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Abstract 

Traditional breeding involving Medicago sativa (alfalfa), has resulted in minimal yield 

increases. Moreover, extreme environmental conditions threaten to further limit 

production. Strategies that make use of molecular tools – such as small non-coding RNA, 

miR156 – represent an innovative means by which to influence tolerance to abiotic stress. 

miR156 functions, at least in part, through the SQUAMOSA PROMOTER BINDING 

PROTEIN LIKE (SPL) family of transcription factors. In this study, the role of SPL9 in 

regulating alfalfa development and drought tolerance is evaluated. Examination of alfalfa 

plants with RNAi-mediated SPL9 (SPL9-RNAi) showed that plant height, stem thickness, 

and internode length are positively regulated by SPL9, whereas shoot branching is 

negatively regulated. SPL9-RNAi alfalfa also had enhanced tolerance to drought 

mediated by elevated anthocyanin content and expression of DIHYDROFLAVONOL 4-

REDUCTASE (DFR), an enzyme involved in anthocyanin biosynthesis. Thus, 

manipulation of SPL9-mediated downregulation of DFR may represent one strategy to 

improve drought tolerance in alfalfa.  
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Summary for Lay Audiences 

Alfalfa is an important forage crop that is used mainly as feed for ruminant animals. 

While breeding programs have produced winter hardy alfalfa varieties that are capable of 

growth in harsh Canadian climates, further yield improvements have been limited. 

Furthermore, climate change is resulting in prime agricultural areas exhibiting extreme 

weather events such as drought. Drought can limit the growth of alfalfa and cause toxic 

levels of reactive oxygen species (ROS) to accumulate within the plant. ROS can cause 

damage to DNA, lipids, and proteins but molecules like anthocyanins, which have stress 

reducing antioxidant activity, can mitigate ROS accumulation.  

Novel molecular tools that can be used to alter alfalfa to promote the induction of desired 

traits are highly sought after. One such tool, miR156, is a small RNA molecule that 

influences the expression of a family of proteins – called SQUAMOSA PROMOTER 

BINDING PROTEIN LIKE or SPL proteins – that are important regulators of 

development and stress tolerance. In this study, the role of one SPL protein (SPL9) was 

investigated by comparing alfalfa plants with reduced levels of SPL9 to plants expressing 

normal levels of SPL9. These studies revealed that SPL9 positively regulates plant height, 

stem thickness, and internode length and negatively regulates branching. Interestingly, the 

plants with reduced SPL9 levels were also more tolerant to drought in that they 

maintained growth, had reduced leaf senescence, and had enhanced relative water content 

while under water-deficit conditions. Importantly, the plants with reduced SPL9 levels 

also exhibited increased anthocyanin accumulation and effected DIHYDROFLAVONOL 

4-REDUCTASE (DFR) transcript levels, an enzyme involved in anthocyanin biosynthesis. 

This suggested that the drought tolerance exhibited by plants with reduced levels of SPL9 

were at least partly due to the SPL9-mediatd negative regulation of DFR. Taken together, 

these results indicate that the manipulation of SPL9 can be used as a potential molecular 

strategy to improve drought tolerance in alfalfa.   
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Chapter 1  

1 Introduction 

1.1 The need for crop improvement 

The explosive growth of human populations in recent centuries is expected to continue 

for at least the next several decades (Godfray et al., 2010; Tilman et al., 2011). With this 

growth, comes increased demand for resources such as water and energy. The same is 

true with respect to our collective requirement for food. Tilman et al. (2011) estimate that 

the global demand for crop production will double by 2050. 

Agricultural strategies employed to meet future food demands include extensification and 

sustainable intensification (Godfray et al., 2010; Tilman et al., 2011). Extensification is 

achieved by expanding the agricultural land available, but this comes at great 

environmental costs (Tilman et al., 2011). Cultivating new land inevitably results in the 

destruction of natural ecosystems, thereby impacting biodiversity and greenhouse gas 

emissions (Tilman et al., 2011). Sustainable intensification by improving the output of 

existing agricultural lands greatly reduces ecological impacts compared to extensification 

practices (Tilman et al., 2011). The application of fertilizers to soil can increase the yield 

of crops (Seufert et al., 2012), but can also result in the pollution of surrounding water 

sources by runoff, which has been linked to some cancers in humans (Weyer et al., 2001).  

Abiotic stress can limit plant growth significantly (Daryanto et al., 2016). Furthermore, 

the continuing escalation of the impacts of climate change will lead to more extreme 

weather phenomena like drought (Schindler and Donahue, 2006). While drought is a 

poorly defined term, it invariably involves regions experiencing water deficits (Maybank 

et al., 1995) and is relevant to countries such as Canada that have seen declining annual 

precipitation in regions with a history of severe drought events (Schindler and Donahue, 

2006). The extent of yield loss due to drought depends on the crop species being 

examined. For example, field evaluation of wheat and maize between 1980 and 2015 

showed a 21% and 40% yield reduction, respectively (Daryanto et al., 2016).  
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Some breeding programs have been successful in producing crop cultivars with 

satisfactory performance under water deficient conditions. Haley et al. (2007) developed 

the wheat variety “Ripper” that outperformed common varieties used in the non-irrigated 

Colorado (USA) region. A drought tolerant cultivar of maize was also developed by 

Badu-Apraku and Yallou (2009). On the other hand, yield improvements of Medicago 

sativa (alfalfa) through conventional breeding have been limited (Volenec et al., 2002). 

Between the 1950s and 1990s there was little yield increase as a result of breeding 

programs (Volenec et al., 2002). For this reason, there is great interest in developing 

molecular tools to improve alfalfa yield (Volenec et al., 2002).  

1.2 Plant response to drought 

When exposed to unfavourable conditions like drought, plants generally respond with two 

strategies: avoidance or acclimation (Lamaoui et al., 2018). The avoidance strategy 

involves whole plant morphological changes that minimize water loss (Lamaoui et al., 

2018). Remaining plant resources are shunted to important functions and consequently, 

changes to stomata and transpiration occur (Lamaoui et al., 2018; Schakel and Hall, 1979; 

Sicher et al., 2012). Drought conditions are often accompanied by decreased atmospheric 

humidity resulting in changes to leaf turgor and water potential (Lamaoui et al., 2018; 

Meyer and Boyer, 1972). In response to drought, plants reduce stomatal conductance by 

closing existing stomata (Lamaoui et al., 2018; Sicher et al., 2012). In this way, water loss 

as a result of transpiration is minimized and levels of photosynthesis fall (Lamaoui et al., 

2018; Sicher et al., 2012). The effects of water deficiency are also minimized by reducing 

the leaf surface (Schakel and Hall, 1979) and delaying leaf senescence (Rivero et al., 

2007).  

Plants also respond to drought by altering gene expression to counter water scarcity and 

provide tolerance in a process called acclimation (Huang et al., 2008). The plant 

hormone, abscisic acid (ABA), plays an important role in acclimation and can promote 

the closure of stomata, mitigating water loss from the plant (Bauer et al., 2013). ABA is 

first released in roots, caused by water-deficient soil (Zhang and Davies, 1989), and 

positively regulates root growth (Spollen et al., 2000). Enhanced levels of ABA reduce 
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the production of ethylene and, consequently, increases root growth to support the uptake 

of any remaining water in the soil (Spollen et al., 2000). ABA is carried by xylem to plant 

leaves to cause stomata closure and prevent water loss (Zhang and Davies, 1989). Further 

water loss from young leaves is prevented due to enhanced accumulation of ABA 

produced in mature leaves during wilting (Zhang and Davies, 1989). SNF1-RELATED 

PROTEIN KINASE 2 (SnRK2) protein family is responsible for the regulation of these 

ABA-dependent responses and insensitivity to ABA occurs if SnRK2 is knocked out 

(Umezawa et al., 2009). SnRK2 is under constant inactivation as a result of 

dephosphorylation by PROTEIN PHOSPHATASE TYPE 2C (PP2C) (Umezawa et al., 

2009). Activation of ABA-dependent responses occurs when REGULATORY 

COMPONENT OF ABA RECEPTOR 1 (RCAR) binds to PP2C (Ma et al., 2009) thereby 

releasing SnRK2 in the presence of ABA (Umezawa et al., 2009).  

Even though reactive oxygen species (ROS) are produced during normal aerobic 

metabolism, their levels increase significantly under stress and can be detrimental to 

proteins, lipids, and DNA (Apel and Hirt, 2004; Halliwell, 2006). ROS such as hydrogen 

peroxide, superoxide, and hydroxyl radicals can oxidize DNA bases causing DNA lesions 

(Dizdaroglu and Jaruga, 2012) or can oxidize cysteine residues causing inactivation of 

catalytic proteins like protein tyrosine phosphatases (Denu and Tanner, 1998). Vanacker 

et al. (2006) found that levels of hydrogen peroxide were correlated with levels of lipid 

peroxidation, the oxidation of lipids resulting in degradation. ROS are also capable of 

activating ROS sensors, oxidizing unrelated signaling pathways, and modifying 

transcription factors culminating in altered gene expression (Apel and Hirt, 2004; 

Choudhury et al., 2013; Desikan et al., 2001; Halliwell, 2006; Vranová et al., 2002). 

During abiotic stress, ROS production overwhelms cellular defenses to ROS that include 

antioxidant response (Apel and Hirt, 2004; Choudhury et al., 2013). Antioxidants are 

capable of converting ROS into more stable forms of oxygen and can operate through 

enzymatic or non-enzymatic mechanisms resulting in tolerance to oxidative and abiotic 

stresses (Sarker and Oba, 2018). Catalase is an example of an enzymatic ROS scavenger 

and catalyzes the conversion of hydrogen peroxide to water (Apel and Hirt, 2004; 

Choudhury et al., 2013). Non-enzymatic antioxidants include the ascorbate-glutathione 

cycle, flavonoids, alkaloids and carotenoids (Apel and Hirt, 2004). The ascorbate-
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glutathione cycle involves a number of dedicated reactions to detoxify hydrogen peroxide 

(Apel and Hirt, 2004; Choudhury et al., 2013). In some cases, the activity and expression 

of these antioxidants and genes related to their biosynthesis increases in response to 

abiotic stress (Kang et al., 2020; Rüegsegger et al., 1990; Sarker and Oba, 2018; Arshad 

et al., 2017a).  

1.3 Significance of alfalfa to society 

Alfalfa is a forage legume crop grown on 3.8 million hectares in Canada (Statistics 

Canada, 2016). Alfalfa popularity increased in North America once breeding programs 

included winter hardy alfalfa cultivars from Siberia (Russelle, 2001). Alfalfa is now 

considered to be the most important forage crop in Western Canada necessitating special 

attention and tracking of its yield in response to variations in water availability (Attram et 

al., 2016). 

The majority of alfalfa’s significance can be attributed to its nutritional value. Although 

the whole plant is harvested and used as fodder for ruminant animals, the highest 

nutritional value originates in alfalfa leaves (Radović et al., 2009; Marković et al., 2007). 

Alfalfa is high in soluble proteins but its nutritional value diminishes with maturity 

(Marković et al., 2007). In addition, due to the rapid release of soluble proteins, alfalfa 

forage can also lead to pasture bloat in ruminant animals (Wang et al., 2006). Soluble 

proteins that are in high abundance in alfalfa are released from plant cells mainly in the 

ruminant adding to its viscosity which is correlated with ruminant animal gas 

accumulation (Jonker et al., 2012). Bloat occurs as a consequence of foam, created by 

free protein degradation in the rumen, which prevents gases from escaping and organs are 

crushed as it expands, eventually leading to death (Mangan, 1959). Rumen is responsible 

for degrading cellulose and hemicellulose in ruminant animals making its presence 

necessary for plant digestion (Aerts et al., 1999; Leschine, 1995).  

Proanthocyanidins, if present, slow down the degradation of soluble proteins and 

therefore reduce bloat incidences from feed (Aerts et al., 1999; Jones and Mangan, 1977; 

Waghorn et al., 1987). Naturally occurring within legumes, proanthocyanidins, which are 

capable of binding to proteins in rumen, inhibit protein degradation (Jones and Mangan, 
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1977; Waghorn et al., 1987). The higher pH of the rumen allows for the association 

between proanthocyanidins and proteins which disassociate in the low pH of the small 

intestine to allow for proper protein digestion (Jones and Mangan, 1977). 

Proanthocyanidins share partial biosynthesis with other flavonoids such as anthocyanins 

that begin with the phenylpropanoid pathway (Aerts et al., 1999; Dixon et al., 2013). The 

last shared enzymatic step in the biosynthesis of proanthocyanidins and anthocyanins is 

the conversion of dihydrokaempferol to leucoanthocyanidins by DIHYDROFLAVONOL 

4-REDUCTASE (DFR) (Aerts et al., 1999; Dixon et al., 2013).     

In addition to its nutritional value, alfalfa has extensive root structures, which allow it to 

resist soil erosion that causes soil loss in agricultural fields (Radović et al., 2009). Also, 

like most legumes, alfalfa roots can form a symbiotic relationship with the Rhizobium 

family of bacteria (Jones et al., 2007). Rhizobia infect alfalfa roots and form nodules 

within which rhizobia are capable of fixing atmospheric nitrogen into a form that is 

usable by alfalfa and other plants (Jones et al., 2007). Through this process, alfalfa can 

meet 80% of its nitrogen requirements (Hardarson et al., 1988).  

Before the invention of the Haber-Bosch process and advent of synthesized nitrogen 

fertilization practices, legumes like alfalfa were used in rotation with other crops to 

replenish nitrogen levels in the soil (Bullock, 1992). Crop rotation, dedicating 20-50% of 

their available agricultural land to the growth of legumes that are incorporated back into 

the soil to benefit future crops, doesn’t provide enough nitrogen to solely support the 

world’s agriculture (Crews and Peoples, 2004). Nitrogen fertilizers have the capability of 

increasing crop yields (Seufert et al., 2012), but fertilizers containing ammonia directly 

acidify soils (Crews and Peoples, 2004). Soils with low pH can put plants at risk of metal 

toxicities, such as aluminum which is only phytotoxic when soil pH is low (Kochian, 

1995). Surrounding aquatic environments are also impacted by fertilizer runoff leading to 

eutrophication and contamination of fresh drinking water becoming a threat to human 

health (Weyer et al., 2001). To complicate matters, fertilizer use has been linked to the 

increased release of greenhouse gasses contributing to climate change (Ma et al., 2018; 

Syakila and Kroeze, 2011). Due to our dependence on fertilizers for agricultural 

production, agricultural land is the single greatest anthropogenic contributor to nitrous 
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oxide levels (Syakila and Kroeze, 2011). As such, utilizing alfalfa in crop rotation 

systems presents an environmentally sustainable alternative to nitrogen fertilizer use to 

improve soil quality (Ma et al., 2018). In addition, crop rotations have been shown to 

reduce insect pests, weeds, and plant diseases that plague continuous cropping systems 

(Felton et al., 1998; Liebman and Dyck, 1993; Tonhasca and Byrne, 1994). Legume-

based farming practices were also found to decrease nitrogen leaching from farmland 

thereby decreasing aquatic-based pollution from agricultural systems (Drinkwater et al., 

1998). It has also been suggested that the nitrogen sequestered by legumes is incorporated 

back into the soil slowly by decaying green manure, can resist the leaching that fertilizers 

are prone to and can potentially replace fertilizers as a source of nitrogen for subsequent 

crops (Diekmann et al., 1993). 

1.4 Application of miRNAs in plant biotechnology 

MicroRNAs (miRNA) were first discovered in Caenorhabditis elegans by Lee et al. 

(1993). The 21-22 nucleotide RNAs, lin-4 and let-7, were found to regulate C. elegans 

development at distinct stages and were therefore called small temporal RNA (stRNA) 

(Lee et al., 1993; Reinhart et al., 2000). Soon thereafter, additional small RNA molecules 

of similar sizes were discovered in C. elegans, Drosophila melanogaster, and humans 

(Lagos-Quintana et al., 2003; Lau et al., 2001; Lee and Ambros, 2001). These new small 

RNA molecules were similar in length but were not expressed at distinct temporal stages 

like stRNAs (Lagos-Quintana et al., 2003; Lau et al., 2001; Lee and Ambros, 2001; 

Reinhart et al., 2002). As such, the term miRNA was coined and used to refer to any 

small (~22 nucleotides) non-coding regulatory RNA molecule endogenous to the 

organism, even if its exact functions were unknown (Lagos-Quintana et al., 2003; Lau et 

al., 2001; Lee and Ambros, 2001; Reinhart et al., 2002).   

Much in the same way as short interfering RNAs (siRNA) involved in RNA interference 

(RNAi) (Hutvágner and Zamore, 2002), miRNAs are processed from larger precursor 

RNAs by the dsRNA endoribonuclease, Dicer (Bernstein et al., 2001). Precursor RNA 

must be between 30 and 500 nucleotides in length to be a functionally mature miRNA 

product (Elbashir et al., 2001). Mature miRNAs are generally 20-24 nucleotides in length 
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and maintain terminal phosphate and hydroxyl groups on the 5’ and 3’ ends, respectively 

(Elbashir et al., 2001). The smaller mature dsRNA product is processed with a 3’ two-

nucleotide overhang (Elbashir et al., 2001). This nucleotide overhang is important to 

miRNA function as demonstrated by Elbashir et al. (2001) who found that dsRNA with 

the two-nucleotide overhang had better efficiency than blunt end dsRNA. The processed 

dsRNAs are recruited by an RNA-induced silencing complex (RISC) but only the strand 

with the least stable 5’ end is kept to target complementary genes for cleavage, while the 

rejected strand with a more stable 5’ end is degraded (Elbashir et al., 2001, Khvorova et 

al., 2003).  

Ultimately, the function of miRNAs is to silence target genes at the posttranscriptional 

level. miRNAs achieve repression of their targets through either transcript cleavage, 

messenger RNA (mRNA) destabilization, or translational repression (Figure 1) (Cannell 

et al., 2008; Hutvágner and Zamore, 2002; Mathonnet et al., 2007; Olsen and Ambros, 

1999; Pillai et al., 2005; Wu et al., 2006). When perfect complementarity exists between 

the miRNA and its mRNA target, cleavage at the complementary site occurs similar to 

that of siRNAs (Hutvágner and Zamore, 2002). Destabilization of mRNA with imperfect 

complementarity to miRNAs occurs through deadenylation or trimming of the 3’ poly(A) 

tail (Wu et al., 2006). Translational repression can occur at or after translational initiation 

(Cannell et al., 2008; Mathonnet et al., 2007; Olsen and Ambros, 1999; Pillai et al., 

2005). miRNA inhibits translational initiation by interfering with the ability of 

ELONGATION INITIATION FACTOR 4E (eIF4E) to recognize the 7-methylguanylate 

cap of mRNAs (Mathonnet et al., 2007; Pillai et al., 2005). Olsen and Ambros (1999) also 

demonstrated that translation can be inhibited after initiation by miRNAs. In these 

experiments the researchers observed that while mRNA adenylation and association with 

polyribosomes was unaffected by miRNA, mRNA products were still downregulated 

(Olsen and Ambros, 1999). The miRNA-mediated repression of the mRNA product did 

however occur before production of the full protein and was a result of the dissociation of 

necessary translation proteins from the mRNA template (Petersen et al., 2006). Due to the 

requirement of near-perfect to perfect complementarity of miRNAs to their mRNA 

targets, plant miRNAs operate mainly through transcript cleavage (Rhoades et al., 2002).  
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Figure 1. Mechanisms of posttranscriptional repression by miRNAs  

Dicer creates short double stranded miRNA with two-nucleotide 3’ overhangs. miR156 

associates with RISC endonucleases resulting in the silencing of downstream 

complementary mRNA targets through cleavage, translational repression and mRNA 

instability. Figure adapted from Bartel and Bartel, 2003; Hutvágner and Zamore, 2002. 
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The search for Arabidopsis thaliana mRNAs with sequence complementary to miRNAs 

yielded, in most cases, targets that belonged to gene families encoding transcription 

factors acting in plant development (Rhoades et al., 2002). miR156 is no exception, as it 

has been implicated in plant development of many species including A. thaliana (Schwab 

et al., 2005; Wu and Poethig, 2006; Wu et al., 2009), Carica papaya (papaya) (Xu et al., 

2020), Solanum lycospersicon (tomato) (Salinas et al., 2012), Dendrobium catenatum 

(Zheng et al., 2019), Mangifera indica (mango), Persea Americana (avocado), 

Macadamia integrifolia (macadamia) (Ahsan et al., 2019) and Medicago sativa (alfalfa) 

(Aung et al., 2015).  

Wu et al. (2009) demonstrated that miR156 is an essential regulator of development in 

A. thaliana and is sufficient to control phase change from the vegetative non-flowering 

state to the adult reproductive phase. Overexpression (OE) of miR156 in A. thaliana 

resulted in plants with smaller leaves without abaxial trichomes characteristic of juvenile 

leaves (Wu and Poethig, 2006; Wu et al., 2009). OE in A. thaliana also delayed flowering 

(Schwab et al., 2005; Wu and Poethig, 2006) and decreased apical dominance (Schwab et 

al., 2005) while the extended juvenile phase of mango, avocado and macadamia plants is 

at least partly due to enhanced miR156 expression (Ahsan et al., 2019). In fruiting trees 

such as papaya, miR156 expression is reduced during fruit development (Xu et al., 2020).  

It has been proposed that since miRNAs, specifically miR156, are heavily involved in 

development, it could be utilized as a molecular tool to improve economically important 

plant species like alfalfa (Aung et al., 2015). In alfalfa, miR156 functions in much the 

same capacity as in other species in that it regulates plant development, specifically, the 

transition from vegetative to reproductive phase (Aung et al., 2015). Similar to A. 

thaliana (Schwab et al., 2005; Wu and Poethig, 2006), miR156 OE in alfalfa resulted in 

plants with delayed flowering (Aung et al., 2015). In addition, miR156 OE resulted in 

alfalfa with thinner stems, shorter plant height, and reduced internode length, all 

characteristics of juvenile plants (Aung et al., 2015). Especially significant to crop 

improvement, miR156 OE in alfalfa resulted in plants with enhanced branching, number 

of nodes, and root length culminating in an overall increase in biomass yield (Aung et al., 

2015). Similarities between alfalfa (Aung et al., 2015) and A. thaliana (Schwab et al.,
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2005; Wu and Poethig, 2006; Wu et al., 2009) plants overexpressing miR156 further 

support a conclusion made by Rhoades et al. (2002) that miRNAs and their targets are 

conserved in flowering plants.  

Regulation of plant development is not the only function of miRNAs; they have also been 

implicated in the response to various abiotic environmental stresses including salinity, 

drought, hypoxia and UV-B radiation (Rajwanshi et al., 2014). In Glycine soja (wild 

soybean), miR156 negatively regulates responses to aluminum toxicity (Zeng et al., 

2012), while miR156 in alfalfa positively regulates responses to salinity (Arshad et al., 

2017b) and heat stress (Matthews et al., 2019). In addition, miR156 was upregulated in 

response to both salinity and water-deficient conditions in Panicum virgatum 

(switchgrass) (Sun et al., 2012), A. thaliana (Cui et al., 2014), and Brassica juncea 

(brown seeded mustard) (Bhardwaj et al., 2014). A. thaliana plants overexpressing 

miR156 were able to survive drought and salt treatments that killed control plants and 

plants with reduced miR156 (Cui et al., 2014). Similarly, introducing constitutive 

expression of Zea mays (maize) miR156 to Nicotiana tabacum (tobacco) resulted in 

seedlings and mature plants with greater tolerance to drought and salinity conditions 

(Kang et al., 2020). miR156 OE also enhanced tolerance to drought in alfalfa (Arshad et 

al., 2017a). Alfalfa with miR156 OE had better root growth resulting in reduced shoot 

water loss, enhanced biomass yield, and better recovery from drought exposure than 

control empty vector (EV) plants (Arshad et al., 2017a). Feyissa et al. (2019) confirmed 

miR156 regulation of alfalfa plant water status by observing increased root length and 

biomass in miR156 OE alfalfa plants that resulted in enhanced leaf water potential. 

Enhanced stomatal conductance and increased accumulation of antioxidants were also 

observed, culminating in miR156 OE alfalfa plants that were able to survive drought 

better than EV plants demonstrating the usefulness of miR156 as a tool for alfalfa 

improvement (Arshad et al., 2017a).  

1.5 SPLs as downstream targets of miRNA 

Individual miRNAs often have multiple mRNA targets – usually belonging to the same 

gene family – and target domains that are weakly conserved in the encoded proteins 
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(Rhoades et al., 2002). Proteins belonging to the SQUAMOSA PROMOTER BINDING 

PROTEIN LIKE (SPL) family contain a Squamosa Promoter Binding Protein (SBP) 

domain of approximately 76 amino acids with an acidic N-terminus, a zinc-finger-like 

domain, and a nuclear localization signal (NLS) (Klein et al., 1996; Yamasaki et al, 

2004). The SBP domain is required for SPL proteins to bind and regulate downstream 

genes having promoters with the consensus TNCGTACAA sequence (Cardon et al., 

1999). As a result of their regulatory nature, and since abundance of miRNAs decreases 

over the lifetime of the plant, the expression of the miR156-targeted SPLs increases 

(Ahsan et al., 2019; Wu and Poethig, 2006, Wu et al., 2009, Xu et al., 2020, Zheng et al., 

2019). The expression of some SPLs can even be undetectable at early stages of 

development when miRNA expression is highest (Wu and Poethig, 2006). At later stages 

of development, such as ripening in fruiting plants, SPL expression increases (Salinas et 

al., 2012; Xu et al., 2020). In alfalfa, at least seven SPLs, namely MsSPL2, MsSPL3, 

MsSPL4, MsSPL6, MsSPL9, MsSPL12, and MsSPL13, are targeted for transcript cleavage 

by miR156 (Aung et al., 2015; Gao et al., 2016). 

Extensive characterization of the function of the miR156/SPL gene regulatory network 

has been conducted in many plant species (Figure 2), but there is variation in the number 

of SPLs with miR156 complementarity. There are 17 SPLs in A. thaliana, 11 of which are 

silenced by miR156 (Addo-Quaye, 2008; Cardon et al., 1999; Guo et al., 2008; Shikata et 

al., 2009; Wang and Wang, 2015; Wu and Poethig, 2006). In papaya and tomato, seven of 

14 (Xu et al., 2020) and ten of 16 (Salinas et al., 2012) SPLs have miR156 

complementarity, respectively. SPL genes in land plants have evolved from common 

ancestors and those with miR156 complementarity can be grouped into four phylogenetic 

clades in A. thaliana based on the amino acid sequences of their SBP domains: 

AtSPL6/13/17, AtSPL9/15, AtSPL2/10/11, and AtSPL3/4/5 (Guo et al., 2008). A 

phylogenic comparison of these SPLs revealed that homologous SPLs in alfalfa can also 

be grouped into the same clades, and have high nucleotide and amino acid sequence 

complementarity to that of AtSPLs (Gao et al., 2016). Wu et al. (2009) speculated that 

single loss of function spl mutant plants did not show strong changes in phenotype due to 

redundancy in function within the SPL clades. In general, spl mutants from the same 

clade have similar phenotypes and deviated from wild type (WT) control plants in similar  
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Figure 2. Overview of miR156-mediated regulation of plant development and stress 

tolerance 

SPLs have miR156 complementary regions, and through their regulation miR156 controls 

the transcription of downstream genes resulting in changes to abiotic stress tolerance and 

developmental traits (Arshad et al., 2017a; Bao et al., 2019; Cui et al., 2014; Feyissa et 

al., 2019; Kang et al., 2020; Li et al., 2019; Schwarz et al., 2008; Shikata et al., 2009; Wu 

and Poethig, 2006; Yu et al., 2015; Zheng et al., 2019). 
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traits, supporting redundancy in SPL functions (Shikata et al., 2009; Wu and Poethig, 

2006). A. thaliana plants overexpressing SPL3, SPL4, and SPL5 showed early flowering 

and enhanced adult phenotype (Wu and Poethig, 2006). Early flowering and enhanced 

adult phenotypes are opposite to those observed for miR156 OE in the same study, which 

is consistent with the fact that miR156 silences expression of specific SPLs (Wu and 

Poethig, 2006). However, DcSPL3 is the only SPL implicated in flowering in 

D. catenatum, a species of orchid (Zheng et al., 2019). A temporal expression analysis of 

D. catenatum revealed that only DcSPL3 was upregulated in mature leaves and stems 

(Zheng et al., 2019). In the AtSPL2/10/11 clade, these SPLs impact shoot development 

specifically reducing cauline leaf width and trichome abundance (Shikata et al., 2009). 

Although AtSPL2, AtSPL10 and AtSPL11 operate redundantly, knocking down SPL10 

alone resulted in plants with altered leaves but trichome abundance was not effected to 

the same extent as double mutants (Shikata et al., 2009). Much like the redundancy 

observed in AtSPL2/10/11 (Shikata et al., 2009) and AtSPL3/4/5 (Wu and Poethig, 2006), 

Schwarz et al. (2008) observed redundancy between AtSPL9 and AtSPL15, with the two 

proteins having 75% similarity in their amino acid sequences. The expression of both 

SPL9 and SPL15 increased over time, much like the temporal regulation of other SPLs, 

but SPL9 expression was higher than that of SPL15 (Schwarz et al., 2008). SPL9 and 

SPL15 single knock-out mutants as well as a double spl9/spl15 mutant were developed 

and it was observed that while the single mutants displayed changes in shoot 

development, flowering time, and juvenile character, some changes were more extreme in 

the double mutants (Schwarz et al., 2008). The spl9/spl15 double mutants also had more 

lateral root development than the respective single mutants (Yu et al., 2015). Therefore, it 

was concluded that SPL9 and SPL15 have redundant functions in regulating vegetative 

phase transition, the transition from the juvenile to adult phase, in addition to lateral root 

development in A. thaliana (Schwarz et al., 2008; Yu et al., 2015). The involvement of 

SPL9 in the miR156-mediated regulation of phase transition is not observed in all species 

(Ahsan et al., 2019). For example, Ahsan et al. (2019) found that SPL9 expression did not 

increase with maturity in mango, avocado or macadamia plants.   

In addition to affecting vegetative phase transition, SPL9 also plays other roles within 

plants. SPL9 was found to negatively regulate primary root length and lateral root 
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development in A. thaliana (Yu et al., 2015). In addition, mutated SPL9 in Glycine max 

(soybean) resulted in plants with enhanced branching as well as increased node number 

and dry weight (Bao et al., 2019). Li et al. (2019) demonstrated that miR156 

downregulates SPL9 to control surface stem and leaf wax synthesis. OE of miR156 and 

reduction of SPL9 resulted in decreased total wax content in stems while reduction in 

miR156 availability and overexpression of SPL9 resulted in increased total wax content in 

stems and leaves with a higher density of epicuticular wax in A. thaliana (Li et al., 2019).  

Lastly, SPL9 is also implicated in miR156-mediated abiotic stress tolerance. For example, 

SPL9 is downregulated in response to salinity and drought stress in N. tabacum (Kang et 

al., 2020). Additionally, mutant A. thaliana plants in which SPL9 was made insensitive to 

miR156-mediated regulation were found to be sensitive to drought and salinity stress (Cui 

et al., 2014). The negative regulation of abiotic stress tolerance by SPL9 was attributed to 

its negative regulation of anthocyanin biosynthesis through interaction with the 

transcription activating complex of DFR (Cui et al., 2014).   

In comparison to the model organism A. thaliana, minimal investigation of SPL function 

has been performed in alfalfa. Specifically, MsSPL8 has been investigated for its role in 

shoot branching (Gou et al., 2018). Down-regulating SPL8 in transgenic alfalfa plants 

resulted in increased branching and consequently enhanced biomass yield (Gou et al., 

2018). In addition to vegetative development, drought tolerance related studies have also 

been investigated in alfalfa (Arshad et al., 2017a; Feyissa et al., 2019; Gou et al., 2018). 

Both MsSPL8 and MsSPL13 are involved in alfalfa drought response and down-

regulating MsSPL8 or MsSPL13 resulted in alfalfa that were less susceptible to drought 

(Arshad et al., 2017a; Feyissa et al., 2019; Gou et al., 2018).  

1.6 Impact of the miR156-SPL9-DFR pathway on anthocyanin 

biosynthesis 

Anthocyanins are responsible for the red pigment observed in some plant tissues 

(Nakatsuka et al., 2007). While originally thought to serve as a visible deterrent to 

herbaceous insects, contradictory results from different studies have decreased confidence 
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in this theory (Coley and Aide, 1989; Costa-Arbulú et al., 2001; Schaefer and 

Rolshausen, 2006). Instead, Schaefer and Rolshausen (2006) coined the “defence 

indication hypothesis” that states that anthocyanin content correlates with the biosynthesis 

of compounds with known anti-insect functions, thereby decreasing the number of insects 

that would utilize plants displaying anthocyanins. While the possibility that anthocyanins 

can deter herbivorous insects is disputed, it is commonly accepted that anthocyanins are 

produced in response to abiotic stress (Chalker-Scott, 1999; Schaefer and Rolshausen, 

2006). Their antioxidant ability to scavenge ROS has been demonstrated with many 

different anthocyanin compounds (Azuma et al., 2008; Kähkönen and Heinonen, 2003) 

that is impacted by the position of hydroxyl and methoxy substituents (Ali et al., 2016; 

Rice-Evans et al., 1996).  

As part of the phenylpropanoid pathway anthocyanin biosynthesis is tightly regulated 

(Chaves-Silva et al., 2018), in part through control of DFR transcription (Gonzalez et al., 

2008; Gou et al., 2011). DFR is transcribed when activated by the binding of the DFR 

transcription activation complex to its promoter region (Gou et al., 2011). The DFR 

transcription activation complex is made of a ternary complex of proteins containing 

members of the MYB protein family, basic helix-loop-helix (bHLH) factors, and 

TRANSPARENT TESTA GLABRA1 (TTG1), a WD40 repeat-containing protein 

(Gonzalez et al., 2008; Gou et al., 2011). SPL9 can compete with TRANSPARENT 

TESTA8 (TT8), a bHLH protein, for binding to PRODUCTION OF ANTHOCYANIN 

PIGMENT1 (PAP1) to prevent the assembly of the complex and subsequent DFR 

transcription and biosynthesis of anthocyanins (Figure 3) (Gou et al., 2011). Although 

the regulation of anthocyanin biosynthesis was confirmed in A. thaliana, Feyissa et al. 

(2019) also observed an increase in anthocyanin pigments in alfalfa with miR156 OE 

confirming a similar interaction is present. In addition, Gupta et al. (2019) speculated that 

miR156 in soybean targets SPL9 to control anthocyanin biosynthesis through related 

biosynthesis genes such as DFR. 
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Figure 3. SPL9 interrupts the DFR transcription activating complex to regulate 

anthocyanin biosynthesis. 

 A. In the presence of PAP1, TT8, and TTG1, DFR transcription is initiated. DFR is an 

enzyme involved in the biosynthesis of anthocyanins therefore the DFR transcription 

activating complex regulates anthocyanin production. B. SPL9 competes with TT8 for 

binding to PAP1 thus interrupting the transcription activating complex and decreasing 

anthocyanin biosynthesis. Adapted from Gou et al. (2011). 
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1.7 Molecular tools for gene characterization 

Both RNAi and clustered regularly interspaced short palindromic repeats (CRISPR)/ 

Streptococcus pyogenes CRISPR associated proteins (Cas) have been used by scientists to 

knock-out or knock-down genes to elucidate function (Arshad et al., 2017a; Bao et al., 

2019; Feyissa et al., 2019). While arguments have been made regarding which method is 

superior, they can be complementary to each other for a more complete characterization 

of gene function and for biotechnological applications (Taylor and Woodcock, 2015).  

RNAi utilizes mechanisms analogous to that of miRNAs to knock-down transcripts for 

genes of interest for characterization using siRNA (Bartel and Bartel, 2003). Delineation 

between RNAi and miRNA is fine, as such, past literature has used the terms almost 

interchangeably (Llave et al., 2002; Reinhart et al., 2002). Nevertheless, some differences 

exist between miRNAs and siRNA that allow for miRNA to be distinguished for 

annotation (Ambros et al., 2003). First, miRNAs are encoded by endogenous genes in 

different loci than the targets they regulate, whereas siRNAs originate from the targets 

they regulate (Bartel and Bartel, 2003). siRNAs are also processed from larger RNA 

duplexes whereas miRNAs are generally a result of the processing of RNA hairpins 

(Bartel and Bartel, 2003). Lastly, miRNAs are more highly conserved between organisms 

than siRNAs (Bartel and Bartel, 2003). As a result of their similarities to miRNAs, 

siRNAs can be used to regulate the expression of desired genes with some specificity 

(Karimi et al., 2007).  

CRISPR and Cas proteins can be employed to knock-out genes by introducing repair 

mutations into a genome from double-stranded breaks (DSB) (Cong et al., 2013; Feng et 

al., 2013; Nekrasov et al., 2013; Shan et al., 2013; Xie and Yang, 2013; Zhang et al., 

2017). Cas9 is a nuclease owing its specificity to the complementarity between a single 

guide RNA molecule (sgRNA) and its target, directly adjacent to protospacer-adjacent 

motifs (PAM) (Cong et al., 2013; Feng et al., 2013; Nekrasov et al., 2013; Shan et al., 

2013; Xie and Yang, 2013; Zhang et al., 2017). Mutations are introduced through non-

homologous end joining (NHEJ), or homology-directed repair (HR) at the site of the DSB 

(Shan et al., 2013; Xie and Yang, 2013, Zhang et al., 2017). Unlike previously popular 
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DSB exploiting techniques, to change the target of Cas9, only the identity of the sgRNA 

is altered, negating protein reprograming (Nekrasov et al., 2013; Shan et al., 2013; Xie 

and Yang, 2013; Zhang et al., 2017). When designing sgRNAs, structural parameters 

must be considered. These include, but are not limited to, off target complementarity, GC 

content, and secondary structure (Doench et al., 2014; Doench et al., 2016; Hsu et al., 

2013; Hua Fu et al., 2014; Liang et al., 2016; Ma et al., 2015). 

1.8 Proposed research 

The use of molecular tools to improve yields are essential for crops like alfalfa, which 

have seen little recent improvements through traditional breeding programs (Volenec et 

al., 2002). miR156 is a potential molecular tool to improve alfalfa yield due to its ability 

to regulate plant development (Aung et al., 2015). For example, OE of miR156 results in 

plants with increased biomass (Aung et al., 2015). Like other miRNAs, miR156 imparts 

its developmental control by reducing the expression of its complementary target genes 

(Gao et al., 2016). One such target, SPL9, has also been shown to control developmental 

traits in A. thaliana (Schwarz et al., 2008; Yu et al., 2015). Therefore, this study 

investigates the potential role of SPL9 in miR156-mediated alfalfa development through 

altering SPL9 expression and evaluating changes in phenotypic character relative to WT 

plants at multiple points in development.  

In alfalfa, OE of miR156 not only alters traits related to development (Aung et al., 2015), 

but also enhances tolerance to drought stress (Arshad et al., 2017a; Feyissa et al., 2019). 

Investigating traits related to drought stress in transgenic alfalfa with altered levels of 

SPL9 could thus illuminate its involvement in miR156-mediated drought tolerance. 

Therefore, in this study, SPL9-RNAi alfalfa is compared to WT in its ability to grow, its 

plant water status, and its ROS scavenging capabilities in response to drought stress. The 

possibility that drought tolerance is impacted by reduced anthocyanin biosynthesis (via 

SPL9-mediated prevention of DFR transcription) is also examined by monitoring 

anthocyanin content and the transcription of DFR in SPL9-RNAi and WT alfalfa in 

response to drought. Determining the role, if any, of SPL9 in drought response will 
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further illustrate the mechanism by which miR156 achieves enhanced drought tolerance 

in alfalfa. 

1.9 Hypothesis and objectives of proposed research 

Rhoades et al. (2002) found that miRNA complementary target sites in protein families 

are conserved across flowering plants. It is thus unsurprising that Gao et al. (2016) 

demonstrated that miR156 OE results in SPL9 downregulation in alfalfa due to miR156 

complementarity. Therefore, the hypothesis that miR156-mediated traits are achieved by 

targeting SPL9 in alfalfa was investigated.   

Arshad et al. (2017a) and Feyissa et al. (2019) demonstrated that alfalfa plants with 

miR156 OE were more tolerant to drought than control plants and furthermore, that 

SPL13 was targeted by miR156 to regulate some of the drought tolerance traits in these 

plants. However, all of the drought tolerance characters of the miR156 OE alfalfa were 

not accounted for in plants with altered expression of SPL13 (Arshad et al., 2017a; 

Feyissa et al., 2019). Due to the involvement of SPL9 in the inhibition of DFR expression 

by disrupting its transcription activating complex (Gou et al., 2011), Cui et al. (2014) 

found that, in A. thaliana, SPL9 is silenced by miR156 to induce anthocyanin 

biosynthesis and promote drought stress tolerance. A similar mechanism of tolerance 

could be present in alfalfa and therefore, the second hypothesis of this study is that the 

miR156-SPL9-DFR pathway mediates the regulation of anthocyanin biosynthesis, 

thereby influencing drought stress tolerance in alfalfa.  

The objectives of this study were as follows: 

1. To develop transgenic alfalfa maintaining OE of SPL9 impervious to miR156 

(SPL9m-OE), RNAi mediated SPL9 knock down alfalfa and CRISPR/Cas9-

mediated SPL9 silenced (SPL9-CRISPR) alfalfa.  

2. To evaluate phenotypic and stress response traits in SPL9 transgenic alfalfa. 

3. To investigate the role of the miR156-SPL9-DFR pathway in drought tolerance. 
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In this way, insight into the role of SPL9 in plant development and drought tolerance, as 

well as a foundation for the future development of novel molecular strategies that might 

be used to influence drought tolerance in alfalfa, is provided.  
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Chapter 2  

2 Materials and Methods 

2.1 Alfalfa propagation and growth conditions 

Alfalfa (Medicago sativa L.) N.4.2.2 clone (Badhan et al., 2014) was used as the source 

of all plant material. Alfalfa plants were maintained under greenhouse conditions (16-

hour light/8-hour dark, 56% relative humidity, 23°C) for the duration of the experiments. 

Genotypes were propagated using stem cuttings of at least two nodes that were grown in 

Oasis Rootcubes
®
 (Oasis Growing Solutions, Kent, OH) for four weeks. Rooted cuttings 

were then transferred to BX Mycorrhizae (PRO-MIX
®
, Smithers-Oasis North America, 

Kent, OH) soil and allowed to grow for at least five weeks in 15.24 cm pots before being 

used in characterization and drought stress experiments. Stock plants and those maturing 

for experimental use were watered twice per week.  

2.2 Generation of SPL9 transgenic alfalfa plants 

2.2.1 SPL9-RNAi 

A construct for the RNAi-mediated silencing of SPL9 (SPL9-RNAi) was made previously 

in the Hannoufa lab by Banyar Aung (Aung, 2014) and subsequently used in 

Agrobacterium-mediated alfalfa transformation by Qing Shi Mimmie Lu. A 300 bp 

fragment of Medicago sativa was amplified using primers SPL9-RNAi-F and SPL9-

RNAi-R (Appendix A), which were specific to the SPL9 protein coding sequence 

(Appendix B). This blunt-end fragment was cloned into the vector pENTR (Invitrogen, 

Carlsbad, CA) using the pENTR/D-TOPO Cloning Kit (Invitrogen). The vector was 

transferred to Escherichia coli (TOP10) (Thermo Fisher Scientific, Waltham, MA) by 

heat shock (Froger and Hall, 2007) and positive transformants were selected by growth on 

50 µg mL
-1

 kanamycin Luria-Bertani (LB) media (5 g L
-1

 yeast extract, 10 g L
-1

 NaCl, 

10 g L
-1

 Bacto-tryptone, 15 g L
-1

 bacterial agar). Plasmid DNA was extracted from 

individual colonies using the GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific) 
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and the presence of the correct insert was confirmed by Sanger sequencing. 

Transformants containing the MsSPL9 insert with no sequence errors were used in an LR 

reaction according to the Gateway LR Clonase II Enzyme Mix protocol (Invitrogen) with 

pHELLSGATE12 (Helliwell and Waterhouse, 2003) as the destination vector. Positive 

transformants were again selected on 50 µg mL
-1

 kanamycin LB plates isolated using the 

GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific) and plasmid DNA was 

analyzed by Sanger sequencing. pHELLSGATE12:MsSPL9 vector was then transferred 

to Agrobacterium tumefaciens (GV3101) (Holsters et al., 1980) by heat shock (Höfgen 

and Willmitzer, 1988) and the resulting strain was used in the transformation of alfalfa 

N.4.4.2 germplasm (Badhan et al., 2014). 

2.2.2 SPL9m-OE 

The M. sativa SPL9 (MsSPL9) protein coding region was synthesized by Bio Basic Inc. 

with seven point mutations within the miR156 complementary region (MsSPL9m) 

(Figure 4). Each mutation changes a single nucleotide, conserving the MsSPL9 amino 

acid sequence, while introducing mismatches to the miR156 complementary region to 

prevent complementary binding and subsequent cleavage. Schwab et al. (2005) 

determined that endogenous miRNAs can tolerate up to five mismatches before 

preventing cleavage of its target. Seven mismatches were chosen in the MsSPL9m 

construct to guarantee inhibition of miR156 function. The restriction digestion sites, AscI 

and PacI, were also synthesized flanking the MsSPL9m sequence for ease of cloning. The 

MsSPL9m sequence was cloned into pMDC32 (Curtis and Grossniklaus, 2003), a vector 

containing the cauliflower mosaic virus (CaMV) 35S promoter, using T4 DNA ligase 

(Invitrogen). Positive transformants were selected on 50 µg mL
-1

 kanamycin LB plates 

and plasmid DNA was extracted and analyzed by Sanger sequencing to validate the 

sequence. Plasmid DNA was transferred to Agrobacterium tumefaciens (EHA 105) (Hood 

et al., 1993) by heat shock (Höfgen and Willmitzer, 1988) and the resulting strain was 

used to transform alfalfa N.4.4.2 germplasm (Badhan et al., 2014). 
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Figure 4. Mutations introduced to SPL9 to prevent miR156 complementarity 

Seven point mutations (red) were introduced to the SPL9 coding sequence within the 

region complementary to miR156 to produce SPL9m. Each point mutation chosen 

conserves the SPL9 amino acid sequence. Asterisks indicates mismatches between 

miR156 and the mRNA sequence. 
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2.2.3 SPL9-CRISPR 

The sgRNA, a 20 nt sequence that flanks a PAM sequence, was designed using the online 

tool CRISPR-P 2.0 (Liu et al., 2017). To narrow down the list of potential sgRNAs, 

guides found outside the Medicago truncatula SPL9 sequence or located within MtSPL9 

introns were eliminated. To be chosen, the sgRNA had to have a maximized ON-target 

score (Doench et al., 2014), a minimized OFF-target score (Doench et al., 2016; Hsu et 

al., 2013), a minimized number of OFF-targets, and GC content between 30-80% 

(Doench et al., 2014; Liang et al., 2016). When considering its secondary structure, the 

chosen sgRNA also had to have less than seven consecutive base pairs with the scaffold 

sequence, less than 12 total base pairs with the scaffold sequence, less than six internal 

base pairs, a repeat and anti-repeat region (RAR), a stem loop 2, and a stem loop 3 (Liang 

et al., 2016). Only one guide met the aforementioned criteria (Appendix B). The chosen 

sgRNA was synthesized by Bio Basic Inc. with a Medicago truncatula U6 promoter 

(MtU6). The MtU6:sgRNA insert was amplified by PCR using the primers MtU6-F and 

Scaffold-R (Appendix A). Amplified MtU6:sgRNA insert was cloned into pFGC5491-

Cas9 (Meng et al., 2017) according to the In-Fusion Cloning (Takara Bio Inc., Shinga, 

Japan) protocol. The vector was transferred to E. coli (TOP10) (Thermo Fisher Scientific) 

by heat shock (Froger and Hall, 2007) and the presence of the insert was confirmed by 

Sanger sequencing of plasmid DNA. Plasmid DNA was then transferred to A. tumefaciens 

(EHA 105) (Hood et al., 1993) by heat shock (Höfgen and Willmitzer, 1988) and the 

resulting strain was used in the transformation of alfalfa N.4.4.2 germplasm (Badhan et 

al., 2014). 

2.2.4 Transformation of Agrobacterium tumefaciens 

Plasmids extracted from E. coli and whose sequences were validated by Sanger 

sequencing, were transferred to A. tumefaciens (EHA 105) (Hood et al., 1993) by heat 

shock according to Höfgen and Willmitzer (1988). A total of 200 ng of plasmid was 

added to thawed A. tumefaciens and kept on ice for 5 min. The bacterial mix was 

transferred to liquid nitrogen for 5 min and incubated at 37°C for 5 min. Cells were then 

incubated at 28°C for 2 hrs with shaking at 200 rpm. The supernatant was removed after 
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cells were spun down for 2 min at 6300 RCF. Cells were resuspended in LB and plated 

onto LB-agar medium containing 50 µg mL
-1

 of rifampicin and vector-specific selection. 

2.2.5 Agrobacterium tumefaciens-mediated alfalfa transformation 

Alfalfa transformation by A. tumefaciens (EHA105) (Hood et al., 1993) was performed 

using a modified protocol from Tian et al. (2002). Tissue culture material was allowed to 

grow at 26°C under a 16 hr/8hr light/dark schedule for all stages. Using M. sativa N4.2.2 

(Badhan et al., 2014) as germplasm, transformation progressed in seven stages: 

preculture, co-cultivation, callus induction, callus selection, embryo induction, embryo 

germination, and plant development.  

The preculture stage consisted of growing the A. tumefaciens culture and preparing the 

germplasm for the co-cultivation stage. A 5 mL starter culture of A. tumefaciens 

containing the construct of interest was grown for one day before being added to 100 mL 

LB containing 20 µM acetosyringone. Both the starter and larger cultures were grown at 

28°C with shaking at 200 rpm. Simultaneously, approximately 0.8 cm fragments of 

alfalfa leaves and petioles were incubated for two days in Basal SH2K media (3.2 g L
-1

 

Schenk and Hildebrandt Basal Salt Mixture [Sigma-Aldrich, Oakville, Canada], 

0.5 mg L
-1

 nicotinic acid, 0.05 mg L
-1

 [B6] pyridoxine HCl, 0.5 mg L
-1

 [B1] thiamine HCl, 

20 mg L
-1

 myo-inositol, 4.35 g L
-1

 K2SO4, 0.288 g L
-1

 proline, 3% w/v sucrose, 2.14 µM 

kinetin, 18.12 µM 2,4-dichlorophenoxyacetic acid, 8 g L
-1

 plant tissue culture [TC] agar, 

and 53 mg L
-1

 thioproline).  

The co-cultivation stage followed in which explant fragments were soaked in the 

A. tumefaciens culture for 10 min, blot dried on sterile filter paper, placed on Basal SH2K 

media supplemented with 20 µM acetosyringone, and incubated for five days in the dark. 

After rinsing in Basal SH2K media, the tissue was transferred to Basal SH2K media 

supplemented with 300 mg L
-1

 timentin to induce callus formation for two weeks. 

Positive calli were selected by transferring calli to Basal SH2K media supplemented with 

300 mg L
-1

 timentin and antibiotics specific to the construct being selected; 50 µg mL
-1

 

hygromycin B, 10 µg mL
-1

 glufosinate ammonium, and 50 µg mL
-1

 kanamycin were used 

to select for SPL9m-OE, SPL9-CRISPR, and SPL9-RNAi, respectively. After 10 days, 
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calli were transferred to Basal SH2K media supplemented with 300 mg L
-1

 timentin and 

increased concentrations of antibiotics specific to the construct being selected for one 

week; 75 µg mL
-1

 hygromycin B, 15 µg mL
-1

 glufosinate ammonium, and 75 µg mL
-1

 

kanamycin to select for SPL9m-OE, SPL9-CRISPR, and SPL9-RNAi, respectively.  

Embryo induction was then initiated by transferring calli to embryo induction media 

(3.5 mg L
-1

 MgSO4•7H2O, 0.44 mg L
-1

 MnSO4•H2O, 34.7 mg L
-1

 Ca(NO3)2•4H2O, 

100 mg L
-1

 NH4NO3, 100 mg L
-1

 KNO3, 30 mg L
-1

 KH2PO4, 6.5 mg L
-1

 KCl, 0.16 mg L
-1

 

H3BO3, 0.15 mg L
-1

 ZnSO4•7H2O, 0.08 mg L
-1

 KI, 0.36 mg L
-1

 Fe(III) 

ethylenediaminetetraacetic acid [EDTA], 0.05 mg L
-1

 nicotinic acid, 0.01 mg L
-1 

[B6] 

pyridoxine HCl, 0.01 mg L
-1

 [B1] thiamine HCl, 0.2 mg L
-1

 glycine, 10 mg L
-1

 

myo-inositol, 2 g L
-1 

yeast extract, 3% w/v sucrose, 8 g L
-1

 plant TC agar, 300 mg L
-1

 

timentin, pH 5.8) and transferring to fresh media every two weeks. The same 

concentration of antibiotics used in the second callus selection phase was also used in the 

embryo induction media. 

Elongated embryos were kept for the embryo germination stage. Embryos were 

transferred to embryo germination media (2.165 g L
-1

 Murashige and Skoog [MS] Basal 

Salt Medium [Sigma-Aldrich], 0.05 mg L
-1

 nicotinic acid, 0.05 mg L
-1

 [B6] pyridoxine 

HCl, 0.1 mg L
-1

 [B1] thiamine HCl, 20 mg L
-1

 myo-inositol, 1 mg L
-1

 glycine, 3% w/v 

sucrose, 8 g L
-1

 plant TC agar, 300 mg L
-1

 timentin, 75 µg mL
-1

 hygromycin B, pH 5.8) 

and kept on this media until a well-formed cotyledon was observed. The same 

concentration of antibiotics used in the second callus selection phase was also used in the 

embryo germination media. The media was renewed every two weeks 

Germinated embryos were transferred to embryo germination media supplemented with 

an additional 2.165 g L
-1

 of MS Basal Salt Medium (Sigma-Aldrich) for rooting. 

Generally, it took 4-6 weeks for roots to form in the germination media. Once formed, 

excess media was rinsed from rooted plants, which were then transferred to BX 

Mycorrhizae (PRO-MIX
®
, Smithers-Oasis North America) soil in 10.16 cm pots and 

placed in the greenhouse (16-hour light/8-hour dark, 56 relative humidity, 23°C). For the 

first week after transfer, a small jar covered the plant to increase the humidity around the 

plant. The jar was gradually lifted as the week progressed. After one month, plants were 
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transferred to 22.86 cm pots and could be used to propagate alfalfa for experiments. To 

identify potential SPL9-RNAi and SPL9m-OE plants, qRT-PCR was performed and SPL9 

transcript levels of potential transgenic alfalfa and WT plants were compared. The 

presence of the MtU6 promoter and SpCas9 genes was assessed by PCR of genomic DNA 

(gDNA) to identify potential SPL9-CRISPR plants.  

2.3 cDNA synthesis and qRT-PCR analysis 

To extract RNA from alfalfa, 100 mg of alfalfa tissue was ground with a mortar and 

pestle in liquid nitrogen. The tissue was transferred to a Precellys Lysing Kit (Bertin 

Instruments, France) beaded 2 mL tube and 450 μL buffer RLC with 1% 2-

mercaptoethanol from the RNeasy Plant Mini-prep kit (Qiagen, Hilden, Germany) was 

added. Tissue was then homogenized using a PowerLyzer™ (MoBio Laboratories Inc., 

Carlsbad, CA) for 30 seconds at 1890 RCF. RNA was extracted from the resulting lysate 

according to the RNeasy Plant Mini-prep kit manual. Any residual DNA was removed 

from each sample using the TURBO DNA-free kit (Invitrogen). A total of 0.5 μg of RNA 

was used to synthesize cDNA using iScript
™

 Reverse Transcription Supermix for qRT-

PCR (Bio-Rad Laboratories, Hercules, CA) according to the manufacturer’s protocol.  

Synthesized cDNA was used in qRT-PCR reactions to assess the transcript level of genes 

related to this study. qRT-PCR reactions were performed with SsoFast
™

 EvaGreen
®

 

Supermix (Bio-Rad Laboratories) in a CFX96 Touch Real-Time PCR Detection System 

(Bio-Rad Laboratories). All experiments were normalized with the reference genes 

ACTIN-DEPOLYMERIZING PROTEIN 1 (ADF1) (Castonguay et al., 2015; Guerriero et 

al., 2014) and ELONGATION INITIATION FACTOR 4A (EIF4A) (Guerriero et al., 2014) 

using the primers ms_ADF1qF/R and ms_EIF4AqF/R, respectively that are stable under 

numerous abiotic stress conditions (Appendix A). Each reaction was performed in 

triplicate and consisted of 0.5 ng cDNA in water, 0.5 μM forward and reverse gene-

specific primers, and nuclease-free water to bring the reaction volume to 10 μL. qRT-

PCR primers used to amplify SPL9, CATALASE1 (CAT1), GLUTATHIONE 

SYNTHETASE (GSH), and DFR were LA_MsSPL9-Fq1/Rq1, CAT1-F/R, GSH-F/R, and 

DFR-F/R, respectively (Appendix A). The qRT-PCR program continued as follows: 
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95ºC for 30 sec, 95ºC for 5 sec, primer specific annealing temperature for 15 sec for 45 

cycles with a melt curve starting at 65ºC and increasing in 0.5ºC increments every 5 

seconds. The annealing temperature when amplifying CAT1, GSH, and DFR was 58ºC 

and was 55ºC when amplifying SPL9. Transcript analysis was performed using the CFX 

Maestro
™

 software (Bio-Rad Laboratories) and the 2
-ΔΔCt

 method (Livak and Schmittgen, 

2001).  

2.4 Analysis of CRISPR/Cas9 mutagenized alfalfa 

Genomic DNA from leaves of putative SPL9-CRISPR alfalfa was extracted according to 

the ChargeSwitch gDNA Plant Kit (Thermo Fisher Scientific) protocol. PCR reactions 

with DreamTaq (Thermo Fisher Scientific) polymerase were used to amplify MtU6 

promoter and SpCas9 gene according to the manufacturer’s protocol using the primers 

MtU6-F/R and LH_Cas9_F1/R1, respectively (Appendix A). Genomic DNA from 

positive SPL9-CRISPR alfalfa transformants containing the MtU6 promoter and SpCas9 

gene were used as templates to amplify the MsSPL9 region of interest including the 

sgRNA complementary guide sequence according to the Phusion High Fidelity DNA 

Polymerase (Thermo Fisher Scientific) protocol. The resulting amplified MsSPL9 

fragment was cloned according to the CloneJET PCR Cloning Kit (Thermo Fisher 

Scientific) and its sequence was analyzed by Sanger sequencing to identify potential 

CRISPR/Cas9-directed mutations. 

2.5 Characterization of SPL9-RNAi alfalfa 

Transcript levels of SPL9 were determined in SPL9-RNAi alfalfa and compared to that of 

WT alfalfa to determine the level of SPL9 silencing. Three SPL9-RNAi genotypes, R1, 

R2 and R3, were chosen due to their decreased SPL9 transcript level compared to WT. 

Phenotypic traits in SPL9-RNAi and WT were examined at two and six months in 5 – 10 

replicates for each genotype. Flowering time was determined by determining the number 

of days from transplanting rooted cuttings to soil until first emergence of flowers.  

The fresh biomass weight (FW) of alfalfa shoots was determined by cutting and 

immediately weighing the shoots. The FW of the roots of these plants was also measured 
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in the same way after the soil was washed from roots and excess water was removed by 

pat drying. These tissues were then placed in a 65ºC oven for 5 days to dry and 

measurement of their dry biomass weight (DW) was undertaken. 

The phenotypic traits of shoots were compared in SPL9-RNAi and WT alfalfa. To 

determine the number of branches of each plant, main branches were considered any stem 

emerging directly from the soil and lateral branches were considered any stem originating 

from a main branch. Plant height was measured in the tallest main branch, upon which 

number of nodes was also determined. Average internode length was then calculated from 

the ratio of the number of nodes to plant height. Stem thickness was measured using a 

digital caliper (Mitytoyo, Japan) between the second and third nodes of the tallest main 

branch. The phenotypic traits of roots were also compared in SPL9-RNAi and WT alfalfa. 

Root length was considered as the length of the longest root. 

2.6 Evaluation of drought tolerance 

Rooted cuttings destined for use in drought trials were grown in 15.24 cm pots after 

removal from rooting cubes. Five weeks after the transfer to soil, to start the drought trial, 

each individual plant was given approximately 150 mL of water to normalize the amount 

of water given to each plant. Plants in the control treatment were watered twice a week 

for the duration of the trial while plants in the drought treatment had water withheld until 

all WT plants showed signs of stress by wilting (12 days). SPL9-RNAi and WT alfalfa 

were exposed to the drought and control conditions and compared to assess drought 

tolerance traits.  

General phenotypic traits that were evaluated in plants included: change in plant height, 

leaf senescence, shoot biomass, and root biomass. Plant shoot growth over the duration of 

the trial was measured as an indication of the ability of the plants to resist the impacts of 

drought. The difference between the plant height at the end of the trial, day 12, and 

initiation of the trial, day 0, was evaluated as plant growth during drought stress. Leaf 

senescence was also evaluated by determining the ratio of senesced leaves (leaves that 

were seen to roll or desiccate) to the total number of leaves present on the tallest main 

branch. DW and FW of the shoots were measured as described in Section 2.5. The DW, 
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FW, and length of roots were measured in alfalfa grown in conetainers (Greenhouse 

Megastore, Danville, IL) instead of regular pots. 

2.7 Assessment of survivability 

The ability of alfalfa to survive drought stress was compared in WT and SPL9-RNAi in 

15.24 cm pots. Ten individual plants of each genotype (R1, R2, R3 and WT) were given 

approximately 150 mL of water after which they were exposed to drought by withholding 

water for 14 days. On day 14, when all plants were severely stressed, plants were re-

watered, and this was continued twice a week for two weeks. After the two weeks of re-

watering, the survival of the plant was assessed. If any new growth was present, the plant 

was scored as having survived. Alfalfa survival was calculated from the ratio of the 

number of plants that survived to the number grown. This experiment was independently 

repeated three times.  

2.8 Evaluation of plant water status 

The water status of alfalfa shoots was evaluated by measuring relative water content 

(RWC), midday leaf water potential, and shoot water loss. Alfalfa plants were exposed to 

either drought or control conditions imposed as described in Section 2.6.  

2.8.1 Relative water content 

Ten trifoliate leaves were cut from each alfalfa plant that was exposed to control or 

drought conditions. Immediately after cutting, the leaves were weighed (FW) and placed 

in a small glass jar filled with approximately 20 mL of deionized water and sealed with a 

screw cap. Before closing the jar, the leaves were completely submerged in the water 

using forceps. The leaves remained in dark conditions submerged in water for two days. 

Once the leaves were removed from the water they were pressed once with paper towels 

to remove excess water and weighed a second time (FTW). The leaves were then placed 

in an oven set at 65ºC for five days, after which they were removed and weighed a third 

time (DW). RWC was calculated according to equation 1 (Anderson and McNaughton, 

1973; Arshad et al., 2017a; Weatherley, 1950): 
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Equation 1:     𝑅𝑊𝐶 = [
𝐹𝑊−𝐷𝑊

𝐹𝑇𝑊−𝐷𝑊
] × 100 

2.8.2 Midday leaf water potential 

Around midday, 12 days after initiating drought and control conditions, a razor blade was 

used to cut a trifoliate leaf from the bulk of the alfalfa shoots. Leaves furthest from the 

base of the shoots with a petiole long enough to fit in the pressure vessel were used. The 

leaf was placed in the pressure vessel of the SAPS II Portable Plant Water Status Console 

(Soilmoisture Equipment Corp., Santa Barbara, CA) with the cut end of the petiole visible 

when the pressure vessel was closed and the trifoliate end within the vessel. Pressure in 

the vessel was applied using N2 gas and the reading on the pressure gauge was recorded 

when a single drop of moisture was observed with a magnifying glass to emerge from the 

exposed end of the petiole (Turner, 1988). The more water within the leaf, the less 

pressure needed to be applied to the system for that water to be visible at the site where 

the leaf was cut. 

2.8.3 Shoot water loss assay 

A shoot water loss assay was used to evaluate the capability of the shoots to lose water 

rapidly (Arshad et al., 2017a). Shoots were cut after 12 days of exposure to the control or 

drought conditions and the site of the cut was sealed with Parafilm M that was secured 

with tape. The FW of the shoots were then measured with the first measurement 

considered as 0 min (𝐹𝑊𝑡0
). After the initial measurement, the shoots were weighed 

every 30 min (𝐹𝑊𝑡𝑛
) for three hrs. Rapid water loss was calculated using equation 2: 

Equation 2:     % 𝑤𝑎𝑡𝑒𝑟 𝑙𝑜𝑠𝑠 =  
𝐹𝑊𝑡0−𝐹𝑊𝑡𝑛

𝐹𝑊𝑡0

  

2.9 Examination of plant photosynthetic capabilities 

After 12 days of exposure to drought and control conditions the ability of alfalfa plants to 

continue photosynthesis despite the conditions they were exposed to was evaluated by 
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measuring stomatal conductance and leaf chlorophyll content. Drought and control 

conditions were imposed as described in Section 2.6. 

2.9.1 Stomatal conductance 

A Leaf Porometer (Decagon Devices Inc., Pullman, WA) was used to measure stomatal 

conductance on both the adaxial and abaxial leaf surfaces. Stomatal conductance was 

measured around midday 12 days after initiation of the drought trial. The average 

stomatal conductance of two leaves were measured in each plant as technical replicates. 

Four trials of two biological replicates were performed for a total of 8 biological 

replicates. The largest of the leaves available were chosen to measure stomatal 

conductance to maximize surface area. Calibration of the device was performed by 

adding Drierite desiccant (W.A. Hammond Drierite Company, Xenia, OH) to the 

Porometer head and measuring water saturated filter paper on a calibration plate under 

greenhouse conditions. The device was considered calibrated after three consecutive 

measurements were taken within 7.5% of the expected conductance from the calibration 

plate, 240 mmol m
-2

s
-1

. 

2.9.2 Chlorophyll content 

A MC-100 chlorophyll concentration meter (Apogee Instruments, Logan, UT) was used 

to measure the concentration of chlorophyll in alfalfa exposed to drought and control 

conditions for 12 days. Measurements were taken midday with the detector facing the 

abaxial leaf surface and the diode facing the adaxial leaf surface. The concentration of 

chlorophyll was measured in five leaves in each plant and their average was used as one 

biological replicate. The five leaves chosen were randomly distributed and five biological 

replicates were used in total.  

2.10 Antioxidant capability analysis 

Alfalfa plants exposed to drought or control conditions were evaluated for antioxidant 

capacity by measuring the following: transcript levels of CAT1 and GSH (Section 2.3), 
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and total antioxidant activity using a trolox equivalent antioxidant assay. Drought and 

control conditions were imposed as described in Section 2.6. 

2.10.1 Determination of antioxidant capacity 

The exact weight of approximately 100 mg of leaf tissue was recorded and total 

antioxidants were extracted by homogenizing the tissue in 1 mL of pre-chilled 50% 

methanol in Precellys Lysing Kit (Bertin Instruments) beaded 2 mL tubes in a 

PowerLyzer (MoBio Laboratories Inc.). The lysate from the homogenization was 

centrifuged for 2 min at 16,400 RCF at 4ºC and filtered through a 0.45 μm syringe filter 

(Chromatographic Specialties Inc., Brockville, ON). These filtered extracts were used 

when completing the Sigma-Aldrich Antioxidant Assay Kit (CS0790) according to the 

manufacturer’s protocol. The spectrophotometric endpoint absorbance at 405 nm was 

measured using a Multiskan GO spectrophotometer (Thermo Fisher Scientific) to 

estimate the ability of the extracts to sequester hydrogen peroxide and prevent the 

formation of the chromogen 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical 

cation (ABTS•+). Absorbance values of the extract were compared to a Trolox standard 

curve (Figure 5) to determine total antioxidant activity after which each value was 

normalized by the weight of the starting material. 

2.11 Determination of anthocyanin content 

To determine anthocyanin content, stem bases were collected from alfalfa plants exposed 

to drought and control conditions. The exact weight of each sample (FW) was weighed 

and recorded. Anthocyanins were extracted as described by Neff and Chory (1998). 

Briefly, samples were ground in liquid nitrogen with a mortar and pestle and transferred 

to Precellys Lysing Kit (Bertin Instruments) beaded 2 mL tubes. A total of 600 μL of 

methanol in 1% HCl – referred to as the extraction solution – was added to each tube and 

homogenized using a PowerLyzer (MoBio Laboratories Inc.). Tubes were left overnight 

at 4ºC in the dark. Samples were then centrifuged at 16,400 RCF for 5 min after the 

addition of 200 μL water and 500 μL chloroform. 400 μL of 60% extraction solution was 

added to the supernatant. Spectrometric measurements were made at 530 nm (𝐴530) and 
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657 nm (𝐴657) using a Multiskan GO spectrophotometer (Thermo Fisher Scientific). All 

samples were corrected using 60% extraction solution as a blank and absorbance 

measurements were calculated according to equation 3:  

Equation 3:   𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑡ℎ𝑜𝑐𝑦𝑎𝑛𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =  
𝐴530−𝐴657

𝐹𝑊
  

2.12 Statistical analysis 

Statistical analysis was performed using GraphPad Prism. Characterization of SPL9-

RNAi alfalfa was achieved using One-way ANOVA analysis. The Dunnett’s test was 

used to elucidate differences between WT and each SPL9-RNAi genotype. The student’s 

t-test was used to determine significant differences in SPL9 expression of WT plants 

under control and drought conditions. Evaluation of differences between groups in 

experiments related to drought was determined using Two-way ANOVA. A Dunnett’s 

test was used to determine which SPL9-RNAi genotypes were different from WT 

considering genotypes within treatments and a Sidak’s test was used to determine if each 

genotype had significant change between drought and control conditions.  
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Figure 5. Trolox standard curve 

Standard curve of antioxidant assay reaction using trolox as a reference to calculate the 

antioxidant activity of alfalfa. 
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Chapter 3  

3 Results 

3.1 Analysis of SPL9-CRISPR transgenic alfalfa 

In an attempt to knock-down SPL9, a vector containing SpCas9 and a sgRNA designed to 

target SPL9 under the MtU6 promoter was used in alfalfa A. tumefaciens-mediated 

transformation. Potential CRISPR/Cas9-mutated alfalfa (SPL9-CRISPR) plants identified 

by antibiotic screening were further subjected to analysis by PCR to detect the presence 

of the MtU6 promoter and SpCas9 transgene. A single band of expected size was visible 

after amplification of 16 different gDNA samples using primers specific to both the MtU6 

promoter (500 bp) and SpCas9 gene (984 bp) (Figure 6). Confirmed SPL9-CRISPR 

plants originated from six independent calli in the tissue culture process. A fragment of 

the SPL9 coding sequence containing the sgRNA complementary region was subjected to 

Sanger sequencing in one representative from each of the six calli to identify potential 

mutations as a result of the CRISPR/Cas9 system. The representatives from each calli and 

WT sequences did not differ in the expected sgRNA region therefore CRISPR/Cas9-

mediated mutations were not found.  

3.2 Molecular analysis of SPL9m-OE and SPL9-RNAi plants 

To characterize the function of SPL9 in development and drought response, alfalfa with 

altered SPL9 levels that were developed by Aung (2014) were used. The CaMV 35S 

promoter was used to drive expression of SPL9 impervious to miR156 and RNAi to 

achieve enhanced and reduced SPL9 levels, respectively. SPL9 transcript levels were 

evaluated in potential SPL9m-OE plants by qRT-PCR and three with significant increases 

in SPL9 transcript levels over WT are shown in Figure 7A. Increasing SPL9 transcript 

levels were observed in SPL9m-OE 1 (OE1) (32-fold), SPL9m-OE 2 (OE2) (73-fold), and 

SPL9m-OE 3 (OE3) (133-fold) relative to WT. Similarly, qRT-PCR was employed to 

investigate SPL9 transcript abundance in each SPL9-RNAi plant. SPL9-RNAi 3 (R3) had  
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Figure 6. Screening of transgenic alfalfa plants for presence of MtU6 and SpCas9 

Primers designed to amplify fragments of A. MtU6 (500 bp) and B. SpCas9 (984 bp) 

were used in PCR reactions to test for their presence in genomic DNA (gDNA) of 

potential SPL9-CRISPR alfalfa. gDNA from WT alfalfa was used as negative control. A 

PCR reaction in which genomic DNA was replaced with water was included as the no 

template control (NTC). In B., the pFG491-Cas9 plasmid was included as a positive 

control for comparison and the presence of SpCas9 was confirmed by Sanger sequencing. 

Each SPL9-CRISPR number indicates the calli from which each plant was taken. Each 

letter indicates the individual embryo taken from a single callus. 
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Figure 7. Relative SPL9 transcript level in SPL9m-OE and SPL9-RNAi plants 

Relative MsSPL9 transcript levels measured in WT and transgenic alfalfa by RT-qPCR. 

A. SPL9 transcript levels in WT and SPL9m-OE plants. SPL9m is impervious to miR156. 

B. SPL9 transcript levels in WT and SPL9-RNAi plants. Asterisks indicate a significant 

change in transcript levels between transgenic and WT plants (p < 0.05, where n = 3, 

One-Way ANOVA, Dunnett’s test). Error bars indicate standard deviation.  
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the greatest level of silencing, followed by SPL9-RNAi 2 (R2), and then SPL9-RNAi 1 

(R1) with the lowest level of silencing relative to WT (Figure 7B). 

3.3 Phenotypic characterization of SPL9-RNAi alfalfa 

Given the different levels of SPL9 silencing in SPL9-RNAi R3, R2, and R1 genotypes, 

these plants were chosen for use in subsequent experiments to determine the extent to 

which SPL9 is involved in the regulation of development and to examine drought-related 

traits that are known to be impacted by miR156. Initially, phenotypic traits were 

characterized and compared between 2- and 6-month-old SPL9-RNAi and WT alfalfa 

(Figure 8).   

3.3.1 Characterization of 2-month-old SPL9-RNAi alfalfa 

Phenotypic traits of SPL9-RNAi plants were compared to those of WT plants at the 

vegetative stage by evaluating 2-month-old plants. Stem diameters in R1, R2 and R3 

plants – measured between the second and third nodes of the main branch – were 

significantly thinner than those of the WT plants (Figure 9). However, this was the only 

trait that was measured in 2-month old plants that had significant differences between 

SPL9-RNAi and WT plants as summarized in Table 1. Fresh weight (FW) of roots, FW 

of shoots, dry weight (DW) of roots, DW of shoots, number of main branches, number of 

lateral branches, number of total branches, root length, plant height, number of nodes, and 

average internode length were statistically indistinguishable between WT and SPL9-

RNAi plants.   

3.3.2 Characterization of 6-month-old SPL9-RNAi alfalfa 

Phenotypic traits of SPL9-RNAi were also evaluated at the reproductive stage by 

measuring traits in 6-month-old plants. At this stage, SPL9-RNAi plants were more 

distinguishable from WT (Table 2). Reduced plant height was observed in SPL9-RNAi 

plants, and this trait was maintained in all three SPL9-RNAi genotypes. R1 and R3 plants 

both had increased number of lateral and total branches as well as decreased average 

internode length compared to WT. R2, however, had decreased number of main branches   



 

40 

 

 

Figure 8. Phenotypic characterization of 2- and 6-month-old alfalfa plants 

Representative WT and SPL9-RNAi alfalfa grown for two months and six months under 

normal greenhouse conditions. 
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Figure 9. Stem thickness of 2-month-old alfalfa plants 

A. Cross section of stems between nodes two and three where stem thickness was 

measured, and B. Stem thickness of 2-month-old SPL9-RNAi (R1, R2, and R3) and WT 

alfalfa. Asterisks indicate a significant change in stem thickness between SPL9-RNAi and 

WT plants (p < 0.05, where n = 10, One-Way ANOVA, Dunnett’s test). Error bars 

indicate standard deviation.  
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Table 1. Analysis of phenotypic traits in 2-month-old alfalfa plants 

Phenotypic traits of WT and SPL9-RNAi alfalfa were measured after 2 months of growth 

and recorded in the table ± standard deviation. Asterisks indicate significant differences 

between SPL9-RNAi and WT plants (p < 0.05, where n = 10, One-Way ANOVA, 

Dunnett test).  

Genotype 
2-month old alfalfa 

WT R1 R2 R3 

# Main branches 2 ± 0.82 2 ± 0.67 2 ± 0.47 3 ± 1.03 

# Lateral branches 7 ± 4.19 9 ± 5.43 7 ± 4.86 11 ± 3.68 

Total branching 9 ± 4.57 11 ± 5.87 9 ± 4.89 14 ± 3.74 

# of nodes 10 ± 2.80 10 ± 3.05 10 ± 1.69 11 ± 2.92 

Plant height (cm) 32.7 ± 12.79 32.4 ± 7.84 33.3 ± 5.76 36.5 ± 6.56 

Average internode length (cm) 3.5 ± 1.61 3.3 ± 1.01 3.5 ± 0.64 3.5 ± 0.95 

Fresh weight (g) 3.61 ± 2.60 4.09 ± 2.98 3.23 ± 2.67 4.07 ± 2.48 

Dry weight (g) 0.94 ± 0.60 0.99 ± 0.69 0.75 ± 0.56 1.11 ± 0.64 

Time to flower (days) NF NF NF NF 

Root length (cm) 37.9 ± 3.84 41.4 ± 9.35 38.8 ± 7.89 40.5 ± 5.01 

Root fresh weight (g) 4.78 ± 3.20 6.03 ± 4.58 4.69 ± 3.69 5.94 ± 3.87 

Root dry weight (g) 0.97 ± 0.31 0.96 ± 0.40 0.88 ± 0.27 1.30 ± 0.36 
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Table 2. Analysis of phenotypic traits in 6-month-old alfalfa plants 

Phenotypic traits of WT and SPL9-RNAi alfalfa were measured after 6 months of growth 

and recorded in the table ± standard deviation. Asterisks indicate significant differences 

between SPL9-RNAi and WT plants (p < 0.05, where n = 5-13, One-Way ANOVA, 

Dunnett test). 

Genotype 
6-month old alfalfa 

WT R1 R2 R3 

# Main branches 27 ± 5.72 24 ± 9.52 15 ± 6.79 * 31 ± 7.78 

# Lateral branches 104 ± 39.04 151 ± 31.20 * 113 ± 22.80 182 ± 34.08 * 

Total branching 131 ± 40.37 175 ± 36.32 * 128 ± 20.06 213 ± 34.61 * 

# of nodes 19 ± 1.48 19 ± 1.55 17 ± 0.00 * 18 ± 0.76 

Plant height (cm) 86.7 ± 12.17 70.4 ± 2.75 * 71.8 ± 7.12 * 63.6 ± 3.92 * 

Average internode length (cm) 4.6 ± 0.56 3.7 ± 0.22 * 4.2 ± 0.37 3.5 ± 0.18 * 

Fresh weight (g) 130.62 ± 22.02 115.41 ± 22.92 101.02 ± 26.08 125.58 ± 21.71 

Dry weight (g) 33.46 ± 5.61 28.55 ± 6.30 24.65 ± 6.69 33.79 ± 5.87 

Time to flower (days) 114 ± 8.77 113 ± 6.18 146 ± 25.56 * 122 ± 15.55 
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and number of nodes. However, these changes to alfalfa traits after six months of growth 

did not result in discrepancies between SPL9-RNAi and WT plants in FW or DW of 

shoots. Also, only R2 had delayed flowering compared to WT plants. 

3.4 Investigating the role of SPL9 in drought response in alfalfa 

The miR156-mediated regulation of drought response has been investigated in 

switchgrass (Sun et al., 2012), B. juncea (Bhardwaj et al., 2014), A. thaliana (Cui et al., 

2014) and alfalfa (Arshad et al., 2017a; Feyissa et al., 2019). SPL9 is a confirmed target 

of miR156 (Gao et al., 2016) and could play a role in controlling miR156-mediated 

drought response traits. This study investigated the hypothesis that SPL9 regulates 

miR156-mediated drought response in alfalfa by comparing the effects of drought in 

SPL9-RNAi and WT alfalfa.  

3.4.1 SPL9 transcript analysis in response to drought 

Establishing the extent to which SPL9 is involved in the response to drought will extend 

our knowledge of miR156-mediated abiotic stress tolerance in alfalfa that was initially 

demonstrated by Arshad et al. (2017a) and Feyissa et al. (2019). To investigate the natural 

response of alfalfa to drought, the transcript level of SPL9 in WT plants was compared 

between drought stress and well-watered conditions. SPL9 transcript levels decreased in 

drought stressed compared to well-watered WT plants (Figure 10A).  

3.4.2 Drought survival analysis 

Since one of the objectives of this study was to determine if SPL9 is targeted by miR156 

in response to drought in alfalfa, I investigated whether alfalfa with lower levels of SPL9 

are more tolerant to drought than the WT alfalfa. First, the ability of SPL9-RNAi to 

survive drought stress was assessed by exposing alfalfa plants to drought for two full 

weeks and then re-watering for two weeks. WT plants were the first to show signs of 

drought stress with wilting and curling leaves after 10 days. After 12 days of withholding 

water both WT and SPL9-RNAi alfalfa exhibited signs of drought stress (Figure 10B). 

Despite the fact that SPL9-RNAi plants showed signs of stress later than WT plants, both  
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Figure 10. SPL9-RNAi response to drought stress 

A. Relative SPL9 transcript levels of WT alfalfa exposed to control and drought 

conditions. Asterisk indicates significant change between conditions (p < 0.05, where n = 

9-10, Student’s t-test). Error bars indicate standard deviation. B. Representative WT and 

SPL9-RNAi plants that were exposed to 12 days of well-watered control or drought 

conditions. C. Survival of alfalfa plants exposed to drought measured by evaluating the 

ratio of plants capable of growing after two-weeks of recovering under control conditions 

to the total number of plants in the trial. Asterisk indicate significant change between WT 

and transgenic plants in three independent experiments where n = 10 (p < 0.05, One-Way 

ANOVA, Dunnett test). Error bars indicate standard deviation. 
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sets of plants had similar survival ability (Figure 10C). 

3.4.3 Changes to alfalfa growth in response to drought 

In addition to survival, the extent to which miR156-mediated control of SPL9 is involved 

in the regulation of drought tolerance was evaluated by measuring phenotypic traits in 

SPL9-RNAi and WT alfalfa under drought. Delayed leaf senescence indicates drought 

tolerance in plants (Rivero et al., 2007) therefore tolerance to drought was assessed first 

by evaluating the severity of senescence in response to the stress (Figure 11A). All 

alfalfa, both WT and SPL9-RNAi, had more leaf senescence when exposed to drought 

than their well-watered control counterparts. That being said, when comparing plants 

exclusively under drought conditions, all three SPL9-RNAi genotypes had decreased leaf 

senescence compared to WT.  

Next, overall plant growth, despite the condition to which they were exposed, was 

examined as a function of the change in plant height (Figure 11B). Plant growth within 

each respective condition did not change between WT and SPL9-RNAi plants. However, 

when each genotype was compared to its counterpart between conditions, those with the 

highest SPL9 transcript level, WT and R1, had reduced growth. R2 and R3, the genotypes 

with the lowest SPL9 transcript level, had no change in growth between drought and 

control conditions.  

Lastly, overall root growth, a trait observed in the drought tolerant miR156 OE alfalfa 

(Arshad et al., 2017a; Feyissa et al., 2019), was compared in drought exposed and well-

watered WT and SPL9-RNAi plants (Figure 11C). There was no change in root length 

between WT and SPL9-RNAi plants within their respective conditions nor were there 

changes between drought and control conditions in each genotype.   

3.4.4 Shoot and root biomass assessment in response to drought 

Drought can impede plant growth (Daryanto et al., 2016) and as such, evaluating shoot 

and root growth in response to drought could indicate tolerance. Change in alfalfa 

biomass in response to drought was examined in SPL9-RNAi and WT shoots and roots. 

Well-watered, SPL9-RNAi plants had less shoot FW than WT plants, however, drought- 
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Figure 11. Alfalfa growth in response to drought 

A. Proportion of senescing leaves in WT and SPL9-RNAi plants under control and 

drought conditions. Asterisks indicate a significant change within conditions between WT 

and SPL9-RNAi plants (Dunnett test) and bars indicate a significant change between 

conditions (Sidak test) in a Two-Way ANOVA (p < 0.05, where n = 10). Error bars 

indicate standard deviation. B. Growth of WT and SPL9-RNAi alfalfa in response to 

drought measured by analyzing the change in plant height during the treatment. Asterisks 

indicate significant change between conditions (p < 0.05, where n = 10, Two-Way 

ANOVA, Sidak test). Error bars indicate standard deviation. C. Root length of WT and 

SPL9-RNAi alfalfa under control and drought conditions. Asterisks indicate significant 

change between conditions (p < 0.05, where n = 10, Two-Way ANOVA, Sidak test). 

Error bars indicate standard deviation. 
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exposed SPL9-RNAi and WT shoots showed no difference in FW (Figure 12A). In 

addition, reduced shoot FW between well-watered and drought conditions was seen in 

WT and R1 but not in R2 and R3. There was no change in root FW between SPL9-RNAi 

and WT plants within each condition, but WT and R1 had decreased root FW in response 

to drought whereas R2 and R3 saw no change (Figure 12B). When examining shoot DW, 

there was no change in DW between drought and control plants within each genotype 

however, under drought stress, R1 and R2 plants had decreased shoot DW compared to 

WT and R2 had decreased shoot DW compared to WT under control conditions (Figure 

12C). Root DW was indistinguishable both between and within well-watered and drought 

conditions (Figure 12D).  

3.5 Evaluation of plant water status in SPL9-RNAi alfalfa under 

drought stress 

Alfalfa with miR156 OE was reported to have enhanced water status under water-deficit 

conditions resulting in plants with tolerance to drought (Arshad et al., 2017a; Feyissa et 

al., 2019). Therefore, the role of SPL9 in miR156-mediated regulation of water status 

under drought conditions was evaluated by comparing water loss, relative water content 

(RWC), and midday leaf water potential in SPL9-RNAi and WT alfalfa.  

3.5.1 Short term water loss in drought stressed alfalfa 

In response to drought, plants release ABA to mitigate water loss (Bauer et al., 2013), and 

thus evaluating rapid water loss in plants has been used to examine drought tolerance 

(Arshad and Mattsson, 2014; Arshad et al., 2017a; Dai et al., 2007). To determine if SPL9 

is involved in the regulation of drought tolerance, the extent of water lost from SPL9-

RNAi and WT alfalfa plants that were exposed to drought and well-watered conditions 

was evaluated over a three-hour period. Comparing SPL9-RNAi plants to WT plants 

under both well-watered and drought conditions revealed that R1, the SPL9-RNAi 

genotype with the highest SPL9 transcript level, had increased water loss. Under control 

conditions, R1 was the only SPL9-RNAi genotype to show a significant difference in 

water loss from WT plants starting after one hour (Figure 13A). Enhanced water loss  
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Figure 12. Effect of drought on SPL9-RNAi alfalfa biomass 

Fresh weight (FW) of shoots (A) and roots (B) of WT and SPL9-RNAi alfalfa under 

control and drought conditions measured immediately after harvesting the plants. Dry 

weight (DW) of shoots (C) and roots (D) of WT and SPL9-RNAi alfalfa under control 

and drought conditions measured after drying. Asterisks indicate significant differences 

within conditions (Dunnett test) and bars indicate significant differences between 

conditions (Sidak test) in a Two-Way ANOVA where p < 0.05 and n = 10. Error bars 

indicate standard deviation. 
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Figure 13. Effect of drought on short term water loss 

Water lost from shoots, over three hours, as a function of initial fresh weight (FW) was 

determined in A. well-watered and B. drought stressed WT and SPL9-RNAi alfalfa. 

Asterisks indicate significant difference between SPL9-RNAi and WT within the time 

point (p < 0.05, where n = 10, Two-Way ANOVA, Dunnett test). Error bars indicate 

standard deviation. 
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from R1 compared to WT plants was observed after two hours when plants were drought 

stressed but continued for the rest of the water loss assay (Figure 13B). Well-watered and 

drought stressed R2 and R3 alfalfa did not differ from WT in water loss. 

3.5.2 Relative water content of alfalfa exposed to drought 

In addition to water loss, RWC can indicate plant water status and is useful for 

determining the extent of water deficiency a plant is experiencing as a result of abiotic 

stress conditions (Anderson and McNaughton, 1973; Arshad et al., 2017a; Weatherley, 

1950). Therefore, to evaluate the role of SPL9 in the regulation of drought tolerance, 

RWC of WT and SPL9-RNAi plants was compared under control and drought conditions. 

Consistent with the observation that WT plants were more severely impacted by drought 

(Figure 10B), the RWC of WT plants exposed to drought was significantly decreased 

compared to well-watered WT plants (Figure 14A). On the other hand, SPL9-RNAi 

genotypes had no differences in RWC between the control and drought conditions. In 

addition, R1 and R2 (but not R3) had increased RWC compared to WT under drought 

stress, while none of the SPL9-RNAi genotypes differed from WT under well-watered 

conditions. 

3.5.3 Effect of drought on midday leaf water potential in alfalfa 

Midday leaf water potential, another indicator of plant water status (Turner, 1988), was 

measured to investigate altered drought tolerance in SPL9-RNAi plants relative to WT. 

Midday leaf water potential was measured in well-watered and drought-exposed WT and 

SPL9-RNAi alfalfa (Figure 14B). When comparing WT and SPL9-RNAi alfalfa within 

their respective conditions, the midday leaf water potential of plants was 

indistinguishable. WT, R2, and R3 plants also showed no difference in water potential 

between drought and control conditions, but drought-stressed R1 plants had decreased 

water potential compared to well-watered R1 plants.    
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Figure 14. Plant water status in response to drought 

A. Relative water content (RWC) of WT and SPL9-RNAi alfalfa leaves under control and 

drought conditions. Asterisks indicate significant differences within treatments (Dunnett 

test) and bars indicate significant differences between treatments (Sidak test) in a 

Two-Way ANOVA where p < 0.05 and n = 10. Error bars indicate standard deviation. 

B. Midday leaf water potential of WT and SPL9-RNAi alfalfa leaves under control and 

drought conditions. Asterisks indicate significant differences between conditions 

(p < 0.05, where n = 9-10, Two-Way ANOVA, Sidak test). Error bars indicate standard 

deviation. 
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3.6 Effect of drought on photosynthetic capabilities 

Water deficiency in plants causes reduced photosynthetic rates (Lamaoui et al., 2018; 

Sicher et al., 2012). In this study, I used stomatal conductance and chlorophyll content to 

infer the photosynthetic capabilities of drought stressed alfalfa. Furthermore, to determine 

if SPL9 regulates the photosynthetic response to drought, stomatal conductance and 

chlorophyll content of SPL9-RNAi and WT plants were compared between well-watered 

and drought conditions.   

3.6.1 Stomatal conductance 

Drought causes the release of ABA resulting in stomata closure and consequently a 

reduction in stomatal conductance (Lamaoui et al., 2018; Sicher et al., 2012; Zhang and 

Davies, 1989). Stomatal conductance was measured in both the adaxial and abaxial 

surfaces of leaves of well-watered and drought stressed WT and SPL9-RNAi alfalfa to 

estimate the degree to which stomata were open. Drought-exposed alfalfa regardless of 

genotype had significantly reduced stomatal conductance compared to well-watered 

plants of the same genotype except in the abaxial surface of R2 which had no significant 

differences between drought and control treatments (Figure 15A). On both the adaxial 

and abaxial surface, WT and SPL9-RNAi leaves were indistinguishable when they were 

compared within each condition. 

3.6.2 Chlorophyll content 

Arshad et al. (2017a) reported that alfalfa with enhanced water status under drought stress 

also had enhanced chlorophyll content. To determine if SPL9 is involved in the regulation 

of chlorophyll content in response to water deficiency, chlorophyll content of WT and 

SPL9-RNAi alfalfa were compared under drought conditions (Figure 15B). WT, R1, and 

R3 plants had decreased chlorophyll content in drought-stressed plants compared to their 

well-watered counterparts. R2 plants were indistinguishable between drought and control 

conditions. In addition, under control conditions, R2 plants had decreased chlorophyll 

content compared to WT. 
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Figure 15. Photosynthetic capability of alfalfa in response to drought 

A. Stomatal conductance of WT and SPL9-RNAi alfalfa under drought and control 

conditions measured on the abaxial (left) and adaxial (right) leaf surfaces. Asterisks 

indicate significant differences between treatments (p < 0.05, where n = 8, Two-Way 

ANOVA, Sidak test). Error bars indicate standard deviation. B. Chlorophyll content in 

WT and SPL9-RNAi alfalfa leaves under control and drought conditions. Asterisks 

indicate significant differences between conditions (Sidak test) and bars indicate 

significant differences within conditions (Dunnett test) in a Two-Way ANOVA where 

p < 0.05 and n = 5. Error bars indicate standard deviation. 
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3.7 Analysis of antioxidant-mediated ROS scavenging 

capabilities 

ROS accumulates in plants exposed to drought, and thus ROS scavenging antioxidants 

can mitigate ROS buildup resulting in tolerance to the stress (Kang et al., 2020; Sarker 

and Oba, 2018). To determine if SPL9 regulates drought response by mediating the 

ability of the plant to scavenge ROS, the antioxidant activity and transcript levels of GSH 

and CAT1 were evaluated in well-watered and drought-stressed WT and SPL9-RNAi 

alfalfa.  

3.7.1 Effect of drought on antioxidant content of SPL9-RNAi alfalfa 

Enhanced antioxidant activity was reported in miR156 OE alfalfa that had enhanced 

tolerance to heat and drought stress (Arshad et al., 2017a; Matthews et al., 2019). To 

investigate the role of SPL9 in miR156-mediated drought response, the ability of WT and 

SPL9-RNAi alfalfa leaf extracts to sequester hydrogen peroxide was evaluated by 

comparing ABTS•+ production in the presence of the extracts with a Trolox standard 

curve (Figure 16A). The antioxidant activities of WT and SPL9-RNAi plants compared 

both within and between drought and well-watered conditions were indistinguishable.  

3.7.2 Effect of drought on CAT1 and GSH expression in SPL9-RNAi 

alfalfa 

The effect of drought on expression of antioxidant-related genes in alfalfa was previously 

reported, with enhanced levels of CAT1 and GSH in miR156 OE alfalfa under drought 

stress (Arshad et al., 2017a). Transcript levels of GSH, involved in biosynthesis of 

glutathione, and CAT1, an enzymatic ROS scavenger, were investigated to indicate 

potential changes to antioxidant production as a result of altered SPL9 levels in SPL9-

RNAi compared to WT. The transcript levels of GSH decreased in WT leaves in response 

to drought (Figure 16B). SPL9-RNAi leaves were no different from WT leaves under 

control conditions. Out of the SPL9-RNAi plants, only R3 differed from WT under 

drought conditions in that R3 leaves had increased GSH transcript levels. WT leaves had 
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Figure 16. ROS scavenging capabilities of alfalfa in response to drought 

A. Antioxidant activity of WT and SPL9-RNAi leaf extracts under drought and control 

conditions. B. GSH transcript levels in WT and SPL9-RNAi leaves under drought and 

control conditions. C. CAT1 transcript levels in WT and SPL9-RNAi leaves under 

drought and control conditions. Asterisks indicate significant differences within 

conditions (Dunnett test) and bars indicate significant differences between conditions 

(Sidak test) in a Two-Way ANOVA where p < 0.05 and n = 8-10. Error bars indicate 

standard deviation. 
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increased CAT1 transcript levels in response to drought (Figure 16C). R2 leaves also had 

enhanced CAT1 transcript levels compared to WT under well-watered conditions. WT 

and SPL9-RNAi leaves had indistinguishable CAT1 transcript levels under drought 

conditions.  

3.8 Regulation of anthocyanin biosynthesis by SPL9 under 

drought 

Anthocyanins, which are capable of scavenging ROS, accumulate in response to drought 

and in drought tolerant plants (Cui et al., 2014; Feyissa et al., 2019). Transcription of 

DFR, an enzyme involved in the biosynthesis of anthocyanins, is inhibited by SPL9 in 

A. thaliana (Gou et al., 2011). This interaction has also been implicated in anthocyanin 

biosynthesis in soybean (Gupta et al., 2019). As a result, transgenic A. thaliana with 

miR156-insensitive SPL9 were sensitive to drought (Cui et al., 2014). To investigate my 

hypothesis that the miR156-SPL9-DFR interaction regulates anthocyanin biosynthesis 

providing control over drought tolerance in alfalfa, the accumulation of anthocyanins and 

the transcript levels of DFR under drought conditions were evaluated in SPL9-RNAi and 

WT plants.  

3.8.1 Analysis of DFR transcript levels in drought stressed SPL9-RNAi 

alfalfa  

In A. thaliana, DFR is negatively regulated by SPL9 (Gou et al., 2011), and upregulated 

in response to drought (Cui et al., 2014). DFR transcript abundance was analyzed in 

leaves and stems of SPL9-RNAi and WT plants to investigate if a similar inhibitory role 

exists for SPL9 in response to drought in alfalfa. In leaves, DFR transcript levels were 

significantly reduced in SPL9-RNAi compared to WT when well-watered, but showed no 

significant difference under drought (Figure 17A). In addition, DFR transcript levels 

decreased in WT but not SPL9-RNAi leaves when well-watered and drought conditions 

were compared. In stems, DFR transcript levels were reduced in WT and R3 under 

drought compared to well-watered conditions (Figure 17B). Well-watered SPL9-RNAi 

and WT stems did not differ in DFR transcript level, but R1 stems had increased DFR  
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Figure 17. Effect of drought on anthocyanin accumulation in alfalfa 

Relative DFR transcript levels in leaves (n = 8-10) (A) and basal stems (n = 2-5) (B) of 

WT and SPL9-RNAi alfalfa under drought and control conditions. C. Basal stem of WT 

and SPL9-RNAi alfalfa displaying pigments characteristic of anthocyanin accumulation. 

D. Total anthocyanin content of WT and SPL9-RNAi basal stems exposed to drought and 

control conditions (n = 10). Asterisks indicate significant differences within conditions 

(Dunnett test) and bars indicate significant differences between conditions (Sidak test) in 

a Two-Way ANOVA where p < 0.05. Error bars indicate standard deviation. 
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compared to WT under drought. 

3.8.2 Effect of drought on anthocyanin content of SPL9-RNAi alfalfa 

Regulation of anthocyanin accumulation by miR156-mediated silencing of SPL9 under 

drought was reported in A. thaliana (Cui et al., 2014) and suggested in soybean (Gupta et 

al., 2019). To investigate this regulatory mechanism in alfalfa, total anthocyanin contents 

of SPL9-RNAi and WT stems under control and drought conditions were compared. Stem 

bases of SPL9-RNAi alfalfa under both conditions had enhanced red pigmentation, but 

this was less apparent in WT plants (Figure 17C). While there was no difference in 

anthocyanin content between WT and SPL9-RNAi (except for R2) under control 

condition, SPL9-RNAi stems had significantly increased levels of these compounds under 

drought (Figure 17D).   
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Chapter 4  

4 Discussion 

4.1 Overview of research 

miR156 is a master regulator of plant development, controlling the expression of many 

different families of downstream genes (Wu et al., 2009). Expression levels of miR156 

decrease as the plant transitions from the juvenile and vegetative phase to the 

reproductive phase, and functions by silencing its immediate downstream gene targets, 

some of which belong to the SPL family (Ahsan et al., 2019; Wu and Poethig, 2006; Wu 

et al., 2009; Xu et al., 2020; Zheng et al., 2019). Aung et al. (2015) described traits in 

alfalfa associated with the overexpression of miR156, including delayed flowering, 

decreased plant height, increased branching, and reduced stem thickness, among others. 

SPL9 was found to have complementary sites to miR156 resulting in decreased 

expression in response to miR156 overexpression (Gao et al., 2016). SPL9 has also been 

characterized in A. thaliana and was found to be involved in developmental control 

(Schwarz et al., 2008; Yu et al., 2015). In soybean, SPL9 was found to regulate 

branching, number of nodes and dry weight (Bao et al., 2019). However, this is not the 

case in all species as Ahsan et al. (2019) suggested that SPL9 may not be involved in 

regulating plant development in mango, avocado and macadamia. With this research in 

mind, this study operated under the hypothesis that SPL9 will also play a role in the 

control of miR156-mediated trait development in alfalfa. Over the course of this study, it 

was found that alfalfa with reduced SPL9 transcript levels shared some phenotypic traits 

with alfalfa overexpressing miR156, including plant height, stem thickness, branching 

and internode length as reported by Aung et al. (2015). 

Not only does miR156 regulate developmental control, it is also involved in the response 

to abiotic stress. Studies of drought, heat, and salinity stress demonstrated that 

overexpressing miR156 in alfalfa resulted in plants with greater tolerance (Arshad et al., 

2017a; Arshad et al., 2017b; Feyissa et al., 2019; Matthews et al., 2019). Abiotic stress 
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trials in A. thaliana provided evidence that SPL9 is regulated by miR156 in response to 

both drought and salt stress (Cui et al., 2014). SPL9 was found to inhibit the transcription 

activating complex of DFR, preventing the biosynthesis of anthocyanins (Gou et al., 

2011). Anthocyanins, being ROS scavengers (Ali et al., 2016; Azuma et al., 2008; 

Kähkönen and Heinonen, 2003; Rice-Evans et al., 1996), have the potential to mitigate 

some of the adverse effects of drought stress on the plants (Cui et al., 2014; Feyissa et al., 

2019). Thus, control of anthocyanin biosynthesis through the regulation of SPL9 

mediated by miR156 provides tolerance to drought in A. thaliana (Cui et al., 2014). 

SPL13 was confirmed to be a target of miR156 in response to drought stress in alfalfa 

(Arshad et al., 2017a; Feyissa et al., 2019). Regulation of SPL13 by miR156 was shown 

to impact drought tolerance in alfalfa, however, the drought response traits investigated 

between miR156 overexpression and SPL13 silencing plants were not identical (Arshad et 

al., 2017a; Feyissa et al., 2019). Therefore, the hypothesis that SPL9 is involved in 

miR156-mediated drought tolerance through the miR156-SPL9-DFR pathway similar to 

that which was uncovered in A. thaliana by Gou et al. (2011) and Cui et al. (2014) was 

investigated in alfalfa. Alfalfa with a reduced SPL9 level was able to maintain growth, 

had reduced leaf senescence, and enhanced RWC under drought stress culminating in 

greater tolerance to drought. Reduced SPL9 level was also correlated with increased 

anthocyanin content and DFR transcript level.  

4.2 Impacts of SPL9 silencing on alfalfa morphology 

As a consequence of miR156-mediated silencing of SPL9 (Gao et al., 2016), plants 

overexpressing (OE) miR156 should share at least some phenotypes with those having 

decreased expression of miR156-regulated SPL genes. In A. thaliana, miR156 OE 

extended the juvenile phase leading to delayed flowering (Schwab et al., 2005; Wu and 

Poethig, 2006). Enhanced juvenile character is also a consequence of miR156 OE in 

alfalfa, as miR156 OE resulted in plants with delayed flowering (Aung et al., 2015). In 

this study, reduced levels of SPL9 resulted in delayed flowering in R2. R2 had 

intermediate SPL9 transcript levels compared to the other two SPL9-RNAi genotypes 

with R1 and R3 having higher and lower SPL9 transcript levels, respectively. Given that 

flowering time was unaffected at low and high levels of SPL9 expression, but could still 
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be reduced at a certain intermediate level, it could be that this trait requires a certain level 

of SPL9 expression that is below that of R1 but above that of R3. Other SPLs could also 

be involved in flowering which would support the variation in flowering time seen 

between SPL9-RNAi genotypes. For example, SPL3 has been implicated in regulating 

flowering in D. catenatum due to it being the only SPL to have enhanced expression in 

mature leaf and stem tissue (Zheng et al., 2019). A similar result was observed in mature 

mango plants as SPL3, SPL4, and SPL5 were upregulated over time (Ahsan et al., 2019).  

While the juvenile traits measured in A. thaliana were centered around leaf phenotype 

(Schwab et al., 2005; Wu and Poethig, 2006; Wu et al., 2009), other vegetative state- and 

root-associated traits were examined in alfalfa in an effort to improve harvest yield and 

quality (Aung et al., 2015). miR156 OE alfalfa plants showed reduced stem thickness 

(Aung et al., 2015). As expected, alfalfa with reduced SPL9 transcript levels also 

displayed reduced stem thickness. Unlike flowering time, all three levels of SPL9 

silencing resulted in a reduction of stem thickness. Stem thickness was the only trait 

measured in this study to be impacted by reduced SPL9 transcript levels after two months 

of growth. Similar to stem thickness, plant height was reduced after six months regardless 

of the level of SPL9 silencing. However, plant height may be more sensitive to SPL9 than 

stem thickness. Traits that were altered after six months but not after two months, such as 

plant height, may be a result of the greater sensitivity of that trait to SPL9. Over time, the 

levels of miR156 decrease resulting in enhanced expression of SPLs in non-transgenic 

plants (Ahsan et al., 2019; Wu and Poethig, 2006; Xu et al., 2020). Therefore, at later 

stages of plant development, the difference in the transcript levels between WT and 

SPL9-RNAi plants should increase, making traits with more sensitivity to SPL9 more 

apparent. Internode length and branching were also altered in SPL9-RNAi compared to 

WT plants, but only after six months of growth. Increased branching was also observed in 

soybean plants with mutated SPL9 (Bao et al., 2019). Therefore, the results of this study 

further support the role of SPL9 in plant development.  

Especially relevant to the agricultural industry was the observation by Aung et al. (2015) 

that miR156 OE resulted in alfalfa plants with increased biomass. Bao et al. (2019) also 

demonstrated that soybean plants with mutated SPL9 had enhanced dry weight and 
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concluded that SPL9 plays a role in miR156-mediated regulation of biomass. Despite 

branching, internode length, plant height, and stem thickness being impacted by the 

silencing of SPL9, SPL9-RNAi alfalfa did not show increased biomass. Both fresh weight 

and dry weight of SPL9-RNAi alfalfa shoots and roots were indistinguishable from WT 

plants leading to the conclusion that SPL9 is not targeted by miR156 to impact alfalfa 

biomass. Seven alfalfa SPL members have so far been reported to have miR156 

complementary regions (Aung et al., 2015; Gao et al., 2016) but there are at least 11 in 

A. thaliana (Addo-Quaye et al., 2008; Guo et al., 2008; Shikata et al., 2009; Wang and 

Wang, 2015; Wu and Poethig, 2006), seven in papaya (Xu et al., 2020), and 10 in tomato 

(Salinas et al., 2012). Possibly, additional SPLs could be present in alfalfa than have 

already been discovered that may regulate miR156-mediated traits. To observe changes in 

biomass, reduction in other alfalfa SPLs individually or in combination, may be 

necessary. In other words, reduction of SPL9 alone, as is the case in SPL9-RNAi alfalfa, 

may not be sufficient. SPL family members other than SPL9 may also play a role in 

miR156-mediated developmental control. While it is possible that they could impact the 

same traits, it is also likely that yet to be characterized SPLs impact miR156-mediated 

traits different from those that are impacted by SPL9.   

4.3 Involvement of SPL9 in alfalfa drought response 

In addition to control over developmental traits, miR156 plays a role in abiotic stress 

response, specifically, miR156 is upregulated in plants exposed to drought (Sun et al., 

2012; Bhardwaj et al., 2014; Cui et al., 2014). Arshad et al. (2017a) and Kang et al. 

(2020) demonstrated that miR156 OE in alfalfa and N. tabacum, respectively, displayed 

traits associated with drought tolerance. Furthermore, NtSPL9 was downregulated in 

response to drought (Kang et al., 2020). To confirm the involvement of SPL9 in alfalfa’s 

response to drought, SPL9 transcript level was compared between WT plants under 

drought and control conditions. Similar to observations of NtSPL9 (Kang et al., 2020), 

SPL9 expression was reduced in response to drought in WT plants suggesting that it is 

targeted by miR156 to impact drought tolerance.  
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Decreased SPL9 expression in response to drought in WT plants alone is only enough to 

conclude that SPL9 is related to alfalfa response to drought. To determine if the 

degradation of SPL9 transcript by miR156 is part of the miR156-induced drought 

tolerance demonstrated in alfalfa, the ability of SPL9-RNAi plants to resist the stress was 

evaluated. First, the number of leaves on the plant that were senescing was measured. 

Both WT and SPL9-RNAi plants experienced signs of drought stress; both had an 

increased percentage of senescing leaves under drought conditions compared to their 

control condition counterparts. However, the SPL9-RNAi plants had significantly less 

leaf senescence than WT plants under drought, indicating that SPL9-RNAi plants were 

more tolerant than WT to drought. In fact, WT plants were the first to display signs of 

drought stress which could be seen after 10 days of withholding water while SPL9-RNAi 

plants lasted 12 days before signs of drought stress were observed. Similar findings were 

observed by Kang et al. (2020) in which senescence-related genes were downregulated in 

N. tabacum plants with miR156 OE.  

Secondly, growth of each plant, regardless of treatment, was evaluated by measuring the 

change in plant height over the course of the drought trial. Kang et al. (2020) observed 

that constitutive expression of ZmmiR156 in N. tabacum resulted in plants with better 

growth under drought conditions. Interestingly, the plants with the highest SPL9 

transcript levels, WT and R1, were not able to maintain growth in response to drought, 

displaying reduced growth in drought stressed plants compared to well-watered plants. R2 

and R3, which had the lowest SPL9 transcript levels, were able to maintain plant growth 

despite the drought condition, thus providing further evidence for the conclusion that 

SPL9 is downregulated to provide miR156-mediated drought tolerance. In addition, the 

maintenance of growth in plants with a high level of SPL9 silencing suggests that 

tolerance regulated by SPL9 can only be achieved if SPL9 expression is maintained below 

a certain threshold level. This is in contrast with a similar finding reported for SPL13, 

where only SPL13-RNAi alfalfa plants with reduced SPL13 levels but over a certain 

threshold showed significant drought tolerance (Feyissa et al., 2019).  

Although, SPL9-RNAi plants displayed the aforementioned drought resistance traits, this 

did not translate to increased biomass. R2 had decreased DW compared to WT under 
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drought and control conditions while R1 had decreased DW under drought conditions. 

Tolerance to drought in SPL9-RNAi plants did not translate to biomass yield perhaps 

because SPL9 alone is not enough to regulate complete survival under drought. In B. 

juncea, although miR156 was upregulated in response to drought, a SPL2-like gene was 

also upregulated despite having complementarity to miR156 (Bhardwaj et al., 2014). 

Bhardwaj et al. (2014) suggested that due to the complexity of the miR156-SPL 

interaction, multiple SPLs could be present in B. juncea affecting drought response. 

Arshad et al. (2017a) and Feyissa et al. (2019) also established SPL13 as playing a role in 

miR156-induced drought tolerance, and therefore, considering SPL9 is also targeted in 

response to drought, miR156 must target multiple downstream genes, including those 

belonging to the SPL family, to regulate drought response. While it was reported that 

miR156 OE alfalfa had increased survival compared to EV control plants (Arshad et al., 

2017a), SPL9-RNAi plants survived drought conditions just as well as WT plants. In this 

study, SPL9-RNAi alfalfa had greater drought tolerance than WT plants, but both sets of 

plants had similar survivability rates.  

4.4 Alfalfa water status is impacted by SPL9 

One of the numerous responses to drought that was demonstrated in miR156 OE alfalfa 

was enhanced plant water status (Arshad et al., 2017a; Feyissa et al., 2019). Alfalfa plants 

with miR156 OE had diminished water loss and increased relative water content which 

was attributed to enhanced survival (Arshad et al., 2017a). Assuming these responses are 

a result of miR156-mediated silencing of SPL9, similar responses would be observable in 

SPL9-RNAi plants as was the case when RWC was examined. WT plants that were 

exposed to drought had significantly less RWC than well-watered WT plants. SPL9-

RNAi plants on the other hand were capable of maintaining their RWC between drought 

and control conditions. In addition, the RWC of R1 and R2 was enhanced compared to 

WT when exposed to drought further, thus supporting that SPL9-RNAi plants were under 

less drought stress.  

However, SPL9 appears, to differ from miR156 in how it regulates water loss. Arshad et 

al. (2017a) came to the conclusion that miR156 OE plants were able to resist drought as a 



 

67 

 

result of control over stomata that resulted in a decrease in water loss. In the current 

study, two of the three SPL9-RNAi genotypes were indistinguishable from WT in water 

loss under both drought and control conditions. Drought-treated R1 did have increased 

water loss after two hours and control-treated R1 had increased water loss after one hour. 

Therefore, SPL9 does not regulate drought stress tolerance through the mitigation of 

water loss. Increased water loss in R1 may explain why this genotype was unable to 

maintain growth to the same extent as the other two SPL9-RNAi genotypes. Although, 

according to this study, water loss is not regulated by SPL9, SPL13-RNAi plants had 

reduced water loss compared to EV control plants (Arshad et al., 2017a) supporting the 

idea that miR156 regulates multiple SPLs to control drought tolerance.  

Decreased midday leaf water potential in R1 alfalfa exposed to drought further supports 

water loss as a cause of R1 deficiency to maintain growth under drought stress. R1 had 

decreased water potential in drought stressed leaves suggesting water loss. It is worth 

noting a limitation of the method to measure leaf water potential. I found that finding 

leaves on the plant with petioles long enough for the pressure chamber was crucial to the 

consistency of the data. As a result, it can be difficult to standardize which leaves are 

sampled from each plant, increasing the chances of variability in the measurements. 

Regardless, increased water loss explains the observation that shoot FW decreased in R1 

plants in response to drought. In addition, Feyissa et al. (2019) demonstrated that SPL13 

is involved in miR156-mediated leaf water potential in alfalfa. Thus, as was observed in 

this study, SPL9 may not be involved in this process.  

4.5 Role of miR156-SPL9-DFR gene regulatory model in 

drought tolerance 

While maintaining RWC was critical for drought tolerance in SPL9-RNAi plants, these 

plants also had enhanced accumulation of stress mitigating anthocyanins. Anthocyanins 

have a capacity for ROS scavenging, thereby preventing ROS build-up in cells due to 

abiotic stress (Ali et al., 2016; Azuma et al., 2008; Kähkönen and Heinonen, 2003; Rice-

Evans et al., 1996). Stem tissues of miR156 OE A. thaliana were noted to have 

pigmentation typical of anthocyanin accumulation, whereas SPL9 OE A. thaliana had 
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reduced anthocyanin content (Gou et al., 2011). Similar to A. thaliana, miR156 OE 

resulted in alfalfa plants with increased anthocyanin content (Feyissa et al., 2019). The 

spatial pattern of DFR expression was, however, inverse to known expression patterns of 

SPL9 and SPL15; DFR levels were higher in basal stem plant tissue and low in apical 

tissues (Gou et al., 2011). In A. thaliana, SPL9 inhibits the formation of the 

transcriptional activating complex of DFR by competing with TT8 for binding to PAP1 

(Gou et al., 2011). DFR is an enzyme in the biosynthetic pathway of anthocyanins (Aerts 

et al., 1999; Dixon et al., 2013; Gonzalez et al., 2008; Gou et al., 2011), and therefore 

miR156 can increase the biosynthesis of anthocyanins through the negative regulation of 

SPL9, allowing for the formation of the DFR transcriptional activating complex (Gou et 

al., 2011). Similar interactions have also been implicated in anthocyanin biosynthesis in 

soybean (Gupta et al., 2019). The interplay between miR156, SPL9 and DFR has been 

shown to mediate biosynthesis of anthocyanins to provide plants with increased tolerance 

to abiotic stress (Cui et al., 2014). DFR levels were also increased in miR156 OE alfalfa 

plants (Feyissa et al., 2019), and therefore a similar pathway could be present in alfalfa. 

Support for the involvement of miR156-SPL9-DFR pathway in alfalfa drought tolerance 

was immediately evident in the red pigments visible in SPL9-RNAi plants under control 

and drought conditions. The incidence of red tissue was also centered around the basal 

stem similar to Gou et al. (2011) that observed anthocyanin-related pigments exclusively 

in A. thaliana stems.  

Through extraction and quantification of anthocyanins in basal SPL9-RNAi stem tissues, 

the role of SPL9 in regulating anthocyanin biosynthesis was established in alfalfa. 

Anthocyanin accumulation was increased in stems of all three SPL9-RNAi genotypes 

under drought, and R2 stems even had higher anthocyanin content compared to WT under 

well-watered conditions. Increased accumulation of anthocyanins in SPL9-RNAi stems 

supports the hypothesis that SPL9 is involved in anthocyanin biosynthesis in alfalfa, and 

because these plants additionally have increased tolerance to drought, this also indicates 

that miR156-mediated drought tolerance is due at least partly to the accumulation of 

anthocyanins.  
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Whether the interplay between SPL9 and DFR in alfalfa mirrors that in A. thaliana was 

investigated. Reduced DFR in SPL9-RNAi leaves is not unexpected as Gou et al. (2011) 

reported DFR expression in apical tissue was lower than that of basal tissue and 

anthocyanin pigments were concentrated to stem tissues. Therefore, DFR transcript levels 

were also measured in alfalfa basal stem tissue and due to the maintenance of DFR levels 

between conditions in R1 and R2 stems and increased DFR in R1 stems under drought, 

SPL9 must be involved in DFR regulation. Similar DFR transcript level patterns between 

WT and R3 stems suggest that a certain level of SPL9 abundance may be necessary for 

DFR regulation. Another possibility is that there is a SPL paralogue in alfalfa that is 

functionally redundant with SPL9. Wu and Poethig (2006) demonstrated that in A. 

thaliana, SPL3 acts redundantly with SPL4 and SPL5 and overexpression of any of these 

SPLs, when miR156 action was prevented, achieved similar phenotypic changes. Also, in 

A. thaliana, SPL15 operates redundantly with SPL9 (Schwarz et al., 2008; Yu et al., 

2015). In fact, spl15/spl9 double mutant has a stronger phenotypic change than single 

spl15 and spl9 mutants individually (Schwarz et al., 2008; Yu et al., 2015). A SPL15 

orthologue has not been identified in alfalfa but a yet to be identified SPL could be 

expressed in R3 at a higher level than the other SPL9-RNAi plants causing a decrease in 

DFR expression in response to drought. Interestingly, Feyissa et al. (2019) found that 

reduced levels of SPL13 resulted in alfalfa plants with enhanced levels of DFR and 

anthocyanin content due to the direct interaction between SPL13 and DFR promoter.  

4.6 SPL9 role in drought response is independent of antioxidant 

accumulation, root architecture and photosynthetic capability 

Arshad et al. (2017a) reported that enhanced tolerance of miR156 OE alfalfa plants to 

drought was partly due to increased antioxidant activity. In addition to finding an 

increased level of antioxidant activity in miR156 OE plants, two genes related to 

antioxidant activity, CAT1 and GSH, were upregulated in response to drought (Arshad et 

al., 2017a). N. tabacum plants with OE of miR156 also had enhanced expression of genes 

related to antioxidant activity (Kang et al., 2020). The antioxidant and drought traits were 

examined in SPL9-RNAi plants to determine if miR156-mediated antioxidant activity is 
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regulated through SPL9 in response to drought. Increased GSH transcript levels were 

observed in R3 compared to WT leaves under drought, and while WT leaves had 

significantly reduced GSH between conditions, GSH was maintained in SPL9-RNAi 

leaves between conditions. A similar result was seen when CAT1 transcript levels were 

examined. WT leaves had enhanced CAT1 in response to drought while again CAT1 was 

maintained between treatments in SPL9-RNAi leaves. R2 even had enhanced CAT1 

compared to WT under well-watered conditions. Despite increases in the transcript levels 

of individual genes related to antioxidant activity, the overall activity of antioxidants was 

unchanged between SPL9-RNAi and WT plants. Therefore, SPL9 does not appear to play 

a large role in antioxidant regulation via CAT1 and GSH in response to drought stress in 

alfalfa.  

Another trait that was affected in miR156 OE but not in SPL9-RNAi leaves was stomatal 

conductance. SPL9-RNAi leaves had the same stomatal conductance as WT plants under 

both control and drought conditions. Significantly reduced stomatal conductance between 

the conditions was observed in both SPL9-RNAi and WT leaves. As previously 

discussed, there are other miR156-targeted SPLs that regulate stomatal conductance. For 

example, Arshad et al. (2017a) demonstrated that SPL13-RNAi plants have similar 

increases in stomatal conductance as miR156 OE plants. Therefore, miR156-regulated 

drought tolerance may depend on multiple downstream SPL targets, which involve 

different stress tolerance strategies. Observations of stomatal conductance combined with 

chlorophyll content indicated enhanced photosynthetic capabilities of SPL13-RNAi plants 

(Arshad et al., 2017a). Similar to the result regarding stomatal conductance, SPL9 does 

not appear to regulate chlorophyll content under drought. SPL9-RNAi plants, except for 

R2, had decreased chlorophyll content between conditions. Therefore, the enhanced 

tolerance in SPL9-RNAi plants to drought is not a result of increased photosynthetic 

capabilities.  

In contrast to SPL13-RNAi plants investigated by Arshad et al. (2017a) and Feyissa et al. 

(2019), SPL9-RNAi had no change in root architecture in response to drought. SPL13-

RNAi genotypes displayed increased root length (Arshad et al., 2017a) while the root 

length of SPL9-RNAi plants was unaltered in response to drought. SPL9-RNAi roots 
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were also of similar length to WT plants under both control and drought conditions which 

is in contrast with the findings of Yu et al. (2015) that demonstrated a role for SPL9 in the 

regulation of root length in A. thaliana. In addition, the DW of roots was unchanged both 

between and within control and drought treatments. FW of roots was maintained between 

drought and control conditions in R2 and R3 plants whereas root FW decreased in 

response to drought in WT and R1 plants. However, the finding that roots had reduced 

FW but consistent DW in response to drought supports the conclusion drawn from shoot 

FW; overall, plants with the highest levels of SPL9 are losing water while those plants 

with the lowest SPL9 are capable of mitigating the water deficiency as indicated by 

RWC. 

4.7 Using CRISPR/Cas9 to silence SPL9 

Successful A. tumefaciens-mediated alfalfa transformation was evaluated by searching for 

the presence of the exogenous MtU6 promoter and SpCas9 gene that were expected to be 

transferred as part of the CRISPR/Cas9 construct to target MsSPL9 for mutagenesis. PCR 

amplification of gDNA extracted from potential SPL9-CRISPR plants using primers 

specific to MtU6 and SpCas9 were used to confirm the presence of these genes in the 

alfalfa genome and Sanger sequencing was utilized to determine if CRISPR/Cas9 system 

resulted in MsSPL9 mutagenesis. Mutations of MsSPL9 were not found in the region 

complementary to the CRISPR/Cas9 sgRNA, although the presence of Cas9 and MtU6 

were confirmed. Therefore, attempts to produce SPL9-CRISPR alfalfa plants were 

unsuccessful.  

Previously, utilizing CRISPR/Cas9 to edit MsSPL9 was attempted but yielded low alfalfa 

genome editing efficiency (Gao et al., 2018). This study sought to improve the genome 

editing efficiency of the CRIPR/Cas9 system in alfalfa. First, while CRISPR-P (Lei et al., 

2014) was utilized by Gao et al. (2018), the online tool has been updated and CRISPR-P 

2.0 (Liu et al., 2017) was used in this study. As a result of the update, different sgRNAs 

were deemed ideal choices for CRISPR/Cas9 targeting of MsSPL9. Secondly, Gao et al. 

(2018) utilized the A. thaliana U6 promoter, but the Medicago truncatula U6 (MtU6) 

promoter was used in this study in an attempt to improve genome editing efficiency in 
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M. sativa by using a promoter from species in the same genus. Meng et al. (2017) had 

greater success in editing M. truncatula using its native promoter than Gao et al. (2018) 

using the non-native AtU6 promoter. Despite these improvements, alfalfa genome editing 

was not observed in this study. One of the limitations of using CRISPR-P 2.0 (Liu et al., 

2017) is that sgRNAs are designed based on the M. truncatula genome. CRISPR-P 2.0 

(Liu et al., 2017) restricts sgRNA design to a finite list of reference genomes, which does 

not include M. sativa. Therefore, sgRNAs designed using this tool have to be altered to 

reflect the MsSPL9 sequence. Another limitation of this study is that only a single sgRNA 

was used in the CRISPR/Cas9 design, while Gao et al. (2018) used two sgRNAs. 

According to the CRISPR-P 2.0 (Liu et al., 2017) sgRNA design rules and literature 

(Doench et al., 2014; Doench et al., 2016; Hsu et al., 2013; Liang et al., 2016) there was 

no other sgRNA with a high enough score to use. It is possible that the native MsU6 

promoter used in tandem with multiple sgRNAs designed using software with updated 

scoring rules would result in alfalfa editing with higher efficiency in the future. 

4.8 Conclusion 

Abiotic stress has the potential to significantly reduce crop yields (Daryanto et al., 2016), 

which adds to the growing problems of meeting the demands for an ever-growing human 

population (Godfray et al., 2010; Tilman et al., 2011). Economically important crops such 

as alfalfa must be improved in both quality and quantity in the face of these adverse 

conditions. When increasing the land upon which these crops are grown is not an option, 

crop yields on pre-existing agricultural areas should be improved (Tilman et al., 2011). A 

molecular tool to achieve this, miR156 has not only been demonstrated to increase alfalfa 

yields (Aung et al., 2015) but has also been linked to the regulation of abiotic stress 

tolerance (Arshad et al., 2017a; Arshad et al., 2017b; Feyissa et al., 2019; Matthews et al., 

2019). miR156 functions by downregulating downstream genes to control different stress 

mitigating strategies (Rajwanshi et al., 2014). These downstream genes have not been 

fully characterized in alfalfa and present an opportunity to investigate the mechanism by 

which miR156 not only controls development but also tolerance to abiotic stresses, such 

as drought.  
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SPLs are a family of downstream targets of miR156 (Wang and Wang, 2015) and some 

SPLs, like SPL9, are largely uncharacterized in alfalfa. In this study, the impact of SPL9 

on alfalfa developmental control was assessed by comparing SPL9-RNAi with WT plants. 

Since SPL9-RNAi plants displayed reduced stem thickness, internode length and plant 

height and enhanced branching, it can be concluded that SPL9 plays a role in the positive 

regulation of stem thickness, internode length and plant height and a negative role in 

branching (Figure 18). In addition, plant height, internode length and branching were 

found to be more sensitive than stem thickness to the level of SPL9 silencing present, 

resulting in changes to these traits only being observed at later stages of plant 

development. miR156 OE plants also had similar traits according to Aung et al. (2015) 

therefore establishing that, either alone or with other SPLs, reduced levels of SPL9 

mediated by miR156 result in phenotypic changes related to plant development.  

Not only does SPL9 impact alfalfa development, but it also regulates response to drought, 

as plants with silenced SPL9 showed improved tolerance. Building on the observation by 

Arshad et al. (2017a) and Feyissa et al. (2019) that miR156 OE plants also had increased 

tolerance to drought, SPL9 was reduced in response to drought in WT alfalfa. This study, 

combined with previous investigations of SPL13 (Arshad et al., 2017a; Feyissa et al., 

2019), provided evidence that multiple SPLs are targeted by miR156 in response to 

drought in alfalfa. SPL9-RNAi plants had reduced leaf senescence under drought 

conditions, and this resulted in the maintenance of growth despite the adverse drought 

conditions. Drought trials regarding SPL9-RNAi plants revealed that a certain level of 

silencing is required for improved tolerance to be observed; with the plants with the 

lowest expression of SPL9 having the best tolerance. Unlike the case of plants with 

silenced SPL13, which displayed drought tolerance due to enhanced root length, 

photosynthetic capability, and water retention (Arshad et al., 2017a; Feyissa et al., 2019), 

drought tolerance in SPL9-RNAi plants could be attributed to enhanced anthocyanin 

content contributing to improved ROS scavenging (Figure 18).  

  



 

74 

 

 

Figure 18. A model for the miR156/SPL9 module in regulating plant development 

and drought stress 

In this study, SPL9 was found to positively regulate plant height, stem thickness, and 

internode length and negatively regulate branching as part of the miR156 control over 

plant development. Reduced levels of SPL9 also resulted in an increase in anthocyanin 

biosynthesis supporting its negative regulation of DFR transcription in alfalfa.  
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Chapter 5  

5 Future Directions 

Determination of the role of SPL9 in alfalfa development in this study was based on the 

evaluation of plants with reduced SPL9. Consensus between the three SPL9-RNAi plants 

in phenotypic traits was only seen in stem thickness and plant height. Transgenic alfalfa 

with increased SPL9 should also be evaluated. Examining phenotypic traits in SPL9m-OE 

alfalfa could further uncover the role of SPL9 in alfalfa development.  

While drought stress was the focus of this study, miR156 has been found to mediate 

tolerance to a number of different abiotic stresses in alfalfa, including salinity and heat 

(Arshad et al., 2017b; Matthews et al., 2019). The involvement of SPL9 in abiotic stress 

tolerance may not be limited to drought. Thus, the role of SPL9 in miR156-mediated 

tolerance to other abiotic stresses should be evaluated. In addition, the exact nature of the 

mechanism through which SPL9 exerts control over anthocyanin biosynthesis should be 

examined further. Direct interaction between SPL9, PAP1 and DFR was reported in A. 

thaliana (Gou et al., 2011), but has not been examined in alfalfa. The upregulation of 

anthocyanins in alfalfa plants with reduced levels of SPL9 supports the model 

investigated by Gou et al. (2011), but further investigation is required to dissect the mode 

of action in alfalfa.  
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Appendices 

Appendix A 

Primers utilized and the project in which they were used. 

Primer Name Primer Sequence Primer Use 

SPL9RNAi_F CACCCTCTCTCTTCTGTCAAATCAAACA 

TGGG 

SPL9-RNAi construct cloning  

SPL9RNAi_R TTACAGTGACCATTGAGAAGATTCATA 

GG 

SPL9-RNAi construct cloning  

LA-MsSPL9-Fq1 AGATACAGCTCTTGCTACTG qPCR – SPL9 transcript level 

LA-MsSPL9-Rq1 GTTGAGAATGTTGAACTGAC qPCR – SPL9 transcript level 

DFR-F GTTTGTGTCACAGGGGCTTC qPCR – DFR transcript level 

DFR-R TTCAAGTTTTCTGGGTCGCG qPCR – DFR transcript level 

CAT1-F GAAAAGCTTGCCCAATTTGA qPCR – CAT1 transcript level 

CAT1-R ATGACGGGTGTCTGAACTCC qPCR – CAT1 transcript level 

GSH-F ACGCTTCCCAGCTTTAATGA qPCR – GSH transcript level 

GSH-R CCCCAACAAGAAGACCATTG qPCR – GSH transcript level 

ms_ADF1qF TCAAGGCGAAAAGGACACAC qPCR (reference gene) - MsADF 

ms_ADF1qR AAAACAGCATAGCGGCACTC qPCR (reference gene) - MsADF 

ms_EIF4AqF TGCTAAGTTGCCTGAAACCG qPCR (reference gene) – MseIF4A 

ms_EIF4AqR TGCCCATGTTTTCACCTTGC qPCR (reference gene) – MseIF4A 

LH_Cas9_F1 CCAGAGAAAATCAGACCACA PCR – SpCas9 amplification 

LH_Cas9_R1 CTTGAGGCATAGAGAGAACC PCR – SpCas9 amplification 

MtU6-F GCTTAGGCCTTCTAGAATCCAACATTTC 

ACTTGAGTTAACT 

PCR – MtU6 amplification 

MtU6-R AAACCCTGCTGTTCGTCTAG PCR – MtU6 amplification 

Scaffold-R GGCAACGCGTTCTAGAAAAAAAAGCAC 

CGACTCGGTGC 
PCR – MtU6:sgRNA amplification 
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Appendix B 

Full length Medicago sativa SPL9 cDNA (Gao et al., 2016) with the protein coding 

sequence highlighted in yellow, the miR156 recognition sequence shown in red bolded 

text, SPL9RNAi_F/R primers labelled with a single underline, LA-MsSPL9-Fq1/Rq1 

primers labelled with a double underline, and the portion of the sgRNA used to target 

MsSPL9 using CRISPR is shown in black bolded text.  

ATACGCTGCACTGCATCACTGCACTGAACTGGGTTCCTGCCAACAATACATATGGCCCAGCAGTGTCAACTC

ACTTCTTCCTTCCACCTCTTCCTCTTTTGTCTTCCACTTCACTTTTCCACTATCATTCACTCTCTTCTTTTT

TTAATGTTTTCACTTTAACCAACAATAACAACCACCACTCCCCAGACCCCCCTCACCTATACTATTCTCTCA

CTCTTACACTCACACTTCACTTCACTTCACTTATCTCTCACCAATGAACACAATCTAGCAACCACCACCAAA

CCTCACACCAATGGATTCAGGAGGCAACTCTTCTTCGGAAGAGTCCTCTCTTAATGGCTTAAAATTTGGCCA

ACGAATCTATTTTGAAGATACAGCTCTTGCTACTGCTGCTGCTGCTACTTCTACCACCATTGCTGCTAGTTC

TTCTTCTTCTTCTGGTTCAAAGAAAGGAAGAGGTGGGTCAGTTCAACATTCTCAACCACCTCGGTGTCAAGT

TGAAGGATGTAAACTAGATCTGACTGATGCTAAAGCTTACTATTCTAGACACAAAGTTTGTAGCATGCACTC

TAAGTGCCCAACTGTTACTGTTTCTGGTCTACAACAAAGGTTTTGTCAACAATGTAGCAGATTTCATCAGCT

TGCTGAGTTTGATCAAGGAAAAAGAAGTTGCCGGAGACGACTAGCTGGTCATAACGAGCGTCGCAGAAAGCC

CCCACCCAGCTCTCTCTTAACCTCACGTTTTGCCAGGCTTTCTTCATCTGTTTTTGGTAACAGTGACAGAGG

TGGCAGCTTCTTGATGGAATTTGCTTCAAACCCAAAACTTAGTCTGAGAAATTCACTTCCACCACCCGGAAA

TCAGACCACAACAATCGGTTGGCCTTGGCCGGGGAACACGGAGTCGCCATCTGACAACCTTTTCTTGCAAGG

TTCGGTGGGTGGGACAAGCTTCCCTGGTGCCAGGCATCCTCCCGAGGAAACTTACACCGGAGTCACAGATTC

AAACTGTGCTCTCTCTCTTCTGTCAAATCAAACATGGGGTTCTCGAAACACAGAACCAAGTCCTGAATTGAA

TAACATGCTGAATTTCAATGGGACATCCATGACACAACATGCTACATCTTCTCATGGTGTAGCCATGCATCA

AATTCCAAACAATTACGAGGTTGTCCCTGATCTTGGTCGGGGTCACATTTCGCAGCCTCTTGGTAGCCAACT

CTCTGGTGAGCTTGATCTGTCGCAGCAGGGAAGGAGGCATTATATGGATGTAGAACATTCCAGGGCCTATGA

ATCTTCTCAATGGTCACTGTAATGCACTTGTTTGCTTTCAGGTTTGTAATAACATGTTTCACAAATATTTGA

ACTCAGGAAAGTGAGAAGTGAACTAAGGCATACTTGATGCTCTTGCTTGTTTTGGTTTGTTTAAACTGTTAG

GCAAGGTGGGGCTAGCCTTGCTTCACTTTGTGGTTTGTAATCTCTTCCTAGTTATTTGAGATTATCATGGTT

TCAAATTTCAGGAAGTTGTTTGATGTGGATTTGGTTGCACCTTTGTAGCATTGTGATTGTGAAAATTGCAAA

TAAATGTTGCAATAGCGGCTTGAATCAATTTTATGTTTGCATTGAATGAT 
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