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Abstract 

Computational thinking can be conceptualized as patterns of thinking which align with 

certain fundamental computer science processes. While this algorithmic way of thinking has 

always been integral to computer science, it has recently gained momentum as a valuable 

approach to problem solving in a wide variety of contexts. Education researchers highlight 

the potential of computational thinking to transform, enrich, and revitalize teaching and 

learning experiences, by providing a systematic framework for analysis and enabling 

powerful computational tools to be incorporated to further enhance problem-solving 

activities. Research suggests that in order to maximize the affordances of computational 

thinking, it should be integrated into all subjects, from primary to tertiary, in meaningful and 

subject-specific ways. However, due to persistent theoretical and practical barriers, 

comprehensive integration of computational thinking into school and university curricula has 

not yet been achieved. One particularly strong obstacle identified in the literature is the lack 

of practical resources detailing how to effectively incorporate computational thinking into 

subjects beyond computer science. Using a case study research design with over 1000 

participants, my project investigated an approach to integrating computational thinking into a 

first-year calculus course at McMaster University. Students engaged in computational 

thinking by working on computer coding activities developed to complement the 

mathematical content taught in the course. Following each set of activities, students 

responded to prompts designed to determine: (1) how students’ conceptual understanding of 

calculus concepts changes in response to working on problem-solving and mathematical 

modelling activities which incorporate computational thinking, and (2) how students’ 

learning experiences are transformed when they explore calculus concepts, ideas and 

techniques using computational tools and models. A qualitative content analysis of these 

responses revealed that exploring calculus concepts with code modified students’ perceptions 

of mathematics, enhanced their mathematical learning experiences, and offered unique 

coding affordances. Further analyzing the data using a literacy framework helped situate the 

results of this study within the broader context of a computational literacy. This research 

augments the ongoing project, Computational Thinking in Mathematics Education, by 
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providing insights and rich feedback on an approach to designing and integrating coding 

activities into a tertiary mathematics curriculum. 

Keywords 

Computational thinking, tertiary mathematics, computational literacy, calculus, authentic 

(real-life) applications, coding, modelling. 
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Summary for Lay Audience 

Computational thinking describes a collection of thinking patterns and problem-solving 

strategies which are common in computer science. Recently, education researchers have 

suggested that this algorithmic way of thinking has the potential to transform, enrich, and 

revitalize teaching and learning experiences in a wide variety of disciplines. Despite this 

recognition, persistent theoretical and practical barriers have prevented its widespread 

integration into school and university curricula. The current study investigated an approach 

to integrating computer coding activities, which encourage and support computational 

thinking, into a first-year calculus course at McMaster University. An analysis of students’ 

feedback revealed that exploring calculus concepts with computer code modified their 

perceptions of mathematics as a discipline, enhanced their mathematical learning 

experiences, and presented unique opportunities to interact with mathematical concepts in 

novel ways. This study provides fresh insights into an approach to designing and integrating 

coding activities into a tertiary mathematics curriculum, augmenting on-going research 

projects in this area. 
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Chapter 1  

1 Introduction 

The present study investigates an approach to integrating computational thinking into an 

undergraduate calculus course at McMaster University. In particular, using a case study 

research design, this project focuses on how students’ conceptual understanding of 

calculus concepts changes when they engage in computational thinking activities, and 

how their learning experience transforms when these activities are integrated into their 

mathematical explorations, problem solving and modelling. This study has the potential 

to contribute to research aimed at exploring initiatives in, and affordances of, 

computational thinking in undergraduate mathematics education. 

1.1 Computational Thinking 

Computational thinking can be characterized as a systematic way of thinking about, 

exploring, analyzing, and—if feasible—formulating solutions to a wide range of 

problems. It involves abstracting key features of a problem and reformulating it so that a 

solution can be computed as an algorithm (i.e., automated). While not inextricably linked 

to computers, as the adjective “computational” might suggest, computational thinking 

encompasses a collection of thinking patterns and problem-solving strategies which align 

with certain computer programming processes and techniques. 

The usefulness of computational thinking has been widely recognized in the field of 

computer science, where the ideas are directly applied to programming; however, more 

recently, attention has turned toward the potential of computational thinking to enhance 

logical reasoning skills and enrich problem-solving experiences in a diverse range of 

contexts. To date, computational thinking has facilitated and innovated research in nearly 

all disciplines, where it has been used to generate new knowledge and investigate 

questions in ways inconceivable before its implementation (Bundy, 2007). Yadav, 

Mayfield, Zhou, Hambrusch, and Korb (2014) note the pervasiveness of computational 

thinking in the present era and assert that the principles of computing—in particular, 
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computational thinking—“influence every aspect of our lives, from shopping with loyalty 

cards to conducting scientific research” (p. 5:1).  

Research in education has identified a vast set of competencies—applicable across 

subjects, contexts, and disciplines—that could be acquired by actively engaging with 

computational thinking at all levels, from kindergarten to university, and beyond. 

Furthermore, computational thinking affordances have the potential to influence, enrich, 

and revitalize learners’ experiences in unique and transformative ways. Despite this 

recognition, comprehensive integration of computational thinking into school and 

university curricula has not yet been realized. One particularly strong barrier, frequently 

identified in the literature, is the lack of practical approaches, along with research-based 

evidence, which are needed to effectively incorporate computational thinking into 

classroom instruction, particularly outside of computer science courses. 

1.2 Key Terms 

I defined computational thinking in the previous section. Here I include its brief 

characterization, to contrast with other key terms used throughout this thesis. 

Computational thinking – a collection of thinking patterns, tools, and strategies which 

parallel fundamental computer programming concepts and processes. 

Computational modelling – adopting computational thinking strategies to reason about, 

explore, analyze and solve problems, which involves reformulating the problem so that it 

may be remediated with computer code.  

Computer coding/computer programming – using a programming language (e.g., 

Python 3) and a computer-based coding environment (e.g., Jupyter notebook) to represent 

key features of a problem, and designing structures and algorithms (e.g., loops, tables of 

data, matrices, etc.) needed to analyze and solve it.  

Mathematical modelling – reformulating an application (real-world, authentic) problem 

using mathematical objects (e.g., functions and equations) and procedures (e.g., 
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integration, numeric algorithms) to provide answers, results and insights about the 

application.  

Literacy – a broadly adopted system of representing, analyzing, and communicating 

ideas. 

Computational thinking involves two fundamental processes: abstraction and automation. 

In order to begin exploring a mathematical problem or concept using code, the problem 

must first be abstracted (i.e., broken down into its basic elements, with key features, 

structures, and relationships identified) and reformulated (e.g., from an algebraic form 

into a numerical representation) so that it can be remediated with a computational 

representation (code). The next step requires devising an algorithm suitable for solving 

the problem, and then creating a computational model for this algorithm (i.e., generating 

the code required to carry out the algorithm) to automate a solution. This process, 

referred to as computational modelling, illustrates the connection between computational 

thinking and computer coding. 

1.3 Purpose of the Current Study 

My doctoral research project strives to address a gap in the literature in integrating 

computational thinking into the existing undergraduate mathematics curriculum. The 

evidence for this claim is based on my extensive literature search, and confirmed by 

several researchers in mathematics education that I consulted. There is strong motivation 

to do so—I argue that computational thinking provides an essential new approach that 

facilitates mathematical modelling, an important component of mathematics education 

that connects mathematics to authentic, real-world problems. Anecdotal, as well as 

research-documented, evidence suggests that students struggle to apply mathematics they 

have learned (or have been exposed to) not just to real-world applications (Stillman, 

2015) but also to subsequent courses in mathematics and elsewhere. (For instance, Pepper 

et al. (2012) document students’ challenges in applying mathematics concepts they were 

supposed to know in a course on electricity and magnetism.) Blum and Ferri (2009) refer 

to the analyses carried out by the Programme for International Student Assessment 

(PISA) Mathematics Expert Group, which attribute students’ difficulties with 
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mathematical modelling to the “inherent cognitive complexity” (p. 48) of the modelling 

tasks. Tall et al. (1987) show that exploring advanced, complex concepts (such as 

integration and mathematical modelling which involves abstract mathematical topics) 

from a multitude of perspectives (including computer-aided exploration) helps students 

overcome cognitive difficulties and facilitates understanding. 

The goal of this project was to develop, implement, and analyze a practical approach to 

integrating computational thinking, in the form of computational modelling and computer 

coding, into teaching and learning activities in the undergraduate applied calculus course 

I teach—Math 1LS31—without removing any mathematical content from the course 

syllabus. While there have been successful attempts at developing courses designed to 

teach mathematics and coding simultaneously (for example, the Mathematics Integrated 

with Computers and Applications (MICA) program at Brock University), the large-scale 

intervention implemented in this research project, that is, integrating coding into a 

preexisting calculus course (with a class size of over 1000 students), has not been 

attempted before at a Canadian university (and possibly beyond). Additionally, this 

project presents a tangible approach to generating course-specific computational thinking 

activities and resources and documents the effectiveness of this intervention in a large, 

diverse undergraduate calculus class. 

Rather than be discouraged by the lack of practical resources identified in the literature, I 

viewed this deficiency as an unprecedented opportunity to bring innovation into my 

classroom from a course-specific perspective, and to create computational modelling 

activities that were meaningful and relevant for life sciences students. I strived to design 

valuable experiences for my students, where they had the opportunity to experience 

maximum educational benefits from an engagement with computational thinking. It was 

important to me that the approach I implemented would be feasible in a large classroom 

                                                
1
 Math 1LS3 is a first-year, undergraduate applied calculus course designed for life science majors. It is a 

prerequisite course for the program as well as many upper year courses, and so there is very little flexibility 
in the topic coverage. 
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and would provide equitable, inclusive opportunities for a diverse group of students with 

varying backgrounds, mathematical experiences, and learning abilities.  

1.4 Research Questions 

My inquiry was guided by the following research questions: 

1. How does students’ conceptual understanding of calculus concepts change in 

response to working on problem-solving and mathematical modelling activities 

which incorporate computational thinking?  

2. How are students’ learning experiences transformed when they explore calculus 

concepts, ideas and techniques using computational tools and models? 

1.5 Research Design 

To investigate my research questions, I used a case study research design and collected 

data from students enrolled in Math 1LS3 at McMaster University during the fall 

semester of 2018. Taken by over 1500 students every year, this foundational course 

teaches basic concepts of differential and integral calculus, with a heavy emphasis on 

applications in the fields of life and health sciences. 

To integrate computational thinking into Math 1LS3, I created a series of coding 

activities to complement and enrich the topics studied in our course. These activities 

invited students to explore calculus concepts and solve problems using computational 

models, thus engaging them in computational thinking. They were organized into four 

computer labs, which corresponded to the main themes in the course: mathematical 

models, limits and derivatives, differential equations and integrals, and discrete-time 

dynamical systems. Additionally, coding was almost effortlessly incorporated into our 

lectures and coursework, as numerous topics and ideas naturally required a computational 

approach (e.g., Euler’s Method for solving differential equations, Riemann sums, and 

discrete-time dynamical systems).  

At the end of each computer lab, students were invited to reflect on and share their 

experiences with certain specific aspects of the coding activities (for example, “Describe 
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how your perspective on a mathematical idea changed as a result of engaging with the 

coding activities in Lab 2”). I collected and analyzed the open-ended survey responses 

from all students who gave their consent and reported on these findings. 

1.6 Methodology and Theoretical Framework 

Upon receiving each data set, I conducted a qualitative content analysis, facilitated by 

NVivo 12—a qualitative data analysis computer software package. In NVivo, I coded 

each response according to key terms, main topics, and general sentiment. I used 

annotations throughout the coding process to record my observations, thoughts, and 

questions, and I kept a detailed research journal to provide an auditable trail of my 

analytical process. Once all data had been coded, I organized the nodes into categories 

(higher-level nodes) and wrote detailed memos for each category, including illustrative 

examples from my raw data. These memos were clustered into three overarching themes 

and form the basis of my Results chapter. 

I then considered Andrea diSessa’s (2018) theoretical framework for a computational 

literacy and analyzed my results according to his five literacy principles. This framework 

helped me evaluate my results against diSessa’s literacy criteria, which, in turn, allowed 

me to establish a correspondence between my findings and diSessa’s principles. This 

correspondence is presented in my Analysis chapter. 

1.7 Significance of the Study 

This research contributes to the ongoing, Social Sciences and Humanities Research 

Council (SSHRC)-funded research project Computational Thinking in Mathematics 

Education (http://ctmath.ca/), from pre-school to undergraduate mathematics, and in 

mathematics teacher education. In particular, it investigates a large-scale implementation 

(involving approximately 1000 students) of a specific approach to integrating 

computational thinking (in the form of coding activities) into a tertiary level mathematics 

course. The affordances of computational thinking were explored from a mathematical 

teaching and learning perspective (rather than from a computer science perspective); that 



7 

 

is, the activities were designed to complement and enrich the mathematical ideas and 

teaching and learning ecology. 

1.8 Limitations 

My extensive literature search (confirmed by anecdotal evidence from several researchers 

in mathematics education I consulted) found no existing research close to the current 

study (integration of coding into an existing first-year university math course); therefore, 

I am not able to directly compare my data and results with other research efforts. Thus, 

conducting this study once is a limitation, which could be remedied by repeating the 

study in different semesters, possibly in different courses, or in other universities. 

All results are based on students self-reporting their experiences and opinions, which is a 

subjective process. Unfortunately, due to several reasons, it was not possible (nor was it 

the objective here) for the researcher (myself) to observe individual students working on 

the labs (however, that is an idea for future research). Since self-reported data cannot 

typically be independently verified (Rukwaru, 2015), we assumed that students were 

sufficiently self-aware and cognizant of their learning and experiences, and that their 

comments accurately reflected their experiences, thoughts and opinions. My reported 

findings reflect common themes, that is, the categories in my Results chapter emerged 

multiple times independently, that is, as responses from many students. 

The sample of students surveyed for this research project is biased (the majority of 

students taking Math 1LS3 are life sciences majors), and thus directly transferring 

computer labs to other departments and universities might produce somewhat different 

results. So while my results are not necessarily universal, given the large sample size, I 

can confidently say that they are definitely representative of life sciences students. 

1.9 Summary 

Computational thinking is gaining recognition as a versatile analytical approach, which 

can innovate and transform problem-solving activities in a wide variety of contexts. In 

particular, unique affordances of computational thinking can be employed to influence, 

impact, and reorganize the field of education in novel ways. The advantages seem to be 
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particularly beneficial when computational thinking is effectively integrated into existing 

subjects; however, the guidance on implementation outside of computer science (e.g., 

what are the best, evidence-supported teaching strategies) is insufficient. My research 

project aims to address this gap by investigating an approach to integrating computational 

thinking into an applied undergraduate calculus course designed for life sciences majors. 
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Chapter 2  

2 Review of the Literature 

I begin this chapter by outlining a working definition of computational thinking, and 

illustrating the two fundamental processes involved—abstraction and automation—with a 

concrete mathematical example. I then summarize the body of literature surrounding 

computational thinking, paying particular attention to its current role in education, and 

the unique opportunities it affords mathematical problem solving. I conclude this chapter 

by discussing certain theoretical and practical barriers, which currently impede its 

comprehensive integration into school and university curricula.  

2.1 Computational Thinking 

Computational thinking encompasses a collection of problem-solving strategies that 

derive from fundamental computer science principles, processes and techniques (Curzon, 

Black, Meagher, & McOwan, 2009). These core concepts and capabilities include—but 

are not limited to—data representation and abstraction, problem decomposition and 

reduction, algorithmic and recursive thinking, automation, and simulation (Wing, 2006; 

Barr & Stephenson, 2011). The Royal Society describes computational thinking as “the 

process of recognizing aspects of computation in the world that surrounds us, and 

applying tools and techniques from computer science to understand and reason about 

both natural and artificial systems and processes’’ (Furber, 2012, p. 29). Stephen 

Wolfram (2016) adds, “its [computational thinking] intellectual core is about formulating 

things with enough clarity, and in a systematic enough way, that one can tell a computer 

how to do them” (para. 6).  

Yadav et al. (2014) posit that “the prominent features of computational thinking revolve 

around abstraction and automation, indicating the ability to dissect problems, abstract the 

high-level rules, and use technology to automate the problem-solving process” (p. 5:1). 

Wing (2010) also emphasizes the centrality of these concepts and explains, “The most 

important and high level thought process in computational thinking is the abstraction 

process. Abstraction is used in defining patterns, generalizing from instances and 
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parameterization” (p. 1). Wing (2008) continues, “Computing is the automation of our 

abstractions” (p. 3718). 

Abstraction involves reformulating a problem so that it can be computed as an algorithm, 

that is, as “a series of steps that control some abstract machine or computational model 

without requiring human judgment” (Denning, 2017, p. 33). This process begins with 

logically deconstructing the problem into smaller, more manageable sub-problems, 

therefore reducing its complexity. An important part of the abstraction process is 

deciding which features of the problem should be accentuated and which details are to be 

viewed as insignificant. Wing (2008) asserts that this important decision-making process 

(which is a cornerstone of mathematical or statistical modelling) underlies computational 

thinking. Next, variables and parameters must be chosen and adequately abstracted, and 

features of the solution (e.g., patterns) need to be anticipated, so that adequate structures 

(e.g., matrices and databases) and techniques (e.g., algorithms) can be utilized.  

Automation requires “systematically devising an algorithm suitable for solving” the 

problem and its sub-problems (Mohaghegh & McCauley, 2016, p. 1524). This stage is 

guided by, and depends on, the computational model employed to approach the particular 

problem. Aho (2012) explains, “Mathematical abstractions called models of computation 

are at the heart of computation and computational thinking” (p. 834). He asserts that 

“finding or devising appropriate models of computation to formulate problems is a 

central and often nontrivial part of computational thinking” (p. 833), especially when 

computational thinking is being used to investigate problems in domains for which the 

classical models from computer science (such as the Turing model of sequential 

computation) may neither be appropriate, nor adequate, nor sufficient. diSessa (2018) 

refers to these considerations as “the representation effect”—exploring what can 

adequately and usefully be reformulated and represented in a computational form.  

The final stage of computational thinking involves an execution of the computer code 

(i.e., running algorithms) that yields a solution to the problem, followed by an evaluation. 

In this final stage, an in-depth analysis of both the product (solution) and the process 

(automation and abstraction) is conducted. The initial stages of computational thinking 
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(abstraction and automation) can be performed with or without technology; however, the 

final stage (analysis) requires the use of a computer or other suitable technology. 

2.1.1 Example: Intermediate Value Theorem 

As an illustration, consider the Intermediate Value Theorem, which is a common topic in 

a first-year calculus course. Formally, it is stated in the following way (Stewart, 2012, 

page 125): 

If 𝑓(𝑥) is a continuous function defined on a closed interval [𝑎, 𝑏] and 𝑁 is a number 

between 𝑓(𝑎)  and 𝑓(𝑏), then there is a number 𝑐 in [𝑎, 𝑏] such that 𝑓(𝑐) = 𝑁.  

In other words, the Intermediate Value Theorem states that a continuous function 𝑓(𝑥) on 

a closed, finite interval [𝑎, 𝑏] attains all values between 𝑓(𝑎) and 𝑓(𝑏); see Figure 1.  

 

Figure 1: Illustration of the Intermediate Value Theorem. 

A typical, first-year undergraduate calculus problem might require students to use the 

Intermediate Value Theorem to show that the equation 𝑒! = 5𝑥 + 10 has a solution for 

3 ≤ 𝑥 ≤ 4. To prove this, we let 𝑓(𝑥) = 𝑒! − 5𝑥 − 10 and 𝑁 = 0. We calculate that 

𝑓(3) ≈ −4.9 and 𝑓(4) ≈ 24.6. Since 𝑓(𝑥) is continuous on [3, 4], the Intermediate 

Value Theorem guarantees that there is a number 𝑐 in the interval [3, 4] such that 

𝑓(𝑐) = 0; see Figure 2. Note that we did not find the value of 𝑐—in fact, this is 

impossible to solve for algebraically—we just proved that such a value of 𝑐 exists. 

y

xa  c            b

f(a)

f(b)

y=f(x)

N



12 

 

 

Figure 2: The equation 𝒆𝒙 = 𝟓𝒙+ 𝟏𝟎 has a solution between 3 and 4. 

To reformulate this problem so that it can be computed as an algorithm, we begin by 

discretizing the interval [3, 4] into a finite number of equally spaced 𝑥-values and then 

computing the corresponding values of 𝑓(𝑥). That is, we reformulate this continuous 

function as a discrete set of values (points). We then need to inspect the list of 𝑓(𝑥) 

values to see if there is a value 𝑐 for which 𝑓(𝑐) = 0. Alternatively, if we observe a sign 

change between two consecutive values 𝑓(𝑥!) and 𝑓(𝑥!!!), then we know that there must 

be a value 𝑐 in [𝑥! , 𝑥!!!] such that 𝑓(𝑐) = 0. Observe the output in Figure 3; in this case, 

the sign change occurs between 𝑥! = 3.2 and 𝑥!!! = 3.3. This process accomplishes two 

tasks: first, it proves that there is a solution on the interval [3, 4]; and second, it narrows 

down the interval on which there is a solution from [3, 4] to [𝑥! , 𝑥!!!]. Recognizing the 

value in the second observation, we can keep repeating this process (which demands an 

automated algorithm!) and narrowing down the interval until we have a solution 𝑐 as 

close as desired to the actual value. 
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Figure 3: Abstraction of the Intermediate Value Theorem. 

Now that the problem has been adequately abstracted, how can we automate the solution 

process so that we do not have to visually inspect long lists of 𝑓(𝑥) values? A rather 

simple idea is to create code that will detect either a zero or a sign change within the list 

of 𝑓(𝑥) values. The code in Figure 4 accomplishes this task. 

 

Figure 4: Automation of the Intermediate Value Theorem. 
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After generating the list of 𝑓(𝑥) values, the code scans through to look for either a zero 

(thus, actually identifying the precise value 𝑐) or a negative product between two 

consecutive 𝑦-values (which indicates that one was positive and the other was negative). 

Once a solution is located, the interval can be further refined by adjusting the parameters 

𝑎 and 𝑏, as seen in Figure 5. 

 

Figure 5: Automation of the Intermediate Value Theorem. Refining the interval on 

which the equation has a solution. 

This reformulation has limitations, of course. For example, if we begin with too coarse of 

a refinement, we may miss a solution (or solutions) altogether, or we might find one, but 

fail to detect other solutions. Combining this algorithm with a complementary geometric 

representation and analysis of the problem helps to avoid situations such as this one. 

2.2 Value of Computational Thinking 

The value of computational thinking has been widely recognized in the field of computer 

science from the very beginning—that is, with the first attempts at writing code to solve 

specific problems. More recently, attention has turned toward the potential of 

computational thinking to enhance thinking and problem solving in a broad array of 

contexts, while enabling technology to be effectively incorporated to generate a solution. 

According to Wolfram (2016), “computational thinking provides a framework that makes 
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things more transparent and easier to understand” (para. 78). Moreover, the various 

competencies developed through an engagement with computational thinking—such as 

self-motivation to explore, experiment and hypothesize, development of intuition about 

variables, relations and quantities (i.e., quantitative literacy), logical reasoning, 

abstraction, and critical reflection—extend far beyond the scope of computer science 

(King, Hillel, & Artigue, 2001; Marshall & Buteau, 2014).  

Weintrop et al. (2016) report, “in the last 20 years, nearly every field related to science 

and mathematics has seen the growth of a computational counterpart” (p. 128). The 

authors describe how computational methods have been employed in novel ways to 

explore and study stochastic and nonlinear problems, many of which were previously 

inaccessible, or unsolvable. These innovative applications of computational thinking have 

expanded the range of phenomena that can be investigated using mathematical models 

and simulations to include systems which generate chaotic behavior, and complex 

dynamical systems in general.  

Bundy (2007) further extends the scope of computational thinking when he asserts, 

“computational thinking is influencing research in nearly all disciplines, both in the 

sciences and the humanities” (p. 1). For example, in biology, computational thinking 

enabled the accelerated sequencing of the human genome and provided opportunities to 

model complex biological processes, such as the cell cycle and protein folding (Wing, 

2008). In the humanities, computational thinking has been used to analyze data from a 

vast number of literary sources to illustrate relationships between the prevalence of 

certain words and themes as functions of time, location, political situation, or other 

variables. For instance, in the analysis of a Shakespearean play, computational thinking 

can be used to create and analyze a social network of characters and interactions, 

facilitating an in-depth study of the intricacies and relationships within the play 

(Wolfram, 2016). Computational thinking has allowed researchers to model complex 

interactions between geological processes, thus obtaining a more comprehensive 

understanding of the historic, as well as future, dynamics of our planet (Bundy, 2007). 

This improved understanding can help geologists “understand, predict and influence the 

mechanisms involved in climate change” (Bundy, 2007, p. 2). Adding to philosophical 
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discussions, Donald Hoffman combined aspects of computational thinking with 

evolutionary game theory to outline a compelling proof that what we believe is reality is 

actually just our perception (Gefter, 2016).  

Computational thinking extends into commerce, where market research is continuously 

conducted based on the analysis of a user’s Internet browsing history, resulting in 

personally customized advertisements and product endorsements. In politics, hundreds of 

thousands of sources of information are effectively and efficiently scanned daily (making 

use of powerful algorithms) to provide up-to-date information on relevant issues, political 

views, and voter support.  

Wing (2008) believes that while, so far, computational thinking has been successfully 

employed to tackle relatively simple (i.e., solvable) problems involving data mining and 

simulations, in the future, far more complex uses of computational thinking will help us 

to discover deeper meanings and understandings hidden in the patterns that can be 

extracted from the huge quantities of data that is generated and collected daily.  

In light of the expanding range of computational thinking, Wing (2006) has advocated 

“To reading, writing, and arithmetic, we should add computational thinking to every 

child’s analytical ability” (p. 33). Grover and Pea (2018) explain that computational 

thinking “is now recognized as a foundational competency for being an informed citizen 

and being successful in STEM [science, technology, engineering and mathematics] work, 

one that also bears the potential as a means for creative problem solving and innovating 

in all other disciplines” (p. 20). Weintrop et al. (2016) echo this and assert that the 

changing landscape of STEM fields presents a challenge to “bring current educational 

efforts in line with the increasingly computational nature of modern science and 

mathematics” (p. 127). 

2.3 Computational Thinking Affordances in Mathematics 
Education 

Computational thinking provides a framework for a systematic investigation of a problem 

and it affords the use of technology to extend both teaching and learning beyond present 
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constraints. The Computer Science Teachers Association explains that “the study of 

computational thinking enables all students to better conceptualize, analyze, and solve 

complex problems by selecting and applying appropriate strategies and tools, both 

virtually and in the real world’’ (Computer Science Teachers Association, 2011, p. 9). 

While computational thinking does not require the use of technology, computer 

programming (that is, creating and running computer code) reinforces computational 

thinking in multiple ways (Wing, 2008) and can be incorporated to further enrich 

problem-solving activities.  

Mathematics and computational thinking share a natural connection in that the processes 

operating when one works on a computational problem (such as experimenting, logical 

reasoning and algorithmic thinking) align with those employed in mathematical problem 

solving. As well, since computational thinking “complements and combines 

mathematical and engineering thinking” (Wing, 2008, p. 35), it is reasonable to presume 

that the tools and strategies developed for computational thinking can be employed to 

facilitate learning and enhance problem-solving skills in mathematics. In fact, Sanford 

and Naidu (2016) assert that computational thinking “can and does augment, facilitate, 

and expand the realm of thinking, logic, and mathematics” (p. 24).  

Computational thinking provides new perspectives and insights into a problem and 

allows for innovative approaches, such as experimentation, animation and simulation, to 

be explored (Pesonen & Malvela, 2000). As Sanford and Naidu (2016) attest, “A 

thorough study of any problem becomes easy with the aid of a computer and students can 

be encouraged to innovate and investigate other situations” (p. 24). For instance, the 

usual analysis of algebraic solutions of an equation can be augmented by a computer-

driven experiment in which solutions to an entire set of equations, similar to the original 

one, are generated. This approach may deepen students’ understanding of the link 

between the features of an equation (i.e., its coefficients) and the corresponding 

properties of its solutions.  

Anecdotal evidence suggests that many students find linear transformations challenging, 

in part due to the fact that common approaches (pencil and paper and calculator) fail to 
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produce a sufficient number and variety of examples. Through animation and simulation 

(i.e., by seeing how various objects change under a large number of linear 

transformations), one can get a good “feel” for this abstract algebraic concept. Students 

often have difficulties making sense of the algebraic manipulations required to solve an 

equation; however, after “playing” with equations on a computer (for instance, by 

moving a slider which controls a coefficient and watching how solutions react) students 

have the opportunity to develop a more solid understanding of what the solutions of a 

given equation are supposed to look like. This new understanding could, in turn, guide 

them through (previously incomprehensible) algebraic steps towards calculating a 

solution.  

When students explore a mathematical concept using a code, they are giving abstractions 

a “tangible feel” (Gadanidis, 2015). For instance, the abstract concept of the domain of a 

function becomes “tangible” when students realize that the computer returns an error 

message to their request to calculate the square root of a negative number. This feedback 

diagnostic is the “tangible” realization of the abstract fact that the domain of the square 

root does not include negative numbers.  As this example demonstrates, the 

objectification of abstractions (Hazzan, 1999) could help students understand and 

internalize challenging ideas and concepts. 

Euler’s method provides another powerful example. This numerical method uses 

successive tangent line approximations to estimate the solution to a first-order initial 

value problem. By hand, or with a calculator, we can only compute a small number of 

tangent lines to approximate a curve, and are forced to extrapolate the properties of a 

solution, which remains abstract, and “hidden” from view. Remediating this situation 

with a computational approach allows us to decrease the step size as desired and to 

subsequently increase the number of tangent line approximations to generate a “tangible” 

approximation to the entire solution curve (which we can also visualize by graphing). 

According to Yadav et al. (2014), “Computational thinking has the potential to advance 

students’ problem-solving skills and abilities significantly as they begin to think in new 

ways” (p. 5:2). As well, using multiple avenues to investigate a problem (e.g., algebraic, 
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visual and dynamic) not only facilitates in-depth learning and promotes an active 

engagement with the concepts, but also helps to accommodate students with a wide 

spectrum of abilities and learning styles.  

Wing (2006) explains that computational thinking tools enable us to reduce the 

complexity of any given task by “reformulating a seemingly difficult problem into one 

we know how to solve” (p. 33). The process of deconstructing a complex problem into 

manageable sub-problems—performed during the abstraction phase of computational 

thinking —is a useful problem-solving strategy in a myriad of situations.   

Dynamic modelling—a significant affordance of computational thinking—allows 

students to explore relationships between the key features of a problem in novel ways. 

This interactive approach provides several significant advantages over traditional ways of 

learning. For instance, modelling complex interactions between two species sharing the 

same ecosystem is virtually impossible without employing computer code. As well, 

within a coding environment, students are able to interact with the variables and 

parameters and observe an immediate response (feedback) to their input. As Burton 

(1999) explains, when students have the ability to actively control and manipulate these 

components, both their learning and attitude towards mathematics are enhanced. The 

immediate feedback provided when executing code, often given in the form of a dynamic 

visual or an animation, helps students to form concrete representations of abstract 

mathematical concepts. 

Rich visualizations of mathematical relationships generated through coding activities 

have the potential to further enhance mathematical understanding. Recent evidence from 

neuroscience research suggests, “our mathematical thinking is grounded in visual 

processing” (Boaler, Chen, Williams, & Montserrat, 2016, p. 2). The authors state that 

“when students learn through visual approaches, mathematics changes for them, and they 

are given access to deep and new understandings” (p. 1). Computational thinking, 

through coding, experimentation (for instance by using simulations), and dynamic visuals 

(such as graphs and diagrams) provides numerous opportunities for students to explore 
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mathematics visually, thus further promoting active engagement and enhancing 

mathematical development. 

Digital environments, which facilitate computational thinking, can offer significant 

educational advantages. Gadanidis, Hughes, Miniti and White (2016) report that a 

number of existing computer programming (coding) environments provide “low floor, 

high ceiling, wide walls” experiences to users. The “low floor, high ceiling” property 

offers multiple entry points and maximum engagement opportunities for a wide range of 

students with diverse abilities, background knowledge and experiences. The “wide walls” 

feature allows the coding environment to be used for  “many different types of projects so 

people with many different interests and learning styles can all become engaged” 

(Resnick et al., 2009, p. 63). Furthermore, since various coding environments—such as 

Scratch or Jupyter notebook— as well as a multitude of interactive lessons and tutorials 

are available online free of charge, computational thinking can be “successfully taught to 

a very wide range of people, regardless of their economic resources” (Wolfram, 2016). 

In a computational thinking environment, students create tools required to solve a 

problem, instead of using existing tools (Mohaghegh & McCauley, 2016). This creative 

process encourages students to become active producers, instead of passively using 

prepackaged content and approaches to solving problems. As Gadanidis et al. (2016) 

explain, “When students write computer code to model a relationship, they are in control. 

They can write the code in ways that personally make sense, and they can deviate from 

the specific task to explore related problems or extensions” (p. 15). This sense of agency 

and control has the potential to motivate students, build their confidence, and stimulate 

independent learning. Seymour Papert—who pioneered the use of computers to teach 

children mathematics—asserts, “I am convinced that the best learning takes place when 

the learner takes charge” (Papert, 1993, p. 25). 

Czerkawski and Lyman (2015) and Denning (2017) are careful to note the important 

distinction between computing and computational thinking and assert that simply using a 

computer to facilitate problem solving does not necessarily imply that computational 

thinking is being employed. While engaging in computer programming activities 
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facilitates the development of computational thinking skills, the cognitive benefits are 

most significant—and transferable outside of computer science—when students acquire a 

deep understanding of the underlying principles of computing. As Mohaghegh and 

McCauley (2016) point out, “What is necessary is an effective integration of the ‘tool’ 

with the concepts” (p. 1528); consequently, the process, as well as the product (i.e., the 

solution), should be studied and thoroughly understood. They further explain that “deeper 

understanding of computational problem solving is more valuable than exploring the 

surface of tools in this area without realising their full potential” (p. 1527). Wing (2008) 

echoes this point when she makes the comparison of using a computer without 

understanding the principles of computing to using a calculator without understanding 

how to do the calculations. As well, Grover and Pea (2013) report that “current 

computational tools vary in their effectiveness in allowing for engagement with the 

various component elements of computational thinking” (p. 41).  

2.4 Brief History of Computational Thinking and Its Role in 
Education 

Computer scientist Peter Denning (2017) defines computational thinking as “the habits of 

mind developed from designing programs, software packages, and computations 

performed by machines” (p. 33). Thus, the development of the concept of computational 

thinking is, not surprisingly, closely tied to the advancement of computers and 

programming languages, which were created as a means of communicating with 

computers. 

In the 1960’s, Alan Perlis, a computer scientist and professor at Yale University, 

described programming as “an exploration of process” (Guzdial, 2008, p. 25), which he 

argued is relevant to every student, irrespective of their field of study. Working on the 

development of programming languages and anticipating their potential and importance, 

Perlis proposed that all university students should learn to program. He claimed that the 

logical and algorithmic thinking skills (later referred to as “computational thinking 

skills”) attained through writing and analyzing computer code would, with suitable 

practice, transfer into areas outside computer science. 
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Advancements in computer technology, in particular time-sharing, allowed a large 

number of students to interact with a computer, thus making computer-assisted learning a 

real, tangible goal. Subsequently, computer-based instructional materials were created for 

all subjects and for all levels of education (Molnar, n.d.). 

In the early seventies, based on Jean Piaget’s work and his own learning theory 

(constructionism), Seymour Papert and his collaborators created a visual programming 

language called Logo. Its purpose was to help children improve their thinking and 

problem-solving abilities and to facilitate learning mathematics through coding in an 

environment which promoted play and experimentation. Papert’s unique platform 

provided a “low floor, high ceiling” experience, that is, students were able to engage with 

a problem with very little background knowledge in programming, however, Logo had 

the potential to explore complex, high-level problems in mathematics. In his influential 

book Mindstorms, Papert postulated that “computer presence could contribute to mental 

processes not only instrumentally but in more essential, conceptual ways, influencing 

how people think even when they are far removed from physical contact with a 

computer’’ (Papert, 1980, p. 4). Reflecting upon the impact of new technologies on the 

way children learn, he further suggested that, “learning to use computers can change the 

way they learn everything else” (p. 8). 

In spite of major advances in the final quarter of the twentieth century (e.g., Internet and 

laptop computers) learning with computers did not find its way into every classroom. 

There were computer labs and computer-programming courses, but the ideas that the 

early pioneers put forward, namely of integrating computers and computational thinking 

into school and university curricula, did not materialize.  

At the start of the 21st century, MIT physics professor Andrea diSessa studied the 

concept of “computational literacy,” a potentially new form of literacy that has the power 

to modify the way people think and learn. diSessa separated the “cognitive” aspect of 

computational thinking from the “material” aspect and suggested that computing can be 

used to explore fields other than computer science (Grover & Pea, 2013). “I view 

computation as, potentially, providing a new, deep, and profoundly influential literacy—



23 

 

computational literacy—that will impact all STEM disciplines at their very core, but most 

especially in terms of learning” (diSessa, 2018, p. 4). Continuing the line of work started 

by Papert, diSessa’s research aims “to bring computational ideas, indeed, programming, 

to the wider population for general intellectual purposes” (pp. 19-20). 

Despite its early emergence and presence in computer science and related literature, 

computational thinking was not given serious attention by the majority of educators until 

Jeannette Wing published her influential article, Computational Thinking (Wing, 2006). 

In it, she argued that computational thinking is a powerful and fundamental cognitive 

skill for everyone, and that children should develop computational thinking proficiencies 

alongside other important core analytical abilities, such as reading, writing, and 

arithmetic. 

In the second decade of this century, a growing number of educators have acknowledged 

the benefits of integrating computational thinking into school and university curricula, as 

the proficiency in computational thinking and related skills seems to be the best way to 

prepare students for the challenges that the future will bring.  

2.5 Current State of Computational Thinking in School and 
University Curricula 

Today, we witness computational thinking gaining recognition as “an essential skill for 

those who would be our future inventors, innovators, and shapers of culture and public 

discourse” (Pearson, 2009, p. 42). The National Council for Research (2010) refers to 

computational thinking as “a cognitive skill that an average person is expected to 

possess” (as cited in Yadav et. al, 2014, p. 5:2). Consequently, students of all ages, 

irrespective of the discipline they study, are expected to develop competencies in various 

aspects of computational thinking in order to meet the demands of an increasingly digital 

world. 

Recent research suggests that the advantages of computational thinking are maximized 

when computational thinking is introduced—in adequate form—to students at a young 

age, and effectively integrated into all subjects, providing a universal approach to 
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problem solving (Sanford & Naidu, 2016; Yadav, Zhou, Mayfield, Hambrusch, & Korb, 

2011). As Yadav et al. (2014) state, the “pervasiveness of computational-thinking 

concepts dictates the importance of exposing students to such notions early in their 

school years and helping them to become conscious about when and how to apply these 

ideas” (5:2). Weintrop et al. (2016) argue that integrating computational thinking into 

existing subject areas—rather than teaching it as a standalone course—provides multiple 

benefits. This integration provides meaningful, authentic contexts in which to study 

computational thinking; it addresses the practical issues of supplying proficient teachers 

and resources; it allows for computational thinking activities and practices to reach the 

widest possible audience; and—especially in mathematics and sciences—it brings 

“education more in line with current professional practices in these fields” (p. 143). 

Several countries, including England, Israel, Russia, New Zealand, U.S., Australia and 

South Africa have incorporated computational thinking into their K-12 curricula, often 

within computer science or computer programming courses (Grover & Pea, 2013). A 

recent document published by the European Commission investigates major trends in 

integration of computational thinking with compulsory education, outlines approaches to 

teaching, learning and assessment, and discusses teacher training in computational 

thinking (Bocconi, Chioccariello, Dettori, Ferrari, & Engelhardt, 2016). The Next 

Generation Science Standards published by U.S. educators includes computational 

thinking as an important learning objective and outlines activities and suggestions to help 

teachers promote this skill within the classroom (Sneider, Stephenson, Schafer, & Flick, 

2014). The document Computing in the National Curriculum: A Guide for Primary 

Teachers (Berry, 2013) written for teachers in the U.K. aims to “demystify the 

programme of study” (p. 3) of computing in primary schools. “It will enable teachers to 

get to grips with the new requirements quickly and to build on current practice. It 

includes help for schools with planning and gives guidance on how best to develop 

teachers’ skills” (p. 3).  

Additionally, building competencies in computational thinking has become a requirement 

in many undergraduate university programs, as computational thinking has become 

essential for the development and learning of all STEM disciplines (Henderson, Cortina, 
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Hazzan, & Wing, 2007), as well as those outside of STEM (Czerkawski & Lyman, 2015). 

By arguing that computational thinking is critical thinking, Kules (2016) builds 

arguments for connecting computational thinking to university discourse. In his thesis, 

Kolodziej (2017) investigates important elements of this connection, including domain 

expertise, interdisciplinary collaboration, and attitudes towards curricular initiatives. 

Swaid (2015) contributes to “efforts to establish computational thinking as a universally 

applicable attitude that is meshed within STEM conversations, education and curricula” 

(p. 3657). 

A number of online initiatives aim to provide both experiences and education in 

computational thinking that are free and accessible to learners of all ages and abilities. 

For example, MIT’s Scratch provides a visual-programming environment, which uses 

coding “blocks” to create and run computer code (https://scratch.mit.edu/). Graphical 

programming environments, such as Scratch, “allow early experiences to focus on 

designing and creating, avoiding issues of programming syntax” (Grover & Pea, 2013, p. 

40). Google produced online lessons and exercises in computational thinking for both 

educators and students through Project Bloks, commonly referred to as “Google Bloks” 

(https://projectbloks.withgoogle.com/). A less technology-dependent complement to 

these efforts can be found on the webpage, CS Unplugged (http://csunplugged.org/), 

which aims to teach the fundamentals of computer science without the use of computers. 

The collection of activities available on the site provides multiple opportunities to engage 

with computational thinking in various interactive ways and is suitable for all age levels 

and abilities. 

While encouraging, these efforts are still insufficient, as most consist of working on 

isolated curriculum objectives (e.g., within computer science or programming courses), 

rather than focusing on genuine integration with other subjects (Grover & Pea, 2013). 

Gadanidis et al. (2016) concur, and allege that at the K-12 level, computational thinking 

is not yet “integrated with curriculum to enrich existing subject areas” (p. 1). Czerkawski 

and Lyman (2015) report that the response to the call for a pervasive computational 

thinking presence in higher education is “scattered” (p. 58) and note that although there 

have been many localized “clusters of cross-disciplinary interest” (p. 58) at integrating 
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computational thinking into undergraduate curricula, “There is not yet a coherent cross-

institutional movement to incorporate computational thinking as a fundamental skill-set, 

outside of computer science and a few STEM disciplines” (p. 58). According to Grover 

and Pea (2013), “although there is broad acknowledgement that computing pervades all 

aspects of the global economy, its place as a mandatory part of the school curriculum is 

far from secure” (p. 40).  

Additionally, diSessa (2018) notes that many recent coding initiatives claim to include 

computational thinking, however, most only teach technical programming skills. Denning 

(2017) reminds us that using computational tools does not automatically imply that one is 

engaged in computational thinking. 

2.6 Barriers to Integrating Computational Thinking into 
School and University Curricula 

Presently, the major obstacles preventing widespread integration of computational 

thinking into K-16 curricula revolve around certain theoretical issues, general expertise, 

teacher education and teaching practice, as well as beliefs and attitudes of university 

faculty and instructors toward significant curricular changes. As Barr and Stephenson 

(2011) report, “The process of increasing student exposure to computational thinking in 

K-12 is complex, requiring systemic change, teacher engagement, and development of 

significant resources” (p. 48). Czerkawski and Lyman (2015) note that in higher 

education, sustained interdisciplinary interest, collaborations and outreach are essential in 

the pursuit of extending computational thinking beyond computer science courses.  

The absence of a precise definition of computational thinking is a theoretical issue which 

frequently arises in the literature and is often cited as posing a significant barrier to the 

widespread propagation of computational thinking in education (Grover & Pea, 2013; 

Czerkawski & Lyman, 2015). As Aho (2012) explains, “the term computation means 

different things to different people depending on the kinds of computational systems they 

are studying and the kinds of problems they are investigating” (p. 832). Denning (2017) 

believes that the definition of computational thinking was intentionally designed to be 

vague in order to increase the perception of its expansive applicability outside of 
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computer science. While defining computational thinking broadly avoids associating it 

with a particular discipline, Denning suggests that the definition has been widened 

beyond a practical boundary, thus losing its usefulness. 

The lack of a clear definition is believed to contribute to confusion and misperceptions 

about computational thinking, resulting in less than ideal attitudes from stakeholders 

regarding the resources and efforts allocated to widening the integration of computational 

thinking into the K-16 curriculum. For example, a common misconception is that 

computational thinking reduces to thinking like a computer. Wing (2006) explains that 

computational thinking is simply an efficient, systematic, and analytical way of thinking, 

and asserts that “computational thinking is a way humans solve problems; it is not trying 

to get humans to think like computers” (p. 35). In fact, computational thinking is not as 

artificial to human thinking patterns as its terminology might suggest, nor should it be 

automatically associated with computer technology. The results from a study by 

Lewandowski et al. (2010) suggested that people without formal programming 

experience had an innate, yet underdeveloped, ability to reason correctly about certain 

computing principles, such as concurrency. Furthermore, Berland and Lee (2011) 

observed that students engaged in a strategic and collaborative (non-digital) board game 

demonstrated complex computational thinking practices—such as “conditional logic, 

distributed processing, debugging, simulation, and algorithm building” (p. 60)—

continuously throughout the game (as cited in Czerkawski & Lyman, 2015). These 

findings suggest that humans naturally possess the cognitive foundations for 

computational thinking and that computational thinking skills can be further developed 

with adequate support and practice.  

While the technical terms automation and abstraction might seem exclusively linked to 

computer science, Barr and Stephenson (2011) highlight multiple ways that these (and 

other fundamental computational thinking concepts and competencies) manifest 

themselves in various other disciplines. For example, the use of a simile or metaphor 

illustrates how abstraction might be employed in the language arts, whereas building a 

model of a physical entity—such as a molecule or cell—demonstrates the use of 

abstraction in the physical sciences. Using computational tools to efficiently handle 
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certain routine problems, such as using a word processor in the language arts or 

Geometer’s Sketchpad in mathematics, provides examples of how automation arises in 

contexts outside of computer science. Wing (2006) also explains how various aspects of 

computational thinking are involved in our day-to-day lives—for example, planning and 

executing our morning routine to get from bed to work or school involves multiple 

problem-solving strategies which align with those found in computing. While these 

practical and diverse examples help to illustrate the pervasiveness of computational 

thinking, Denning (2017) suggests that we need to be careful and restrictive in drawing 

parallels between algorithms (as conceptualized in the context of computational thinking) 

and routines that we “execute” in our daily lives. He reminds us that “an algorithm is not 

any sequence of steps, but a series of steps that control some abstract machine or 

computational model without requiring human judgment” (p. 33). 

Several educational researchers have criticized the overzealous assertions made by 

computational thinking advocates, arguing that their claims are ambitious, overreaching 

and empirically unsubstantiated. In particular, claims of the universal value of 

computational thinking and the extent to which it can positively impact activities in all 

fields lack empirical support. Denning (2017) criticizes claims that “computational 

thinking enhances general cognitive skills that will transfer to other domains where they 

will manifest as superior problem-solving skills” (p. 37) since the universal value of 

computational thinking is, as of yet, empirically unsubstantiated. He concludes that what 

the current literature reveals at most is that “computational thinking primarily benefits 

people who design computations” (p. 37). diSessa (2018) expresses similar concerns over 

Wing’s grand claim of universally applicable skills acquired through engaging in 

computational thinking. He cites historical research efforts that attempted to discover and 

develop “higher order thinking skills,” that is, cognitive skills thought to be universally 

beneficial in a multitude of domains and contexts. The general consensus from these 

studies was that there is little or no evidence of the existence of “domain general skills” 

(p. 22). diSessa concludes that “Problem solving does not seem to be critically powerful, 

even in a single discipline let alone transformative across disciplines” (p. 22). Moreover, 

he reminds us that all representational systems have “distinctive and critical strengths, but 

also limitations and blind spots” (p. 7); that is, what can be represented with a 
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computational model and significantly accomplished will vary greatly between different 

domains and within different situations. diSessa suggests a more modest claim on the 

potential of computational thinking may be more appropriate, at least until further 

research provides more concrete evidence of its “ubiquitous” power.  

At the K-12 level, parents, students, and teachers have questioned the relevance of 

teaching computational thinking to students who show no interest in computer science or 

related disciplines. Hemmendinger (2010) emphasizes that introducing computational 

thinking into all subject areas should not be perceived as an attempt to train all students to 

become computer scientists, but rather “to teach them how to think like an economist, a 

physicist, an artist, and to understand how to use computation to solve their problems, to 

create, and to discover new questions that can fruitfully be explored” (as cited in Yadav 

et al., 2014, 5:2). Viewing computational thinking as part of a much larger scale 

achievement—computational literacy—diSessa (2018) reminds us not to be discouraged 

by initial unfavourable attitudes towards change and notes that the emergence of any new 

literacy is a long and complex social process in which “initial resistance and long periods 

of incubation are undoubtedly the norm” (p. 15). As more efforts to incorporate 

computational thinking come from within specific disciplines, and activities are 

thoughtfully designed to integrate computational thinking in authentic ways, students 

(and parents) may perceive its inclusion as a natural development within the discipline, 

rather than an external force driven by computer science objectives. This would likely 

lead to improved attitudes as relevance and alignment with practices in the field are 

realized. 

Epistemological concerns have been raised in response to the idea that computational 

thinking should be embedded into all subjects as a universal approach to problem solving. 

Many non-science faculties reject positivist notions classically associated with the natural 

sciences in favour of interpretivist or constructivist paradigms and consequently “avoid 

analytical techniques that may be perceived as reductionist” (Czerkawski & Lyman, 

2015, p. 62). Since computational thinking is still strongly associated with computer 

science, there might exist an assumption that it is limited by the same restrictions 

associated with computing. For example, the foundational element of computer science is 
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the Turing machine—a closed, finite model of sequential computation. Problems 

considered solvable using this classical model of computation are limited to those that 

can be reformulated in a meaningful way to be Turing-machine computable. While this 

restriction narrowed the scope of problems that could be computed, the emergence of 

new models of computation, such as natural computing models and concurrent interactive 

computing models (Dodig-Crnkovic, 2011), have significantly expanded the type of 

problems that can be profitably computed. As well, Soh et al. (2009) hypothesize that 

interdisciplinary training for computer scientists “may encourage the development of 

computational thinking methods suitable to the ‘open-ended’ issues studied in the 

humanities and fine arts” (as cited in Czerkawski & Lyman, 2015, p. 62). Czerkawski and 

Lyman (2015) discuss how computational thinking can be viewed as a human-computer 

collaboration, that is, a reciprocal relationship that “both expands the range of human 

creativity by incorporating computational thinking and expands computational thinking 

by promoting the development of new models of interactive computing” (p. 62). As these 

innovative, open models of computation become more mainstream, and the value that 

computational explorations can bring to less conventional, non-traditional problems is 

adequately illustrated, resistance to remediating problems with computation will likely 

decrease.  

A more practical issue to consider is that there is generally a “lack of orientation toward 

domain-specific adaptation” (diSessa, 2018, p. 27) in regards to selecting, adapting, and 

transferring salient computational thinking skills outside of a computer science context. 

This is vastly apparent in education, where integrating computational thinking into 

various subject fields in the K-12 curriculum is under-investigated from a teachers’ 

perspective (Grover & Pea, 2013). While the general consensus is that computational 

thinking should be embedded into existing subjects rather than taught in an isolated 

context, exactly what this integration is supposed to look like in practice is still vague 

(Lye & Koh, 2014). As a result, there are minimal resources available which provide 

practical teaching strategies, exercises, and assessment principles necessary for its full 

implementation (Grover & Pea, 2013). Yadav et al. (2014) also note this deficiency and 

report, “there is very little research on how teachers could be prepared to incorporate 

computational thinking ideas in their own teaching” (p. 5:13). For example, a teacher 
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might be aware of the advantages of computational thinking, but might not know how to 

incorporate computational thinking into a particular content or lesson. As Yadav et al. 

(2014) note, “most of the current efforts to educate teachers about computational thinking 

have been limited to computer science teachers” (5:3). As well, the lack of appropriate 

teaching materials (textbooks, manuals, study sheets, templates for activities, and so on), 

combined with inadequate teacher preparation results in teachers’ reluctance to engage 

their students with computational thinking in a meaningful capacity. Czerkawski and 

Lyman (2015) report that this deficiency is even greater at the university level and note, 

“practical research on teaching computational thinking skills continues largely to take 

place within computer science and the science, technology, engineering and math 

(STEM) fields” (p. 60). They observe that “Outside of computer science and the STEM 

fields, the difference between applying computational thinking methods derived from 

computer science and simple application of computers to problems within a discipline 

(‘data crunching’) is either less well-understood or simply elided” (p. 58).  

2.7 Recent Theoretical and Practical Advancements 

Barr and Stephenson (2011) report on a multiphase project that was launched in 2009 by 

the Computer Science Teachers Association and the International Society for Technology 

in Education with the goal of “developing an operational definition of computational 

thinking for K-12 along with suitable resources for policy and curricular change” (p. 49). 

They emphasize the core concepts or capabilities of computational thinking which are 

both common with, and transferable to, other disciplines and provide practical examples 

demonstrating how computational thinking concepts can be applied in various core 

subject areas.  

By analyzing routines that were viewed as important for both students and the 

interdisciplinary practices within mathematics, Weintrop et al. (2016) developed a 

taxonomy for computational thinking in mathematics and sciences, which provides “a 

sharper definition that is distinct from computer science, yet still grounded in authentic, 

meaningful computational practices that are essential for students to master” (p. 128). 

Their work presents a significant contribution toward bringing computational thinking 

into classrooms relatively quickly and effectively, that can “serve as a resource to address 
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‘what’ and ‘how’ questions that accompany the creation of new educational materials” 

(p. 129).  

Additionally, Yadav et al. (2011) demonstrated that when pre-service teachers 

participated in a computational thinking training module, their attitude toward and 

understanding of computational thinking improved and they reported to be more likely to 

implement computational thinking in their classrooms. A later study by Yadav et al. 

(2014) found that pre-service teachers presented with relevant information in 

computational thinking demonstrated a more comprehensive and nuanced understanding 

of computational thinking overall and were able to articulate its centrality in other 

disciplines and suggest innovative ways it could be integrated into classroom teaching for 

a wide variety of subjects. This research suggests that computational thinking principles, 

practices, and related activities should be incorporated into pre-service teachers’ 

coursework regardless of their content specialization, as a first step towards the goal of 

integrating computational thinking into all subject areas. 

In post-secondary education, there have been a moderate number of cross-disciplinary 

efforts to integrate computational thinking into curriculum; however, as Czerkawski and 

Lyman (2015) note, so far these endeavors have been localized in scope. For example, at 

the University of Nebraska-Lincoln (UNL), Soh et al. (2009) created a framework for 

non-computer science majors of “multiple pathways through a series of computer science 

courses that were specialized according to the students’ main areas of study” (as cited in 

Czerkawski & Lyman, 2015, p. 63). In 2001, Brock University began offering a four-year 

mathematics program—Mathematics Integrated with Computers and Applications, or 

MICA—that combines a foundational tertiary mathematics education with computing 

and information technology. This unique program focuses on solving authentic, complex 

real-world problems by effectively integrating mathematics and computation. 

Additionally, numerous universities offer introductory courses on the principles of 

computing that do not involve any programming. For example, the Department of 

Mathematics and Statistics at McMaster University offers an undergraduate course 

(Topics in Logic) open to students in all faculties, which focuses exclusively on the 

theory of computation and does not involve the use of computers.  
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Czerkawski and Lyman (2015) conclude their review of the state of computational 

thinking in higher education by identifying areas where further research is needed in 

order to make computational thinking a more pervasive, cross-disciplinary skill. They 

suggest that part of these efforts should aim to “Establish methods and strategies as well 

as examples and cases for teaching computational thinking in various non-technical 

disciplines, especially the social sciences, humanities and education” (p. 64).  

2.8 Summary 

Computational thinking has always played a fundamental role in computer science; 

however, more recently, it has gained recognition for its potential to innovate, transform, 

and enrich educational experiences by providing a systematic framework for analyzing a 

problem, and enabling powerful computational tools to be incorporated to further 

enhance problem-solving activities. While some researchers (Denning, 2017; diSessa, 

2018) point out that ambitious claims of the ubiquitous benefits of computational 

thinking to teaching and learning lack empirical evidence, a body of literature suggests 

(and education researchers concur) that such claims are worth a further, more thorough 

investigation. The goal of the current study is to contribute meaningful data and analysis 

to this research pursuit, in the context of the integration of computational thinking into 

tertiary mathematics. 
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Chapter 3  

3 Methodology 

In this chapter, I describe my research design, the participants and setting, the particular 

research intervention, and data collection. I discuss my theoretical and analytical 

frameworks, and explain (with specific examples) how I conducted my content analysis. I 

then describe how I used diSessa’s (2018) literacy framework to help situate my results 

within the broader context of a computational literacy. I conclude this chapter with a 

discussion of the trustworthiness of the study, and the measures I have taken to ensure 

that this research is credible, transferable, confirmable, and dependable. 

3.1 Research Questions 

My current research project investigates an approach to integrating computational 

thinking into an undergraduate applied calculus course that I have implemented at 

McMaster University. This was accomplished by supplementing mathematical problem-

solving activities with appropriate, carefully designed computer coding activities, which 

were incorporated into lectures to explore mathematical concepts and illustrate coding 

techniques, and organized into a set of computer labs to be used as an assessment 

component. I collected and analyzed students’ responses to a series of questions posed at 

the end of each lab, which invited them to reflect on their experiences with the 

mathematical coding activities.  

In order to determine how integrating computational thinking into my students’ learning 

environment affected their understandings and experiences, I formulated the following 

two research questions: 

1. How does students’ conceptual understanding of calculus concepts change in 

response to working on problem-solving and mathematical modelling activities 

which incorporate computational thinking?  

2. How are students’ learning experiences transformed when they explore calculus 

concepts, ideas and techniques using computational tools and models? 
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3.2 Research Design 

To answer my research questions, I used a case study research design, which Stake 

(2005) advises is most appropriate for collecting descriptions of teaching and learning 

experiences within a bounded system (i.e., the thoughts and actions of participants in a 

specific education setting, for example, students working on mathematics problem-

solving exercises using a computational tool, such as a laptop or a tablet, in a specific 

course). This approach helped me to understand the main features of such a system as it 

functioned under natural conditions (Stake 2005; Yin, 2009). As well, Yin (2009) 

suggests that a case study research design is most appropriate for investigating “how” and 

“why” questions, such as the research questions posed in this study. My analysis is 

qualitative in nature, following the established practice of in-depth studies of classroom-

based learning and case studies in general (Stake, 2005), and uses qualitative content 

analysis to identify key themes in the teaching and learning experiences. 

3.3 Theoretical Framework 

In my education research, I align myself with a social constructivist epistemology, 

identifying with Vygotsky (1978) in the belief that knowledge is constructed in 

interactions with others. In this context, I expand Vygotsky’s concept of “others” to 

include technology, that is, I believe that knowledge is constructed when humans interact 

with computer technology. Like Borba and Villareal (2005), I believe that students’ 

mathematical thinking and knowledge can fundamentally change by interacting with 

mathematics using technology. Ontologically, I adopt a relativist viewpoint, since I view 

reality as being comprised of “local and specific co-constructed realities” (Lincoln, 

Lynham, & Guba, 2011, p. 100). 

3.4 Participants and Setting 

I conducted this research at McMaster University in the fall of 2018, with students 

enrolled in Math 1LS3, a first-year undergraduate calculus course designed for life 

sciences majors. This foundational course teaches the basic concepts of differential and 

integral calculus, with a heavy emphasis on applications in the fields of life and health 

sciences. During the fall 2018 semester, there were approximately 1020 students enrolled 
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in Math 1LS3 and the students were assigned to one of three lecture sections, each taught 

by a different instructor. All sections covered the same topics in approximately the same 

order (the course coordinator maintained a common course webpage for students and 

instructors to follow) and students in all sections were given identical assignments, 

computer labs, tests, and final exam. 

During lectures, instructors introduce standard calculus topics (such as functions, limits, 

derivatives, integrals, discrete-time dynamical systems) and then apply these concepts to 

investigate mathematical models within biological contexts. To demonstrate relevance, 

models are taken from journals in life and health sciences, and deal with contemporary 

situations, such as drug abuse and spread of viral diseases. Students remark that they 

recognize the value of this approach, however, they frequently admit (to myself, other 

instructors, and on their course evaluations) to having a great deal of difficulty working 

with these complex models. 

Throughout the course, students work on a series of assignments to reinforce the material 

being presented in lectures. For practical reasons, these assignments have been designed 

so that students are able to complete them without the use of computer technology (as 

well, many mathematics courses at McMaster do not allow the use of calculators on tests 

and final exams). In reality, applying calculus techniques to complex, real-life models 

without the use of computational thinking tools often requires long, tedious and time-

consuming calculations. In order to be adapted to actual teaching practices, these 

modelling tasks are necessarily over-simplified to generate special cases, which can be 

investigated algebraically, or by using a hand-held calculator. Unfortunately, this often 

reduces the perceived value of the mathematical application being considered. For 

example, the calculations required to approximate the solutions to a system of differential 

equations—such as the SEIR-model, used to study the spread of the EBOLA virus during 

the recent epidemic (Althaus, 2014)—using Euler’s method with a large enough number 

of iterations to obtain meaningful results, would be unwieldy without computer 

technology. In traditional approaches, students are asked to approximate the solution to a 

single differential equation by applying Euler’s method for a maximum of four steps 
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(which is straightforward to compute), thus obtaining a superficial, uninteresting, and, 

from the application point of view, useless answer. 

3.5 Intervention 

In collaboration with the course coordinator, I developed a collection of coding activities 

to complement the mathematical material studied in Math 1LS3 and to facilitate a deeper, 

enriched exploration of the course content in more authentic contexts. These activities 

invited students to explore calculus concepts and solve problems using computational 

models, thus engaging them in computational thinking. The activities were organized into 

four computer labs (see Appendix C for Lab 3), which corresponded to the main themes 

in the course: mathematical models, limits and derivatives, differential equations and 

integrals, and discrete-time dynamical systems. 

 All lab content—theory, examples, explanations, data sets, pictures, and sample code—

was organized into a Jupyter notebook2 file, which students were able to access and 

download from the course webpage 10 days before each lab was due. Mindful that Math 

1LS3 is not formally a combined mathematics and computer science course, we 

presented the coding activities as a numerical approach to the mathematical ideas and 

focused on directly applying the code, rather than teaching nuances of the programming 

language (Python 3). Brief explanations were provided as needed in the form of 

comments throughout the code (for example, x = np.linspace(0, 2, 4) #creates an array of 

four equally spaced x-values between 0 and 2 (see Figure 6)).  

                                                
2
 A Jupyter notebook is a free integrated development environment, which supports HTML, Python, and R 

code (see Figure 6). 
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Figure 6: Screenshot of the Jupyter notebook integrated development environment. 

Students were invited to explore and experiment with data, models, and algorithms by 

modifying the code directly in the online file. Throughout each lab, they were prompted 

to respond to a series of procedural and conceptual questions related to the coding 

activities, as well as a series of open-ended questions, which invited them to reflect on 

and evaluate their experiences with the coding activities and explain how these 

experiences affected their understanding of the mathematical content. Students submitted 

their responses electronically thorough childsmath—an internal survey and assessment 

tool created and maintained by a professor (Aaron Childs) in the Mathematics and 

Statistics Department, which is also used by several other Mathematics and Statistics 

courses at McMaster (see Figure 7). The first Jupyter notebook cell of each lab contained 

a link to childsmath and students would presumably toggle between the Jupyter notebook 

and childsmath windows as they completed each lab. 
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Figure 7: Screenshot of childsmath survey and assessment tool. 

Math 1LS3 contained four term assessments, collectively worth 60% of students’ final 

grade: test 1, test 2, test 3, and the fourth being the set of four computer labs. In 

computing final grades, only students’ top three of these four assessments were used, 

each contributing 20% to the final grade. Thus, the completion of these computer labs 

had the potential to contribute 20% to students’ overall grade. 

Whenever appropriate, instructors incorporated coding activities into lectures to 

demonstrate various computational (numeric) approaches in mathematics. This helped to 

keep our explorations of applications meaningful and authentic, and also helped students 

develop the technical skills needed to complete the coding modules.  

3.6 Data Collection 

For each computer lab, the procedural and conceptual responses submitted through 

childsmath were automatically graded according to an answer key. The system generated 

an Excel spreadsheet for each lab, which contained all students’ graded responses to the 
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procedural and conceptual questions, as well as their text-based reflective responses to 

the open-ended questions. The spreadsheets were accessed and downloaded by our course 

coordinator, and then shared with our research assistant, Reihaneh Jamalifar.  

Jamalifar read and graded each of the reflective responses, assigning one mark per 

question if there was a reasonably thoughtful response given, and zero marks if the field 

was left blank or if the response was deemed unacceptable. 

Examples of acceptable (i.e., receiving one mark) responses: 

I enjoyed the dynamic, interactive nature of the coding activities more than just 

solving problems on paper. 

The activities in this lab allowed me to experiment with different cases until I was 

able to fully understand the problem (and solution). 

I found the coding exercises within this lab to be too overwhelming without 

having explicit lessons on Python 3, and so the activities just confused me more. 

Examples of unacceptable (i.e., receiving zero marks) responses: 

 blahblahblah  

I am just writing something to fill the space to get a mark. 

Jamalifar calculated a “reflective response” grade for each student and submitted these 

grades to the course coordinator. She then sorted the reflective responses into two 

categories: students who consented to have their responses analyzed for research 

purposes, and those who did not. She removed all identifying data (e.g., names, student 

numbers, email addresses) and then exported the comments of students who gave their 

consent onto a USB drive. The reflective responses of students who did not give their 

consent were deleted. 

We followed appropriate McMaster Research Ethics Board (MREB) and Western 

Research Ethics Board (WREB) guidelines and protocols, and obtained necessary 
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approvals; see Appendix A for the Letter of Information. To maintain separation between 

my roles as (1) researcher and (2) instructor of one of the course sections, I did not have 

access to, and did not analyze, the data collected by Jamalifar until after the final course 

grades were submitted and approved. 

3.7 Content Analysis 

Following the completion of the fall 2018 semester, I accessed the data and conducted a 

qualitative content analysis. Hsieh and Shannon (2005) define a qualitative content 

analysis as “a research method for the subjective interpretation of the content of text data 

through the systematic classification process of identifying themes or patterns” (p. 1278). 

This inductive method is appropriate for interpreting the results of naturalistic inquiry, 

that is, an inquiry of a phenomenon researched in its natural setting (Hsieh & Shannon, 

2005). As Krippendorff (2004) explains, “content analysis provides new insights, 

increases a researcher's understanding of particular phenomena, or informs practical 

actions” (p. 18). 

I used the qualitative data analysis software package NVivo to facilitate my content 

analysis, and stored and organized my raw data, nodes, annotations, memos, pictures and 

research journal within this system. NVivo provided a detailed analytic framework, 

tutorials, guidance, suggestions, and examples for conducting a rigorous, systematic 

content analysis.  

The first thing I set up within NVivo was a research journal to document the evolution of 

my project. I regularly reflected on my analytical process, and wrote detailed notes 

(Lincoln & Guba, 1985) of how I was “informed, redirected, and surprised by my data” 

(NVivo, n.d., Ways to get started with your project section) and eventually, how higher-

level nodes, categories, and themes were discerned. 

To begin my content analysis, I imported all consented open-ended survey responses 

from the computer labs into NVivo. I systematically read each comment to immerse 

myself in the data and to obtain a global, comprehensive sense of it (Hycner, 1985 as 

cited in Cohen, Manion, & Morrison, 2007; Tesch, 1990 as cited in Hsieh & Shannon, 
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2005). Concurrent with my reading, I identified key words and ideas, and recorded my 

“first impressions, thoughts, and initial analysis” (Hsieh & Shannon, 2005, p. 1279). This 

enabled me to generate an initial node structure, a process described by Mayring (2000) 

as “inductive category development” (Hsieh & Shannon, 2005, p. 1279). Using topic 

coding, I coded the data based on key words and used text search queries to find related 

comments in other sources (for example, other sets of responses). Using analytical 

coding, I considered how each particular comment related to my research questions. As 

Krippendorff (2004) explains, “research questions are the targets of the analyst’s 

inferences from available texts” (p. 31); therefore, a persistent focus on my research 

questions was crucial throughout my analysis. I found that this more complex, refined 

approach required a thorough reading and reflection of the content in order for the data to 

be accurately coded. It was during this analytical coding that I found myself making 

extensive and frequent annotations, continuously comparing (Cohen, Manion, & 

Morrison, 2007) all comments coded at a particular node to ensure that they reflected the 

same sentiment.  

For example, the student’s response below was coded at four notes: “tangible feel,” 

“visualization,” “deeper understanding,” and “new approach:” 

… the computer lab helped transform abstract concepts, such as blood alcohol 

concentration, into visual representations through graphs. This helped deepen 

the understanding of the content as we could rely on multiple learning 

approaches rather than just conventional methods. 

I continued in this manner to code each comment at relevant nodes, creating new nodes 

as needed, until all comments from the four labs were coded. As Wilkinson and 

Birmingham (2003) note, “developing new codes as you progress with your analysis 

provides a more flexible, rich and inclusive … analysis of the information you have 

collected” (p. 73). During this process, I made use of the constant comparison technique; 

that is, I continuously compared new data with my existing data, theories, and categories 

in order to ensure an appropriate fit (Cohen, Manion, & Morrison, 2007), revising and 

refining my initial coding scheme as needed (Hsieh & Shannon, 2005). My annotations 
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allowed me to comment on a particular section of source material or node. These side 

notes, in turn, helped me to reflect on my data continuously and record insights, thoughts, 

questions, ideas, observations, and emergent patterns concurrent with coding (NVivo, 

n.d.). While I did make use of NVivo’s built-in queries to observe word frequencies, I felt 

more confident reading all comments and exhaustively coding my data. While saturation 

was often reached several pages into a set of responses, I nevertheless coded each data 

set, allowing repetitions within nodes. I began with coarsely coding my data into a large 

number of nodes, and after reflecting on the nodes and annotations made throughout, 

decided which nodes shared common themes and could be merged together into a higher-

level categorical node (Hycner, 1985 as cited in Cohen, Manion, & Morrison, 2007). In 

other words, by “clustering units of relevant meaning” (Hycner, 1985 as cited in Cohen, 

Manion, & Morrison, 2007, p. 472) I was able to identify fundamental commonalities, 

and, through this process, I “eliminated redundancies” (p. 472). For example, the data 

coded at the nodes “confidence,” “confusing, frustrating,” “engagement,” “enjoyable,” 

“exciting,” “interest,” “new, fresh,” were all clustered under the categorical node 

“learning experiences” (see Figure 8). 

 

Figure 8: Screenshot of the coding framework in NVivo. 
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Once all data was coded, I reviewed and reflected on the source content (Cohen, Manion, 

& Morrison, 2007) in each categorical node, and on all annotations pertaining to the 

nodes in the category, and then created a memo (NVivo, n.d.) for that category. Each 

memo summarized the content of the categorical node, included multiple illustrative 

examples, and connected the results back to my research questions. These memos formed 

the basis of my Results chapter and were organized into three overarching central themes, 

which express the “essence” (Cohen, Manion, & Morrison, 2007, p. 472) of each 

category: modified perceptions of mathematics, enhanced mathematics learning 

experiences, and unique coding affordances. 

3.8 Computational Literacy Framework 

To situate my research, I analyzed the results I obtained using diSessa’s (2018) literacy 

framework. diSessa proposed five principles which signal and characterize an emerging 

literacy. His purpose in developing this framework was motivated by two goals: first, to 

propose a “big picture” (p. 30) model of computation as a new literacy and second, to 

provide an analytical framework with which to examine other computational initiatives in 

education, such as computational thinking and coding.  

diSessa’s (2018) first principle conceptualizes a literacy as a massive, social and cultural 

achievement which fundamentally impacts multiple cannons of intellectual enterprise. 

His remaining four principles are consequences of the development of a new literacy: 

remediation with a new representational system, reformulation of objects, ideas, and 

processes, reorganization of the intellectual landscape, and revitalization of the learning 

atmosphere. diSessa examines his own research in teaching grade 6 students the 

mathematics of motion, applying the literacy criteria to his data, and discussing the 

budding of a computational literacy.  

Following diSessa’s (2018) approach, I adopted his framework for my analysis to 

investigate the correspondence between my data and diSessa’s criteria for an emergent 

literacy. I examined the categories that emerged from my content analysis and considered 

the role each one played with respect to diSessa’s principles. This enabled me to build a 

table illustrating the relationship between the results of my study and the anticipated 
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outcomes of a computational literacy. I then considered each of diSessa’s literacy 

principles and chose examples from my data to illustrate each principle and explain how 

it emerged in our teaching and learning experiences throughout this project. 

3.9 Trustworthiness of Study 

Lincoln and Guba (1985) outlined four criteria for evaluating the trustworthiness (and 

therefore worth or value) of naturalistic inquiries: credibility, transferability, 

dependability, and confirmability. Credibility refers to the confidence with which the 

conclusions truthfully represent the phenomenon being studied, or reflect the patterns in 

the data. Transferability determines to what extent the results of a study can be 

generalized to other comparable situations. Dependability is achieved when the results 

are consistent and could be reproduced in similar contexts. Confirmability addresses the 

degree of neutrality of the study. 

Lincoln and Guba (1985) describe a set of techniques, which help to achieve their criteria 

within qualitative research studies. They argue that prolonged engagement and persistent 

observation help to establish credibility within qualitative research. Throughout this 

study, I collected and analyzed responses from a large number of students (on average, 

900 students consented to have their responses used for research purposes) on four 

separate occasions over the course of a semester and exhaustively coded each data set. 

This prolonged engagement with the study and raw data ensured the breadth of my 

observations and findings, and consequently, of my insights and conclusions. 

Furthermore, each categorical node contained numerous illustrative examples and/or 

comments generated independently from numerous students responding to various 

prompts for feedback. I extensively reviewed, compared, evaluated and re-evaluated 

students’ responses within each node (persistent observation) to guarantee that I had 

identified all meanings (explicit and implicit) conveyed in each response, and to ensure 

that I achieved a desired depth in my insights and conclusions. To establish a high degree 

of transferability, I provided a thick description (Lincoln & Guba, 1985) of my research 

process—participants, setting, implementation of the intervention, data collection, and 

content analysis. To establish dependability and confirmability, I maintained a reflexive 

research journal to provide an audit trail (Lincoln & Guba, 1985) of my research process, 
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my insights, and the development of themes, including illustrative comments from the 

original source material, all of which helped to lead me to my conclusions. 

3.10 Summary 

Investigating my research questions as a case study coupled with qualitative content 

analysis provided valuable insight into how students’ conceptual understanding of 

undergraduate calculus topics changed, and how their mathematical learning experiences 

were impacted, as a result of engaging with computational modelling activities. 

Examining my results using diSessa’s (2018) analytical framework helped to organize 

my data and align it with his five well-defined literacy principles. Adopting this frame of 

reference revealed new insights into my data and enabled a systematic comparison of my 

research project with related initiatives, such as diSessa’s research on teaching sixth 

grade students the mathematics of motion. Like diSessa, I discovered the unique 

affordances of remediating calculus with computation, important consequences of 

reformulating a problem for computation, and the reorganization of the intellectual 

landscape that occurs when a new literacy is emerging. I experienced a revitalization of 

my teaching and learning ecology, but also witnessed, and acknowledged the limitations 

inherent in this new representational system.  

Comparing my research with existing efforts, using diSessa’s (2018) criteria as a 

reference, I feel confident that I have come across something valuable. As well, these 

criteria allow me to situate my study within the larger body of research on computation in 

mathematics education. 
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Chapter 4  

4 Results 

My current research has been guided by the following questions:  

1. How does students’ conceptual understanding of calculus concepts change in 

response to working on problem-solving and mathematical modelling activities 

which incorporate computational thinking?  

2. How are students’ learning experiences transformed when they explore calculus 

concepts, ideas and techniques using computational tools and models? 

To investigate these questions, I collected students’ responses to a series of questions and 

prompts posed at the end of each of the four computer labs assigned throughout the 

course. Using a combination of topic and analytic coding to begin my content analysis, I 

sorted my data into thirteen categories, based on explicit (key words) and implicit 

(underlying meaning) content. Analyzing the relationships between categories, I was able 

to further organize my data into three overarching central themes: modified perceptions 

of mathematics, enhanced mathematics learning experiences, and unique coding 

affordances. The first two themes address the original research questions and students’ 

reflective comments generated the latter important theme (see Figure 9). 
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Figure 9: Results of qualitative content analysis. 

4.1 Modified Perceptions of Mathematics 

A computational thinking approach challenges traditional views of what mathematics is 

and what mathematicians do. In particular, these views are often quite entrenched with 

regards to the content that is taught in calculus (both in high school and university), as 

well as in the teaching methods and approaches.  

Due to certain affordances of algebraic representations in teaching practice, algebraic 

techniques are often emphasized and viewed as the most sophisticated approach to 

problem solving. However, in most cases, realistic data from outside of a theoretical 

mathematics course cannot be analyzed with concepts and tools developed for continuous 

functions. Instead, these theoretical concepts and tools are reformulated in discrete terms, 

so that numerical approaches can be used to analyze the data and build appropriate 

models. 

Modified Perceptions 
of Mathematics 

•  broader, more 
representative 
perspective of the 
field of mathematics  

•  enabled meaningful, 
authentic applications 
to be incorporated into 
course activities 

•  illustrated the 
relevance and value of 
mathematical 
concepts  

Enhanced Mathematics 
Learning Experiences 

•  interactive learning 
experiences with 
immediate feedback 
provided opportunities 
to explore, 
experiment, and play 
with mathematics 

•  dynamic 
visualizations 

•  transformed affective 
learning experiences 

•  tangible feel 
•  new approach, 

different perspective 
•  accommodated 

various learning styles 

Unique Coding 
Affordances 

•  elevated problem 
solving capabilities 
beyond traditional 
limits  

•  problem solving 
became more 
efficient, less tedious  

•  offered unique 
advantages over 
ready-made 
applications  

•  physical coding 
mechanics provided 
numerous benefits  
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Integrating computer programming into problem-solving activities in calculus allows 

students to further develop their knowledge, skill, and appreciation of different 

mathematical approaches. The traditional “rule of three” (algebraic, geometric and 

numeric approaches to learning and understanding mathematical content), sometimes 

augmented to the “rule of four” (by adding a verbal approach), are enriched by adding an 

important, far-reaching, computational approach. Together, these approaches reformulate 

calculus concepts developed for continuous functions into discrete analogues, which not 

only reinforce students’ understanding, but also more readily allow calculus tools to be 

incorporated into problem solving in other disciplines.  

4.1.1 Broader, More Representative Perspective of the Field of 
Mathematics 

Students reported that integrating coding with calculus concepts broadened their 

perspective of mathematics from a discipline that leaves no room for interpretation or 

inquiry, to one that invites investigations, explorations, new techniques and approaches, 

as well as one which supports inquiry-based thinking. They stated that the coding 

activities demonstrated an interdisciplinary approach to mathematics and allowed 

mathematical concepts and tools to be effectively integrated with other disciplines to help 

solve complex problems.  

Sample of students’ comments: 

I liked how open the lab was and how experimentation was openly encouraged. It 

helped me think about the material in a deeper way. 

My perception of mathematics has changed significantly due to the incorporation 

of these labs. I able now better able to envision what a career in mathematics may 

look like. Prior to this, I only had one image of math, number crunching on a 

calculator and writing down the answers on a piece of paper. However, I am now 

able to see math as a much more dynamic process with many different 

applications and career options. 
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An advantage to this is it expands new ideas and ways to tackle a certain 

question. Also it helps broaden our understanding of how mathematics works 

beyond the scope of traditional mathematics alone. 

Through the use of computer science and coding, the module depicted the 

importance of mathematics in real world scenarios and how technology and 

mathematics can be incorporated hand in hand to accomplish complex goals. 

4.1.2 Enabled Meaningful, Authentic Applications to be 
Incorporated into Course Activities 

Students reported that integrating coding with mathematics afforded unique opportunities 

to explore and analyze authentic applications, which may be inaccessible or impractical 

to consider otherwise. For example, in Math 1LS3, students explored the SEIR 

(susceptible–exposed–infected–recovered) model to understand the dynamics of the 

recent EBOLA virus outbreak in several African countries. This complex model would 

usually be studied in a second or third year differential equations course; however, by 

remediating the system of differential equations computationally, students were able to 

extend Euler’s method from a single first-order differential equation to a system of four 

first-order differential equations. Furthermore, they were able to run thousands of 

iterations in a fraction of a second to explore long-term behaviour of the spread of the 

virus. Students were then able to modify parameters in the SEIR model to determine their 

individual effects on the outbreak, that is, which parameters have to change—and to what 

values—in order for the outbreak to be controlled. In previous semesters of Math 1LS3, 

the classic predator-prey model was only explored qualitatively, since algebraic solutions 

are known to be impossible to obtain (except in some very special cases). However, again 

by intuitive extension, students are able to apply Euler’s method to a system of equations 

to uncover periodic behaviour of solutions. It is highly unlikely that applying Euler’s 

method by hand, using several iterations, would uncover this pattern. 

Students described how their interest and engagement increased when they saw that an 

abstract mathematical concept could be applied to effectively investigate an authentic, 

real-world problem. This helped provide tangibility to the theoretical mathematical 
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concepts, or as one student stated, “it grounds the math.” Moreover, by incorporating 

meaningful applications, students’ analytical activities more closely aligned with 

practices in the field, which students said increased the value of the material they were 

learning and allowed them to have a realistic perspective of mathematical research 

methods and what a career in mathematics might look like. 

Sample of students’ reflections: 

 … I also like how the problems are based on real-world scenarios, as opposed to 

dry mathematical questions. It makes you look at math in a new way, and it gives 

it significance/importance. 

I feel that the applications in this Lab help me to make bridges between concepts 

and usefulness in real life. I feel that once I establish that connection, I 

understand concepts much better and am able to answer problems easier. 

… we can assess the more convoluted functions of real-life, rather than sticking to 

simplistic models. In-class instruction becomes so much more relevant to real life. 

…coding was interesting and allowed for me to see concepts used in more 

realistic scenarios, coding allowed for massive/incalculable scenarios of eulers 

method etc. to be done (real life trends that are too large/complex to be done by 

hand). This gave me a greater appreciation for the math concepts and how they 

apply to reality. 

4.1.3 Illustrated the Relevance and Value of Mathematical 
Concepts  

Students found that the coding exercises effectively illustrated the relevance of the 

mathematical skills and concepts they were studying. In particular, they noted that 

integrating coding with numerical approaches, such as approximating a definite integral 

using a Riemann sum or estimating a solution to an initial value problem using Euler’s 

method, effectively demonstrated the value of these concepts and techniques, which were 

formerly perceived as inferior to algebraic methods. 
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For example, students often perceive using the definition of the derivative to find the 

instantaneous rate of change of a function as a naïve method, only used before learning 

specific differentiation rules. A root cause of this view can be traced to the way 

derivatives are covered in high school. For instance, Kajander and Lovric (2009) show 

that, by not using the definition of the derivative to interpret and visualize the tangent line 

to the graph of a function, grade 12 students develop a number of misconceptions (such 

as “a tangent touches the graph at one point, but cannot cross it” (p. 175)), which hinder 

their understanding and progress.  

In Math 1LS3, we presented students with a function, represented numerically in Excel, 

which recorded the number of individuals hospitalized with influenza in Canada each 

month over the course of several years. Students were asked to determine the rate of 

change of serious cases of influenza in Canada from this function, which was represented 

as a large set of discrete values. Through this example (and several other examples 

involving functions represented numerically), students realized that in many applications, 

rates of change are approximated using average rates of change—that is, difference 

quotients—since differentiation rules apply only to continuous functions (and not even to 

all continuous functions!). Furthermore, by analyzing rates of change using code, these 

calculations can be done quickly and efficiently, simultaneously producing a 

visualization of the data set and the approximate rates of change. 

Sample of students’ comments: 

Using mathematic techniques via coding that would be difficult to do in detail by 

traditional methods (Ex. Euler’s method, Riemann Sums) made me appreciate the 

techniques much more than if I had not seen the capabilities of the techniques, 

and only saw a couple of iterations of the techniques. 

I feel that coding gives us a sense of real-life mathematics and its usefulness that 

traditional mathematics would not. Using mathematical modelling of functions 

through codes in real life makes us feel like we can use this skill in our 

workplaces in the future too and it gives the learned content new value. 
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…it was effective in making math into something more tangible; something that 

can be extended beyond the classroom. It felt nice knowing what actual 

researchers in the life science do with their data and how they manipulate it. 

I believe that seeing mathematics and computer programming joined together in 

such a manner has allowed me to appreciate the value of mathematics as a tool 

for modelling data that can then efficiently be processed using computer 

programming. 

4.2 Enhanced Mathematics Learning Experiences 

Adopting a computational thinking approach enabled students to incorporate powerful 

computational tools into their mathematical problem solving. The categories in this 

section reflect particular, and often unique, affordances of computer coding 

environments.  

4.2.1 Interactive Learning Experiences with Immediate Feedback 
Provided Opportunities to Explore, Experiment, and Play 
with Mathematics 

Students reported that the coding environment offered a dynamic and interactive learning 

experience during which they could effectively explore and analyze mathematical models 

and techniques in innovative ways. Students also noted feeling more interested and 

engaged in the activities, and stated that they felt they achieved a more comprehensive 

understanding of a concept when they were given the opportunity to actively interact with 

the components of a problem. 

Moreover, running computer code provided immediate feedback, which students said 

required of them to critically evaluate their work to recognize the nature of any errors 

(mathematical or coding), and allowed them to effectively make and test their 

corrections. Students stated that receiving this constant formative feedback helped shape 

their mathematical understanding and improved their confidence. 

Students reported that coding activities gave them the freedom to independently explore 

the mathematical content in ways that were meaningful and relevant for them. They 
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appreciated the ability to ask hypothetical, “what if” questions, test their predictions, and 

receive immediate feedback, which helped them develop deeper insights and intuition, as 

well as clarify any confusions. Students noted that the opportunity to experiment with 

different scenarios allowed them to gain a more comprehensive understanding of the 

mathematical relationships and concepts.  

Sample of students’ reflections: 

Traditional instruction lacks the immersive and interactive nature that coding 

gives you. When I’m coding, I personally feel very engaged with the source 

material. It’s as if this is my project, it’s a problem and a journey, as I endeavour 

to solve it. 

This module allowed me to go back and fix my mistakes, if any. This allowed for 

me to think critically and be able to rectify my mistake, and that embedded the 

fundamentals of the mathematics within me. 

In traditional mathematics you do not have the opportunity, nor the time to 

explore different ways to come up with the same mathematical answer. Coding 

allows us to make mistakes and understand where those mistakes came from, and 

gives us an opportunity to THINK. 

Coding lets me see how changing different things about a problem affects it and it 

allows me to work by trial and error based on what I personally need to do to 

understand. While traditional instruction is still much more organized and 

delivers information more directly, coding is a great way to apply new knowledge 

and clarify confusion through experimentation. 

4.2.2 Dynamic Visualizations 

One of the most frequently reported comments was that students appreciated the dynamic 

visualizations that combining code with their mathematical explorations could provide. 

These visualizations included graphical comparisons between numerical approximations 

and theoretical solutions, extensive lists of numbers from which a pattern is to be 
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discerned, and areas of regions bounded by curves. Students reported that interacting with 

these visual representations enhanced their conceptual understanding of the 

corresponding mathematical ideas. While students recognized other programs and 

applications (such as Desmos) could provide visualizations as well, by creating their own 

code in Jupyter Notebook, students could perform multiple analyses at the same time; 

that is, they could create an algorithm to produce the desired quantitative output, and also 

write a code for a visual representation to be generated simultaneously. This code could 

then easily be copied, pasted, and modified in a new cell to perform a similar analysis 

under different conditions. Students noted that prepackaged programs are more limited in 

their capabilities, whereas coding offered them full control over what their particular 

program does. 

Sample of students’ comments: 

The activities in Lab 3 that I found most effective at enhancing your 

understanding of the mathematical concepts were the ability to create visual 

depictions of the math. This helped me fully see consequences of certain actions 

and helped me fully comprehend the effects, thus increasing my overall 

understanding. 

 Without a visual representation and physically playing around with the numbers, 

I could never have completely understood the concept [of Euler’s method]. 

When coding, you can have a visual representation of your work making it easier 

to identify mistakes. 

4.2.3 Transformed Affective Learning Experiences 

Students reported that integrating coding activities and calculus concepts enhanced their 

learning experiences in a variety of ways. They stated that the approach felt “new,” 

“fresh,” and “modern,” which increased their interest during the problem-solving 

activities. They also remarked that incorporating authentic applications made 

mathematics more stimulating and relevant.  
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Students noted that the activities invited innovative approaches to problem solving, which 

made the mathematical content more exciting and enjoyable to study. Most students did 

not have any high school experience with coding, so having this new tool to help them 

answer mathematical questions was indeed novel to them. They found that the dynamic 

visualizations, as well as the automation of tedious routine calculations, increased their 

overall enjoyment of the activities.   

Students reported feeling more engaged in mathematical problem solving since the 

coding activities required their full attention and active interaction. As well, they noted 

that the immediate feedback they received was rewarding and motivated them to explore 

concepts further.  

Many students felt that using code to explore mathematical concepts opened up a creative 

space for problem solving that was not previously available (and unfortunately not 

available in high school). They appreciated that there were multiple ways they could 

approach a problem, and remarked that coding offered a level of flexibility not typically 

offered within other mathematical problem-solving environments. 

Students reported that the mathematical coding activities encouraged meaningful, 

productive peer collaborations. They noted that engaging in creative struggles, discussing 

the material, and comparing different coding approaches with their peers helped facilitate 

understanding as well as broaden their social network. 

Sample of students’ reflections: 

Overall I really enjoyed the coding exercises in this module, it definitely 

increased my motivation and confidence, but more importantly my understanding 

of the content learned in class. 

I thoroughly enjoyed the computer labs as they allowed me to interact with 

mathematics in a new way. 

I found that this coding lab made me more engaged in the math content. It made 

the work being done seem less mechanical and gave more purpose to the work. 
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I personally think the advantages of these coding labs come in the form of 

flexibility, as it allows students to be more creative in the ways that they get to the 

final answer. 

I believe that these coding activities were a great concept to add into the course 

and it was a great way for many students to collaborate and work together. 

Working with other individuals helped me understand concepts better as we 

explained different things to each other. 

4.2.4 Tangible Feel 

Students reported that interacting with mathematical models and algorithms using code 

aided them in forming concrete representations of the abstract mathematical concepts. 

They found that coding helped ground the mathematics for them, and that the abstract 

concepts became more real and tangible through the coding activities. For example, many 

students reported that the definition of semilog and double-log plots did not make much 

sense to them until they had the opportunity to interact with the code for these plots, and 

with the plots themselves. These interactions helped clarify the definition by “seeing,” 

that is, by providing a tangible feel to this concept of using logarithmic scales on 

coordinate axes (instead of the usual linear scales) that would otherwise remain abstract 

and have a theoretical feel only. 

Sample of students’ comments: 

I liked the visual explanation of the Intermediate Value Theorem, and I liked 

being able to manipulate code in order to learn about it, and truly understand 

what it meant. By working through a code example of a theorem, you make it less 

of an abstract idea, and more of a practical application. 

With the integration of computer programming, I feel like these concepts and 

problems become much more tangible. I think it is likely due to the fact that the 

labs provide a ‘hands on’ aspect you wouldn’t normally get. 
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The integration of math and computer programming has made math more real to 

me. It made the concepts much less abstract to me and more tangible. 

Mathematics has always been an abstract concept to comprehend, however, the 

addition of computer programming allows the concepts to be grounded in 

practical applications that can be understood and manipulated. 

4.2.5 New Approach, Different Perspective 

Students reported that integrating coding with mathematics offered a new perspective on 

mathematical models and concepts, and invited multiple approaches to problem solving. 

They found it interesting to compare how they would solve a problem algebraically to 

how they would reformulate it as an algorithm so that they can use computer code. For 

example, when required to determine the area between two curves, students found it 

interesting, and eye-opening, to contrast how they would approach the problem 

algebraically using the Fundamental Theorem of Calculus to how they would approach it 

numerically, by creating a program in Python to estimate the area using Riemann sums. 

In another example, students found that using an alternative method to find and analyze 

critical numbers (in their code, students used the Intermediate Value Theorem), helped to 

solidify the definition of a critical number, the algorithm for finding critical numbers, and 

the First Derivative Test.  

Students realized that when they explored a concept using multiple representations, they 

were able to benefit from various affordances, and fill in the gaps stemming from the 

limitations of a single representation, by considering complementary representations. 

Sample of students’ reflections: 

Not only did the questions reinforce my existing knowledge, but it also prompted 

me to assess the questions in a different manner and encouraged critical thinking. 

…builds mathematical understanding in a unique way, creating new pathways for 

the brain to solve mathematical problems. 
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Overall the process of working on behind the scenes for these functions helped me 

look at them from a different angle and extend my understanding from the lecture. 

I find when I’m doing the actual questions myself I think of how the code was 

configured, and it helps me understanding what I am doing. 

4.2.6 Accommodated Various Learning Styles 

Students reported that analyzing mathematical models and algorithms using code 

provided differentiated learning opportunities, which supported a variety of learning 

styles. For example, many students reported being visual learners and appreciated how 

running code produced rich visualizations, which supported their learning in a way that 

non-coding activities (or their textbook) could not. They further noted that the labs 

enabled them to adopt an interactive, hands-on approach to their learning, which was 

especially beneficial to tactile, kinetic, and visual learners.  

Students also remarked that exploring mathematical concepts using code encouraged 

independent learning more than traditional problem-solving activities. For instance, they 

reported that they were less afraid of making mistakes, as they knew that Python would 

spot the mistakes right away, and force them to fix their code, or to modify their 

mathematical approach, without a lot of extra work on their part. Students also 

appreciated that coding allowed them to personalize their learning experiences by 

independently exploring concepts at their own pace in ways that were meaningful to 

them.  

Sample of students’ comments: 

Some people learn things differently than others and many of them, like myself, 

learn by doing things. We need to see the mathematical concepts applied in front 

of us and need some hands on experience with those concepts. By integrating 

coding and math, people like me can manipulate equations in whichever way we 

like and see the real time consequences of our actions. 
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The computer lab/module did a great job in teaching the course material from 

different angles. Different students learn in different ways and it is very difficult to 

teach a concept that will be understood by all of these students. This module was 

effective in showing students other ways of learning that may have not been clear 

prior. 

Coding lets me see how changing different things about a problem affects it and it 

allows me to work by trial and error based on what I personally need to do to 

understand. 

Using the coding software also allows students to see different representations of 

math (graphs, tables, equations), and choose which one they understand best. 

4.3 Unique Coding Affordances 

Analyzing the connections between categories revealed three overarching themes. The 

first two themes addressed the original research questions, whereas certain categories 

suggested a third theme: unique affordances of exploring mathematics with computer 

code. 

4.3.1 Elevated Problem-Solving Capabilities Beyond Traditional 
Limits  

Students recognized that while, theoretically, they could do the computations they were 

coding by hand, the complexity of the models they were working with, as well as the 

sheer number of calculations or iterations of the method required to obtain a meaningful 

result, would make these calculations impractical or impossible to obtain in a reasonable 

time frame without integrating computer coding to some degree.  

By adopting a blended approach of using theoretical, algebraic, and computational 

techniques, multiple constraints were removed and students reported experiencing more 

freedom to explore even the most complex situations. They said that they were motivated 

to ask deeper theoretical questions and further explore the problems and mathematical 

concepts, without the burden of technical computations (which indeed seems to be a 

burden for many students!) restricting their time and mental energy.  
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For example, using Euler’s method to estimate the solution to an initial value problem 

often requires a very large number of iterations to achieve a meaningful result. Students 

complain that these calculations are repetitive, tedious and error-prone (and they are!), 

even beyond two or three steps. Furthermore, the simplicity and versatility of this 

estimation method (which was even featured in the movie Hidden Figures (Melfi, 2016)) 

is obscured by the cumbersome calculations underlying it. Remediating Euler’s method 

with code removes the tediousness of the technical calculations and allows students to 

apply it to a system of any number of first-order differential equations, where initial 

values are given.  

Sample of students’ reflections: 

I think that the integration of coding in mathematics helps add extensions to what 

is possible from instruction alone. It allows you to explore and "play" with 

concepts in a way that couldn’t be possible without the use of technology. 

By allowing mathematical calculations to occur that would not be possible by 

algebra there is a new avenue of possibilities made available in what can be 

calculated. 

Since the computer is doing all of the calculating for you, you aren’t limited by 

the amount of time it would take to solve something. Due to this, you can 

incorporate real data and use concepts from class to work with the data and see 

the importance of different math concepts in everyday life. 

4.3.2 Problem Solving Became More Efficient, Less Tedious 

Most students—even those who reported not enjoying the computer labs—appreciated 

how efficiently (and correctly) complex calculations could be done almost 

instantaneously in Python 3. They remarked that they could focus more on the conceptual 

understanding and ask deeper theoretical questions when they knew that they would not 

be facing tedious, routine procedural calculations. As well, students felt encouraged to 

fully explore mathematical concepts, such as extending Euler’s method to generate 

approximate solutions to a system of differential equations, rather than just to a single 
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equation, without noticeably increasing computation time. Students reported that this 

efficiency in computation increased their interest and engagement in mathematical 

problem solving. 

Sample of students’ comments: 

It saves time on little calculations so that students can see the bigger picture 

without getting caught up on minor details. 

Coding makes mathematical ideas far more interesting as it provides a more 

efficient way to explore the possibilities of a function as well explore other 

mathematical ideas.” 

…coding provided me more time to further explore the nuances within the 

questions themselves. 

4.3.3 Offered Unique Advantages Over Ready-Made Applications  

Students identified several affordances of integrating coding and mathematics, which 

extend beyond what non-coding technology can offer. For example, they stated that 

coding offers more control over their explorations and provides a greater feeling of 

satisfaction and accomplishment when they obtained the desired result. Students also 

noted using a coding language possesses higher capabilities and greater versatility than 

using a prepackaged application, thus eliminating the need for several different 

technologies to explore a problem or concept since multiple analyses can be performed 

simultaneously within a coding environment.  

Furthermore, students remarked that working with code arranged in cells helped to 

organize and store their work so they had a record of their previous results and could run 

new simulations or perform further analyses without starting over from scratch. For 

example, one activity invited students to explore the solution to a modified logistic 

differential equation describing the population dynamics of a caribou population in 

Northern Alberta, starting from a given initial population size. Once the initial coding 

template for applying Euler’s method was created, students copied, pasted, and modified 
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the code to explore various scenarios, revealing (experimentally) the existential threshold 

and carrying capacity for this population, as well as the stability of these equilibrium 

solutions—topics which are algebraically explored in a second year differential equations 

course.  

Sample of students’ reflections: 

… students have greater agency and can create pretty much anything whereas in 

traditional mathematics instruction, there are much more limits and its more 

structured. 

Manipulating the code to run equations and seeing an actual result was a very 

rewarding experience and I really felt more confidence with the problem I was 

solving. 

4.3.4 Physical Coding Mechanics Provided Numerous Benefits  

Students identified several aspects of the physical coding process, which enhanced their 

learning and understanding. Since coding languages are very particular in terms of their 

syntax, students reported that they needed to think critically throughout each step of the 

problem-solving process, paying close attention to detail, in order to produce a fully 

functioning program. Students commented that this heightened focus and deeper thinking 

helped them understand the relationships between components of the problem and their 

code, and enriched their understanding of the logic underlying the mathematical 

processes involved.  

Additionally, students reported that the process of deconstructing a problem and 

reformulating it for computation required a thorough understanding of the mathematical 

concepts, relationships, and algorithms underpinning the exercises. They remarked that 

the process of deconstructing the mathematical ideas (e.g., models, techniques) into basic 

elements helped reduce the complexity of the problem and promoted a thorough 

understanding of the relationships between components. 
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Reformulating a problem for computation involved translating textbook models and 

algorithms into code versions, which students stated helped them form a stronger 

connection to the conceptual ideas. For example, one student reported being confused 

when calculating the next value of the state variable using Euler’s method, consistently 

forgetting which values they should be using in the formula. The process of converting 

the algorithm in the textbook to Python code helped to clarify the reasoning behind the 

recursive pattern and improved the student’s overall understanding of Euler’s method. 

Moreover, students mentioned that the active process of simply typing code helped them 

to internalize definitions and concepts. 

Sample of students’ comments: 

Because the code requires you to define everything and practically explain all the 

variables and how they relate to each other, it makes you think critically even 

when solving the smallest math problems. 

Just doing the programming helped me to internalize the math being done and 

helped me understand it better. 

… coding out individual steps of the Euler's method demonstrated the specific 

mechanisms behind the method and lead me to further understanding. 

I found that in my own head I was able to break down the intermediate value 

theorem in a different way, piece by piece and as such my understanding of the 

concept as a whole (and it’s applications) were improved. 

Coding allows students to think critically in terms of communication - how to 

explain a mathematical process in objective terms. This is how the code input tells 

the computer program what to do. By going through this process, students 

understand the math processes more deeply as they are now able to describe it in 

objective, systematic ways that even a computer would understand. 
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4.4 Summary 

Conducting a systematic qualitative content analysis helped to organize the raw data into 

categories and reveal three central themes: modified perceptions of mathematics, 

enhanced mathematics learning experiences, and unique coding affordances. 

In the next chapter, I use diSessa’s (2018) literacy principles as a theoretical lens through 

which I examine my results more in depth. diSessa developed these principles in part to 

characterize and identify an emergent computational literacy, but also as an analytical 

framework with which to analyze contemporary movements of computation in education, 

such as computational thinking and coding. diSessa used this criteria to analyze his work 

with teaching grade 6 children the mathematics of motion. I adopt a similar strategy to 

analyze my approach of integrating computational thinking, coding, and mathematical 

problem solving into an applied undergraduate calculus course. 
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Chapter 5  

5 Analysis 

In this chapter, I further analyze the data that I obtained (and summarized in the Results 

chapter) to help situate my research within the broader context of a computational 

literacy. As a framework for my analysis, I used diSessa’s (2018) five literacy principles, 

which he developed to signal and characterize a new (in this case, computational) literacy 

(see Figure 10). This lens also serves as a frame of reference which diSessa uses to 

analyze computational initiatives in education, such as computational thinking and 

coding. 

 

Figure 10: diSessa's (2018) literacy framework. 

The chart in Figure 11 illustrates the mapping between my results (i.e., the thirteen 

categories I identified in the Results chapter) and diSessa’s (2018) four principles of a 

new literacy: remediation, reformulation, reorganization, and revitalization. In the 

discussion that follows, I do not revisit nor examine each category in detail; instead, I 

Remediation 
Remediating concepts, problems, and 
processes with a new representational 
system affords unique opportunities to 

engage with ideas in novel ways. 

Reformulation 
Reformulating ideas related to a topic 

to be investigated often involves a 
significant cognitive shift, but has the 

potential to reveal cognitive 
simplicities in the underlying concepts. 

Reorganization 
Adopting a new literacy has the 

potential to transform the intellectual 
landscape, changing the narrative of 

who gets to do what, and when. 

Revitalization 
A new literacy has the potential to 
refresh and invigorate teaching and 
learning activities and experiences.  

Literacy-scaled accomplishments are 
massive social and cultural 

achievements. 
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delineate these four principles and illustrate each with salient examples from my data. I 

conclude my analysis by considering how my results provide evidence of a new literacy, 

as defined by diSessa. 

 

 Remediation Reformulation Reorganization Revitalization 

more representative 
perspective of the 

field of mathematics 
   ü 

enabled meaningful, 
authentic applications 
to be incorporated into 

course activities 

ü  ü ü 

illustrated the 
relevance and value of 
mathematical concepts 

ü   ü 

interactive learning 
experiences provided 

opportunities to 
explore, experiment, 

play with mathematics 

ü   ü 

dynamic 
visualizations ü    

transformed affective 
learning experiences    ü 

provided a tangible 
feel to abstract 

concepts 
ü ü   

new approach, 
different perspective  ü ü  

accommodated 
various learning styles   ü ü 

elevated problem-
solving capabilities 
beyond traditional 

limits 

ü  ü  

problem solving 
became more 

efficient, less tedious 
ü  ü  

offered unique 
advantages over 

ready-made 
ü    
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applications 

numerous benefits 
realized through 
physical coding 

process 

ü ü   

Figure 11: Mapping categories from Results chapter to diSessa’s (2018) principles. 

5.1 Remediation 

Concurrent with the acquisition of a new literacy is the development and adoption of an 

appropriate representational system used to remediate ideas, processes, and problems and 

describe, analyze, and explore them in terms of the new literacy (diSessa, 2018). The 

mass appropriation of a new representational system will demonstrate “distinctive and 

critical strengths, but also limitations and blind spots, and, thus, a possible 

complementarity with other forms of representation” (diSessa, 2018, p. 7). diSessa (2018) 

emphasizes the affordances realized by remediating concepts within a new 

representational system, and explains in which ways remediation contributes to a 

transformative shift in how we think about ideas, engage with concepts, develop our 

conceptual understanding, and solve problems. 

In Math 1LS3, we remediated our calculus concepts with a computational 

representational system, which allowed us to explore problems with computer code. 

Here, I focus on several unique affordances of using computer code (and thus, 

computational thinking) to explore calculus concepts, as experienced and reported by 

students in Math 1LS3.   

5.1.1 Advantages of a Computational Representational System 

One of the most noteworthy observations frequently reported by students was that 

remediating calculus concepts with computer code enabled them to effectively 

incorporate computer technology into their investigations, which offered significant 

technical advantages. They remarked that exploring models, concepts, and algorithms 

with computer code helped optimize their problem-solving activities by enabling 

numerous, technically complex, calculations to be carried out almost instantaneously, and 
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producing consistent, accurate results. Automating the numerical calculations eliminated 

(or significantly reduced) technical difficulties, and enabled students to expand their 

explorations beyond the constraints imposed by using non-computational tools, and thus 

motivated them to thoroughly investigate mathematical concepts (for example, by 

running multiple simulations simply by changing a few parameters to explore 

hypothetical alternative cases). 

Students reported that the ability to efficiently explore their “what if” questions and 

receive immediate feedback helped them develop a more comprehensive understanding 

of the relationships between quantities, the behaviour of models, and the logical structure 

of the mathematical techniques. Furthermore, they noticed that they were able to focus 

more on the bigger picture and developing their conceptual understanding of important 

mathematical ideas when their mental energy was not expended on lengthy, complex, 

repetitive calculations. 

5.1.2 Example: Euler’s Method 

Euler’s method is a numerical approach used to approximate a solution to a first-order 

differential equation, when an initial condition is given (this is known as an “initial value 

problem”).  

For the initial value problem, consisting of a differential equation and an initial condition, 

𝑑𝑦
𝑑𝑥 = 𝐺 𝑥,𝑦 , 𝑦 𝑥! = 𝑦! 

Euler’s algorithm is given by two recurrence relations, one for the independent variable, 

and the other for the unknown function: 

𝑥!!! = 𝑥! + ℎ 

𝑦!!! = 𝑦! + 𝐺 𝑥! ,𝑦! ∙ ℎ  

where 𝑖 = 1, 2, 3, 4,…  and ℎ is the step size. 
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In a typical calculus course, students are asked to approximate the solution to a simple 

first-order initial value problem by applying Euler’s method for a maximum of three to 

four steps, thus obtaining a superficial, uninteresting, yet easy to compute by hand, result 

(see below).  

Problem: 

Given the initial value problem, 𝑑𝑃/𝑑𝑡 =  0.02𝑃(1− 𝑃/2000), where 𝑃(0) = 120, 

estimate the value of 𝑃(1) using Euler’s method and a step-size of 0.5. The time 𝑡 is 

given in months. 

Solution: 

In this case, ℎ = 0.5, 𝑡! = 0 and 𝑃! = 120, and the Euler’s method algorithm is given by  

𝑡!!! = 𝑡! + 0.5 

𝑃!!! = 𝑃! + 0.02𝑃!(1− 𝑃!/2000) ∙ 0.5 

The actual calculations proceed as follows: 

𝑡! =  0 +  0.5 =  0.5 

𝑃! = 120+ 0.02(120)(1− 120/2000)(0.5)  ≈ 122 

𝑡! =  0.5 +  0.5 =  1 

𝑃! = 122+ 0.02(122)(1− 122/2000)(0.5)  ≈ 125 

The value of 𝑃(1) is approximately 125. 

By exploring this initial value problem with code, students are able to investigate the 

behaviour of the model over a longer period (say, over many months or even years) as 

well as increase the accuracy of their estimations (by decreasing the step size), an activity 

that would be unwieldy without computer technology. 
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Figure 12: Identifying a pattern in the solution obtained using Euler’s method. 

Note: An insufficient number of steps suggests a realistically unsustainable 

exponential growth. 

There is another, even more important aspect—by seeing only a few steps of an iteration 

for a function, it might be hard to identify a pattern, or the pattern that is suggested might 

be misleading, giving an inaccurate solution. For instance, the first few steps of Euler’s 

method might suggest exponential growth (Figure 12), which is not sustainable in the 

long run. Instead, the initial exponential growth is often followed by a slowdown, 

resulting in a logistic, limited growth pattern, which becomes visible only if Euler’s 

method is run for a large(r) number of steps (Figure 13). 
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Figure 13: Identifying a pattern in the solution obtained using Euler’s method. 

Note: Logistical (limited growth) pattern is revealed only after the method is run 

with a large number of steps (and thus over a longer period of time). 

5.2 Reformulation 

When engaging with a new literacy, all concepts, problems, and processes related to an 

investigation must be reformulated appropriately so they may be effectively remediated 

with the new representational system. In Math 1LS3, reformulating a calculus problem 

expressed algebraically so that it can be represented, analyzed, and solved 

computationally requires two main processes of computational thinking: abstraction and 

automation. Reformulating a problem as an algorithm (so that it can be coded) involves 

deconstructing the problem into basic components (elements), analyzing the relationships 

between components, and then designing an appropriate computational model in order to 

automate a solution. This reformulation process requires an in-depth conceptual 

understanding of all aspects of a problem, and a strong enough familiarity with both 

formulations that one can effectively translate between two representational systems. As 

diSessa (2018) explains, reformulating problems often requires a significant cognitive 

shift (as I discuss below), however this process also has the potential to reveal “surprising 

cognitive simplicities and when they align with a powerful representational change… 

learning becomes amazingly transformed, faster, and easier” (p. 15). 
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In Math 1LS3, remediating a problem with a computational representational system 

required us to reformulate the problem numerically, that is, we considered discrete 

manifestations of all concepts and calculations involved. This process is straightforward 

for those mathematical problems where a numerical problem-solving approach has 

already been established (for example, Riemann sums, Euler’s method, or discrete-time 

dynamical systems). This numerical representation (model) was then reformulated again 

so that it could be analyzed using a computational representational system. The following 

example illustrates the two-step reformulation process we used to remediate our 

mathematical problems with computation. 

5.2.1 Example: Riemann Sums 

In covering integral calculus in university courses, a significant amount of time is spent 

on techniques of integration, that is, on algebraic methods of evaluating definite and 

indefinite integrals.  

A definite integral is defined as the limit of a Riemann sum: 

𝑓 𝑥 𝑑𝑥 = lim
!→!

𝑓 𝑥!∗ ∆𝑥,      ∆𝑥 =
𝑏 − 𝑎
𝑛

!

!!!

!

!
 

where 𝑥!∗ is any sample point in the subinterval 𝑥!!!, 𝑥! . 

A definite integral can be interpreted as the net or signed area of the region bounded by 

the graph of a function and the horizontal axis over a finite interval (see Figure 14). 
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Figure 14: Shaded is the region bounded by the graph of 𝒇(𝒙) = 𝒙𝟐 and the 

horizontal axis, defined over the finite interval [𝟎,𝟐]. The area of this region is 

determined by evaluating the definite integral 𝒙𝟐𝟐
𝟎 𝒅𝒙. 

The area of this irregular region (irregular in the sense that we do not have a ready-made 

formula established for its area) can be approximated using rectangles, whose areas are 

easy to compute (“area of a rectangle equals length times width”). The sum of the areas 

of these rectangles, that is, a Riemann sum, estimates the area of the bounded region, and 

at the same time, the value of the definite integral (see Figure 15). 

To use this approach, we first decide on how many rectangles we will use and then 

compute the fixed width of each rectangle. After that, we need to decide how to select the 

heights of the rectangles. Two common choices involve using values at the left-endpoints 

or right-endpoints of each subinterval. 
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Figure 15: The sums of the areas of approximating rectangles are used to 

approximate 𝒙𝟐𝒅𝒙𝟐
𝟎 . The figure on the left illustrates the approximating rectangles 

obtained using left-endpoints; the figure on the right illustrates the approximating 

rectangles obtained using right-endpoints. 

The left sum in Figure 15 is 

𝐿! = 𝑓 𝑥! ∆𝑥
!

!!!

 

      = 𝑓 𝑥! ∆𝑥 + 𝑓 𝑥! ∆𝑥 + 𝑓 𝑥! ∆𝑥 + 𝑓 𝑥! ∆𝑥  

      = 0 0.5 + 0.25 0.5 + 1 0.5 + 2.25 0.5  

      = 1.75  

The right sum in Figure 15 is 

𝑅! = 𝑓 𝑥! ∆𝑥
!

!!!

 

      = 𝑓 𝑥! ∆𝑥 + 𝑓 𝑥! ∆𝑥 + 𝑓 𝑥! ∆𝑥 + 𝑓 𝑥! ∆𝑥 

      = 0.25 0.5 + 1 0.5 + 2.25 0.5 + 4 0.5  

      = 3.75 
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Reformulating a definite integral for computation requires that we first adopt a numerical 

approach to integration, that is, we approximate the value of the definite integral by using 

a Riemann sum with a finite number of rectangles 𝑛. In doing so, we represent the 

function 𝑓(𝑥) as a set of discrete values (discrete points). We then reformulate this 

problem for computation by assigning variables and parameters to quantities, and using a 

loop structure to compute the appropriate Riemann sum. These reformulations require a 

significant cognitive effort, as we are engaged with, and continuously switch between, 

abstract algebraic notions (functions as discrete objects, infinite summation), geometric 

representations (functions as graphs, regions bounded by curves, approximating 

rectangles) and numeric formulas and algorithms (calculating areas, summations, limits). 

It should be noted that when we work numerically and add together a finite number of 

rectangles, we generally obtain an approximation rather than the actual value of the 

definite integral; however, by combining this idea with the power of a computational 

representation, we can increase the number n until we have a sum as close as desired to 

the exact value of the definite integral. 

 

Figure 16: Python code for computing the left and right Riemann sums. (a) Using 4 

rectangles (b) Using 4000 rectangles. Note that the command “sum” accomplishes 

the work of an entire loop, by adding the areas of the rectangles. Comparing with 

the output shown in (a), we see how, when 4000 rectangles are used (instead of 4), 

the two sums are very close to one another. 
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5.2.2 Affordances of Reformulation 

Students commented that thinking about how to reformulate their textbook problems and 

algorithms for computation (that is, thinking computationally), helped facilitate a more 

in-depth conceptual understanding of the underlying mathematical ideas. For example, 

students discovered they could generate multiple iterations of Euler’s method effectively 

by using a loop structure in Python 3 (see Figure 12). They reported that the process of 

reformulating Euler’s method for computation, that is, using computer code to define 

appropriate recursion relationships and using a loop to generate iterations of the solution, 

helped them to deeply understand the logic, structure, and algorithm (in both its algebraic 

and computational forms). Students stated that adopting different perspectives (and 

different representational systems) to analyze a problem, and comparing the 

complementary formulations of a solution algorithm, helped them develop a more 

comprehensive, intuitive, grounded understanding of the concepts.  

Students remarked that breaking a problem down into basic elements (sub-problems) in 

order to reformulate it for computation helped reduce the overall complexity of the 

problem and forced them to pay particular attention to all aspects of the task, as well as to 

the way in which these different aspects need to be put together. They noted that they 

were required to develop an in-depth understanding of the relationships between the 

quantities involved and the logic behind the solution algorithm in order to effectively 

reformulate the problem for computation. Students reported that the reformulation 

process revealed the simplicity underlying certain mathematical ideas, techniques, and 

algorithms. For example, while the difficulty of evaluating a definite integral 

algebraically varies greatly (in fact, many cannot be solved algebraically), reformulating 

integration for computation enables any proper3 definite integral to be estimated by 

adding together the areas of approximating rectangles (a relatively simple task). 

Furthermore, students were surprised to discover that this simple idea could be readily 

extended to solve higher-level problems and applications, such as finding the volume of 

                                                
3
 𝑓 𝑥 𝑑𝑥 !
! is classified as a proper definite integral if the function 𝑓(𝑥) is continuous on the closed, finite 

interval [𝑎, 𝑏]. 
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an irregular solid, using sums of volumes of cylinders, with a few minor modifications to 

their basic code (see Figure 17). 

Moreover, using computational tools, students discovered a surprisingly simple, versatile 

mathematical approach to estimating unknown quantities (or, what could be considered a 

“big idea” in mathematics): begin with a simple numerical approximation, and then 

modify or adjust the approach (for instance by making it algorithmic, so that it can run in 

a loop) until this approximation becomes arbitrarily close to the actual value.   

 

Figure 17: Basic Riemann sum code from Figure 16 modified to estimate the volume 

of the solid obtained by rotating the region bounded by 𝒇(𝒙) = 𝒙𝟐, 𝒚 = 𝟎, 𝒙 = 𝟎, 

and 𝒙 = 𝟐 about the 𝒙-axis.  

5.3 Reorganization 

Adopting a new literacy has the potential to reorganize the intellectual landscape in 

profound ways, effectively rewriting the narrative of who gets to do what, and when. In 

other words, immersion in a new literacy and the ramifications of this immersion expand 

the range of what can be done, how it can be accomplished, and who is able to do it.  
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In Math 1LS3, exploring calculus concepts with computer code enabled students to 

effectively investigate meaningful, authentic, interdisciplinary applications, which were 

formerly inaccessible (and thus omitted from the course) due to overwhelming, technical 

complexities. This approach changed the traditional learning trajectory for our students 

and reorganized the intellectual domain of calculus, by engaging novice first-year 

students in activities typical for a graduate-level, research-based mathematics course. 

(Note that this illustrates the “low floor, high ceiling” affordance of computational 

thinking, as discussed by Gadanidis et al. (2016).) 

Students attributed this achievement to the unique affordances accessible to them when 

they integrate computer coding into mathematical problem solving. For example, 

reformulating the problems to allow for a numerical approach, and remediating their 

investigations with computation (consequences of a new literacy) helped to significantly 

lessen the workload by removing numerous, repetitive, technical computations required 

when exploring complex problems. Students discovered that when represented 

computationally, theoretical (and often abstract) ideas can just as easily be applied to 

technically complex mathematical objects as they are to more basic cases. 

For instance, using a computational model, students marveled at how straightforward it 

was to extend Euler’s method to investigate solutions to systems of first-order differential 

equations, without noticeably increasing the demands on the computational aspects (such 

as the time Jupyter needed to complete the calculations). This enabled them to explore 

more complex models, such as the Susceptible-Exposed-Infected-Recovered model 

(SEIR-model), used to study the spread of the EBOLA virus during the recent epidemic 

in Africa, or the classical predator-prey model, which investigates the dynamics between 

two species interacting in a common habitat (see Figure 18).  
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Figure 18: By modifying the base code for Euler’s method, we can approximate 

solutions of a system of two differential equations. As previously, Euler’s method is 

accomplished in one loop (left). The code outputs approximate solution curves for 

each of the functions (right). 

Students reported that working on these authentic applications helped to increase the 

relevance and value of the material they were studying, which motivated them to further 

engage with their explorations and ask hypothetical questions, such as, “what would it 

look like if we mediated this particular model with computation and also explored it 

using our calculus concepts?” This allowed our students to modify their learning 

trajectories by diversifying their mathematical explorations in the ways that would be 

inaccessible using an algebraically mediated approach only.  

In addition to increasing accessibility to authentic, interdisciplinary applications, 

remediating calculus concepts with computation provides an alternative approach to 

mathematical problem solving, which has the potential to support diverse learning styles. 

In particular, students noted that the coding activities were especially attractive to, and 

beneficial for, visual and kinesthetic learners, allowing them to directly interact with the 

concepts and receive immediate, dynamic, visual feedback. As well, students reported 

that using a computational representation of the models and algorithms enabled them to 

explore concepts and ideas in ways that were meaningful to them. Thus, it became 
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evident that providing multiple avenues to access mathematical content broadens the 

range of learners who are able to successfully engage with undergraduate calculus.  

5.4 Revitalization 

diSessa (2018) explains that a new literacy has the potential to transform teaching and 

learning experiences, resulting in a revitalization of the learning ecology. As I discuss 

below, this revitalization is fundamentally connected to the principles of remediation, 

reformulation, and reorganization. 

5.4.1 Learning 

In Math 1LS3, we experienced a revitalization of our teaching and learning experiences 

when we integrated coding activities with our mathematical explorations. For instance, 

students reported that remediating calculus concepts with computation provided a fresh, 

modern approach to mathematical problem solving. They stated that this made the 

material feel more interesting, simulating and relevant, which overall increased their 

enjoyment of their learning.  

The dynamic and interactive nature of the coding activities in Math 1LS3 offered 

students opportunities to explore, experiment and play with the mathematical concepts. 

They said that the coding activities opened up a creative space in mathematics that they 

had never experienced in other problem-solving situations, such as in a linear algebra 

course. Students reported that they enjoyed the flexibility of the opportunities available to 

them, and having options on problem-solving strategies was appealing and increased their 

interest. As well, the consistent and immediate feedback afforded by the coding activities 

helped them to shape and reinforce their understanding concurrent with their 

explorations, which students stated improved their confidence with their answers and 

overall conceptual understanding of the material. 

Students remarked that analyzing mathematical models and algorithms using code 

provided differentiated learning opportunities, which supported a variety of learning 

styles. They felt free to experiment with the code in ways that were personally 

meaningful for them and didn’t stress about making mistakes, embracing trial and error 
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as an important part of their learning process. This empowered those who felt they were 

unable to learn or fully understand mathematics within algebraic environments, and 

offered salient alternatives to traditional mathematical problem-solving strategies. 

Students felt they had more agency in their learning and experienced a greater feeling of 

satisfaction and accomplishment. As well, students noted that the coding activities 

stimulated peer collaborations, resulting in fruitful discussions and sharing of ideas.  

Furthermore, students reported that the ability to directly apply calculus concepts to 

analyze authentic, contemporary problems (a consequence of the reorganization 

principle) effectively illustrated the value of the mathematical concepts they were 

learning. They explained that incorporating interdisciplinary applications made the 

material feel more interesting, simulating and relevant, which increased their enjoyment 

of their learning.  

5.4.2 Teaching 

An unexpected, but important, outcome was the revitalization of teaching experiences for 

instructors. This revitalization was most evident in the enriched capabilities afforded by 

computation, which dramatically expanded the range of interdisciplinary applications we 

could effectively incorporate into course material, and the capacity to investigate them, so 

that we could meaningfully, and authentically, engage with (and convincingly illustrate 

the value of) the mathematical material we were teaching.  

For example, one of our first coding activities invited students to develop a program to 

apply Euler’s approximation method 𝑛 times to a first-order differential equation when 

given an initial condition. The obvious advantage in using computer technology to 

explore this iterative method is that 𝑛 can be made very large without any extra human 

effort, which improves our estimation within any desired degree of accuracy. While this 

slightly improved my experience teaching Euler’s method, I really became excited when 

I realized that I could introduce students to more complex models of systems of 

differential equations, where current research efforts in many branches of applied 

mathematics and life sciences are concentrated. There was literally no system of first-

order differential equations that was off limits to us due to its complexity, and after 
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typing out my code for our basic case in one cell, it was easy to copy and paste the code 

in a new cell, and make minor modifications so that it applied to anything I chose to 

explore. While in other math courses we talk about how to improve our estimation 

theoretically, it is rewarding and satisfying to actually demonstrate this improvement in a 

concrete way using computer code. 

I felt that as students watched me do this spontaneously during lecture in less than a 

minute, I was giving them a realistic picture of how problems are explored outside of the 

classroom, while adding value to the mathematical material and showing its wide 

applicability when integrated with coding technology. The affordances of integrating 

coding technology into our teaching practice absolutely revitalized my enthusiasm for 

teaching (especially certain material that I have always perceived as “dry”) by providing 

multiple ways to explore many of our traditional calculus topics.  

5.5 The Acquisition of a New Literacy is a Massive Social 
and Cultural Accomplishment 

diSessa (2018) defines a literacy as “a massive social/intellectual accomplishment of a 

culture or civilization, where many competing forces, over decades or centuries, 

eventually settle on a particular representational form for wide-spread learning, use, and 

subsequent value” (p. 7).  

Remediating mathematical concepts with computation, and integrating computer 

technology to access unique computational thinking affordances, has played a role in 

mathematics education for several decades and was integral to Papert’s (1980) innovative 

research using Logo (Gadanidis, 2018). However, this initiative did not achieve 

widespread attention until Jeanette Wing’s (2006) influential paper inspired a resurgence 

in the interest of teaching computational thinking outside of a computer science context. 

Noss and Hoyles (1992) suggested that the reasons why computational thinking did not 

achieve a more prominent position in education alongside early initiatives revolved 

around certain social, cultural and pedagogical attitudes.  
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Today, with computer technology omnipresent and the growing widespread recognition 

of the value of computational thinking skills, the current social and cultural milieu is 

more conducive for advancing a computational literacy. Even so, incorporating computer 

labs into Math 1LS3 was initially met with some resistance, as students expressed their 

apprehension in using a computational representation system (in fact, in the first set of 

responses, many students reported that they didn’t see the point of learning computer 

programming in a calculus course). This primary reaction was anticipated by diSessa 

(2018) and he states that “initial resistance and long periods of incubation are 

undoubtedly the norm” (p. 15) for any new literacy. 

As the course progressed and students persisted in the coding activities, their comfort 

navigating the coding environment and their fluency in the programming language 

quickly improved. The prevalence of technology in our students’ lives was likely the 

reason (at least in part) behind this accelerated familiarity with computational 

mathematics and coding tools. Needless to say, this is a very different environment from 

the one in which Papert introduced his ideas. As a result, students were increasingly able 

to communicate their ideas using computer code, in various effective and creative ways. 

Overtime, we (myself, other instructors, and our computer lab teaching assistant) noticed 

that students were relying less and less on the coding templates we provided, and instead, 

creating their own computational tools for representing, exploring, and solving problems 

in innovative ways, often moving their investigating above and beyond what was 

required in the original problem. Reflecting on their experience, one student said: 

When I’m coding, I personally feel very engaged with the source material. It’s as 

if this is my project, it’s a problem and a journey, as I endeavour to solve it. 

By the end of the course, students’ attitudes towards computer programming in 

mathematics changed dramatically as their programming skills had sufficiently developed 

and they could personally experience the power, versatility, and learning potential of 

combining computer programming with mathematics. This led to multiple requests for 

recommendations of other courses they could take which adopt a computational approach 

to mathematics (courses we are actively working on developing now!).  



85 

 

Within the Department of Mathematics and Statistics, there has been a significant interest 

in adopting our approach to integrating computer programming into other courses, 

without significantly changing the core mathematical content. While many courses 

currently use computer technology to supplement course material (e.g., Matlab, Maple, 

Excel), aside from computational mathematics and statistics courses, these courses do not 

officially teach a modern computer programming language, such as Python 3. 

Presumably, widely incorporating computer programming into other courses as a 

universal approach to problem solving would help improve students’ proficiency with the 

language and coding environment, and further establish its role as a versatile problem-

solving strategy.  

I have collaborated with several faculty members in other departments (e.g., Department 

of Physics at McMaster University) and universities (e.g., Mathematics at University of 

Toronto Mississauga) to offer guidance and resources for integrating computational 

thinking into their current courses. Additionally, I discussed our labs with a colleague 

from University of Waterloo, who is interested in offering Python labs to their students. 

The keen, growing interest I’ve personally experienced toward incorporating computer 

programming into a wide variety of courses outside of computer science illustrates the 

recognition of the value and potential of a computational representational system. 

Furthermore, the “social spread” of this endeavor that I have witnessed following the 

success of my pilot semester (e.g., within our course, department, university and beyond) 

provides evidence of a budding computational literacy in the sense that diSessa (2018) 

conceptualizes it. 

5.6 Limitations of a Computational Approach 

As diSessa (2018) explains, all representational systems have their own unique 

affordances and limitations. In Math 1LS3, remediating integration with computation 

resulted in a powerful and versatile numerical approach to integration; however, 

approximating a definite integral using a Riemann sum produces only an estimate of the 

definite integral, which is sufficient in most applied mathematical research but is still 

theoretically different from evaluating a definite integral. While students reported that 
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exploring Riemann sums using code enriched their conceptual understanding of the 

technique and its relationship to definite integrals, there was little evidence to suggest that 

this enhanced understanding of integration improved their ability to evaluate integrals 

algebraically, a process many students in Math 1LS3 still experience difficulty with.  

A natural limitation of a computational approach is the mathematics content itself—

certain topics and ideas cannot be investigated (in their completeness, or at all) by coding. 

For instance, whereas computing a finite sum is a straightforward exercise in Python, no 

code can prove convergence or divergence for an infinite sum (infinite series). As well, 

calculating a table of values for a function to determine its limit could lead to erroneous 

conclusions. By extension, coding cannot prove that a given equilibrium of a dynamical 

system is stable, as it can compute only a finite number of steps. Thus, mathematical 

results and ideas that require inductive reasoning, that is, making and proving 

generalizations based on specific examples, cannot be approached using computational 

tools. Of course, coding can provide some evidence that a generalization might be true, 

but it cannot prove it to be true. 

All coding languages have a demanding and rigorous syntax, and even an extra space in 

the wrong place could generate an error and prevent the code from functioning as desired. 

This specificity was a common source of frustration for many students throughout the 

semester (not to mention the time they needed to figure out the source of the problems), 

and this technical limitation is a common issue in computer programming in general.  

A further limitation of a computational approach is due to its nature (i.e., inability to 

“think” beyond the code given), which, coupled with students’ (mis)beliefs about what it 

actually does, leads to erroneous answers. For instance, students discovered that just 

because their code runs without error messages and returns an answer, does not mean that 

its output is a (correct) solution to the problem they were trying to solve. For instance, 

misplaced parentheses could change the formula for a function that is analyzed, or an 

inadequate number of steps could lead to a poor approximation of a definite integral. 

Python has no way of reading users’ minds to guess their intentions—it does exactly what 
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the code tells it to do, nothing more or nothing less. In other words, it is unable to warn a 

student that there is a mathematical inaccuracy with their code. 

5.7 Summary 

Assuming diSessa’s (2018) theoretical perspective enabled me to conduct a deeper 

analysis of my results and situate them within the framework of a new computational 

literacy. As evidenced by their reflective responses, when Math 1LS3 students 

reformulated differential and integral calculus concepts in order to remediate them with 

computer code, their learning experiences were transformed, resulting in a reorganization 

of the intellectual landscape and revitalization of their learning ecology. These four 

principles reflect the “massive social and cultural accomplishment” (diSessa, 2018, p. 25) 

of establishing a new, in this case computational, literacy. 
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Chapter 6  

6 Conclusion 

Computational thinking (and the set of computational tools that facilitate it) has received 

acclaim for its potential to support, enrich and innovate problem-solving activities in a 

wide variety of contexts. A computational thinking approach in mathematics offers a 

powerful set of affordances stemming from both the underlying processes—in particular, 

abstraction and automation—and from appropriately designed coding activities, which 

can further enhance not only problem solving, but also mathematical reasoning, 

understanding, and learning in general. When effectively integrated into educational 

activities, computational thinking has the potential to provide unique, transformative 

learning experiences to students. For instance, it can enrich and expand the means and 

tools available to students in their mathematical explorations, learning of concepts and 

problem-solving activities. 

While there is a significant body of literature on the theoretical aspects of computational 

thinking in education, there is a relatively large gap in the literature providing practical, 

specific guidance for its integration into various subject areas, as well as a critical, 

evidence-based analysis of such integration efforts. 

6.1 Current Study 

This research project investigated an approach to integrating computational thinking into 

a first-year, undergraduate calculus course designed specifically for life sciences students. 

In collaboration with the course coordinator, I developed a set of mathematical coding 

activities (organized into four computer labs) to supplement and enhance mathematical 

problem solving, as well as promote a richer understanding of the course content, while 

taking advantage of the unique affordances computational thinking can offer to enhance 

educational experiences. My goal was not just to integrate technology into our classroom, 

but to enrich and transform the ways students see mathematics, and to modernize the 

teaching of mathematics at the undergraduate level.  
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A series of questions and prompts that followed each of the four computer labs invited 

students to reflect on their experiences of combining mathematics with coding. Each 

survey was designed to solicit insights into changes in students’ conceptual 

understanding, which resulted from interacting with the mathematical coding activities, 

as well as to inquire about students’ affective responses to this integrated learning 

experience.  

Students’ responses were collected and analyzed, first using a qualitative content analysis 

to organize the data into categories (and later, overarching themes), and then using 

diSessa’s (2018) literacy framework to help theorize about the results obtained, and to 

achieve a “big picture” view of computational thinking as a literacy.  

6.2 Results 

My content analysis revealed three central themes within students’ responses: modified 

perceptions of mathematics, enhanced mathematics learning experiences, and unique 

coding affordances. 

Students reported that the engagement with coding activities within their calculus course 

changed their perceptions of what mathematics is in several ways. They had opportunities 

to effectively explore and analyze authentic applications in the life sciences, which 

provided a broader, more representative perspective of the field of (applied) mathematics. 

Students noted that the ability to combine standard calculus tools with coding effectively 

illustrated the relevance and value of the mathematical concepts. For example, because it 

is initially presented as an abstract concept, students often do not appreciate the 

importance of difference quotients when calculating derivatives; however, they soon 

realize that when dealing with discrete data (as often is the case in real-life contexts), 

using differentiation rules is not an option! 

Students described how exploring calculus concepts with computer code enriched and 

transformed their mathematics learning experiences throughout the semester. They 

remarked that using coding for their mathematical explorations facilitated a dynamic, 

interactive learning experience, which motivated them to be more actively engaged with 
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the material, compared with traditional, non-coding versions of the (same, or similar) 

problems. They reported that the opportunities to explore, experiment, and play with the 

concepts—combined with the immediate feedback and dynamical visualizations that 

accompanied running code—promoted a deeper, more comprehensive understanding of 

the mathematical content and a greater enjoyment of the problem-solving process. 

Additionally, students noted that the coding activities accommodated, in their words, 

alternative learning styles more effectively than traditional, paper-and-pencil strategies, 

and invited multiple approaches and flexibility during the problem-solving process. Many 

remarked how this alternative approach encouraged meaningful peer collaborations and 

creative problem-solving strategies, two features students noted were typically lacking in 

traditional mathematics courses.  

Students observed that several coding affordances enabled them to explore calculus 

concepts in novel ways. For example, improved technical capabilities afforded by the 

computer technology facilitated efficient, accurate calculations in even the most complex 

instances, motivating students to apply their theoretical knowledge to solve complex, 

authentic, real-world problems using standard undergraduate calculus concepts. As well, 

students noted that exploring concepts with code helped give the abstract theoretical 

material a “tangible feel.” This helped them make important connections between the 

theory and practice—a well-known challenge many students encounter in mathematics 

courses. Exploring calculus concepts using code (that had to be generated) promoted a 

greater understanding of the theoretical concepts, and was more rewarding, compared to 

using prepackaged applications, since coding gave them full control over the entire 

problem-solving process. Students also remarked that the physical process of coding (that 

is, automation and abstraction) provided additional benefits, such as reducing the 

complexity of a problem by breaking it down into its basic elements in order to 

reformulate it for computation. 

6.3 Analysis 

Analyzing my data using diSessa’s (2018) literacy framework enabled me to adopt a 

different frame of reference, and hence an alternative perspective on my data, and helped 

situate my research within other initiatives in education. 
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diSessa (2018) explains that remediating concepts, problems, and processes with a new 

representational system affords unique opportunities to engage with ideas in novel ways. 

In Math 1LS3, students found that using a computationally mediated approach enabled 

them to effectively incorporate computer technology into their investigations, which 

offered significant technical advantages. They remarked that exploring models, concepts, 

techniques, and algorithms with computer code optimized their problem-solving 

activities, which helped them to expand their explorations beyond previous (technical) 

constraints. Students noticed that they were able to focus more on developing their 

conceptual understanding and overall perspective on the underlying ideas and concepts 

when their mental energy was not expended on lengthy, complex, and repetitive 

calculations. 

Reformulating all concepts, problems, and processes related to an investigation often 

involves a significant cognitive shift, but has the potential to reveal cognitive simplicities 

in the underlying concepts. In Math 1LS3, reformulating integration for computation 

naturally revealed that the area of a bounded region could be estimated to within any 

degree of accuracy using a sufficient number of approximating rectangles. Further 

extending this idea, students discovered that volumes of irregular solids could be 

adequately approximated using approximating cylinders. 

As diSessa’s reorganization principle projected, integrating coding activities into our 

undergraduate calculus course reorganized the intellectual terrain in profound ways. For 

example, remediating calculus concepts with computation enabled first-year 

undergraduate students to profitably engage with graduate (and research) level 

mathematics, within the first few weeks of classes. Furthermore, alternative approaches 

(in this case, a computational approach) helped accommodate a broader group of 

students, thus increasing the number of students who can successfully engage with 

calculus concepts. These two outcomes changed the predetermined learning trajectory for 

students and rewrote the narrative of who is able to effectively learn calculus. 

diSessa (2018) explains that a new literacy has the potential to refresh and invigorate the 

teaching and learning ecology, which we witnessed extensively throughout the semester. 
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Students noted multiple affordances of computational tools (e.g., dynamic modelling in 

an interactive development environment, rich visualizations, efficient calculations) that 

dramatically transformed their learning experiences in the course. For instructors, one of 

the most noteworthy contributors to the revitalization of teaching was the ability to 

effectively analyze authentic models and applications—thus demonstrating the value and 

relevance of the mathematical concepts—without the constraints of complex, tedious 

calculations. 

diSessa (2018) describes a literacy-scaled achievement as a massive social and cultural 

endeavour. Witnessing the rapid “social spread” of this initiative (beginning within Math 

1LS3, and then expanding to our department, Faculty of Science, and beyond), completed 

the final piece of diSessa’s “five principles of a literacy” puzzle, and provided sufficient 

evidence that the results of this initiative indicate, at the very least, a “budding 

computational literacy” (diSessa, 2018, p. 8). 

6.4 Limitations of a Computational Representation 

The largest challenges reported by students stemmed from the technical side, that is, from 

the difficulties with the particular representational system. (Given diSessa’s (2018) 

proclamation that every representational system has its weaknesses, this is not at all 

surprising.) Since computer languages are highly specific and demanding in regards to 

their syntax, something as simple as an extra space in the wrong place could cause the 

code not to function as desired. Students found this frustrating and suggested that they 

should be explicitly taught the coding language first, if they were expected to use it 

effectively. While we embedded sufficient sample code, explanations, and illustrative 

examples to complete each lab, we did not attempt to comprehensively teach a coding 

language. Instead, students were encouraged to learn additional features of Python 3 on 

an “as needed” basis and to seek additional help by using the many coding resources 

available online.  

Students reported that searching for appropriate online resources was frustrating and 

time-consuming, and that the information they found was often not directly applicable to 

the task they were working on. They requested a video tutorial, created specifically for 
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Math 1LS3, to guide them through the basics of coding, Jupyter notebooks, and Python 3.  

To address their concerns, I created a thirty-minute video tutorial titled, Getting Started 

in Jupyter Notebook (https://www.youtube.com/watch?v=dEWsl4OUJ_c&t=1199s), 

which introduced students to the coding platform and basic concepts, strategies, and 

techniques needed for their labs. While I didn’t feel that an additional YouTube video 

was necessary, students did find it quite useful, and reported that they felt their voice was 

heard. Furthermore, as I suggest below, initiatives coming from within a discipline—in 

this case, a Python 3 video tutorial created by a Math 1LS3 instructor—may be better 

received than a generic video produced elsewhere.  

A significant number of students reported feeling more overwhelmed than inspired or 

excited at the prospect of learning computer programming in addition to the standard 

calculus content. They said that they spent too much time on coding and not enough time 

on algebraic techniques, which still form the greater part of our assessments and are (at 

present) more transferable to upper-year mathematics courses.  

In reformulating mathematics problems for computation, that is, when switching from an 

algebraic model to a computational representation, we varied the theoretical content we 

aimed to explore (which is a natural consequence of reformulation, as described by 

diSessa (2018)); in particular, we reformulated continuous functions into a numeric form 

by representing them as a discrete set of points. Consequently, all calculus tools applied 

to this array of values were necessarily approximations of their continuous, theoretical 

counterparts. While many students found that this enriched and broadened their 

perspective of the concepts, and of mathematical modelling in general, some found it 

confusing, overwhelming, and reported that they had difficulty connecting the 

computational version to the original algebraic formulation.  

We offered options to help mediate any discomfort or frustration students might feel with 

this new teaching and learning method. For example, numerous support structures were 

offered: all three instructors held several office hours each week and encouraged students 

to bring their laptops. In addition to our usual teaching assistants, we hired a “lab TA” 

who held five office hours each week to assist students with computer labs. Despite these 
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efforts, there were students who were extremely resistant to learning computer 

programming in any capacity. To accommodate these students, we modified our course 

policy so that the term work grade would be calculated using the best three out of four 

assessments: three term tests and the set of computer labs, which collectively counted as 

the fourth assessment. While we strongly suggested that all students attempt the computer 

labs, we also explained that the labs are not mandatory. If a student chose not to complete 

the computer labs, then their grade would be based on their three term tests. This decision 

reflected the fact that coding is not necessarily for everyone and that no single 

representation can claim to be universally superior, for everyone, in all situations. As 

diSessa (2018) stresses, all representational systems possess “distinctive and critical 

strengths, but also limitations and blind spots, and, thus, a possible complementarity with 

other forms of representation” (p. 7).  

6.5 Limitations of the Current Study 

The findings and conclusions of this study were based on students’ subjective, self-

reported responses, which are vulnerable to several sources of bias. For example, we need 

to trust that students have sufficient self-awareness to recognize and accurately report 

their experiences, and that their intentions were to respond truthfully. As well, the sample 

of students was biased in that the majority are enrolled in the Life Sciences program. 

While this potentially limits the transferability of my results (at least until further 

research is conducted), the sample size was large enough that I can confidently say my 

findings represent the views and experiences of life sciences students.  

In my extensive review of the literature, I could not find a study similar to mine, and so I 

was unable to directly compare my results to other studies. As well, my research was 

conducted over the course of one semester, and so, only once. The credibility and 

dependability of my findings would improve if this research was conducted in several 

semesters, and the results were replicated. 
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6.6 Suggestions for Future Research 

Broadly speaking, my research contributes to a growing body of literature aiming to 

access the best that computational thinking has to offer and to effectively integrate it in 

areas where it may enrich and enhance problem solving. In particular, the results obtained 

through this study contribute to the ongoing, SSHRC-funded research project, 

Computational Thinking in Mathematics Education (http://ctmath.ca/), by offering an 

analysis of a practical approach to integrating computational thinking, in a meaningful 

capacity, into a large, undergraduate calculus course. 

Going forward, we will continue to incorporate computer labs in Math 1LS3, keeping 

what we learned was beneficial from the pilot semester, and further developing areas 

which need to be improved. We also plan to offer coding labs for the second half of the 

course, Math 1LT3: Calculus II for the Life Sciences. In fact, students who successfully 

completed Math 1LS3 in the fall of 2018 were disappointed to learn that computer labs 

were not a formal component in Math 1LT3 during the winter 2019 semester, which we 

interpreted as a testament to the success of this initiative! Currently, we are generating a 

collection of computational modelling activities for Math 1LT3, and we plan to continue 

to expand this line of work, using students’ feedback, to create an exciting stream of 

computational calculus at McMaster University. Needless to say, assessing the efficacy 

of this implementation is an ongoing research objective. 

As suggested by diSessa (2018), and now from my own personal experiences, I believe 

that future efforts to expand computational thinking into all disciplines will be most 

successful if they arise from within a certain discipline. This will minimize the emphasis 

on computer science and ensure that the true computational thinking principles and 

transferable skills—not just technical programming skills—are being realized. As well, if 

we are to look beyond computational thinking and consider the potential achievement of 

a true computational literacy, as defined by diSessa (2018), then the efforts must come 

from all areas in society since “the professional pursuit of understanding or creating a 

literacy—or anything that has similarly broad aspirations—cannot belong in any 

substantial degree to one of the standard professional disciplines” (p. 18).  
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My current research project has received positive attention from both within my 

department and beyond, which opens doors for future research collaborations. In 

particular, I am interested to investigate (jointly with colleagues from the respective 

mathematics departments) the integration of computational thinking at the University of 

Waterloo and the University of Toronto Mississauga, in the hope of replicating my 

results, and expanding my study.  

Of course, the integration of computational thinking at McMaster University requires 

further research scrutiny, to support some of my beliefs with additional evidence, and to 

further to strengthen existing evidence. For instance, I believe that as coding, (and, more 

important, computational thinking) are incorporated and reinforced in a variety of 

contexts, students will perceive them as more versatile, valuable and relevant, and 

consequently be better motivated to invest time into learning the basics of programming. 

As the technical challenges lessen with increased exposure, students will likely feel more 

confident with programming in general, and their initial resistance to coding activities, as 

students in the fall 2018 semester of Math 1LS3 experienced, may decrease. 

The video tutorial resource students requested was very well received and students 

requested that shorter videos be created and posted online for individual topics, such as 

using loops, plotting functions, etc. In the future, we plan to recruit students to share their 

own approaches to mathematical problems using screen recordings and feature some of 

these videos on our Math 1LS3 YouTube channel. Studying how creating and using these 

short(er) videos affect students’ learning is another important research direction. 

In the pilot semester, the coding problems and applications were presented in a 

prescriptive (i.e., scaffolded) manner—students were encouraged to explore, but under 

controlled conditions. In future semesters, with appropriate and sufficient support and 

resources in place (such as a collection of short, student-generated, single topic, course-

specific video tutorials available on a course YouTube channel), we will strive to engage 

students in the process of reformulating problems for computation and remediating them 

with code, with minimal scaffolding. Engaging students in the act of reformulating 

mathematical problems and asking them to create their own algorithms to generate 
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solutions, requires a stronger commitment but offers the greatest potential to experience 

the maximum benefits of computational thinking, while providing a strong sense of 

student agency and control throughout the construction of knowledge and learning. 

Our future efforts at improving our computer labs, and integration of computational 

thinking in general, will require strong theoretical support—hence, there will be a strong 

demand, and plenty of opportunities for further research, for myself, and for my graduate 

students. For instance, I could conduct observational-type research to determine, on a 

“microscopic level,” how individual students work with, and learn from, the coding 

activities. Additional strength and significance of this study can be achieved by 

conducting complementary research, for example, by investigating computational 

modelling within an undergraduate physics course or a secondary-level mathematics 

course.  

6.7 Summary 

Computational thinking is used to describe a set of thinking or problem-solving 

strategies, which parallel, and are inspired by, certain computer programming processes 

and techniques. Research has suggested that computational thinking and related activities, 

such as computer coding, have the potential to provide a useful and powerful problem-

solving framework, which can (in some instances) extend into non-computer science 

domains.  

Computational thinking has innovated, transformed, and revitalized teaching and learning 

experiences in profound ways. For example, diSessa (2018) demonstrated how 

reformulating concepts of motion and remediating them with computation revitalized 

learning experiences and reorganized the intellectual domain for sixth grade students. 

Despite encouraging evidence that indicates computational thinking could be a valuable 

new literacy, it has not yet been effectively integrated into many subjects to augment 

problem-solving activities. 

For my doctoral research project, I investigated an approach to integrating computational 

thinking into an undergraduate calculus course. Working together with the course 
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coordinator, I designed a set of computer programming activities to complement and 

enrich our calculus topics, and incorporated them into our course activities. I collected 

and analyzed students’ reflections on the activities, which provided valuable insights into 

the cognitive and affective changes that occur when calculus is reformulated and 

remediated with code.  

My research suggests that students’ conceptual understanding and affective experiences 

were dramatically transformed through the integration of coding and calculus. This 

integration revitalized their learning experiences, changed their perception of the field of 

mathematics, and offered unique new opportunities to dynamically interact with the 

theoretical ideas. While students did experience some frustration with coding (all 

representations have natural limitations), the issues were largely technical and our future 

efforts will improve the resources students need to mitigate such issues.  

In future semesters, I plan to modify the coding activities so that the problem-solving 

scaffolding is minimal, thus allowing students maximum opportunities to benefit from 

computational thinking. We will integrate Python 3 coding activities into other courses 

within the Mathematics and Statistics Department, and support other disciplines in their 

efforts to do the same. As computational thinking is effectively integrated into all 

subjects, from within each subject, students will likely perceive computational thinking 

as a powerful, useful, relevant, and highly applicable, transferable skill. 
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Appendix B: Developing Computer Coding Activities for Math 1LS3 

When creating the computer labs for Math 1LS3, my initial challenge was deciding what 

concepts could be effectively remediated using a computational approach. While it would 

be relatively easy to incorporate computer technology in some capacity into many 

mathematical explorations, it was important for us to choose activities that provided 

unique, potentially transformative learning opportunities. For example, a “trivial” 

activity, though not without value, would be to ask students to create a program that 

would apply transformations to a standard function. This would be beneficial in 

reviewing the rules for transformations—and graphing functions in general—as well as 

providing students with more experience integrating coding and mathematics. However, 

we decided against including this activity since it involved a significant investment in 

preparation and students’ time, and it did not offer as many unique experiences as other 

activities. To entice students to invest significant amounts of their time, effort, and 

attention into the coding labs, we wanted to design activities with significant, far-

reaching benefits, that is, those they could not experience when using a prepackaged 

application, such as Desmos or Maple.  

In designing the labs, we specifically chose course material that students have historically 

struggled with conceptually, and not just technically. Once we had generated a list of 

topics, we considered how these concepts would be represented numerically and 

algorithmically. Some concepts, such as iterative processes used to solve equations or to 

find solutions of differential equations, lend themselves easily to reformulation for 

computation. However, certain topics (such as estimating solutions of an equation using 

the Intermediate Value Theorem) require more thought and preparation.  

Next, we reformulated, when necessary, our models, techniques, and theorems from 

continuous versions to their discrete analogues (e.g., UV index, discussed briefly by 

Clements and Lovric (2018), in the section Discrete vs. Continuous Functions) and 

considered “provocative” questions we could ask to encourage students to reflect on, and 

deeply explore these concepts. We also considered the limitations that a shift to a 
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computational model would bring, and anticipated the bridge students would have to 

make on their own to connect this representation to more abstract, theoretical ideas.  

Example: Integration, Area, and Riemann Sums 

In covering integral calculus in university courses, a significant amount of time is spent 

on techniques of integration, that is, on algebraic methods of evaluating definite and 

indefinite integrals.  

Recall that a definite integral is defined as the limit of a Riemann sum: 

𝑓 𝑥 𝑑𝑥 = lim
!→!

𝑓 𝑥!∗ ∆𝑥,      ∆𝑥 =
𝑏 − 𝑎
𝑛

!

!!!

!

!
 

where 𝑥!∗ is any sample point in the sub interval 𝑥!!!, 𝑥! . 

Solving a definite integral using the Fundamental Theorem of Calculus requires that an 

algebraic formula for the antiderivative of 𝑓(𝑥) exists and that students are adequately 

skilled in integration techniques, which vary widely in their complexity and 

effectiveness. Alternatively, working with the summation notation on the right hand side 

of the definition to find an algebraic form for the Riemann sum and then evaluating the 

limit of this sum as 𝑛 approaches infinity is generally a complex, if not impossible, task 

for first-year students. 

Note that we can approximate the value of a definite integral using a finite Riemann sum: 

𝑓 𝑥 𝑑𝑥 ≈ 𝑓 𝑥!∗ ∆𝑥,      ∆𝑥 =
𝑏 − 𝑎
𝑛

!

!!!

!

!
 

where 𝑥!∗ is any sample point in the sub interval 𝑥!!!, 𝑥! . 

(Recall that a definite integral can be interpreted as the net or signed area of the region 

bounded by the graph of the function and the horizontal axis over a finite interval. The 

area of this bounded region can be estimated by computing the sum of the areas of 

approximating rectangles, that is, a Riemann sum.) 
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Even though evaluating a finite sum is significantly less complicated (conceptually, and 

otherwise) than evaluating an infinite sum, students nevertheless struggle with this 

concept. Faced with having to calculate a finite sum algebraically, students attempt to 

memorize and use abstract formulas found in their textbook and ultimately make 

conceptual, in addition to technical, errors. Their challenges are further exacerbated by 

their lack of familiarity with the summation notation, in particular with the role and 

purpose of the index of summation. 

One error we have witnessed many times is students using all endpoints in both sums, 

thus instead of using 𝑛 rectangles as required, they use 𝑛 + 1 rectangles, with the extra 

rectangle being formed outside of the bounded region. The source of this error could lie 

in the fact that, although this is a geometric situation, students rely on algebraic reasoning 

based on their (mis)interpretation of the formulas for the left and the right sums. Without 

drawing the region and corresponding rectangles, students would not recognize the nature 

of their error, and might assume it was just a “small” calculation error. For smaller values 

of 𝑛, we often ask students to draw the bounded region and corresponding approximating 

rectangles, thus visualizing the sum as well as representing it algebraically. However, as 

the graphs of functions become more complicated, and as the number of rectangles 

becomes large, representing the Riemann sum geometrically using pen and paper 

becomes time-consuming and is often omitted altogether.  

From a technical standpoint, reformulating a definite integral for computation is 

straightforward since we already have a discrete representation for an approximation—

that is, a finite Riemann sum—established. With the technical aspects supported by 

computer technology, students are free to explore more theoretical questions about 

Riemann sums and their relation to integration and definite integrals, which enhances 

their understanding of this complex object. For instance, the following questions could 

stimulate their explorations and reflection: 

• Why does the endpoint at which we choose to calculate the height of an 

approximating rectangle on a given subinterval become insignificant as the 

number of approximating rectangles approaches infinity?  
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• For a given continuous function on a finite integral, which of 𝐿!", 𝐿!, 𝑅!, 𝑅!" 

would produce the largest value? Why?  

• Would the finite sum using the height calculated from the midpoint of each 

subinterval equal the average of the left and right sums on the same interval, using 

the same number of rectangles? Why or why not? 

• How could we find the area of the bounded region between two curves on a given 

interval? 

• Suppose the region bounded by the curve 𝑦 = 𝑓(𝑥), 𝑦 = 0, 𝑥 = 𝑎, and 𝑥 = 𝑏 was 

rotated around the 𝑥-axis to form a solid. How could you approximate the volume 

of this solid using a Riemann sum? 

As well, since students have historically struggled with this topic, we felt that multiple 

complementary representations of this concept could help support their understanding 

and potentially offer transformative, rewarding learning experiences. With our ideas in 

mind, we felt integration and related concepts and applications such as Riemann sums or 

area between curves was an ideal topic to be remediated with computation.  

Appendix C contains the full set of Lab 3 coding activities developed for Math 1LS3 

students in the fall 2018 semester. This lab was designed to complement our study of 

initial value problems (Euler’s method) and definite integrals (Riemann sums). 
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Appendix C: Computer Lab 3 
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Appendix D: Survey Questions 

Appendix D 1: Sample Responses to Lab 1 Survey Questions 
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Appendix D 2: Sample Responses to Lab 2 Survey Questions 
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Appendix D 3: Sample Responses to Lab 3 Survey Questions 
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Appendix D 4: Sample Responses to Lab 4 Survey Questions 
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