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ABSTRACT 

Visually exploring the surrounding environment relies on attentional selection of 

behaviourally relevant stimuli for further processing. The prefrontal cortex contributes to 

target selection as part of a frontoparietal network that controls shifts of gaze and 

attention towards relevant stimuli. Evidence from stroke patients and nonhuman primate 

lesion studies have shown that unilateral damage to the prefrontal cortex commonly 

impairs the ability to allocate attention toward stimuli in the contralesional visual 

hemifield. Although these impairments often exhibit a gradual improvement over time, 

the neural plasticity that underlies recovery of function remains poorly understood. The 

main objective of this dissertation was to study the relationship between large-scale 

network reorganization and the recovery of lateralized target selection deficits. To that 

aim, endothelin-1 was used to produce unilateral ischemic lesions in the caudal lateral 

prefrontal cortex of four rhesus macaques. Longitudinal behavioural and neuroimaging 

data were collected before and after the lesions, including eye-tracking while monkeys 

performed free-choice and visually guided saccades, resting-state fMRI, and diffusion-

weighted imaging. Chapter 2 investigated the effects of unilateral prefrontal cortex 

lesions on saccade target selection and oculomotor parameters to disentangle attentional 

and motor impairments in the lasting contralesional target selection deficit. Chapter 3 

examined the resting-state functional reorganization in a frontoparietal network during 

recovery of contralesional target selection. Finally, Chapter 4 investigated microstructural 

changes in cortical white matter tracts from diffusion-weighted imaging after behavioural 

recovery compared to pre-lesion. In general, spatiotemporal patterns of functional and 

structural network reorganization differed based on the extent of prefrontal damage. 

Altogether, these studies characterized the recovery of lateralized target selection deficits 

in a macaque model of focal cerebral ischemia and demonstrated involvement of both 

contralesional and ipsilesional networks throughout behavioural recovery. The broad 

implication of this research is that a network perspective is fundamental to understanding 

compensatory mechanisms of brain reorganization underlying recovery of function. 
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SUMMARY FOR LAY AUDIENCE 

Exploring our surrounding environment involves continuous internal decisions about 

where to look. This ability to choose specific locations to look at out of many other 

options relies on a network of brain areas in the frontal and parietal cortex. Injury to one 

side of the brain that affects frontal-parietal areas usually impairs the ability to pay 

attention to and look toward the opposite side of space. For example, patients with a 

right-sided stroke may fail to apply make-up or shave the left half of their face, leave 

uneaten food on the left side of their plates, or frequently bump into objects on their left 

side. Fortunately, many patients show gradual improvement over time due to the brain’s 

ability to repair itself and reorganize connections to compensate for lost function. 

However, the extent of recovery varies across cases and many patients are left with long-

term disability. The main goal of this research was to study the brain changes that 

underlie recovery of attention and gaze toward the ignored side of space. Eye-tracking 

and brain imaging data were collected before and after a right-sided lesion to part of the 

frontal cortex in nonhuman primates. Eye movements were recorded to monitor the 

frequency of looking toward the left versus right visual hemifield, while MRI scans were 

used to measure the corresponding changes in brain connections during recovery over 

time. Chapter 2 focused on studying the degree that a lack of left-sided awareness 

resulted from deficits in attention and/or eye movements. Brain imaging studies in 

Chapters 3 and 4 demonstrated changes in brain function and structure across frontal-

parietal networks in both sides of the brain. We found that patterns of brain 

reorganization differed based on lesion size and that involvement of brain areas located 

far from the site of damage was associated with behavioural recovery. This work 

importantly contributes to the understanding of brain reorganization in visual attention 

networks and may have implications for treatment and rehabilitation strategies to 

optimize recovery after brain injury. 
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CHAPTER 1 

1. General Introduction 

Naturally exploring our surrounding visual world requires selective processing of 

relevant visual stimuli among many others that compete for our attention. Since our 

visual world is full of many more stimuli than our sensory system can successfully 

process at a time, selection mechanisms are necessary for our ability to attend or respond 

to those that are behaviourally relevant. Visuospatial attention is one type of attentional 

selection mechanism that selects a visual stimulus for further processing based on where 

it is located in space (Petersen and Posner, 2012; Posner, 1980). Relevant stimuli may be 

selected and processed by a covert shift in attention (without overtly directing the eyes to 

the visual stimulus) or by additionally directing an overt eye movement toward the 

stimulus (Desimone and Duncan, 1995). Saccades are the rapid eye movements that shift 

gaze to a new location of interest and are followed by a period of fixation, which is when 

the eyes are stationary and focused on the new stimulus, before the next location is 

selected for a saccade target (Liversedge et al., 2012). Saccades are used to align a 

location of interest with the fovea for high acuity visual processing during fixation. Thus, 

when exploring a visual scene, we are continuously making decisions about where to 

look in space through covert selective attention and overt orienting to that selected 

location by generating an appropriate saccade. This interactive relationship between 

covert shifts in visual attention to select the next saccade target and overt saccadic eye 

movements requires the coordination of several brain areas in largely overlapping 

networks. Unilateral damage to those brain areas commonly results in visual neglect 

and/or extinction, two related disorders of visuospatial attention that impair the ability to 
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attend to stimuli in the contralesional visual field (i.e., the visual field opposite to the 

lesion; e.g., right hemisphere damage impairs visuospatial attention in the left visual 

hemifield) and may spontaneously recover over a period of weeks to months. Visual 

neglect and extinction are thought to reflect the breakdown of visual attention to 

contralesional space which recovers gradually over time. Thus, these disorders are 

potentially valuable models for studying the brain networks that control overt shifts of 

visuospatial attention and how those networks reorganize to compensate for loss of 

function. In this introductory chapter, I will review (1) the brain areas involved in covert 

visual attention and overt saccadic eye movements, (2) clinical and experimental 

evidence for visual extinction and neglect, and (3) how the relevant brain network 

changes functionally and structurally after focal damage to support the recovery of 

visuospatial attention deficits.  

1.1. Neural basis of visuospatial attention and saccadic eye movements 

Although visual attention may be allocated to a location in space without a saccade 

directed to that location (covert visual attention), a saccadic eye movement relies on a 

shift in visual attention towards the upcoming saccade target prior to executing the 

saccade to that location of interest. In other words, overt shifts of visuospatial attention 

rely on both covert visual attention to select the next saccade target and an overt saccadic 

eye movement to foveate the location of interest. This behavioural link between 

visuospatial attention and saccadic eye movements has been demonstrated by 

psychophysical evidence that visual stimulus detection and discrimination accuracy was 

highest for the stimulus located at a pre-determined saccade endpoint, indicating that 

attention was allocated to the saccade target location prior to saccade execution (Deubel 

and Schneider, 1996; Hoffman and Subramaniam, 1995; Kowler et al., 1995). Evidence 
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for this close association between attention and saccades is also found at the 

neurophysiological level, where some researchers have proposed that covert visuospatial 

attention and saccades are part of the same neural process (Rizzolatti et al., 1987). In this 

‘premotor theory of attention’, Rizzolatti and colleagues postulate that covert shifts of 

spatial attention to a visual stimulus merely arises from the saccade preparation 

commands within oculomotor structures even when an overt saccadic response is not 

made (Rizzolatti et al., 1987). Although this theory has garnered support over the years 

from studies showing a common cortical brain network for both attention and saccades, 

there is convincing evidence that these two mechanisms are served by separate neuronal 

populations within an individual oculomotor area that is part of that common network 

(Juan et al., 2004; Pouget et al., 2009; Sato and Schall, 2003; Thompson et al., 2005). 

These findings better account for the phenomenon of covertly attending to a peripheral 

location in space without looking towards it while still in support of attentional selection 

functions by a cortical oculomotor network.  

Much of our current understanding of primate oculomotor function has been gleaned 

from studies in nonhuman primates, mostly macaque monkeys. Not only do human and 

nonhuman primates share comparable eye movements (Fuchs, 1967) and visual search 

strategies for saccade targets (Berg et al., 2009; Ramkumar et al., 2015; Segraves et al., 

2017), but the oculomotor systems that form the neural basis for eye movement control 

are also highly conserved across species in terms of their cytoarchitecture (Fig. 1.1) 

(Amiez and Petrides, 2009; Petrides and Pandya, 2002, 1999), anatomical connectivity 

(Croxson et al., 2005; Thiebaut de Schotten et al., 2012), and functional organization 

(Hutchison et al., 2012; Hutchison and Everling, 2012; Koyama et al., 2004). As I will 

describe in this section, a common network of frontal and parietal brain regions is 

involved in the covert shifts of visuospatial attention and saccadic eye movements in 
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humans and nonhuman primates. This section will review studies of healthy brain 

function from (1) electrophysiological and microstimulation studies of the frontal and 

parietal oculomotor areas in nonhuman primates and their role in saccade target selection 

and (2) functional neuroimaging studies that reveal the homologues of those cortical 

areas in humans. Evidence from lesion and inactivation studies will be reviewed in 

Section 1.2. 

1.1.1. Nonhuman primate neurophysiology  

Experimental evidence from monkey electrophysiological and microstimulation studies 

over the past several decades have established that areas of the caudal prefrontal cortex 

(PFC) and posterior parietal cortex (PPC) are the main cortical areas that modulate shifts 

of visuospatial attention and saccadic eye movements (Bisley and Goldberg, 2003; 

Buschman and Miller, 2007; Colby et al., 1996; Desimone and Duncan, 1995; Everling et 

al., 2002; Moore and Fallah, 2001; Saalmann et al., 2007; Schall et al., 1995). 

Specifically, these cortical areas include the frontal eye field (FEF) and dorsolateral PFC 

(DLPFC) located in the caudal PFC and the lateral intraparietal area (LIP) in the PPC 

(See Fig. 1.1A). Although this review will focus on cortical control of visuospatial 

attention, it is worth mentioning that recent studies have also demonstrated a role for the 

subcortical superior colliculus in selecting targets for saccades (Krauzlis, 2014; Krauzlis 

et al., 2013; McPeek and Keller, 2004; Müller et al., 2005).  

Lateral areas of the primate PFC have been classically defined based on cytoarchitecture 

by the presence of a granular layer IV (Brodmann, 1913; Petrides and Pandya, 1999) and 

input from the mediodorsal nucleus of the thalamus (Akert, 1964; Fuster, 2008). 

Anatomically located within the caudolateral PFC, the macaque FEF corresponds to the 

cytoarchitecturally defined area 8A and is located along the anterior bank of arcuate 
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sulcus, while the DLPFC corresponds to area 9/46D and is located posterior third of the 

dorsal bank of the principal sulcus, just anterior to the FEF (Fig. 1.1A) (Petrides and 

Pandya, 1999). Both regions exert their roles in target selection and saccades through 

shared extensive reciprocal connections with ipsilateral cortical oculomotor structures, 

including the LIP, other higher order visual areas, and with nearby and contralateral PFC 

areas (Barbas et al., 2005; Barbas and Mesulam, 1985; Borra et al., 2019; Kunzle and 

Akert, 1977; Maioli et al., 1983; Petrides and Pandya, 1999, 1984; Stanton et al., 1993). 

FEF and DLPFC also send projections to subcortical oculomotor areas, including the 

superior colliculus (Fries, 1984; Goldman and Nauta, 1976; Stanton et al., 1988a), 

caudate and putamen (Stanton et al., 1988b; Yeterian and Pandya, 1991), and pontine 

nuclei (Kunzle and Akert, 1977; Schmahmann and Pandya, 1997; Stanton et al., 1988b), 

and in turn receive subcortical input via the mediodorsal thalamus (Goldman-Rakic and 

Porrino, 1985; Tian and Lynch, 1997). While some descriptions of DLPFC also include 

the FEF due to variations in nomenclature, here I will describe the FEF separately from 

the DLPFC based on its distinct characteristics including a high concentration of large 

pyramidal neurons in layer V (Stanton et al., 1989) and that microstimulation at low 

currents (< 50 μA) elicits saccadic eye movements (Bruce and Goldberg, 1985a). 
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Figure 1.1. Schematic of the prefrontal and posterior parietal cortex in a human and 

macaque brain. 

Lateral views of the parcellated prefrontal and posterior parietal cortex in the (A) 

macaque and (B) human brain. Prefrontal areas in the macaque and human brain are 

based on the Petrides and Pandya (1999) parcellation scheme. Posterior parietal areas in 

the macaque brain, including the panel on the right, are based on the Pandya and Seltzer 

(1982) parcellation scheme; the panel on the left showing LIP is from the Rizzolatti et al. 

(1998) parcellation. The present research project largely focuses on the FEF (area 8A) 

and DLPFC (area 9/46D) in the macaque prefrontal cortex. The macaque image was 

modified with permission from: Katsuki and Constantinidis (2012) Unique and shared 

roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. 

Front. Integr. Neurosci. 6:17. The human prefrontal cortex image was modified with 

permission from: Petrides and Pandya (1999) Dorsolateral prefrontal cortex: comparative 

cytoarchitectonic analysis in the human and the macaque brain and corticocortical 

connection patterns. European Journal of Neuroscience, 11(3): 1011-1036. The bottom 

right image depicting the human brain is in the public domain and free for reuse.  
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It is well established that the FEF plays a critical role in the control of saccadic eye 

movements and target selection (Johnston and Everling, 2012; Schall, 2002; Schall and 

Thompson, 1999). Early microstimulation studies demonstrated that applying low 

currents (< 50 μA) to the FEF can evoke saccades to the contralateral visual field with a 

fixed vector and amplitude that varies depending on stimulation site (Bruce and 

Goldberg, 1985a; Robinson and Fuchs, 1969). Single neuron recordings in the macaque 

FEF during various oculomotor tasks (e.g., visual search, visually-guided saccade, 

memory-guided saccade; Fig 1.2) revealed pre-saccadic activity related to visual stimuli, 

movement, and anticipation of a predicted future saccade (Bruce and Goldberg, 1985b; 

Schall, 1991). This work supported a role for FEF neurons in saccade generation and 

visual processing.  

Recently, several studies have demonstrated that the FEF is important in the spatial 

selection of visual targets (i.e., covert visuospatial attention) for a saccade (Murthy et al., 

2009; Sato et al., 2001; Schall, 2004; Schall et al., 1995; Schall and Hanes, 1993; 

Thompson et al., 1997). During a visual search task (see Fig 1.2), visually responsive 

neurons in FEF signal the location of an oddball target stimulus among non-target 

distractors such that FEF activity is increased when the target is in the response field and 

is suppressed when the non-target is in the response field (Thompson et al., 2001). This 

selective process by FEF neurons took longer when distractors were similar to the target 

(Sato et al., 2001) and this spatial selectivity signal appeared even in the absence of an 

overt saccadic response (Thompson et al., 2005, 1997) or in the absence of a visual 

stimulus in the attended location (Zhou and Thompson, 2009). Monosov et al. (2008) 

provided evidence that the FEF locally computes the spatial selection of a relevant target, 

rather than receiving spatial selectivity signals from other sources. Local field potentials 

(LFPs) are thought to reflect the summed synaptic input activity whereas spiking activity 
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are the action potentials reflecting neural output (Logothetis, 2002). The authors recorded 

LFPs and spiking activity in the FEF of monkeys performing a covert visual search task 

where they had to identify the location of a target by turning a lever in the same direction 

but in the absence of eye movements. The spatial selectivity that signaled the target 

location appeared in the spiking activity before the LFP response, suggesting that FEF 

neurons are locally coding a spatial representation of the behaviourally relevant targets 

necessary for guiding visual attention and saccades. Thompson and Bichot (2005) 

reviewed several experiments which demonstrate that the FEF identifies locations of 

interest by combining bottom-up/stimulus-driven and top-down/goal-oriented influences 

for target selection in a topographic visual salience map – providing further support that 

the FEF is important for covert visuospatial attention in addition to generating overt gaze 

shifts (Thompson and Bichot, 2005). A causal link between FEF activation and covert 

visual attention was shown in a microstimulation study by Moore and Fallah (2001). In 

their experiments, subthreshold microstimulation (i.e., less than that needed to evoke a 

saccade) was delivered to the FEF while monkeys indicated with a blink when a 

peripheral visual target dimmed in the presence of flashing distractor stimuli. The authors 

found that FEF microstimulation improved performance for targets in the response field, 

indicating that FEF can directly enhance visuospatial attention to a target without a 

saccadic eye movement. It was later suggested that FEF likely modulates attention in the 

visual cortex via feedback signals to higher order visual area V4 (Armstrong et al., 2006; 

Ekstrom et al., 2008; Moore and Armstrong, 2003; Premereur et al., 2012). Altogether, 

extensive evidence accumulated over the last several decades establish the involvement 

of FEF in the covert visuospatial attention processes necessary for target selection and 

saccadic eye movements. 
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The DLPFC (area 9/46D) lies dorsal to the principal sulcus and just anterior to the FEF 

with a connectivity pattern that makes this area well suited for regulating visual target 

selection for saccades. As described earlier, the DLPFC is densely and reciprocally 

connected with the ipsilateral FEF, LIP, and higher order visual areas in the cortex and 

sends projections to subcortical oculomotor structures, including the superior colliculus. 

It is thought that the DLPFC computes flexible associations between stimulus input and 

goal-oriented behavioural output and modulates activity in connected brain areas by 

sending biased signals in favour of a behaviourally relevant response (Miller and Cohen, 

2001). Seminal electrophysiological studies of the DLPFC in monkeys showed activity 

related to the onset of visual stimuli and saccadic eye movements and persistent activity 

during the delay period after a peripheral visual cue was presented to signal the location 

of an upcoming visual saccade target (Funahashi et al., 1991, 1990, 1989). This persistent 

delay-period activity in DLPFC neurons can represent spatial information about the target 

location and the saccade direction (Funahashi et al., 1991, 1990, 1989), maintain task 

rules (Asaad et al., 2000; White and Wise, 1999), and can modulate visual attention by 

selecting and maintaining behaviourally relevant targets (Everling et al., 2006, 2002; 

Hasegawa et al., 2000; Iba and Sawaguchi, 2003; Rainer et al., 1998).  

Although decades of research have attributed DLPFC activity to working memory 

representations, several lines of evidence suggest that DLPFC activity also represents 

covert visuospatial attention as demonstrated by its ability to bias saccade target selection 

(Buschman and Miller, 2007; Everling et al., 2002; Johnston and Everling, 2006; Kaping 

et al., 2011; Lebedev et al., 2004; Opris et al., 2005). Everling et al. (2002) recorded 

single neuron activity in the DLPFC during a task in which monkeys maintained central 

fixation while covertly attending to a cued peripheral location until a visual target 

appeared which required a saccade to the target. The authors found that DLPFC activity 
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discriminated between targets and non-targets in the attended location before saccade 

onset, with enhanced activity for targets and suppressed activity for non-targets (Everling 

et al., 2002).  Further support for the involvement of DLPFC in saccade target selection 

was demonstrated after microstimulation of DLPFC neurons during the delay period on a 

delayed match-to-sample saccade task biased saccade target selection in a manner that 

was related to the neuron’s response field (Opris et al., 2005). Johnston and Everling 

(2006) later found direct evidence that the DLPFC exerts its influence on target 

selectivity by directly sending signals to the superior colliculus to bias the upcoming 

saccadic eye movement (Johnston and Everling, 2006). While the DLPFC likely does not 

signal oculomotor commands for saccade generation, it is clear that the DLPFC plays a 

role in allocating visuospatial attention by regulating target selection and saccadic eye 

movements. 
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Figure 1.2. Behavioural tasks. 

These tasks are mentioned throughout Chapter 1. In visually-guided saccade tasks, 

monkeys are required to fixate a central stimulus until a peripheral target appears, at 

which point the monkey must saccade towards the target. In a double stimulus task, two 

targets appear after fixation either simultaneously or with presentation of either target 

before the other by a stimulus onset asynchrony (e.g., left stimulus presented before the 

right stimulus by 150 ms). In free-choice double stimulus tasks, the monkey can saccade 

to either target for a reward, whereas in temporal-order judgement tasks, the saccade 

must be directed toward the first-appearing stimulus in the asynchronous trials. In visual 

search tasks, monkeys must identify an oddball stimulus by either directing a saccade 

towards the target (overt task) or pushing a lever to indicate its presence (covert). In 

memory-guided saccade tasks, a peripheral visual target is briefly flashed while the 

monkey maintains central fixation and must saccade towards the remembered target 

location after the central fixation point has disappeared. Pro- or antisaccade trials are 

indicated by a flashed green or red visual cue, respectively. For prosaccades, the monkey 

must direct a saccade toward the peripheral target, whereas antisaccade trials require the 

monkey to saccade away from the target.   
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Another important cortical area for visual attention and gaze shifts is the LIP in the 

posterior parietal cortex (Gottlieb, 2007). LIP is located in the lateral wall of the 

intraparietal sulcus and is also highly connected to brain areas mediating saccadic eye 

movements, including reciprocal connections with the caudal PFC, including FEF and 

DLPFC (Barbas and Mesulam, 1985; Blatt et al., 1990; Borra et al., 2019; Lewis and Van 

Essen, 2000; Petrides and Pandya, 1984), and with the superior colliculus (Andersen et 

al., 1990; Lynch et al., 1985), and receives input from several higher order visual areas, 

including areas PO, V3, V4, TEO, MT, and MST (Blatt et al., 1990; Lewis and Van 

Essen, 2000). Similar to the DLPFC, the LIP is not directly involved in saccade 

generation, but contributes to attentional selection for eye movements. It is thought that 

the LIP represents a ‘priority map’ (Fecteau and Munoz, 2006) that combines visual 

stimulus saliency and top-down goal-oriented information into a spatial map of 

behaviourally relevant target locations to guide saccade target selection (Bisley and 

Goldberg, 2010; Paré and Dorris, 2012). Single neuron recordings in the LIP showed that 

activity was modulated by the saliency of the visual stimulus in their response fields, 

such that activity was enhanced for visual stimuli that were behaviourally relevant and 

suitable candidates for saccade targets (Bushnell et al., 1981; Gottlieb et al., 1998; 

Robinson et al., 1978). Early work reported that this enhanced LIP activity did not predict 

whether a saccade would be initiated or to which location the saccade would be directed 

(Gottlieb and Goldberg, 1999; Powell and Goldberg, 2000). This suggested that LIP does 

not necessarily represent the final decision for a saccade target, but instead reflects the 

covert shift in visual attention towards a salient stimulus (Robinson et al., 1995; Yantis et 

al., 2002), reinforces the attentional priority of that stimulus (Bisley and Goldberg, 2003), 

and serves to provide that information about stimulus priority to connected oculomotor 

areas more directly involved in saccade target selection (Gottlieb et al., 2005). However, 

evidence for a more direct role for LIP in saccade target selection was reported during 
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more naturalistic task conditions than previous studies (Ipata et al., 2006). Ipata et al. 

(2006) recorded from LIP neurons during a free-viewing visual search task and reported 

that LIP activity was enhanced when the target was in the neuron’s response field which 

correlated with the selection of the saccade target and with saccadic reaction time. 

Nonetheless, it is clear that LIP has an important part in selecting relevant visual targets 

for overt shifts in visuospatial attention with saccadic eye movements. 

1.1.2. Functional neuroimaging evidence of a frontoparietal network for 

attention and saccades 

As outlined above, a cortical network of prefrontal and parietal areas are thought to be the 

major source of top-down biasing signals to resolve attentional competition between 

stimuli by overt shifts of visuospatial attention with saccadic eye movements (Corbetta 

and Shulman, 2002; Kastner and Ungerleider, 2000). While the functions of FEF/DLPFC 

and LIP were described above from nonhuman primate studies, here I will highlight their 

human homologs and describe findings from functional imaging studies in both humans 

and monkeys that reveal this frontoparietal network subserving visual attention and 

saccades.  

In humans, the likely FEF homologue is thought to be located in the caudal portion of the 

middle frontal gyrus, immediately anterior to the precentral sulcus and ventral to the 

superior frontal gyrus, roughly corresponding to Brodmann areas 8A and 6 (Fig. 1.1B) 

(Blanke et al., 2000; Paus, 1996; Tehovnik et al., 2000). Human DLPFC generally 

corresponds to area 9 and 46 and lies in the middle third portions of the middle frontal 

gyrus and superior frontal gyrus (Hagler and Sereno, 2006; Rajkowska and Goldman-

Rakic, 1995). While the exact location for the putative LIP homologue in humans is still 

debated, many suggest it is likely situated within the dorsomedial wall of the intraparietal 
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sulcus, in the ventral part of the superior parietal lobule (de Haan et al., 2015; Grefkes 

and Fink, 2005; Koyama et al., 2004).  

Functional neuroimaging techniques offer the advantage of noninvasively measuring 

whole brain activation to identify areas associated with the cognitive functions necessary 

for task performance. Several task-based functional imaging studies have established that 

covert shifts of visuospatial attention and saccadic eye movements recruit a highly 

overlapping frontoparietal network (Fig 1.3), including the FEF, DLPFC, and LIP, both 

in monkeys (Wardak et al., 2011) and in humans (Corbetta, 1998; Grosbras et al., 2005). 

The evidence for an overlapping network in monkeys comes from separate functional 

MRI (fMRI) studies showing activation during either saccade tasks (Baker et al., 2006; 

Koyama et al., 2004) or covert visuospatial attention (Bogadhi et al., 2018; Caspari et al., 

2015; Wardak et al., 2010). 
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Figure 1.3. A common network for attention and saccades. 

BOLD activation maps from functional MRI during attention and saccade tasks in (A) 

macaque monkeys and (B) humans. In macaques, covert visual attention (left) activates 

prefrontal, posterior parietal, and superior temporal areas; modified with permission 

from: Bogadhi et al. (2018) Brain regions modulated during covert visual attention in the 

macaque. Scientific Reports, 8:15237. Saccadic eye movements in monkeys (right) 

activate similar areas around the arcuate sulcus (as), principal sulcus (ps), intraparietal 

sulcus (ips), and superior temporal sulcus (sts); modified with permission from: Baker et 

al. (2006) Distribution of activity across the cerebral cortical surface, thalamus and 

midbrain during rapid, visually guided saccades. Cerebral Cortex, 16:447-459. Similar 

overlapping networks are seen in humans; modified with permission from Corbetta et al. 

(1998) Frontoparietal cortical networks for directing attention and the eye to visual 

locations: Identical, independent, or overlapping neural systems? Cerebral Cortex, 95: 

831-838. 
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Monkey fMRI studies revealed saccade-related activation in bilateral FEF, DLPFC, LIP, 

and superior temporal sulcus (Baker et al., 2006; Koyama et al., 2004). In another fMRI 

study, covert shifts of spatial attention to a peripheral visual stimulus recruited caudal 

portions of area 46 corresponding to the DLPFC, areas in the posterior parietal cortex 

including LIP and superior parietal lobule/area PE, and higher order visual area V6/V6a 

(Caspari et al., 2015). Wardak et al. (2010) additionally showed that covert target 

selection during a visual search task mostly recruited bilateral FEF and LIP. Altogether, 

evidence from fMRI studies in monkeys shows that the areas recruited by both saccades 

and covert visuospatial attention include the FEF, DLPFC, and LIP, confirming results 

from the electrophysiological and microstimulation studies reviewed above. 

In humans, early evidence from a study using position emission tomography (PET) 

showed that areas in the superior frontal gyrus, corresponding to FEF, and superior 

parietal lobule, corresponding to LIP, were more active during covert shifts of 

visuospatial attention than maintaining attention at central gaze fixation (Corbetta et al., 

1993). Mounting evidence from fMRI studies later demonstrated that those regions 

involved in covert attention shifts were also activated during overt shifts of visuospatial 

attention via saccadic eye movements (Beauchamp et al., 2001; Corbetta et al., 1998; de 

Haan et al., 2008; Nobre et al., 2000; Perry and Zeki, 2000). While this frontoparietal 

network was bilaterally activated during attention and saccade tasks, there is clear 

evidence for hemispheric asymmetry during covert shifts of visuospatial attention such 

that activation was stronger in the right hemisphere compared to the left (Corbetta et al., 

1998, 1993; de Haan et al., 2008; Szczepanski et al., 2010). This concept of right 

hemisphere dominance for visuospatial attention will become relevant in the following 

section when discussing the functional neuroanatomy for disorders of visuospatial 

attention.  
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1.2. Visuospatial neglect and extinction after unilateral damage to the 

frontoparietal network  

Historically, the dominant view in neuroscience was that cognitive functions arise from 

the localized activity of discrete brain regions. This ‘modular’ view of the brain was 

largely reinforced by early clinical lesion case studies that ascribed the cognitive or 

behavioural functions that were impaired to the lesioned brain area (Broca, 1861; Harlow, 

1848; Scoville and Milner, 1957). While this perspective led to significant advancements 

in our understanding of brain function and specialization, it had also hindered our 

appreciation of the brain as a complex network capable of processing information across 

distributed and interconnected areas (Fornito et al., 2015; McIntosh, 1999). As reviewed 

in earlier sections, covert visuospatial attention and saccadic eye movements are 

mediated by the distributed frontoparietal network, rather than a single brain area. This is 

supported by insights from the brain lesions causing visual neglect and/or extinction – 

disorders of visuospatial attention that are better accounted for by unilateral damage to 

the frontoparietal network, rather than to a single brain area alone (Bartolomeo et al., 

2012, 2007; Corbetta and Shulman, 2011). Unilateral damage to frontoparietal areas 

commonly leads to impaired allocation of spatial attention to the visual hemifield that is 

contralateral to the side of the lesion – herein termed contralesional.  

Visual neglect and extinction are two related neuropsychological disorders which reflect 

the disruption of visuospatial attention toward the contralesional hemifield. Patients with 

visual neglect are unable to allocate attention toward the contralesional hemifield 

(Heilman et al., 1984; Li and Malhotra, 2015; Vallar, 1998), while those with extinction 

are only unable to attend to a contralesional stimulus in the presence of a competing 

ipsilesional stimulus (Baylis et al., 1993; Bender and Furlow, 1945; Critchley, 1949; Di 



 

 

 

18 

Pellegrino and De Renzi, 1995). Eye tracking in patients with neglect shows the 

decreased visual exploration with saccadic eye movements in the contralesional hemifield 

and the resting fixation bias toward the ipsilesional hemifield (Fig. 1.4). Lateralized 

effects of visual neglect have also been demonstrated in the case of German artist Anton 

Räderscheidt who suffered a right hemispheric stroke in the parietal cortex and continued 

to paint self-portraits (Fig 1.5). Many patients show gradual recovery over several months 

following brain damage (Fig. 1.4–1.5), although the extent of recovery varies across 

cases and many are left with lasting impairment (Li and Malhotra, 2015). Visual 

extinction has also been observed when both stimuli are on the ipsilesional side with 

impaired detection of the stimulus closest to the contralesional hemifield (Rapcsak et al., 

1987), indicating that visuospatial impairments appear along a gradient. Whether visual 

extinction is a mild form of neglect or a distinct phenomenon altogether is still a topic of 

debate (Driver and Vuilleumier, 2001; Geeraerts et al., 2005; Milner and Mcintosh, 

2005). Visual neglect is distinct from hemianopia, which is a loss of vision arising from 

damage to the primary visual areas or pathways (Vallar et al., 1991). In contrast, patients 

with visual neglect and/or extinction are able to ‘see’ but are unable to direct their 

attention to and process the visual information from the contralesional hemifield. While 

visual neglect and hemianopia represent distinct syndromes, they may occur together. 
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Figure 1.4. Scan paths of patients with visual neglect. 

Eye tracking shows the path of gaze during active visual search (black lines) and at rest 

(grey lines). Top panel shows the eye movement behaviour of a control group without 

neglect; note the symmetrical search patterns in both hemifields. Second and third panels 

shows the pattern of gaze in patients with neglect at the acute stage and the bottom panel 

shows recovered behaviour in the chronic stage. Reprinted with permission from: 

Fruhmann Berger, Johannsen, and Karnath (2008) Time course of eye and head deviation 

in spatial neglect. Neuropsychology, 22(6), 697–702.   
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Figure 1.5. Self-portraits by the German artist Anton Räderscheidt before and after 

a right hemispheric stroke in the parietal lobe. 

This series of paintings reveal the gradual recovery from neglect of the contralesional 

(left) side of space over several months post-stroke. Sources: Andersen, 1987; Berti, 

Cappa, and Folegatti, 2007; Petcu et al., 2016.  
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On a broader scale, neglect is a heterogenous disorder and can occur across modalities 

(visual, auditory, somatosensory, motor), locations in space (personal space, 

extrapersonal space, internal/representational space), and within different reference 

frames (egocentric/body-centered or allocentric/object-centered), all of which are not 

mutually exclusive and may manifest alone or in combination (Mattingley et al., 1997; 

Rode et al., 2017). In this thesis, the subtype of neglect that I focus is visual neglect with 

inattention to extrapersonal space manifesting with an egocentric reference frame, which 

reflects impaired attention to the contralesional hemifield in reference to the viewer’s 

body/head orientation and is associated with lesions of parietal cortex or white matter 

pathways connecting frontal and parietal cortex (Rode et al., 2017). In contrast, 

allocentric visual neglect refers to neglecting the contralesional side of individual objects 

regardless of their location in space with respect to the patient, and is typically associated 

with temporal cortex lesions (Rode et al., 2017).  

1.2.1. Historical review of neglect and extinction from early case studies 

Clinical descriptions of neglect and extinction were first documented more than a century 

ago. The method of simultaneous double stimulation, which is typically used to reveal 

extinction deficits, was first introduced by Jacques Loeb in 1885 in animals with 

unilateral lesions where he notes that stimuli in the contralesional visual field are less 

salient than those on the ipsilesional side. German neurologist Hermann Oppenheim was 

the first to use Loeb’s “double stimulation” task in a clinical setting to assess a patient 

with paralysis on the right side of the body (Oppenheim, 1885). Oppenheim noted that 

the patient showed no sign of sensory loss, but when pricked with a pin simultaneously in 

both arms, the patient only reported feeling the pinprick on the left side. In 1917, Walther 

Poppelreuter used the method of double stimulation for clinical assessments, but this time 
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in the visual domain, and found a similar extinction phenomenon which he termed 

“visual inattention” (Poppelreuter, 1917). Poppelreuter reported that the patient was able 

to detect an object presented alone in either peripheral visual hemifield but was unable to 

detect an object in one hemifield when objects were presented simultaneously in both 

visual fields. Another early case of visual extinction was documented by Holmes (1918) 

during his time as a neurologist in the First World War in which he described the case of 

a soldier with a gunshot wound in the right parietal lobe (Holmes, 1918). Holmes noted 

that the man had normal vision in both visual fields and could identify finger movement 

when presented to him in either hemifield alone, but that the man only reported 

movement on the right side when fingers on hands in both hemifields moved at once. 

However, the term “extinction” was only later introduced by neurologist Morris Bender 

in his description of a patient who reported that a visual stimulus in the affected hemifield 

was “extinguished” by the presentation of a stimulus in the opposite visual field (Bender, 

1952). 

As for case reports of neglect, English neurologist John Hughlings Jackson (1876) 

documented one of the earliest case reports that described a patient who showed signs of 

visual “imperception” of the left side of space (Jackson, 1876). Jackson asked the patient 

to read the Snellen visual acuity chart and noted that the patient started reading from an 

area on the right side of the chart, which was unusual since native English speakers read 

from left to right. This patient presented with a myriad of other neurological deficits and 

so the symptoms of visual neglect were only considered minor and were not the main 

focus at the time. Several decades later, Zingerle (1913) appears to have described 

another case of neglect in patients with right hemisphere lesions who had lost the ability 

to perceive the left side of their personal and extrapersonal space, including the visual 

domain (Benke et al., 2004). The term ‘neglect’ was first used in 1931 by Pineas in his 
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description of a 60 year old patient with a right hemisphere lesion showing “neglect” of 

her left side without any visual or motor deficits (Halligan and Marshall, 1993; Pinéas, 

1931). He suggested that the patient likely lost the representation of the left side of her 

body and extrapersonal space. Later reports of patients with visual neglect described 

methods to measure the neurological condition, including qualitative bedside tests where 

patients were asked to eat from a plate of food and it was noted that they would 

frequently leave the left half uneaten (Mcfie et al., 1950; Paterson and Zangwill, 1944) 

and more quantitative paper-and-pencil tests where patients were asked to copy simple 

line drawings (Critchley, 1953) or cross out lines spanning a sheet of paper (Albert, 1973) 

and in most cases they tend to omit the left side. 

Despite several accounts of the attentional impairments towards one side of space, 

Halligan and Marshall (1993) give credit to British neurologist Russell Brain for being 

the first to characterize visual neglect as a distinct syndrome (Brain, 1941). In Brain’s 

(1941) seminal paper, he described three patients that presented with impaired perception 

of the left side of space without visual deficits and concluded that the main features of 

visual neglect were: (1) the involvement of posterior lesions in the right hemisphere, (2) 

that it could not be explained by a sensory visual deficit or memory loss, and (3) that it 

was distinct from a general visual agnosia and left-right discrimination impairments. 

Since his influential report, not only has research on visual neglect grown rapidly, but the 

insights gleaned from neglect have been fundamental to the fields of clinical neurology 

and neuropsychology in understanding mechanisms of attention and visual processing.  

1.2.2. Etiology and theoretical accounts of visual neglect and extinction 

Visual neglect and extinction of the contralesional hemifield are most commonly 

observed after damage to the right hemisphere , usually as a result of unilateral ischemic 
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stroke (Buxbaum et al., 2004; Stone et al., 1993). Less often, damage to the left 

hemisphere may cause neglect and extinction though deficits are typically object-

centered, less severe, and recover more rapidly (Beis et al., 2004; Kleinman et al., 2007). 

Ischemic strokes most often affect the middle cerebral artery, which is the largest branch 

of the internal carotid artery and the main source of blood supply to lateral areas of the 

frontal, parietal, and superior temporal cortex (Teasell et al., 2016). Final lesion outcome 

after a middle cerebral artery occlusion is highly variable in terms of its size and location 

and will differ based on the original site of occlusion.  

The heterogeneity of middle cerebral artery strokes has indeed made the localization for 

precise lesion correlates for visual neglect and extinction difficult. Patients that present 

with visual neglect also present with a multitude of other neurological deficits at the same 

time, which further complicates the understanding of underlying anatomy and 

mechanisms specific to visual neglect (Bartolomeo, 2007). Although lesions in patients 

with spatial neglect often overlap with the temporo-parietal junction (Corbetta et al., 

2005; Karnath et al., 2001, 2011, 2004), which is the zone between the inferior parietal 

lobule and superior temporal gyrus, the role of superior temporal gyrus in the 

pathophysiology for contralateral visual neglect, specifically, has been questioned 

(Bartolomeo, 2007). Areas of the superior temporal cortex are in the middle cerebral 

artery territory and thus commonly affected by stroke, however their dysfunction relates 

more closely to object-centered neglect (Chechlacz et al., 2010) and non-lateralized 

impairments in visual search (Ellison et al., 2004; Gharabaghi et al., 2006) rather than to 

the specific lateralized deficits of visual neglect (Friedrich et al., 1998).  

I will focus on neglect and extinction in the visual domain as it relates to the impaired 

contralesional shifts in visuospatial attention and saccade target selection. As reviewed 

earlier, those attentional abilities require the normal functioning of the frontoparietal 
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network. Visual neglect and/or extinction have been classically associated with right 

hemisphere lesions in the posterior parietal cortex (Brain, 1941; Critchley, 1953; B. de 

Haan et al., 2012; Di Pellegrino et al., 1997; Mcfie et al., 1950; Mort et al., 2003; Rorden 

et al., 2009, 1997), though more recent evidence has shown that right frontal cortex 

lesions also cause visual neglect or extinction (Committeri et al., 2007; Heilman and 

Valenstein, 1972; Husain and Kennard, 1996; Mesulam, 1999; Rengachary et al., 2011; 

Vallar, 2001). More recent work has also shown that damage to the frontoparietal white 

matter pathways in the right hemisphere also results in neglect/extinction and relates with 

the severity of deficits (Bartolomeo, 2007; Bartolomeo et al., 2012, 2007; Lunven and 

Bartolomeo, 2017). Bartolomeo et al. (2007) describe visual neglect as a “disconnection 

syndrome” and review the evidence linking the pathophysiology of neglect to damage of 

the superior longitudinal fasciculus (see Fig. 1.7), the major white matter tract connecting 

frontal and parietal areas within hemisphere (Bartolomeo et al., 2012; Corbetta et al., 

2005; Doricchi et al., 2008; Doricchi and Tomaiuolo, 2003; Gaffan and Hornak, 1997; 

Thiebaut de Schotten et al., 2005). 

  



 

 

 

26 

 

Figure 1.7. Superior longitudinal fasciculus in macaque monkeys and humans. 

Three branches of the superior longitudinal fasciculus (SLF) are shown from ex vivo 

axonal tracing data in a macaque and from diffusion-weighted MRI tractography in a 

human. Modified with permission from: Thiebaut de Schotten et al. (2012) Monkey to 

human comparative anatomy of the frontal lobe association tracts. Cortex, 48: 82–96.  
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As mentioned above, neglect is more severe and more frequently observed after damage 

to the right hemisphere, which results in neglect of the left visual hemifield with attention 

and eye movements biased towards the right hemifield (Heilman and Van Den Abell, 

1980; Kinsbourne, 1970; Mesulam, 1981). Several theories of spatial attention have 

attempted to explain the mechanism of neglect at the acute stage and the phenomenon of 

right hemisphere dominance for visual attention. According to Kinsbourne’s theory of 

interhemispheric rivalry, each hemisphere directs attention to the contralateral side of 

space and will inhibit the other hemisphere during shifts of attention (Kinsbourne, 1970). 

This theory posits that damage to one hemisphere impairs its contralateral direction 

vector and releases inhibition of the other hemisphere’s direction vector, causing it to 

become hyperactive and bias attention to the contralateral/ipsilesional hemifield, which 

appears as neglect of the contralesional hemifield. Kinsbourne (1987) attempted to 

explain the phenomenon that right hemisphere lesions more commonly result in neglect 

by suggesting that the contralateral direction vector is weaker in the right hemisphere 

than the left, such that damage to the left hemisphere would not result in as strong of a 

contralateral bias from the right hemisphere towards the left visual field (Kinsbourne, 

1987). 

Heilman and Watson (1977) supported this idea of an ipsilesional bias to explain neglect 

but suggested that the bias manifested because the damaged hemisphere was hypoactive, 

not because the intact hemisphere was hyperactive (Heilman and Watson, 1977). In 

support of this model, Heilman and Van Den Abell (1980) provided evidence from 

neurologically healthy participants that accounted for the right hemisphere dominance. 

They found parietal activation in the right hemisphere for both left and right visual 

stimuli, whereas the left parietal cortex was only activated by right stimuli (Heilman and 

Van Den Abell, 1980). Heilman and Van Den Abell (1980) proposed that the right 
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parietal cortex controls shifts of attention towards both hemifields whereas the left 

parietal cortex only controls attention to the contralateral (right) hemifield. In this case, 

left parietal damage is less likely to result in contralesional neglect since the right parietal 

cortex can compensate for attending to the contralesional hemifield.  

Mesulam (1981) supported Heilman’s theory of right hemisphere dominance for 

visuospatial attention, but expanded the parietal-centric model to highlight the role of a 

widespread cortical network in directing attention and underlying neglect that included 

areas of the frontal cortex. Corbetta et al. (1993) provided evidence in support of 

Mesulam’s theory; using positron emission tomography (PET) in neurologically-healthy 

participants, the authors showed increased activity in the right superior frontal cortex 

(near FEF) and posterior parietal cortex during shifts of attention compared to fixation, 

further supporting a role for the frontoparietal network, and that the right parietal lobe 

showed similar activation levels for both left and right shifts of attention, supporting the 

right hemisphere dominance component (Corbetta et al., 1993). 

These two major theories by Kinsbourne (1970) and Mesulam (1981) also differ in their 

assumptions about the role of the intact left hemisphere and the phenomenon of visual 

extinction. Kinsbourne’s model of interhemispheric rivalry posits that the left-right 

parietal imbalance is more severe in neglect than in extinction without neglect, 

suggesting that left hemisphere activation is causative for neglect. However, Umarova et 

al. (2011) found evidence against Kinsbourne’s theory of neglect; the degree of left 

hemisphere activation was unrelated to the severity of neglect at the acute stage and was 

instead an epiphenomenon of all right hemisphere lesions that was also observed in 

stroke patients with extinction or with normal visuospatial processing (Umarova et al., 

2011). Activity in the left hemisphere is even considered beneficial in Mesulam’s theory 

as it may reflect the emergence of a dormant representation of the ipsilateral hemifield to 
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compensate for the attentional bias. In this case, neglect is assumed to result from less 

compensatory activation from the left hemisphere whereas extinction without neglect 

occurs from greater compensation by the left hemisphere. Empirical support for this 

theory comes from an fMRI study showing that acute patients with neglect and those with 

extinction alone both showed a correlation between increased activation of the left 

prefrontal and parietal cortex and detection of left (contralesional) visual stimuli, 

indicating a beneficial role of the left hemisphere (Umarova et al., 2011). In addition, 

patients with extinction differed from those with neglect in that they showed an overall 

increased level of activation in the left middle frontal gyrus/DLPFC and right FEF across 

target detection for both hemifields.  

1.2.3. Clinical assessments of visual neglect and extinction: severity of deficits 

and timecourse of recovery 

Target detection tasks are commonly used to investigate the severity and subsequent 

recovery of visual neglect and extinction. Visual neglect can be determined from single 

stimulation paradigms in which one visual stimulus is presented in either hemifield at a 

time and patients are asked to report or attend to the stimulus (Walker and Findlay, 

1996). Poor detection performance for contralesional stimuli compared to ipsilesional 

stimuli is an indicator of neglect and the severity of deficits may be assessed from 

reaction times and percent correct detection. Normal performance upon single stimulation 

may exclude neglect but does not rule out the possibility of visual extinction, which is 

better detected with double stimulation. Double stimulation paradigms involve the 

presentation and interaction of stimuli in both hemifields simultaneously or in rapid 

succession. 
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The Posner cueing task includes the presentation of a visual cue in one hemifield 

followed by the subsequent presentation of a visual target in either hemifield; a ‘validly 

cued’ trial is when the target was presented in the cued hemifield and an ‘invalidly cued’ 

trial is when the target was presented in the hemifield opposite to the visual cue (Posner 

and Cohen, 1984). Onset time between cue and target may vary from 0 to 1000 ms; 

shorter cue-target onset differences may serve as double stimulation trials (to detect 

extinction deficits) whereas longer differences are effectively single stimulation trials (to 

detect neglect deficits). Patients with visual neglect or extinction (classified as mild 

neglect) were drastically slower to respond to contralesional targets that appeared on 

invalidly cued trials with an ipsilesional cue, compared to all other trial conditions 

(Posner et al., 1984; Posner and Petersen, 1990). Temporal-order judgement (TOJ) tasks 

are another behavioural paradigm used to assess neglect or extinction deficits. In TOJ 

tasks, two stimuli are presented simultaneously or in rapid succession in either hemifield 

and with a variable delay between stimulus onsets (see ‘double stimulus task’ in Fig 1.2). 

Participants then report which stimulus was presented first using a verbal response 

(Baylis, 2002; Di Pellegrino et al., 1997; Rorden et al., 2009, 1997) or saccade response 

(Ro et al., 2001; Walker and Findlay, 1996). In this case, patients with extinction show 

maximal deficits when the ipsilesional stimulus is presented slightly before or after the 

contralesional stimulus, but minimal impairments with a longer time delay between 

stimulus onsets (Di Pellegrino et al., 1997). Patients with neglect show poor performance 

in reporting contralesional targets across all trial conditions compared to ipsilesional 

targets (Van der Stigchel and Nijboer, 2018). A longitudinal study of stroke patients with 

neglect found that patients showed a severe ipsilesional bias for visual stimuli when 

measured at 2 weeks post-stroke, with gradual improvements over the first 3 months 

(Ramsey et al., 2016). They reported that recovery plateaued after 3 months without 

completely reaching baseline performance and without further improvement when tested 
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one year later (Ramsey et al., 2016). Similarly, Farne et al. (2004) measured neglect and 

extinction deficits in stroke patients using a battery of paper-and-pencil tests and also 

reported severe visuospatial deficits for the contralesional side of space at the initial 

subacute stage, but that deficits partially recovered over 2 months post-stroke (Farne, 

2004). 

Most recovery of neglect occurs within the first 6 months post-injury, with later 

improvements being much less common (Hier et al., 1983; Kwasnica, 2002). At this later 

stage, patients may show milder neglect but with a lasting visual extinction deficit (Hier 

et al., 1983; Li and Malhotra, 2015). These attentional disorders represent valuable 

models for studying brain networks that control shifts of gaze and attention for target 

selection and how those networks reorganize to compensate for loss of function. Studying 

mechanisms of attention in patient populations is limited by the lack of pre-injury data 

and the heterogenous nature of the stroke etiology that leads to visual neglect and 

extinction. Animal models using experimental lesion methods are important for 

furthering our understanding of the mechanisms underlying recovery from visuospatial 

target selection deficits. It is important to mention that the discussion of visual neglect 

and extinction syndromes are herein used as models to study brain mechanisms of visual 

attention and saccade target selection. In the following section, animal models of focal 

brain damage will be discussed in terms of lateralized impairments in visual attention 

and/or saccade target selection, rather than as animal models of visual neglect or 

extinction.  
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1.3. Unilateral lesions in nonhuman primate frontoparietal cortex 

More than a century ago, Bianchi (1895) reported that monkeys with large PFC lesions 

would frequently rotate their body towards the ipsilesional side and did not respond to 

food presented to them in the contralesional side of space, which he described as similar 

to a contralateral hemianopia (Bianchi, 1895). In the late 1930s, neurologist Margaret A. 

Kennard extended Bianchi’s experiments by systematically lesioning small areas of the 

PFC to identify the region responsible for producing the contralateral visual impairments 

(Kennard, 1939a). In her experiments, before the time of head fixing animals to perform 

controlled oculomotor tasks, Kennard (1939) developed a chamber that monkeys entered 

and eventually reached a narrow passage (to limit movements) where they were presented 

with small pieces of food arranged across a wide area covering both visual hemifields. 

She reported that monkeys with unilateral lesions in area 8, an area that is now referred to 

as the FEF, did not respond to food located in the far-contralesional side of their visual 

field. In addition, Kennard (1939) differentiated these deficits from a hemianopia by 

showing that monkeys with known hemianopia after an occipital lesion were able to 

compensate for their deficits by reaching out to explore both sides of space, even in the 

absence of vision. Monkeys with area 8 lesions did not actively explore the contralesional 

side of space (Kennard, 1939a), indicating deficits in visuospatial attention that resemble 

visual neglect in humans. These early observations of neglect-like behaviour toward 

contralateral space after unilateral FEF lesions in monkeys were supported by other 

groups (Clark and Lashley, 1947; Welch and Stuteville, 1958). 

Similar findings of a contralesional visuospatial impairment were reported after unilateral 

PPC lesions in monkeys, albeit with some inconsistencies across studies. Denny-Brown 

and Chambers (1958) reported that monkeys with PPC lesions failed to grasp objects that 
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were brought towards them from the contralesional side of space and were unaware of 

their deficits (Denny-Brown and Chambers, 1958). Yet other groups did not find these 

neglect-like behaviours after PPC lesions in monkeys (Ettlinger and Kalsbeck, 1962; 

Heilman et al., 1970; Lamotte and Acuña, 1978). When Heilman et al. (1970) presented 

visual stimuli to monkeys in one hemifield at a time, the monkey’s responded to both 

visual fields normally. However, they reported that monkeys responded less to the 

contralesional hemifield when tested with bilateral visual stimuli simultaneously in both 

hemifields, analogous to extinction-like behaviour (Heilman et al., 1970). Deuel and 

Regan (1985) subsequently showed signs of both neglect- and extinction-like behaviours 

while observing monkeys reaching to visual stimuli presented either unilaterally or 

bilaterally and simultaneously (Deuel and Regan, 1985). 

While early studies were largely observational, later lesion studies, that will be described 

in this section, used more controlled experimental conditions and systematic measures of 

behaviour that provide more information about the lateralized impairment in monkeys. 

Experimental lesions in animal models have been created using unilateral reversible 

inactivation methods, in which brain areas are inactivated only temporarily, or with 

permanent unilateral lesion techniques more representative of the clinical etiology of 

focal cerebral ischemia which allow for longitudinal assessment. In this section, I will 

review findings from nonhuman primate studies that demonstrate lateralized visuospatial 

impairments after reversible inactivation or lesions in the caudal PFC and PPC. 

1.3.1. Reversible inactivation techniques 

Reversible inactivation allows for the investigation of a specific brain region on 

behaviour by ‘silencing’ the area and immediately observing the behavioural 

consequences without compensation from other regions and without causing damage to 
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neural tissue (Bell and Bultitude, 2018). Some of the commonly used reversible 

inactivation techniques that will be described in the studies below include the use of 

pharmacological injections (e.g., muscimol, lidocaine) or cryogenic loops.  

Reversible inactivation of the posterior parietal cortex 

Wardak et al. (2002) used muscimol to reversibly inactivate area LIP while monkeys 

performed various saccade tasks. Muscimol is a GABAA receptor agonist which inhibits 

synaptic transmission within about 60 minutes, lasts for several hours (Hikosaka and 

Wurtz, 1985; Schiller et al., 1987) and does not affect fibers of passage since GABA 

receptors are not found along axons (Majchrzak and Di Scala, 2000). Wardak and 

colleagues found that unilateral LIP inactivation had no effect on the contralateral 

saccades to single targets on the visually- or memory-guided saccade tasks, but 

drastically reduced the overall proportion of contralateral saccades on the two-choice 

saccade task with intermixed single target trials for trials with bilateral or single stimulus 

presentation (Wardak et al., 2002). The authors speculated that the two-choice task 

created a “virtual competition” environment between the two sides of space, even for the 

single target trials, which is more representative of a naturalistic environment with 

constant visual information on both sides. No effects were found on the single target 

tasks or two-choice task when a nearby area in the posterior parietal cortex was 

inactivated (ventral intraparietal area).  

To dissociate whether those deficits were oculomotor in nature or attention-based, this 

group later tested LIP inactivation on a covert visual search task in which monkeys had to 

detect the presence of a visual target amongst distractor stimuli without directing a 

saccade to the target but by pressing a manual lever (Wardak et al., 2004). They found 

that unilateral LIP inactivation also resulted in slower detection time for contralateral 
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targets during covert visual search. These findings of contralateral deficits after 

muscimol-induced LIP inactivation were later replicated and supported by other groups 

(Balan and Gottlieb, 2009; Christopoulos et al., 2018; Kubanek et al., 2015; Liu et al., 

2010; Wilke et al., 2012).  

Wilke and colleagues (2012) investigated the cortical reorganization after unilateral LIP 

inactivation using event-related fMRI in monkeys performing memory-guided saccades 

to single targets or on two-choice trials. While behavioural findings showed an overall 

reduction in contralesional saccade choices on the two-choice trials, fMRI results 

additionally revealed that whenever a contralesional choice was made, it was 

accompanied by increased activity in frontal and parietal areas in both hemispheres, 

including bilateral FEF and contralateral LIP (Wilke et al., 2012). This finding further 

supports the idea that a cortical network plays a role in allocating visuospatial attention. 

In addition, Wilke et al. did not find overactivation in the intact hemisphere for 

ipsilesional saccade choices. Altogether, their findings suggest that activity in the intact 

hemisphere is not disadvantageous after unilateral inactivation, refuting Kinsbourne’s 

theory of interhemispheric rivalry (Kinsbourne, 1987), but may instead play a 

compensatory role to maintain contralateral visuospatial attention. 

Reversible inactivation of the caudal prefrontal cortex 

Similar reversible inactivation studies in the caudal PFC, including the FEF and DLPFC, 

reveal strong visuospatial deficits of the contralesional hemifield. Keating and Gooley 

(1988) used a reversible cooling technique with cryogenic loops to unilaterally inactivate 

the FEF during a visually-guided saccade task. Cryogenic loops are small metal loops 

that are surgically implanted along the cortical surface and controlled by a cooling pump 

that regulates the flow of chilled methanol through the loops (Lomber et al., 1999). 
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Cryogenic loop temperatures of 1–5°C will lower surrounding tissue temperatures below 

20°C which will temporarily inactivate postsynaptic activity of neurons up to ~2 mm 

away, without affecting fibers of passage (Lomber et al., 1999; Lomber and Payne, 

2000). Keating and Gooley found that cooling the FEF mainly resulted in an absence of 

response to contralateral visual targets, which was alleviated by increasing the cryoloop 

temperature.  

Sommer and Tehovnik (1997) investigated the effects of lidocaine injections in the FEF. 

Lidocaine binds to and blocks voltage-gated sodium ion channels, located along axons 

and axon terminals, which inactivates neural activity within minutes and lasts for about 

one hour (Sommer and Tehovnik, 1997). They found that FEF inactivation impaired 

monkeys’ ability to direct saccades to single contralateral targets on the memory-guided 

and single-step saccade tasks. The authors reported less saccades to contralateral targets 

and increased reaction times and targeting errors for contralateral saccades. Several 

others have reported lateralized impairments to single contralateral visual targets after 

unilateral FEF inactivation using muscimol (Dias and Segraves, 1999; Monosov and 

Thompson, 2009; Wardak et al., 2006) and cryogenic loops (Peel et al., 2014) in 

monkeys.  

Wardak and colleagues (2006) tested whether contralateral deficits after FEF inactivation 

were mainly a result of deficits in saccade generation or whether covert visuospatial 

attention was also impaired. They injected muscimol during a covert visual search task 

that required monkeys to maintain central fixation while attending to peripheral stimuli 

and respond only when a visual target was presented in the array. To dissociate overt 

saccadic deficits from covert attentional ones, responses were made by pressing a manual 

lever when the target was detected, in the absence of a saccadic eye movement. Wardak 

et al. reported that FEF inactivation increased reaction times for contralateral targets, but 



 

 

 

37 

that error rates were not spatially selective; they speculate that the lack of contralateral-

specific errors may have been due to long response times permitted in their task which 

favoured accuracy over speed (Wardak et al., 2006). Monosov and Thompson (2009) also 

measured monkey’s performance on a covert visual search task during FEF inactivation, 

but expanded on the study from Wardak et al. (2006) by requiring target identification in 

addition to detection (Monosov and Thompson, 2009). Here, monkeys detected and 

identified targets by moving a manual lever in the same orientation as the visual target. In 

addition to increased reaction times, Monosov and Thompson (2009) also reported 

decreased performance for contralateral target identification on the covert search task, 

similar to visual extinction amongst competing stimuli. Both Wardak et al. (2006) and 

Monosov and Thompson (2009) also measured saccade performance to single 

contralateral targets and reported almost no saccades to single contralateral targets.  

Schiller and Tehovnik (2003) tested for visual extinction using a free-choice saccade 

task, in which two visual stimuli are presented in either hemifield with a variable delay 

between their onset (0 – 50 ms) and the monkey could freely choose either stimulus as a 

saccade target. They found that FEF inactivation induced a contralateral extinction, such 

that it drastically reduced the proportion of saccades made to the contralateral target, even 

when it was presented earlier than the ipsilateral target (Schiller and Tehovnik, 2003).  

Reversible inactivation of the DLPFC did not affect saccades to single targets on a 

visually-guided saccade task, but resulted in impaired target selection on a visual search 

task (Iba and Sawaguchi, 2003). Using cryogenic inactivation, Johnston et al. (2016) 

extended this work by testing the effects of DLPFC inactivation on the free-choice 

saccade task, where two visual stimuli compete for becoming the target of an upcoming 

saccade. The authors reported an overall decrease in the proportion of contralateral 

saccade choices during bilateral target presentation, representative of contralateral 
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extinction deficits (Johnston et al., 2016). In addition to the reported extinction deficits 

after DLPFC inactivation, Koval et al. (2014) found that cooling the DLPFC also 

impaired saccadic performance to contralateral targets on pro- and anti-saccade tasks. 

Anti-saccade trials require the animal to direct a saccade away from a visual stimulus, to 

the opposite side of space (Munoz and Everling, 2004). They reported decreased 

performance and increased reaction times for contralateral saccades and increased 

performance for ipsilateral saccades, suggestive of an ipsilateral visuospatial bias (Koval 

et al., 2014). These deficits were not observed during cooling of the anterior cingulate 

cortex in this study (Koval et al., 2014). Inactivation studies in another frontal area, the 

dorsomedial frontal cortex, has also not produced these lateralized deficits for single 

saccades, but instead revealed deficits for generating saccade sequences on a double-step 

saccade task (Sommer and Tehovnik, 1999). 

Reversible inactivation techniques are important for exploring which brain areas are 

critical for a specific function without having to permanently damage the neural tissue. 

Permanent lesions cause altered activity in connected areas (termed ‘diaschisis’, 

discussed in later sections) and tests of function are typically performed at least one day 

later allowing more time for neural reorganization to take place, making it difficult to 

identify whether deficits result from the lesioned site or a connected area. However, since 

the effects of reversible inactivation can be observed within minutes and during task 

performance, researchers are better able to identify the immediate consequences of 

silencing that region on a given task. Additionally, the short duration of inactivation 

periods reduces the likelihood for compensatory processes (Carrera and Tononi, 2014; 

Payne et al., 1996; Wilke et al., 2012). However, in the interest of investigating the long-

term recovery processes of the lateralized visuospatial impairments following unilateral 
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brain damage, the use of permanent lesions becomes a more ideal model since it allows 

for assessment of longitudinal behavioural recovery and brain reorganization. 

1.3.2. Permanent lesion techniques 

Animal models using permanent lesion methods allow for longitudinal investigations of 

the recovery process and may better represent the pathophysiology of ischemic stroke, 

which is the most common clinical etiology of neglect and extinction in humans. 

Common experimental lesion techniques include surgical aspiration or excision, injection 

of neurotoxins (e.g., ibotenic acid), and blood vessel occlusion via vasoconstrictive 

agents or microvascular clips. Longitudinal studies after permanent lesions are especially 

crucial for investigating the behavioural and neural compensation processes during 

recovery.  

Lesions in the posterior parietal cortex  

Experimental lesions created by aspiration is one of the oldest documented methods of 

creating permanent lesions, starting around the early 1800s (Bell and Bultitude, 2018). 

Aspiration lesions involve the removal of brain tissue by excision or cautery and suction 

and allow for complete removal of an area with discrete borders by visual guidance 

during surgery. Early PPC lesion studies described above relied on observations to 

examine the effects of a lesion on behaviour (Denny-Brown and Chambers, 1958; Deuel 

and Regan, 1985; Ettlinger and Kalsbeck, 1962; Heilman et al., 1970; Lamotte and 

Acuña, 1978), which may explain the contradictory results between studies with some 

reports of mild to no lateralized visuospatial impairment after PPC lesions.  
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Lynch and McLaren (1989) created unilateral aspiration lesions in the inferior parietal 

lobule part of the PPC and tested monkeys’ ability to detect dimming of visual stimuli 

using electrooculographic recordings to measure eye movements. The authors found that 

when tested one week post-lesion, monkeys were still able to saccade towards and detect 

the dimming of contralesional visual stimuli when it occurred alone, albeit with slightly 

increased saccade reaction times compared to ipsilesional stimuli. However, when visual 

stimuli dimmed simultaneously in both hemifields, the monkeys almost completely 

ignored the contralesional stimulus and responded to the ipsilesional stimulus (Lynch and 

Mclaren, 1989). While monkeys did not show neglect-like behaviour, they clearly 

demonstrated extinction-like deficits during bilateral presentation which did not improve 

over the 2 weeks that the data was shown.  

In contrast, other studies found evidence of behaviours more closely resembling neglect 

of contralesional stimuli after unilateral PPC lesions (Crowne and Mah, 1998; Deuel and 

Farrar, 1993). Deuel and Farrar (1993) reported that monkeys showed decreased 

responses to unilateral presentations of food bait in the contralesional hemifield, from 

~80% response rate before the lesion down to ~40% response rate for single 

contralesional presentations. They also reported almost a complete absence of response to 

contralesional food bait during bilateral simultaneous presentations in both hemifields 

(Deuel and Farrar, 1993). Similarly, Crowne and Mah (1998) reported increased reaction 

times for single contralesional visual stimuli that was not observed for ipsilesional stimuli 

and which took about 2 months to recover. They suggested that the discrepancies 

between studies in monkeys with PPC lesions may stem from whether LIP (area POa) 

was damaged or not. Lynch and McLaren’s lesions mostly spared area POa/LIP, and 

instead damaged areas PF and PG located ventrally which may explain the lack of 

impairment in attending to contralesional stimuli.  
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Many studies directly compared lesions of the PPC and caudal PFC/FEF in the same 

experiments (Crowne and Mah, 1998; Deuel and Farrar, 1993; Lynch and Mclaren, 1989) 

and while deficits are of a similar nature (contralesional visuospatial impairments), the 

deficits after FEF lesions are more severe and took longer to recover, more representative 

of the gaze behaviour in neglect. 

Lesions in the caudal prefrontal cortex  

Early PFC lesion experiments in monkeys reported deficits based on observing responses 

to food or frightening visual stimuli that were brought towards the monkey from its 

contralesional side (Bianchi, 1895; Clark and Lashley, 1947; Ferrier, 1886; Jacobsen and 

Nissen, 1937; Kennard, 1938; Kennard and Ectors, 1938; Welch and Stuteville, 1958). 

Like the PPC lesion studies, these early experiments also varied in precise lesion location 

and the degree of visuospatial bias severity, potentially due to task differences in the 

horizontal eccentricity of visual stimulus presentation. In the 1970s, Alan Cowey and 

Richard Latto conducted the first experiments in which eye movements were 

systematically photographed in monkeys with unilateral FEF lesions while they 

performed an oculomotor task (Latto and Cowey, 1971a, 1971b). In the task, a flashing 

visual stimulus appeared in either hemifield and the monkeys had to direct their gaze 

towards the stimulus. Latto and Cowey (1971) found that the animals ignored the 

contralesional visual stimulus to an increasing degree the farther into the periphery it 

appeared. They reported that the deficit could not be simply attributed to an ipsilesional 

deviation of gaze fixation and that the deficit recovered within 2-4 weeks, and in one case 

recovery took 12 weeks. 

After small unilateral lesions restricted to the FEF, Rizzolatti et al. (1983) presented food 

bait either unilaterally, with one piece of food in either hemifield separately, or 
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bilaterally, with two pieces of food presented simultaneously in both hemifields. They 

found that monkeys did not orient towards a single food item presented in the 

contralesional hemifield (i.e., no shift in gaze or reach towards the food) and only 

oriented towards the ipsilesional food item on bilateral presentations. Neglect-like 

behaviour to unilateral stimuli recovered within 2 weeks, but the extinction-like deficit to 

bilateral stimuli lasted until 8 weeks post-lesion. Other research groups have also 

lesioned the caudal PFC, including both FEF and DLPFC, using aspiration and reported 

similar results by showing a combination of increased reaction times, increased errors, 

decreased gaze shifts, and/or reaching movements towards contralesional visual stimuli 

(Crowne et al., 1981; Crowne and Mah, 1998; Deuel and Collins, 1984; Deuel and Farrar, 

1993). Recovery of contralesional impairment to unilateral stimuli was reported usually 

within 2 to 3 weeks and during bilateral stimuli presentation within 4 to 10 weeks post-

lesion (Bianchi, 1895; Crowne et al., 1981; Crowne and Mah, 1998; Deuel and Collins, 

1983; Kennard, 1939b; Rizzolatti et al., 1983). However, these studies did not use 

methods to restrain monkey’s heads from moving during task performance; head 

reorientations may have shifted the location of a visual stimulus from the assumed 

contralesional location more towards the vertical midline, which would make the monkey 

more likely to notice the stimulus.  

In another lesion study of the caudal PFC, including both FEF and the caudal portions of 

principal sulcus (DLPFC), Schiller and Chou (1998) showed substantial and long-lasting 

contralesional impairments on a visually guided saccade task with both single and paired 

visual stimuli. These impairments were not observed for lesions of the supplementary eye 

field in the dorsomedial frontal cortex (Schiller and Chou, 1998). During the task, 

monkeys had their heads restrained and eye movements were recorded using an 

implanted scleral search coil. Trials with a single visual target in either the contralesional 
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or ipsilesional hemifield rewarded the monkeys for directing a saccade towards the target. 

Prior to the lesion, average saccadic reaction times to single left or right targets only 

differed by 3 ms. At 3 weeks post-lesion, the difference between average reaction times 

for ipsilesional and contralesional saccades increased to 54 ms, resulting from increased 

saccadic reaction times for contralesional targets (+45 ms) and decreased reaction times 

for ipsilesional targets (-13 ms). Slower reaction times for single contralesional targets 

persisted up to four months post-lesion. Recovery of contralesional impairment in this 

model is remarkably similar to that observed in humans, with gradual recovery over 4 

months and then performance plateaus without further improvements even one year later 

(Schiller and Chou, 1998). Deficits in orienting to contralesional visual targets after 

lesions or inactivation of the FEF/caudal PFC have not been associated with changes in 

contrast sensitivity, which rules out sensory deficits as the underlying cause (Schiller and 

Chou, 2000; Wardak et al., 2006). For paired stimulus trials, visual stimuli were 

presented in both hemifields with a variable stimulus onset asynchrony, which is the time 

difference between the onset of the first and second visual stimulus. Under normal 

conditions, monkeys directed an equal proportion of saccades to the left or right target 

when they were presented simultaneously (0 ms onset asynchrony) and directed more 

saccades to the first-appearing target (left or right) with an increasing proportion as the 

lead stimulus onset asynchrony value increased. Two weeks after a unilateral lesion was 

made in the FEF/DLPFC, no saccades were made to the contralesional stimulus when it 

was presented up to ~50 ms before the ipsilesional stimulus and an equal probability of 

saccades were made to either stimulus only when the contralesional stimulus was leading 

by ~120 ms. This contralesional extinction (i.e., decreased contralesional saccade choice) 

gradually improved over 4 months, yet recovery was only partial with lasting 

impairments; even 4 months later, a stimulus onset asynchrony of 54 ms with the 

contralesional target appearing first was needed to achieve an equal probability of 
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contralesional or ipsilesional saccades (Schiller and Chou, 1998). On the paired stimulus 

trials, monkeys were rewarded for directing a saccade towards either the first- or second-

appearing target. This ‘free-choice’ model for the paired stimulus trials better represents 

the true bias in saccade choice since it does not over-train the animals to compensate for 

their deficits in order to complete the task. In addition, measuring saccade choice with a 

range of stimulus onset asynchronies, varying from 0 ms (simultaneous presentation) to 

~220 ms (left or right first), is more sensitive to the degree of visual extinction 

throughout the recovery period as deficits get smaller but may still be significant. This 

task design may explain why Schiller and Chou (1998) are the first to show such severe 

and long-lasting contralesional impairments after caudal PFC lesions. The study 

described in Chapter 2 addresses the question of whether contralesional extinction 

deficits after damage to the caudal PFC are due to impairments in generating saccades or 

an impaired ability to allocate attention towards the contralesional visual hemifield.  

Although aspiration lesions and reversible inactivation techniques have been critical in 

the understanding of brain-behaviour relationships, they do not mimic the cellular 

processes that occur following ischemic injury which is most often the cause of neglect 

and extinction in humans. Animal models of ischemic injury traditionally occluded the 

MCA after exposing it with a parietal craniotomy or a transorbital approach (Fan et al., 

2017; Jones et al., 1981; West et al., 2009). While these approaches may be well-suited 

for studying the post-injury cellular and vascular mechanisms or motor dysfunction 

(Fukuda and del Zoppo, 2003), they have several limitations. MCA occlusion models of 

ischemic injury produce highly variable and unpredictable lesion sizes and usually lead to 

severe motor deficits which cause suffering to the animal. The surgical techniques 

themselves may confound studies of oculomotor behaviour; the transorbital approach to 

the MCA requires enucleation of the eyeball which impractical for eye movement studies 
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and the parietal craniotomy method would put the animal at higher risk for post-operative 

infection and may create MRI artifacts over critical dorsal parietal areas. Instead, focal 

ischemic lesions can be induced using injections of the vasoconstrictor endothelin-1 

directly into the area of interest, which produces relatively confined lesions compared to 

MCA occlusions. Endothelin-1 is a 21-amino acid peptide that is naturally produced by 

vascular endothelial cells. Yanagisawa et al. (1988) was the first to isolate endothelin-1 

and reveal its potent and long-acting vasoconstrictive properties (Yanagisawa et al., 

1988). Endothelin-1 acts by inducing a focal occlusion with subsequent reperfusion (~4 

hours later) and has been used to induce focal cerebral ischemia in rats (Fuxe et al., 1997; 

Macrae et al., 1993; Sharkey et al., 1993) and more recently in the visual cortex of 

marmoset monkeys (Teo and Bourne, 2014) and the motor cortex of macaque monkeys 

(Dai et al., 2017; Herbert et al., 2015; Murata and Higo, 2016). Thus, using endothelin-1 

to create monkey models of focal cerebral ischemia is advantageous since it can mimic 

the cerebrovascular pathophysiology in humans after ischemic strokes (Fukuda and del 

Zoppo, 2003) while still inducing relatively confined lesions for precise experiments of 

the specific behavioural domain of interest. In the following section, I will describe how 

focal damage can alter brain activity across the widespread network of interconnected 

brain areas and how this process may contribute to the behavioural compensation (e.g., 

recovery of contralesional visuospatial impairment) observed in the months following 

unilateral brain damage. 
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1.4. Large-scale network alterations during recovery from focal brain 

damage  

After Schiller and Chou (1998) observed gradual recovery of the saccade choice deficit in 

monkeys with aspiration lesions that included area 8A (FEF) and area 9/46 (caudal 

DLPFC), they speculated that a posterior region involved in the control of visually guided 

saccades compensated for the loss of function. This points to area LIP in the posterior 

parietal cortex (PPC), given that it is part of the cortical network for covert visuospatial 

attention and saccadic eye movements. In addition to the extensive literature supporting a 

role for both the caudal PFC and PPC in allocating visuospatial attention within a 

frontoparietal cortical network, there is also some evidence for the idea that damage to 

the one network node (e.g., PPC) is compensated for by areas in the other network nodes 

(e.g., PFC). Lynch and McLaren (1989) created sequential lesions within one monkey 

and reported the behavioural changes following each lesion on an oculomotor task with 

single or double simultaneous trials. They found that a right PPC lesion induced 

extinction-like behaviour for visual targets in the contralesional (left) hemifield on 

bilateral trials, but no impairment to single left targets. Following a subsequent lesion to 

the homologous PPC in the opposite (left) hemisphere, the authors reported a reversal of 

extinction-like deficits such that the monkey was now ignoring targets in the right visual 

hemifield on bilateral trials, but was still not ignoring single right targets. When a third 

lesion was made in the right caudal PFC (area 8AD of the FEF and area 9/46D of the 

DLPFC), the animal now completely ignored stimuli in the left visual hemifield, even 

when presented alone. The monkey did not direct any saccades to single targets in the left 

hemifield for one week post-lesion, after which the monkey began to make saccades to 

left targets during single target trials but not bilateral simultaneous trials, suggesting a 

lasting target selection deficit (Lynch and Mclaren, 1989). They did not report details of 
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the performance on the single target trials about the recovery following the third lesion in 

the PFC. These findings demonstrate that damage to both parts of the frontoparietal 

network (PFC and PPC) produces more severe deficits than damage to only one part of 

the network within the same hemisphere. Connected areas within a network may 

compensate for the loss of one region to minimize the impairments. 

The concepts put forward by Lynch and McLaren (1989) and Schiller and Chou (1998) 

highlight the importance of neuroplasticity and network reorganization in the recovery of 

function after brain injury. In this section, I will review the mechanisms and theories of 

post-lesion neural and behavioural compensation and how modern neuroimaging 

techniques can shed light on the changes in functional and structural brain networks that 

underlie recovery. The study in Chapter 3 focuses on functional network changes using 

resting-state fMRI and the last study in Chapter 4 shows changes in the structural 

network using diffusion-weighted imaging after caudal PFC lesions in monkeys 

recovering from contralesional target selection deficits. 

1.4.1. Mechanisms of neuroplasticity and network reorganization after focal 

ischemic injury 

Ischemic stroke initiates a cascade of cellular and molecular events in both perilesional 

and eventually in brain areas remote from the site of the lesion. In the early/acute stage 

(~1-4 weeks), focal ischemia triggers neuronal depolarization and excess glutamate 

release, which leads to disinhibition and hyperexcitability of connected widespread 

networks in both ipsilesional and contralesional hemispheres, until local cell death occurs 

resulting in a focal lesion (Buchkremer-Ratzmann and Witte, 1997; Carmichael, 2012, 

2010; Fornito et al., 2015; Liepert et al., 2000). Large-scale hyperexcitability may initiate 

axonal sprouting, dendritic spine elongation, and synaptogenesis in local and remote 
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areas (Buchkremer-Ratzmann et al., 1996; Carmichael and Chesselet, 2002; Lee and van 

Donkelaar, 1995; Murphy and Corbett, 2009; Napieralski et al., 1996). However, 

persistent hyperactivation may lead to remote degeneration across connected areas due to 

excitotoxicity and excessive metabolic stress (Buchkremer-Ratzmann and Witte, 1997; 

W. de Haan et al., 2012; Fornito et al., 2015; Ross and Ebner, 1990; Saxena and Caroni, 

2011). In the chronic stage after cell death, neural repair and reorganization take place to 

promote recovery, which involves an interplay between synaptogenesis and 

dendritic/axonal pruning and sprouting to selectively strengthen certain neural pathways 

while weakening others to refine the newly formed neuronal circuitry (Carmichael, 2012; 

Jones and Schallert, 1992; Murphy and Corbett, 2009; Stroemer et al., 1995). The brain 

undergoes maladaptive changes associated with the loss of function and adaptive changes 

for the subsequent compensation of lost function during recovery (Fig. 1.6).  
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Figure 1.6. Summary of the maladaptive and adaptive network-wide changes 

following focal brain damage. 

Possible outcomes are represented in a simple example network with four nodes (i.e., 

brain areas) that is specialized to carry out a specific behavioural function. Each panel 

illustrates a potential change in the network after damage to a network node (shown in 

black). Maladaptive responses to focal injury include (A) diaschisis, which is the 

functional disruption of remote network areas, (B) transneuronal degeneration, which 

represented the structural degradation of remote network areas, and (C) dedifferentiation, 

which is the suboptimal recruitment of areas in another network that is not specialized for 

the specific behavioural function. Adaptive responses include (D) compensation from 

increased activity in undamaged remote network areas, (E) sufficient neural reserve in 

undamaged remote network areas to continue carrying out normal behaviour, and (D) 

utilizing the neural reserve in a related network that can support normal behaviour 

without altering its activity. Modified with permission from: Fornito, Zalesky, and 

Breakspear (2015) The connectomics of brain disorders. Nature Reviews Neuroscience, 

16(3): 159-172.  
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In terms of the maladaptive changes following focal damage, early 19th century pioneers 

of neuroscience speculated that large-scale brain networks were affected through a 

process called ‘diaschisis’ that describes remote dysfunction of connected areas 

(Monakow, 1914, 1897) or by disconnection of white matter pathways (Thiebaut De 

Schotten et al., 2015; Wernicke, 1874). Indeed, the previously described molecular 

processes following cerebral ischemia can lead to detrimental changes in areas remote to 

the lesion that contribute to loss of function (Fig. 1.6A–C), including diaschisis 

(functional disruption), transneuronal degeneration (structural degradation), and 

dedifferentiation (suboptimal recruitment of non-specialized areas for task performance).  

Diaschisis is a phenomenon typically described as a consequence of stroke and is thought 

to result from a loss of excitatory input to remote areas connected to the lesion (Carrera 

and Tononi, 2014; Feeney and Baron, 1986). These widespread changes affect areas 

connected to the lesion either directly through a monosynaptic connection or indirectly 

via polysynaptic connections as part of a shared functional network (Fornito et al., 2015; 

Nomura et al., 2010).  

Transneuronal degeneration differs from diaschisis in that it refers to the structural 

deterioration of areas distant from the lesion. Initially, structural degeneration occurs in 

areas surrounding the lesion, particularly in perilesional tissue and along axons that 

innervate the lesioned site via anterograde (i.e., Wallerian) or retrograde axonal 

degeneration (Beaulieu, 2002; Pierpaoli et al., 2001; Thomalla et al., 2004; Werring et al., 

2000). After the initial deterioration period, white matter atrophy may occur in axons 

remote to the lesion by either anterograde transneuronal degeneration, from loss of 

excitatory input, or retrograde transneuronal degeneration, from loss of trophic support 

(Baron et al., 2014; Fornito et al., 2015; Grayson et al., 2017; Zhang et al., 2012). 
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Dedifferentiation involves the diffuse recruitment of non-specialized areas to perform the 

affected behaviour or cognitive process normally controlled by the damaged regions. It is 

thought to result from a lesion-induced imbalance between excitatory and inhibitory 

activity within a neural circuit that is remote from the lesion site, which disrupts the 

normally segregated processing within that neural circuit (Fornito et al., 2015). For 

example, in the case of subcortical stroke that results in motor impairments, maladaptive 

overactivation of the motor cortex in the contralesional hemisphere has been associated 

with poor outcomes and is thought to be caused by an imbalance in activity between the 

left and right primary motor cortices (Rehme et al., 2011).  

The brain’s adaptive response to focal damage is necessary to maintain normal function 

or to restore lost function (Fig. 1.6D–F). This process may utilize the neural reserve in 

nearby or remote intact areas to maintain sufficient task performance or may rely on 

compensation from those intact areas of the affected network whereby increased activity 

is required to support the recovery of lost function (Fornito et al., 2015). In some cases, 

the neural reserve for performance of a given task may be highly distributed across areas 

within a shared functional network. After focal damage to that network, normal activity 

levels in the spared regions may be sufficient to continue carrying out the task without 

any deficits manifesting (i.e., degeneracy; Fig. 1.6F).  

However, in many cases focal damage impairs the normal function subserved by the 

large-scale network which can manifest as cognitive or behavioural deficits. Here, 

recovery of impaired function may rely on the compensatory recruitment (i.e., increased 

activation) of those remote and intact areas of the shared network to take over the 

function normally carried out by the damaged area. Structural plasticity after an ischemic 

lesion is critical for functional compensation to take place and may be induced by the 

initial hyperexcitability of nerve fibers across both hemispheres connected to the lesioned 
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site (Carmichael and Chesselet, 2002; Fornito et al., 2015; Gonzalez and Kolb, 2003; 

Jones and Schallert, 1992; Lin et al., 2015). It is thought that the formation of new 

connections to compensate for lost function may depend on the favourable environment 

created by these structural changes (e.g., axonal and dendritic growth of undamaged 

fibers, myelin remodeling, synaptogenesis). Neural compensation following brain 

damage can appear as increased activity within an area or increased structural/functional 

connectivity between areas of the network that are associated with improved cognitive or 

behavioural function.  

1.4.2. Functional network reorganization during the recovery of lateralized 

visuospatial impairments 

Neuroimaging techniques offer a large-scale view of the brain and permits the study of 

the post-lesion neural compensation that occurs across widespread functional and 

structural networks (Carter et al., 2012; Fornito et al., 2015; Grefkes and Fink, 2014). In 

this section, I will review the neuroimaging studies of visual neglect and extinction in 

stroke patients and in animal models of lateralized visuospatial impairments and describe 

the network consequences of focal damage and the compensation associated with 

recovery of function. 

Functional MRI (fMRI) is a non-invasive functional imaging technique that can provide 

an indirect measure of whole brain activity in vivo by detecting changes in blood 

oxygenation. In the early 1990s, Seiji Ogawa and colleagues showed that the magnetic 

resonance signal is sensitive to changes in deoxyhemoglobin concentration and that this 

blood-oxygen level-dependent (BOLD) signal could be used to infer brain activity 

(Ogawa et al., 1992, 1990). When neurons become active, local blood flow increases to 

replace the deoxygenated blood with oxygenated blood, and this decreased ratio of 
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deoxyhemoglobin/oxyhemoglobin appears as an increased BOLD signal. When fMRI is 

combined with sensory stimulation or cognitive tasks, the measured BOLD signal can be 

used to reveal the brain activation related to the stimuli/task and how activation patterns 

might change in a disease state. 

Post-lesion changes in brain activation have been investigated using fMRI during a task 

or stimulation that probes the impaired function in human studies (Calautti and Baron, 

2003; Grefkes and Fink, 2011; Rehme and Grefkes, 2013) or animal models (Dijkhuizen 

et al., 2012; Weber et al., 2008). Most studies have investigated the reorganization of the 

motor network following stroke that affected motor function. In the case of post-stroke 

motor recovery, task- or stimulation-related fMRI experiments have generally shown a 

pattern of decreased activation in the ipsilesional hemisphere and increased contralesional 

activation in the acute stage when deficits are most severe, followed by a normalization 

of activity between hemispheres in the chronic stage in those with optimal recovery of 

motor function (Calautti and Baron, 2003; Dijkhuizen et al., 2003, 2001; Rehme et al., 

2011; Ward et al., 2003). Patients with larger lesions or severe and longer lasting motor 

impairments in the chronic stage typically show greater BOLD-related activation in the 

contralesional hemisphere during task performance (Rehme and Grefkes, 2013; Ward et 

al., 2007; Ward and Cohen, 2004).  

In the case of neglect, a task-related fMRI study in patients with right frontoparietal 

stroke supported the theory that sustained activity in the intact hemisphere at the chronic 

stage was detrimental to the recovery of function (Corbetta et al., 2005). Corbetta et al. 

(2005) showed that reduced detection of visual targets in the contralesional hemifield at 

the acute stage (~ 4 weeks post-stroke) correlated with a relative hyperactivation of the 

posterior parietal cortex in the intact hemisphere compared to the lesioned hemisphere. 
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At the chronic stage, recovery of deficits corresponded with a normalization of the left 

and right parietal activity imbalance.  

However, a later study by Umarova and colleagues showed that all patients with right 

hemisphere strokes exhibited an imbalance in functional activation between hemispheres 

at the acute stage whether they had neglect, extinction only, or no visuospatial deficits at 

all (Umarova et al., 2011). Moreover, they found that detection of contralesional visual 

targets in patients with neglect and extinction correlated with increased BOLD signal 

activation in the prefrontal and parietal cortex of the intact hemisphere. This suggested 

that hyperactivation of the intact hemisphere does not necessarily cause neglect, but 

instead reflects an epiphenomenon of right hemisphere lesions and may play a 

compensatory role for contralesional visuospatial attention in the acute stage. In support 

of a compensatory role for the intact hemisphere, Wilke et al. (2012) showed that 

monkeys with unilateral LIP inactivation selected contralesional visual targets less often 

that ipsilesional targets, but that the occasional selection of contralesional targets was 

accompanied by increased task-related BOLD activity in frontoparietal areas in both 

hemispheres. The authors also reported that ipsilesional target selection correlated with 

decreased activity in the inactivated hemisphere, but not with hyperactivation of the 

intact hemisphere.  

Longitudinal task-related fMRI studies of neglect are necessary for insights into the 

functional reorganization that supports recovery, however these types of studies have 

been limited in number. In one such study, Thimm et al. (2008) found that patients with 

neglect showed better detection of contralesional visual targets at the chronic (~ 4 months 

post-stroke) compared to the acute stage (~ 3 weeks post-stroke), which was associated 

with increased task-related BOLD activation in bilateral frontoparietal areas. In another 

longitudinal fMRI study, Umarova et al. (2016) found that patients with better recovery 
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of neglect/extinction showed increased activation in the contralesional/intact prefrontal 

cortex and ipsilesional parietal cortex. Although these few studies have shown that 

recovery from neglect/extinction is associated with large-scale functional network 

reorganization, a potential confound of task-based fMRI is that it infers brain activation 

during a task that patients have difficulty performing and are likely using different 

behavioural strategies to compensate, which further complicates interpretation.  

In contrast, resting-state fMRI measures the spontaneous low frequency (0.01 – 0.1 Hz) 

fluctuations in the BOLD signal across the brain in the absence of a task while the subject 

is at rest. Seminal work from Biswal and colleagues (1995) showed that these BOLD 

signal fluctuations are highly correlated among areas involved in motor function in both 

hemispheres (Biswal et al., 1995). These correlations are thought to reflect a 

hemodynamic manifestation of the functional connectivity between resting neural activity 

across regions with shared functions (Biswal et al., 1995; Fox and Raichle, 2007). 

Resting-state BOLD functional connectivity is thought to reflect the temporal correlation 

between brain areas that are either directly connected through a monosynaptic pathway or 

indirectly connected via polysynaptic pathways (Fox and Raichle, 2007; Greicius et al., 

2009; Honey et al., 2009; Hori et al., 2020). Areas that are activated together as a task-

related functional network are also highly correlated at rest and are preserved between 

wake and sedation or anesthesia in humans, monkeys, and rats (Biswal et al., 1995; 

Greicius et al., 2008, 2003; Hutchison et al., 2014, 2010; Vincent et al., 2007). Resting-

state functional networks show strong spatiotemporal homology between humans and 

nonhuman primates and have been characterized for cognitive, sensory, and motor 

systems, including the frontoparietal network for oculomotor control and visuospatial 

attention (Hutchison et al., 2012, 2011; Vincent et al., 2007).  
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Resting-state fMRI has emerged as a valuable technique to study changes in functional 

connectivity due to lesions across large-scale networks in patients or animal models with 

severe deficits (Carter et al., 2012; Dijkhuizen et al., 2012; Grefkes and Fink, 2014). 

Following focal lesions, the changes in functional connectivity across relevant networks 

in both hemispheres from resting-state fMRI have been shown to correlate with the 

degree of behavioural impairment in human stroke patients (Baldassarre et al., 2014; 

Carter et al., 2010; He et al., 2007; Park et al., 2011; Ramsey et al., 2016; Wang et al., 

2010) and experimental stroke models in rats (van Meer et al., 2012, 2010b, 2010a) and 

nonhuman primates (Ainsworth et al., 2018; Hernandez-Castillo et al., 2017; Meng et al., 

2016).  

While the majority of resting-state fMRI studies in stroke patients and animal lesion 

models focus on behaviour and functional connectivity in the sensorimotor domain, a few 

studies in stroke patients have examined neglect at the acute stage (Baldassarre et al., 

2014; Carter et al., 2010; He et al., 2007) and one study reported the longitudinal changes 

associated with recovery of neglect (Ramsey et al., 2016). In stroke patients with right 

frontoparietal lesions, He et al. (2007) demonstrated that the severity of neglect deficits 

two weeks post-stroke correlated with decreased functional connectivity between the left 

and right posterior parietal cortex (He et al., 2007). Similarly, Carter et al. (2010) also 

found that the impaired detection of contralesional visual targets in stroke patients was 

strongly correlated with disruptions of interhemispheric functional connectivity within a 

cortical attention network (bilateral FEF, posterior parietal cortex, and middle temporal 

area), but that recovery did not correlate with intrahemispheric functional connectivity 

between those areas. In a study of stroke patients with large and heterogenous lesions that 

resulted in contralesional deficits of visuospatial attention and motor actions, Baldassarre 

et al. (2014) showed that neglect deficits were associated with the breakdown of 
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interhemispheric functional connectivity in both attention and somatomotor networks. In 

a longitudinal study of recovery from neglect, Ramsey et al. (2016) reported that 

impairments were largely recovered by 3 months post-stroke and plateaued up to 1 year 

later and also correlated with restoration of interhemispheric functional connectivity 

across attention and motor networks. 

Overall, resting-state fMRI studies in human stroke patients demonstrate that changes in 

functional connectivity are behaviourally relevant in the recovery of lateralized 

visuospatial deficits. However, these studies have several limitations inherent to stroke 

populations: no pre-lesion baseline measures of functional connectivity and lesions were 

highly variable and spanned several distinct brain networks. These limitations may 

confound interpretations of the reported functional network reorganization and the degree 

of relevance to the recovery of visuospatial function. Thus, patient studies alone are 

insufficient for understanding the specific compensatory mechanisms that underlie 

attentional recovery following focal damage to one distinct region of the frontoparietal 

network.  

As described earlier, focal unilateral aspiration of the caudal PFC in macaque monkeys 

resulted in severe impairments in directing attention to the contralesional visual 

hemifield, especially in the presence of a competing stimulus in the ipsilesional 

hemifield. These deficits gradually recovered along a similar timecourse as stroke 

patients with neglect. A better understanding of the compensatory mechanisms 

underlying recovery of neglect/extinction necessitates the examination of how discrete 

and focal lesions affect the distributed cortical network and how these changes relate to 

visuospatial attention. Experimental lesions in macaque monkeys have shown that 

resting-state functional connectivity correlates with recovery of motor function 

(Hernandez-Castillo et al., 2017) or visuospatial working memory (Ainsworth et al., 
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2018; Meng et al., 2016). The study in Chapter 3 investigates the changes in functional 

connectivity using longitudinal resting-state fMRI before and after unilateral endothelin-

1-induced lesions in the caudal PFC of four macaque monkeys. Imaging data is reported 

alongside performance on a visually guided saccade task (single ipsilesional or 

contralesional visual stimulus) or on a free-choice saccade task (bilateral visual stimulus 

presentation with varying stimulus onset asynchronies) to measure the extent and 

recovery of contralesional target selection deficits. 

1.4.3. Structural alterations in white matter pathways during the recovery of 

lateralized visuospatial impairments 

The last section reviewed how the recovery of function after a focal lesion may be 

supported by network-wide changes in brain activity as shown using fMRI techniques. 

Alterations in functional network organization usually correspond to structural changes of 

the related neural components in brain tissue (e.g., axonal loss or sprouting, 

demyelination or remyelination) that can be imaged using an in vivo diffusion-weighted 

MRI technique to characterize axonal organization (Mori and Zhang, 2006). Diffusion-

weighted MRI has emerged as a non-invasive whole brain imaging method that can be 

used in vivo to infer the structural properties of white matter pathways connecting areas 

within and between networks. Diffusion-weighted MRI is sensitive to the rate of water 

diffusion in biological tissue and can be used to characterize the microstructure and 

orientation of axonal tracts (Beaulieu, 2002). Since white matter is arranged in bundles of 

highly organized axonal tracts, the rate of water diffusion is higher in the direction 

parallel to the white matter fiber orientation and lower for the perpendicular direction 

(Beaulieu, 2002; Chenevert et al., 1990). Thus, water diffusion in white matter tissue is 
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considered highly anisotropic since it flows faster in one direction rather than equally in 

all directions (isotropic diffusion).  

Diffusion tensor imaging (DTI) is one method of analyzing diffusion-weighted MR 

images in which a three-dimensional diffusion tensor is fit at each voxel to describe the 

local orientation and diffusivity (Basser et al., 1994a, 1994b). DTI can be used to 

visualize white matter tracts using tractography and the structural network connectivity 

can be described by calculating tract-specific diffusion properties of those pathways. 

Structural connectivity between two areas is generally reported using a measure of the 

degree of anisotropy within a white matter fiber tract. Fractional anisotropy is an estimate 

of the degree of anisotropy from DTI and is thought to reflect structural properties of 

white matter tissue, including axonal fiber density, myelination, and pathology (Basser 

and Pierpaoli, 1996; Beaulieu, 2002; Mori and Zhang, 2006; Song et al., 2005; Sotak, 

2002).  

Lesion-induced structural modifications of axonal fiber tracts may be reflected in the 

local fractional anisotropy throughout the various stages of post-lesion recovery (Sotak, 

2002). For instance, in the acute post-lesion stage, anterograde and retrograde axonal 

degeneration may cause decreased fractional anisotropy in the surrounding perilesional 

tissue and along fibers that directly innervate the lesion (Pierpaoli et al., 2001; Sotak, 

2002; Thomalla et al., 2004; van der Zijden et al., 2008; Werring et al., 2000). At the 

chronic stage, axonal regeneration or remyelination in perilesional or transneuronal white 

matter fibers may appear as increased fractional anisotropy on DTI (Dijkhuizen et al., 

2012; Grayson et al., 2017; Sotak, 2002; Zhang et al., 2012). Several DTI studies have 

reported the behavioural relevance of network-wide alterations in fractional anisotropy 

following focal lesions in the degree of acute impairment and during recovery in brain 

injured patients (Byblow et al., 2015; Chen and Schlaug, 2013; Crofts et al., 2011; 



 

 

 

60 

Dacosta-Aguayo et al., 2014; Lin et al., 2015; Lindenberg et al., 2012, 2010; Liu et al., 

2015; Ramsey et al., 2017; Schaechter et al., 2009; Umarova et al., 2017; Wang et al., 

2006) and animal models (Harris et al., 2016; Liu et al., 2007; van der Zijden et al., 2008; 

van Meer et al., 2012). Evidence from rodent and nonhuman primate models of stroke 

have demonstrated that white matter structural alterations in the ipsilesional and 

contralesional hemispheres corresponded with improved motor function (Brus-Ramer et 

al., 2007; Carmichael and Chesselet, 2002; Dancause et al., 2005; Liu et al., 2008; 

Stroemer et al., 1995). Likewise, DTI studies in stroke patients with motor impairments 

have shown that increased fractional anisotropy in white matter tracts in the 

contralesional hemisphere were strongly correlated with better motor function (Liu et al., 

2015; Schaechter et al., 2009). Longitudinal DTI studies in neurologically-healthy 

participants have demonstrated supporting evidence for behaviourally relevant changes in 

white matter that occur within weeks to months (Keller and Just, 2009; Scholz et al., 

2009).  

Recent evidence from DTI in acute or subacute stroke patients has shown that neglect 

was strongly associated with decreased fractional anisotropy in the right superior 

longitudinal fasciculus, an association fiber tract providing intrahemispheric 

communication between frontal and parietal areas (Hattori et al., 2018; Lunven et al., 

2015; Thiebaut De Schotten et al., 2014; Urbanski et al., 2011). Moreover, decreased 

fractional anisotropy was also observed in the frontoparietal network of the unaffected 

contralesional hemisphere and was associated with the severity or persistence of neglect 

(Lunven et al., 2015; Umarova et al., 2014). Lunven et al. (2015) additionally found that 

the severity of neglect correlated with white matter changes in the splenium of the corpus 

callosum, which connects bilateral parietal areas. In one longitudinal DTI study, 

Umarova and colleagues (2017) reported that white matter degeneration in contralesional 
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frontoparietal connections correlated strongly with the degree of unrecovered neglect 

(Umarova et al., 2017). Overall, it appears that the recovery of function following focal 

damage is associated with compensatory structural changes across the distributed 

network which may relate with alterations in functional brain activity. The study in 

Chapter 4 examines the structural changes in the white matter pathways connecting the 

bilateral frontoparietal network using longitudinal diffusion-weighted imaging before 

PFC lesions in macaque monkeys and after recovery from target selection deficits. 

1.5. Objectives  

Covert shifts in visuospatial attention and overt saccadic eye movements in primates rely 

on coordinated activity of the frontoparietal brain network. The major cortical nodes of 

the frontoparietal network include areas in the caudal prefrontal cortex (FEF, DLPFC) 

and the posterior parietal cortex (LIP), which are largely connected within hemisphere by 

the superior longitudinal fasciculus (SLF) and between hemisphere through the genu or 

isthmus of the corpus callosum. Unilateral damage to any region of the frontoparietal 

network typically results in impaired allocation of visual attention to the contralesional 

side of space, as shown in stroke patients (Corbetta and Shulman, 2011; B. de Haan et al., 

2012; Li and Malhotra, 2015) and after experimental lesions or inactivation in nonhuman 

primates (Deuel and Farrar, 1993; Johnston et al., 2016; Lynch and Mclaren, 1989; 

Schiller and Chou, 1998; Wardak et al., 2006, 2004, 2002). These lateralized visuospatial 

deficits typically manifest as reduced detection, discrimination, or selection of visual 

stimuli in the contralesional hemifield, especially in the presence of a competing stimulus 

in ipsilesional hemifield. Although these contralesional visuospatial deficits gradually 

improve over 2 to 4 months post-lesion, the degree of recovery varies across subjects and 

the compensatory neural mechanisms are not well understood. Longitudinal resting-state 
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fMRI and DTI offer in vivo and non-invasive measures of the functional and structural 

changes across large-scale networks after focal brain lesions and have been associated 

with behavioural outcome (Cappa and Perani, 2010; Dijkhuizen et al., 2012; Rehme and 

Grefkes, 2013). The broad objective of this thesis was to investigate the functional and 

structural changes in the frontoparietal network after a unilateral caudal PFC lesion and 

how those changes relate with behavioural recovery. To that aim, we made endothelin-1-

induced lesions in the right caudal PFC of four macaque monkeys and obtained 

longitudinal pre- and post-lesion measures of (1) behavioural performance on a saccade 

task, (2) functional connectivity using resting-state fMRI, and (3) structural changes in 

white matter tracts using DTI.  

In Chapter 2, we examined the effects of an endothelin-1-induced lesion in the right 

caudal PFC on saccade target selection of visual stimuli presented in the contralesional 

and ipsilesional hemifield on a free-choice saccade task. We also tested whether the 

reduction in saccade choice for contralesional stimuli was a result of impaired 

oculomotor processing. Behaviour was tested before and after the lesion until 

performance plateaued without further improvements. We found a reduction in saccades 

to contralesional stimuli that varied in severity and time to recovery based on lesion size 

and location, though deficits largely recovered over 2 to 4 months. Contralesional 

reaction times returned to baseline before the saccade choice bias had recovered and 

could not account for the severity of the choice bias throughout recovery. These findings 

demonstrate that the saccade choice bias was not exclusively due to oculomotor deficits 

alone but may instead reflect a combination of impaired motor and attentional processing.  

The aim of Chapter 3 was to investigate the functional reorganization of the 

frontoparietal network throughout the recovery of a saccade choice bias after unilateral 

caudal PFC lesions. The goal was to examine the pattern of functional connectivity 
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changes that was associated with better recovery. Functional imaging data was collected 

using resting-state fMRI at 7T before the lesion and at weeks 1, 4, and 8 or 16 post-lesion 

to correspond with the time course of behavioural recovery. We found that the pattern of 

functional reorganization associated with the recovery of contralesional saccade choice 

differed based on lesion size; functional connectivity normalized after smaller lesions and 

increased after larger lesions throughout recovery. We also found that the functional 

connectivity between contralesional DLPFC and ipsilesional posterior parietal cortex 

correlated with behavioural performance and that the contralesional DLPFC also showed 

increasing connectivity with the other frontoparietal network areas. The broad 

implication of the findings in this study is that both the contralesional and ipsilesional 

frontoparietal networks support the recovery of contralesional target selection. 

Importantly, our findings provide evidence for greater recruitment of the bilateral 

frontoparietal network during recovery from larger lesions, while recovery after smaller 

lesions was optimally supported by a normalization of the functional network. 

In Chapter 4, the aim was to determine whether the temporal changes in resting-state 

BOLD activity synchronization of areas in the frontoparietal network was associated with 

structural alterations in the white matter fiber tracts that connect the network. DTI data 

was collected before the lesion and at a chronic post-lesion stage when behaviour had 

recovered. Probabilistic tractography and tensor-derived diffusion parameters were used 

to investigate the microstructural changes of four major fiber tracts connecting the 

frontoparietal network within and between hemispheres. The fiber tracts of interest 

included two lesion-affected white matter tracts, the ipsilesional SLF and transcallosal 

PFC tract, and two remote fiber tracts, contralesional SLF and transcallosal posterior 

parietal cortex tract. We found that the diffusion parameters for the remote white matter 

pathways, contralesional SLF and transcallosal PPC tracts, were differentially altered 
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based on lesion size. We suggest that these remote tracts may be involved in supporting 

neural compensation after small caudal PFC lesions and conversely that larger PFC 

lesions may recruit alternative pathways for neural and/or behavioural compensation 

beyond the cortical frontoparietal network. 
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CHAPTER 2  

2. Recovery of contralesional saccade choice and reaction 

time deficits after a unilateral lesion in the macaque 

prefrontal cortex 

2.1. Introduction 

The caudal prefrontal cortex (PFC) is involved in visual search through both covert 

attention and overt orienting eye movements (Passingham and Wise 2012). In macaque 

monkeys, the caudal PFC includes the frontal eye fields (FEF) in area 8 and the caudal 

part of the principal sulcus (area 9/46). Unilateral damage to the caudal PFC often results 

in a phenomenon referred to as ‘visual extinction’ which reflects an ipsilesional bias in 

selective attention. Visual extinction has been characterized by the failure to respond to a 

visual stimulus presented in the contralesional hemifield when it is presented 

simultaneously with an ipsilesional stimulus (Bisiach 1991; Corbetta and Shulman 2011; 

Di Pellegrino et al. 1997). It is a topic of debate as to whether extinction is a mild form of 

neglect or a separate phenomenon altogether (Driver and Vuilleumier 2001; Geeraerts et 

al. 2005; Milner and Mcintosh 2005). Patients with neglect are unable to detect a stimulus 

in the contralesional hemifield even in the absence of any competing ipsilesional 

stimulus; whereas those with extinction can still detect a contralesional stimulus 

presented alone (de Haan et al. 2012). Lesions in the macaque caudal PFC have resulted 

in an initial, yet transient, neglect-like impairment with longer-lasting extinction-like 

deficits of the contralesional visual hemifield (Bianchi 1895; Deuel and Collins 1984; 

Deuel and Farrar 1993; Eidelberg and Schwartz 1971; Johnston et al. 2016; Latto and 
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Cowey 1971a; Rizzolatti et al. 1983; Schiller and Chou 1998; Welch and Stuteville 

1958).  

The severity of visual extinction has been investigated using double stimulation 

paradigms in which two stimuli are presented, with one in each visual hemifield, either 

simultaneously or in rapid succession. In humans, visual extinction is most often tested 

using temporal order-judgment tasks in which patients are asked to report which stimulus 

appeared first with a verbal response (Baylis 2002; Rorden et al. 1997, 2009) or saccade 

response (Ro et al. 2001). In monkeys, early work focused on the initial transient neglect-

like deficit seen following unilateral FEF lesions and observed the presence or absence of 

a response to food or frightening visual stimuli that were brought towards the monkey 

from its contralesional side (Bianchi 1895; Clark and Lashley 1947; Ferrier 1886; 

Jacobsen and Nissen 1937; Kennard 1938; Kennard and Ectors 1938; Welch and 

Stuteville 1958). A decade later in the 1970s, Alan Cowey and Richard Latto conducted 

the first experiments in which eye movements were measured in monkeys with unilateral 

FEF lesions (Latto and Cowey 1971b, 1971a). In their task, monkeys were required to 

respond to a flashing visual stimulus that appeared in either hemifield by directing their 

gaze towards the stimulus while the researchers photographed the eye. They reported an 

ipsilesional bias in the monkey’s gaze that gradually recovered over time to varying 

degrees across monkeys (Latto and Cowey 1971a). More recently, visual target selection 

has been measured using eye-tracking on temporal order-judgment tasks where monkeys 

are rewarded for correctly selecting the first appearing stimulus (Kubanek et al. 2015; 

Port and Wurtz 2009) or free-choice tasks where the monkey is rewarded for selecting 

either stimulus (Johnston, Lomber, & Everling, 2016; Schiller & Chou, 1998; Wardak, 

Olivier, & Duhamel, 2002). In the free-choice task, two stimuli are presented, one in each 
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hemifield, with a variable time delay between their onset and monkeys are free to look 

toward either stimulus so that their hemifield preference can be measured.  

It has yet to be resolved whether these deficits in contralesional target selection following 

unilateral PFC lesions are tied to oculomotor impairments. In other words: is the 

decreased target selection of a contralesional stimulus for an upcoming saccade primarily 

due to slower contralesional reaction times? Several studies that temporarily inactivated 

the PFC have reported large increases in contralesional reaction time in addition to the 

contralesional target selection deficit (Dias and Segraves 1999; Johnston et al. 2016; 

Sommer and Tehovnik 1997; Wardak et al. 2006), however temporary inactivation 

studies are limited in that they are unable to study post-lesion recovery and cannot answer 

the question of whether slower contralesional reaction time recovers prior to the recovery 

of contralesional target selection deficits. Longitudinal studies are necessary to answer 

this question, but unfortunately those studies have been limited in number. In one such 

study, Schiller and Chou (1998) unilaterally ablated the macaque FEF and at three weeks 

post-lesion reported severe deficits in contralesional target selection on the free-choice 

task and increased contralesional reaction times.  

Here, we investigated whether contralesional target selection deficits (i.e., an ipsilesional 

saccade choice bias) following a right caudal PFC lesion can be explained by impaired 

contralesional oculomotor programming. If the underlying cause of the saccade choice 

deficit was impaired contralesional oculomotor programming, then the saccadic reaction 

time to the preferred (ipsilesional) and non-preferred (contralesional) stimulus should 

differ in the presence of a choice bias, with slower reaction times to a contralesional 

stimulus than to a ipsilesional stimulus (Rincon-Gonzalez et al. 2016). We also tested 

whether contralesional oculomotor processing could account for the subsequent recovery 

of the saccade choice deficit. We created a more clinically relevant model of focal 
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cerebral ischemia than traditional aspiration lesions by injecting the vasoconstrictor 

endothelin-1 in the right caudal PFC of four male macaque monkeys. Endothelin-1 

induces a focal occlusion with subsequent reperfusion, allowing the study of post-lesion 

recovery, and has recently been validated in marmoset and macaque monkeys (Dai et al. 

2017; Herbert et al. 2015; Murata and Higo 2016; Teo and Bourne 2014). We collected 

behavioural data on the free-choice saccade task prior to the lesion and at weeks 1-16 

following the lesion. We found that unilateral lesions of the caudal PFC impaired 

saccadic performance to targets in the contralesional visual hemifield. Neglect-like 

deficits to single contralesional targets were transient and recovered within 2 weeks post-

lesion, yet the extinction-like contralesional target selection deficits persisted and 

gradually recovered over 2-4 months. Contralesional reaction times returned to pre-lesion 

baseline before the target selection deficit had recovered, suggesting that reaction times 

were insufficient in accounting for the degree of the choice deficit. These findings 

indicate that impaired attentional processing contribute to the contralesional target 

selection deficit observed following right caudal PFC lesions. 

2.2. Methods 

2.2.1. Subjects 

Data were collected from four adult male macaque monkeys (Macaca mulatta) aged 5 – 7 

years old and weighing 7 – 10 kg. Animals are individually described as Monkey L, 

Monkey S, Monkey B, and Monkey F and are ordered based on smallest to largest lesion 

size, described later in the text. All surgical and experimental procedures were carried out 

in accordance with the Canadian Council of Animal Care policy on the use of laboratory 
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animals and approved by the Animal Care Committee of the University of Western 

Ontario Council.  

A custom-built acrylic head post was fixed to the skull using dental acrylic and 6-mm 

ceramic bone screws (Thomas Recording, Giessen, Germany) as previously described 

(Johnston and Everling, 2006). A head post was necessary for restraining the head for 

eye-tracking during training on the oculomotor task. Animals received postoperative 

analgesics and antibiotics and were monitored by a university veterinarian. 

2.2.2. Behavioural paradigm 

Prior to the induction of an experimental lesion, we trained the monkeys on a free-choice 

saccade task (Fig. 2.1) as previously described (Johnston, Lomber, and Everling, 2016; 

Schiller and Chou, 1998). We used the CORTEX behavioural control system (National 

Institute of Mental Health, Bethesda, MD) to control the behavioural paradigm and 

reward delivery. Visual stimuli were presented on a CRT monitor (60 Hz refresh rate). 

Eye movements were recorded at 1000 Hz using an infrared video eye tracker (Eyelink 

1000, SR Research, ON, Canada).  

In the task, monkeys were required to direct a saccade toward one of two stimuli that 

appeared in the left and right hemifield with a variable stimulus onset asynchrony (SOA) 

between the presentation of the two stimuli. Trials began with the presentation of a 

fixation point (white-filled circle, 0.3°) located in the center of a black screen on the 

display monitor. Animals were required to fixate this stimulus within 1000 ms of its 

presentation and maintain fixation within a 2° x 2° window for a duration that varied 

between 500 to 1000 ms. Then, two peripheral stimuli (white-filled circles, 0.5°) were 

presented in the left and right hemifield at an equal eccentricity of 10° at a variable SOA. 
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Monkeys received a liquid reward for directing a single saccade to either stimulus of their 

choice within a 4° x 4° target window. The SOA values were selected to anchor the 

psychometric function between 0% and 100% saccade choice. This resulted in an SOA 

range between -256 to 256 ms (-256, -128, -64, -32, 0, 32, 64, 128, 256 ms) for Monkeys 

L, S, and B, and between -512 to 512 ms (-512, -256, -128, -64, 0, 64, 128, 256, 512 ms) 

for Monkey F. Negative SOA values indicate trials on which the right stimulus was 

presented before the left; an SOA value of zero indicates trials in which both stimuli were 

presented simultaneously; and positive SOA values indicate trials on which the left 

stimulus was presented before the right.  

In addition to the paired stimuli trials, we randomly interleaved an equal proportion of 

single stimulus trials to measure contralesional/ipsilesional saccadic reaction time, 

duration, peak velocity, and amplitude separately. The single stimulus trials involved the 

presentation of a left or right stimulus following fixation and the animal simply had to 

direct a saccade to that stimulus. Monkey S was the first animal used in this study before 

we included the single stimulus trials. Saccadic reaction time, duration, peak velocity, 

and amplitude for Monkey S were calculated from the paired stimulus trials with the 

largest SOA (256 ms) as described previously (Johnston et al. 2016). We collected 

baseline behavioural data prior to the induced lesion until performance on the task was 

stable across sessions for several weeks. After the experimental lesion was induced, we 

continued daily collection of eye-tracking data until behavioural performance stabilized 

without further improvement, a time point hereby denoted as “behavioural recovery” 

(week 8 post-lesion for Monkeys L and S and week 16 post-lesion for Monkeys B and F).   
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Figure 2.1. Free-choice saccade task.  

Each trial began with the presentation of a central fixation point, followed by either one 

stimulus in the left or right hemifield (single stimulus trials) or two stimuli, with one in 

the left and one in the right hemifield (paired stimuli trials) presented at a variable 

stimulus onset asynchrony (SOA). SOA is the timing difference between presentation of 

the left and right stimulus. (A) Single stimulus trials included two conditions: 1) only the 

left stimulus was presented or 2) only the right stimulus was presented. (B) Paired stimuli 

trials included three conditions: 1) the left stimulus was presented before the right 

stimulus by a variable SOA, 2) the right stimulus was presented before the left stimulus, 

or 3) both left and right stimuli were presented at the same time. Single stimulus and 

paired stimuli trials were included in equal proportion and randomly interleaved 

throughout the behavioural session.  
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2.2.3. Endothelin-1-induced focal cerebral ischemia 

Monkeys were initially sedated with 15.0 mg/kg ketamine, followed by intravenous 

administration of 2.5 mg/kg Propofol via the saphenous vein. Animals were then 

intubated and anaesthesia was maintained with 1-2% isoflurane mixed with oxygen and 

continuous rate infusion of propofol in saline. The animal’s head was held in position 

using a stereotaxic frame with ear and eye bars (Model 1404 Stereotaxic Instrument, 

Kopf Instruments, CA, USA). A craniotomy was made above the right arcuate sulcus and 

caudal portion of the right principal sulcus and the dura was then removed to confirm the 

location of the arcuate and principal sulci by visual inspection. A 10 μl-capacity syringe 

was held in position with a microinjection unit (Model 5000 Microinjection Unit, Kopf 

Instruments, CA, USA) that was mounted to a stereotaxic frame assembly and filled with 

endothelin-1 (E7764, Sigma-Aldrich).  

We experimentally induced a small lesion in Monkey L and Monkey S and a larger lesion 

in Monkey B and Monkey F by varying the number of injections and concentration of 

endothelin-1 for each animal. Each injection contained 2 μl of endothelin-1 and was 

injected at a flow rate of 0.75 μl/min. Monkey L received a total of six injections of 

endothelin-1 (0.5 μg/μl) in the anterior bank of the right arcuate sulcus at three injection 

sites separated by 2 mm along the mediolateral axis and at two depths at each site along 

the dorsoventral axis at 2 mm and 4 mm below dura. Monkey S received a total of 12 

injections of endothelin-1 (0.5 μg/μl) with six in the anterior bank of the right arcuate 

sulcus (as described for Monkey L) and an additional six in the caudal portion of the right 

principal sulcus at three injection sites separated by 2 mm along the rostrocaudal axis and 

at two depths at each site along the dorsoventral axis at 2 mm and 4 mm below dura. 

Monkey B received a total of 16 injections of endothelin-1 (0.5 μg/μl), with eight in the 

anterior bank of the right arcuate sulcus (as described for Monkey L) and eight in the 
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caudal portion of the right principal sulcus (as described for Monkey S). Monkey F 

received a total of 16 injections of endothelin-1 (1.0 μg/μl), with eight in the anterior 

bank of the right arcuate sulcus (as described for Monkey L) and eight in the caudal 

portion of the right principal sulcus (as described for Monkey S).  

At each injection site, the syringe needle was lowered to the greatest depth below the 

cortical surface and remained in situ for four minutes to allow the cortex to settle before 

the first endothelin-1 injection, after which the needle remained in situ for another four 

minutes to allow the solution to spread and reduce backflow of the solution through the 

needle track (Murata and Higo 2016). The needle was then retracted to the second depth 

and remained in situ for four minutes before the second injection of endothelin-1 was 

made, after which the needle remained in situ for another four minutes. The needle was 

then retracted from the cortex and repositioned over the next injection site and the 

procedure was repeated for the remaining injection sites. Following the last needle 

retraction, the dura flap was put back in place and the skull trephination was covered with 

medical grade silicon and left undisturbed to harden before the area was sealed by 

application of dental acrylic. 

2.2.4. Lesion volume analysis 

Before and after the lesion induction, we acquired T1-weighted MP2RAGE anatomical 

images (TR = 6500 ms, TE = 3.15 ms, TI1 = 800 ms, TI2 = 2700 ms, field of view 

= 128 x 128 mm, 0.5 mm isotropic resolution) and T2-weighted turbo spin echo 

anatomical MR images (TR = 7500 ms, TE = 90 ms, slices = 42, matrix size = 256 x 256, 

field of view = 128 x 128 mm, acquisition voxel size = 0.5 mm x 0.5 mm x 1 mm) on a 7-

Tesla Siemens MAGNETOM scanner (Erlangen, Germany) using an in-house designed 

and manufactured 8-channel transmit, 24-channel receive primate head radiofrequency 
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coil (Gilbert et al. 2016). We used FMRIB's Automated Segmentation Tool (FAST) 

(Zhang et al. 2001) to segment tissue from each animal’s T1-weighted anatomical 

acquired one week post-lesion. We segmented the T1 into four tissue types: grey matter, 

white matter, cerebrospinal fluid, and lesioned tissue. Segmented masks representing 

lesioned tissue were first inspected to ensure that they captured areas of hypointensity on 

the T1-weighted image and hyperintensity from the T2-weighted image acquired in the 

same session. Segmented T1 lesion masks were then normalized to the standard F99 

space and lesion volumes were determined using MRIcron Toolbox 

(http://www.cabiatl.com/mricro/mricron/index.html). Lesioned tissue was visualized by 

projecting the lesion masks onto the macaque F99 template brain using MRIcron and the 

CARET toolbox (http://www.nitrc.org/projects/caret). Although there is no standard 

consensus on the nomenclature and boundaries for cytoarchitectonic subdivisions within 

the macaque prefrontal cortex, we have adopted labels from the Paxinos et al. (2000) 

rhesus monkey brain atlas to label lesioned cortical areas (Paxinos et al. 2000).  

2.2.5. Data analysis  

The following trials were excluded from further analysis: 1) trials in which the monkey 

blinked around the time of stimulus or saccade onset, 2) trials with broken or incorrect 

fixation, and 3) trials with saccadic reaction times less than 80 ms (anticipations) or 

greater than 1000 ms (no response). Saccade onset was defined as the time at which eye 

velocity exceeded 30°/s following stimulus onset, while saccade end was defined as the 

time at which eye velocity then fell below 30°/s (Johnston et al., 2016). All analyses were 

performed for each monkey individually using custom-designed software written in 

MATLAB (Mathworks, Natick, MA). 
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Performance on the free-choice saccade task was assessed by summing the proportion of 

saccades made to the contralesional (left) stimulus as a function of the SOA. For each 

animal, data was pooled into groups representing distinct time points: pre-lesion, week 1-

2, 4, 8, and 16 post-lesion. For each time point, we generated a probability curve from the 

pooled data with a logistic function, y=1/(1 + e-k(x-x0)), where y is the proportion of 

contralesional saccade choice at a given SOA value (x), k is the slope of the curve, and x0 

is the x-value at the midpoint of the curve. The midpoint of the curve represents the point 

of equal selection, which is the SOA value at which the probability of choosing the 

contralesional or ipsilesional stimulus is equal; the greater the point of equal selection 

(with a contralesional lead time), the greater the contralesional target selection deficit. 

Contralesional and ipsilesional saccadic reaction time, duration, peak velocity, and 

amplitude to a single stimulus were calculated from the single stimulus trials for Monkey 

L, Monkey B, and Monkey F or from trials with longest SOA values (|256| ms) for 

Monkey S at each time point. At the time of behavioural data collection for Monkey S, 

the first animal in the study, we had not yet introduced the single stimulus trials. 

However, the longest SOA values can effectively be used as single stimulus trials since 

these values exceeded the average reaction time of the animal (about 150-200 ms); by the 

time the second stimulus appeared, the animal would theoretically already have initiated 

a saccade to the first appearing stimulus (Johnston et al., 2016). We additionally 

measured the saccadic reaction time to a stimulus during the paired stimuli trials at each 

SOA value less than |256| ms for all animals. Reaction time was defined as the length of 

time in milliseconds between stimulus onset and saccade onset. Duration was defined as 

the length of time in milliseconds between saccade onset and saccade end. Peak velocity 

was defined as the maximum velocity in degrees per second between saccade onset and 

saccade end. Saccade amplitude was defined as the angular distance in degrees that the 

eye traveled during the saccade. For data that was normally distributed (point of equal 
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selection, proportion contralesional choice, performance), we performed one-way 

analyses of variance (ANOVA) tests with time as a factor (variables: pre-lesion, week 1-

2, 4, 8, 16 post-lesion) to test for significant differences from pre-lesion to post-lesion 

time points. Significant differences were further investigated using the post-hoc Tukey’s 

Honestly Significant Difference (HSD) test (p < 0.05). For data that was not normally 

distributed (saccadic reaction time, duration, peak velocity, amplitude), we performed 

Kruskal-Wallis tests, a non-parametric equivalent of the one-way ANOVA, with post-hoc 

Tukey-Kramer tests. Effect sizes were measured using Hedges’ g (Hedges 1981; Hedges 

and Olkin 1985).  

To investigate whether prolonged contralesional reaction times can account for the 

severity of a saccade choice bias after a right caudal PFC lesion, we compared the mean 

difference between contralesional and ipsilesional reaction times to the point of equal 

selection.  The idea is that if mean reaction time underlies the saccade choice bias, then 

the difference in reaction time to single contralesional or ipsilesional stimulus should 

account for the increased contralesional lead time necessary to reach the point of equal 

selection. However, the mean reaction time does not capture all of the information 

present in reaction time data (Ratcliff 1979; Wardak et al. 2012). Changes in the mean 

reaction time can be a result of changes in a host of parameters from the reaction time 

distribution (Ratcliff, 1979). For example, increased mean reaction time may reflect a 

shift of the whole distribution or just an increase in the tail of the distribution. 

Alternatively, it is also possible that changes in the reaction time distribution may not be 

reflected in the mean reaction time. We investigated whether the saccade choice bias was 

the outcome of differences between the reaction time distributions for contralesional and 

ipsilesional saccades by simulating saccade choice using the reaction time distributions 

for single contralesional and ipsilesional saccades under the assumptions of the LATER 
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(Linear Approach to Threshold with Ergodic Rate) model (Carpenter and Williams 

1995). See Supplemental Figure 2.S1 for the cumulative reaction time distributions for 

contralesional and ipsilesional saccades. The LATER model proposes that a decision 

signal rises linearly in response to a stimulus, at a rate that varies from trial to trial with a 

Gaussian distribution, until it reaches a threshold at which point a response is finally 

initiated (Carpenter & Williams, 1995; Reddi, 2003). Leach and Carpenter (2001) use the 

LATER model to show that reaction time distributions were able to predict the saccade 

choice probabilities at various stimulus onset asynchronies in healthy human participants 

(Leach and Carpenter 2001). We generated a linear race model with two decision signals 

(for an ipsilesional or contralesional saccade) using the reaction time distributions from 

the single stimulus trials and tested whether it could account for the observed saccade 

choice probabilities after a caudal PFC lesion (Carpenter and Williams 1995; Leach and 

Carpenter 2001; Rincon-Gonzalez et al. 2016). We first obtained the reaction time 

distributions for contralesional and ipsilesional saccades from single stimulus trials for 

Monkey L, Monkey B, and Monkey F and in trials with an SOA of |256| ms for Monkey 

S (effectively single stimulus trials). Since the linear race model assumes that the 

reciprocal reaction times are directly related to the rate of rise and the variance of the 

decision signal for a single target, we generated 10000 simulated reaction times using the 

mean and standard deviation of the reciprocal observed contralesional and ipsilesional 

reaction times. Next, we modeled a race between the two decision signals and staggered 

them by each SOA value. We did this for each SOA condition by randomly selecting a 

contralesional and ipsilesional rate of rise (from the simulated reaction time distributions) 

500 times and subtracted the SOA value from the first appearing stimulus in that 

condition. For example, when we modeled a race for an SOA condition of 128 ms-

ipsilesional first, a randomly sampled ipsilesional rate of rise was first converted back to 

a reaction time by taking its reciprocal and then subtracting 128 from that simulated 
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reaction time to stagger the decision signals. Then, we compared this simulated 

ipsilesional reaction time to the simulated contralesional reaction time for the same 

condition and selected the ‘winner’ as the saccade with the shorter reaction time. This 

procedure was repeated 500 times at each of the nine SOA conditions which resulted in 

500 simulated saccade choice probabilities at each SOA. We then compared the 

simulated saccade choice probabilities with the observed choice using a two-sample Chi-

square goodness of fit test at each SOA value with FDR correction for multiple 

comparisons.  

2.3. Results 

2.3.1. Endothelin-1-induced focal cerebral ischemia in the right caudal PFC 

The lesion analysis revealed an infarct volume of 0.43 cm3 for Monkey L, 0.51 cm3 for 

Monkey S, 1.28 cm3 for Monkey B, and 1.41 cm3 for Monkey F (Fig. 2.2). Since the 

infarct volumes for Monkeys B and F were more than double that of Monkeys L and S, 

we categorized Monkeys L and S as animals with a small lesion and Monkeys B and F as 

animals with a large lesion. All four animals sustained lesions within the right caudal 

PFC, however the lesion extended into nearby locations that varied across the animals 

(Fig. 2.2). In Monkey L, the lesion was mostly confined to the FEF (areas 8Ad, 8B), but 

extended slightly into the dorsal premotor cortex (areas 6DC/6DR). In Monkey S, the 

lesion affected the FEF (areas 8A, 8Ad, 8Av, 8B), dorsolateral PFC (areas 9/46, 9/46D, 

46D), and ventrolateral PFC (areas 46v, 9/46v, 44, 45A, 45B, 47/12o). In Monkey B, the 

lesion affected the FEF (areas 8A, 8Ad, 8B), dorsolateral PFC (areas 9/46, 9/46D), dorsal 

premotor cortex (areas 6DC, 6DR) and slightly extended into the ventrolateral PFC (areas 

46v, 9/46v) and ventral premotor cortex (area 6VC). In Monkey F, the lesion affected the 
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FEF (areas 8A, 8Ad, 8Av, 8B), dorsolateral PFC (areas 9/46, 9/46D, 46D), ventrolateral 

PFC (areas 46v, 9/46v, 45A, 45B), dorsal premotor cortex (area 6DC), and ventral 

premotor cortex (areas 6VC, 6VR). Overall, the right FEF was lesioned in all four 

animals. Of the two animals who sustained a smaller lesion, Monkey L only sustained a 

lesion to the FEF whereas the lesion in Monkey S extended into the dorsolateral and 

ventrolateral PFC. Of the two animals who sustained a larger lesion, Monkey B sustained 

a lesion which extended dorsally into the dorsal premotor cortex whereas in Monkey F 

the lesion extended into the dorsolateral and ventrolateral PFC and slightly into the 

ventral premotor cortex. 
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Figure 2.2. Lesion maps superimposed on the macaque F99 template brain.  

For each animal, T1-weighted MRI images obtained one week post-lesion were 

segmented based on tissue type. Segmented masks representing lesioned tissue were 

registered to standard F99 space. Lesion masks were projected onto (A) axial slices of the 

macaque F99 template brain using the MRIcron Toolbox and (B) cortical flat map right 

hemisphere representations of the macaque F99 brain using CARET with Paxinos et al. 

(2000) area labels. Z-axis slice coordinates are in standard F99 space. Abbreviations: 

principal = principal sulcus; arcuate = arcuate sulcus, L = left hemisphere, R = right 

hemisphere, A = anterior, P = posterior, D = dorsal, V = ventral, small = small lesion, 

large = large lesion, FEF = frontal eye field, DLPFC = dorsolateral prefrontal cortex, 

VLPFC = ventrolateral prefrontal cortex, PMd = dorsal premotor cortex, PMv = ventral 

premotor cortex. 
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2.3.2. Effects of a right caudal PFC lesion on free-choice saccade performance 

We used the free-choice saccade task to assess the extent of a saccade choice bias by 

measuring the proportion of saccades directed to a contralesional or ipsilesional stimulus 

before and after a right caudal PFC lesion. Figure 2.3A shows the proportion of 

contralesional saccade choices as a function of the SOA. Data shown in these figures 

represent task performance pre-lesion and at weeks 1-2, 4, 8, and 16 post-lesion. At pre-

lesion, we observed only a small bias in the point of equal selection across all animals. 

Following a right caudal PFC lesion, the psychometric function shifted substantially to 

the right indicating a choice bias towards the ipsilesional stimulus, and then gradually 

shifted back to the left in the weeks following the lesion approaching baseline free-choice 

performance (Fig. 2.3A). At week 1-2 post-lesion, the two animals with lesions in both 

the FEF and dorsolateral/ventrolateral PFC [Monkey S (small lesion) and Monkey F 

(large lesion)] exhibited free-choice behaviour that resembled contralesional neglect 

more than extinction. For example, in the trials with the longest contralesional lead time 

(Monkey S: 256 ms contralesional-first; Monkey F: 512 ms contralesional-first), Monkey 

S and Monkey F still only made about 50% of saccades to the contralesional stimulus, 

whereas Monkeys L and B were making between 70-80% contralesional saccades on the 

same trial condition. Shifts in the midpoint of the curves, the point of equal selection, 

were further quantified and statistically compared for each animal across time in Figure 

2.3B. One-way ANOVAs revealed significant differences in the point of equal selection 

across time in all four animals (Monkey L: F(3, 19) = 19.62, p = 4.83x10-6; Monkey S: 

F(3, 23) = 24.95, p = 2.05x10-7; Monkey B: F(4, 40) = 47.56, p = 1.10x10-14; Monkey F: 

F(4, 24) = 27.12, p = 1.36x10-8). Tukey’s post-hoc tests revealed significant rightward 

shifts in the point of equal selection (p < 0.05) from pre-lesion to week 1-2 post-lesion for 

all four animals (Monkey L: 115 ms shift; Monkey S: 163 ms shift; Monkey B: 223 ms 
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shift; Monkey F: 386 ms shift). The point of equal selection then gradually returned to 

pre-lesion baseline performance and stabilized without further improvement in 

performance by week 8 in Monkey L and Monkey S and by week 16 in Monkey B and 

Monkey F (Table 2.1).  

We examined the degree of a contralesional choice deficit by calculating the proportion 

of contralesional saccades on trials in which both stimuli appeared simultaneously (SOA 

= 0 ms) (Fig. 2.3C and Table 2.2). One-way ANOVAs revealed significant differences in 

the proportion of contralesional saccade choice at an SOA of 0 ms across time in all four 

animals (Monkey L: F(3, 19) = 14.45, p = 3.85x10-5; Monkey S: F(3, 23) = 12.01, p = 

6.19x10-5; Monkey B: F(4, 41) = 13.37, p = 4.64x10-7; Monkey F: F(4, 24) = 6.26, p = 

0.0013). At pre-lesion, the proportion of contralesional saccade choice was near 0.50 for 

all animals (Monkey L: 0.43; Monkey S: 0.44; Monkey B: 0.63; Monkey F: 0.50), 

indicating there was a roughly equal proportion of saccades made to both stimuli when 

presented simultaneously. Tukey’s post-hoc tests revealed a significant decrease in the 

proportion of contralesional saccades (p < 0.05) from pre-lesion to week 1-2 post-lesion 

for all four animals [Monkey L: 0.06 (p<0.0001); Monkey S: 0.06 (p=0.0002); Monkey 

B: 0.17 (p<0.0001); Monkey F: 0.12 (p=0.0026)]. At week 4 post-lesion, the proportion 

of contralesional saccades remained less than pre-lesion for all animals [Monkey L: 0.22 

(p=0.051); Monkey S: 0.03 (p=0.0008); Monkey B: 0.28 (p=0.0156); Monkey F: 0.13 

(p=0.0047)]. The proportion of contralesional saccade choice gradually increased over 

time, approaching pre-lesion baseline performance, and stabilized without further 

improvement by week 8 for Monkey L and Monkey S and by week 16 for Monkey B and 

Monkey F (Table 2.2 and Fig. 2.3C). Interestingly, the two animals with lesions in both 

the FEF and dorsolateral/ventrolateral PFC (Monkeys S and F) showed only a partial 

recovery of function, whereas the two animals with lesions that did not extend into the 
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dorsolateral/ventrolateral PFC (Monkeys L and B) showed a more complete recovery 

(i.e., smaller difference between pre-lesion and post-lesion contralesional saccade choice 

performance). Correlations between lesion volume and behavioural deficits are included 

as supplemental material (Supplemental Fig. 2.S5). 

In sum, an experimental lesion in the right caudal PFC that encompassed the FEF in all 

four animals and extended into the dorsolateral and ventrolateral PFC in Monkeys S and 

F led to an overall reduction in saccades to the contralesional (left) stimulus when a 

competing stimulus was also presented in the ipsilesional (right) visual hemifield. This 

contralesional choice deficit resembled contralesional visual extinction that gradually 

recovered over 2-4 months post-lesion. When the contralesional stimulus was presented 

well before the ipsilesional stimulus, the animals were more likely to respond to the 

contralesional stimulus without having the competing ipsilesional stimulus override their 

ability to detect or respond to the contralesional stimulus. The SOA between presentation 

of the contralesional and ipsilesional stimulus in which an equal proportion of saccades 

were made to both stimuli (i.e., the point of equal selection) was significantly longer at 

week 1-2 post-lesion, with the animals favouring the stimulus in the ipsilesional 

hemifield. Trials in which both stimuli were presented at the same time (SOA = 0 ms) 

showed the degree of contralesional target selection deficits as a drastic decrease in the 

proportion of saccades made to the contralesional stimulus. This ipsilesional saccade 

choice bias (or contralesional choice deficit) gradually recovered by week 8 post-lesion 

for Monkey L and Monkey S and by week 16 post-lesion for Monkey B and Monkey F.  
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Figure 2.3. Performance on the free-choice saccade task.  

(A) Proportion of saccades made to the contralesional stimulus as a function of the SOA 

at each time point. In each panel, black dotted lines represent pre-lesion data, red 

represents week 1-2 post-lesion, orange represents week 4 post-lesion, green represents 

week 8 post-lesion, and blue represents week 16 post-lesion. Positive x-axis values 

indicate trials in which the contralesional (left) stimulus appeared first and negative x-

axis values indicate trials in which the ipsilesional (right) stimulus appeared first. (B) 

Recovery of the point of equal selection on the free-choice task. The point of equal 

selection is the temporal delay between presentation of the left and right stimuli at which 

an equal proportion of saccades were made to both stimuli. Positive y-axis values indicate 

that the point of equal selection was reached at a temporal delay in which the 

contralesional (left) stimulus was presented before the ipsilesional (right); negative y-axis 

values indicate a temporal delay in which the ipsilesional stimulus was presented first. 

Error bars indicate standard error of the mean. Statistical comparisons were made within 

subjects using a one-way ANOVA with post-hoc Tukey’s test (p < 0.05) to compare the 
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point of equal selection at each post-lesion time point to pre-lesion. (C) Recovery of 

contralesional saccade choice on true simultaneous trials. Trials with an SOA value of 0 

ms were deemed ‘true simultaneous trials’ in which both stimuli appeared at exactly the 

same time. We plotted the proportion of saccades made to the contralesional stimulus on 

those trials for each time point. Statistical comparisons were made using a one-way 

ANOVA with post-hoc Tukey’s test (p < 0.05). Abbreviations: ipsi = ipsilesional; contra 

= contralesional. 
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Table 2.1. Point of equal selection on the free-choice saccade task. 

 

 

Values are means ± SEM for point of equal selection (PES) on the free-choice saccade 

task and statistical comparisons between pre- and post-lesion time points using a one-way 

ANOVA with post hoc Tukey’s test (p < 0.05). P values indicate significance level and 

Hedges’ g is effect size. 

  

 Time after lesion PES (ms) 

No. of 

trials 

No. of 

sessions p value Hedges’ g 

Monkey L Pre-lesion 6.8 ± 4.5 3303 9   

 Week 1-2 post-lesion 121.7 ± 20.1 1198 7 <0.0001 3.17 

 Week 4 post-lesion 35.7 ± 6.6 689 3 0.5282 2.23 

 Week 8 post-lesion 14.2 ± 4.0 701 4 0.9790 0.61 

Monkey S Pre-lesion 17.3 ± 5.7 3226 11   

 Week 1-2 post-lesion 180.1 ± 26.1 1879 7 <0.0001 3.63 

 Week 4 post-lesion 132.2 ± 5.7 1392 4 0.0006 3.99 

 Week 8 post-lesion 39.9 ± 7.7 651 4 0.7539 1.22 

Monkey B Pre-lesion -18.4 ± 4.8 3566 27   

 Week 1-2 post-lesion 205.0 ± 31.7 741 8 <0.0001 5.78 

 Week 4 post-lesion 79.7 ± 7.6 330 3 0.0005 4.01 

 Week 8 post-lesion 28.9 ± 5.1 467 4 0.1130 1.97 

 Week 16 post-lesion 11.5 ± 4.6 259 4 0.6404 1.25 

Monkey F Pre-lesion 21.3 ± 17.0 1239 8   

 Week 1-2 post-lesion 406.5 ± 44.8 848 6 <0.0001 4.1 

 Week 4 post-lesion 121.5 ± 12.1 1175 4 0.1292 2.31 

 Week 8 post-lesion 116.7 ± 25.2 789 4 0.2011 1.88 

 Week 16 post-lesion 82.9 ± 30.5 847 4 0.6671 1.18 
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Table 2.2. The proportion of saccades made to the contralesional stimulus during 

simultaneous presentation of both stimuli. 

Values are means ± SE for proportion of saccades made to the contralesional stimulus 

during simultaneous presentation of both stimuli [stimulus onset asynchrony (SOA) = 0 

ms] and statistical comparisons between pre- and postlesion time points using a one-way 

ANOVA with post hoc Tukey’s test (p < 0.05). Total number of trials refers to trials with 

an SOA of 0 ms. P values indicate significance level, and Hedges’ g is effect size. 

 

  

 Time after lesion 

Proportion 

Contralesional 

Saccade Choice 

No. of 

trials 

No. of 

sessions p value Hedges’ g 

Monkey L Pre-lesion 0.43 ± 0.05 357 9   

 Week 1-2 post-lesion 0.06 ± 0.02 129 7 <0.0001 -3.34 

 Week 4 post-lesion 0.22 ± 0.01 76 3 0.0508 -1.67 

 Week 8 post-lesion 0.35 ± 0.07 75 4 0.7014 -0.56 

Monkey S Pre-lesion 0.44 ± 0.07 303 11   

 Week 1-2 post-lesion 0.06 ± 0.03 219 7 0.0002 -2.12 

 Week 4 post-lesion 0.03 ± 0.01 142 4 0.0008 -2.12 

 Week 8 post-lesion 0.22 ± 0.05 54 4 0.0655 -1.1 

Monkey B Pre-lesion 0.63 ± 0.03 391 27   

 Week 1-2 post-lesion 0.17 ± 0.07 54 8 <0.0001 -2.64 

 Week 4 post-lesion 0.28 ± 0.17 35 3 0.0156 -1.97 

 Week 8 post-lesion 0.28 ± 0.07 52 4 0.0038 -2.2 

 Week 16 post-lesion 0.47 ± 0.11 33 4 0.4276 -0.96 

Monkey F Pre-lesion 0.50 ± 0.09 150 8   

 Week 1-2 post-lesion 0.12 ± 0.08 64 6 0.0026 -1.75 

 Week 4 post-lesion 0.13 ± 0.03 187 4 0.0047 -1.73 

 Week 8 post-lesion 0.16 ± 0.05 79 4 0.0170 -1.55 

 Week 16 post-lesion 0.26 ± 0.06 82 4 0.1881 -1.09 

 



 

 

 

113 

2.3.3. Effects of a right caudal PFC lesion on saccades to single targets  

We randomly interleaved single stimulus trials within the paired stimuli trials in the free-

choice task to assess the presence of neglect-like deficits to single contralesional stimuli 

and to determine changes in contralesional and ipsilesional saccade metrics. Figure 2.4 

shows each monkey’s performance on single stimulus trials (or on trials with an SOA 

value of |256| ms for Monkey S) for contralesional and ipsilesional saccades over time. 

One-way ANOVAs revealed significant differences in the proportion of correct 

contralesional and ipsilesional saccades across time for Monkey S [Contralesional: 

F(3,23) = 91.63, p = 6.15x10-13; Ipsilesional: F(3,23) = 5.61, p = 0.005], Monkey B 

[Contralesional: F(4,40) = 12.12, p = 1.51x10-6; Ipsilesional: F(4,40) = 9.36, p = 1.95x10-

5], and Monkey F [Contralesional: F(4,24) = 11.80, p = 1.93x10-5; Ipsilesional: F(4,24) = 

13.67, p = 6.07x10-6]. Post-hoc Tukey’s tests revealed that at week 1-2 post-lesion there 

was a significant decrease in the proportion of correct contralesional saccade 

performance compared to pre-lesion for Monkey S (pre-lesion: 0.94 ± 0.01, week 1-2 

post-lesion: 0.26 ± 0.03, p < 0.0001, g = -2.65), Monkey B (pre-lesion: 0.99, week 1-2 

post-lesion: 0.84 ± 0.03, p < 0.0001, g = -2.50), and Monkey F (pre-lesion: 0.95 ± 0.01, 

week 1-2 post-lesion: 0.64 ± 0.04, p = 0.0001, g = -2.17). Monkey L also showed a 

decrease in the proportion of correct contralesional saccades (about 75% correct 

contralesional performance at week 1-2 post-lesion compared to about 93% at pre-

lesion), however this effect was not significant. Of the contralesional errors made that led 

to reduced performance at weeks 1-2 post-lesion, more than 85% were due to (1) no 

response after the contralesional stimulus presentation or (2) an incorrect saccade in 

which the saccade was made in the wrong direction. Recall that the saccade performance 

for Monkey S was from choice trials with the largest SOA value of |256| ms, so in this 

case all of the contralesional errors were due to either (1) incorrect saccades made 
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towards the second-appearing stimulus or (2) incorrect saccades made in any other 

direction except towards the stimuli. Only a small proportion of the contralesional errors 

were due to inaccurate saccades made towards the contralesional stimulus (13% in 

Monkey L, 0% in Monkey S, 0% in Monkey B, and 3% in Monkey F). 

Monkey S had significantly decreased contralesional saccade performance at week 4 

post-lesion (0.70 ± 0.02, p = 0.006, g = -0.91) compared to pre-lesion. Post-hoc Tukey’s 

tests also revealed a significant decrease in ipsilesional saccade performance at week 1-2 

post-lesion compared to pre-lesion for Monkey S (pre-lesion: 0.94 ± 0.01, week 1-2 post-

lesion: 0.68 ± 0.08, p = 0.0059, g = -1.50) and Monkey B (pre-lesion: 0.99 ± 0.01, week 

1-2 post-lesion: 0.95 ± 0.03, p < 0.0001, g = -2.16). At week 16 post-lesion, Monkey F 

had significantly decreased ipsilesional (week 16 post-lesion: 0.86 ± 0.02, p = 0.0012, g = 

-2.44) and contralesional (week 16 post-lesion: 0.76 ± 0.02, p = 0.0484, g = -8.10) single 

saccade performance compared to pre-lesion (0.95 ± 0.01). In sum, at least in the early 

post-lesion stage (weeks 1-2), the monkeys were impaired in directing saccades to a 

single contralesional stimulus (without a competing ipsilesional target) which resembled 

contralesional visual neglect. This neglect-like deficit was more severe in the two 

monkeys with lesions that affected both the FEF and DLPFC/VLPFC (Monkey S and 

Monkey F) compared to Monkeys L and B (with more dorsal lesions). By week 4 post-

lesion, the neglect-like deficit had attenuated and the performance level for saccades to 

single stimuli in either hemifield was comparable to pre-lesion baseline, with the 

exception of contralesional performance in Monkey F. 
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Figure 2.4. Saccade performance on single stimulus trials.  

For each time point, we calculated the proportion of correct contralesional or ipsilesional 

saccades made on single contralesional or ipsilesional stimulus trials. Trials with an SOA 

value of |256| ms were used as single stimulus trials for Monkey S (see Data Analysis 

above). Significant differences from pre-stroke to each post-stroke time point were 

evaluated using a one-way ANOVA with post-hoc Tukey’s test (p < 0.05). Error bars 

indicate standard error of the mean. Abbreviations: # = trials with the largest SOA value 

were treated as single stimulus trials; contra = contralesional; ipsi = ipsilesional; pre = 

pre-lesion. 

  



 

 

 

116 

2.3.4. Effects of a right caudal PFC lesion on saccade metrics 

Based on a previous cooling study of the caudal dorsolateral PFC (Johnston et al. 2016), 

we predicted that reaction time and duration would increase for contralesional saccades 

and decrease for ipsilesional saccades (vice versa for peak velocity) and that these 

metrics would return to pre-lesion baseline in the weeks following lesion (Schiller & 

Chou, 2000). Figure 2.5A shows the contralesional and ipsilesional saccadic reaction 

time across time for each animal. Kruskal-Wallis H tests showed that there was a 

statistically significant difference in contralesional reaction times across time in Monkey 

L [χ2(3) = 141.91, p = 1.47x10-30], Monkey B [χ2(4) = 7.14, p = 2.21x10-36], and Monkey 

F [χ2(4) = 240.62, p = 6.81x10-51]. Tukey-Kramer post-hoc tests revealed significantly 

increased contralesional reaction time at week 1-2 post-lesion compared to pre-lesion for 

Monkey L (pre-lesion: 172.8 ± 0.2 ms, week 1-2 post-lesion: 216.3 ± 0.2 ms, p < 0.0001, 

g = 0.44), Monkey B (pre-lesion: 170.5 ± 0.1 ms, week 1-2 post-lesion: 260.6 ± 0.6 ms, p 

< 0.0001, g = 1.35), and Monkey F (pre-lesion: 266.5 ± 0.1 ms, week 1-2 post-lesion: 

310.3 ± 0.4 ms, p < 0.0001, g = 0.83). There were no significant changes in 

contralesional reaction time for Monkey S over time. Contralesional reaction time 

returned to pre-lesion baseline by week 4 post-lesion for Monkey L and by week 8 for 

Monkey B. For Monkey F, contralesional reaction time was significantly decreased at 

week 8 post-lesion (239.9 ± 0.3 ms, p < 0.0001, g = -0.27) compared to pre-lesion. 

Kruskal-Wallis tests also revealed a significant difference in ipsilesional reaction times 

over time in Monkey S [χ2(3) = 35.92, p = 7.77x10-8], Monkey B [χ2(4) = 439.70, p = 

7.33x10-94], and Monkey F [χ2(4) = 91.83, p = 5.39x10-19]. Tukey-Kramer post-hoc tests 

revealed a significant decrease in ipsilesional reaction times at weeks 1-2 and 4 post-

lesion for Monkey S, at weeks 1-2, 8, and 16 post-lesion for Monkey B, and at week 4 

post-lesion for Monkey F (Figure 2.5A and Table 2.3). 
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Figure 2.5B shows the contralesional and ipsilesional saccadic duration for each animal 

statistically compared across time using one-way Kruskal-Wallis tests with post-hoc 

Tukey-Kramer’s tests. Although changes in contralesional and ipsilesional saccadic 

duration across time were significant for Monkey L and Monkey F, these changes were 

quite small (Fig. 5B and Table 2.4). In Monkey S, saccadic duration significantly 

decreased at week 8 post-lesion compared to pre-lesion for both directions (Fig. 5B and 

Table 2.4). This effect was likely due to the late addition of single stimulus trials for 

Monkey S which were introduced after week 4 post-lesion. In Monkey B, contralesional 

saccade duration was significantly increased at week 1-2 through week 8 post-lesion 

compared to pre-lesion (Fig. 5B and Table 2.4). Overall, there was a minimal change in 

ipsilesional saccadic duration over time. Figure 2.5C shows the changes in saccadic peak 

velocity for contralesional and ipsilesional saccades in each animal statistically compared 

across time using one-way Kruskal-Wallis tests with post-hoc Tukey-Kramer’s tests (Fig. 

2.5C and Table 2.5). In Monkey L, peak velocity significantly increased for both 

directions post-lesion. In Monkey S, ipsilesional peak velocity decreased at week 1-2 

post-lesion and then increased for both directions at week 4 post-lesion. In Monkey B, 

peak velocity for both directions decreased at week 1-2 post-lesion and then returned to 

baseline. In Monkey F, contralesional peak velocity decreased at weeks 8-16 post-lesion 

(Fig. 2.5C and Table 2.5). In Figure 2.5D, we show the saccade amplitude before and 

after the lesion; we found that changes in amplitude were minimal (at most, about a 2-3 

degree change over time). In summary, (1) contralesional reaction time increased in all 

four animals at week 1-2 post-lesion and subsequently returned to pre-lesion by weeks 4 

to 8 post-lesion; (2) ipsilesional reaction time decreased in Monkeys S, B, and F post-

lesion; and (3) there was no consistent change in saccadic duration or peak velocity 

across all four animals over time.   
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Figure 2.5. Effects of a right PFC lesion on saccade metrics to single targets. 

Saccade metrics include (A) saccadic reaction time, (B) duration, (C) peak velocity, and 

(D) amplitude to a single contralesional or ipsilesional stimulus. Data for contralesional 

saccades (dashed line) and ipsilesional saccades (solid line) are shown for Monkey L 

(first column), Monkey S (second column), Monkey B (third column), and Monkey F 

(fourth column). Data for Monkey S was obtained from trials with an SOA of |256| ms 

which were treated as equivalent to single stimulus trials (see Data Analysis in Methods). 

Error bars indicate standard error of the mean. Statistical comparisons were made within 

subjects using one-way Kruskal-Wallis tests with post-hoc Tukey-Kramer’s tests to 

compare each post-lesion time point to pre-lesion. Abbreviations: contra = contralesional; 

ipsi = ipsilesional; pre = pre-lesion. 
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Table 2.3. Saccadic reaction times to a single contralesional and ipsilesional 

stimulus. 

Values are means ± SE for saccadic reaction time (SRT) to a single contralesional and 

ipsilesional stimulus and statistical comparisons between pre- and post-lesion time points 

from a post hoc Tukey-Kramer’s test. P values indicate significance level. 

  

  Contralesional stimulus Ipsilesional stimulus 

 Time after lesion SRT (ms) 

No. of 

trials p SRT (ms) 

No. of 

trials p 

Monkey L Pre-lesion 172.8 ± 0.2 463 
 

167.6 ± 0.1 480 
 

 Week 1-2 post-lesion 216.3 ± 0.2 604 <0.0001 173.8 ± 0.1 673 0.2820 

 Week 4 post-lesion 170.6 ± 0.2 291 0.9165 174.2 ± 0.2 276 0.4527 

 Week 8 post-lesion 162.0 ± 0.1 391 0.0083 164.0 ± 0.1 391 0.3125 

Monkey S Pre-lesion 196.1 ± 0.3 327 
 

155.8 ± 0.3 344 
 

 Week 1-2 post-lesion 210.7 ± 0.2 86 0.9941 139.2 ± 0.2 209 0.0431 

 Week 4 post-lesion 215.3 ± 0.2 104 0.3588 131.0 ± 0.2 152 <0.0001 

 Week 8 post-lesion 184.6 ± 0.1 80 0.0825 169.1 ± 1.3 71 0.0852 

Monkey B Pre-lesion 170.5 ± 0.0 1876 
 

181.0 ± 0.0 1920 
 

 Week 1-2 post-lesion 260.6 ± 0.6 215 <0.0001 154.0 ± 0.3 235 <0.0001 

 Week 4 post-lesion 215.4 ± 0.9 88 <0.0001 150.8 ± 0.4 114 <0.0001 

 Week 8 post-lesion 171.4 ± 0.2 241 0.8960 147.8 ± 0.1 243 <0.0001 

 Week 16 post-lesion 165.8 ± 0.5 118 0.1410 142.5 ± 0.3 129 <0.0001 

Monkey F Pre-lesion 266.5 ± 0.1 653 
 

236.0 ± 0.1 644 
 

 Week 1-2 post-lesion 310.3 ± 0.4 354 <0.0001 228.3 ± 0.2 426 0.2239 

 Week 4 post-lesion 230.2 ± 0.1 958 <0.0001 218.6 ± 0.1 959 <0.0001 

 Week 8 post-lesion 239.9 ± 0.3 393 <0.0001 231.4 ± 0.2 428 0.5671 

 Week 16 post-lesion 263.1 ± 0.3 373 0.2716 260.9 ± 0.3 373 <0.0001 

 



 

 

 

120 

Table 2.4. Saccadic duration to a single contralesional and ipsilesional stimulus. 

 

Values are means ± SE for saccadic duration to a single contralesional and ipsilesional 

stimulus and statistical comparisons between pre- and post-lesion time points from a post 

hoc Tukey-Kramer’s test. P values indicate significance level. 

  

  Contralesional stimulus Ipsilesional stimulus 

 
Time after lesion Duration (ms) 

No. of 

trials 
p Duration (ms) 

No. of 

trials 
p 

Monkey L Pre-lesion 35.3 ± 0.01 462  35.9 ± 0.01 472  

 Week 1-2 post-lesion 35.4 ± 0.01 604 0.9706 35.7 ± 0.01 673 0.8790 

 Week 4 post-lesion 33.9 ± 0.01 291 <0.0001 34.8 ± 0.01 276 0.0014 

 Week 8 post-lesion 34.3 ± 0.01 392 <0.0001 35.5 ± 0.01 391 0.1585 

Monkey S Pre-lesion 45.3 ± 0.02 323  44.1 ± 0.02 340  

 Week 1-2 post-lesion 42.7 ± 0.10 86 0.0252 44.9 ± 0.03 209 0.6523 

 Week 4 post-lesion 45.5 ± 0.06 103 0.8409 46.3 ± 0.03 153 0.0026 

 Week 8 post-lesion 32.2 ± 0.06 73 <0.0001 32.5 ± 0.07 67 <0.0001 

Monkey B Pre-lesion 32.0 ± 0.01 1876  32.0 ± 0.00 1920  

 Week 1-2 post-lesion 39.3 ± 0.06 208 <0.0001 31.4 ± 0.01 234 <0.0001 

 Week 4 post-lesion 37.7 ± 0.09 88 <0.0001 31.8 ± 0.02 114 0.6872 

 Week 8 post-lesion 33.2 ± 0.01 241 <0.0001 31.9 ± 0.01 243 0.1012 

 Week 16 post-lesion 32.8 ± 0.04 118 0.9840 31.1 ± 0.01 129 <0.0001 

Monkey F Pre-lesion 33.7 ± 0.00 653  32.4 ± 0.00 644  

 Week 1-2 post-lesion 34.5 ± 0.02 347 0.0742 32.6 ± 0.00 425 0.0146 

 Week 4 post-lesion 33.6 ± 0.00 958 <0.0001 32.4 ± 0.00 959 0.2577 

 Week 8 post-lesion 35.7 ± 0.01 393 <0.0001 34.1 ± 0.01 428 <0.0001 

 Week 16 post-lesion 36.3 ± 0.04 373 <0.0001 34.6 ± 0.02 373 <0.0001 
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Table 2.5. Saccadic peak velocity to a single contralesional and ipsilesional stimulus. 

Values are means ± SE for saccadic peak velocity to a single contralesional and 

ipsilesional stimulus and statistical comparisons between pre- and post-lesion time points 

from a post hoc Tukey-Kramer’s test. P values indicate significance level. 

 

  

  Contralesional stimulus Ipsilesional stimulus 

 
Time after lesion 

Peak velocity 

(ms) 

No. of 

trials 
p 

Peak velocity 

(ms) 

No. of 

trials 
p 

Monkey L Pre-lesion 542.5 ± 0.2 467  490.9 ± 0.2 485  

 Week 1-2 post-lesion 557.6 ± 0.1 604 <0.0001 513.8 ± 0.1 673 <0.0001 

 Week 4 post-lesion 566.1 ± 0.2 291 <0.0001 515.9 ± 0.2 276 0.0014 

 Week 8 post-lesion 576.1 ± 0.2 392 <0.0001 549.5 ± 0.2 391 <0.0001 

Monkey S Pre-lesion 607.3 ± 0.5 320  621.2 ± 0.3 342  

 Week 1-2 post-lesion 605.9 ± 2.0 86 0.5351 590.0 ± 0.5 209 0.0006 

 Week 4 post-lesion 694.1 ± 1.2 102 <0.0001 696.9 ± 0.2 153 <0.0001 

 Week 8 post-lesion 655.6 ± 1.9 71 0.0466 627.0 ± 1.3 70 0.6774 

Monkey B Pre-lesion 571.7 ± 0.0 1876  546.0 ± 0.0 1920  

 Week 1-2 post-lesion 537.1 ± 0.5 215 0.1503 546.0 ± 0.4 235 <0.0001 

 Week 4 post-lesion 575.1 ± 0.8 88 0.9414 543.0 ± 0.6 114 0.9654 

 Week 8 post-lesion 589.2 ± 0.3 241 0.0044 544.1 ± 0.2 243 0.9965 

 Week 16 post-lesion 571.4 ± 0.6 118 0.9706 540.4 ± 0.4 129 0.8915 

Monkey F Pre-lesion 539.3 ± 0.1 653  526.7 ± 0.1 644  

 Week 1-2 post-lesion 310.3 ± 0.3 354 0.9193 524.6 ± 0.1 426 0.9422 

 Week 4 post-lesion 517.8 ± 0.1 958 0.2948 529.1 ± 0.1 959 0.6276 

 Week 8 post-lesion 518.8 ± 0.3 393 0.0135 525.2 ± 0.1 428 0.9767 

 Week 16 post-lesion 485.5 ± 0.3 373 <0.0001 495.0 ± 0.2 373 <0.0001 
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2.3.5. Does the mean reaction time to single targets account for the 

contralesional saccade choice deficit? 

Following a right caudal PFC lesion, monkeys made a higher proportion of saccades 

toward an ipsilesional stimulus compared to a contralesional stimulus (Fig. 2.3) and the 

saccadic reaction times to an ipsilesional stimulus were shorter than to a contralesional 

stimulus (Fig. 2.5). Thus, we wanted to determine whether the post-lesion contralesional 

choice deficit was due to slower contralesional reaction times. The idea is that if 

prolonged contralesional reaction times underlie the contralesional choice deficit, then 

the difference in contralesional vs ipsilesional reaction times should equal the 

contralesional stimulus-lead time necessary to reach the point of equal selection. To this 

end, we plotted the mean reaction time difference between contralesional and ipsilesional 

saccades (left–right) against the point of equal selection (i.e., the SOA value at which 

there was an equal probability of selecting either stimulus) at each time point for each 

animal (Fig. 2.6). At pre-lesion, there was no significant difference between the point of 

equal selection and the mean reaction time difference for Monkey L, Monkey B, and 

Monkey F (Fig. 2.6). At week 1-2 post-lesion, a one-sample t-test (p < 0.05) showed that 

the point of equal selection was significantly greater than the mean reaction time 

difference for all four animals; the difference between the point of equal selection and the 

mean left-right reaction time difference was 79 ms for Monkey L (g = 1.49), 109 ms for 

Monkey S (g = 1.57), 98 ms for Monkey B (g = 1.43), and 324 ms for Monkey F (g = 

2.42). In Monkeys L and S, the point of equal selection remained longer than the mean 

reaction time difference across week 4 (Monkey L: 39 ms difference, g = 3.45; Monkey 

S: 48 ms difference, g = 0.98) and week 8 post-lesion (Monkey L: 16 ms difference, g = 

2.00; Monkey S: 24 ms difference, g = 1.42), although this difference was not significant 

at week 4 post-lesion in Monkey S. In Monkey F, the point of equal selection was longer 
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than the reaction time difference at weeks 4, 8, and 16 post-lesion, but this effect was 

only significant at week 4 (110 ms difference, g = 3.72) and week 8 (108 ms difference, g 

= 1.92). In Monkey B, the difference between the point of equal selection and the mean 

reaction time difference was both small and insignificant across weeks 4-16 post-lesion. 

In sum, following a right caudal PFC lesion, the prolonged reaction time to a 

contralesional (left) stimulus did not account for the much longer contralesional lead time 

necessary to achieve an equal probability of selecting either stimulus (i.e., the point of 

equal selection).  

  



 

 

 

124 

 

Figure 2.6. Point of equal selection on the free-choice task and the mean reaction 

time difference towards a contralesional vs ipsilesional stimulus.  

The difference in contralesional and ipsilesional mean reaction time was plotted against 

the point of equal selection for each time point for all four animals. Note that Monkey F 

has a larger range of y-axis values. Positive y-axis values on the left side indicate a point 

of equal selection in which the contralesional stimulus was presented before the 

ipsilesional stimulus. Statistical comparisons were made within subjects using one-

sample t-tests to compare the point of equal selection to the mean reaction time difference 

(contralesional SRT – ipsilesional SRT) at each time point. Error bars indicate standard 

error of the mean. Abbreviations: PES = point of equal selection; contra = contralesional; 

ipsi = ipsilesional; SRT = saccadic reaction time. 
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2.3.6. Does the reaction time distribution account for the contralesional 

saccade choice deficit? 

Next, we examined whether the saccadic reaction time distribution, rather than the mean 

reaction time, to a single contralesional or ipsilesional stimulus could account for the 

contralesional choice deficit. We modeled a race with two decision signals arising from 

two targets and staggered by the SOA, using the LATER model with data from the 

contralesional and ipsilesional reaction time distributions. We plotted the simulated 

proportion of contralesional saccade choice for each SOA value and compared the 

simulated choice to the observed choice using a two-sided Chi-square test with FDR 

correction for multiple comparisons (Fig. 2.7). We then obtained the observed and 

simulated point of equal selection values for each animal at each time point.  

At pre-lesion, the difference in the point of equal selection (|real – simulated|) was ~10 

ms for Monkey L, ~8 ms for Monkey S, ~14 ms for Monkey B, and ~4 ms for Monkey F. 

This small difference between the observed and simulated choice suggests that, prior to 

the lesion, the reaction time distributions to single stimuli can account for the saccade 

choice on the free-choice task.  

At week 1-2 post-lesion, the point of equal selection difference was ~82 ms for Monkey 

L, ~160 ms for Monkey S, ~115 ms for Monkey B, and ~422 ms for Monkey F. At week 

4 post-lesion, point of equal selection differences ranged from 40–94 ms across the four 

animals. At week 8 post-lesion, differences were less than 30 ms for Monkey L, Monkey 

S, and Monkey B. Monkey F still had a difference of ~94 ms at week 4 and ~56 ms at 

week 8 post-lesion. The larger differences post-lesion between the point of equal 

selection for observed versus simulated saccade choice demonstrate that reaction time 

distributions can no longer sufficiently account for the saccade choice bias on the free-
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choice task. Additionally, we used predictions from the LATER model to interpret the 

nature of the changes in the contralesional reaction time distributions and found that 

increased accumulation rate variability (i.e., variability in contralesional reaction times) 

best accounted for the changes in the reaction time distribution (see Supplemental Fig. 

2.S6-10 for the results and discussion). 
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Figure 2.7. Observed versus simulated contralesional saccade choice on the free-

choice saccade task.  

Saccadic reaction time distributions were used to model saccade choice on a free-choice 

task staggered by the SOA based on a linear race model (Carpenter & Williams, 1995). 

Simulated contralesional choices at each SOA value are shown in grey dots and dotted 

grey lines and observed choices are shown in black dots and black lines. For each animal 

at each time point, the real and simulated point of equal selection is stated. Statistical 

comparisons between real and simulated choice at each SOA value were tested using a 

two-sided Chi-square test for proportions. Abbreviation: PES = point of equal selection; 

Sim. = simulated; contra = contralesional target; ipsi = ipsilesional target.  
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2.3.7. Does the mean reaction time on paired SOA trials account for the 

contralesional saccade choice? 

Finally, we examined whether the reaction time to a selected stimulus on paired SOA 

trials could explain the contralesional choice deficit. We plotted the mean reaction time 

for saccades made towards the contralesional or ipsilesional stimulus at each SOA value 

(Fig. 2.8). On trials with a simultaneous presentation (SOA = 0 ms), the contralesional 

reaction time was significantly longer than the ipsilesional reaction time at weeks 1-2 

post-lesion in Monkey L and at weeks 1-2, 4, and 8 post-lesion in Monkey B. However, 

in Monkeys L, S, and F, the contralesional reaction time was not significantly longer than 

the ipsilesional reaction time on true simultaneous trials during the later weeks post-

lesion, even though there was a severe contralesional choice deficit on these trials at 

those time points (see Figure 2.3C). On trials in which the contralesional stimulus was 

presented first (SOA > 0ms), we find either no significant difference in reaction times or 

significantly decreased contralesional reaction times compared to ipsilesional post-lesion 

(in Monkeys L, S, and B). If the decreased proportion of contralesional saccade choice on 

paired trials was due to prolonged contralesional reaction times, then we would expect to 

see increased contralesional reaction times relative to ipsilesional reaction times. Our 

findings that contralesional saccades on paired trials were faster than ipsilesional 

saccades instead suggest that the drastic impairment in contralesional saccade choice 

post-lesion was also not accounted for by prolonged reaction times on paired trials.  
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Figure 2.8. Saccadic reaction times to the selected contralesional or ipsilesional 

stimulus at each SOA condition on paired trials.  

Mean reaction times to the contralesional (left) stimulus are shown in gray and mean 

reaction times to the ipsilesional (right) stimulus are shown in black. Weeks represent 

weeks post-lesion. Statistical comparisons were performed between contralesional and 

ipsilesional reaction times at each SOA value using two-sample Wilcoxon rank sum tests 

corrected for multiple comparisons. Error bars indicate standard error of the mean. 

Abbreviation: SRT = saccadic reaction time.  
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2.4. Discussion 

The caudal PFC is involved in target selection and top-down control of visually-guided 

saccadic eye movements via reciprocal connections to cortical and subcortical 

oculomotor areas (Bruce & Goldberg, 1985; Hanes & Schall, 1996; Johnston & Everling, 

2006; Johnston, Lomber, & Everling, 2016; Pierrot-Deseilligny, Rivaud, Gaymard, & 

Agid, 1991; Schall, 2004; Schall, 2002). Previous work in macaque monkeys has shown 

that a unilateral lesion (Rizzolatti et al. 1983; Schiller and Chou 1998) or reversible 

deactivation (Johnston et al. 2016; Schiller and Tehovnik 2003; Sommer and Tehovnik 

1997; Wardak et al. 2006) of the caudal PFC leads to decreased selection of a 

contralesional target during simultaneous presentation of an ipsilesional target – an 

impairment that resembles visual extinction in humans. Here, we investigated whether 

these post-lesion deficits in contralesional target selection were largely due to 

contralesional motor deficits (i.e., slowed contralesional reaction times). We 

experimentally induced a right caudal PFC lesion in four male macaque monkeys using 

the vasoconstrictor endothelin-1 and studied the functional recovery.  

We found that (1) injections of endothelin-1 in the macaque caudal PFC induced deficits 

in contralesional target selection that slightly varied depending on lesion size and 

location; (2) the neglect-like deficit in directing a saccade to a single contralesional target 

was transient and recovered by week 4 post-lesion; (3) contralesional target selection 

deficits on bilateral target trials were longer lasting and recovered gradually until no 

further improvement by 8 weeks post-lesion in Monkeys L and S and by 16 weeks post-

lesion in Monkeys B and F; (4) contralesional reaction time returned to pre-lesion 

baseline by week 4 post-lesion in Monkey L, Monkey S, and Monkey F and by week 8 

post-lesion in Monkey B; (3) the mean reaction time for contralesional and ipsilesional 
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saccades did not account for the degree of contralesional target selection deficits on the 

free-choice saccade task; and (4) simulated saccade choices modeled from the reaction 

time distribution were also unable to capture the degree of the ipsilesional saccade choice 

bias throughout recovery. Our findings suggest that the saccade choice bias observed 

after an endothelin-1-induced right caudal PFC lesion is not simply due to a 

contralesional motor processing deficit and may instead reflect the combination of motor 

biases and longer-lasting impairments in contralesional attentional selection.  

2.4.1. Focal cerebral ischemia in the macaque caudal PFC using endothelin-1 

To the best of our knowledge, this is the first study to use endothelin-1 to induce 

ischemic lesions in the PFC to study oculomotor function in macaque monkeys. Previous 

lesion studies in monkeys examining the oculomotor system have used reversible 

inactivation methods including cooling loops (Chan et al. 2015; Johnston et al. 2016; Peel 

et al. 2014), muscimol (Dias and Segraves 1999; Sommer and Tehovnik 1997), and 

lidocaine (Hanes and Wurtz 2001) or permanent inactivation by ablation (Heilman et al. 

1995; Rizzolatti et al. 1983; Schiller et al. 1979) and electrocoagulation (Wurtz and 

Goldberg 1972). Although these lesion methods have been effective and reproducible in 

macaques, they are not representative of the underlying anatomical and cellular pathology 

of clinical focal cerebral ischemia. Traditional monkey models of ischemic stroke 

surgically occlude the middle cerebral artery (West et al. 2009), however this often 

produces widespread lesions affecting large swaths of cortical tissue which does not 

permit the study of specific behavioural effects following focal lesions. Endothelin-1 is a 

21-amino acid peptide produced by vascular endothelial cells that was first isolated by 

Yanagisawa et al. (1988) and shown to have potent and long-acting vasoconstriction 

properties (Yanagisawa et al. 1988). Endothelin-1 has been used to induce focal cerebral 
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ischemia in rats (Fuxe et al. 1997; Macrae et al. 1993; Sharkey et al. 1993) and more 

recently in nonhuman primates, specifically in the visual cortex of marmosets (Teo and 

Bourne 2014) and in the motor cortex of macaque monkeys (Dai et al. 2017; Herbert et 

al. 2015; Murata and Higo 2016). This study adds to the growing line of research using 

endothelin-1 in nonhuman primate models of focal cerebral ischemia.  

2.4.2. Effects of lesion volume and location on the severity and duration of 

choice deficits 

We found that lesion size is related to the length of time to recovery (i.e., stable 

behavioural performance without further improvement) such that the two monkeys with 

the small lesion (Monkeys L and S) recovered after 8 weeks, and the two monkeys with a 

larger lesion (Monkeys B and F) recovered after 16 weeks post-lesion. This effect has 

also been reported in an early clinical stroke study by Hier et al. (1983) who found that 

patients with smaller lesions recovered more quickly from post-stroke cognitive deficits 

compared to those with larger lesions (Hier et al. 1983). We also found that lesion size 

appeared related to the point of equal selection at week 1-2 post-lesion; monkeys with a 

larger lesion volume showed an increased point of equal selection. At weeks 1-2 post-

lesion, the contralesional lead time needed to reach the point of equal selection was 120 

ms for Monkey L (smallest lesion volume), 180 ms for Monkey S, 205 ms for Monkey B, 

and 406 ms for Monkey F (largest lesion volume). Schiller and Chou (1998) unilaterally 

ablated the FEF in a monkey and found that two weeks after the lesion, the contralesional 

target had to be presented 116 ms before the ipsilesional target to achieve an equal 

probability of contralesional and ipsilesional saccade choice. The larger magnitude of the 

choice bias in our study compared to Schiller and Chou (1998) may first be due to our 

inclusion of choice performance at week 1 post-lesion which would capture the greatest 
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post-lesion deficits. Secondly, although Monkeys L’s lesion was similar in size and 

location (FEF only) to the monkey reported in Schiller and Chou (1998) and showed a 

comparable deficit, Monkeys S, B, and F had larger lesion volumes that encompassed 

areas surrounding the FEF which may account for the larger contralesional deficits. The 

concept that larger lesions or inactivation leads to more severe deficits in contralesional 

target selection has been shown in both human and nonhuman primate studies (Johnston 

et al. 2016; Peers et al. 2005). Johnston et al. (2016) unilaterally cooled the dorsal and 

caudal principal sulcus in monkeys and found that inactivating both areas together 

induced larger shifts in the point of equal selection than inactivating individual areas 

alone. In human stroke patients, Peers et al. (2005) also found that the severity of an 

ipsilesional spatial bias was related to the lesion volume such that patients with larger 

lesions were the most spatially biased. 

We also observed behavioural effects which appeared related to lesion location. We 

found that the two animals with lesions in both the FEF and dorsolateral/ventrolateral 

PFC [Monkey S (small lesion) and Monkey F (large lesion)] exhibited only a partial 

recovery of target selection deficits (i.e., proportion of contralesional choice at 

simultaneous presentation) at the time in which behavioural performance stabilized 

without further improvement. The proportion of contralesional saccade choice during 

simultaneous presentation was 22% in Monkey S and 26% in Monkey F, at the time in 

which there was no further recovery. However, there was a more complete recovery of 

function in the two animals with lesions that did not fully extend into the 

dorsolateral/ventrolateral PFC. The proportion of contralesional saccade choice during 

simultaneous presentation was 35% in Monkey L and 47% in Monkey B at the time in 

which there was no further recovery. Previous work has shown that unilateral inactivation 

of the FEF or dorsolateral PFC individually induces deficits in contralesional target 
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selection (Johnston et al. 2016; Schiller and Chou 1998), thus it is possible that the 

combined inactivation of both areas as in Monkeys S and F led to longer lasting 

impairments due to a reduction in intact task-related tissue remaining for post-lesion 

compensation (Nudo 2007, 2013). We also found that the severity of neglect-like deficits 

at weeks 1-2 post-lesion appeared related to lesion location. Monkeys S and F, with 

lesions in both the FEF and dorsolateral/ventrolateral PFC, showed larger deficits in 

directing a saccade to a single contralesional target at week 1-2 post-lesion, compared to 

Monkeys L and B.  

2.4.3. Recovery of visuospatial deficits within the contralesional hemifield after 

unilateral caudal PFC lesions 

We found that a right caudal PFC lesion resulted in decreased saccades to a single 

contralesional stimulus (Fig. 2.4) and contralesional target selection deficits during 

simultaneous presentation (Fig. 2.3). At weeks 1-2 post lesion, the monkeys were poor at 

responding to a single contralesional stimulus in the absence of a competing ipsilesional 

stimulus. In humans, this impairment is generally classified as neglect (e.g., failure to 

respond to a single contralesional stimulus), whereas extinction is when patients fail to 

respond to a contralesional stimulus during simultaneous presentation of an ipsilesional 

stimulus (de Haan et al. 2012). As mentioned above, deficits to single contralesional 

stimuli were more severe in Monkeys S and F, with lesions in both the FEF and 

dorsolateral/ventrolateral PFC. In stroke patients with neglect, one of the frontal areas 

most commonly lesioned is the middle frontal gyrus (He et al. 2007), which is considered 

the human homolog of the macaque dorsolateral PFC (Hutchison et al. 2012; Petrides and 

Pandya 1999). This might explain why our two monkeys with damage to the dorsolateral 

PFC show more severe neglect-deficits. The majority of contralesional errors made on 
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single stimulus trials were either largely due to an absence of a response when the 

contralesional stimulus was presented. This suggests that the errors reflected perceptual, 

rather than motor, deficits since motor deficits would likely appear as inaccurate saccades 

still directed towards the contralesional target. Deficits to single contralesional stimuli 

were transient and recovered by week 4 post-lesion, however contralesional target 

selection deficits on bilateral stimulus trials persisted until week 8 post-lesion in 

Monkeys L and S (small lesion) and until week 16 post-lesion in Monkeys B and F (large 

lesion). 

This recovery pattern that we describe in which saccade behaviours resembling neglect 

and extinction occur together in the acute stage followed by a dissociation in which 

neglect recovers but extinction persists has been documented in stroke patients (Bender 

and Furlow 1945; Heilman et al. 1984, 2012; Milner and Mcintosh 2005; Robertson and 

Halligan 1999). Since many lesion studies in animals have used temporary inactivation 

methods (Hier et al. 1983; Johnston et al. 2016; Kubanek et al. 2015; McPeek and Keller 

2004; Wardak et al. 2002; Wilke et al. 2012), investigation into the longitudinal changes 

in behaviour during recovery has been limited. However, in one such study, Rizzolatti et 

al. (1983) reported that a unilateral aspiration lesion of the FEF in two macaque monkeys 

initially resulted in the absence of orientation to a single food stimulus presented in the 

contralesional hemifield, but that about two weeks post-lesion, this neglect-like 

impairment had recovered but there was a strong preference for ipsilesional food when 

the monkey was presented with two stimuli (Rizzolatti et al. 1983). They noted that this 

contralesional extinction-like deficit persisted until about eight weeks post-lesion. Our 

findings show that recovery of lateralized contralesional impairments after an ischemic 

lesion in the caudal PFC in monkeys is comparable to the recovery profile seen in stroke 

patients and one FEF lesion study in monkeys.  
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Our time course of recovery is also similar to what has been reported in stroke patients, 

where the greatest magnitude of behavioural recovery occurs within a few months post-

lesion and plateaus afterwards. Ramsey et al. (2016) measured the extent of unilateral 

neglect deficits using the Posner Visual Orienting Task at 2 weeks, 3 months, and 12 

months post-stroke (Ramsey et al. 2016). The Posner task is comparable to the free-

choice saccade task in that a visual field bias can be determined by comparing saccade 

choice towards contralesional or ipsilesional visual fields. Comparable to our findings in 

macaques, the authors found significant visuospatial biases in the stroke patients with 

neglect at 2 weeks post-stroke. This impairment improved by 3 months post-stroke and 

plateaued with no further improvement when measured again one year later. This 

recovery time course has also been shown in macaque monkeys with deficits in 

contralesional choice after FEF lesions (Schiller and Chou 1998). 

Immediately after the caudal PFC lesions, the reduced contralesional saccade 

performance may have worsened the contralesional target selection on the double and 

single stimulus trials through imbalanced reward expectations for each hemifield. Since 

the monkeys were impaired in directing saccades to the contralesional hemifield 

following the lesion, they would have been receiving more rewards overall for 

ipsilesional saccades, especially since they were rewarded for selecting either target on 

the double stimulus trials. The reward was not contingent on selecting the first appearing 

target because we wanted to ensure that the monkey was motivated to perform the task 

immediately post-lesion (Schiller and Chou 1998). Given that the monkey was severely 

impaired in directing saccades to the contralesional stimulus immediately post-lesion, the 

monkey would have been rewarded less if they were contingent on selecting the first 

target which would likely have decreased the monkey’s motivation to perform the task. 

This imbalanced reward expectation may have affected the monkey’s choice performance 
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on the double stimulus trials by causing the monkey to prefer the ipsilesional stimulus 

due to the increased reward for the ipsilesional stimulus overall on the single stimulus 

trials. The severe ipsilesional bias especially immediately post-lesion may have also 

caused the monkey to adopt a behavioural strategy to maximize reward delivery by 

always selecting the ipsilesional stimulus, which may have prolonged the time to 

recovery. There is only one study that we are aware of which did not reinforce inherent 

biases in behaviour through rewards and studied the longitudinal recovery in monkeys. 

Welch and Stuteville (1958) lesioned the macaque FEF and recorded whether the monkey 

responded to a single stimulus in either visual hemifield and reported a similar time to 

recovery of two weeks post-lesion without the imbalanced reward expectation. Although 

this is only one other study that we could relate our findings to, it suggests that the 

potential imbalance in reward expectations in our study did not prolong deficits to single 

targets in the monkeys. 

As mentioned above, Monkey S continued to show contralesional neglect-like deficits at 

week 4 post-lesion whereas this impairment had recovered in the other monkeys by this 

time point. Recall that the behavioural paradigm for Monkey S did not have any single 

stimulus trials, so this monkey was not “forced” to direct saccades into the contralesional 

hemifield to receive a reward. Since Monkey S only had choice trials in which a saccade 

to either stimulus was rewarded, it is possible that this monkey developed a strategy to 

direct most saccades to the ipsilesional stimulus since it would always lead to a reward 

(since there were no single trials interleaved). It is possible that reduced contralesional 

choice led to imbalanced reward expectations which might have slowed this animal’s 

behavioural recovery and led to a more severe deficit than the other animals. 
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2.4.4. Recovery of oculomotor deficits after unilateral caudal PFC lesions 

We observed changes in the reaction times for contralesional and ipsilesional saccades on 

single stimulus trials for Monkeys L, B, and F. We also observed decreased ipsilesional 

reaction times following the lesion in Monkeys S, B, and F. Previous work in our 

laboratory and by others have reported increased contralesional and decreased 

ipsilesional reaction times following caudal PFC inactivation (Johnston, Koval, Lomber, 

& Everling, 2014; Johnston et al., 2016b; Schiller & Chou, 1998). However, Peel et al. 

(2014) reported increased ipsilesional reaction times during unilateral cooling of the FEF 

(Peel et al. 2014). This inconsistent finding may be due to a greater inactivation of 

ipsilaterally-tuned FEF neurons which might have transiently increased ipsilesional 

reaction times in the Peel et al. (2014) study. Since the cooling session was only about 10 

minutes long, it is possible that it only revealed the immediate effects of unilaterally 

deactivating the FEF (i.e., increased reaction time for both contralesional and ipsilesional 

saccades). Johnston et al. (2016) used a cooling period of 15-20 minutes; thus, it might be 

that more time was needed to see the decreased ipsilesional reaction times following a 

unilateral PFC inactivation. Longer inactivation times might be needed to observe the 

compensatory effects from the contralaterally-tuned FEF neurons of the intact left caudal 

PFC that lead to decreased ipsilesional reaction times.  

Changes in saccadic duration, peak velocity, and amplitude following the lesion were 

minor and inconsistent across all four monkeys. Since these saccade parameters reflect 

motor output following the decision to look at a stimulus, we do not consider them to 

affect the choice bias. Previous work has also reported minor changes in contralesional 

duration and peak velocity following dorsolateral PFC deactivations (Koval et al. 2014). 
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2.4.5. Deficits in contralesional target selection are not only due to oculomotor 

impairments 

If the saccade choice bias reflected a motor bias, we would expect to see the recovery of 

reaction times and the choice bias occurring simultaneously. Instead, we found that 

contralesional reaction times returned to pre-lesion baseline 4-8 weeks before the choice 

bias recovered. We explored this further by comparing the point of equal selection to the 

difference between contralesional and ipsilesional reaction times; we found that the 

contralesional lead time required to reach the point of equal selection was significantly 

greater than the difference in reaction times to either hemifield. This suggests that the 

mean reaction times to a single contralesional or ipsilesional stimulus were insufficient in 

explaining the degree of the contralesional choice deficit. Similarly, Schiller and Chou 

(1998) showed that at three weeks after a FEF ablation lesion in one animal, there is a 

pronounced choice bias where a 100 ms contralesional lead was required to reach the 

point of equal selection, however the difference in mean left/right reaction times was only 

about 68 ms at that time point. This is comparable to our findings suggesting that reaction 

times do not fully explain the lasting choice bias. However, they did not report the mean 

reaction times at the timepoint when the choice bias had recovered.  

Leach and Carpenter (2001) showed that reaction time distributions to a single stimulus 

were able to predict saccade choice probabilities at various SOA values using a linear 

race model in humans. We modeled free-choice task performance using reaction time 

distributions to a single contralesional or ipsilesional stimulus and found that the model 

was unable to predict the ipsilesional choice bias following the caudal PFC lesion. This 

effect was most pronounced at a 0 ms SOA value (simultaneous presentation) where the 

linear race model from reaction time distributions predicted considerably more 

contralesional saccade choices than what was observed on the free-choice task. In other 
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words, the observed contralesional deficit on the free-choice task was larger than what 

would be expected based on reaction times to single contralesional targets alone and this 

effect lasted throughout recovery. Altogether, our findings indicate that the saccade 

choice bias following a caudal PFC lesion is not simply the result of a contralesional 

oculomotor deficit but likely reflects impaired attentional processing for competing target 

selection.  
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2.5. Supplemental Material 

 

Figure 2.S1. Cumulative reaction time distributions for Monkey L.  

Saccadic reaction times to a single contralesional (blue) or ipsilesional (red) stimulus are 

plotted cumulatively for each time point.  
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Figure 2.S2. Cumulative reaction time distributions for Monkey S.  

Saccadic reaction times to a single contralesional (blue) or ipsilesional (red) stimulus are 

plotted cumulatively for each time point. 
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Figure 2.S3. Cumulative reaction time distributions for Monkey B.  

Saccadic reaction times to a single contralesional (blue) or ipsilesional (red) stimulus are 

plotted cumulatively for each time point. 
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Figure 2.S4. Cumulative reaction time distributions for Monkey F.  

Saccadic reaction times to a single contralesional (blue) or ipsilesional (red) stimulus are 

plotted cumulatively for each time point. 
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Figure 2.S5. Correlations between lesion volumes and the duration and severity of 

contralesional target selection deficits in each monkey.  

(A) There is a strong and significant positive correlation between lesion volume and the 

time to recovery in weeks post-lesion. (B) There is a strong, but insignificant, positive 

correlation between lesion volume and the shift in the point of equal selection (PES) from 

pre-lesion to week 1 post-lesion. (C) There is a mild, but insignificant, positive 

correlation between lesion volume and the change in the proportion of contralesional 

saccade choice from pre-lesion to week 1 post-lesion. Abbreviations: PES = point of 

equal selection; r = Pearson’s correlation coefficient; p = significance value; N = sample 

size. 
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2.5.1. Changes in the contralesional reciprobits after a right caudal PFC lesion 

We used predictions from the LATER model to interpret the changes in the 

contralesional saccadic reaction time distribution throughout recovery (Supplementary 

Figure 2.S6). We plotted the cumulative probability of the reciprocal reaction time on a 

probit scale (reciprobit plot) with a line of best fit, where each line represents a reaction 

time distribution for each time point (see Supplementary Figures 2.S7-10 for reciprobit 

plots). The LATER model proposes that a decision signal rises linearly in response to a 

stimulus, at a rate that varies from trial to trial with a Gaussian distribution, until it 

reaches a threshold at which point a response is finally initiated (Supplementary Figure 

2.S5A; Carpenter & Williams, 1995; Reddi, 2003). There are three possible 

interpretations for the changes in reaction time distributions (Supplementary Figure 

2.S6B). A change in the accumulation rate of the model appears as a parallel “shift” in 

the line representing the reaction time distribution. A change in the threshold level would 

appear such that the line “swivels” about the infinite-time intercept. Lastly, a change in 

the variability of the accumulation rate appears such that the line “rotates” about the 

median. This third possibility was proposed more recently by Madelain et al. (2007). We 

found that all four monkeys show increased accumulation rate variability after the caudal 

PFC lesion (Supplementary Figure 2.S6C). This increased rate variability remains even in 

the later stages of recovery at weeks 8-16 post-lesion. Studies have shown that reaction 

times to rewarded locations are less variable than to non-rewarded locations (Takikawa et 

al., 2002; Montagnini and Chelazzi, 2005). We suspect that the increased reaction time 

variability in our study is due to the overall reduction in rewards to contralesional targets 

compared to ipsilesional targets following a right PFC lesion, which may have led to 

more variable contralesional reaction times.  
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Figure 2.S6. The LATER model and longitudinal reciprobit plots of contralesional 

reaction time distributions.  

(A) A schematic of the LATER model. A decision signal S rises linearly in response to a 

stimulus, at an accumulation rate r that has a variance σ with a Gaussian distribution, 

until it reaches a threshold (ST) at which point a response is finally initiated. The 

cumulative reaction times distribution can then be plotted on a probit scale (y-axis) with 

reciprocal reaction times (x-axis) resulting in a reciprobit plot where distributions become 

straight lines (bottom). (B) Predictions of the LATER model. Top, a change in the 

accumulation rate of the model appears as a parallel shift in the line representing the 

reaction time distribution. Middle, a change in the threshold level would appear such that 

the line swivels about the infinite-time intercept. Bottom, a change in the variability of 

the accumulation rate appears such that the line rotates about the median. (C) 

Longitudinal reciprobit plots of contralesional reaction time distributions. Contralesional 

saccadic reaction time data was obtained from the single stimulus trials. All monkeys 

show post-lesion changes in the reciprobit plots that are consistent with increased 

accumulation rate variability; “rotation”. 
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Figure 2.S7. Data points for the reciprobit plots of the contralesional reaction time 

distributions for Monkey L.  

The y-axis represents the cumulative probability (%) on a probit scale and the x-axis 

represents the contralesional saccadic reaction time. 
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Figure 2.S8. Data points for the reciprobit plots of the contralesional reaction time 

distributions for Monkey S.  

The y-axis represents the cumulative probability (%) on a probit scale and the x-axis 

represents the contralesional saccadic reaction time. 
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Figure 2.S9. Data points for the reciprobit plots of the contralesional reaction time 

distributions for Monkey B.  

The y-axis represents the cumulative probability (%) on a probit scale and the x-axis 

represents the contralesional saccadic reaction time. 
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Figure 2.S10. Data points for the reciprobit plots of the contralesional reaction time 

distributions for Monkey F.  

The y-axis represents the cumulative probability (%) on a probit scale and the x-axis 

represents the contralesional saccadic reaction time. 
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CHAPTER 3 

3. Functional reorganization during the recovery of 

contralesional target selection deficits after prefrontal 

cortex lesions in macaque monkeys  

3.1. Introduction 

Unilateral brain damage commonly results in a phenomenon referred to as ‘visual 

extinction’ which reflects an ipsilesional visuospatial bias in selective attention. Visual 

extinction has been characterized by the failure to respond to a stimulus in the 

contralesional hemifield when it is presented simultaneously with an ipsilesional stimulus 

(Bisiach, 1991; Corbetta and Shulman, 2011; Di Pellegrino et al., 1997). Unlike visual 

neglect, patients with extinction can still detect a single stimulus presented alone in either 

hemifield (de Haan et al., 2012). In humans, extinction is typically seen following right 

hemisphere lesions in the posterior parietal cortex (PPC), most commonly in the 

temporoparietal junction (de Haan et al., 2012; Di Pellegrino et al., 1997; Rorden et al., 

2009, 1997). Extinction-like deficits have also been observed in neurologically-normal 

humans following transcranial magnetic stimulation over the PPC (Fierro et al., 2000; 

Meister et al., 2006) and in macaque monkeys following permanent lesions or reversible 

deactivation of the PPC (Wardak et al., 2002; Schiller and Tehovnik, 2003; Lynch and 

Mclaren, 1989). Although impairments in contralesional attention are most often 

associated with damage to the PPC, it has also been observed following damage to the 

prefrontal cortex (PFC) in humans (Damasio et al., 1980; Husain and Kennard, 1996; 

Mesulam, 1999) and macaque monkeys (Bianchi, 1895; Deuel and Collins, 1984; Deuel 
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and Farrar, 1993; Eidelberg and Schwartz, 1971; Ferrier, 1886; Jacobsen and Nissen, 

1937; Johnston et al., 2016; Kennard and Ectors, 1938; Latto and Cowey, 1971b, 1971a; 

Schiller and Chou, 1998; Welch and Stuteville, 1958). Thus, it has been suggested that 

disruptions of visuospatial attention are better accounted for by damage to a distributed 

frontoparietal network that mediates attention, rather than from damage to a single brain 

area (Corbetta and Shulman, 2011, 2002; Mesulam, 1981).  

Two core regions of the macaque caudal PFC comprise the anterior portion of the 

frontoparietal network, namely the frontal eye field (FEF; area 8A) and dorsolateral PFC 

(area 9/46D) which are both strongly implicated in visual target selection and attentional 

control (Hutchison et al., 2012; Womelsdorf and Everling, 2015). The FEF is located in 

the anterior bank of the arcuate sulcus and the dorsolateral PFC is located in the caudal 

portion of the dorsal bank of the principal sulcus, just anterior to the FEF. Both regions 

share extensive reciprocal connections with each other and with other cortical oculomotor 

structures, including the lateral intraparietal area (LIP), other higher order visual areas, 

and the contralateral PFC (Barbas et al., 2005; Barbas and Mesulam, 1985; Borra et al., 

2019; Kunzle and Akert, 1977; Maioli et al., 1983; Petrides and Pandya, 1999, 1984; 

Stanton et al., 1993). The FEF and dorsolateral PFC send projections to subcortical 

oculomotor areas, including the superior colliculus (Fries, 1984; Goldman and Nauta, 

1976; Stanton et al., 1988a), caudate and putamen (Stanton et al., 1988b; Yeterian and 

Pandya, 1991), and pontine nuclei (Kunzle and Akert, 1977; Schmahmann and Pandya, 

1997; Stanton et al., 1988b), and in turn receive subcortical input via the mediodorsal 

thalamus (Goldman-Rakic and Porrino, 1985; Tian and Lynch, 1997). Previous work has 

shown that caudal PFC lesions in monkeys results in impaired contralesional target 

selection that resembles visual extinction in humans (Johnston et al., 2016; Schiller and 

Chou, 1998). 
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Saccade target selection has been investigated using double stimulation oculomotor 

paradigms (e.g., temporal order-judgement (TOJ) and free-choice saccade tasks) in which 

two peripheral visual stimuli are presented in rapid succession in either hemifield with a 

variable temporal delay between stimulus onsets (stimulus onset asynchrony, SOA) and a 

randomized order of side of the first-presented stimulus. In the TOJ task, monkeys are 

rewarded for correctly selecting the first-appearing stimulus (Kubanek et al., 2015; Port 

and Wurtz, 2009), whereas on the free-choice task, selection of either stimulus is 

rewarded in order to measure the naturally-occurring visuospatial bias (Johnston et al., 

2016; Schiller and Chou, 1998; Wardak et al., 2002). In permanently lesioned monkeys, 

requiring the selection of the first-appearing stimulus in order to receive a reward (i.e., on 

the TOJ task) might be too difficult and may reduce the number of completed trials. The 

free-choice task has been used to measure visuospatial target selection biases in monkeys 

after reversible inactivation (Johnston et al., 2016; Wardak et al., 2002; Wilke et al., 

2012) and after permanent lesions where the gradual behavioural recovery has been 

reported (Adam et al., 2019; Schiller and Chou, 1998). Schiller and Chou (1998) 

permanently lesioned the left FEF in monkeys and reported an ipsilesional bias on the 

free-choice task, with gradual improvements in target selection of the contralesional 

stimulus over the following months (Schiller and Chou, 2000, 1998). We have also 

previously reported on the behavioural recovery of contralesional attention deficits over 

2-4 months post-lesion in the monkeys described in the present study (Adam et al., 2019).  

The compensatory neural processes underlying post-lesion behavioural recovery are 

poorly understood. Although structural damage from a stroke or lesion may be focal, 

functional disruptions to distant and intact areas that are functionally connected to the 

lesion site have been reported and shown to correlate with behavioural recovery (Carter 

et al., 2012; He et al., 2007). Therefore, studying the effects of a cortical lesion on a 
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widespread functional network, rather than on local structures alone, may provide a more 

comprehensive understanding of the recovery process following brain damage. Resting-

state fMRI (rsfMRI) has emerged as a powerful method to study functional brain 

networks using measures of functional connectivity (FC). One of the major advantages of 

rsfMRI over task-based fMRI is that it measures the blood-oxygen level-dependent 

(BOLD) signal at rest, which makes it possible to collect data from subjects who are 

severely impaired following brain damage without requiring them to perform complex 

tasks in the scanner. RsfMRI also avoids potential confounds of FC between subjects 

whose task performance may rely on different means of behavioural compensation. 

Previous studies in stroke patients and animal models of stroke have shown a link 

between recovery of behavioural deficits and changes in FC (Ainsworth et al., 2018; 

Carter et al., 2010; Grefkes and Fink, 2011; He et al., 2007; van Meer et al., 2010; 

Westlake and Nagarajan, 2011).  

Here, we used rsfMRI to investigate longitudinal changes in FC of the frontoparietal 

network during the recovery of contralesional target selection deficits after unilateral 

caudal PFC lesions in macaque monkeys. Macaque monkeys share similar oculomotor 

behaviour, cortical organization, and resting-state functional networks with humans 

(Wurtz and Goldberg, 1989; Petrides and Pandya, 1999; Hutchison et al., 2011; 

Hutchison and Everling, 2012; Sallet et al., 2013), which uniquely positions them as a 

valuable animal model in the study of post-lesion functional brain reorganization. The 

use of an animal model of focal cerebral ischemia was beneficial since it allowed us to 

collect pre-lesion baseline behavioural and imaging data and study the effects of location-

specific lesions. We injected the vasoconstrictor endothelin-1 (ET-1) in the right caudal 

PFC to create a well-controlled and clinically-relevant model of focal cerebral ischemia, 

compared to traditional aspiration or clipping methods. ET-1 induces focal occlusion with 
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subsequent reperfusion and has recently been validated in marmosets and macaque 

monkeys (Dai et al., 2017; Herbert et al., 2015; Murata and Higo, 2016; Teo and Bourne, 

2014). We measured behavioural performance on a free-choice saccade task and have 

previously reported the recovery of deficits in contralesional target selection over 2-4 

months after PFC lesions (Adam et al., 2019). Functional imaging data was collected 

using rsfMRI at 7-Tesla (7T) prior to the lesion and at weeks 1-16 following the lesion 

during behavioural recovery. Since the frontoparietal network plays an important role in 

mediating visuospatial attention (Corbetta and Shulman, 2011, 2002; Mesulam, 1981) 

and the areas of the caudal PFC form the core anterior portion of the frontoparietal 

network (Hutchison et al., 2011; Babapoor-Farrokhran et al., 2013), we hypothesized that 

a caudal PFC lesion would alter the frontoparietal network FC and that these changes in 

FC might be associated with the behavioural recovery of deficits in contralesional target 

selection. 

3.2. Methods 

3.2.1. Subjects 

Data were collected from four adult male macaque monkeys (Macaca mulatta) aged 5 to 

7 years old and weighing 7 to 10 kg. Animals are individually described as Monkey L, 

Monkey S, Monkey B, and Monkey F and are ordered from smallest to largest lesion 

size, as described in Section 3.1. All surgical and experimental procedures were carried 

out in accordance with the Canadian Council of Animal Care policy on the use of 

laboratory monkeys and approved by the Animal Care Committee of the University of 

Western Ontario Council. A custom-built acrylic head post was fixed to the skull using 

dental acrylic and 6-mm ceramic bone screws (Thomas Recording, Giessen, Germany) as 
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previously described (Johnston and Everling, 2006). We opted for an acrylic head post to 

minimize signal drop out. A head post was necessary to restrain the head for eye-tracking 

during training on the oculomotor task. Animals received postoperative analgesics and 

antibiotics and were monitored by a university veterinarian. 

3.2.2. Experimental focal ischemic lesions  

Monkeys were initially sedated with 15.0 mg/kg ketamine (Vetalar 100 mg/ml), followed 

by intravenous administration of 2.5 mg/kg propofol (10 mg/ml) via the saphenous vein. 

Animals were then intubated with an endotracheal tube and anaesthesia was maintained 

with 1-2% isoflurane mixed with oxygen (1 L/min) and continuous rate infusion of 

propofol (2.5 mg/ml) in saline. The animal’s head was held in position using a stereotaxic 

frame with ear and eye bars (Model 1404 Stereotaxic Instrument, Kopf Instruments, CA, 

USA). A craniotomy was made above the right arcuate sulcus and caudal portion of the 

right principal sulcus using coordinates derived from each animal’s anatomical MRI. The 

dura was then removed to confirm the location of the arcuate and principal sulci by visual 

inspection. A 10 μl-capacity syringe (26 gauge) was held in position with a 

microinjection unit (Model 5000 Microinjection Unit, Kopf Instruments, CA, USA) that 

was mounted to a stereotaxic frame assembly and filled with ET-1 (E7764, Sigma-

Aldrich).  

We experimentally induced a small lesion in Monkeys L and S and a larger lesion in 

Monkeys B and F by varying the number of injections and concentration of ET-1. Each 

injection contained 2 μl of ET-1 and was injected at a flow rate of 0.75 μl/min. Monkey L 

received a total of six injections of ET-1 (0.5 μg/μl) in the anterior bank of the right 

arcuate sulcus at three injection sites separated by 2 mm along the mediolateral axis and 

at two depths at each site along the dorsoventral axis at 2 mm and 4 mm below dura. 
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Monkey S received a total of 12 injections of ET-1 (0.5 μg/μl) with six in the anterior 

bank of the right arcuate sulcus (as described for Monkey L) and an additional six in the 

caudal portion of the right principal sulcus at three injection sites separated by 2 mm 

along the rostrocaudal axis and at two depths at each site along the dorsoventral axis at 2 

mm and 4 mm below dura. Monkey B received a total of 16 injections of ET-1 (0.5 

μg/μl), with eight in the anterior bank of the right arcuate sulcus (as described for 

Monkey L) and eight in the caudal portion of the right principal sulcus (as described for 

Monkey S). Monkey F received a total of 16 injections of ET-1 (1.0 μg/μl), with eight in 

the anterior bank of the right arcuate sulcus (as described for Monkey L) and eight in the 

caudal portion of the right principal sulcus (as described for Monkey S). Following the 

last needle retraction, the dura flap was put back in place and the skull trephination was 

covered with medical grade silicon and left undisturbed to dry before the area was sealed 

by application of dental acrylic. More details on the lesion induction methods have been 

previously described (Adam et al., 2019). 

3.2.3. Behavioural task 

Prior to the induction of an experimental lesion, monkeys were trained to perform the 

free-choice saccade task (see Fig. 3.3A), as previously described (Adam et al., 2019; 

Johnston et al., 2016; Schiller and Chou, 1998). Each trial began with the presentation of 

a central fixation point (white-filled circle, 0.3°) against a black background on the 

display monitor. Monkeys were required to maintain fixation for a duration that varied 

between 500 to 1000 ms. Two peripheral visual stimuli (white-filled circles, 0.5°) were 

then presented in the left and right hemifields at an equal eccentricity of 10° and with a 

variable stimulus onset asynchrony (SOA) between the presentation of both stimuli. For 

example, in some trials the left (or right) target was presented at an SOA that varied 
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between 32-256 ms before the right (or left) target or both stimuli were presented 

simultaneously (SOA = 0 ms). Monkeys were required to direct a single saccade towards 

either stimulus and received a liquid reward for either choice. The behavioural paradigm 

also included single stimulus trials to measure the degree of neglect-like impairment. We 

randomly interleaved an equal proportion of single stimulus trials with the free-choice 

double stimulus trials. The single stimulus trials involved the presentation of either a left 

or right target following fixation and the monkey simply had to direct a saccade to that 

single target to receive a liquid reward.  

The behavioural paradigm and reward delivery were controlled with the CORTEX 

behavioural control system (National Institute of Mental Health, Bethesda, MD). Stimuli 

were presented on a CRT monitor (refresh rate = 60 Hz) centered in front of the monkey. 

Eye movements were recorded at 1000 Hz using an infrared video eye tracker (Eyelink 

1000, SR Research, ON, Canada). Monkeys performed this task for about an hour daily. 

We have previously published a detailed report of the behavioural paradigm and task 

performance (Adam et al., 2019). 

3.2.4. Behavioural data analysis  

Analyses were performed using custom-designed software written in MATLAB 

(Mathworks, Natick, MA). Saccade onset was defined as the time at which eye velocity 

exceeded 30°/s following stimulus onset, while saccade end was defined as the time at 

which eye velocity then fell below 30°/s (Johnston et al., 2016). The following trials were 

excluded from further analysis: 1) trials in which the animal blinked around the time of 

stimulus or saccade onset and 2) trials with broken or incorrect fixation. We were 

interested in how a unilateral focal ischemic lesion in the right caudal PFC would affect 

contralesional target selection when competing stimuli were presented in the left and 
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right visual hemifields simultaneously. Behavioural data was grouped into time points 

that aligned with the functional imaging sessions: pre-lesion, and weeks 1-2, 4, 8, and 16 

post-lesion. We assessed the degree of contralesional target selection on the double 

stimulus trials using two behavioural metrics. The first metric was the point of equal 

selection, which was the SOA value at which the probability of choosing the 

contralesional or ipsilesional stimulus was equal; the greater the point of equal selection 

(with a contralesional lead time), the greater the contralesional target selection deficit. 

The second metric was the proportion of contralesional saccade choice, which was the 

number of saccades directed towards the contralesional stimulus during simultaneous 

presentation of both stimuli divided by the total number of saccades made to either 

stimulus. Since extinction deficits are maximal when both stimuli are presented 

simultaneously (Baylis, 2002; Di Pellegrino et al., 1997), we correlated FC with the 

proportion of contralesional saccade choice on trials with an SOA of 0 ms. Performance 

on the single stimulus trials was used to measure neglect-like saccadic behaviour. 

Monkey S was the first subject in the study and we had not yet introduced the single 

stimulus trials at that time, so we used double stimulus trials with the longest SOA (|256| 

ms) as single stimulus trials. The longest SOA values can effectively be used as single 

stimulus trials since these values exceeded the average reaction time of the animal (about 

150-200 ms). Thus, by the time the second stimulus appeared, the animal would 

theoretically have already initiated a saccade to the first appearing stimulus (Adam et al., 

2019; Johnston et al., 2016). We performed one-way analyses of variance (ANOVA) 

with time as a factor (variables: pre-lesion, week 1-2, 4, 8, 16 post-lesion) on these data 

to test for significant differences in performance between pre-lesion and post-lesion time 

points. Significant differences were further investigated using post-hoc Tukey’s Honestly 

Significant Difference (HSD) tests (p < 0.05). All analyses were performed for each 

monkey individually. 
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Pre-lesion baseline behavioural data was collected until task performance was stable 

across sessions for several weeks (i.e., when the point of equal selection was no longer 

significantly different when compared across weeks). After the experimental lesion was 

induced, daily behavioural data collection continued until performance stabilized without 

further improvement (i.e., when the point of equal selection was no longer significantly 

different when compared across weeks). We denoted this final time point as “behavioural 

recovery”, which was week 8 post-lesion for Monkeys L and S (small lesion) and week 

16 post-lesion for Monkeys B and F (large lesion). 

3.2.5. Animal preparation for MR image acquisition 

One hour prior to scanning, monkeys were sedated with intramuscular injections of 0.05 

– 0.2 mg/kg acepromazine (Acevet 25 mg/ml) and 5.0 – 7.5 mg/kg ketamine (Vetalar 100 

mg/ml), followed by intravenous administration of 2.5 mg/kg propofol (10 mg/ml) via the 

saphenous vein. Animals were then intubated with an endotracheal tube and anaesthesia 

was maintained with 1.0 – 1.50% isoflurane mixed with 100% oxygen. Each monkey was 

then placed in a custom-built primate chair with its head restrained to reduce motion and 

then inserted into the magnet bore for image acquisition, at which time the isoflurane 

level was lowered to 1.0%. Animals were spontaneously ventilating throughout the 

duration of image acquisition. Physiological parameters were monitored [rectal 

temperature via a fiber-optic temperature probe (FISO, Quebec City, QC, Canada), 

respiration via bellows (Siemens, Union, NJ), and end-tidal CO2 via a capnometer 

(Covidien-Nellcor, Boulder, CO)]. Body temperature was maintained using thermal 

insulation and a heating disk (Snugglesafe, Littlehampton, West Sussex, UK). Light 

anaesthesia was used because it reduces motion artifacts, physiological stress, and avoids 

the need to train monkeys to undergo MRI scanning. Although isoflurane has vasodilator 
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properties that could affect cerebrovascular activity (Farber et al., 1997), resting-state FC 

and synchronous BOLD fluctuations measured under 1.0 – 1.5% isoflurane have been 

robustly reported in previous studies (Hutchison et al., 2014; Vincent et al., 2007). These 

animal preparation procedures has been previously reported (Hutchison et al., 2011).  

3.2.6. MR image acquisition at 7T 

We acquired rsfMRI data at the following time points: pre-lesion (after behavioural 

training), and at week 1, 4, 8, and 16 post-lesion. Since data collection was ceased for 

Monkeys L and S at the time of behavioural recovery at week 8 post-lesion (see Section 

2.5), only Monkeys B and F had rsfMRI data at week 16 post-lesion. Data were acquired 

on an actively shielded 7T Siemens MAGNETOM Step 2.3 68-cm horizontal bore 

scanner (Erlangen, Germany) operating at a slew rate of 300 mT/m/s. An in-house 

designed and manufactured 8-channel transmit, 24-channel receive primate head 

radiofrequency coil was used for all MR image acquisitions (Gilbert et al., 2016). 

Magnetic field optimization (B0 shimming with shims up to 4th order) was performed 

using an automated 3D mapping procedure over the specific imaging volume of interest. 

For each animal in each session, we acquired four to six 10-minute runs of 600 T2*-

weighted continuous multi-band echo-planar imaging (EPI) functional volumes (TR 

= 1000 ms, TE = 18 ms, flip angle = 40°, slices = 42, matrix size = 96 x 96, field of view 

= 96 x 96 mm, acquisition voxel size = 1 x 1 x 1 mm). EPI functional volumes were 

acquired with GRAPPA at an acceleration factor of 2. Every image was corrected for 

physiological fluctuations using navigator echo correction. A standard T2-weighted turbo 

spin echo anatomical MR image was acquired along the same orientation as the 

functional images (TR = 7500 ms, TE = 90 ms, slices = 42, matrix size = 256 x 256, field 

of view = 128 x 128 mm, acquisition voxel size = 0.5 mm x 0.5 mm x 1 mm). A high-
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resolution T2-weighted turbo spin echo anatomical MR image (TR = 7500 ms, TE 

= 80 ms, slices = 42, matrix size = 320 x 320, field of view = 128 x 128 mm, acquisition 

voxel size = 0.4 mm x 0.4 mm x 1 mm) and a T1-weighted MP2RAGE anatomical image 

(TR = 6500 ms, TE = 3.15 ms, TI1 = 800 ms, TI2 = 2700 ms, field of view 

= 128 x 128 mm, 0.5 mm isotropic resolution) were also acquired along the same 

orientation as the functional images. 

3.2.7. MR image preprocessing 

MR image preprocessing was implemented using the FMRIB Software Library (FSL; 

http://www.fmrib.ox.ac.uk). First, denoising was performed using FSL’s Multivariate 

Exploratory Linear Optimized Decomposition into Independent Components 

(MELODIC), which outputs the functional data as a set of independent components for 

each session (Beckmann and Smith, 2004). Components that were labelled as noise, 

motion, or physiological artefact were removed (Griffanti et al., 2014). Functional data 

was then processed using FSL’s fMRI Expert Analysis Tool (FEAT) that included brain 

extraction (Smith, 2002), MCFLIRT motion correction (6-parameter affine 

transformation) (Jenkinson et al., 2002), spatial smoothing (full-width at half-maximum = 

3 mm), high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting 

with σ = 100 s), and registration (12 DOF linear affine transformation in FLIRT and 

nonlinear registration in FNIRT) to the standard F99 macaque template (Van Essen, 

2004). Temporal signal-to-noise ratio (tSNR) maps were calculated by dividing the mean 

and standard deviation for each resting-state functional run without spatial smoothing or 

registration. Figure 3.1 shows the coronal slices for each time point per monkey. There 

was no signal dropout related to the acrylic head post. 

 



 

 

 

170 

 

Figure 3.1. Temporal SNR maps for each resting-state fMRI session.  

Coronal slices are shown at a level that corresponds to the location of the acrylic head 

post. The colour bar represents tSNR values and the mean tSNR for each time point are 

shown below each slice. Abbreviations: L = left, R = right, tSNR = temporal signal-to-

noise ratio.  
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3.2.8. Lesion volume analysis  

Automated tissue-type segmentation was performed on each animal’s T1-weighted 

MP2RAGE anatomical image acquired one week post-lesion using FMRIB's Automated 

Segmentation Tool (FAST) (Zhang et al., 2001). We opted to use the T1 MP2RAGE 

images because they had higher overall resolution (0.5 mm isotropic) than the T2 images 

(1 mm resolution in the Z-plane), providing increased accuracy when determining the 

extent of the lesion. The T1 MP2RAGE sequence provides a higher tissue contrast 

between gray matter, white matter, and cerebrospinal fluid than traditional T1 MPRAGE 

and T2-weighted images and is thus more superior for tissue segmentation methods 

(Marques et al., 2010). We set the number of classes to be segmented to four: grey 

matter, white matter, cerebrospinal fluid, and lesioned tissue. Segmented masks 

representing lesioned tissue captured areas of hypointensity on the T1-weighted image 

and hyperintensity from the T2-weighted image acquired in the same session. Segmented 

lesion masks were not manually edited. Segmented T1-weighted lesion masks were then 

transformed to the standard F99 space using the transformation matrix from the co-

registered T1-weighted image. Lesion volumes were determined using the lesion masks 

in standard F99 space (0.5 mm isotropic resolution) using the MRIcron Toolbox 

(http://www.cabiatl.com/mricro/mricron/index.html). We projected lesion masks onto the 

macaque F99 template brain using MRIcron and CARET 

(http://www.nitrc.org/projects/caret) and identified lesioned brain areas based on the 

cytoarchitectonic subdivisions from the Paxinos et al. (2000) rhesus monkey brain atlas 

(Paxinos et al., 2000). 
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3.2.9. Resting-state fMRI analysis 

Frontoparietal network construction 

A network is defined as a group of nodes and the edges between each pair of nodes 

(Rubinov and Sporns, 2010). Here, nodes represent brain areas and edges represent the 

statistical correlation in the BOLD time series between each pair of brain regions (i.e., 

FC), where edge weight refers to correlation strength. The primary interest of this study 

was to investigate the longitudinal changes in FC of the frontoparietal network during 

recovery of contralesional target selection deficits. We selected frontoparietal network 

regions-of-interest (ROIs) based on previously identified frontoparietal areas from fMRI 

studies in macaque monkeys (Vincent et al., 2007; Hutchison et al., 2011; Patel et al., 

2015). Hutchison et al. (2011) found a resting-state frontoparietal network using an 

independent component analysis that included bilateral connectivity in the frontal eye 

fields and both banks of the intraparietal sulcus. Vincent et al. (2007) also localized a 

macaque frontoparietal network from a resting-state analysis which included correlations 

in the anterior arcuate sulcus and caudal principal sulcus (caudal PFC), both banks of the 

intraparietal sulcus, and the middle temporal area (MT) and medial superior temporal 

area (MST). Patel et al. (2015) identified the frontoparietal network from the BOLD 

activations during a visual attention task in monkeys, which included the LIP, FEF, and 

dorsolateral PFC. We used the stereotaxic macaque monkey atlas (Saleem and 

Logothetis, 2012) to localize all previously identified frontoparietal areas based on this 

anatomical parcellation. We defined 12 frontoparietal ROIs (see Table 3.1) in the four 

monkeys in our study using those anatomical landmarks and cross-referencing each ROI 

from the atlas with each monkey’s T1 and T2 anatomical MRI. We created spherical 

seeds (radius = 2 mm) for each frontoparietal ROI and additionally created masks within 
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white matter and cerebrospinal fluid (CSF) to be used as covariates of no interest. White 

matter masks included three major areas: 1) corpus callosum, 2) bilaterally in tissue 

medioposterior to the dorsal premotor cortex, and 3) bilaterally medioposterior to 

somatosensory cortex. CSF masks included the lateral ventricle and third ventricle 

bilaterally. There was no overlap between the white matter masks, CSF masks, and the 

frontoparietal ROIs. We extracted the mean BOLD signal time series across all voxels 

within each frontoparietal ROI and computed Pearson’s r correlation coefficients 

between the mean BOLD time series of every ROI pair, while controlling for the time 

series obtained from white matter and CSF. We then applied the Fisher’s r-to-z 

transformation to convert the correlation coefficients into z-scores, where z-scores denote 

the FC between node pairs. This procedure was repeated for each pre-lesion and post-

lesion functional run, which resulted in 4 pre-lesion FC matrices and 4-6 FC matrices for 

each post-lesion session (week 1, 4, 8, 16) per monkey.  
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Table 3.1. List of the cortical structures included as regions of interest in the 

frontoparietal network. 

Coordinates are in standard macaque F99 space. 

 

 

  

  Left Right 

Abbreviation Structure Name x y z x y z 

9/46D area 9/46 of cortex, dorsal part 16 18 15 -10 18 15 

FEF frontal eye field 17 7 15 -14 7 15 

PE parietal area PE (subdivision of 

superior parietal lobule) 

16 -19 22 -11 -19 22 

PEa parietal area PEa (MIP) (subdivision of 
superior parietal lobule) 

11 -20 18 -7 -20 18 

PEC parietal area PE, caudal part 

(subdivision of superior parietal lobule) 

7 -27 23 -4 -27 24 

PF parietal area PF (subdivision of inferior 
parietal lobule, rostral) 

21 -23 20 -17 -23 19 

PFG parietal area PFG (subdivision of 

inferior parietal lobule, rostral) 

24 -17 18 -21 -14 17 

POa parietal area POa (LIP) 20 -16 15 -15 -16 16 

POaE parietal area POa, external part (LIPe) 16 -24 20 -12 -24 20 

POal parietal area POa, internal part (LIPi)  14 -21 16 -10 -21 16 

PPt posterior parietal area 14 -28 19 -10 -28 19 

MT/MST middle temporal/medial superior 

temporal area 

18 -24 11 -14 -24 11 
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Pairwise functional connectivity analysis of the frontoparietal network 

We averaged across the 4-8 non-thresholded, fully weighted FC matrices for each session 

per animal, which resulted in one averaged matrix for each session: pre-lesion A, pre-

lesion B, week 1, 4, 8, and 16 post-lesion. Note that only Monkeys B and F have a week 

16 time point. First, we tested whether resting-state FC of the frontoparietal network 

significantly changed throughout post-lesion recovery. We statistically compared the 

absolute FC (|z-scores|) using two-sample t-tests with FDR correction for multiple 

comparisons (p < 0.05) from (1) pre-lesion to week 1 post-lesion, (2) week 1 to week 8 

for Monkeys L and S or to week 16 post-lesion for Monkeys B and F, and (3) pre-lesion 

to week 8 for Monkeys L and S or to week 16 post-lesion for Monkeys B and F. 

Increased absolute FC was defined as either (1) a positive correlation that became more 

positive or (2) a negative correlation that became more negative. Decreased absolute FC 

was defined as either (1) a positive correlation that became less positive or (2) a negative 

correlation that became less negative. 

Correlations between functional connectivity and behaviour 

We investigated whether the change in FC between any pair of nodes correlated with 

recovery of contralesional saccade choice. We performed a Pearson’s correlation analysis 

between the FC strengths of each ROI pair with the proportion of contralesional saccade 

choice at each post-lesion time point. We acknowledge that the sample size for this 

correlation analysis within each monkey is very small with N = 3 variables for Monkeys 

L and S (FC and behavioural values at 3 time points: week 1, 4, and 8 post-lesion) and 

with N = 4 variables for Monkeys B and F (FC and behavioural values at 4 time points: 

week 1, 4, 8, and 16 post-lesion). Nonetheless, we were interested in whether any strong 

correlations existed between FC and behavioural recovery. Significance values were 
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corrected using the Benjamini and Hochberg (1995) procedure for controlling the false-

discovery rate (FDR) for multiple comparisons (Benjamini and Hochberg, 1995). 

Functional connections that correlated with the proportion of contralesional saccade 

choices were visualized using BrainNet Viewer (Xia, Wang, and He, 2013; 

https://www.nitrc.org/projects/bnv/). 

Graph theoretical analysis of degree centrality in the frontoparietal network  

Graph theory was used to analyze changes in degree centrality using the graph theoretical 

network analysis (GRETNA) toolbox (Wang et al., 2015). Degree centrality is a measure 

of the number of edges connected to a given node (i.e., the number of brain areas 

functionally connected to the node), which reflects its communication ability within the 

functional network (Fornito et al., 2016). We used a sparsity-based threshold instead of 

an absolute threshold because it outputs normalized matrices with the same number of 

edges across networks (pre-lesion vs. post-lesion) which minimizes confounds relating to 

differences in overall correlation strengths between networks (Fornito et al., 2016; Lv et 

al., 2015). We used a wide threshold level range (sparsity: 0.05 – 0.5, with 0.05 intervals) 

and then calculated the area under the curve (AUC) for each metric across the sparsity 

range to avoid arbitrariness in thresholding (Achard and Bullmore, 2007; Itahashi et al., 

2014; Zhang et al., 2011). Negative correlations were ignored in this study as suggested 

in (Rubinov and Sporns, 2010). The AUC of the nodal degree centrality was calculated 

for each monkey at each pre-lesion and post-lesion time point. Significant differences 

across time were evaluated using one-way ANOVAs with post-hoc Tukey’s tests (p < 

0.05).  
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Seed-based functional connectivity analysis 

We used area 9/46D in the contralesional hemisphere as a seed region (2 mm radius) and 

extracted the mean BOLD signal time series across the seed voxels for each functional 

run per monkey. The general linear model was then implemented using FSL’s FEAT 

(fMRI Expert Analysis Tool, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT) where the BOLD 

signal time course was used as a predictor in a multiple regression model for each 

individual functional run. We included the mean time series for white matter and 

cerebrospinal fluid as nuisance covariates in this model. At the individual subject level 

and for each time point, a fixed effects analysis was performed across all functional runs. 

Corrections for multiple comparisons were implemented at the cluster level with 

Gaussian random field theory with z > 2.3 and a cluster significance of p < 0.05. This 

within-subject, within-session analysis produced a contrast of parameter estimates 

(COPE) image for each time point that showed significant positive correlations across the 

whole brain with the seed region for each monkey. In a higher-level FEAT analysis using 

a fixed effects model, we performed a two-sample paired t-test to compare the pre-lesion 

COPE with each post-lesion COPE per monkey. This higher-level analysis produced a Z-

statistic map with corrections for multiple comparisons determined at the cluster level by 

Z > 2.3 and a cluster significance of p < 0.05. Each monkey had a thresholded Z-statistic 

image showing significantly increased or decreased contralesional 9/46D FC for: pre-

lesion to week 1, 4, 8, and 16 post-lesion. The volumetric z-statistic map was then 

projected to the macaque F99 cortical flat maps using the CARET enclosed-voxel method 

(Van Essen et al., 2001; http://www.nitrc.org/projects/caret). 
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3.3. Results  

3.3.1. Intracortical injections of ET-1 induced lesions in the right caudal PFC 

The following lesions have been described in a previously published paper (Adam et al., 

2019). The lesion infarct volume was 0.43 cm3 for Monkey L, 0.51 cm3 for Monkey S, 

1.28 cm3 for Monkey B, and 1.41 cm3 for Monkey F. Monkeys L and S were classified as 

having small lesions and Monkeys B and F as having larger lesions since the infarct 

volume was more than doubled. All four monkeys sustained lesions in the right caudal 

PFC with consistent lesions in area 8AD of the FEF (Fig. 3.2). Additionally, in Monkey 

L the lesion extended into area 8B and in Monkey S it extended into the dorsolateral PFC 

(areas 9/46D and 46D) and ventrolateral PFC (areas 44, 45B, 9/46V, 46V, and 47). Also 

in addition to area 8AD, the lesion in Monkey B extended into areas 8A, 8AV, 8B, 9/46 

and dorsal premotor area 6D, and in Monkey F it extended into areas 8A, 8AV, 8B, 9/46, 

dorsolateral PFC (areas 9/46D, 46D), ventrolateral PFC (areas 45A, 45B, 9/46V, 46V) 

and into premotor areas 6D and 6V.  
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Figure 3.2. Reconstructed lesions superimposed on the macaque F99 template brain.  

T1-weighted images obtained at week 1 post-lesion were segmented based on tissue type. 

Masks representing lesioned tissue were registered to standard F99 space and projected 

onto (A) axial slices of the macaque F99 template brain using MRIcron and (B) cortical 

flat map right hemisphere representations of the macaque F99 brain using CARET with 

surface outlines that we created based on the Paxinos et al. (2000) macaque cortical 

parcellation scheme. The network node placement for the right FEF and area 9/46D are 

shown as yellow outlines. Abbreviations: principal = principal sulcus; arcuate = arcuate 

sulcus, L = left hemisphere, R = right hemisphere, A = anterior, P = posterior, D = dorsal, 

V = ventral, small = small lesion, large = large lesion, FEF = frontal eye field, DLPFC = 

dorsolateral prefrontal cortex, VLPFC = ventrolateral prefrontal cortex, PMd = dorsal 

premotor cortex, PMv = ventral premotor cortex.  
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3.3.2. Unilateral caudal PFC lesions induced contralesional target selection 

deficits that recovered by 2-4 months 

Monkeys performed the free-choice saccade task before and after the experimental lesion 

in the right caudal PFC (Fig. 3.3A). Neglect-like impairments in directing a saccade to a 

single contralesional stimulus were transient and recovered by 4 weeks post-lesion in 

Monkeys L, B, and F (Fig. 3.3B). In Monkey S, the deficit took longer to recover at 8 

weeks post-lesion, which was likely due to the absence of true single stimulus trials in 

this monkey (see Methods). Contralesional target selection deficits were assessed using 

the point of equal selection (Fig. 3.3C) and the proportion of contralesional saccade 

choices (Fig. 3.3D) as measured on the free-choice double stimulus task. One-way 

ANOVAs revealed significant differences in the point of equal selection across time in all 

four animals (Monkey L: F(3, 19) = 19.62, p = 4.83x10-6; Monkey S: F(3, 23) = 24.95, p 

= 2.05x10-7; Monkey B: F(4, 40) = 47.56, p = 1.10x10-14; Monkey F: F(4, 24) = 27.12, p 

= 1.36x10-8). Tukey’s post-hoc tests revealed significant rightward shifts in the point of 

equal selection (p < 0.05) from pre-lesion to week 1-2 post-lesion for all four animals 

(Monkey L: 115 ms shift; Monkey S: 163 ms shift; Monkey B: 223 ms shift; Monkey F: 

386 ms shift). The point of equal selection then gradually returned to pre-lesion baseline 

performance and stabilized without further improvement in performance by week 8 in 

Monkey L and Monkey S and by week 16 in Monkey B and Monkey F. 

As for the proportion of contralesional saccade choice, one-way ANOVAs also revealed 

significant differences across time in all four animals (Monkey L: F(3, 19) = 14.45, p = 

3.85x10-5; Monkey S: F(3, 23) = 12.01, p = 6.19x10-5; Monkey B: F(4, 41) = 13.37, p = 

4.64x10-7; Monkey F: F(4, 24) = 6.26, p = 0.0013). Before the lesion was induced, the 

proportion of contralesional saccade choices was near 0.50 for all animals (Monkey L: 

0.43; Monkey S: 0.44; Monkey B: 0.63; Monkey F: 0.50), indicating a roughly equal 
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proportion of saccades made to the contralesional and ipsilesional stimulus when 

presented simultaneously. Tukey’s post-hoc tests revealed a significant decrease in 

contralesional saccade choice (p < 0.05) from pre-lesion to week 1-2 post-lesion for all 

four animals [Monkey L: 0.06 (p<0.0001); Monkey S: 0.06 (p=0.0002); Monkey B: 0.17 

(p<0.0001); Monkey F: 0.12 (p=0.0026)]. At week 4 post-lesion, contralesional saccade 

choice was still less than the proportion at pre-lesion for all animals, but this effect was 

not significant for Monkey L [Monkey L: 0.22 (p=0.051); Monkey S: 0.03 (p=0.0008); 

Monkey B: 0.28 (p=0.0156); Monkey F: 0.13 (p=0.0047)]. Overall, the proportion of 

contralesional saccade choice gradually recovered until no further improvement by week 

8 for Monkeys L and S and by week 16 for Monkeys B and F (Fig. 3.3D). Behavioural 

performance on this task has been described in full previously (Adam et al., 2019). In 

sum, an experimental lesion in the right caudal PFC led to contralesional target selection 

deficits that gradually recovered over 2-4 months post-lesion. 
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Figure 3.3. Contralesional saccade choice deficit and gradual recovery on the free-

choice saccade task.  

(A) Behavioural task. Each trial began with the presentation of a fixation point, followed 

by either one stimulus in the left or right hemifield (single stimulus trials) or two stimuli, 

with one in the left and one in the right hemifield (double stimulus trials) presented at a 

variable stimulus onset asynchrony (SOA). SOA is the variable time delay between 

presentation of the left and right stimulus on double stimulus trials. (B) Saccade 

performance on single stimulus trials. We calculated the proportion of correct 

contralesional/ipsilesional saccades made on single stimulus trials. Trials with an SOA 

value of |256| ms were used as single stimulus trials for Monkey S (see Section 2.5). (C) 

Recovery of the point of equal selection on the free-choice double stimulus trials. The 

point of equal selection is the temporal delay between presentation of the left and right 

stimuli at which an equal proportion of saccades were made to both stimuli. Positive y-

axis values indicate that the point of equal selection was reached at a temporal delay in 

which the contralesional (left) stimulus was presented before the ipsilesional (right) 

stimulus; negative y-axis values indicate a temporal delay in which the ipsilesional 
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stimulus was presented first. (D) Recovery of the contralesional saccade choice deficit on 

simultaneous trials before and after a right caudal PFC lesion. We plotted the proportion 

of saccades made to the contralesional stimulus on trials with simultaneous presentation 

of both stimuli for each monkey. Statistical comparisons between pre-lesion and post-

lesion time points were made using one-way ANOVAs with post-hoc Tukey’s tests (p < 

0.05). Error bars represent standard error of the mean across sessions within each time 

point. Grayscale bars in the legend refer to each time point, with ‘weeks’ indicating the 

duration of time following the lesion.  
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3.3.3. Pairwise FC changes of the frontoparietal network after a right caudal 

PFC lesion 

RsfMRI data were collected before the right caudal PFC lesion and at several time points 

during functional recovery at weeks 1, 4, 8, and 16 post-lesion. Here, we examined the 

changes in FC of the frontoparietal network from pre-lesion and throughout post-lesion 

recovery. We subtracted the absolute FC values (|z-scores|) for each node pair for the 

following comparisons: (1) pre-lesion to week 1, (2) week 1 to week 8 (or to week 16 for 

Monkeys B and F), and (3) pre-lesion to week 8 (or to week 16 for Monkeys B and F). 

We measured the effect sizes using Hedge’s g and found that all significant pairwise FC 

changes shown in Figure 3.4 have a minimum effect size of g = 1.2, considered a large 

effect (Hedges, 1981). Figure 3.4A shows the significant changes in pairwise FC from 

pre-lesion to week 1 post-lesion (two-sample t-test, p < 0.05, FDR corrected). We found 

that the two small lesion monkeys (Monkeys L and S) showed an increase in network-

wide FC one week after a right caudal PFC lesion (Fig. 3.4A, left). Of the two large 

lesion monkeys, Monkey B showed changes in only a few network nodes, whereas 

Monkey F showed substantially decreased network FC one week following the lesion 

(Fig. 3.4A, right).  

Recall that contralesional target selection deficits improved from week 1 to week 8/week 

16 post-lesion (see Fig. 3.3C,D). When comparing FC changes throughout behavioural 

recovery in the two small lesion monkeys (Monkeys L and S), we found that FC 

substantially decreased from week 1 to week 8 (Fig. 3.4B, top row, lower triangles). 

There were fewer significant changes in FC between pre-lesion and week 8 post-lesion in 

Monkeys L and S (Fig. 3.4B, top row, upper triangles). Notably, Monkey S had 

significantly increased FC of the contralesional (left) prefrontal area 9/46D with the 

frontoparietal network across both time point comparisons. Altogether, it appears that the 
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network-wide FC in Monkeys L and S (small lesion) initially increased one week after 

the lesion (Fig. 3.4A, left), and then decreased throughout recovery (Fig. 3.4B, top row, 

lower triangles) approaching pre-lesion baseline (Fig. 3.4B, top row, upper triangles). 

In the two monkeys with a larger lesion (Monkeys B and F), we conversely found 

substantially increased pairwise FC from weeks 1 to 16 post-lesion (Fig. 3.4B, bottom 

row, lower triangles). Compared to pre-lesion, pairwise FC remained increased at week 

16 post-lesion in Monkeys B and F, but Monkey F also had strongly decreased FC in the 

right FEF. Overall, following a larger lesion, it appears that network FC initially 

decreased (in Monkey F; Fig. 3.4A, right), and then increased throughout behavioural 

recovery (Fig. 3.4B, bottom row). In sum, in the two animals with a small lesion 

(Monkeys L and S), the FC between areas of the frontoparietal network initially increased 

and then decreased back to baseline during the time that the contralesional target 

selection deficit was improving following the lesion. However, in the two animals with a 

larger lesion (Monkeys B and F), FC increased throughout post-lesion recovery of 

contralesional target selection, with lasting changes to the functional network when 

compared to pre-lesion. 
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Figure 3.4. Pairwise functional connectivity changes of the frontoparietal network 

across time.  

(A) FC changes from pre-lesion to week 1 post-lesion. Changes in the two small lesion 

monkeys are shown on the left, with Monkey L in the lower triangle and Monkey S in the 

upper triangle. Changes in the large lesion monkeys are shown on the right, with Monkey 

B in the lower triangle and Monkey F in the upper triangle. (B) FC changes from week 1 

to week 8/16 post-lesion (lower triangles) and from pre-lesion to week 8/16 post-lesion 

(upper triangles). FC changes are represented as a difference in the absolute Fisher’s z-

transformed Pearson’s correlation coefficient (i.e., |z-scores|) between two time points. 

Statistical differences were calculated using two-sample t-tests with FDR correction for 

multiple comparisons across all pair-wise correlations (p < 0.05). Red cells indicate a 

significant increase and blue cells indicate a significant decrease in FC. Non-significant 

changes are shown as white cells. The colour bar indicates the strength of change in FC. 

Abbreviations: FC = FC; pre = pre-lesion; week = week post-lesion. 
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3.3.4. Frontoparietal FC changes that correlate with the recovery of 

contralesional target selection 

Next, we tested whether longitudinal FC changes from week 1 to week 8 or week 16 

post-lesion correlated with improvements in contralesional target selection (i.e., an 

increasing proportion of contralesional saccade choice on double stimulus trials). We 

acknowledge the small sample size for this correlation analysis: Monkeys L and S only 

had three data points for each of the FC and behavioural values (week 1, 4, and 8 post-

lesion); Monkeys B and F had four values (week 1, 4, 8, and 16 post-lesion). Pearson’s 

correlation analysis revealed significant correlations (p < 0.05, FDR corrected) in 

Monkeys B and F, but not for Monkeys L and S (Fig. 3.5B). Since Monkeys L and S only 

had three data points in the correlation analysis, significance was not reached; however, 

the correlations were very strong. We show edges between nodes that represent these 

very strong correlations (-0.95 > Pearson’s r > 0.95) between FC and behavioural 

performance for Monkeys L and S (Fig. 3.5B). Across all four monkeys, we found a 

strong positive correlation (Pearson’s r > 0.95) between behavioural recovery and 

increasing FC of the contralesional prefrontal area 9/46D–ipsilesional parietal area PE 

(Fig. 3.5B). In other words, as the monkeys selected a higher proportion of contralesional 

targets throughout the weeks post-lesion, the FC between contralesional prefrontal area 

9/46D and ipsilesional parietal area PE was also increasing at the same time points. 

We also noted differences in FC-behaviour correlations based on lesion size. In both 

monkeys with a small lesion (Monkeys L and S), recovery of contralesional target 

selection correlated with decreasing FC between bilateral parietal areas that was absent in 

the large lesion monkeys. However, in Monkey L there was one positive FC-behaviour 

correlation between two parietal areas: contralesional area PEC and ipsilesional area PE. 

Monkey S also had some positive FC-behaviour correlations in bilateral parietal areas, 
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mostly with ipsilesional parietal area PEC. Those negative correlations involving bilateral 

parietal areas were not observed in Monkeys B and F; rather, these monkeys showed 

several positive FC-behaviour correlations involving bilateral parietal areas. Additionally, 

Monkeys B and F showed significant positive correlations between contralesional 

prefrontal FC and behavioural recovery. We also observed that the contralesional FEF in 

Monkey S (small lesion) showed increased FC with the perilesional dorsolateral PFC; 

whereas the contralesional FEF in Monkeys B and F (large lesion) showed increased FC 

with the parietal cortex during recovery. The location of the ipsilesional area 9/46D node 

was slightly affected by the lesion in Monkey S, but in perilesional cortex just outside the 

border of the lesion site for Monkeys L, B, and F. The ipsilesional FEF node was fully 

damaged in Monkeys B and F, but only slightly affected by the lesion in Monkeys L and 

S (see Fig. 3.2B). 

Since FC between contralesional 9/46D and ipsilesional PE strongly positively correlated 

with the increasing proportion of contralesional saccade choices from weeks 1 to 8/16 

across all four monkeys, we further examined how the contralesional 9/46D–ipsilesional 

PE FC changed over time. Statistical comparisons were made within subjects using one-

way ANOVAs with post-hoc Tukey’s tests (p < 0.05) to compare values between each 

pair of time points. We found that across all four monkeys, the contralesional 9/46D–

ipsilesional PE FC slightly increased from pre-lesion to week 1 post-lesion, albeit not 

significantly (Fig. 3.5C). FC continued to gradually increase over time, reaching 

significance at week 4 post-lesion in Monkey S and Monkey F (p < 0.05), and by week 8 

post-lesion in Monkey B. FC remained significantly greater than pre-lesion baseline in 

Monkeys S, B, and F at the time of behavioural recovery (week or 16), however this 

effect was only a trend in Monkey L. 
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Figure 3.5. Functional connections that correlated with the recovery of 

contralesional saccade choice following a right caudal PFC lesion.  

(A) Frontoparietal network nodes. We defined 24 bilateral regions-of-interest as the 

frontoparietal network (see Table 3.1 for abbreviations). (B) Significant correlations 

between pairwise FC and the proportion of contralesional saccade choice at each post-

lesion time point. Correlations were assessed using a Pearson’s correlation analysis with 

FDR correction of the significance values for multiple comparisons. Red lines indicate a 

positive correlation, such that increasing FC between those two nodes correlated with an 

increasing proportion of contralesional saccade choice over time. Blue lines indicate a 

negative correlation, such that decreasing FC between those two nodes correlated with an 

increasing contralesional choice over time. The rough lesion site is circled in black. (C) 

FC changes between contralesional area 9/46D and ipsilesional area PE over time. Note 

that the y-axis for Monkeys L and S is smaller than that for Monkeys B and F. Gray lines 

within each box indicate the median, the bottom and top edges of the box indicate the 

25th and 75th percentiles, respectively, and the whiskers extend to the most extreme data 

points that are not considered outliers. Statistical comparisons were made within subjects 

using one-way ANOVAs with post-hoc Tukey’s tests (p < 0.05) to compare values 

between each pair of time points. Abbreviations: L = left hemisphere; R = right 

hemisphere; contra = contralesional; ipsi = ipsilesional, FC = functional connectivity. 
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3.3.5. Changes in regional node properties of the frontoparietal network from 

pre-lesion to post-lesion 

We investigated changes in the degree centrality of each node (i.e., ROI) within the 

frontoparietal network from pre-lesion to week 8 or 16 post-lesion using a graph 

theoretical approach. Degree centrality represents the number of connections that a given 

node maintains within the network (Fig. 3.6A). One-way ANOVAs revealed significant 

differences in degree centrality across time for contralesional (left) area 9/46D in all four 

monkeys [Monkey L: F(3,12) = 17.21, p = 0.00012; Monkey S: F(3,12) = 15.97, p = 

0.00017; Monkey B: F(4,23) = 6.79, p = 0.00092; Monkey F: F(4,23) = 14.53, p = 

4.68x10-4] (Fig. 3.6B). Tukey’s post-hoc tests revealed significantly increased left 9/46D 

degree centrality from pre-lesion to week 8 post-lesion in the two small lesion monkeys 

(Monkey L: p = 0.005; Monkey S: p = 0.0004) or to week 16 post-lesion in the two large 

lesion monkeys (Monkey B: p = 0.0005; Monkey F: p = 0.0001). We found differences in 

the pattern of left 9/46D degree centrality changes over time based on lesion size. In the 

two small lesion monkeys (Monkeys L and S), degree decreased initially and then 

gradually increased, whereas in the large lesion monkeys (Monkeys B and F) degree 

increased at week 1 post-lesion and maintained that level over time (except for a brief 

decrease in degree at week 4 post-lesion in Monkey F). In sum, we found that the 

contralesional prefrontal area 9/46D demonstrated increased degree centrality within the 

frontoparietal network at the time of behavioural recovery compared to pre-lesion, 

suggesting that this area has increased its communicability within the network. Although 

there were no other nodes with changes in degree centrality that were consistent across 

monkeys, there were still several nodes that showed significant changes within each 

monkey. In Monkey L, increased degree was found in two contralesional (left 9/46D, 

PEc) and one ipsilesional node (right FEF); decreased degree was found in one 



 

 

 

192 

ipsilesional node (right PFG). In Monkey S, we found increased degree in one 

contralesional (left 9/46D) and two ipsilesional nodes (right PE, PEc); decreased degree 

was found in three contralesional (left PF, PFG, Opt) and one ipsilesional node (right 

FEF). In Monkey B, we only found increased degree in one contralesional node (left 

9/46D). In Monkey F, increased degree was found in three contralesional (left 9/46D, 

PEa, PEc) and four ipsilesional nodes (right 9/46D, PE, PEa, PEc); decreased degree was 

found in two contralesional (left FEF, PE) and one ipsilesional node (right FEF).   
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Figure 3.6. Degree centrality for contralesional dorsolateral PFC.  

(A) Network schematic of increasing or decreasing degree centrality. The network on the 

left shows a red node with a high degree centrality, such that it is connected to every node 

in that network. The network on the right shows a blue node with a lower degree 

centrality in which it has lost some of those connections to other network nodes. The 

higher the degree of a given node, the more well-connected that node is within the 

network. (B) Changes in degree centrality of contralesional area 9/46D over time. All 

four monkeys showed significantly increased degree centrality of contralesional (left) 

area 9/46D from pre-lesion to the final post-lesion time point (week 8 or 16). Statistical 

comparisons between pre-lesion and post-lesion time points were made using one-way 

ANOVAs with post-hoc Tukey’s tests (p < 0.05). Error bars denote standard error of the 

mean. Grayscale bars in the legend refer to each time point, with ‘weeks’ indicating the 

duration of time following the lesion. AUC = area under the curve. 
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3.3.6. Seed-based functional connectivity changes of contralesional area 9/46D 

Since contralesional area 9/46D is located in the contralateral PFC that is homologous to 

the lesion site and showed increased degree centrality over time, we examined the 

longitudinal FC of contralesional 9/46D with the whole-brain using a seed-based 

analysis. We tested for changes in the contralesional 9/46D FC from pre-lesion to each 

post-lesion time point using two-sample paired t-tests (corrected cluster significance 

threshold: p< 0.05). In the two monkeys with a small lesion (Monkeys L and S), we 

found decreased FC of left dorsolateral PFC at week 1 post-lesion compared to pre-lesion 

across the entire brain, which decreased even further at week 4 and week 8 post-lesion 

(Fig. 3.7B, top half). In Monkey L, increased FC with left dorsolateral PFC was found in 

left orbitofrontal, ventral prefrontal, infero-temporal, and parieto-occipital areas and in 

right insular and superior parietal areas (Brodmann area 5 and 7), which gradually 

increased over weeks 4 and 8 post-lesion (Fig. 3.4B, top left). In Monkey S, dorsolateral 

PFC FC increased mostly with bilateral occipito-temporal and with small areas of parietal 

cortex (Fig. 3.7B, top right). Conversely in the two large lesion monkeys, there were no 

substantial decreases in FC from pre- to post-lesion. However, increased FC was found 

across the whole brain, but clustered around bilateral parietal cortex in Monkey B (Fig. 

3.7B, bottom left) and left ventral prefrontal cortex and right parietal cortex in Monkey F 

(Fig. 3.7B, bottom right). Altogether, the contralesional dorsolateral PFC–whole brain FC 

mirror our earlier findings of decreasing network-wide FC in the two small lesion 

monkeys over time that was absent in the two large lesion monkeys. These findings are 

also in line with the pattern of changes in degree centrality of this seed region with the 

frontoparietal network (see Fig. 3.5B). 
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Figure 3.7. Changes in the whole-brain functional connectivity with contralesional 

dorsolateral PFC from pre-lesion to post-lesion.  

(A) Flat map representations of the macaque F99 left and right hemispheres with surface 

outlines that we created based on the Paxinos et al. (2000) macaque cortical parcellation 

scheme. The left 9/46D seed region is outlined in green and the approximate lesion area 

is shown in red in the right hemisphere. (B) FC of the left dorsolateral PFC (area 9/46D) 

from pre-lesion to week 1, 4, 8, and 16. Z-statistic maps were thresholded according to 

the colour bar, with red showing significantly increased FC and blue showing a decreased 

FC.  
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3.4. Discussion  

In the present study, we combined resting-state fMRI with the free-choice saccade task to 

investigate longitudinal changes in FC during recovery of contralesional target selection 

deficits after a unilateral caudal PFC lesion. We found a lesion size-dependent pattern of 

functional changes in the frontoparietal network over time. Pairwise frontoparietal FC 

acutely increased in the two small lesion monkeys, and then decreased back to pre-lesion 

baseline from week 1 to 8 post-lesion; conversely, network FC increased during recovery 

in the two large lesion monkeys. Within each monkey, we found that the FC between 

contralesional dorsolateral PFC (left 9/46D) and ipsilesional superior parietal lobule 

(right PE) strongly correlated with the proportion of contralesional target selection from 

week 1 to 8/16 post-lesion. Lastly, the contralesional dorsolateral PFC (left 9/46D) 

showed increased degree centrality with the frontoparietal network at the time of 

behavioural recovery (week 8 or 16) compared to pre-lesion across all four monkeys. 

3.4.1. Recovery of contralesional target selection on a free-choice task 

We found that a right caudal PFC lesion in macaque monkeys led to transient neglect-like 

deficits and longer lasting target selection deficits for contralesional stimuli. Neglect-like 

deficits were subtle and recovered within 4 weeks, whereas extinction-like deficits were 

more pronounced and took 8 weeks to recover in Monkeys L and S (small lesion) and 16 

weeks to recover in Monkeys B and F (large lesion). However, Monkey S and Monkey F 

showed poor recovery of function, such that their behaviour plateaued at week 8 or 16 

without full recovery (i.e., the proportion of contralesional saccade choice at week 

8/week 16 post-lesion in both monkeys was much lower than pre-lesion baseline). We 

discuss these differences in the degree of behavioural recovery in terms of lesion 
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anatomy below (see Section 3.4.2). Previous studies in human stroke patients have also 

reported both neglect and extinction deficits acutely, with neglect recovering shortly after 

while extinction deficits were longer lasting (Bender and Furlow, 1945; Heilman et al., 

2012, 1984; Milner and Mcintosh, 2005; Robertson and Halligan, 1999). In monkeys, 

there are limited longitudinal studies that track post-lesion behavioural recovery since 

most monkey stroke models have used temporary inactivation methods (Hier et al., 1983; 

Johnston et al., 2016; Kubanek et al., 2015; McPeek and Keller, 2004; Wardak et al., 

2002; Wilke et al., 2012). However, in one longitudinal monkey study following 

permanent unilateral FEF aspiration, the authors report a recovery profile similar to our 

findings (Rizzolatti et al., 1983). After the FEF lesion, they reported an absence of a 

response to a single food stimulus presented in the contralesional hemifield that 

recovered at two weeks post-lesion. However, the monkeys showed a lasting ipsilesional 

bias when presented with a food stimulus in either hemifield which recovered after eight 

weeks post-lesion. 

Saccade performance on the single stimulus trials provided insight into the nature of the 

deficits in contralesional target selection on the double stimulus trials (i.e., whether the 

selection deficits were due to motor or perceptual impairments). In our previous report on 

the behavioural data alone (Adam et al., 2019), we showed that the contralesional errors 

on single stimulus trials were largely due to an absence of a saccade response when the 

contralesional stimulus was presented. These error types suggested that the target 

selection deficits reflected a contralesional perceptual impairment, rather than a motor 

impairment, since motor deficits would instead have resulted in inaccurate saccades that 

were still directed towards the contralesional stimulus. In other words, with a motor 

deficit we would have expected saccades to be directed towards the contralesional target, 

but with slower reaction times, reduced amplitude, slower peak velocity, or longer 
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duration, and for these metrics to co-occur with the target selection deficits. Instead, we 

showed that those contralesional saccade metrics returned to baseline well before the 

target selection deficits had recovered and thus could not completely account for the 

lasting contralesional target selection impairment (Adam et al., 2019).  

In humans, visuospatial attention has been investigated using double stimulation 

paradigms similar to our free-choice saccade task, including the Posner spatial cueing 

task and the TOJ task. The Posner cueing task includes trials with valid or invalid cues, 

where a valid-cue trial is one in which the cue is presented in one of two peripheral boxes 

(either left or right of the fixation point) is followed by the target in that cued location. 

An invalidly cued trial is one in which a cue is presented in either peripheral box, but the 

subsequent target is presented in the opposite non-cued location. Participants must 

respond to the target location as quickly as possible. Patients with visual extinction show 

a “disengagement deficit” in which their responses on invalid trials are disproportionally 

slower when contralesional targets follow ipsilesional cues, compared to the opposite 

(Posner et al., 1982; Posner and Petersen, 1990). Posner and colleagues thus view 

extinction as a difficulty in disengaging attention from stimuli (cues) in the unaffected 

ipsilesional hemifield, which leads to impaired ability to attend to contralesional space. In 

a longitudinal study, Ramsey et al. (2016) used the Posner task to measure the severity of 

neglect in stroke patients and found severe visuospatial biases at 2 weeks post-stroke, 

with improvements over the first 12 weeks. They reported that the improvements then 

plateaued without completely reaching baseline performance and without further 

improvement one year later (Ramsey et al., 2016). Comparably, Farne et al. (2004) used a 

battery of paper-and-pencil neuropsychological tests to assess the recovery of visual 

extinction/neglect deficits in stroke patients and also reported initial contralesional 

visuospatial deficits that partially recovered over eight weeks post-stroke (Farne, 2004). 
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Although we used a free-choice task, the pattern of behavioural recovery we reported was 

similar to that of previous studies using different paradigms to measure neglect and 

extinction. 

TOJ tasks are similar to the free-choice paradigm in that two stimuli are presented in 

rapid succession, with one on the left and one on the right side, with a variable delay 

between stimulus onsets (stimulus onset asynchrony, SOA) and randomized order of side 

of first-presented stimulus. Participants then report which stimulus was presented first 

using a verbal response (Baylis, 2002; Rorden et al., 2009, 1997) or saccade response (Ro 

et al., 2001). In a case study of a right hemisphere-lesioned patient, Di Pellegrino et al. 

(1997) used the TOJ task and showed that the patient was not only impaired at reporting 

the contralesional stimulus when it was presented with the ipsilesional stimulus, but also 

when the ipsilesional stimulus was presented within 300-400 ms before or after the 

contralesional stimulus. The authors suggest that visual extinction reflects more than just 

a disengagement deficit, since that would only explain the poor performance when the 

ipsilesional stimulus was presented first or simultaneously, not when it was presented 

second. The free-choice task we use in the present study is most comparable to the TOJ 

task, but also includes elements from the Posner task (e.g., fast response required). In the 

free-choice task, monkeys are rewarded for selecting either stimulus to ensure that they 

would continue performing the task after the lesion, especially when impaired at 

detecting the contralesional stimulus when it appeared first. Rewarding only correct 

judgements of temporal order would have been difficult for lesioned monkeys and likely 

resulted in a reduced number of completed trials. The free-choice task has been used to 

measure visuospatial target selection biases in monkeys after reversible inactivation 

(Johnston et al., 2016; Wardak et al., 2002; Wilke et al., 2012) and permanent lesions 

(Adam et al., 2019; Schiller and Chou, 1998) to frontoparietal areas. Similar to our 
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findings, Schiller and Chou (1998) showed a severe reduction in contralesional saccade 

choices on the free-choice task following FEF lesions in monkeys, with gradual 

improvements over 4 months that plateaued without reaching baseline. 

3.4.2. Frontoparietal anatomical connectivity and functional models of 

visuospatial attention 

Areas of the frontoparietal network are anatomically connected via the superior 

longitudinal fasciculus (SLF), a white matter pathway with three distinct branches 

identified in monkeys (Petrides and Pandya, 1984; Sani et al., 2019; Schmahmann et al., 

2009, 2007) and in humans (Thiebaut de Schotten et al., 2012). In monkeys, SLF I 

connects dorsal frontal areas 6D and 9 with parietal areas PGm, PE, and PEc; SLF II 

connects areas 6DC, 6DR, 8AD, 9/46D, and 46D with parietal areas POa and PG; and 

SLF III connects ventral frontal areas 6V and 44 with parietal areas PF, POa, PFG, and 

PFop (Thiebaut de Schotten et al., 2012). It has been suggested that damage to the white 

matter pathways connecting frontal and parietal areas may be more crucial in the 

development of neglect than damage to those cortical areas alone (Bartolomeo, 2007; 

Bartolomeo et al., 2012, 2007). Bartolomeo et al. (2007) describe neglect as a 

“disconnection syndrome” and review the evidence linking the pathophysiology of 

neglect to SLF damage, specifically SLF II and III (Bartolomeo et al., 2012; Corbetta et 

al., 2005; Doricchi et al., 2008; Doricchi and Tomaiuolo, 2003; Gaffan and Hornak, 

1997; Thiebaut de Schotten et al., 2005). In the present study, although each monkey 

sustained damage to the frontal areas of SLF II (areas 6DC, 6DR, 8AD, 9/46D, and 46D) 

to varying degrees (see Fig. 3.2B), only Monkey S and Monkey F sustained more ventral 

damage, affecting frontal portions of SLF III (area 44 in Monkey S and areas 6VR, 6VC 

in Monkey F). Interestingly, both Monkey S (small lesion) and Monkey F (large lesion) 
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showed stronger neglect-like deficits acutely and worse recovery of function (i.e., larger 

difference in behaviour between pre-lesion and final post-lesion time point) compared to 

the other two monkeys.  

Monkeys S and F also showed more damage in ventral PFC areas 9/46V and 45, which 

are connected to temporoparietal areas IPa and TPO via the extreme capsule (Petrides 

and Pandya, 1984; Schmahmann et al., 2007). The extreme capsule is a white matter 

bundle that connects ventral PFC and temporoparietal areas and is increasingly being 

considered important for visuospatial processing and attention in monkeys (Bogadhi et 

al., 2018; Kagan et al., 2010; Sani et al., 2019; Wilke et al., 2012) and humans (Umarova 

et al., 2010). Altogether, the view that neglect manifests from damage to white matter 

pathways is interesting in the context of our finding that Monkeys S and F may have 

sustained more damage to the frontal portions of SLF III and extreme capsule and also 

showed a stronger initial neglect-like deficit with worse behavioural recovery.  

It is worthwhile to mention the differences in hemispheric lateralization and contralateral 

organization for visuospatial processing between humans and monkeys (Kagan et al., 

2010). Visuospatial functions of the frontoparietal network are strongly right hemisphere-

lateralized in humans (Gazzaniga, 2000), as demonstrated by the observation that neglect 

and extinction deficits are more commonly seen following right hemisphere damage 

(Corbetta and Shulman, 2011; Heilman et al., 1984; Karnath and Rorden, 2012; Thiebaut 

De Schotten et al., 2011). In monkeys, visuospatial functions are less lateralized, with 

lesions to either hemisphere producing comparable contralateral deficits (Gaffan and 

Hornak, 1997). Conversely, responses to visual stimuli within these frontoparietal areas 

are strongly contralateral in monkeys (Barash et al., 1991; Funahashi et al., 1989), but 

less contralaterally-tuned in humans (Schluppeck et al., 2006; Srimal and Curtis, 2008). 

These interspecies differences may explain the observation that monkeys with 
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frontoparietal lesions do not often show severe and lasting neglect-like deficits (Gaffan 

and Hornak, 1997; Lynch and Mclaren, 1989; Wardak et al., 2004, 2002; Wilke et al., 

2012). A more symmetrical functional organization in monkeys might allow for faster 

recovery of lateralized impairment after unilateral damage. 

3.4.3. Patterns of functional network reorganization differ based on lesion size 

We found that the longitudinal pattern of frontoparietal FC changes differed between 

monkeys based on lesion size, such that network FC decreased back to baseline in 

Monkeys L and S (small lesion) from week 1 to 8 post-lesion, whereas FC substantially 

increased in Monkeys B and F (large lesion) from week 1 to 16 post-lesion. These 

findings are in line with previous studies of stroke patients and animal lesion models 

showing that the patterns of cortical reorganization that mediated post-stroke recovery 

largely depended on initial lesion size (Biernaskie et al., 2005; Grafman, 2000; Grefkes 

and Ward, 2014; Van Hees et al., 2014; van Meer et al., 2012; Zhu et al., 2014). In 

animal models of motor stroke, larger lesions of the primary motor cortex have been 

associated with greater recruitment of the contralesional premotor cortex during paretic 

forelimb recovery in rats (Touvykine et al., 2016) and larger post-lesion representations 

of the paretic hand in distant cortical areas in squirrel monkeys (Frost, 2003). Biernaskie 

at al. (2005) examined the degree of compensatory reorganization in rats with small or 

large motor cortex lesions after 4 weeks of rehabilitation with improved motor 

performance. When the authors temporarily inactivated the contralesional motor cortex, 

only the rats with large lesions showed a return of the initial motor deficits (Biernaskie et 

al., 2005). This suggests that the rats with smaller lesions did not rely on compensatory 

reorganization in distant/intact areas of the affected network to the same degree as large 
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lesion rats. Those findings support our results regarding the increased network-wide FC 

in large lesion monkeys, but a return to baseline FC in monkeys with smaller lesions. 

Theoretical models have been proposed to explain how and why different lesion sizes 

might lead to different mechanisms of functional reorganization to provide effective 

compensation during post-lesion recovery. It has been suggested that functional recovery 

following small/incomplete lesions likely involves spared representations in adjacent 

perilesional cortex or transient recruitment of remote ipsilesional areas with similar 

function and connectivity as the lesion site (Grafman, 2000), as described in squirrel 

monkeys (Nudo et al., 1996), rodents (Biernaskie et al., 2005; Brown et al., 2009), and in 

a review of post-stroke rehabilitation in humans (Plow et al., 2015). On the other hand, a 

large lesion may completely impair functions that were normally carried out by the 

lesioned tissue and recovery of function may then rely on recruitment of brain areas 

distant to the lesion site, in both the ipsilesional and contralesional hemisphere, that are 

involved in similar functions (Grafman, 2000; Liu and Rouiller, 1999; Plautz et al., 2003; 

Zeiler et al., 2013). In the present study, there was a varying degree of spared perilesional 

tissue with similar function across monkeys, namely in areas 8AV and 45B. Both regions 

play a role in encoding the saliency or behavioural value of contralateral visual targets, 

which then modulates the allocation of attention (Schwedhelm et al., 2017). Areas 8AV 

and 45B are also densely interconnected with oculomotor structures in the surrounding 

PFC and higher order visual areas (Barbas and Mesulam, 1985, 1981; Yeterian et al., 

2012). In Monkey L, both areas 8AV and 45B are spared; in Monkey S, area 8AV is 

spared; in Monkey B, area 45B is spared; and in Monkey F both areas are damaged (see 

Fig. 3.2B). These areas may have played a compensatory role in the functional recovery 

for Monkey L, with no lesions to 8AV/45B, and to a smaller degree in Monkeys S and B, 

with incomplete lesions to 8AV/45B. Complete damage to both 8AV and 45B may 
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explain the poor recovery of function in Monkey F, in which there was still a lasting ~60 

ms difference (ipsilesional bias) in the point of equal selection at week 16 post-lesion 

compared to pre-lesion (see Fig. 3.3C). 

We also observed differences in the network-wide FC changes between the two large 

lesion monkeys, such that Monkey B had substantially stronger increases in FC from 

week 1 to week 16 and from pre-lesion to week 16 than Monkey F (see Fig. 3.4B). It is 

interesting that Monkey F also had a worse recovery of function compared to Monkey B 

(see Fig. 3.3C,D). Dancause (2006) proposed that following large cortical lesions, when 

surviving tissue is either insufficient or non-existent, functionally-related intact areas are 

essential to take over the lost function; whereas following small/incomplete lesions, 

reorganization of remaining tissue is more beneficial than recruitment of functionally-

related distant areas (Dancause, 2006; Grafman, 2000). This suggests that recruitment of 

the intact areas of the frontoparietal network may be important for behavioural 

improvement following larger lesions. The weaker increase in network FC in Monkey F 

may then be associated with the weaker behavioural recovery in this monkey. Ideally, 

these findings should be replicated in a study with larger sample sizes for each lesion 

group to better delineate the recovery patterns based on lesion size. 

3.4.4. Compensatory role of distant and intact areas in the recovery of 

contralesional target selection  

Across monkeys, we found that the increasing FC between contralesional dorsolateral 

PFC (area 9/46D) and ipsilesional superior parietal lobule (area PE) correlated with 

behavioural recovery. Using a graph theoretical approach, we also found increased 

degree centrality for contralesional dorsolateral PFC with the frontoparietal network at 

week 8/week 16 post-lesion compared to pre-lesion. The dorsolateral PFC is involved in 
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the cognitive control of visually-guided saccadic eye movements and target selection, as 

shown via single neuron electrophysiological recordings (Everling and DeSouza, 2005; 

Funahashi et al., 1991; Johnston and Everling, 2006b) and inactivation studies (Iba and 

Sawaguchi, 2003; Johnston et al., 2016), supporting a role in visuospatial processing. 

Anatomically, area 9/46D of the dorsolateral PFC is connected to the parietal lobe via 

SLF I and SLF II (Schmahmann et al., 2007), as described earlier in Section 4.2. Area PE 

of the superior parietal lobule (Brodmann area 5) has classically been regarded as a 

somatosensory association area (Duffy and Burchfiel, 1971), but more recent studies 

suggest a role in the visual control of movement (Caminiti et al., 2010; Kalaska et al., 

1983). In monkeys, area PE monitors movement direction and updates its spatial maps 

using proprioceptive information (Kalaska et al., 1983) and has been shown to contain 

neurons sensitive to visual stimuli (Squatrito et al., 2001). Axonal tracing and diffusion 

tractography studies have shown that area PE is connected with the inferior parietal 

lobule, which is more directly involved in visuospatial processing as it relates to the 

oculomotor system (Caminiti et al., 2010; Catani et al., 2017; Rozzi et al., 2006). Our 

findings indicate that the functional connection between contralesional 9/46D and 

ipsilesional PE may contribute to the recovery of contralesional target selection following 

unilateral damage to the caudal PFC.  

This present work suggests that intact areas of both the contralesional and ipsilesional 

frontoparietal networks are beneficial in the post-lesion functional recovery. Historically, 

there has been considerable debate about the role of the contralesional hemisphere in the 

recovery of visuospatial attention deficits after unilateral lesions (Corbetta and Shulman, 

2011). The dominant view in the past was that contralesional attention deficits after right 

hemisphere lesions were due to an overactivation of the intact left hemisphere, due to the 

release of interhemispheric callosal inhibition, which would bias attention to the 
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ipsilesional hemifield (Kinsbourne, 1970). In support of Kinsbourne’s theory of hemi-

rivalry, an fMRI study in neglect patients showed an imbalance in functional activation 

between hemispheres that correlated with the degree of attentional bias (Corbetta et al., 

2005). However, more recent studies have shown evidence that activation of the intact 

contralesional hemisphere may be adaptive in the recovery of attention deficits (Lunven 

and Bartolomeo, 2017; Saj et al., 2013; Thimm et al., 2008; Umarova et al., 2016, 2011), 

which supports the opposing theory that the contralesional hemisphere is beneficial for 

functional recovery (Heilman and Van Den Abell, 1980; Mesulam, 1981). Additionally, 

Umarova and colleagues (2011) reported increased task-related activation of the 

contralesional dorsolateral PFC on a visuospatial attention task in better recovered stroke 

patients with extinction, but not in poorly recovered patients with chronic neglect 

(Umarova et al., 2011). This suggests that recruitment of the intact dorsolateral PFC in 

the contralesional hemisphere is an important compensatory response for the recovery of 

visuospatial deficits, since only the patients with milder attention deficits (i.e., extinction) 

showed this activation pattern, not those with chronic neglect.  

The findings from this present study support the view that involvement of the intact 

contralesional hemisphere is beneficial for recovery. This is in line with the studies 

described above and in a recent monkey fMRI study in which the right lateral 

intraparietal area (LIP) in the posterior parietal cortex was temporarily inactivated while 

monkeys performed a free-choice task (Wilke et al., 2012). The authors found an overall 

reduction in contralesional saccade choice during unilateral LIP inactivation, and more 

interestingly, that the selection of the contralesional target was associated with increased 

activation of the ipsilesional PFC and both contralesional LIP and PFC; all distant and 

intact nodes of the frontoparietal network. Our findings support and extend those in 

Wilke et al. (2012) to show that the longitudinal FC changes after a permanent lesion to a 
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single frontoparietal node (in our study, right PFC; in Wilke et al., right LIP) also 

involved a distant ipsilesional network area (in our study, right parietal cortex; in Wilke 

et al., right PFC) along with the contralesional homolog of the lesion site (in our study, 

left PFC; in Wilke et al., left LIP), which correlated with behavioural recovery over time.  

3.4.5. Conclusions 

In summary, we have found that recovery of contralesional target selection deficits 

following unilateral PFC lesions correlated with FC between contralesional dorsolateral 

PFC and ipsilesional superior parietal cortex. Contralesional dorsolateral PFC also 

showed increased degree centrality with the frontoparietal network from pre- to post-

lesion. The assumption that these brain areas provide valuable functional compensation 

could be addressed in a future study in which those areas are inactivated in a recovered 

monkey during a choice task and observing whether target selection deficits reappear. 

Additionally, we have also shown that the pattern of longitudinal changes in functional 

reorganization during behavioural recovery varied according to lesion size. In general, 

network FC returned to pre-lesion baseline during recovery after small lesions, but 

instead strongly increased after larger lesions. Future research could explore this result 

further using task-based fMRI to test whether recovered monkeys with large lesions show 

greater task-related BOLD activation during selection of a contralesional target on a 

choice task, compared to recovered monkeys with smaller lesions. The broad implication 

of the present research is that both the contralesional and ipsilesional frontoparietal 

networks play a beneficial role during the recovery of function. Importantly, our findings 

provide evidence for greater recruitment of the bilateral frontoparietal network during 

recovery of target selection after large lesions, while recovery after smaller lesions was 

optimally supported by a normalization of the functional network.  
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CHAPTER 4 

4. Structural alterations in cortical white matter tracts after 

recovery from prefrontal cortex lesions in macaques 

4.1. Introduction 

Impaired spatial attention and reduced gaze shifts toward the contralesional visual 

hemifield are commonly seen following unilateral damage to the primate frontoparietal 

network, which includes the caudal prefrontal cortex (PFC), posterior parietal cortex 

(PPC), and white matter pathways connecting the large-scale network (Bartolomeo et al., 

2012; Corbetta and Shulman, 2011; Mesulam, 1999). In stroke patients, these deficits 

manifest as a decreased ability to respond or attend to a single visual target within the 

contralesional hemifield, a phenomenon known as visual neglect (Bartolomeo, 2007; Li 

and Malhotra, 2015). In many cases, deficits within the contralesional hemifield appear 

only in the presence of a competing stimulus in the ipsilesional hemifield, referred to as 

visual extinction (Bisiach, 1991; Damasio et al., 1980; B. de Haan et al., 2012; Di 

Pellegrino et al., 1997). Similar visuospatial deficits within the contralesional hemifield 

have been demonstrated in macaque monkeys after experimental lesions or reversible 

inactivation of PFC or PPC areas (Adam et al., 2019; Bianchi, 1895; Deuel and Farrar, 

1993; Johnston et al., 2016; Latto and Cowey, 1971; Lynch and Mclaren, 1989; Rizzolatti 

et al., 1983; Schiller and Chou, 1998; Wardak et al., 2002, 2006, 2004; Wilke et al., 

2012). Functional imaging studies of lateralized attention deficits in neglect patients and 

animal lesion models have shown that functional changes across a distributed network 

correlated with the severity of deficits in the acute stage (Baldassarre et al., 2014; 
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Umarova et al., 2011; Wilke et al., 2012) and with the degree of behavioural recovery in 

the chronic stage (Deuel and Collins, 1983; He et al., 2007; Ramsey et al., 2016; 

Umarova et al., 2016).  

Recently, we reported the longitudinal changes in resting-state functional connectivity 

(rsFC) within the frontoparietal network after a unilateral caudal PFC lesion in macaque 

monkeys (Adam et al., 2020). We showed that recovery of contralesional saccade choice 

deficits correlated with increasing rsFC between the contralesional PFC and ipsilesional 

PPC. Since network-wide rsFC has been shown to reflect properties of the underlying 

structural connections (Dijkhuizen et al., 2012; Greicius et al., 2009; Hagmann et al., 

2008; Shen et al., 2015), here we expand on our previous study to examine the lesion-

induced changes in white matter pathways connecting the bilateral frontoparietal 

network, including the superior longitudinal fasciculus (SLF) and transcallosal fibers 

connecting bilateral PFC and bilateral PPC. The SLF is a long-range association white 

matter pathway that connects frontoparietal areas within hemisphere (Petrides and 

Pandya, 1984; Schmahmann et al., 2007; Thiebaut de Schotten et al., 2012). Between 

hemispheres, the caudal PFC and PPC are connected to their respective contralateral 

homologs via transcallosal fibers which cross at the genu or isthmus of the corpus 

callosum, respectively (Barbas and Pandya, 1984; Hofer et al., 2008). It has not yet been 

explored whether recovery of contralesional target selection after a focal lesion is 

associated with changes in related white matter fibers. Moreover, the behavioural 

relevance of structural alterations in remote fiber tracts before and after focal damage 

have been understudied and are not well understood. 

Diffusion-weighted imaging (DWI) has emerged as a valuable and non-invasive MRI 

technique that is sensitive to the rate of water diffusion in biological tissue (Moseley et 

al., 1991, 1990; Thomsen et al., 1987; Wesbey et al., 1984). Water diffusion can then be 
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modeled using diffusion tensor imaging (DTI) analysis which fits a three-dimensional 

tensor at each voxel to estimate local fiber orientations for tractography and outputs 

scalar diffusion maps to describe white matter microstructure (Basser et al., 1994a, 

1994b). The behavioural relevance of white matter tract remodeling after focal lesions 

has been shown in previous DWI studies of stroke patients and animal models (Liu et al., 

2007; Schaechter et al., 2009; Umarova et al., 2017; van der Zijden et al., 2008; Wang et 

al., 2016).  

In the present study, we examined the microstructural changes of frontoparietal white 

matter tracts in those four macaque monkeys using high spatial and high angular 

resolution DWI acquired in vivo at 7T. DWI data were obtained at two time points: 

before the unilateral PFC lesion and at a late post-lesion stage (week 8 or 16 post-lesion) 

when contralesional saccade choice deficits had largely recovered. Probabilistic fiber 

tractography was used to reconstruct four fiber tracts of interest: contralesional and 

ipsilesional SLF and transcallosal PFC and PPC tracts. Tract-specific diffusion 

parameters, including fractional anisotropy (FA) and mean, axial, and radial diffusivity, 

were then calculated for each tract and compared over time. We speculated that the 

remote fiber tracts (i.e., contralesional SLF and transcallosal PPC) may have mediated 

the increased rsFC between contralesional PFC and ipsilesional PPC that was found in 

our previous study (Adam et al., 2020), since those tracts provide an undamaged pathway 

which indirectly links the cortical regions together. On the other hand, ipsilesional SLF 

and transcallosal PFC fibers were likely damaged by anterograde/retrograde degeneration 

since they directly innervate the lesioned right caudal PFC (Thomalla et al., 2004; 

Werring et al., 2000). Thus, we hypothesized that the remote contralesional SLF and 

transcallosal PPC tracts play a compensatory role to support behavioural recovery post-

lesion, by potentially mediating increased rsFC of the frontoparietal network. We 



 

 

 

223 

predicted that if behaviour or rsFC relied on the contralesional SLF and transcallosal PPC 

tracts, then FA should increase within one or both of those remote tracts from pre-lesion 

to late post-lesion.  

4.2. Methods 

4.2.1. Subjects 

Data were collected from four adult male macaque monkeys (Macaca mulatta) aged 5 – 7 

years old and weighing 7 – 10 kg. All surgical and experimental procedures were carried 

out in accordance with the Canadian Council of Animal Care policy on the use of 

laboratory monkeys and approved by the Animal Care Committee of the University of 

Western Ontario Council. Experimental methods for these subjects has been previously 

published in our companion paper (Adam et al., 2020). Herein, animals are individually 

described as Monkey L, Monkey S, Monkey B, and Monkey F. We show behavioural 

data from these subjects at the following time points: pre-lesion, week 1-2 post-lesion 

(early post-lesion), and week 8 or 16 post-lesion (late post-lesion). The early post-lesion 

time point shows the acute behavioural deficits following the lesion and the late post-

lesion time point shows the recovered behaviour months later. DWI data was acquired at 

pre-lesion at late post-lesion (described below) to examine how the white matter 

microstructure changed at the time of behavioural recovery compared to pre-lesion. 

4.2.2. Lesions 

Details of the experimental lesioning surgeries have been previously published in these 

subjects (Adam et al., 2020). Briefly, lesions were induced using the vasoconstrictor 
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endothelin-1, which induces focal occlusion with subsequent reperfusion and has been 

validated in marmosets and macaque monkeys (Dai et al., 2017; Herbert et al., 2015; 

Murata and Higo, 2016; Teo and Bourne, 2014). Intracortical injections were made in the 

right caudal PFC (along the anterior bank of the arcuate sulcus and the caudal portion of 

the principal sulcus). We varied the total amount of endothelin-1 administered to each 

animal to produce small lesions in Monkey L and Monkey S (6-12 μg) and large lesions 

in Monkey B and Monkey F (16-32 μg). Figure 4.1 shows the lesion extent in each 

animal. All monkeys sustained damage to the right caudal PFC with consistent lesions in 

area 8AD (Fig. 4.1B). The lesion in Monkey L was localized to area 8AD and 8B; in 

Monkey S, the lesion extended further into the dorsolateral and ventrolateral PFC. In 

Monkey B, the lesion extended into dorsal premotor areas and in Monkey F it extended 

into the dorsolateral and ventrolateral PFC and premotor areas. Lesion volume analysis 

showed that Monkey B and Monkey F sustained larger lesions than Monkey L and 

Monkey S with a lesion volume that was more than doubled (Monkey L = 0.43 cm3, 

Monkey S = 0.51 cm3, Monkey B = 1.28 cm3, Monkey F = 1.41 cm3).  
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Figure 4.1. Lesion masks projected onto the macaque F99 template brain.  

Each monkey’s T1-weighted MP2RAGE anatomical image obtained one week post-

lesion was segmented based on tissue type. Masks representing lesioned tissue were 

registered to the standard macaque F99 space and projected onto (A) axial slices of the 

macaque F99 brain and (B) cortical flat map representations of the macaque F99 right 

hemisphere with surface outlines that we created based on the Paxinos et al. (2000) 

macaque cortical parcellation scheme (Paxinos et al., 2000). Bottom right: one axial T1 

image at one week post-lesion showing the lesioned tissue within the dotted red line 

boundary for each monkey. Abbreviations: principal = principal sulcus; arcuate = arcuate 

sulcus; contra = contralesional; ipsi = ipsilesional; D = dorsal; V = ventral; A = anterior; 

P = posterior; L = left; R = right.  
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4.2.3. Behaviour 

We have previously reported the saccade target selection at pre-lesion and late post-lesion 

(Adam et al., 2019) but here we compare behavioural performance with DW-MRI data. 

For a detailed report of the behavioural task design, see (Adam et al., 2019). Before the 

lesion was induced, monkeys were trained on a saccade task that included two randomly 

interleaved trial types: (1) visually-guided single target trials and (2) free-choice paired 

stimulus trials in which a single visual stimulus appeared in each hemifield either 

simultaneously or at varying stimulus onset asynchronies (SOAs) and monkeys were able 

to freely select either stimulus as a saccade target to receive a liquid reward (Fig. 4.2). 

SOA is the variable temporal delay between presentation of the contralesional and 

ipsilesional stimulus on the free-choice trials. Each trial began with the presentation of a 

fixation point, followed by either a single visual target in the contralesional (left) or 

ipsilesional (right) hemifield or two peripheral stimuli, with one in the contralesional and 

one in the ipsilesional hemifield presented at a variable SOA. Free-choice trials were 

used to measure the degree of extinction-like deficits, since those appear in the presence 

of a competing ipsilesional stimulus, whereas single target trials were used to measure the 

extent of neglect-like impairment. This task is able to show whether a monkey exhibits a 

spatially lateralized saccade selection deficit by measuring saccade choice for 

contralesional and ipsilesional visual stimuli.  

In brief, we found that the right caudal PFC lesion induced deficits in contralesional 

target selection, such that there were decreased correct saccades made towards a single 

contralesional target (Fig. 4.3A) and decreased saccade choice of the contralesional 

stimulus on the free-choice trials (Fig. 4.3B,C). Deficits gradually recovered over 2-4 

months post-lesion. We considered post-lesion behaviour as ‘compensated’ when task 

performance stabilized without further improvement. The time point for compensated 
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behaviour was week 8 post-lesion for the small lesion monkeys (Monkeys L and S) and 

week 16 post-lesion for the large lesion monkeys (Monkeys B and F); we refer to these 

time points collectively as ‘late post-lesion’. Detailed results on this behavioural 

paradigm have been previously published (Adam et al., 2020, 2019). 
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Figure 4.2. Behavioural task.  

Single target and free-choice paired stimulus trials were randomly interleaved within a 

session. Each trial began with the presentation of a fixation point, followed by either a 

single target in the contralesional (left) or ipsilesional (right) hemifield or two visual 

stimuli in either hemifield presented at a variable stimulus onset asynchrony. Stimulus 

onset asynchrony was the variable temporal delay (0-256 ms) between presentation of the 

left and right stimulus on the free-choice paired stimulus trials. Abbreviation: SOA = 

stimulus onset asynchrony. 

 

 

 

  



 

 

 

229 

 

Figure 4.3. Saccade target selection deficits and compensation from pre-lesion to 

early and late post-lesion.  

(A) The proportion of correct saccades made to a single contralesional (yellow) or 

ipsilesional (light grey) target. (B) Point of equal selection on the free-choice paired 

stimulus trials. The point of equal selection is the stimulus onset asynchrony value at 

which the probability of choosing the contralesional (left) or ipsilesional (right) stimulus 

was equal. Positive y-axis values indicate that the point of equal selection was reached at 

a stimulus onset asynchrony in which the contralesional stimulus was presented before 

the ipsilesional stimulus, which would indicate a contralesional deficit. Negative y-axis 

values indicate a stimulus onset asynchrony in which the ipsilesional stimulus was 

presented first. (C) The proportion of saccades made to contralesional stimuli on trials 

with simultaneous presentation of both stimuli (stimulus onset asynchrony = 0 ms) on the 

free-choice trials. Statistical comparisons between pre-lesion and post-lesion time points 

were made using one-way ANOVAs with post-hoc Tukey’s tests (p < 0.05). Error bars 

represent standard error of the mean across sessions within each time point. 

Abbreviations: pre = pre-lesion; post1 = early post-lesion (week 1-2 post-lesion); post2 = 

late post-lesion (small lesion: week 8 post-lesion; large lesion: week 16 post-lesion); 

contra = contralesional; ipsi = ipsilesional. 
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4.2.4. Image acquisition at 7T 

One hour prior to scanning, monkeys were sedated with intramuscular injections of 0.05-

0.2 mg/kg acepromazine (Acevet 25 mg/ml) and 5.0-7.5 mg/kg ketamine (Vetalar 100 

mg/ml), followed by 2.5 mg/kg propofol (10 mg/ml). Monkeys were then intubated with 

an endotracheal tube and anesthesia was maintained with 1.0-1.5% isoflurane mixed with 

100% oxygen. Each monkey was positioned in a custom-built MRI primate bed with its 

head restrained to reduce motion and then inserted into the magnet bore for image 

acquisition, at which point the isoflurane level was maintained at 1.0% for the duration of 

the image acquisition. Body temperature, respiration, heart rate, and blood oxygen 

saturation levels were continuously monitored and were within a normal range 

throughout the scans. Body temperature was maintained using thermal insulation and a 

heating disk.  

Imaging data were collected at pre-lesion (after behavioural training), week 1 post-lesion 

(early post-lesion), and at week 8 or 16 post-lesion when behaviour had compensated 

near pre-lesion baseline (late post-lesion). Although behaviour had compensated by week 

8 for Monkey S, we were only able to obtain DWI data at week 16 post-lesion. Data were 

acquired on a 7T Siemens MAGNETOM Step 2.3 68-cm horizontal bore scanner 

(Erlangen, Germany) operating at a slew rate of 300 mT/m/s. We used an in-house 

designed and manufactured 8-channel transmit, 24-channel receive primate head 

radiofrequency coil for all image acquisitions (Gilbert et al., 2016). A high-resolution T2-

weighted anatomical MR image was acquired using a turbo spin echo sequence with the 

following parameters: TR = 7500 ms, TE = 80 ms, slices = 42, matrix size = 320 x 320, 

field of view = 128 x 128 mm, acquisition voxel size = 0.4 mm x 0.4 mm x 1 mm. A T1-

weighted MP2RAGE anatomical image was also acquired with these parameters: TR 

= 6500 ms, TE = 3.15 ms, TI1 = 800 ms, TI2 = 2700 ms, field of view 
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= 128 x 128 mm, 0.5 mm isotropic resolution. Resting-state fMRI data were acquired and 

a detailed report of the fMRI acquisition has been previously published (Adam et al., 

2020). In brief, we collected 4-6 10-minute runs of T2*-weighted continuous multi-

band echo-planar imaging with 600 functional volumes per run using the following 

parameters: TR = 1000 ms, TE = 18 ms, slices = 42, slice thickness = 1 mm, and in-plane 

resolution = 1 mm x 1 mm.  

DWI data were obtained using an interleaved echo planar imaging sequence with the 

following parameters: repetition time (TR) = 5100–7500 ms, echo time (TE) = 46.8–54.8 

ms, number of averages = 1, number of slices = 46–54, slice thickness = 1 mm, in-plane 

resolution = 1 mm x 1 mm. We acquired 64 diffusion-encoding directions (b-value = 

1000-1500 s/mm2) and one non-diffusion weighted volume (b-value = 0 s/mm2). 

Although there are slight within-subject variations in our TR (maximal difference of 1500 

ms) and TE (maximal difference of 3 ms), previous work has shown no significant 

differences in the overall magnitude of diffusion between scans with larger differences in 

TR and TE (Celik, 2016). It has also been demonstrated that the mean FA in high angular 

resolution scans (e.g., 64 diffusion directions) was not significantly different between 

scans with a TR of 4000 ms or 13200 ms (Provenzale et al., 2018). 

4.2.5. Image processing 

Raw DWI data were converted from DICOM to NIFTI using MRIconvert (Lewis Center 

for Neuroimaging, University of Oregon) and reoriented to standard space using the 

FMRIB Software Library (FSL; http://www.fmrib.ox.ac.uk) tools ‘fslswapdim’ and 

‘fslorient’. ASCII text files containing a list of gradient directions and b-values for each 

volume were also flipped and transposed to correspond with the reoriented DWI data. 

Data processing was then carried out using FMRIB’s Diffusion Toolbox (FDT) 
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implemented with FSL. First, eddy current-induced distortions and subject motion were 

corrected using ‘EDDY’ (Andersson and Sotiropoulos, 2016). We then performed a DTI 

analysis to obtain four scalar maps representing FA and mean, axial, and radial 

diffusivity. DTI analysis involved fitting a tensor model at each voxel using ‘DTIFIT’ on 

the eddy corrected DWI data. The output DTI scalar maps are directly related to the three 

major eigenvalues (1, 2, 3) of the fitted tensor (i.e., the magnitude of diffusion for each 

eigenvector of the tensor). Axial diffusivity represents the magnitude of parallel diffusion 

and is defined as the first eigenvalue (1). Radial diffusivity represents the magnitude of 

perpendicular diffusion and is the average of the second and third eigenvalues [(2 + 

3)/2]. Mean diffusivity represents the total magnitude of diffusion and is the average of 

all three eigenvalues [(1 + 2 + 3)/3]. Fractional anisotropy represents the degree of 

anisotropy and is calculated as the relative difference of the first eigenvalue compared to 

the other two eigenvalues [√
(1−2) 2 +(2−3) 2+ (1−3) 2

2(1
2 + 2

2 + 3
2)

 ]  (Alexander et al., 2007; Basser 

et al., 1994; Basser and Pierpaoli, 1996; Beaulieu, 2002).  

Next, a multiple tensor model was fit at each voxel using ‘BEDPOSTX’ which estimates 

two fiber orientations per voxel to account for crossing fibers and more accurately 

generate probability distributions of local fiber orientations (Behrens et al., 2007, 2003b). 

This Bayesian estimation of multiple fiber directions vastly improves sensitivity when 

fiber tracking non-dominant pathways through regions of crossing fibers, such as the SLF 

(anterior-posterior) that has been traditionally difficult to track due to crossing dorsal-

ventral projections in the more dominant corona radiata white matter bundle (Behrens et 

al., 2007). Transformation matrices were derived within subjects for each session from 

diffusion space to pre-lesion structural T2 space using a rigid-body transformation with 6 

degrees of freedom using FSL’s ‘FLIRT’ (Jenkinson et al., 2002). The inverse 
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transformation matrix from this registration was then used to register the seed masks 

from structural to diffusion space for the probabilistic tractography analysis. We have 

previously published preprocessing details for the resting-state fMRI data (Adam et al., 

2020). Briefly, Resting-state fMRI data was processed using FSL and included brain 

extraction, MCFLIRT motion correction (6-parameter affine transformation), spatial 

smoothing (FWHM = 3 mm), high-pass temporal filtering, and registration to the 

standard macaque F99 template.  

4.2.6. DWI tractography analysis 

Regions of interest for tractography 

We reconstructed the contralesional and ipsilesional SLF and the transcallosal PFC and 

PPC tracts using bilateral seed regions (radius = 2 mm) created in pre-lesion structural T2 

space for each subject. Seeds were placed in the frontal eye field (FEF) of the caudal PFC 

and in the lateral intraparietal area (LIP) of the PPC based on the (Saleem and Logothetis, 

2006) rhesus monkey anatomical atlas. FEF seeds were placed in the anterior bank of the 

arcuate sulcus (Tehovnik et al., 2000) and LIP seeds were in the lateral bank of the 

intraparietal sulcus (Lewis and Van Essen, 2000). FEF and LIP constitute the main 

cortical nodes of the frontoparietal network (Wardak et al., 2011) and have been 

previously used to track these fibers in rhesus macaques (Hofer et al., 2008). Figure 4.4A 

shows representative seed mask locations in pre-lesion structural T2 space. The following 

seed region pairs were used in a probabilistic tractography analysis (described below) to 

reconstruct the four tracts of interest: bilateral FEF seeds were used to track the 

transcallosal PFC fiber tracts (Barbas and Pandya, 1984; Hofer et al., 2008); bilateral LIP 

seeds were used to track the transcallosal PPC tracts (Hofer et al., 2008); contralesional 
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FEF and LIP seeds were used to track the contralesional SLF; and the ipsilesional FEF 

and LIP seeds were used to track the ipsilesional SLF (Petrides and Pandya, 1984; 

Schmahmann et al., 2007; Thiebaut de Schotten et al., 2012) (Fig. 4.4B). A midline 

sagittal exclusion mask was used to restrict tracking to the opposite hemisphere for the 

SLF association tracts and an axial exclusion mask at the anterior-posterior midpoint of 

the corpus callosum was used to restrict tracking to the anterior half of the brain for the 

transcallosal PFC tract or to the posterior half of the brain for the transcallosal PPC tract.  
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Figure 4.4. Seed masks to reconstruct fiber tracts of interest using probabilistic 

tractography.  

(A) Representative seed masks in bilateral FEF and LIP overlaid on FA maps in native 

T2 space shown at coronal and axial sections. Similar seeds were created for each 

monkey in native pre-lesion T2 space. (B) Schematic of the white matter tracts of 

interest. Probabilistic streamlines were generated for the (i) transcallosal PFC tract using 

bilateral FEF seeds, (ii) ipsilesional SLF association tract connecting the PFC and PPC 

using ipsilesional FEF and LIP seeds, (iii) transcallosal PPC tract using bilateral LIP 

seeds, and (iv) contralesional SLF association tract connecting the PFC and PPC using 

contralesional FEF and LIP seeds. Abbreviations: D = dorsal, V = ventral, L = left, R = 

right, contra = contralesional, ipsi = ipsilesional, A = anterior, P = posterior, as = arcuate 

sulcus, asu = upper limb of the arcuate sulcus, asl = lower limb of the arcuate sulcus, ips 

= intraparietal sulcus, ps = principal sulcus, FEF = frontal eye field, LIP = lateral 

intraparietal area, PFC = prefrontal cortex, PPC = posterior parietal cortex, SLF = 

superior longitudinal fasciculus, CC = corpus callosum. 
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Probabilistic tractography analysis 

Probabilistic tractography was computed with FDT’s ‘ProbtrackX’ which uses the output 

from BEDPOSTX to estimate the number of streamlines that traveled between two seed 

regions for each voxel (Behrens et al., 2007, 2003a). We used the following ProbtrackX 

standard parameters: number of sample streamlines sent out per seed voxel = 5000, 

curvature threshold = 0.2, step length = 0.5, maximum number of steps = 2000, 

subsidiary fibre volume threshold = 0.01. Distance correction was additionally 

implemented to correct for the decrease in streamlines with distance from the seed region. 

For each of the 5000 streamlines per seed voxel sampled from the BEDPOSTX 

probability distribution, a ‘successful’ streamline was one that originated from one seed 

and reached the other. This algorithm outputs a streamline density map where individual 

voxel intensities represent the number of successful streamlines that passed through the 

voxel. This procedure also outputs the ‘waytotal’ for each seed, which is the total number 

of streamlines that originated from that seed and successfully made it to the other seed. 

The streamline density map was then normalized by dividing it by the waytotal sum 

(waytotalseedA + waytotalseedB), which yielded voxel intensities that now represent the 

probability of that voxel being part of that tract. In contrast to methods that normalize 

streamline density maps using a constant proportion of the total number of streamlines 

sent out per voxel, proportional normalization based on the waytotal sum is the preferred 

approach when comparing reconstructed fiber tracts across sessions since it accounts for 

any differences in seeded voxels across sessions that may have affected trackability 

(Bennett et al., 2011). Streamline probability maps were then thresholded to maintain 

only voxels with intensities of at least 50% (i.e., a minimum of 50% probability that the 

voxel belongs to that streamline) and then visually inspected to confirm anatomical 

plausibility. Note that these suprathreshold white matter voxels are not necessarily 
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exclusively part of the fiber tract of interest, but this probabilistic tractography approach 

gives a better approximation of the tract-related voxels compared to traditional 

approaches that use pre-defined region of interest FA mask without tractography. These 

normalization and thresholding procedures have been used for probabilistic tractography 

analysis (Cunningham et al., 2017; Galantucci et al., 2011; Gray et al., 2018; Latzman et 

al., 2015). Thresholded streamline probability maps representing the tracts of interest 

were generated for each subject and each session individually. These white matter fiber 

tracts have been previously identified in nonhuman primates using DWI tractography 

(Hofer et al., 2008; Hofer and Frahm, 2008; Schaeffer et al., 2017; Schmahmann et al., 

2007; Thiebaut de Schotten et al., 2012) and tracer methods (Barbas and Pandya, 1984; 

Petrides and Pandya, 1984). Figure 4.5 shows a representative sample of the 

reconstructed fiber tracts and the average streamline probability values for each tract are 

reported in Table 4.1.  
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Figure 4.5. Representative white matter tracts reconstructed with probabilistic 

tractography.  

First column: bilateral FEF seeds revealed transcallosal streamlines between the bilateral 

PFC that traveled across hemispheres through the rostral portion, or genu, of the corpus 

callosum. Second column: ipsilesional FEF and LIP seeds revealed the ipsilesional SLF 

association fibers connecting frontal and parietal areas. Third column: bilateral LIP seeds 

revealed transcallosal streamlines between bilateral PPC that traveled across hemispheres 

through a posterior region (isthmus) of the corpus callosum. Fourth column: 

contralesional FEF and LIP seeds revealed the contralesional SLF association fibers 

connecting frontal and parietal areas. The colour bar represents streamline probabilities 

for each voxel in the thresholded tracts. Streamline probability maps are shown overlaid 

on a T2 coronal or parasagittal slice. Abbreviations: pre = pre-lesion, post2 = late post-

lesion, A = anterior, P = posterior, L = left, R = right, PFC = prefrontal cortex, PPC = 

posterior parietal cortex, SLF = superior longitudinal fasciculus, contra = contralesional, 

ipsi = ipsilesional, as = arcuate sulcus, asu = upper limb of the arcuate sulcus, asl = lower 

limb of the arcuate sulcus, ips = intraparietal sulcus, ls = lateral sulcus. 
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Table 4.1. Average streamline probability of the suprathreshold voxels in the 

reconstructed white matter fiber tracts.   

 

All values were derived from thresholded probabilistic tracts with a minimum streamline 

probability of 50%. Abbreviations: No. = number; PFC = prefrontal cortex, PPC = 

posterior parietal cortex, SLF = superior longitudinal fasciculus, SEM = standard error of 

the mean, pre = pre-lesion, post2 = late post-lesion, ipsi = ipsilesional, contra = 

contralesional. 

 

  

Tract 

Time 

since 
lesion 

Monkey L Monkey S Monkey B Monkey F  
No. of 
voxels Mean SEM 

No. of 
voxels Mean SEM 

No. of 
voxels Mean SEM 

No. of 
voxels Mean SEM 

PFC–PFC Pre 888 87.3 0.56 641 88.6 0.66 1199 83.5 0.52 1211 84.6 0.50 

Post2 926 87.3 0.56 1126 87.1 0.51 1119 87.5 0.5 1151 82.4 0.56 

Ipsi SLF Pre 1949 81.4 0.41 801 82.6 0.66 1073 84.6 0.55 995 80.7 0.58 

Post2 930 82.2 0.61 1943 77.7 0.41 865 81.9 0.64 1498 75.1 0.48 

PPC–PPC Pre 1519 85.2 0.46 917 84.6 0.6 1653 85.9 0.43 1763 84.5 0.43 

Post2 1797 95.3 0.27 1141 85 0.55 1819 85.2 0.42 1604 84.3 0.46 

Contra 

SLF 

Pre 936 85.7 0.6 1072 85 0.55 1089 82.4 0.56 1421 80.4 0.49 

Post2 912 85.5 0.59 1047 85.3 0.55 1011 84 0.57 1421 78.8 0.49 
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4.2.7. Tract-specific DTI parameters 

Here, we masked the four DTI scalar maps with the reconstructed tracts to obtain tract-

specific measures of FA and mean, axial, and radial diffusivity at pre-lesion and late post-

lesion. Previous studies have also obtained tract-specific measures of diffusivity and 

anisotropy since it takes fiber orientation into account, rather than only measuring 

diffusion parameters within pre-defined regions of interest without using masks generated 

from fiber tractography (Bennett et al., 2011; Galantucci et al., 2011; Ge et al., 2013; 

Gray et al., 2018; Lindenberg et al., 2012). First, the reconstructed thresholded tracts 

were binarized and only those voxels that overlapped in both the pre-lesion and late post-

lesion binarized tracts were retained. This conservative approach accounts for any 

misalignment among individual tracts between time points. For the transcallosal tracts 

whose diffusion is largely oriented along the left-right x-direction (transcallosal PFC and 

PPC tracts), voxels within an x-coordinate range that were shared between pre-lesion and 

late pre-lesion tracts were retained. For the SLF association tracts whose diffusion is 

largely oriented along the anterior-posterior y-direction, voxels within a shared y-

coordinate range in both pre-lesion and late post-lesion tracts were retained. Next, we 

masked DTI scalar maps with the binarized tracts to obtain tract-wise measures of FA 

and mean, axial, and radial diffusivity. We additionally calculated the average segment-

wise FA values of three discrete segments along the length of each tract. Transcallosal 

PFC and PPC tracts were divided along the x-direction into contralesional/left, middle, 

and ipsilesional/right segments and SLF tracts were divided along the y-direction into 

anterior, middle, and posterior segments. This segment-wise spatial FA analysis may 

reveal important information about whether FA is uniform along the length of a tract and 

could identify whether local FA changes within one segment was driving changes in the 

average tract-wise FA (Colby et al., 2012; Davis et al., 2009). Tract-specific DTI metrics 
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were statistically compared between pre-lesion and late post-lesion using two-sample t-

tests (p < 0.05) with FDR correction for multiple comparisons within each subject. 

4.2.8. Relationship between tract-wise FA and the rsFC of grey matter areas 

connected by that white matter fiber tract 

We have previously reported the rsFC changes in these subjects along similar time points 

(Adam et al., 2020). Here, we compared changes in tract-wise FA with rsFC between 

cortical areas connected by that fiber tract. Bilateral seed regions of interest (radius = 2 

mm) for the rsFC analysis were placed in areas of the resting-state frontoparietal network 

(Hutchison et al., 2012), including two major caudal PFC areas [FEF and 9/46D 

(DLPFC)] and nine PPC areas [PE, PEa, PEC, PF, PFG, POa (LIP), POaE, POal, Opt]. 

Caudal PFC areas are connected within hemisphere to the PPC areas via the SLF 

(Schmahmann et al., 2007). To compare tract-wise FA with rsFC, we extracted the 

average rsFC between groups of seed regions that corresponded to our tracts of interest: 

(1) contralesional and ipsilesional PFC seeds correspond with the transcallosal PFC tract, 

(2) ipsilesional PFC and PPC seeds correspond ipsilesional SLF, (3) contralesional and 

ipsilesional PPC seeds correspond with the transcallosal PPC tract, and (4) contralesional 

PFC and PPC seeds correspond with contralesional SLF. To obtain the rsFC between 

groups of seed regions, the average blood-oxygen level-dependent (BOLD) signal 

timecourse was first obtained for each seed and Pearson’s r correlation coefficients were 

computed between the BOLD signal timecourse of every pair of seeds, while regressing 

out the white matter and cerebrospinal fluid BOLD timecourse as noise. Fisher’s r-to-z 

transformation was applied to convert the correlation coefficients into z-scores, where z-

scores denote the rsFC between seed regions. We averaged across the 4-6 z-score rsFC 

matrices for each session per subject, resulting in one rsFC matrix for pre-lesion and late 
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post-lesion. For instance, to calculate the rsFC between contralesional PFC and PPC seed 

regions for comparison with the FA of the contralesional SLF, we took the |z-score| 

between the FEF and each of the nine PPC areas and the |z-score| between area 9/46D 

(DLPFC) and the nine PPC areas in the contralesional hemisphere, and used the average 

|z-score| as a rsFC index corresponding to the contralesional SLF. We statistically 

compared the |z-scores| (absolute rsFC) using two-sample t-tests with FDR correction for 

multiple comparisons (p < 0.05) from pre-lesion to late post-lesion.  

4.3. Results 

4.3.1. Longitudinal changes in the tract-specific DTI parameters 

White matter tracts of interest were reconstructed using probabilistic tractography and 

used to extract tract-specific DTI parameters (FA and mean, axial, and radial diffusivity) 

from DTI scalar maps. Average values were calculated across the voxels of each tract 

within an overlapping x- or y-coordinate range between pre-lesion and late post-lesion. 

While we show results from all four tracts of interest, our main focus is on the remote 

fiber tracts that were not directly affected by the lesion, namely the contralesional SLF 

and transcallosal PPC tract.  

In Monkey L, two-sample t-tests revealed that all four tracts showed significantly 

increased FA and decreased radial diffusivity from pre-lesion to late post-lesion, when 

behaviour had compensated (Fig. 4.6A,D). In addition, transcallosal PFC, contralesional 

SLF, and transcallosal PPC tracts had significantly decreased mean diffusivity, whereas 

the ipsilesional SLF had decreased axial diffusivity (Fig. 4.6B,C). For Monkey S, 

transcallosal PFC tract showed decreased FA whereas contralesional SLF and 
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transcallosal PPC tracts showed increased FA (Fig. 4.6A). Both transcallosal PFC and 

ipsilesional SLF also showed increased mean, axial, and radial diffusivity, whereas 

transcallosal PPC and contralesional SLF showed decreased radial diffusivity (Fig. 4.6B–

D). Lastly, contralesional SLF showed increased axial diffusivity (Fig. 4.6C). Findings 

shared by both small lesion monkeys were that the remote contralesional SLF and 

transcallosal PPC tracts showed increased FA and decreased radial diffusivity when 

behaviour had compensated. 

In Monkey B, transcallosal PFC and ipsilesional SLF showed significantly decreased FA 

and increased mean, axial, and radial diffusivity (Fig. 4.6A–D). Transcallosal PPC 

showed decreased FA and increased mean and radial diffusivity and lastly, contralesional 

SLF showed decreased mean and axial diffusivity. In Monkey F, decreased FA and 

increased radial diffusivity was found in all four tracts from pre-lesion to late post-lesion 

(Fig. 4.6A,D). In addition, transcallosal PFC and PPC tracts showed increased mean 

diffusivity (Fig. 4.6B), whereas contralesional and ipsilesional SLF showed decreased 

axial diffusivity (Fig. 4.6C). Findings shared by both large lesion monkeys were that (1) 

transcallosal PFC and transcallosal PPC showed decreased FA and increased mean and 

radial diffusivity, (2) ipsilesional SLF showed decreased FA and increased radial 

diffusivity, and (3) contralesional SLF showed decreased axial diffusivity.  
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Figure 4.6. Changes in the average tract-wise DTI parameters over time.  

White matter tracts of interest were reconstructed with probabilistic tractography and 

then used to extract tract-specific measures of (A) fractional anisotropy, (B) mean 

diffusivity, (C) axial diffusivity, and (D) radial diffusivity. Statistical comparisons 

between pre-lesion and late post-lesion were made using two-sample t-tests with FDR 

correction for multiple comparisons (* = p<0.05, ** = p<0.01, *** = p<0.001, **** = 

p<0.0001). Error bars represent standard error of the mean across voxels. Abbreviations: 

pre = pre-lesion, post2 = late post-lesion (behavioural compensation time point), PFC–

PFC = transcallosal PFC tract, PPC-PPC = transcallosal PPC tract, SLF = superior 

longitudinal fasciculus, ipsi = ipsilesional, contra = contralesional.  
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4.3.2. Longitudinal changes of segment-wise FA in white matter fiber tracts 

Here, we divided each tract into three segments to test whether FA changes were uniform 

along the length of the tract and to identify which segments likely drove the overall tract-

wise FA. Transcallosal PFC and PPC tracts were divided along the x-direction into 

contralesional/left, middle, and ipsilesional/right segments and the SLF tracts were 

divided along the y-direction into anterior, middle, and posterior segments. Average FA 

was calculated for each segment and compared between pre-lesion and late post-lesion. 

In Monkey L, we found increased FA in the majority of segments across the four tracts 

(Fig. 4.7), except for the two segments closest to the lesion site (i.e., ipsilesional segment 

of the transcallosal PFC tract and anterior segment of the ipsilesional SLF) and the 

contralesional segment of the transcallosal PPC tract, which showed no change. In 

Monkey S, we found decreased FA in the middle segment of the transcallosal PFC tract 

and in the anterior segment of ipsilesional SLF (Fig. 4.7). In Monkey B, we found 

decreased segment-wise FA in the lesion-affected ipsilesional SLF and transcallosal PFC 

tracts and increased FA in the middle segment of the remote contralesional SLF and 

transcallosal PPC tracts (Fig. 4.7). In Monkey F, decreased FA was found in all tract 

segments, except for increased FA in the anterior segment of ipsilesional SLF (Fig. 4.7).  
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Figure 4.7. Changes in segment-wise FA from pre-lesion to late post-lesion.  

(A) White matter tracts were divided into three segments. Transcallosal PFC and PPC 

tracts were divided into contralesional/left, middle, and ipsilesional/right segments, and 

SLF tracts were divided into anterior, middle, and posterior segments. Average FA was 

extracted for each segment and compared between pre-lesion and late post-lesion using 

two-sample t-tests with FDR correction (* = p<0.05, ** = p<0.01, *** = p<0.001, **** = 

p<0.0001). Error bars represent standard error of the mean across voxels. (B) Schematic 

summary of the segment-wise FA changes from pre-lesion to late post-lesion. Tract 

segments are illustrated with black lines dividing each segment. Red indicates increased 

FA (p < 0.05), blue indicates decreased FA (p < 0.05), and grey represents no significant 

change in FA. PFC = prefrontal cortex, SLF = superior longitudinal fasciculus, PPC = 

posterior parietal cortex, contra = contralesional, ipsi = ipsilesional. 
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4.3.3. Relationship between white matter microstructure and resting-state FC  

We have previously published the changes in rsFC of the frontoparietal network in these 

subjects (Adam et al., 2020). Here, we examined the relationship between changes in the 

tract-wise FA with the corresponding change in rsFC (Table 4.2). We made the following 

rsFC–FA comparisons: (1) rsFC between contralesional PFC and PPC seeds with the FA 

of the contralesional SLF, (2) rsFC between ipsilesional PFC and PPC seeds with the FA 

of the ipsilesional SLF, (3) rsFC between bilateral PFC seeds with the FA of the 

transcallosal PFC tract, and (4) rsFC between bilateral PPC seeds with the FA of the 

transcallosal PPC tract.  

The rsFC between contralesional PFC–PPC (corresponding to contralesional SLF) was 

increased from pre- to late post-lesion across the four monkeys, except this effect was not 

significant for Monkey F (Table 4.2). In the two small lesion monkeys, Monkey L and 

Monkey S, this increased rsFC corresponded with the increased tract-wise FA in the 

contralesional SLF (Fig. 4.8). However, the two large lesion monkeys (Monkeys B and 

F) did not show a corresponding FA increase in contralesional SLF; instead FA had 

decreased in both monkeys, but this effect was not significant for Monkey B (see Fig. 

4.6). Monkey S additionally showed decreased rsFC between bilateral PFC, which 

corresponded with decreased FA in the transcallosal PFC tract (Fig. 4.8), and decreased 

rsFC in ipsilesional SLF (Table 4.2). In Monkey B, increased rsFC was found in all 

comparisons which were inconsistent with the decreased FA found in those tracts (Fig. 

4.8). Monkey F showed decreased rsFC between bilateral PFC which corresponded with 

decreased FA in the transcallosal PFC tract. Overall, the direction of rsFC changes 

largely matched the changes in tract-wise FA in the small lesion monkeys, but not in the 

large lesion monkeys. 
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Table 4.2. Changes in resting-state FC between frontoparietal areas of interest. 

 

Abbreviations: pre = pre-lesion, post2 = late post-lesion (behavioural recovery time 

point), contra = contralesional, ipsi = ipsilesional, SEM = standard error of the mean. P 

values indicate significance value for rsFC comparisons between pre- and post-lesion. 

 

 

  

Seed regions Time 

Monkey L Monkey S Monkey B Monkey F 

rsFC 

p 

rsFC 

p 

rsFC 

p 

rsFC 

p Mean SEM Mean SEM Mean SEM Mean SEM 

Bilateral PFC Pre 0.11 0.01 
0.649 

0.25 0.02 
0.028 

0.26 0.04 
0.003 

0.38 0.06 
0.054 

Post2 0.10 0.01 0.18 0.01 0.43 0.02 0.26 0.02 

Ipsilesional  
PFC–PPC 

Pre 0.06 0.01 
0.156 

0.13 0.01 
0.027 

0.19 0.04 
0.017 

0.33 0.02 
0.001 

Post2 0.08 0.01 0.08 0.01 0.30 0.02 0.21 0.01 

Bilateral PPC Pre 0.10 0.01 
0.997 

0.19 0.03 
0.492 

0.27 0.04 
0.019 

0.51 0.03 
0.873 

Post2 0.10 0.01 0.17 0.00 0.38 0.02 0.50 0.02 

Contralesional 
PFC–PPC 

Pre 0.06 0.01 
0.001 

0.13 0.02 
0.048 

0.20 0.04 
0.001 

0.40 0.05 
0.644 

Post2 0.12 0.01 0.19 0.01 0.47 0.03 0.42 0.02 
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Figure 4.8. Schematic summary of the changes in tract-specific FA and rsFC.  

(A) Changes in the tract-wise mean FA for each white matter tract of interest from pre-

lesion to late post-lesion, when behavioural performance had compensated. Solid red 

lines indicate significantly increased FA and solid blue lines indicate significantly 

decreased FA. (B) Resting-state FC changes that correspond to the white matter tracts of 

interest. Resting-state FC was calculated as the average absolute z-score between all 

pairwise seed regions and compared with the FA of the corresponding white matter tract. 

Dotted red lines indicate significantly increased FC and dotted blue lines indicate 

significantly decreased FC. Statistical comparisons between pre-lesion and late post-

lesion were made using two-sample t-tests with FDR correction for multiple comparisons 

(p < 0.05). Abbreviations: PFC = prefrontal cortex, SLF = superior longitudinal 

fasciculus, PPC = posterior parietal cortex, contra = contralesional, ipsi = ipsilesional. 
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4.4. Discussion 

In this longitudinal DWI study, we used probabilistic tractography to investigate 

microstructural changes in frontoparietal white matter tracts after right caudal PFC 

lesions in macaque monkeys. DTI metrics were obtained within each tract and compared 

from pre-lesion to late post-lesion, when behavioural performance on a saccade choice 

task had largely recovered. We have previously published detailed reports of the 

behaviour and resting-state fMRI data in these subjects (Adam et al., 2020, 2019). Here, 

we found that tract-wise FA in remote contralesional SLF and transcallosal PPC tract was 

differentially altered based on lesion size, with increased FA after small PFC lesions 

(Monkeys L and S) and decreased FA after larger lesion (Monkeys B and F). This study 

also highlights the importance of evaluating segment-wise FA since the changes in FA 

were not always uniform along the length of a fiber tract. The lack of consistent or 

compensatory changes in network-wide rsFC and FA after larger lesions may suggest the 

recruitment of alternate pathways beyond the cortical frontoparietal network to support 

the behavioural recovery.  

4.4.1. White matter degeneration in the lesion-affected white matter tracts 

White matter alterations after a focal lesion initially occur locally in perilesional tissue 

and along fiber tracts directly connected to the site of the lesion by anterograde (i.e., 

Wallerian) and retrograde axonal degeneration (Beaulieu, 2002; Pierpaoli et al., 2001; 

Thomalla et al., 2004; Werring et al., 2000). These changes in perilesional tissue 

microstructure have been studied using measures of FA from DWI studies in stroke 

patients (Pierpaoli et al., 2001; Thomalla et al., 2004; Umarova et al., 2017; Werring et 

al., 2000). In this section, we discuss the microstructural changes in the lesion-affected 



 

 

 

251 

ipsilesional SLF and transcallosal PFC tracts (i.e. tracts that directly innervate the 

lesioned right caudal PFC).  

Ipsilesional SLF and transcallosal PFC tracts in Monkey S, Monkey B, and Monkey F 

show decreased FA and increased radial diffusivity. DTI studies in stroke patients have 

also reported decreased FA and increased radial diffusivity in lesion-affected white 

matter tracts (Dacosta-Aguayo et al., 2014; Schaechter et al., 2009; Umarova et al., 

2017). Previous reports of white matter degeneration on DWI suggest that this pattern of 

microstructural changes reflects myelin breakdown in axons directly connected to the 

lesion site (Beaulieu, 2002; Pierpaoli et al., 2001; Werring et al., 2000). Degeneration of 

the normal white matter tissue structure is thought to expand the extracellular space 

between axons, allowing water molecules to diffuse more freely (i.e., more isotropic 

diffusion) and manifesting as decreased FA. In Monkey S, segment-wise FA analysis of 

the transcallosal PFC tract revealed that only the middle segment showed a decreased FA, 

which likely drove the decreased tract-wise FA for that tract. This may be due to FA 

changes within other prefrontal fibers traversing the genu of the corpus callosum that 

were not picked up by our tractography analysis and may have been more impacted by 

the lesion.  

In contrast, Monkey L showed increased FA in ipsilesional SLF and transcallosal PFC 

tracts at late post-lesion. Since Monkey L sustained the smallest and most focal lesion, it 

is possible that there was a relatively greater number of preserved/undamaged axonal 

fibers from the lesioned caudal PFC traveling within hemisphere via ipsilesional SLF or 

between hemispheres via transcallosal PFC fibers. Spared fibers may have allowed for 

optimal neural compensation strategies to take place by way of local plasticity in the 

perilesional tracts (Murphy and Corbett, 2009). While increased FA in ipsilesional SLF 

and transcallosal PFC tracts in Monkey L may be viewed as the outcome of adaptive 
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plasticity for behavioural recovery, these findings should be interpreted with caution 

since DWI changes in lesion-affected tracts may be confounded by direct lesion 

pathology (Pierpaoli et al., 2001).  

4.4.2. Transneuronal degeneration or compensation in remote fiber tracts 

Over several days to weeks following the initial degeneration of fibers directly connected 

to the lesion, white matter atrophy may take place in remote areas indirectly connected to 

the lesion. Fibers connected to the lesion across multiple synapses may undergo 

anterograde transneuronal degeneration due to loss of excitatory input and retrograde 

transneuronal degeneration due to loss of trophic support (Baron et al., 2014; Fornito et 

al., 2015; Grayson et al., 2017; Zhang et al., 2012). The extent of transneuronal 

degeneration likely depends on the initial lesion size and location (Thiel et al., 2010; 

Wasserman and Schlichter, 2008). Here, we focus on the remote fiber tracts that are 

indirectly connected to the lesioned right caudal PFC, namely the contralesional SLF and 

transcallosal PPC tracts. Transneuronal degeneration may appear on DWI as decreased 

FA, decreased axial diffusivity, and/or increased radial diffusivity in white matter tracts 

remote from the lesion (Beaulieu, 2002). These diffusion changes may reflect a 

combination of degenerative changes, including decreased fiber density, demyelination, 

and axonal loss (Sotak, 2002).  

We found evidence of transneuronal degeneration in the contralesional SLF and 

transcallosal PPC tracts in the two large lesion monkeys, but not in the small lesion 

monkeys. Specifically, Monkey B showed decreased FA and increased radial diffusivity 

in transcallosal PPC and decreased axial diffusivity in contralesional SLF. Monkey F 

showed decreased FA and increased radial diffusivity in both tracts and additionally 

decreased axial diffusivity in contralesional SLF. Several lines of evidence support our 
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finding of decreased FA in remote fiber tracts only after larger lesions and more 

severe/lasting deficits. DWI studies have reported that, compared to patients with mild or 

recovered neglect, patients with severe or persistent deficits showed decreased FA in the 

posterior corpus callosum, which provides the communication link between parietal areas 

in the damaged and intact hemispheres (Bozzali et al., 2012; Lunven et al., 2015), or 

decreased FA between contralesional frontoparietal areas (Umarova et al., 2014). 

Similarly, in a longitudinal study of neglect, Umarova et al. (2017) reported that the 

degree of unrecovered neglect correlated strongly with white matter degeneration in the 

intact hemisphere between contralesional frontoparietal pathways (Umarova et al., 2017). 

This finding has also been demonstrated in one other study in chronic stroke patients 

recovering from motor-related deficits, such that poorly recovered patients had reduced 

FA in both ipsilesional and contralesional corticospinal tracts, whereas well-recovered 

patients showed increased FA in those tracts compared to healthy controls (Schaechter et 

al., 2009). Alternatively, decreased FA in remote tracts after larger lesions may not 

necessarily underlie the severity or persistence of deficits, but may instead reflect an 

epiphenomenon of larger lesions (Umarova et al., 2017). It is possible that the lesions in 

Monkeys L and S were not large enough to induce transneuronal degeneration. However, 

we are unable to conclude whether the white matter abnormalities in the remote 

contralesional SLF and transcallosal PPC tracts are a result of larger lesions (Thiel et al., 

2010; Wasserman and Schlichter, 2008) or whether they are associated with the severity 

and persistence of behavioural deficits. In addition, the segment-wise FA analysis in 

Monkey B showed increased FA in the middle segments of contralesional SLF and 

transcallosal PPC tracts that were averaged out in the tract-wise mean FA. This increased 

FA may represent an adaptive change that supports behavioural recovery, since Monkey 

B showed a greater degree of recovery than Monkey F. However, It would be valuable 

for future studies to test whether these spatial differences in FA along fiber tracts are due 
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to true microstructural alterations or reflect artifacts from crossing fibers (Jones et al., 

2013). 

In contrast, the two small lesion monkeys (Monkeys L and S) showed increased FA and 

decreased radial diffusivity in the remote contralesional SLF and transcallosal PPC tracts. 

Increased FA combined with decreased radial diffusivity likely reflects increased 

myelination of these remote fiber tracts (Beaulieu, 2002). In line with this finding, 

immunohistochemical studies have reported increased myelin protein and 

oligodendrocyte density in perilesional and contralesional white matter tissue after 

experimental ischemic lesions in rats (Gregersen et al., 2001; Ishiguro et al., 1993; 

Tanaka et al., 2003). It is also possible that increased FA in remote fiber tracts after 

smaller lesions reflects an adaptive or compensatory change in white matter 

microstructure that may be related to the faster time to behavioural recovery in these 

animals (8 weeks) compared to those with larger lesions (16 weeks). This interpretation is 

supported by studies suggesting that remote areas in the intact hemisphere plays a 

beneficial role in the recovery of visuospatial attention deficits after a unilateral lesion 

(Heilman and Van Den Abell, 1980; Lunven et al., 2019, 2015; Lunven and Bartolomeo, 

2017; Mesulam, 1981; Saj et al., 2013; Thimm et al., 2008; Umarova et al., 2011, 2017, 

2016, 2014). Previous studies have highlighted an adaptive role for post-lesion changes in 

distant white matter tissue in both stroke patients (Bütefisch et al., 2003; Crofts et al., 

2011; Lin et al., 2015; Liu et al., 2015; Schaechter et al., 2009) and animal models 

(Carmichael and Chesselet, 2002; Liu et al., 2008; Napieralski et al., 1996; Stroemer et 

al., 1995). Specifically, improved motor function in stroke patients correlated with 

increased FA in contralesional white matter (Lin et al., 2015; Liu et al., 2015; Schaechter 

et al., 2009). DWI studies in patients with congenital hemiparesis or multiple sclerosis 

(i.e., a non-ischemic etiology of white matter damage) have also reported microstructural 



 

 

 

255 

changes in functionally relevant contralesional white matter tracts (Audoin et al., 2007; 

Thomas et al., 2005). 

Alternatively, another possibility is that the increased FA after small lesions and 

decreased FA after larger lesions in remote fiber tracts may reflect differences in the 

extent of disinhibition and potential downstream excitotoxicity. Focal lesions can lead to 

large-scale depolarization of connected areas resulting in disinhibition and 

hyperexcitability of widespread, functionally related networks (Buchkremer-Ratzmann 

and Witte, 1997; Fornito et al., 2015; Liepert et al., 2000). Adaptive structural plasticity 

after a focal lesion may be induced by this hyperexcitability, which has been associated 

with axonal and dendritic growth of undamaged fibers, myelin remodeling, 

synaptogenesis (Carmichael and Chesselet, 2002; Fornito et al., 2015; Gonzalez and 

Kolb, 2003; Jones and Schallert, 1992; Lin et al., 2015) and improved motor function 

(Reitmeir et al., 2011). However, larger lesions induce more widespread disinhibition and 

may lead to remote white matter degeneration across connected areas due to 

excitotoxicity and excessive metabolic stress from persistent hyperactivation 

(Buchkremer-Ratzmann and Witte, 1997; W. de Haan et al., 2012; Fornito et al., 2015; 

Ross and Ebner, 1990; Saxena and Caroni, 2011). Smaller lesions in Monkeys L and S 

may not have been sufficient enough to induce maladaptive hyperactivation in remote 

areas; here, the degree of disinhibition/hyperexcitability may have allowed for adaptive 

plasticity and contributed to compensatory changes across the functionally related 

network. On the other hand, larger lesions in Monkeys B and F likely induced more 

substantial disinhibition across the bilateral network and subsequently led to excessive 

hyperactivation, excitotoxicity, and metabolic stress, ultimately resulting in transneuronal 

degeneration of remote fiber tracts. 
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4.4.3. Relationship between white matter microstructure and resting-state FC 

Although we found inconsistencies between DTI-derived metrics and resting-state FC, 

the magnitude of significant change reported for FA and rsFC are very robust. Thus, 

these discrepancies are unlikely to result from methodology, but instead may reflect 

variability in the compensatory response to lesions of different size or affecting different 

areas. Increased FA in the remote contralesional SLF and increased rsFC between 

corresponding grey matter areas (contralesional PFC–PPC) in both small lesion monkeys 

was the only consistent finding between FA and rsFC. We interpret this paired increase in 

contralesional FA and rsFC as support for a compensatory role of the contralesional 

hemisphere in the recovery of function after small PFC lesions. In our previous resting-

state fMRI study, we reported that rsFC between areas in the contralesional PFC and 

ipsilesional PPC correlated with improving behavioural performance over time in all four 

monkeys (Adam et al., 2020). Since the contralesional SLF is one of the pathways that 

contributes to the indirect link between contralesional PFC and ipsilesional PPC, it is 

possible that the increased FA in contralesional SLF mediated the increased rsFC 

between contralesional PFC and ipsilesional PPC areas. This interpretation is supported 

by previous studies that showed positive correlations between rsFC and structural 

connectivity/FA in the white matter tracts that contribute to the indirect/polysynaptic 

pathway linking the functionally connected areas (Adachi et al., 2012; Greicius et al., 

2009; Honey et al., 2009; Hori et al., 2020; Messé et al., 2014). 

However, this compensatory response was not observed in the two large lesion monkeys. 

In Monkey B, rsFC increased between all areas from pre-lesion to late post-lesion, yet 

this was in contrast to the significantly decreased FA in ipsilesional SLF, transcallosal 

PFC, and transcallosal PPC tracts. Notably, there was no significant change in the tract-

wise FA for contralesional SLF even though the corresponding rsFC was significantly 
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increased. One interpretation is that although functional and structural connectivity are 

often correlated, increased functional connectivity between two regions with a 

‘weakened’ structural connection (e.g., decreased FA) may be mediated by strengthening 

of structural connections with a related third region (Honey et al., 2009; Koch et al., 

2002). Another possible explanation for the opposite change in FA and rsFC in Monkey 

B comes from accumulating evidence demonstrating that network reorganization can 

maintain functional connectivity after loss of major structural pathways (O’Reilly et al., 

2013; Tyszka et al., 2011; Uddin, 2013; Uddin et al., 2008). After major disconnections 

of the corpus callosum, sparing of even a few commissural fibers was sufficient to 

maintain normal levels of functional connectivity between hemispheres months later 

(O’Reilly et al., 2013; Tyszka et al., 2011; Uddin, 2013; Uddin et al., 2008). On the other 

hand, Monkey F did not show similar significant widespread increases in rsFC as in 

Monkey B, but instead only had significantly decreased rsFC in ipsilesional SLF. The 

lack of any significantly increased rsFC along with an overall decreased FA in all fiber 

tracts in Monkey F at the time of behavioural recovery suggests that neural compensation 

may have involved other brain areas or networks. Altogether, decreased FA in 

frontoparietal white matter tracts in both large lesion monkeys hint that behavioural 

recovery after larger PFC lesions may not be solely mediated by cortical connections in 

the frontoparietal network. Instead, there may be a functionally relevant third 

region/network that supports behavioural compensation and possibly works to maintain 

cortical rsFC (Damoiseaux and Greicius, 2009). 

4.4.4. Conclusions 

After the recovery of contralesional saccade choice deficits, FA in remote contralesional 

SLF and transcallosal PPC tracts was increased in monkeys with small PFC lesions, and 
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decreased in monkeys with larger lesions compared to pre-lesion. This suggests that the 

white matter tracts connecting remote areas of the frontoparietal network (i.e., distant to 

the lesion) may contribute an important compensatory response to support recovery of 

function after small PFC lesions. However, larger lesions may have induced more 

widespread damage to the structural network over time such that these remote fiber tracts 

are no longer sufficiently able to compensate for lost function. Future research is needed 

to clarify the behavioural relevance of the remote fiber tracts and to investigate an 

alternate source of neural compensation after greater frontoparietal network damage. 
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CHAPTER 5 

5. General discussion 

5.1. Summary of main findings 

Visual neglect and extinction are commonly observed after unilateral damage to the 

frontoparietal network (Corbetta and Shulman, 2011; Li and Malhotra, 2015). These 

visuospatial impairments typically manifest as reduced detection, discrimination, or 

selection of visual stimuli within the contralesional hemifield, especially in the presence 

of a competing stimulus in ipsilesional hemifield. Visual neglect and extinction reflect 

the breakdown of visual attention to contralesional space which recovers gradually over 

time. Thus, these disorders represent valuable models for studying brain networks that 

control shifts of gaze and attention and how those networks reorganize to compensate for 

loss of function. Here, we described the saccade target selection behaviour for visual 

stimuli in either hemifield before and after unilateral caudal PFC lesions in macaque 

monkeys. The main objective of this thesis was to examine the functional and structural 

alterations in the frontoparietal network following the lesions and how those changes 

relate with the recovery of contralesional target selection. In general, we found that 

reduced saccade selection of contralesional visual stimuli was not purely due to impaired 

oculomotor processing within the contralesional hemifield and that behavioural recovery 

was associated with different patterns of functional and structural alterations based on 

lesion size. Two findings from resting-state fMRI in Chapter 3 were common in all four 

monkeys: (1) compared to pre-lesion, the contralesional DLPFC showed a greater degree 

of functional connectivity with the frontoparietal network after the lesion and (2) 
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behavioural improvement correlated with increasing functional connectivity between 

contralesional DLPFC and ipsilesional PPC. Overall, the results of this thesis support the 

view that both the ipsilesional and contralesional frontoparietal networks play a 

compensatory role after unilateral PFC lesions to support the recovery of visuospatial 

deficits within the contralesional hemifield. The main findings from each chapter are 

reviewed below. 

5.1.1. Recovery of lateralized visuospatial impairment after endothelin-1-

induced lesions in the caudal lateral PFC 

We have characterized a macaque model of focal cerebral ischemia to induce lateralized 

attentional deficits using the vasoconstrictor endothelin-1 in the caudal lateral PFC. 

Endothelin-1 has been previously used to develop nonhuman primate models of focal 

cerebral ischemia, specifically in the marmoset middle cerebral artery (Virley et al., 

2004) and posterior cerebral artery (Teo and Bourne, 2014) and in the rhesus macaque 

motor cortex (Dai et al., 2017; Herbert et al., 2015) and posterior internal capsule (Murata 

and Higo, 2016). Teo and Bourne (2014) demonstrated that the post-ischemic 

pathophysiological processes from endothelin-1 are similar to the sequelae after ischemic 

strokes in humans (Teo and Bourne, 2014), while the other studies characterized the 

sensory/motor impairments and subsequent recovery (Dai et al., 2017; Herbert et al., 

2015; Murata and Higo, 2016; Virley et al., 2004). We have added to this growing body 

of research on nonhuman primate models for ischemic stroke by showing that 

intracortical injections of endothelin-1 into the caudal PFC can produce long-lasting 

impairments of saccade target selection within the contralesional hemifield, resembling 

visual neglect and extinction in stroke patients. Injections of endothelin-1 directly into the 

cortical tissue of interest produce cellular sequelae similar to ischemic stroke and, unlike 
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occlusions of the middle cerebral artery, are less disabling to the animals, produce more 

controlled lesions in size and location, and allow for assessments of oculomotor 

behaviour (access to the middle cerebral artery requires eyeball enucleation). Altogether, 

this research project establishes an endothelin-1 macaque model that can be reproduced 

for future investigations into attentional disorders and potential avenues for rehabilitation. 

 

In line with previous longitudinal reports on behaviour after permanent FEF lesions in 

monkeys (Rizzolatti et al., 1983; Schiller and Chou, 1998), we found that visuospatial 

deficits for a single stimulus in the contralesional hemifield largely recovered within 4 

weeks post-lesion and that contralesional deficits during bilateral stimulus presentation 

recovered over 8-16 weeks. The pattern and time course of behavioural recovery that we 

found has also been documented in neglect patients, in which neglect and extinction co-

occur in the acute stage and then dissociate in the chronic stage with recovery of neglect 

but lasting extinction (Bender and Furlow, 1945; Heilman et al., 2012, 1984; Milner and 

Mcintosh, 2005; Ramsey et al., 2016; Robertson and Halligan, 1999).  

Since the FEF plays a role in both covert shifts of visual attention and overt shifts of 

gaze, reduced saccade selection of a contralesional visual target after FEF lesions may 

have been due slower reaction times rather than impaired allocation of attention towards 

the contralesional hemifield. In Chapter 2, we showed that the spatially lateralized 

deficits in saccade target selection at the chronic stage were not explained by the mean or 

distribution of saccadic reaction times towards the contralesional hemifield. Schiller and 

Chou (2000) similarly reported that the degree of contralesional saccade choice deficits 

on the paired free-choice task were much larger than could be accounted for by 

differences between the mean left and right reaction times to single targets (Schiller and 

Chou, 2000). However, since the mean reaction time does not capture all of the 
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information present in reaction time distribution data (Ratcliff, 1979), we extended the 

work of Schiller and Chou (2000) by showing that reaction time distributions also could 

not predict free-choice task performance on a linear race model. In addition, we showed 

that reaction times on the paired target trials also did not account for the magnitude of the 

saccade choice bias. Overall, our results indicate that decreased saccade selection of 

contralesional targets after a caudal PFC lesion is not simply the result of impaired 

oculomotor programming but also reflects deficits in allocating attention toward the 

contralesional hemifield especially when bilateral stimuli compete for attention.  

This dissociation between attentional and oculomotor impairment appears in contrast to 

Rizzolatti’s premotor theory of attention, which proposes that covert shifts of attention 

arise from the same preparatory neural signals for generating saccades (Rizzolatti et al., 

1987). If attentional selection relied on the same neural activity that coded for planning a 

saccade to that location, then we would have expected to see decreased contralesional 

saccade choice co-occur with impairments in saccade metrics in both severity and time 

course of recovery. Although visuospatial attention and oculomotor commands are 

closely linked in the FEF (Moore and Armstrong, 2003; Moore and Fallah, 2004), our 

results indicate that these two processes can diverge with contralesional selection deficits 

upon attentional competition potentially outlasting oculomotor impairment. Our findings 

are in line with electrophysiological and microstimulation studies which also challenge 

the premotor theory of attention by showing distinct neuronal populations in the FEF that 

signal the spatial locations which correspond to the locus of visual attention in the 

absence of overt eye movements (Juan et al., 2004; Sato and Schall, 2003; Thompson et 

al., 2005). The results from Chapter 2 show that in the early post-lesion stage, decreased 

selection of contralesional visual stimuli is coupled with slower saccadic reaction times to 

the contralesional hemifield. However, in the late post-lesion time points, we showed that 
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there was no delay in the onset of a saccade towards its selected target but that the target 

selection process was still affected when two bilateral stimuli competed for attention, 

with a lasting contralesional selection deficit.  

One possibility is that this lasting selection bias was due to learned strategies throughout 

behavioural training. Since reward delivery on the free-choice task was not dependent on 

selecting the first-appearing target (i.e., monkeys could freely choose either stimulus as a 

saccade target), monkeys were always rewarded for selecting the ipsilesional stimulus on 

all free-choice paired stimulus trials, even if the contralesional stimulus appeared first. In 

the early days to weeks following the lesion, monkeys were severely impaired in 

detecting the contralesional stimulus and would instead select the ipsilesional stimulus at 

higher proportions. This in turn could have resulted in an incorrect assumption that 

reward delivery was contingent on selecting the ipsilesional stimulus or a learned 

behavioural strategy to always direct a saccade to the ipsilesional stimulus. However, the 

inclusion of single target ‘catch’ trials in an equal proportion to the free-choice paired 

stimulus trials in the task would have trained the monkeys to saccade towards the first 

stimulus that captures its attention since any given trial could have been a single target 

trial. Yet this alternative explanation is still possible since the strongest lasting selection 

bias was seen on the trials when both stimuli appeared simultaneously; the learned 

strategy could have been to select the ipsilesional stimulus when in doubt of which 

selection would deliver a reward.  

5.1.2. Functional and structural alterations differ based on lesion size  

We found that recovery of saccade target selection after smaller PFC lesions occurred in 

parallel with a normalization of network-wide functional connectivity towards pre-lesion 

baseline, whereas recovery after larger lesions occurred alongside increasing network-
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wide functional connectivity. This lesion size-dependent pattern of functional 

reorganization is in line with previous studies of motor recovery in rodent models of 

stroke showing greater compensatory recruitment of distant brain areas after larger 

lesions to the premotor or primary motor cortex (Biernaskie et al., 2005; Frost, 2003; 

Touvykine et al., 2016). Moreover, when Biernaskie at al. (2005) temporarily inactivated 

the contralesional motor cortex in recovered rats with small or large motor cortex lesions, 

only those with large lesions showed a return of the initial motor deficits (Biernaskie et 

al., 2005). This suggested that motor recovery after smaller lesions did not rely on 

compensatory recruitment of distant/intact areas of the network to the same extent as 

recovery from large lesions.  

Theoretical accounts have been proposed to explain the mechanisms underlying the 

effects of lesion size on neural plasticity during recovery of function. It has been 

suggested that functional recovery following small/incomplete lesions likely involves 

spared representations in adjacent perilesional cortex or transient recruitment of remote 

ipsilesional areas with similar function and connectivity as the lesion site (Biernaskie et 

al., 2005; Brown et al., 2009; Grafman, 2000; Nudo et al., 1996; Plow et al., 2015). 

Instead, larger lesions may completely impair functions normally carried out by the 

lesioned tissue and recovery of function may then depend on recruitment of bilateral 

areas distant to the lesion (Grafman, 2000; Liu and Rouiller, 1999; Plautz et al., 2003; 

Zeiler et al., 2013). Grafman (2000) proposed a conceptual framework for functional 

neuroplasticity to explain this divergent phenomenon in terms of the success of 

hemispheric transfer of function, such that larger lesions result in better transfer of 

function. Based on empirical studies, Grafman suggests that homologous areas in 

opposite hemispheres (e.g., area A and B) have a primary and secondary functional role, 

where the secondary function of area A is normally inhibited by its contralateral homolog 



 

 

 

275 

(area B) whose primary function is the normally dormant, secondary function of area A. 

The author then suggests that large/complete lesions of area B result in a complete 

transfer of function to area A in the contralateral hemisphere due to disinhibition. 

However, after a smaller lesion to area B, intact areas in the lesioned hemisphere may 

continue to inhibit area A and block the complete transfer of function.  

Microstructural changes in frontoparietal white matter pathways also differed by lesion 

size. The major finding in Chapter 3 was that remote fiber tracts, namely the 

contralesional SLF and transcallosal PPC-PPC tracts, showed increased FA when 

behaviour had recovered after a small lesion, but that FA in those tracts had decreased 

after larger lesions compared to pre-lesion baseline. This result may be explained by 

potentially divergent patterns of structural plasticity that take place following lesions with 

differing extent of damage.Focal lesions disinhibit connected areas and may lead to large-

scale depolarization of widespread, functionally related networks (Buchkremer-Ratzmann 

and Witte, 1997; Fornito et al., 2015; Liepert et al., 2000). In the case of small lesions, 

this hyperexcitability may induce adaptive structural plasticity in the form of axonal and 

dendritic growth of remote fibers, myelin remodeling, and synaptogenesis (Carmichael 

and Chesselet, 2002; Fornito et al., 2015; Gonzalez and Kolb, 2003; Jones and Schallert, 

1992; Lin et al., 2015), which have been associated with improved motor function in a 

rodent model of stroke (Reitmeir et al., 2011). Since measures of FA from diffusion-

weighted MRI are assumed to reflect axonal density and myelination (Beaulieu, 2002; 

Sotak, 2002), our finding that FA increased in the remote fiber tracts at the time of 

recovered behaviour after small lesions suggests that axonal sprouting in remote 

frontoparietal areas may reflect neural compensation. On the other hand, larger lesions 

with more widespread disinhibition may lead to excitotoxicity and excessive metabolic 

stress from persistent hyperactivation and likely result in increased degeneration of 
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remote white matter (Buchkremer-Ratzmann and Witte, 1997; de Haan et al., 2012; 

Fornito et al., 2015; Ross and Ebner, 1990; Saxena and Caroni, 2011). Differences in the 

extent of disinhibition and potential downstream excitotoxicity depending on lesion size 

may account for our finding that the FA in remote fiber tracts increased during recovery 

from small lesions, but that FA decreased after larger lesions.  

One might wonder how decreased FA (i.e., ‘structural integrity’) of white matter 

pathways connecting frontoparietal areas in monkeys with large lesions appear in parallel 

with behavioural recovery and increased network functional connectivity. It is possible 

that behavioural compensation after larger PFC lesions may not be mediated by cortical 

frontoparietal connections, but instead may depend on a functionally-related third 

region/network (Damoiseaux and Greicius, 2009). Thalamic input to the frontoparietal 

network is one candidate source of compensatory signals relayed from subcortical areas. 

The superior colliculus sends indirect projections to the FEF in the caudal PFC via the 

mediodorsal nucleus of the thalamus (Barbas and Mesulam, 1981; Goldman-Rakic and 

Porrino, 1985; Kievit and Kuypers, 1977; Sommer and Wurtz, 2004) and to area LIP in 

the PPC via the lateral pulvinar (Asanuma et al., 1985; Baizer et al., 1993; Selemon and 

Goldman-Rakic, 1988). Moreover, these thalamic nuclei have been shown to play a role 

in visuospatial attention (Petersen et al., 1987; Schall, 2002; Sommer and Wurtz, 2004), 

which supports a potential role in the recovery of saccade target selection. In line with 

this possibility, studies have shown that thalamic input to distinct cortical areas can 

regulate the neural synchrony and functional connectivity between those cortical regions 

(Nakajima and Halassa, 2017; Saalmann et al., 2012). Additionally, following extensive 

unilateral lesions in the macaque corticospinal tract, Zaaimi et al. (2012) showed that 

subcortical fiber tracts, but not the contralesional corticospinal tract, contributed to the 

recovery of motor function (Zaaimi et al., 2012). Future studies may consider testing the 
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role of thalamo-cortical connections in the recovery of function after large PFC lesions 

using neuroimaging techniques or inactivation methods. 

It is important to note that we did not determine causality between the changes in 

network-wide functional/structural connectivity and behavioural performance. Thus, it is 

possible that the evolving pattern of functional reorganization and the diverging structural 

changes are an epiphenomenon of the lesion size alone and potentially unrelated to 

behavioural compensation. Instead, as I will discuss further in Section 5.1.3., increasing 

functional connectivity between contralesional DLPFC and ipsilesional PPC correlated 

with improved post-lesion behaviour in all monkeys and thus may have played a more 

important role in the recovery of function. 

5.1.3. Functional role of the contralesional hemisphere in the recovery of 

lateralized target selection deficits 

The results of this thesis contribute to the discussion of whether contralesional 

hemisphere involvement is beneficial or maladaptive to the recovery of function 

(Bütefisch et al., 2005; Ramsey et al., 2016; Rehme and Grefkes, 2013; Umarova et al., 

2011; Wilke et al., 2012). Our findings support the idea that involvement of intact areas 

in both contralesional and ipsilesional frontoparietal networks are beneficial for post-

lesion recovery. Across the four monkeys, we found that (1) contralesional DLPFC 

became functionally correlated with more areas of the frontoparietal network over the 

course of behavioural recovery and (2) that behavioural improvements were correlated 

with increasing functional connectivity between contralesional DLPFC and ipsilesional 

PPC (specifically, area PE in the superior parietal lobule). 
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The prominent functional involvement of the contralesional DLPFC instead of FEF was 

initially surprising given that the FEF is a major functional hub of the frontoparietal 

network (Vincent et al., 2007; Hutchison et al., 2011; Babapoor-Farrokhran et al., 2013) 

and we thus expected it to show a greater compensatory response. Although the DLPFC 

shares extensive structural connectivity with many frontoparietal areas (Miller and 

Cohen, 2001), functional connectivity between DLPFC- frontoparietal network is 

normally weaker than FEF-frontoparietal functional connectivity (Hutchison et al., 2012; 

Koval et al., 2014). In light of these differences, we speculate that since the FEF may 

already be optimally functionally correlated with the frontoparietal network, the 

functional connections between DLPFC and other frontoparietal areas have more 

dormant capacity for optimization to better exert compensatory changes in a lesioned 

animal model.  

As reviewed in Chapter 1, the role of the undamaged contralesional hemisphere in the 

recovery of function has been considered detrimental to recovery by some (Kinsbourne, 

1987; Ward et al., 2007), mostly in the motor domain, or instead has been shown to be 

related with improved visuospatial function (Thimm et al., 2008; Umarova et al., 2017, 

2016, 2011; Wilke et al., 2012). The findings from Chapters 3 and 4 in this thesis 

contribute supporting evidence that involvement of the contralesional hemisphere is 

associated with behavioural recovery and thus may be valuable for post-lesion 

compensatory mechanisms.   

5.2. Caveats and Limitations 

Although macaque monkeys are advantageous over rodents for this research project due 

to a greater degree of similarity with humans in terms of their prefrontal cortex, eye 
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movements, and resting-state networks (Bell, Everling, & Munoz, 2000; Hutchison & 

Everling, 2012; Sallet et al., 2013), this animal model comes with its own limitations. For 

one, monkeys are a more costly lab animal, both financially and in terms of time spent, as 

it can take several months to a year to train naïve monkeys on behavioural tasks. Since 

this was a terminal study, we used a smaller sample size than what is traditionally used in 

rodent studies which prevented us from performing statistical analyses between subject 

groups (small vs large lesion). Although within-subject comparisons of brain and 

behaviour between pre- and post-lesion may be a more powerful approach than averaging 

out changes by group comparisons, having an additional control group with sham lesions 

would have been ideal for drawing more conclusive interpretation of results.  

Although we aimed to induce saccadic behaviour that resembled visual neglect and 

extinction, there exist several key differences between this macaque model of focal 

cerebral ischemia and the clinical disorder of neglect/extinction commonly seen in stroke 

patients. As discussed in Chapter 1, ischemic stroke usually causes extensive and 

widespread brain damage such that patients presenting with neglect will typically also 

suffer from a variety of neurological impairment. This greater degree of brain damage 

and impairment in patient groups would no doubt result in differences in the patterns and 

time course of functional and structural network reorganization and their relation to 

recovery of function. In light of this, it may then be advantageous that animal models 

focus investigations on a single deficit and its recovery for targeted therapies. Second, the 

etiology of ischemic stroke in humans (e.g., atherosclerosis) may differentially affect the 

brain’s ability to repair itself and compensate for lost function compared to models of 

experimentally induced ischemia. Lastly, the syndromes of neglect and extinction in 

patients are complex and often involve several different components which no doubt 

would have an impact on the function and structure of brain networks. Thus, while this 
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work may be limited in its direct clinical application, using a model of neglect and 

extinction was primarily of interest because it is invaluable in the study of brain 

reorganization in visuospatial attention networks.  

A caveat of our behavioural assessment is that we may have missed other aspects of 

attentional or motor impairment by only testing performance on an oculomotor task. For 

instance, our paradigm measured overt shifts of attention by saccadic eye movements 

which overlooks deficits of covert visuospatial attention. Another possibility is that other 

measures of oculomotor performance (e.g., antisaccades, memory-guided saccades, 

visual search) may have offered better indices of impairment and recovery that correlated 

more consistently with functional/structural imaging across monkeys. Nevertheless, we 

opted to measure the visuospatial bias only on a free-choice saccade task for several 

reasons: (1) earlier work has shown substantial spatially lateralized deficits of saccade 

target selection on free-choice tasks after FEF lesions or DLPFC inactivation (Johnston et 

al., 2014; Koval et al., 2014; Schiller and Chou, 1998); (2) as mentioned earlier, it can 

take months to a years to train naïve monkeys on more difficult tasks and we did not want 

to risk training monkeys on difficult tasks that they likely would be unable to perform 

after the lesion; and (3) attempting to collect data from several tasks post-lesion would 

result in a less data points on each task and limit interpretation of behavioural findings.  

While resting-state fMRI and diffusion-weighted MRI are valuable and non-invasive 

techniques that offer insight into whole-brain function and structure, these imaging 

approaches still have some shortcomings. Perhaps the most obvious is the lack of direct 

measures of neural activity or axon tract density and myelination. However, simultaneous 

fMRI and electrophysiological studies show that the BOLD signal is correlated with local 

field potentials (Logothetis, 2008, 2003; Logothetis et al., 2001), which reflects a 

component of neural activity. Diffusion tensor models of diffusion-weighted MRI is a 
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relatively newer approach with less well-defined parameters (Jones et al., 2013; Winston, 

2012). For example, FA is frequently referred to as an index of ‘white matter integrity’, 

yet this is an overgeneralization since FA reflects various features of white matter (e.g., 

axon density and organization, axon diameter, myelination, membrane permeability) 

which limits DTI interpretability (Beaulieu, 2002; Jones et al., 2013).  

Lastly, another potential limitation is that our imaging reports did not include subcortical 

areas, most importantly the superior colliculus which has been shown to play a role in 

saccade target selection (McPeek and Keller, 2004) and covert visuospatial attention 

(Krauzlis et al., 2013; Müller et al., 2005). BOLD signal in the superior colliculus is 

difficult to resolve due to its small size and location near major arteries and cerebrospinal 

fluid-filled spaces which confound its signal with physiological noise (Brooks et al., 

2013; Linzenbold et al., 2011). While ultra-high field MR scanners (e.g., at 7-Tesla) offer 

higher spatial resolution necessary for imaging small structures, physiological noise 

increases with the square of the field strength which can drastically reduce signal-to-

noise, especially in brainstem areas already affected by physiological noise (Parrish et al., 

2000). Examination of the BOLD signal in the superior colliculus in our resting-state 

fMRI data set showed that the signal was indeed highly dominated by physiological noise 

(Beall and Lowe, 2007; Griffanti et al., 2017), and thus we opted to exclude further 

investigation.  

5.3. Future directions 

In addition to the improving on the limitations discussed above, there are many 

interesting avenues for future research that stem from this work. First, it will be important 

that future work determines the role of the DLPFC in the recovery of a saccade choice 
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bias after a PFC lesion in the opposite hemisphere. Reversible inactivation of the 

contralesional DLPFC using cooling loops or muscimol after behavioural recovery is 

complete may reveal a reinstatement of the initial visuospatial bias if that region is 

critically involved in the neural compensation. It would also be interesting to record the 

neural activity in possible compensatory areas to examine whether neurons in the 

contralesional hemisphere show greater ipsilaterally-tuned spatial representations over 

time to support recovery. Ipsilesional PPC and superior colliculus are also other areas of 

interest for inactivation and electrophysiological investigations. In addition, 

microstimulation of contralesional frontoparietal areas in post-lesion recovered monkeys 

and non-lesioned monkeys may provide more direct evidence on the role of 

contralesional activity in the recovery of function.   

While we assume that increased resting-state functional connectivity implies functional 

recruitment of those areas for the recovery of function, this assumption might be 

addressed in future studies. Longitudinal task-based fMRI could expand on our results 

and test whether improved performance on the free-choice task after large PFC lesions is 

associated with greater task-related BOLD activation than after smaller lesions.   

Finally, it is important to consider that the results in this thesis are based on data from 

male macaque monkeys. Murphy et al. (2008) found differences in the degree of 

variability of ischemic lesions between male and female rhesus macaques after occlusion 

of the middle cerebral artery (Murphy et al., 2008). While stroke incidence in women is 

lower than in men, this difference disappears with menopause which suggests a potential 

protective role for estrogen (Murphy et al., 2004). However, stroke in women is more 

severe and fatal than in men (Appelros et al., 2009). These sex differences in stroke 

severity and recovery are not well understood and warrant further research using male 

and female nonhuman primate models of stroke. 
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5.4. Concluding Remarks 

Recovery after brain damage highlights the remarkable ability of the brain to repair itself 

and optimize functional and structural networks to compensate for lost function. The 

work in this thesis contributes to the research efforts aimed at uncovering the 

mechanisms underlying brain reorganization and recovery of function, specifically in the 

visuospatial attention domain. We described the target selection biases following 

prefrontal cortex lesions in a macaque model of focal cerebral ischemia and characterized 

the recovery of oculomotor and choice behaviour over time, establishing the contribution 

of attentional deficits in the model. The broad implication of this research is that 

involvement of both the contralesional and ipsilesional frontoparietal networks is 

associated with the recovery of contralesional target selection. Importantly, our findings 

provide evidence for greater functional recruitment of bilateral hemispheres during 

behavioural recovery after large lesions, whereas improved behaviour after smaller 

lesions was optimally supported by a normalization of the functional network 

connectivity. Differences in the structural alterations are also noteworthy; while the 

contralesional superior longitudinal fasciculus and transcallosal PPC tracts show adaptive 

changes in fractional anisotropy after recovery from small lesions, this potential 

compensatory response was not found after recovery from larger lesions. This research 

highlights the differences in the spatiotemporal patterns of post-stroke recovery based on 

the extent and location of brain damage. Looking forward, my hope is that future 

investigators will gain an understanding of the principles that guide altered patterns of 

brain reorganization following brain damage to then improve treatment and rehabilitation 

outcomes for patients living with the long-term effects of attentional impairment.  
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