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Figure 2.S6. The LATER model and longitudinal reciprobit plots of contralesional 

reaction time distributions.  

(A) A schematic of the LATER model. A decision signal S rises linearly in response to a 

stimulus, at an accumulation rate r that has a variance �1 with a Gaussian distribution, 

until it reaches a threshold (ST) at which point a response is finally initiated. The 

cumulative reaction times distribution can then be plotted on a probit scale (y-axis) with 

reciprocal reaction times (x-axis) resulting in a reciprobit plot where distributions become 

straight lines (bottom). (B) Predictions of the LATER model. Top, a change in the 

accumulation rate of the model appears as a parallel shift in the line representing the 

reaction time distribution. Middle, a change in the threshold level would appear such that 

the line swivels about the infinite-time intercept. Bottom, a change in the variability of 

the accumulation rate appears such that the line rotates about the median. (C) 

Longitudinal reciprobit plots of contralesional reaction time distributions. Contralesional 

saccadic reaction time data was obtained from the single stimulus trials. All monkeys 

show post-lesion changes in the reciprobit plots that are consistent with increased 

accumulation rate variability; “rotation”. 
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Figure 2.S7. Data points for the reciprobit plots of the contralesional reaction time 

distributions for Monkey L.  

The y-axis represents the cumulative probability (%) on a probit scale and the x-axis 

represents the contralesional saccadic reaction time. 
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Figure 2.S8. Data points for the reciprobit plots of the contralesional reaction time 

distributions for Monkey S.  

The y-axis represents the cumulative probability (%) on a probit scale and the x-axis 

represents the contralesional saccadic reaction time. 
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Figure 2.S9. Data points for the reciprobit plots of the contralesional reaction time 

distributions for Monkey B.  

The y-axis represents the cumulative probability (%) on a probit scale and the x-axis 

represents the contralesional saccadic reaction time. 
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Figure 2.S10. Data points for the reciprobit plots of the contralesional reaction time 

distributions for Monkey F.  

The y-axis represents the cumulative probability (%) on a probit scale and the x-axis 

represents the contralesional saccadic reaction time. 
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CHAPTER 3 

3. Functional reorganization during the recovery of 

contralesional target selection deficits after prefrontal 

cortex lesions in macaque monkeys  

3.1. Introduction 

Unilateral brain damage commonly results in a phenomenon referred to as ‘visual 

extinction’ which reflects an ipsilesional visuospatial bias in selective attention. Visual 

extinction has been characterized by the failure to respond to a stimulus in the 

contralesional hemifield when it is presented simultaneously with an ipsilesional stimulus 

(Bisiach, 1991; Corbetta and Shulman, 2011; Di Pellegrino et al., 1997). Unlike visual 

neglect, patients with extinction can still detect a single stimulus presented alone in either 

hemifield (de Haan et al., 2012). In humans, extinction is typically seen following right 

hemisphere lesions in the posterior parietal cortex (PPC), most commonly in the 

temporoparietal junction (de Haan et al., 2012; Di Pellegrino et al., 1997; Rorden et al., 

2009, 1997). Extinction-like deficits have also been observed in neurologically-normal 

humans following transcranial magnetic stimulation over the PPC (Fierro et al., 2000; 

Meister et al., 2006) and in macaque monkeys following permanent lesions or reversible 

deactivation of the PPC (Wardak et al., 2002; Schiller and Tehovnik, 2003; Lynch and 

Mclaren, 1989). Although impairments in contralesional attention are most often 

associated with damage to the PPC, it has also been observed following damage to the 

prefrontal cortex (PFC) in humans (Damasio et al., 1980; Husain and Kennard, 1996; 

Mesulam, 1999) and macaque monkeys (Bianchi, 1895; Deuel and Collins, 1984; Deuel 
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and Farrar, 1993; Eidelberg and Schwartz, 1971; Ferrier, 1886; Jacobsen and Nissen, 

1937; Johnston et al., 2016; Kennard and Ectors, 1938; Latto and Cowey, 1971b, 1971a; 

Schiller and Chou, 1998; Welch and Stuteville, 1958). Thus, it has been suggested that 

disruptions of visuospatial attention are better accounted for by damage to a distributed 

frontoparietal network that mediates attention, rather than from damage to a single brain 

area (Corbetta and Shulman, 2011, 2002; Mesulam, 1981).  

Two core regions of the macaque caudal PFC comprise the anterior portion of the 

frontoparietal network, namely the frontal eye field (FEF; area 8A) and dorsolateral PFC 

(area 9/46D) which are both strongly implicated in visual target selection and attentional 

control (Hutchison et al., 2012; Womelsdorf and Everling, 2015). The FEF is located in 

the anterior bank of the arcuate sulcus and the dorsolateral PFC is located in the caudal 

portion of the dorsal bank of the principal sulcus, just anterior to the FEF. Both regions 

share extensive reciprocal connections with each other and with other cortical oculomotor 

structures, including the lateral intraparietal area (LIP), other higher order visual areas, 

and the contralateral PFC (Barbas et al., 2005; Barbas and Mesulam, 1985; Borra et al., 

2019; Kunzle and Akert, 1977; Maioli et al., 1983; Petrides and Pandya, 1999, 1984; 

Stanton et al., 1993). The FEF and dorsolateral PFC send projections to subcortical 

oculomotor areas, including the superior colliculus (Fries, 1984; Goldman and Nauta, 

1976; Stanton et al., 1988a), caudate and putamen (Stanton et al., 1988b; Yeterian and 

Pandya, 1991), and pontine nuclei (Kunzle and Akert, 1977; Schmahmann and Pandya, 

1997; Stanton et al., 1988b), and in turn receive subcortical input via the mediodorsal 

thalamus (Goldman-Rakic and Porrino, 1985; Tian and Lynch, 1997). Previous work has 

shown that caudal PFC lesions in monkeys results in impaired contralesional target 

selection that resembles visual extinction in humans (Johnston et al., 2016; Schiller and 

Chou, 1998). 
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Saccade target selection has been investigated using double stimulation oculomotor 

paradigms (e.g., temporal order-judgement (TOJ) and free-choice saccade tasks) in which 

two peripheral visual stimuli are presented in rapid succession in either hemifield with a 

variable temporal delay between stimulus onsets (stimulus onset asynchrony, SOA) and a 

randomized order of side of the first-presented stimulus. In the TOJ task, monkeys are 

rewarded for correctly selecting the first-appearing stimulus (Kubanek et al., 2015; Port 

and Wurtz, 2009), whereas on the free-choice task, selection of either stimulus is 

rewarded in order to measure the naturally-occurring visuospatial bias (Johnston et al., 

2016; Schiller and Chou, 1998; Wardak et al., 2002). In permanently lesioned monkeys, 

requiring the selection of the first-appearing stimulus in order to receive a reward (i.e., on 

the TOJ task) might be too difficult and may reduce the number of completed trials. The 

free-choice task has been used to measure visuospatial target selection biases in monkeys 

after reversible inactivation (Johnston et al., 2016; Wardak et al., 2002; Wilke et al., 

2012) and after permanent lesions where the gradual behavioural recovery has been 

reported (Adam et al., 2019; Schiller and Chou, 1998). Schiller and Chou (1998) 

permanently lesioned the left FEF in monkeys and reported an ipsilesional bias on the 

free-choice task, with gradual improvements in target selection of the contralesional 

stimulus over the following months (Schiller and Chou, 2000, 1998). We have also 

previously reported on the behavioural recovery of contralesional attention deficits over 

2-4 months post-lesion in the monkeys described in the present study (Adam et al., 2019).  

The compensatory neural processes underlying post-lesion behavioural recovery are 

poorly understood. Although structural damage from a stroke or lesion may be focal, 

functional disruptions to distant and intact areas that are functionally connected to the 

lesion site have been reported and shown to correlate with behavioural recovery (Carter 

et al., 2012; He et al., 2007). Therefore, studying the effects of a cortical lesion on a 
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widespread functional network, rather than on local structures alone, may provide a more 

comprehensive understanding of the recovery process following brain damage. Resting-

state fMRI (rsfMRI) has emerged as a powerful method to study functional brain 

networks using measures of functional connectivity (FC). One of the major advantages of 

rsfMRI over task-based fMRI is that it measures the blood-oxygen level-dependent 

(BOLD) signal at rest, which makes it possible to collect data from subjects who are 

severely impaired following brain damage without requiring them to perform complex 

tasks in the scanner. RsfMRI also avoids potential confounds of FC between subjects 

whose task performance may rely on different means of behavioural compensation. 

Previous studies in stroke patients and animal models of stroke have shown a link 

between recovery of behavioural deficits and changes in FC (Ainsworth et al., 2018; 

Carter et al., 2010; Grefkes and Fink, 2011; He et al., 2007; van Meer et al., 2010; 

Westlake and Nagarajan, 2011).  

Here, we used rsfMRI to investigate longitudinal changes in FC of the frontoparietal 

network during the recovery of contralesional target selection deficits after unilateral 

caudal PFC lesions in macaque monkeys. Macaque monkeys share similar oculomotor 

behaviour, cortical organization, and resting-state functional networks with humans 

(Wurtz and Goldberg, 1989; Petrides and Pandya, 1999; Hutchison et al., 2011; 

Hutchison and Everling, 2012; Sallet et al., 2013), which uniquely positions them as a 

valuable animal model in the study of post-lesion functional brain reorganization. The 

use of an animal model of focal cerebral ischemia was beneficial since it allowed us to 

collect pre-lesion baseline behavioural and imaging data and study the effects of location-

specific lesions. We injected the vasoconstrictor endothelin-1 (ET-1) in the right caudal 

PFC to create a well-controlled and clinically-relevant model of focal cerebral ischemia, 

compared to traditional aspiration or clipping methods. ET-1 induces focal occlusion with 
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subsequent reperfusion and has recently been validated in marmosets and macaque 

monkeys (Dai et al., 2017; Herbert et al., 2015; Murata and Higo, 2016; Teo and Bourne, 

2014). We measured behavioural performance on a free-choice saccade task and have 

previously reported the recovery of deficits in contralesional target selection over 2-4 

months after PFC lesions (Adam et al., 2019). Functional imaging data was collected 

using rsfMRI at 7-Tesla (7T) prior to the lesion and at weeks 1-16 following the lesion 

during behavioural recovery. Since the frontoparietal network plays an important role in 

mediating visuospatial attention (Corbetta and Shulman, 2011, 2002; Mesulam, 1981) 

and the areas of the caudal PFC form the core anterior portion of the frontoparietal 

network (Hutchison et al., 2011; Babapoor-Farrokhran et al., 2013), we hypothesized that 

a caudal PFC lesion would alter the frontoparietal network FC and that these changes in 

FC might be associated with the behavioural recovery of deficits in contralesional target 

selection. 

3.2. Methods 

3.2.1. Subjects 

Data were collected from four adult male macaque monkeys (Macaca mulatta) aged 5 to 

7 years old and weighing 7 to 10 kg. Animals are individually described as Monkey L, 

Monkey S, Monkey B, and Monkey F and are ordered from smallest to largest lesion 

size, as described in Section 3.1. All surgical and experimental procedures were carried 

out in accordance with the Canadian Council of Animal Care policy on the use of 

laboratory monkeys and approved by the Animal Care Committee of the University of 

Western Ontario Council. A custom-built acrylic head post was fixed to the skull using 

dental acrylic and 6-mm ceramic bone screws (Thomas Recording, Giessen, Germany) as 
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previously described (Johnston and Everling, 2006). We opted for an acrylic head post to 

minimize signal drop out. A head post was necessary to restrain the head for eye-tracking 

during training on the oculomotor task. Animals received postoperative analgesics and 

antibiotics and were monitored by a university veterinarian. 

3.2.2. Experimental focal ischemic lesions  

Monkeys were initially sedated with 15.0 mg/kg ketamine (Vetalar 100 mg/ml), followed 

by intravenous administration of 2.5 mg/kg propofol (10 mg/ml) via the saphenous vein. 

Animals were then intubated with an endotracheal tube and anaesthesia was maintained 

with 1-2% isoflurane mixed with oxygen (1 L/min) and continuous rate infusion of 

propofol (2.5 mg/ml) in saline. The animal’s head was held in position using a stereotaxic 

frame with ear and eye bars (Model 1404 Stereotaxic Instrument, Kopf Instruments, CA, 

USA). A craniotomy was made above the right arcuate sulcus and caudal portion of the 

right principal sulcus using coordinates derived from each animal’s anatomical MRI. The 

dura was then removed to confirm the location of the arcuate and principal sulci by visual 

inspection. A 10 μl-capacity syringe (26 gauge) was held in position with a 

microinjection unit (Model 5000 Microinjection Unit, Kopf Instruments, CA, USA) that 

was mounted to a stereotaxic frame assembly and filled with ET-1 (E7764, Sigma-

Aldrich).  

We experimentally induced a small lesion in Monkeys L and S and a larger lesion in 

Monkeys B and F by varying the number of injections and concentration of ET-1. Each 

injection contained 2 μl of ET-1 and was injected at a flow rate of 0.75 μl/min. Monkey L 

received a total of six injections of ET-1 (0.5 μg/μl) in the anterior bank of the right 

arcuate sulcus at three injection sites separated by 2 mm along the mediolateral axis and 

at two depths at each site along the dorsoventral axis at 2 mm and 4 mm below dura. 
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Monkey S received a total of 12 injections of ET-1 (0.5 μg/μl) with six in the anterior 

bank of the right arcuate sulcus (as described for Monkey L) and an additional six in the 

caudal portion of the right principal sulcus at three injection sites separated by 2 mm 

along the rostrocaudal axis and at two depths at each site along the dorsoventral axis at 2 

mm and 4 mm below dura. Monkey B received a total of 16 injections of ET-1 (0.5 

μg/μl), with eight in the anterior bank of the right arcuate sulcus (as described for 

Monkey L) and eight in the caudal portion of the right principal sulcus (as described for 

Monkey S). Monkey F received a total of 16 injections of ET-1 (1.0 μg/μl), with eight in 

the anterior bank of the right arcuate sulcus (as described for Monkey L) and eight in the 

caudal portion of the right principal sulcus (as described for Monkey S). Following the 

last needle retraction, the dura flap was put back in place and the skull trephination was 

covered with medical grade silicon and left undisturbed to dry before the area was sealed 

by application of dental acrylic. More details on the lesion induction methods have been 

previously described (Adam et al., 2019). 

3.2.3. Behavioural task 

Prior to the induction of an experimental lesion, monkeys were trained to perform the 

free-choice saccade task (see Fig. 3.3A), as previously described (Adam et al., 2019; 

Johnston et al., 2016; Schiller and Chou, 1998). Each trial began with the presentation of 

a central fixation point (white-filled circle, 0.3°) against a black background on the 

display monitor. Monkeys were required to maintain fixation for a duration that varied 

between 500 to 1000 ms. Two peripheral visual stimuli (white-filled circles, 0.5°) were 

then presented in the left and right hemifields at an equal eccentricity of 10° and with a 

variable stimulus onset asynchrony (SOA) between the presentation of both stimuli. For 

example, in some trials the left (or right) target was presented at an SOA that varied 
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between 32-256 ms before the right (or left) target or both stimuli were presented 

simultaneously (SOA = 0 ms). Monkeys were required to direct a single saccade towards 

either stimulus and received a liquid reward for either choice. The behavioural paradigm 

also included single stimulus trials to measure the degree of neglect-like impairment. We 

randomly interleaved an equal proportion of single stimulus trials with the free-choice 

double stimulus trials. The single stimulus trials involved the presentation of either a left 

or right target following fixation and the monkey simply had to direct a saccade to that 

single target to receive a liquid reward.  

The behavioural paradigm and reward delivery were controlled with the CORTEX 

behavioural control system (National Institute of Mental Health, Bethesda, MD). Stimuli 

were presented on a CRT monitor (refresh rate = 60 Hz) centered in front of the monkey. 

Eye movements were recorded at 1000 Hz using an infrared video eye tracker (Eyelink 

1000, SR Research, ON, Canada). Monkeys performed this task for about an hour daily. 

We have previously published a detailed report of the behavioural paradigm and task 

performance (Adam et al., 2019). 

3.2.4. Behavioural data analysis  

Analyses were performed using custom-designed software written in MATLAB 

(Mathworks, Natick, MA). Saccade onset was defined as the time at which eye velocity 

exceeded 30°/s following stimulus onset, while saccade end was defined as the time at 

which eye velocity then fell below 30°/s (Johnston et al., 2016). The following trials were 

excluded from further analysis: 1) trials in which the animal blinked around the time of 

stimulus or saccade onset and 2) trials with broken or incorrect fixation. We were 

interested in how a unilateral focal ischemic lesion in the right caudal PFC would affect 

contralesional target selection when competing stimuli were presented in the left and 
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right visual hemifields simultaneously. Behavioural data was grouped into time points 

that aligned with the functional imaging sessions: pre-lesion, and weeks 1-2, 4, 8, and 16 

post-lesion. We assessed the degree of contralesional target selection on the double 

stimulus trials using two behavioural metrics. The first metric was the point of equal 

selection, which was the SOA value at which the probability of choosing the 

contralesional or ipsilesional stimulus was equal; the greater the point of equal selection 

(with a contralesional lead time), the greater the contralesional target selection deficit. 

The second metric was the proportion of contralesional saccade choice, which was the 

number of saccades directed towards the contralesional stimulus during simultaneous 

presentation of both stimuli divided by the total number of saccades made to either 

stimulus. Since extinction deficits are maximal when both stimuli are presented 

simultaneously (Baylis, 2002; Di Pellegrino et al., 1997), we correlated FC with the 

proportion of contralesional saccade choice on trials with an SOA of 0 ms. Performance 

on the single stimulus trials was used to measure neglect-like saccadic behaviour. 

Monkey S was the first subject in the study and we had not yet introduced the single 

stimulus trials at that time, so we used double stimulus trials with the longest SOA (|256| 

ms) as single stimulus trials. The longest SOA values can effectively be used as single 

stimulus trials since these values exceeded the average reaction time of the animal (about 

150-200 ms). Thus, by the time the second stimulus appeared, the animal would 

theoretically have already initiated a saccade to the first appearing stimulus (Adam et al., 

2019; Johnston et al., 2016). We performed one-way analyses of variance (ANOVA) 

with time as a factor (variables: pre-lesion, week 1-2, 4, 8, 16 post-lesion) on these data 

to test for significant differences in performance between pre-lesion and post-lesion time 

points. Significant differences were further investigated using post-hoc Tukey’s Honestly 

Significant Difference (HSD) tests (p < 0.05). All analyses were performed for each 

monkey individually. 
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Pre-lesion baseline behavioural data was collected until task performance was stable 

across sessions for several weeks (i.e., when the point of equal selection was no longer 

significantly different when compared across weeks). After the experimental lesion was 

induced, daily behavioural data collection continued until performance stabilized without 

further improvement (i.e., when the point of equal selection was no longer significantly 

different when compared across weeks). We denoted this final time point as “behavioural 

recovery”, which was week 8 post-lesion for Monkeys L and S (small lesion) and week 

16 post-lesion for Monkeys B and F (large lesion). 

3.2.5. Animal preparation for MR image acquisition 

One hour prior to scanning, monkeys were sedated with intramuscular injections of 0.05 

– 0.2 mg/kg acepromazine (Acevet 25 mg/ml) and 5.0 – 7.5 mg/kg ketamine (Vetalar 100 

mg/ml), followed by intravenous administration of 2.5 mg/kg propofol (10 mg/ml) via the 

saphenous vein. Animals were then intubated with an endotracheal tube and anaesthesia 

was maintained with 1.0 – 1.50% isoflurane mixed with 100% oxygen. Each monkey was 

then placed in a custom-built primate chair with its head restrained to reduce motion and 

then inserted into the magnet bore for image acquisition, at which time the isoflurane 

level was lowered to 1.0%. Animals were spontaneously ventilating throughout the 

duration of image acquisition. Physiological parameters were monitored [rectal 

temperature via a fiber-optic temperature probe (FISO, Quebec City, QC, Canada), 

respiration via bellows (Siemens, Union, NJ), and end-tidal CO2 via a capnometer 

(Covidien-Nellcor, Boulder, CO)]. Body temperature was maintained using thermal 

insulation and a heating disk (Snugglesafe, Littlehampton, West Sussex, UK). Light 

anaesthesia was used because it reduces motion artifacts, physiological stress, and avoids 

the need to train monkeys to undergo MRI scanning. Although isoflurane has vasodilator 
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properties that could affect cerebrovascular activity (Farber et al., 1997), resting-state FC 

and synchronous BOLD fluctuations measured under 1.0 – 1.5% isoflurane have been 

robustly reported in previous studies (Hutchison et al., 2014; Vincent et al., 2007). These 

animal preparation procedures has been previously reported (Hutchison et al., 2011).  

3.2.6. MR image acquisition at 7T 

We acquired rsfMRI data at the following time points: pre-lesion (after behavioural 

training), and at week 1, 4, 8, and 16 post-lesion. Since data collection was ceased for 

Monkeys L and S at the time of behavioural recovery at week 8 post-lesion (see Section 

2.5), only Monkeys B and F had rsfMRI data at week 16 post-lesion. Data were acquired 

on an actively shielded 7T Siemens MAGNETOM Step 2.3 68-cm horizontal bore 

scanner (Erlangen, Germany) operating at a slew rate of 300 mT/m/s. An in-house 

designed and manufactured 8-channel transmit, 24-channel receive primate head 

radiofrequency coil was used for all MR image acquisitions (Gilbert et al., 2016). 

Magnetic field optimization (B0 shimming with shims up to 4th order) was performed 

using an automated 3D mapping procedure over the specific imaging volume of interest. 

For each animal in each session, we acquired four to six 10-minute runs of 600 T2*-

weighted continuous multi-band echo-planar imaging (EPI) functional volumes (TR 

= 1000 ms, TE = 18 ms, flip angle = 40°, slices = 42, matrix size = 96 x 96, field of view 

= 96 x 96 mm, acquisition voxel size = 1 x 1 x 1 mm). EPI functional volumes were 

acquired with GRAPPA at an acceleration factor of 2. Every image was corrected for 

physiological fluctuations using navigator echo correction. A standard T2-weighted turbo 

spin echo anatomical MR image was acquired along the same orientation as the 

functional images (TR = 7500 ms, TE = 90 ms, slices = 42, matrix size = 256 x 256, field 

of view = 128 x 128 mm, acquisition voxel size = 0.5 mm x 0.5 mm x 1 mm). A high-
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resolution T2-weighted turbo spin echo anatomical MR image (TR = 7500 ms, TE 

= 80 ms, slices = 42, matrix size = 320 x 320, field of view = 128 x 128 mm, acquisition 

voxel size = 0.4 mm x 0.4 mm x 1 mm) and a T1-weighted MP2RAGE anatomical image 

(TR = 6500 ms, TE = 3.15 ms, TI1 = 800 ms, TI2 = 2700 ms, field of view 

= 128 x 128 mm, 0.5 mm isotropic resolution) were also acquired along the same 

orientation as the functional images. 

3.2.7. MR image preprocessing 

MR image preprocessing was implemented using the FMRIB Software Library (FSL; 

http://www.fmrib.ox.ac.uk). First, denoising was performed using FSL’s Multivariate 

Exploratory Linear Optimized Decomposition into Independent Components 

(MELODIC), which outputs the functional data as a set of independent components for 

each session (Beckmann and Smith, 2004). Components that were labelled as noise, 

motion, or physiological artefact were removed (Griffanti et al., 2014). Functional data 

was then processed using FSL’s fMRI Expert Analysis Tool (FEAT) that included brain 

extraction (Smith, 2002), MCFLIRT motion correction (6-parameter affine 

transformation) (Jenkinson et al., 2002), spatial smoothing (full-width at half-maximum = 

3 mm), high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting 

with σ = 100 s), and registration (12 DOF linear affine transformation in FLIRT and 

nonlinear registration in FNIRT) to the standard F99 macaque template (Van Essen, 

2004). Temporal signal-to-noise ratio (tSNR) maps were calculated by dividing the mean 

and standard deviation for each resting-state functional run without spatial smoothing or 

registration. Figure 3.1 shows the coronal slices for each time point per monkey. There 

was no signal dropout related to the acrylic head post. 
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Figure 3.1. Temporal SNR maps for each resting-state fMRI session.  

Coronal slices are shown at a level that corresponds to the location of the acrylic head 

post. The colour bar represents tSNR values and the mean tSNR for each time point are 

shown below each slice. Abbreviations: L = left, R = right, tSNR = temporal signal-to-

noise ratio.  
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3.2.8. Lesion volume analysis  

Automated tissue-type segmentation was performed on each animal’s T1-weighted 

MP2RAGE anatomical image acquired one week post-lesion using FMRIB's Automated 

Segmentation Tool (FAST) (Zhang et al., 2001). We opted to use the T1 MP2RAGE 

images because they had higher overall resolution (0.5 mm isotropic) than the T2 images 

(1 mm resolution in the Z-plane), providing increased accuracy when determining the 

extent of the lesion. The T1 MP2RAGE sequence provides a higher tissue contrast 

between gray matter, white matter, and cerebrospinal fluid than traditional T1 MPRAGE 

and T2-weighted images and is thus more superior for tissue segmentation methods 

(Marques et al., 2010). We set the number of classes to be segmented to four: grey 

matter, white matter, cerebrospinal fluid, and lesioned tissue. Segmented masks 

representing lesioned tissue captured areas of hypointensity on the T1-weighted image 

and hyperintensity from the T2-weighted image acquired in the same session. Segmented 

lesion masks were not manually edited. Segmented T1-weighted lesion masks were then 

transformed to the standard F99 space using the transformation matrix from the co-

registered T1-weighted image. Lesion volumes were determined using the lesion masks 

in standard F99 space (0.5 mm isotropic resolution) using the MRIcron Toolbox 

(http://www.cabiatl.com/mricro/mricron/index.html). We projected lesion masks onto the 

macaque F99 template brain using MRIcron and CARET 

(http://www.nitrc.org/projects/caret) and identified lesioned brain areas based on the 

cytoarchitectonic subdivisions from the Paxinos et al. (2000) rhesus monkey brain atlas 

(Paxinos et al., 2000). 
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3.2.9. Resting-state fMRI analysis 

Frontoparietal network construction 

A network is defined as a group of nodes and the edges between each pair of nodes 

(Rubinov and Sporns, 2010). Here, nodes represent brain areas and edges represent the 

statistical correlation in the BOLD time series between each pair of brain regions (i.e., 

FC), where edge weight refers to correlation strength. The primary interest of this study 

was to investigate the longitudinal changes in FC of the frontoparietal network during 

recovery of contralesional target selection deficits. We selected frontoparietal network 

regions-of-interest (ROIs) based on previously identified frontoparietal areas from fMRI 

studies in macaque monkeys (Vincent et al., 2007; Hutchison et al., 2011; Patel et al., 

2015). Hutchison et al. (2011) found a resting-state frontoparietal network using an 

independent component analysis that included bilateral connectivity in the frontal eye 

fields and both banks of the intraparietal sulcus. Vincent et al. (2007) also localized a 

macaque frontoparietal network from a resting-state analysis which included correlations 

in the anterior arcuate sulcus and caudal principal sulcus (caudal PFC), both banks of the 

intraparietal sulcus, and the middle temporal area (MT) and medial superior temporal 

area (MST). Patel et al. (2015) identified the frontoparietal network from the BOLD 

activations during a visual attention task in monkeys, which included the LIP, FEF, and 

dorsolateral PFC. We used the stereotaxic macaque monkey atlas (Saleem and 

Logothetis, 2012) to localize all previously identified frontoparietal areas based on this 

anatomical parcellation. We defined 12 frontoparietal ROIs (see Table 3.1) in the four 

monkeys in our study using those anatomical landmarks and cross-referencing each ROI 

from the atlas with each monkey’s T1 and T2 anatomical MRI. We created spherical 

seeds (radius = 2 mm) for each frontoparietal ROI and additionally created masks within 


