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Abstract 

Image-guided medical interventions are diagnostic and therapeutic procedures that focus 

on minimizing surgical incisions for improving disease management and reducing patient 

burden relative to conventional techniques. Interventional approaches, such as biopsy, 

brachytherapy, and ablation procedures, have been used in the management of cancer for 

many anatomical regions, including the prostate and liver. Needles and needle-like tools 

are often used for achieving planned clinical outcomes, but the increased dependency on 

accurate targeting, guidance, and verification can limit the widespread adoption and 

clinical scope of these procedures. Image-guided interventions that incorporate 3D 

information intraoperatively have been shown to improve the accuracy and feasibility of 

these procedures, but clinical needs still exist for improving workflow and reducing 

physician variability with widely applicable cost-conscience approaches. The objective of 

this thesis was to incorporate 3D ultrasound (US) imaging and image processing methods 

during image-guided cancer interventions in the prostate and liver to provide accessible, 

fast, and accurate approaches for clinical improvements.  

An automatic 2D-3D transrectal ultrasound (TRUS) registration algorithm was optimized 

and implemented in a 3D TRUS-guided system to provide continuous prostate motion 

corrections with sub-millimeter and sub-degree error in 36 ± 4 ms. An automatic and 

generalizable 3D TRUS prostate segmentation method was developed on a diverse clinical 

dataset of patient images from biopsy and brachytherapy procedures, resulting in errors at 

gold standard accuracy with a computation time of 0.62 s. After validation of mechanical 

and image reconstruction accuracy, a novel 3D US system for focal liver tumor therapy 

was developed to guide therapy applicators with 4.27 ± 2.47 mm error. The verification of 

applicators post-insertion motivated the development of a 3D US applicator segmentation 

approach, which was demonstrated to provide clinically feasible assessments in 0.246 ± 

0.007 s. Lastly, a general needle and applicator tool segmentation algorithm was developed 

to provide accurate intraoperative and real-time insertion feedback for multiple anatomical 

locations during a variety of clinical interventional procedures. Clinical translation of these 

developed approaches has the potential to extend the overall patient quality of life and 
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outcomes by improving detection rates and reducing local cancer recurrence in patients 

with prostate and liver cancer. 

Keywords 

Image-guided interventions, prostate cancer, liver cancer, three-dimensional ultrasound, 

2D-3D image registration, 2D image segmentation, 3D image segmentation, real-time 

image processing 
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Summary for Lay Audience 

Medical procedures that use imaging are useful for diagnosis or treatment of patients as 

open surgery is often avoided, reducing the side-effects and time needed for healing. 

Needle-like tools are often used for managing diseases, like prostate and liver cancer, by 

taking samples for testing, bringing radiation directly into a tumor for treatment or heating 

small regions in the body to kill the cancer cells. Although the small tool sizes are helpful, 

higher physician skills are needed to read 2D images for understanding the 3D body while 

guiding these tools, which can lead to missed cancer diagnoses and treatments that have 

cancer recurrence. 3D information has been shown to reduce the occurrence of these poor 

procedure outcomes, but systems that generate 3D information are often expensive and 

make procedures longer. The goal of this work was to use 3D ultrasound (US) imaging 

with the software during image-guided prostate and liver cancer procedures.  

One software approach was created to correct for prostate motion and performed with small 

errors at more than 15 times per second when installed in our 3D US system. Another 

software approach was made to automatically recognize the prostate in 3D US images. This 

method performed in less than one second and had the same error as humans when tested 

on images from different procedures, demonstrating the multi-purpose potential of the 

software. A new 3D US system was made for guiding liver cancer therapy by controlling 

three motors to create new types of images and a clinical navigation procedure that guided 

therapy needles to targets identified in the images. The software was made for this system 

to recognize needles in 3D US images in less than one second, improving the speed that 

needle placements could be checked. Lastly, the software was made to automatically 

recognize needles in 2D US images from a large range of clinical procedures and areas in 

the body. We believe that this research will increase the use of image-guided needle 

procedures to help patients with cancer while taking advantage of the reduced side-effects 

and time for healing.  
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Chapter 1  

1 Introduction 

Image-guided medical interventions is a growing field that has many clinical applications 

from neurosurgery to cancer diagnosis and therapy.1 Recent advancements in hardware and 

software have benefitted this field from intra-operative tools in the form of tracking, 

visualization, and advanced image processing technologies, which provide easier and 

enhanced image guidance. Utilities such as image segmentation and registration are 

becoming necessities for physicians as they “potentially lead to shortened operation time, 

reduced radiation dose, minimized contrast medium, and most importantly, increased 

accuracy.”2 As the interest in minimally invasive procedures continues to rise, increasing 

image guidance accuracy will lead to increased dissemination and success of current 

approaches.  

Diagnosis and therapy of prostate and liver cancer can be pursued with image-guided 

interventional approaches, but currently suffer from undesirable limitations, such as high 

false-negative rates3 and local cancer recurrence.4 Accordingly, the focus of this thesis is 

to improve the accuracy and reduce user variability of image-guided interventions using 

lower-cost solutions that incorporate three-dimensional (3D) ultrasound (US) and 

advanced image processing techniques. This thesis is mainly focused on applications in 

prostate and liver cancer diagnoses and therapies, but applications to other relevant 

anatomies, such as gynecologic and kidney cancer, are provided to demonstrate the 

potential widespread impact of the investigated solutions. This work has the potential to 

detect clinically significant tumors earlier, result in fewer diagnostic and therapeutic 

sessions, determine appropriate treatment selection, reduce the local cancer recurrence 

after focal tumor ablation, and treat more complex tumor locations. The remainder of this 

chapter describes the current status of prostate and liver cancer prevalence (1.1), 

therapeutic options for patients with these disease sites (1.2), image-guided interventions 

(1.3) with selected image processing techniques (0) as alternatives to conventional therapy, 

and the unmet needs, hypothesis, and specific objectives of the thesis (1.5). 
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1.1 Motivation 

1.1.1 Prostate cancer 

Prostate cancer is the most commonly diagnosed non-skin cancer in Canadian men with 1 

in 9 males expected to be diagnosed with the disease in their lifetimes.5 This disease site 

accounted for 20.3% (22,900) of all new cancer cases, with 99% of cases occurring in men 

over the age of 50. Prostate cancer was projected to be the third most common cause of 

cancer deaths in Canadian males in 2019, but the mortality rate has been declining by 2.8% 

per year since 1994 and has the third-highest five-year net survival rate (93%) in most 

recent predictions.5 Although the disease is most often highly treatable, prostate cancer has 

a wide range of clinical presentation from slow-growing to fatally aggressive, which is 

characterized by a standardized numerical scoring system (i.e., Gleason score).6 

 

Figure 1.1 Local anatomy in the male pelvis surrounding the prostate. 
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The prostate is a gland of the male reproductive system located in the pelvis inferiorly to 

the bladder, posterior to the pubic symphysis, and anterior to the rectum (Fig. 1).7 This 

non-vital gland surrounds the urethra and contributes secretions in the formation of semen. 

The presence of disease can lead to symptoms such as frequent urination, blood in the urine 

and semen, as well as discomfort from an enlarged prostate.8 Although these symptoms 

can be difficult and sometimes intolerable, metastatic disease that spreads through the body 

is the primary concern as five-year survival rates are approximately 30% relative to almost 

100% for local or regional prostate cancer.9 This variability in survival correlating with 

disease aggressiveness stresses the need for earlier cancer detection before late-stage 

disease development and more aggressive treatments for high-risk disease.  

1.1.2 Liver cancer 

Liver cancer is one of the fastest rising cancers in Canada. While it only represents less 

than 2% of all new cancer cases, liver cancer incidence in Canada has been increasing in 

males (3.3%) and females (2.7%), second only to thyroid cancer, based on the average 

annual percent change between 1984 and 2015.5 More concerning are the annual changes 

in mortality rates since 1984, which shows that liver cancer is the highest statistically 

significant (p < 0.001) increasing change in males (3.1%) and females (2.2%).5 Once 

diagnosed with the disease, the prognosis is poor as liver cancer has the fourth-lowest five-

year net survival rate (19%). This rate is also an underestimate relative to other sources as 

it does not consider cancers of the intrahepatic bile duct or the large number of unspecified 

cases based on primary or metastatic classifications, which would increase the number of 

cases by 45.9%.5 

These statistics get worse on a global scale as liver cancer accounts for the fifth and ninth-

highest incidence rates for cancer and the second and sixth-highest mortality rates, for men 

and women respectively.10 One major cause for the high mortality rate is the asymptomatic 

nature of most primary liver cancers with very few to nonexistent traditional cancer 

markers, like bleeding and palpable lesions. This leads to large and late-stage tumor 

diagnoses that are less treatable with curative intent. However, improvements in early 

detection of liver cancer have been observed more recently, partially attributed to the 

widespread use of ultrasound screening for individuals at risk for liver cancer.11 
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Figure 1.2 Local anatomy in the abdomen surrounding the liver. 

The liver is the largest solid organ in the body located inferiorly to the diaphragm and 

normally resting against the lateral and anterior abdominal walls. It is predominantly 

divided into two lobes (i.e., right and left) by the falciform ligament, but it is often more 

finely divided into eight segments unequally distributed between the two lobes and in 

relation to the hepatic arterial, portal, and biliary drainage.7 The primary functions of the 

liver are to produce bile for digestion, process nutrients and drugs, and filter blood from 

the stomach and intestines. 

The most common subtype of liver cancer is hepatocellular carcinoma (HCC) and is highly 

prevalent in low-income and developing countries.11 Liver cancer is predominantly due to 

the incidence of hepatitis B and C viruses12,13 and is often preceded by cirrhosis (scarring), 

but includes other risk factors like excessive alcohol consumption, smoking, fatty liver 

disease, diabetes, obesity, and aflatoxin (produced by some fungi on crops, like corn and 

peanuts14) exposure.5,12 Although increases in mortality rates have been mostly attributed 

to hepatitis and alcohol consumption,12 universal vaccinations against hepatitis B have 

been shown to reduce the incidence of HCC with statistical significance.15 The liver is also 
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a frequent site for metastatic cancer originating from other parts of the body, such as the 

lung, breast, pancreas, gastrointestinal tract and lymphatic system.12 

1.2 Conventional therapeutic options 

1.2.1 Prostate cancer 

Over-diagnoses of prostate cancer has been a concern with the increased use of prostate-

specific antigen (PSA) for screening as many prostate cancers would not affect quality or 

quantity of life if left undetected.16 Recent Canadian guidelines in 2014 have mirrored the 

decisions from the United States Preventive Services Task Force to decrease PSA 

screening in men over 75 and asymptomatic men, which has resulted in a 9% decrease in 

the annual percent change for prostate cancer incidence since 2011.17 Although surgery, 

radiation, and drug-based therapies are effective in the management of prostate cancer, 

recent motivation has been focused towards conservative management techniques and 

focal methods of treatment.18 

1.2.1.1 Active surveillance 

Active surveillance refers to deferring treatment and observing patients with serial PSA 

assessments, repeated biopsies, and other recurring diagnostic exams to wait until low-risk 

disease shows signs of higher-risk and likely well within the window of opportunity for 

cure.19 Concerns with overtreatment of low-risk prostate cancer have led to increases in the 

number of patients recommended for active surveillance; for example, the percentage of 

patients with low-risk disease in the United States on active surveillance increased from 

15% to 42% in 2015,20 with the majority of increases in patients over age 75.9  

1.2.1.2 Radical prostatectomy 

Radical prostatectomy is a surgical procedure that completely removes the prostate gland 

and its attachments around the base of the bladder.7 This procedure is considered an 

excellent treatment option for patients with early prostate cancer;21 however, side effects 

include incontinence, impotence, and altered bowel habits with approximately 35% of 

patients experiencing biochemical recurrence within ten years.22 Following recent 
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guidelines to reduce overtreatment of low-risk disease, prostatectomies have declined from 

47% to 31% as of 2015.20 

1.2.1.3 Systemic treatments 

Advanced prostate cancer that has metastasized beyond the prostate is most often treated 

using androgen deprivation or chemotherapy.9 Androgens like testosterone and 

dihydrotestosterone are essential for the prostate and overexpression of the androgen 

signaling pathways are often observed in proliferating prostate tumor cells.23 Suppressing 

these hormones in the body is a foundational and mainstay treatment for advanced prostate 

cancer; however, not all prostate cancers respond to this form of therapy and many can 

develop into castration-resistant prostate cancer.24 The remaining treatment option is often 

chemotherapy with palliative intent,25 but the utility of involving chemotherapy at different 

stages of disease progression have been investigated.26  

1.2.1.4 External beam radiation therapy 

External beam radiation is a well-established form of therapy for low to intermediate-risk 

prostate cancer, with application to high-risk in some cases, and is often treated alone or in 

combination with androgen deprivation therapy.27 Radiation therapy is associated with 

improved long-term sexual function and urinary continence relative to prostatectomy, but 

patients have been observed to have worse bowel function and treatments are often long, 

typically requiring multiple weeks of treatment sessions.28 Recent evidence suggests that 

there is an increased risk of overall and prostate cancer-specific mortality compared to 

surgery for clinically-localized prostate cancer,29 but new techniques incorporating 

accurate imaging such as intensity-modulated and stereotactic radiation therapy have 

focused on increasing the dose-per-fraction to the prostate (reducing the overall physical 

dose), improving coverage of tumor volumes, and reducing adverse side effects through 

the use of smaller and more conformal fields.27,30 

1.2.1.5 Prostate brachytherapy 

Prostate brachytherapy refers to procedures where radioactive sources are implanted or 

brought within the prostate using needles, typically guided by a rigid template with 
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regularly spaced holes every 5 mm in a grid-like system. Prostate brachytherapy is most 

often used as a monotherapy to treat early, localized prostate cancer tumors31 and in 

combination with external beam therapy for intermediate and high-risk patients. This 

procedure involves either permanently implanting low-dose-rate (LDR) radioactive seeds 

or temporarily holding a high-dose-rate (HDR) radioactive source at specified positions in 

hollow needles based on calculated dwell time durations. Since the radioactive sources are 

implanted or temporarily held within the prostate, highly conformal dose distributions can 

be achieved with improved healthy tissue sparing of organs-at-risk, such as the bladder, 

urethra, and rectum, compared to external beam radiation.32 For intermediate and high-risk 

prostate cancer, brachytherapy can also be used to boost radiation dose to the tumor 

following external beam radiation therapy for a statistically significant benefit in 5-year 

biochemical-progression-free survival, but a complete understanding of long-term 

toxicities is still unknown.31 

1.2.2 Liver cancer 

Liver cancer is typically diagnosed using a combination of health history, physical and 

imaging examination, blood tests, and biopsy.33 Since the liver rests on the lateral and 

anterior abdominal walls, the liver is easily accessible and can be treated using open 

surgery or percutaneous (through the skin) approaches. Although it is generally understood 

that early detection of cancer can lead to improved survival outcomes, early-stage HCC is 

currently difficult to diagnose because it is usually a single, asymptomatic lesion measuring 

less than two centimeters in diameter, with no vascular or distant metastases.34 

1.2.2.1 Transplantation or resection 

Resection and transplantation have conventionally been the curative surgical options of 

choice for treating patients with HCC.35 This is either the removal of some of the liver 

segments or the entire organ, depending on the number, location, and spread of the 

disease.36 Surgical resection is usually considered for early-stage HCC with a single lesion 

less than three centimeters,35 sometimes with up to three lesions,12 as sufficient remaining 

liver function is necessary for survival.36 The presence of comorbidities, such as cirrhosis, 
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can increase the risk of HCC recurrence after liver resection and typically motivates the 

need for other treatment options, like transplantation.  

Transplantation is a desirable method for curing liver cancer as it has the potential to 

remove localized tumors and underlying cirrhosis, which presents as complications in other 

forms for therapy. Although transplantation is the preferred treatment modality for patients 

with solitary HCC, poor liver function, or multifocal HCC, patient eligibility is low, 

complications can be frequent and severe, and the lack of consistent donors leads to long 

waiting times.37 Both resection and transplantation are limited to approximately 10% to 

20% of patients36 and even if the patient is eligible for this type of procedure, complications 

rates have been observed to be approximately 26% in resection and 33% in 

transplantation.38 Also, conventional techniques to treat and manage individuals with liver 

cancer have been typically associated with high costs, both clinically and financially, with 

the scarcity of liver donors often leading to a preferential selection of other alternatives, 

such as liver ablation.12 

1.2.2.2 Chemotherapy 

Advanced-stage liver cancer that has spread beyond the organ to local nodes and distant 

sites or has invaded the portal or hepatic veins typically have very few options for therapy. 

Standard chemotherapy is not tolerated well and has not been shown to be effective in 

treating advanced HCC.12 The most recognized treatment option for advanced-stage liver 

cancer with well-preserved liver function is chemotherapy treatment with a molecular 

target agent, sorafenib, to slow tumor proliferation and angiogenesis, but overall survival 

is usually only extended by two to seven months.39,40 

1.2.2.3 External beam radiation therapy  

External beam radiation has been used increasingly in the treatment of liver cancer due to 

advances in planning and delivery that have improved sparing of the radiosensitive healthy 

tissue.12 Radiation therapy is most often ideal for early to intermediate-stage liver cancer 

and is most often recommended when other techniques are not possible or as a bridge to 

transplantation.41 Breathing motion and liver position changes can make it difficult for 



9 

 

radiation therapy, but advances in imaging and liver motion tracking have led to more 

investigation into conformal radiation delivery, dose-escalation, and fewer fractions of 

therapy.42 

1.2.2.4 Embolization 

Intermediate stage liver cancer typically refers to a multinodular disease that has either 

more than three lesions or two to three lesions with at least one greater than five 

centimeters.37 Patients showing signs of this stage are often treated with embolization,43 

with the most common form being transarterial chemoembolization (TACE), which 

focuses on inducing tumor necrosis by acute arterial occlusion with the addition of 

chemotherapeutic drugs.36 These are typically salvage or bridge therapies for patients with 

preserved liver function and do not usually have curative intent as complete necrosis is not 

typically achieved for larger tumors due to incomplete embolization and tumor 

angiogenesis.35 Approaches that combine TACE with other procedures have been 

investigated for tumors larger than three centimeters to make patients eligible for other 

curative approaches,44 with the use of TACE post-resection showing benefits compared to 

other anti-recurrence therapies.45 Embolization can also be performed using radiation 

sources, such as Yttrium-90, with evidence suggesting potential benefits for patients with 

advanced tumor stages and few treatment options.46 

1.2.2.5 Ablation 

Ablation techniques are considered the best treatment alternatives for HCC patients who 

are not eligible for surgical techniques.36 Tumor ablation is defined as the direct application 

of therapies to eradicate or substantially destroy focal tumors, either using chemicals or 

energy-based (i.e., thermal or non-thermal) approaches.47 These ablation approaches can 

include the use of ethanol, radiofrequency, microwave, freezing (cryo), laser, high-

frequency ultrasound, and irreversible electroporation.48 Therapy is applied through the use 

of applicators, such as electrodes in radiofrequency ablation (RFA), antennas in microwave 

ablation, or fibres in laser ablation, to provide a focal region of therapy. These procedures 

can be used in a palliative setting for pain management, but also has the potential for 

curative intent on early-stage or small tumors. For example, RFA is considered a first-line 
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treatment option for HCC in the liver49 and has been shown to have similar survival as a 

resection for solitary lesions less than five centimeters with well-preserved liver function.50 

Since these procedures have small incision sites, these minimally or less-invasive 

procedures have been observed to result in procedures with a rate of complications of less 

than 2%.51 In addition, these procedures are often associated with lower costs as treatment 

times, hospital stays, and the need for blood transfusions are reduced.34 

The most common treatment approaches for tumor ablation in the abdomen are either RFA 

or microwave ablation (MWA). These thermal methods both focus on the production of 

heat for tissue ablation but have different mechanisms of heat production that require 

different equipment and application techniques. RFA techniques use applicators that are 

needle-like and typically use a single monopolar active applicator, occasionally separating 

at the tip into multiple tines for a larger ablation volume, with a 375-500 kHz alternating 

current dissipating at one or more grounding pads to produce resistive heat.47,52 MWA uses 

needle-like applicators without the need for grounding pads and generates microwaves with 

a frequency between 915 MHz and 2.45 GHz to produce frictional heat from oscillating 

water molecules.52 Both techniques allow for multiple applicators to be placed, depending 

on the size and geometry of the lesion being targeted for therapy, but MWA can also allow 

for simultaneous activation of applicators to exploit electromagnetic field overlap. Aside 

from the current size of the MWA applicators, this method has the potential to offer 

improved performance over RFA.52 Although both methods have numerous benefits, one 

limitation is the proximity of lesions to large vessels as sufficient heating cannot be 

achieved due to the heat sink effect, which requires other forms of therapy. The placement 

accuracy of the therapeutic applicators is also critical for procedure success due to the 

percutaneous nature of these procedures and the focal volume of therapy. Unfortunately, 

current approaches have been observed to show a range of local cancer recurrence rates 

between 6-39% of patients treated for HCC or colorectal liver metastases.4,41,50,53 

1.3 3D Image-guided interventions 

Medical imaging can have an impact on nearly every aspect of interventions to achieve 

successful diagnostic or therapeutic outcomes. Classification for the use of medical images 
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throughout a procedure is most often separated based on five separate categories: planning, 

targeting, monitoring, modification, and assessment.54 With the wide use of digital images, 

recent advancements have focused on merging or fusing 3D images in different 

combinations from these categories, alongside image processing for clinical workflow 

improvements, for improving patient side-effects and outcomes in various image-guided 

interventions related to prostate and liver cancer.  

1.3.1 MR-TRUS fusion biopsy 

 
Figure 1.3 Image-guidance pipeline for MR-TRUS fusion-guided prostate biopsy. The 

prostate (yellow) and regions suspicious of cancer (red) identified in MRI can be targeted 

using real-time 2D US guidance for biopsy sampling after two image registration steps. 

Concerns of prostate cancer over-diagnosis with over-treatment and missed diagnoses 

using conventional biopsy techniques have led to the development of a targeted magnetic 

resonance (MR)-transrectal ultrasound (TRUS) fusion biopsy approach.55 The 

conventional technique for definitive diagnosis of prostate cancer is a template biopsy 

method that typically samples six to twelve tissue regions using biopsy cores guided by 2D 

US, which are processed and examined histologically for prostate cancer.56 In contrast, 

fusion biopsy uses preoperative multi-parametric MR images, including T1-weighted, T2-

weighted, diffusion-weighted, and dynamic contrast-enhanced imaging,57 fused with 

intraoperative US images to perform sampling of suspicious cancer regions determined 

using both image modalities. This forms an imaging pipeline where the preoperative MR 

3D MRI 3D TRUS 2D TRUS 

Preoperative Intraoperative 

Registration Registration 
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image is registered to an intraoperative 3D TRUS image, followed by a subsequent 

registration between the 3D TRUS image and live 2D TRUS images.58 Although MR-

guided systems without TRUS have been developed,59 this combination of imaging 

modalities allows for an outpatient procedure without costly interventional suites. The 

combination of US with multiple MR imaging sequences enables the physician to perform 

targeted biopsies based on the superior soft-tissue contrast and functional information from 

MR images, while still using real-time and lower cost image guidance provided from US 

imaging.  

One of the main factors contributing to the success of an MR-TRUS guided procedure is 

the detection of clinically significant prostate cancer. Clinically significant prostate cancer 

has been defined60 as a tumor with a volume greater than 0.5 cm3, which is comparable to 

a sphere with a radius of 5 mm. When using an MR-TRUS fusion approach, evidence has 

been shown that clinically significant prostate cancer is sampled more frequently and with 

fewer biopsy cores, leading to less detection of clinically insignificant cancer.61 Results 

from the Prostate MR Imaging Study (PROMIS) showed that primary biopsy can also be 

avoided in approximately 27% of patients and MR images can also be used to direct TRUS 

biopsy to detect 18% more cases with clinically significant prostate cancer,62 potentially 

reducing the misdiagnosis and overtreatment of prostate cancer. 

1.3.2 3D US-guided brachytherapy 

Brachytherapy approaches rely on the accurate guidance of needles to place radiation 

sources at planned locations to achieve sufficient therapy while sparing healthy organs at 

risk. Prostate cancer applications typically use 2D US as the standard of care for guiding 

approximately 10-20 needles to planned locations as it is portable, inexpensive, real-time, 

and does not use ionizing radiation.63 Based on an accurate volume and shape of the 

prostate relative to the inserted needles, radiation plans can be computed and optimized to 

produce 3D patient-specific therapies.64 Methods have been investigated to incorporate 

CT65 or MR66 images for planning, but the widespread use of US has many practical 

advantages as the entire procedure can be completed without moving the patient, which 

saves time, resources, and clinical costs.67 However, 2D US images rely on the subjectivity 

of the physician to mentally form an impression of the 3D anatomical space, which can 
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introduce variability when determining needle positions relative to their intended targets 

for therapy and away from organs at risk, such as the rectum and urethra.68 These images 

also do not inherently allow for the required accurate 3D prostate volume and shape for 

gland dose calculation, requiring interpolation and approximations based on limited fields-

of-view.  

Generating 3D US images for prostate brachytherapy can provide a solution for the 

limitations of conventional 2D US techniques and can be acquired using different 

geometries depending on the transducers available and structures of interest. End-fire 

transrectal ultrasound (TRUS) probes are often used for biopsy procedures as they can 

allow for improved sampling in the sagittal and transverse sections of the prostate,69 but 

are often difficult to use during brachytherapy when inserting multiple needles at a time 

and correlating the US images relative to the guidance template. Side-fire TRUS probes 

can take advantage of sagittal transducer elements, which generate submillimeter spatial 

resolution in the needle insertion directions that can lead to <1 mm tip localization 

uncertainty during prostate brachytherapy.70 Side-fire probes can also be combined with 

transverse US elements to form biplane probes for accurately identifying the central cross-

section of the needles for determining 3D needle trajectories and offer simple pull-back 3D 

US image reconstruction with the use of commercial steppers (Civco Medical Instruments, 

Iowa, United States). 

Motorized 3D US systems have been developed for prostate brachytherapy applications to 

provide consistent and repeatable image reconstructions while enabling approaches to 

return the US probe to implants at later time points.71,72 3D US systems have also been 

developed for brachytherapy applications treating breast73 and gynecologic cancers,74 

which similarly requires the precise placement and identification of needles for sufficient 

therapy and avoiding organs-at-risk. Regardless of the anatomical location being treated 

with 3D US-guided brachytherapy or the chosen dose-rate approach, localizing needle tips 

and trajectories accurately is necessary for correct computation of dose plans. 
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1.3.3 Image-guided ablation 

The use of CT, MR, and 2D US imaging for the five main categories of image-guided 

interventions have been investigated for increasing the feasibility and scope of focal 

ablation procedures in the liver. CT images provide a versatile utility for ablation 

procedures as they are used preoperatively to identify the presence of cancer (typically 

using intravenous contrast material),54 intraoperatively for intermittent images with partial 

access during applicator insertions and verification of placement,75 and postoperatively for 

follow-up.76 CT fluoroscopy can be used for near real-time intraoperative imaging, but 

radiation exposure to the patient and personnel is a major consideration.77  

MR images have also been used as they offer advantages such as improved soft-tissue 

contrast, nonionizing radiation, and the potential for real-time treatment monitoring,78 but 

intraoperative access to the patient is often limited and the need for real-time images 

typically reduces the achievable image resolution and contrast,79 all with higher associated 

costs. The use of 2D US for real-time image feedback is beneficial when placing 

therapeutic ablation applicators intraoperatively in the treatment of liver cancer and also 

does not use ionizing radiation. However, similar to issues experienced in biopsy and 

brachytherapy, these images can increase the burden on the physician as they need to 

mentally reconstruct the complex anatomy, which can introduce subjective image guidance 

variability. These 2D US-guided insertions also require extensive training to interpret the 

US images, perform image and applicator alignment for real-time tracking of the applicator 

insertion, and verification of the final placement to assess expected therapeutic margins. 

CT, MR, and 2D US images all have aspects that make them advantageous for image-

guided ablation procedures, but variability in therapy applicator image-guidance still 

remains, which leads to the insufficient placement of therapeutic applicators, contributing 

to the local cancer recurrence rates as discussed in Sec. 1.2.2.5. 
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1.4 Image processing in image-guided interventions 

1.4.1 Image-based registration 

Image registration is an image processing technique that spatially aligns two or more 

images of the same scene taken from different times, viewpoints, and/or image 

modalities.80 Use of the image signal intensity information to perform spatial alignment 

refers to image-based registration techniques, which can be performed in multiple ways 

and is dependent on the choices made on four main components: image similarity metric, 

optimization approach, transformation degrees-of-freedom (DoF), and interpolator.81 In 

general, the image similarity metric provides the quantitative measure for comparing 

different transformations sampled using an optimization approach, with voxel interpolation 

to resample the image in the new coordinate system. Transformations can be performed 

simply using image translations and rotations, as in a rigid approach, up to complex 

operations like pixel-wise deformations, as in a non-rigid deformable approach.82 These 

choices not only influence the accuracy of an image-based registration approach but also 

the computer computation time required to perform the operations, which can be an 

important factor for practical implementation during procedures with intraoperative image-

guidance. 

1.4.2 Image-based segmentation 

Image segmentation, labeling, or contouring refers to the process of classifying image 

pixels or identifying boundaries corresponding to image regions that share relevant 

characteristics, like an organ or an interventional tool.83 This can be done manually by 

drawing regions in the image or identifying points that are later joined using defined 

assumptions, which is often the gold-standard method for an image segmentation task. 

However, due to the user-required effort, this is often a time-consuming process that can 

be a limiting factor for clinical workflow, as is the case for some intraoperative 

interventions like MR-TRUS fusion biopsy. Since this limitation can occasionally prevent 

the clinical adoption of image-guided interventions, the frequent investigation into semi-

automated and fully automated methods are performed to ease the burden on the user.84 
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Artificial intelligence is a broad umbrella term that is defined as any device that perceives 

its environment and takes actions that maximize its chance of success at some goal.85 

Recent efforts into fully automated segmentation methods have focused on data-driven 

approaches, such as convolutional neural networks (CNNs), which reduce the amount of 

user selection when determining relevant image features for discriminating image regions, 

referred to as hand-crafted features in traditional machine learning.86 Data-driven 

approaches are performed by supplying an algorithm with previously acquired data and 

allowing optimization methods to determine the relevant image characteristics through 

training of model parameters. This approach is often referred to as deep learning, which 

can be either performed using a supervised approach, where images with previously 

identified regions are provided for training, or an unsupervised approach, where only the 

images are given and the algorithm tries to automatically determine inferences without 

training labels. The development of graphics processing units (GPUs) has made deep 

learning approaches more feasible as they allow for highly parallel and simultaneous 

computational processing, unlike more traditional central processing units.87 While 

supervised learning requires more effort to produce a large enough dataset with required 

annotations, typically performed manually, unsupervised learning is more challenging and 

often requires larger datasets to determine reliable inferences. However, providing 

annotations for supervised deep learning tasks is often performed manually, which can 

incorporate errors and biases into the trained deep learning network.88 

1.5 Challenges in image-guided interventions 

1.5.1 Previous work and unmet needs 

1.5.1.1 Motion compensation during MR-TRUS fusion biopsy 

Performing image-based registration during MR-TRUS guided biopsy has been 

investigated previously to correct for intraoperative patient and prostate motion for 

accurate needle delivery. Accurate needle sampling during fusion biopsy is typically 

achieved when errors from four main sources throughout the workflow are minimal, 

namely (1) the mechanical guidance system,55 (2) MR-3D TRUS multi-modal 

registration,89 (3) 3D-3D TRUS preprocedural initialization and intraoperative 
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correction,90 and (4) 2D-3D TRUS motion compensation.58 In the last form of correction, 

real-time image guidance is performed using live 2D TRUS images, typically on a US 

system with an image refresh rate of approximately 15 frames-per-second, providing the 

information needed for an image-based registration.  

Since the patient is awake and not constrained or intubated during the MR-TRUS fusion 

biopsy, prostate motion arises due to sources including the respiratory cycle, the cardiac 

cycle, and general patient motion from discomfort and response to audible feedback from 

the spring-driven biopsy gun. TRUS transducer pressure caused by the physician can also 

change throughout the image-guided procedure, potentially leading to prostate 

deformations. These sources of motion can cause target misalignment,90 which increases 

needle targeting errors and the chance of missing cancer suspicious regions based on the 

registered MR image. To accurately sample a target, recent work has shown that a needle 

delivery system, including hardware and image-guidance software, requires an overall 

delivery error of 1.6 mm to sample a tumor of 1 cm3 with 95% probability.91 

2D-3D TRUS registration has been performed with promising results using a normalized 

cross-correlation (NCC) similarity metric and a Powell optimization to determine rigid 

registration corrections.58 The choice to use an NCC similarity metric is beneficial for 

single modality registration problems as it does not rely on the computation of derivatives, 

which can be time-intensive and often unknown, while also inherently being suitable for 

computational parallelization on simultaneous threads provided by GPU hardware. These 

advantages allow for faster processing and lower overall computation times, with the 

potential to be performed throughout the course of a fusion biopsy. However, computation 

times must be less than or equal to the displayed images to provide a seamless appearance 

without lag, which is often necessary for usability. In addition to physician usability, a 

continuous and automatic approach has the potential to compound errors throughout the 

procedure based on previous misalignments and has not been investigated. 

1.5.1.2 Prostate segmentation in 3D TRUS 

3D image-guided procedures in the prostate, such as MR-TRUS fusion biopsy and 

brachytherapy, rely on the identification of the pixels and boundary of the prostate gland 
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in 3D TRUS images for performing necessary workflow tasks like accurate needle 

guidance, gland volume computation, and dose calculations. Conventional workflows 

typically rely on the gold standard manual identification of the prostate in these images, 

but this process is time-consuming and can be variable due to physician subjectivity, which 

can increase the risk to patients during procedures that use anesthesia.92 Therefore, the 

investigation into automatic approaches for prostate segmentation in 3D TRUS images 

potentially provides an effective solution for providing a fast and objective method to 

improve clinical workflow during 3D US-guided prostate procedures. 

3D TRUS prostate segmentation that is partial or fully automatic has been previously 

investigated and has been shown to be feasible in numerous publications.93–96 

Unfortunately, 3D TRUS prostate segmentation still remains a clinically unmet need as 

investigated methods have lacked clinical translation due to computation complexity and 

time. Most recently, the data-driven approach of CNNs have been investigated to address 

these issues,97,98 but minimal evidence of robustness to variable clinical datasets has been 

shown as these methods have been applied to specific and limited dataset sizes. 3D TRUS 

images previously investigated are typically from a single US machine and one acquisition 

geometry with matched voxel dimensions and sizes, which can limit understanding of 

performance, especially when pursuing cross-validation approaches. Additionally, 

comparison between previous publications can be challenging when not assessed on the 

same dataset and when reported evaluation metrics are not consistent. 

1.5.1.3 Image-guidance during focal liver tumor therapies 

Focal liver tumor therapies rely on the accurate guidance of ablation applicators to provide 

sufficient cancer therapy. Procedures that incorporate 3D information, such as CT 

imaging,99 MR imaging,78 and electromagnetic tool tracking,100 have been shown to 

improve targeting accuracy that leads to higher clinical success rates on first ablation 

attempts and fewer sessions overall when compared to conventional techniques.101,102 

However, these methods can be limited in widespread adoption as factors like increased 

procedure times, patient radiation dose, sophisticated and costly interventional suites, and 

environmental limitations can make these approaches less feasible. Therefore, a clinical 
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need exists for a cost-effective intraoperative approach that can help physicians improve 

the image guidance to lesions for sufficient cancer therapy without local recurrence. 

3D US is an alternative method for image guidance that can provide real-time 

intraoperative imaging that is portable and able to provide multiplanar images for 

visualizing complex anatomy and focal therapy ablation applicators.103,104 Similar to a 

prostate fusion biopsy or brachytherapy workflow, a mechanical 3D US system has been 

previously developed that has the potential to provide a lower-cost guidance system for 

accurately targeting lesions based on targets derived in 3D US or other image modalities if 

registered.105 While this system provided sufficient proof-of-concept information on 

clinical feasibility and validation of needle positions within 3D US images, clinical 

usability was limited due to factors like manual locking components, scanner bulkiness, 

and a lack of tracking information for guidance, and was never investigated for performing 

active navigation to prospective targets. 

1.5.1.4 Segmentation of therapy applicators in 3D US liver images 

3D US imaging and systems like the one described in Sec. 1.5.1.3 have the potential to 

improve focal liver tumor therapies by increasing visualization of anatomy, reducing the 

mental burden and complexity for physicians, and enabling accurate localization of therapy 

needle-like applicators. Although 3D US has the potential to provide benefits to these 

procedures, increasing the visual information presented to the physician could add time to 

the procedure and visibility of the needle applicators can change depending on factors such 

as insertion angle, depth, applicator diameter, and choice of US transducer.106 Providing 

automation to applicator identification based on image information may provide a low-cost 

solution to reduce the time required for verifying applicator positions, especially during 

multi-applicator insertions, increasing the feasibility of incorporating 3D US into focal 

liver tumor ablation therapies. 

Existing methods for image-based 3D US applicator segmentation have primarily focused 

on other needle applications for the prostate,107 breast,108 heart,109 and anesthetic 

administration,110 where factors affecting needle visibility are drastically different. Deep 

applicator insertions up to 30 cm and steep insertion angles relative to the US transducer 
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result in challenging images for determining tip and trajectory information necessary for 

assessing the expected therapeutic volumes in focal liver ablation therapies. A clinical 

dataset on liver patients has also not been investigated and could present unexpected issues 

relative to current work on other applications and benchtop experiments. 

1.5.1.5 Segmentation of tools during 2D US interventions 

Identifying and localizing needle-like tools intraoperatively is a common need in image-

guided interventions that conventionally use 2D US imaging, such as biopsy, 

brachytherapy, and ablation, for guiding these tools to perform accurate diagnoses and 

therapies. Although technology like 3D US imaging has the potential to improve tool 

localization and verification, as described in Sec. 1.5.1.4, 2D US is still the clinical standard 

at most institutions for image-guided interventions. Thus, clinical needs for improving 

guidance still exist for providing optimal therapy while minimizing risks to healthy tissue 

and to avoid adverse events like local cancer recurrence.111 By using technology like 

image-based segmentation for automatic tool segmentation, a low-cost solution with the 

potential for widespread accessibility could be provided in these situations without the need 

for additional equipment, signal processing, and operating room set-up. Once tools are 

accurately identified, additional information can also be displayed, such as providing 

ablation volumes relative to the tip location in focal liver ablation therapies to predict 

therapeutic margins during applicator insertion, which could potentially improve clinical 

workflow and reduce the need for repeated adjustments and reinsertions.  

Recent efforts focusing on automatic image-based tool segmentation in 2D US images have 

investigated the use of data-driven approaches, like CNNs, to provide robust methods with 

fast computation times for image-guided interventions.112,113 Using annotated datasets for 

training deep learning networks, applications in procedures with steep needles112 and 

kidney biopsy113 have shown promising results for using CNN approaches. Although tools 

in many interventional procedures have similar needle-like appearances, most approaches 

for image-based tool segmentation in 2D US images are application-specific and lack 

evidence for generalizability, such as evaluation on other anatomical applications, US 

systems and acquisition settings, and variable tool visibility. 
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1.5.2 Hypothesis 

The central hypothesis of this thesis is that the incorporation of 3D US and advanced image 

processing techniques will increase the accuracy and reduce the user variability of image-

guided interventions in the management of prostate and liver cancer. 

1.5.3 Objectives 

The objectives of this thesis are to: 

1. Develop an automatic motion correction algorithm approaching the frame rate of 

an US system to be used in fusion-based 3D TRUS prostate biopsy systems. 

2. Develop a pre-insertion automatic deep learning-based approach to segment the 

prostate for biopsy and brachytherapy applications in 3D TRUS images. 

3. Develop a geometrically variable 3D US mechanically assisted system to guide and 

verify the placement of therapy needle applicators in focal liver tumor therapy. 

4. Develop a semi-automatic approach for identifying therapy needle applicators in 

3D US images from focal liver tumor therapies. 

5. Develop a general and automatic deep learning-based approach for identifying 

needle-like tools in 2D US images from various image-guided interventional 

procedures. 

1.6 Thesis outline 

The overarching goal of this thesis is to address the specific thesis objectives in five 

manuscripts (Chapters 2 to 6). 

Chapter 2: Real-time registration of 3D to 2D ultrasound images for image-guided 

prostate biopsy 

Patient motion can be continuous or intermittent throughout MR-TRUS prostate biopsy 

procedures and causes misalignment of the MR-derived targets during targeted biopsy 

workflows. This chapter describes our work to develop a real-time and continuous motion 
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compensation algorithm for automatic registration of 2D and 3D TRUS images. 

Retrospective patient images were used for adapting, developing, and optimizing the real-

time capabilities of a previously published approach58 through the use of a GPU, image 

downsampling, 2D area-of-interest cropping, and optimization search space direction 

initialization. The optimized algorithm was implemented on a 3D TRUS-guided system 

and evaluated on a tissue-mimicking prostate phantom with embedded spheres. This 

phantom was mounted on a translation and rotation stage to compare the real-time 

registration method against a single user-initiated correction for known displacements. 

The optimized continuous registration method was shown to significantly reduce 

registration times compared to a user-initiated method and resulted in sub-millimeter and 

sub-degree registration errors for both approaches. By continually registering images, 

optimization search spaces are often small between subsequent image frames and led to 

reduced iterations for convergence. This work was novel as it developed the first approach 

to achieve 2D to 3D TRUS image registrations that resulted in computation times 

approximately at the frame rate of an US system. This provided an approach to improve 

clinical workflow during image-guided prostate biopsy procedures. 

Chapter 3: Automatic prostate segmentation using deep-learning on clinically diverse 

3D transrectal ultrasound images 

3D TRUS imaging has been shown to benefit needle-based procedures for diagnosing and 

treating prostate cancer (i.e., biopsy and brachytherapy); however, these images require the 

physician to manually or semi-automatically segment the prostate, which is time-

consuming and difficult, often occurring while the patient is under sedation or anesthesia. 

This novelty and literature contributions of this chapter focuses on the development of a 

new deep learning-based approach to automatically segment the prostate in a clinically 

diverse 3D TRUS dataset. Modifications were made to a previously published deep 

learning U-Net architecture114 and 3D TRUS images were acquired from different 

procedures (biopsy and brachytherapy), acquisition geometries (end-fire and side-fire), and 

ultrasound systems. We developed a 3D segmentation method involving deep-learning 

predictions on 2D radial slices, followed by reconstruction into a 3D surface, to exploit the 

utility of the 3D TRUS dataset and take advantage of the approximately spherical nature 
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of the prostate. This method was compared to fully 3D approaches and evaluations were 

performed on an extensive variety of metrics to provide a comparison to other published 

methods and a baseline for future comparisons. 

The automatic prostate segmentation method performed with significant improvement over 

fully 3D approaches and other recently published methods. The automatic prostate 

segmentation method on 3D TRUS images was shown to be fast, accurate, and 

generalizable, providing promising results for clinical translation and application to other 

3D TRUS geometries (i.e., pull-back 3D TRUS images). This method has the potential to 

decrease overall clinical procedure times and anesthesia risks during prostate biopsy and 

brachytherapy. 

Chapter 4: Geometrically variable three-dimensional ultrasound for mechanically 

assisted image-guided therapy of focal liver cancer tumors 

Image-guided focal liver ablation procedures provide numerous benefits compared to other 

liver cancer therapeutic techniques, such as reduced recovery times and complication rates; 

however, insufficient targeting and coverage of ablation volumes have been shown to limit 

these procedures and the scope of eligible patients. This chapter is on the development and 

evaluation of a novel geometrically variable 3D ultrasound scanner, mechanically assisted 

system, and 3D-printed therapy applicator guide to provide methods for imaging and 

guiding focal ablations to the diverse anatomical locations and presentations of liver 

tumors. The system was evaluated for image reconstruction with a grid phantom, tracking 

system accuracy when compared to optical tracking, image-guidance using three different 

navigation approaches in end-to-end mock ablation phantom procedures, and clinical 

feasibility through healthy volunteer imaging.  

The system resulted in ≤3% mean geometric reconstruction errors, <7% volumetric 

reconstruction errors, and <2 mm mean tracking system errors. A combined navigation 

approach that used the scanner motors and tracking system for in-plane image corrections 

resulted in the best performing mean needle targeting errors with <4.3 mm based on 

external cone-beam CT imaging. Healthy volunteer imaging resulting in good qualitative 

images and evidence for sufficient clinical feasibility. Our system provides approaches for 
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improving liver tumor therapy targeting and has the potential for application to other 

abdominal interventions and widespread accessibility to developing countries. 

Chapter 5: Three-dimensional therapy needle applicator segmentation for 

ultrasound-guided focal liver ablation 

The 3D US system described in Chapter 4 can benefit from the addition of software tools 

to improve clinical workflow and improve localization of applicators in focal liver tumor 

ablation therapies. Local cancer recurrence remains high in these procedures and current 

limitations still exist for verifying applicator positions in 3D US liver images. This arises 

since localization accuracy is impacted by factors including the applicator insertion angle, 

depth, and size, in addition to the choice of the transducer and local anatomic acoustic 

reflections. This chapter focuses on the development and evaluation of a new 3D US semi-

automated therapy applicator segmentation algorithm for in-vivo 3D US clinically imaged 

applicators used in focal liver tumor ablations. While general needle-like segmentation 

algorithms for 3D US have been discussed in the literature and tested on tissue mimicking 

models, such as agar, chicken breast, bovine, and porcine tissues, this work is novel as it 

provides evaluation on in-vivo clinically acquired 3D US images, which has not been 

reported for the unique imaging characteristics of needle applicators used in percutaneous 

liver tumor ablations. 

The segmentation method aims to provide an intraoperative tool using a single point to 

reduce the complexity of the segmentation problem. Optimization was performed on 

homogeneous tissue-mimicking phantoms prior to a user study on clinical 3D US images.  

Trajectory, axis localization, and tip localization errors were evaluated and suggested the 

approach could be useful in a clinical environment when paired with a 3D US system. 

Chapter 6: A deep learning method for general needle and applicator segmentation 

in two-dimensional ultrasound images from multiple applications and anatomical 

regions 

Many image-guided interventions rely on the temporal resolution of 2D US to perform 

optimal needle-like tool insertions for achieving sufficient diagnoses and treatments of 

cancer. Accurate identification of tools in these images can be challenging with previously 

investigated software methods developing application-specific approaches for automatic 
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tool segmentation. This chapter is on the development of a new general deep learning-

based approach with post-processing to automatically segment tools in 2D US images for 

a wide range of clinical procedures. This can be paired with other interventional tools, such 

as those described in Chapters 4 and 5, to further improve the clinical workflow and 

targeting of needle-like tools. Unlike any other approach, this method was evaluated on a 

clinically diverse dataset from prostate and gynecologic brachytherapy, liver ablation, and 

kidney biopsy and ablation procedures, where tool appearance drastically varies. 

Segmentation performed the best when using a random sample consensus post-processing 

technique, but at the cost of increased segmentation time. Image-guided interventions with 

tools parallel to the US probe surface (i.e., prostate and gynecologic regions) performed 

the best due to tool contrast and decreased performance was observed as tool angulation 

increased (i.e., in liver and kidney regions). Our method was able to perform predictions 

of these tools in near real-time and provides the potential for improving image guidance 

during a broad range of cancer interventions. 

Chapter 7: Conclusions and future work 

This chapter focuses on the overall conclusions of the previous chapters and will discuss 

future work that could potentially address remaining unmet needs from this thesis. 
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Chapter 2  

2 Real-time registration of 3D to 2D ultrasound images for 

image-guided prostate biopsy 

Real-time registration has the potential to continuously compensate for prostate motion 

during 3D TRUS-guided biopsy and may increase the accuracy of targeted biopsy 

approaches. The purpose of Chapter 2 is to present on the development of an automatic 

registration algorithm for 2D and 3D TRUS images. 

The contents of this chapter have previously been published in Medical Physics: Gillies 

DJ, Gardi L, De Silva T, Zhao S, and Fenster A. Medical Physics 2017; 44(9):4708-4723. 

Permission to reproduce this article was granted by John Wiley and Sons and is provided 

in Appendix B – Copyright Releases. 

2.1 Introduction 

Prostate cancer is a global burden, representing the second highest incidence of 

noncutaneous cancer found in men.1 Although prostate biopsy is the current clinical 

standard for definitive diagnosis of cancer, the efficacy of the conventional procedure lacks 

sensitivity with false negative rates up to 30%.2,3 During the past decade, investigators and 

companies have developed improved prostate biopsy techniques over the conventional 

transrectal ultrasound (TRUS) based sextant biopsy.4–7 Fusion biopsy is a notable method 

that involves an image fusion pipeline, which can register and overlay pre-procedural 

magnetic resonance (MR) images and biopsy targets onto a live, intra-operative 2D TRUS 

image. This approach typically employs a multi-step image registration process and has the 

ability to guide biopsy needles to suspicious localized tissues. With the widespread interest 

in fusion biopsy, the method is becoming predominant with the availability of commercial 

fusion prostate biopsy systems (e.g., UroNav, Artemis, BiopSee, Urostation, Virtual 

Navigator, and HI RVS/Real T time Virtual Sonography). Using these devices and others 

like them, many clinical investigations and studies are currently underway to verify if there 

is an improvement in cancer diagnosis over the conventional procedure.8–12 As a result of 

increased scrutiny, image guidance during prostate fusion biopsies has been identified as a 

method to improve the detection rates of cancer and depends on accurate targeting to 

correctly grade the aggressiveness of prostate cancer.13,14 To guide biopsy needles to their 

intended targets, image fusions resulting from accurate registrations of the preoperative 3D 
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MR and 3D TRUS images to the live 2D TRUS images are critical to reap the benefits of 

multimodal imaging. Any image misregistration between these planning and intraoperative 

images can prevent correct localization or display of intended targets, which can lead to 

missed cancer diagnoses.  

Methods to improve image guidance have been focused on refining different algorithms 

used in the multi-step image fusion pipeline. Previous studies have investigated how to 

accurately register preoperative 3D MR images to 3D TRUS images for biopsy target 

planning15–17 and also for 3D TRUS to 3D TRUS registration for preprocedural 

initialization and intraoperative correction.18,19 However, in an ideal situation where these 

registration techniques reduce the error to a negligible amount, needle guidance error 

remains hindered by external influences, such as prostate motion. Prostate motion due to 

TRUS transducer pressure and patient motion due to needle pain unrelieved by local 

anesthesia will cause misregistration of the intended MR identified targets with their actual 

locations. In these instances, motion of the prostate can be in the form of sudden, random 

reflexes or slow, systematic shifts and develops as procedural time increases. It is during 

the live 2D TRUS image registration step when the current image fusion pipeline can fail. 

Since the final stage of the current fusion pipeline aims to link all prior data to the live 2D 

TRUS image, it is crucial that this registration performs with sufficient accuracy. 

Misalignment between live 2D TRUS images and preoperative MR or 3D TRUS images 

has been observed up to 10 mm after initialization.19 It has also been shown that the number 

of attempts required to sample a clinically significant tumor increases as needle delivery 

error of a biopsy system increases.20 Among other techniques, 3D to 2D registration is 

invaluable to reduce needle delivery error and has been investigated in a broad spectrum 

of interventions.21,22 Therefore, to compensate for misalignment error caused by prostate 

motion, two correction methods are feasible: 1) performing a single, intermittent user 

initiated registration correction before firing the biopsy needle, and 2) automatic, 

continuous correcting for any prostate motion throughout the biopsy procedure. With the 

first solution, image fusion would be displayed throughout the procedure, but a user would 

determine when to perform a correction based on observed image dissimilarities. Although 

a short registration time is acceptable, decreasing the computational time to less than 1 or 
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2 seconds is not a priority. Since this approach requires user interaction, current registration 

procedures are performed in an acceptable amount of time while the user focuses on 

preparation of the biopsy gun and biopsy sample. With a continuous scheme, corrections 

can be performed in the background without any user interaction, registering preoperative 

image data, targets, and segmentations automatically. Procedures can be completed more 

effectively by reducing the number of steps that require user attention, which can reduce 

procedure times and patient discomfort. These proposed motion correction methods for the 

prostate should not exceed a registration error of 2.5 mm, which has been previously 

suggested based on the smallest clinically significant tumors with an approximate 5 mm 

radius.19,23 Keeping in mind that clinical translation is the key objective, image corrections 

performed at a real-time rate are also necessary to improve overall usability since user 

distraction can result if display lag is present. Thus, in the context of a TRUS-guided 

biopsy, we define real-time to be at or near the approximate frame rate of a conventional 

ultrasound system (i.e., greater than 15 Hz or a new frame less than every 67 ms) typically 

used for a prostate biopsy procedure. However, real-time corrections for prostate motion 

requires fast and robust live 2D TRUS registration to the 3D TRUS image acquired at the 

beginning of the procedure, which contains the MR identified targets. Occasional mis-

registrations due to lack of robustness may cause large aggregated misalignments in a 

continuous approach, whereas in a user-initiated, interactive approach, any unsatisfactory 

registrations could be disregarded and repeated at the user’s discretion, possibly acquiring 

more useful data.24 Therefore, real-time 2D TRUS to 3D TRUS registration to correct for 

any prostate motion while using an automatic, continuous strategy remains a challenging 

problem to solve.  

Recent work addressing 3D to 2D registration for prostate interventions has been focused 

on reducing registration error and improving image guidance by incorporating MR images 

and deformation estimation. With the use of a preprocedural 3D TRUS image to manually 

initialize the approximate location of a preoperative MRI, Zhang et al.25 proposed an 

automatic rigid registration method to fuse preoperative MR images directly to live 2D 

TRUS images during brachytherapy. Promising registration results were shown with target 

registration errors (TREs) of 1.37 mm and 2.52 mm for phantom and patient studies, 

respectively, corresponding to registration times of approximately 1 and 3 seconds 
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following their 3D TRUS manual initialization step. Although these registration times were 

shorter than previous attempts,7 this is still too slow for continuous real-time performance. 

As a solution for deformation occurring during prostate biopsy, Baumann et al.26 presented 

a 3D ultrasound based tracking system that performed a two-step registration procedure. 

First, rigid registration was performed on patient data with a TRE of 1.4 ± 0.8 mm and an 

execution time of approximately 2 seconds. Using deformation estimation to perform a 

deformable registration, they showed a reduction in registration error to a TRE of 0.8 ± 0.5 

mm with an increased total registration time of approximately 7 seconds. The authors also 

provided an excellent discussion on the tracking errors present during targeted biopsy. With 

importance focused on accuracy, intra-operative usability is lacking in these techniques 

due to computation time restrictions from increased complexity of the algorithms. 

Although patient anatomy is deformable, the majority of prostate motion is rigid.27 While 

registration error can be decreased with a deformable registration, a recent study compared 

deformable and rigid registration methods intra-operatively, concluding no significant 

differences were found when detecting clinically significant prostate cancers.28 

Considering the feasibility of a rigid registration approach and the current limitation of 

computational speed, real-time registration and improved intra-operative usability seems 

to be readily achievable through rigid registration methods since they perform at a reduced 

computational cost. 

Our group has previously shown29 a fully automated intensity-based rigid registration 

algorithm to align 3D TRUS images acquired directly before performing a biopsy 

procedure to live 2D TRUS images acquired immediately before tissue sampling. Our 

algorithm had a TRE of 1.87 ± 0.81 mm when tested on retrospective clinical images with 

total registration times of approximately 1.1 s. The algorithm was also tested when 

performed every second and was shown to have a reduced TRE of 1.63 ± 0.51 mm. By 

reducing the computation time further, it is anticipated a real-time motion compensation 

scheme would help improve targeting accuracy and smooth clinical translation when 

compared to an intermittent approach to motion compensation. With our previous results 

and clinical motivation, an objective of this work was to perform 2D TRUS to 3D TRUS 

registration in real-time, defined to be at or near the approximate frame rate of an 

ultrasound system (i.e., greater than 15 Hz). Real-time computations approaching the frame 
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rate of an ultrasound system are necessary to provide a responsive feedback system, 

capable of correcting motion without user interaction to improve image guidance intra-

operatively. In this paper, we present image registration and optimization techniques to 

reduce registration times and provide a direct comparison to our previous implementation 

with patient TRUS biopsy images. After implementing the optimized registration 

algorithm on our previously developed biopsy system,4 phantom tests were performed to 

evaluate the feasibility and potential real-time motion correction capability of the 

algorithm. 

2.2 Materials and methods 

2.2.1 2D-3D image-based registration 

The workflow for our motion compensation technique is shown in Figure 2.1 and is based 

on the assumption that preoperative MRI to 3D TRUS registration (with segmentations 

and/or annotations) has been accurately completed. Both 2D and 3D TRUS images 

acquired during the procedure are loaded into a graphics processing unit (GPU) and a 

mechanical tracker transformation30 is used to place the images in a common coordinate 

system, referred to as the world coordinate system. The origin of the world coordinate 

system is initialized at the tip of the TRUS transducer, establishing the biopsy system that 

is based on a remote center-of-motion guidance approach.30 This allows any motion of the 

3D TRUS image, 2D TRUS image, and biopsy system to be applied around the initial 

TRUS transducer tip location during registration. With the mechanical encoder readings 

on the joints of the biopsy system, the 2D image is transformed to the world coordinate 

system to initialize its pose as a plane in the 3D image prior to registration. 
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Figure 2.1 Proposed automatic image-based registration workflow. All steps in the “2D/3D 

registration” box would contribute to the total computation time of the algorithm; image 

pre-processing of the 2D image was included in “2D/3D registration” since this step would 

need to be completed as the images are being acquired during the procedure. The 

normalized cross-correlation is computed between the moving 3D image and the fixed 2D 

image for each iteration until termination criteria is reached. When the algorithm 

converges, a final rigid transform is generated and applied to the 3D image. 
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To compute 3D to 2D registration, a variation of the algorithm previously proposed by De 

Silva et al29 was developed to achieve fast and robust performance. A normalized cross-

correlation (NCC)31 similarity metric was optimized with Powell’s method,32 using the 

Insight Segmentation and Registration Toolkit (ITK)33 framework, in a rigid search space 

comprising of three rotations and three translations. Since rotations and translations 

constitute disproportionate units, the scaling between different directions in the search 

space was an important parameter during registration optimization. The scaling parameters 

were selected based on maximum observed rotational and translational displacements in 

our previous study29 such that 6° rotation and 10 mm translation attribute to the same 

amount of displacement in the 6 DoF search space. This created a common parameter 

space with uniform and unitless spacing, permitting the use of simplified and unitless 

termination criteria during optimization.  

Since Powell’s method requires multiple iterations to converge, with each iteration 

consisting of multiple line optimizations in each DoF, a one-dimensional optimization sub-

algorithm was necessary. The golden section search (GSS)32 technique was chosen since it 

does not require derivative calculations, resulting in a low computational cost. Also, the 

GSS is more computationally efficient than a conventional bisection approach since it 

recycles previous points when varying the bracketed interval in which the optimum is 

predicted to exist in a single line direction. When employing the GSS technique and 

minimizing the search space, a parameter step tolerance and an NCC metric tolerance were 

defined as termination criteria for optimization. These tolerances were compared to the 

change at each DoF (i.e., step taken during optimization) and the change in NCC metric 

values at each iteration to terminate when near or at the local optimum. Based on 

preliminary tests, parameter step tolerances were set at one-thousandth of the expected 

image displacement ranges (i.e., 0.01 mm and 0.006°) and the NCC metric tolerance was 

set to 0.0001. In certain circumstances, if the current DoF being searched is initialized at 

its optimum, the algorithm will terminate prematurely even with image dissimilarity 

present due to misalignment in the remaining DoFs. To avoid this scenario where these 

tolerances are reached prematurely due to the lack of progress along a single DoF, the 

algorithm was forced to search each DoF at least once to always complete a full cycle when 

searching the parameter space. After successful optimization, a 3D rigid transformation 
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was output and used to estimate the pose of the 3D TRUS image to correct for any prostate 

motion during the procedure, as displayed in the live 2D TRUS image. This enabled the 

resulting 2D TRUS plane from the 3D TRUS image to be displayed during the procedure. 

To provide continuous motion compensation, the algorithm initialized the 3D pose of the 

subsequent images according to the previous image’s resulting registration transformation. 

This initialization approach was performed for three reasons: (1) Powell optimization 

performs well when adjusting for small corrections near local minima since it is typically 

used on unimodal objective functions, (2) an initialization close to the function minimum 

increases the speed of convergence, and (3) it is assumed that motion will be minimal 

between real-time 2D TRUS images (< 1 mm and < 1°) acquired at 15-50 Hz. This 

procedure will henceforth be referred to as the continuous method. 

2.2.1.1 Estimating the optimal scale for registration 

The optimal amount of image information necessary to accurately perform registration can 

vary depending on the available anatomical details, while increasing image size burdens 

computational cost. Thus, the optimal scale of the images being registered is an important 

parameter considering the tradeoff between accuracy and computational cost. In our 

methods, we investigated downsampling of 2D and 3D TRUS images by factors of 2, 4, 

and 6 without any averaging (binning). The 2D images were additionally cropped, centred 

on the image, to remove information outside an area of interest (AOI) containing the 

prostate. The AOI boundaries were chosen outside the approximate prostate anatomical 

boundary for the largest prostate sizes. Computation times and registration errors were 

computed for each downsample factor to determine the optimal sampling factor that would 

decrease the registration time without increasing registration error. 

2.2.1.2 Estimating the optimal area of interest 

Since the AOI within 2D TRUS images determines the amount of anatomical detail 

included in the registration, we investigated the AOI size as a variable in the study by 

performing repeated registrations for different AOI sizes and measuring the resulting 

registration accuracy and time. After masking the template 2D TRUS images to exclude 
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embedded text/annotations, the largest AOI containing ultrasound intensity information 

was found to be 570×466 pixels. Using this size as a template and an upper AOI limit, a 

constant width to height aspect ratio (1.22:1) was maintained when cropping the 2D image. 

Beginning with the smallest AOI at 100×82 pixels, the width was iteratively increased by 

12 pixels (with the complementary height) until a final AOI was reached at 568×466 pixels. 

Computation times and errors were determined when completing the registration at each 

AOI, which included the process of masking and cropping the 2D image, as shown in 

Figure 2.1. The registration time encompassed this process to resemble a scenario when 

the 2D TRUS image would be acquired from the frame grabber directly from the ultrasound 

system during a continuous registration method.  

2.2.1.3 Direction search order of optimization 

Finding an acceptable registration between images is dependent on how an algorithm 

searches through 3D space. Conventionally in Powell’s method, search directions are 

updated after each iteration to increase the speed of convergence by predicting the direction 

containing the largest improvement of the cost function. Search direction is predicted by 

replacing the vector containing the largest improvement with the most similar direction 

from the previous iteration in an attempt to avoid linear dependence between search 

directions. With this strategy, the method can be used to optimize a continuous function 

with an unknown underlying mathematical definition.32 With subsequent iterations 

determining search directions empirically, it is generally thought that the method is 

insensitive to initial search direction order. Even though the direction search vectors are 

updated when the optimization is continued beyond the first iteration, the initial search 

vector order of optimization is an important factor that prioritizes certain directions during 

search space traversal. Increased initialization misalignments from the target alignment can 

make the algorithm more susceptible to converge at a local optima of the NCC metric.29,34 

In these instances, it is helpful to avoid these local optima by estimating the line direction 

that achieves the target extrema quickly and correctly. To study the effect of initial search 

direction order on registration accuracy, two search orders were explored: rotation vectors 

initially optimized before translation vectors (referred to as the rotations first scheme) and 
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translation vector optimization followed by rotations (henceforth called the translations 

first scheme). 

2.2.2 Experiments 

2.2.2.1 Clinical image acquisition 

The image acquisition details have been described in De Silva et al.29 and are summarized 

here. Preoperative 3D TRUS images were acquired using our mechanically assisted 3D 

TRUS-guided biopsy system. Utilizing encoders, a commercially available end-firing 5–9 

MHz TRUS transducer probe (Philips Medical Systems, Seattle, WA) was mechanically 

tracked to reconstruct a 3D TRUS image from a series of 2D views. These 2D views were 

masked to remove extraneous system information (e.g., patient information, image scale, 

etc.) by changing the image intensity data outside the TRUS image field to 0, shown in 

Figure 2.2a. After reconstruction, the 3D image was then cropped to a rectangular bounding 

box, reducing the image size to 448×448×350 voxels with dimensions of 0.18×0.18×0.19 

mm3, shown in Figure 2.2b. The coordinate system initialization and 3D image 

reconstruction occurred only once and at the beginning of the procedure, requiring 

approximately 3 seconds. After acquiring the 3D TRUS image, 2D TRUS images were 

saved before firing the biopsy gun at predefined biopsy target locations. Similar to the 3D 

TRUS image, these 2D images were masked to remove extraneous information, resulting 

in a total image size of 640×480 pixels and pixel dimensions of 0.18×0.18 mm2. These 

images were inputs for the registration algorithm running on an i7-4770 central processing 

unit (CPU) at 3.40 GHz (Intel Corporation, Santa Clara, CA) with Compute Unified Device 

Architecture (CUDA) C++ to accelerate the NCC calculation on a GeForce GTX TITAN 

GPU (NVIDIA Corporation, Santa Clara, CA). Implementation and computation speed of 

the NCC calculation was improved by parallelizing the computations by dividing the total 

image matrix into 19,200 blocks with 16 threads per block. 

2.2.2.2 Accuracy evaluation 

The target registration error (TRE)35 was assessed by calculating the RMS error between 

manually annotated corresponding fiducial pairs in the 2D and 3D TRUS images (white 

arrows shown in Figure 2.2). A total of 45 intrinsic fiducial pairs were identified from 7 
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patients (14 biopsy needles) to calculate TRE with an average of 3 fiducials per image pair. 

Since registration is performed using image intensities, the 45 fiducial pairs were chosen 

once in the original images (i.e., no downsampling) and provided the same pre-registration 

point clouds to be used for post-registration comparisons. Variability (i.e., fiducial 

localization error (FLE)) associated with manual localization of the fiducials,35 has been 

previously reported to be 0.11 mm in the 2D TRUS images30 and 0.21 mm in the 3D TRUS 

images.18,19 

 

Figure 2.2 Example (a) 2D and (b) 3D TRUS images after masking and cropping before 

registration computations. The hypoechoic bladder can be seen in the superior portion of 

the images with the prostate below containing microcalcifications indicated by the white 

arrows. 

2.2.2.3 Phantom image acquisition 

Registration method validation using clinical images was limited to the presence of 

calcifications in the 2D TRUS images to define ground truth motion. Since a subset of the 

frames in a real-time live 2D TRUS video sequence may not contain such anatomical 

landmarks, we performed a phantom study to comprehensively analyze the performance of 

the algorithm in compensating for prostate motion in real-time. An agar-based tissue-

mimicking phantom of a prostate model4 was fabricated that contained beads embedded in 

a surrounding agar background to provide texture.6,36 The prostate model, beads, and 

background were constructed by adding 7% by mass of glycerol solution with agar powder 

to produce a speed of sound similar to that of human tissue (1540 m/s).37 The prostate mold 

(a) (b) 
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model was generated from a segmented 3D TRUS image of a human prostate and enlarged 

anisotropically in anterior/posterior, superior/inferior, and left/right dimensions 

(77:50:36)38 to a volume of 60 cm3. The agar beads and background material contained 

cellulose (15% by weight) and were used to create acoustic backscattering, providing 

hyperechoic regions in the TRUS images. The agar beads were created with diameters of 

3.18 mm and 4.76 mm from standard spherical molds, cooled, and placed in the prostate 

mold before the model was filled with non-cellulose agar. The prostate model was then 

suspended in a polycarbonate box using fishing line so the surrounding background agar 

could be added in a single pour and allowed to cool for 24 hours. This was performed to 

avoid layering interfaces in the background agar typically observed when a suspension 

technique is not used.  

The primary forms of motion that were encountered during a prostate biopsy included in-

plane and out-of-plane translations relative to the 2D TRUS image, as well as rotations 

around the long axis of the ultrasound probe. The user initiated and continuous registration 

methods as described below were investigated using this phantom to assess registration 

performance when compensating for translation and rotation motions in real time. 

2.2.2.3.1 Translation range testing 

Patients are not anesthetized during a prostate biopsy and we have observed some motion 

in the form of a translational offset. To simulate these motions, the fabricated prostate 

phantom was mounted on an independent and movable stage, as shown in Figure 2.3. This 

stage was used to validate the registration accuracy of our algorithm for known in- and out-

of-plane translations since it was capable of generating 1 micrometer increments in 

translation. After positioning the TRUS probe at the centroid of the prostate phantom and 

acquiring a 3D image, 3D to 2D registration was performed incrementally (after locking 

the tracking system) by translating the phantom and registering the resulting live 2D 

images. In a first approach, the registrations were performed manually at each translation 

increment, independently of previously performed registrations; this procedure will be 

referred to as the user initiated method. The registrations were repeated at 1 mm translation 

increments until reaching a maximum measured displacement of 12 mm, which captures a 
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range comparable to translation motions observed clinically.19 This process was repeated 

over ten trials to assess variability and robustness of the user initiated motion compensation 

algorithm. To validate continuous motion correction and provide comparison to the user 

initiated method, a similar procedure was performed that added incremental initializations 

from previous registrations. At each increment, micrometer translation was paused to 

obtain 2D images, transformation matrices, and computation times before continuing to the 

subsequent translation. This process was repeated over five trials (due to length of 

experimental setup and image acquisition) to assess variability and robustness of the 

continuous motion compensation algorithm. After completing data acquisition for one 

direction (e.g., in-plane translation), the TRUS probe was rotated by 90°, a new 

initialization matrix was generated, and the entire experiment was repeated for both 

methods to perform the registration for an additional translation motion. 

As an approach to evaluate the error of the registration algorithm, the offset difference from 

the initialization matrix to the output registration result was calculated since the translation 

distance was known and thus provided a ground truth. This error metric was chosen since 

it was less labour intensive and avoided any errors due to manual fiducial selection used to 

compute a TRE calculation. Although the translation was intended for a single translation 

direction, the RMS displacement was determined from the 3-vector offset difference to 

account for any minor setup errors that would cause 3D errors in overall motion. The offset 

difference was calculated for each increment to obtain mean differences paired with 

corresponding mean computation times. Since we intended to compare the continuous 

method directly to the user initiated method, the first corrected transformation matrix 

acquired for each increment was used to compute the offset difference from the 

initialization matrix. This corrected transformation matrix was determined for each 

increment by searching for the first TRUS frame output with no observed motion, 

representing the frame when micrometer translation was paused. 
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Figure 2.3 Phantom set up during testing of in-plane translation range when using the 

continuous motion compensation method (Multimedia view online). The live experimental 

setup can be seen on the left where the live 2D TRUS image is taken from the US machine 

and shown in the bottom right. After completing 3D to 2D registration, the resulting 

registered image plane in the 3D TRUS image is displayed, seen in the upper right. 

2.2.2.3.2 Roll rotational range testing 

Rotation around the long axis of the TRUS transducer was another type of motion we 

observed during prostate biopsy and was another type of motion we simulated to test our 

registration algorithm. Since there are no suggested rotational tolerances present in the 

literature, a rotational tolerance was justified based on the previous19,23 target TRE of 2.5 

mm to determine a target rotational error. Using our image width of 448 pixels with voxel 

dimensions of 0.18 mm, if a rotation about the center of the 3D image space is assumed, 

then the region most susceptible from a rotational error will be present near the edges of 

the image. An error of 2.5 mm located at the edge of the image (i.e., 224 pixels or 40.32 

mm from the center) corresponds to a rotational tolerance of 3.55°.  

Keeping this target in mind, we performed displacement tests to determine the rotational 

motion compensation range of the algorithm. To test rotational motion, the TRUS probe 

was positioned at the center of the base of the prostate phantom to acquire a 3D image. The 
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initialization transformation matrix was recorded and the mechanical tracking encoders 

were disabled to ensure the registration algorithm was performed without updated 

initializations. Although tracking was not performed, mechanical encoder values were still 

displayed and used to track the rotation of the TRUS probe around its long axis to determine 

rotations. This probe rotation was performed instead of a phantom rotation purely for the 

ease of operability. Similar to the translation procedure in the previous section, 3D to 2D 

user initiated image registration was performed by registering the live 2D image after 

incrementally rotating the TRUS probe. After each step, the algorithm was reinitialized 

using the original mechanical encoder transformation, without using previous registration 

outputs. This reinitialization ensured that the user initiated registration started from the 

same position for each subsequent rotational increment. Similar to the translational range 

testing, we repeated this registration procedure in approximately 1° increments until 

reaching a maximum measured rotation of 15°. Although our expected clinical rotation 

was 6°, this limit was chosen to potentially reveal the point of unreliable motion 

compensation. Motion compensation was repeated over ten trials to obtain a mean 

difference error and computation time for each increment. For comparison with the 

continuous motion correction, initialization and corrections were not reset between 

registrations, consistent with the translation testing procedure. Rotational motion was 

paused at each increment to obtain 2D TRUS images, transformation matrices, and 

computation times before continuing to the subsequent increment. This protocol for 

continuous motion compensation was repeated over four trials to obtain a mean rotation 

difference paired with a mean computation time for each increment. 

Since the rotation angle was known, the difference 3 × 3 rotation matrix (𝑻𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 

between the corrected registration (𝑻𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) and initialization (𝑻𝑖𝑛𝑖𝑡𝑖𝑎𝑙) rotation 

matrices was calculated by 

 𝑻𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = (𝑻𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
−1 × 𝑻𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑. (2.1) 

The corresponding rotation can be calculated from 

 
𝜓 =  tan−1 (

𝑡2,1

𝑡1,1
), 

(2.2) 
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where 𝑡1,1 and 𝑡2,1 are the 𝑻𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 matrix elements in the first and second rows of the 

first column.39 

Similar to the translation experiment, we compared the continuous method to the user 

initiated method by using the first corrected transformation matrix acquired at each motion 

increment to compute the rotation difference from the initialization matrix. This corrected 

transformation matrix was determined for each increment by searching for the first TRUS 

frame output with no observed motion, representing the frame when probe rotation was 

paused. 

2.2.2.4 Statistical methods 

Statistics calculations were performed using SPSS Statistics v.24.0.0.0 (IBM Corp., 

Armonk, NY, USA). To check if our image data followed a normal distribution, normality 

was evaluated using a Shapiro-Wilk test. Nonparametric statistical tests were used where 

appropriate and are presented in parentheses for the remainder of this section. Results were 

considered significant when the probability of making a type I error was less than 5% (p < 

0.05).  

Since our previously acquired patient images were tested for every downsample factor, a 

one-way repeated measures ANOVA (Friedman) test was used as an omnibus test prior to 

any post-hoc analysis. If significance was found, a Bonferroni correction was used, 

resulting in a significance level set at p < 0.017 for our post-hoc analyses conducted using 

Tukey's honestly significant difference (Wilcoxon signed-rank) tests. To determine if there 

is an initialization distance correlation with the accuracy of registration, linear regressions 

were plotted using Prism 7.00 (Graphpad Software, Inc., La Jolla, CA, USA) to show the 

TRE trends. The user initiated and continuous correction methods were compared using t-

tests (Welch t-tests) after in-plane, out-of-plane, and roll motion corrections for error and 

computation time distributions. 
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2.3 Results 

2.3.1 3D to 2D registration optimization on clinical images 

Interaction effects during optimization of the three tested algorithm settings were 

investigated and a brief overview of the results are shown in Figure 2.4. Linear regressions 

were added to provide an estimate of the trends observed for the TRE distributions as 

initialization offset was increased.  Although more AOI comparisons were completed, the 

smallest error was observed when downsampling by a factor of 4, cropping to an AOI of 

356×292, and optimizing the search space by translations first. In the three subsequent 

sections, each parameter was investigated independently while holding the other settings 

constant. As a reminder and disclaimer for the reader, all presented TRE results in Sections 

2.3.1 and 2.3.2 are susceptible to a small bias introduced when manually selecting fiducials. 

This should be considered when comparing changes in TRE. 

2.3.1.1 Estimating the optimal scale for registration 

Estimating the optimal scale for motion compensation was performed with an input AOI 

of 356×292, while optimizing the search space by translations first. Normality was tested 

using the Shapiro-Wilk test with significance found for factors 2 and 6, for both TRE and 

time, suggesting non-normal distributions were present. Nonparametric measures are 

shown in Table 2.1 for TRE and computation times after downsampling the 2D and 3D 

clinical ultrasound images by factors of 2, 4, and 6. A repeated measures Friedman test was 

performed for both TRE and time, which failed to show a statistically significant difference 

between the distributions of downsample factors, but showed statistical significance when 

comparing computation times (p < 0.001). Post-hoc analysis with the nonparametric 

dependent-samples Wilcoxon signed-rank test was conducted between the computation 

times for the three downsampling factors. Significant differences (p < 0.01) between all 

downsample factor combinations was found. A downsampling factor of 4 was determined 

to be the optimum rate for our application since the median and third quartile were below 

the 2.5 mm target TRE in addition to a decrease in computation time. The corresponding 

median computation time of 55 ms was observed, which is a factor of 20 times smaller than 

previously achieved.29 This computation time from registering patient images converts to 
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a rate of 18.2 Hz, which is greater than our real-time definition of 15 Hz. Thus, this 

reduction in computational time enables motion compensation to be performed as a 

background software process to continuously register live, real-time streams of 2D TRUS 

images. 

 

0 2 4 6 8 1 0

0

2

4

6

8

1 0

W h o le  Im a g e  (5 6 8 x 4 6 6 )

T
R

E
 (

m
m

)

R o ta tio n  F irs t

T ra n s la tio n  F irs t

0 2 4 6 8 1 0

0

2

4

6

8

1 0

S a m p le  A O I (3 5 6 x 2 9 2 )

D o w n s a m p le  2

0 2 4 6 8 1 0

0

2

4

6

8

1 0

T
R

E
 (

m
m

)

0 2 4 6 8 1 0

0

2

4

6

8

1 0

D o w n s a m p le  4

0 2 4 6 8 1 0

0

2

4

6

8

1 0

In it ia l D is ta n c e  f ro m  O p t im u m  (m m )

T
R

E
 (

m
m

)

0 2 4 6 8 1 0

0

2

4

6

8

1 0

In it ia l D is ta n c e  f ro m  O p t im u m  (m m )

D o w n s a m p le  6

 

Figure 2.4 An overview of the main interactions observed when optimizing downsampling 

factor, cropping AOI, and search order. 
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Table 2.1 Effect of downsampling 2D and 3D images on TRE and computation time for 

14 patient images. 

Image Downsample  

Factor 

 Median TRE  

[Q1, Q3] (mm) 

 Median Computation Time  

[Q1, Q3] (ms) 

2  1.37 [1.08, 2.24]  97 [92, 137] 

4  1.40 [1.14, 2.31]  55 [41, 64] 

6 
 1.71 [1.17, 2.71]  30 [24, 34] 

 

2.3.1.2 Estimating the optimal area of interest  

The optimal AOI was determined with an optimal downsampling factor of 4, while 

searching translations first. The AOI in the 2D images was iteratively increased from 

100×82 pixels with results for computation time and TRE shown in Figure 2.5. A slight 

increasing trend in computation times (Figure 2.5a) was observed over the range of AOIs. 

When analyzing TRE to find the ideal AOI (Figure 2.5b), a decreasing trend was initially 

observed until reaching a minimum at approximately 356×292 pixels, followed by a slight 

increase and plateau. The observed minimum of the TRE, reduced variability, and the 

minimal change in computation time led to the selection of a 356×292 AOI for the biopsy 

application. However, due to the bias in the TRE when manually selecting fiducials, an 

AOI in the range of 316×259 to 364×298 would equally be justified. 
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Figure 2.5 Scatter plots of the mean ± standard deviation registration computation time (a) 

and median [Q1, Q3] TRE (b) as the AOI size in the 2D image was increased. The 

asymmetric area of the AOI was scaled in a width:height ratio of 1.22:1, corresponding to 

the aspect ratio of the largest AOI achievable. 
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2.3.2 Direction search order of optimization  

The main direction search order results are shown in Figure 2.4. When using the whole 

image as an input, similar TRE distributions were observed between all downsample 

factors when comparing the rotations first strategy. The translation first method was unable 

to register large initial offsets when using a downsample factor of 2, but was similar to the 

rotation method when comparing the other downsample factors. When using the cropped 

AOI input, all translation first TRE results were reduced relative to the whole image input 

for each downsample factor. However, cropping had minimal influence when optimizing 

rotations first, with an exception at a downsample factor of 4 since it was unable to register 

the largest initial offset images effectively.  

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

0

2

4

6

8

1 0

P a t ie n t  T r ia l

T
R

E
 (

m
m

)

R o ta tio n  F irs t

T ra n s la tio n  F irs t

 

Figure 2.6 The TRE between translation first and rotation first direction search order 

schemes on 14 patient image sets. Images used for registration were downsampled by a 

factor of 4 with the 2D images cropped to an image size of 356×292. 

When comparing direction search order TREs for downsampling by a factor of 4 and 

cropping to an AOI of 356×292 (Figure 2.6), normality was tested using the Shapiro-Wilk 

test with statistical significance found for the rotations first scheme (p < 0.05). The median 

± interquartile range (IQR) for TRE computed for the rotations first search was 2.18 ± 3.82 

mm compared to the translations first median TRE of 1.40 ± 1.17 mm (previously stated 

in Section 2.3.1.1). Since we know that the algorithm is susceptible to converge 

prematurely when the initialization is further from the target alignment, both search order 

schemes were compared to identify any trends using a Spearman's rank-order correlation. 

The initialization distances between the 2D and 3D images before registration and the 
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corresponding post-registration errors had a strong, positive correlation (0.644) using the 

rotations first scheme, which was statistically significant (p < 0.05). 

The TREs calculated from fiducials before registration (i.e., following encoder pose 

initialization) and after registration for the translations first search scheme was compared 

as it yielded better registration performance. Using a Shapiro-Wilk test of normality, the 

distribution of image distances before registration was shown to be not normally distributed 

(p < 0.05). The TRE frequency distributions before and after registration is shown in Figure 

2.7 with a median RMS error before registration of 3.41 ± 3.26 mm with the corresponding 

median TRE of 1.40 ± 1.18 mm after registration. Analyzing the post-registration group 

further, 10/14 image pairs (71%) were less than a real-time computation time of 67 ms and 

13/14 image pairs (93%) were less than a TRE of 2.5 mm. Since there could be some 

variability from manual point selection, we investigated a margin around 2.5 mm equal to 

the FLE measurement for the 3D TRUS and 2D TRUS images combined in quadrature 

(i.e., 0.237 mm). This resulted in a range from 10/14 (71%) of image pairs below a 2.263 

mm error to 14/14 (100%) of image pairs below a 2.737 mm error. We used the Wilcoxon 

signed-rank test to compare medians of distances to the desired target plane before and 

after registration, which showed a statistically significant difference when correcting for 

position (p < 0.01). 

 
Figure 2.7 Histograms of the distance calculated between 2D and 3D image pairs from the 

manually chosen intrinsic fiducial markers before (a) and after (b) registration using a 

translation first search order after pose initialization. 
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2.3.3 Validation: phantom experiment 

A summary of the total mean difference from measured displacement and the mean 

computation time for both registration methods and the three types of motion is 

summarized in Table 2.2. 

Table 2.2 Mean differences and computation times of the user initiated and continuous 

registration methods for translation (in-plane and out-of-plane) and rotational motion. 

Method  Motion  Mean Difference  
Mean Computation  

Time (ms) 

Before registration 
 Trans  6.0 ± 3.7 mm  

  Rot  8.0 ± 5.2 °  

User initiated 

 In  0.4 ± 0.3 mm  108 ± 38 

 Out  0.2 ± 0.4 mm  60 ± 23 

 Rot  0.8 ± 0.5 °  89 ± 27 

Continuous 

 In  0.2 ± 0.3 mm  35 ± 8 

 Out  0.7 ± 0.4 mm  43 ± 16 

 Rot  1.2 ± 1.0 °  27 ± 5 

 
Figure 2.8 Sample prostate phantom images before and after registration for out-of-plane 

and in-plane translational motion. Images from real-time 2D TRUS are shown in the left 

column. In the middle column, the initialization 3D TRUS image planes obtained before 

registration display image misalignment when compared to the 2D TRUS view. 3D TRUS 

image planes in the right column demonstrate motion compensation capabilities after 

registration. Grid lines were superimposed following registration to provide spatial 

reference between image frames. 

In-Plane 

Out-of-Plane 

Live 2D TRUS image 

registration target 
3D TRUS image plane 

initialization 

3D TRUS image plane 

after registration 
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2.3.3.1 Translation range testing 

Sample prostate phantom images of the 2D TRUS live view, the 3D TRUS initialization 

plane, and the calculated 3D TRUS plane after registration are shown in Figure 2.8. 

Example setup and image registration results from the continuous motion compensation 

method are also presented in Figure 2.3 (Multimedia view). An error and computation time 

comparison between the user initiated method with the continuous method is shown in 

Figure 2.9 after testing the in-plane and out-of-plane translational range. The average 

difference between the corrected registration translation offset and the measured 

micrometer translation is shown for the user initiated method (Figure 2.9a) and the 

continuous method (Figure 2.9b). When observing the mean difference errors for both 

correction methods, the mean difference error metric never exceeded 1.25 mm over the 

entire translation range, falling below half of the 2.5 mm target error. When performing a 

user initiated correction, out-of-plane motion displacements were observed to be corrected 

with a smaller mean error when compared to in-plane motion. Conversely, the continuous 

registration achieved a reduced mean error when correcting in-plane motion. Comparing 

the two methods with respect to error for each motion, out-of-plane motion was corrected 

significantly better with the user initiated method (p < 0.001) and no difference was found 

for in-plane motion. In the same figure, the corresponding computation times are shown 

for the user initiated method (Figure 2.9c) and the continuous method (Figure 2.9d). For 

the user initiated method, the out-of-plane motion correction computation time had a lower 

overall variance and consistently fluctuated around 60 ms. Computation times showed an 

increasing trend when correcting for in-plane motion as the translational displacement was 

increased, plateauing around 4 mm. From the user initiated method results, all trials for 

both motions were below an error of 2.5 mm, but only 20/130 (15%) of in-plane and 97/130 

(75%) of out-of-plane trials were less than a real-time computation time of 67 ms. When 

performing a continuous registration, all trials for both motions were below an error of 2.5 

mm and computation times were significantly lower than the user initiated correction for 

in-plane (p < 0.001) and out-of-plane (p < 0.01) motions. In addition, the continuous 

method showed 65/65 (100%) of in-plane and 57/65 (88%) of out-of-plane trials less than 

a real-time computation time of 67 ms. 
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Figure 2.9 Comparison between registration procedures when testing the in-plane and out-

of-plane translation compensation range. In the top row, Euclidean translational differences 

between measured and expected values are shown for the user initiated procedure (a) and 

the continuous procedure (b). Dotted lines represent a target tolerance of 2.5 mm. The 

corresponding computation time results for the user initiated procedure (c) and the 

continuous procedure (d) are shown in the bottom row. Standard deviation error bars are 

not shown when shorter than the height of the symbol. The dashed line represents the target 

computation time of 15 Hz or 67 ms. 

2.3.3.2 Roll rotational range testing 

The comparison between the user initiated method and the continuous method is shown in 

Figure 2.10 for rotational motion compensation. The average rotation difference between 

the corrected registration and the measured encoder angles is shown for the user initiated 

method (Figure 2.10a) and the continuous method (Figure 2.10b). In both methods, all 

differences were smaller than our rotational tolerance of 3.55° with a maximum mean 

difference of 2.3 ± 0.8° observed in the continuous method at a 12° displacement. Although 

the continuous method was observed to have an increasing error near the end of the tested 

rotations, no overall significant difference was found when compared to the user initiated 
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method. This increasing trend also occurs beyond the expected rotations of 6°, making this 

finding less of a concern for clinical translation. The computation times for the user 

initiated method is shown in Figure 2.10c, and the continuous method in Figure 2.10d. The 

user initiated method had an overall computation time of 89 ± 27 ms with a much larger 

variance compared to the continuous method with 15/90 (17%) of trials less than an error 

of 3.55° and a real-time computation time of 67 ms. Similar to Sec.2.3.3.1, the computation 

time for the continuous method was observed to be significantly reduced (p < 0.001) and 

nearly constant with a mean computation time of 27 ± 5 ms. The continuous method also 

had 36/36 (100%) of trials less than an error of 3.55° and a real-time computation time of 

67 ms. 

 
Figure 2.10 Comparison between registration procedures when testing the roll rotation 

compensation around a clinically expected value of 6°. In the top row, rotational difference 

results between measured and expected values are shown for the user initiated procedure 

(a) and the continuous procedure (b). Dotted lines represent a target tolerance of 3.55°. The 

corresponding computation time results for the user initiated procedure (c) and the 

continuous procedure (d) are shown in the bottom row. Standard deviation error bars are 

not shown when shorter than the height of the symbol. The dashed line represents the target 

computation time of 15 Hz or 67 ms. 
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2.4 Discussion 

In current TRUS-guided prostate biopsies, tracking systems generate transformation 

matrices and are used to display corresponding MRI image data, as well as preoperatively 

delineated segmentations and annotations that exist in a separate volume. With the use of 

a motion compensation module, computational resources will still need to be used for the 

existing guidance system. Therefore, motion compensation registration times reported in 

this study was shown as the additional time needed for an existing a TRUS-guided 

procedure. 

2.4.1 Optimal amount of image information for registration 

With an optimal downsampling factor, the registration computation time decreased with 

statistical significance for our clinical prostate images, without an increase in error 

compared to results reported by De Silva et al.29 For our 3D image size of 448×448×350 

pixels, a downsample factor of 4 was chosen, which provided a median and third quartile 

below a 2.5 mm target TRE (1.40 [1.14, 2.31] mm) and helped to reduce the registration 

time from approximately 1.1 s to 55 [41, 64] ms. Since the comparison of TREs failed to 

show statistical significant differences, we performed an equivalence test40,41 using an 

approximate 90% confidence interval (CI) on the median of differences using GraphPad 

Prism 7.00. An equivalence interval of ±0.24 mm was determined by combining the FLE 

measurements in quadrature for the 3D TRUS (0.21 mm) and 2D TRUS (0.11 mm) images. 

The results in Table 2.3 failed to show statistical equivalence between all downsample 

factors and support the decision to determine the optimum downsample factor as 4. 

Table 2.3 Equivalence test results of TRE for downsampling factors. 

Downsample 

Factor Comparison 

 94.26% Median CI 

 Lower  Upper 

2 – 4  -0.1665  0.2815a 

2 – 6  -0.4793a  0.0550 

4 – 6  -0.3855a  -0.0742 

aGroups are not equivalent with interval = ±0.24 mm 
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Although having a downsample factor reduced the number of NCC computations, it also 

reduced the amount of information that needed to be transferred through system memory 

from the CPU to the GPU. Therefore, by reducing the amount of image data, a reduction 

in computation times arised from a reduction in data transfer from the CPU to the GPU as 

well as a reduction in the number of computations. As a reminder for the reader, only TRUS 

image data is needed to compute a transformation matrix on the GPU. Once the algorithm 

determines the correction matrix, the transformation can be applied on the CPU to any 

additional data (i.e., MRI or segmentation data) in a short amount of time that is comparable 

to what is currently performed using a tracking system. 

Although downsampling may introduce aliasing,42 this was not believed to be a 

consequential issue for our registration application since we maintained a median TRE 

below 2.5 mm as the downsampling factor was varied. However, even though our TRE 

was below an acceptable tolerance of 2.5 mm, reducing the image size used for registration 

could be removing fine detail structures and prematurely ending the registration iteration 

loop. With these features removed, the observed 1.5 mm registration error could be the 

result of emphasized local minima in the NCC cost function. Despite the fact that smaller 

downsample factors were not observed to be more accurate, a coarse-to-fine downsampling 

technique could be required to decrease the TRE since these methods are usually more 

robust to local optima.43 

Interestingly, reducing the 2D template image size used for registration to a 356×292 pixels 

AOI (64.08×52.56 mm2) showed a decrease in TRE. This AOI is larger than an average 

healthy prostate44 length and height of approximately 40×30 mm2 with a volume of 30 cm3; 

however, many prostate glands with cancer are often enlarged and can fill this region with 

anatomical information. Since there is some variability when manually selecting fiducials, 

the chosen AOI would be influenced by an unknown bias in the TRE measurement given 

that the TRE was used for AOI selection. Although more image information might 

intuitively seem necessary for a more accurate registration, having image data outside of 

the prostate seemed to hinder registration performance. This could be due to the low 

contrast edges of the bladder or perhaps a lack of acoustic coupling found on the left and 

right sides of some images. Bladder is also more prone to deformation that may challenge 
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our rigid registration approach. It should be noted that limiting the area to slightly beyond 

the average prostate size did not improve registration for every image pair. Despite the 

presence of the bladder when imaging smaller prostate volumes, the AOI reduction 

noticeably decreased the overall average error observed. 

2.4.2 Direction search order of optimization 

To increase the speed of convergence, direction search vectors are typically updated in an 

efficient manner after the first iteration of optimization in conventional Powell’s method. 

When used in our clinically acquired prostate images, a statistically significant difference 

was observed when the search order was changed in the first iteration. Searching translation 

directions first before rotational optimization was shown to be superior in terms of 

registration accuracy with an overall TRE median ± IQR of 1.40 ± 1.18 mm. A strong 

correlation (0.644) between initial misalignment and TRE was observed in the rotations 

first scheme, suggesting the registration algorithm was converging at a local optimum of 

the NCC function. A primary source of motion we witnessed during prostate biopsy 

procedures arose from patients moving away from the biopsy gun once the needle was 

inserted into the tissue. This could result in a translational offset that dominated the overall 

motion that required compensation. Moreover, if the objective function has quadratic, 

convex properties, Powell’s method should converge at the global optimum irrespective of 

the initial search direction order. The observed performance dependency on the initial 

search order, thus, implies non-convexity of the search space challenging the underlying 

assumptions of Powell’s direction set method. The non-convexity of the objective function 

could be more severe in the rotational directions and therefore these motions could be more 

susceptible to local optima driving the optimizer away from the desired solution during 

first steps in the optimization process. A translation first scheme managed to drive the 

optimizer close to the global optimum and demonstrated robust performance in our 

experiments when downsampling by a factor of 4 and cropping to an AOI of 356×292. 

However, there seems to be some interaction effects with downsampling factor, cropped 

AOI, and optimization order that are currently unpredictable in addition to the small TRE 

variability due to manual selection of fiducials. It should be noted, the manual selection 

bias introduced in the TRE can be reduced by having observers select each fiducial multiple 
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times. Since we selected each fiducial only once, we used the measured FLE as the bias 

when interpreting Figure 2.4 and Figure 2.5b. 

2.4.3 Phantom scanning 

In the user-initiated method, motion compensation is performed intermittently and the 

physician may opt to selectively disregard registration output if it is not satisfactory and 

repeat the registration. The continuous method, on other hand, provides a more streamlined 

and automatic mode of clinical implementation of the algorithm with less dependence on 

manual intervention. However, when implemented on a TRUS-guided biopsy system and 

tested on a tissue-mimicking phantom, the registration algorithm performed robustly with 

an overall sub-millimeter and sub-degree error when performing both the user initiated and 

continuous registration methods. After testing out-of-plane translation, in-plane 

translation, and roll rotation compensation, the user initiated correction computation time 

only achieved real-time performance when correcting for out-of-plane motions. During 

testing of the real-time continuous implementation on the prostate phantom, registration 

computation times were significantly lower (p < 0.01) with less variance than the phantom 

user initiated correction, overall performing at approximately 36 ± 4 ms (28 Hz). This is 

approaching the frame rate of the ultrasound system, which updates images at 51 Hz when 

using a depth of 6 cm with one focal zone, providing near real-time feedback that is 

sensitive to sudden changes. Results from the user initiated method also supports that the 

algorithm can compensate for sudden drastic displacements with a temporary increase in 

computation time of 108 ± 38 ms as a tradeoff, using in-plane motion correction as a 

reference. The reason for significant difference when testing out-of-plane motion is 

unknown, but it is likely due to a lack of image features present at the 9 mm displacement. 

Both methods experienced an increase in registration error up to approximately 1 mm from 

expected and after scrutinizing the images further, it revealed a minimal presence of agar 

beads beyond a 6 mm displacement. From this information, it appears that the user initiated 

method was more suitable to correct for motion when there were reduced image features, 

but this will need to be investigated further. Although the registration error was 

significantly lower when performing a user initiated correction during out-of-plane motion, 

continuous registration still performed with a mean registration error of 0.7 ± 0.4 mm, 
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which is still below the target error of 2.5 mm. In this case, the clinical benefits provided 

from a significantly faster computation would likely outweigh the slight decrease in 

registration error. Results from other studies25,29 have shown that an increase in registration 

error will be expected when performed on patient images and this expectation has been 

alluded to in this study. Since the methods of the clinical image registrations are 

comparable to the user initiated procedure on the phantom, it can be observed there are 

sources of error that are not completely captured in the phantom experiment that will need 

to be investigated in more detailed patient studies. For example, a lack of agar beads could 

be the underlying cause for a poor registration when performing the out-of-plane 

translation tests. With clinical images, different image features distributed throughout the 

acquired 3D TRUS image could potentially lead to different resulting motion compensation 

trends. However, these results demonstrate robust and real-time registration performance 

on a phantom and yield valuable insights, encouraging the use of a continuous method for 

prostate motion compensation during biopsy.  

When testing the continuous motion compensation method, variable speeds were not 

assessed when moving the phantom. Although this matches our minimal motion 

assumptions between image frames, this might not be realistic of what is observed 

clinically and could be a potential limitation. In addition, the phantom we fabricated was a 

rigid body and was proven to be easily compensated using a rigid registration algorithm. 

Although prostate deformation may occur and has been previously reported to not be an 

issue for a rigid registration approach,28,29 the real-time continuous method will need to be 

verified in patient studies to confirm these findings. 

2.5 Conclusions 

Real-time registration during prostate biopsy provides key advances by compensating for 

arbitrary/intermittent motion that hinder accurate targeting of potentially cancerous tissues, 

decreasing needle targeting error, and improving clinical workflow. Using image 

downsampling and image cropping with a GPU accelerated optimization, we showed that 

a significant decrease in computation time can be achieved when performing 3D to 2D 

rigid registration on human clinical prostate images without any substantial degradation of 
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registration error. The challenges due to large initialization errors was mitigated after 

updating the optimization of the conventional Powell’s method by systematically searching 

the image space to avoid local optima. When continuously performing motion 

compensation, the error of the registration algorithm was shown to have sub-millimeter 

and sub-degree accuracy with significantly lower computation times than a user initiated 

correction. Overall registration times of approximately 36 ms were observed, performing 

near the frame rate of the ultrasound system. With this utility, preoperative annotations and 

biopsy target locations can continuously be displayed and corrected on live 2D TRUS 

images, potentially increasing the prostate cancer detection rate of image guided biopsy 

procedures. 
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Chapter 3  

3 Automatic prostate segmentation using deep-learning on 

clinically diverse 3D transrectal ultrasound images 

Minimizing procedure time with an automatic 3D TRUS prostate segmentation method 

could allow for a more accurate and efficient workflow with improved patient throughput 

to enable faster patient access to care. The purpose of Chapter 3 is to present on the 

development of a general automatic prostate segmentation algorithm for image-guided 

interventions that use 3D TRUS images. 

The contents of this chapter have been accepted for publication in Medical Physics: 

Orlando N and Gillies DJ, Gyacskov I, Romagnoli C, D’Souza D, and Fenster A. Medical 

Physics 2020; 47(6):2413-2426. Permission to reproduce this article was granted by John 

Wiley and Sons and is provided in Appendix B – Copyright Releases. 

3.1 Introduction 

Diagnosing and treating prostate cancer continues to burden global populations as it is the 

second most common noncutaneous cancer among men worldwide.1 Investigation into 

methods to diagnose and treat prostate cancer has shifted towards improved needle-based 

approaches that utilize three-dimensional (3D) information intraoperatively. Magnetic 

resonance imaging (MRI)-3D transrectal ultrasound (TRUS) guided biopsy is one diagnostic 

method that fuses the superior soft-tissue contrast of MRI to accurately localize, target, and 

sample suspicious tissue regions for prostate cancer with the real-time, low-cost, and portable 

capabilities of ultrasound. In the treatment of prostate cancer, high- and low-dose-rate 

(H/LDR) brachytherapy (BT) procedures offer therapeutic benefits for patients by exploiting 

radiobiological effects and offering shorter treatment times, while minimizing adverse side 

effects. By adding 3D ultrasound intraoperatively, improved spatial context and targeting 

can be achieved to further improve the conventional clinical workflow of biopsy and 

brachytherapy procedures; however, both procedures rely on accurate segmentation of the 

prostate in 3D TRUS images to perform necessary clinical tasks. This includes surface-based 

registration approaches with MRI2 and subsequent 3D TRUS images,3 glandular volume 

measurements,4,5 and dose-volume calculations,6 especially when using a commercial 

guidance system. These segmentations are predominantly performed manually during the 
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procedure, which is time-consuming, variable, and often difficult, which can lead to 

increased patient risk due to increased anesthesia exposure.7 

Minimizing procedure time through fully or semi-automatic 3D TRUS prostate segmentation 

has been previously investigated.8–11 Many methods have been shown to be promising, but 

have lacked clinical translation due to computational complexity, computation time, and 

robustness to diverse clinical datasets. Convolutional neural networks (CNNs) have 

received widespread attention in many image processing applications with much work 

investigating their accuracy and speed in medical imaging tasks. Prostate segmentation in 

3D TRUS is an image processing task that could be an ideal candidate for the data-driven 

predictions provided by CNNs, although most existing work has investigated their 

application in MRI,12,13 as ultrasound is considered more challenging due to noise and 

image artifacts. 

Recent work has investigated and provided promising results for the use of CNNs in 2D 

TRUS14 and 3D TRUS15,16 prostate segmentation. Ghavami et al.,15 evaluated the 

performance of an adapted U-Net on 109 side-fire sagittally-reconstructed (SR) 3D TRUS 

images. Predictions were performed on acquired 2D images and varying adjacent 

neighboring slices were also investigated to evaluate accuracy due to increasing spatial 3D 

context. The best results reported for the 2D Dice similarity coefficient (DSC), 3D DSC, 

and boundary distance were 89 ± 12 %, 89 ± 5 %, and 1.68 ± 1.57 mm, respectively. Lei 

et al.,16 investigated a multidirectional deeply supervised 3D V-Net with contour 

refinement on 44 patient 3D TRUS images. Their method was shown to improve 

performance when segmenting the apex and base of the prostate, which is often difficult 

due to low image contrast, and reported overall segmentation results for a 3D DSC, 

Hausdorff distance (HD), mean surface distance (MSD), and residual mean surface 

distance (RMSD) of 92 ± 3 %, 3.94 ± 1.55 mm, 0.60 ± 0.23 mm, and 0.90 ± 0.38 mm, 

respectively. However, these methods were tested using cross-validation approaches on 3D 

TRUS images from a single ultrasound machine with matched voxel dimensions and sizes, 

so further testing is still required on an unseen and variable dataset to provide a complete 

understanding of performance while avoiding potential limitations due to information 

bleeding.17,18 Furthermore, investigations into generalizability across procedures and 
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acquisition geometries have been limited, to our knowledge, which could restrict usability 

when applying these techniques across applications. 

Our work aims to demonstrate that a diverse image dataset can train a supervised CNN to 

provide an accurate, fast, automated, and generalizable 3D prostate segmentation 

prediction. We used 206 3D TRUS patient images from two different procedures and 

acquisition geometries, two facilities, and four transducers used with three different 

ultrasound machine models to modify and train a deep learning-based 2D segmentation 

method followed by reconstruction into a 3D surface. Since deep learning approaches often 

improve in performance when using large datasets (i.e., >1000 images), we chose to reslice 

each 3D image to increase the amount of usable data for prostate segmentation training and 

prediction. Testing was performed on 40 unseen 3D TRUS patient images and 

segmentation performance was compared to state-of-the-art fully 3D approach’s for 

assessing the impact of reducing spatial context. Various metrics are reported in the 

literature, and typically vary in choice and quantity between studies, but many metrics are 

required to obtain a complete understanding of segmentation performance and to allow for 

comparison with previous studies. By using a clinically diverse dataset with variable image 

representation and image quality of the prostate, we intend to provide a thorough analysis 

of performance for a broader scope of comparison. Once this method is evaluated, 

completion of required intraoperative image-guidance tasks can be facilitated for different 

needle-based prostate cancer procedures and potentially decrease overall clinical procedure 

times and anesthesia risks to patients. 

3.2 Materials and methods 

3.2.1 Clinical dataset 

3D images of the prostate were acquired using end-fire (as used in prostate biopsy) and 

side-fire SR (as used in some HDR-BT) mechanical scanning approaches (Figure 3.1).19 

Both methods rotate a TRUS transducer around the long-axis to create geometrically 

different reconstructed 3D images that are influenced by the transducer array configuration. 

The images used in this study were acquired with the C9-5 transducer with the iU22 

(Philips, Amsterdam, the Netherlands), the C9-5 and BPTRT9-5 transducers with the ATL 
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HDI-5000 (Philips, Amsterdam, the Netherlands), and the 8848 transducer with the 

Profocus 2202 (BK Medical, Peabody, MA, United States) ultrasound machine models. 

The total dataset of 246 3D TRUS images consisted of 104 end-fire and 142 side-fire 3D 

TRUS images and was split into training, validation, and testing datasets as shown in Table 

3.1. Manual 3D prostate segmentations (excluding the seminal vesicles) were performed 

by an observer (IG) with approximately 15 years of TRUS prostate image analysis 

experience. 3D image sizes ranged from [300⨯400⨯784] to [408⨯441⨯870] voxels with 

dimensions of [0.094⨯0.154⨯0.154] to [0.183⨯0.186⨯0.186] mm3/voxel for side-fire 

images and from [448⨯350⨯448] to [692⨯520⨯692] voxels with dimensions of 

[0.115⨯0.115⨯0.115] to [0.190⨯0.195⨯0.190] mm3/voxel for end-fire images.  

 

 

Figure 3.1 Mechanical scanning approaches for acquiring 3D TRUS prostate images using 

end-fire (left) and side-fire (right) TRUS transducers. 2D images are acquired by rotating 

around the long axis of the transducer at known sample spacings to create 3D TRUS 

images. Example 3D TRUS images are shown in the bottom row, with the front face 

demonstrating the reconstructed image plane and the white lines showing representative 

acquisition planes. 
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Table 3.1 Clinical 3D TRUS dataset split based on end-fire and side-fire scan geometries 

and resulting training, validation, and testing datasets used for deep learning. 

Image Training Validation Testing Total 

End-fire 67 17 20 104 

Side-fire 98 24 20 142 

Total 165 41 40 246 

3.2.2 3D segmentation algorithm 

A workflow diagram of our proposed method is shown in Figure 3.2. This includes 3D 

TRUS prostate image input, radial sampling, prediction using a trained modified U-Net, 

3D reconstruction, and 3D prostate surface output.  

 

Figure 3.2 Proposed 3D prostate segmentation workflow. A 3D TRUS prostate image is 

used as input, followed by radial sampling to generate 12 2D image planes. Each image 

plane was used to predict a prostate boundary with a trained modified U-Net prior to 

reconstruction into the 3D prostate surface. 

3.2.2.1 Training dataset for modified U-Net 

Images from the training and validation split were used to obtain resliced 2D images of the 

prostate. These 2D images were obtained at randomized axial, sagittal, coronal, radial, and 

oblique image planes with varying rotations and zooms. This resulted in a dataset of 6,773 

2D TRUS images with matched manual contours. All 2D images were resized to 256⨯256 

pixels with no preprocessing (i.e., despeckling or bias correction) and were separated into 

an 80/20 training/validation split for deep learning, resulting in 5418 training and 1355 

validation 2D TRUS images. 

3.2.2.2 Modified U-Net 

The previously published U-Net20 was implemented using Keras21 with TensorFlow22 and 

modified by adding 50% dropouts at every block on the expansion section of the network 

to increase regularization and prevent overfitting. In addition, transpose convolutions were 
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used at each step in the expansion section instead of the standard upsampling followed by 

convolution, as this allowed for improved performance in preliminary experiments. Data 

augmentation from random combinations of horizontal flips, 2D shifts (up to 20%), 

rotations (up to 20°), and zooms (up to 20%) were employed to double the training dataset 

to 10,836 2D TRUS images. Preliminary experiments led to the selection of an Adam 

optimizer, 0.0001 learning rate, Dice-coefficient loss function, 200 epochs, and 200 steps 

per epoch. This network was trained and used for predicting unseen data on a personal 

computer with two Xeon E5645 central processing units at 2.40 GHz (Intel Corporation, 

Santa Clara, CA, USA), 24.0 GB of memory, and a 6 GB Ge-Force GTX TITAN (NVIDIA 

Corporation, Santa Clara, CA, USA) graphics processing unit (GPU). 

3.2.2.3 3D reconstruction 

Predicted 3D prostate segmentations were obtained by segmenting multiple 2D radial 

frames generated by rotation around a central axis, followed by reconstruction to a 3D 

surface following a reconstruction method similar to Qiu et al.11 Previous observations 

have noted that segmenting the prostate on slices near the apex and base of the prostate can 

be challenging due to boundary incompleteness,15 so we chose to radially slice the 3D 

prostate image as opposed to transverse slicing in an attempt to improve segmentations at 

all boundaries. This choice was motivated by the experience of segmenting the prostate 

when the center of the gland is in-plane, which typically presents as an easier image to 

accurately define and segment the boundaries on the left and right sides of the 2D image. 

In contrast to this, a transverse slicing approach would result in 2D images with the prostate 

appearing as a different size and shape, with this difference more pronounced at the prostate 

apex and base, and when comparing end-fire and side-fire image geometries. Difficulty 

arises, predominantly in side-fire geometries, when segmenting the ends of the prostate 

along the axis of acquisition (when using a 2D approach) due to the changes in prostate 

appearance and size. Thus, radially slicing and segmenting the prostate in these views 

allows for a method that can train and predict on images containing similar structural 

shapes, across different acquisition geometries.  

Reconstructing a 3D contour was accomplished by radially slicing a 3D image in equal 15° 

spacings around the approximate central axis of the prostate (Figure 3.3) to produce 12 2D 
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images for prediction. These 12 images were predicted using the trained modified U-Net 

to produce 2D prostate segmentations, and 204 equally spaced points were sampled around 

the boundary of each 2D image. Since the original spatial location of the input 2D image 

in the 3D volume was known, each predicted 2D segmentation was placed appropriately 

back into the 3D volume and the boundary points on each segmentation were connected to 

the adjacent slices. The intermediate surface was smoothed by a windowed sinc filter, 

resulting in a final reconstructed 3D contour. 

 

Figure 3.3 (a) Method for acquiring radially sliced 2D TRUS image planes (dotted lines) 

from previously acquired 3D TRUS images. The axis of rotation (red) is approximately at 

the central axis of the prostate and in the anterior-posterior direction. (b) 12 image slices 

were obtained to perform prostate segmentation. For an end-fire 3D TRUS image, 2D 

images are about the axis of image acquisition. (c) The majority of image slices obtained 

from side-fire 3D TRUS images are across many acquisition slices and are subject to 

increased interpolation, except for one slice, which matched the original acquired 2D 

TRUS image. 

3.2.3 Evaluation and comparison 

Our algorithm was evaluated on a test data set of 20 unseen end-fire and 20 unseen side-

fire 3D TRUS images of the prostate. Standard pixel map comparisons (DSC, recall, 

precision) were computed for both 2D radial slice segmentations and the reconstructed 3D 

segmentation for each prostate to obtain an understanding of the prediction quality and 

reconstruction accuracy. We also computed absolute area/volume percent differences 

(A/VPD), absolute mean surface distances (MSD), and absolute Hausdorff distances (HD), 

as well as signed A/VPD (sA/VPD), signed MSD (sMSD), and signed HD (sHD) for all 

2D predictions and reconstructed 3D segmentations. The signed metrics, while not 

commonly reported, are important as they provide information on the segmentation bias 

(a) (b) (c) 
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and whether the prostate boundary is over or underpredicted. The inclusion of these metrics 

will provide a more complete understanding of the performance of our proposed method. 

All pixel map comparisons and 2D MSD/sMSD and HD/sHD distance metrics were 

computed using MATLAB R2019a (MathWorks, Natick, MA, United States). The 3D 

MSD/sMSD and HD/sHD metrics were computed by measuring the distances between all 

points of the automatically predicted segmentation to the closest point on the manual gold-

standard segmentation (CloudCompare v2.10.2).23 For comparison purposes, the MSD 

reported here is similar to the boundary distance15 and mean surface distance16 presented 

previously. Computation times were recorded for 2D slice segmentation, 3D 

reconstruction, and overall 3D segmentation time.  

The performance of our algorithm was compared against three state-of-the-art fully 3D 

predicting CNNs (V-Net,24 Dense V-Net,25 and High-resolution 3D-Net26) using an open-

source implementation on the NiftyNet platform.27 It is often assumed that performing a 

prediction based on 3D information allows for an improved result due to increased spatial 

context, so we completed a direct comparison on the same test dataset to investigate this 

hypothesis. Similar to our proposed method, the same 165/41 3D TRUS images (Table 3.1) 

were used for training/validation, respectively. The 3D V-Net was chosen to optimize 

hyperparameters, including loss function, due to its widespread use and performance in 

preliminary experiments. For simplicity, these hyperparameters were also used for the 

Dense V-Net and High-resolution 3D-Net. Parameters were chosen to maximize the spatial 

window size and usable memory on the GPU with optimized hyperparameters shown in 

Table 3.2. Previous work has shown improved performance with a hybrid loss function,16 

so we compared performance between a Dice loss function and a Dice plus cross-entropy 

(DiceXEnt) loss function, as provided in NiftyNet, using the 3D V-Net. Although NiftyNet 

offers a patch-based analysis, preliminary experiments resulted in 3D segmentations with 

many flat surfaces throughout the prediction corresponding to patch edges. Since we had 

one structure of interest (i.e., the prostate), we did not perform a patch-based analysis and 

predictions were performed on a resized image to match the spatial window. Data 

augmentation was employed to double the training dataset to 330 3D TRUS images. The 

chosen hyperparameters for the Dense V-Net and High-resolution 3D-Net were the same 

as shown in Table 3.2 (with the DiceXEnt loss function). These networks were trained and 
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used for predicting unseen data on a personal computer with an Intel Core i7-4770 central 

processing unit at 3.40 GHz (Intel Corporation, Santa Clara, CA, USA), 32.0 GB of 

memory, and a 6 GB Ge-Force GTX TITAN (NVIDIA Corporation, Santa Clara, CA, 

USA) graphics processing unit (GPU). Training and 3D segmentation computation times 

were recorded. 

Table 3.2 Hyperparameter selection when employing the V-Net in NiftyNet. 

Hyperparameter Value 

Optimizer Adam 

Loss function Dice and Dice + cross-entropy 

Activation function PReLU 

Learning rate 0.0001 

Spatial window size [64, 64, 64] 

Mini-batch size 2 

Weighted L2-decay 0.0001 

3.2.4 Statistical analysis 

Statistical calculations were performed in GraphPad Prism 8.3 (Graphpad Software, Inc., 

San Diego, CA, USA). The normality of distributions was evaluated using the Shapiro-

Wilk test and led to the use of nonparametric statistical tests when the assumption was 

violated. The corresponding nonparametric alternative tests are presented in parentheses 

for the remainder of the section. The significance level for statistical analysis was chosen 

such that the probability of making a type I error was less than 5% (p < 0.05), with 

statistically significant differences denoted simply as significant for the remainder of this 

manuscript.  

2D radial slice segmentation and 3D reconstructed segmentation accuracy as well as Dice 

and DiceXEnt 3D V-Net loss functions were compared using two-tailed paired t-tests 

(Wilcoxon matched-pairs signed-rank tests). Comparisons between our proposed 

algorithm and three fully 3D CNNs were performed using two-tailed paired t-tests 

(Wilcoxon matched-pairs signed-rank tests) with a Bonferroni multiple-comparison 

correction, which adjusted the significance level to p < 0.0167. Comparisons between 

segmentation accuracy for end-fire and side-fire 3D TRUS images on each network were 

completed using two-tailed unpaired t-tests (Mann-Whitney tests). 
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3.3 Results 

3.3.1 Reconstructed modified U-Net 

The results of our modified U-Net for 2D prostate segmentation and the effects of 

reconstruction on 3D surface generation are shown in Table 3.3 and Table 3.4 for the 

absolute and signed evaluation metrics, respectively. Overall, our proposed method 

generated 3D surfaces with a median [first quartile (Q1), third quartile (Q3)] 3D DSC, 

recall, and precision of 94.1 [92.6, 94.9] %, 96.0 [93.1, 98.5] %, and 93.2 [88.8, 95.4] %, 

respectively, for the pixel map comparison metrics. Absolute VPD, MSD, and HD metrics 

resulted in 5.78 [2.49, 11.5] %, 0.89 [0.73, 1.09] mm, and 2.89 [2.37, 4.35] mm with signed 

metrics of 2.38 [-2.98, 11.0] %, 0.11 [-0.24, 0.58] mm, and 2.02 [-3.34, 2.88] mm, 

respectively. All metrics, aside from the absolute and signed HD metrics, showed 

significant differences between the 2D predictions and 3D reconstructed segmentations. 

Interestingly, recall and MSD metrics were observed to significantly improve in 

performance after 3D reconstruction, with the HD metric improving as well when 

evaluating all unseen images. These findings agreed when splitting the results into end-fire 

and side-fire 3D TRUS images, other than end-fire A/VPD and the signed metrics. For 

end-fire images, absolute VPD increased after 3D reconstruction, although this was not 

significant, while the signed metrics significantly improved after 3D reconstruction. For 

side-fire images, the opposite was true, with signed metrics significantly improved for 2D 

slice segmentations. When comparing the performance of our proposed method between 

end-fire and side-fire 3D TRUS images, we found there was no significant difference in 

any metric for both 2D radial segmentations and 3D reconstructed segmentations. Mean 

computation times were observed to be 0.029 s for each 2D segmentation (i.e., 12 images) 

and 0.27 s for reconstruction into a 3D surface, resulting in a total throughput time of 0.62 

s from 3D image input to generated 3D surface. 

  



81 

 

Table 3.3 Absolute median [Q1, Q3] results comparing 2D radial slice segmentation to 3D 

reconstructed segmentation on an unseen test dataset of 20 end-fire and 20 side-fire 3D 

TRUS images of the prostate. 

Acquisition Segmentation DSC (%) Recall (%) Precision (%) A/VPD (%) MSD (mm) HD (mm) 

End-fire 

2D Radial 95.0  

[93.6, 95.6] 

94.5  

[92.7, 97.2] 
95.9  

[92.2, 97.4] 

4.71  

[1.71, 7.32] 

1.16  

[0.95, 1.37] 

3.64  

[3.11, 4.47] 

3D Reconstruction 94.3  

[93.1, 95.2] 
96.0  

[93.2, 98.7] 

94.6  

[88.8, 95.8] 

5.18 

[1.62, 11.2] 
0.99  

[0.78, 1.18] 

3.41  

[2.49, 4.41] 

p-value 0.0052* 0.0102* <0.0001 0.0532 <0.0001* 0.5217 

Side-fire 

2D Radial 94.6  

[92.7, 95.4] 

95.3  

[90.6, 96.9] 
94.9  

[92.6, 96.4] 

4.05  

[1.07, 6.23] 

0.95  

[0.82, 1.26] 

3.15  

[2.51, 4.27] 

3D Reconstruction 93.5  

[91.1, 94.6] 
96.2  

[92.5, 98.4] 

91.6  

[87.8, 94.8] 

5.89  

[3.17, 11.9] 
0.78  

[0.67, 0.98] 

2.61  

[2.32, 4.01] 

p-value 0.0037 0.0215 <0.0001* 0.0441 <0.0001 0.3683 

Overall 

2D Radial 94.9  

[93.2, 95.5] 

94.9  

[91.9, 97.0] 
95.6  

[92.6, 96.7] 

4.34  

[1.60, 6.77] 

1.06  

[0.85, 1.32] 

3.34 

[2.61, 4.41] 

3D Reconstruction 94.1  

[92.6, 94.9] 
96.0  

[93.1, 98.5] 

93.2  

[88.8, 95.4] 

5.78  

[2.49, 11.5] 
0.89  

[0.73, 1.09] 

2.89  

[2.37, 4.35] 

p-value <0.0001 0.0005 <0.0001 0.0061 <0.0001* 0.2766 

DSC, Dice similarity coefficient; A/VPD, area/volume percent diff.; MSD, mean surface dist.; HD, Hausdorff dist. 

*Normal distribution = paired t-test; Bolded metrics highlight the method with reduced relative error. 

 

Table 3.4 Signed median [Q1, Q3] results comparing 2D radial slice segmentation to 3D 

reconstructed segmentation on an unseen test dataset of 20 end-fire and 20 side-fire 3D 

TRUS images of the prostate. 

Acquisition Segmentation sA/VPD (%) sMSD (mm) sHD (mm) 

End-fire 

2D Radial -1.39 [-3.82, 5.82] -0.13 [-0.50, 0.71] -0.91 [-2.74, 2.81] 

3D Reconstruction -0.05 [-2.98, 11.2] 0.06 [-0.38, 0.85] -0.34 [-3.82, 3.28] 

p-value 0.0011* <0.0001* 0.9563 

Side-fire 

2D Radial -0.57 [-5.24, 3.27] 0.09 [-0.46, 0.31] -0.31 [-1.83, 1.72] 

3D Reconstruction 3.20 [-2.96, 10.1] 0.20 [-0.22, 0.46] 2.25 [-2.53, 2.81] 

p-value 0.0001* <0.0001* 0.2305 

Overall 

2D Radial -0.91 [-4.93, 4.20] -0.09 [-0.46, 0.37] -0.91 [-2.15, 2.02] 

3D Reconstruction 2.38 [-2.98, 11.0] 0.11 [-0.24, 0.58] 2.02 [-3.34, 2.88] 

p-value <0.0001* <0.0001* 0.3611 

sA/VPD, signed area/volume percent diff.; sMSD, signed mean surface dist.; sHD, signed Hausdorff dist. 

*Normal distribution = paired t-test; Bolded metrics highlight the method with reduced relative error. 
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3.3.2 3D CNNs and V-Net optimization 

Table 3.5 Absolute median [Q1, Q3] results comparing a standard 3D V-Net with a Dice 

similarity coefficient loss function to a Dice similarity plus cross-entropy (DiceXEnt) loss 

function on an unseen test dataset of 20 end-fire and 20 side-fire 3D TRUS images of the 

prostate. 

Acquisition Loss function DSC (%) Recall (%) Precision (%) VPD (%) MSD (mm) HD (mm) 

End-fire 

Dice 89.5 

[84.6, 92.0] 
97.8 

[94.6, 98.3] 

83.7 

[75.1, 88.4] 

17.8 

[7.57, 30.7] 

1.79  

[1.43, 2.47] 

8.64 

[7.53, 10.8] 

DiceXEnt 91.7  

[89.0, 93.2] 

91.7  

[86.8, 94.6] 
94.3  

[87.1, 95.8] 

7.94  

[2.95, 12.5] 

1.32 

[0.99, 1.77] 

6.95 

[5.06, 9.10] 

p-value 0.0037 <0.0001 <0.0001 0.0021 0.0009 0.0172 

Side-fire 

Dice 90.6 

[89.1, 93.2] 
94.5 

[91.1, 96.0] 

92.8 

[89.9, 96.9] 

9.08 

[4.35, 14.0] 

1.16 

[0.89, 1.46] 

5.81 

[3.85, 9.61] 

DiceXEnt 91.2  

[87.4, 92.8] 

89.5  

[80.7, 92.9] 
95.0  

[90.8, 97.5] 

7.71  

[3.55, 15.9] 

1.11 

[0.84, 1.47] 

4.92 

[4.28, 6.55] 

p-value 0.2943 <0.0001 0.0001 0.7012 0.7562 0.2305 

Overall 

Dice 90.3 

[86.5, 92.1] 
95.5 

[92.5, 97.8] 

87.8 

[81.0, 91.7] 

11.4 

[4.66, 19.3] 

1.46 

[1.16, 2.07] 

7.99 

[5.34, 10.4] 

DiceXEnt 91.3  

[88.6, 93.1] 

90.0  

[85.6, 93.3] 
94.5  

[90.0, 96.5] 

7.94  

[3.55, 13.4] 

1.27 

[0.92, 1.61] 

6.18 

[4.51, 7.82] 

p-value 0.1538 <0.0001 <0.0001 0.0356 0.0147 0.0067 

DSC, Dice similarity coefficient; VPD, volume percent difference; MSD, mean surface dist.; HD, Hausdorff dist. 

*Normal distribution = paired t-test; Bolded metrics highlight the loss function with reduced relative error. 

 

Table 3.6 Signed median [Q1, Q3] results comparing a standard 3D V-Net with a Dice 

loss function to a Dice plus cross-entropy (DiceXEnt) loss function on an unseen test 

dataset of 20 end-fire and 20 side-fire 3D TRUS images of the prostate. 

Acquisition Loss function sVPD (%) sMSD (mm) sHD (mm) 

End-fire 

Dice 17.8 [7.57, 30.7] 1.51 [0.85, 2.23] 7.99 [5.37, 10.84] 

DiceXEnt -2.16 [-8.47, 6.10] -0.07 [-0.71, 0.68] -0.05 [-7.33, 6.50] 

p-value <0.0001*  <0.0001* 0.0009 

Side-fire 

Dice 5.02 [0.93, 11.5] 0.43 [0.16, 0.80] 5.34 [3.18, 9.61] 

DiceXEnt -5.50 [-15.6, -0.62] -0.30 [-0.88, 0.02] -4.52 [-6.27, -3.04] 

p-value <0.0001* <0.0001* <0.0001 

Overall 

Dice 9.63 [3.90, 18.9] 0.83 [0.35, 1.78] 6.91 [3.35, 10.31] 

DiceXEnt -3.66 [-9.25, 3.34] -0.13 [-0.73, 0.26] -4.16 [-7.04, 4.76] 

p-value <0.0001* <0.0001* <0.0001* 

sVPD, signed volume percent difference; sMSD, signed mean surface dist.; sHD, signed Hausdorff dist. 

*Normal distribution = paired t-test; Bolded metrics highlight the loss function with reduced relative error. 
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Results of the NiftyNet 3D V-Net with a Dice and DiceXEnt loss function on 20 unseen 

end-fire and 20 unseen side-fire 3D TRUS images are shown in Table 3.5 and Table 3.6 

for the absolute and signed evaluation metrics, respectively. When comparing 3D V-Net 

performance with Dice and DiceXEnt loss functions on the full testing dataset, all metrics, 

aside from DSC, showed significant differences. Precision, VPD/sVPD, MSD/sMSD, and 

HD/sHD were significantly improved with the DiceXEnt loss function, while recall was 

significantly improved with the Dice loss function. Although there was no significant 

difference in the DSC metric, the DiceXEnt loss function showed an improved median 

DSC. When considering end-fire and side-fire images individually, identical trends were 

observed for precision, recall, sMSD, and sHD. For the DSC, VPD, MSD, and HD metrics, 

we observed a significant and nonsignificant increase in performance with the DiceXEnt 

loss function for end-fire images and side-fire images, respectively. For end-fire images, 

the sVPD metric improved significantly with the DiceXEnt loss function, while the sVPD 

metric improved significantly with the Dice loss function for side-fire images. When 

comparing the 3D V-Net performance with DiceXEnt between end-fire and side-fire 3D 

TRUS images, we found no significant differences in any metric except HD, where side-

fire images had a significantly reduced median value compared to end-fire images. Overall, 

the 3D V-Net showed improved performance with the DiceXEnt loss function and 

produced 3D segmentations with median [Q1, Q3] 3D DSC, recall, and precision results 

of 91.3 [88.6, 93.1] %, 90.0 [85.6, 93.3] %, and 94.5 [90.0, 96.5] %, respectively, for the 

pixel map comparison metrics. Absolute VPD, MSD, and HD metrics resulted in 7.94 

[3.55, 13.4] %, 1.27 [0.92, 1.61] mm, and 6.18 [4.51, 7.82] mm with signed variants of -

3.66 [-9.25, 3.34] %, -0.13 [-0.73, 0.26] mm, and -4.16 [-7.04, 4.76] mm, respectively. 

Mean computation times were observed to be 3.43 s for a full 3D segmentation. 

Results of the Dense V-Net and High-resolution 3D-Net with a DiceXEnt loss function on 

20 unseen end-fire and 20 unseen side-fire 3D TRUS images are shown in Table 3.A1 and 

Table 3.A2 in Supplement A for the absolute and signed evaluation metrics, respectively. 

Compared to the 3D V-Net, the High-resolution 3D-Net showed a reduction in median 

performance for all metrics, while the Dense V-Net showed a reduction in performance for 

all metrics except recall. In contrast with our proposed method and the 3D V-Net, we 

observed significant differences in segmentation performance for several metrics when 
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comparing end-fire and side-fire 3D TRUS images using the Dense V-Net and High-

resolution 3D-Net. For the Dense V-Net, improved performance was observed on side-fire 

images for every metric except recall, with significant differences observed for the 

precision, recall, VPD/sVPD, and sMSD metrics. For the High-resolution 3D-Net, 

improved performance was observed on end-fire images for every metric except precision 

and HD, with significant differences observed for the DSC, precision, recall, VPD/sVPD, 

and sMSD metrics. Mean 3D segmentation times for the Dense V-Net and High-resolution 

3D-Net were observed to be 2.98 s and 2.83 s, respectively. 

3.3.3 Comparison of reconstructed modified U-Net and 3D CNNs 

Sample segmentation results from the 20 unseen end-fire and 20 unseen side-fire 3D TRUS 

images from our proposed method compared against the 3D V-Net with a DiceXEnt loss 

function and manual segmentations are shown in Figure 3.4 and Figure 3.5, respectively. 

A comparison of segmentation performance between our proposed method and a standard 

3D V-Net is shown in Table 3.7 and Table 3.8 for the absolute and signed evaluation 

metrics, respectively. Overall, our proposed method had significantly improved DSC, 

Recall, sVPD, MSD/sMSD, and HD when compared to the 3D V-Net. Absolute VPD and 

sHD, while not significantly different, were reduced for our proposed method. The only 

evaluation metric where the 3D V-Net outperformed our proposed method was precision, 

where the 3D V-Net showed a nonsignificant increase. Considering segmentation 

performance for end-fire and side-fire 3D TRUS images separately, similar trends hold. 

For end-fire images, our proposed method had better performance in all metrics except 

sHD, with DSC, recall, sVPD, MSD, and HD showing significant differences, and 

precision, VPD, and sMSD showing nonsignificant improvements. However, for side-fire 

images our proposed method was superior in all metrics except precision. Significant 

improvements were shown for DSC, recall, sVPD, MSD/sMSD, and HD/sHD, while the 

3D V-Net had significantly improved precision. As was observed in the overall case, our 

proposed method showed a nonsignificant decrease in VPD compared to the 3D V-Net for 

both end-fire and side-fire images.  

Overall, our proposed method significantly improved performance on all metrics when 

compared to the Dense V-Net and showed improved performance on all metrics when 
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compared to the High-resolution 3D-Net, with significant differences observed for all 

metrics except precision, sMSD, and sHD, where our method showed a nonsignificant 

improvement. 

Table 3.7 Absolute median [Q1, Q3] results comparing a standard 3D V-Net to our 

proposed reconstructed modified (rm) U-Net on an unseen test dataset of 20 end-fire and 

20 side-fire 3D TRUS images of the prostate.  

Acquisition Segmentation DSC (%) Recall (%) Precision (%) VPD (%) MSD (mm) HD (mm) 

End-fire 

V-Net 91.7  

[89.0, 93.2] 

91.7  

[86.8, 94.6] 

94.3  

[87.1, 95.8] 

7.94  

[2.95, 12.5] 

1.32 

[0.99, 1.77] 

6.95 

[5.06, 9.10] 

rmU-Net 94.3  

[93.1, 95.2] 

96.0  

[93.2, 98.7] 

94.6  

[88.8, 95.8] 

5.18  

[1.62, 11.2] 

0.99  

[0.78, 1.18] 

3.41  

[2.49, 4.41] 

p-value 0.0003* <0.0001* 0.5459 0.4980 0.0003* <0.0001 

Side-fire 

V-Net 91.2  

[87.4, 92.8] 

89.5  

[80.7, 92.9] 
95.0  

[90.8, 97.5] 

7.71  

[3.55, 15.9] 

1.11 

[0.84, 1.47] 

4.92 

[4.28, 6.55] 

rmU-Net 93.5  

[91.1, 94.6] 

96.2  

[92.5, 98.4] 

91.6  

[87.8, 94.8] 
5.89  

[3.17, 11.9] 

0.78  

[0.67, 0.98] 

2.61  

[2.32, 4.01] 

p-value 0.0073 0.0002 0.0153 0.2611 0.0027 0.0001 

Overall 

V-Net 91.3  

[88.6, 93.1] 

90.0  

[85.6, 93.3] 
94.5  

[90.0, 96.5] 

7.94  

[3.55, 13.4] 

1.27 

[0.92, 1.61] 

6.18 

[4.51, 7.82] 

rmU-Net 94.1  

[92.6 , 94.9] 

96.0  

[93.1, 98.5] 

93.2  

[88.8, 95.4] 
5.78 

[2.49, 11.5] 

0.89  

[0.73, 1.09] 

2.89  

[2.37, 4.35] 

p-value <0.0001 <0.0001 0.1499 0.1701 <0.0001* <0.0001 

DSC, Dice similarity coefficient; VPD, volume percent difference; MSD, mean surface dist.; HD, Hausdorff dist. 

*Normal distribution = paired t-test; Bolded metrics highlight the method with reduced relative error. 

Table 3.8 Signed median [Q1, Q3] results comparing a standard 3D V-Net to our proposed 

reconstructed modified (rm) U-Net on an unseen test dataset of 20 end-fire and 20 side-fire 

3D TRUS images of the prostate. 

Acquisition Segmentation sVPD (%) sMSD (mm) sHD (mm) 

End-fire 

V-Net -2.16 [-8.47, 6.10] -0.07 [-0.71, 0.68] -0.05 [-7.33, 6.50] 
rmU-Net -0.05 [-2.98, 11.2] 0.06 [-0.38, 0.85] -0.34 [-3.82, 3.28] 

p-value 0.0030* 0.0444* 0.7942* 

Side-fire 

V-Net -5.50 [-15.6, -0.62] -0.30 [-0.88, 0.02] -4.52 [-6.27, -3.04] 

rmU-Net 3.20 [-2.96, 10.1] 0.20 [-0.22, 0.46] 2.25 [-2.53, 2.81] 
p-value 0.0001* 0.0025* 0.0107 

Overall 

V-Net -3.66 [-9.25, 3.34] -0.13 [-0.73, 0.26] -4.16 [-7.04, 4.76] 

rmU-Net 2.38 [-2.98, 11.0] 0.11 [-0.24, 0.58] 2.02 [-3.34, 2.88] 
p-value <0.0001* 0.0003* 0.0408 

sVPD, signed volume percent difference; sMSD, signed mean surface dist.; sHD, signed Hausdorff dist. 

*Normal distribution = paired t-test; Bolded metrics highlight the method with reduced relative error. 
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Figure 3.4 End-fire prostate segmentation results comparing manual (red), our proposed 

reconstructed modified (rm) U-Net (blue), and V-Net (yellow) 3D surfaces. The columns 

from left to right show the 25th, 50th, and 75th percentile results, respectively, based on DSC 

metrics. Segmentations in the axial plane, sagittal plane, 45° oblique radial plane, and 

reconstructed 3D surface error are shown in the respective rows from top to bottom. 
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Figure 3.5 Side-fire prostate segmentation results comparing manual (red), our proposed 

reconstructed modified (rm) U-Net (blue), and V-Net (yellow) 3D surfaces. The columns 

from left to right show the 25th, 50th, and 75th percentile results, respectively, based on DSC 

metrics. Segmentations in the axial plane, sagittal plane, 45° oblique radial plane, and 

reconstructed 3D surface error are shown in the respective rows from top to bottom. 
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3.4 Discussion 

3.4.1 Reconstructed modified U-Net 

We proposed a new 3D TRUS prostate segmentation method, which utilizes a modified U-

Net to segment 12 2D radial slices, which are then reconstructed into a 3D surface. We 

first compared segmentation accuracy in these 2D radial slices to segmentation accuracy 

following 3D reconstruction. In general, the performance was better on the 2D radial slice 

segmentations compared to the reconstructed 3D surface, but interestingly, our 

reconstruction method improved recall, MSD, and HD metrics when compared to 2D slice 

segmentation. When considered in combination, the reduced MSD and HD metrics showed 

better mean and irregular boundary accuracy, with the improved recall metric implying a 

reduction in underprediction (since decreasing underpredicted pixels, i.e., false negatives, 

will increase recall). The reduction in underprediction is contrasted with our method 

tending to overpredict, supported by the slight positive bias in the signed metrics and 

reduced precision. In the metrics where performance was worse for our 3D reconstructed 

segmentations, such as DSC and VPD, the difference in median values were less than 1% 

and 1.5% respectively. Thus, we saw that our 3D reconstruction method did not drastically 

reduce performance of the evaluation metrics when compared to our 2D segmentations, 

with the 3D reconstruction improving performance on select metrics. Examining the signed 

metrics shown in Table 3.4, we observed that sVPD, sMSD, and sHD are reduced 

compared to their absolute metrics, with median sVPD reduced to only 2.38 %, median 

sMSD reduced to 0.11 mm, and median sHD reduced to 2.02 mm. This demonstrated that 

our algorithm was not significantly biased to over or underpredict the prostate boundary.  

As our proposed network was trained and tested on both end-fire and side-fire 3D TRUS 

images, we directly compared the performance of our method on each image type 

observing no significant difference between performance for end-fire and side-fire images 

on any metric. Both independent image geometries also followed the same trends as the 

total dataset, aside from a reduced signed bias in the end-fire images following 

reconstruction. These results demonstrated the effectiveness of radially sampling 3D 

TRUS prostate images to produce similar 2D images for prediction and the ability to 
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accurately segment the prostate in different 3D TRUS image geometries without the need 

for multiple trained networks, which, to our knowledge, is the first time this has been 

shown. 

3.4.2 3D CNNs and V-Net Optimization 

The initial publication describing the V-Net architecture by Milletari et al.24 proposed the 

use of a Dice coefficient-based loss function, but recent leave-one-out validation, described 

in Lei et al.,16 has advocated for the use of hybrid loss functions that combine standard 

logistic loss, such as the cross-entropy loss metric,20 with the Dice loss metric. We 

implemented a 3D V-Net with both a Dice loss function and a hybrid DiceXEnt loss 

function in order to compare performance between loss functions, as well as to directly 

compare performance to previously published V-Net implementations16 on an unseen 

dataset. Our results reiterate what has been previously reported, with the hybrid DiceXEnt 

loss function significantly improving performance on all metrics except DSC and recall, 

where we observed a nonsignificant increase in performance and a significant decrease in 

performance, respectively. Similar trends held when examining the results for end-fire and 

side-fire 3D TRUS images individually. Comparing 3D V-Net performance when using a 

DiceXEnt loss function between end-fire and side-fire 3D TRUS images showed similar 

results to our proposed network, as there was no significant difference in any metric except 

HD.  

Similar segmentation performance on end-fire and side-fire 3D TRUS images for all three 

3D CNNs and our proposed 3D segmentation method demonstrated that we could 

potentially train a single network to accurately segment the prostate in geometrically 

variable 3D TRUS images. This was demonstrated predominantly with our approach and 

the 3D V-Net as the Dense V-Net and High-resolution 3D-Net were observed to have 

significant differences between several metrics when comparing end-fire and side-fire 

segmentation performance. Interestingly, performance differed between the Dense V-Net 

and High-resolution 3D-Net for different image geometries, with better predictions 

performed on side-fire and end-fires images, respectively. Although our method performed 

the best, the 3D V-Net outperformed the other two 3D CNNs investigated in this study. 

This improved performance on 3D US prostate segmentation could be due to the number 
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of parameters trained by the network since the 3D V-Net has approximately two orders of 

magnitude more parameters relative to the Dense V-Net and High-resolution 3D-Net. 

Although the latter networks are more efficient and required less computation time, we 

found this did not benefit performance. 

Although Lei et al.16 reported on a deep supervision method with contour refinement, they 

also reported on the use of a standard 3D V-Net with a hybrid DiceXEnt loss function to 

segment the prostate in side-fire 3D TRUS images, showing a 3D DSC, precision, recall, 

HD, MSD, and RMSD of 90.5 ± 3.0 %, 88.1 ± 6.0 %, 93.5 ± 3.5 %, 4.643 ± 1.926 mm, 

0.657 ± 0.270 mm, and 0.977 ± 0.410 mm, respectively. Comparatively, a standard 3D V-

Net with a DiceXEnt loss function trained on our dataset and predicted on side-fire images 

resulted in a 3D DSC, precision, recall, HD, and MSD of 91.2 [87.4, 92.8] %, 95.0 [90.8, 

97.5] %, 89.5 [80.7, 92.9] %, 4.92 [4.28, 6.55] mm, and 1.11 [0.84, 1.47] mm, showing 

very similar performance. Investigating the differences between mean and median values 

showed our V-Net implementation demonstrated improved 3D DSC and precision, while 

Lei et al.16 demonstrated improved recall, HD, and MSD. Although VDP or any signed 

metrics were not reported, this demonstrated similarity in performance. Thus, we suggest 

future comparisons should use a standardized V-Net, like the NiftyNet open-source 

implementation, to provide a baseline for comparing network performance on different 

datasets. 

3.4.3 Comparison with 3D V-Net and previously published methods 

For an identical training and testing dataset, our proposed method performed significantly 

better than the standard 3D V-Net with a hybrid loss function, with DSC, recall, sVPD, 

MSD/sMSD, and HD/sHD showing significant improvement. Our proposed method also 

demonstrated a reduced median VPD, although this difference was not significant. Similar 

differences in performance were observed when considering end-fire and side-fire 3D 

TRUS images separately. Figure 3.4 and Figure 3.5 show this difference in performance 

qualitatively for both image geometries, with the 3D V-Net often over or underpredicting 

the correct prostate boundary. This difference is readily apparent in the side-fire middle 

50th percentile column of Figure 3.5. The V-Net is shown to have incorrectly contoured 

part of the bladder as the prostate, drastically affecting the overall segmentation accuracy. 
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In contrast, our proposed method was able to correctly avoid the bladder, resulting in a 

more accurate segmentation. A similar result is shown in the left column of Figure 3.4 as 

well as in Figure 3.6, where we show that the 3D V-Net mistakenly underpredicted the 

prostate boundary due to the presence of a hyperechoic calcification artifact in the TRUS 

image, whereas our proposed method was typically able to avoid artifacts of this nature. 

We demonstrated a mean 3D segmentation time of 0.62 s with our proposed method, over 

five times faster than the 3D V-Net, which required an average of 3.43 s per segmentation. 

All segmentations were completed with the same NVIDIA GeForce GTX TITAN GPU 

with 6 GB of memory. 

 

Figure 3.6 A sample end-fire prostate segmentation result comparing manual (red), our 

proposed algorithm (blue), and V-Net (yellow) 3D surfaces in the presence of a 

hyperechoic calcification image artifact. 

Recent work by Ghavami et al.15 and Lei et al.16 report on automatic prostate segmentation 

in 3D TRUS images, with Ghavami et al.15 reporting best results for 2D DSC, 3D DSC, 

and boundary distance of 89 ± 12 %, 89 ± 5 %, and 1.68 ± 1.57 mm, respectively, and Lei 

et al.16 reporting overall segmentation results for 3D DSC, precision, recall, HD, MSD, and 

RMSD of 91.9 ± 2.8 %, 90.6 ± 5.5 %, 93.8 ± 4.3 %, 3.938 ± 1.550 mm, 0.599 ± 0.225 mm, 

and 0.900 ± 0.377 mm, respectively. Our proposed method demonstrated overall 

segmentation results for 2D DSC, 3D DSC, precision, recall, HD, and MSD of 94.9 [93.2, 

95.5] %, 94.1 [92.6, 94.9] %, 93.2 [88.08, 95.4] %, 96.0 [93.1, 98.5] %, 2.89 [2.37, 4.35] 

mm, and 0.89 [0.73, 1.09] mm, respectively, outperforming the network reported by 
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Ghavami et al.15 on all reported metrics, and outperforming the network reported by Lei et 

al.16 on all metrics except MSD. In addition, our paper reports on metrics not used in the 

studies described here, including VPD, and signed variants of VPD, MSD, and HD, 

providing additional insight into the performance of our network that is otherwise not 

present when these metrics are excluded. Lei et al.16 reported segmentation times of 

approximately 1-2 s for a U-Net, V-Net, and their proposed network, with segmentations 

completed using an NVIDIA TITAN XP GPU with 12 GB of memory. Comparatively, our 

V-Net implementation in NiftyNet had a mean segmentation time of 3.43 s, while our 

proposed method had a mean segmentation time of 0.62 s, with segmentations completed 

using an NVIDIA GeForce GTX TITAN GPU with 6 GB of memory. Although our V-Net 

had slower segmentation times, our proposed method was one and a half to three times 

faster, using a GPU with half the memory, demonstrating the advantage of our proposed 

method regarding segmentation time.  

Studies reported by Ghavami et al.15 and Lei et al.16 are also limited by their use of cross-

validation approaches, in addition to their dataset consisting of only one image geometry 

and a single ultrasound machine with matched voxel dimensions and sizes. In contrast, we 

used a clinically diverse dataset of 3D TRUS images of different image geometries, 

generated by several different ultrasound transducers used with different machine models, 

and used in distinct procedures. This dataset contains images with varying voxel 

dimensions, size, and image quality, and we have employed no pre-processing before 

training to reduce process complexity. To our knowledge, the use of a dataset with different 

image geometries, ultrasound transducers, ultrasound machine models, voxel dimensions, 

and image sizes for 3D TRUS prostate segmentation is unique and may allow for a more 

robust and generalizable segmentation method. In addition, we have not used a cross-

validation approach, instead testing our algorithm on 3D TRUS images that were 

completely unseen by the network, which we believe strengthens the significance of our 

results and may result in improved generalizability. 

3.4.4 Limitations and future work 

Although we have demonstrated excellent performance with our proposed algorithm, a 

parameter that may be interesting to explore in future work is the step angle for radial slice 



93 

 

generation. Specifically, it would be interesting to investigate whether a decreased step 

angle and thus an increased number of radial slices would significantly increase 

performance, or whether a decreased number of slices could be used while maintaining 

similar performance. An increased number of radial slices would increase computation 

time, which motivated our choice of a 15° step angle for the proposed method. When 

training the 3D CNNs for performance comparison, hyperparameters were optimized on 

the V-Net and were used for the other two networks. Even though we investigated other 

combinations and found these hyperparameters to perform the best on the Dense V-Net 

and High-resolution 3D-Net, a rigorous optimization was not performed and has the 

potential to increase performance. Another limitation of our study is the use of only one 

observer for providing ground truth segmentations. This meant we could not directly assess 

inter-observer variability for our dataset. In addition, we did not directly assess intra-

observer variability over several time points. Inter- and intra-observer variability in end-

fire 3D TRUS images were previously assessed by our group,11 and are summarized here. 

To assess intra-observer variability, one observer segmented 15 3D images five times each, 

resulting in a 3D DSC of 93.0 ± 2.1 %. To assess inter-observer variability, three untrained 

observers segmented 15 3D images three times each, resulting in a DSC of 93.5 ± 2.1 %, 

92.6 ± 3.1 %, and 92.3 ± 3.2 %, with an ANOVA demonstrating no significant difference. 

Inter- and intra-observer variability in side-fire 3D TRUS images were also assessed by 

our group,28 reporting 5.1 % variability and 99 % reliability in intra-observer prostate 

volume estimates, and 11.4 % variability and 96 % reliability in inter-observer estimates, 

for a study of eight observers measuring 15 prostate images twice. This variability is 

comparable to the reported DSC of our proposed method in this work, showing that our 

algorithm is performing at the level of intra-observer variability in the ground truth 

segmentations. Due to the demonstrated variability between different observers when 

segmenting 3D TRUS images, segmentations from other observers should be incorporated 

into our testing dataset to further improve the robustness of our proposed method. 
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3.5 Conclusions 

This study investigated the development of a 2D deep learning with 3D reconstruction 

approach for automatic prostate segmentation in 3D TRUS images. Multiple facilities, 

ultrasound machine models, and acquisition geometries were investigated to evaluate 

robustness and generalizability, with comparisons performed against multiple 3D CNNs. 

A fast, accurate, and generalizable automatic prostate segmentation algorithm could reduce 

physician burden and procedure time, offering potential workflow benefits for fusion-

guided prostate biopsy, tumor-targeted HDR-BT, and TRUS-guided whole-gland BT. 

Reducing the time a patient is under anesthesia, as in HDR-BT, also promotes a potentially 

safer procedure with fewer adverse side effects.  
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3.7 Supplement A 

Table 3.A1 Absolute median [Q1, Q3] results comparing a Dense V-Net (DenseNet) and 

High-resolution 3D Network (HighRes3dNet) on an unseen test dataset of 20 end-fire and 

20 side-fire 3D TRUS images of the prostate. 

Acquisition Segmentation DSC (%) Recall (%) Precision (%) VPD (%) MSD (mm) HD (mm) 

End-fire 

DenseNet 
87.9  

[84.9, 90.4] 

95.4  

[92.9, 97.0] 

82.2  

[77.4, 86.5] 

15.6  

[9.42, 20.8] 

2.11  

[1.55, 2.85] 

10.0  

[7.82, 12.5] 

HighRes3dNet 
90.0  

[87.3, 91.4] 

91.7  

[84.6, 94.9] 

89.3  

[87.0, 93.7] 

6.88  

[4.30, 15.7] 

1.62  

[1.41, 2.08] 

8.95  

[7.56, 11.2] 

Side-fire 

DenseNet 
88.7  

[81.6, 90.7] 

89.1  

[86.0, 95.1] 

89.6  

[82.8, 91.9] 

6.38  

[4.22, 12.6] 

1.47  

[1.26, 2.56] 

8.96  

[5.93, 13.8] 

HighRes3dNet 
86.2  

[84.3, 88.7] 

80.5  

[76.8, 86.0] 

94.9  

[90.9, 96.1] 

15.3  

[9.77, 20.0] 

1.64  

[1.36, 1.93] 

7.82  

[6.67, 9.31] 

Overall 

DenseNet 
88.2  

[84.3, 90.6] 

93.0  

[88.9, 96.1] 

84.8  

[79.2, 90.2] 

11.0  

[5.96, 19.3] 

2.00  

[1.36, 2.63] 

9.23  

[7.00, 13.2] 

HighRes3dNet 
87.5  

[85.5, 90.3] 

85.4  

[79.8, 92.1] 

92.3  

[88.4, 95.8] 

11.8  

[4.68, 18.0] 

1.63  

[1.40, 1.97] 

8.37  

[6.89, 10.9] 

DSC, Dice similarity coefficient; VPD, volume percent difference; MSD, mean surface dist.; HD, Hausdorff dist. 

 

Table 3.A2 Signed median [Q1, Q3] results comparing a Dense V-Net (DenseNet) and 

High-resolution 3D Network (HighRes3dNet) on an unseen test dataset of 20 end-fire and 

20 side-fire 3D TRUS images of the prostate. 

Acquisition Segmentation sVPD (%) sMSD (mm) sHD (mm) 

End-fire 
DenseNet 15.6 [9.42, 20.8] 1.44 [0.92, 2.18] 9.13 [7.19, 12.3] 

HighRes3dNet 2.86 [-6.42, 8.86] 0.37 [-0.46, 0.93]] 6.47 [-8.97, 9.71] 

Side-fire 
DenseNet 0.36 [-4.91, 7.07] 0.38 [-0.15, 1.03] 8.67 [-2.86, 13.8] 

HighRes3dNet -13.8 [-20.0, -7.55] -0.76 [-1.23, -0.08] -6.69 [-8.40, 4.38] 

Overall 
DenseNet 8.77 [-2.84, 18.3] 0.95 [0.29, 1.61] 8.87 [5.72, 13.2] 

HighRes3dNet -6.89 [-16.4, 4.09] -0.24 [-1.15, 0.58] -5.84 [-8.46, 8.32] 

sVPD, signed volume percent difference; sMSD, signed mean surface dist.; sHD, signed Hausdorff dist. 
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Chapter 4  

4 Geometrically variable three-dimensional ultrasound for 

mechanically assisted image-guided therapy of focal liver 

cancer tumors 

The use of 3D information during interventional procedures has the potential to improve 

the accuracy needed for sufficient clinical outcomes. The purpose of Chapter 4 is to present 

on the development of a novel 3D US system to provide a safe, cost-effective, and accurate 

intraoperative approach for focal liver tumor therapies. 

The contents of this chapter have been accepted for publication on June 28, 2020 in Medical 

Physics: Gillies DJ, Bax J, Barker K, Gardi L, Tessier D, Kakani N, and Fenster A. 

4.1 Introduction 

Liver cancer is the second and sixth most frequent cause of cancer mortality in men and 

women, respectively, and its incidence is continuing to increase globally.1 The high 

prevalence of this disease is observed in underdeveloped and developing countries due to 

the increased incidence of Hepatitis B and C, but rates are also increasing globally from 

factors including exposure to aflatoxins, metabolic syndrome, and alcohol.1 Without 

accessible and practical therapy options, the prognosis for the majority of patients 

diagnosed with liver cancer remains grave. Conventional therapy is often provided in the 

forms of transplantation and hepatic resection, but patient eligibility is often low due to 

disease exclusion criteria such as the number of tumors, size, location, and presence of 

metastases.2,3 Even in circumstances when a patient is eligible, serious complications can 

occur in up to 26-33% of procedures.4  

Image-guided interventions are less invasive alternatives to open surgery that focus on 

relating preoperative data and images of a patient in an intraoperative setting.5 Smaller 

surgical incisions often lead to reduced recovery times and complication rates, which 

directly benefit a patient’s quality-of-life and healthcare costs. Three main techniques for 

image-guided interventions in the treatment of liver cancer have been investigated: 

embolization, irreversible electroporation, and ablation, such as cryoablation, ethanol 

injection, microwave ablation (MWA), and radiofrequency ablation (RFA). In recent years, 

MWA and RFA have been regarded as the best treatment options for small and 
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unresectable liver tumors,6,7 which use needle-like therapy applicators guided to the tumor 

location to deliver a lethal thermal dose to the tumor.  

Image-guidance during ablation procedures varies globally and has been predominantly 

performed using x-ray computed tomography (CT), magnetic resonance imaging (MRI), 

and ultrasound (US). In many developed countries, access to CT provides a good depiction 

of liver tumors and the ablation applicators, but the limited access to the patient in the CT 

gantry often extends procedure time and can limit complex applicator access angles.8 Since 

MR guidance is often limited to institutions with compatible equipment, US is regarded as 

the most efficient modality for tumors that can be targeted adequately8 with developing 

countries often using this approach.9 Conventional US guidance is a real-time, two-handed 

approach using a plan based on preoperative CT or MR images where one hand positions 

and orients a conventional US probe while the other hand performs therapy applicator 

insertion. However, this approach requires extensive training as the physician must: (1) 

mentally integrate two-dimensional (2D) imaging to form an appreciation of the complex 

3D anatomy of the liver, (2) approximate the tumor volume and spatial extent, (3) align the 

2D image plane directly with the applicator to detect and track its placement at the tumor 

location, and (4) be cognizant of the surrounding anatomy to avoid puncturing unnecessary 

anatomical structures and organs-at-risk, such as the gallbladder. This time-consuming and 

challenging task with its compounding forms of mental burden can lead to increased 

variability in applicator placement and ultimately insufficient tumor ablation. In addition 

to the high local tumor recurrence that has been observed when ablation margins are less 

than 5 mm,10–12 tumors with diameters larger than 5 cm are often avoided as the incidence 

of local tumor progression is higher due to the accuracy required for placing and 

repositioning multiple applicators with overlapping ablation volumes.13 Therefore, there is 

a clinical need to improve the imaging guidance and placement verification of needle 

applicators during MWA and RFA procedures. 

Investigations into guidance techniques for planning, targeting, monitoring, and controlling 

ablation therapies and other needle-like procedures have focused on incorporating CT 

image guidance,14 MR image guidance,15 and tracking systems16,17 into the intraoperative 

clinical workflow. Incorporating three-dimensional (3D) visualizations can lead to 
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complete ablations and higher clinical success rates on the first ablation attempt, as well as 

fewer sessions overall relative to 2D US when subsequent attempts are required.16,18 CT 

images can provide 3D multiplanar images to visualize the needle-like applicators, but 

repeated CT scans are performed at the cost of increased procedure time and radiation dose 

to the patient. MR imaging has been used as it offers advantages such as improved soft-

tissue contrast and the potential for real-time treatment monitoring, but can again increase 

procedure time and is not readily accessible in many countries due to the sophisticated 

technology required.19 Electromagnetic tracking systems have been used to place multiple 

needle applicators by registering and fusing preoperative CT images with live 2D US 

images;20 however, these systems do not often rely on the intraoperative imaging data and 

are susceptible to environmental limitations that can degrade targeting accuracy. 

An alternative approach for real-time image-guided therapy is the use of three-dimensional 

(3D) US.21 This approach includes 2D US freehand scanning with optical or 

electromagnetic position tracking,22 2D array probes,23 or 2D US with mechanical 

scanners.24 These images can offer real-time or near real-time multiplanar imaging in an 

accessible and portable manner, which is an important consideration for widespread 

dissemination. If combined or fused with preoperative CT images using image registration 

methods, lesion identification and procedural plans25 can be incorporated into the 

intraoperative workflow for an augmented and targeted image-guided procedure. Needle 

guides can improve placement of applicators over freehand approaches22 and repeat 3D US 

images can be obtained safely to inform the physician if the therapy applicator placement 

is sufficient or repositioning is required with the use of segmentation algorithms,26 without 

the need for ionizing radiation exposure and a significant increase in procedure time. When 

performing guided insertions, 3D US imaging can improve the targeting accuracy of needle 

applicator placements over freehand 2D US22,27 and has been observed to detect 

unacceptable applicator placements in up to 45% of procedures.28 Additionally, 3D US has 

been observed to improve operator confidence and visualization of the positional 

relationship between needle applicators and nearby critical structures.29 Although therapy 

monitoring can be difficult on conventional B-mode imaging, intraoperative ultrasound 

elasticity imaging has the potential to provide real-time monitoring and verification of 

thermal ablation volumes.30 
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We propose the use of 3D US imaging to provide guidance and localization of ablation 

applicators in current focal liver tumor ablation therapies. We have previously developed 

a system capable of providing 3D US images using a mechanical scanning approach for 

linear, tilt, and hybrid motions of the US probe, which resulted in accurate geometric 3D 

reconstruction and good agreement with clinical CT patient liver images when assessing 

tip and trajectory errors.24 Since the liver is a large internal organ that is partly sheltered by 

the ribs, flexibility in 3D US acquisition geometries can allow for small physical footprints 

(i.e., tilt scanning) that are beneficial for intercostal imaging, as well as wide field-of-view 

(FOV) subcostal imaging (i.e., hybrid scanning) to capture large volumes of the liver. We 

chose to pursue a mechanical scanning approach as it is cost-effective since any clinically 

available US system can be used with this approach, the motor assembly can predefine and 

control probe motion with high accuracy, environmental constraints are minimal, and 

advances in US imaging probes can be easily integrated into the system without any 

changes in the scanning mechanism. This work will further expand the design and use of 

the system by incorporating and evaluating a novel scanning mechanism for increased 

image size and improved usability, a mechanical tracking system for probe placement 

reproducibility and freehand needle applicator guidance, and a needle applicator insertion 

workflow using a custom needle applicator guide for targeted image-guided procedures. 

Evaluation of the new scanner has been previously discussed briefly,31,32 but is expanded 

here to provide context for evaluation of the tracking system and needle applicator insertion 

workflow performed on 48 phantom 3D US images. A healthy volunteer was also imaged 

to provide evidence for clinical feasibility. These evaluations aim to give insights on 

clinical utility for improving applicator placement and reducing local cancer recurrence 

during interventional procedures treating liver cancer. 

4.2 Materials and methods 

Our proposed 3D US system (Figure 4.1) consists of four components: (1) a three-motor 

3D US scanner, (2) a counterbalanced tracking system, (3) a 3D-printed applicator guide, 

and (4) software for image acquisition, visualization, and guidance. The stabilizing system 

also contains electromagnetic brakes, which are disengaged using a foot pedal to improve 

clinical usability and workflow, for locking the system to limit device motion during 3D 
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US acquisition and insertion of therapy applicators. The stabilizing system is mounted on 

a portable cart, which contains a foot-released vertical motion column to accommodate 

large differences in patient sizes, a power supply, and a personal computer with a monitor 

to interface with custom visualization and guidance software. 

 

Figure 4.1 Proposed 3D US system consisting of a three-motor 3D US scanner and a 

counterbalanced stabilizing system mounted on a portable cart. A 3D-printed needle 

applicator guide and custom visualization and guidance software were developed for this 

system to perform targeted needle applicator insertions. 

4.2.1 3D US scanner design and validation 

The proposed 3D US system has been previously discussed and is summarized here.31 

Custom 3D-printed holders were designed to match 2D US probe casings and provide a 

universal male mating connection for any commercially available US probe. A standard 

clinical workflow requirement when performing US-guided procedures is the need for 

patient scout imaging to localize the tumor using freehand US imaging. Once the tumor is 

localized, a beneficial clinical utility would allow the 2D US probe to maintain its 

localization position while a 3D enabling scanner is brought to the probe. For this reason, 

the scanner was created with a female mating spring-loaded quick connection and used 
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three-motors to manipulate the attached 2D US probe. The configuration of the motors was 

designed such that the bulk of the scanner was away from the probe face, which maintained 

the physician’s conventional hand position used during freehand US imaging. The 

connection and scanner design choices allowed for accessibility for any healthcare facility 

using commercial US systems, easy transition to freehand US (which is often important for 

patient scout imaging), and a scanner design that provided a more natural feel for the 

physician as it was able to accommodate their experience and training with regard to hand 

positioning and the 2D imaging technique. Three-motors were used to manipulate the probe 

in two linear degrees-of-freedom (DoF) and one rotational DoF to provide a large scanning 

FOV with consistent image spacing for repeatable 3D US image generation. The large FOV 

allows for more anatomical landmarks and targets to be captured for reference and potential 

registration to a planning CT image. These motors controlled horizontal, vertical, and 

rotational motions up to extents of 98 mm, 19 mm, and 90°, respectively, to form different 

acquisition geometries, including linear, tilt, and or hybrid. Linear refers to the activation 

of a single motor for translation of the probe, whereas tilt and hybrid incorporate all three 

motors to either form a 3D image by rotating a 2D probe about the face of the probe (i.e., 

tilt) or during translation (i.e., hybrid) to form a wide FOV acquisition, similar to previous 

methods.24 3D image reconstruction was performed by moving the probe in the desired 

geometry while images were acquired from the US system using a Digital Visual Interface 

(DVI) to Universal Serial Bus (USB) video frame grabber (Epiphan Systems Inc., Ottawa, 

Canada). Current implementation focused on clinical simplicity and offers a set of pre-

defined 3D scanning directions and ranges, but variable control of each independent motor 

is possible. 

The three-motor scanner used to perform 3D image reconstruction was previously 

validated for geometric error and volumetric error. Geometric imaging experiments were 

performed on a grid phantom of known geometry, which resulted in mean geometric errors 

of ≤0.2%, ≤2.3%, and ≤3.0% for lateral, axial, and elevational image dimensions 

respectively.31 Volumetric imaging experiments were performed to further evaluate image 

reconstruction to assess the combined error contributions of each image dimension. Tissue-

mimicking phantoms with spherical structures were used to compute mean volumetric 

errors of -5.85 ± 6.18%, -6.12 ± 4.82%, and -6.82 ± 3.56% for linear (range: 65 mm to 98 
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mm scans), tilt (60° scans), and hybrid (range: 40 mm + 40° to 80 mm 60°) image 

geometries respectively.33 

4.2.2 Mechanical tracking system and evaluation 

The scanner was mounted on a spring-loaded counterbalanced stabilizing system that 

included a “wrist” with three rotational DoF via a gimbal design and an “arm” with two 

links for 29.3 cm vertical motion and 115º horizontal rotational range (arc length of 27.2 

cm), improving the overall range of motion and working space. The arm incorporated a 

four-bar parallelogram linkage to avoid an arcing path and provide parallel vertical motion, 

which limits the propagation of error to downstream joint axes as motion is limited to one 

Cartesian axis. These components provide a total of five DoF, which are tracked using five 

electromagnetic encoders, which allow tracking of the US probe in space by detecting joint 

angles necessary to compute forward kinematics. To compute the orientation of the 

tracking system end-effector (i.e., 2D US probe), a known position with corresponding 

joint encoder values was required to initialize the coordinate system of the tracking system. 

This position was achieved by forcing the joints into a known reference position using a 

mechanical jig (Figure 4.2A) to obtain the initialization encoder readings on the tracked 

joints (Figure 4.2B). Forward kinematics of the mechanical stabilizing system are given in 

Table 4.1 using the Denavit-Hartenberg convention. 

Table 4.1 Denavit-Hartenberg parameters of the mechanical stabilizing system using 

electromagnetic encoders (i). 

Link 
ai 

(mm) 

i 

(º) 

i 

 (º) 

d i 

(mm) 

Parallelogram 

(Adjacent) 
254 0 0 0 

Parallelogram 

(Vertical) 
0 -/2 0 0 

Sway 135.7 -/2 1 0 

Wrist Roll 0 -/2 2 0 

Wrist Pitch 0 -/2 3 0 

Wrist Yaw 0 0 4 366.4 
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Figure 4.2 (A) A jig (dashed box) was used to place the stabilizing system into a reference 

position to produce the initialization encoder positions. (B) Axes of rotations that are 

tracked using the electromagnetic encoders (i) and used to compute forward kinematics 

using the Denavit-Hartenberg parameters. 

Assessing the accuracy of the tracking system was completed by comparing displacements 

computed by the system to displacements observed by an independent external Polaris 

Vicra optical tracking system (NDI, Waterloo, Canada). An optical tracking system was 

chosen as an external method for comparison due to its high accuracy, ease of use with a 

setup that avoided line-of-sight limitations, and it avoided the need to disassemble the 

system, which is typically necessary for conventional joint analysis. Since forward 

kinematics were computed by choosing the 2D US probe tip as the termination point of the 

tracking system, comparisons were achieved by replacing the 2D US probe with a 

commercial stylus via a 3D printed attachment that maintained the 2D US probe tip 

termination point using the tip of the stylus. The position of the stylus was set using a height 

gauge and was confirmed by optically tracking the probe while only the gimbal wrist was 

manipulated. This generated a spherical cloud of points that could be fit34 and used to 

compare the radius and the expected stylus height.  

The five electromagnetically tracked joints were evaluated independently prior to a 

compound joint motion assessment. After determining an initial position in space near the 

center of the system’s range of motion, a single joint was advanced and stopped to allow 

A B 
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0
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for matched data collection between the mechanical and optical tracking systems. Since 

the initialization position of each joint was in the center of its range of motion, 

measurements were acquired on either side of the initialization position to assess the entire 

range of the joint (Table 4.2). The vertical and horizontal joints on the arm were able to be 

manipulated without engaging other joints, but the gimbal wrist always incorporated and 

released all three rotation axes due to the manual locking mechanism used. The benefit of 

using optical tracking as an evaluation tool was that the 3D displacements could be easily 

and readily measured, allowing for a direct method of comparison to our system without 

the need for disassembly or additional manufactured tools for restricting the gimbal wrist 

axes. Although this method was valuable for evaluation, the manual locking mechanism 

prevented perfect suppression of the other gimbal joints during investigations of the 

independent wrist motions. However, due to the range of motions and displacements 

investigated (Table 4.2), error assessments for each wrist axes were assumed to be 

independent with minimal contributions from other axes. Since liver diameters are 

typically less than 15 cm but can range up to approximately 21 cm,35 we evaluated our 

system with motion up to 25 cm when testing the compound joint kinematics to ensure the 

typical working volume of the tracking system was tested.  

Quantification of the tracking system error was performed by computing the difference in 

displacements determined by our mechanical system and the optical tracking system. The 

center of the system’s range of motion was used to create a reference position for 

computing displacements during subsequent manipulations. Simultaneous transformation 

matrices were computed by our mechanical system and optical tracking, which determined 

the moving tip location in their respective coordinate systems as our system was 

manipulated. Euclidean distances between the new tip location and the initialization 

position were computed in each tracking system’s coordinate system and the difference 

was used for error quantification. 

4.2.3 Mock applicator insertion 

The expected clinical accuracy of our 3D US guidance system was evaluated using an end-

to-end workflow from 3D US image acquisition for target planning to targeted placement 

of a needle-like object with errors validated from CT imaging external to our system. A 
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tissue-mimicking phantom was made using a mixture of agar and glycerol diluted in 

deionized water (35 g/LH2O and 80 mL/LH2O, respectively) to create a speed-of-sound of 

approximately 1540 m/s.36 This mixture was heated to approximately 65°C and provided 

an approximately hypoechoic background under US imaging once cooled. Agar spheres 

were fabricated using molds with diameters of 3.18 mm, 4.76 mm, and 9.53 mm to provide 

visible fiducials for image-based registration. The spheres contained 10 g/LH2O of 

SigmaCell cellulose to provide acoustic backscatter for US imaging and 10 g/LH2O of 

Tungsten (monocrystalline powder, 0.6-1 micron, 99.9+%) to create CT contrast. These 

spheres provided a unique spatial distribution for image registration without any shadowing 

artifacts or speed-of-sound distortions. A 3D-printed needle guide was made to provide our 

guidance software with a known geometry that could be used in a targeting workflow 

(Figure 4.3). This guide was fabricated to match the casing of a C5-1 US probe (Philips, 

Eindhoven, The Netherlands) and provided known trajectories in a range from 15-60° from 

the long-axis of the probe and in the plane of the image. 

 

Figure 4.3 A custom 3D-printed needle guide provided known insertion trajectories over 

a 15-60° range relative to the US probe axis. A detachable face (top-left) allows for the 

removal of the guide after insertion of a needle into a volume, enabling 3D US imaging 

without affecting the inserted needle. 

Needle targeting was achieved by acquiring a pre-insertion 3D US image, selecting a target 

in the image, navigating to the target using our system, and inserting a needle. A 

commercially available iU22 US system with a C5-1 US probe (Philips, Eindhoven, The 

Netherlands) was attached to the system to acquire a 60° tilt scan or a 60 mm + 60° hybrid 
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scan. The fabricated phantom allowed for relevant imaging up to a depth of 14 cm, which 

resulted in image and voxel sizes of 692 × 542 × 542 voxels and 0.25 × 0.25 × 0.25 mm3, 

respectively, for the tilt geometry and 692 × 542 × 584 voxels and 0.25 × 0.25 × 0.34 mm3 

for the hybrid geometry.  

Three different modes of navigation were investigated that required varying levels of user 

interaction: (1) relying predominantly on the system by using only the motors on the 

scanner for US probe navigation, (2) a freehand approach that only used the mechanical 

tracking system for navigation, and (3) a mixed navigation approach that used the scanner 

motors for image plane navigation and the tracking system for in-plane correction. The 

targeting accuracy of the system was evaluated using eight independent stainless steel 

needle insertions per 3D US acquisition geometry (i.e., tilt or hybrid) paired with a target 

navigation technique (i.e., motors only, tracking system only, or a mixed motor plus in-

plane tracking system correction) for a total of 48 needle insertions using the 3D US 

system. 

 

Figure 4.4 Experimental set-up for a 3D US image-guided needle insertion with an O-arm 

providing external imaging comparison for targeted needle placements. 
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3D US needle image-guidance was evaluated using a post-insertion 3D US scan and an 

external cone-beam computed tomography (CBCT) O-arm imaging system (Medtronic, 

Dublin, Ireland). The portable CBCT scanner (Figure 4.4) was used to acquire images 

using imaging parameters of 100 kV, 20 mA, and 150 mAs using a high definition preset. 

Higher resolution images of 1024 × 1024 × 384 voxels with voxel dimension of  

0.22 × 0.22 × 0.43 mm3 were generated by post-processing the raw images.37 

Analyzing the needle targeting accuracy was completed by registering all images to the 

same coordinate system and comparing the needle identified in the 3D US and CT images 

to the intended target location giving 3D US tip error and CT tip error, respectively. 3D 

fiducial registration was performed by manually selecting five agar sphere centroids in the 

pre-insertion 3D US image (i.e., containing the target coordinates) and transforming the 

post-insertion 3D US image and post-insertion CT image using the matched unique 

fiducials. This enabled computation of the fiducial registration error (FRE). Needle tips 

were manually identified in the post-insertion images prior to fiducial registration to reduce 

any user bias on targeting error. Euclidean distances between the target location and 

transformed needle tip locations were computed to assess targeting tip errors when using 

the system, but the distance between needle tips identified in 3D US and CT were also 

compared to verify image modality agreement (i.e., tip agreement). 

4.2.4 Clinical feasibility 

Our system was used to acquire images of a volunteer under a study approved by the 

Institutional Review Board of Western University to qualitatively assess expected clinical 

image quality and usability. This was performed using a breath-hold technique to reduce 

respiratory motion artifacts during image acquisition and improve liver visibility while 

reducing the amount of shadowing artifacts produced from the volunteer’s ribs. A 2D US 

image depth of 14 cm was chosen to visualize the liver from the surface of the skin to the 

subject’s diaphragm and compared against 3D images generated using a commercial X6-1 

3D US probe (Philips, Eindhoven, The Netherlands). 
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4.2.5 Statistical analysis 

Statistical calculations were performed in GraphPad Prism 8.4.0 (Graphpad Software, Inc., 

CA, USA). The normality of distributions were evaluated using the Shapiro-Wilk test and 

were followed by unpaired t-tests or Mann-Whitney tests, depending on the normality of 

the error distributions. Linear regressions were performed to determine any spatial 

dependencies on targeting errors using the 3D US and CBCT images. The three navigation 

approaches were also compared using a one-way analysis of variance (ANOVA) with 

multiple comparisons performed using a Tukey’s test if a significant difference was 

computed. The significance level for statistical analysis was chosen such that the 

probability of making a type I error was less than 5% (p < 0.05). 

4.3 Results 

4.3.1 Tracking system accuracy 

 

Figure 4.5 Optical tracking stylus height assessment. (A) An optical tracking stylus was 

mounted to our system using a 3D-printed holder with a slight tilt to avoid collision with 

the three-motor scanner. (B) A sphere was fit to the point cloud generated during 

manipulation of the mechanical system gimbal joint to confirm the stylus’ height and tip 

location. 

The height of the stylus (Figure 4.5A) was confirmed by fitting a sphere to the point cloud 

generated during manipulation of the three DoF gimbal joint on the mechanical tracking 

A B 
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system (Figure 4.5B). The radius of the sphere was computed to be 366.0 mm, resulting in 

a difference of 0.4 mm (0.1 %) from the expected 366.4 mm. Following confirmation of 

the stylus tip location, each joint on the tracking system was manipulated independently 

and in compound joint motions with errors shown in Table 4.2. 

Table 4.2 Mean ± standard deviation of Euclidean distance differences between our 

mechanical tracking system and an optical tracking system. The five tracking system joints 

were evaluated using independent ranges prior to compound joint motions in a 25 cm range 

of evaluation. 

Joint Joint Range (º) Displacement Range (mm) Mean Error (mm) 

Vertical ±30º 6.9, 128.1 0.81 ± 0.55 

Sway ±30º 9.9, 119.1 0.22 ± 0.18 

Wrist Pitch -45º, 60º 42.2, 172.5 2.06 ± 2.63 

Wrist Roll ±30º 20.3, 33.0 2.40 ± 1.16 

Wrist Yaw ±90º 137.4, 421.3 2.69 ± 1.62 

Compound — 52.4, 346.0 1.85 ± 1.33 

4.3.2 Applicator insertion into phantoms 

4.3.2.1 Motor navigation 

An example phantom needle insertion with registered 3D US and CBCT images resliced 

to display the entire needle trajectory is shown in Figure 4.6. When using the three-motor 

scanner for needle targeting, mean ± standard deviation (SD) tip errors based on the US 

and CT images were 4.44 ± 3.08 mm and 4.04 ± 2.79 mm, respectively (Table 4.3). Due 

to the consistency of the motorized approach returning to the image origin, manual 

registrations were not necessary between the pre-insertion and post-insertion 3D US 

images. Although navigation when using a hybrid geometry appeared to result in larger tip 

errors, no statistically significant differences (p > 0.05) were observed between the tilt and 

hybrid scan geometries for FRE, 3D US/CT tip agreement, 3D US tip error, and CT tip 

error. However, there was a significant, moderate correlation between image depth and 

error based on tip identification in both the 3D US (Figure 4.7A) and CT images (Figure 

4.7D). Each image geometry was investigated separately for the CT tip errors and after 

removal of a low tip error outlier for the tilt geometry, strong correlations were observed 

for the hybrid geometry (p = 0.0079, r2 = 0.72) and tilt geometry (p = 0.0196, r2 = 0.78). 
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Table 4.3 Needle tip targeting errors when using a motor, tracking system, and mixed 

motor with in-plane correction navigation approaches. Mean ± SD are reported for fiducial 

registration error (FRE) between the pre-insertion 3D US and post-insertion 3D US image, 

FRE between the pre-insertion 3D US and CT image, post-insertion 3D US to CT manual 

tip location distance (agreement), needle tip to pre-insertion target distance error based on 

the US image, and needle tip to pre-insertion target distance error based on the CT image 

as the gold standard. 

Navigation 

Approach 

Acquisition 

Geometry 

US/US FRE 

(mm) 

US/CT FRE 

(mm) 

Tip Agreement 

(mm) 

  3D US Tip 

Error (mm) 

CT Tip  

Error (mm) 

Motor 

Tilt — 1.12 ± 0.29 1.37 ± 0.49 3.36 ± 1.93 2.73 ± 1.74 

Hybrid — 0.93 ± 0.36 1.27 ± 0.86 5.01 ± 3.77 5.19 ± 3.13 

Total — 1.02 ± 0.33 1.32 ± 0.69 4.44 ± 3.08 4.04 ± 2.79 

Tracking  

System 

Tilt 0.52 ± 0.16 0.62 ± 0.15 2.76 ± 1.45 5.71 ± 1.86 7.00 ± 1.49 

Hybrid 0.71 ± 0.26 0.76 ± 0.21 1.78 ± 0.61 8.46 ± 2.94 8.68 ± 2.87 

Total 0.61 ± 0.23 0.69 ± 0.19 2.27 ± 1.19 7.08 ± 2.86 7.84 ± 2.37 

Mixed 

Tilt 0.34 ± 0.09 0.65 ± 0.16 1.73 ± 0.42 3.40 ± 1.94 4.28 ± 2.02 

Hybrid 0.33 ± 0.10 0.50 ± 0.14 1.74 ± 0.34 4.14 ± 2.64 4.25 ± 3.00 

Total 0.33 ± 0.09 0.58 ± 0.17 1.73 ± 0.37 3.77 ± 2.27 4.27 ± 2.47 

 

Figure 4.6 Manually registered 3D US (A) and CBCT (B) images of needles inserted into 

an agar-based tissue-mimicking phantom. The agar spheres contained cellulose and 

tungsten to provide targets for fiducial registration. 

4.3.2.2 Tracking system navigation 

Errors associated with needle targeting using the tracking system navigation are shown in 

Table 4.3. The total mean ± SD tip targeting errors using the 3D US and CT images were 

7.08 ± 2.86 mm and 7.84 ± 2.37 mm, respectively. Aside from a statistically significant 

difference (p < 0.05) observed for the 3D US tip error, no statistically significant 
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differences were observed between tilt and hybrid geometries. However, a statistically 

significant larger error was observed for the 3D US (p < 0.05) and CT (p < 0.001) tip errors 

using the tracking approach compared to the motorized navigation approach (Sec. 4.3.2.1). 

No significant correlations were observed between tip errors and image depth (Figure 

4.7B&E). 

4.3.2.3 Mixed navigation 

Table 4.3 also shows the needle targeting errors for the combined motor and tracking 

system navigation approach. Total mean ± SD tip targeting errors using the 3D US and CT 

images were 3.77 ± 2.27 mm and 4.27 ± 2.47 mm, respectively. No statistically significant 

differences (p  0.05) were observed between tilt and hybrid geometries for any of the 

recorded metrics. ANOVA of the tip errors for the motorized navigation approach (Sec. 

4.3.2.1), the tracking system approach (Sec. 4.3.2.2), and the mixed navigation method 

showed a statistically significant difference calculated using 3D US (p < 0.01) and CT 

images (p < 0.0001). Tukey’s multiple comparisons test showed a significantly larger error 

when using the tracking system compared to the motor approach (p < 0.001) and the mixed 

navigation approach (p < 0.001), but no statistically significant differences were observed 

between the motorized approach and the mixed navigation method. Unlike the motor only 

approach, no statistically significant correlation was observed between 3D US (Figure 

4.7C) or CT (Figure 4.7F) tip error and image depth. However, strong correlations were 

observed for the hybrid geometry when 3D US (p = 0.0316, r2 = 0.56) and CT (p = 0.0122, 

r2 = 0.68) tip errors were separated by acquisition geometry. 

4.3.3 Clinical feasibility 

Example 3D US images of a healthy volunteer are shown in Figure 4.8. Important 

anatomical structures, including the portal vein, diaphragm, gallbladder, and right kidney, 

were clearly reconstructed with few artifacts due to uncorrected scanner or tissue motion. 

The full inspiration breath-hold was a successful approach for this volunteer as shadowing 

artifacts from the rib cage were avoided in the reconstructed 3D US images, generating 

clinically useful images as assessed by an interventional radiologist (N.K). Hybrid (60 mm 

+ 60º) and tilt (60º) images were acquired in 12 s. 
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Figure 4.7 Scatter plots showing the 3D US (A-C) and CT (D-F) needle tip targeting error 

as image depth increases for motor (A, D), tracking system (B, E), and mixed motor with 

in-plane correction navigation approaches (C, F). Hybrid and tilt image acquisition 

geometries were used for targeting experiments and linear regressions (solid) are shown 

with 95% confidence bands (dotted). 

 

 
Figure 4.8 3D US images of a volunteer’s liver using (A) a commercial X6-1 probe, (B) a 

hybrid scan geometry using our proposed system, and (C) a tilt scan geometry using our 

proposed system. 

4.4 Discussion 

4.4.1 Tracking system accuracy 

The mechanical tracking system was assessed using optical tracking to evaluate the error 

associated with determining a US probe orientation relative to our proposed system. After 

evaluating the error of each joint independently, a mean positioning error of 1.85 ± 1.33 
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mm was observed when performing compound joint manipulations in motions expected 

during interventional focal ablation of liver tumors. Since this error encompasses the 

tracking system error from the system cart to the 2D US probe, this has the potential to 

provide sufficient accuracy for initializing position dependent algorithms, such as a 3D US 

image stitching algorithm to generate a larger view of the liver. This also motivated 

targeted needle insertions, so a 95% confidence interval was computed to assess the 

maximum tumor diameter that could reliably be targeted using 

 
𝑑𝑚𝑎𝑥 = 2 (𝑥̅ +

1.96𝜎

√𝑁
) [𝑚𝑚], 

(4.1) 

where 𝑥̅ is the mean positioning error, 𝜎 is the standard deviation, and 𝑁 is the number of 

measurements. This resulted in a tumor diameter of 5.54 mm with 95% confidence if no 

other errors were present. Thus, we believe this diameter to be sufficient for clinical use as 

most treated liver tumors are between 20 mm and 50 mm. However, since we chose to use 

magnetic encoders in the tracking system that detect the perpendicular component of the 

magnetic field of the rotary shaft in the radial-transverse cylindrical plane (for a reduced 

size advantage), any manufacturing error in the magnetic field alignment with the rotary 

encoder shafts would increase the measured joint errors due to the nonlinear nature of the 

detected magnetic field. Although we believe the accuracy we achieved to be sufficient, 

calibration of each encoded joint could be completed during assembly of the system38 to 

reduce this error as the off-axis magnetic field is still extremely consistent and repeatable. 

4.4.2 Mock applicator insertion 

The motor-only navigation method approach resulted in a needle tip guidance error of 4.04 

± 2.79 mm when evaluated with a registered CT image and was observed to have the lowest 

mean error of the three approaches, although not statistically significant. Tip targeting 

errors when using the three-motor scanner approach are likely acceptable for targets 

located at a depth <75 mm, but the main source of error was likely due to the custom needle 

guide. Moderate correlations were observed with image depth and tip error, with a strong 

correlation specifically for the hybrid imaging geometry. Since angular sampling will result 

in larger distances between available needle guide trajectories proportional to depth, this 

observation possibly suggested that the needle guide increments of 5° were too large for 
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deeper targets without an in-plane correction. Since no adjustment was performed to align 

the target with one of the nearest projected needle guide tracks, an error of 2.5° (i.e., 

directly in between needle guide trajectories) was assumed to be the maximum error 

contribution from the needle guide. Taking into account the 10.69 mm template height 

offset from the US probe tip, a maximum error contribution from the needle guide alone 

(shown in Figure 4.9) for an image depth of 𝑥 mm was determined (Eq. 4.2). 

 𝑀𝑎𝑥𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝐸𝑟𝑟𝑜𝑟 =  0.0436𝑥 + 0.466 (4.2) 

 

Figure 4.9 Scatter plot showing the needle targeting error using the three-motor approach. 

The maximum possible error due to the needle template geometry is shown as a dashed 

line. 

Performing guided needle insertion with the tracking system was the worst approach with 

a statistically significantly higher tip error of 7.84 ± 2.37 mm when compared against the 

other two methods. Although the mean positioning error reported using optical tracking 

was less than 3 mm, the increased error observed with needle insertion suggests that there 

is a small angular miscalibration in the tracking system as the needle tip point of 

measurement is much further from the US probe tip. In addition, some error from the three-

motor scanner could contribute to tracking system error since the scanner must return to 

the assumed final axis of the tracking system after image acquisition, but this additional 

source of misalignment is likely minimal. Since no correlations were observed with depth, 

the needle guide appears to perform as expected as the user could place the target directly 

on a projected needle trajectory.  
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A combined approach for navigation that incorporated the motorized movement for out-

of-plane motion and the tracking system for in-plane correction resulted in a mean tip error 

of 4.27 ± 2.47 mm. This approach was not statistically significantly different from a motor 

only approach and the in-plane correction did not appear to account for the observed 

correlation between image depth and tip error when using a hybrid image geometry. This 

mean error and SD suggests a target with a diameter of 10.96 mm can be hit with a 95% 

confidence, which is on the order of the recommended 5-10 mm margins for image-guided 

interventions in the liver.39–41 One caveat of the navigation errors reported in this study is 

the ideal nature of the needle insertion experiments, which did not contain expected clinical 

issues such as liver motion. Image registration methods have been investigated for other 

3D US-guided procedures42,43 and could be incorporated into our proposed system to 

perform coordinate system corrections required to maintain targeting accuracy. 

Nevertheless, the combined US-based navigation approach could provide an accessible 

method to motivate further development of stereotactic interventional radiology 

approaches that use multiple applicator insertions for treating tumor diameters larger than 

50 mm. 

4.4.3 Clinical feasibility 

The healthy volunteer images provided good feedback about anatomical structures relevant 

for focal liver tumor therapies. The increasing need and potential for accurate image 

guidance during minimally invasive therapy is also supported by the need for accurate 

tissue sampling during biopsy procedures. Since cancer is complex and often comprises of 

multiple genotypic pathologies, more accurate diagnostic biopsy procedures in the 

abdominal area could likely improve the information given to the clinician and provide 

more specific pathology data for better informed therapeutic decision trees. Therefore, our 

system has the potential to improve a wide range of minimally invasive procedures. 

One downside of using US imaging for guiding needle applicator insertions in the 

abdominal area is the low image contrast of some tumors. This can be challenging using 

conventional clinical workflows using 2D US as insertions must be performed using other 

anatomical landmarks for approximating tumor locations. A beneficial approach would be 

to perform an image registration between pre-operative CT images containing tumor 
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locations with real-time intra-operative US images for guidance, but the multi-modality 

and difference between 2D and 3D imaging present as a challenge. In addition, patient 

positioning may change and US probe pressure could introduce deformations, requiring 

deformable image corrections. With the incorporation of 3D US and our system, a multi-

modal 3D image registration could be facilitated as the additional spatial context is 

available relative to conventional 2D US imaging. By registering the CT image to the 3D 

US image domain, the navigation approaches presented could be used to target low contrast 

tumors in US using CT-derived tumor localization.  

Avoiding critical structures and organs-at-risk, like the gallbladder, is also an important 

clinical constraint for maintaining low complication rates. A registration process between 

pre-operative CT and intra-operative 3D US could allow for pre-operative planning where 

tumor locations and critical structures can be identified for optimizing the optimal needle 

applicator trajectories.25 Model views can be generated intra-operatively using 

segmentation software available on our system31 and used with our needle guide predicted 

trajectory for real-time avoidance of critical structures. If a freehand insertion is performed 

without a needle guide, an alternative solution could include a 2D US real-time needle 

segmentation method for comparing tip and trajectory information to the identified 

structures. 

4.5 Conclusions 

A mechanically tracked system with geometrically variable 3D US during minimally 

invasive liver cancer diagnostic or therapeutic procedures provides a utility that enables 

enhanced applicator guidance, placement verification, and improved clinical workflow 

without the need for additional radiation exposure. With this device, intraoperative 

assessment and applicator adjustments can be performed to potentially decrease the liver 

cancer recurrence rates associated with minimally invasive procedures and demonstrate a 

step towards stereotactic interventional approaches.  
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Chapter 5  

5 Three-dimensional therapy needle applicator 

segmentation for ultrasound-guided focal liver ablation 

The use of 3D information during interventional procedures has the potential to improve 

the accuracy needed for sufficient clinical outcomes, but increased procedure times, patient 

radiation dose, and costly interventional suites can limit widespread adoption. The purpose 

of Chapter 5 is to present on the development of a novel 3D US system to provide a safe, 

cost-effective, and accurate intraoperative approach for focal liver tumor therapies. 

The contents of this chapter have previously been published in Medical Physics: Gillies 

DJ, Awad J, Rodgers JR, Edirisinghe C, Kakani N, and Fenster A. Medical Physics 2019; 

46(6):2646-2658. Permission to reproduce this article was granted by John Wiley and Sons 

and is provided in Appendix B – Copyright Releases. 

5.1 Introduction 

Minimally invasive percutaneous interventional techniques are increasingly being adopted 

throughout the body for a wide range of diagnostic and therapeutic procedures, such as 

aspiration, biopsy, brachytherapy, and ablation. These techniques are often image-guided 

procedures and offer promising alternatives to open surgical practices as they have shown 

decreased patient recovery times and complications due to more localized treatments.1,2 

Minimally invasive focal ablation of liver tumors has received significant attention as liver 

cancer is the second and sixth most frequent cause of cancer mortality worldwide in men 

and women, respectively, with high prevalence in under developed and developing 

countries.3 Although liver transplantation and resection are the gold standard curative 

therapy options for cancer with a 5-year survival rate of approximately 40%,4 these open 

surgical procedures are often followed by long patient recovery times. Occasionally, 

serious problems can arise, including organ (graft) rejection, infection, bile duct 

complications, and immunosuppression related issues, leading to a traumatic 

hospitalization experience for approximately 26% of liver resection patients and 33% of 

liver transplant patients.5 In addition, only 10 to 20% of patients are candidates for surgery 

based on strict inclusion criteria including the number and location of tumors, malignant 

spread of the disease or lymph node involvement, and a range of patient factors (e.g., size, 

age, and existing medical conditions such as cirrhosis of the liver).6,7 Minimally invasive 
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techniques, such as radiofrequency ablation (RFA), microwave ablation (MWA), and 

irreversible electroporation (IRE), have become alternative therapies for early-stage liver 

cancer with the most common treatment performed on hepatocellular carcinoma.8 Due to 

availability of commercial ablation systems, e.g., the EvidentTM MWA system (Medtronic, 

Dublin, Ireland), the StarBurst RFA system (AngioDynamics, Inc., NY, USA), and the 

Nanoknife IRE system (AngioDynamics, Inc., NY, USA), these procedures have become 

more clinically feasible and are increasingly being regarded as primary treatment options. 

Although a minimally invasive technique offers advantages relative to open surgery, some 

procedural limitations have prevented its adoption as the gold standard. A majority of the 

operators using these percutaneous techniques use x-ray computed tomography (CT) 

images for planning, two-dimensional (2D) ultrasound (US) for intraoperative guidance of 

the ablation needle applicator(s) into the center of the tumor, and either additional CT or 

2D US images to perform further modifications and verify needle applicator placements. 

Depending on the number and size of tumors, which can typically range from 1 cm to 5 cm 

in diameter,8 as well as the type of ablation (radiofrequency vs. microwave), one to four 

needle applicators are typically required to cause the ablation zone to completely cover the 

borders of the tumor and allow for adequate treatment coverage. Unfortunately, these 

procedures have higher local recurrence rates than resection due to insufficient or 

inaccurate local tumor ablation.9 One cause for poor ablation coverage has been associated 

with subjective 2D US guidance and verification, which leads to variability in needle 

applicator targeting accuracy due to high operator dependence when using 2D US images 

for 3D spatial localization. Important anatomical markers and structures are difficult to 

visualize in a single frame when using 2D imaging,10 which increases complexity and 

requires the physician to track both the ablation needle applicator and surrounding 

structures to avoid unnecessary damage.11 Malposition of the needle applicators can not 

only lead to unwanted complications, but can increase procedure times and patient 

radiation dose, from the additional US and CT needed to correct the positions. Thus, if 

needle applicator targeting accuracy is to be increased without increasing procedure time 

and minimizing excess radiation dose, a non-ionizing radiation intraoperative imaging 

workflow is needed to improve upon the conventional 2D US spatial localization method. 
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Intraoperative magnetic resonance (MR) and three-dimensional (3D) US imaging 

techniques have been investigated to reduce complexity for the physician, increase 

visualization of surrounding tissues, and enable accurate localization of the ablation needle 

applicator into the liver.12–14 Although MR images can provide superior soft-tissue contrast, 

3D US techniques have the advantage of providing real-time or near real-time imaging 

with an imaging system that is portable and affordable, ultimately addressing major 

concerns for centres in developing countries where liver cancer incidence is high.3 Since 

preoperative contrasted CT images provide a sufficient method for lesion identification and 

planning, image registration can be performed to transfer the locations of the cancerous 

tissues to the 3D US image.15 These resulting fusion images can then allow for accurate 

planning and verification of the needle applicators’ location. Unfortunately, current 

limitations still exist for visualizing and verifying needle applicator positions in 3D US 

liver images as the visibility can change with needle applicator insertion angle, depth, and 

size, in addition to the choice of transducer (i.e., curvilinear) and local anatomical acoustic 

reflections that result in complicated images containing shadows and reverberation artifacts 

with unclear line-like interfaces.16,17 Attempts have been made using a variety of needle 

applicator enhancing techniques to address these localization concerns for the physician by 

incorporating additional features like echogenic coatings,18 magnetic or optical tracking 

systems,19 robotic needle steering,20 augmented reality,21 and US beam steering.22 

Although many options seem promising, all of the above choices add increased cost and 

complexity relative to the conventional procedure, which can be a limiting factor for 

widespread dissemination.  

Image-based needle applicator segmentation is an alternative option that aims to localize 

inserted needle applicators to provide an efficient and low-cost method to inform 

physicians when needle applicator adjustments are required. By employing a segmentation 

algorithm, the time for intraoperative identification of the needle applicators can be reduced 

to improve the overall efficiency of the clinical workflow and reduce mental demand of 

the physician when trying to accurately ablate the cancerous lesions. Segmenting needle-

like objects in 3D US has been used in a broad range of interventional procedures with 

varying requirements influenced by object orientation with respect to the US probe, object 

flexibility, and US image quality, which in turn is affected by a variety of sources, including 
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the commercial system, acquisition settings, imaging artifacts from the medical tools,23 and 

anatomical imaging challenges (e.g. depth of lesion and acoustically visible internal 

structures contributing to image clutter).  

Applications for 3D US needle-like segmentation have been focused on procedures in 

prostate,24–28 breast,29–31 heart32,33 and anesthetic administration,34 but these approaches do 

not readily translate to liver interventions. This is primarily due to deep insertions into the 

liver that require needle applicators up to 30 cm in length and large angles relative to the 

transducer face resulting in poor specular reflections back to the transducer. More specific 

to liver imaging, Zhao et al.35 have investigated a four-dimensional (4D) US micro-tool 

localization approach by employing a region-of-interest strategy to a random sample 

consensus (RANSAC) and Kalman filter localization algorithm. When imaging ex vivo 

porcine liver, they reported root-mean-squared tip errors between 0.6 and 2.4 mm with 

maximum component trajectory errors less than 3.5°. For needle steering approaches, 2D 

power Doppler has been used with a vibration module20,36 for 3D segmentation of curved 

needles. Experiments performed on ex vivo bovine liver20 showed mean tip errors of 0.92 

± 0.93 mm for a centred, orthogonal, straight needle at a 600 Hz vibration frequency. Beigi 

et al.37 reported on a 3D needle segmentation from multiple images to detect intensity 

variations while using a moving stylus inside a hollow cannula. Trajectory errors of 1.4 ± 

0.7° and tip identification errors of 0.8 ± 1.1 mm were found when imaged on ex vivo 

bovine liver. While general needle-like segmentation algorithms for 3D US have been 

discussed in the literature and tested on tissue mimicking models, such as agar, chicken 

breast, bovine, and porcine tissues, evaluation on in-vivo clinically acquired 3D US images 

has not been reported for the unique imaging characteristics of needle applicators used in 

percutaneous liver tumor ablations. 

We propose the use of 3D US imaging paired with an intraoperative image-based needle 

applicator segmentation algorithm to provide localization of ablation needle applicators in 

current focal liver tumor ablation therapies. Needle applicators for these procedures 

typically have a diameter of 1.5 to 2.8 mm (12 to 17 gauge) and range in length from 12 to 

30 cm to accommodate for the variety of patient thicknesses and depth of lesions.38 These 

procedures are most commonly performed as a two-handed approach where one hand is 
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used for positioning and orienting the US transducer and the other is used for needle 

applicator insertion. Due to the free-hand nature of the conventional approach, a wide range 

of needle applicator insertion angles with respect to the US transducer are observed, 

ranging from 10 to 80° from the transducer face. In our approach, we assume needle 

applicators to be rigid and straight, relying on the assumption of minimal bending within 

the tissue. This assumption was chosen based on a recent clinical CT study where 93% of 

ablation applicators (inserted in a range from 32 – 182 mm) were observed to have less 

than 3 mm of deflection with an overall average deflection of 1.3 mm.39 Since the majority 

of these deflection measurements are less than the diameter of the ablation applicators (i.e., 

1.5 to 2.8 mm), a straight assumption would likely be appropriate to capture the trajectory, 

and more importantly tip location, for the majority of observed clinical cases. Furthermore, 

we used a supervised approach to reduce the complexity of the algorithm and provide a 

method for the physician to control the algorithm. Our algorithm was optimized and 

evaluated against manual segmentations of an EvidentTM MWA antenna (Medtronic, 

Dublin, Ireland) needle applicator inserted in plain homogeneous agar phantoms to test 

idealized imaging conditions. This optimization was followed by needle applicator 

segmentations in 16 retrospective patient 3D US images to evaluate performance on a 

clinical dataset. Multiple users with a range of US experience performed segmentations 

with the algorithm to assess robustness and inter-operator variability of the algorithm. 

These evaluations aim to provide insights on clinical utility and represent an opportunity 

for improving needle applicator localization for interventional procedures treating liver 

cancer. 

5.2 Materials and methods 

5.2.1 3D therapy needle applicator segmentation algorithm 

The overall workflow of the 3D needle applicator segmentation algorithm is shown in 

Figure 5.1, which is primarily based on voxel intensity thresholding and clustering. After 

acquiring a 3D US image, the user provides the location of a single point to the algorithm, 

which is assumed to fall along the trajectory of a visible needle applicator in the 3D US 

image with unknown insertion angle 𝜃 (Figure 5.2a). This initial seed point is used to 
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generate test points in a spherical coordinate system and creates the search space of 

potential needle applicator trajectories. Since the locations of the generated test points in 

the search space coordinate system (b) are influenced by the radius of the sphere and the 

number of points in the longitudinal (polar angle spacing ∆𝜃) and latitudinal (azimuthal 

angle spacing ∆𝜑) axes, investigation of these parameters are discussed in Sec. 5.2.2. 

 

Figure 5.1 Proposed 3D US-based therapy needle applicator segmentation workflow. Line 

segments are created from a spherical search space to compute the most probable trajectory 

using a signal-to-background intensity threshold. The Otsu threshold is computed for the 

most probable trajectory to determine the needle applicator’s tip, completing the 

segmentation. 

The second step to find the most probable needle applicator trajectory requires the 

generation of testable trajectories. Line segments are created for each test point on the 

sphere and drawn through the initial user seed point to span the diameter of the sphere. 

Searching diameters of the sphere reduced the testable search space in half as anything 

beyond the superior hemisphere would result in redundant line segments. Since 

interventional liver procedures are typically performed with oblique insertion angles on 

either the left or right side of the US transducer, the range of possible needle applicator 

slopes was restricted to the sphere’s polar angle range 𝜃 = 10-80° from the longitudinal 

axis (i.e., axial axis of the 3D US image). In addition, we also assumed the needle 

applicators were visualized in the 3D US image approximately in-plane and thus 

constrained the sphere’s azimuthal angle range (i.e., lateral axis of the 3D US image) to 𝜑 

= 0 ± 60° and 180 ± 60°, as shown in Figure 5.2c. 
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Figure 5.2 (a) Sample 3D US image plane of a needle applicator inserted in a homogeneous 

phantom with the needle applicator insertion angle (θ) and 2D US axes labelled. (b) 

Spherical 3D coordinate system to generate test points with 3D US axes labelled for 

reference. (c) Generated spherical test points used to determine the most probable needle 

applicator trajectory after incorporating intraoperative assumptions overlaid on the sample 

3D US image plane in (a) displayed with a 45° rotation. 

The needle applicator’s trajectory is determined by maximizing the sum and number of 

voxels along a line segment that exceeds an intensity threshold. The chosen intensity 

threshold was selected as the signal-to-background intensity ratio (SBR) that minimized 

the trajectory error when segmenting needle applicators in phantom images, as described 

in Sec. 5.2.2. Each potential line segment in the search space is sampled at a spacing 

equivalent to the average of the lateral and axial in-plane voxel dimensions of the 3D 

image, which was approximately 0.37 mm. The sum (𝑆𝑢𝑚𝑖) and total count (𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑖) 

of all voxels on a line segment 𝑖 that are greater than the intensity threshold are saved and 

used as the metrics to determine the most probable line segment for the needle applicator. 

The most probable needle applicator trajectory (𝑇) is computed from all possible line 

segments (𝑛) after normalizing all line segment parameters to the maximum of the 

computed metric values (i.e., 𝑆𝑢𝑚𝑚𝑎𝑥 and 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑚𝑎𝑥) as: 

 𝑇 = max
𝑖∈𝑛

{(
𝑆𝑢𝑚𝑖

𝑆𝑢𝑚𝑚𝑎𝑥
) + (

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑖

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑚𝑎𝑥
)}. (5.1) 

Once the trajectory is selected, the needle applicator tip is determined by employing a 

second intensity threshold along the computed one-dimensional vector starting from the 

manually selected seed point. Under the assumption that a needle applicator (hyper-
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intense) and background (hypo-intense) could be represented with a bi-modal histogram of 

intensities, the Otsu threshold40 is determined to maximize the interclass variance between 

the intensity populations. Since the line segment chosen for the needle applicator trajectory 

would mostly contain voxels corresponding to the needle applicator, the selected line 

segment is extended by an additional 10 mm to increase the number of background voxels. 

This aims to approximately equalize the needle applicator and background voxel 

populations in the intensity distributions, which minimizes uncertainty when determining 

the Otsu threshold.41 After determining the Otsu intensity threshold, all voxels along the 

entire extended needle applicator trajectory with intensity values below the threshold are 

eliminated. Finally, the last remaining voxel along the trajectory is selected as the tip 

location.  

This complete algorithm was compiled using C++ and ran on an i7-6700K central 

processing unit (CPU) at 4.0 GHz (Intel Corporation, CA, USA) with the trajectory 

localization parallelized on 8 threads using OpenMP. This utilized a 3D Slicer42 user 

interface to allow for selection of points and passing of voxel coordinates to the 

segmentation algorithm. Completed segmentations were displayed using the physical 

dimensions of a 13-gauge ablation needle applicator with a length of 17 cm (Medtronic, 

Dublin, Ireland). 

5.2.2 Phantom images 

Since we only had access to 16 patient 3D US images, we used images of needle applicators 

inserted in phantoms to optimize various parameters required for the algorithm. These 

optimized parameters were then used to perform segmentations of needle applicators in the 

patient image dataset. Homogeneous block phantoms were made with distilled water 

(87.7% by mass), glycerol (8.8% by mass; Sigma-Aldrich, MO, USA), agar (3.1% by mass; 

Sigma-Aldrich, MO, USA), and cellulose (0.4% by mass; Sigma-Aldrich, MO, USA) for 

acoustic backscatter.43 An EvidentTM MWA antenna (Medtronic, Dublin, Ireland) was 

inserted through a custom-made template,14 which allowed for insertions with one degree 

of rotational freedom when seated in a compatible box (Figure 5.3). The needle applicators 

with a length of 17 cm (containing a 3.7 cm radiating tip) and a diameter of 2.1 mm (13 

gauge) were inserted through the template into the phantom in a clinically relevant range 
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of oblique insertion angles with a mounted protractor for approximating visual guidance, 

but not used for evaluation. 3D US images were captured by employing a freehand 

approach using the commercially available iU22 US machine with an X6-1 matrix probe 

(Philips, Amsterdam, NL). The freehand approach was chosen to resemble an 

interventional procedure where the physician tries to visualize the applicator in the imaging 

plane while inserting the applicator at various angles depending on the location of the 

tumor. Since the task of imaging in a single plane is difficult, 3D trajectories were assessed 

in two degrees of freedom and required the 3D image to be resliced on oblique trajectories 

to visualize the entire needle. 3D US images containing needle applicators were acquired 

with a 30% gain, depth of 10 cm, and a 55° angular field of view that resulted in an image 

size of 512 × 407 × 220 voxels with voxel dimensions of 0.314 × 0.258 × 0.461 mm3. The 

needle applicator insertion angles (Figure 5.2a) and insertion depths are provided in Table 

5.1. These imaging details were manually determined using the voxel corresponding to the 

entrance of the needle applicator in the US image and the voxel at the needle applicator’s 

tip location across 10 different insertions.  

 
Figure 5.3 (a) Sample MWA needle applicator inserted in a homogeneous phantom 

through a custom-made template with one degree-of-freedom. (b) Close up perspective on 

the needle applicator’s insertion angle approximated by an attached protractor. 

Following 3D image acquisition, manual segmentations of the needle applicators were 

performed to provide a comparison to the algorithm. The manual segmentations were 

completed prior to the algorithmic method to ensure an unbiased comparison was provided 

when quantifying the error of the segmentation algorithm. Manual segmentations were 

acquired by selecting one point at the visible tip of the needle applicator and a second point 
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located approximately halfway along the visible shaft. Manual tip locations were 

repeatedly selected over five different time points, separated by a minimum of 24 hours, to 

obtain a manual user variability and an average tip location. The second point selected was 

chosen at the approximate centre of the needle applicator’s shaft to ensure the computed 

trajectory was through the core of the needle applicator. This second point not only 

provided the necessary information to compute a manual trajectory, but also provided the 

seed point required to initialize and generate the segmentation from the semi-automated 

algorithm. Five of these seed points were selected for each phantom 3D US image to 

investigate if initialization variability affected segmentation performance. With this 

workflow, a direct comparison between the two methods of segmentation could be 

achieved to optimize and assess the segmentation algorithm. 

Table 5.1 Visualized needle applicators in 3D US images of a homogenous agar phantom. 

 
 Imaged Insertion  

Anglea (°) 

 Imaged Insertion 

Depth (mm) 

Mean  41.1  68.6 

Standard Deviation  16.2  8.4 

Minimum  17.4  55.5 

Maximum  65.9  81.1 

aInsertion angle was measured from the axial axis of the US image. 

The phantom image dataset was first used to perform optimization of parameters for the 

trajectory selection component of the segmentation algorithm. The test point spacing, 

which can be influenced by the spherical radius of the search space, was a major factor to 

consider when searching for the best trajectory (Figure 5.4). One option could be to choose 

a large spherical radius to capture all the needle applicator voxels in the image to maximize 

the trajectory metric in Eq. (5.1). This would also be beneficial since the needle applicator 

has a non-negligible thickness and capturing points further apart could result in fewer 

probable trajectories that would maximize the trajectory metric, resulting in a better 

approximation for the trajectory. However, employing a radius too large could 

unnecessarily increase computation time and potential for failure on shallow insertions 

since there would be an increased probability of background voxels that could exceed the 

static SBR threshold, creating maxima in the trajectory metric. Conversely, choosing a 

small radius would reduce the number of samples acquired and computation time, but could 
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result in an increased number of incorrect probable trajectories. Therefore, we optimized 

for test point spacing by investigating the interaction between coarse, medium, and fine 

uniformly distributed test point spacings (i.e., ∆𝜃 and ∆𝜑) of 2.4°, 1.2°, and 0.6° with small, 

intermediate, and large spherical search spaces represented by radii of 15, 30, and 45 mm. 

The choice of these three radii was influenced by the average appearance of needle 

applicators (i.e., mean insertion depths of approximately 70 mm) in the patient dataset 

(Table 5.2). 

 

Figure 5.4 Spherical radius influence on most probable trajectory. (a) Since the applicator 

appearance has a non-negligible thickness, the range and number of potentially acceptable 

trajectories from the seed point (red) decreases as the spherical search space radius 

increases from small (purple) to large (green). (b) If a radius search space is too large, an 

increased probability exists to choose an incorrect trajectory for shallow needle insertions 

using a larger SBR threshold as the most probably trajectory metric can be increased with 

larger pixels quantities. 

After creating the spherical search space, a background intensity threshold was used as a 

coarse method to enhance the needle visibility in the 3D US images. Since the user selects 

a seed point along the shaft of the needle applicator, a single intensity of the needle 

applicator is known and can be used as an approximation for the entire needle applicator 

mean intensity level, 𝜇𝑎𝑝𝑝. Using an SBR ratio defined as: 

 𝑆𝐵𝑅 =  
𝜇𝑎𝑝𝑝

𝜇𝑏𝑔
, (5.2) 
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the background image intensity, 𝜇𝑏𝑔, can be solved for a chosen SBR, thus, determining 

the required intensity threshold (𝜇𝑏𝑔).  The SBR was used as an optimization variable to 

investigate the influence of different background intensity thresholds when determining 

the needle applicator’s most probable trajectory.  

After optimizing the trajectory parameters, tip localization error and variability were 

investigated resulting from the Otsu threshold. As described in Sec. 5.2.1, an extension was 

added to the selected trajectory to approximately equalize voxel populations of the needle 

applicator and background. However, since the locations of the manual initialization seed 

points and the insertion depths of the needle applicators were variable, preliminary 

observations suggested the distribution of the needle applicator’s voxel intensities were 

overrepresented on average. This overrepresentation led to computation of larger than 

desired intensity thresholds, which led to shallow predictions of the needle applicator’s tip 

location. Thus, preliminary experiments led to a threshold adjustment that reduced the 

computed Otsu threshold by 5. 

5.2.3 Retrospective patient images 

After determining the optimal parameters for the segmentation algorithm from the phantom 

images, 15 3D US images were acquired on six patients undergoing MWA in the liver. 

These images were acquired using an iU22 US machine and X6-1 matrix transducer 

(Philips, Amsterdam, NL) in a study approved by the Human Subjects Research Ethics 

Board of Western University. All images were acquired post needle applicator insertion, 

but prior to ablation. Since the physical size of patients was variable, chosen US imaging 

depths were also variable and resulted in an image size range of 480 × 372 × 218 to 512 × 

404 × 222 voxels with a range in voxel dimensions from 0.248 × 0.194 × 0.336 mm3 to 

0.428 × 0.386 × 0.630 mm3. 14 3D images contained only one needle applicator prior to 

ablation with 13 images showing a needle applicator approximately in the axial-lateral US 

plane and one image showing a needle applicator approximately in the axial-elevational 

US plane. The fifteenth 3D image contained two needle applicators visualized 

approximately in the axial-lateral US plane, resulting in sixteen needle applicators in total 

that were visualized and segmented. Needle applicator insertion angle and insertion depth 
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in the US image are provided in Table 5.2. Similar to the phantom images, these 

characteristics were manually determined using the voxel corresponding to the entrance of 

the needle applicator in the US image and the voxel at the needle applicator’s tip location. 

Table 5.2 Visualized needle applicators in 3D US images of patients undergoing liver 

tumor MWA. 

 
 Imaged Insertion  

Anglea (°) 

 Imaged Insertion  

Depth (mm) 

Mean  44.1  71.7 

Standard Deviation  14.1  20.9 

Minimum  23.3  30.4 

Maximum  77.2  99.0 

aInsertion angle was measured from the axial axis of the US image. 

Since our algorithm required initialization, performance is influenced by the location of the 

user selected seed point. Variability of the algorithm between four trained users of varying 

US image analysis experience was assessed on these images. The users included: a trained 

user with four years experience (TU1), a trained user with three years experience (TU2) 

supervised by the interventional radiologist (N. K.) that acquired the clinical 3D US 

images, an interventional radiologist 2 years post-fellowship (IR1), and an interventional 

radiologist 10 years post-fellowship (IR2). All users performed manual identification of the 

tip prior to generating the algorithm segmentations and determined the mean manual tip 

locations. Following tip identification from all users, the mean consensus applicator tip 

location from two or more users was used as the manual annotation for quantifying error, 

as described in Sec. 5.2.4. All users were instructed to select the shaft seed points near the 

tip to ensure the location would fall within the spherical search space of the algorithm. 

5.2.4 Determination of needle applicator tip and axis errors 

The performance of the segmentation algorithm was compared to the manually segmented 

needle applicator to determine the algorithm segmentation error. The manual trajectory 

was determined by creating a vector between the user-selected seed point on the shaft and 

the manually determined mean consensus tip location. Variability in tip localization was 

calculated by a fiducial localization error (FLE)44 for all users selected when determining 

the consensus tip location to characterize inter-subject variability (𝐹𝐿𝐸̅̅ ̅̅ ̅̅
𝑖𝑛𝑡𝑒𝑟) and for two 
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users (i.e., TU1 and TU2) to characterize intra-subject variability (𝐹𝐿𝐸̅̅ ̅̅ ̅̅
𝑖𝑛𝑡𝑟𝑎). This was 

calculated by using the variance (𝜎2) for the 𝑥, 𝑦, and 𝑧 coordinates of the selected tips (𝑖) 

in all images (𝑁) over the users in agreement for inter-subject variability and over five 

trials with 24 hour intervals for the intra-subject variability. Using the definition for FLE 

of one needle applicator tip as:  

 𝐹𝐿𝐸𝑖
2 =  𝜎2(𝑥𝑖) + 𝜎2(𝑦𝑖) + 𝜎2(𝑧𝑖), (5.3) 

the mean FLE for all tips was computed as: 

 
𝐹𝐿𝐸̅̅ ̅̅ ̅̅ =  √∑ 𝐹𝐿𝐸𝑖

2 𝑁⁄𝑁
𝑖  [𝑚𝑚]. 

(5.4) 

Variability in the manual identification of the applicator’s trajectory was computed across 

all users after determining the 3D trajectories created between the consensus tip location 

and the user-specific shaft locations for all patient images.  

Three metrics were used to quantify the algorithm’s segmentation error when compared to 

the manual segmentations. The angular difference (∆𝑇) between the algorithm (𝑣⃑𝑎𝑙𝑔) and 

manually (𝑣⃑𝑚𝑎𝑛) segmented trajectories was quantified as:  

 
∆𝑇 = cos−1 (

𝑣⃑𝑎𝑙𝑔 ∙ 𝑣⃑𝑚𝑎𝑛

‖𝑣⃑𝑎𝑙𝑔‖ ∙ ‖𝑣⃑𝑚𝑎𝑛‖
) [°]. 

(5.5) 

The second metric to describe segmentation error has been previously defined by Uherčík 

et al.29 as the axis localization accuracy (ALA). This metric measures the orthogonal 

projected distances of the entrance (E) and tip (T) points from the manual to the algorithm 

segmentation trajectory axes, and reports the maximum of the two distances (i.e., DE or 

DT), as shown in Figure 5.5. The needle applicator tip error (ATE) between manual 

(𝑣⃑𝑚𝑎𝑛,𝑡𝑖𝑝) and segmented (𝑣⃑𝑎𝑙𝑔,𝑡𝑖𝑝) needle applicator tips was quantified as the Euclidean 

distance between their coordinates: 

 𝐴𝑇𝐸 =  ‖𝑣⃑𝑎𝑙𝑔,𝑡𝑖𝑝 − 𝑣⃑𝑚𝑎𝑛,𝑡𝑖𝑝‖ [𝑚𝑚]. (5.6) 

5.2.5 Statistical analysis 

Statistical calculations were performed in GraphPad Prism 7.00 (Graphpad Software, Inc., 

CA, USA). Normality of distributions were evaluated using the Shapiro-Wilk test and led 
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to the use of nonparametric statistical tests when the assumption was violated. The 

corresponding nonparametric alternative tests are presented in parentheses for the 

remainder of the section. The significance level for statistical analysis was chosen such that 

the probability of making a type I error was less than 5% (P < 0.05). The multi-user error 

distributions from the patient dataset for trajectory, ALA, and ATE were compared using 

a one-way repeated measures ANOVA (Friedman) omnibus test, followed by post-hoc 

analysis using Tukey’s honestly significant difference (Dunn’s) tests if the omnibus test 

was significant. 

 
Figure 5.5 Illustration of the axis localization accuracy (ALA) metric simplified to a 2D 

example for clarity. The entrance and tip locations of the needle applicator from the manual 

segmentation are used to compute orthogonal distances to the algorithm segmentation axis, 

which produces the entrance-to-axis distance DE and the tip-to-axis distance DT. The 

maximum of these distances is reported as the axis localization accuracy (ALA). 

 
Figure 5.6 Sample oblique plane in a 3D US image of a needle applicator obliquely 

inserted at 44⁰ in a homogeneous tissue mimicking agar phantom before (a) and after (b) 

segmentation. The 3D US image was resliced to visualize the entire segmentation for 

clarity. 
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5.3 Results 

5.3.1 Phantom testing 

The imaging characteristics of the needle applicators in the phantom images is shown in 

Table 5.3 with a sample phantom image and segmentation shown in Figure 5.6. Using the 

five trials of manually localizing the tips in the 3D US images, the mean FLE was found 

to be 0.43 ± 0.09 mm, which corresponds to approximately one or two voxels. 

Table 5.3 Needle applicator imaging characteristics in phantom 3D US images. 

Image Characteristic  Mean ± Standard Deviation 

Applicator Intensity  178 ± 10 

Background Intensity  145 ± 5 

SBR  1.22 ± 0.08 

The influence of intensity thresholding for three radii sizes and three test point spacings 

are shown in Figure 5.7. For the largest radius (i.e., 45 mm), ∆𝑇 increased as the SBR 

threshold was increased and resulted in mean errors greater than 5° for SBR thresholds 

greater than 1.3 for all test point spacings. The trends observed for radii of 15 mm and 30 

mm were similar across all spacings. These results led to the choice of a 30 mm radius and 

an SBR threshold of 1.2 for further experiments as it was the combination that led to one 

of the lowest trajectory errors while still allowing for some variability in the needle 

applicator’s voxel intensity range. A less restrictive intensity threshold was considered 

useful and potentially more robust in the patient images as there were more observed 

artifacts and increased variability in the needle applicator intensities, as shown in Sec. 

5.3.2. The mean trajectory computation times for spacings of 2.4°, 1.2°, and 0.6° were 

0.233 ± 0.006 s, 0.506 ± 0.043 s, and 1.61 ± 0.04 s, respectively. Since a 30 mm radius and 

an SBR threshold of 1.2 resulted in similar trajectory errors across all spacing sizes, a 2.4° 

spacing was chosen since it was associated with the lowest computation time. Using the 

three selected trajectory parameters, the corresponding ALA failed to pass a normality test 

(P = 0.0005) and was observed to have a median [first quartile (Q1), third quartile (Q3)] 

value of 1.3 [0.8, 2.1] mm. 
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Figure 5.7 The influence of different spherical search space radii and test point spacings 

on segmentation trajectory error for varying signal-to-background intensity ratio 

thresholds. Standard deviation error bars are shown for each measurement. 

The optimal parameters determined from the phantom images are summarized in Table 

5.4. These parameters resulted in an overall mean algorithm segmentation time of 0.246 ± 

0.007 s on the phantom images, which encompassed input of the user selected point to the 

algorithm until display of the segmentation. This sub-second computation time was 

considered acceptable for intraoperative use and the phantom optimized parameters were 

used to create segmentations for the clinical dataset as described in Sec. 5.3.2. 

Table 5.4 Needle applicator segmentation parameters optimized on phantom images. 

Parameter  Value 

Test Point Spacing  2.4° 

Spherical Radius  30 mm 

SBR Threshold  1.2 

Tip Threshold  Otsu - 5 

5.3.2 Retrospective patient experiments 

Table 5.5 Needle applicator imaging characteristics in patient 3D US images. 

Image Characteristic  Mean ± Standard Deviation 

Applicator Intensity  159 ± 34 

Background Intensity  75 ± 21 

SBR  2.2 ± 0.5 

We first evaluated the imaging characteristics and appearances of the needle applicators in 

the patient images, shown in Table 5.5. Compared to the phantom images, the standard 

deviation of mean intensities along the needle applicator was three times greater with an 
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approximate two-fold increase in the SBR. A sample oblique plane taken from a patient 

3D US image with the corresponding segmentation is shown in Figure 5.8. Intensity 

profiles of a needle applicator taken from a phantom image (Figure 5.9a) and patient image 

(Figure 5.9b) are shown to further emphasize the appearance differences of the observed 

needle applicators in-vivo. 

 
Figure 5.8 Sample oblique plane in a 3D US image of an MWA needle applicator inserted 

in a patient’s liver before (a) and after (b) segmentation. The 3D US image was resliced to 

visualize the entire segmentation for clarity. 

 
Figure 5.9 Sample intensity profiles of the manually segmented needle applicator 

trajectory in a phantom image (a) and patient image (b). These line profiles of needle 

applicators in the phantom and patient images correspond to the images in Figure 5.6 and 

Figure 5.8, respectively. 

Figure 5.10 shows the needle applicator trajectory, axis localization, and tip segmentation 

errors of the four users and all the patient 3D US images. Error distributions for ∆𝑇 for 

TU1, ALA for TU2, and ATE across all users failed to pass a Shapiro-Wilk normality 



142 

 

test, so non-parametric statistical testing was performed for the remainder of the analysis. 

A Friedman omnibus test was first performed on the ∆𝑇 distributions (Figure 5.10a) and 

showed a statistically significant difference (p < 0.0001) between the users. Investigating 

multiple comparisons revealed significant differences between TU1-TU2 (p < 0.05) and 

TU2-IR2 (p < 0.0001). Median ∆𝑇s of 4.1 °, 1.6 °, 3.9 °, and 4.9 ° were observed for the 

TU1, TU2, IR1, and IR2 users, respectively. The ALA measurements (Figure 5.10b) also 

showed a statistically significant difference (p < 0.01) between users when performing a 

Friedman test with multiple comparisons revealing a significant difference between TU2-

IR2 (p < 0.05). Median ALA measurements of 1.4 mm, 1.2 mm, 2.0 mm, and 2.0 mm 

were observed. ATE measurements (Figure 5.10c) also showed a statistical significant 

difference (p < 0.05) between users when performing a Friedman omnibus test with 

multiple comparisons repeating significant differences between TU1-TU2 (p < 0.05) and 

TU2-IR2 (p < 0.05). Median ATEs of 3.6 mm, 1.0 mm, 1.8 mm, and 3.7 mm were 

observed for the TU1, TU2, IR1, and IR2 users, respectively. The mean intra-subject FLE 

values over five trials for the TU1 and TU2 users and mean inter-subject for all users in 

consensus agreement are provided in Table 5.6. Finally, the overall segmentation 

computation time across all users (Table 5.6) was 0.303 ± 0.026 s, which was similar to 

segmentations performed in the phantom images. 
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Figure 5.10 Box plots for the resulting trajectory (a), axis localization (c), and tip (b) errors 

after using the needle applicator segmentation algorithm. These results were performed on 

16 patient images for two trained users (TU) and two interventional radiologists (IR). The 

centre lines represent the distribution median value with the boxes showing the 25% and 

75% percentiles. 
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Table 5.6 Inter- and intra-subject manual applicator tip localization, manual trajectory 

variability, and algorithm segmentation computation times in 16 patient 3D US images. 

User 
 

𝐹𝐿𝐸̅̅ ̅̅ ̅̅
𝑖𝑛𝑡𝑟𝑎 ± std (mm) 

 
𝐹𝐿𝐸̅̅ ̅̅ ̅̅

𝑖𝑛𝑡𝑒𝑟  ± std (mm) 
 Manual Trajectory  

Variability ± std (°) 
 Segmentation  

Time ± std (s) 

TU1  0.99 ± 1.40  

1.37 ± 1.19 

 

1.56 ± 0.75 

 0.308 ± 0.025 

TU2  0.89 ± 0.77    0.296 ± 0.022 

IR1  —    0.310 ± 0.028 

IR2  —    0.303 ± 0.029 

5.4 Discussion 

5.4.1 Phantom experiments 

Since access to patient 3D US images containing needle applicators was limited, we 

performed optimization of the proposed segmentation algorithm on phantom images to 

utilize all available clinical images for evaluation. The selected parameters optimized on 

the homogenous agar phantom images (Table 5.4) with seed points selected by an expert 

user resulted in ∆𝑇, ALA, and ATE median [Q1, Q3] measurements of 2.1 [1.1, 3.6] °, 1.3 

[0.8, 2.1] mm, and 1.3 [0.7, 2.5] mm, respectively, with an overall algorithmic computation 

time of 0.246 ± 0.007 s. The manual variability in localizing the needle applicator tip 

locations in the phantom images (i.e., 𝐹𝐿𝐸̅̅ ̅̅ ̅̅ ) was 0.43 ± 0.09 mm, which was less than two 

voxels when referenced against the in-plane voxel dimensions of our 3D US images. This 

could represent a major cause of the observed variability for the three metrics as it is 

approximately equal to the measured interquartile ranges. However, since we used the 

average tip location over five trials when performing comparisons to manual 

segmentations, we believe the impact of FLE on the measured metrics is reduced with 

minor contributions to the overall errors observed. This belief still falls under the caveat 

that comparisons are performed to manual segmentations, which assumes that the tip 

position is visible and can be accurately estimated. Nonetheless, since the phantom images 

were primarily used for parameter tuning, the visibility of the applicator in ultrasound is 

adequate for manual segmentation accuracy evaluation. 

The investigated test point spacings of 2.4°, 1.2°, and 0.6° did not have a large effect on 

trajectory error when observing the interaction between different radii and SBR thresholds. 

Although the fine test point spacing of 0.6° yielded the smallest median observed trajectory 
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error (i.e., 1.9 [1.2, 3.4]°) with a radius of 30 mm and SBR threshold of 1.1, computation 

time increased by approximately 6.5 times (i.e., 1.58 ± 0.04 s) and was considered too large 

for only a minor decrease in observed error. A radius of 45 mm performed the worst across 

all test point spacings when increasing the SBR thresholds beyond 1.3, which is most likely 

due to the increasing number of voxels contributing to the most probable trajectory metric 

in Eq. 5.1. When searching with a radius of 45 mm, line segments along the needle 

applicator trajectory would be more likely to extend beyond the imaging limits, thus, 

negatively impacting the 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑖 measurement in the most probable trajectory metric 

(Eq. 5.1). 

Determining the tip location was performed with the Otsu threshold since we assumed a 

bimodal intensity distribution when assessing the selected most probable trajectory. Based 

on the small standard deviation in needle applicator and background intensity values (Table 

5.3) and the appearance of the observed line profiles (Figure 5.9a), we believe this was a 

good approximation for needle applicators in the acquired phantom images. When 

computing the Otsu threshold without adjustment, thresholds were often determined too 

high and resulted in needle tip identifications that fell short of the actual position. Shifting 

the computed threshold by 5 intensity units was chosen as the ideal threshold to determine 

the tip location as it was observed to have a significantly reduced tip error. Since the Otsu 

threshold determines a threshold based on the histogram of the intensity distribution to 

maximize interclass variance, this implied that the maximum interclass variance along the 

line profile did not encompass enough needle applicator voxel intensities to accurately 

determine the tip location. Although an extension to the most probable trajectory was added 

to equalize the intensity population distributions of the needle applicator and background, 

overlap of the populations may be too great in low SBR imaging conditions to rely on 

interclass variance alone. Providing an adjustment to the Otsu threshold therefore captured 

more of the needle applicator’s intensity distribution, which appears to be necessary for tip 

localization. We have shown acceptable results using a fixed adjustment of 5 intensity 

units, but it is possible the adjustment is influenced by the needle applicator’s SBR in the 

US images and could warrant further investigation. 
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The visibility and tool SBR in 3D US can greatly influence the success of a segmentation 

algorithm and typically gets worse as SBR decreases.45 The effect of background noise has 

been previously investigated by Barva et al.31 for an automated parallel integral projection 

(PIP) algorithm to segment straight electrodes in 3D US. They used a signal-to-noise 

(SNR) ratio defined as: 

 𝑆𝑁𝑅 =  10 log
𝜇𝑒𝑙

2 +𝜎𝑒𝑙
2

𝜇𝑏𝑔
2 +𝜎𝑏𝑔

2  [𝑑𝐵], (5.7) 

which used the mean 𝜇𝑒𝑙 and variance 𝜎𝑒𝑙
2  of simulated electrode voxels and the mean 𝜇𝑏𝑔 

and variance 𝜎𝑏𝑔
2  of background voxels. Using this definition with needle applicator voxels 

in lieu of electrode voxels, the SNR observed for our needle applicators in the phantom 

images was 1.8 ± 0.5 dB. This was of particular interest since previous work31 had observed 

rapid increases in ATE as SNR decreased below 10 dB, which reported an ATE of 2.7 mm 

at a minimum reported SNR of 7 dB. In comparison to our measured ATE of 1.3 mm at an 

SNR of 1.8 dB, our algorithm appears to perform well and provide added utility at low 

SNR levels. 

In more recent methods using simulated data,29 the SBR has been investigated to observe 

trends in the performance of automated segmentation algorithms. Since an acceptable error 

has never been strictly defined for algorithms performing segmentation of therapy 

applications used in liver ablation, previous work considered segmentations a failure if the 

tip error (i.e., ATE) or axis localization error (i.e., ALA) were greater than or equal to 3 

mm. Using these thresholds for failure, segmentations in our phantom images resulted in a 

failure rate of 26% (13/50). Since the SBR for our phantom images was 1.22 ± 0.08, our 

method appears to be useful in imaging conditions with low tool SBR since failure rates 

were observed to be greater than 80% for many recent automated methods.29 

5.4.2 Retrospective patient experiments 

Since adjustments to the US system scanning parameters (e.g., time-gain-compensation, 

depth, focal zone depth, etc.) when acquiring an US image can be subjective and often 

depend on external factors, such as experience and environment, a wide range of image 

qualities are observed in clinical settings. An increase in needle applicator SBR was shown 
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when imaging needle applicators in patients compared to the phantom images described 

previously. In addition, the visible needle applicators and background intensities were 

observed to have increases in variability, resulting from an increased number of anatomical 

structures causing image clutter and artifacts. Using the definition of SNR in Eq. 5.7, the 

needle applicator appearance across all patient images was 6.4 ± 1.9 dB, further supporting 

the increase in SBR relative to the phantom images. When comparing intensity line profiles 

between the phantom and patient images along the needle applicator trajectories, many line 

profiles contained a bimodal distribution of intensities and resulted in more consistent and 

accurate segmentations across users (Figure 5.11a). However, the time-gain compensation 

adjustment to the US machine appeared to be overlooked during acquisition in some cases, 

leading to an intensity gradient in the image background and increases in segmentation 

complexity (Figure 5.11b). More than half of all cases (9/16) violated the bimodal intensity 

distribution assumption of our segmentation algorithm and could partially explain the 

increase in resulting  ∆𝑇, ALA, and ATE median [Q1, Q3] measurements of 4.5 [2.4, 5.2]°, 

 1.9 [1.7, 2.1] mm, and 5.1 [2.2, 5.9] mm, respectively, compared to the phantom results. 

Although there were image quality differences, the overall mean computation time was 

similar to phantom experiments at 0.303 ± 0.026 s across all users, which is suitable for an 

intraoperative implementation. 

 
Figure 5.11 Examples of simple (a) and complex (b) intensity profiles of needle applicators 

for the segmentation algorithm. Line profiles were acquired from two manually segmented 

trajectories in MWA patient images. 
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Significant differences between users for all error metrics when using the segmentation 

algorithm were observed with the most consistent difference between users TU2 and IR2. 

Currently, the algorithm is not robust to poor initializations, which is a potential source of 

differences between the different users. Variability in the manual trajectories was observed 

to be 1.56 ± 0.75 ° and represents a considerable portion of the observed trajectory errors. 

This implies that localizing the central axis of the needle applicator shaft in 3D US is not 

trivial and could motivate the need for a central axis localization technique that is able to 

adjust user selected points to better approximate the applicator’s shaft coordinates. Since 

the algorithm assumes the seed point is along the trajectory of the needle applicator, if the 

initialization point was not centered correctly, the segmentation would result in an incorrect 

trajectory and subsequently cause increases in the measured tip localization error. Image 

features that were observed to cause increased errors across most users were large gaps 

along the needle applicator shaft (4/16) and the presence of arteries and veins causing 

similar acoustic reflection intensities (5/16). 

The observed user variability in localizing the needle applicator tips and trajectories further 

emphasizes the increased difficulty of identifying applicators due to image quality 

variability when performing deep and oblique needle applicator insertions in the clinical 

setting. An increase in tip localization error was observed when intra-subject variability 

(i.e., 𝐹𝐿𝐸̅̅ ̅̅ ̅̅
𝑖𝑛𝑡𝑟𝑎) was compared against phantom experiments, which rose from 0.43 ± 0.09 

mm to 0.99 ± 1.40 mm and 0.89 ± 0.59 mm (approximately the size of 4 voxels in-plane) 

for the TU1 and TU2 users, respectively. When compared across users, the inter-subject 

tip localization variability (i.e., 𝐹𝐿𝐸̅̅ ̅̅ ̅̅
𝑖𝑛𝑡𝑟𝑎) was observed to be larger at 1.37 ± 1.19 mm. 

Unlike the phantom segmentations, these FLE measurements are approaching the 

magnitude of the measured errors for the four users and is likely contributing a non-

negligible amount to the measured errors even though the average position of the identified 

tip was used. Nevertheless, measured median errors appear to be acceptable for 

interventional liver procedures where tumors range from 1 cm to 3 cm in diameter.  

Interventional procedures in the liver can be performed with slight alterations in workflow, 

which could offer additional usable information for the segmentation algorithm. Our 

clinical dataset in this study was obtained from a free-hand insertion approach where no 
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needle applicator guides were used, increasing the potential search space where needle 

applicators could be found. One alternative to the current approach to reduce error could 

utilize a needle applicator guide for insertions, which could increase the a priori knowledge 

that could be taken into account to reduce the potential search space for the trajectory of 

the needle applicator. By incorporating an initialization for the segmentation, a reduction 

in the search space would not only reduce computation time further, but it would likely 

reduce error since a tighter constraint would reduce potential solutions and outliers.  

Curved needle applicator segmentations in US images have been previously 

investigated36,46–49 for procedures using flexible needles and offers further potential for this 

algorithm with some investigation into workflow changes. For example, instead of creating 

a single straight line segment through the user selected point, a spline approach could be 

performed superior and inferior to the selected point. This could potentially be 

implemented with multiple, smaller spherical search spaces with searched trajectory 

solutions reduced after the first few completed line segments by constricting the search 

space around the locally determined trajectory. With increasing interest in IRE procedures, 

which use thinner diameter electrodes (16 to 19 gauge)50 that are more susceptible to 

deflection during insertion, this possible solution could provide a method for improving 

needle applicator placements with increased imaging complexity. 

5.5 Conclusions 

A semi-automated 3D US needle applicator segmentation during minimally invasive liver 

cancer diagnostic or therapeutic procedures provides a utility that enables enhanced needle 

applicator guidance, placement verification, and improved clinical workflow without the 

need for additional radiation exposure. Using a posteriori knowledge of the current 

procedural workflow, we employed constraints on a heuristic intensity-based algorithm to 

perform 3D needle applicator segmentations in less than 0.31 s. Homogeneous agar 

phantom images containing needle applicators were used to optimize the trajectory and tip 

localization parameters of the algorithm prior to investigation on retrospective 3D US 

images of patients who underwent liver MWA. Median trajectory, axis localization, and 

tip localization errors across four users were less than or equal to 5°, 2 mm, and 4 mm, 
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respectively, suggesting this approach could be useful for the clinical environment. With 

this tool, intraoperative segmentations can be performed to assess and adjust needle 

applicator placements, potentially decreasing the liver cancer recurrence rates associated 

with minimally invasive procedures. 
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Chapter 6  

6 A deep learning method for general needle and applicator 

segmentation in two-dimensional ultrasound images from 

multiple applications and anatomical regions 

2D US is widely used for real-time imaging during insertion of interventional tools, but 

accurate identification is necessary for desired clinical outcomes and is often dependent on 

subjective physician interpretation. The purpose of Chapter 6 is to present on the 

development of a general needle-like tool segmentation algorithm for improving 

intraoperative identification during interventional procedures without the need for 

additional equipment or operating room set-up. 

The contents of this chapter have been submitted for publication in Medical Physics and 

are currently under peer-review: Gillies DJ and Rodgers JR, Gyacskov I, Roy P, Kakani 

N, Cool DW, and Fenster A. 

6.1 Introduction 

Ultrasound (US) imaging is often used during interventional procedures to provide 

portable, accessible, and real-time imaging of anatomy and instruments. This is particularly 

advantageous for guidance during minimally invasive percutaneous interventional 

techniques, which offer reduced recovery times and complications relative to open surgery. 

Despite these benefits, one factor that has limited the guidance accuracy of these techniques 

is the ability to localize needle-like interventional tools, such as needles and therapy 

applicators, quickly and accurately in the standard two-dimensional (2D) US images while 

in the intraoperative environment.1,2 Diagnostic and therapeutic cancer procedures where 

accurate localization is essential include brachytherapy, solid organ ablation, and biopsy. 

High-dose-rate interstitial brachytherapy of prostate or gynecologic malignancies delivers 

internal radiation via multiple needles (typically about 5–24)3,4 that are inserted into the 

tumor and surrounding area, thereby requiring correct needle placement to deliver optimal 

treatment and reduce risks to nearby structures. In ablation procedures, commonly used in 

liver and kidney cancers, one to four applicators, such as radiofrequency electrodes or 

microwave antennae, are inserted into tumors to heat the tissue and destroy malignant cells. 

Applicators must be accurately placed within the tumor to achieve adequate therapy and 

minimize local recurrence risk.5 Similarly, during biopsy procedures, accurate insertion of 

the biopsy needle into a suspicious mass is essential to ensure proper tissue sampling for 
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histopathological assessment. In this paper, we use the term “tools” to refer generically to 

needle-like interventional instruments, including electrodes, antennae, applicators, and 

needles. Identifying these tools in 2D US images can be challenging, with their precise 

position difficult to distinguish once placed inside the tissue. Visualization requires the tool 

to be coplanar with the US probe and localization is often operator-dependent, associated 

with subjective 2D US guidance.1 Additionally, anatomical features, such as the body 

habitus of the patient, fat, and blood vessels in the liver, or artifacts, such as air gaps or 

needle reverberation in some brachytherapy images, can affect the appearance of the tool 

and obscure portions of the tool path or confound identification of the tool’s tip position. 

Implementation of a real-time or near real-time method to automatically identify and 

segment interventional tools on intraoperative live US images might improve clinicians’ 

ability to guide, adjust, and verify tool positions, allowing these positions to be refined and 

misalignments to be corrected without disrupting clinical workflow or extending procedure 

time. 

Image-based approaches for tool guidance, avoiding the requirement for additional 

equipment, signal processing, and set-up, have been proposed for general tool 

segmentation in US images, leveraging techniques based on image properties, including 

projections,6–9 random sample consensus (RANSAC),10–12 filtering,11,13–15 and Hough or 

Radon transforms,16–20 or physical properties, such as analyses of motion,20–24 beam 

steering,25 and circular wave generation.26 Many of these algorithms were developed for 

three-dimensional (3D) US images;6–13,18,19,21 however, 2D US is the clinical standard for 

image-guided minimally invasive interventions at most institutions and therefore is the 

focus of our work presented in this study. Many of the published approaches were tested 

only on phantom or ex vivo tissue images,6–22,24–26 in vivo on an anesthetized porcine 

model,18,23 or, in some cases, US images from one clinical application, such as breast 

biopsy8,10,16 or nerve block imaging.25 Therefore, the generalizability of the algorithms to 

multiple applications, particularly given the idealized nature of phantom conditions, 

requires further investigation.  

Image-based approaches may suffer from a lack of robustness and longer processing times 

when used on more complex clinical images.27 To address these limitations, recent 
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developments by Pourtaherian et al.28 and Arif et al.27 have employed convolutional neural 

networks (CNNs) for needle detection in 3D US images. The method presented by 

Pourtaherian et al.28 used patch classification and semantic segmentation techniques with 

CNN architectures, testing their approach on chicken breast and porcine leg ex vivo datasets 

with data augmentation. This method achieved tip localization errors of < 0.7 mm. Arif et 

al.27 also proposed a CNN-based method using a V-Net model to localize needles in 3D 

US phantom and liver images, demonstrating a mean tip error of 1 mm and angular error 

of 2°. Both methods demonstrated the potential of CNNs to accurately localize needles in 

US images; however, neither were assessed on 2D US images and investigation of their 

applicability on a range of clinical images has not been performed. 

In recent work, Lee et al.29 proposed segmentation of kidney biopsy needles in 2D US 

images using a deep learning approach based on a LinkNet architecture with the addition 

of a concurrent spatial and channel “Squeeze and Excitation” method to independently 

weight spatial and feature map characteristics. This method used images acquired at three 

frames per second from eight patient US videos to create a dataset for training and testing, 

achieving a Dice similarity coefficient (DSC) of 56.65 %, root-mean-square (RMS) 

distance error of 9.5 pixels, and RMS angular error of 13.3°.29 Although this approach is 

susceptible to information leakage since many images were acquired per patient, this study 

demonstrates many of the challenges associated with localizing needles in kidney images 

and the extension of this method to applications other than kidney biopsy has not been 

explored. Mwikirize et al.30 investigated an algorithm using a fully convolutional network 

with a fast region-based CNN for interventional applications requiring quick localization 

of mid-to-steeply inserted needles (40–75°) and deep insertions (up to 9 cm) in 2D US 

images. This study demonstrated accurate localization with recall and precision rates > 99 

%, a mean tip error of 0.23 mm, and a mean angular error of 0.82° with a processing time 

of 0.58 s.30 Further investigation of this approach is necessary to assess its generalizability, 

as the initial study was limited by only using in-plane (or slightly out-of-plane) insertions 

of a single tool type (17-gauge epidural needle) in ex vivo bovine/porcine tissues and 

phantoms with recall and precision only assessed on images acquired from a single US 

system and probe, matching the system used for training. 
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In this study, we have developed and evaluated a deep learning method using a CNN with 

a U-Net architecture to segment general needle-like interventional tools from 2D US 

images from multiple anatomical regions and various interventional procedures in near 

real-time. The proposed algorithm was trained and tested on augmented datasets using 2D 

US images and manual segmentations from phantom experiments and five different clinical 

cancer procedures: prostate brachytherapy, gynecologic brachytherapy, liver ablation, and 

kidney ablation and biopsy. 

6.2 Materials and methods 

6.2.1 CNN model 

The proposed CNN in the U-Net architecture was adapted from Ronneberger et al.31 and is 

shown in Figure 6.1. Accommodation of all anticipated image sizes was performed by 

resizing all images to 256⨯256 pixels. Convolution kernels were 3⨯3 pixels with a 

rectified linear unit (ReLU) activation function and optimization of network weights was 

performed using an Adam optimizer with a DSC loss function. Regularization was a key 

consideration to prevent overfitting of the CNN, especially in a small dataset application, 

so 50 % dropouts were used in the decoder section of the network, as has been previously 

shown to maximize regularization.32 Transpose convolutions were used instead of 

upsampling followed by convolution, based on preliminary experiments to improve 

performance. Final output masks were produced with a 1⨯1 convolution kernel and a 

sigmoid function. All images were used to compute the mean and standard deviation (SD) 

of intensities for data centering and normalization. Improvements in the network accuracy 

were investigated by performing experiments on the training dataset (Sec. 6.2.2) for the 

learning rate and epoch hyper-parameters. Learning rates ranged between 10-3 and 10-5 

with epochs tested from 50 to 200. Training and validation DSCs of approximately 85 % 

resulted in the selection of a 10-4 learning rate with 100 epochs. 
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Figure 6.1 A schematic of our CNN in the U-Net architecture with arrows denoting the 

different operations. The numbers above the rectangles correspond to the output filters in 

the convolution (i.e., multi-channel feature map) and the numbers along the side 

correspond to the XY image size in pixels. 

6.2.2 Datasets 

Images and manual segmentations used for training, validation, and testing of the proposed 

CNN were acquired from phantoms and five different clinical interventional procedures, 

including prostate and interstitial gynecologic brachytherapy, liver ablation, and kidney 

ablation and biopsy, with the assumption that only a single tool was present in each 2D 

image. A single trained observer generated gold standard manual segmentations by 

selecting the tool tip and a second point on the tool shaft. An assumption of a 2.1 mm tool 

diameter with a conical tip was used to create linear, needle-shaped masks (Figure 6.2) 

along the user-defined axes. In the gynecologic brachytherapy images, the needle tip was 

not always visible within the image field-of-view and therefore the deepest visible point 

along the needle path was selected as the tip in these cases and the conical tip assumption 

was removed from mask generation. This dataset, totaling 1242 images and segmentations, 

was split into a 74 % training set and a 26 % unseen testing dataset (Table 6.1). Since 

multiple tools were occasionally visualized per patient, all images for an individual were 

assigned to either the training or testing dataset to avoid potential redundancies in the 

anatomical background. This ensured that the testing dataset contained solely unseen data 

to improve the approximation of future clinical use and robustness. The training dataset 
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was further split into 80 % training and 20 % validation datasets to train and optimize the 

network weights. 

Table 6.1 Training and testing dataset distributions of 2D US images containing needle-

like tools from interventional applications, with the number of unique patients provided for 

clinical applications and the number of independent tool insertion experiments for the 

phantom. 

Image 

Background 

Images in Training Set 

(Number of Patients) 

Images in Testing Set 

(Number of Patients) 

Phantom 23 (7) 9 (3) 

Prostate 18 (4) 8 (1) 

Gynecologic 34 (4) 18 (2) 

Liver 540 (18) 256 (8) 

Kidney 302 (9) 34 (3) 

Overall 917 325 

 

 

Figure 6.2 Input 2D US images illustrating background and tool appearances (top row), 

tool masks generated from manual segmentation (middle row), and tool masks predicted 

by the CNN algorithm prior to post-processing (bottom row) for each of the applications 

tested, showing examples of various segmentation performance quality. 
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Data augmentation was investigated to increase the number of images used for training and 

further reduce overfitting to improve the generalization of the tool segmentation CNN. 

Combined strategies used to augment our data included horizontal flips, horizontal and 

vertical shifts up to 20 % of the image size, 20° maximum rotations, and a 20 % zoom 

range. Augmentation was performed at the time of training in batches of 10, which doubled 

the dataset for each epoch, but with different augmentations on subsequent epochs. 

Training and testing of the CNN were performed using a Python implementation of Keras 

on Windows 10 (Microsoft, WA, USA). This was run on a personal computer with two 

Xeon E5645 central processing units (CPUs) at 2.40 GHz (Intel Corporation, CA, USA), 

24.0 GB of memory, and a GeForce GTX TITAN (NVIDIA Corporation, CA, USA) 

graphics processing unit (GPU). This hardware allowed for training to be performed in 

approximately 3.5 hours. 

To ensure the generalizability of the algorithm, images from clinical applications with 

varying tool properties and appearances were used, with examples shown in Figure 6.2. 

Phantom procedures were performed in a tissue-mimicking agar mixture and microwave 

ablation applicators with 2.1 mm outer diameters were inserted (depth range: 55.5–81.1 

mm) with oblique insertion angles relative to the probe (range: 17.4–65.9°). Phantom 

images had a pixel size of 0.2⨯0.2 mm2 and were acquired with a Philips iU22 US system 

using a C5-1 curvilinear probe (Philips Healthcare, the Netherlands). Prostate 

brachytherapy procedures used 2 mm diameter plastic needles, whereas gynecologic 

brachytherapy procedures used 1.65 mm diameter stainless steel needles. Both prostate and 

gynecologic brachytherapy images were acquired using a BK ProFocus 2202 US system 

with an 8848 endocavity probe (BK Medical, MA, USA). Pixel sizes for the brachytherapy 

images ranged between 0.126⨯0.126 mm2 and 0.212⨯0.212 mm2. Both brachytherapy 

procedures had needles inserted nearly parallel to the linear US imaging face, often 

resulting in reverberation artifacts. Other artifacts also impacted the appearance of these 

needles, as more anterior needles often appeared partially obstructed due to shadowing in 

prostate images and air artifacts occasionally created discontinuities in gynecologic 

images. Ablation and biopsy images with pixel sizes between 0.151⨯0.151 mm2 and 

0.428⨯0.386 mm2 were acquired with a Philips iU22 US system using a C5-1 curvilinear 
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probe (Philips Healthcare, the Netherlands). For ablation procedures and kidney biopsy, 

1.3 mm and 2.1 mm outer diameter applicators were inserted with widely varying depths 

and angles (depth range: 30.4–99.0 mm; insertion angle range: 23.3–77.2°) resulting from 

the free-hand nature of applicator insertion. These angles relative to the curvilinear US 

probe can create discontinuities in the intensity of the applicator with anatomical features 

creating a large amount of image clutter and making applicator visualization difficult. 

6.2.3 Post-processing and evaluation 

Smaller disconnected regions were sometimes present in the predicted segmentations. 

Since we assumed that only a single tool was present in our images, we employed two post-

processing methods to filter the predicted masks and fit a single trajectory corresponding 

to the needle-like tool. Both methods were implemented offline in MATLAB R2019a 

(MathWorks, MA, USA) using a Windows 10 (Microsoft, WA, USA) personal computer 

with an i7-5820K CPU at 3.3 GHz (Intel Corporation, CA, USA) following the prediction 

using the CNN. Neither approach was optimized for speed or for use with a GPU. 

Processing times reported included only the time for filtering and fit, excluding the time to 

read or write the predictions and results, as it was assumed that this would be incorporated 

into the pipeline when implemented as a routine part of the algorithm. 

The simpler approach to tool fitting was implemented using a largest island post-processing 

technique to save only the largest connected region of predicted pixels, as has been 

previously studied.29 A linear least-squares fit on this map was then used to predict the 

tool’s tip and trajectory. In an attempt to more robustly establish the tool axis in the 

presence of disconnected outlier regions, a RANSAC model-fitting approach10 was also 

evaluated. The RANSAC method used a linear model with a 14-pixel diameter, as nominal 

tool widths were between 5 and 14 pixels, depending on the application. The RANSAC fit 

was initially performed twice with a 90º rotation of the predicted mask between the two 

fits and the direction that maximized the number of inliers was then selected. To produce 

a more consistent result and reduce the likelihood of a poor fit resulting from the random 

nature of the RANSAC fit, the fit was run two more times in the chosen direction. From 

the three fits in the selected direction, the fit with the largest number of inliers was chosen. 
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Any pixels that were classified as part of the tool prediction but were not considered inliers 

were removed from the mask to generate the filtered mask. 

Evaluation of the predicted tool segmentations was performed using a combination of 

traditional metrics for pixel map comparisons and tool segmentation-specific error metrics. 

Since the number of pixels within the predicted tool region-of-interest (ROI) was expected 

to be small relative to the total number of pixels within the image, only pixel map 

comparison metrics that excluded true negative predictions were considered. These criteria 

included the DSC, recall (i.e., sensitivity), and precision classification statistics. Pixel map 

comparisons were performed prior to post-processing and following both filtering 

approaches. Tool segmentation-specific errors included the tip and trajectory errors of the 

predicted segmentations. Tip errors were computed by determining the Euclidean distance 

between the manual gold standard tip location and the automated segmentation tip location 

determined by linear fits for both post-processing approaches. Since two points were used 

to create the gold standard manual segmentations, vectors for the manual segmentations 

(𝑣⃑𝑚𝑎𝑛) and the computed vector from the algorithm (𝑣⃑𝐶𝑁𝑁) were used to assess trajectory 

errors by: 

 
∆𝑇 = cos−1 (

𝑣⃑𝐶𝑁𝑁 ∙ 𝑣⃑𝑚𝑎𝑛

‖𝑣⃑𝐶𝑁𝑁‖ ∙ ‖𝑣⃑𝑚𝑎𝑛‖
) [°]. 

(6.1) 

6.2.4 User variation 

While a single trained user, now denoted U1, generated the gold standard masks used for 

training and testing, two additional trained users also generated manual segmentations to 

obtain an insight into the potential variability in the gold standard masks. All users 

generated two masks per tool on over 200 images with a minimum of 24 hours between 

segmentations to allow for quantification of the intra-rater repeatability of the masks. Users 

also generated segmentations on a dataset of 211 images to compare the inter-rater 

segmentation performance. The intra-rater repeatability was assessed by calculating a tip 

localization error analogously to a fiducial localization error33 and the SD of the 

corresponding trajectories, as well as the DSC, recall, and precision. Agreement metrics 

for the inter-rater comparison were tip localization error, the SD of corresponding 
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trajectories, and a three-user DSC,34 as well as a Fleiss’ kappa,35 which determines the 

agreement between users while correcting for chance. 

6.2.5 Statistical analysis 

Statistical calculations were performed in GraphPad Prism 7.00 (GraphPad Software, Inc., 

CA, USA). The normality of distributions was evaluated using the Shapiro-Wilk test and 

led to the use of nonparametric statistical tests when the normality assumption was 

violated. The corresponding nonparametric alternative tests are presented in parentheses 

for the remainder of the section. For nonparametric distributions, descriptive statistics were 

reported using medians with interquartile ranges. The significance level for statistical 

analysis was chosen such that the probability of making a type I error was less than 5 % (p 

< 0.05). The tip and trajectory errors of tools with short visible lengths were compared to 

the tip and trajectory errors of tools with longer visible lengths using t-tests (Mann-Whitney 

tests). Intra-rater metrics were compared using a one-way analysis of variance (Kruskal-

Wallis) test with multiple comparisons performed using a Tukey (Dunn’s) test. The three-

user DSC and Fleiss’ kappa were implemented in MATLAB R2019a (MathWorks, MA, 

USA). 

6.3 Results 

6.3.1 Unfiltered predictions 

The CNN algorithm generated predicted segmentations in approximately 50 ms per image. 

Examples of the predicted masks generated by the algorithm for each application prior to 

post-processing are shown in Figure 6.2, including the corresponding background images 

and manual masks used as the gold standard. The small island in the predicted mask of the 

gynecologic brachytherapy example is a result of a reverberation artifact in the image and 

was eliminated by both post-processing methods. The algorithm identified tools in 96.9 % 

of the images in the unseen testing set with three of the ten failures in the kidney images 

and the remaining seven in the liver images. The pixel map comparison error metrics prior 

to post-processing for each application are summarized in Table 6.2. It should be noted that 

due to the large number of liver images available, the overall values reported throughout 
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this section are strongly influenced by the liver results. The kidney segmentations 

demonstrated much lower DSC and recall medians relative to the other anatomical 

backgrounds, reflecting the difficulties in distinguishing needles in kidney US images.29  

Table 6.2 Resulting medians [first quartile (Q1), third quartile (Q3)] for DSC, recall, and 

precision metrics on an unseen testing dataset prior to post-processing. 

Image  

Background 
DSC (%) Recall (%) Precision (%) 

Phantom (n = 9) 85.6 [82.1, 89.9] 94.3 [91.0, 99.0] 78.0 [73.0, 84.1] 

Prostate (n = 8) 76.2 [71.0, 84.0] 79.3 [62.8, 88.8] 76.3 [71.1, 82.1] 

Gynecologic (n = 18) 88.7 [85.8, 92.0] 91.0 [85.7, 95.2] 88.6 [80.8, 91.6] 

Liver (n = 249) 71.8 [58.0, 86.2] 72.1 [53.1, 88.5] 83.2 [69.4, 89.5] 

Kidney (n = 31) 58.0 [44.7, 70.1] 49.2 [38.6, 59.0] 83.1 [67.2, 98.9] 

Overall (n = 315) 71.9 [58.0, 86.3] 72.3 [52.4, 89.3] 83.2 [70.9, 89.8] 

6.3.2 Post-processed predictions 

The largest island filtering and linear fit were performed with a 2 ms processing time per 

tool. The median tip, trajectory, and pixel map metrics resulting from this approach are 

summarized in Table 6.3. Similarly, the error and pixel map metrics using the RANSAC 

method of fitting and filtering are summarized in Table 6.4 and performed with a 

processing time of 23 ms per tool. Overall, the RANSAC method produced lower tip and 

trajectory errors than the largest island approach with median [first quartile (Q1), third 

quartile (Q3)] tip errors of 3.5 [1.3, 13.5] mm and 4.4 [1.5, 17.8] mm, respectively, and 

median [Q1, Q3] trajectory errors of 0.8 [0.3, 1.7]° and 1.4 [0.4, 2.5]°, respectively. The 

RANSAC method also had a slightly higher DSC than the largest island method, as well 

as improved the precision to a median [Q1, Q3] of 87.5 [76.2, 95.1] % from 84.1 [73.6, 

90.4] % obtained with the largest island. Both methods improved the DSC and precision 

relative to the unfiltered predicted masks. The largest island method yielded a higher recall 

value with a median [Q1, Q3] of 72.3 [51.5, 89.3] % compared to RANSAC with a median 

[Q1, Q3] of 67.4 [48.8, 77.6] %, which is also lower than the unfiltered mask recall. 

Examples of cases from Figure 6.2, showing the performance of the fitting and filtering 

approaches are shown in Figure 6.3. The gynecologic case demonstrates the feasibility of 

both approaches to remove the smaller second island generated by the reverberation 
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artifact. The liver example shows similar performance between the two techniques but with 

the largest island and linear fit approach producing a more accurate tip position than 

RANSAC. In the kidney case, the predicted tool appeared fragmented leading to a poor 

result using the largest island and a much more accurate result using RANSAC. Kidney 

predictions demonstrated much higher tip errors than the other anatomical backgrounds. 

Particularly using the largest island approach, removing the kidney from the overall 

calculations improves the tip error from 4.4 [1.5, 17.8] mm to 3.5 [1.3, 16.6] mm and also 

improves the overall tip error from 3.5 [1.3, 13.5] mm to 3.1 [1.2, 12.7] mm with RANSAC 

post-processing. Excluding the kidney results also leads to slight improvements in the 

overall trajectory error, DSC, and recall with both post-processing methods. 

Table 6.3 After largest island filtering and linear fit, resulting medians [Q1, Q3] for tip and 

trajectory errors and DSC, recall, and precision metrics on an unseen testing dataset. 

Image  

Background 

Tip 

Error (mm) 

Trajectory 

Error (°) 
DSC (%) Recall (%) Precision (%) 

Phantom 

(n = 9) 
2.0 [0.6, 3.6] 0.8 [0.2, 1.9] 85.6 [82.1, 89.9] 94.3 [91.0, 99.0] 78.0 [73.0, 84.1] 

Prostate 

(n = 8) 
1.4 [0.9, 8.2] 0.7 [0.2, 1.3] 76.3 [72.6, 84.8] 79.3 [62.7, 88.8] 81.6 [75.5, 93.4] 

Gynecologic 

(n = 18) 
0.3 [0.2, 0.4] 0.3 [0.2, 0.6] 89.8 [86.7, 92.9] 89.9 [85.7, 95.2] 89.9 [85.7, 91.7] 

Liver 

(n = 249) 
5.0 [1.7, 18.1] 1.4 [0.5, 2.4] 71.8 [58.9, 86.4] 72.1 [52.7, 88.5] 83.9 [72.1, 89.8] 

Kidney 

(n = 31) 
10.9 [4.4, 33.4] 3.2 [1.6, 6.0] 58.4 [46.2, 70.5] 44.8 [30.0, 59.0] 87.5 [73.9, 100.0] 

Overall 

(n = 315) 
4.4 [1.5, 17.8] 1.4 [0.4, 2.5] 72.2 [59.1, 86.6] 72.3 [51.5, 89.2] 84.1 [73.6, 90.4] 
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Table 6.4 After RANSAC fitting and filtering, resulting medians [Q1, Q3] for tip and 

trajectory errors and DSC, recall, and precision metrics on an unseen testing dataset. 

Image  

Background 

Tip  

Error (mm) 

Trajectory 

Error (°) 
DSC (%) Recall (%) Precision (%) 

Phantom 

(n = 9) 
1.0 [0.6, 3.1] 0.5 [0.2, 1.9] 87.3 [83.5, 90.3] 94.2 [89.5, 98.7] 80.8 [78.9, 84.5] 

Prostate 

(n = 8) 
1.5 [0.9, 8.3] 0.4 [0.3, 0.7] 78.9 [73.8, 84.7] 73.2 [62.4, 81.9] 87.9 [84.8, 95.8] 

Gynecologic 

(n = 18) 
0.3 [0.2, 0.4] 0.4 [0.2, 0.7] 88.7 [84.6, 93.5] 85.2 [80.9, 91.1] 93.2 [89.6, 97.0] 

Liver 

(n = 249) 
3.8 [1.6, 14.3] 0.8 [0.3, 1.6] 72.4 [57.0, 81.4] 67.6 [50.2, 75.5] 87.0 [74.0, 95.0] 

Kidney 

(n = 31) 
10.1 [3.5, 33.8] 2.9 [1.3, 7.5] 55.8 [36.6, 67.9] 42.2 [33.2, 56.6] 86.1 [65.7, 98.9] 

Overall 

(n = 315) 
3.5 [1.3, 13.5] 0.8 [0.3, 1.7] 73.3 [56.2, 82.3] 67.4 [48.8, 77.6] 87.5 [76.2, 95.1] 

 

 

Figure 6.3 Cropped predicted masks of example cases from in Figure 6.2 (top row) and 

the result after filtering with the largest island approach (middle row) and RANSAC 

approach (bottom row) with the corresponding fits shown in red. Both methods performed 

similarly for the gynecologic and liver examples, but the RANSAC approach performed 

much better than the largest island in the scenario provided by the kidney image. 
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The visible length of the tool within the image appeared to influence the variability of the 

tip errors, as shown in Figure 6.4(a), and there also appeared to be a trend, illustrated in 

Figure 6.4(b), when examining the trajectory errors. This encompassed cases where the 

tool was captured in an US image when the tool and imaging plane were not coplanar. 

Based on the trajectory errors, an empirical threshold was established where tools with < 

35 mm visible within the image demonstrated larger predicted trajectory errors compared 

to those tools with ≥ 35 mm visible. Since only liver and kidney images contained tools 

with short visible lengths (i.e., < 35 mm), only those applications were included in this 

analysis. The tip and trajectory errors after RANSAC post-processing for tools on either 

side of this threshold are shown in Table 6.5. As these errors did not pass a normality test, 

Mann-Whitney tests were used to evaluate the statistical significance between the two 

groups of tools. While the tests failed to show a significant difference in the tip errors, the 

liver and kidney tools both showed significant differences between the trajectory errors for 

the longer and shorter tools; however, there were only a small number of tools meeting the 

criteria for short visible length (7 in kidney images and 26 in liver images) in this study. 

Additionally, tip error variability increased for long tools when observing liver and kidney 

images combined, but this trend was only demonstrated for liver images when investigated 

independently, as the third quartile for kidney (Table 6.5) decreased for long tools. 

 
Figure 6.4 Influence of the visible length of the tools in the liver and kidney US images 

on (a) tip error and (b) trajectory error after RANSAC fitting and filtering. There was a 

statistically significant difference in the trajectory error between tools with visible lengths 

longer and shorter than 35 mm, but no significant difference was observed in the tip error. 

The trajectory difference was only observed in kidney and liver applications as all other 

applications had all visible lengths longer than 35 mm. 
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Table 6.5 Median [Q1, Q3] tip and trajectory errors using RANSAC fitting for kidney and 

liver tools with < 35 mm visible (short) within the 2D image compared those ≥ 35 mm 

(long) with significance from Mann-Whitney tests shown. 

Image  

Background 

Number of 

Tools 
 Tip Error (mm)  Trajectory Error (°) 

Short Long  Short Long p-value  Short Long p-value 

Liver 26 223  
4.6 

[1.4, 9.2] 

3.7 

[1.6, 17.5] 
0.4505  

1.4 

[0.8, 3.0] 

0.8 

[0.3, 1.5] 
0.0007 

Kidney 7 24  
10.7 

[2.6, 71.1] 

10.0 

[3.7, 31.6] 
0.5320  

12.6 

[2.9, 27.5] 

2.0 

[0.6, 4.1] 
0.0223 

Overall 33 247  
4.9 

[1.8, 10.4] 

4.4 

[1.7, 18.5] 
0.8021  

2.1 

[1.0, 6.8] 

0.8 

[0.3, 1.7] 
< 0.0001 

6.3.3 User variation 

A subset of images was used to assess intra-rater repeatability (Table 6.6) for the three 

trained users that produced manual segmentations. Though the actual differences in user 

performance were small with all median pixel map metrics differing by < 4 %, a Kruskal-

Wallis test found significant intra-rater performance differences (p < 0.01) for the DSC and 

recall metrics. Using Dunn’s tests, significant differences (p < 0.05) were found between 

the intra-rater pixel map performance metrics of U1 and U2 and between U2 and U3, but 

not U1 and U3. This indicated that U2 was significantly more repeatable and sensitive than 

the other users. U1 and U2 had equivalent tip localization errors of 3.4 mm and median 

trajectory SDs of 0.3º, whereas U3 had slightly poorer consistency with a tip localization 

error of 4.3 mm and median trajectory SD of 0.5º. 

Table 6.6 Intra-rater repeatability for three trained users producing manual segmentations. 

Tip localization error and median [Q1, Q3] trajectory SD, DSC, recall, and precision 

metrics were determined on a repeated image subset (N) with more than 24 hours between 

segmentations. 

User [N] 

Tip 

Localization 

Error (mm) 

Trajectory SD 

(°) 
DSC (%) Recall (%) Precision (%) 

U1 [215] 3.4 0.3 [0.2, 0.7] 89.7 [84.0, 93.5] 88.9 [82.9, 93.0] 91.3 [86.2, 95.1] 

U2 [251] 3.4 0.3 [0.1, 0.6] 91.9 [83.8, 95.7] 92.2 [85.8, 95.8] 92.7 [84.7, 96.3] 

U3 [275] 4.3 0.5 [0.2, 0.9] 89.5 [82.1, 94.0] 88.5 [82.3, 93.4] 91.3 [85.7, 95.2] 
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An identical set of 211 images was used to assess the inter-rater reproducibility (Table 6.7) 

with the multi-user DSC and Fleiss’ kappa both showing very strong agreement between 

users. The tip localization error, trajectory SD, and DSC had values for the inter-rater 

agreement on the same order as the intra-rater repeatability. 

Table 6.7 Inter-rater reproducibility of the manual segmentations produced by three trained 

users. Tip localization error and the median [Q1, Q3] values of trajectory SD, DSC, and 

Fleiss’ kappa metrics are reported for a repeated image subset of 211 images. 

Tip 

Localization 

Error (mm) 

Trajectory SD 

(°) 
DSC (%) Fleiss’ Kappa (%) 

2.8 0.6 [0.3, 1.1] 90.6 [86.5, 93.8] 87.3 [82.6, 91.7] 

6.4 Discussion 

In this study, we designed and evaluated a CNN-based method for segmenting needle-like 

tools in 2D US images in near real-time (approximately 50 ms per tool), demonstrated on 

unseen data from phantoms and five different interventional applications from four 

anatomical sites. The widespread use of 2D US makes the algorithm clinically relevant for 

a large variety of minimally invasive percutaneous interventions that require accurate 

placement of tools to achieve desired diagnostic and therapeutic results. The near real-time 

segmentation of the algorithm provides the potential for live localization and better 

visualization of tools during insertion for interventional procedures. This could enable 

clinicians to immediately evaluate the tool position and trajectory and adjust accordingly, 

compensating for misalignments without disrupting the clinical workflow or adding 

additional segmentation time to the procedure. Future work will involve integrating this 

segmentation into the live video stream from the US machine to provide intraoperative 

guidance, which could potentially improve the accuracy of tool placement and clinician 

confidence in the treatment (e.g., ablation) and sampling (e.g., biopsy) of lesions. One key 

advantage of our approach over existing general tool segmentation algorithms developed 

for US is the availability of both phantom and patient images from five different clinical 

applications and different US machines for development. These images were acquired from 
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different facilities with different operators and had a variety of characteristics, including 

variable image and pixel sizes, acquisition with different US systems and probe geometries, 

and different tool types and diameters. Images from the five clinical interventions, as well 

as phantom images, were used for evaluation, whereas most current techniques have only 

been tested in phantom or ex vivo environments, occasionally with one clinical application 

included. The broad testing environment that our study leveraged for assessment of our 

proposed general algorithm provides evidence that our technique may work across many 

interventional applications. 

Overall pixel map comparisons showed good overlap and agreement between the manual 

and predicted segmentations, as described by the DSC (71.9 [58.0, 86.3] %), true positive 

rate (recall) of 72.3 [52.4, 89.3] %, and a positive predictive value (precision) of 83.2 [70.9, 

89.8] % prior to post-processing. Following post-processing, there was a minor 

improvement in the overall DSC, as well as a higher precision. These pixel map 

comparisons showed DSC > 85 % and recall rates with both post-processing methods > 85 

% for phantom and gynecologic images. Using the RANSAC approach, all applications 

had a precision > 80 % and had higher precision for every image background compared to 

the largest island approach; however, filtering with the RANSAC approach had the 

opposite effect on recall, which decreased for every background. Since the largest island 

approach doesn’t modify the predicted pixels and only keeps the largest connected region, 

these changes in the pixel map metrics indicate that the CNN had a higher chance to over-

predict pixel regions relative to the manual mask resulting from lower false-negatives and 

higher false-positives. Since the RANSAC method only keeps inlier pixels based on the 

maximum nominal tool diameters, spurious regions, such as the bump on the left side of 

the gynecologic example shown in Figure 6.3, are removed. As a result, over-predictions 

or predictions wider than this threshold diameter become slimmer, reducing the number of 

false positive pixels or increasing the false negative pixels, respectively. Aside from the 

kidney, a higher DSC also resulted when using a RANSAC approach and produced 

predictions more representative of the tool’s true shape. 

The predicted regions were sufficient to estimate the tool’s tip and trajectory using both 

post-processing methods. Overall, the RANSAC approach produced a more accurate tip 
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and trajectory identification for the tools than the largest island method but performed 

slower than the largest island approach. While neither approach has been optimized for 

speed, the chosen method for post-processing could change depending on the application 

and choice to prioritize speed or accuracy. Although currently slower, there is the potential 

to implement parallelization of the RANSAC method to improve processing time as the 

approach executes the fitting step multiple times. Limitations of both approaches are the 

assumptions that tools are linear and that there is only one tool present in the images; 

however, the type of fit selected could be modified in the future to include other variations 

and step-wise predictions with subsequent image filtering could provide a method for 

multi-tool segmentation, but both will need to be investigated further.  

Tool segmentation was not consistent across all images investigated and varied widely by 

anatomical location. Gynecologic images demonstrated the most accurate tool 

segmentation-specific metrics when compared to manual masks (median tip: 0.3 mm and 

median trajectory: 0.4°). This was likely due to the distinct needle appearance attributable 

to being nearly parallel to the linear US imaging face. However, the tip error in these 

images may not be a reflection of the true accuracy as they did not always contain the 

needle tip within the image field-of-view. In some cases, the tip point was selected to be at 

the edge of the image, which may be easier for the algorithm to detect as it removes the 

insertion direction component of error. Further investigation into the tip error for this 

application is necessary, but likely would be similar to that observed in the prostate 

brachytherapy images. The prostate images also demonstrated low tip and trajectory errors 

and the overall performance of the algorithm on brachytherapy images demonstrates 

robustness to large artifacts, such as the reverberation and shadowing observed in these 

images. Following RANSAC post-processing, phantom, prostate, and gynecologic images 

all produced median tip errors ≤ 1.5 mm and tools in these images, as well as the liver 

images, demonstrated median trajectory errors < 1º. The trajectory errors associated with 

kidney and liver ablation tools were shown to improve significantly for tools with more 

than 35 mm visible in the image field-of-view, but the spread of the tool tip error was also 

observed to increase proportionally with the tool length. Figure 6.4(a) shows that some 

liver predictions had very large tip errors, which is also reflected in the high variability in 

tip error reported in Table 6.3 and Table 6.4. These large errors were typically associated 
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with deeply inserted tools and, due to the free-hand nature of the procedure, are likely the 

result of partially visualized tools not entirely in-plane with the US image. In the reported 

analysis, we did not implement a success/failure threshold; however, in a clinical setting, 

physicians would be able to keep in mind the insertion depths of tools to interpret the 

reasonability of the provided segmentation and, in most cases, these large errors likely 

appear only for a few frames in a video sequence. Therefore, future work will involve 

investigating a method for segmenting very short visible tool lengths and improving deep 

tool tip identifications, which may be integrated into the algorithm to improve 

performance. Despite the variability in performance across anatomical location, the 

performance on the liver images had a relatively high impact on the overall metrics reported 

in this study. The negative impact of the poorer performance on kidney predictions also 

influenced the overall values reported, but this would cause reported values to be more 

conservative compared to the true performance in other anatomical locations and the 

relatively larger number of liver images minimizes this influence. 

Although the overall median tip error was slightly higher than those reported for other deep 

learning-based US tool segmentation methods,27,28 the accuracy achieved is likely 

sufficient for most clinical applications. As the other methods were developed only in ex 

vivo models28 or specifically for liver27 and kidney29 procedures, they may not reflect the 

complexity of clinical scenarios, limiting the generalizability of the approaches and 

diversity of the datasets. We demonstrated a median trajectory error for the liver tools of 

0.8°, showing an improvement over the mean error of 2° reported by Arif et al.27 Since the 

tool angle of incidence in liver images is steeper relative to the US probe than in other 

applications, visibility of the tool is reduced36 and tip identification is more challenging, 

leading to the observed median tip error of 3.8 mm. 

Our algorithm demonstrated much poorer performance in kidney images than the other 

applications in this study; however, the DSC of 58.0 % prior to post-processing is similar 

to the value of 56.65 % reported by Lee et al.29 Additionally, our median trajectory error 

of 2.9º for the kidney ablation tools may offer a substantial improvement over the trajectory 

error of 13.3º reported by Lee et al.29, though a direct comparison is not possible given the 

use of RMS error in that study. Assuming a similar pixel size, our tip error appears larger 
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than the distance error from the Lee et al.29 study; however, their value does not represent 

the tip error, which is often much higher since the largest segmentation challenge is 

typically the early truncation of the tool path in the insertion direction. The high errors 

reported by both studies on the localization of tools in kidney images shows the US 

visibility challenges associated with steep tool insertion angles and increased number of 

anatomical interfaces with similar echogenicity, emphasizing the need for further research 

in this area. 

Our precision (83.2 [70.9, 89.8] %) was much higher than that observed by Mwikirize et 

al.30 prior to pre-processing, with a similar recall rate; however, Mwikirize et al. 

emphasized the importance of pre-processing US images to reduce high-intensity artifacts 

in the image, providing a vast improvement in the recall and precision rates of their 

algorithm. While pre-processing was avoided in our study to more closely reflect the 

intraoperative clinical realities, this may be an area of future investigation to further 

improve the accuracy of our results.  

The three users in our study produced high pixel map scores on repeated segmentations of 

the same tools, all having DSCs > 89 % and recall and precision rates > 88 %, indicating 

high intra-rater repeatability in these metrics with U2 demonstrating the highest rate of 

repeatability and sensitivity. Although the median trajectory SDs were all ≤ 0.5º, variability 

in tip localizations were high with median differences ranging from 3.4 mm to 4.3 mm, 

demonstrating the difficulty of the task. This variability is also comparable with the tip 

errors produced by our method, suggesting that a large proportion of our reported algorithm 

errors are due to manual variability in tip localization. Thus, an alternative to manual 

segmentation is required to improve ground truth segmentations for further improvement 

in performance. The inter-rater comparison was consistent with intra-rater metrics and 

showed that using a single user for earlier comparisons was likely sufficient for assessing 

our method. The users also showed strong agreement with minimal effects of chance, 

demonstrated with the median Fleiss’ kappa of 89.3 %. 
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6.5 Conclusions 

We have presented a near real-time approach using deep learning techniques for 

fast and accurate segmentation of general needle-like tools in a variety of clinical cancer 

applications, demonstrating the potential to improve and ease tool localization in 

intraoperative environments during minimally invasive percutaneous interventions. 
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Chapter 7  

7 Conclusions and directions for future work 

Image-guided medical interventions that use 3D information intraoperatively may provide 

improvements to the diagnosis and treatment of cancer, but these procedures rely heavily 

on the accurate targeting, guidance, and verification of needle-like tools for planned 

outcomes. This thesis focused on the application of 3D US imaging and image processing 

methods during image-guided interventions in the prostate and liver to provide accessible, 

fast, and accurate improvements to the clinical workflow. This chapter provides the 

summary, conclusions, limitations, and future directions from the work in Chapters 2-6. 

7.1 Summary and conclusions 

In Chapter 2, an automatic 2D-3D registration method approaching the frame rate of a US 

system was investigated to compensate for prostate motion during 3D TRUS-guided 

biopsy procedures. Since patient motion can be continuous or intermittent throughout a 3D 

TRUS-guided biopsy procedure, MR-derived targets can be misaligned during biopsy 

sampling, which can result in increased needle targeting error and the chance of missing 

cancer in suspicious regions identified in the MR image. Two registration modes were 

investigated: motion compensation using a single user-initiated correction that could be 

performed before biopsy and real-time continuous motion compensation that could be 

performed automatically as a background process. A previously developed1 intensity-based 

algorithm was further optimized on retrospective patient images by implementing the 

algorithm on a GPU, downsampling the 2D and 3D TRUS images by a factor of four, 

cropping the 2D TRUS images to 356  292 pixels,  and optimizing the Powell search 

space order with translations first to avoid local optima near the registration initialization 

position. This optimization on patient images resulted in a mean ± SD TRE and 

computation time of 1.6 ± 0.6 mm and 57 ± 20 ms, respectively. After implementation in 

a 3D TRUS-guided system, a tissue-mimicking prostate phantom with embedded agar 

spheres was used to evaluate the user-initiated and continuous registration approaches with 

known displacements provided by a micrometre-driven stage. The user-initiated mode 

performed registrations with computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 

ms for in-plane, out-of-plane, and roll motions, respectively, and corresponding 

registration errors of 0.4 ± 0.3 mm, 0.2 ± 0.4 mm, and 0.8 ± 0.5°. The continuous method 
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performed registration significantly faster (p < 0.05) than the user-initiated method, with 

observed computation times of 35 ± 8 ms, 43 ± 16 ms, and 27 ± 5 ms for in-plane, out-of-

plane, and roll motions, respectively, and corresponding registration errors of 0.2 ± 0.3 

mm, 0.7 ± 0.4 mm, and 0.8 ± 1.0°. The presented method encourages implementation of 

real-time motion compensation algorithms in a prostate biopsy as registration errors are 

around the previously determined 1.6 mm requirement for sampling clinically significant 

prostate cancer with a 95 % confidence.2 Image registration approaching the frame rate of 

an ultrasound system offers a key advantage to be smoothly integrated into the clinical 

workflow and could be used further for a variety of image-guided interventions, like 

prostate brachytherapy or liver ablation, to treat and diagnose patients by improving 

targeting accuracy. 

Chapter 3 focused on automating the 3D TRUS-guided biopsy workflow further with 

additional application to 3D TRUS-guided brachytherapy by developing an algorithm 

using a deep learning-based approach for automatic 3D TRUS prostate segmentation. 

Using 3D TRUS images effectively typically requires the physician to manually segment 

the prostate to define the margins and volume used for accurate registration, targeting, and 

dose calculations. However, manual prostate segmentation is a time-consuming and 

difficult limitation on clinical workflow, often occurring while the patient is under sedation 

(biopsy) or anesthetic (brachytherapy).3 A supervised deep learning-based method was 

developed to segment the prostate in 3D TRUS images from different facilities, procedures, 

acquisition methods, and commercial ultrasound machine models to create a generalizable 

algorithm for needle-based prostate cancer procedures that avoids the development of 

procedure-specific approaches. The developed modified U-Net with 3D reconstruction 

performed with a median [Q1, Q3] absolute DSC, recall, precision, VPD, MSD, and HD 

of 94.1 [92.6, 94.9] %, 96.0 [93.1, 98.5] %, 93.2 [88.8, 95.4] %, 5.78 [2.49, 11.50] %, 0.89 

[0.73, 1.09] mm, and 2.89 [2.37, 4.35] mm, respectively, when tested on a dataset of 20 

unseen end-fire and 20 side-fire 3D TRUS images. When compared to three fully 3D 

networks (i.e., V-Net, Dense V-Net, and High-resolution 3D-Net), our proposed method 

performed with significant improvement across nearly all metrics investigated. 

Computation time of <0.7 s per prostate was observed, which is a sufficiently short 
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segmentation time for intraoperative implementation and enables a generalizable 

intraoperative solution for needle-based prostate cancer procedures. 

In Chapter 4, a new geometrically variable 3D US scanner, mechanically assisted system, 

and 3D-printed therapy applicator guide was developed to provide methods for imaging 

and guiding focal liver tumor ablations. Image guidance variabilities with 2D US imaging 

during freehand therapy applicator targeting can limit the sufficiency of ablation volumes 

and the overall potential of ablation procedures. However, US offers a safe, cheap, 

accessible, and real-time advantage over other methods of image-guidance. Proposed 

imaging solutions like CT and MRI can provide useful tools for applicator targeting, but 

often require longer procedure times, which are more complex and costly, limiting their 

widespread use. 3D US was proposed as an alternative image-guidance approach and a 

three-motor scanner was designed to be used with any commercially available US probe to 

generate accurate, consistent, and geometrically variable 3D US images. The designed 

scanner was mounted on a counterbalanced stabilizing and mechanical tracking system for 

determining the US probe position and orientation, which was assessed using optical 

tracking to have a mean positioning error of 1.85 ± 1.33 mm when performing compound 

joint manipulations. The utility of the motorized scanner enabled the development of an 

image-guidance navigation workflow that moved the probe to any identified target within 

an acquired 3D US image. The complete 3D US guidance system was used to perform 

mock targeted interventional procedures on a phantom by selecting a target in a 3D US 

image, navigating to the target, and performing needle insertion using a custom 3D-printed 

needle applicator guide. Registered post-insertion 3D US images and CBCT images were 

used to evaluate tip targeting errors when using the motors, tracking system, or mixed 

navigation approaches. A combined approach for navigation that incorporated the 

motorized movement and the in-plane tracking system corrections performed best with a 

mean tip error of 3.77 ± 2.27 mm and 4.27 ± 2.47 mm based on 3D US and CBCT images, 

respectively. 3D US image geometries used during the needle targeting experiments 

involved a small-footprint tilt scan and a large field-of-view hybrid scan, which were 

observed to have no significant differences in needle tip errors over a total of 48 targeted 

needle insertions. 3D US images were qualitatively evaluated in a healthy volunteer and 

compared to a commercially available matrix array US probe, which resulted in a clear 
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reconstruction of clinically relevant anatomy. Overall, this system provides a utility that 

enables enhanced applicator guidance, placement verification, and improved clinical 

workflow during focal liver tumor ablation procedures, potentially reducing local cancer 

recurrence rates and the feasibility of 3D US stereotactic interventional procedures. 

Chapter 5 described the development of a semi-automatic 3D US needle-like therapy 

applicator segmentation algorithm that used a single user input to augment the addition of 

3D US, like the system described in Chapter 4, to focal liver tumor ablation workflows. 

The algorithm was initialized by creating a spherical search space of line segments around 

a manually chosen seed point that was selected by a user on the needle applicator visualized 

in a 3D US image. The most probable trajectory was chosen by maximizing the count and 

intensity of threshold voxels along a line segment and was filtered using the Otsu method 

to determine the tip location. Homogeneous tissue-mimicking phantom images containing 

needle applicators with manual segmentations were used to optimize the parameters of the 

algorithm to median [Q1, Q3] trajectory, axis, and tip errors of 2.1 [1.1, 3.6]°, 1.3 [0.8, 2.1] 

mm, and 1.3 [0.7, 2.5] mm, respectively, with a mean ± SD segmentation computation time 

of 0.246 ± 0.007 s. The segmentation method was tested with a four-user study using 16 in 

vivo, retrospective 3D US patient images, which resulted in overall median [Q1, Q3] 

trajectory, axis, and tip errors of 4.5 [2.4, 5.2]°, 1.9 [1.7, 2.1] mm, and 5.1 [2.2, 5.9] mm. 

This 3D US semi-automatic tool segmentation offers the ability to quickly assess and adjust 

needle applicator placements intraoperatively, potentially improving 3D US liver ablation 

clinical workflow and adoption. 

A general needle and applicator tool segmentation algorithm was developed in Chapter 6 

for 2D US images from multiple image-guided interventions and anatomical regions. Many 

interventional procedures, like focal liver ablation, leverage the temporal resolution of 2D 

US to provide real-time feedback to aid in the accurate placement of interventional tools.  

Identifying tools in 2D US images during intraoperative insertion is necessary for correctly 

achieving planned targets for optimal diagnosis or treatment of cancer, but it is often time-

consuming with accurate position information difficult to distinguish. A deep learning-

based method, similar to Chapter 3, was used to predict tools in 2D US images in 

approximately 50 ms for multiple anatomical sites, despite the widely varying appearances 
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across interventional applications. A modified U-Net architecture was trained with real-

time data augmentation on 917 images and manual segmentations from 

prostate/gynecologic brachytherapy, liver ablation, and kidney biopsy/ablation procedures, 

as well as phantom experiments. Post-processing to identify the tool’s tip and trajectory 

was performed using two different approaches, comparing the largest island with a linear 

fit to RANSAC fitting. Comparing predictions from 315 unseen test images to manual 

segmentations, RANSAC post-processing resulted in improved performance with an 

overall median [Q1, Q3] tip error, trajectory error, and DSC of 3.5 [1.3, 13.5] mm, 0.8 [0.3, 

1.7]°, and 73.3 [56.2, 82.3] %, respectively. The predictions with the lowest median tip and 

trajectory errors were observed in gynecologic images (median tip: 0.3 mm and median 

trajectory: 0.4°) with the highest errors in kidney images (median tip: 10.1 mm and median 

trajectory: 2.9°). Although variability was observed across different anatomical 

applications, the proposed approach could accurately segment tools in 2D US images from 

multiple anatomical locations and a variety of clinical interventional procedures in near 

real-time. This avoids the need for application-specific methods and provides the potential 

to improve image guidance during a broad range of diagnostic and therapeutic cancer 

interventions. 

7.2 Limitations 

The significant limitations of this thesis are discussed in this section and provide a 

summary of the discussions presented in Chapters 2-6. 

7.2.1 General limitations 

All studies investigating patient data in this thesis were retrospective in nature, which was 

more practical for developing new methods since relevant images were previously 

acquired. However, prospective imaging studies including larger unseen patient test data 

for additional evaluation would provide stronger evidence for the clinical utility of the 

image processing methods developed. This could include additional evaluations such as 

the practicality of integration into clinical workflow, physician approval through a Likert 

scale assessment, and randomized control trials to prove the benefit over conventional, 

manual techniques. The registration and deep learning methods described in this thesis also 
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rely on the need for a GPU to perform at the reported computation speeds, which is not 

traditionally available on systems currently used clinically and could limit translation. 

However, GPUs are easily incorporated into new systems, such as the liver system 

described in Chapter 4, and offer the potential for additional software acceleration to 

processes that could benefit from real-time functionality, such as US colour flow imaging.4 

Obtaining ground-truth for accuracy assessment is often very complex and difficult, relying 

on gold standard techniques, such as manual annotations, to perform as a substitute. These 

gold-standard manual annotations include fiducials for registration, prostate 

segmentations, and needle applicator tip and shaft locations. All studies investigating 

patient data did not include external validation from other measurement sources due to the 

retrospective nature of the studies, which could provide an improved method of accuracy 

quantification. However, external system evaluation was performed during phantom 

experiments to address this need, such as a micrometre-driven translation stage, optical 

tracking, and CBCT images. 

7.2.2 Study specific limitations 

In Chapter 2, the optimization of the real-time 2D-3D TRUS registration algorithm was 

performed on a retrospective patient dataset and tested on phantom images in an ideal 

imaging scenario. Optimization on the patient images enabled an approach to refine the 

algorithm on expected clinical images, but manually identified fiducials and the TRE 

metric were used as a surrogate measure of ground truth displacement and were performed 

by a single user. Despite the variability introduced due to manual selection of 

corresponding fiducials, an improved method of evaluation would require the knowledge 

of a patient’s true displacement without the uncertainty associated with imaging error, 

which is an extremely challenging endeavour. This motivated the use of a micrometre-

driven phantom as an alternative, feasible, and accurate approach to provide ground truth 

information for evaluation. However, this approach limits extrapolation to expected 

clinical use where images might have less contrasting structures and more image artifacts. 

Three independent motions were testing with the phantom to get an impression of the 

algorithm’s performance, but complex motion combining multiple degrees-of-freedom 

was not investigated. In addition, obtaining variability in phantom motion speed was 
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difficult using a hand-driven micrometre stage, but motion speed could influence the 

performance of a continuous registration approach since inter-frame displacements would 

be larger than investigated, potentially increasing registration computation time. Although 

this was not tested, it is assumed the performance would have an upper bound at the level 

of the user-initiated results since that experiment mimicked large displacements across a 

single US image frame. Finally, the phantom fabricated was a rigid body and was shown 

to be easily compensated using a rigid registration algorithm, but the real-time continuous 

method still needs to be verified in prospective patient studies where additional motion due 

to prostate deformation may occur. 

In Chapter 3, an automatic prostate segmentation method was trained, validated, and tested 

on a clinically diverse dataset of 3D TRUS images. Although excellent performance was 

demonstrated with the proposed algorithm, a parameter that may influence computation 

time and accuracy is the step angle for radial slice generation and 2D predictions. Varying 

the step angle away from 15° would likely alter computation time since predictions would 

be performed on different amounts of image information, but the variability in accuracy is 

unknown. When training the 3D CNNs for performance comparison, hyperparameters 

were optimized on the V-Net and were used for the other two networks. Although these 

hyperparameters were found to perform the best during preliminary experiments on the 

Dense V-Net and High-resolution 3D-Net, a rigorous optimization was not performed and 

has the potential to increase performance. Another limitation of this study was the use of 

only one observer for providing gold standard manual segmentations. Although inter- and 

intra-observer variability was not assessed for the dataset used, variability in end-fire 3D 

TRUS images5 and side-fire 3D TRUS images6 were previously assessed by our group. 

Previously reported user variabilities were comparable to the reported DSC of the proposed 

segmentation method in this chapter, showing that the algorithm was performing at the 

level of variability observed in the gold standard segmentations. Due to the demonstrated 

variability between different observers when segmenting 3D TRUS images, segmentations 

from other observers should be investigated and incorporated into the testing dataset to 

further demonstrate the robustness of the proposed method. 
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In Chapter 4, a novel mechanically assisted 3D US system with geometrically variable 

image geometries was evaluated using optical tracking, phantom images, and CBCT 

images. One caveat of the navigation errors reported in the study was the ideal nature of 

the needle insertion experiments, which did not contain expected clinical issues such as 

liver motion. The imaging phantom was also limited in deformation characteristics relative 

to a patient, which could cause issues like needle deflection during needle insertion. 

Healthy volunteer images were also acquired under a breath-hold technique to evaluate 

clinical imaging feasibility. Although the images were reconstructed to visualize clinically 

relevant anatomy for liver ablation procedures, patients who are unable to hold their breath 

for 12 s would incorporate motion artifacts during 3D US acquisition. Image acquisition 

can be performed faster with this system by acquiring fewer images, but alterations to 

image reconstruction quality were not assessed. Images of healthy volunteers were only 

shown for one volunteer, so a wider range of body sizes should be investigated in the future. 

In Chapter 5, a semi-automatic 3D US needle applicator segmentation algorithm was 

developed and optimized on phantom images before evaluation on a dataset of patient 3D 

US images containing needle-like therapy applicators in the liver. This relatively small 

dataset of patient images limited potential development of the segmentation algorithm as 

images of phantoms with minimal US echogenecity were relied on for optimizing the 

approach. Although the dataset was small, this was the largest clinical liver dataset of 3D 

US images evaluated to-date for needle applicator segmentation. A fixed adjustment to the 

Otsu threshold was implemented for accurate applicator tip localization, but it is possible 

that the adjustment is influenced by the needle applicator’s SBR in the 3D US images and 

investigation into a dynamic adjustment was limited. The choice to use an Otsu threshold 

was also a potential limitation in this study as the assumption of a bimodal intensity 

distribution that was split between foreground (i.e., applicator) and background was not 

always maintain when evaluating the clinical images. Image features that were observed to 

limit the performance of the algorithm were large gaps along the needle applicator shaft 

and the presence of arteries and veins causing similar acoustic reflection intensities. 

Needle-like therapy applicators were also assumed to be linear, but this was a sufficient 

assumption for the clinical images investigated. However, this assumption limits 
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application to a broader range of procedures that include thinner diameter interventional 

tools that have a higher probability for deflection and bending. 

In Chapter 6, a deep learning-based approach compared two post-processing techniques 

for segmenting needle-like tools in 2D US images. This method was trained, validated, and 

tested on unseen data from five different interventional applications from four anatomical 

sites and phantom experiments. The advantage of this study compared to previously 

reported methods was the variability in image data used for development; however, the 

number of patients and images accessible for this study were not balanced across all 

anatomical sites investigated. Overall values of accuracy were reported, but these results 

were heavily skewed by the performance using liver images. Tip errors reported for 

gynecologic images may not be a reflection of the true accuracy for this anatomical region 

as they did not always contain the needle tip within the image field-of-view. Since the 

identification of the tip location is typically the most difficult aspect of needle-like tool 

segmentation, the complete understanding of performance on gynecologic images could be 

limited. Despite this limitation, performance is expected to be similar to the prostate 

brachytherapy images since tool trajectories are parallel to the US probe face, which 

demonstrated low tip and trajectory errors with robustness to large artifacts, such as 

reverberation and shadowing. The post-processing approaches tested with this method also 

assumed a single tool was present and that it was linear, which might limit the performance 

of the algorithm if multiple tools are visible, as in brachytherapy procedures, or if tools 

deflect within the body. However, the type of fit used in this work could be modified in the 

future to include other variations and step-wise predictions with subsequent image filtering, 

which could provide a method for multi-tool segmentation. Lastly, investigation on user 

variability when producing manual segmentations revealed large median differences for 

tip identification relative to the reported metrics on the test dataset. This limits a complete 

understanding of the segmentation performance as errors reported incorporated a non-

negligible amount of human error and did not isolate the accuracy solely due to the 

algorithm, stressing the difficulty of the segmentation problem. 
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7.3 Future directions 

7.3.1 2D-3D prostate motion compensation clinical translation 

A 2D-3D TRUS registration method was implemented on a guidance system in Chapter 2 

for evaluating the clinical feasibility of a continuous registration approach during prostate 

biopsy. To expand beyond the phantom experiments and provide additional evidence for 

clinical feasibility, a proof-of-concept prospective clinical study has been investigated with 

the implemented method in Chapter 2.7 Although the patient sample size was small (i.e., 

three patients), the registration approach was observed to have a median [Q1, Q3] 

registration error of 3.4 [1.5, 8.2] mm and a mean ± SD computation time of 27 ± 8 ms 

when evaluating 21 2D-3D image pairs acquired during the conventional biopsy 

procedure.7 Larger registration errors were observed during sampling of tissue samples on 

the lateral edges of the prostate, so a new method of navigation that emphasized US probe 

rotation was developed during continuous 2D-3D TRUS registration. This new approach 

resulted in a median [Q1, Q3] registration error of 2.0 [1.3, 2.5] mm and a mean ± SD 

computation time of 22 ± 3 ms when evaluated on 18 image pairs, providing evidence that 

clinical implementation of the registration algorithm with a workflow adjustment could 

improve prostate biopsy targeting. These results support the investigation into a larger 

clinical trial with prospective patient imaging and may require the need for external 

imaging after needle insertion to directly verify needle targeting accuracy. 

7.3.2 Multi-institutional 3D TRUS prostate segmentation 

Chapter 3 described the development and evaluation of an automatic prostate segmentation 

method on 3D TRUS image acquired using end-fire and side-fire probes. Another common 

geometry for 3D TRUS image acquisition can be achieved using biplane probes during 3D 

TRUS-guided prostate brachytherapy, which have transverse elements that can be used to 

axially-reconstruct 3D images using tracked steppers.8 A dataset including these images 

with manual 3D segmentations could easily be evaluated and would enable the proposed 

approach to have a wider potential impact and further prove the results of the method being 

image reconstruction geometry independent. Even if significant differences were to be 

observed when evaluated on this new acquisition geometry, including additional images in 
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the training set of the deep learning approach may be the only required alteration, which is 

an easily performed task. 

Providing further evidence for prospective clinical utility and impact of the automated 

segmentation approach could be performed through the use of a multi-user and multi-

institutional study. This could either provide evidence that the method is not biased to the 

single user used for training the approach or stress the need to incorporate alternatives for 

different users. The clinical impact could also be investigated across multiple users through 

the evaluation of segmentation accuracy and variability on radiation dose planning. Also, 

an editing time metric could be investigated to provide supporting evidence for benefits to 

clinical workflow and patient throughput.9 

7.3.3 CT-US fusion-guided liver ablation 

 

Figure 7.1 Proposed workflow for a CT-3D US-guided focal liver ablation. 

3D US has the potential to improve applicator targeting accuracy during focal liver tumor 

ablation therapies with the opportunity to draw many parallels to MR-TRUS fusion-guided 

prostate biopsy. Conventional liver ablation procedures are typically only performed on 

lesions with diameters less than 50 mm due to the accuracy required for placing and 

repositioning multiple applicators with overlapping ablation volumes,10 but an accurate 

image-guidance pipeline and system could provide the tools necessary to expand the 

number of patients eligible for ablation procedures. As shown in Figure 7.1, many modules 

can be incorporated into the system to plan, guide, and verify an applicator(s) placement at 
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the location of a tumor(s). Planning in the preoperative setting based on an initial CT image 

could allow for the segmentation of the tumor and provide targets for an applicator 

planning application to determine the optimal configuration, especially for multi-applicator 

treatments.11 A CT to 3D US deformable image registration12 could bring these CT-derived 

segmentations and targets into the intraoperative setting on the day of the procedure. 

Image-guidance could be performed using a motion compensation 2D-3D US registration 

algorithm, like an adaptation from the method described in Chapter 2, to adjust coordinate 

systems and allow for motorized target navigation, as described in Chapter 4. Using the 

method described in Chapter 6, 2D applicator segmentation could be performed on the live 

image sequence to help aid with applicator insertion. Lastly, verification of applicator 

guidance could be performed with subsequent and repeated 3D US images. These images 

could be used with the 3D applicator segmentation method developed in Chapter 5, or a 

fully automated deep-learning approach, for generating applicator locations and planned 

ablation volumes for therapeutic margin assessment before initiating the therapy session. 

Technology that enables a stereotactic interventional approach could exploit the low 

complication rates and recovery times of focal liver ablation procedures, while increasing 

patient eligibility, decreasing local cancer recurrence rates, and increasing overall patient 

survival. 
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