
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

6-17-2020 1:00 PM

Investigating an Approach to Integrating Computational Thinking Investigating an Approach to Integrating Computational Thinking

into an Undergraduate Calculus Course into an Undergraduate Calculus Course

Erin Clements, The University of Western Ontario

Supervisor: Gadanidis, George, The University of Western Ontario

Co-Supervisor: Namukasa, Immaculate, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Education

© Erin Clements 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Higher Education Commons, and the Science and Mathematics Education Commons

Recommended Citation Recommended Citation
Clements, Erin, "Investigating an Approach to Integrating Computational Thinking into an Undergraduate
Calculus Course" (2020). Electronic Thesis and Dissertation Repository. 7043.
https://ir.lib.uwo.ca/etd/7043

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7043&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1245?utm_source=ir.lib.uwo.ca%2Fetd%2F7043&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=ir.lib.uwo.ca%2Fetd%2F7043&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7043?utm_source=ir.lib.uwo.ca%2Fetd%2F7043&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

ii

Abstract

Computational thinking can be conceptualized as patterns of thinking which align with

certain fundamental computer science processes. While this algorithmic way of thinking has

always been integral to computer science, it has recently gained momentum as a valuable

approach to problem solving in a wide variety of contexts. Education researchers highlight

the potential of computational thinking to transform, enrich, and revitalize teaching and

learning experiences, by providing a systematic framework for analysis and enabling

powerful computational tools to be incorporated to further enhance problem-solving

activities. Research suggests that in order to maximize the affordances of computational

thinking, it should be integrated into all subjects, from primary to tertiary, in meaningful and

subject-specific ways. However, due to persistent theoretical and practical barriers,

comprehensive integration of computational thinking into school and university curricula has

not yet been achieved. One particularly strong obstacle identified in the literature is the lack

of practical resources detailing how to effectively incorporate computational thinking into

subjects beyond computer science. Using a case study research design with over 1000

participants, my project investigated an approach to integrating computational thinking into a

first-year calculus course at McMaster University. Students engaged in computational

thinking by working on computer coding activities developed to complement the

mathematical content taught in the course. Following each set of activities, students

responded to prompts designed to determine: (1) how students’ conceptual understanding of

calculus concepts changes in response to working on problem-solving and mathematical

modelling activities which incorporate computational thinking, and (2) how students’

learning experiences are transformed when they explore calculus concepts, ideas and

techniques using computational tools and models. A qualitative content analysis of these

responses revealed that exploring calculus concepts with code modified students’ perceptions

of mathematics, enhanced their mathematical learning experiences, and offered unique

coding affordances. Further analyzing the data using a literacy framework helped situate the

results of this study within the broader context of a computational literacy. This research

augments the ongoing project, Computational Thinking in Mathematics Education, by

iii

providing insights and rich feedback on an approach to designing and integrating coding

activities into a tertiary mathematics curriculum.

Keywords

Computational thinking, tertiary mathematics, computational literacy, calculus, authentic

(real-life) applications, coding, modelling.

iv

Summary for Lay Audience

Computational thinking describes a collection of thinking patterns and problem-solving

strategies which are common in computer science. Recently, education researchers have

suggested that this algorithmic way of thinking has the potential to transform, enrich, and

revitalize teaching and learning experiences in a wide variety of disciplines. Despite this

recognition, persistent theoretical and practical barriers have prevented its widespread

integration into school and university curricula. The current study investigated an approach

to integrating computer coding activities, which encourage and support computational

thinking, into a first-year calculus course at McMaster University. An analysis of students’

feedback revealed that exploring calculus concepts with computer code modified their

perceptions of mathematics as a discipline, enhanced their mathematical learning

experiences, and presented unique opportunities to interact with mathematical concepts in

novel ways. This study provides fresh insights into an approach to designing and integrating

coding activities into a tertiary mathematics curriculum, augmenting on-going research

projects in this area.

v

Dedication

I would like to dedicate this work to my mom, for demonstrating an unparalleled work ethic

throughout my life, and teaching me the importance of resilience.

And to my husband, Chris, and daughter, Sophie, for always believing in me, putting things

into perspective, and motivating me to dream big.

vi

Acknowledgments

First and foremost, I would like to thank my supervisor, George Gadanidis, for providing me

with the opportunity to expand my perspective of mathematics education and inspiring me to

(finally!) learn how to code. Thank you for accommodating my busy life schedule, providing

consistent feedback, and supporting me through the most difficult times in my academic

career. And to my co-supervisor, Immaculate, thank you for providing valuable feedback and

encouragement along this pathway—it was greatly appreciated!

I would like to thank the Mathematics and Statistics Department at McMaster University for

their continuous support of my research activities on campus and for always accommodating

my schedule at Western. This research would not have been possible without the full support

and openness to innovation in mathematics education present in our department.

I would also like to give a huge thanks to the fall 2018 Math 1LS3 students, who provided

rich, valuable feedback throughout this entire research project. And on a larger scale, thank

you to all of my students, who bring joy, laughter, and sometimes tears into our teaching and

learning experiences and consistently motivate me to improve mathematics education.

Teaching a course is never the same twice and I will always value the fresh perspective and

enthusiasm my students bring into my professional life.

And finally, my most heartfelt thank you goes to my dear friend Miroslav Lovric. Your

encouragement, patience, and understanding have been immeasurable (in any space)

throughout the 20+ years we’ve known each other. Thank you for your consistent faith in me,

and your unwavering support throughout the better part of my life.

vii

Table of Contents

Abstract ... ii	

Summary for Lay Audience ... iv	

Dedication ... v	

Acknowledgments .. vi	

Table of Contents .. vii	

List of Figures .. xi	

List of Appendices ... xiii	

Chapter 1 ... 1	

1	 Introduction .. 1	

1.1	 Computational Thinking ... 1	

1.2	 Key Terms ... 2	

1.3	 Purpose of the Current Study .. 3	

1.4	 Research Questions ... 5	

1.5	 Research Design .. 5	

1.6	 Methodology and Theoretical Framework .. 6	

1.7	 Significance of the Study .. 6	

1.8	 Limitations .. 7	

1.9	 Summary ... 7	

Chapter 2 ... 9	

2	 Review of the Literature .. 9	

2.1	 Computational Thinking ... 9	

2.1.1	 Example: Intermediate Value Theorem .. 11	

2.2	 Value of Computational Thinking .. 14	

2.3	 Computational Thinking Affordances in Mathematics Education 16	

viii

2.4	 Brief History of Computational Thinking and Its Role in Education 21	

2.5	 Current State of Computational Thinking in School and University Curricula 23	

2.6	 Barriers to Integrating Computational Thinking into School and University
Curricula ... 26	

2.7	 Recent Theoretical and Practical Advancements .. 31	

2.8	 Summary ... 33	

Chapter 3 ... 34	

3	 Methodology .. 34	

3.1	 Research Questions ... 34	

3.2	 Research Design .. 35	

3.3	 Theoretical Framework ... 35	

3.4	 Participants and Setting ... 35	

3.5	 Intervention ... 37	

3.6	 Data Collection ... 39	

3.7	 Content Analysis ... 41	

3.8	 Computational Literacy Framework ... 44	

3.9	 Trustworthiness of Study .. 45	

3.10	Summary ... 46	

Chapter 4 ... 47	

4	 Results .. 47	

4.1	 Modified Perceptions of Mathematics .. 48	

4.1.1	 Broader, More Representative Perspective of the Field of Mathematics . 49	

4.1.2	 Enabled Meaningful, Authentic Applications to be Incorporated into
Course Activities ... 50	

4.1.3	 Illustrated the Relevance and Value of Mathematical Concepts 51	

4.2	 Enhanced Mathematics Learning Experiences ... 53	

ix

4.2.1	 Interactive Learning Experiences with Immediate Feedback Provided
Opportunities to Explore, Experiment, and Play with Mathematics 53	

4.2.2	 Dynamic Visualizations .. 54	

4.2.3	 Transformed Affective Learning Experiences .. 55	

4.2.4	 Tangible Feel .. 57	

4.2.5	 New Approach, Different Perspective .. 58	

4.2.6	 Accommodated Various Learning Styles ... 59	

4.3	 Unique Coding Affordances ... 60	

4.3.1	 Elevated Problem-Solving Capabilities Beyond Traditional Limits 60	

4.3.2	 Problem Solving Became More Efficient, Less Tedious 61	

4.3.3	 Offered Unique Advantages Over Ready-Made Applications 62	

4.3.4	 Physical Coding Mechanics Provided Numerous Benefits 63	

4.4	 Summary ... 65	

Chapter 5 ... 66	

5	 Analysis .. 66	

5.1	 Remediation .. 68	

5.1.1	 Advantages of a Computational Representational System 68	

5.1.2	 Example: Euler’s Method ... 69	

5.2	 Reformulation ... 72	

5.2.1	 Example: Riemann Sums .. 73	

5.2.2	 Affordances of Reformulation .. 77	

5.3	 Reorganization .. 78	

5.4	 Revitalization .. 81	

5.4.1	 Learning .. 81	

5.4.2	 Teaching .. 82	

5.5	 The Acquisition of a New Literacy is a Massive Social and Cultural
Accomplishment ... 83	

x

5.6	 Limitations of a Computational Approach ... 85	

5.7	 Summary ... 87	

Chapter 6 ... 88	

6	 Conclusion ... 88	

6.1	 Current Study .. 88	

6.2	 Results ... 89	

6.3	 Analysis... 90	

6.4	 Limitations of a Computational Representation ... 92	

6.5	 Limitations of the Current Study .. 94	

6.6	 Suggestions for Future Research .. 95	

6.7	 Summary ... 97	

References ... 99	

Appendices .. 104	

Curriculum Vitae .. 128	

xi

List of Figures

Figure 1: Illustration of the Intermediate Value Theorem. ... 11	

Figure 2: The equation e! = 5x+ 10 has a solution between 3 and 4. 12	

Figure 3: Abstraction of the Intermediate Value Theorem. .. 13	

Figure 4: Automation of the Intermediate Value Theorem. ... 13	

Figure 5: Automation of the Intermediate Value Theorem. Refining the interval on which the

equation has a solution. ... 14	

Figure 6: Screenshot of the Jupyter notebook integrated development environment. 38	

Figure 7: Screenshot of childsmath survey and assessment tool. ... 39	

Figure 8: Screenshot of the coding framework in NVivo. .. 43	

Figure 9: Results of qualitative content analysis. ... 48	

Figure 10: diSessa's (2018) literacy framework. .. 66	

Figure 11: Mapping categories from Results chapter to diSessa’s (2018) principles. 68	

Figure 12: Identifying a pattern in the solution obtained using Euler’s method. Note: An

insufficient number of steps suggests a realistically unsustainable exponential growth. 71	

Figure 13: Identifying a pattern in the solution obtained using Euler’s method. Note:

Logistical (limited growth) pattern is revealed only after the method is run with a large

number of steps (and thus over a longer period of time). ... 72	

Figure 14: Shaded is the region bounded by the graph of f(x) = x! and the horizontal axis,

defined over the finite interval [0,2]. The area of this region is determined by evaluating the

definite integral x!dx!
! 74	

xii

Figure 15: The sums of the areas of approximating rectangles are used to

approximate x!dx!
! . The figure on the left illustrates the approximating rectangles obtained

using left-endpoints; the figure on the right illustrates the approximating rectangles obtained

using right-endpoints. ... 75	

Figure 16: Python code for computing the left and right Riemann sums. (a) Using 4

rectangles (b) Using 4000 rectangles. Note that the command “sum” accomplishes the work

of an entire loop, by adding the areas of the rectangles. Comparing with the output shown in

(a), we see how, when 4000 rectangles are used (instead of 4), the two sums are very close to

one another. ... 76	

Figure 17: Basic Riemann sum code from Figure 16 modified to estimate the volume of the

solid obtained by rotating the region bounded by f(x) = x!, y = 0, x = 0, and x = 2 about

the x-axis. .. 78	

Figure 18: By modifying the base code for Euler’s method, we can approximate solutions of

a system of two differential equations. As previously, Euler’s method is accomplished in one

loop (left). The code outputs approximate solution curves for each of the functions (right). 80	

xiii

List of Appendices

Appendix A: Letter of Information ... 104	

Appendix B: Developing Computer Coding Activities for Math 1LS3 107	

Appendix C: Computer Lab 3 ... 111	

Appendix D: Survey Questions .. 123	

1

Chapter 1

1 Introduction

The present study investigates an approach to integrating computational thinking into an

undergraduate calculus course at McMaster University. In particular, using a case study

research design, this project focuses on how students’ conceptual understanding of

calculus concepts changes when they engage in computational thinking activities, and

how their learning experience transforms when these activities are integrated into their

mathematical explorations, problem solving and modelling. This study has the potential

to contribute to research aimed at exploring initiatives in, and affordances of,

computational thinking in undergraduate mathematics education.

1.1 Computational Thinking

Computational thinking can be characterized as a systematic way of thinking about,

exploring, analyzing, and—if feasible—formulating solutions to a wide range of

problems. It involves abstracting key features of a problem and reformulating it so that a

solution can be computed as an algorithm (i.e., automated). While not inextricably linked

to computers, as the adjective “computational” might suggest, computational thinking

encompasses a collection of thinking patterns and problem-solving strategies which align

with certain computer programming processes and techniques.

The usefulness of computational thinking has been widely recognized in the field of

computer science, where the ideas are directly applied to programming; however, more

recently, attention has turned toward the potential of computational thinking to enhance

logical reasoning skills and enrich problem-solving experiences in a diverse range of

contexts. To date, computational thinking has facilitated and innovated research in nearly

all disciplines, where it has been used to generate new knowledge and investigate

questions in ways inconceivable before its implementation (Bundy, 2007). Yadav,

Mayfield, Zhou, Hambrusch, and Korb (2014) note the pervasiveness of computational

thinking in the present era and assert that the principles of computing—in particular,

2

computational thinking—“influence every aspect of our lives, from shopping with loyalty

cards to conducting scientific research” (p. 5:1).

Research in education has identified a vast set of competencies—applicable across

subjects, contexts, and disciplines—that could be acquired by actively engaging with

computational thinking at all levels, from kindergarten to university, and beyond.

Furthermore, computational thinking affordances have the potential to influence, enrich,

and revitalize learners’ experiences in unique and transformative ways. Despite this

recognition, comprehensive integration of computational thinking into school and

university curricula has not yet been realized. One particularly strong barrier, frequently

identified in the literature, is the lack of practical approaches, along with research-based

evidence, which are needed to effectively incorporate computational thinking into

classroom instruction, particularly outside of computer science courses.

1.2 Key Terms

I defined computational thinking in the previous section. Here I include its brief

characterization, to contrast with other key terms used throughout this thesis.

Computational thinking – a collection of thinking patterns, tools, and strategies which

parallel fundamental computer programming concepts and processes.

Computational modelling – adopting computational thinking strategies to reason about,

explore, analyze and solve problems, which involves reformulating the problem so that it

may be remediated with computer code.

Computer coding/computer programming – using a programming language (e.g.,

Python 3) and a computer-based coding environment (e.g., Jupyter notebook) to represent

key features of a problem, and designing structures and algorithms (e.g., loops, tables of

data, matrices, etc.) needed to analyze and solve it.

Mathematical modelling – reformulating an application (real-world, authentic) problem

using mathematical objects (e.g., functions and equations) and procedures (e.g.,

3

integration, numeric algorithms) to provide answers, results and insights about the

application.

Literacy – a broadly adopted system of representing, analyzing, and communicating

ideas.

Computational thinking involves two fundamental processes: abstraction and automation.

In order to begin exploring a mathematical problem or concept using code, the problem

must first be abstracted (i.e., broken down into its basic elements, with key features,

structures, and relationships identified) and reformulated (e.g., from an algebraic form

into a numerical representation) so that it can be remediated with a computational

representation (code). The next step requires devising an algorithm suitable for solving

the problem, and then creating a computational model for this algorithm (i.e., generating

the code required to carry out the algorithm) to automate a solution. This process,

referred to as computational modelling, illustrates the connection between computational

thinking and computer coding.

1.3 Purpose of the Current Study

My doctoral research project strives to address a gap in the literature in integrating

computational thinking into the existing undergraduate mathematics curriculum. The

evidence for this claim is based on my extensive literature search, and confirmed by

several researchers in mathematics education that I consulted. There is strong motivation

to do so—I argue that computational thinking provides an essential new approach that

facilitates mathematical modelling, an important component of mathematics education

that connects mathematics to authentic, real-world problems. Anecdotal, as well as

research-documented, evidence suggests that students struggle to apply mathematics they

have learned (or have been exposed to) not just to real-world applications (Stillman,

2015) but also to subsequent courses in mathematics and elsewhere. (For instance, Pepper

et al. (2012) document students’ challenges in applying mathematics concepts they were

supposed to know in a course on electricity and magnetism.) Blum and Ferri (2009) refer

to the analyses carried out by the Programme for International Student Assessment

(PISA) Mathematics Expert Group, which attribute students’ difficulties with

4

mathematical modelling to the “inherent cognitive complexity” (p. 48) of the modelling

tasks. Tall et al. (1987) show that exploring advanced, complex concepts (such as

integration and mathematical modelling which involves abstract mathematical topics)

from a multitude of perspectives (including computer-aided exploration) helps students

overcome cognitive difficulties and facilitates understanding.

The goal of this project was to develop, implement, and analyze a practical approach to

integrating computational thinking, in the form of computational modelling and computer

coding, into teaching and learning activities in the undergraduate applied calculus course

I teach—Math 1LS31—without removing any mathematical content from the course

syllabus. While there have been successful attempts at developing courses designed to

teach mathematics and coding simultaneously (for example, the Mathematics Integrated

with Computers and Applications (MICA) program at Brock University), the large-scale

intervention implemented in this research project, that is, integrating coding into a

preexisting calculus course (with a class size of over 1000 students), has not been

attempted before at a Canadian university (and possibly beyond). Additionally, this

project presents a tangible approach to generating course-specific computational thinking

activities and resources and documents the effectiveness of this intervention in a large,

diverse undergraduate calculus class.

Rather than be discouraged by the lack of practical resources identified in the literature, I

viewed this deficiency as an unprecedented opportunity to bring innovation into my

classroom from a course-specific perspective, and to create computational modelling

activities that were meaningful and relevant for life sciences students. I strived to design

valuable experiences for my students, where they had the opportunity to experience

maximum educational benefits from an engagement with computational thinking. It was

important to me that the approach I implemented would be feasible in a large classroom

1
 Math 1LS3 is a first-year, undergraduate applied calculus course designed for life science majors. It is a

prerequisite course for the program as well as many upper year courses, and so there is very little flexibility
in the topic coverage.

5

and would provide equitable, inclusive opportunities for a diverse group of students with

varying backgrounds, mathematical experiences, and learning abilities.

1.4 Research Questions

My inquiry was guided by the following research questions:

1. How does students’ conceptual understanding of calculus concepts change in

response to working on problem-solving and mathematical modelling activities

which incorporate computational thinking?

2. How are students’ learning experiences transformed when they explore calculus

concepts, ideas and techniques using computational tools and models?

1.5 Research Design

To investigate my research questions, I used a case study research design and collected

data from students enrolled in Math 1LS3 at McMaster University during the fall

semester of 2018. Taken by over 1500 students every year, this foundational course

teaches basic concepts of differential and integral calculus, with a heavy emphasis on

applications in the fields of life and health sciences.

To integrate computational thinking into Math 1LS3, I created a series of coding

activities to complement and enrich the topics studied in our course. These activities

invited students to explore calculus concepts and solve problems using computational

models, thus engaging them in computational thinking. They were organized into four

computer labs, which corresponded to the main themes in the course: mathematical

models, limits and derivatives, differential equations and integrals, and discrete-time

dynamical systems. Additionally, coding was almost effortlessly incorporated into our

lectures and coursework, as numerous topics and ideas naturally required a computational

approach (e.g., Euler’s Method for solving differential equations, Riemann sums, and

discrete-time dynamical systems).

At the end of each computer lab, students were invited to reflect on and share their

experiences with certain specific aspects of the coding activities (for example, “Describe

6

how your perspective on a mathematical idea changed as a result of engaging with the

coding activities in Lab 2”). I collected and analyzed the open-ended survey responses

from all students who gave their consent and reported on these findings.

1.6 Methodology and Theoretical Framework

Upon receiving each data set, I conducted a qualitative content analysis, facilitated by

NVivo 12—a qualitative data analysis computer software package. In NVivo, I coded

each response according to key terms, main topics, and general sentiment. I used

annotations throughout the coding process to record my observations, thoughts, and

questions, and I kept a detailed research journal to provide an auditable trail of my

analytical process. Once all data had been coded, I organized the nodes into categories

(higher-level nodes) and wrote detailed memos for each category, including illustrative

examples from my raw data. These memos were clustered into three overarching themes

and form the basis of my Results chapter.

I then considered Andrea diSessa’s (2018) theoretical framework for a computational

literacy and analyzed my results according to his five literacy principles. This framework

helped me evaluate my results against diSessa’s literacy criteria, which, in turn, allowed

me to establish a correspondence between my findings and diSessa’s principles. This

correspondence is presented in my Analysis chapter.

1.7 Significance of the Study

This research contributes to the ongoing, Social Sciences and Humanities Research

Council (SSHRC)-funded research project Computational Thinking in Mathematics

Education (http://ctmath.ca/), from pre-school to undergraduate mathematics, and in

mathematics teacher education. In particular, it investigates a large-scale implementation

(involving approximately 1000 students) of a specific approach to integrating

computational thinking (in the form of coding activities) into a tertiary level mathematics

course. The affordances of computational thinking were explored from a mathematical

teaching and learning perspective (rather than from a computer science perspective); that

7

is, the activities were designed to complement and enrich the mathematical ideas and

teaching and learning ecology.

1.8 Limitations

My extensive literature search (confirmed by anecdotal evidence from several researchers

in mathematics education I consulted) found no existing research close to the current

study (integration of coding into an existing first-year university math course); therefore,

I am not able to directly compare my data and results with other research efforts. Thus,

conducting this study once is a limitation, which could be remedied by repeating the

study in different semesters, possibly in different courses, or in other universities.

All results are based on students self-reporting their experiences and opinions, which is a

subjective process. Unfortunately, due to several reasons, it was not possible (nor was it

the objective here) for the researcher (myself) to observe individual students working on

the labs (however, that is an idea for future research). Since self-reported data cannot

typically be independently verified (Rukwaru, 2015), we assumed that students were

sufficiently self-aware and cognizant of their learning and experiences, and that their

comments accurately reflected their experiences, thoughts and opinions. My reported

findings reflect common themes, that is, the categories in my Results chapter emerged

multiple times independently, that is, as responses from many students.

The sample of students surveyed for this research project is biased (the majority of

students taking Math 1LS3 are life sciences majors), and thus directly transferring

computer labs to other departments and universities might produce somewhat different

results. So while my results are not necessarily universal, given the large sample size, I

can confidently say that they are definitely representative of life sciences students.

1.9 Summary

Computational thinking is gaining recognition as a versatile analytical approach, which

can innovate and transform problem-solving activities in a wide variety of contexts. In

particular, unique affordances of computational thinking can be employed to influence,

impact, and reorganize the field of education in novel ways. The advantages seem to be

8

particularly beneficial when computational thinking is effectively integrated into existing

subjects; however, the guidance on implementation outside of computer science (e.g.,

what are the best, evidence-supported teaching strategies) is insufficient. My research

project aims to address this gap by investigating an approach to integrating computational

thinking into an applied undergraduate calculus course designed for life sciences majors.

9

Chapter 2

2 Review of the Literature

I begin this chapter by outlining a working definition of computational thinking, and

illustrating the two fundamental processes involved—abstraction and automation—with a

concrete mathematical example. I then summarize the body of literature surrounding

computational thinking, paying particular attention to its current role in education, and

the unique opportunities it affords mathematical problem solving. I conclude this chapter

by discussing certain theoretical and practical barriers, which currently impede its

comprehensive integration into school and university curricula.

2.1 Computational Thinking

Computational thinking encompasses a collection of problem-solving strategies that

derive from fundamental computer science principles, processes and techniques (Curzon,

Black, Meagher, & McOwan, 2009). These core concepts and capabilities include—but

are not limited to—data representation and abstraction, problem decomposition and

reduction, algorithmic and recursive thinking, automation, and simulation (Wing, 2006;

Barr & Stephenson, 2011). The Royal Society describes computational thinking as “the

process of recognizing aspects of computation in the world that surrounds us, and

applying tools and techniques from computer science to understand and reason about

both natural and artificial systems and processes’’ (Furber, 2012, p. 29). Stephen

Wolfram (2016) adds, “its [computational thinking] intellectual core is about formulating

things with enough clarity, and in a systematic enough way, that one can tell a computer

how to do them” (para. 6).

Yadav et al. (2014) posit that “the prominent features of computational thinking revolve

around abstraction and automation, indicating the ability to dissect problems, abstract the

high-level rules, and use technology to automate the problem-solving process” (p. 5:1).

Wing (2010) also emphasizes the centrality of these concepts and explains, “The most

important and high level thought process in computational thinking is the abstraction

process. Abstraction is used in defining patterns, generalizing from instances and

10

parameterization” (p. 1). Wing (2008) continues, “Computing is the automation of our

abstractions” (p. 3718).

Abstraction involves reformulating a problem so that it can be computed as an algorithm,

that is, as “a series of steps that control some abstract machine or computational model

without requiring human judgment” (Denning, 2017, p. 33). This process begins with

logically deconstructing the problem into smaller, more manageable sub-problems,

therefore reducing its complexity. An important part of the abstraction process is

deciding which features of the problem should be accentuated and which details are to be

viewed as insignificant. Wing (2008) asserts that this important decision-making process

(which is a cornerstone of mathematical or statistical modelling) underlies computational

thinking. Next, variables and parameters must be chosen and adequately abstracted, and

features of the solution (e.g., patterns) need to be anticipated, so that adequate structures

(e.g., matrices and databases) and techniques (e.g., algorithms) can be utilized.

Automation requires “systematically devising an algorithm suitable for solving” the

problem and its sub-problems (Mohaghegh & McCauley, 2016, p. 1524). This stage is

guided by, and depends on, the computational model employed to approach the particular

problem. Aho (2012) explains, “Mathematical abstractions called models of computation

are at the heart of computation and computational thinking” (p. 834). He asserts that

“finding or devising appropriate models of computation to formulate problems is a

central and often nontrivial part of computational thinking” (p. 833), especially when

computational thinking is being used to investigate problems in domains for which the

classical models from computer science (such as the Turing model of sequential

computation) may neither be appropriate, nor adequate, nor sufficient. diSessa (2018)

refers to these considerations as “the representation effect”—exploring what can

adequately and usefully be reformulated and represented in a computational form.

The final stage of computational thinking involves an execution of the computer code

(i.e., running algorithms) that yields a solution to the problem, followed by an evaluation.

In this final stage, an in-depth analysis of both the product (solution) and the process

(automation and abstraction) is conducted. The initial stages of computational thinking

11

(abstraction and automation) can be performed with or without technology; however, the

final stage (analysis) requires the use of a computer or other suitable technology.

2.1.1 Example: Intermediate Value Theorem

As an illustration, consider the Intermediate Value Theorem, which is a common topic in

a first-year calculus course. Formally, it is stated in the following way (Stewart, 2012,

page 125):

If 𝑓(𝑥) is a continuous function defined on a closed interval [𝑎, 𝑏] and 𝑁 is a number

between 𝑓(𝑎) and 𝑓(𝑏), then there is a number 𝑐 in [𝑎, 𝑏] such that 𝑓(𝑐) = 𝑁.

In other words, the Intermediate Value Theorem states that a continuous function 𝑓(𝑥) on

a closed, finite interval [𝑎, 𝑏] attains all values between 𝑓(𝑎) and 𝑓(𝑏); see Figure 1.

Figure 1: Illustration of the Intermediate Value Theorem.

A typical, first-year undergraduate calculus problem might require students to use the

Intermediate Value Theorem to show that the equation 𝑒! = 5𝑥 + 10 has a solution for

3 ≤ 𝑥 ≤ 4. To prove this, we let 𝑓(𝑥) = 𝑒! − 5𝑥 − 10 and 𝑁 = 0. We calculate that

𝑓(3) ≈ −4.9 and 𝑓(4) ≈ 24.6. Since 𝑓(𝑥) is continuous on [3, 4], the Intermediate

Value Theorem guarantees that there is a number 𝑐 in the interval [3, 4] such that

𝑓(𝑐) = 0; see Figure 2. Note that we did not find the value of 𝑐—in fact, this is

impossible to solve for algebraically—we just proved that such a value of 𝑐 exists.

y

xa c b

f(a)

f(b)

y=f(x)

N

12

Figure 2: The equation 𝒆𝒙 = 𝟓𝒙+ 𝟏𝟎 has a solution between 3 and 4.

To reformulate this problem so that it can be computed as an algorithm, we begin by

discretizing the interval [3, 4] into a finite number of equally spaced 𝑥-values and then

computing the corresponding values of 𝑓(𝑥). That is, we reformulate this continuous

function as a discrete set of values (points). We then need to inspect the list of 𝑓(𝑥)

values to see if there is a value 𝑐 for which 𝑓(𝑐) = 0. Alternatively, if we observe a sign

change between two consecutive values 𝑓(𝑥!) and 𝑓(𝑥!!!), then we know that there must

be a value 𝑐 in [𝑥! , 𝑥!!!] such that 𝑓(𝑐) = 0. Observe the output in Figure 3; in this case,

the sign change occurs between 𝑥! = 3.2 and 𝑥!!! = 3.3. This process accomplishes two

tasks: first, it proves that there is a solution on the interval [3, 4]; and second, it narrows

down the interval on which there is a solution from [3, 4] to [𝑥! , 𝑥!!!]. Recognizing the

value in the second observation, we can keep repeating this process (which demands an

automated algorithm!) and narrowing down the interval until we have a solution 𝑐 as

close as desired to the actual value.

13

Figure 3: Abstraction of the Intermediate Value Theorem.

Now that the problem has been adequately abstracted, how can we automate the solution

process so that we do not have to visually inspect long lists of 𝑓(𝑥) values? A rather

simple idea is to create code that will detect either a zero or a sign change within the list

of 𝑓(𝑥) values. The code in Figure 4 accomplishes this task.

Figure 4: Automation of the Intermediate Value Theorem.

14

After generating the list of 𝑓(𝑥) values, the code scans through to look for either a zero

(thus, actually identifying the precise value 𝑐) or a negative product between two

consecutive 𝑦-values (which indicates that one was positive and the other was negative).

Once a solution is located, the interval can be further refined by adjusting the parameters

𝑎 and 𝑏, as seen in Figure 5.

Figure 5: Automation of the Intermediate Value Theorem. Refining the interval on

which the equation has a solution.

This reformulation has limitations, of course. For example, if we begin with too coarse of

a refinement, we may miss a solution (or solutions) altogether, or we might find one, but

fail to detect other solutions. Combining this algorithm with a complementary geometric

representation and analysis of the problem helps to avoid situations such as this one.

2.2 Value of Computational Thinking

The value of computational thinking has been widely recognized in the field of computer

science from the very beginning—that is, with the first attempts at writing code to solve

specific problems. More recently, attention has turned toward the potential of

computational thinking to enhance thinking and problem solving in a broad array of

contexts, while enabling technology to be effectively incorporated to generate a solution.

According to Wolfram (2016), “computational thinking provides a framework that makes

15

things more transparent and easier to understand” (para. 78). Moreover, the various

competencies developed through an engagement with computational thinking—such as

self-motivation to explore, experiment and hypothesize, development of intuition about

variables, relations and quantities (i.e., quantitative literacy), logical reasoning,

abstraction, and critical reflection—extend far beyond the scope of computer science

(King, Hillel, & Artigue, 2001; Marshall & Buteau, 2014).

Weintrop et al. (2016) report, “in the last 20 years, nearly every field related to science

and mathematics has seen the growth of a computational counterpart” (p. 128). The

authors describe how computational methods have been employed in novel ways to

explore and study stochastic and nonlinear problems, many of which were previously

inaccessible, or unsolvable. These innovative applications of computational thinking have

expanded the range of phenomena that can be investigated using mathematical models

and simulations to include systems which generate chaotic behavior, and complex

dynamical systems in general.

Bundy (2007) further extends the scope of computational thinking when he asserts,

“computational thinking is influencing research in nearly all disciplines, both in the

sciences and the humanities” (p. 1). For example, in biology, computational thinking

enabled the accelerated sequencing of the human genome and provided opportunities to

model complex biological processes, such as the cell cycle and protein folding (Wing,

2008). In the humanities, computational thinking has been used to analyze data from a

vast number of literary sources to illustrate relationships between the prevalence of

certain words and themes as functions of time, location, political situation, or other

variables. For instance, in the analysis of a Shakespearean play, computational thinking

can be used to create and analyze a social network of characters and interactions,

facilitating an in-depth study of the intricacies and relationships within the play

(Wolfram, 2016). Computational thinking has allowed researchers to model complex

interactions between geological processes, thus obtaining a more comprehensive

understanding of the historic, as well as future, dynamics of our planet (Bundy, 2007).

This improved understanding can help geologists “understand, predict and influence the

mechanisms involved in climate change” (Bundy, 2007, p. 2). Adding to philosophical

16

discussions, Donald Hoffman combined aspects of computational thinking with

evolutionary game theory to outline a compelling proof that what we believe is reality is

actually just our perception (Gefter, 2016).

Computational thinking extends into commerce, where market research is continuously

conducted based on the analysis of a user’s Internet browsing history, resulting in

personally customized advertisements and product endorsements. In politics, hundreds of

thousands of sources of information are effectively and efficiently scanned daily (making

use of powerful algorithms) to provide up-to-date information on relevant issues, political

views, and voter support.

Wing (2008) believes that while, so far, computational thinking has been successfully

employed to tackle relatively simple (i.e., solvable) problems involving data mining and

simulations, in the future, far more complex uses of computational thinking will help us

to discover deeper meanings and understandings hidden in the patterns that can be

extracted from the huge quantities of data that is generated and collected daily.

In light of the expanding range of computational thinking, Wing (2006) has advocated

“To reading, writing, and arithmetic, we should add computational thinking to every

child’s analytical ability” (p. 33). Grover and Pea (2018) explain that computational

thinking “is now recognized as a foundational competency for being an informed citizen

and being successful in STEM [science, technology, engineering and mathematics] work,

one that also bears the potential as a means for creative problem solving and innovating

in all other disciplines” (p. 20). Weintrop et al. (2016) echo this and assert that the

changing landscape of STEM fields presents a challenge to “bring current educational

efforts in line with the increasingly computational nature of modern science and

mathematics” (p. 127).

2.3 Computational Thinking Affordances in Mathematics
Education

Computational thinking provides a framework for a systematic investigation of a problem

and it affords the use of technology to extend both teaching and learning beyond present

17

constraints. The Computer Science Teachers Association explains that “the study of

computational thinking enables all students to better conceptualize, analyze, and solve

complex problems by selecting and applying appropriate strategies and tools, both

virtually and in the real world’’ (Computer Science Teachers Association, 2011, p. 9).

While computational thinking does not require the use of technology, computer

programming (that is, creating and running computer code) reinforces computational

thinking in multiple ways (Wing, 2008) and can be incorporated to further enrich

problem-solving activities.

Mathematics and computational thinking share a natural connection in that the processes

operating when one works on a computational problem (such as experimenting, logical

reasoning and algorithmic thinking) align with those employed in mathematical problem

solving. As well, since computational thinking “complements and combines

mathematical and engineering thinking” (Wing, 2008, p. 35), it is reasonable to presume

that the tools and strategies developed for computational thinking can be employed to

facilitate learning and enhance problem-solving skills in mathematics. In fact, Sanford

and Naidu (2016) assert that computational thinking “can and does augment, facilitate,

and expand the realm of thinking, logic, and mathematics” (p. 24).

Computational thinking provides new perspectives and insights into a problem and

allows for innovative approaches, such as experimentation, animation and simulation, to

be explored (Pesonen & Malvela, 2000). As Sanford and Naidu (2016) attest, “A

thorough study of any problem becomes easy with the aid of a computer and students can

be encouraged to innovate and investigate other situations” (p. 24). For instance, the

usual analysis of algebraic solutions of an equation can be augmented by a computer-

driven experiment in which solutions to an entire set of equations, similar to the original

one, are generated. This approach may deepen students’ understanding of the link

between the features of an equation (i.e., its coefficients) and the corresponding

properties of its solutions.

Anecdotal evidence suggests that many students find linear transformations challenging,

in part due to the fact that common approaches (pencil and paper and calculator) fail to

18

produce a sufficient number and variety of examples. Through animation and simulation

(i.e., by seeing how various objects change under a large number of linear

transformations), one can get a good “feel” for this abstract algebraic concept. Students

often have difficulties making sense of the algebraic manipulations required to solve an

equation; however, after “playing” with equations on a computer (for instance, by

moving a slider which controls a coefficient and watching how solutions react) students

have the opportunity to develop a more solid understanding of what the solutions of a

given equation are supposed to look like. This new understanding could, in turn, guide

them through (previously incomprehensible) algebraic steps towards calculating a

solution.

When students explore a mathematical concept using a code, they are giving abstractions

a “tangible feel” (Gadanidis, 2015). For instance, the abstract concept of the domain of a

function becomes “tangible” when students realize that the computer returns an error

message to their request to calculate the square root of a negative number. This feedback

diagnostic is the “tangible” realization of the abstract fact that the domain of the square

root does not include negative numbers. As this example demonstrates, the

objectification of abstractions (Hazzan, 1999) could help students understand and

internalize challenging ideas and concepts.

Euler’s method provides another powerful example. This numerical method uses

successive tangent line approximations to estimate the solution to a first-order initial

value problem. By hand, or with a calculator, we can only compute a small number of

tangent lines to approximate a curve, and are forced to extrapolate the properties of a

solution, which remains abstract, and “hidden” from view. Remediating this situation

with a computational approach allows us to decrease the step size as desired and to

subsequently increase the number of tangent line approximations to generate a “tangible”

approximation to the entire solution curve (which we can also visualize by graphing).

According to Yadav et al. (2014), “Computational thinking has the potential to advance

students’ problem-solving skills and abilities significantly as they begin to think in new

ways” (p. 5:2). As well, using multiple avenues to investigate a problem (e.g., algebraic,

19

visual and dynamic) not only facilitates in-depth learning and promotes an active

engagement with the concepts, but also helps to accommodate students with a wide

spectrum of abilities and learning styles.

Wing (2006) explains that computational thinking tools enable us to reduce the

complexity of any given task by “reformulating a seemingly difficult problem into one

we know how to solve” (p. 33). The process of deconstructing a complex problem into

manageable sub-problems—performed during the abstraction phase of computational

thinking —is a useful problem-solving strategy in a myriad of situations.

Dynamic modelling—a significant affordance of computational thinking—allows

students to explore relationships between the key features of a problem in novel ways.

This interactive approach provides several significant advantages over traditional ways of

learning. For instance, modelling complex interactions between two species sharing the

same ecosystem is virtually impossible without employing computer code. As well,

within a coding environment, students are able to interact with the variables and

parameters and observe an immediate response (feedback) to their input. As Burton

(1999) explains, when students have the ability to actively control and manipulate these

components, both their learning and attitude towards mathematics are enhanced. The

immediate feedback provided when executing code, often given in the form of a dynamic

visual or an animation, helps students to form concrete representations of abstract

mathematical concepts.

Rich visualizations of mathematical relationships generated through coding activities

have the potential to further enhance mathematical understanding. Recent evidence from

neuroscience research suggests, “our mathematical thinking is grounded in visual

processing” (Boaler, Chen, Williams, & Montserrat, 2016, p. 2). The authors state that

“when students learn through visual approaches, mathematics changes for them, and they

are given access to deep and new understandings” (p. 1). Computational thinking,

through coding, experimentation (for instance by using simulations), and dynamic visuals

(such as graphs and diagrams) provides numerous opportunities for students to explore

20

mathematics visually, thus further promoting active engagement and enhancing

mathematical development.

Digital environments, which facilitate computational thinking, can offer significant

educational advantages. Gadanidis, Hughes, Miniti and White (2016) report that a

number of existing computer programming (coding) environments provide “low floor,

high ceiling, wide walls” experiences to users. The “low floor, high ceiling” property

offers multiple entry points and maximum engagement opportunities for a wide range of

students with diverse abilities, background knowledge and experiences. The “wide walls”

feature allows the coding environment to be used for “many different types of projects so

people with many different interests and learning styles can all become engaged”

(Resnick et al., 2009, p. 63). Furthermore, since various coding environments—such as

Scratch or Jupyter notebook— as well as a multitude of interactive lessons and tutorials

are available online free of charge, computational thinking can be “successfully taught to

a very wide range of people, regardless of their economic resources” (Wolfram, 2016).

In a computational thinking environment, students create tools required to solve a

problem, instead of using existing tools (Mohaghegh & McCauley, 2016). This creative

process encourages students to become active producers, instead of passively using

prepackaged content and approaches to solving problems. As Gadanidis et al. (2016)

explain, “When students write computer code to model a relationship, they are in control.

They can write the code in ways that personally make sense, and they can deviate from

the specific task to explore related problems or extensions” (p. 15). This sense of agency

and control has the potential to motivate students, build their confidence, and stimulate

independent learning. Seymour Papert—who pioneered the use of computers to teach

children mathematics—asserts, “I am convinced that the best learning takes place when

the learner takes charge” (Papert, 1993, p. 25).

Czerkawski and Lyman (2015) and Denning (2017) are careful to note the important

distinction between computing and computational thinking and assert that simply using a

computer to facilitate problem solving does not necessarily imply that computational

thinking is being employed. While engaging in computer programming activities

21

facilitates the development of computational thinking skills, the cognitive benefits are

most significant—and transferable outside of computer science—when students acquire a

deep understanding of the underlying principles of computing. As Mohaghegh and

McCauley (2016) point out, “What is necessary is an effective integration of the ‘tool’

with the concepts” (p. 1528); consequently, the process, as well as the product (i.e., the

solution), should be studied and thoroughly understood. They further explain that “deeper

understanding of computational problem solving is more valuable than exploring the

surface of tools in this area without realising their full potential” (p. 1527). Wing (2008)

echoes this point when she makes the comparison of using a computer without

understanding the principles of computing to using a calculator without understanding

how to do the calculations. As well, Grover and Pea (2013) report that “current

computational tools vary in their effectiveness in allowing for engagement with the

various component elements of computational thinking” (p. 41).

2.4 Brief History of Computational Thinking and Its Role in
Education

Computer scientist Peter Denning (2017) defines computational thinking as “the habits of

mind developed from designing programs, software packages, and computations

performed by machines” (p. 33). Thus, the development of the concept of computational

thinking is, not surprisingly, closely tied to the advancement of computers and

programming languages, which were created as a means of communicating with

computers.

In the 1960’s, Alan Perlis, a computer scientist and professor at Yale University,

described programming as “an exploration of process” (Guzdial, 2008, p. 25), which he

argued is relevant to every student, irrespective of their field of study. Working on the

development of programming languages and anticipating their potential and importance,

Perlis proposed that all university students should learn to program. He claimed that the

logical and algorithmic thinking skills (later referred to as “computational thinking

skills”) attained through writing and analyzing computer code would, with suitable

practice, transfer into areas outside computer science.

22

Advancements in computer technology, in particular time-sharing, allowed a large

number of students to interact with a computer, thus making computer-assisted learning a

real, tangible goal. Subsequently, computer-based instructional materials were created for

all subjects and for all levels of education (Molnar, n.d.).

In the early seventies, based on Jean Piaget’s work and his own learning theory

(constructionism), Seymour Papert and his collaborators created a visual programming

language called Logo. Its purpose was to help children improve their thinking and

problem-solving abilities and to facilitate learning mathematics through coding in an

environment which promoted play and experimentation. Papert’s unique platform

provided a “low floor, high ceiling” experience, that is, students were able to engage with

a problem with very little background knowledge in programming, however, Logo had

the potential to explore complex, high-level problems in mathematics. In his influential

book Mindstorms, Papert postulated that “computer presence could contribute to mental

processes not only instrumentally but in more essential, conceptual ways, influencing

how people think even when they are far removed from physical contact with a

computer’’ (Papert, 1980, p. 4). Reflecting upon the impact of new technologies on the

way children learn, he further suggested that, “learning to use computers can change the

way they learn everything else” (p. 8).

In spite of major advances in the final quarter of the twentieth century (e.g., Internet and

laptop computers) learning with computers did not find its way into every classroom.

There were computer labs and computer-programming courses, but the ideas that the

early pioneers put forward, namely of integrating computers and computational thinking

into school and university curricula, did not materialize.

At the start of the 21st century, MIT physics professor Andrea diSessa studied the

concept of “computational literacy,” a potentially new form of literacy that has the power

to modify the way people think and learn. diSessa separated the “cognitive” aspect of

computational thinking from the “material” aspect and suggested that computing can be

used to explore fields other than computer science (Grover & Pea, 2013). “I view

computation as, potentially, providing a new, deep, and profoundly influential literacy—

23

computational literacy—that will impact all STEM disciplines at their very core, but most

especially in terms of learning” (diSessa, 2018, p. 4). Continuing the line of work started

by Papert, diSessa’s research aims “to bring computational ideas, indeed, programming,

to the wider population for general intellectual purposes” (pp. 19-20).

Despite its early emergence and presence in computer science and related literature,

computational thinking was not given serious attention by the majority of educators until

Jeannette Wing published her influential article, Computational Thinking (Wing, 2006).

In it, she argued that computational thinking is a powerful and fundamental cognitive

skill for everyone, and that children should develop computational thinking proficiencies

alongside other important core analytical abilities, such as reading, writing, and

arithmetic.

In the second decade of this century, a growing number of educators have acknowledged

the benefits of integrating computational thinking into school and university curricula, as

the proficiency in computational thinking and related skills seems to be the best way to

prepare students for the challenges that the future will bring.

2.5 Current State of Computational Thinking in School and
University Curricula

Today, we witness computational thinking gaining recognition as “an essential skill for

those who would be our future inventors, innovators, and shapers of culture and public

discourse” (Pearson, 2009, p. 42). The National Council for Research (2010) refers to

computational thinking as “a cognitive skill that an average person is expected to

possess” (as cited in Yadav et. al, 2014, p. 5:2). Consequently, students of all ages,

irrespective of the discipline they study, are expected to develop competencies in various

aspects of computational thinking in order to meet the demands of an increasingly digital

world.

Recent research suggests that the advantages of computational thinking are maximized

when computational thinking is introduced—in adequate form—to students at a young

age, and effectively integrated into all subjects, providing a universal approach to

24

problem solving (Sanford & Naidu, 2016; Yadav, Zhou, Mayfield, Hambrusch, & Korb,

2011). As Yadav et al. (2014) state, the “pervasiveness of computational-thinking

concepts dictates the importance of exposing students to such notions early in their

school years and helping them to become conscious about when and how to apply these

ideas” (5:2). Weintrop et al. (2016) argue that integrating computational thinking into

existing subject areas—rather than teaching it as a standalone course—provides multiple

benefits. This integration provides meaningful, authentic contexts in which to study

computational thinking; it addresses the practical issues of supplying proficient teachers

and resources; it allows for computational thinking activities and practices to reach the

widest possible audience; and—especially in mathematics and sciences—it brings

“education more in line with current professional practices in these fields” (p. 143).

Several countries, including England, Israel, Russia, New Zealand, U.S., Australia and

South Africa have incorporated computational thinking into their K-12 curricula, often

within computer science or computer programming courses (Grover & Pea, 2013). A

recent document published by the European Commission investigates major trends in

integration of computational thinking with compulsory education, outlines approaches to

teaching, learning and assessment, and discusses teacher training in computational

thinking (Bocconi, Chioccariello, Dettori, Ferrari, & Engelhardt, 2016). The Next

Generation Science Standards published by U.S. educators includes computational

thinking as an important learning objective and outlines activities and suggestions to help

teachers promote this skill within the classroom (Sneider, Stephenson, Schafer, & Flick,

2014). The document Computing in the National Curriculum: A Guide for Primary

Teachers (Berry, 2013) written for teachers in the U.K. aims to “demystify the

programme of study” (p. 3) of computing in primary schools. “It will enable teachers to

get to grips with the new requirements quickly and to build on current practice. It

includes help for schools with planning and gives guidance on how best to develop

teachers’ skills” (p. 3).

Additionally, building competencies in computational thinking has become a requirement

in many undergraduate university programs, as computational thinking has become

essential for the development and learning of all STEM disciplines (Henderson, Cortina,

25

Hazzan, & Wing, 2007), as well as those outside of STEM (Czerkawski & Lyman, 2015).

By arguing that computational thinking is critical thinking, Kules (2016) builds

arguments for connecting computational thinking to university discourse. In his thesis,

Kolodziej (2017) investigates important elements of this connection, including domain

expertise, interdisciplinary collaboration, and attitudes towards curricular initiatives.

Swaid (2015) contributes to “efforts to establish computational thinking as a universally

applicable attitude that is meshed within STEM conversations, education and curricula”

(p. 3657).

A number of online initiatives aim to provide both experiences and education in

computational thinking that are free and accessible to learners of all ages and abilities.

For example, MIT’s Scratch provides a visual-programming environment, which uses

coding “blocks” to create and run computer code (https://scratch.mit.edu/). Graphical

programming environments, such as Scratch, “allow early experiences to focus on

designing and creating, avoiding issues of programming syntax” (Grover & Pea, 2013, p.

40). Google produced online lessons and exercises in computational thinking for both

educators and students through Project Bloks, commonly referred to as “Google Bloks”

(https://projectbloks.withgoogle.com/). A less technology-dependent complement to

these efforts can be found on the webpage, CS Unplugged (http://csunplugged.org/),

which aims to teach the fundamentals of computer science without the use of computers.

The collection of activities available on the site provides multiple opportunities to engage

with computational thinking in various interactive ways and is suitable for all age levels

and abilities.

While encouraging, these efforts are still insufficient, as most consist of working on

isolated curriculum objectives (e.g., within computer science or programming courses),

rather than focusing on genuine integration with other subjects (Grover & Pea, 2013).

Gadanidis et al. (2016) concur, and allege that at the K-12 level, computational thinking

is not yet “integrated with curriculum to enrich existing subject areas” (p. 1). Czerkawski

and Lyman (2015) report that the response to the call for a pervasive computational

thinking presence in higher education is “scattered” (p. 58) and note that although there

have been many localized “clusters of cross-disciplinary interest” (p. 58) at integrating

26

computational thinking into undergraduate curricula, “There is not yet a coherent cross-

institutional movement to incorporate computational thinking as a fundamental skill-set,

outside of computer science and a few STEM disciplines” (p. 58). According to Grover

and Pea (2013), “although there is broad acknowledgement that computing pervades all

aspects of the global economy, its place as a mandatory part of the school curriculum is

far from secure” (p. 40).

Additionally, diSessa (2018) notes that many recent coding initiatives claim to include

computational thinking, however, most only teach technical programming skills. Denning

(2017) reminds us that using computational tools does not automatically imply that one is

engaged in computational thinking.

2.6 Barriers to Integrating Computational Thinking into
School and University Curricula

Presently, the major obstacles preventing widespread integration of computational

thinking into K-16 curricula revolve around certain theoretical issues, general expertise,

teacher education and teaching practice, as well as beliefs and attitudes of university

faculty and instructors toward significant curricular changes. As Barr and Stephenson

(2011) report, “The process of increasing student exposure to computational thinking in

K-12 is complex, requiring systemic change, teacher engagement, and development of

significant resources” (p. 48). Czerkawski and Lyman (2015) note that in higher

education, sustained interdisciplinary interest, collaborations and outreach are essential in

the pursuit of extending computational thinking beyond computer science courses.

The absence of a precise definition of computational thinking is a theoretical issue which

frequently arises in the literature and is often cited as posing a significant barrier to the

widespread propagation of computational thinking in education (Grover & Pea, 2013;

Czerkawski & Lyman, 2015). As Aho (2012) explains, “the term computation means

different things to different people depending on the kinds of computational systems they

are studying and the kinds of problems they are investigating” (p. 832). Denning (2017)

believes that the definition of computational thinking was intentionally designed to be

vague in order to increase the perception of its expansive applicability outside of

27

computer science. While defining computational thinking broadly avoids associating it

with a particular discipline, Denning suggests that the definition has been widened

beyond a practical boundary, thus losing its usefulness.

The lack of a clear definition is believed to contribute to confusion and misperceptions

about computational thinking, resulting in less than ideal attitudes from stakeholders

regarding the resources and efforts allocated to widening the integration of computational

thinking into the K-16 curriculum. For example, a common misconception is that

computational thinking reduces to thinking like a computer. Wing (2006) explains that

computational thinking is simply an efficient, systematic, and analytical way of thinking,

and asserts that “computational thinking is a way humans solve problems; it is not trying

to get humans to think like computers” (p. 35). In fact, computational thinking is not as

artificial to human thinking patterns as its terminology might suggest, nor should it be

automatically associated with computer technology. The results from a study by

Lewandowski et al. (2010) suggested that people without formal programming

experience had an innate, yet underdeveloped, ability to reason correctly about certain

computing principles, such as concurrency. Furthermore, Berland and Lee (2011)

observed that students engaged in a strategic and collaborative (non-digital) board game

demonstrated complex computational thinking practices—such as “conditional logic,

distributed processing, debugging, simulation, and algorithm building” (p. 60)—

continuously throughout the game (as cited in Czerkawski & Lyman, 2015). These

findings suggest that humans naturally possess the cognitive foundations for

computational thinking and that computational thinking skills can be further developed

with adequate support and practice.

While the technical terms automation and abstraction might seem exclusively linked to

computer science, Barr and Stephenson (2011) highlight multiple ways that these (and

other fundamental computational thinking concepts and competencies) manifest

themselves in various other disciplines. For example, the use of a simile or metaphor

illustrates how abstraction might be employed in the language arts, whereas building a

model of a physical entity—such as a molecule or cell—demonstrates the use of

abstraction in the physical sciences. Using computational tools to efficiently handle

28

certain routine problems, such as using a word processor in the language arts or

Geometer’s Sketchpad in mathematics, provides examples of how automation arises in

contexts outside of computer science. Wing (2006) also explains how various aspects of

computational thinking are involved in our day-to-day lives—for example, planning and

executing our morning routine to get from bed to work or school involves multiple

problem-solving strategies which align with those found in computing. While these

practical and diverse examples help to illustrate the pervasiveness of computational

thinking, Denning (2017) suggests that we need to be careful and restrictive in drawing

parallels between algorithms (as conceptualized in the context of computational thinking)

and routines that we “execute” in our daily lives. He reminds us that “an algorithm is not

any sequence of steps, but a series of steps that control some abstract machine or

computational model without requiring human judgment” (p. 33).

Several educational researchers have criticized the overzealous assertions made by

computational thinking advocates, arguing that their claims are ambitious, overreaching

and empirically unsubstantiated. In particular, claims of the universal value of

computational thinking and the extent to which it can positively impact activities in all

fields lack empirical support. Denning (2017) criticizes claims that “computational

thinking enhances general cognitive skills that will transfer to other domains where they

will manifest as superior problem-solving skills” (p. 37) since the universal value of

computational thinking is, as of yet, empirically unsubstantiated. He concludes that what

the current literature reveals at most is that “computational thinking primarily benefits

people who design computations” (p. 37). diSessa (2018) expresses similar concerns over

Wing’s grand claim of universally applicable skills acquired through engaging in

computational thinking. He cites historical research efforts that attempted to discover and

develop “higher order thinking skills,” that is, cognitive skills thought to be universally

beneficial in a multitude of domains and contexts. The general consensus from these

studies was that there is little or no evidence of the existence of “domain general skills”

(p. 22). diSessa concludes that “Problem solving does not seem to be critically powerful,

even in a single discipline let alone transformative across disciplines” (p. 22). Moreover,

he reminds us that all representational systems have “distinctive and critical strengths, but

also limitations and blind spots” (p. 7); that is, what can be represented with a

29

computational model and significantly accomplished will vary greatly between different

domains and within different situations. diSessa suggests a more modest claim on the

potential of computational thinking may be more appropriate, at least until further

research provides more concrete evidence of its “ubiquitous” power.

At the K-12 level, parents, students, and teachers have questioned the relevance of

teaching computational thinking to students who show no interest in computer science or

related disciplines. Hemmendinger (2010) emphasizes that introducing computational

thinking into all subject areas should not be perceived as an attempt to train all students to

become computer scientists, but rather “to teach them how to think like an economist, a

physicist, an artist, and to understand how to use computation to solve their problems, to

create, and to discover new questions that can fruitfully be explored” (as cited in Yadav

et al., 2014, 5:2). Viewing computational thinking as part of a much larger scale

achievement—computational literacy—diSessa (2018) reminds us not to be discouraged

by initial unfavourable attitudes towards change and notes that the emergence of any new

literacy is a long and complex social process in which “initial resistance and long periods

of incubation are undoubtedly the norm” (p. 15). As more efforts to incorporate

computational thinking come from within specific disciplines, and activities are

thoughtfully designed to integrate computational thinking in authentic ways, students

(and parents) may perceive its inclusion as a natural development within the discipline,

rather than an external force driven by computer science objectives. This would likely

lead to improved attitudes as relevance and alignment with practices in the field are

realized.

Epistemological concerns have been raised in response to the idea that computational

thinking should be embedded into all subjects as a universal approach to problem solving.

Many non-science faculties reject positivist notions classically associated with the natural

sciences in favour of interpretivist or constructivist paradigms and consequently “avoid

analytical techniques that may be perceived as reductionist” (Czerkawski & Lyman,

2015, p. 62). Since computational thinking is still strongly associated with computer

science, there might exist an assumption that it is limited by the same restrictions

associated with computing. For example, the foundational element of computer science is

30

the Turing machine—a closed, finite model of sequential computation. Problems

considered solvable using this classical model of computation are limited to those that

can be reformulated in a meaningful way to be Turing-machine computable. While this

restriction narrowed the scope of problems that could be computed, the emergence of

new models of computation, such as natural computing models and concurrent interactive

computing models (Dodig-Crnkovic, 2011), have significantly expanded the type of

problems that can be profitably computed. As well, Soh et al. (2009) hypothesize that

interdisciplinary training for computer scientists “may encourage the development of

computational thinking methods suitable to the ‘open-ended’ issues studied in the

humanities and fine arts” (as cited in Czerkawski & Lyman, 2015, p. 62). Czerkawski and

Lyman (2015) discuss how computational thinking can be viewed as a human-computer

collaboration, that is, a reciprocal relationship that “both expands the range of human

creativity by incorporating computational thinking and expands computational thinking

by promoting the development of new models of interactive computing” (p. 62). As these

innovative, open models of computation become more mainstream, and the value that

computational explorations can bring to less conventional, non-traditional problems is

adequately illustrated, resistance to remediating problems with computation will likely

decrease.

A more practical issue to consider is that there is generally a “lack of orientation toward

domain-specific adaptation” (diSessa, 2018, p. 27) in regards to selecting, adapting, and

transferring salient computational thinking skills outside of a computer science context.

This is vastly apparent in education, where integrating computational thinking into

various subject fields in the K-12 curriculum is under-investigated from a teachers’

perspective (Grover & Pea, 2013). While the general consensus is that computational

thinking should be embedded into existing subjects rather than taught in an isolated

context, exactly what this integration is supposed to look like in practice is still vague

(Lye & Koh, 2014). As a result, there are minimal resources available which provide

practical teaching strategies, exercises, and assessment principles necessary for its full

implementation (Grover & Pea, 2013). Yadav et al. (2014) also note this deficiency and

report, “there is very little research on how teachers could be prepared to incorporate

computational thinking ideas in their own teaching” (p. 5:13). For example, a teacher

31

might be aware of the advantages of computational thinking, but might not know how to

incorporate computational thinking into a particular content or lesson. As Yadav et al.

(2014) note, “most of the current efforts to educate teachers about computational thinking

have been limited to computer science teachers” (5:3). As well, the lack of appropriate

teaching materials (textbooks, manuals, study sheets, templates for activities, and so on),

combined with inadequate teacher preparation results in teachers’ reluctance to engage

their students with computational thinking in a meaningful capacity. Czerkawski and

Lyman (2015) report that this deficiency is even greater at the university level and note,

“practical research on teaching computational thinking skills continues largely to take

place within computer science and the science, technology, engineering and math

(STEM) fields” (p. 60). They observe that “Outside of computer science and the STEM

fields, the difference between applying computational thinking methods derived from

computer science and simple application of computers to problems within a discipline

(‘data crunching’) is either less well-understood or simply elided” (p. 58).

2.7 Recent Theoretical and Practical Advancements

Barr and Stephenson (2011) report on a multiphase project that was launched in 2009 by

the Computer Science Teachers Association and the International Society for Technology

in Education with the goal of “developing an operational definition of computational

thinking for K-12 along with suitable resources for policy and curricular change” (p. 49).

They emphasize the core concepts or capabilities of computational thinking which are

both common with, and transferable to, other disciplines and provide practical examples

demonstrating how computational thinking concepts can be applied in various core

subject areas.

By analyzing routines that were viewed as important for both students and the

interdisciplinary practices within mathematics, Weintrop et al. (2016) developed a

taxonomy for computational thinking in mathematics and sciences, which provides “a

sharper definition that is distinct from computer science, yet still grounded in authentic,

meaningful computational practices that are essential for students to master” (p. 128).

Their work presents a significant contribution toward bringing computational thinking

into classrooms relatively quickly and effectively, that can “serve as a resource to address

32

‘what’ and ‘how’ questions that accompany the creation of new educational materials”

(p. 129).

Additionally, Yadav et al. (2011) demonstrated that when pre-service teachers

participated in a computational thinking training module, their attitude toward and

understanding of computational thinking improved and they reported to be more likely to

implement computational thinking in their classrooms. A later study by Yadav et al.

(2014) found that pre-service teachers presented with relevant information in

computational thinking demonstrated a more comprehensive and nuanced understanding

of computational thinking overall and were able to articulate its centrality in other

disciplines and suggest innovative ways it could be integrated into classroom teaching for

a wide variety of subjects. This research suggests that computational thinking principles,

practices, and related activities should be incorporated into pre-service teachers’

coursework regardless of their content specialization, as a first step towards the goal of

integrating computational thinking into all subject areas.

In post-secondary education, there have been a moderate number of cross-disciplinary

efforts to integrate computational thinking into curriculum; however, as Czerkawski and

Lyman (2015) note, so far these endeavors have been localized in scope. For example, at

the University of Nebraska-Lincoln (UNL), Soh et al. (2009) created a framework for

non-computer science majors of “multiple pathways through a series of computer science

courses that were specialized according to the students’ main areas of study” (as cited in

Czerkawski & Lyman, 2015, p. 63). In 2001, Brock University began offering a four-year

mathematics program—Mathematics Integrated with Computers and Applications, or

MICA—that combines a foundational tertiary mathematics education with computing

and information technology. This unique program focuses on solving authentic, complex

real-world problems by effectively integrating mathematics and computation.

Additionally, numerous universities offer introductory courses on the principles of

computing that do not involve any programming. For example, the Department of

Mathematics and Statistics at McMaster University offers an undergraduate course

(Topics in Logic) open to students in all faculties, which focuses exclusively on the

theory of computation and does not involve the use of computers.

33

Czerkawski and Lyman (2015) conclude their review of the state of computational

thinking in higher education by identifying areas where further research is needed in

order to make computational thinking a more pervasive, cross-disciplinary skill. They

suggest that part of these efforts should aim to “Establish methods and strategies as well

as examples and cases for teaching computational thinking in various non-technical

disciplines, especially the social sciences, humanities and education” (p. 64).

2.8 Summary

Computational thinking has always played a fundamental role in computer science;

however, more recently, it has gained recognition for its potential to innovate, transform,

and enrich educational experiences by providing a systematic framework for analyzing a

problem, and enabling powerful computational tools to be incorporated to further

enhance problem-solving activities. While some researchers (Denning, 2017; diSessa,

2018) point out that ambitious claims of the ubiquitous benefits of computational

thinking to teaching and learning lack empirical evidence, a body of literature suggests

(and education researchers concur) that such claims are worth a further, more thorough

investigation. The goal of the current study is to contribute meaningful data and analysis

to this research pursuit, in the context of the integration of computational thinking into

tertiary mathematics.

34

Chapter 3

3 Methodology

In this chapter, I describe my research design, the participants and setting, the particular

research intervention, and data collection. I discuss my theoretical and analytical

frameworks, and explain (with specific examples) how I conducted my content analysis. I

then describe how I used diSessa’s (2018) literacy framework to help situate my results

within the broader context of a computational literacy. I conclude this chapter with a

discussion of the trustworthiness of the study, and the measures I have taken to ensure

that this research is credible, transferable, confirmable, and dependable.

3.1 Research Questions

My current research project investigates an approach to integrating computational

thinking into an undergraduate applied calculus course that I have implemented at

McMaster University. This was accomplished by supplementing mathematical problem-

solving activities with appropriate, carefully designed computer coding activities, which

were incorporated into lectures to explore mathematical concepts and illustrate coding

techniques, and organized into a set of computer labs to be used as an assessment

component. I collected and analyzed students’ responses to a series of questions posed at

the end of each lab, which invited them to reflect on their experiences with the

mathematical coding activities.

In order to determine how integrating computational thinking into my students’ learning

environment affected their understandings and experiences, I formulated the following

two research questions:

1. How does students’ conceptual understanding of calculus concepts change in

response to working on problem-solving and mathematical modelling activities

which incorporate computational thinking?

2. How are students’ learning experiences transformed when they explore calculus

concepts, ideas and techniques using computational tools and models?

35

3.2 Research Design

To answer my research questions, I used a case study research design, which Stake

(2005) advises is most appropriate for collecting descriptions of teaching and learning

experiences within a bounded system (i.e., the thoughts and actions of participants in a

specific education setting, for example, students working on mathematics problem-

solving exercises using a computational tool, such as a laptop or a tablet, in a specific

course). This approach helped me to understand the main features of such a system as it

functioned under natural conditions (Stake 2005; Yin, 2009). As well, Yin (2009)

suggests that a case study research design is most appropriate for investigating “how” and

“why” questions, such as the research questions posed in this study. My analysis is

qualitative in nature, following the established practice of in-depth studies of classroom-

based learning and case studies in general (Stake, 2005), and uses qualitative content

analysis to identify key themes in the teaching and learning experiences.

3.3 Theoretical Framework

In my education research, I align myself with a social constructivist epistemology,

identifying with Vygotsky (1978) in the belief that knowledge is constructed in

interactions with others. In this context, I expand Vygotsky’s concept of “others” to

include technology, that is, I believe that knowledge is constructed when humans interact

with computer technology. Like Borba and Villareal (2005), I believe that students’

mathematical thinking and knowledge can fundamentally change by interacting with

mathematics using technology. Ontologically, I adopt a relativist viewpoint, since I view

reality as being comprised of “local and specific co-constructed realities” (Lincoln,

Lynham, & Guba, 2011, p. 100).

3.4 Participants and Setting

I conducted this research at McMaster University in the fall of 2018, with students

enrolled in Math 1LS3, a first-year undergraduate calculus course designed for life

sciences majors. This foundational course teaches the basic concepts of differential and

integral calculus, with a heavy emphasis on applications in the fields of life and health

sciences. During the fall 2018 semester, there were approximately 1020 students enrolled

36

in Math 1LS3 and the students were assigned to one of three lecture sections, each taught

by a different instructor. All sections covered the same topics in approximately the same

order (the course coordinator maintained a common course webpage for students and

instructors to follow) and students in all sections were given identical assignments,

computer labs, tests, and final exam.

During lectures, instructors introduce standard calculus topics (such as functions, limits,

derivatives, integrals, discrete-time dynamical systems) and then apply these concepts to

investigate mathematical models within biological contexts. To demonstrate relevance,

models are taken from journals in life and health sciences, and deal with contemporary

situations, such as drug abuse and spread of viral diseases. Students remark that they

recognize the value of this approach, however, they frequently admit (to myself, other

instructors, and on their course evaluations) to having a great deal of difficulty working

with these complex models.

Throughout the course, students work on a series of assignments to reinforce the material

being presented in lectures. For practical reasons, these assignments have been designed

so that students are able to complete them without the use of computer technology (as

well, many mathematics courses at McMaster do not allow the use of calculators on tests

and final exams). In reality, applying calculus techniques to complex, real-life models

without the use of computational thinking tools often requires long, tedious and time-

consuming calculations. In order to be adapted to actual teaching practices, these

modelling tasks are necessarily over-simplified to generate special cases, which can be

investigated algebraically, or by using a hand-held calculator. Unfortunately, this often

reduces the perceived value of the mathematical application being considered. For

example, the calculations required to approximate the solutions to a system of differential

equations—such as the SEIR-model, used to study the spread of the EBOLA virus during

the recent epidemic (Althaus, 2014)—using Euler’s method with a large enough number

of iterations to obtain meaningful results, would be unwieldy without computer

technology. In traditional approaches, students are asked to approximate the solution to a

single differential equation by applying Euler’s method for a maximum of four steps

37

(which is straightforward to compute), thus obtaining a superficial, uninteresting, and,

from the application point of view, useless answer.

3.5 Intervention

In collaboration with the course coordinator, I developed a collection of coding activities

to complement the mathematical material studied in Math 1LS3 and to facilitate a deeper,

enriched exploration of the course content in more authentic contexts. These activities

invited students to explore calculus concepts and solve problems using computational

models, thus engaging them in computational thinking. The activities were organized into

four computer labs (see Appendix C for Lab 3), which corresponded to the main themes

in the course: mathematical models, limits and derivatives, differential equations and

integrals, and discrete-time dynamical systems.

 All lab content—theory, examples, explanations, data sets, pictures, and sample code—

was organized into a Jupyter notebook2 file, which students were able to access and

download from the course webpage 10 days before each lab was due. Mindful that Math

1LS3 is not formally a combined mathematics and computer science course, we

presented the coding activities as a numerical approach to the mathematical ideas and

focused on directly applying the code, rather than teaching nuances of the programming

language (Python 3). Brief explanations were provided as needed in the form of

comments throughout the code (for example, x = np.linspace(0, 2, 4) #creates an array of

four equally spaced x-values between 0 and 2 (see Figure 6)).

2
 A Jupyter notebook is a free integrated development environment, which supports HTML, Python, and R

code (see Figure 6).

38

Figure 6: Screenshot of the Jupyter notebook integrated development environment.

Students were invited to explore and experiment with data, models, and algorithms by

modifying the code directly in the online file. Throughout each lab, they were prompted

to respond to a series of procedural and conceptual questions related to the coding

activities, as well as a series of open-ended questions, which invited them to reflect on

and evaluate their experiences with the coding activities and explain how these

experiences affected their understanding of the mathematical content. Students submitted

their responses electronically thorough childsmath—an internal survey and assessment

tool created and maintained by a professor (Aaron Childs) in the Mathematics and

Statistics Department, which is also used by several other Mathematics and Statistics

courses at McMaster (see Figure 7). The first Jupyter notebook cell of each lab contained

a link to childsmath and students would presumably toggle between the Jupyter notebook

and childsmath windows as they completed each lab.

39

Figure 7: Screenshot of childsmath survey and assessment tool.

Math 1LS3 contained four term assessments, collectively worth 60% of students’ final

grade: test 1, test 2, test 3, and the fourth being the set of four computer labs. In

computing final grades, only students’ top three of these four assessments were used,

each contributing 20% to the final grade. Thus, the completion of these computer labs

had the potential to contribute 20% to students’ overall grade.

Whenever appropriate, instructors incorporated coding activities into lectures to

demonstrate various computational (numeric) approaches in mathematics. This helped to

keep our explorations of applications meaningful and authentic, and also helped students

develop the technical skills needed to complete the coding modules.

3.6 Data Collection

For each computer lab, the procedural and conceptual responses submitted through

childsmath were automatically graded according to an answer key. The system generated

an Excel spreadsheet for each lab, which contained all students’ graded responses to the

40

procedural and conceptual questions, as well as their text-based reflective responses to

the open-ended questions. The spreadsheets were accessed and downloaded by our course

coordinator, and then shared with our research assistant, Reihaneh Jamalifar.

Jamalifar read and graded each of the reflective responses, assigning one mark per

question if there was a reasonably thoughtful response given, and zero marks if the field

was left blank or if the response was deemed unacceptable.

Examples of acceptable (i.e., receiving one mark) responses:

I enjoyed the dynamic, interactive nature of the coding activities more than just

solving problems on paper.

The activities in this lab allowed me to experiment with different cases until I was

able to fully understand the problem (and solution).

I found the coding exercises within this lab to be too overwhelming without

having explicit lessons on Python 3, and so the activities just confused me more.

Examples of unacceptable (i.e., receiving zero marks) responses:

 blahblahblah

I am just writing something to fill the space to get a mark.

Jamalifar calculated a “reflective response” grade for each student and submitted these

grades to the course coordinator. She then sorted the reflective responses into two

categories: students who consented to have their responses analyzed for research

purposes, and those who did not. She removed all identifying data (e.g., names, student

numbers, email addresses) and then exported the comments of students who gave their

consent onto a USB drive. The reflective responses of students who did not give their

consent were deleted.

We followed appropriate McMaster Research Ethics Board (MREB) and Western

Research Ethics Board (WREB) guidelines and protocols, and obtained necessary

41

approvals; see Appendix A for the Letter of Information. To maintain separation between

my roles as (1) researcher and (2) instructor of one of the course sections, I did not have

access to, and did not analyze, the data collected by Jamalifar until after the final course

grades were submitted and approved.

3.7 Content Analysis

Following the completion of the fall 2018 semester, I accessed the data and conducted a

qualitative content analysis. Hsieh and Shannon (2005) define a qualitative content

analysis as “a research method for the subjective interpretation of the content of text data

through the systematic classification process of identifying themes or patterns” (p. 1278).

This inductive method is appropriate for interpreting the results of naturalistic inquiry,

that is, an inquiry of a phenomenon researched in its natural setting (Hsieh & Shannon,

2005). As Krippendorff (2004) explains, “content analysis provides new insights,

increases a researcher's understanding of particular phenomena, or informs practical

actions” (p. 18).

I used the qualitative data analysis software package NVivo to facilitate my content

analysis, and stored and organized my raw data, nodes, annotations, memos, pictures and

research journal within this system. NVivo provided a detailed analytic framework,

tutorials, guidance, suggestions, and examples for conducting a rigorous, systematic

content analysis.

The first thing I set up within NVivo was a research journal to document the evolution of

my project. I regularly reflected on my analytical process, and wrote detailed notes

(Lincoln & Guba, 1985) of how I was “informed, redirected, and surprised by my data”

(NVivo, n.d., Ways to get started with your project section) and eventually, how higher-

level nodes, categories, and themes were discerned.

To begin my content analysis, I imported all consented open-ended survey responses

from the computer labs into NVivo. I systematically read each comment to immerse

myself in the data and to obtain a global, comprehensive sense of it (Hycner, 1985 as

cited in Cohen, Manion, & Morrison, 2007; Tesch, 1990 as cited in Hsieh & Shannon,

42

2005). Concurrent with my reading, I identified key words and ideas, and recorded my

“first impressions, thoughts, and initial analysis” (Hsieh & Shannon, 2005, p. 1279). This

enabled me to generate an initial node structure, a process described by Mayring (2000)

as “inductive category development” (Hsieh & Shannon, 2005, p. 1279). Using topic

coding, I coded the data based on key words and used text search queries to find related

comments in other sources (for example, other sets of responses). Using analytical

coding, I considered how each particular comment related to my research questions. As

Krippendorff (2004) explains, “research questions are the targets of the analyst’s

inferences from available texts” (p. 31); therefore, a persistent focus on my research

questions was crucial throughout my analysis. I found that this more complex, refined

approach required a thorough reading and reflection of the content in order for the data to

be accurately coded. It was during this analytical coding that I found myself making

extensive and frequent annotations, continuously comparing (Cohen, Manion, &

Morrison, 2007) all comments coded at a particular node to ensure that they reflected the

same sentiment.

For example, the student’s response below was coded at four notes: “tangible feel,”

“visualization,” “deeper understanding,” and “new approach:”

… the computer lab helped transform abstract concepts, such as blood alcohol

concentration, into visual representations through graphs. This helped deepen

the understanding of the content as we could rely on multiple learning

approaches rather than just conventional methods.

I continued in this manner to code each comment at relevant nodes, creating new nodes

as needed, until all comments from the four labs were coded. As Wilkinson and

Birmingham (2003) note, “developing new codes as you progress with your analysis

provides a more flexible, rich and inclusive … analysis of the information you have

collected” (p. 73). During this process, I made use of the constant comparison technique;

that is, I continuously compared new data with my existing data, theories, and categories

in order to ensure an appropriate fit (Cohen, Manion, & Morrison, 2007), revising and

refining my initial coding scheme as needed (Hsieh & Shannon, 2005). My annotations

43

allowed me to comment on a particular section of source material or node. These side

notes, in turn, helped me to reflect on my data continuously and record insights, thoughts,

questions, ideas, observations, and emergent patterns concurrent with coding (NVivo,

n.d.). While I did make use of NVivo’s built-in queries to observe word frequencies, I felt

more confident reading all comments and exhaustively coding my data. While saturation

was often reached several pages into a set of responses, I nevertheless coded each data

set, allowing repetitions within nodes. I began with coarsely coding my data into a large

number of nodes, and after reflecting on the nodes and annotations made throughout,

decided which nodes shared common themes and could be merged together into a higher-

level categorical node (Hycner, 1985 as cited in Cohen, Manion, & Morrison, 2007). In

other words, by “clustering units of relevant meaning” (Hycner, 1985 as cited in Cohen,

Manion, & Morrison, 2007, p. 472) I was able to identify fundamental commonalities,

and, through this process, I “eliminated redundancies” (p. 472). For example, the data

coded at the nodes “confidence,” “confusing, frustrating,” “engagement,” “enjoyable,”

“exciting,” “interest,” “new, fresh,” were all clustered under the categorical node

“learning experiences” (see Figure 8).

Figure 8: Screenshot of the coding framework in NVivo.

44

Once all data was coded, I reviewed and reflected on the source content (Cohen, Manion,

& Morrison, 2007) in each categorical node, and on all annotations pertaining to the

nodes in the category, and then created a memo (NVivo, n.d.) for that category. Each

memo summarized the content of the categorical node, included multiple illustrative

examples, and connected the results back to my research questions. These memos formed

the basis of my Results chapter and were organized into three overarching central themes,

which express the “essence” (Cohen, Manion, & Morrison, 2007, p. 472) of each

category: modified perceptions of mathematics, enhanced mathematics learning

experiences, and unique coding affordances.

3.8 Computational Literacy Framework

To situate my research, I analyzed the results I obtained using diSessa’s (2018) literacy

framework. diSessa proposed five principles which signal and characterize an emerging

literacy. His purpose in developing this framework was motivated by two goals: first, to

propose a “big picture” (p. 30) model of computation as a new literacy and second, to

provide an analytical framework with which to examine other computational initiatives in

education, such as computational thinking and coding.

diSessa’s (2018) first principle conceptualizes a literacy as a massive, social and cultural

achievement which fundamentally impacts multiple cannons of intellectual enterprise.

His remaining four principles are consequences of the development of a new literacy:

remediation with a new representational system, reformulation of objects, ideas, and

processes, reorganization of the intellectual landscape, and revitalization of the learning

atmosphere. diSessa examines his own research in teaching grade 6 students the

mathematics of motion, applying the literacy criteria to his data, and discussing the

budding of a computational literacy.

Following diSessa’s (2018) approach, I adopted his framework for my analysis to

investigate the correspondence between my data and diSessa’s criteria for an emergent

literacy. I examined the categories that emerged from my content analysis and considered

the role each one played with respect to diSessa’s principles. This enabled me to build a

table illustrating the relationship between the results of my study and the anticipated

45

outcomes of a computational literacy. I then considered each of diSessa’s literacy

principles and chose examples from my data to illustrate each principle and explain how

it emerged in our teaching and learning experiences throughout this project.

3.9 Trustworthiness of Study

Lincoln and Guba (1985) outlined four criteria for evaluating the trustworthiness (and

therefore worth or value) of naturalistic inquiries: credibility, transferability,

dependability, and confirmability. Credibility refers to the confidence with which the

conclusions truthfully represent the phenomenon being studied, or reflect the patterns in

the data. Transferability determines to what extent the results of a study can be

generalized to other comparable situations. Dependability is achieved when the results

are consistent and could be reproduced in similar contexts. Confirmability addresses the

degree of neutrality of the study.

Lincoln and Guba (1985) describe a set of techniques, which help to achieve their criteria

within qualitative research studies. They argue that prolonged engagement and persistent

observation help to establish credibility within qualitative research. Throughout this

study, I collected and analyzed responses from a large number of students (on average,

900 students consented to have their responses used for research purposes) on four

separate occasions over the course of a semester and exhaustively coded each data set.

This prolonged engagement with the study and raw data ensured the breadth of my

observations and findings, and consequently, of my insights and conclusions.

Furthermore, each categorical node contained numerous illustrative examples and/or

comments generated independently from numerous students responding to various

prompts for feedback. I extensively reviewed, compared, evaluated and re-evaluated

students’ responses within each node (persistent observation) to guarantee that I had

identified all meanings (explicit and implicit) conveyed in each response, and to ensure

that I achieved a desired depth in my insights and conclusions. To establish a high degree

of transferability, I provided a thick description (Lincoln & Guba, 1985) of my research

process—participants, setting, implementation of the intervention, data collection, and

content analysis. To establish dependability and confirmability, I maintained a reflexive

research journal to provide an audit trail (Lincoln & Guba, 1985) of my research process,

46

my insights, and the development of themes, including illustrative comments from the

original source material, all of which helped to lead me to my conclusions.

3.10 Summary

Investigating my research questions as a case study coupled with qualitative content

analysis provided valuable insight into how students’ conceptual understanding of

undergraduate calculus topics changed, and how their mathematical learning experiences

were impacted, as a result of engaging with computational modelling activities.

Examining my results using diSessa’s (2018) analytical framework helped to organize

my data and align it with his five well-defined literacy principles. Adopting this frame of

reference revealed new insights into my data and enabled a systematic comparison of my

research project with related initiatives, such as diSessa’s research on teaching sixth

grade students the mathematics of motion. Like diSessa, I discovered the unique

affordances of remediating calculus with computation, important consequences of

reformulating a problem for computation, and the reorganization of the intellectual

landscape that occurs when a new literacy is emerging. I experienced a revitalization of

my teaching and learning ecology, but also witnessed, and acknowledged the limitations

inherent in this new representational system.

Comparing my research with existing efforts, using diSessa’s (2018) criteria as a

reference, I feel confident that I have come across something valuable. As well, these

criteria allow me to situate my study within the larger body of research on computation in

mathematics education.

47

Chapter 4

4 Results

My current research has been guided by the following questions:

1. How does students’ conceptual understanding of calculus concepts change in

response to working on problem-solving and mathematical modelling activities

which incorporate computational thinking?

2. How are students’ learning experiences transformed when they explore calculus

concepts, ideas and techniques using computational tools and models?

To investigate these questions, I collected students’ responses to a series of questions and

prompts posed at the end of each of the four computer labs assigned throughout the

course. Using a combination of topic and analytic coding to begin my content analysis, I

sorted my data into thirteen categories, based on explicit (key words) and implicit

(underlying meaning) content. Analyzing the relationships between categories, I was able

to further organize my data into three overarching central themes: modified perceptions

of mathematics, enhanced mathematics learning experiences, and unique coding

affordances. The first two themes address the original research questions and students’

reflective comments generated the latter important theme (see Figure 9).

48

Figure 9: Results of qualitative content analysis.

4.1 Modified Perceptions of Mathematics

A computational thinking approach challenges traditional views of what mathematics is

and what mathematicians do. In particular, these views are often quite entrenched with

regards to the content that is taught in calculus (both in high school and university), as

well as in the teaching methods and approaches.

Due to certain affordances of algebraic representations in teaching practice, algebraic

techniques are often emphasized and viewed as the most sophisticated approach to

problem solving. However, in most cases, realistic data from outside of a theoretical

mathematics course cannot be analyzed with concepts and tools developed for continuous

functions. Instead, these theoretical concepts and tools are reformulated in discrete terms,

so that numerical approaches can be used to analyze the data and build appropriate

models.

Modified Perceptions
of Mathematics

•  broader, more
representative
perspective of the
field of mathematics

•  enabled meaningful,
authentic applications
to be incorporated into
course activities

•  illustrated the
relevance and value of
mathematical
concepts

Enhanced Mathematics
Learning Experiences

•  interactive learning
experiences with
immediate feedback
provided opportunities
to explore,
experiment, and play
with mathematics

•  dynamic
visualizations

•  transformed affective
learning experiences

•  tangible feel
•  new approach,

different perspective
•  accommodated

various learning styles

Unique Coding
Affordances

•  elevated problem
solving capabilities
beyond traditional
limits

•  problem solving
became more
efficient, less tedious

•  offered unique
advantages over
ready-made
applications

•  physical coding
mechanics provided
numerous benefits

49

Integrating computer programming into problem-solving activities in calculus allows

students to further develop their knowledge, skill, and appreciation of different

mathematical approaches. The traditional “rule of three” (algebraic, geometric and

numeric approaches to learning and understanding mathematical content), sometimes

augmented to the “rule of four” (by adding a verbal approach), are enriched by adding an

important, far-reaching, computational approach. Together, these approaches reformulate

calculus concepts developed for continuous functions into discrete analogues, which not

only reinforce students’ understanding, but also more readily allow calculus tools to be

incorporated into problem solving in other disciplines.

4.1.1 Broader, More Representative Perspective of the Field of
Mathematics

Students reported that integrating coding with calculus concepts broadened their

perspective of mathematics from a discipline that leaves no room for interpretation or

inquiry, to one that invites investigations, explorations, new techniques and approaches,

as well as one which supports inquiry-based thinking. They stated that the coding

activities demonstrated an interdisciplinary approach to mathematics and allowed

mathematical concepts and tools to be effectively integrated with other disciplines to help

solve complex problems.

Sample of students’ comments:

I liked how open the lab was and how experimentation was openly encouraged. It

helped me think about the material in a deeper way.

My perception of mathematics has changed significantly due to the incorporation

of these labs. I able now better able to envision what a career in mathematics may

look like. Prior to this, I only had one image of math, number crunching on a

calculator and writing down the answers on a piece of paper. However, I am now

able to see math as a much more dynamic process with many different

applications and career options.

50

An advantage to this is it expands new ideas and ways to tackle a certain

question. Also it helps broaden our understanding of how mathematics works

beyond the scope of traditional mathematics alone.

Through the use of computer science and coding, the module depicted the

importance of mathematics in real world scenarios and how technology and

mathematics can be incorporated hand in hand to accomplish complex goals.

4.1.2 Enabled Meaningful, Authentic Applications to be
Incorporated into Course Activities

Students reported that integrating coding with mathematics afforded unique opportunities

to explore and analyze authentic applications, which may be inaccessible or impractical

to consider otherwise. For example, in Math 1LS3, students explored the SEIR

(susceptible–exposed–infected–recovered) model to understand the dynamics of the

recent EBOLA virus outbreak in several African countries. This complex model would

usually be studied in a second or third year differential equations course; however, by

remediating the system of differential equations computationally, students were able to

extend Euler’s method from a single first-order differential equation to a system of four

first-order differential equations. Furthermore, they were able to run thousands of

iterations in a fraction of a second to explore long-term behaviour of the spread of the

virus. Students were then able to modify parameters in the SEIR model to determine their

individual effects on the outbreak, that is, which parameters have to change—and to what

values—in order for the outbreak to be controlled. In previous semesters of Math 1LS3,

the classic predator-prey model was only explored qualitatively, since algebraic solutions

are known to be impossible to obtain (except in some very special cases). However, again

by intuitive extension, students are able to apply Euler’s method to a system of equations

to uncover periodic behaviour of solutions. It is highly unlikely that applying Euler’s

method by hand, using several iterations, would uncover this pattern.

Students described how their interest and engagement increased when they saw that an

abstract mathematical concept could be applied to effectively investigate an authentic,

real-world problem. This helped provide tangibility to the theoretical mathematical

51

concepts, or as one student stated, “it grounds the math.” Moreover, by incorporating

meaningful applications, students’ analytical activities more closely aligned with

practices in the field, which students said increased the value of the material they were

learning and allowed them to have a realistic perspective of mathematical research

methods and what a career in mathematics might look like.

Sample of students’ reflections:

 … I also like how the problems are based on real-world scenarios, as opposed to

dry mathematical questions. It makes you look at math in a new way, and it gives

it significance/importance.

I feel that the applications in this Lab help me to make bridges between concepts

and usefulness in real life. I feel that once I establish that connection, I

understand concepts much better and am able to answer problems easier.

… we can assess the more convoluted functions of real-life, rather than sticking to

simplistic models. In-class instruction becomes so much more relevant to real life.

…coding was interesting and allowed for me to see concepts used in more

realistic scenarios, coding allowed for massive/incalculable scenarios of eulers

method etc. to be done (real life trends that are too large/complex to be done by

hand). This gave me a greater appreciation for the math concepts and how they

apply to reality.

4.1.3 Illustrated the Relevance and Value of Mathematical
Concepts

Students found that the coding exercises effectively illustrated the relevance of the

mathematical skills and concepts they were studying. In particular, they noted that

integrating coding with numerical approaches, such as approximating a definite integral

using a Riemann sum or estimating a solution to an initial value problem using Euler’s

method, effectively demonstrated the value of these concepts and techniques, which were

formerly perceived as inferior to algebraic methods.

52

For example, students often perceive using the definition of the derivative to find the

instantaneous rate of change of a function as a naïve method, only used before learning

specific differentiation rules. A root cause of this view can be traced to the way

derivatives are covered in high school. For instance, Kajander and Lovric (2009) show

that, by not using the definition of the derivative to interpret and visualize the tangent line

to the graph of a function, grade 12 students develop a number of misconceptions (such

as “a tangent touches the graph at one point, but cannot cross it” (p. 175)), which hinder

their understanding and progress.

In Math 1LS3, we presented students with a function, represented numerically in Excel,

which recorded the number of individuals hospitalized with influenza in Canada each

month over the course of several years. Students were asked to determine the rate of

change of serious cases of influenza in Canada from this function, which was represented

as a large set of discrete values. Through this example (and several other examples

involving functions represented numerically), students realized that in many applications,

rates of change are approximated using average rates of change—that is, difference

quotients—since differentiation rules apply only to continuous functions (and not even to

all continuous functions!). Furthermore, by analyzing rates of change using code, these

calculations can be done quickly and efficiently, simultaneously producing a

visualization of the data set and the approximate rates of change.

Sample of students’ comments:

Using mathematic techniques via coding that would be difficult to do in detail by

traditional methods (Ex. Euler’s method, Riemann Sums) made me appreciate the

techniques much more than if I had not seen the capabilities of the techniques,

and only saw a couple of iterations of the techniques.

I feel that coding gives us a sense of real-life mathematics and its usefulness that

traditional mathematics would not. Using mathematical modelling of functions

through codes in real life makes us feel like we can use this skill in our

workplaces in the future too and it gives the learned content new value.

53

…it was effective in making math into something more tangible; something that

can be extended beyond the classroom. It felt nice knowing what actual

researchers in the life science do with their data and how they manipulate it.

I believe that seeing mathematics and computer programming joined together in

such a manner has allowed me to appreciate the value of mathematics as a tool

for modelling data that can then efficiently be processed using computer

programming.

4.2 Enhanced Mathematics Learning Experiences

Adopting a computational thinking approach enabled students to incorporate powerful

computational tools into their mathematical problem solving. The categories in this

section reflect particular, and often unique, affordances of computer coding

environments.

4.2.1 Interactive Learning Experiences with Immediate Feedback
Provided Opportunities to Explore, Experiment, and Play
with Mathematics

Students reported that the coding environment offered a dynamic and interactive learning

experience during which they could effectively explore and analyze mathematical models

and techniques in innovative ways. Students also noted feeling more interested and

engaged in the activities, and stated that they felt they achieved a more comprehensive

understanding of a concept when they were given the opportunity to actively interact with

the components of a problem.

Moreover, running computer code provided immediate feedback, which students said

required of them to critically evaluate their work to recognize the nature of any errors

(mathematical or coding), and allowed them to effectively make and test their

corrections. Students stated that receiving this constant formative feedback helped shape

their mathematical understanding and improved their confidence.

Students reported that coding activities gave them the freedom to independently explore

the mathematical content in ways that were meaningful and relevant for them. They

54

appreciated the ability to ask hypothetical, “what if” questions, test their predictions, and

receive immediate feedback, which helped them develop deeper insights and intuition, as

well as clarify any confusions. Students noted that the opportunity to experiment with

different scenarios allowed them to gain a more comprehensive understanding of the

mathematical relationships and concepts.

Sample of students’ reflections:

Traditional instruction lacks the immersive and interactive nature that coding

gives you. When I’m coding, I personally feel very engaged with the source

material. It’s as if this is my project, it’s a problem and a journey, as I endeavour

to solve it.

This module allowed me to go back and fix my mistakes, if any. This allowed for

me to think critically and be able to rectify my mistake, and that embedded the

fundamentals of the mathematics within me.

In traditional mathematics you do not have the opportunity, nor the time to

explore different ways to come up with the same mathematical answer. Coding

allows us to make mistakes and understand where those mistakes came from, and

gives us an opportunity to THINK.

Coding lets me see how changing different things about a problem affects it and it

allows me to work by trial and error based on what I personally need to do to

understand. While traditional instruction is still much more organized and

delivers information more directly, coding is a great way to apply new knowledge

and clarify confusion through experimentation.

4.2.2 Dynamic Visualizations

One of the most frequently reported comments was that students appreciated the dynamic

visualizations that combining code with their mathematical explorations could provide.

These visualizations included graphical comparisons between numerical approximations

and theoretical solutions, extensive lists of numbers from which a pattern is to be

55

discerned, and areas of regions bounded by curves. Students reported that interacting with

these visual representations enhanced their conceptual understanding of the

corresponding mathematical ideas. While students recognized other programs and

applications (such as Desmos) could provide visualizations as well, by creating their own

code in Jupyter Notebook, students could perform multiple analyses at the same time;

that is, they could create an algorithm to produce the desired quantitative output, and also

write a code for a visual representation to be generated simultaneously. This code could

then easily be copied, pasted, and modified in a new cell to perform a similar analysis

under different conditions. Students noted that prepackaged programs are more limited in

their capabilities, whereas coding offered them full control over what their particular

program does.

Sample of students’ comments:

The activities in Lab 3 that I found most effective at enhancing your

understanding of the mathematical concepts were the ability to create visual

depictions of the math. This helped me fully see consequences of certain actions

and helped me fully comprehend the effects, thus increasing my overall

understanding.

 Without a visual representation and physically playing around with the numbers,

I could never have completely understood the concept [of Euler’s method].

When coding, you can have a visual representation of your work making it easier

to identify mistakes.

4.2.3 Transformed Affective Learning Experiences

Students reported that integrating coding activities and calculus concepts enhanced their

learning experiences in a variety of ways. They stated that the approach felt “new,”

“fresh,” and “modern,” which increased their interest during the problem-solving

activities. They also remarked that incorporating authentic applications made

mathematics more stimulating and relevant.

56

Students noted that the activities invited innovative approaches to problem solving, which

made the mathematical content more exciting and enjoyable to study. Most students did

not have any high school experience with coding, so having this new tool to help them

answer mathematical questions was indeed novel to them. They found that the dynamic

visualizations, as well as the automation of tedious routine calculations, increased their

overall enjoyment of the activities.

Students reported feeling more engaged in mathematical problem solving since the

coding activities required their full attention and active interaction. As well, they noted

that the immediate feedback they received was rewarding and motivated them to explore

concepts further.

Many students felt that using code to explore mathematical concepts opened up a creative

space for problem solving that was not previously available (and unfortunately not

available in high school). They appreciated that there were multiple ways they could

approach a problem, and remarked that coding offered a level of flexibility not typically

offered within other mathematical problem-solving environments.

Students reported that the mathematical coding activities encouraged meaningful,

productive peer collaborations. They noted that engaging in creative struggles, discussing

the material, and comparing different coding approaches with their peers helped facilitate

understanding as well as broaden their social network.

Sample of students’ reflections:

Overall I really enjoyed the coding exercises in this module, it definitely

increased my motivation and confidence, but more importantly my understanding

of the content learned in class.

I thoroughly enjoyed the computer labs as they allowed me to interact with

mathematics in a new way.

I found that this coding lab made me more engaged in the math content. It made

the work being done seem less mechanical and gave more purpose to the work.

57

I personally think the advantages of these coding labs come in the form of

flexibility, as it allows students to be more creative in the ways that they get to the

final answer.

I believe that these coding activities were a great concept to add into the course

and it was a great way for many students to collaborate and work together.

Working with other individuals helped me understand concepts better as we

explained different things to each other.

4.2.4 Tangible Feel

Students reported that interacting with mathematical models and algorithms using code

aided them in forming concrete representations of the abstract mathematical concepts.

They found that coding helped ground the mathematics for them, and that the abstract

concepts became more real and tangible through the coding activities. For example, many

students reported that the definition of semilog and double-log plots did not make much

sense to them until they had the opportunity to interact with the code for these plots, and

with the plots themselves. These interactions helped clarify the definition by “seeing,”

that is, by providing a tangible feel to this concept of using logarithmic scales on

coordinate axes (instead of the usual linear scales) that would otherwise remain abstract

and have a theoretical feel only.

Sample of students’ comments:

I liked the visual explanation of the Intermediate Value Theorem, and I liked

being able to manipulate code in order to learn about it, and truly understand

what it meant. By working through a code example of a theorem, you make it less

of an abstract idea, and more of a practical application.

With the integration of computer programming, I feel like these concepts and

problems become much more tangible. I think it is likely due to the fact that the

labs provide a ‘hands on’ aspect you wouldn’t normally get.

58

The integration of math and computer programming has made math more real to

me. It made the concepts much less abstract to me and more tangible.

Mathematics has always been an abstract concept to comprehend, however, the

addition of computer programming allows the concepts to be grounded in

practical applications that can be understood and manipulated.

4.2.5 New Approach, Different Perspective

Students reported that integrating coding with mathematics offered a new perspective on

mathematical models and concepts, and invited multiple approaches to problem solving.

They found it interesting to compare how they would solve a problem algebraically to

how they would reformulate it as an algorithm so that they can use computer code. For

example, when required to determine the area between two curves, students found it

interesting, and eye-opening, to contrast how they would approach the problem

algebraically using the Fundamental Theorem of Calculus to how they would approach it

numerically, by creating a program in Python to estimate the area using Riemann sums.

In another example, students found that using an alternative method to find and analyze

critical numbers (in their code, students used the Intermediate Value Theorem), helped to

solidify the definition of a critical number, the algorithm for finding critical numbers, and

the First Derivative Test.

Students realized that when they explored a concept using multiple representations, they

were able to benefit from various affordances, and fill in the gaps stemming from the

limitations of a single representation, by considering complementary representations.

Sample of students’ reflections:

Not only did the questions reinforce my existing knowledge, but it also prompted

me to assess the questions in a different manner and encouraged critical thinking.

…builds mathematical understanding in a unique way, creating new pathways for

the brain to solve mathematical problems.

59

Overall the process of working on behind the scenes for these functions helped me

look at them from a different angle and extend my understanding from the lecture.

I find when I’m doing the actual questions myself I think of how the code was

configured, and it helps me understanding what I am doing.

4.2.6 Accommodated Various Learning Styles

Students reported that analyzing mathematical models and algorithms using code

provided differentiated learning opportunities, which supported a variety of learning

styles. For example, many students reported being visual learners and appreciated how

running code produced rich visualizations, which supported their learning in a way that

non-coding activities (or their textbook) could not. They further noted that the labs

enabled them to adopt an interactive, hands-on approach to their learning, which was

especially beneficial to tactile, kinetic, and visual learners.

Students also remarked that exploring mathematical concepts using code encouraged

independent learning more than traditional problem-solving activities. For instance, they

reported that they were less afraid of making mistakes, as they knew that Python would

spot the mistakes right away, and force them to fix their code, or to modify their

mathematical approach, without a lot of extra work on their part. Students also

appreciated that coding allowed them to personalize their learning experiences by

independently exploring concepts at their own pace in ways that were meaningful to

them.

Sample of students’ comments:

Some people learn things differently than others and many of them, like myself,

learn by doing things. We need to see the mathematical concepts applied in front

of us and need some hands on experience with those concepts. By integrating

coding and math, people like me can manipulate equations in whichever way we

like and see the real time consequences of our actions.

60

The computer lab/module did a great job in teaching the course material from

different angles. Different students learn in different ways and it is very difficult to

teach a concept that will be understood by all of these students. This module was

effective in showing students other ways of learning that may have not been clear

prior.

Coding lets me see how changing different things about a problem affects it and it

allows me to work by trial and error based on what I personally need to do to

understand.

Using the coding software also allows students to see different representations of

math (graphs, tables, equations), and choose which one they understand best.

4.3 Unique Coding Affordances

Analyzing the connections between categories revealed three overarching themes. The

first two themes addressed the original research questions, whereas certain categories

suggested a third theme: unique affordances of exploring mathematics with computer

code.

4.3.1 Elevated Problem-Solving Capabilities Beyond Traditional
Limits

Students recognized that while, theoretically, they could do the computations they were

coding by hand, the complexity of the models they were working with, as well as the

sheer number of calculations or iterations of the method required to obtain a meaningful

result, would make these calculations impractical or impossible to obtain in a reasonable

time frame without integrating computer coding to some degree.

By adopting a blended approach of using theoretical, algebraic, and computational

techniques, multiple constraints were removed and students reported experiencing more

freedom to explore even the most complex situations. They said that they were motivated

to ask deeper theoretical questions and further explore the problems and mathematical

concepts, without the burden of technical computations (which indeed seems to be a

burden for many students!) restricting their time and mental energy.

61

For example, using Euler’s method to estimate the solution to an initial value problem

often requires a very large number of iterations to achieve a meaningful result. Students

complain that these calculations are repetitive, tedious and error-prone (and they are!),

even beyond two or three steps. Furthermore, the simplicity and versatility of this

estimation method (which was even featured in the movie Hidden Figures (Melfi, 2016))

is obscured by the cumbersome calculations underlying it. Remediating Euler’s method

with code removes the tediousness of the technical calculations and allows students to

apply it to a system of any number of first-order differential equations, where initial

values are given.

Sample of students’ reflections:

I think that the integration of coding in mathematics helps add extensions to what

is possible from instruction alone. It allows you to explore and "play" with

concepts in a way that couldn’t be possible without the use of technology.

By allowing mathematical calculations to occur that would not be possible by

algebra there is a new avenue of possibilities made available in what can be

calculated.

Since the computer is doing all of the calculating for you, you aren’t limited by

the amount of time it would take to solve something. Due to this, you can

incorporate real data and use concepts from class to work with the data and see

the importance of different math concepts in everyday life.

4.3.2 Problem Solving Became More Efficient, Less Tedious

Most students—even those who reported not enjoying the computer labs—appreciated

how efficiently (and correctly) complex calculations could be done almost

instantaneously in Python 3. They remarked that they could focus more on the conceptual

understanding and ask deeper theoretical questions when they knew that they would not

be facing tedious, routine procedural calculations. As well, students felt encouraged to

fully explore mathematical concepts, such as extending Euler’s method to generate

approximate solutions to a system of differential equations, rather than just to a single

62

equation, without noticeably increasing computation time. Students reported that this

efficiency in computation increased their interest and engagement in mathematical

problem solving.

Sample of students’ comments:

It saves time on little calculations so that students can see the bigger picture

without getting caught up on minor details.

Coding makes mathematical ideas far more interesting as it provides a more

efficient way to explore the possibilities of a function as well explore other

mathematical ideas.”

…coding provided me more time to further explore the nuances within the

questions themselves.

4.3.3 Offered Unique Advantages Over Ready-Made Applications

Students identified several affordances of integrating coding and mathematics, which

extend beyond what non-coding technology can offer. For example, they stated that

coding offers more control over their explorations and provides a greater feeling of

satisfaction and accomplishment when they obtained the desired result. Students also

noted using a coding language possesses higher capabilities and greater versatility than

using a prepackaged application, thus eliminating the need for several different

technologies to explore a problem or concept since multiple analyses can be performed

simultaneously within a coding environment.

Furthermore, students remarked that working with code arranged in cells helped to

organize and store their work so they had a record of their previous results and could run

new simulations or perform further analyses without starting over from scratch. For

example, one activity invited students to explore the solution to a modified logistic

differential equation describing the population dynamics of a caribou population in

Northern Alberta, starting from a given initial population size. Once the initial coding

template for applying Euler’s method was created, students copied, pasted, and modified

63

the code to explore various scenarios, revealing (experimentally) the existential threshold

and carrying capacity for this population, as well as the stability of these equilibrium

solutions—topics which are algebraically explored in a second year differential equations

course.

Sample of students’ reflections:

… students have greater agency and can create pretty much anything whereas in

traditional mathematics instruction, there are much more limits and its more

structured.

Manipulating the code to run equations and seeing an actual result was a very

rewarding experience and I really felt more confidence with the problem I was

solving.

4.3.4 Physical Coding Mechanics Provided Numerous Benefits

Students identified several aspects of the physical coding process, which enhanced their

learning and understanding. Since coding languages are very particular in terms of their

syntax, students reported that they needed to think critically throughout each step of the

problem-solving process, paying close attention to detail, in order to produce a fully

functioning program. Students commented that this heightened focus and deeper thinking

helped them understand the relationships between components of the problem and their

code, and enriched their understanding of the logic underlying the mathematical

processes involved.

Additionally, students reported that the process of deconstructing a problem and

reformulating it for computation required a thorough understanding of the mathematical

concepts, relationships, and algorithms underpinning the exercises. They remarked that

the process of deconstructing the mathematical ideas (e.g., models, techniques) into basic

elements helped reduce the complexity of the problem and promoted a thorough

understanding of the relationships between components.

64

Reformulating a problem for computation involved translating textbook models and

algorithms into code versions, which students stated helped them form a stronger

connection to the conceptual ideas. For example, one student reported being confused

when calculating the next value of the state variable using Euler’s method, consistently

forgetting which values they should be using in the formula. The process of converting

the algorithm in the textbook to Python code helped to clarify the reasoning behind the

recursive pattern and improved the student’s overall understanding of Euler’s method.

Moreover, students mentioned that the active process of simply typing code helped them

to internalize definitions and concepts.

Sample of students’ comments:

Because the code requires you to define everything and practically explain all the

variables and how they relate to each other, it makes you think critically even

when solving the smallest math problems.

Just doing the programming helped me to internalize the math being done and

helped me understand it better.

… coding out individual steps of the Euler's method demonstrated the specific

mechanisms behind the method and lead me to further understanding.

I found that in my own head I was able to break down the intermediate value

theorem in a different way, piece by piece and as such my understanding of the

concept as a whole (and it’s applications) were improved.

Coding allows students to think critically in terms of communication - how to

explain a mathematical process in objective terms. This is how the code input tells

the computer program what to do. By going through this process, students

understand the math processes more deeply as they are now able to describe it in

objective, systematic ways that even a computer would understand.

65

4.4 Summary

Conducting a systematic qualitative content analysis helped to organize the raw data into

categories and reveal three central themes: modified perceptions of mathematics,

enhanced mathematics learning experiences, and unique coding affordances.

In the next chapter, I use diSessa’s (2018) literacy principles as a theoretical lens through

which I examine my results more in depth. diSessa developed these principles in part to

characterize and identify an emergent computational literacy, but also as an analytical

framework with which to analyze contemporary movements of computation in education,

such as computational thinking and coding. diSessa used this criteria to analyze his work

with teaching grade 6 children the mathematics of motion. I adopt a similar strategy to

analyze my approach of integrating computational thinking, coding, and mathematical

problem solving into an applied undergraduate calculus course.

66

Chapter 5

5 Analysis

In this chapter, I further analyze the data that I obtained (and summarized in the Results

chapter) to help situate my research within the broader context of a computational

literacy. As a framework for my analysis, I used diSessa’s (2018) five literacy principles,

which he developed to signal and characterize a new (in this case, computational) literacy

(see Figure 10). This lens also serves as a frame of reference which diSessa uses to

analyze computational initiatives in education, such as computational thinking and

coding.

Figure 10: diSessa's (2018) literacy framework.

The chart in Figure 11 illustrates the mapping between my results (i.e., the thirteen

categories I identified in the Results chapter) and diSessa’s (2018) four principles of a

new literacy: remediation, reformulation, reorganization, and revitalization. In the

discussion that follows, I do not revisit nor examine each category in detail; instead, I

Remediation
Remediating concepts, problems, and
processes with a new representational
system affords unique opportunities to

engage with ideas in novel ways.

Reformulation
Reformulating ideas related to a topic

to be investigated often involves a
significant cognitive shift, but has the

potential to reveal cognitive
simplicities in the underlying concepts.

Reorganization
Adopting a new literacy has the

potential to transform the intellectual
landscape, changing the narrative of

who gets to do what, and when.

Revitalization
A new literacy has the potential to
refresh and invigorate teaching and
learning activities and experiences.

Literacy-scaled accomplishments are
massive social and cultural

achievements.

67

delineate these four principles and illustrate each with salient examples from my data. I

conclude my analysis by considering how my results provide evidence of a new literacy,

as defined by diSessa.

 Remediation Reformulation Reorganization Revitalization

more representative
perspective of the

field of mathematics
 ü

enabled meaningful,
authentic applications
to be incorporated into

course activities

ü ü ü

illustrated the
relevance and value of
mathematical concepts

ü ü

interactive learning
experiences provided

opportunities to
explore, experiment,

play with mathematics

ü ü

dynamic
visualizations ü

transformed affective
learning experiences ü

provided a tangible
feel to abstract

concepts
ü ü

new approach,
different perspective ü ü

accommodated
various learning styles ü ü

elevated problem-
solving capabilities
beyond traditional

limits

ü ü

problem solving
became more

efficient, less tedious
ü ü

offered unique
advantages over

ready-made
ü

68

applications

numerous benefits
realized through
physical coding

process

ü ü

Figure 11: Mapping categories from Results chapter to diSessa’s (2018) principles.

5.1 Remediation

Concurrent with the acquisition of a new literacy is the development and adoption of an

appropriate representational system used to remediate ideas, processes, and problems and

describe, analyze, and explore them in terms of the new literacy (diSessa, 2018). The

mass appropriation of a new representational system will demonstrate “distinctive and

critical strengths, but also limitations and blind spots, and, thus, a possible

complementarity with other forms of representation” (diSessa, 2018, p. 7). diSessa (2018)

emphasizes the affordances realized by remediating concepts within a new

representational system, and explains in which ways remediation contributes to a

transformative shift in how we think about ideas, engage with concepts, develop our

conceptual understanding, and solve problems.

In Math 1LS3, we remediated our calculus concepts with a computational

representational system, which allowed us to explore problems with computer code.

Here, I focus on several unique affordances of using computer code (and thus,

computational thinking) to explore calculus concepts, as experienced and reported by

students in Math 1LS3.

5.1.1 Advantages of a Computational Representational System

One of the most noteworthy observations frequently reported by students was that

remediating calculus concepts with computer code enabled them to effectively

incorporate computer technology into their investigations, which offered significant

technical advantages. They remarked that exploring models, concepts, and algorithms

with computer code helped optimize their problem-solving activities by enabling

numerous, technically complex, calculations to be carried out almost instantaneously, and

69

producing consistent, accurate results. Automating the numerical calculations eliminated

(or significantly reduced) technical difficulties, and enabled students to expand their

explorations beyond the constraints imposed by using non-computational tools, and thus

motivated them to thoroughly investigate mathematical concepts (for example, by

running multiple simulations simply by changing a few parameters to explore

hypothetical alternative cases).

Students reported that the ability to efficiently explore their “what if” questions and

receive immediate feedback helped them develop a more comprehensive understanding

of the relationships between quantities, the behaviour of models, and the logical structure

of the mathematical techniques. Furthermore, they noticed that they were able to focus

more on the bigger picture and developing their conceptual understanding of important

mathematical ideas when their mental energy was not expended on lengthy, complex,

repetitive calculations.

5.1.2 Example: Euler’s Method

Euler’s method is a numerical approach used to approximate a solution to a first-order

differential equation, when an initial condition is given (this is known as an “initial value

problem”).

For the initial value problem, consisting of a differential equation and an initial condition,

𝑑𝑦
𝑑𝑥 = 𝐺 𝑥,𝑦 , 𝑦 𝑥! = 𝑦!

Euler’s algorithm is given by two recurrence relations, one for the independent variable,

and the other for the unknown function:

𝑥!!! = 𝑥! + ℎ

𝑦!!! = 𝑦! + 𝐺 𝑥! ,𝑦! ∙ ℎ

where 𝑖 = 1, 2, 3, 4,… and ℎ is the step size.

70

In a typical calculus course, students are asked to approximate the solution to a simple

first-order initial value problem by applying Euler’s method for a maximum of three to

four steps, thus obtaining a superficial, uninteresting, yet easy to compute by hand, result

(see below).

Problem:

Given the initial value problem, 𝑑𝑃/𝑑𝑡 = 0.02𝑃(1− 𝑃/2000), where 𝑃(0) = 120,

estimate the value of 𝑃(1) using Euler’s method and a step-size of 0.5. The time 𝑡 is

given in months.

Solution:

In this case, ℎ = 0.5, 𝑡! = 0 and 𝑃! = 120, and the Euler’s method algorithm is given by

𝑡!!! = 𝑡! + 0.5

𝑃!!! = 𝑃! + 0.02𝑃!(1− 𝑃!/2000) ∙ 0.5

The actual calculations proceed as follows:

𝑡! = 0 + 0.5 = 0.5

𝑃! = 120+ 0.02(120)(1− 120/2000)(0.5) ≈ 122

𝑡! = 0.5 + 0.5 = 1

𝑃! = 122+ 0.02(122)(1− 122/2000)(0.5) ≈ 125

The value of 𝑃(1) is approximately 125.

By exploring this initial value problem with code, students are able to investigate the

behaviour of the model over a longer period (say, over many months or even years) as

well as increase the accuracy of their estimations (by decreasing the step size), an activity

that would be unwieldy without computer technology.

71

Figure 12: Identifying a pattern in the solution obtained using Euler’s method.

Note: An insufficient number of steps suggests a realistically unsustainable

exponential growth.

There is another, even more important aspect—by seeing only a few steps of an iteration

for a function, it might be hard to identify a pattern, or the pattern that is suggested might

be misleading, giving an inaccurate solution. For instance, the first few steps of Euler’s

method might suggest exponential growth (Figure 12), which is not sustainable in the

long run. Instead, the initial exponential growth is often followed by a slowdown,

resulting in a logistic, limited growth pattern, which becomes visible only if Euler’s

method is run for a large(r) number of steps (Figure 13).

72

Figure 13: Identifying a pattern in the solution obtained using Euler’s method.

Note: Logistical (limited growth) pattern is revealed only after the method is run

with a large number of steps (and thus over a longer period of time).

5.2 Reformulation

When engaging with a new literacy, all concepts, problems, and processes related to an

investigation must be reformulated appropriately so they may be effectively remediated

with the new representational system. In Math 1LS3, reformulating a calculus problem

expressed algebraically so that it can be represented, analyzed, and solved

computationally requires two main processes of computational thinking: abstraction and

automation. Reformulating a problem as an algorithm (so that it can be coded) involves

deconstructing the problem into basic components (elements), analyzing the relationships

between components, and then designing an appropriate computational model in order to

automate a solution. This reformulation process requires an in-depth conceptual

understanding of all aspects of a problem, and a strong enough familiarity with both

formulations that one can effectively translate between two representational systems. As

diSessa (2018) explains, reformulating problems often requires a significant cognitive

shift (as I discuss below), however this process also has the potential to reveal “surprising

cognitive simplicities and when they align with a powerful representational change…

learning becomes amazingly transformed, faster, and easier” (p. 15).

73

In Math 1LS3, remediating a problem with a computational representational system

required us to reformulate the problem numerically, that is, we considered discrete

manifestations of all concepts and calculations involved. This process is straightforward

for those mathematical problems where a numerical problem-solving approach has

already been established (for example, Riemann sums, Euler’s method, or discrete-time

dynamical systems). This numerical representation (model) was then reformulated again

so that it could be analyzed using a computational representational system. The following

example illustrates the two-step reformulation process we used to remediate our

mathematical problems with computation.

5.2.1 Example: Riemann Sums

In covering integral calculus in university courses, a significant amount of time is spent

on techniques of integration, that is, on algebraic methods of evaluating definite and

indefinite integrals.

A definite integral is defined as the limit of a Riemann sum:

𝑓 𝑥 𝑑𝑥 = lim
!→!

𝑓 𝑥!∗ ∆𝑥, ∆𝑥 =
𝑏 − 𝑎
𝑛

!

!!!

!

!

where 𝑥!∗ is any sample point in the subinterval 𝑥!!!, 𝑥! .

A definite integral can be interpreted as the net or signed area of the region bounded by

the graph of a function and the horizontal axis over a finite interval (see Figure 14).

74

Figure 14: Shaded is the region bounded by the graph of 𝒇(𝒙) = 𝒙𝟐 and the

horizontal axis, defined over the finite interval [𝟎,𝟐]. The area of this region is

determined by evaluating the definite integral 𝒙𝟐𝟐
𝟎 𝒅𝒙.

The area of this irregular region (irregular in the sense that we do not have a ready-made

formula established for its area) can be approximated using rectangles, whose areas are

easy to compute (“area of a rectangle equals length times width”). The sum of the areas

of these rectangles, that is, a Riemann sum, estimates the area of the bounded region, and

at the same time, the value of the definite integral (see Figure 15).

To use this approach, we first decide on how many rectangles we will use and then

compute the fixed width of each rectangle. After that, we need to decide how to select the

heights of the rectangles. Two common choices involve using values at the left-endpoints

or right-endpoints of each subinterval.

75

Figure 15: The sums of the areas of approximating rectangles are used to

approximate 𝒙𝟐𝒅𝒙𝟐
𝟎 . The figure on the left illustrates the approximating rectangles

obtained using left-endpoints; the figure on the right illustrates the approximating

rectangles obtained using right-endpoints.

The left sum in Figure 15 is

𝐿! = 𝑓 𝑥! ∆𝑥
!

!!!

 = 𝑓 𝑥! ∆𝑥 + 𝑓 𝑥! ∆𝑥 + 𝑓 𝑥! ∆𝑥 + 𝑓 𝑥! ∆𝑥

 = 0 0.5 + 0.25 0.5 + 1 0.5 + 2.25 0.5

 = 1.75

The right sum in Figure 15 is

𝑅! = 𝑓 𝑥! ∆𝑥
!

!!!

 = 𝑓 𝑥! ∆𝑥 + 𝑓 𝑥! ∆𝑥 + 𝑓 𝑥! ∆𝑥 + 𝑓 𝑥! ∆𝑥

 = 0.25 0.5 + 1 0.5 + 2.25 0.5 + 4 0.5

 = 3.75

76

Reformulating a definite integral for computation requires that we first adopt a numerical

approach to integration, that is, we approximate the value of the definite integral by using

a Riemann sum with a finite number of rectangles 𝑛. In doing so, we represent the

function 𝑓(𝑥) as a set of discrete values (discrete points). We then reformulate this

problem for computation by assigning variables and parameters to quantities, and using a

loop structure to compute the appropriate Riemann sum. These reformulations require a

significant cognitive effort, as we are engaged with, and continuously switch between,

abstract algebraic notions (functions as discrete objects, infinite summation), geometric

representations (functions as graphs, regions bounded by curves, approximating

rectangles) and numeric formulas and algorithms (calculating areas, summations, limits).

It should be noted that when we work numerically and add together a finite number of

rectangles, we generally obtain an approximation rather than the actual value of the

definite integral; however, by combining this idea with the power of a computational

representation, we can increase the number n until we have a sum as close as desired to

the exact value of the definite integral.

Figure 16: Python code for computing the left and right Riemann sums. (a) Using 4

rectangles (b) Using 4000 rectangles. Note that the command “sum” accomplishes

the work of an entire loop, by adding the areas of the rectangles. Comparing with

the output shown in (a), we see how, when 4000 rectangles are used (instead of 4),

the two sums are very close to one another.

77

5.2.2 Affordances of Reformulation

Students commented that thinking about how to reformulate their textbook problems and

algorithms for computation (that is, thinking computationally), helped facilitate a more

in-depth conceptual understanding of the underlying mathematical ideas. For example,

students discovered they could generate multiple iterations of Euler’s method effectively

by using a loop structure in Python 3 (see Figure 12). They reported that the process of

reformulating Euler’s method for computation, that is, using computer code to define

appropriate recursion relationships and using a loop to generate iterations of the solution,

helped them to deeply understand the logic, structure, and algorithm (in both its algebraic

and computational forms). Students stated that adopting different perspectives (and

different representational systems) to analyze a problem, and comparing the

complementary formulations of a solution algorithm, helped them develop a more

comprehensive, intuitive, grounded understanding of the concepts.

Students remarked that breaking a problem down into basic elements (sub-problems) in

order to reformulate it for computation helped reduce the overall complexity of the

problem and forced them to pay particular attention to all aspects of the task, as well as to

the way in which these different aspects need to be put together. They noted that they

were required to develop an in-depth understanding of the relationships between the

quantities involved and the logic behind the solution algorithm in order to effectively

reformulate the problem for computation. Students reported that the reformulation

process revealed the simplicity underlying certain mathematical ideas, techniques, and

algorithms. For example, while the difficulty of evaluating a definite integral

algebraically varies greatly (in fact, many cannot be solved algebraically), reformulating

integration for computation enables any proper3 definite integral to be estimated by

adding together the areas of approximating rectangles (a relatively simple task).

Furthermore, students were surprised to discover that this simple idea could be readily

extended to solve higher-level problems and applications, such as finding the volume of

3
 𝑓 𝑥 𝑑𝑥 !
! is classified as a proper definite integral if the function 𝑓(𝑥) is continuous on the closed, finite

interval [𝑎, 𝑏].

78

an irregular solid, using sums of volumes of cylinders, with a few minor modifications to

their basic code (see Figure 17).

Moreover, using computational tools, students discovered a surprisingly simple, versatile

mathematical approach to estimating unknown quantities (or, what could be considered a

“big idea” in mathematics): begin with a simple numerical approximation, and then

modify or adjust the approach (for instance by making it algorithmic, so that it can run in

a loop) until this approximation becomes arbitrarily close to the actual value.

Figure 17: Basic Riemann sum code from Figure 16 modified to estimate the volume

of the solid obtained by rotating the region bounded by 𝒇(𝒙) = 𝒙𝟐, 𝒚 = 𝟎, 𝒙 = 𝟎,

and 𝒙 = 𝟐 about the 𝒙-axis.

5.3 Reorganization

Adopting a new literacy has the potential to reorganize the intellectual landscape in

profound ways, effectively rewriting the narrative of who gets to do what, and when. In

other words, immersion in a new literacy and the ramifications of this immersion expand

the range of what can be done, how it can be accomplished, and who is able to do it.

79

In Math 1LS3, exploring calculus concepts with computer code enabled students to

effectively investigate meaningful, authentic, interdisciplinary applications, which were

formerly inaccessible (and thus omitted from the course) due to overwhelming, technical

complexities. This approach changed the traditional learning trajectory for our students

and reorganized the intellectual domain of calculus, by engaging novice first-year

students in activities typical for a graduate-level, research-based mathematics course.

(Note that this illustrates the “low floor, high ceiling” affordance of computational

thinking, as discussed by Gadanidis et al. (2016).)

Students attributed this achievement to the unique affordances accessible to them when

they integrate computer coding into mathematical problem solving. For example,

reformulating the problems to allow for a numerical approach, and remediating their

investigations with computation (consequences of a new literacy) helped to significantly

lessen the workload by removing numerous, repetitive, technical computations required

when exploring complex problems. Students discovered that when represented

computationally, theoretical (and often abstract) ideas can just as easily be applied to

technically complex mathematical objects as they are to more basic cases.

For instance, using a computational model, students marveled at how straightforward it

was to extend Euler’s method to investigate solutions to systems of first-order differential

equations, without noticeably increasing the demands on the computational aspects (such

as the time Jupyter needed to complete the calculations). This enabled them to explore

more complex models, such as the Susceptible-Exposed-Infected-Recovered model

(SEIR-model), used to study the spread of the EBOLA virus during the recent epidemic

in Africa, or the classical predator-prey model, which investigates the dynamics between

two species interacting in a common habitat (see Figure 18).

80

Figure 18: By modifying the base code for Euler’s method, we can approximate

solutions of a system of two differential equations. As previously, Euler’s method is

accomplished in one loop (left). The code outputs approximate solution curves for

each of the functions (right).

Students reported that working on these authentic applications helped to increase the

relevance and value of the material they were studying, which motivated them to further

engage with their explorations and ask hypothetical questions, such as, “what would it

look like if we mediated this particular model with computation and also explored it

using our calculus concepts?” This allowed our students to modify their learning

trajectories by diversifying their mathematical explorations in the ways that would be

inaccessible using an algebraically mediated approach only.

In addition to increasing accessibility to authentic, interdisciplinary applications,

remediating calculus concepts with computation provides an alternative approach to

mathematical problem solving, which has the potential to support diverse learning styles.

In particular, students noted that the coding activities were especially attractive to, and

beneficial for, visual and kinesthetic learners, allowing them to directly interact with the

concepts and receive immediate, dynamic, visual feedback. As well, students reported

that using a computational representation of the models and algorithms enabled them to

explore concepts and ideas in ways that were meaningful to them. Thus, it became

81

evident that providing multiple avenues to access mathematical content broadens the

range of learners who are able to successfully engage with undergraduate calculus.

5.4 Revitalization

diSessa (2018) explains that a new literacy has the potential to transform teaching and

learning experiences, resulting in a revitalization of the learning ecology. As I discuss

below, this revitalization is fundamentally connected to the principles of remediation,

reformulation, and reorganization.

5.4.1 Learning

In Math 1LS3, we experienced a revitalization of our teaching and learning experiences

when we integrated coding activities with our mathematical explorations. For instance,

students reported that remediating calculus concepts with computation provided a fresh,

modern approach to mathematical problem solving. They stated that this made the

material feel more interesting, simulating and relevant, which overall increased their

enjoyment of their learning.

The dynamic and interactive nature of the coding activities in Math 1LS3 offered

students opportunities to explore, experiment and play with the mathematical concepts.

They said that the coding activities opened up a creative space in mathematics that they

had never experienced in other problem-solving situations, such as in a linear algebra

course. Students reported that they enjoyed the flexibility of the opportunities available to

them, and having options on problem-solving strategies was appealing and increased their

interest. As well, the consistent and immediate feedback afforded by the coding activities

helped them to shape and reinforce their understanding concurrent with their

explorations, which students stated improved their confidence with their answers and

overall conceptual understanding of the material.

Students remarked that analyzing mathematical models and algorithms using code

provided differentiated learning opportunities, which supported a variety of learning

styles. They felt free to experiment with the code in ways that were personally

meaningful for them and didn’t stress about making mistakes, embracing trial and error

82

as an important part of their learning process. This empowered those who felt they were

unable to learn or fully understand mathematics within algebraic environments, and

offered salient alternatives to traditional mathematical problem-solving strategies.

Students felt they had more agency in their learning and experienced a greater feeling of

satisfaction and accomplishment. As well, students noted that the coding activities

stimulated peer collaborations, resulting in fruitful discussions and sharing of ideas.

Furthermore, students reported that the ability to directly apply calculus concepts to

analyze authentic, contemporary problems (a consequence of the reorganization

principle) effectively illustrated the value of the mathematical concepts they were

learning. They explained that incorporating interdisciplinary applications made the

material feel more interesting, simulating and relevant, which increased their enjoyment

of their learning.

5.4.2 Teaching

An unexpected, but important, outcome was the revitalization of teaching experiences for

instructors. This revitalization was most evident in the enriched capabilities afforded by

computation, which dramatically expanded the range of interdisciplinary applications we

could effectively incorporate into course material, and the capacity to investigate them, so

that we could meaningfully, and authentically, engage with (and convincingly illustrate

the value of) the mathematical material we were teaching.

For example, one of our first coding activities invited students to develop a program to

apply Euler’s approximation method 𝑛 times to a first-order differential equation when

given an initial condition. The obvious advantage in using computer technology to

explore this iterative method is that 𝑛 can be made very large without any extra human

effort, which improves our estimation within any desired degree of accuracy. While this

slightly improved my experience teaching Euler’s method, I really became excited when

I realized that I could introduce students to more complex models of systems of

differential equations, where current research efforts in many branches of applied

mathematics and life sciences are concentrated. There was literally no system of first-

order differential equations that was off limits to us due to its complexity, and after

83

typing out my code for our basic case in one cell, it was easy to copy and paste the code

in a new cell, and make minor modifications so that it applied to anything I chose to

explore. While in other math courses we talk about how to improve our estimation

theoretically, it is rewarding and satisfying to actually demonstrate this improvement in a

concrete way using computer code.

I felt that as students watched me do this spontaneously during lecture in less than a

minute, I was giving them a realistic picture of how problems are explored outside of the

classroom, while adding value to the mathematical material and showing its wide

applicability when integrated with coding technology. The affordances of integrating

coding technology into our teaching practice absolutely revitalized my enthusiasm for

teaching (especially certain material that I have always perceived as “dry”) by providing

multiple ways to explore many of our traditional calculus topics.

5.5 The Acquisition of a New Literacy is a Massive Social
and Cultural Accomplishment

diSessa (2018) defines a literacy as “a massive social/intellectual accomplishment of a

culture or civilization, where many competing forces, over decades or centuries,

eventually settle on a particular representational form for wide-spread learning, use, and

subsequent value” (p. 7).

Remediating mathematical concepts with computation, and integrating computer

technology to access unique computational thinking affordances, has played a role in

mathematics education for several decades and was integral to Papert’s (1980) innovative

research using Logo (Gadanidis, 2018). However, this initiative did not achieve

widespread attention until Jeanette Wing’s (2006) influential paper inspired a resurgence

in the interest of teaching computational thinking outside of a computer science context.

Noss and Hoyles (1992) suggested that the reasons why computational thinking did not

achieve a more prominent position in education alongside early initiatives revolved

around certain social, cultural and pedagogical attitudes.

84

Today, with computer technology omnipresent and the growing widespread recognition

of the value of computational thinking skills, the current social and cultural milieu is

more conducive for advancing a computational literacy. Even so, incorporating computer

labs into Math 1LS3 was initially met with some resistance, as students expressed their

apprehension in using a computational representation system (in fact, in the first set of

responses, many students reported that they didn’t see the point of learning computer

programming in a calculus course). This primary reaction was anticipated by diSessa

(2018) and he states that “initial resistance and long periods of incubation are

undoubtedly the norm” (p. 15) for any new literacy.

As the course progressed and students persisted in the coding activities, their comfort

navigating the coding environment and their fluency in the programming language

quickly improved. The prevalence of technology in our students’ lives was likely the

reason (at least in part) behind this accelerated familiarity with computational

mathematics and coding tools. Needless to say, this is a very different environment from

the one in which Papert introduced his ideas. As a result, students were increasingly able

to communicate their ideas using computer code, in various effective and creative ways.

Overtime, we (myself, other instructors, and our computer lab teaching assistant) noticed

that students were relying less and less on the coding templates we provided, and instead,

creating their own computational tools for representing, exploring, and solving problems

in innovative ways, often moving their investigating above and beyond what was

required in the original problem. Reflecting on their experience, one student said:

When I’m coding, I personally feel very engaged with the source material. It’s as

if this is my project, it’s a problem and a journey, as I endeavour to solve it.

By the end of the course, students’ attitudes towards computer programming in

mathematics changed dramatically as their programming skills had sufficiently developed

and they could personally experience the power, versatility, and learning potential of

combining computer programming with mathematics. This led to multiple requests for

recommendations of other courses they could take which adopt a computational approach

to mathematics (courses we are actively working on developing now!).

85

Within the Department of Mathematics and Statistics, there has been a significant interest

in adopting our approach to integrating computer programming into other courses,

without significantly changing the core mathematical content. While many courses

currently use computer technology to supplement course material (e.g., Matlab, Maple,

Excel), aside from computational mathematics and statistics courses, these courses do not

officially teach a modern computer programming language, such as Python 3.

Presumably, widely incorporating computer programming into other courses as a

universal approach to problem solving would help improve students’ proficiency with the

language and coding environment, and further establish its role as a versatile problem-

solving strategy.

I have collaborated with several faculty members in other departments (e.g., Department

of Physics at McMaster University) and universities (e.g., Mathematics at University of

Toronto Mississauga) to offer guidance and resources for integrating computational

thinking into their current courses. Additionally, I discussed our labs with a colleague

from University of Waterloo, who is interested in offering Python labs to their students.

The keen, growing interest I’ve personally experienced toward incorporating computer

programming into a wide variety of courses outside of computer science illustrates the

recognition of the value and potential of a computational representational system.

Furthermore, the “social spread” of this endeavor that I have witnessed following the

success of my pilot semester (e.g., within our course, department, university and beyond)

provides evidence of a budding computational literacy in the sense that diSessa (2018)

conceptualizes it.

5.6 Limitations of a Computational Approach

As diSessa (2018) explains, all representational systems have their own unique

affordances and limitations. In Math 1LS3, remediating integration with computation

resulted in a powerful and versatile numerical approach to integration; however,

approximating a definite integral using a Riemann sum produces only an estimate of the

definite integral, which is sufficient in most applied mathematical research but is still

theoretically different from evaluating a definite integral. While students reported that

86

exploring Riemann sums using code enriched their conceptual understanding of the

technique and its relationship to definite integrals, there was little evidence to suggest that

this enhanced understanding of integration improved their ability to evaluate integrals

algebraically, a process many students in Math 1LS3 still experience difficulty with.

A natural limitation of a computational approach is the mathematics content itself—

certain topics and ideas cannot be investigated (in their completeness, or at all) by coding.

For instance, whereas computing a finite sum is a straightforward exercise in Python, no

code can prove convergence or divergence for an infinite sum (infinite series). As well,

calculating a table of values for a function to determine its limit could lead to erroneous

conclusions. By extension, coding cannot prove that a given equilibrium of a dynamical

system is stable, as it can compute only a finite number of steps. Thus, mathematical

results and ideas that require inductive reasoning, that is, making and proving

generalizations based on specific examples, cannot be approached using computational

tools. Of course, coding can provide some evidence that a generalization might be true,

but it cannot prove it to be true.

All coding languages have a demanding and rigorous syntax, and even an extra space in

the wrong place could generate an error and prevent the code from functioning as desired.

This specificity was a common source of frustration for many students throughout the

semester (not to mention the time they needed to figure out the source of the problems),

and this technical limitation is a common issue in computer programming in general.

A further limitation of a computational approach is due to its nature (i.e., inability to

“think” beyond the code given), which, coupled with students’ (mis)beliefs about what it

actually does, leads to erroneous answers. For instance, students discovered that just

because their code runs without error messages and returns an answer, does not mean that

its output is a (correct) solution to the problem they were trying to solve. For instance,

misplaced parentheses could change the formula for a function that is analyzed, or an

inadequate number of steps could lead to a poor approximation of a definite integral.

Python has no way of reading users’ minds to guess their intentions—it does exactly what

87

the code tells it to do, nothing more or nothing less. In other words, it is unable to warn a

student that there is a mathematical inaccuracy with their code.

5.7 Summary

Assuming diSessa’s (2018) theoretical perspective enabled me to conduct a deeper

analysis of my results and situate them within the framework of a new computational

literacy. As evidenced by their reflective responses, when Math 1LS3 students

reformulated differential and integral calculus concepts in order to remediate them with

computer code, their learning experiences were transformed, resulting in a reorganization

of the intellectual landscape and revitalization of their learning ecology. These four

principles reflect the “massive social and cultural accomplishment” (diSessa, 2018, p. 25)

of establishing a new, in this case computational, literacy.

88

Chapter 6

6 Conclusion

Computational thinking (and the set of computational tools that facilitate it) has received

acclaim for its potential to support, enrich and innovate problem-solving activities in a

wide variety of contexts. A computational thinking approach in mathematics offers a

powerful set of affordances stemming from both the underlying processes—in particular,

abstraction and automation—and from appropriately designed coding activities, which

can further enhance not only problem solving, but also mathematical reasoning,

understanding, and learning in general. When effectively integrated into educational

activities, computational thinking has the potential to provide unique, transformative

learning experiences to students. For instance, it can enrich and expand the means and

tools available to students in their mathematical explorations, learning of concepts and

problem-solving activities.

While there is a significant body of literature on the theoretical aspects of computational

thinking in education, there is a relatively large gap in the literature providing practical,

specific guidance for its integration into various subject areas, as well as a critical,

evidence-based analysis of such integration efforts.

6.1 Current Study

This research project investigated an approach to integrating computational thinking into

a first-year, undergraduate calculus course designed specifically for life sciences students.

In collaboration with the course coordinator, I developed a set of mathematical coding

activities (organized into four computer labs) to supplement and enhance mathematical

problem solving, as well as promote a richer understanding of the course content, while

taking advantage of the unique affordances computational thinking can offer to enhance

educational experiences. My goal was not just to integrate technology into our classroom,

but to enrich and transform the ways students see mathematics, and to modernize the

teaching of mathematics at the undergraduate level.

89

A series of questions and prompts that followed each of the four computer labs invited

students to reflect on their experiences of combining mathematics with coding. Each

survey was designed to solicit insights into changes in students’ conceptual

understanding, which resulted from interacting with the mathematical coding activities,

as well as to inquire about students’ affective responses to this integrated learning

experience.

Students’ responses were collected and analyzed, first using a qualitative content analysis

to organize the data into categories (and later, overarching themes), and then using

diSessa’s (2018) literacy framework to help theorize about the results obtained, and to

achieve a “big picture” view of computational thinking as a literacy.

6.2 Results

My content analysis revealed three central themes within students’ responses: modified

perceptions of mathematics, enhanced mathematics learning experiences, and unique

coding affordances.

Students reported that the engagement with coding activities within their calculus course

changed their perceptions of what mathematics is in several ways. They had opportunities

to effectively explore and analyze authentic applications in the life sciences, which

provided a broader, more representative perspective of the field of (applied) mathematics.

Students noted that the ability to combine standard calculus tools with coding effectively

illustrated the relevance and value of the mathematical concepts. For example, because it

is initially presented as an abstract concept, students often do not appreciate the

importance of difference quotients when calculating derivatives; however, they soon

realize that when dealing with discrete data (as often is the case in real-life contexts),

using differentiation rules is not an option!

Students described how exploring calculus concepts with computer code enriched and

transformed their mathematics learning experiences throughout the semester. They

remarked that using coding for their mathematical explorations facilitated a dynamic,

interactive learning experience, which motivated them to be more actively engaged with

90

the material, compared with traditional, non-coding versions of the (same, or similar)

problems. They reported that the opportunities to explore, experiment, and play with the

concepts—combined with the immediate feedback and dynamical visualizations that

accompanied running code—promoted a deeper, more comprehensive understanding of

the mathematical content and a greater enjoyment of the problem-solving process.

Additionally, students noted that the coding activities accommodated, in their words,

alternative learning styles more effectively than traditional, paper-and-pencil strategies,

and invited multiple approaches and flexibility during the problem-solving process. Many

remarked how this alternative approach encouraged meaningful peer collaborations and

creative problem-solving strategies, two features students noted were typically lacking in

traditional mathematics courses.

Students observed that several coding affordances enabled them to explore calculus

concepts in novel ways. For example, improved technical capabilities afforded by the

computer technology facilitated efficient, accurate calculations in even the most complex

instances, motivating students to apply their theoretical knowledge to solve complex,

authentic, real-world problems using standard undergraduate calculus concepts. As well,

students noted that exploring concepts with code helped give the abstract theoretical

material a “tangible feel.” This helped them make important connections between the

theory and practice—a well-known challenge many students encounter in mathematics

courses. Exploring calculus concepts using code (that had to be generated) promoted a

greater understanding of the theoretical concepts, and was more rewarding, compared to

using prepackaged applications, since coding gave them full control over the entire

problem-solving process. Students also remarked that the physical process of coding (that

is, automation and abstraction) provided additional benefits, such as reducing the

complexity of a problem by breaking it down into its basic elements in order to

reformulate it for computation.

6.3 Analysis

Analyzing my data using diSessa’s (2018) literacy framework enabled me to adopt a

different frame of reference, and hence an alternative perspective on my data, and helped

situate my research within other initiatives in education.

91

diSessa (2018) explains that remediating concepts, problems, and processes with a new

representational system affords unique opportunities to engage with ideas in novel ways.

In Math 1LS3, students found that using a computationally mediated approach enabled

them to effectively incorporate computer technology into their investigations, which

offered significant technical advantages. They remarked that exploring models, concepts,

techniques, and algorithms with computer code optimized their problem-solving

activities, which helped them to expand their explorations beyond previous (technical)

constraints. Students noticed that they were able to focus more on developing their

conceptual understanding and overall perspective on the underlying ideas and concepts

when their mental energy was not expended on lengthy, complex, and repetitive

calculations.

Reformulating all concepts, problems, and processes related to an investigation often

involves a significant cognitive shift, but has the potential to reveal cognitive simplicities

in the underlying concepts. In Math 1LS3, reformulating integration for computation

naturally revealed that the area of a bounded region could be estimated to within any

degree of accuracy using a sufficient number of approximating rectangles. Further

extending this idea, students discovered that volumes of irregular solids could be

adequately approximated using approximating cylinders.

As diSessa’s reorganization principle projected, integrating coding activities into our

undergraduate calculus course reorganized the intellectual terrain in profound ways. For

example, remediating calculus concepts with computation enabled first-year

undergraduate students to profitably engage with graduate (and research) level

mathematics, within the first few weeks of classes. Furthermore, alternative approaches

(in this case, a computational approach) helped accommodate a broader group of

students, thus increasing the number of students who can successfully engage with

calculus concepts. These two outcomes changed the predetermined learning trajectory for

students and rewrote the narrative of who is able to effectively learn calculus.

diSessa (2018) explains that a new literacy has the potential to refresh and invigorate the

teaching and learning ecology, which we witnessed extensively throughout the semester.

92

Students noted multiple affordances of computational tools (e.g., dynamic modelling in

an interactive development environment, rich visualizations, efficient calculations) that

dramatically transformed their learning experiences in the course. For instructors, one of

the most noteworthy contributors to the revitalization of teaching was the ability to

effectively analyze authentic models and applications—thus demonstrating the value and

relevance of the mathematical concepts—without the constraints of complex, tedious

calculations.

diSessa (2018) describes a literacy-scaled achievement as a massive social and cultural

endeavour. Witnessing the rapid “social spread” of this initiative (beginning within Math

1LS3, and then expanding to our department, Faculty of Science, and beyond), completed

the final piece of diSessa’s “five principles of a literacy” puzzle, and provided sufficient

evidence that the results of this initiative indicate, at the very least, a “budding

computational literacy” (diSessa, 2018, p. 8).

6.4 Limitations of a Computational Representation

The largest challenges reported by students stemmed from the technical side, that is, from

the difficulties with the particular representational system. (Given diSessa’s (2018)

proclamation that every representational system has its weaknesses, this is not at all

surprising.) Since computer languages are highly specific and demanding in regards to

their syntax, something as simple as an extra space in the wrong place could cause the

code not to function as desired. Students found this frustrating and suggested that they

should be explicitly taught the coding language first, if they were expected to use it

effectively. While we embedded sufficient sample code, explanations, and illustrative

examples to complete each lab, we did not attempt to comprehensively teach a coding

language. Instead, students were encouraged to learn additional features of Python 3 on

an “as needed” basis and to seek additional help by using the many coding resources

available online.

Students reported that searching for appropriate online resources was frustrating and

time-consuming, and that the information they found was often not directly applicable to

the task they were working on. They requested a video tutorial, created specifically for

93

Math 1LS3, to guide them through the basics of coding, Jupyter notebooks, and Python 3.

To address their concerns, I created a thirty-minute video tutorial titled, Getting Started

in Jupyter Notebook (https://www.youtube.com/watch?v=dEWsl4OUJ_c&t=1199s),

which introduced students to the coding platform and basic concepts, strategies, and

techniques needed for their labs. While I didn’t feel that an additional YouTube video

was necessary, students did find it quite useful, and reported that they felt their voice was

heard. Furthermore, as I suggest below, initiatives coming from within a discipline—in

this case, a Python 3 video tutorial created by a Math 1LS3 instructor—may be better

received than a generic video produced elsewhere.

A significant number of students reported feeling more overwhelmed than inspired or

excited at the prospect of learning computer programming in addition to the standard

calculus content. They said that they spent too much time on coding and not enough time

on algebraic techniques, which still form the greater part of our assessments and are (at

present) more transferable to upper-year mathematics courses.

In reformulating mathematics problems for computation, that is, when switching from an

algebraic model to a computational representation, we varied the theoretical content we

aimed to explore (which is a natural consequence of reformulation, as described by

diSessa (2018)); in particular, we reformulated continuous functions into a numeric form

by representing them as a discrete set of points. Consequently, all calculus tools applied

to this array of values were necessarily approximations of their continuous, theoretical

counterparts. While many students found that this enriched and broadened their

perspective of the concepts, and of mathematical modelling in general, some found it

confusing, overwhelming, and reported that they had difficulty connecting the

computational version to the original algebraic formulation.

We offered options to help mediate any discomfort or frustration students might feel with

this new teaching and learning method. For example, numerous support structures were

offered: all three instructors held several office hours each week and encouraged students

to bring their laptops. In addition to our usual teaching assistants, we hired a “lab TA”

who held five office hours each week to assist students with computer labs. Despite these

94

efforts, there were students who were extremely resistant to learning computer

programming in any capacity. To accommodate these students, we modified our course

policy so that the term work grade would be calculated using the best three out of four

assessments: three term tests and the set of computer labs, which collectively counted as

the fourth assessment. While we strongly suggested that all students attempt the computer

labs, we also explained that the labs are not mandatory. If a student chose not to complete

the computer labs, then their grade would be based on their three term tests. This decision

reflected the fact that coding is not necessarily for everyone and that no single

representation can claim to be universally superior, for everyone, in all situations. As

diSessa (2018) stresses, all representational systems possess “distinctive and critical

strengths, but also limitations and blind spots, and, thus, a possible complementarity with

other forms of representation” (p. 7).

6.5 Limitations of the Current Study

The findings and conclusions of this study were based on students’ subjective, self-

reported responses, which are vulnerable to several sources of bias. For example, we need

to trust that students have sufficient self-awareness to recognize and accurately report

their experiences, and that their intentions were to respond truthfully. As well, the sample

of students was biased in that the majority are enrolled in the Life Sciences program.

While this potentially limits the transferability of my results (at least until further

research is conducted), the sample size was large enough that I can confidently say my

findings represent the views and experiences of life sciences students.

In my extensive review of the literature, I could not find a study similar to mine, and so I

was unable to directly compare my results to other studies. As well, my research was

conducted over the course of one semester, and so, only once. The credibility and

dependability of my findings would improve if this research was conducted in several

semesters, and the results were replicated.

95

6.6 Suggestions for Future Research

Broadly speaking, my research contributes to a growing body of literature aiming to

access the best that computational thinking has to offer and to effectively integrate it in

areas where it may enrich and enhance problem solving. In particular, the results obtained

through this study contribute to the ongoing, SSHRC-funded research project,

Computational Thinking in Mathematics Education (http://ctmath.ca/), by offering an

analysis of a practical approach to integrating computational thinking, in a meaningful

capacity, into a large, undergraduate calculus course.

Going forward, we will continue to incorporate computer labs in Math 1LS3, keeping

what we learned was beneficial from the pilot semester, and further developing areas

which need to be improved. We also plan to offer coding labs for the second half of the

course, Math 1LT3: Calculus II for the Life Sciences. In fact, students who successfully

completed Math 1LS3 in the fall of 2018 were disappointed to learn that computer labs

were not a formal component in Math 1LT3 during the winter 2019 semester, which we

interpreted as a testament to the success of this initiative! Currently, we are generating a

collection of computational modelling activities for Math 1LT3, and we plan to continue

to expand this line of work, using students’ feedback, to create an exciting stream of

computational calculus at McMaster University. Needless to say, assessing the efficacy

of this implementation is an ongoing research objective.

As suggested by diSessa (2018), and now from my own personal experiences, I believe

that future efforts to expand computational thinking into all disciplines will be most

successful if they arise from within a certain discipline. This will minimize the emphasis

on computer science and ensure that the true computational thinking principles and

transferable skills—not just technical programming skills—are being realized. As well, if

we are to look beyond computational thinking and consider the potential achievement of

a true computational literacy, as defined by diSessa (2018), then the efforts must come

from all areas in society since “the professional pursuit of understanding or creating a

literacy—or anything that has similarly broad aspirations—cannot belong in any

substantial degree to one of the standard professional disciplines” (p. 18).

96

My current research project has received positive attention from both within my

department and beyond, which opens doors for future research collaborations. In

particular, I am interested to investigate (jointly with colleagues from the respective

mathematics departments) the integration of computational thinking at the University of

Waterloo and the University of Toronto Mississauga, in the hope of replicating my

results, and expanding my study.

Of course, the integration of computational thinking at McMaster University requires

further research scrutiny, to support some of my beliefs with additional evidence, and to

further to strengthen existing evidence. For instance, I believe that as coding, (and, more

important, computational thinking) are incorporated and reinforced in a variety of

contexts, students will perceive them as more versatile, valuable and relevant, and

consequently be better motivated to invest time into learning the basics of programming.

As the technical challenges lessen with increased exposure, students will likely feel more

confident with programming in general, and their initial resistance to coding activities, as

students in the fall 2018 semester of Math 1LS3 experienced, may decrease.

The video tutorial resource students requested was very well received and students

requested that shorter videos be created and posted online for individual topics, such as

using loops, plotting functions, etc. In the future, we plan to recruit students to share their

own approaches to mathematical problems using screen recordings and feature some of

these videos on our Math 1LS3 YouTube channel. Studying how creating and using these

short(er) videos affect students’ learning is another important research direction.

In the pilot semester, the coding problems and applications were presented in a

prescriptive (i.e., scaffolded) manner—students were encouraged to explore, but under

controlled conditions. In future semesters, with appropriate and sufficient support and

resources in place (such as a collection of short, student-generated, single topic, course-

specific video tutorials available on a course YouTube channel), we will strive to engage

students in the process of reformulating problems for computation and remediating them

with code, with minimal scaffolding. Engaging students in the act of reformulating

mathematical problems and asking them to create their own algorithms to generate

97

solutions, requires a stronger commitment but offers the greatest potential to experience

the maximum benefits of computational thinking, while providing a strong sense of

student agency and control throughout the construction of knowledge and learning.

Our future efforts at improving our computer labs, and integration of computational

thinking in general, will require strong theoretical support—hence, there will be a strong

demand, and plenty of opportunities for further research, for myself, and for my graduate

students. For instance, I could conduct observational-type research to determine, on a

“microscopic level,” how individual students work with, and learn from, the coding

activities. Additional strength and significance of this study can be achieved by

conducting complementary research, for example, by investigating computational

modelling within an undergraduate physics course or a secondary-level mathematics

course.

6.7 Summary

Computational thinking is used to describe a set of thinking or problem-solving

strategies, which parallel, and are inspired by, certain computer programming processes

and techniques. Research has suggested that computational thinking and related activities,

such as computer coding, have the potential to provide a useful and powerful problem-

solving framework, which can (in some instances) extend into non-computer science

domains.

Computational thinking has innovated, transformed, and revitalized teaching and learning

experiences in profound ways. For example, diSessa (2018) demonstrated how

reformulating concepts of motion and remediating them with computation revitalized

learning experiences and reorganized the intellectual domain for sixth grade students.

Despite encouraging evidence that indicates computational thinking could be a valuable

new literacy, it has not yet been effectively integrated into many subjects to augment

problem-solving activities.

For my doctoral research project, I investigated an approach to integrating computational

thinking into an undergraduate calculus course. Working together with the course

98

coordinator, I designed a set of computer programming activities to complement and

enrich our calculus topics, and incorporated them into our course activities. I collected

and analyzed students’ reflections on the activities, which provided valuable insights into

the cognitive and affective changes that occur when calculus is reformulated and

remediated with code.

My research suggests that students’ conceptual understanding and affective experiences

were dramatically transformed through the integration of coding and calculus. This

integration revitalized their learning experiences, changed their perception of the field of

mathematics, and offered unique new opportunities to dynamically interact with the

theoretical ideas. While students did experience some frustration with coding (all

representations have natural limitations), the issues were largely technical and our future

efforts will improve the resources students need to mitigate such issues.

In future semesters, I plan to modify the coding activities so that the problem-solving

scaffolding is minimal, thus allowing students maximum opportunities to benefit from

computational thinking. We will integrate Python 3 coding activities into other courses

within the Mathematics and Statistics Department, and support other disciplines in their

efforts to do the same. As computational thinking is effectively integrated into all

subjects, from within each subject, students will likely perceive computational thinking

as a powerful, useful, relevant, and highly applicable, transferable skill.

99

References

Aho, A. V. (2012). Computation and computational thinking. Computer Journal, 55(7),
832-835.

Althaus, C. L. (2014). Estimating the reproduction number of Ebola virus (EBOV) during
the 2014 outbreak in West Africa. PLoS Currents Outbreaks, 6.
doi:10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is
involved and what is the role of the computer science education community?
ACM Inroads, 2(1), 48-54.

Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as a site for
distributed computational thinking. International Journal of Game-Based
Learning, 1(2), 65-81.

Berry, M. (2013). Computing in the national curriculum: A guide for primary teachers
[PDF file]. Retrieved from
http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf

Birmingham, P. & Wilkinson, D. (2003). Using research instruments: A guide for
researchers. Routledge.

Blum, W. & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and
learnt? Journal of Mathematical Modelling and Application. 1(1), 45-58.

Boaler, J., Chen, L., Williams, C., & Cordero, M. (2016). Seeing as understanding: The
importance of visual mathematics for our brain and learning. Retrieved from
https://www.youcubed.org/seeing-understanding-importance-visual-mathematics-
brain-learning/

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K. (2016). Developing
computational thinking in compulsory education – Implications for policy and
practice. EUR 28295 EN. doi:10.2791/792158

Borba, M. C., & Villarreal, M. (2005). Humans-with-media and reorganization of
mathematical thinking: Information and communication technologies, modeling,
experimentation and visualization. New York: Springer.

Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and
Practical Computing, 1(2), 67-69.

Burton, L. (1999). The practices of mathematicians: What do they tell us about coming to
know mathematics? Educational Studies in Mathematics, 37, 121-143.

Clements, E. & Lovric, M. (2018). Chapter 3: Interdisciplinary approaches motivate and
enrich teaching and learning mathematics. In Sibbald, T. (Ed.) Teaching
Interdisciplinary Mathematics (Learning to Teach, Teaching to Learn).
University of Illinois: Common Ground Publishing.

100

Cohen, L, Manion, L., & Morrison, K. (2007). Chapter 22: Approaches to qualitative data
analysis. In Research methods in education (pp. 461-474). London, England &
New York, NY: Routledge.

Computer Science Teachers Association. (2011). K-12 computer science standards.
Retrieved from http://csta.acm.org/Curriculum/sub/K12Standards.html

Curzon, P., Black, J., Meagher, L. R., & McOwan, P. (2009). Enthusing students about
computer science. Proceedings of Informatics Education Europe IV, 73-80.

Czerkawski, B. C., & Lyman, E. W. (2015). Exploring issues about computational
thinking in higher education. TechTrends, 59(2), 57-65.

Denning, P. J. (2017). Remaining trouble spots with computational thinking.
Communications of the ACM, 60(6), 33-39.

diSessa, A. (2018). Computational literacy and “The Big Picture” concerning computers.
Mathematics Education, Mathematical Thinking and Learning, 20(1), 3-31. doi:
10.1080/10986065.2018.1403544

Dodig-Crnkovic, G. (2011). Significance of models of computation, from Turing model
to natural computation. Minds & Machines, 21(2), 301-322. doi:10.1007/s11023-
011-9235-1.

Furber, S. (2012). Shut down or restart? The way forward for computing in UK schools,
Technical report, The Royal Society. Retrieved from
https://royalsociety.org/topics-policy/projects/computing-in-schools/report/

Gadanidis, G. (2015). Coding as a Trojan Horse for mathematics education reform.
Journal of Computers in Mathematics and Science Teaching, 34(2), 155-173.

Gadanidis, G., Clements, E., & Yiu, C. (2018). Group theory, computational thinking,
and young mathematicians. Mathematical Thinking and Learning, 20(1), 32-53.
doi: 10.1080/10986065.2018.1403542

Gadanidis, G., Hughes, J., Minniti, L., & White, B. J. G. (2016). Computational thinking,
grade 1 students and the binomial theorem. Digital Experiences in Math
Education. doi:10.1007/s40751-016-0019-3

Gefter, A. (2016). The evolutionary argument against reality. Quanta Magazine.
Retrieved from https://www.quantamagazine.org/20160421-the-evolutionary-
argument-against-reality/

Grover, S. & Pea, R. (2013). Computational thinking in K-12. A review of the state of the
field. Educational Researcher, 42(1), 38-43.

Guzdial, M. (2008). Paving the way for computational thinking. Communications of the
ACM, 51(8), 25-27.

Hazzan, O. (1999). Reducing abstraction level when learning abstract algebra concepts.
Educational Studies in Mathematics, 40, 71–90.

Hemmendinger, D. (2010). A plea for modesty. ACM Inroads 1(2), 4-7.

Henderson, P. B., Cortina, T. J., Hazzan, O., & Wing, J. M. (2007). Computational
thinking. In Proceedings of the 38th ACM SIGCSE Technical Symposium on

101

Computer Science Education (SIGCSE ’07), 195–196. New York, NY: ACM
Press.

Hsieh, H. F. & Shannon, S. E. (2005). Three approaches to qualitative content analysis.
Qualitative Health Research, 15(9), 1277-1288. doi: 10.1177/1049732305276687

Hycner, R.H. (1985). Some guidelines for the phenomenological analysis of interview
data. Human Studies, 8, 279-303. https://doi.org/10.1007/BF00142995

Kajander, A. & Lovric, M. (2009). Mathematics textbooks and their potential role in
supporting misconceptions. International Journal of Mathematical Education in
Science and Technology, 40(2), 173-181. doi: 10.1080/00207390701691558

King, K., Hillel, J., & Artigue, M. (2001). Technology – A working group report. In D.
Holton (ed.) The Teaching and Learning of Mathematics at University Level: An
ICMI Study (pp. 349-356). Dordrecht: Kluwer Academic Publishers.

Kolodziej, M. (2017). Computational thinking in curriculum for higher education.
(Publication No. 10285666) [Doctoral dissertation, Pepperdine University].
ProQuest Dissertations.

Krippendorff, K. (2004). Content analysis: An introduction to its methodology. Thousand
Oaks, CA: Sage Publications.

Kules, B. (2016), Computational thinking is critical thinking: Connecting to university
discourse, goals, and learning outcomes. Proceedings of the Association for
Information Science and Technology, 53(1), 1-6.
doi:10.1002/pra2.2016.14505301092

Melfi, T. (2016). Hidden figures [Film]. Fox 2000 Pictures, Chernin Entertainment,
Levantine Films.

Lewandowski, G., Bouvier, D., Chen, T. Y., McCartney, R., Sanders, K., Simon, B., &
Vandegrift, T. (2010). Commonsense understanding of concurrency: Computing
students and concert tickets. Communications of the ACM, 53(7), 60-70.

Lincoln, Y.S. & Guba, E.G. (1985). Naturalistic Inquiry. Newbury Park, CA: Sage
Publications.

Lincoln, Y.S., Lynham, A., & Guba, E. G. (2011). Paradigmatic (model) controversies,
contradictions, and emerging (developing) confluences (convergences), revisited.
In N. Denzin & Y. Lincoln (Eds.), The Sage handbook of qualitative research,
(4th ed., pp. 97-128). Thousand Oaks, CA: Sage.

Lye, S.Y. and Koh, J. H. L (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-12? Computers in Human
Behavior, 41, 51-61.

Marshall, N. & Buteau, C. (2014). Learning mathematics by designing, programming,
and investigating with interactive, dynamic computer-based objects. International
Journal of Technology in Mathematics Education, 71(2), 49-64.

Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research,
1(2). Retrieved from http://www.qualitative-research.net/fqs

102

Mohaghegh, M., & McCauley, M. (2016). Computational thinking: The skill set of the
21st century. International Journal of Computer Science and Information
Technologies (IJCSIT), 7(3), 1524-1530.

Molnar, B. A. (n.d.). Computers in education: A brief history. THE Journal. Retrieved
November 15, 2016, from https://thejournal.com/articles/1997/06/01/computers-
in-education-a-brief-history.aspx

National Research Council. (2010). Report of a workshop on the scope and nature of
computational thinking. Washington, DC: The National Academies Press.
Retrieved from https://www.nap.edu/catalog/12840/report-of-a-workshop-on-the-
scope-and-nature-of-computational-thinking

Noss, R. & Hoyles, C. (1992). Looking back and looking forward. In R.Noss & C.Hoyles
(Eds.), Learning mathematics and Logo (pp. 431-468). MIT Press.

NVivo (n.d.). [Software]. Retrieved from https://www.qsrinternational.com/nvivo-
qualitative-data-analysis-software/

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY:
Basic Books.

Papert, S. (1993). The children’s machine. Rethinking school in the age of the computer.
New York, NY: Basic Books.

Pearson, K. (2009). From a usable past to a collaborative future: African American
culture in the age of computational thinking. Black History Bulletin, 72(1), 41-44.

Pepper, R. E., Chasteen, S. V., Pollock, S. J., & Perkins, K. K. (2012). Observations on
student difficulties with mathematics in upper-division electricity and magnetism.
Physical Review Special Topics-Physics Education Research, 8(1), 010111.
Retrieved from https://doi.org/10.1103/PhysRevSTPER.8.010111

Pesonen, M. E., & Malvela T. (2000). A reform in undergraduate mathematics
curriculum: More emphasis on social and pedagogical skills. International
Journal of Mathematical Education in Science and Technology, 31(1), 113-124.

Resnick, M., et al. (2009). Scratch: Programming for all. Communications of the ACM,
52(11), 60-67.

Rukwaru, M. (2015). Social research methods: A complete guide. Meru: Eureka
Publishers.

Sanford, J. F., & Naidu, J. T. (2016). Computational thinking concepts for grade school.
Contemporary Issues in Education Research (Online), 9(1), 23-32. Retrieved
from https://www.lib.uwo.ca/cgi-
bin/ezpauthn.cgi?url=http://search.proquest.com/docview/1757523533?accountid
=15115

Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Exploring the science
framework and the NGSS: Computational thinking in elementary school
classrooms. Science and Children, 52(3), 10-15. Retrieved from
https://www.lib.uwo.ca/cgi-

103

bin/ezpauthn.cgi?url=http://search.proquest.com/docview/1627727555?accountid
=15115

Soh, L-K., Samal, A., Scott, S., Ramsay, S., Moriyama, E., Meyer, G., Moore, B., T.G.
Thomas & Shell, D. F. (2009). Renaissance computing: An initiative for
promoting student participation in computing. SIGCSE Bulletin, 41(1), 59-63.

Stake, R. (2005). Qualitative case studies. In N. Denzin & Y. Lincoln (Eds.), The Sage
handbook of qualitative research, (3rd ed., pp. 447-466). Thousand Oaks, CA:
Sage.

Stewart, J. (2012). Calculus: Early transcendentals (7th ed.). Belmont, CA: Brooks/Cole.
Stillman, G. (2015). Applications and modelling research in secondary classrooms; What

have we learnt? In S. J. Cho (Ed.), Selected regular lectures from the 12th
International Congress on Mathematics Education (pp. 771-790). Cham,
Switzerland: Springer.

Swaid, S. I. (2015). Bringing computational thinking to STEM education. Procedia
Manufacturing, 3, 3657-3662.

Tall, D. & Association of Teachers of Mathematics (1987). Understanding the calculus.
Derby, England: Association of Teachers of Mathematics.

Tesch, R. (1990). Qualitative research: Analysis types and software tools. Bristol, PA:
Falmer.

Vygotsky, L.S. (1978). Mind in society. Cambridge, MA: Harvard University Press.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.
(2016). Defining computational thinking for mathematics and science classrooms.
Journal for Science Education and Technology, 25, 127-147.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society, A, 366(1881), 3717-3725.

Wing, J. M. (2010). Computational thinking: What and why? Retrieved from
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf.

Wolfram, S. (2016, September 7). How to teach computational thinking [Blog post].
Retrieved from http://blog.wolfram.com/2016/09/07/how-to-teach-computational-
thinking/

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., and Korb, J. T. (2014).
Computational thinking in elementary and secondary teacher education. ACM
Transactions on Computing Education 14(1), 5:1-5:16.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S. & Korb, J. T. (2011). Introducing
computational thinking in education courses. Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education, 465-470.

Yin, R. K. (2009). Introduction: How to know whether and when to use case studies as a
research method. In Case study research (pp. 3-23). Los Angeles, CA: Sage.

104

Appendices

Appendix A: Letter of Information

105

106

107

Appendix B: Developing Computer Coding Activities for Math 1LS3

When creating the computer labs for Math 1LS3, my initial challenge was deciding what

concepts could be effectively remediated using a computational approach. While it would

be relatively easy to incorporate computer technology in some capacity into many

mathematical explorations, it was important for us to choose activities that provided

unique, potentially transformative learning opportunities. For example, a “trivial”

activity, though not without value, would be to ask students to create a program that

would apply transformations to a standard function. This would be beneficial in

reviewing the rules for transformations—and graphing functions in general—as well as

providing students with more experience integrating coding and mathematics. However,

we decided against including this activity since it involved a significant investment in

preparation and students’ time, and it did not offer as many unique experiences as other

activities. To entice students to invest significant amounts of their time, effort, and

attention into the coding labs, we wanted to design activities with significant, far-

reaching benefits, that is, those they could not experience when using a prepackaged

application, such as Desmos or Maple.

In designing the labs, we specifically chose course material that students have historically

struggled with conceptually, and not just technically. Once we had generated a list of

topics, we considered how these concepts would be represented numerically and

algorithmically. Some concepts, such as iterative processes used to solve equations or to

find solutions of differential equations, lend themselves easily to reformulation for

computation. However, certain topics (such as estimating solutions of an equation using

the Intermediate Value Theorem) require more thought and preparation.

Next, we reformulated, when necessary, our models, techniques, and theorems from

continuous versions to their discrete analogues (e.g., UV index, discussed briefly by

Clements and Lovric (2018), in the section Discrete vs. Continuous Functions) and

considered “provocative” questions we could ask to encourage students to reflect on, and

deeply explore these concepts. We also considered the limitations that a shift to a

108

computational model would bring, and anticipated the bridge students would have to

make on their own to connect this representation to more abstract, theoretical ideas.

Example: Integration, Area, and Riemann Sums

In covering integral calculus in university courses, a significant amount of time is spent

on techniques of integration, that is, on algebraic methods of evaluating definite and

indefinite integrals.

Recall that a definite integral is defined as the limit of a Riemann sum:

𝑓 𝑥 𝑑𝑥 = lim
!→!

𝑓 𝑥!∗ ∆𝑥, ∆𝑥 =
𝑏 − 𝑎
𝑛

!

!!!

!

!

where 𝑥!∗ is any sample point in the sub interval 𝑥!!!, 𝑥! .

Solving a definite integral using the Fundamental Theorem of Calculus requires that an

algebraic formula for the antiderivative of 𝑓(𝑥) exists and that students are adequately

skilled in integration techniques, which vary widely in their complexity and

effectiveness. Alternatively, working with the summation notation on the right hand side

of the definition to find an algebraic form for the Riemann sum and then evaluating the

limit of this sum as 𝑛 approaches infinity is generally a complex, if not impossible, task

for first-year students.

Note that we can approximate the value of a definite integral using a finite Riemann sum:

𝑓 𝑥 𝑑𝑥 ≈ 𝑓 𝑥!∗ ∆𝑥, ∆𝑥 =
𝑏 − 𝑎
𝑛

!

!!!

!

!

where 𝑥!∗ is any sample point in the sub interval 𝑥!!!, 𝑥! .

(Recall that a definite integral can be interpreted as the net or signed area of the region

bounded by the graph of the function and the horizontal axis over a finite interval. The

area of this bounded region can be estimated by computing the sum of the areas of

approximating rectangles, that is, a Riemann sum.)

109

Even though evaluating a finite sum is significantly less complicated (conceptually, and

otherwise) than evaluating an infinite sum, students nevertheless struggle with this

concept. Faced with having to calculate a finite sum algebraically, students attempt to

memorize and use abstract formulas found in their textbook and ultimately make

conceptual, in addition to technical, errors. Their challenges are further exacerbated by

their lack of familiarity with the summation notation, in particular with the role and

purpose of the index of summation.

One error we have witnessed many times is students using all endpoints in both sums,

thus instead of using 𝑛 rectangles as required, they use 𝑛 + 1 rectangles, with the extra

rectangle being formed outside of the bounded region. The source of this error could lie

in the fact that, although this is a geometric situation, students rely on algebraic reasoning

based on their (mis)interpretation of the formulas for the left and the right sums. Without

drawing the region and corresponding rectangles, students would not recognize the nature

of their error, and might assume it was just a “small” calculation error. For smaller values

of 𝑛, we often ask students to draw the bounded region and corresponding approximating

rectangles, thus visualizing the sum as well as representing it algebraically. However, as

the graphs of functions become more complicated, and as the number of rectangles

becomes large, representing the Riemann sum geometrically using pen and paper

becomes time-consuming and is often omitted altogether.

From a technical standpoint, reformulating a definite integral for computation is

straightforward since we already have a discrete representation for an approximation—

that is, a finite Riemann sum—established. With the technical aspects supported by

computer technology, students are free to explore more theoretical questions about

Riemann sums and their relation to integration and definite integrals, which enhances

their understanding of this complex object. For instance, the following questions could

stimulate their explorations and reflection:

• Why does the endpoint at which we choose to calculate the height of an

approximating rectangle on a given subinterval become insignificant as the

number of approximating rectangles approaches infinity?

110

• For a given continuous function on a finite integral, which of 𝐿!", 𝐿!, 𝑅!, 𝑅!"

would produce the largest value? Why?

• Would the finite sum using the height calculated from the midpoint of each

subinterval equal the average of the left and right sums on the same interval, using

the same number of rectangles? Why or why not?

• How could we find the area of the bounded region between two curves on a given

interval?

• Suppose the region bounded by the curve 𝑦 = 𝑓(𝑥), 𝑦 = 0, 𝑥 = 𝑎, and 𝑥 = 𝑏 was

rotated around the 𝑥-axis to form a solid. How could you approximate the volume

of this solid using a Riemann sum?

As well, since students have historically struggled with this topic, we felt that multiple

complementary representations of this concept could help support their understanding

and potentially offer transformative, rewarding learning experiences. With our ideas in

mind, we felt integration and related concepts and applications such as Riemann sums or

area between curves was an ideal topic to be remediated with computation.

Appendix C contains the full set of Lab 3 coding activities developed for Math 1LS3

students in the fall 2018 semester. This lab was designed to complement our study of

initial value problems (Euler’s method) and definite integrals (Riemann sums).

111

Appendix C: Computer Lab 3

112

113

114

115

116

117

118

119

120

121

122

123

Appendix D: Survey Questions

Appendix D 1: Sample Responses to Lab 1 Survey Questions

124

125

Appendix D 2: Sample Responses to Lab 2 Survey Questions

126

Appendix D 3: Sample Responses to Lab 3 Survey Questions

127

Appendix D 4: Sample Responses to Lab 4 Survey Questions

128

Curriculum Vitae

Name:		 	 Erin	Clements	
	
Post-secondary		 McMaster	University	
Education	and		 Hamilton,	Ontario,	Canada	
Degrees:		 	 1999-2004	B.Sc.	
	

McMaster	University		
Hamilton,	Ontario,	Canada	
2008-2010	M.Sc.	

	
Western	University		
London,	Ontario,	Canada	
2016-2020	Ph.D.		

	
Related	Work		 Lecturer	
Experience		 	 Department	of	Mathematics	and	Statistics	
	 	 	 McMaster	University	

2006-present	
	
Research	Assistant		
Faculty	of	Education	
Western	University	
2016-2020	
	
Mathematics	Teacher	
Columbia	International	College	
2004-2012	

	
Publications:	
Clements,	E.	&	Lovric,	M.	(2018).	Chapter	3:	Interdisciplinary	Approaches	Motivate	
and	Enrich	Teaching	and	Learning	Mathematics.	In	Sibbald,	T.	(Ed.)	Teaching	
Interdisciplinary	Mathematics	(Learning	to	Teach,	Teaching	to	Learn).	University	of	
Illinois:	Common	Ground	Publishing.	
	
Gadanidis,	G.,	Clements,	E.,	&	Yiu,	C.	(2018).	Group	Theory,	Computational	Thinking,	
and	Young	Mathematicians.	(The	Journal	of)	Mathematical	Thinking	and	Learning,	
20(1),	32-53.	doi:	10.1080/10986065.2018.1403542	
	

	Investigating an Approach to Integrating Computational Thinking into an Undergraduate Calculus Course
	Recommended Citation

	Microsoft Word - thesis_clements_july1.docx

