0.2) 44.5(0.3) 12.8(0.2) 19(0.2) 42.1(0.4) 11.7(0.2) 14.7(0.2) 35.8(0.4)
EQC/LSVM 17.1(0.2) 27.5(0.3) 45.4(0.3) 9.3(0.2) 22.2(0.3) 44.4(0.3) 3.1(0.1) 11.1(0.2) 39.7(0.3)
NB 49.2(0.1) 49.4(0.1) 49.6(0.1) 49.1(0) 49.2(0.1) 49.7(0.1) 49.1(0) 49.3(0.1) 49.6(0)
LDA 46.4(0.1) 48(0.1) 49.5(0.1) 45.9(0.1) 48(0.1) 49.6(0.1) 49.1(0.1) 49.6(0.1) 49.9(0.1)
RIDGE 45.8(0.1) 47.8(0.1) 49.5(0.1) 44.3(0.1) 47.1(0.1) 49.5(0.1) 42.6(0.1) 45.9(0.1) 49.2(0.1)
LASSO 49.7(0.1) 49.8(0) 50(0) 49.7(0.1) 49.8(0.1) 50(0) 49.4(0.1) 49.8(0.1) 50(0)
LSVM 46.6(0.1) 48(0.1) 49.6(0.1) 46(0.1) 48.2(0.1) 49.6(0.1) 44.8(0.1) 47.2(0.1) 49.3(0.1)
RSVM 44.8(0.1) 47.5(0.1) 49.5(0.1) 43.8(0.1) 47(0.1) 49.4(0.1) 42.3(0.1) 46.1(0.1) 49.3(0.1)

98 Chapter B. Proofs and Results regarding EQC

Table B.4: Simulation study: the mean test classification error rates, and their standard errors in
parentheses, of each method for the dependent LOGNORMAL scenario. All numbers are in
percentages and rounded to one digit. The third line indicates the percentage of irrelevant variables
within ? variables.

= = 100
? = 50 ? = 100 ? = 200

0% 50% 90% 0% 50% 90% 0% 50% 90%
QC 24.4(0.5) 46.1(0.3) 49.6(0.1) 18.9(0.5) 45(0.3) 49.4(0.1) 14(0.4) 42.4(0.3) 49.1(0.1)
MC 43.8(0.2) 47.7(0.1) 49.6(0.1) 41.6(0.2) 46.7(0.1) 49.5(0.1) 37.9(0.1) 45.6(0.1) 49.2(0.1)
EMC 42.7(0.2) 46.1(0.1) 49.3(0.1) 40.3(0.2) 44.7(0.1) 48.9(0.1) 36.8(0.1) 42.9(0.1) 48.3(0.1)
EQC/LOGISTIC 28.6(0.8) 41.6(0.6) 49(0.2) 17.6(0.4) 29.5(0.4) 47.6(0.2) - - -
EQC/RIDGE 17.6(0.2) 30.9(0.5) 47.3(0.2) 10.2(0.2) 22.3(0.3) 45.9(0.3) 4(0.1) 14.3(0.2) 42.7(0.4)
EQC/LASSO 25(0.4) 35.4(0.6) 47.8(0.3) 21.8(0.4) 29.6(0.5) 46.5(0.3) 21.1(0.3) 24.9(0.4) 42.9(0.5)
EQC/LSVM 24.7(0.4) 35.7(0.5) 48(0.2) 15.1(0.3) 28.2(0.4) 47(0.2) 5.9(0.1) 17.4(0.2) 44.3(0.3)
NB 49.3(0.1) 49.4(0.1) 49.7(0.1) 49.3(0.1) 49.5(0.1) 49.8(0.1) 49.3(0.1) 49.5(0.1) 49.7(0.1)
LDA 47.4(0.1) 48.6(0.1) 49.7(0.1) 49.3(0.1) 49.3(0.1) 50.1(0.1) 46.7(0.1) 48.4(0.1) 49.6(0.1)
RIDGE 46.9(0.1) 48.4(0.1) 49.6(0.1) 46(0.1) 47.9(0.1) 49.6(0.1) 44.7(0.1) 47.1(0.1) 49.4(0.1)
LASSO 49.7(0.1) 49.9(0) 50(0) 49.6(0.1) 49.8(0.1) 50(0) 49.5(0.1) 49.7(0.1) 50(0)
LSVM 47.3(0.2) 48.6(0.1) 49.8(0.1) 46.7(0.1) 48.4(0.1) 49.8(0.1) 45.2(0.1) 47.5(0.1) 49.5(0.1)
RSVM 45.7(0.2) 48.1(0.1) 49.6(0.1) 45.7(0.1) 47.9(0.1) 49.7(0.1) 44.5(0.1) 47.2(0.1) 49.4(0.1)

= = 200
? = 50 ? = 100 ? = 200

0% 50% 90% 0% 50% 90% 0% 50% 90%
QC 16.1(0.2) 41.9(0.4) 49.3(0.1) 9.5(0.2) 41.4(0.3) 49.1(0.1) 4.1(0.1) 38(0.2) 48.6(0.1)
MC 41.9(0.1) 47(0.1) 49.4(0) 39(0.1) 45.7(0.1) 49.2(0.1) 34.6(0.1) 43.9(0.1) 48.9(0.1)
EMC 39.9(0.2) 44.3(0.2) 48.7(0.1) 37.3(0.2) 43.1(0.1) 48.4(0.1) 33.2(0.1) 40.5(0.1) 47.8(0.1)
EQC/LOGISTIC 19.9(0.5) 30.2(0.3) 46(0.3) 12.9(0.2) 28.3(0.6) 46.8(0.3) 7.2(0.1) 16.8(0.2) 42.1(0.4)
EQC/RIDGE 14.8(0.1) 25.7(0.2) 45.5(0.3) 7.8(0.1) 17.6(0.2) 42.1(0.3) 3(0.1) 10.1(0.1) 37.5(0.3)
EQC/LASSO 18.7(0.2) 28(0.3) 45.5(0.3) 14.4(0.2) 21.6(0.2) 43(0.4) 12.8(0.2) 16.8(0.2) 38.9(0.5)
EQC/LSVM 19.4(0.2) 30.6(0.3) 45.8(0.3) 12.5(0.3) 25.5(0.3) 45.1(0.3) 4.5(0.1) 14.7(0.2) 41.7(0.4)
NB 49.2(0.1) 49.3(0.1) 49.7(0) 49.1(0.1) 49.3(0.1) 49.7(0.1) 49.1(0.1) 49.1(0.1) 49.5(0.1)
LDA 46(0.1) 47.9(0.1) 49.4(0.1) 45.7(0.1) 47.7(0.1) 49.6(0.1) 48.7(0.1) 49.5(0.1) 50(0.1)
RIDGE 46.2(0.1) 47.9(0.1) 49.6(0.1) 45.1(0.1) 47.2(0.1) 49.4(0.1) 43.2(0.1) 46.2(0.1) 49.1(0.1)
LASSO 49.8(0.1) 49.8(0.1) 50(0) 49.7(0.1) 49.8(0.1) 50(0) 49.6(0.1) 49.7(0.1) 49.9(0)
LSVM 46.1(0.1) 47.8(0.1) 49.4(0.1) 45.9(0.1) 47.8(0.1) 49.6(0.1) 44.6(0.1) 47(0.1) 49.3(0.1)
RSVM 42.8(0.2) 46.8(0.1) 49.4(0.1) 43.3(0.1) 46.8(0.1) 49.5(0.1) 41.5(0.1) 46(0.1) 49.1(0.1)

B.4. Misclassification Rates of Simulation 99

Table B.5: Simulation study: the mean test classification error rates, and their standard errors in
parentheses, of each method for the independent HETEROGENEOUS scenario. All numbers
are in percentages and rounded to one digit. The third line indicates the percentage of irrelevant
variables within ? variables.

= = 100
? = 50 ? = 100 ? = 200

0% 50% 90% 0% 50% 90% 0% 50% 90%
QC 23.7(0.4) 38.8(0.4) 48.2(0.1) 18.3(0.3) 34.7(0.3) 47.8(0.1) 10.3(0.2) 29.1(0.3) 46.8(0.1)
MC 37.2(0.2) 43.4(0.2) 48.7(0.1) 31.7(0.2) 40.8(0.2) 48(0.1) 25.4(0.2) 37.1(0.1) 47.4(0.1)
EMC 34.9(0.3) 41.2(0.2) 48.1(0.1) 28.7(0.2) 37.9(0.2) 47.3(0.1) 20.9(0.2) 33(0.2) 46(0.1)
EQC/LOGISTIC 9.3(0.3) 22.4(0.7) 43.4(0.4) 6(0.2) 13.5(0.3) 38.7(0.4) - - -
EQC/RIDGE 5(0.1) 14(0.2) 40.7(0.3) 1.7(0) 7.2(0.1) 36.3(0.4) 0.3(0) 2.6(0.1) 29.2(0.2)
EQC/LASSO 6.6(0.2) 12.3(0.3) 31.6(0.5) 5.2(0.2) 7.5(0.2) 23.3(0.3) 4.8(0.1) 5.4(0.1) 15.8(0.3)
EQC/LSVM 6(0.2) 16.3(0.3) 42.4(0.4) 1.8(0.1) 9.3(0.2) 38.2(0.4) 0.3(0) 3.2(0.1) 32(0.3)
NB 45.1(0.1) 46.6(0.1) 49(0.1) 44.3(0.1) 45.7(0.1) 48.6(0.1) 43.6(0.1) 45(0.1) 48.3(0.1)
LDA 41.4(0.2) 45.1(0.2) 48.9(0.1) 46.7(0.3) 48.1(0.2) 49.6(0.1) 38.1(0.2) 43.5(0.2) 48.4(0.1)
RIDGE 38.2(0.2) 43.5(0.2) 48.6(0.1) 33.7(0.2) 40.7(0.2) 47.9(0.1) 28.5(0.2) 37.5(0.2) 47.1(0.1)
LASSO 48.6(0.3) 48.5(0.2) 49.8(0.1) 47.6(0.3) 48.4(0.2) 49.6(0.1) 46.9(0.4) 48.2(0.3) 49.5(0.1)
LSVM 41.6(0.2) 45.3(0.2) 49(0.1) 37.9(0.2) 43.2(0.2) 48.5(0.1) 31.8(0.2) 39.6(0.2) 47.6(0.1)
RSVM 38.8(0.2) 43.8(0.2) 48.7(0.1) 34.6(0.2) 41.4(0.2) 48(0.1) 29.1(0.2) 38.2(0.2) 47.3(0.1)

= = 200
? = 50 ? = 100 ? = 200

0% 50% 90% 0% 50% 90% 0% 50% 90%
QC 17.6(0.3) 33.1(0.4) 47.8(0.1) 11.8(0.2) 29(0.2) 47(0.2) 4.9(0.1) 21.9(0.1) 45.1(0.2)
MC 34.5(0.1) 41.4(0.2) 48(0.1) 28.5(0.1) 38(0.1) 47.5(0.1) 21.2(0.1) 33.1(0.1) 46.4(0.1)
EMC 32.2(0.1) 39.1(0.2) 47.2(0.1) 25.3(0.1) 34.7(0.2) 46.7(0.1) 17.6(0.1) 28.9(0.2) 44.9(0.1)
EQC/LOGISTIC 7.1(0.8) 19.6(1.1) 36(0.2) 2.9(0.1) 9.1(0.2) 34.8(0.4) 2.3(0.1) 5.6(0.1) 27.8(0.2)
EQC/RIDGE 3.2(0.1) 9.9(0.2) 36.6(0.2) 1.2(0) 4.9(0.1) 30.7(0.2) 0.2(0) 1.7(0) 23.3(0.2)
EQC/LASSO 3.7(0.1) 7.8(0.1) 29.7(0.3) 2.6(0.1) 4.2(0.1) 20.4(0.2) 1.8(0) 2.7(0.1) 13.5(0.2)
EQC/LSVM 3.5(0.1) 10.9(0.2) 36.8(0.2) 1.1(0) 6.4(0.2) 33.4(0.2) 0.2(0) 1.9(0) 27.1(0.2)
NB 43.7(0.1) 45.6(0.1) 48.6(0.1) 42.6(0.1) 44.2(0.1) 48.2(0.1) 41.3(0.1) 43.1(0.1) 47.5(0.1)
LDA 37.5(0.2) 42.7(0.2) 48.1(0.1) 35.8(0.2) 41.5(0.2) 48(0.1) 46.7(0.2) 47.9(0.2) 49.4(0.1)
RIDGE 35.8(0.1) 41.7(0.2) 47.9(0.1) 30.8(0.1) 38.2(0.1) 47.2(0.1) 24.7(0.1) 33.9(0.1) 46.1(0.1)
LASSO 48.5(0.2) 48.9(0.2) 49.6(0.1) 47.5(0.3) 48.4(0.2) 49.6(0.1) 45.5(0.5) 47.5(0.3) 49.2(0.1)
LSVM 38(0.2) 42.9(0.2) 48.2(0.1) 36.3(0.2) 42.1(0.2) 48.2(0.1) 29.4(0.2) 37.8(0.1) 47.2(0.1)
RSVM 36(0.1) 41.8(0.2) 48(0.1) 31.4(0.1) 38.8(0.1) 47.5(0.1) 25.1(0.2) 34.9(0.1) 46.5(0.1)

100 Chapter B. Proofs and Results regarding EQC

Table B.6: Simulation study: the mean test classification error rates, and their standard errors in
parentheses, of each method for the dependent HETEROGENEOUS scenario. All numbers are in
percentages and rounded to one digit. The third line indicates the percentage of irrelevant variables
within ? variables.

= = 100
? = 50 ? = 100 ? = 200

0% 50% 90% 0% 50% 90% 0% 50% 90%
QC 23.9(0.4) 38.5(0.4) 48.2(0.1) 18.2(0.2) 34.5(0.2) 47.9(0.1) 10.5(0.2) 28.8(0.2) 47.1(0.2)
MC 37.7(0.2) 43.4(0.2) 48.6(0.1) 32.7(0.2) 41.1(0.2) 48.2(0.1) 26.3(0.2) 37.3(0.2) 47.3(0.1)
EMC 35.4(0.2) 41.4(0.2) 48(0.1) 29.1(0.2) 38.2(0.2) 47.4(0.1) 21.9(0.2) 33.1(0.2) 46.1(0.1)
EQC/LOGISTIC 8.5(0.3) 21.9(0.8) 44.3(0.5) 6.2(0.2) 12.6(0.3) 39.6(0.4) - - -
EQC/RIDGE 5.1(0.1) 13.5(0.2) 40.8(0.4) 1.8(0) 7(0.1) 36.2(0.3) 0.3(0) 2.7(0.1) 29.7(0.3)
EQC/LASSO 6.7(0.2) 11.8(0.3) 32.7(0.7) 5.4(0.1) 7.3(0.2) 22.6(0.4) 5(0.1) 5.7(0.1) 16(0.2)
EQC/LSVM 5.9(0.2) 15.8(0.5) 41.4(0.4) 1.9(0.1) 9.4(0.2) 38.5(0.4) 0.3(0) 3.3(0.1) 31.8(0.3)
NB 45.1(0.1) 46.5(0.1) 48.9(0.1) 44.4(0.1) 45.8(0.1) 48.7(0.1) 43.7(0.1) 45.1(0.1) 48.1(0.1)
LDA 42.4(0.3) 45.3(0.2) 49(0.1) 47.1(0.3) 48.4(0.2) 49.6(0.1) 38.7(0.3) 43.5(0.2) 48.4(0.1)
RIDGE 39.2(0.2) 43.6(0.2) 48.5(0.1) 35(0.2) 41.2(0.2) 48(0.1) 29.9(0.2) 38.1(0.2) 47.1(0.1)
LASSO 48.1(0.3) 49.2(0.2) 49.9(0.1) 48.3(0.3) 48.9(0.2) 49.8(0.1) 47.3(0.4) 48.4(0.3) 49.6(0.1)
LSVM 42.7(0.3) 45.5(0.2) 49.1(0.1) 39.3(0.2) 43.9(0.2) 48.7(0.1) 33.1(0.2) 40.7(0.2) 47.8(0.1)
RSVM 39.5(0.2) 43.9(0.2) 48.8(0.1) 35.8(0.2) 41.8(0.2) 48.3(0.1) 30.4(0.2) 38.9(0.2) 47.5(0.1)

= = 200
? = 50 ? = 100 ? = 200

0% 50% 90% 0% 50% 90% 0% 50% 90%
QC 17.8(0.3) 32.6(0.4) 47.4(0.2) 12.1(0.2) 28.8(0.2) 46.7(0.2) 5.3(0.1) 22.3(0.2) 45.1(0.2)
MC 34.9(0.2) 41.9(0.1) 48.2(0.1) 29.4(0.2) 38.4(0.1) 47.3(0.1) 22.2(0.1) 34(0.1) 46.5(0.1)
EMC 32.3(0.2) 39.5(0.2) 47.4(0.1) 26(0.1) 35.2(0.2) 46.3(0.1) 18.4(0.1) 30.1(0.2) 44.9(0.1)
EQC/LOGISTIC 6.8(0.6) 20.6(1.2) 35.5(0.2) 3(0.1) 9.3(0.5) 34.2(0.4) 2.4(0.1) 5.3(0.1) 27.9(0.4)
EQC/RIDGE 3.2(0.1) 10.1(0.2) 35.7(0.1) 1.2(0) 4.9(0.1) 30.3(0.2) 0.2(0) 1.6(0) 23.3(0.2)
EQC/LASSO 3.8(0.1) 8(0.2) 28.9(0.2) 2.7(0.1) 4.2(0.1) 20(0.2) 1.9(0.1) 2.6(0.1) 13.2(0.2)
EQC/LSVM 3.7(0.1) 11(0.3) 36.1(0.2) 1.2(0.1) 6.4(0.2) 33.2(0.3) 0.2(0) 1.8(0) 26.8(0.2)
NB 43.8(0.1) 45.6(0.1) 48.7(0.1) 42.7(0.1) 44.4(0.1) 48.2(0.1) 41.3(0.1) 43.3(0.1) 47.6(0.1)
LDA 38.2(0.2) 43.5(0.1) 48.4(0.1) 36.9(0.2) 42.2(0.2) 48.1(0.1) 46.7(0.2) 47.7(0.2) 49.4(0.1)
RIDGE 36.8(0.1) 42.3(0.1) 48.1(0.1) 32.4(0.1) 39.2(0.1) 47.1(0.1) 26.6(0.1) 35.2(0.1) 46.2(0.1)
LASSO 48.8(0.2) 49(0.2) 49.9(0.1) 47.9(0.3) 48.6(0.2) 49.3(0.1) 46.8(0.4) 48.1(0.2) 49.4(0.1)
LSVM 38.7(0.2) 43.6(0.2) 48.5(0.1) 37.2(0.2) 42.6(0.2) 48.2(0.1) 31.3(0.2) 39.3(0.1) 47.4(0.1)
RSVM 36.1(0.1) 42.3(0.1) 48.2(0.1) 32.4(0.2) 39.5(0.2) 47.5(0.1) 26.6(0.1) 35.9(0.1) 46.7(0.1)

Appendix C

Proofs regarding MQC

C.1 Proof of Theorem 3.3.1

Proof. The first result comes immediately by applying the mean value theorem. Since � (G)
is continuous and � (A;−1) = � (A;) = 0 for ; ∈ [< + 1], then from the mean value theorem,
∃A; ∈ (';−1, ';), s.t., �′(A;) = 52(A;) − 51(A;) = 0. If � (G) is locally convex or concave within
(';−1, ';), then �′(G) is monotone within G ∈ (';−1, ';) and thus such A; is unique. So we have
proved the first result.

Next we prove the second result. Since � (G) is continuous and � (G) ≠ 0 only if G ≠ '; for
; ∈ [< + 1], then either � (G) > 0 or � (G) < 0 for each G ∈ (';−1, ';), ; ∈ [< + 1].

Suppose� (G1) > 0when G1 ∈ ('0, '1), thenwemust have (−1);−1� (G;) > 0 for G; ∈ (';−1, ';),
; ∈ [< + 1]. To see this, we let � (G2) > 0, then ∀n > 0, �′('1 + n) > 0. Similarly from � (G1) > 0,
we have�′('1−n) > 0. Thus�′('1) does not exist, which contradicts to Assumption 3 that�′(G) is
continuous for G ∈ (!,*). Therefore, we conclude that either (−1);−1� (G;) > 0 or (−1);� (G;) > 0
for ∀G; ∈ (';−1, ';), ; ∈ [< + 1].

Without loss of generality, suppose (−1);−1� (G;) > 0 for ∀G; ∈ (';−1, ';), ; ∈ [< + 1], holds in
the following discussion.

Let \; ∈ (�1(';−1), �1(';)) = (�2(';−1), �2(';)) for ; ∈ [< + 1], then

';−1 < @1(\;), @2(\;) < '; , ; ∈ [< + 1] . (C.1)

101

102 Chapter C. Proofs regarding MQC

Thus,

0 < (−1);−1� (@1(\;)) = (−1);−1 [�2(@1(\;)) − \;] (C.2)
⇒(−1);−1 [@1(\;) − @2(\;)] > 0, ; ∈ [< + 1] .

From the piecewise representation of Q (G | \) in Equation (1.9), Equations (C.1) and (C.2),
∀2 ∈ R, A; ∈ (';−1 + (−1);−12, '; + (−1);−12), ; ∈ [< + 1], are solutions of 10 +

∑<+1
;=1 1; Q\;

(G) = 0
if and only if there exists) = {\;}<+1;=1 and \; ∈ (�1(';−1), �1(';)), s.t. A; = I; ()) for ; ∈ [< + 1],
where

I; ()) = \;@1(\;) + (1 − \;)@2(\;)

+ (−1);−1 1
1;

[
10 +

;−1∑
; ′=1

\; ′ (@2(\; ′) − @1(\; ′))

+
<+1∑
; ′=;+1
(1 − \; ′) (@1(\; ′) − @2(\; ′))

]
,

is a continuous function of) .
Since I; (� (';−1)) = ';−1 + (−1);−110/1; and I; (� (';)) = '; + (−1);−110/1; for ; ∈ [< + 1],

then by the Poincaré-Miranda theorem (Kulpa 1997), ∀A; ∈ (';−1 + (−1);−12, '; + (−1);−12) for
; ∈ [<+1], there exists 0 < \1 < . . . < \<+1 < 1 where \; ∈ (�1(';−1), �1(';)), and 10/1; = 2, s.t.,
A; = I; ()) holds for ; ∈ [<+1], and hence they are the<+1 solutions of 10+

∑<+1
;=1 1; Q\;

(G) = 0. �

C.2 Proof of Corollary 3.3.2

Proof. When c1 = c2 = 0.5, 6(G) = log(52(G)) − log(51(G)) which has the same roots as
�′(G) = 52(G) − 51(G). From the first result of Theorem 3.3.1, the existence of < + 1 roots
A; ∈ (';−1, ';), ; ∈ [< + 1], �′(G) = 0 holds. The uniqueness also holds if � (G) is locally convex
or concave for G ∈ (';−1, ';). Therefore, we have proved the first result.

The second result follows directly from the proof of the second result of Theorem 3.3.1 by letting
2 = 10 = 0 and 1; = 1 for ; ∈ [< + 1]. �

C.3 Proof of Theorem 3.3.3

Proof. The first result can be proved identically as the proof of Theorem 3.3.1. But under the current
assumption, �1('<−1) = c2

c1
�2('<−1) for ; ∈ [<], and '<+1 = * is not a root of anymore �̃ (G) if

c1 ≠ c2.

C.3. Proof of Theorem 3.3.3 103

From the proof of Theorem 3.3.1, we can conclude that either (−1);−1�̃ (G) (G;) > 0 or
(−1);�̃ (G) (G;) > 0 for ∀G; ∈ (';−1, ';), ; ∈ [<].

Without loss of generality, suppose c1 6 c2, and (−1);−1�̃ (G;) > 0 for∀G; ∈ (';−1, ';), ; ∈ [<],
hold in the following discussion.

Let \; ∈ (�1(';−1), �1(';)) = (c2
c1
�2(';−1), c2

c1
�2(';)) for ; ∈ [<], then

';−1 < @1(\;), @2(
c1
c2
\;) < '; , ; ∈ [<] . (C.3)

Thus,

0 < (−1);−1�̃ (@1(\;)) = (−1);−1 [c2
c1
�2(@1(\;)) − \;] (C.4)

⇒(−1);−1 [@1(\;) − @2(
c1
c2
\;)] > 0, ; ∈ [<] .

From the piecewise property of the generalized quantile-difference transformation in Equa-
tion (3.5), ∀2 ∈ R, A; ∈ (';−1 + (−1);−12, '; + (−1);−12), ; ∈ [<], are solutions of 10 +∑<
;=1 1;Q̃(\; , c1

c2
\;) (G) = 0 if and only if there exists) = {\;}<;=1 and \; ∈ (�1(';−1), �1(';)),

s.t. A; = I; ()) for ; ∈ [<], where

I; ()) = \̄;@1(\;) + (1 − \̄;)@2(
c1
c2
\;)

+ (−1);−1 1
1;

[
10 +

;−1∑
; ′=1

\̄; ′ (@2(
c1
c2
\; ′) − @1(\; ′))

+
<∑

; ′=;+1
(1 − \̄; ′) (@1(\; ′) − @2(

c1
c2
\; ′))

]
,

is a continuous function of) and \̄; = \; (1 + c1/c2)/2.
Since I; (� (';−1)) = ';−1 + (−1);−110/1; and I; (� (';)) = '; + (−1);−110/1; for ; ∈ [<], then

by the Poincaré-Miranda theorem (Kulpa 1997), ∀A; ∈ (';−1 + (−1);−12, '; + (−1);−12) for ; ∈ [<],
there exists 0 < \1 < . . . < \< < 1 where \; ∈ (�1(';−1), �1(';)), and 10/1; = 2, s.t., A; = I; ())
holds for ; ∈ [<], and hence they are the < solutions of 10 +

∑<
;=1 1;Q̃(\; , c1

c2
\;) (G) = 0. �

Appendix D

Proofs related to Quantile ANOVA Kernels

D.1 Proof of Multi-Linearity

When 3 = 1,

Q1(v, x) =
?∑
9=1

<∑
;=1

E 9 ,; Q\;
(G 9)

=

<∑
;=1

E 9 ,; Q\;
(G 9) +

?∑
9 ′≠ 9

<∑
;=1

E 9 ′,; Q\;
(G 9 ′)

= F 9Q0(v¬ 9 ,·, x¬ 9) + Q1(v¬ 9 ,·, x¬ 9),

where Q0(v, x) = 1 is used.
When 2 6 3 6 �,

Q3 (v, x) =
∑

91<...< 93

∑
;1,...,;3

3∏
C=1

E 9C ,;C Q\;C
(G 9C)

= [
<∑
;1=1

E1,;1 Q\;1
(G1)]

?−3+2∑
92=2

?−3+3∑
93= 92+1

. . .

?∑
93= 93−1+1

∑
;2,...,;3

3∏
C=2

E 9C ,;C Q\;C
(G 9C)

+
?−3+1∑
91=2

?−3+2∑
92= 91+1

. . .

?∑
93= 93−1+1

∑
;1,...,;3

3∏
C=1

E 9C ,;C Q\;C
(G 9C)

= F1Q3−1(v¬1,·, x¬1) + Q3 (v¬1,·, x¬1).

104

D.2. Proof of Multi-Convexity 105

Since the orders of elements in x and rows in v are symmetric, we can always permute them
without changing the value of Q3 (v, x). Thus,

Q3 (v, x) = F 9Q3−1(v¬ 9 ,·, x¬ 9) + Q3 (v¬ 9 ,·, x¬ 9), ∀3 ∈ [�],

where F 9 =
∑<
;=1 E 9 ,; Q\;

(G 9), 9 ∈ [?].

D.2 Proof of Multi-Convexity

By Lemma 4.3.1, there exists U 9 , 5 ,3 and V 9 , 5 ,3 which are constants w.r.t. E (3)
9 ,;, 5

,∀; ∈ [<] and G 9 , for
each 9 ∈ [?], 5 ∈ [:3] and 2 6 3 6 �, s.t.,

Q3 (v (3)·,·, 5 , x) = F
(3)
9 , 5
U 9 , 5 ,3 + V 9 , 5 ,3 ,

where F (3)
9 , 5
=

∑<
;=1 E

(3)
9 ,;, 5

Q\;
(G 9).

Thus, Equation (4.2) can be written,

B(x |) , 10, H,V
(3) , 3 = 2, . . . , �)

= 10 + Q1(H, x) +
�∑
3=2

:3∑
5=1
Q3 (v (3)·,·, 5 , x)

= 10 +
?∑
9 ′≠ 9

<∑
;=1

1 9 ′,; Q\;
(G 9 ′) +

<∑
;=1

1 9 ,; Q\;
(G 9)

+
�∑
3=2

:3∑
5=1

F
(3)
9 , 5
U 9 , 5 ,3 +

�∑
3=2

:3∑
5=1

V 9 , 5 ,3

= constant 9 +
<∑
;=1

1 9 ,; Q\;
(G 9) +

�∑
3=2

:3∑
5=1
[
<∑
;=1

E
(3)
9 ,;, 5

Q\;
(G 9)]U 9 , 5 ,3

where the constant 9 is a constant w.r.t. the 9-th row of H and E (3)
9 ,;, 5

with the 9-th index fixed.
Therefore, Equation (4.2) is convex in 10, the 9-th row of H and the 9-th first dimensional slice of
V (3) ,2 6 3 6 �, for each fixed 9 ∈ [?].

Curriculum Vitae
Name Yuanhao Lai

Post-secondary 2015–2020
education and Ph.D. candidate in Statistics
degrees Western University, London, ON, Canada

2014–2015
M.Sc. in Statistics
Western University, London, ON, Canada

2010–2014
B.Sc. in Mathematics and Applied Mathematics
South China University of Technology, Guangzhou, GD, China

Related work 2015–2020
experience Teaching Assistant

Research Assistant
Western University, London, ON, Canada

Publications

Lai, Y., &McLeod, I. (2020). Ensemble quantile classifier. Computational Statistics & Data Analysis,
144, 106849.

106

	Extensions of Classification Method Based on Quantiles
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Co-authorship Statement
	Acknowledgments
	Dedication
	List of Figures
	List of Tables
	Introduction
	Classification
	Generative vs Discriminative Classifiers
	Overfitting and Regularization
	Performance Measures
	Cross-Validation
	Repeated Cross-Validation
	Nested Cross-validation

	Generative Models
	Naive Bayes Classifier
	Gaussian Discriminant Analysis

	Discriminative Models
	Multinomial Logistic Regression
	Support Vector Machine
	K-Nearest Neighbors

	Distance-based Models
	Centroid Classifier
	Median-based Classifier
	Quantile-based Classifier

	Quantile-Difference Transformation
	Reformulation of Quantile-based Classifier
	Limitations of Quantile-based Classifier

	Summary of Contributions

	Ensemble Quantile Classifier
	Introduction
	Methodology
	EQC for Binary Case
	Multiclass EQC

	Asymptotic Consistency
	Numerical Study
	Experimental Setup
	Test Error Rates
	Comparing EQC/RIDGE with QC for Fixed theta

	Reuters-21578 text categorization
	Binary Classification
	Multiclass Classification

	Discussion and Conclusion

	Multiple Quantile Classifier
	Motivation
	Methodology
	Bayes Optimality of MQC
	Comparison with MARS
	Simulation Experiment
	Discussion and Conclusion

	Factorized Multiple Quantile Classifier
	Introduction
	Factorization Machines
	Methodology
	Model Formulation
	Linear-time Evaluation
	Parameter Estimation

	Simulation Experiment
	Application
	Discussion and Conclusion

	Deep Multiple Quantile Classifier
	Introduction
	Preliminary
	Feedforward Neural Networks
	Training Neural Networks

	Methodology
	Formulation of DeepMQC
	Model Training

	Simulation Experiment
	Data Generation
	DeepMQC Setting
	Baseline Methods
	Experiment Results

	Application
	Conclusion

	Summary and Future Work
	Bibliography
	Properties of Quantile-Difference Transformation
	Expectation of Quantile-Difference Transformation
	Expectation of Generalized Quantile-Difference Transformation

	Proofs and Results regarding EQC
	Relationship to Asymmetric Laplace Distribution
	Maximum Likelihood Estimation of Multiclass EQC
	Proof of Consistency of Estimating EQC
	Misclassification Rates of Simulation

	Proofs regarding MQC
	Proof of 3.3.1
	Proof of 3.3.2
	Proof of 3.3.3

	Proofs related to Quantile ANOVA Kernels
	Proof of Multi-Linearity
	Proof of Multi-Convexity

	Curriculum Vitae

