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Abstract 

Fundamental to treatment planning for patients that have suffered myocardial infarction 

are predictive biomarkers and risk factors. Important among these in terms of a patient’s 

treatment plan or prognosis are the contractility of the damaged myofibers, final infarct 

volume, and poor infarct healing rate. Proposed and developed in this thesis are techniques 

to predict these biomarkers and risk factors using cardiac biomechanical modelling. One of 

the developed techniques was a CT compatible shape optimization technique which can 

predict the contraction force of healthy, and stunned myofibers within 6.3% and the 

distribution of potentially necrotic myofibers within 10% accuracy. The second study 

involved development of infarct healing network proposed to reduce the complexity of 

modeling hearts with myocardial infarction while also staging the healing rate and 

measure collagen concentration in the infarct region reasonably accurately. Finally, an 

evaluation of how best to measure cardiac output by indicator dilution theory was 

executed.  

Keywords 

Finite Element Method, Cardiovascular Disease, Cardiac Modelling, Myocardial 

Infarction, Myofibers, Contraction Force, Inverse Problem, Cardiac Output, Indicator 

Dilution 
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Summary for Lay Audience 

When patients suffer a heart attack, it is important to assess the damage as best as possible 

to prepare a treatment plan for the patient. During this damage assessment there are many 

measurements which describe the heart’s function in the current state, however, very 

measurements can predict future heart’s function after recovery.  

This thesis describes development of a technique for patient specific heart models to 

predict how the patient’s heart will function after it has healed from a heart attack. 

Specifically, the techniques are designed to predict the range the heart muscle function and 

its efficiency after healing. This information can be used to predict how much blood the 

heart will be able to pump in a single heartbeat which is an important measurement used to 

monitor heart failure.  

For the above technique to be accurate, it is important that different regions of the heart 

(healthy and injured) are modelled correctly. To this end, we introduced a novel technique 

which requires a very small number of parameters accurately model heart tissue with 

sustained injury from myocardial infarction. This simplified technique can determine the 

healing stage of scar tissue and predict the amount of building blocks (microconstituents) 

of heart tissue in the damaged area. Such information is very useful for diagnosis and it 

can aid in determining an optimal course of treatment.  

The above techniques must be validated in animal studies before use in the clinic. To 

prepare a future study on animal models, we also improved current techniques to predict 

blood flow in the heart using CT which is required for damage assessment and modelling 

validation.  
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Chapter 1  

1 « Introduction » 

Cardiovascular disease (CVD) remains the leading cause of death worldwide (Benjamin, 

2018). In the case were a CVD leads to acute myocardial infarction (AMI), there is 

sparsity in available biomarkers to better personalize patient therapy and recovery post 

revascularization [Chen, 2019]. In this thesis we present two new biomarkers based on 

cardiac biomechanical modelling which can provide predictive and prognostic value to 

the clinic. 

1.1 « Heart Anatomy and Physiology » 

1.1.1 « The Heart » 

The heart is the organ that drives the cardiovascular system which is responsible for 

delivering oxygen and nutrients throughout the entire body (Gray, 2005). Its whole 

structure is shown in Figure 1-1. The heart is divided into four chambers: left atrium 

(LA), right atrium (RA), left ventricle (LV) and right ventricle (RV). Each atrium is 

separated by its respective ventricle by a valve which dictates direction of flow. Each of 

these valves is connected to a set of papillary muscle inside the ventricles which is used 

to prevent back flow during contraction. The role of flow is described in Section 1.1.2. 

There are two other valves separating the ventricles from their respective vasculature 

termed the pulmonary valve for the RV which leads to the lungs, and the aortic valve 

which leads to the aorta and artery vasculature which supplies blood to the rest of the 

body. Lastly, not depicted are the sinoatrial (SA) and atrioventricular (AV) nodes which 

are the electrical trigger for cardiac contraction which sets the whole cycle in motion. 
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Figure 1-1 Heart Anatomy 

1.1.2 « The Cardiac Cycle » 

The cardiac cycle is broadly divided into diastole, and systole, when the left ventricle is 

either relaxed or actively contracting, respectively. Beginning near the end of diastole, 

the cardiac cycle starts by the electrical stimulation of the SA node which triggers the 

muscle in the atriums to contract; this is a gradient contraction as the signal travels 

through the muscle tissue and generates a “top-down” contraction pushing the blood 

from the atriums into the ventricles. This will increase the pressure in the ventricles and 

when atrial contraction is complete, the pressure in the ventricles will push the blood 

towards the atrium. At this time, the directional valves which only allow flow into the 

ventricles will close keeping the blood in the ventricle. The volume of blood in the 

ventricles, and specifically in the LV is called the end diastolic volume (EDV). Next, as 

signalled by the AV node, the ventricles and papillary muscles contract, starting systole. 

This contraction is called isovolumetric because the blood volume in the chamber does 

not change, however, the blood pressure increases rapidly. The role of the papillary 
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muscles in this stage is to keep the two valves leading to the atriums closed to prevent 

back flow. The role of the ventricle muscle is to increase the blood pressure itself.  

Blood ejection occurs when the pressure in each of the respective ventricles overcomes 

the pulmonary and aortic valves previously kept shut by back pressure from the lung 

and aortic vasculature. The blood is then pushed out of the ventricles and into the 

respective veins and arteries. The difference in regions supplied by the blood just 

mentioned explains the geometric different in the right and left ventricles. While the RV 

only supplies blood to the lungs, the left ventricle must supply a pressure differential to 

ensure blood flow in the rest of the body requiring more muscle mass and generated 

pressure.  

The ventricles are then triggered to relax via depolarization which is discussed in 

Section 1.1.3 and the ejection pressure begins to decrease starting diastole. Eventually, 

the pulmonary and aortic valves close once a relative backwards blood pressure is 

generated. At this point, all the valves in the ventricles are shut and the remaining 

volume is called the end systolic volume (ESV). In time, as the ventricles continue to 

relax, the atriums which have been passively filling this whole time will have enough 

pressure to push open their valves filling the ventricles with blood again waiting to be 

signalled to contract via the SA node once again, resetting the cycle. 

1.1.3 « Myofiber Contraction Mechanism » 

Cardiac muscle tissue is compromised of the cardiac muscle cells (myocytes) which 

contain the cardiac muscle fibers (myofibers) that generate contraction, and the 

extracellular matric (ECM) (Liang, 2019). More details on the general composition of 

cardiac tissue is discussed in Chapter 3.  

Like skeletal muscle, myofiber contraction is governed by the activation of gated ion 

channels which cause contraction of the myofibers (Bers, 2002). Initially, the ion 

concentration in, and out of the cell is regulated by sodium potassium channels keeping 

sodium out of the cell, and potassium in. When an action potential caused by the sudden 

change in ion gradient reaches the myocyte via a gap junction, a voltage gated sodium 
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channel opens allowing positive sodium ions into the cell making the localized region 

positively charged. During this time, and due to the depolarization of the cell potential, 

a voltage gated calcium channel opens allowing calcium to enter the cell. The influx of 

calcium from the external cell environment then triggers the sarcoplasmic reticulum to 

release more calcium into the cell. This excess calcium in the cell released by the 

sarcoplasmic reticulum is responsible for the active contraction of the myofiber as 

described by the sliding filament model (Spudich, 2001).  

1.2 « AMI and Diagnosis/Prognosis » 

1.2.1 « Acute Myocardial Infarction » 

Based on genetics and lifestyle, it is common for humans to experience varying degrees 

of atherosclerosis throughout their lifetime where fatty plaque is built up in the coronary 

arteries (Gomar, 2016). In extreme cases where a coronary artery becomes fully blocked 

by either plaque breaking off or a clot that blocks blood flow, the cardiac tissue 

downstream experiences ischemia. This event is called acute myocardial infarction. 

Until the blockage is removed, the tissue downstream will continue being damaged, 

leading to more and more cell death. To treat the ischemic event, revascularization is 

performed as soon as possible to minimize damage to the cardiac tissue and preserve the 

function of the heart (Allman, 2002). 

In cases where AMI leads to tissue necrosis, that necrotic area suffers irreversible 

damage and transforms into infarct tissue with near zero contraction during the cardiac 

cycle (Canty,2012). This infarct tissue causes a series of problems which may ultimately 

lead to heart failure. It affects the electrophysiology of the heart, hence impacts the 

contraction timing which may require resynchronization therapy (Reumann, 2007; 

Kerckhoffs, 2008). It causes stress concentrations in the surrounding border zone, hence 

impacts signalling for mechanotransduction which may lead to cardiac remodelling 

(Hunter, 2012). Since the tissue contracts minimally or not at all, it also does not 

contribute to the required pressure build up ejecting blood during the cardiac cycle 

leading to a reduced efficiency. Lastly, during the first few days post myocardial 

infarction, the necrotic area is extremely weak and may rupture leading to immediate 
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death (Talman, 2016). Progress made pertaining to these issues using biomechanical 

models is discussed in Section 1.7 of this chapter. 

 In tissue regions where ischemia occurs without necrosis, the tissue is considered 

salvageable (Francone, 2009). In the salvageable area, some myocytes go into what is 

called a “stunned” or “hibernating” state based on whether the ischemic event is acute 

or chronic, respectively. In either state, while still viable, the cardiomyocytes function at 

a reduced metabolic rate where their contractile output is not as strong as healthy cells. 

This is, in part, is due to ischemic myofibers becoming “leaky” leading to an inability to 

maintain ion gradients required for contraction (Garcia-Dorado, 2012).  

As a result, the mechanical output loss of the myocardium can range from only minor 

loss of contractility to full loss of contractility (Nakamura, 2015). To asses the damage 

to the myocardium quantitatively, the difficulty lies in determining whether the 

cardiomyocytes are dead or only stunned. More interesting is the possibility of 

quantifying this damage towards predicting future heart function and recovery. This 

introduces the concept of biomarkers which are used explicitly or implicitly to measure 

damage and provide information of future function of the heart. 

1.2.2 « Biomarkers » 

A biomarker is a quantitative measurement which acts as an indicator for normal or 

pathologic state, or pharmacologic response to therapeutic intervention. A biomarker 

must be accurate, precise, and have high sensitivity and specificity. It also beneficial if 

the biomarker is calibratable to patient specific requirements from epidemiology 

(Dhingra 2017, Gomar 2016). Biomarkers can be broken down into prognostic, 

pharmacodynamic, and predictive for CVD where prognostic indicates future disease 

progression, predictive indicates who is likely to benefit from treatment, while 

pharmacodynamic measures the effect of a drug. While a biomarker may generally 

relate to multiple different diseases or organ failure, it is desirable that a new biomarker 

provides information to aide in critical decision making. For instance, rating a patient 

risk beyond the standard clinical biomarkers (Dhingra 2017). 
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1.2.3 « Standard Biomarkers for diagnosing AMI » 

Troponin I blood concentration remains the gold standard for AMI diagnosis (Chen, 

2019). In AMI, the myocyte lysis caused by ischemia in the cardiac muscle tissue 

releases this protein into the blood stream. This increase in troponin I concentration can 

be measured to the requirements of a good biomarker and is the current gold standard 

(Keller 2009, Katus 1990).  

1.2.4 « Novel Biomarkers for AMI » 

Blood B-type natriuretic peptide (BNP) is the most exciting of novel biomarkers for 

AMI due to its classification as a prognostic biomarker which no other biomarker 

confidently offers. It is generated by myocytes when the ventricles undergo tension and 

has been able to predict heart failure post-AMI in-hospital and 180 days post infarct 

event (Chen, 2019). Unfortunately, the prognosis provided by this biomarker revolves 

around death, and the biomarker does not provide information on how the treatment 

may be possibly changed to minimize those odds.  

There are a variety of other biomarkers currently under study, but they also suffer from 

lack of significant prognostic value or low sensitivity and specificity (Dhingra 2017, 

Chan 2010, Aydin, 2019, Chen 2019). 

1.2.5 « Medical Imaging » 

To aide in determining the extent of damage post AMI, medical imaging is a common 

tool used to image the heart and acquire more information on the state of the patient 

(Kinno, 2017). This information can be used to determine mechanical, geometric, and 

functional parameters.  

Mechanical information on the state of the heart refers to how the heart deforms during 

contraction. This can be quantified simply as the ejection fraction (EF) of the heart 

which is shown in equation 1 below calculated using end systolic volume (ESV) and 

EDV. 

𝐸𝐹 =
𝐸𝐷𝑉−𝐸𝑆𝑉

𝐸𝐷𝑉
             ( 1 ) 
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While ejection fraction is a good indicator of heart function in general, there is a large 

proportion of cases where patients suffer heart failure while ejection fraction is 

preserved (Hummel, 2017). Another general measure of the heart mechanical function 

is cardiac output. Cardiac output is the amount of blood pumped by the heart measured 

in litres per minute. While not limited to being measured with medical imaging, a low 

cardiac output is known to be related to heart failure (Vincent, 2008). 

More in-depth mechanical information comes in the form of wall motion irregularities 

(Tee, 2013). Since the left ventricle is near symmetric along the short axis, areas that are 

damaged with reduced contraction force can be seen quite easily as areas that don’t 

move as much in collected cardiac cine data. This is quantified via wall thickness at end 

diastole versus end systole, and even better as the strain (or displacement differential 

between the two states) as discussed in Section 1.4.1. of this thesis. Current medical 

imaging devices capable of capturing this information accurately are Ultrasound, 

dynamic contrast enhanced CT (DCE-CT), and MRI (Tee, 2013).  

Geometric information is information regarding the extent of damage as seen with 

medical imaging. This primarily involves quantification of scar tissue and amount of 

salvageable tissue which is of interest as data supports the relationship between amount 

of scar tissue, and patient prognosis (So, 2017; Florian, 2011). This information can be 

acquired using DCE CT and MRI techniques.  

Lastly, functional information is blood perfusion throughout the cardiac tissue. 

Perfusion can indicate regions that are still viable though damaged post AMI. This can 

be acquired using US, DCE-CT, MRI, and positron emission tomography (Ora, 2019). 

All this measurable information is extremely valuable to the clinic with a lot of 

development in research dedicated to these imaging techniques. One general issue with 

data obtained from the mentioned imaging techniques, however, is that they only 

represent the state of the heart at the imaging time. While this is extremely valuable for 

triaging patients and diagnosing AMI, they cannot provide final prognostic information, 

for instance final scar volume, or predict the state of the patient’s heart after 

revascularization without a second scan later on increasing overall cost.  
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A complement to medical imaging is biomechanical modelling. Modelling techniques 

offer new information only capable of being measured with the imaging modalities 

described above but have the potential for enhanced prognosis and predictive medicine. 

Advancements in the field of AMI cardiac modelling are described in Section 1.7. 

1.3 « Theory: Continuum Mechanics » 

Before discussing cardiac modelling, it is important to cover the fundamental concepts 

and mathematics that go into the formulation of continuum mechanics for cardiac 

modelling. Presented theory in this section is based on [Ogden, 1997; Holzapfel, 2010; 

Spencer, 2013]. 

1.3.1 « Stress and Strain » 

To describe the deformation of the material, we need to have a fundamental 

understanding of stress and strain. When a force acts on a body, point loads cannot truly 

exist and act as loads over an area 𝛿𝐴. Considering point P in Figure 1-2, we examine 

the “stresses” 𝑡 caused by an external force acting on point P. We enclose a surface cube 

surrounding P in its own axes and write out an equation for each component of 𝑡 as a 

summation of the components of  𝑡 acting in the direction of each of the particles 

reference frame coordinates 𝑒𝑖𝑖 shown in equation 2. 

�⃑�𝟏 = 𝑡11�⃑⃑�𝟏 + 𝑡12�⃑⃑�𝟐 + 𝑡13�⃑⃑�𝟑  

�⃑�𝟐 = 𝑡21�⃑⃑�𝟏 + 𝑡22�⃑⃑�𝟐 + 𝑡23�⃑⃑�𝟑         ( 2 ) 

�⃑�𝟑 = 𝑡31�⃑⃑�𝟏 + 𝑡32�⃑⃑�𝟐 + 𝑡33�⃑⃑�𝟑  
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Figure 1-2 Point load acting on a point P enclosed by an ideal volume. 

We can express this relationship compactly as follows: 

𝑡 = 𝑇𝑖𝑗𝑒𝑗       ( 3 ) 

Where 𝑇𝑖𝑗 is a second order tensor. Under the assumptions of Newton’s 3rd law, it can 

be shown that 𝑇𝑖𝑗 = 𝑇𝑗𝑖and thus 𝑇𝑖𝑗 is a symmetric tensor. The values of 𝑇𝑖𝑗 are called 

stress components. For instance, 𝑇23 is the 2nd component of �⃑� in the direction of �⃑⃑�𝟐. 

This finding will be used later after a proper understanding of the strain is developed. 

To develop an understanding of strain, object deformation is first described. An object 

deforms if it’s shape changes during movement, i.e. body translation and rotation do not 

cause deformation.  

Under deformation, a point X in the original volumes shape S moves to a new point in x 

shown in Figure 1-3. 
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Figure 1-3 Particle displacement in time following a deformation. 

The particle has moved by a displacement vector u which is a function of initial position 

and time. Given known values of X and x, we can solve for u using the following 

relationship: 

𝒖(𝑿, 𝒕) = 𝒙(𝑿, 𝒕) − 𝑿    ( 4 ) 

For small deformation, differentiating the above equation can be performed by 

differential calculus as 

𝜹𝒖(𝑿,𝒕)

𝜹𝑿
𝜹𝑿 =

𝜹𝒙(𝑿,𝒕)

𝜹𝑿
𝜹𝑿 − 𝜹𝑿         ( 5 ) 

Rearranging the equation leads to:  

𝜹𝒖(𝑿,𝒕)

𝜹𝑿
=

𝜹𝒙(𝑿,𝒕)

𝜹𝑿
− 𝐈            ( 6 ) 

𝜹𝒙(𝑿,𝒕)

𝜹𝑿
= 𝐈 +

𝜹𝒖(𝑿,𝒕)

𝜹𝑿
 ≡ 𝐅 = 𝐈 + 𝛁𝐮            ( 7 ) 

where 𝐈 is the identity matrix, ∇𝐮 is the deformation gradient representing strain 

components, and 𝐅 is the deformation gradient tensor. 

It is noteworthy that while 𝛿𝒙 = 𝐅𝛿𝑿, as mentioned above, the deformation must be 

independent of rotation and translation. Omitted here, it can be shown that 𝛿𝒙 is not equal 
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𝛿𝑿 under rotation using this relationship. Taking the square of this relationship provides 

the equation below: 

𝜹𝒙𝟐 = 𝜹𝑿𝑭𝑻𝐅𝜹𝑿            ( 8 ) 

which does not change under rotation. Hence, the second order tensor 𝑪 is introduced 

which is equal to 𝑭𝑻𝐅 and is called the right Cauchy-Green deformation tensor. It can be 

shown that 𝑪 can be completely described by the displacement gradient ∇𝐮 given in the 

equation below: 

𝐂 = 𝐈 + 𝛁𝐮 + 𝛁𝐮𝑻 + 𝛁𝐮𝑻𝛁𝐮       ( 9 ) 

This equation can be simplified by defining E as the Green-Lagrange strain tensor equal 

to one half of all terms involving the displacement gradient, leading to the equation: 

𝐂 = 𝐈 + 𝟐𝐄                ( 10 ) 

with 

𝐄 =
𝟏

𝟐
(𝑪 − 𝑰)     ( 11 ) 

1.3.2 « Hyperelasticity » 

Under small deformation, the tensor 𝐂 can be simplified if we assume all higher orders of 

∇𝐮 are negligible leading to the field of linear elasticity. In the heart, it’s uncommon for 

tissue to undergo small deformation, hence, any discussion on linear elasticity is omitted 

in this context while finite deformation which is associated with intrinsic change in 

mechanical properties causing nonlinear elasticity, or “hyperelasticity” is accounted for. 

To relate stress to strain in the context of hyperelasticity, attention is drawn to strain 

energy which is the energy stored in the body undergoing deformation. When a body is 

subjected to a force it generates kinetic energy in the form of work acting on the body. In 

a conserved system, this energy must be equal and opposite to some other form of 

energy. For materials, this is considered an energy stored in the deformation of a 

material, for instance, when a piece of rubber is stretched and held under constant force, 
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the rubber deforms until equilibrium is reached. When it is let go, the stored deformation 

energy is released, and the rubber returns to its original shape. It is assumed that this 

energy is stored solely in the form of deformation, leading to the concept of strain energy 

density used as a measure of the material’s strain energy. A function of this energy is 

called a strain energy density function typically denoted by W.  

From a well-developed theory which is not discussed here, the following relationship 

between stress, strain in terms of W as a function of F is given. 

𝑻𝒊𝒋 =
𝜌

𝜌0
𝑭

𝝏𝑾(𝑭)

𝝏𝑭
           ( 12 ) 

Where the ’s are the volume ratio of the material and can be computed as the 

determinate of F. If a material is incompressible, as often used in this thesis, the volume 

ratio is 1. 

It is more common to express this equation in terms of the invariants of C. We start by 

defining stretch, as 𝜆𝑖𝑖 = 1 + ∇𝑢𝑖𝑖 or one plus the strain for each principal direction in the 

material coordinate system. From tensor properties, each tensor has a set of scalars that 

are invariant under choice of coordinate system. For C, defined in terms of stretches the 

invariants are 

𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2
 

𝐼2 = 𝜆1
2𝜆2

2 + 𝜆2
2𝜆3

2 + 𝜆3
2𝜆1

2
         ( 13 ) 

𝐼3 = 𝜆1
2𝜆2

2𝜆3
2
 

W can now be expressed as a function of 𝐼1, 𝐼2, and 𝐼3. As such, for incompressible 

isotropic solids, the equation relating stresses to strains above is compactly written as  

𝑇𝑖𝑗 = −𝑝𝐼 + 2𝑊1𝐵 − 2𝑊2𝐵−1      ( 14 ) 

Where 𝑩 is the left Cauchy green deformation tensor defined as 𝐅𝑭𝑻 and 𝑊𝑖 refers to the 

differentiation of W with respect to the numbered invariant. 
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1.3.2.1 « Different Forms of Strain Energy Density Equations » 

Specific forms of W have been proposed to model different types of tissue and non-linear 

materials in general. These functions range from very simple, where a single material 

constant is involved, to increasingly complex with material constants numbering in the 

10+ range. Used extensively in this thesis are 2 of these functions in their isotropic 

incompressible form. One is the Yeoh strain energy density function W which is given 

below: 

𝑊 = ∑ 𝐶𝑖0(𝐼1 − 3)𝑖 +
1

𝐷𝑖
(𝐽 − 1)2𝑖3

𝑖=1          ( 15 ) 

where J =1 with incompressible material and the second term vanishes, and the C’s are 

the material’s hyperelastic coefficients.  

The second function used in this thesis is the Ogden strain energy density equation shown 

below. A major difference between this function and the Yeoh is that the value N 

representing the order of the function can in theory can lead to infinite sum, though in 

this thesis only 2nd and 5th order functions are used. In this function, the 𝜇𝑖’s and 𝛼𝑖’s are 

the hyperelastic coefficients. Also, to note, is that this strain energy density function is 

based on the stretches, instead of the invariants discussed above.  

𝑊 = ∑
𝜇𝑖

𝛼𝑖
(𝜆𝑗𝑗

𝛼𝑖 − 3)𝑖𝑁
𝑖=1             ( 16 ) 

1.3.3 « Finite Element Method » 

The relationship between stress and strain established in the previous section and linked 

via strain energy density equations is required for the understanding of the storage of 

energy in deformation. In terms of solving continuum mechanics problems arising in the 

context of the heart mechanics where complex motion is involved, other tools are 

necessary for formulating effective computational solutions. 

Conservation equations such as conservation of mass, momentum (linear and angular), 

and energy are all required to solve the continuum mechanics equations before tissue 

deformation and stress fields can be computed. In general, these equations are typically 
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partial differential equations with no analytical solution. To find approximate solutions, 

the finite element method (FEM) is employed where the solution domain is discretized 

into finite elements where the solution is sought at a set number of points called elements 

nodal points. This discretization leads to a system of equation which can be solved 

simultaneously to determine the solution of motion and stresses generated based on given 

loading. This method is employed in this thesis via ABAQUS, a commercial finite 

element solver (Dassault Systems Simulia Corp, USA). 

1.3.4 « Hill’s Model » 

Cardiac muscle tissue can be considered active tissue due to its internal generation of 

forces which lead to the contraction and pumping of blood throughout the body. To 

properly model this action, the commonly used Hill’s model formulation is applied in this 

thesis (Hill, 1938).  

Hill’s model has 3 components to model the whole tissue response of contracting tissue. 

The first two components are an “active” element, and a “passive” element connected in 

series as shown in Figure 1-4. The third component is another passive element connected 

in parallel with the other two elements in series. The combination of these elements 

represents a composite material tissue where in terms of the heart or muscle in general, 

the active component represents the possible contraction of the myofibers. As discussed 

above, when myofibers deform during contraction, internal stress is generated leading to 

contractile deformation. This deformation is resisted by myofibers themselves which are 

represented by the passive element connected in series. The passive element connected in 

parallel represent the surrounding extracellular matrix (ECM) of the myofibers that fill 

the empty space in cardiac tissue. Assuming the myofibers and ECM are fused such that 

there is “no-slip” when the myofiber contracts, the ECM must also deform with the 

myofibers and thus the resistance is the mechanical properties for the defined ECM.  

The described Hill’s model is known to have some limitations, including lack of 

viscoelastic response (Bovendeerd, 1996). While this is known to exist in the heart in-

vivo, it is not currently modelled to avoid model complexity associated with challenging 

computational solution.  
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Figure 1-4 Hills Model 

The implementation of Hill’s model in ABAQUS is described in Chapter 2 of this thesis. 

1.4 « Theory: Inverse Problems » 

Presented theory in this section is based on [Chong, 1996; Reklaitis, 1983; Saad, 2003]. 

In the field of modelling, a model that takes an input and produces an output is called a 

forward model shown in equation 17 where xi refers to a vector of input parameters to the 

model.  

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐹([𝑥1, 𝑥2 … 𝑥𝑁])        𝑁 = [0, ∞)   ( 17 ) 

In many situations however, only the output is measured, and the inputs are what are 

sought after. In this situation, the inverse model of F is required to determine the inputs 

based on outputs. 

[𝑥1, 𝑥2 … 𝑥𝑁] = 𝐹−1(𝑂𝑢𝑡𝑝𝑢𝑡𝑠)        𝑁 = [0, ∞)      ( 18 ) 

In complex systems such as in finite element modelling, the inverse forward model does 

not exist and must be solved through optimization. 

1.4.1 « Mathematical Optimization » 

Mathematical optimization is a solution often adapted to solve inverse problems. It can be 

used to maximize or minimize a function of choice which, in this case, will be called the 
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“cost” function. Note, the maximum of a function is just the minimum of the negative 

form of the function, and from here onward, only the term minimization will be used. 

To solve the inverse problem above for the unknown inputs, optimization is the process 

of changing inputs to the forward model to best match the measured outputs. If the 

outputs are known, and inputs of a forward model generate different outputs, the different 

between the two outputs at discretized points are called the error. The cost function of 

most optimization techniques is to minimize this error shown in Equation 19. 

[𝐸𝑟𝑟𝑜𝑟𝑖] = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑠𝑖 −  𝐹([𝑥1, 𝑥2 … 𝑥𝑁])    𝑁 = [0, ∞), 𝑗 = [1, ∞)   ( 19 ) 

1.4.2 « Nonlinear Least Squared Optimization » 

When a function is nonlinear, iterative optimization is required were the inputs to the 

forward model are put in as an initial guess, and then changed until the minimum cost 

function is reached. In the case of least squares optimization, the cost function is 

modified from above to be the equation below, where the error is now minimized with 

reference to magnitude of the sum of squared differences between measured and 

computed outputs. 

[𝐸𝑟𝑟𝑜𝑟𝑖] = ‖𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑠𝑖 −  𝐹([𝑥1, 𝑥2 … 𝑥𝑁])2‖    𝑁 = [0, ∞), 𝑖 = [1, ∞)  ( 20 ) 

During this iterative process, initial guess parameters starting the optimization are 

changed by a step size in the direction of a lower cost function until convergence is 

achieved.  

There are many techniques to reach the minimum cost function using 1st and higher 

derivates of the cost function to compute the step size and direction. Commonly, second 

degree quadratic information is used which compute the first derivative (or gradient), and 

the second derivative (or Hessian) of the function. With this information, different 

techniques can be used to determine the minimum cost and optimal input parameters. In 

this thesis, MATLAB’s r2019a developed trust region reflective optimization 

methodology is used. 
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Least squares solutions using gradient methods work very well for functions that are 

known as seen in Chapter 4. When treating unknown or extremely complex functions 

with potentially many local minima, they can suffer from converging to a local minimum 

instead of the global minimum which often represent the sought solution. Techniques to 

minimize the possibility of convergence to local minima include using constrained 

optimization where the parameters are given lower and upper bounds to their possible 

value, though the true local minimum is still not guaranteed. 

1.4.3 « Genetic Algorithms » 

Genetic algorithms (GA) are one of many types of optimization techniques to overcome 

convergence to local minima. They do not follow gradient based optimization, but rather 

stochastic processes which take the cost function into account as “fitness” of an 

individual (Fraser, 1970). 

Genetic algorithms start with an initial guess input by the user to start the technique. 

From the initial guess, a “population” of “individuals” is stochastically generated by 

perturbations to the initial guess as shown below where the 𝜆’s are perturbations to the 

initial guess within constraints given by the user. 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑔𝑢𝑒𝑠𝑠 = [𝑥1, 𝑥2 … 𝑥𝑁] 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1 = [
[𝑥1, 𝑥2 … 𝑥𝑁]

⋮
[𝜆𝑖1𝑥1, 𝜆𝑖2𝑥2 … 𝜆𝑖𝑁𝑥𝑁]

]   ( 21 ) 

𝑊ℎ𝑒𝑟𝑒 𝑁 = [0, ∞),   𝑖 = [1, 𝑀𝑎𝑥𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

The “diversity” refers to how different the 𝜆’s will be and is set before optimization. Each 

individual in the population is run through the forward model and all fitness’s are 

calculated.  

The individuals with the best fitness are called “elites” who immediately become an 

individual in the next population. The remaining individuals with the best fitness from the 

first population are selected and become “parents” of the next generation. From the 
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selection of elites and parents a new population is generated through events called 

“mutations” and “crossovers”. A mutation is a random permutation to one of the parent 

values, and a crossover is the blended values of two random parents. Based on the pre-set 

numbers of elites, and percentages of mutations and crossovers, the new “generation” of 

the population is generated. The process of generating a new population is shown in 

Figure 1-5.  

 

Figure 1-5 Possible events to generate a new genetic algorithm population. 

After the new population is generated, the new individual fitness’s are evaluated, and the 

cycle continues until convergence is achieved at the global minimum. Convergence in 

this technique can be deemed by a pre-set fitness level or any 1 individual, average 

fitness level multiple individuals, generation number, and other time constraints. 

1.5 « Reduced Models » 

In the context of estimating a biomechanical model’s parameters using optimization, a 

forward model which computes the deformation of tissue for instance must be used to 

compute the cost function in each iteration. Forward models in this context are 

computationally expensive as their associated run times can be several minutes. As such, 

with iterative optimization techniques, it is common for times before convergence to 

reach a week, or in the case of genetic algorithms, months. To remedy this problem, 
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techniques to reduce complex forward models for faster run times are of high value 

(Mousavi, 2012). Among available techniques developed for this purpose, the technique 

described in the following section is considered to generate a reduced forward model in 

this thesis which involves statistical shape modelling and neural networks. 

1.5.1.1 « Statistical Shape Modelling » 

In the case of a LV FE where parameters are assigned to characterize contraction forces 

in various regions of the LV, several LV contracted shapes can be produced to sample the 

contracted shape space. If the output of the LV shape is of interest (see Chapter 2), the 

variability of these shapes can be expressed using a reduced model without significant 

loss or accuracy (Cootes, 1995). For this purpose, let’s assume that there are N shapes 

being considered for this reduction where the purpose is capturing each of these shapes 

using only a small number of parameters. We assume that each shape is defined by a set 

of landmarks on the surface which represent the same location on all N shapes. In the 

context of LV shape modelling, if the FE mesh of each LV is generated following a 

single meshing scheme, this assumption is appropriate since each node (which is 

numbered consistently) will act as a landmark.  

Each shape occupies a M*n-dimensional space where M is dimensions in original data (3 

in the case of 3D) and n is the number of landmarks. N shape sets then occupy N points 

in this 3n-D space. To reduce the amount of variables to describe the shape, this new 

point cloud in 3n-D space can then be greatly reduced using principal component 

analysis, which finds a new, orthogonal set of axes within this 3n-D space which is 

structured such that each new axes reflects the most variance in the data in descending 

order.  

To do this reduction, the covariance matrix of the sample set is first computed. This can 

be done by computing the covariance equation below for each element in the covariance 

matrix.  

𝐶𝑜𝑣(𝑗, 𝑘) = (
𝑁

𝑁−1
) ∗ ∑ (𝑥𝑗(𝑖) − 𝑥�̅�)(𝑘(𝑖) − 𝑥𝑘̅̅ ̅)𝑁

𝑖=1              ( 22 ) 
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In equation 22, 𝑗 and 𝑘 refer to the 3n-D×3n-D covariance matrix rows and columns 

respectively,  𝑥�̅� and 𝑥𝑘̅̅ ̅ are the means of each variable for that dimension, and 𝑥𝑗(𝑖) 

referring to each of the separate data sets.  

Complete, the covariance matrix can be expressed as C. From here, the eigenvalues (𝜆’s) 

can be solved by equation 23 

0 = 𝑑𝑒𝑡(𝐶 − 𝜆𝐼)        ( 23 ) 

Where “det” is the matrix determinant of the interior bracketed covariance matrix and  𝐼 

is the identity matrix. From there each eigenvector can be calculated. 

The benefit at this point is that unlike the previous orthogonal 3n-D space, we’ve 

generated a new 3n-D space which is also orthogonal, but the orthogonal dimensions are 

based on C where each dimension is now uncorrelated from the next. From here, the 

proportion of variance can be calculated by the eigenvalues and ranked from largest to 

smallest. In this order, we call the set of eigenvectors the principal components. A 

threshold for total percentage of the variance captured can be chosen, and the main 

principal components can be extracted to describe the data set. 

After an appropriate number of principal components k is selected, the matrix D of the 

eigenvectors with size 3n-D×k is created. This is used to recast the original data into this 

new, dimension reduced form going from N data sets in 3n-D dimensions to N sets in k 

dimensions (Olver, 2018). 

In summary, this allows the shape space to be described by several main modes that 

reflect the most important shape changes regarding shape variability. This allows any 

shape to be generated by a linear combination of these principal components which can 

then predict new, statistically likely shapes to come out of simulation. 

1.5.1.2 « Neural Networks » 

Neural networks are another approach to decrease the computation time of forward 

models. They provide a bridge between the forward model inputs and outputs without 
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using the forward model itself, but rather, is trained by the forward model to predict 

expected outcomes given inputs.  

A neural network is a function of “layers” and “neurons” which connect input data to 

output data as shown in Figure 1-6. Each input is connected to each neuron in the first 

layer. The inputs are multiplied by a weight factor and the sum of all weighted inputs are 

then converted to a new value via a transfer function. The values of each neuron are then 

all connected to the neurons of the next layer with another set of weights, and the values 

propagate so forth until the final layer were the new outputs are computed. To determine 

the weights of the neural network, known data with inputs and outputs are used as a 

training set, and the weights are optimized using optimization techniques such that the 

neural network can accurately predict validation data using a separate set of test cases. 

Once trained, the neural network can then predict new outputs based on given inputs 

replacing the computation of the forward model with little loss to accuracy provided the 

training set is adequately sampled within the function space. 

The combination of the statistical shape model concept and neural networks has been 

used in this thesis to obtain reduced models of the LV FE. To this end, both LV geometry 

(input) and their contraction displacement fields (output) are considered shapes where 

PCA was used to express them using a small number of parameters. It is this version of 

compact input and output sets that are used to train the neural networks to produce 

reduced forward models. It is noteworthy that using the first step of PCA is critical as it 

leads to relatively straight forward neural network topology where overfitting and 

convergence are less likely (Mousavi, 2012). 
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Figure 1-6 Example neural network topology 

1.6 « Cardiac Modelling » 

Cardiac modelling based on continuum mechanics described above combined with 

inverse problem formulation has emerged as an increasingly popular research area 

serving as a complementary technique applied to medical imaging. It provides 

information on the heart which is not possible to measure in the clinic. This information 

may be the key to better patient treatment who suffer from CVD’s. While much CVD 

information is enhanced with cardiac modelling, we focus on its uses for patients who 

have suffered AMI.  

The new information that biomechanical modelling can offer is cardiac stress, strain, 

contraction force, and mechanical properties or stiffness (Lopez-Perez, 2015). All these 

measurements may have a vital value in the clinic. 

In-vivo cardiac stress is hypothesized as the main influencer for cardiac remodelling post 

AMI (Talman, 2016). This remodelling happens over years post MI and ultimately leads 

to heart failure. The mechanism for remodelling is mechanotransduction where stresses 

are felt by the cells and remodelling is triggered to lower these stresses (Yang, 2002). 

There are only few studies to date dedicated to investigating this as the predictive 

problem in this case is quite complex. However, there is some literature that suggests the 

optimization of cardiac mechanical properties and geometry ultimately serves to reduce 
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this stress (Yamazaki, 1999; Weber, 2013). It is anticipated that cardiac modelling will 

greatly enhance this field being the only technique capable to estimate these values. 

While strains can be measured using medical imaging alone, they are typically aligned 

within conventional axes defined by the AHA model which is short, long, and horizontal 

axis (Aletras, 2006). Strain values measured from these directions do not represent the 

true principal strain of the tissue where no shear strain exists. A recent study showed the 

capability of cardiac modelling to measure the principal strain from medical imaging 

which may be a better marker of infarct scar region than conventional image 

enhancement techniques (Satriano, 2017).  

Cardiac contraction forces and mechanical properties are the main attraction of cardiac 

modelling and the literature is extensive (see Chapters 2 and 3 respectively). These are 

tuneable parameters in cardiac models which really show the strength of this field by 

measuring the mechanical output of the myocytes as well as providing knowledge on the 

regional variability of tissue structure. To predict these parameters, a model based on the 

geometry of the heart is generated and the mechanical properties and contraction forces 

can be optimized within an inverse problem framework described in Section 1.4 (though 

potentially with different optimization techniques) to predict the patient specific values. 

Once predicted, these parameters can be changed to simulate new function of the heart 

once healed.  

To date, the closest application of cardiac modelling in the clinic is related to 

resynchronization therapy (Krozier, 2016, Willeman, 2019). No clinical use has been 

presented to date for contraction force and mechanical properties estimation due to the 

high cost of follow up data required to validate the techniques presented in the literature, 

or perceived lack of clinical value.  

1.7 « Objectives » 

The primary objective of this thesis is to generate new predictive and prognostic 

biomarkers based on their contraction derivable from cardiac imaging and modelling for 
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hearts that have suffered myocardial infarction to enhance the clinical use of cardiac 

modelling.  

Chapter 2 of this thesis presents a new technique to predict healthy and stunned myofiber 

contraction forces. This technique differs from those presently in literature as this 

technique does not require tissue tracking methods but rather, uses just the shape 

geometry within an inverse optimization framework. This significantly reduces the cost 

of imaging applied in techniques referenced in Chapter 2 while it also allows CT to be 

used in cardiac modelling which has never been done. Techniques presented in this 

chapter also introduce novel contraction variables which can predict future necrotic tissue 

along with myofiber healing. To the best of my knowledge, no cardiac model has been 

introduced for the latter purpose. This model feature enables prediction a range of final 

infarct volume which has high prognostic value. It also allows for prediction of healed 

ejection fraction and cardiac output which are currently used to evaluate the state of the 

heart in the clinic.  

Chapter 3 offers a promising and easily implementable technique to accurately model the 

mechanical properties of scar tissue and stage its healing. This is based on a micro-to-

macro FE model of cardiac tissue which is reduced using neural networks to predict how 

well the patient infarct heals relative to population values. This technique has the benefit 

of predicting the microconstituent tissue composition which may indicate risk of left 

ventricle rupture for which there is treatment available.  

Chapter 4 presents a study aimed at a future investigation to validate the expected range 

of performance coming from Chapter 2. In the clinic, there remains a decision of when to 

trigger medical imaging collection during the cardiac cycle. Though chapter 2 requires 

both end systole and end diastole, validation metrics to evaluate the model can be 

generated from either image set. Specifically, a validation metric relating to the general 

function of the beating heart is cardiac output measured by indicator dilution techniques. 

We investigated the effect of what time during the cardiac cycle is more accurate for our 

interest. Chapter 5 closes the thesis by concluding our findings and presents the future 

work of this area of study. 
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Chapter 2  

2 « Characterizing Regional Myofiber Damage Post-
Acute Myocardial Infarction Using Shape Optimization » 

2.1 « Introduction » 

Cardiovascular diseases (CVD) are the leading cause of death worldwide, contributing to 

~31% of deaths worldwide in 2016 (W.H.O., 2017). Of the many cardiovascular diseases, 

coronary heart disease (CHD) is the deadliest, accounting for 44% of all CVD related 

deaths (Benjamin et al., 2018). In extreme cases, this disease can lead to acute myocardial 

infarction (AMI). In the time between the initial onset of AMI and revascularization of 

the coronary artery, the cardiac tissue downstream of the occlusion experiences ischemia. 

While the effect of ischemia varies based on the amount of peripheral blood flow 

provided by the collateral vasculature to the cardiac tissue, the result of any ischemia is 

damaged cardiomyocytes leading to depressed contractility (Camici, Prasad, & Rimoldi, 

2008).  This damage can be extreme where it can cause the cardiomyocytes to become 

necrotic leading to infarction whereas in other instances, the myocytes reduce their 

metabolic activity to avoid cell death (Kelly et al., 2011). This phenomenon of reduction 

in metabolic rate and depressed contractility is known as myocardial hibernation, or 

myocardial stunning when the ischemia is chronic or acute, respectively. While stunned 

myocardium can recover within weeks, hibernation can cause prolonged contractile 

damage over 3 months or can even potentially lead to permanent damage (Pasque, 2017). 

Devising effective treatment for each of these scenarios requires their reliable 

determination.   

Several imaging methods exist to visualize the extent of ischemic and infarcted tissue. 

They include single-photon emission computed tomography, myocardial perfusion 

imaging using CT, or T1/ T2 weighted cardiac MRI to view ischemic regions. There is 

also late iodine enhanced imaging using CT, or late gadolinium enhanced imaging using 

MRI that are used to visualize infarct tissue (So et al., 2018; Kim et al., 2000; Wright et 

al., 2009). These imaging techniques show the location and size of the damaged region, 

providing valuable diagnostic information. Focusing on the ischemic imaging where the 
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myocytes are still viable, contrast for both the CT and MRI methods is typically via 

edema caused by necrosis and ischemia, or perfusion (So et al., 2018; Kim et al., 2000; 

Wright et al., 2009). A disadvantage of both contrasts is the stability of the area at risk. 

Edema is not stable and may lead to inaccurate morphological data of the ischemic tissue 

depending on when the imaging took place (Fernández-Jiménez et al., 2015), and 

perfusion images may vary based on inter- and intraobserver error (Larghat et al., 2013). 

Moreover, if imaging was conducted in a follow up session where the edema no longer 

exists, or the artery is reperfused, but the depressed contractile response persists, these 

imaging techniques alone would not suffice to determine the magnitude of remaining 

damage (e.g. contractile dysfunction) to the myocytes.  

Another option to asses the heart function due to ischemia is through the analysis of 

dynamic motion of the myocardium during contraction. A common measurement for this 

motion is strain measurements, where the change in tissue local length can indirectly 

indicate ischemia with some accuracy (Norum, I. B. et al., 2015). Looking deeper, since 

the contraction of the heart is caused by myocytes, and by extension, myofibers, 

determining myofiber contraction characteristics of the damaged tissue could provide 

more direct diagnostic and prognostic information. While being patient specific, similar 

to what is provided through the previously described imaging techniques, this 

information can provide clinicians invaluable clues pertaining to expected functional 

recovery.  

A technique that has the potential to measure many cardiac parameters effectively is 

founded on biomechanical modelling. It is a tool used to understand complex motion, 

deformation and internal force characteristics of different parts of the body. While being 

an effective predictor of tissue deformation, it can provide insight into the 

pathophysiological changes of organs and tissues as abnormal deformation can be a 

manifestation of such changes. Cardiac biomechanical modelling has been used to study 

the heart for over a century and  has led to insights on tissue contractility (Chabiniok et 

al., 2012; Genet at al., 2015; Asner et al., 2016; Balaban et al., 2017; Finsberg at al., 

2018), mechanical properties and changes during ischemia (Balaban et al., 2018; Haddad 

& Samani, 2017b; Nikou et al., 2016; Hadjicharalambous et al., 2017),  as well as 
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knowledge on the complex fluid mechanics and the electrophysiology of the heart 

(Karabelas at al., 2018).  

Common amongst all the current proposed techniques is the need to track the motion of 

the myocardium during its contraction. This allows the model to solve for the cardiac 

properties via inverse problem frameworks to best match the measured motion. This 

tracking is possible using MR tagging (Zerhouni et al. 1988, Radiology), MR phase 

imaging (Nayak et al., 2015), and speckle tracking echocardiography (Mor-Avi et al., 

2011). MR tagging suffers from pattern fading, long acquisition time and low resolution. 

MR phase imaging has been used mainly for hemodynamics characterisation and is not 

commonly used in the clinic. Lastly, speckle tracking offers only low-quality motion 

information data. In this article, we propose a technique which can use conventional 

imaging modalities such as 3D ultrasound, MRI or CT in conjunction with biomechanical 

modelling to predict the myofiber damage post AMI in a left ventricle without the tissue 

tracking necessity. This is proposed via an inverse problem framework which does not 

require tissue motion data; it rather uses the shape of the LV pre- and post- contraction as 

input to output parameters characterising the myofiber damage. In this context, shape 

optimization involves automatically delineating the shape of the LV which is a 

straightforward procedure that can be performed using automatic image segmentation 

software. This technique can also be effectively used in conjunction with clinically used 

CT imaging, hence has the potential to be used as an effective clinical tool. It is 

noteworthy that unlike US and MRI that can be used for myocardial motion tracking, CT 

can be only used for myocardial shape characterization due to its low contrast.  Our 

hypothesis is that finding optimal cardiac myofiber contraction forces that lead to the best 

shape matching between our computational biomechanical model and the segmented 

shape will give an accurate description of the ischemic damage. We investigate below a 

first test of this technique using in-silico generated LV biomechanical models. 
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2.2 « Methodology » 

2.2.1 « Myocardial Contraction Force Reconstruction - Overview » 

The proposed method takes surface shape data of the LV at two states of contraction as 

input. These states are mid diastole and end systole that represent the initialization state 

when the LV is relaxed, and the maximum contraction state, respectively (Genet at al., 

2015). The surface shape data can be delineated by segmenting 3D cardiac image data 

captured at the two contraction states. Using this input, we have developed an algorithm 

used to reconstruct the LV contraction forces. Since the shape of the LV measured at a 

contracted state (e.g. end systole state) is the product of internal contraction forces 

generated from the relaxed state, the problem of reconstruction of these forces can be 

classified as an inverse problem. Ideally, this inverse problem should be formulated to 

resolve both the ischemic, and healthy contraction forces. However, such formulation 

leads to extremely ill-posed problem where obtaining a reasonably unique solution is 

very challenging. To reduce the ill-posedness of the problem, we follow a constrained 

reconstruction algorithm whereby we assume that the healthy, ischemic and infarct 

regions can be delineated from MRI or CT scans. This assumption is realistic as contrast 

enhanced MRI or CT imaging provide sufficient contrast for this delineation (So et al., 

2018). We further assume that the contraction force within each region is uniformly 

distributed.  

Figure 2-1 shows the flow chart of our proposed inversion technique which utilizes an 

optimization framework for the inversion. At its core, this technique involves a 

biomechanical model of the LV initialized at the relaxation state. This represents the 

problem’s forward model where a volumetric distribution of contraction forces can be 

input to output the LV shape at end systolic contraction. These forces define what drive 

the contraction of the healthy, and damaged ischemic tissue. The end systolic shape of the 

model is then compared with the true shape of the segmented image at end systole using a 

cost function described in 2.3. The optimization algorithm then systematically adjusts the 

contraction force variables before being refed to the LV model to generate a new LV 

shape to compare until convergence is achieved. For optimization, a global optimizer was 

used which involves calculating the end systolic shape numerous times. To accelerate this 
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calculation a reduced model which involves a machine learning algorithm was developed. 

The following methodology describes each step of this inversion technique beginning 

with the LV model, then the cost function, and finally the global optimizer.  

 

Figure 2-1. Flow chart for shape optimization technique. 

2.2.2 « Biomechanical LV Model » 

2.2.2.1 « Left Ventricle Models » 

The purpose of biomechanical modelling in this optimization is to provide a bridge 

between the relaxed LV shape, and contracted LV shape using variable contraction 

forces. Two in-silico biomechanical models simulating different types of AMI damage 

are presented below in Figure 2-2. These models will be used to validate the proposed 

inversion technique. Each model is a finite element (FE) model inspired by an infarcted 

LV model developed by Haddad and Samani (Haddad & Samani, 2017a). In this model, 

the FE mesh is designed to have uniformly distributed nodes between the surfaces of two 

ellipsoids. The first model shown in Figure 2a, simulates the type of LV damage typical 

of a left anterior descending (LAD) coronary artery blockage. This is a common artery 

where patients experience AMI and will be referred to as the LAD model. The infarct 

area (white) propagates as a wave front into the tissue consistent with the literature in a 

semi spherical shape with a large surrounding periinfarct region (Reimer, Lowe, 

Rasmussen & Jennings, 2017). The second case in Figure 2b, simulates an infarction 
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caused by a blockage of the left circumflex (LC) coronary artery and will herein be 

referred to as the LC model. The infarct in this case is of a round shape penetrating 

transmurally from epicardium to endocardium in the midventricular area. It is surrounded 

by a large periinfarct region. Both models simulate an acute phase infarction where the 

periinfarct region is still damaged, and scar tissue has begun to form in the infarct area. 

The two cases with the different types of damage were chosen to evaluate different 

shapes and damages that a robust technique should be able to handle when recovering the 

myofiber contraction forces. 

 

Figure 2-2. a) Finite element model of an infarcted LV, with a periinfarct region 

simulating AMI from the left anterior descending (LAD) coronary artery b) Finite 

element model of an infarcted LV, with a periinfarct region simulating AMI from the left 

circumflex (LC) coronary artery 

2.2.2.2 « Geometry and Boundary Conditions » 

The geometry of each model follows the mathematical description provided by 

Bovendeerd et al., 1992, simulating the LV of a canine. In the ischemic regions of each 

model, nodes in the model’s FE mesh were moved to provide smooth surfaces at the 

interface of healthy, periinfarct, and infarct regions. In a clinical setting, the geometry 

would come from segmented volumes from a prior imaging session.  
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Boundary conditions of the proposed model are applied at the base of the LV where the 

LV would meet the left atrium and is considered a “fixed-in-plane” condition (Wang et 

al., 2014). Here we provide kinematic coupling, where the epicardial basal nodes can 

move radially but not rotationally. Also constrained are all base nodes to not move 

transverse to the basal plane. This mimics the LV being stuck in place as it is 

physiologically, but the muscle is free to contract and rotate from the apex up. It should 

be noted that more appropriate boundary conditions can be applied in a clinical setting. 

This includes boundary conditions at the left ventricle-right ventricle junction and data 

driven boundary conditions presented by Asner et al. 2017, which have proven to be 

more reliable for clinical simulation.  

2.2.2.3 « Loading » 

Following Haddad & Samani, 2017a, the LV myocardial tissue is modeled as a 

composite material with Hill’s model used to incorporate the internal contraction 

generated by myofibers in the LV tissue. Hill’s model contains two parallel components 

which are coupled when subjected to external or internal loading as illustrated in Figure 

2-3a. The passive element represents the extracellular matrix (ECM) part of the LV 

tissue. The active element represents the myofibers with a resistance that accounts for the 

stiffness and passive response of the myofibers themselves. We employ these active 

elements as prestressed rebars penetrating the myocardial tissue volume. The orientation 

of these myofibers within the LV models are based on Streeter’s canine data creating the 

known anisotropic contraction of the LV (Streeter et al., 1969). The advantage of these 

separate myofibers is that each one can be given a unique and controlled contraction as 

visible in Figure 2-3b. It is this property that allows us to assign different contraction 

forces to the separate regions of the LV models as well as different contraction 

characteristics within each element individually. The model also allows assigning 

different mechanical property parameters to the ECM and myofiber parts to account for 

pathological changes at the tissue microscopic level. 
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Figure 2-3. a) Hill’s model, b) Rebar (myofiber) orientation 

The first contraction force variable is that of healthy myocardial tissue which we denote 

as “FH”. This force can range from 140-160kPa consistent with the contraction range of 

myofibers found in the literature (Guccione & McCulloch, 1993). For the ischemic 

region, we introduce two variables to characterize contractility in the proposed model. 

The first variable represents the contraction force magnitude in the ischemic region which 

we denote as “FI”. It can range from 0kPa to the maximum healthy contraction force and 

is assigned to all myofibers in that region. This represents the possibly depressed 

contractility in the ischemic tissue. The second variable will be introduced as a tissue 

state variable “S” which represents the percentage of necrotic tissue. As AMI is being 

primarily tackled in this work, it is possible that some myocytes may be necrotic and by 

extension, some myofibers may be completely inactive. While these myofibers do not 

contract, they continue to contribute to the tissues passive response being volumetrically 

distributed. This state variable is considered to characterize such myofibers in the 

damaged tissue region. In the finite element model, this state describes the percentage of 

necrotic myofibers (rebars) uniformly distributed throughout each element in the 

ischemic region. It is noteworthy that the infarct region is assumed to be necrotic, hence 

no contraction forces are generated in that region. 

The other loading necessary to properly capture the heart’s physiology during systole is 

the surface pressure on the endocardium generated by the LV blood pool. This was 



38 

 

applied based on in-vivo measured data in canine left ventricles (Waldman, Nosan, 

Villarreal & Covel, 1998).  

2.2.2.4 « Mechanical Properties » 

In each tissue type involved in the LV model, there are 3 fundamental tissue mechanical 

properties that need to be defined. They pertain to the ECM of healthy myocardial tissue, 

the myofibers, and the pathological ECM of the infarct region. Hyperelastic strain energy 

density equations were used to define each material. The stress-strain data used in this 

work are obtained from Haddad and Samani (Haddad & Samani, 2017b) where in-silico 

uniaxial testing data was generated by the volume fraction and experimental stress-strain 

data of microconstituents of each tissue. The chosen hyperelastic models to fit this data 

were a 5th and 2nd order Ogden model. The 5th order model was used for the infarct LV 

myofibers and the infarcted ECM. The healthy background ECM and myofibers were 

modelled with a 2nd order Ogden model. Data of the hyperelastic parameters of each 

tissue can be found in (Haddad & Samani, 2017b). 

As for the overall tissue volume distribution, the myofiber volume distribution is 

approximately 65% in the healthy and ischemic tissue (Schaper, Meiser & Stammler, 

1985). In the infarct region, this percentage is reduced to approximately 5% as most 

myofibers are expected to have died in this time and, scar tissue replaces their volume 

(Bogatyryov, Tomanek, Dedkov, 2013).  

To account for interpatient tissue stiffness variability of the above mechanical properties 

and to assess the impact of stiffness parameters deviation from average values reported in 

the literature, different stiffness characteristics were also considered. Using the reported 

average properties, we generated “softer” and “stiffer” tissue models for both the LAD 

and LC models. The softer tissue model was generated to achieve 20% stiffness reduction 

compared to the stiffness obtained using the experimental data reported in literature, 

while the stiffer tissue model was generated to achieve 20% stiffness increase. The 

inversion technique was tested between models of varying stiffnesses to determine 

whether the algorithm is sensitive to the interpatient variability of mechanical properties. 
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While mechanical properties can be optimized for, the ability to use average values 

significantly reduces the cost and complexity. 

2.2.3 « Cost Function » 

As described earlier, the constrained contraction force reconstruction problem used in this 

work is solved using optimization. With the biomechanical model in place, we now 

describe the cost function to minimize the shape difference between both the model, and 

segmented shape. Since a goal of this technique is to offer an algorithm which is free of 

tissue motion tracking, we propose to use the similarity of the two contracted shapes 

alone. This can be done using a variety of similarity metrics such as Hausdorff distance, 

landmark based error, or the root mean squared error (RMSE). Hausdorff distance is 

appealing but is computationally expensive to run in an iterative solver. Landmark based 

error requires manual entry of landmarks, and again, required more steps. RMSE 

however is computationally inexpensive and considers the segmented shape and model 

output directly with no intervention and was thus chosen as the cost function as follows:  

𝐶𝑜𝑠𝑡 = 𝑅𝑀𝑆𝐸(𝐿𝑉𝑠𝑒𝑔, 𝐿𝑉𝑀𝑜𝑑𝑒𝑙(𝐹))          ( 1 ) 

where F denotes the contraction force parameters and state variable and the Cost function 

has an ideal minimum value of 0. Given that the model and image segmentation may not 

be registered, iterative closest point (ICP) was performed as an automatic rigid 

registration algorithm. ICP also outputs RMSE which is required. Since the present study 

involves an in-silico model, the segmented shape will be generated by the LAD and LC 

models themselves. This alone is unrealistic in the context of clinical applications as 

when biomechanical modelling is performed with real patient geometry, there will be 

segmentation errors, modelling errors caused by the computation, as well as errors caused 

by different image resolution. To account for these errors, we systematically altered the 

contracted LV shape obtained from forward FE model. For this purpose, the shape was 

scaled randomly from 0 to 5%, subjected to shearing consistent with 5 to 12 degrees, and 

finally, the nodal data was down sampled to approximately 50% of available information.  
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2.2.4 « Global Optimizer » 

To minimize this multi-variable cost function consisting of the healthy contraction FH, 

ischemic contraction FI and the ischemic state S, genetic algorithms (GA) were used to 

find the global minimum. The GA was chosen out of a large selection of optimization 

algorithms for its effectiveness in finding the global minimum compared to other 

optimization techniques. In this work, the GA ran for 300 generations with a population 

of 50, unless each population stalled. This number of iterations can total 15000, and since 

FE modelling is computationally expensive taking on average 3.5 minutes to run each 

iteration, steps to decrease the computational cost were taken as described in the next 

section. 

2.2.4.1 « Neural Network Training and Principal Component 
Reduction » 

To improve the computational efficiency of our proposed technique, we developed a 

reduced model to substitute the FE model of the LV. This reduced model includes a 

neural network (NN) which was trained using data obtained from running the FE model 

of the LV with various stiffness and contraction force sets of parameters. The sets of 

parameters used to generate the training data sampled the space sufficiently. After 

training, each NN takes as input the 3 contractility variables of FH, FI and S and outputs 

the LV model shape, skipping the normally required steps in between start and end 

geometry required in FE analysis. Each network is a 3-layer neural network with tan-sig 

transfer functions for the first 3 layers and a linear transfer function to the output 

deformed LV shape shown in Figure 2-4. This is a network configuration that has been 

validated in previous studies of statistical shape optimization of FE prostates (Mousavi et 

al., 2012). In this study, the authors express that the applied technique is general to any 

properly noded mesh which is why its robust methodology was applied. 
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Figure 2-4. Topology of the neural network (PCrNN) developed as a reduced 

biomechanical model of the LV   

To employ this 3-layer NN as an efficient replacement to the accurate biomechanical 

model of the LV, it was necessary to express the LV displacement field in a 

mathematically compact form. Similar to (Mousavi et al., 2012), this was achieved by 

breaking down the displacement data into its principal components creating a principal 

component reduced neural network (PCrNN).  

To train each PCrNN, 1100 training data sets containing the displacement of LV nodes 

on the endocardium and epicardium were generated for each LV case. This training took 

approximately 3 days for each network, but when employed within the developed GA, 

the optimization was reduced from an estimated 140 days to 20 minutes on a regular I7 

desktop, which puts this technique in the range of clinical applications. 

2.2.5 « Validation of the Proposed Technique » 

We tested the effectiveness of the technique by providing a variety of contracted shapes 

to our algorithm. The contracted shapes were generated by changing the 3 variables in 

our biomechanical FEM model, FH, FI, and S at random. For each biomechanical model, 

LAD and LC, 5 cases were generated for the proposed methodology. The 5 cases 

involved shape data corresponding to displacement fields generated with 3 different sets 
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of variables representing various healthy contractions, damaged tissue contractions, and 

percentage of non-contracting myofibers in both the LAD and LC LV models. The true 

values are shown in table 2-1. These data sets were combined with errors representing 

segmentation and model errors as described earlier to generate more realistic LV shapes 

anticipated with clinical data.   

Table 2-1 Test cases for shape optimization technique 

LAD Test Cases FH (kPa) FI (kPa) S (% activity) 

Case 1 157 40 0 

Case 2 155 100 0 

Case 3 154 70 60 

Case 4 150 70 40 

Case 5 155 92 60 

LC Test Cases FH (kPa) FI (kPa) S (% activity) 

Case 1 144 75 20 

Case 2 150 100 0 

Case 3 143 71 80 

Case 4 154 46 40 

Case 5 159 127 20 

To account for stiffness uncertainties in the proposed reconstruction technique, as 

indicated earlier, shape data were generated using LV models with lower stiffness (soft 

model) and higher stiffness (stiff model) than the reference stiffness characteristics. For 

each case we generated a contracted shape using the soft model and ran it through the 

stiff model solver; we then ran a different stiff contracted shape through the soft solver.  

We present the error of the ischemic contraction FI relative to the magnitude of healthy 

contraction FH. This is because the focus of this technique is to determine the amount of 

salvageable myofiber contraction. For instance, 10kPa vs 20kPa is a 100% difference, but 

when compared to a healthy contraction of 155kPa, we see 6% contraction vs 13% 

where, in both cases, large recovery would be expected. 
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2.3 « Results » 

2.3.1 « Model Function » 

The LV biomechanical model presented in this article was previously validated in 

(Haddad & Samani, 2017a). We present in Figure 2-5 example contracted LVs for both 

the LAD and LC models. For both models FH was set to 150kPa, FI set to 50% of healthy 

contraction, and S set to 0%. This figure shows what should be expected of a realistic 

model including wall thickening in the healthy myocardium as seen in the long axis view, 

as well as wall thinning, torsion, and minimal deformation in the infarct area shown in 

the short axis section of each model.  

 

Figure 2-5. a) Finite element model of the contracted LAD model and b) Finite element 

model of the contracted LC model both under FH = 150kPa, FI = 75kPa and S = 0. 

In Figure 2-6 we again show the two models but with different contraction forces than the 

above. Here, we set FH to 142kPa, FI set to 85% of healthy contraction, and S set to 10%. 

Between both figures the shape differences are evident through visual inspection.  Results 

obtained with the data generated for the 5 cases described in the Methods are presented in 

the next section. 
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Figure 2-6. a) Finite element model of the contracted LAD model b) Finite element 

model of the contracted LAD model both under FH = 142kPa, FI = 120.7kPa and S = 

10%. 

2.3.2 « Optimization Results for LAD and LC Left Ventricles » 

Presented are the proposed technique’s optimization results obtained for the LAD and LC 

infarcted LV models for the 5 cases. Figures 2-7 and 2-8 contain the results for the LAD 

and LC models, respectively.  

 

Figure 2-7. Reconstruction results for LAD model cases with mean error reported 
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Figure 2-8. Reconstruction results for LC model cases 

As indicated in the Methods, shape data generated with “softer” and “stiffer” scenarios 

were generated in conjunction with a LAD and LC models before they were used as input 

in the proposed reconstruction algorithm. Combined in Figure 2-9 are the results 

corresponding to these models.  

 

Figure 2-9. Reconstruction results for the soft model in stiff solver (left) and stiff model 

in soft solver (right). 
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We summarize the results of the shape optimization technique in Table 2-2. It shows the 

error of the reconstruction technique for each model and stiffness individually, and then 

total error for each variable at the bottom.  

Table 2-2 Reconstruction results for the “softer” and “stiffer” models run in each other 

for the LAD model. 

 

2.4 « Discussion and Conclusions » 

For patients who suffer from AMI, imaging is a necessary step in determining the extent 

of tissue damage. Imaging modalities (e.g. CT, MRI or SPECT) can provide information 

on the location and extent of permanently damaged and salvageable myocardial tissue. 

However, they lack quantitative functional information of the myofibers themselves, 

hence may not be sufficient for deciding a proper course of treatment if follow up 

imaging is delayed. We proposed a novel technique which can use imaging in 

conjunction with a biomechanical model of the LV that provides quantitative functional 

tissue information that could potentially improve the prognosis of AMI patients. The 

acquirable information we present is the general magnitude of myofiber contraction 

forces in the healthy and ischemic regions including a state variable for non-contracting 

myofibers which can be used to predict final infarct volume.  

 

FH Error FI Error S Error 

Normal Soft/Stiff Normal Soft/Stiff Normal Soft/Stiff 

LAD 1% 12.8% 5.3% 3% 6.2% 6% 

LC 1% 9.9% 4.3% 6.9% 7.2% 10.5% 

 FH Error FI Error S Error 

Overall 

Error 
3.6% 4.9% 7.1% 
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The proposed method reconstructs these important parameters through optimizing a 

biomechanical model of the LV to best fit the contracted shape of the segmented LV of 

the patient. This technique was developed to avoid costly methods of tissue motion 

tracking (e.g. MRI tagging, MRI phase imaging) at a cost to heterogeneity. By avoiding 

this need, we make the clinically available and cost-effective CT imaging for use in 

cardiac biomechanical modelling. While currently a less popular choice in heart disease 

diagnosis due to dose considerations, CT imaging is increasing in popularity in the heart 

diagnosis field for this purpose due to advancements in perfusion imaging and fast, full, 

volumetric coverage. As such, CT imaging-based techniques can be potentially a 

clinically viable option. The technique only requires the geometry of the LV at its relaxed 

state and a contracted state with delineable infarct regions as input to find the best force 

distribution that lead to the best matching of the contracted shape. As mentioned in the 

introduction, the delineable infarct region may not be the true representation. This can be 

overcome with modelling as well, by introducing perturbations to the delineated borders 

lead to the best cost function and agreement with the total heart shape. 

This technique was tested with two in-silico models of a LV suffering AMI, including a 

LAD AMI and an LC AMI events. In the LAD model, the tissue contraction values were 

predicted within errors less than 1% for healthy tissue, 5.3% for damaged ischemic tissue, 

and 6.2% for non-contracting candidates. For the LC model, the errors were 1%, 4.3% 

and 7.2% for the healthy, damaged, and non-contracting candidates, respectively. The 

numerical experiments performed to account for tissue stiffness estimation errors relative 

to average values reported in the literature indicated that similar accuracy can be 

achieved. This implies that the sensitivity of the proposed technique to uncertainties in 

the tissue stiffness parameters is not substantial, therefore, average patient mechanical 

properties available in the literature can be used.  

With this range of error, the proposed method can be potentially used in a very interesting 

clinical applications such assessment of cardiac function recovery under various 

scenarios before deciding a proper course of treatment. For such assessment, a first step 

would be to use the reconstructed contraction forces in conjunction with estimated errors 

to predict best and worse case scenarios for patient specific functional recovery. 



48 

 

Following the pathology of MI after its onset, non-contracting myofibers identified using 

this technique can be replaced with scar tissue or removed from the model altogether with 

simulated wall thinning (Shah et al., 2013). The output of this model would give a worst-

case scenario for ejection fraction and possibly predicting potential cardiac remodeling.  

Opposite to this scenario is to assume those fibers heal along with the rest of the viable 

tissue and look at the best-case scenario. Since recovery of revascularized tissue can take 

up to a year, intermittent imaging using any major imaging modality that provides 

geometry may also have to accompany this assessment to better assess the state of 

recovery.  An interesting application of such patient specific information is to help decide 

which AMI patients should be placed on heart transplant lists and which ones need 

invasive revascularization surgery (for example, coronary artery bypass graft surgery) 

urgently. If massive necrotic damage is predicted, clinicians would be able to act sooner 

than waiting for the tissue to conform to its final shape while also saving the cost of a 

follow up imaging session.  

The average time to optimize one case using the proposed technique run on a regular I7 

computer desktop is approximately 20 minutes. This means that valuable diagnostic 

results can be generated and delivered to the physician before devising a course of action 

in a reasonable amount of time. This time does not include LV segmentation; however, 

this is not a significant limiting factor as many effective LV automatic segmentation 

methods have been developed recently (Avendi, et. al., 2016). It is noteworthy that the 

computation process can be accelerated using parallel computing, leading to availability 

of diagnostic information even in seconds. Combining the information obtained from the 

contraction parameter reconstruction with biomechanical modelling also offers the added 

benefit of computation of stress in the LV. This information could be used in other 

predictive models such as information for mechanotransduction in cardiac remodelling or 

implicate the future thickening of the LV as the LV optimizes its function over time 

(Sutton & Sharpe, 2000).  

In the proposed technique, individual-based PCrNN was utilized to accelerate the 

optimization process. This requires the patient specific geometry of the LV to develop 

and train the NN. Another potential option to avoid the step of PCrNN involves the 
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development of a population based NN where, in addition to the contraction force 

parameters, a PCA based parameterized geometry of the LV is also required as input. In 

that case a more sophisticated NN trained using a larger dataset would be required. 

Acquisition of such dataset is quite feasible as it only requires availability of numerous 

cardiac CT scans of AMI patients. 

In this in-silico study, the employed RMSE cost function optimization included an 

average cost function value of 2.5mm which accounts for segmentation and modelling 

errors and is likely to be an underestimation. To enhance the method’s performance, the 

cost function may be modified to use more image information such as wall thickness and 

simple strain estimations. This may allow a higher level of heterogeneity in our model, 

allowing for more contraction force variables. It’s unclear how much heterogeneity is 

required for clinical use as the field is still in its infancy. Coarse regional estimations like 

the models presented may be all that is required. The feasibility of very heterogenous 

contraction force reconstruction does exist. Finsberg, et. al. 2018 have recently proposed 

an adjoint gradient based method for determining the contractility in LV’s with over 1700 

contraction variables, this was possible with more resolved data provided by tissue 

motion tracking. This model however, had one myofiber per element, whereas we install 

approximately 60 myofibers per element which allowed us to explore the non-contracting 

state, a previously unexplored option which is not possible with single fiber modelling. 

With our model, the passive stiffness of the myocardial tissue which expresses itself in 

the final shape, is related to the fibers that may be extremely damaged, not just pre-set 

mechanical properties. This is a new distinction that may have prognostic value in the 

clinic. 

The proposed technique is also extendable to predict the mechanical properties of the LV. 

Using the end diastolic shape, the neural network could optimize the blood pressure with 

mechanical properties of ECM monitoring diseases such as amyloidosis (Bhupathi, 

Shalasani & Rokey, 2011). 
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Chapter 3  

3 « A Composite Material Based Neural Network for 

Tissue Mechanical Properties Estimation Toward Stage 

Assessment of Infarction » 

3.1 « Introduction » 

Acute myocardial infarction (AMI) is a product of cardiovascular disease, the leading 

cause of death worldwide [1]. For patients who have suffered AMI, prognostic medicine 

is required for treatment planning and monitoring of patients. This prognosis is variable 

among patients and depends highly on factors such as the extent of infarct and the 

residual functionality (i.e. contractility) [2]. Recent research in biomechanical modelling 

has shown the ability to model the mechanics of diseased hearts which can be used as a 

tool to enrich our knowledge on the pathophysiological changes that present themselves 

post myocardial infarction [3]. These changes include alteration of tissue mechanical 

properties in the scar region, loss of contractility in the infarct core and border regions, as 

well as remote remodeling due to new stress concentrations in the myocardium [3]. 

To obtain accurate, biomechanical model based prognostic information required in 

Chapter 2, the geometry, loading, boundary conditions, and mechanical properties must 

be personalized to the patient. Among them, personalized mechanical properties of 

healing scar tissue can be of special interest due to their potential in providing prognostic 

information to better guide the patients’ therapies [4]. An effective way to glean out 

valuable diagnostic data using cardiac mechanics models involves using them as a 

forward model within an inverse problem framework where data pertaining to a medical 

test (e.g. cardiac MRI or CT image) is inverted to obtain diagnostic data (e.g. contraction 

forces as well as personalized tissue mechanical properties). For setting up an inverse 

problem framework involving personalized mechanical parameters of healing scar tissue, 

however, poses a computational problem wherein heterogenous modelling increases the 

complexity tremendously. Commonly, mechanical properties are defined with 
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hyperelastic strain energy density functions, the most common being the 8 variable 

Holzapfel-Ogden model [5]. Clearly, 8 variables per tissue type in the model is a large 

requirement in the context of inverse problem formulation which typically involves 

hundreds, or thousands runs of the forward model before data reconstruction is made 

available.  

To reduce the complexity, a common approach is to use population-based parameters 

optimized from experimental myocardial stress vs strain data for less sensitive variables. 

An alternative is to use simplified models of the Holzapfel-Ogden equation considering 

tissue transverse isotropy [6]. These techniques are widely adopted and allow 

heterogenous modelling of various heart pathologies. One issue with this approach well 

discussed in [6] is the non-uniqueness of most hyperelastic strain energy density 

equations. While the parameter set itself allows accurate modelling, they have little value 

as biomarkers. 

Recently, another approach has been suggested to predict the mechanical properties of 

healthy and pathologic cardiac tissue which is based on composite materials. In Haddad 

& Samani, the healthy myocardium was simulated as a 4-variable construct of its micro 

constituents (myofibers, collagen, fibroblasts, and myocytes) [7]. This approach was 

successful in showing that the mechanical properties of myocardial tissue is a function of 

volume and intrinsic properties of its microconstituents. Models developed using the 

composite material approach have accurately predicted observations reported in the 

literature for both healthy and mature infarct tissue.  

This micro-to-macro approach has valuable applications for patients undergoing the 

healing stages of AMI which takes place over approximately 8 weeks where knowledge 

of the percentage of these microconstituents can be extremely valuable. For instance, 

determining whether there is high risk of rupture due to low collagen content [8]. There is 

also plenty of research on how the percentage of these micro constituents change in time 

during the healing period. Within an inverse optimization framework, a highly efficient 

function such as neural network that can predict mechanical properties based on a single 

parameter, we introduce to indicate healing stage would be very effective. Central to this 
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work is development of such function using relevant population-based data pertaining to 

microconstituents of scar tissue in various healing stages. 

Presented here, is an approach we propose to predict the mechanical properties of 

myocardial tissue ranging from healthy tissue to mature scar. We hypothesize that 

compiled literature of the micro constituents of infarct tissue in time post myocardial 

infarction can be used to predict the stage of patient specific infarct healing while also 

predicting new cardiac biomarkers. We show the concept behind developing a library of 

healing scar tissue mechanical properties for use in modelling and staging. This approach 

reduces the multivariable optimization traditionally used to obtain scar tissue mechanical 

properties to a single variable representing the stage in the MI healing process. In 

addition, the proposed approach provides estimates of patient-specific volume 

percentages of the scar tissue micro constituents which can be used as new biomarkers 

with prognostic clinical value. In this paper, preliminary whole tissue mechanical 

properties are obtained for a tissue model under uniaxial testing conditions and the 

generated predictive network is evaluated.  

3.2 « Methodology » 

3.2.1 « Overview » 

Building the mechanical property library for the scar tissue during healing process can be 

broken down into 3 steps shown in Fig 3-1. First presented is the simulated uniaxial 

testing of cardiac tissue composite material using the FE model described in 3.2.2. 

Second, is using this FE model to generate the predicted stress-strain data for time-

varying concentrations of the microconstituents as described in 3.2.3. The last step is 

building a predictive neural network allowing estimation of the mechanical properties as 

a continuous function of time during the scar formation process as described in 3.2.4. 
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Figure 3-1 Finite element composite material model of scar tissue (a); Generating time-varying stress-

strain curves of scar tissue (b); Fitting an NN for scar tissue stress-strain curve as a function of scar 

progression time (c). 

3.2.2 « Scar Tissue Model » 

The scar tissue model used for simulating uniaxial testing is a cylinder geometry built of 

hexahedral elements as shown in Fig 1a). This composite material model allows 

controlling the percentage volume of the micro constituents. In Haddad and Samani, 4 

microconstituents of collagen, myofibers, fibroblasts, and myocytes were considered to 

comprise the volume of a typical myocardial tissue. Since 95% of myocytes’ volumes are 

mitochondria, they represented the myocytes as mitochondria with known stiffness. All 

constituents were modelled with Yeoh hyperelastic strain energy density functions with 

their values reported in [7]. The myofibers were installed to longitudinally penetrate the 

tissue in the cylinder, and the rest of the micro constituents were randomly distributed 

within the tissue according to the literature.  

 To simulate tension or compression under uniaxial testing using FE modeling and 

shown visually in Fig. 3-2, one side of the cylinder was subject to a displacement 

boundary condition, while the opposite side of the cylinder is subject to a “fixed in plane” 

boundary condition where the tissue can move transverse to the tension or compression. 

To prevent rotation, two nodes were subject to x-axis symmetry while the displacement 

of another two nodes were y-axis symmetrical. The reaction force post simulation at each 
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applied strain was then obtained and divided by the true area to obtain the stress-strain 

curve.  

 

Figure 3-2 Schematic of the uniaxial finite element simulation of cardiac tissue. 

3.2.3 « Modelling Scar Healing » 

The purpose here is to generate stress-strain curves of the scar tissue model at several 

discrete time points throughout the healing process. Key for achieving this purpose is 

estimating the scar tissue microconstituents and their percentages at each time point. 

Generally, scar healing is divided into three stages, the inflammatory stage, proliferative 

stage, and maturation stage [9]. In the inflammatory stage, there is myofiber necrosis 

formation which takes place over ~7 days accompanied by edema, and collagen break 

down which allows future fibroblast migration. In the proliferative stage, fibroblasts fill 

the interstitial space depositing collagen and building the new infarct extracellular matrix 

as the collagen cross-linking increases. Finally, in the maturation stage, the fibroblast 

population decreases, and the collagen cross linking continues.  

The mechanical properties of cardiac tissue are most dependent on the percentage volume 

of collagen since it has the highest stiffness among the micro constituents. Based on the 

available literature on collagen concentration post myocardial infarction, a modified 

Fermi-Dirac function in equation 3-1 below was fit to describe the increase in collagen 

during scar healing [10-13].  
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𝐶(𝑡) =  
𝑎

1+exp [
𝑡−𝑏 

𝑐
]

+  𝑑                                                    (3-1) 

The coefficients a,b,c,d are used to provide flexibility to the fit, and C(t) is the collagen 

concentration, and t is the time. 

This factor function is shown in Fig 3-3. The myofiber percentage is known to drop 

during the inflammatory stage from a typical 67% volume in healthy tissue down to ~5% 

[7]. This was captured by a 2-term exponential function which decayed to 5% on 7 days 

and then held steady. During the inflammatory stage, edema was modelled as a random 

volume distribution of water whose concentration time curve was modelled as a 

Gaussian. Research shows that collagen cross-linking increases linearly in time post 

infarction and plateaus during the maturation stage [14]. In our model, similar to the 

approach taken in Haddad & Samani, cross-linking was expressed as a multiplication 

factor to the Yeoh hyperelastic coefficients. This factor was increased linearly throughout 

the simulation to an upper bound found through optimization in [7]. Lastly, we found 

little information on the temporally variable percentages of myocytes and fibroblasts with 

only 1 fibroblast concentration curve in the literature [15]. Due to their mechanical 

similarity and little prognostic value, the percentage volume of both microconstituents 

were combined and average mechanical properties were used; completing the temporal 

profile of the volume percentages of the microconstituents. 

The healing timeline was then discretized into 57 equally spaced time points from day 0 

to 56 or 8-weeks post myocardial infarction. The composite material model was run using 

the volume percentages at each time point to find the corresponding stress-strain curve. 

3.2.4 « Neural Network Training and Evaluation » 

Using the stress-strain curves generated from the model at discrete time points, a network 

was built to predict a continuous-time profile of stress-strain data. It is a 3-layer 

perceptron which takes the normalized healing stage time as the input, and outputs the 

stress-strain curve.  
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A preliminary evaluation of the population neural network library for scar tissue was 

conducted. Uniaxial compressive test data from [16] at day 14 post infarction was input 

to an optimization solver with our neural network training with input time, and output 

stresses at uniformly spaced strains. The stress-strain data time point that best agreed with 

the experimental data predicted the approximate location along the healing path. 

3.3 « Results » 

The results for the Fermi-Dirac fit of the experimental collagen factor increase is shown 

in Fig. 3. The curve had an R-square and RMSE values of 0.98 and 0.65, respectively. 

The volume percentages of all micro constituents during infarct healing is shown in Fig 

3-4. 

 

Figure 3-3 Collagen Fermi-Dirac factor function fit to experimental data from literature 
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Figure 3-4 Volume percentage time course of healing scar tissue broken down into i) 

inflammatory stage, ii) proliferative stage, and iii) maturation stage. 

The mechanical property results of those curves in the tissue model are presented in Fig 

3-5 which shows a surface of the change in mechanical properties in times for tensile 

uniaxial testing of healing scar tissue.  

 

Figure 3-5 Mechanical property surface throughout the healing stage of scar tissue. 
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The day 14 uniaxial test data from [16] resulted in an optimized day of 19.1 predicted 

from our trained neural network giving an error of 5.1 days. Our model also predicts a 

48.6% collagen composition, 5% myofiber density, and 46.4% combined fibroblast and 

myocyte tissue volume percentage. 

3.4 « Discussion » 

Beginning most importantly with the collagen increase factor function; from 4 separate 

labs, the data agreed quite well which motivated the fit. Although other functions could 

be considered for this fitting, the Fermi-Dirac was chosen due to its strict plateauing 

feature. Most importantly, is that from a fit obtained from 4 different result sets, an 

experimentally proven increase from a low volume of healthy collagen concentration to 

approximately 80% was captured as shown in Fig. 2b) [7]. The form of the curve also 

agrees well with the literature but is now quantitative instead of qualitative [11,17].   

The preliminary evaluation of the population neural network library is promising. Day 14 

uniaxial test data returned an estimated 19.1 days from our network. The prognostic 

significance of 5.1 days error is unknown at this stage in the study, but what can be 

highlighted is that both days 14 and 19.1 represent early stages of the proliferative phase. 

There also wasn’t enough uniaxial test data on healing scar in the literature to give 

statistical power to the error. There are improvements that can also be made to the current 

methodology which will reduce this error. The coefficient for crosslinking used here was 

based off an ad-hoc approximation from 1 study of myocardial tissue stress-strain data 

[7]. By incorporating more results into the estimation, a more accurate and population-

based estimate can be achieved. 

There are 3 main limitations in this study. The collagen factor function does not 

accurately model collagen breakdown during the inflammatory stage where the literature 

reports ~25% decrease from healthy concentration in the first 2 days [17]. The form 

factor function also acts as an absolute function whereas, realistically, the final 

concentration of collagen in each patient will be different. To address this limitation, the 

network can be modified to be a 2-variable neural network. Lastly, while reasonably 
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realistic, the functions for the edema and myofiber constituents were not based on 

experimental data like the collagen function. 

3.5 « Conclusions and Future Work » 

For accurate cardiac biomechanical models used to study myocardial infarction, it is 

important to personalize the mechanical properties of the infarct region via inverse 

optimization. We proposed here the feasibility of a mechanical property library based on 

a micro-to-macro finite element simulation and compiled literature on the constituents of 

cardiac tissue previously published. This function can be incorporated in a model 

optimization algorithm based on cardiac imaging data (e.g. shape or displacement field) 

to stage the healing of scar tissue based on its predicted time point and predict the 

constituent compositions which may be used as effective prognostic biomarkers for 

rupture and healing rate. 

Future work will be devoted to more accurate cross-linking simulation, and multiple 

models (plane, shear, and biaxial). The stress-strain curves from each model will be used 

to generate a network that will predict the Holzapfel-Ogden parameters during scar 

healing. These networks can then be evaluated with the extensive literature available to 

complement the uniaxial case for infarct tissue mechanical properties presented in this 

study.  
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Chapter 4  

4 « Effect of Cardiac Phase on CT Measured Cardiac 

Output in Healthy and Myocardial Infarcted Swine » 

4.1 « Introduction » 

Cardiac Output (CO) is an important clinical measurement that can aide in the diagnosis 

and prognosis of patients, as well as serve to validate models discussed in Chapter 2.  A 

high CO can indicate sepsis in patients whereas a low CO may indicate cardiac 

dysfunction caused by cardiovascular disease (CVD) [1,2]. It is critical for 

haemodynamic monitoring intraoperatively, and perioperatively, where it is used to 

calculate oxygen delivery. This measurement can be used in goal-directed therapy via 

optimization of CO which has shown to reduce postoperative mortality and morbidity, as 

well as improved patient outcome [3-6].  

Several opportunities exist during a patient’s stay to calculate CO. In the diagnosis of 

coronary artery disease, dynamic contrast enhanced computed tomography (DCE-CT) 

imaging techniques are well established as a non-invasive evaluation [7]. While being 

able to measure the stenosis of the artery, DCE-CT also allows for myocardial perfusion 

imaging (MPI) to assess the functional damage caused by ischemia [8] and, can non-

invasively measure CO without the need of further instrumentation or cost. 

One area of DCE-CT imaging for myocardial perfusion that is up for contention is the 

optimal cardiac phase to trigger the imaging acquisition. While some labs trigger for end 

systole, where the myocardial wall is thicker providing more perfusion information, other 

labs trigger at mid-end diastole to minimize cardiac motion improving image 

reconstruction. It is currently unknown the effect this cardiac phase selection has on the 

additional CO measurement. 

This paper examines the effect of reconstructed cardiac phase on the calculated CO in 

both healthy and myocardial infarcted pigs. Pigs were necessary as continuous collection 

of the cardiac cycle is required to reconstruct images at multiple cardiac phases; and with 
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dose considerations, was not possible in humans. Also reinvestigated is the equality of 

CO as measured by DCE-CT and manual segmentation. 

4.2 « Methodology » 

4.2.1 « Study Pool » 

Seventeen porcine imaging data sets were used in this study.  Table 4-1 shows the 

different pathological conditions of the subject prior to imaging. Myocardial infarction of 

the left anterior descending artery was induced as described in [8]. Some data sets during 

the healing time do come from the same pig, though since this is a study on DCE-CT in 

general, we did not consider this as significant. 

Table 4-1 Pathological State of Porcine Subjects for Cardiac Imaging. 

Condition of Subject Number in Study 

Healthy 4 

1 Week Post Myocardial Infarction 4 

4 Week Post Myocardial Infarction 4 

8 Week Post Myocardial Infarction 5 

 

4.2.2 « Scanning Protocol » 

Each study included the pig being anesthetized and mechanically ventilated in a supine 

position on the scanner table, before a bolus of iodinated contrast (Isovue 370) was 

injected intravenously followed by saline flush. The volume of iodinated contrast was 

typically 0.7mL per kg of the patient. Next, a 30 s cine scan of the heart was acquired 

with breath-hold using a large-coverage CT scanner (GE Healthcare Revolution) at 100 

kV voltage, 100 mA current and 280 ms gantry speed. The electrocardiogram of the pig 

was simultaneously recorded during the acquisition. DCE cardiac images were 

retrospectively reconstructed using filtered back projection at 30% to 80% of the R-R 



69 

 

intervals with a 5% phase increment. The in-plane resolution was 0.2x0.2mm and a slice 

thickness of 1.0mm.  

4.2.3 « Cardiac Output » 

4.2.3.1 « Calculating CO with DCE-CT » 

CO was first reported measurable using dye dilution by G. N. Stewart in the late 1900’s 

(9). Equation (1) which is now called the Stewart-Hamilton equation says the flow of 

blood in the body “𝑄”, commonly in litres per minute, is measurable by sampling the 

concentration of an indicator in the blood stream in time and then dividing the mass “𝑚“ 

of the indicator by the integral of this sampled concentration time curve “𝐶𝑎(𝑡)”. 

𝑄 =
𝑚

∫ 𝐶𝑎(𝑡)𝑑𝑡
             ( 1 ) 

The indicator for DCE-CT is the Iodine used as contrast media in the imaging session. 

With electrocardiogram gating (ECG), the first pass of iodine concentration can be 

measured as collection is triggered providing the necessary 𝐶𝑎(𝑡) curve. This, along with 

the known volume and concentration of iodine allows us to calculate the mass of 

indicator needed in the SH equation completing the requirements to calculate CO. 

4.2.3.2 « Cardiac Output Fitting » 

Before taking the integral of 𝐶𝑎(𝑡), typically, an idealized curve is fit to the experimental 

curve 𝐶𝑎(𝑡). This reduces error caused by noise. Many approaches have been made to 

derive an equation for C(t) based on the physiology of the cardiovascular system. Some 

treated the function 𝐶𝑎(𝑡) as the convolution of some transfer function with a probability 

density function [10, 11]. Later, Thompson et. al. first suggested that the shape of 𝐶𝑎(𝑡) 

could be described by a modified gamma variate function (MGVF) given in equation 2 

[12], this was an attractive model due to its relative simplicity. At the time, it simply 

happened to fit the curve well, and 20 years later it was derived from the physiological 

basis that the cardiovascular system was a series of mixing compartments [13]. Some labs 

have used lognormal curves to fit the function 𝐶𝑎(𝑡), however, the modified gamma 
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variate was chosen in the end due to its mass acceptance [14]. In this equation, K, 𝛼, and 

𝛽 are constants, AT is the “arrival time” of the contrast. 

𝐶𝑎(𝑡) = 𝐾(𝑡 − 𝐴𝑇)𝛼𝑒−(𝑡−𝐴𝑇)/𝛽        ( 2 ) 

Before fitting the curve, the initial Hounsfield units of the blood pool needs to be 

subtracted from the curve seen in Figure 4-1, this ensures the signal measured comes 

from the iodine contrast alone. This step of translating the signal to baseline is not 

standardized and different labs may take different approaches such as averaging the first 

few points before the contrast washes in or using only the first point. To evaluate the 

difference between the two approaches for the baseline translation; the background blood 

pool was sampled at both the ascending aorta, as well as left ventricle and the HU’s were 

compared. This was done for 5 of the imaging study data sets at phases 40%, 60%, and 

80% phase of cardiac cycle reconstruction. A paired t-test was used to evaluate the 

similarity of either the first sampled HU point or the mean of first few before the wash-in 

of contrast with the sampled baseline HU of the left ventricle. 

Based on the findings of results section 1, all subsequent CO estimates use only the first 

point to remove the blood signal. The MGVF curve C(t) was then fit using a least squares 

approach to the experimental data also removing the effect of recirculation by 

extrapolating the modified gamma variate fit to <1% of maximum amplitude. 
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Figure 4-1. An example arterial enhancement concentration curve of Iodine in HU (left) 

and the MGV fit and extrapolation after normalization (right) 

4.2.3.3 « Conversions and Sampling Location » 

The location to sample the concentration does not matter in theory, and Ludman et. al. 

[15] shown that there was less than 2.5 % error when sampling from the left ventricle, 

ascending aorta, and descending aorta. The ascending aorta was ultimately chosen due to 

the more homogenous mixing of contrast than other locations while still having a large 

area to sample, minimizing photon noise. Because CT provides HU’s, and concentration 

of contrast is required for the Stewart-Hamilton equation, it was necessary to convert HU 

into mg/mL. A previous study using the same scanner provides a conversion factor for 

concentration of Iodine and it’s respective HU [16]. This was a linear conversion factor 

with no offset of 25 (HU/(mg/ml)) for 100kVp.  

4.2.4 « Comparing the Effect of Phase » 

The CO was calculated at each phase for each imaging session totalling 187 curves. The 

mean and standard deviation were taken over all phases for each data set to get an 

estimate of intrinsic error of picking a phase. Outside of the effect of phase, there are 2 

dependant variables that can alter the estimated cardiac output; the mass of injector, and 

the integral in the denominator which we call the area under the curve (AUC). Since the 

mass of indicator has relatively little error as the concentration and volume are very 
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exact, most variability comes from the AUC’s. The variability of these with phase are 

also calculated to see their effect on CO variability.  

To see if there was any effect from the state of the pig heart post myocardial infarction, 

we also separated each pig by health, and compared the CO errors for the select phases of 

40%, 60% and 80%. 

4.2.5 « Manual Segmentation Comparison » 

The CO as predicted from DCE-CT was also compared to the manual estimation 

calculated from segmentation of blood pool volumes and estimating cardiac output as 

heart rate times stroke volume which is end diastolic volume (EDV) minus end systolic 

volume (ESV) as shown in equation (3). 

𝐶𝑂 = (𝐸𝐷𝑉 − 𝐸𝑆𝑉) ∗ 𝐻𝑅      ( 3 ) 

Previously, [15] compared the agreement between DCE predicted cardiac output and 

manual and concluded they were not similar with a standard deviation between the two of 

1.22L/min. This experiment was done on scanners that are now out of circulation, so we 

re-examined this study with the new state of the art scanner. To measure EDV and ESV, 

the blood pool of the CT images were manually delineated in 3D Slicer at 80% and 30% 

of the R-R interval representing the ED and ES states of the heart [17]. The blood was 

first threshold segmented, and then the papillary muscles was manually segmented to be 

included in the volume calculation. The delineation of blood from atrium to ventricle at 

the atrioventricular junction was chosen as planar cut at the mitral valve visible in both 

ED and ES. A similar planar cut was used at the aortic valve. 

We ran a standard t-test to compare the similarity between both the manual and DCE 

predicted CO’s. 
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4.3 « Results » 

4.3.1 « Cardiac Output Fitting » 

The paired t-test for both the single point baseline and mean point baseline when sampled 

from the ascending aorta were both nonsignificant with p-values of 0.67 and 0.45 when 

compared with the ventricle values. The mean sum of squared error (MSSE) using the 

single baseline point to the ventricle was 25.7 HU squared vs 40.9 HU squared using the 

mean, which suggests that the first baseline point is more representative of the true 

background HU value vs the mean baseline. The qualitative effect of averaging the first 

few baseline points vs just the non-contrast initial point is shown below in Figure 4-2. 

The quantitative effect on CO is shown in the bottom row of the figure for an example 

case. We noticed that using the first point as the baseline reduced error across phases for 

all studies. 

 

Figure 4-2 Effect of averaging the first few baseline points (left) and using just the non-

contrast point (right) for removing blood signal and subsequent effect on CO estimation 

(below). 
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4.3.2 « CO using DCE as a Function of Cardiac Phase » 

Figure 4-3 shows the variation of cardiac output values at all phases for all 17 pig studies. 

Due to the proposed protocol of only using the first data point to remove the effect of 

blood, and robustness of MGV fitting shown above, there are no obvious trends in CO 

prediction as we move from ES to ED. Since the major determinant in CO is the AUC, 

we also plot these values. Again, no trends exist amongst phase. The mean standard 

deviation of CO due to phase selection is 0.127L/min. The deviation of these 

measurements was approximately 40% compared to the mean. This contrasts the standard 

deviation of the AUC’s with respect to phase which was 30% compared to the mean 

STD. 

 

Figure 4-3 Cardiac Output predictions for all subjects at all phases (top) and AUC’s for 

all subjects at all phases (bottom). 

Figure 4-4 shows the CO variability for 3 phases separated by state of heart health. If 

there is no effect on heart health, it is expected that the estimates remain relatively 

constant at each phase as observed above. 
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Figure 4-4 Influence of state of infarct healing and cardiac output as a function of phase 

for 40%, 60% and 80%. 

4.3.3 « Comparison of CO Measurements from DCE and Manual 

Segmentation » 

First included are example segmentations of the blood pool for end diastole and end 

systole shown in figure 4-5. 

 

 

 

 

 

 

Figure 4-5 Example segmentations of the LV blood pool at ED (left) and ES 

(right). 
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The manual estimate of CO and estimate from indicator dilution theory were shown to be 

significantly different with a p-value less than <0.0001. The manually estimated CO was 

lower than indicator dilution estimated CO with a mean difference between estimates 

0.94L/min ±0.72L/min shown in Figure 4-6. 

 

Figure 4-6 Comparison of manual vs indicator dilution CO’s. 

4.4 « Discussion » 

4.4.1 « Cardiac Output Fitting » 

From inspection of Figure 4-3, the effect of averaging the first few points have increased 

the disagreement between all experimental curves, this leads to larger variability in the 

AUC’s which shows in the predicted cardiac outputs. Using only the first sampled point 

was shown to be better when comparing the MSSE of both methods and greatly reduce 

the variability in CO which leads to a better estimate of the CO error. It’s also important 

to note that the MGV fitting is quite robust to outliers seen on the right side of Figure 4-3 

where, though large variability near ES is still seen, the resulting fits are still quite close. 

This shows that a big factor when estimating CO is the first step of blood signal removal. 

As for the cause of this variability; when the contrast is entering the heart, the 

disagreement seen in the wash-in stage in the ascending aorta is in fact caused by motion 

artifacts. As the bolus of iodine contrast travels towards the heart, it acts as a bright object 
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moving through the body. This motion creates artefacts in the form of hyper and hypo-

enhancement streaks as visible in Figure 4-7 which affects the region of interest when 

sampling the average HU. Near systole, when the myocardium is also moving, the effects 

of this motion are exacerbated leading to larger discrepancies in HU prediction. There 

may also be influences from photon noise and beam hardening as well. 

 

Figure 4-7 Artifacts caused during CT reconstruction with ES shown in a), and ED 

shown in b). 

4.4.2 « Cardiac Phase » 

There was no phase dependency on calculated cardiac output via indicator dilution 

methods with different phases of reconstruction. The CO as measured by DCE was 

highly reproducible across the 30%-80% R-R interval range where clinical cardiac 

studies are triggered. There was an intrinsic phase error that should be considered when 

reporting CO values with DCE-CT which is 0.128L/min. It’s interesting to note that the 

AUC error was smaller than the error of the CO value itself. This shows that though the 

AUC is more stable, after using it in the SH equation, the error gets amplified due to it 

residing in the denominator. The cause of error amplification in CO is due to the overall 

magnitude range of cardiac output. The increase in error when we examine cardiac output 

is due to the magnitude of the value. A large AUC will lead to a smaller CO due to their 

inverse proportionality, which leads to smaller variability. Whereas a small AUC, can 

lead to a larger CO prediction and amplified error. This observation holds when the CO is 
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predicted from the same subject since the mass of the indicator is presumably the same 

amount. As the mass changes, we introduce a new variable which changes this trend. 

The reproducibility of CO at different timepoints post infarction was not influenced. This 

is important since mechanically speaking a damaged heart produces more irregular 

mixing which may have led to poor sampling. Based on sampling at the ascending aorta, 

this showed no influence across phases. 

4.4.3 « Manual CO Comparison» 

There was a discrepancy between manually predicted CO, and CO predicted by indicator 

dilution having a mean difference of 0.94L/min ±0.72L/min. This contrasts Ludman’s 

work where the mean value was 0.079 ±1.22L/min. There are two discussion points about 

the disagreement of findings relating to this previous study.  

First, in [15], the slice thickness was 1cm vs our 2.5mm interpolated to 1mm. It’s likely 

that with such few slices in [15], the LV volumes were overestimated which made the 

mean zero. With new scanner accuracy, our findings suggest that there is a bias of 0.94 

L/min between both methods. However, the amount of data required to reconstruct a CT 

image is hard set. This makes capturing the heart at ES near impossible given the time the 

heart is fully contracted. It’s likely the data at ES is overlapped with systolic contraction 

and start diastole. These influences make it difficult to delineate the true LV blood pool 

wall and likely always lead to overestimations of the ESV, reducing manual CO 

estimates. If the true volume was possible, presumably that bias would decrease to zero. 

To note, it’s likely all newer scanners would maintain this bias; a unitless conversion 

factor from manual to DCE-CT may close the gap between both methods. 

Second, we note that our manual to DCE-CT difference standard deviations have dropped 

[15] by 0.5L/min. Of course, this can never drop to zero given the intrinsic limitations in 

CT, and manually delineating the blood pool CT images. For instance, inter/intraobserver 

error, and incorrect triggering due to heart rate variability of the patient during imaging. 

This is encouraging as with newer technology; we are reaching a closer agreement 

between the two methods. 
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4.5 « Conclusions » 

The accuracy of CO in the clinic can be vital to patient care and treatment. We examined 

the effect of cardiac phase reconstruction when CO is predicted using DCE-CT in healthy 

and infarcted myocardial swine. We noted no phase dependence on CO in either healthy 

or infarcted swine, there was however an intrinsic phase error of 0.128L/min. Due to the 

nature of the Stewart-Hamilton equation, and error of CO using this equation, we note 

that larger CO values have a larger error which may be useful when interpreting results 

from DCE-CT. 

Towards a more standardized protocol for measuring CO using CT: Only the initial point 

should be used to remove the HU caused by blood. Subsequent points that may appear as 

“noise” are in fact motion artifacts affecting intensity caused by the movement of a bright 

bolus of contrast into the image plane.  

Lastly, we note that the gap is closing between the agreement of manually estimated 

cardiac output, and indicator dilution methods in CT.  

« References » 

1. Vincent, J. L. (2008). Understanding cardiac output. Critical Care, 12(4), 12–14.  

2. https://www.ncbi.nlm.nih.gov/books/NBK470455/ 

3. Saugel, B., Cecconi, M., Wagner, J. Y., & Reuter, D. A. (2015). Noninvasive 

continuous cardiac output monitoring in perioperative and intensive care medicine. 

British Journal of Anaesthesia, 114(4), 562–575.  

4. Grocott, M. P. W., Dushianthan, A., Hamilton, M. A., Mythen, M. G., Harrison, 

D., & Rowan, K. (2013). Perioperative increase in global blood flow to explicit defined 

goals and outcomes after surgery: A cochrane systematic review. British Journal of 

Anaesthesia, 111(4), 535–548.  

5. Cecconi, M., Corredor, C., Arulkumaran, N., Abuella, G., Ball, J., Grounds, R. 

M., … Rhodes, A. (2013). Clinical review: Goal-directed therapy-what is the evidence in 

surgical patients? The effect on different risk groups. Critical Care (London, England), 

17(2), 209.  



80 

 

6. Lilot, M., Bellon, A., Gueugnon, M., Laplace, M. C., Baffeleuf, B., Hacquard, P., 

… Piriou, V. (2018). Comparison of cardiac output optimization with an automated 

closed-loop goal-directed fluid therapy versus non standardized manual fluid 

administration during elective abdominal surgery: first prospective randomized controlled 

trial. Journal of Clinical Monitoring and Computing, 32(6), 993–1003.  

7. Varga-Szemes, A., Meinel, F. G., De Cecco, C. N., Fuller, S. R., Bayer, R. R., & 

Joseph Schoepf, U. (2015). CT Myocardial Perfusion Imaging. American Journal of 

Roentgenology, 204(3), 487–497.  

8. So, A., Wisenberg, G., Teefy, P., Yadegari, A., Bagur, R., Hadway, J., … Lee, T. 

Y. (2018). Functional CT assessment of extravascular contrast distribution volume and 

myocardial perfusion in acute myocardial infarction. International Journal of 

Cardiology, 266, 15–23.  

9. Stewart, G. N. (1891). Researches on the Circulation Time and on the Influences 

Which Affect it. American Journal of Physiology.  

10. Zierler, K. (2000). Indicator dilution methods for measuring blood flow, volume, 

and other properties of biological systems: a brief history and memoir. Annals of 

Biomedical Engineering, 28(8), 836–848.  

11. Stephenson, J. L. (1958). Theory of Measurement of Blood Flow by Dye Dilution 

Technique. IRE Transactions on Medical Electronics, PGME-12, 82–88.  

12. THOMPSON, H. K., STARMER, C. F., WHALEN, R. E., & MCINTOSH, H. D. 

(1964). Indicator Transit Time Considered as a Gamma Variate. Circulation Research, 

14(6), 502–515.  

13. Davenport, R. (1983). The Derivation of the Gamma-Variate Relationship for 

Tracer Dilution Curves, 24(10), 945–949. 

14. Band, D. M., Linton, R. A. F., O’Brien, T. K., Jonas, M. M., & Linton, N. W. F. 

(1997). The shape of indicator dilution curves used for cardiac output measurement in 

man. Journal of Physiology, 498(1), 225–229.  

15. Ludman, P. F., Coats, A. J. S., Poole-Wilson, P. A., & Rees, R. S. O. (1993). 

Measurement accuracy of cardiac output in humans: Indicator-dilution technique versus 

geometric analysis by ultrafast computed tomography. Journal of the American College 

of Cardiology, 21(6), 1482–1489.  



81 

 

16. So, A., Imai, Y., Nett, B., Jackson, J., Nett, L., Hsieh, J., … Lee, T. Y. (2016). 

Technical Note: Evaluation of a 160-mm/256-row CT scanner for whole-heart 

quantitative myocardial perfusion imaging. Medical Physics, 43(8), 4821–4832.  

17. 3D Slicer. http://www.slicer.org. Accessed May 1st, 2018 

http://www.slicer.org/


82 

 

Chapter 5  

5 « Conclusions and Future Work » 

5.1 « Conclusions » 

In this thesis, techniques were presented to predict new non-invasive biomarkers, and risk 

factors for patients with myocardial infarction were developed using a biomechanical 

model of the left ventricle and cardiac tissue. Also investigated was when to calculate 

cardiac output which will be used as a validation metric in the future. The first technique 

was developed using a novel modeling approach to characterize myofiber contraction 

through estimating contraction forces of both healthy and different types of damaged 

cardiac tissue. The second developed technique utilized development of a library of scar 

cardiac tissue at various healing stages. It aimed at efficient determination of staging of 

scar healing and providing an estimate of collagen concentration in the tissue non-

invasively. Lastly, to prepare this study for an in-vivo cardiac function assessment, 

accuracy of in-vivo validation technique to predict ejection fraction and cardiac output 

was conducted. This study revealed a necessity to change the methodology of state-of-

the-art indicator dilution using contrast enhanced CT. Summaries with emphasis on 

application are provided below for Chapters 2, 3, and 4 of the thesis. 

5.2 « Chapter 2 » 

A novel method to predict contraction force variables in an acute myocardial infarct LV 

was developed. The method was developed based on an inverse problem framework 

where the LV model biomechanical model was used as the forward model. The inverse 

problem solution was founded on shape optimization where the biomechanical model is 

iteratively fed a set of contraction force parameters corresponding to healthy and 

ischemic cardiac tissue and resulting model shape is compared with the segmented shape 

obtained from medical imaging until the model and segmented LV shapes reach 

maximum similarity. As a proof of concept, the accuracy of this technique was evaluated 

using a 3-region heterogenous model. The contraction forces were reconstructed within 

errors of only 6%. These results are encouraging, hence justify developing a clinical 

study involving actual human or animal LV geometry. In the context of inverse problem 
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solution, forward biomechanical models are run tens or even thousands of times before a 

reliable solution can be found. As such, utilizing full biomechanical models are 

computationally expensive within such frameworks. To reduce the computation time, a 

reduced LV biomechanical model was developed using principal component analysis 

(PCA) in conjunction with neural network. The neural network was trained using data 

generated using full FE based LV models before applying PCA to reduce the FE solution 

dimensions which is necessary for training the network. To our knowledge this is the first 

neural network based reduced biomechanical model of the LV.  

There are many benefits to the knowledge of contraction forces in the LV. They can 

define how damaged the myofibers are. An interesting feature in our model is the 

introduction of a contractility variable which represents the percentage of non-contracting 

fibers within ischemic tissue. These fibers may be either hibernating or necrotic which 

allows for a predictive healing range of the LV for clinical use. This chapter also offers 

the first technique of contraction force reconstruction that is CT compatible. This opens 

the possibility of this novel use of the CT imaging modality for cardiac mechanics 

assessment. Such assessment typically requires imaging modalities with tissue motions 

tracking capability (e.g. MRI).  

5.3 « Chapter 3 » 

During the healing stages post myocardial infarction, the mechanics of the infarct region 

are extremely important as they govern whether the LV will burst. The mechanics of 

infarct region also play a significant role in accurate patient-specific cardiac 

biomechanical modelling directly effecting stress predictions. Such modelling can 

become quite complex when tuning multivariable heterogenous mechanical properties to 

each patient. To simplify the tuning process while also providing value to the clinic. A 

scar tissue network which predicts the healing mechanical properties of scar was 

developed. This network was built from a micro constituent cardiac tissue model. We 

compiled all available literature to model the increase in collagen, cross-linking, 

myofibers and cells in time, and fed the single time variable to output LV tissue 

mechanical properties. Interesting to note, is that this model linked 6 separate studies 

together in a coherent understanding of collagen increase in infarcted tissue. A primary 
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test of our mechanical model to predict the stage of healing of infarct tissue was 

conducted with moderate accuracy. As discussed in the future work, this accuracy can be 

improved. The methodology introduced in this chapter offers a bridge between 

quantitative data of cardiac tissue microconstituents and tissue hyperelastic strain energy 

density functions.  

5.4 « Chapter 4 » 

Investigated was the effect of image reconstruction phase of cardiac output predicted by 

indicator dilution using DCE-CT. The primary use of this knowledge in relation to the 

thesis was to establish the correct measure of cardiac output which can predict ejection 

fraction in-vivo without using error prone segmentation. State of the art measurement 

techniques were used to collect the data on both healthy and infarcted pigs. While there 

was no dependence on phase or cardiac health, new information on error and novel 

relationships was found. Our results indicate that larger cardiac outputs from indicator 

dilution have more error than smaller ones. A relationship between heart rate and AUC 

was suggested based on the data obtained in the study. The findings in this chapter justify 

a study into this novel relationship aiming at developing a simple way for real-time 

estimation of cardiac output intraoperatively and perioperatively.   

Also investigated and proposed, is a change to methodology for indicator dilution 

techniques. A necessary step is removing the background signal of the blood. We propose 

to only use the first sampled time point to remove the background as opposed to 

averaging which increased the error of estimated cardiac output and introduced 

interference caused by motion artifacts.  

5.5 « Future Work » 

In this thesis, techniques were presented to improve the predictive prognosis of patients 

who suffer from myocardial infarction. The techniques involve the definition of new 

variables that help quantify the damage, as well as state of healing of infarct tissue. 

Results obtained based on these developed techniques are encouraging and justify future 

study of in-vivo LVs that have follow up imaging sessions post myocardial infarction. 
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There, both techniques introduced in Chapters 2 and 3 could be used in the early imaging 

to define the damage, and then compared with the state of the healed left ventricle later.  

5.5.1 « Left Ventricle Improvements » 

The left ventricle model can be improved in several ways. The activation of myofiber 

contraction in the model is currently set to reach its maximum contraction linearly which 

only allows it to agree with the end systolic state. While in Chapter 2, this proved to be 

enough to characterize the damage, if more phases of the cardiac cycle are used (for 

instance in MRI where ionizing energy is not a concern); modelling the fiber contraction 

to match physiological force-time curves would allow multiple phases to be used in the 

shape optimization technique and likely improve accuracy. 

Due to image artifacts, damaged cardiac tissue as visualized in medical images may not 

be the true geometric representation of the damaged region. A study into shape 

perturbation functions to change the geometry of the damaged region in question should 

be done. If a modified geometry shows a better fit to the cardiac motion and shape, it may 

suggest that the modified geometry represents a better estimate of the tissue extent of 

damage. A study to increase the heterogeneity of the LV is also warranted. 

To obtain accurate stresses and contraction forces in the LV tissue it is important to use 

the LV reference geometry which corresponds to stress-free condition. This is commonly 

done by using invasive catheterization to measure the pressure in the heart, and within an 

inverse problem formula, determine the unloaded geometry that best agrees with the 

loaded pressure post deformation. This catherization is costly and associated with health 

risks, hence it could be replaced by a non-invasive inverse problem-based technique. The 

proposed technique involves computational assessment of the LV shape throughout the 

diastolic cycle after dimension reduction using PCA. This dimension reduction makes 

possible using extrapolation to obtain the unloaded LV geometry. 

5.5.2 « Scar network improvements » 

Currently, the scar model presents a uniaxial test simulation. This alone would not suffice 

to define cardiac tissue which typically presents in a simplified manner as transverse 
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isotropic. As discussed in Chapter 3, different simulations of biaxial, plane and shear tests 

should also be carried out to fully characterize healing tissue and compared with the 

literature. The concept of this network should also be used to study cardiomyopathy 

where the left ventricle stiffens over time. If a network that goes from healthy tissue, to 

progressively stiffer by increasing collagen and cross-linking, this stiffness increase 

information may be used in the clinic as an early sign of heart failure due to remote 

remodelling of cardiac tissue. 
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