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Abstract 

Damping estimation is a critical task to perform during the design of slender structures, or for 

existing structures. This is to ensure the response of the structure is within allowable limits and to 

determine if additional damping is necessary from auxiliary devices. If a slender structure is 

experiencing wind loading, a phenomenon known as aerodynamic damping arises, which has the 

potential to reduce the damping of the structure. The most efficient method to estimate 

aerodynamic damping is to use a system identification technique, which requires only the input 

forces and output response of the structure. This thesis describes how to estimate aerodynamic 

damping ratios of concrete chimneys using a sophisticated output-only system identification 

technique known as Second-Order Blind Identification. Wind fields generated using drag and lift 

coefficients and computational fluid dynamics (CFD) are applied to a finite-element concrete 

chimney model in both along-wind and across-wind directions. The time-series of the wind field 

is simulated using the power law for the mean wind speed and the von Karman spectrum for the 

turbulence. Total damping estimates are acquired at various wind speeds and modes in both 

directions, which are compared to the theoretical values. Aerodynamic damping is acquired by 

subtracting the structural damping, found using a free vibration test, from the total damping 

estimate. The aerodynamic damping estimates using drag and lift coefficients are compared with 

the CFD estimates. It is found that aerodynamic damping in the along-wind direction is always 

larger compared to the across-wind direction. Also, damping estimates using CFD often exhibit 

higher values than the wind field simulated using drag and lift coefficients.  A general discussion 

on the results, research contributions, and future work for further research is provided.  
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Summary for Lay Audience 

Structures are affected by natural wind, especially when the wind takes on more chaotic forms 

such as storms, tornados, and hurricanes. Tall and slender structures are more vulnerable to wind 

as they exhibit higher deflections and less resistance to motion. The resistance to motion is a 

critical component when designing a slender structure or when analyzing the performance of an 

existing structure. Structural parameters such as mass and stiffness determine the resistance of 

motion, which is easily implemented during the design of a structure. However, this is not usually 

the case for existing structures, where mass and stiffness may not be known. Therefore, the 

statistics of a structure’s motion during wind loading can be used to build a mathematical model 

of its vibration patterns.  These vibration patterns contain information about the structure such as 

the rate at which its motion decreases. A state-of-the-art statistical method is explored in this thesis 

to analyze the vibration patterns of a slender chimney model and determine the rate at which its 

motion decreases. The chimney model is subjected to different types of wind loading to examine 

the effects of wind actions on structures and demonstrate the robustness of the proposed statistical 

method. The statistical method is efficient at identifying the motion of the chimney model, 

meaning there is confidence in implementing the method with structural design and monitoring of 

existing structures. 
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1. Introduction 
 

Natural wind is one of the most common dynamic loads experienced by structures and can range 

from a gentle breeze to chaotic forms such as gales, tornados, and hurricanes. These wind loads 

are especially important during the design of tall and slender structures as they exhibit higher 

deflections and aeroelastic effects. Aerodynamics are also critical for slender structures, as they 

are especially vulnerable to motion that is perpendicular to the flow of the wind. The design and 

health monitoring of structures include the detection of modal parameters, such as damping ratios, 

which indicates a structure's ability to resist motion. The estimation of damping is important for 

both the design of slender structures, as well as existing structures to ensure they are performing 

safely and that no additional damping devices are required.   

Accurate damping estimation is important for the design of newer slender structures, and the 

assessment of existing structures, as damping reduces the overall response of the structure. All 

structures have some form of inherent damping, known as structural damping that is dependent 

on the materials used to build the structure. However, when a slender structure (e.g., tall building 

and tower, long-span bridge, chimney, transmission tower, antenna, etc.) is exposed to wind 

loading, a phenomenon known as aerodynamic damping arises, which causes the total damping in 

the structure to be different than the structural damping. Aerodynamic damping is an important 

parameter of the slender structures, as it can often exhibit a negative value, especially in the across-

wind direction. Under such a situation, the aerodynamic damping amplifies the wind-induced 

vibration response of the structures that may lead to severe structural damage or catastrophic 

failure.  



2 

 

1.1 Aerodynamic Damping 

The total damping ratio is shown in the following: 

𝜁𝑇 =  𝜁𝑆 +  𝜁𝐴 +  𝜁𝐷 (1.1) 

where 𝜁𝑇 is the total damping ratio, 𝜁𝑆 is the structural damping ratio, 𝜁𝐴 is the aerodynamic 

damping ratio, and 𝜁𝐷 is the damping ratio from additional damping devices. For this research, 

no additional damping devices are investigated, meaning 𝜁𝐷 = 0. Therefore, the ultimate goal of 

this research, 𝜁𝐴, is acquired using the following expression: 

𝜁𝐴 =  𝜁𝑇 −  𝜁𝑆 (1.2) 

Statistical methods can determine 𝜁𝑇 by autocorrelating the modal responses of the forced vibration 

of a dynamic system; however, the free decay of the response is required to estimate 𝜁𝑆. Therefore, 

a free vibration test is performed to determine 𝜁𝑆, which is often not the same value as 𝜁𝑇, 

especially for structures excited by a wind field.  

The wind-induced response of structures is influenced by the incoming turbulence of the wind, 

vortex shedding, and lock-in from motion-induced force (Davenport, 1968). Turbulence is the 

chaotic change in wind velocity and is accompanied by vortices that exhibit many different sizes.  

Vortex shedding occurs when the wind wraps around a structure, creating vortices at the sides that 

apply a force that is perpendicular to the flow of the wind. The along-wind direction is parallel to 

the flow of the wind, while the across-wind direction is perpendicular to the flow, as shown in 

figure 1.1.   
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Figure 1.1:  Along-wind and across-wind directions relative to a typical rectangular 

building, (Tsukagoshi et al. 1993). 

While the along-wind response is characterized by the turbulence and quasi-steady theory, the 

across-wind response is determined by the vortex shedding, meaning the quasi-steady theory 

cannot be used. Vortex shedding may create a phenomenon called lock-in, meaning the wake 

flow’s frequency matches the natural frequency of the structure, which generates a larger response 

and the potential for negative aerodynamic damping. Figure 1.2 shows an example of vortex 

shedding around a cylindrical structure, and figure 1.3 shows the lock-in phenomena.  

 

Figure 1.2:  Vortex shedding affecting a cylindrical structure (Rice et al. 2008). 
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Figure 1.3:  Lock-in phenomena (Simiu and Scanlan 1996). 

Negative damping often indicates the need for additional damping devices to reduce the response 

of the structure. The estimation of aerodynamic damping requires the need for a robust and 

accurate system identification, where the unknown modal parameters (i.e., natural frequencies, 

damping and mode shapes) are estimated from the measured vibration data of the structures. 

Since the last few decades, various researchers have actively investigated the estimation of 

aerodynamic damping of slender structures using both wind tunnel and full-scale data. Davenport 

(1971) performed turbulent wind experiments on six different tall building models with varying 

cross-sections and structural properties. Each model exhibited low damping; therefore the 

measured responses were narrowband, meaning the responses were Gaussian in nature and were 

restricted around the resonance of the building. The peak responses of the models were analyzed 

using a type 1 extreme distribution and a Rayleigh distribution for wind speed. The circular cross-

section building showed the lowest values of peak deflection, while rectangular and triangle-

shaped models demonstrated the highest responses. Davenport (1984) also estimated the along-



5 

 

wind and across-wind response of the slender chimneys. The along-wind response was used to 

derive a theoretical equation to calculate the aerodynamic damping ratio in the along-wind 

direction. Across-wind response incorporated wake excitation and vortex shedding and was used 

to estimate the largest negative aerodynamic damping ratio in the across-wind direction. These 

formulations were demonstrated on a 200 m tall chimney and a wind profile that followed the 

power law. Marukawa et al. (1996) examined aerodynamic damping of tall building models using 

wind tunnel test data of various building models with varying size and aspect ratios. The random 

decrement technique (RDT) was used to find the total damping ratio from the time series of the 

response. The structural damping ratio, found using free vibration tests, was then subtracted from 

the total damping ratio to find the aerodynamic damping ratio. It was found that the aerodynamic 

damping ratio exhibited positive values in the along-wind direction and negative values in the 

across-wind direction. 

Cao et al. (2012) performed wind-tunnel experiments on aero-elastic models with different values 

of roughness exposure, structural damping, stiffness, and taper ratio to determine the along-wind 

aerodynamic damping ratios using the random decrement technique. Experiments showed that the 

aerodynamic damping hardly increases depending on the roughness exposure, while the structural 

damping was found to have a large influence on the aerodynamic damping. Aerodynamic damping 

also increased as the taper ratio increased; slotted corners and chamfers with smaller ratios were 

found to decrease the aerodynamic damping. Venanzi and Materazzi (2012) investigated the 

across-wind aero-elastic response of tall buildings with square cross-sections. The aerodynamic 

damping ratio was then calculated from the responses using the Newton-Raphson technique. In 

the range of positive aerodynamic damping, the ratios calculated using the proposed method 

agreed with the ratios found from the wind tunnel tests. Chen (2014) analyzed the nonlinear 
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negative aerodynamic damping effect of tall buildings subjected to crosswind loading. The 

analysis used time-domain response simulations of a square building undergoing forced vibration 

in a wind tunnel, with the aerodynamic damping modeled as a nonlinear function of the building's 

displacement. The author developed a corresponding model as a function of the root-mean-square 

response; this was necessary to perform a frequency domain spectral analysis. The accuracy of the 

analysis was improved further by including non-Gaussian response characteristics by using the 

method of equivalent nonlinear equation, which approximated an equation for the damping that 

could be solved exactly. 

Gu et al. (2014) conducted experiments on aero-elastic square building models to determine the 

across-wind aerodynamic damping ratio, using the random decrement technique. They observed 

that the aerodynamic damping decreases with the decrease in the chamfer ratio. In addition to the 

chamfer ratio, slot ratios between 5% and 10% and a taper ratio of 1% are most effective at 

restraining aero-elastic responses. Kim et al. (2016) conducted experiments on super tall building 

models with square and helical cross-sections to identify aerodynamic damping ratios, using the 

random decrement technique. Results showed that when the models were under along-wind 

direction loads, both the square and helical models displayed a similar trend for aerodynamic 

damping ratio, gradually increasing with reduced wind velocity and remaining positive. However, 

under across-wind direction loads, the aerodynamic damping ratio of the helical model was 

negative for lower reduced wind velocity and gradually increased to be positive, while the square 

model showed a reversed trend. Experimental studies (Kim et al. (2018)) were conducted to 

determine the aerodynamic damping and aero-elastic instability of a supertall helical building 

using along-wind and across-wind responses. Using the random decrement technique, results 

showed a decrease in displacement compared to square model tests, in both x and y directions.  
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The aerodynamic damping was found to be approximately zero in all wind directions, contrasted 

with square building models that sometimes have negative damping ratios. It has been observed 

that with increasing wind speed, the aerodynamic damping in the along-wind direction increases, 

while the damping in the across-wind direction tends to decrease. Figures 1.4 and 1.5 show the 

aerodynamic damping trend of a square building in the along-wind and across-wind directions, 

respectively. 

 

Figure 1.4:  Wind velocity effect on aerodynamic damping of a square building, along-wind 

direction (Kim 2018). 
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Figure 1.5:  Wind velocity effect on aerodynamic damping of a square building, across-

wind direction (Kim 2018). 

The determination of the aerodynamic damping ratio for a structure is of great importance since it 

can exhibit a negative value, thus lowering the overall damping of the system. The estimate of 

aerodynamic damping requires a robust system identification technique to determine the modal 

parameters of a structure.      

1.2 System Identification for Wind-induced Responses 

System identification is a field of methods that use the statistical data of inputs and outputs to build 

mathematical models of a structure (Barbosh et al. 2018). These methods include deriving 

frequency-response functions if working in the frequency domain, and impulse-response functions 

if working in the time domain (Maia and Silva (2001)). The structure is treated like a black box 

where the parameters such as mass, damping, and stiffness are unknown, but the loads and 

responses are known. A variant of system identification, known as blind identification, uses only 

the output response of the structure to determine the modal parameters such as the mode shapes, 
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natural frequencies, and damping ratios. Various blind identification techniques (Sadhu 2013) have 

been used in the past to determine the modal parameters of slender structures under wind loading, 

including stochastic subspace identification (SSI) and RDT. SSI has been used extensively in the 

literature on civil structures undergoing traffic and wind loading.  Recent studies involving SSI is 

covariance driven, involving the assembly of block Hankel matrices and stabilization diagrams. 

However, SSI requires a model order selection that needs a stabilization diagram, as detailed by 

Magalhaes et al. (2009). The stabilization diagram ensures accurate identification of modal 

parameters and adequate modal assurance criteria, however, it involves significant user 

intervention. Figures 1.6 and 1.7 show an example of a stabilization diagram and identified natural 

frequencies, respectively. 

 

Figure 1.6:  Stability diagram showing model order (Peeters and De Roeck 1999). 
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Figure 1.7:  Identified natural frequencies using SSI (Peeters and De Roeck 1999). 

Peeters and De Roeck (1999) used the SSI approach for modal analysis using only output data and 

incorporating Kalman filters. The method was applied on a steel mast exited by wind loads, using 

a grid of sensors to capture the acceleration response. It was determined that the accuracy of the 

estimated frequency and damping ratio was relatively low when compared to other system 

identification methods. Peeeters and De Roeck (2000) used the same SSI approach on a Monte 

Carlo simulation and a pre-stressed concrete bridge. The Monte Carlo simulation was performed 

on a finite-element simply supported beam with a white noise signal being applied to the beam.  

The concrete bridge was outfitted with accelerometers which captured response caused by traffic 

and wind loads.  Similarly, it was found that the obtained modal parameters were similar to values 

acquired from the traditional system identification methods. Yu and Ren (2005) combined SSI 

with empirical mode decomposition for structural health monitoring. The traffic-induced 

acceleration response of a steel tubular arch bridge was captured; only the output was considered 
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for this method. The proposed system identification method successfully decomposed the output 

into a set of intrinsic mode functions. Reynders and Roeck (2008) introduced a combined 

deterministic SSI technique to estimate the modal parameters of a bridge. The deterministic 

method proved to more efficient at identifying modes compared to older stochastic subspace 

identification techniques. Reynders et al. (2008) also analyzed the uncertainty of using a 

covariance-driven SSI algorithm on simulated and measured data. The test setup was performed 

on a finite-element beam with an applied white noise signal, and vibration data obtained from a 

steel antennae mast. It was found that the damping ratios varied too greatly from other system 

identification methods, confirming that the accuracy of the proposed technique remained 

uncertain. Loh et al. (2011) used recursive SSI for near real-time structural damage diagnosis. 

Similar to the conventional methods, the experimental setup utilized only the output response of 

the structure; the structure was a bridge pier model built in a laboratory. The technique 

incorporated Kalman filters, and successfully identified dynamic parameters through continuous 

monitoring. Wu et al. (2016) obtained modal properties of structures with closely spaced modes 

using an upgraded SSI method.  The civil structures that were analyzed include the cables and deck 

of a cable-stayed bridge and a 13-story steel frame office building. The proposed algorithm was 

successful in identifying the modes of both structures with reasonable accuracy and was more 

efficient when compared to traditional methods.          

RDT is another system identification method that has been used extensively in the past. According 

to Rodrigues and Brincker (2005), RDT operates by taking the responses of a structure and 

transforming them into random decrement functions.  Figure 1.8 shows different trigger points to 

estimate the random decrement functions.   
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Figure 0.8:  Tigger points to estimate random decrement functions (Feng et al. 2017). 

Yang et al. (1984) performed an RDT analysis of civil structures to estimate structural damping 

ratios. The test setup included scaled laboratory models of an existing steel offshore platform and 

a multi-degree-of-freedom finite-element model. Structural damping ratio estimates proved to be 

accurate, as long as the input into the system was random. A mathematical basis for RDT was 

formulated by Vandiver et al. (1982) incorporating the autocorrelation of response data. Vibration 

data from an offshore platform was analyzed using the proposed mathematical formulation and 

was compared to results obtained from the autocorrelation function. By using the averages of a 

large number of segments of the response, it was shown that RDT can approximate the 

autocorrelation function. Asmussen (1997) performed RDT to find the modal parameters of two 

existing bridges and a laboratory bridge model. It was shown that the accuracy of the damping 

ratio estimation needs to be improved, and requires more trigger points. Natural frequency 

detection was possible for the second bridge, but acquiring the mode shapes for all modes was not 

possible. The bridge model was loaded with white noise and showed high damping ratio estimation 
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accuracy. Rodrigues et al. (2004) used RDT to improve upon the traditional frequency-domain 

modal identification methods. The process was applied to the acceleration output of a scaled four-

story laboratory model; Fourier analysis was used on the random decrement technique results. The 

spectral densities showed low amounts of noise, and modal parameters were very similar when 

compared to the results using earlier methods. RDT with empirical mode decomposition was 

combined by He et al. (2011) to examine nonstationary output data. The proposed method was 

used on response data obtained from the finite-element bridge model and an existing steel truss 

bridge.  The combined method agreed well with a traditional identification technique, known as 

peak picking. Wen et al. (2018) combined RDT with analytical mode decomposition to determine 

modal parameters of structures with closely spaced modes. The method was demonstrated on a 

four degree of freedom mass-spring-damper system and an existing curved cable-stayed bridge. 

The modal properties agreed with values estimated using the traditional random decrement 

technique and stochastic subspace identification. Huang and Gu (2016) identified nonlinear 

damping ratios of tall buildings using an envelope RDT approach. The technique was used on the 

response from numerical simulations and a supertall building outfitted with an accelerometer at 

the top. The damping ratio estimates and errors were compared with the estimates obtained from 

earlier methods. 

1.3 Gap Areas    

The previous system identification techniques have proven to be useful in certain vibration analysis 

applications; however, many of these methods are tedious and often fail to identify closely spaced 

modes of slender structures. For example, RDT is often used to determine the parameters of single-

degree-of-freedom systems, such as stick models in wind tunnels, and is not explored for 
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estimation of aerodynamic properties of slender structures with multiple modes. SSI has had many 

recent advances including covariance-driven methods and has been used for structures undergoing 

wind excitation. However, SSI requires sophisticated knowledge related to block Hankel matrices 

and the determination of the model order for the stabilization diagram. Traditional system 

identification methods usually assume that modal responses are stationary and do not contain 

mixed-modal responses. Also, if there is any unwanted noise contained within a signal, the 

traditional system identification methods may not be able to separate it from the measured signal. 

Without proper modal identification and noise separation in slender structures, there is limited 

confidence in the estimation of aerodynamic damping.  

1.4 Research Objectives 

A state-of-the-art system identification method, known as Second-order Blind Identification 

(SOBI), is implemented in this paper to determine the modal responses and aerodynamic damping 

of slender structures, under the assumption the structure contains mixed-modal responses.   

The SOBI technique is performed on a finite-element chimney model subjected to two different 

simulated wind fields, one simulation using pre-determined aerodynamic coefficients, and the 

other simulation using computational fluid dynamics (CFD). The aerodynamic damping ratios 

acquired from these two simulations are compared to each other to determine if there are any trends 

in damping estimates depending on the simulation method used. The damping estimates acquired 

using SOBI is known as the total damping ratio, which is the summation of the structural damping, 

aerodynamic damping, and damping from devices such as tuned mass dampers. The first step 

toward acquiring 𝜁𝐴 is to have an understanding of SOBI and how it can estimate 𝜁𝑇, which is 

detailed in chapter 2. After formulating SOBI, three different load cases are tested on simulated 
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models to demonstrate the efficiency and robustness of the method. Chapter 3 details the wind 

field simulations using both pre-determined aerodynamic coefficients and CFD. Chapter 4 

highlights the finite-element modeling of a chimney, how the two different wind fields are applied 

to the model and the output response that will be used for SOBI. Finally, chapter 5 showcases the 

modal analysis results of the chimney model using SOBI and concludes with the estimation of 

aerodynamic damping for the first four modes. The key conclusions and future work of the current 

thesis are presented in chapter 6. 
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2 Second-order Blind Identification 

Second-order Blind Identification (SOBI) has shown significant promises over other traditional 

system identification methods as it requires only output (i.e., measurement data) to estimate modal 

parameters instead of using both input and output information. Due to its dependence only on the 

measured data, SOBI is especially suitable for large-scale civil structures where the input (i.e., 

wind data) may not be known at all locations. SOBI (Belouchrani et al. (1997)) is based on second-

order statistics, such as auto-correlation, and separates the hidden sources from their noisy 

mixtures. In this chapter, the modal identification formulation of SOBI will be demonstrated. 

Three examples are then used to demonstrate the SOBI method: a mixture of four sine signals, a 

10 degree-of-freedom (DOF) model undergoing a base excitation, and the Gaussian random floor 

excitations. In the subsequent chapters, it will be illustrated how SOBI can be used to estimate the 

aerodynamic damping of a slender structure from its wind-induced vibration.   

2.1 Formulation 

SOBI, a variant of Blind source separation (BSS) (Sadhu et al. 2017), assumes that a signal is a 

mixture of the unknown source signals and measurement noise. A classical analogy for BSS is a 

cocktail party problem, where multiple people in a room may be speaking at once. In this case, 

BSS would provide an excellent solution to separate the speech from each person recorded by the 

microphones. This mixture is represented in the following matrix form: 

𝒙(𝑡) = 𝒚(𝑡) + 𝒏(𝒕) = 𝐀𝒔(𝑡) +  𝒏(𝑡)  (2.1) 
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where 𝒙(𝑡) is the mixed signal, 𝐀 is the mixing matrix, 𝒔(𝑡) is the source signal, and 𝒏(𝑡) is the 

measurement noise. The main goal of BSS is to determine the unknown mixing matrix, which can 

be used to find the unknown source signals. According to the literature (Jutten and Herault, 1991; 

Hyvarinen and Oja, 2000), the most popular BSS method is Independent Component Analysis 

(ICA); however, ICA is computationally expensive as it requires higher-order statistics of the 

signal, such as the approximate form of the probability distribution function of the unknown 

sources. On the other hand, SOBI relies only on second-order statistics, as it aims to simultaneously 

diagonalize a set of time-lagged covariance matrices. SOBI assumes that the source signals are 

uncorrelated; therefore, the covariance matrix at zero lag is as follows (Belouchrani et al. (1997)):     

𝐑𝑥(0) = 𝐸[𝒙(𝑡)𝒙∗(𝑡)] = 𝐀𝐀𝐻 + 𝐸[𝒏(𝑡)𝒏∗(𝑡)] = 𝑨𝐀𝐻 +  𝒏2𝐈 (2.2) 

where * denotes the transpose of the matrix, 𝐻 is the complex conjugate transpose of the matrix, 

and I is an identity matrix. Once the covariance matrix is formed, SOBI is performed using a two-

step process: (a) whitening and (b) unitary transformation. The purpose of whitening the measured 

signal is to remove the unwanted noise, which is accomplished by a linear transformation of 𝒚(𝑡): 

𝐸[𝐖𝒚(𝑡)𝒚∗(𝑡)𝐖𝐻] =  𝐖𝐀𝐀𝐻𝐖𝐻  (2.3) 

where 𝐖 is the whitening matrix and is represented in the following form:  

𝐖 =  𝐃−
1
2𝐕𝐻 (2.4) 

where 𝐃 is the diagonal matrix of eigenvalues and 𝐕 is the eigenvector matrix of 𝐑𝑥(0). It can 

also be shown that a unitary matrix exists for every whitening matrix (Belouchrani et al. (1997)): 

𝐖𝐀𝐀𝐻𝐖𝐻 = 𝐔𝐔𝐻 = 𝐈 (2.5) 
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where 𝐔 = 𝐖𝐀. Since it is assumed that noise is present, this means 𝒙(𝑡) ≠ 𝒚(𝑡) and that the 

whitening process will conclude in the following form:  

𝐸[𝒛(𝑡)𝒛∗(𝑡)] = 𝐸[𝐖𝒙(𝑡)𝒙∗(𝑡)𝐖𝐻] (2.6) 

= 𝐖𝐀𝐀𝐻𝐖𝐻 + 𝐖𝒏2𝐖𝐻  

= 𝐖(𝐑𝑥(0) − 𝒏2𝐼)𝐖𝐻 + 𝐖𝒏2𝐖𝐻 

= 𝐖𝐑𝑥(0)𝐖𝐻 (2.7) 

where 𝒛(𝑡) = 𝐖𝒙(𝑡). After the removal of the noise, the next step is unitary transformation, which 

involves diagonalizing the whitened covariance matrix to determine the unitary matrix. The unitary 

matrix is found as follows (Belouchrani et al. (1997)):  

𝐑𝑊(𝜏) = 𝐔𝐑𝑠(𝜏)𝐔𝐻 (2.8) 

where 𝐑𝑠(𝜏) = 𝐸[𝒔(𝑡 + 𝜏)𝒔∗(𝑡)] and 𝐑𝑠(𝜏) is the time-lagged covariance matrix. Cardoso and 

Souloumiac (1996) showed that simultaneously diagonalizing many (say, p) time-lagged 

covariance matrices improves the robustness of SOBI. Now that 𝐔 is known, the mixing matrix 𝐀 

is found using: 

𝐀 = 𝐔𝐖−1 (2.9) 

With the known mixing matrix, the source signals are solved using: 

𝒔(𝑡) =  𝐀−1𝒙(𝑡) (2.10) 
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2.2 Equivalence of SOBI with Modal Identification 

The equation of motion for a multi-degree-of-freedom damped system is as follows: 

𝐌𝒙̈(𝑡) + 𝐂𝒙̇(𝑡) + 𝐊𝒙(𝑡) = 𝒇(𝑡) (2.11) 

where 𝐌, 𝐂, and 𝐊 are the mass, damping, and stiffness matrices, respectively, 𝒇(𝑡) is the force 

vector, and 𝒙(𝑡) is the system response. Knowing that the response of a system is the superposition 

of its modal responses, the following equation becomes analogous to the BSS equation: 

𝒙(𝑡) =  𝚽𝒒(𝑡) (2.12) 

where 𝒒(𝑡) is the modal response and 𝚽 is the mode shape matrix. In the realm of structural 

dynamics and considering the analogy of this equation with the BSS equation, the formulation of 

determining 𝒔(𝑡) is similar to the classical modal superposition where 𝒔(𝑡) is the modal response 

and 𝐀 is the mode shape matrix. Therefore, SOBI can perform modal identification to determine 

the mode shapes and the modal responses of a dynamic system. If it is assumed that the virtual 

sources used during BSS are the same as the coordinates of the system responses and vibration 

modes (Poncelet et al. 2017), then the mixing matrix 𝐀 is identical to the mode shape matrix of 

the system.  

SOBI excels at determining modal parameters (Musafere et al. 2015, Yuan et al. 2017), such as 

damping ratios, when compared to other BSS methods including ICA. However, SOBI has not yet 

been explored in estimating the aerodynamic responses of slender structures, which is invaluable 

information for monitoring and retrofitting of slender structures and forms the primary objective 
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of this thesis. Once SOBI has acquired the modal responses, the autocorrelation function on the 

modal response is used to estimate the damping ratios.  

2.3 Autocorrelation of Modal Responses 

Autocorrelation uses the basic ideas of determining the correlation of a data set and is estimated 

as the ensemble average of the product the signal with its delayed component (i.e., correlation of 

the data at a certain time lag to the data from a previous time). Once the modal responses are 

obtained from SOBI, autocorrelation is performed using the following formulation: 

𝑅𝑠(𝜏) =  ∫ 𝑠(𝑡)𝑠(𝑡 − 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑡
∞

−∞

 (2.13) 

where  𝑠(𝑡) is the modal response, 𝑠(𝑡)̅̅ ̅̅ ̅ is the complex conjugate of 𝑠(𝑡), and τ is the time lag. 

The autocorrelation function shows that the further into the time-series the data is, the less 

correlated it will be compared to the data at zero time-lag. This means the function will produce a 

decaying periodical wave, where the decayed envelope may be used to find the damping ratio of 

the signal (i.e., the modal response).  Figure 2.1 shows an example of a signal of a dynamic system, 

while figure 2.2 shows its corresponding autocorrelation function, as well as the fitted 

exponentially decayed envelope that is used to find the total damping ratio. 
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Figure 2.1:  Example of a typical modal response of a typical dynamic system. 

 

Figure 2.2:  Autocorrelation function applied to the time history of the signal with a 

decaying curve. 
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2.4 Numerical Studies 

In this sub-section, three examples including a mixture of sine signals and a 10 DOF model with 

base and floor excitation are used to illustrate the SOBI method. 

2.4.1 Mixture of Sine Waves 

SOBI is applied to a signal with four mixtures with each mixture containing a unique combination 

of sine wave functions of individual frequencies of 1, 2, 3 and 4 Hz, respectively. The mixtures 

are also accompanied by an additional white Gaussian noise to obscure the signal and test the 

robustness of SOBI under measurement noise. The signal has a total duration of 1200 s and a 

sampling rate of 20 Hz. Table 2.1 shows the sine wave functions associated with each source. The 

next step is to mix the four sine waves to check if SOBI is capable of separating the individual 

signals from their mixtures. Table 2.1 shows the details of the simulated mixed signals.   

Table 2.1:  Mixtures of four sine wave functions. 

Mixture # Mixed Signals 

1 3sin(2𝜋 ∗ 1 ∗ 𝑡) + 2 sin(2𝜋 ∗ 2 ∗ 𝑡) + sin(2𝜋 ∗ 3 ∗ 𝑡) + 4 sin(2𝜋 ∗ 4 ∗ 𝑡) 

2 2 sin(2𝜋 ∗ 1 ∗ 𝑡) + 3 sin(2𝜋 ∗ 2 ∗ 𝑡) + 2 sin(2𝜋 ∗ 3 ∗ 𝑡) + 3sin(2𝜋 ∗ 4 ∗ 𝑡) 

3 4sin(2𝜋 ∗ 1 ∗ 𝑡) + 2 sin(2𝜋 ∗ 2 ∗ 𝑡) + 3 sin(2𝜋 ∗ 3 ∗ 𝑡) + sin(2𝜋 ∗ 4 ∗ 𝑡) 

4 sin(2𝜋 ∗ 1 ∗ 𝑡) + sin(2𝜋 ∗ 2 ∗ 𝑡) + 3 sin(2𝜋 ∗ 3 ∗ 𝑡) + 2 sin(2𝜋 ∗ 4 ∗ 𝑡) 
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Figures 2.3 and 2.4 show the mixtures of four sine wave responses added with white Gaussian 

noise and the separated signals as obtained from SOBI, respectively. 

 

Figure 2.3:  Mixture of sine wave functions with additional white Gaussian noise. 

 

Figure 2.4:  Individual sine signals extracted from their mixtures using SOBI. 
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SOBI is now applied to the responses of the sine wave mixture. Figure 2.5 shows the Fourier 

spectra of the individual signals, showing the natural frequencies of the source signals separated 

from the noise.  Each plot clearly shows the frequency of the signals. 

 

Figure 2.5:  Fourier spectra of the extracted sine signals from their mixed signals. 

2.4.2 10 Degree-of-freedom Model with a Base Excitation 

SOBI is now applied to a 10 DOF state-space model, visualized as a 10-floor building subjected 

to base excitation. The state-space model is formulated as follows (Musafere et al. (2016)): 

𝒙̇ =  𝐀̅𝒙 +  𝐁̅𝒖 (2.14) 

𝒚 =  𝐂𝒙 (2.15) 



29 

 

where x is the state vector, 𝐀̅ is the state matrix, 𝐁̅ is the input influence matrix, u is the ground 

acceleration, 𝐂 is the observation matrix, and y is the response. 𝐀̅ is dependent on the mass, 

damping, and stiffness of the model, as shown in the following: 

𝐀̅ =  [
010𝑥10 𝐈10x10

−𝐌−1𝐊 −𝐌−1𝐂
] (2.16) 

The mass matrix 𝐌 is generically set to a diagonal matrix with 1 kg for all degrees-of-freedom, 

while for the damping matrix 𝐂, all modal damping ratios are set to 2%. For the stiffness matrix 

𝐊, the first floor is set to 1750 kN/m, and stiffness at each subsequent floor decreases by 10% from 

the first-floor stiffness. The input influence matrix 𝐁̅ and the observation matrix 𝐂 are defined as 

follows: 

𝐁̅ =  [
010𝑥1

−110𝑥1
] (2.17) 

𝐂  =  [−𝐌−1𝐊 −𝐌−1𝐂] (2.18) 

 Table 2.2 shows the natural frequencies of the model. 

Table 2.2:  Natural frequencies (f) of the 10 DOF model. 

Mode # 1 2 3 4 5 6 7 8 9 10 

𝒇 (Hz) 0.78 1.80 2.83 3.88 4.96 6.08 7.25 8.49 9.87 11.52 

To simulate the response of the model, Imperial Valley earthquake data with a peak ground 

acceleration of 0.05g is used as the base excitation that has a total duration of 53.76s and a sampling 

rate of 50 Hz. The simulated response of each floor is shown in figure 2.6. 
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Figure 2.6:  Simulated response of each floor for the 10 DOF model using the base 

excitation. 

SOBI allows the input of a certain amount of time-lagged covariance matrices to be diagonalized 

simultaneously. To examine the effect of the number (p) of covariance matrices, three different 

values of p (1, 10, and 100) are used. Figures 2.7 and 2.8 show the modal response and the Fourier 

spectra of the modal response, respectively, after applying SOBI to the response, using p=1. 
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Figure 2.7:  Modal responses of the 10 DOF model obtained from the responses of the base 

excitation using SOBI with p = 1. 

 

Figure 2.8:  Fourier spectra of modal responses of the 10 DOF model (subjected to the base 

excitation) obtained from SOBI using p = 1. 



32 

 

Figures 2.9 and 2.10 show the modal response and Fourier spectra of the modal responses, 

respectively, using p=10. 

 

Figure 2.9:  Modal response for the 10 DOF model forced by base excitation using p = 10. 

 

Figure 2.10:  Fourier spectra of modal responses of the 10 DOF model (subjected to the 

base excitation) obtained from SOBI using p = 10. 
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Figures 2.11 and 2.12 show the modal response and Fourier spectra of the modal responses, 

respectively, using p=100. 

 

Figure 2.11:  Modal response for the 10 DOF model forced by base excitation using p = 100. 

 

Figure 2.12:  Fourier spectra of modal responses of the 10 DOF model (subjected to the 

base excitation) obtained from SOBI using p = 100. 
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The natural frequencies from most of the modal responses are separated from any other response, 

showing the efficiency and robustness of the SOBI method. The weakest response is that of eighth 

mode 8 (8.49 Hz), which contains some noise when using only one time-lagged covariance matrix.  

However, when using p>10 covariance matrices, the response of the eighth mode is nearly free 

from any visible noise. Autocorrelation of the modal responses is now performed to estimate the 

total damping ratio for each mode. Using the modal responses from applying one time-lagged 

covariance matrix, figure 2.13 shows the autocorrelation functions 𝑅𝑥(𝜏) and fitted curves for each 

mode. 

 

Figure 2.13:  𝑹𝒙(τ) and the fitted decayed curves of all 10 modal responses obtained from 

SOBI using p = 1. 

Autocorrelation is again applied to the modal responses with 10 covariance matrices as shown in 

figure 2.14. 
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Figure 2.14:  𝑹𝒙(τ) and fitted decayed curves for all 10 modal responses obtained from 

SOBI using p = 10. 

Mode 8 is noticeably less noisy, which also helps to estimate the damping more accurately.  

Autocorrelation is performed a final time on the modal responses using 100 time-lagged 

covariance matrices, shown in figure 2.15. 
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Figure 2.15:  𝑹𝒙(τ) and fitted decayed curves for all 10 modal responses obtained from 

SOBI using p = 100. 

As expected, after analyzing the Fourier spectra of the modal responses, 𝑅𝑥(𝜏) using either 10 or 

100 time-lagged covariance matrices is nearly identical. Table 2.3 shows the total damping ratio 

values, 𝜁𝑇, for each mode when using one, 10, or 100 of the covariance matrices. 

Table 2.3:  𝜻𝑻 for all 10 modes, base excitation case. 

 𝜻𝑻 (%) 

Mode # p = 1  p = 10  p = 100 

1 2.0 2.0 2.0 

2 1.0 1.0 1.0 

3 0.3 0.3 0.3 
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4 0.3 0.3 0.3 

5 0.4 0.4 0.4 

6 0.3 0.3 0.3 

7 0.4 0.4 0.4 

8 1.2 1.3 1.3 

9 0.2 0.2 0.2 

10 0.2 0.2 0.2 

The damping estimates from the modal responses are nearly identical, with the only difference 

being that of the eighth mode. The difference is most likely caused by the noise, meaning the 

amount of time-lagged covariance matrices have some influence on the damping estimates. 

2.4.3 10 DOF Model with Random Excitation 

The same 10 degree-of-freedom model will be used to apply a Gaussian random excitation at each 

degree of freedom to act as natural wind loads, instead of the base excitation. The wind force is 

generated as a Gaussian random sequence at each node, meaning the input influence matrix 𝐁̅ must 

be changed to accommodate the ten different inputs: 

𝐁̅ =  [
010𝑥10

𝐌−1 ] (2.19) 
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where 𝑀 is the mass matrix. The simulated force has a total duration of 120 s and a sampling rate 

of 200 Hz.  Figure 2.16 shows the responses of the model at each floor. 

 

Figure 2.16:  Response of each floor for the 10 DOF model using Gaussian random 

excitation. 

SOBI is now applied to the response of the system, again using one, 10, and 100 time-lagged 

covariance matrices to determine if there are any differences in the modal responses. Figures 2.17 

and 2.18 show the modal response and Fourier spectra of the modal responses, respectively, using 

one time-lagged covariance matrix. 
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Figure 2.17:  Modal response for the 10 DOF model forced by random excitation using p = 

1. 

 

Figure 2.18:  Fourier spectra of modal responses of the 10 DOF model (subjected to the 

random excitation) obtained from SOBI using p = 1. 
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Figures 2.19 and 2.20 show the modal response and Fourier spectra of the modal responses, 

respectively, using 10 time-lagged covariance matrices. 

 

Figure 2.19:  Modal response for the 10 DOF model forced by random excitation using p = 

10. 
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Figure 2.20:  Fourier spectra of modal responses of the 10 DOF model (subjected to the 

random excitation) obtained from SOBI using p = 10. 

Figures 2.21 and 2.22 show the modal response and Fourier spectra of the modal responses, 

respectively, using 100 time-lagged covariance matrices. 
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Figure 2.21:  Modal response for the 10 DOF model forced by random excitation using p = 

100. 

 

Figure 2.22:  Fourier spectra of modal responses of the 10 DOF model (subjected to the 

base excitation) obtained from SOBI using p = 100. 
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Using either one, 10, or 100 time-lagged covariance matrices, SOBI is capable of separating the 

natural frequencies from any noise, as shown in the Fourier spectra plots. Unlike the base 

excitation example, all modes, including the eighth mode, show distinct peaks. Autocorrelation of 

the modal responses is now performed to estimate the total damping ratio for each mode. Using 

the modal responses from applying one time-lagged covariance matrix, figure 2.23 shows the 

autocorrelation functions 𝑅𝑥(𝜏) and fitted curves for each mode. 

 

Figure 2.23:  𝑹𝒙(τ) and fitted decayed curves for all 10 modes, random excitation case, p = 

1. 

Autocorrelation is again applied to the modal responses, this time when 10 time-lagged covariance 

matrices are used, as shown in figure 2.24. 
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Figure 2.24:  𝑹𝒙(τ) and fitted decayed curves for all 10 modes, random excitation case, p = 

10. 

Autocorrelation is now applied to the modal responses, this time when 100 time-lagged covariance 

matrices are used, as shown in figure 2.25. 

 

Figure 2.25:  𝑹𝒙(τ) and fitted curves for all 10 modes, random excitation case, p = 100. 
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Unlike the base excitation case, all total damping ratios are the same, no matter how many time-

lagged covariance matrices are used for SOBI.  Table 2.4 shows the total damping ratios estimated 

for each mode. 

Table 2.4:  𝜻𝑻 for all 10 modes for the random excitation case. 

Mode # 1 2 3 4 5 6 7 8 9 10 

𝜻𝑻 (%) 2.0 0.7 0.8 0.5 0.4 0.3 0.2 0.2 0.2 0.2 

 

 

The 𝜁𝑇 values for the Gaussian random excitation case are similar to the base excitation case; both 

cases have the highest damping in the first mode, and higher modes have low damping.  The only 

difference is mode 8 in the base excitation case, where the damping was much larger than its 

random excitation counterpart, due to the noisy nature of the signal.  

2.5 Summary 

With its formulation complete, SOBI was used to determine the modal responses of three different 

scenarios.  The first being a mixture of four sine waves obscured by white Gaussian noise, which 

SOBI was able to separate efficiently.  The second example was a 10 DOF state-space model 

forced by a base excitation with the input being an earthquake time history load.  This example 

showed the importance of selecting the appropriate p-value, as one mode in particular contained 

more noise than the other modes.  The final example used the same 10 DOF model, forced by a 

Gaussian random load at each floor which acted as the natural wind. Autocorrelation was applied 
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to the modal responses for all three cases, and the damping ratio estimates seemed reasonable.   

Now that SOBI has been defined and tested, figure 2.26 shows a flowchart that shows the complete 

process of using SOBI on wind-induced response to estimate the damping. 

 

Figure 2.26:  Flowchart showing the system identification process to estimate damping. 

2.6 References 

Belouchrani, A., Abed-Meraim, K., Cardoso, J., and Moulines, E. (1997). “A blind source 

separation technique using second-order statistics”. IEEE Transactions on Signal Processing, 45, 

434-444. 

Cardoso, J.F. and Souloumiac, A. (1996). “Jacobi angles for simultaneous diagonalization”. SIAM 

Journal on Matrix Analysis and Applications, 17, 1-3. 

 



47 

 

Hyvarinen, A. and Oja, E. (2000). “Independent component analysis:  algorithms and 

applications”, Neural Networks, 13, 411-430.  

Jutten, C. and Herault, J. (1991). “Blind separation of sources, part I: an adaptive algorithm based 

on neuromimetic architecture”. Signal Processing, 24, 1-10. 

Musafere, F., Sadhu, A., and Liu, K. (2016). “Towards damage detection using blind source 

separation integrated with time-varying auto-regressive modeling”. Smart Materials and 

Structures, 25, 015013. 

Poncelet, F., Kerschen, G., Golinval, J.C., and Verhelst, D. (2007). “Output-only modal analysis 

using blind source separation techniques”. Mechanical Systems and Signal Processing, 21, 2335-

2358. 

Sadhu, A., Narasimhan, S., and Antoni, J. (2017). “A review of output-only structural mode 

identification literature employing blind source separation”. Mechanical Systems and Signal 

Processing, 94, 415-431. 

Yuan, M., Sadhu, A., and Liu, K. (2017). “Condition assessment of structures with tuned mass 

dampers using empirical wavelet transform”. Journal of Vibration and Control, 24(20), 4850-

4867. 

 

 

 

 



48 

 

 

3 Simulation of Wind Forces 

Estimation of aerodynamic damping of slender structures requires simulation of wind-induced 

response. In general, there are two popular wind force simulation techniques available in the 

literature: (a) Wind-field (WF) simulation with predefined pressure coefficients and (b) 

Computational Fluid Dynamics (CFD).  The WF simulation characterizes a wind load with mean 

wind speed, increasing with height and with an additional fluctuating component that is acquired 

using a turbulence model associated with the predetermined pressure coefficients.  The CFD 

simulation takes advantage of more accurate aerodynamics and Large Eddy Simulation (LES) to 

filter out smaller turbulent length scales.  The wind forces from the WF simulation are obtained 

using the equations associated with predetermined drag and lift coefficients, while the forces from 

the CFD simulation are computed using the actual pressure coefficients. 

3.1 Wind Field Simulation with Pre-defined Force Coefficients 

To simulate the wind field, it is important to understand the behavior of wind itself and also how 

it interacts with structures. On the earth's surface, the wind is the movement of air and can be 

broken down into two main components:  the mean velocity and the fluctuation. The mean wind 

velocity is often visualized as increasing exponentially with height (Singer, 1960; Wieringa, 1992), 

and is influenced by the roughness near the ground. Fluctuation is the second component that is fit 

overtop the mean velocity profile and is modeled as a spectrum, often using von Karman’s wind 

turbulence model, outlined by Solari and Piccardo (2001). Wind may approach a structure from 

many different angles, but for this research, it is assumed the wind is perpendicular to the face of 
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the structure, known as “along-wind” direction. Once the wind strikes the face of the structure, it 

wraps around and applies a force at the sides; this is known as “across-wind” direction. By 

knowing the wind speed, the wind force may be calculated using a drag coefficient in the along-

wind direction and a lift coefficient in the across-wind direction. The wind field is simulated using 

both along-wind and across-wind directions, while the wind force is determined using estimates 

for the drag and lift coefficients; it is these forces that are applied to the finite-element model.  

In this thesis, the wind field is simulated as per Cheynet (2020). The wind simulation begins by 

selecting a total time series duration and sampling frequency, which are 1200 seconds and 20 Hz, 

respectively. The range of frequencies used in the von Karman spectrum begins at 1/1200 Hz, with 

the final frequency being the Nyquist frequency, taken as 10 Hz; the frequency range increases at 

increments of 1/1200 Hz. Next is the input of the mean wind data, which includes the standard 

deviations, turbulent length scales, and power-law information. The power law is as follows, 

𝑈̅ =  𝑈𝑟𝑒𝑓 (
𝑧

𝑧𝑟𝑒𝑓
)

𝛼

 (3.1) 

where 𝑈̅ is the mean wind speed in m/s, 𝑈𝑟𝑒𝑓 is the wind speed at reference height in m/s, 𝑧 is the 

height in m, 𝑧𝑟𝑒𝑓 is the reference height in m, and 𝛼 is the power-law coefficient. The power law 

is computed for 𝑈𝑟𝑒𝑓 values of 10, 20, and 30 m/s at a 𝑧𝑟𝑒𝑓 of 10 m and 𝛼 of 0.15; it is assumed 

the mean wind speed in the across-wind direction is 0 m/s. 

The generated wind field is three-dimensional, composed of a two-dimensional grid, as shown in 

figure 3.1, with the third dimension being time. The grid is generated by inputting the number of 

nodes along the Y and Z axes, as well as the minimum and maximum longitude and altitude. The 

chimney (the example structure used in this thesis as detailed in Chapter 4) is treated as a line-like 
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structure, with one node in the Y-axis and ten nodes in the Z-axis. The power law wind profile is 

applied at each node in the Z-axis. 

 

Figure 3.1:  Simulated wind speed grid showing Y and Z axes. 

The generation of the wind field is completed by using the von Karman mathematical model for 

the turbulence spectrum (Simiu and Scanlan, 1996): 

𝑆𝑢(𝑧, 𝑓) = 𝜎𝑢
2

4
𝐿𝑢

𝑈̅

(1 + 70.7 (𝑓
𝐿𝑢

𝑈̅
)

2

)

5 6⁄
 (3.2)

 

𝑆𝑣(𝑧, 𝑓) = 𝜎𝑣
2

4
𝐿𝑣

𝑈
(1 + 754 (𝑓

𝐿𝑣

𝑈̅
)

2

)

(1 + 283 (𝑓
𝐿𝑣

𝑈̅
)

2

)

11 6⁄
 (3.3) 

where 𝜎𝑢,𝑣
2  is the variance of the wind speed, 𝑧 is the height in m, 𝑈 is the mean wind speed in m/s, 

𝑓 is the frequency in Hz, and 𝐿𝑢,𝑣  is the turbulent length scale in m. The variance and turbulent 
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length scales are taken from the CFD simulation. Figures 3.2 and 3.3 show the simulated along-

wind and across-wind spectra, respectively, compared to the theoretical mathematical model to 

demonstrate accuracy. 

 

Figure 3.2:  Simulated and theoretical spectrum, 𝑼̅ = 30 m/s (along-wind). 

 

Figure 3.3:  Simulated and theoretical spectrum, 𝑼̅ = 30 m/s (across-wind). 
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Due to the existence of aerodynamic admittance, the von Karman spectrum is used to determine 

the cross-spectra at two points along the height of the chimney: 

𝑆𝑢1𝑢2
(𝑟, 𝑓) =  √𝑆(𝑧1, 𝑓)𝑆(𝑧2, 𝑓) 𝑒−𝑓𝑐  (3.4) 

where 𝑆(𝑧1, 𝑓) and 𝑆(𝑧2, 𝑓) are the von Karman spectra at two points, 𝑟 is the distance between 

the two points, 𝑛 is the frequency in Hz, and 𝑓𝑐 is the coherence function. The coherence function 

is computed using, 

𝑓𝑐 =  
2𝑓√𝐶𝑧

2(𝑧1−𝑧2)2+𝐶𝑦
2(𝑦1−𝑦2)2

𝑈(𝑧1)+𝑈(𝑧2)
 (3.5)

  

where 𝑛 is the frequency in Hz, 𝐶𝑦,𝑧 are the decay coefficients, 𝑧1,𝑧2, 𝑦1, 𝑦2 are the coordinates of 

points one and two, and 𝑈(𝑧1) and 𝑈(𝑧2) are the mean wind speeds at points one and two, 

respectively. The cross-spectra values are then arranged in a matrix which is decomposed using 

Cholesky factorization. Finally, the time series of the wind field is generated using a Monte Carlo 

simulation of φ, proposed by (Shinozuka, 1972), 

𝑢′ =  √2 ∗ 𝑑𝑓|𝐒| cos(2𝜋𝑓𝑡 + 𝜙) (3.6) 

where 𝑑𝑓 is the frequency range increment, 𝐒 is the factorized spectral matrix, 𝑓 is the frequency 

in Hz, and 𝜙 is the phase angle. Figures 3.4 and 3.5 show the time series for the along-wind and 

across-wind directions for a mean wind speed of 30 m/s at the reference height (100 m), 

respectively. 
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Figure 3.4:  Along-wind time series for 𝑼̅ = 30 m/s at 100 m height using pre-determined 

aerodynamic coefficients. 

 

Figure 3.5:  Across-wind time series for 𝑼̅ = 0 m/s at 100 m height using pre-determined 

aerodynamic coefficients. 
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The time series of the wind speed is converted into a force using the drag equation: 

𝐹𝑥 =  
1

2
𝜌𝐶𝐷𝐴[𝑈̅(𝑧)2 + 2𝑈̅𝑢′(𝑧, 𝑡)] (3.7) 

𝐹𝑦 =  𝜌𝐶𝐿𝐴𝑈̅(𝑧)𝑣′(𝑧, 𝑡) (3.8)

  

where 𝐹𝑥 is the along-wind force in N, 𝐹𝑦 is the across-wind force in N, 𝜌 is the air density in 

kg/m3, 𝐶𝐷 is the drag coefficient, 𝐶𝐿 is the lift coefficient, 𝐴 is the area in m3, 𝑈̅(𝑧) is the mean 

wind speed in m/s, 𝑢′(𝑧, 𝑡) is the along-wind fluctuation in m/s, and 𝑣′(𝑧, 𝑡) is the across-wind 

fluctuation in m/s. 

3.2 Computational Fluid Dynamics Model 

Computational fluid dynamics (CFD) uses numerical analysis to solve problems involving the flow 

of wind around a structure. Unlike the simplistic WF model, a CFD model may be used to 

determine wind pressure on the study structure (Dagnew and Bitsuamlak 2013). CFD models are 

located within a domain determined by the user, which encompasses the wind field. The domain 

must be large enough to ensure adequate space for any aerodynamic effects, including vortex 

shedding of the wake downstream of the model (Dagnew and Bitsuamlak 2013, Aboshosha et al. 

2015). To achieve the desired accuracy, it is important to select an optimum mesh size for the 

discretization despite its trade-off with the computational time. If the mesh is too large, it will not 

accurately capture the aerodynamic effects, while a small mesh will require extreme computational 

time. Typically, the mesh closest to the structure will be finer, with the mesh size gradually 

increasing away from the structure. This ensures the observed aerodynamic effects and pressure 
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distributions are accurate while reducing the computation time. Figure 3.6 shows an example of a 

domain subdivided into zones that user may input different mesh sizes.  Figure 3.7 shows the wind 

flow in a CFD model in both profile and top-down view.  

 

Figure 3.6:  Domain with different mesh zone (Aboshosha et al. (2015)). 

 

Figure 3.7:  Wind field within the CFD model showing profile and top-down views of a 

square cross-section structure (Aboshosha et al. 2015). 

The pressure distribution on the surface of a structure is a common output from a CFD model.  

Montazeri and Blocken (2013) used a CFD model to determine the pressure coefficients on 

buildings with and without balconies. Their methods involved a Reynolds-Averaged Navier-
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Stokes simulation, which resulted in low measurement error when compared to the pressure 

coefficients determined from wind-tunnel measurements. Jiang et al. (2003) used CFD, combined 

with LES, to determine the pressures along surfaces during natural ventilation. Using three 

different ventilation cases, it was determined that using large-eddy simulation resulted in good 

agreement with the experimental data. Tominaga et al. (2008) analyzed pedestrian wind 

environments around buildings using CFD models. Seven experiments were performed to 

determine the differences between CFD, wind tunnel, and field measurements. The research 

performed was following guidelines outlined by the Working Group of the Architectural Institute 

of Japan.  Lim et al. (2009) used a CFD model to investigate the flow around a cube within a 

turbulent wind field. Using large-eddy simulation methods, the researchers were able to determine 

the mean and fluctuating pressures on the surface of the cube, with similar uncertainty when 

compared to wind-tunnel experiments. Daniels et al. (2013) used an innovative inflow generation 

technique using CFD to determine fluctuating pressures on tall buildings. The researchers were 

able to analyze the pressure coefficients using different turbulence intensities and integral length 

scales. Tamura (2008) reviewed CFD and large-eddy simulation methods for several different 

wind engineering studies, including wind-resistant building design, turbulence structures, and 

aerodynamics in urban areas. Due to the complexity of wind in a real-life setting, Tamura (2008) 

stressed the importance of comparing CFD results to full-scale measurements to determine the 

accuracy of the CFD model.  

CFD is a technique to analyze the aerodynamics of wind when it interacts with a structure.  CFD 

is also used to find the pressures acting on the structure which can be used to find the wind loading 

in along-wind and across-wind directions. LES is a method used in CFD to reduce the 

computational time by filtering out the eddies associated with smaller turbulent length scales.  
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Dagnew and Bitsuamlak (2012) provided a review of state-of-the-art CFD methods combined with 

LES.  Small-scale turbulence lengths are determined and filtered using Navier-Stokes equations 

and a sub-grid-scale model.  The paper also describes the appropriate dimensions of the CFD 

domain to ensure appropriate room for vortex shedding and the wake.  Merrick and Bitsuamlak 

(2008) combined wind tunnel testing with an LES model to determine the wind flow around 

cylinders with rough surfaces. The CFD domain was modeled after the boundary-layer wind tunnel 

used for the experiments, and with varying sub-critical and super-critical Reynolds numbers.  It 

was concluded that the roughness elements were capable of producing super-critical flow 

parameters at sub-critical Reynolds numbers.  Huang et al. (2010) developed a turbulence 

generator based on the random flow generation technique to be used with LES.  The technique was 

able to generate a turbulent flow which satisfied any given spectrum and was also compared to 

Smirnov’s random flow generation technique.  The generator also agreed well with wind tunnel 

tests and satisfied the divergence-free condition.  Aboshosha et al. (2015) introduced a turbulent 

inflow generator to be used as an inflow boundary condition for LES of tall buildings. The 

generator is compared with other flow conditions found in the previous literature and existing wind 

tunnel test data of tall buildings. The proposed LES method showed a good agreement with wind 

tunnel tests by comparing the acceleration responses.  Aboshosha et al. (2015) also used LES to 

determine the atmospheric boundary layer flow with rough terrains modeled by fractal surfaces. 

Three different rough surfaces were generated for the LES model, which were countryside, 

suburban, and urban terrain.  The mean and fluctuating velocity profiles were compared with 

engineering design guides, which showed excellent agreement.  Elshaer et al. (2016) used LES to 

determine the aerodynamic response of tall buildings in both isolated and surrounded 

configurations.  The particular LES method used for the study was the consistent discrete random 
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flow generation technique, which has accurately determined turbulence spectra in the past.  In both 

isolated and surrounded configurations, LES was able to accurately determine the pressures on the 

structure; the pressures were compared to wind tunnel tests, showing a small amount of error.   For 

this research, the main objective of the CFD model is to find the forces acting on a structure using 

different wind fields.  The output of the CFD model typically provides force coefficients on the 

surface of the structure, in both along-wind and across-wind directions.             

A computational fluid dynamics (CFD) model of a slender structure (e.g., a chimney), matching 

the finite-element model used in the next chapter, is built to generate force coefficients and 

generate the wind force.  Figure 3.8 shows the chimney within the domain and figure 3.9 shows 

an unobstructed view of the chimney without the domain. 
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Figure 3.8:  CFD chimney model within the domain. 
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Figure 3.9:  CFD chimney model outside of the domain. 

The domain is broken down into three different meshing zones; figure 3.10 shows the three 

meshing zones relative to the chimney model, and table 3.1 lists the dimensions of the meshing 

zones as well as the mesh size. 
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Figure 3.10:  CFD chimney model with three meshing zones. 

Table 3.1:  CFD meshing zone dimensions. 

Zone Length (m) Width (m) Height (m) Mesh Size (m3) 

1 137.5 12.5 130 0.156 
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2 162.5 25 140 0.313 

3 400 100 150 0.625 

 

Similar to the WF simulation, 𝑈̅ of 10, 20, and 30 m/s are used at the chimney height of 100 m, 

with turbulence added on using a von Karman spectrum. Each wind speed case uses a different 

sampling frequency; higher sampling rates are used for more turbulent wind cases to ensure the 

turbulence is accurately captured. However, since the amount of output force coefficients do not 

change, this means the duration of the wind simulation will change for each mean wind speed case.  

Table 3.2 shows the corresponding sampling rate and total simulation time for each mean wind 

speed case. 

Table 3.2:  CFD sampling rates and simulation times for different values of 𝑼̅. 

𝑼̅ (m/s) Sampling Rate (Hz) Total Simulation Time (s) 

10 66.67 120 

20 133.33 60 

30 200 40 

 

Figure 3.11 shows a profile view of the chimney and the wake in the along-wind direction, while 

figure 3.12 shows a top-down view of the wake.   
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  Figure 3.11:  Profile view of the CFD chimney model and wake in along-wind direction. 

 

 

Figure 3.12:  Top-down view of the CFD chimney model and wake. 

The chimney is divided into ten sections along its height to obtain force coefficients at different 

elevations. Therefore, wind forces are acquired at the ten different levels and are applied onto the 

finite-element model as shown in the next chapter.  Using the force coefficients, the wind force is 

computed using the following expression 

𝐹𝑥 =  
1

2
𝜌𝐶𝐹𝑥𝑈100𝑚

2 ℎ𝑑 (3.9) 
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where 𝐶𝐹𝑥 is the force coefficient, 𝐹𝑥 is the force in N, 𝜌 is the air density in kg/m3, 𝑈100𝑚
2  is the 

reference wind speed at a height of 100 m, ℎ is the height of the chimney in m, and 𝑑 is the 

diameter of the chimney at mid-height in m. Equation (3.9) also applies to 𝐹𝑦 which is the across-

wind force, where the force coefficient would be 𝐶𝐹𝑦. After having multiplied each force 

coefficient equation, the wind forces are assembled into a time series which is applied onto the 

finite-element chimney model. Figure 3.13 shows the along-wind and across-wind force 

coefficients for both the WF and CFD simulations at 𝑧 = 100 m. 

 

Figure 3.13:  𝑪𝑭𝒙 and 𝑪𝑭𝒚 values for both WF and CFD simulations at z = 100 m. 
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4 Finite-element Modeling 

A finite element (FE) model, developed in SAP2000 structural analysis software, is used to 

demonstrate the robustness of SOBI to estimate the aerodynamic damping. The model is designed 

as a slender structure (e.g., chimney) to ensure a sufficient number of modes are excited due to 

low-frequency wind excitation. Both WF and CFD simulated wind forces (obtained from Chapter 

3) are applied to the FE model to determine any differences between the estimates of total damping 

of the model subjected to two different nature of wind simulation. The structural damping of the 

system is determined using simulated free vibration data. Finally, aerodynamic damping is 

estimated by taking the difference between the estimated total and structural damping of the FE 

model.  

4.1 Properties of the FE Model 

The structure considered is a reinforced concrete chimney that follows a similar design by 

Hernandez et al. (2012), using SAP2000 as shown in figure 4.1. The chimney has a height of 100 

m, a thickness of 0.305 m, a bottom diameter of 5 m, and a top diameter of 2.5 m. The concrete 

has a compressive strength of 28 MPa, and Young’s Modulus of 23.8 GPa, a Poisson’s ratio of 

0.15, and a unit weight of 2400 kg/m3. The chimney is constructed around a radial grid, composed 

of 24 nodes, using bar elements that run the height of the structure; the base of the chimney is fixed 

in all directions. The model is divided into ten equal sections along the height, where each bar 

element is 10 m long. These bar elements are extruded into areas to form the circumference of the 

structure, which are then extruded into solids to reflect the desired thickness of the chimney. The 

model is meshed using an automatic solid meshing system in SAP2000, which divides each solid 
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element into three sections. Therefore, since there are 24 solid sections along the radius, and ten 

solid sections along the height, the mesh divides the chimney into 720 sections. The modal 

damping ratios are also set for the SAP2000 model, following Kareem and Gurley (1996), who 

indicate that damping is proportional to stiffness which increases in higher modes. The modal 

damping ratios are shown in Table 4.1.  

Table 4.1:  The first four modal damping ratios of the chimney model. 

Mode # Modal Damping Ratio (%) 

1 2.0 

2 5.0 

3 8.5 

4 15.0 
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Figure 4.1 (a): FE model 

of the chimney. 

 

 

 

Figure 4.1 (b):  Top view of the FE model with along-wind and 

across-wind loading. 

  

Modal analysis is performed to acquire the first four mode shapes and natural frequencies in both 

along-wind and across-wind directions, as shown in figures 4.2 and 4.3, respectively. The natural 

frequencies in the along-wind direction are nearly identical compared to the across-wind 

direction due to the symmetricity of the chimney.   
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Figure 4.2:  First four mode shapes and natural frequencies in along-wind direction. 

 

Figure 4.3:  First four mode shapes and natural frequencies in across-wind direction. 
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4.2 Estimation of Structural Damping from the Free Vibration 

To determine the structural damping ratio of the first four modes of the chimney, an impulse load 

is applied at the top of the model. A time-series with a load of 250 kN is applied at the top of the 

chimney for a small duration/ Once the free vibration is extracted from the chimney model, the 

acceleration responses are analyzed using SOBI to acquire the modal responses. The acceleration 

response and Fourier spectra of the free vibration are shown for the bottom, middle, and top floors 

in figure 4.4. 

 

Figure 4.4:  Acceleration response and Fourier spectra of free vibration of chimney model 

at 10, 50, and 100 m. 

The modal response of free vibration is shown in figure 4.5. 
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Figure 4.5:  Modal response of the free vibration. 

The Fourier spectra of the free vibration modal response are shown in figure 4.6. 

 

Figure 4.6:  Fourier spectra of free vibration modal responses. 
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The autocorrelation function is applied to the modal responses, and the estimated structural 

damping ratios (𝜁𝑆) are shown in Table 4.2. 

Table 4.2:  Structural damping ratios of the first four modes of the FE model. 

Mode # 𝜻𝑺 (%) 

1 2.3 

2 3.7 

3 8.2 

4 15.0 

 

4.3 Wind-induced Acceleration Response 

The acceleration response of the chimney is acquired using forced vibration induced by the 

simulated wind forces, as seen in figures 3.5 and 3.6 in chapter 3. The wind force is applied in both 

along-wind and across-wind directions, shown in figure 4.1 (b), at ten different heights using the 

power-law profile and von Karman spectrum. The acceleration response from the WF and CFD 

simulations at 𝑧 = 10, 50, and 100 m for a wind speed of 𝑈̅ = 30 m/s are shown in figures 4.7 and 

4.8.  
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Figure 4.7:  Acceleration response from the WF simulation at z = 10, 50, and 100 m for a 

wind speed of 𝑼̅ = 30 m/s. 

 

Figure 4.8:  Acceleration response from the CFD simulation at z = 10, 50, and 100 m for a 

wind speed of 𝑼̅ = 30 m/s. 
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The highest intensity of the acceleration response is expected in the first mode. The Fourier spectra 

of the response can be determined at any level of the chimney, although the primary area of concern 

is at the top. The Fourier spectra of the acceleration response in the along-wind and across-wind 

directions at the top of the chimney for the WF simulation are shown in figures 4.9 and 4.10, 

respectively.  Figures 4.11 and 4.12 show the Fourier spectra of the acceleration response in the 

along-wind and across-wind directions at the top of the chimney for the CFD simulation. 

 

Figure 4.9:  Fourier spectra of the acceleration response caused by the WF simulated 

excitation in along-wind direction under different wind velocities. 
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Figure 4.10:  Fourier spectra of the acceleration response caused by WF simulated 

excitation in across-wind direction under different wind velocities. 

 

Figure 4.11:  Fourier spectra of the acceleration response caused by CFD simulated 

excitation in along-wind direction under different wind velocities. 
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Figure 4.12:  Fourier spectra of the acceleration response caused by CFD simulated 

excitation in across-wind direction under different wind velocities. 

Each of the Fourier spectra figures of the acceleration response clearly shows the natural 

frequencies of the first four modes. Each of the Fourier spectra figures indicates that the first mode 

dominates in terms of intensity, with the second mode showing moderate intensity, and the third 

and fourth modes displaying minimal intensity. This agrees well with the modal damping 

parameters that are set within SAP2000, as the higher modes are heavily damped. These responses 

are then fed into the SOBI method to estimate the total and aerodynamic modal damping of the FE 

model, shown in the next chapter. 
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5 System Identification using SOBI 

SOBI method is applied to the simulated acceleration response of the chimney from both WF and 

CFD simulations as shown in Chapter 4. First, SOBI calculates the modal responses and 

successfully separates them from any unwanted noise. Second, autocorrelation is applied to the 

modal responses to determine the total damping ratio. By subtracting the structural damping from 

the total damping, the aerodynamic damping ratio is estimated. It is observed that in all wind 

speeds and all modes, the aerodynamic damping in the across-wind direction is always less than 

its along-wind direction counterpart. Both along-wind and across-wind directions sometimes 

demonstrate negative aerodynamic damping.  

5.1 System Identification of WF Simulated Response 

Since the FE model of the chimney has ten degrees-of-freedom, there are ten acceleration response 

time histories from the forced vibration induced by the WF simulation shown in chapter 4.  These 

raw time histories are then processed using the SOBI algorithm that produces ten modal responses.  

The same process is used for the acceleration responses acquired by using the CFD simulation, as 

shown in Section 5.2. 

5.1.1 Along-wind Responses 

The SOBI method is first applied to the WF simulated along-wind acceleration responses, followed 

by the autocorrelation of the resulting modal responses. The first four modes are shown in figure 

5.1 using 𝑈̅ = 10 m/s, showing that the higher modes are heavily damped and have a low response. 

SOBI results are also shown for 𝑈̅ = 20 m/s and 𝑈̅ = 30 m/s in figures 5.2 and 5.3, respectively. 
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Figure 5.1:  The Fourier spectra of modal responses obtained from WF-simulated along-

wind responses (𝑼̅ = 10 m/s). 

 

Figure 5.2:  The Fourier spectra of modal responses obtained from WF-simulated along-

wind responses (𝑼̅ = 20 m/s). 
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Figure 5.3:  The Fourier spectra of modal responses obtained from WF-simulated along-

wind responses (𝑼̅ = 30 m/s). 

5.1.2 Across-wind Responses 

In this section, all across-wind responses are analyzed using SOBI and the resulting Fourier spectra 

of the modal responses of the first four modes are shown in figures 5.4, 5.5 and 5.6 using different 

wind speeds, respectively. 
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Figure 5.4:  The Fourier spectra of modal responses obtained from WF-simulated across-

wind responses (𝑼̅ = 10 m/s). 

 

Figure 5.5:  The Fourier spectra of modal responses obtained from WF-simulated across-

wind responses (𝑼̅ = 20 m/s). 
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Figure 5.6:  The Fourier spectra of modal responses obtained from WF-simulated across-

wind responses (𝑼̅ = 30 m/s). 

5.2 System Identification of CFD Simulated Responses 

5.2.1 Along-wind Responses 

The SOBI method is then applied to the CFD along-wind acceleration response. The response from 

the CFD simulation is much noisier compared to the wind field simulation; therefore, it is critical 

to use higher covariance matrices to ensure separation of the frequencies. The CFD along-wind 

SOBI results are shown in figures 5.7, 5.8, and 5.9. 
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Figure 5.7:  The Fourier spectra of modal responses obtained from CFD-simulated along-

wind responses (𝑼̅ = 10 m/s). 

 

Figure 5.8:  The Fourier spectra of modal responses obtained from CFD-simulated along-

wind responses (𝑼̅ = 20 m/s). 
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Figure 5.9:  The Fourier spectra of modal responses obtained from CFD-simulated along-

wind responses (𝑼̅ = 30 m/s). 

5.2.2 Across-wind Responses 

SOBI is now applied to the CFD across-wind acceleration response and the resulting modal 

responses are shown in figures 5.10, 5.11, and 5.12. 
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Figure 5.10:  The Fourier spectra of modal responses obtained from CFD-simulated across-

wind responses (𝑼̅ = 10 m/s). 

 

Figure 5.11:  The Fourier spectra of modal responses obtained from CFD-simulated across-

wind responses (𝑼̅ = 20 m/s). 
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Figure 5.12:  The Fourier spectra of modal responses obtained from CFD-simulated across-

wind responses (𝑼̅ = 30 m/s). 

5.3 Aerodynamic Damping Estimation 

The modal responses are used to find the total damping ratio for the first four modes in both the 

along-wind and across-wind directions. Autocorrelation is used on the modal responses and a 

curve is fit onto the decaying function to estimate the damping. The fitted curve is in the form of 

the following function: 

𝑦(𝑡) = 𝐴𝑒−𝜁𝑇𝜔𝑑𝑡 (5.1) 

Where 𝐴 is the amplitude, 𝜁𝑇 is the total damping ratio, 𝜔𝑑 is the damped natural frequency in 

rad/s, and 𝑡 is time in seconds. Figures 5.13, 5.14, 5.15, and 5.16 show the autocorrelation of modal 

responses of the first four modes obtained using a mean wind speed of 20 m/s. Each subplot shows 

the fitted curve on the autocorrelation function. 
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Figure 5.13:  𝑹𝒙(τ) of the modal responses obtained from WF-simulated along-wind 

response   (𝑼̅ = 20 m/s). 

 

Figure 5.14:  𝑹𝒙(τ) of the modal responses obtained from WF-simulated across-wind 

response (𝑼̅= 20 m/s). 
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Figure 5.15:  𝑹𝒙(τ) of the modal responses obtained from CFD-simulated along-wind 

response (𝑼̅ = 20 m/s). 

 

Figure 5.16:  𝑹𝒙(τ) of the modal responses obtained from CFD-simulated across-wind 

response (𝑼̅ = 20 m/s). 
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Using the total damping estimates, the structural damping ratios are subtracted from the total to 

estimate the aerodynamic damping ratio. Tables 5.1, 5.2, 5.3, and 5.4 show a list of all the 

estimated damping ratios, where 𝜁𝑇, 𝜁𝑆, and 𝜁𝐴 are the total, structural, and aerodynamic damping 

ratios, respectively. 

Table 5.1:  Estimated damping ratios of the WF simulated response in the along-wind 

direction. 

𝑼̅ = 10 m/s 

Mode # f (Hz) 𝜻𝑻 (%) 𝜻𝑺 (%) 𝜻𝑨 (%) 

1 0.36 2.0 2.3 -0.3 

2 1.64 4.5 3.7 0.8 

3 4.16 8.6 8.2 0.4 

4 7.76 15.1 15.0 0.1 

𝑼̅ = 20 m/s 

Mode # f (Hz) 𝜻𝑻 (%) 𝜻𝑺 (%) 𝜻𝑨 (%) 

1 0.36 2.0 2.3 -0.3 

2 1.64 4.7 3.7 1.0 

3 4.16 9.2 8.2 1.0 

4 7.76 15.0 15.0 0 
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𝑼̅ = 30 m/s 

Mode # f (Hz) 𝜻𝑻 (%) 𝜻𝑺 (%) 𝜻𝑨 (%) 

1 0.36 2.3 2.3 0 

2 1.64 4.8 3.7 1.1 

3 4.16 9.2 8.2 1.0 

4 7.76 15.2 15.0 0.2 

 

 

Table 5.2:  Estimated damping ratios of the WF simulated response in across-wind 

direction. 

𝑼̅ = 10 m/s 

Mode # f (Hz) 𝜻𝑻 (%) 𝜻𝑺 (%) 𝜻𝑨 (%) 

1 0.36 1.7 2.3 -0.6 

2 1.64 4.2 3.7 0.5 

3 4.16 8.2 8.2 0 

4 7.76 14.5 15.0 -0.5 

𝑼̅ = 20 m/s 
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Mode f (Hz) 𝜻𝑻 (%) 𝜻𝑺 (%) 𝜻𝑨 (%) 

1 0.36 1.7 2.3 -0.6 

2 1.64 4.3 3.7 0.6 

3 4.16 8.3 8.2 0.1 

4 7.76 14.5 15.0 -0.5 

     

𝑼̅ = 30 m/s 

Mode f (Hz) 𝜻𝑻 (%) 𝜻𝑺 (%) 𝜻𝑨 (%) 

1 0.36 1.8 2.3 -0.5 

2 1.64 4.5 3.7 0.8 

3 4.16 8.2 8.2 0 

4 7.76 14.3 15.0 -0.7 

 

Table 5.3:  Estimated damping ratios of the CFD simulated response in the along-wind 

direction. 

𝑼̅ = 10 m/s 

Mode # f (Hz) 𝜻𝑻 (%) 𝜻𝑺 (%) 𝜻𝑨 (%) 
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1 0.36 4.5 2.3 2.2 

2 1.64 5.9 3.7 2.2 

3 4.16 8.5 8.2 0.3 

4 7.76 16.2 15.0 1.2 

𝑼̅ = 20 m/s 

Mode # f (Hz) 𝜻𝑻 (%) 𝜻𝑺 (%) 𝜻𝑨 (%) 

1 0.36 2.8 2.3 0.5 

2 1.64 3.7 3.7 0 

3 4.16 11.0 8.2 2.8 

4 7.76 15.0 15.0 0 

𝑼̅ = 30 m/s 

Mode # f (Hz) 𝜻𝑻 (%) 𝜻𝑺 (%) 𝜻𝑨 (%) 

1 0.36 2.5 2.3 0.2 

2 1.64 4.5 3.7 0.8 

3 4.16 11.0 8.2 2.8 

4 7.76 17.5 15.0 2.5 



95 

 

 

Table 5.4:  Estimated damping ratios of the CFD simulated response in the across-wind 

direction. 

𝑼̅ = 10 m/s 

Mode # f (Hz) 𝜻𝑻 (%) 𝜻𝑺 (%) 𝜻𝑨 (%) 

1 0.36 4.5 2.3 2.2 

2 1.64 5.2 3.7 1.5 

3 4.16 8.2 8.2 0 

4 7.76 16.0 15.0 1.0 

𝑼̅ = 20 m/s 

Mode # f (Hz) 𝜻𝑻 (%) 𝜻𝑺 (%) 𝜻𝑨 (%) 

1 0.36 2.0 2.3 -0.3 

2 1.64 2.8 3.7 -0.9 

3 4.16 10.5 8.2 2.3 

4 7.76 14.5 15.0 -0.5 

𝑼̅ = 30 m/s 

Mode # f (Hz) 𝜻𝑻 (%) 𝜻𝑺 (%) 𝜻𝑨 (%) 
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1 0.36 2.5 2.3 0.2 

2 1.64 4.4 3.7 0.7 

3 4.16 10.5 8.2 2.3 

4 7.76 17.0 15.0 2.0 

 

The most noticeable observation from the damping estimates is that the across-wind aerodynamic 

damping is never larger than its along-wind counterpart, which agrees well with Kim et al. (2018), 

Giappino et al. (2015), Marukawa et al. (1996), and Huang et al. (2013). While the damping in 

the along-wind direction shows two negative values in the wind field simulation, negative 

aerodynamic damping in the across-wind direction seems to be negative more often. Another 

interesting observation is that the damping estimates for the CFD model are much higher, possibly 

due to the additional aerodynamic actions that a CFD simulation can capture. Figures 5.17 and 

5.18 show the autocorrelation functions of the wind load using 𝑈̅ = 30 m/s at z = 100 m in the 

along-wind direction, for both the WF and CFD simulations, respectively.   
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Figure 5.17: 𝑹𝒙(τ) of the along-wind load using 𝑼̅ = 30 m/s at z = 100 m, WF simulation. 

  

Figure 5.18:  𝑹𝒙(τ) of the along-wind load using 𝑼̅ = 30 m/s at z = 100 m, CFD simulation. 

The autocorrelation functions show that the wind load for the CFD simulation decays faster than 

that of the WF simulation.  Therefore, this agrees well with the higher damping values that were 
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estimated for the CFD simulation case.  In both WF and CFD simulation cases, the total damping 

estimates increase with the mode number, which agrees with the modal damping that was set for 

the FE model. 
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6. Conclusions and Summary 
 

This chapter provides a summary of SOBI’s ability to estimate aerodynamic damping and the key 

observations that were made during the research. The contributions towards the gap areas in the 

literature are also outlined, as are recommendations for future work related to SOBI combined 

with wind engineering.  

6.1 Conclusions 

This thesis proposes the use of the SOBI method to identify the aerodynamic damping of a FE 

model of a slender chimney subjected to the simulated wind forces. At first, the wind simulation 

uses the concepts of the power-law profile and von Karman spectrum, then uses pre-determine 

drag and lift coefficients to generate the wind force. The second wind simulation uses CFD 

modeling combined with LES to generate force coefficients along the height of the chimney which 

are converted into the wind force. SOBI successfully identifies the aerodynamic damping ratios 

using both simulations; the first four modes are considered for the damping estimates since higher 

modes are heavily damped and contain a very low amplitude of the response. Aerodynamic 

damping estimates are performed in both the along-wind and across-wind directions and the 

following conclusions are made:  

• In either wind simulation case, the aerodynamic damping in the along-wind direction is 

always higher compared to the across-wind direction, which is consistent with the 

literature.  
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• Damping estimates in both directions show some negative values, although negative values 

are more frequent in the across-wind direction, which was also emphasized in the literature.  

• Damping estimates are consistently higher when using the wind force from the CFD 

simulations.  After autocorrelating the wind forces using pre-determined coefficients and 

CFD, it is found that the wind force using CFD decays faster.  Therefore, it is expected that 

the damping estimates for the CFD are larger. 

• Overall, SOBI was able to identify the aerodynamic damping in both along-wind and 

across-wind directions. 

6.2 Contributions 

In this thesis, the SOBI method is explored to estimate the aerodynamic damping of the slender 

structure, such as, a chimney. SOBI is selected due to its simplicity (i.e., free of stabilization 

diagram and model order selection) when compared to SSI, and its compatibility with MDOF 

systems which is an advantage over RDT. SOBI also proves to be robust when separating the 

modal responses and eliminating noise which is an improvement over both SSI and RDT. An 

important research interest was SOBI’s ability to perform damping estimates on the response using 

CFD wind loading, which it handled adequately. The results obtained during this research indicate 

that SOBI shows great promise when used in conjunction with CFD modeling, as well as other 

wind simulation methods. Therefore, SOBI is a viable option to estimate aerodynamic parameters 

of dynamically sensitive structures. 
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6.3 Future Work 

• While the acquired results are encouraging, this research is composed entirely of 

simulations, including both the wind fields and the chimney model. Further research will 

include the use of SOBI on the response of aero-elastic wind tunnel models at the Boundary 

Layer laboratory at Western.  

• It is also anticipated to validate the aerodynamic damping estimates obtained from the 

wind-induced response of a real-life chimney to compare the damping estimates with the 

finite-element model. 

• Future research should also include the implementation of SOBI with different kinds of 

structures. While the study of chimneys is important for industrial purposes, SOBI should 

be considered for wind-loaded high-rise buildings due to the vast amount being designed 

and monitored. Other slender structures to perform aerodynamic damping estimates 

include long-span bridges, antenna masts, and light poles. Damping estimates using CFD 

modeling and full-scale testing of these different kinds of structures should be performed. 
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