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Abstract

In the field of bioinformatics, taxonomic classification is the scientific practice of identifying,

naming, and grouping of organisms based on their similarities and differences. The problem

of taxonomic classification is of immense importance considering that nearly 86% of existing

species on Earth and 91% of marine species remain unclassified. Due to the magnitude of

the datasets, the need exists for an approach and software tool that is scalable enough to han-

dle large datasets and can be used for rapid sequence comparison and analysis. We propose

ML-DSP, a stand-alone alignment-free software tool that uses Machine Learning and Digital

Signal Processing to classify genomic sequences. ML-DSP uses numerical representations

to map genomic sequences to discrete numerical series (genomic signals), Discrete Fourier

Transform (DFT) to obtain magnitude spectra from the genomic signals, Pearson Correlation

Coefficient (PCC) as a dissimilarity measure to compute pairwise distances between magni-

tude spectra of any two genomic signals, and supervised machine learning for the classification

and prediction of the labels of new sequences. We first test ML-DSP by classifying 7396 full

mitochondrial genomes at various taxonomic levels, from kingdom to genus, with an aver-

age classification accuracy of > 97%. We also provide preliminary experiments indicating

the potential of ML-DSP to be used for other datasets, by classifying 4271 complete dengue

virus genomes into subtypes with 100% accuracy, and 4710 bacterial genomes into phyla with

95.5% accuracy. Second, we propose another tool, MLDSP-GUI, where additional features

include: a user-friendly Graphical User Interface, Chaos Game Representation (CGR) to nu-

merically represent DNA sequences, Euclidean and Manhattan distances as additional distance

measures, phylogenetic tree output, oligomer frequency information to study the under- and

over-representation of any particular sub-sequence in a selected sequence, and inter-cluster dis-

tances analysis, among others. We test MLDSP-GUI by classifying 7881 complete genomes of

Flavivirus genus into species with 100% classification accuracy. Third, we provide a proof of

principle that MLDSP-GUI is able to classify newly discovered organisms by classifying the

novel COVID-19 virus.
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Summary

Sequence classification is the scientific practice of identifying, naming, and grouping organ-

isms based on their differences and similarities. Considering that most of the existing species

(nearly 86% of species on Earth and 91% of marine species) remain unclassified, the problem

of sequence classification is of immense importance. Due to the magnitude of the datasets, the

problem of sequence comparison and analysis for the purpose of classification remains chal-

lenging. Sequence (dis)similarity analysis has multiple possible applications including taxo-

nomic classification (classify organisms on the basis of shared characteristics), virus-subtype

classification (assign viral sequences to their subtypes), disease classification (classify human

genomic sequences on the basis of disease type), human haplogroup classification (assign hu-

man mitochondrial on the basis of maternal lineage), etc. The need exists for an approach and

software tool that is scalable enough to handle large datasets and is able to provide accurate

classifications within a short time period. We propose a machine learning-based methodology,

ML-DSP, that is effective in the classification of newly discovered organisms, in distinguishing

genomic signatures and identifying their mechanistic determinants, and in evaluating genome

integrity. We also propose MLDSP-GUI, an extension of ML-DSP with multiple additional

valuable features. Lastly, we show the applicability of our approach to taxonomy classifica-

tion, virus-subtype classification and provide a proof of principle that our approach is able to

classify newly discovered organisms by classifying the previously unclassified novel coron-

avirus (COVID-19 virus) sequences.
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Chapter 1

Introduction

Organism classification is important to better understand and preserve biodiversity, considering

that approximately 86% of existing species on Earth and 91% of marine species are still unclas-

sified [1, 2]. Taxonomy, the science of naming, defining, and classifying biological organisms,

groups the organisms on the basis of their shared characteristics. Besides morphology-based

and functionality-based taxonomy, DNA-based approaches have been employed in modern

times to analyze genomic DNA sequences and classify organisms based on their sequence sim-

ilarities. Sequence analysis methods can be alignment-based or alignment-free. The traditional

alignment-based methods [3, 4, 5, 6] look for correspondence of individual bases that are in the

same order in two or more sequences and as a result, are generally computationally demanding.

These methods are further categorized on the basis of global alignment (alignment over the en-

tire length of the sequence) and local alignment (focus is to identify widely divergent regions)

[7]. The alignment-free methods provide an alternative while addressing the limitations and

the challenges of the alignment-based approaches [8, 9]. These methods bypass altogether the

base-to-base comparisons and classify the organisms on the basis of their genomic signatures,

a specific quantitative characteristic of a DNA genomic sequence that is pervasive along the

genome of the same organism while being dissimilar for DNA sequences of different organ-

isms [10]. The detailed discussion on existing alignment-based and alignment-free methods is

1



2 Chapter 1. Introduction

given in Section 2.2. Though existing alignment-free methods address most of the limitations

of the alignment-based methods, they often lack software implementations and are tested on

very small datasets [9]. Hence, a novel method is required that is open source, publicly avail-

able, fast, scalable, and proven to achieve satisfactory classification accuracy using a variety of

large real-world datasets.

Our goal is to develop an ultra-fast, scalable, and highly accurate DNA sequence analysis

method, which we accomplish by proposing a general-purpose alignment-free method ML-

DSP (Machine Learning with Digital Signal Processing) [11]. ML-DSP implements a four-step

pipeline for genomic sequences analysis comprising: One-dimensional numerical representa-

tions of DNA sequences to map genomic sequences to genomic signals, Discrete Fourier Trans-

form (DFT) to obtain magnitude spectra from genomic signals, Pearson Correlation Coefficient

(PCC) as a dissimilarity measure for pair-wise distance calculation between magnitude spectra

of any two genomic signals, and supervised machine learning classification for classification

and prediction of new sequences. For visualization of classification results, Multi-Dimensional

Scaling (MDS) is used for dimensionality reduction and the three most significant dimensions

are used to produce a three-dimensional Molecular Distance Map (MoDMap3D) [12].

Our research findings are organized in the following way. Chapter 3 contains the article

“ML-DSP: Machine Learning with Digital Signal Processing for ultrafast, accurate, and scal-

able genome classification at all taxonomic levels” [11] in which we propose our alignment-

free method ML-DSP and perform genome classification at different taxonomic levels using

complete mitochondrial (mtDNA) sequences. This comprehensive analysis also shows the

method’s applicability to the classification of bacterial sequences and virus-subtypes. ML-

DSP shows the potential for filling in the gaps in the field of taxonomy by suggesting tax-

onomy labels for unclassified sequences. Chapter 4 contains the article “MLDSP-GUI: an

alignment-free standalone tool with an interactive graphical user interface for DNA sequence

comparison and analysis” [13]. MLDSP-GUI is an extension of ML-DSP with the addition of

a user-friendly interactive Graphical User Interface (GUI), of a two-dimensional Chaos Game
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Representation (CGR) [14] to numerically represent DNA sequences, of Euclidean and Man-

hattan distances as additional distance measures, of the option of a phylogenetic tree output

in Newick-formatted file, of oligomer (sub-word) frequency information to study the under-

and-over representation of any particular sub-sequence in a selected sequence, and of inter-

cluster distances analysis. ML-DSP and MLDSP-GUI are stand-alone tools and hence they

also address data-security and data-privacy concerns that could arise in the health-science

applications, because they eliminate the need of transferring the private data to the remote

servers. Chapter 5 contains the article “Machine learning using intrinsic genomic signatures

for rapid classification of novel pathogens: COVID-19 case study” [15]. This article shows

our method’s ability to accurately identify the taxonomy of novel unclassified sequences. The

recent COVID-19 viral outbreak that originated in Wuhan, China raises a question about the

scalability and the speed of the existing methods for comparing a novel sequence with thou-

sands of known viral sequences. Our alignment-free approach not only provides rapid tax-

onomic identification of the novel viral sequence by comparing it against the thousands of

known species, but also bypasses altogether the complexity involved in the annotations and ad-

ditional biological information that are necessary requirements for alignment-based methods

or clinical analyses.

We conclude this thesis in Chapter 6, which contains a discussion about possible extensions

of current work, including the investigation of the environmental impact on genomic signatures,

disease classification and how diseases compromise genomic integrity, and identification of the

bacterial origin of mitochondrial DNA and chloroplast DNA in eukaryotes. Lastly, we discuss

potential uses of our approach in studying genotyping data to investigate the genetic makeup

of an organism.
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Chapter 2

Literature review

2.1 Biological background

Earth is home to a great diversity of life forms, estimated at nearly 8.7 million (±1.3 million)

species [1, 2]. The naming and categorization of these organisms date back to the origin of

human languages, as it has always been essential to communicate information about poisonous

or edible plants to other people [3]. One of the earliest documents Divine Husbandman’s Ma-

teria Medica containing 365 Chinese medicines derived from minerals, plants, and animals, is

believed to be the work of Shen Nung (2737 BC − 2697 BC), compiled by multiple authors

between AD 25−AD 220 [4]. As illustrated in ancient wall paintings, the naming of medicinal

plants was in use around 1500 BC in Egypt [3]. In the West, ancient work on taxonomy (naming

and categorization of organisms) was done by Greeks and Romans [3]. The Greek philosopher

Aristotle (384 BC − 322 BC) attempted the first systematic classification (animals with and

without blood) of living organisms, followed by his student Theophrastus (370 BC − 285 BC)

who classified 480 plant species based on their growth form [3]. Caesalpino extended the work

of Theophrastus and wrote De plantis in the year 1583 that contained a classification of 1500

plant species based on their fruit and seed form together with the growth form [5]. The foun-

dation of modern taxonomy was laid out by Carl Linnaeus who formulated and published the

6
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first nomenclature rules in 1735 [6]. After Charles Darwin proposed the evolutionary theory in

1858, Ernst Harckel established the term phylogeny to study evolutionary history using similar-

ities and differences among different groups of organisms [7]. In 1965, Willi Henning founded

the modern cladistic method that categorizes organisms based on shared characteristics [8].

Early taxonomy focused on the shared morphological characteristics to categorize the group of

biological organisms, whereas modern taxonomy extended the characteristics use from merely

morphological to molecular [9]. Deoxyribonucleic Acid (DNA), and Ribonucleic Acid (RNA)

are a natural choice of molecules that can be used in sequence analyses for various purposes,

including taxonomy.

Deoxyribonucleic Acid (DNA) is a molecule that encodes the genetic information that al-

lows all known living organisms to function, grow and reproduce. DNA is a directed polymer

made from monomeric units called nucleotides. The four different nucleotides of DNA are

Adenine(A), Cytosine (C), Guanine (G), Thymine (T). A DNA strand can be represented as

a string over a four-letter alphabet consisting of letters A, C, G, and T. In a double-stranded

DNA molecule, the bases on one strand pair with the complementary bases on another strand,

A with T and C with G, to form units called base pairs. The two strands comprising the DNA

double strand run in opposite directions to each other, and thus each strand is the reverse com-

plement of the other. DNA may be present in different parts of a cell. Prokaryotes (bacteria

and archaea) store their DNA in the cytoplasm. Eukaryotic organisms (animals, plants, fungi,

and protists) store most of their DNA inside the cell nucleus as nuclear DNA, and some in

the mitochondria as mitochondrial DNA or in chloroplasts as chloroplast DNA. Viruses may

have single- or double-stranded DNA or RNA (Ribonucleic Acid) as their genetic material. In

Section 2.2, we discuss existing DNA sequence analysis methods and in Chapter 3, we explore

DNA sequence classification at all taxonomic levels using our proposed method.
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2.2 Genomic sequence analysis methods

In the field of bioinformatics, DNA sequence classification is the scientific practice of iden-

tifying, naming, and grouping of organisms based on their differences and similarities. The

problem of species classification is of immense importance considering that nearly 86% of ex-

isting species on Earth and 91% of marine species, of the estimated 8.7 million (±1.3 million)

species, remain unclassified [1, 2]. With advancements in techniques such as Next Generation

Sequencing (NGS), the tremendous growth in the quantity of genomic data makes real-time

sequence analysis quite challenging [10]. In addition to taxonomic classification, sequence

(dis)similarity analysis has multiple possible applications including virus-subtype classification

(assign viral sequences to their subtypes), disease classification (classify human genomic se-

quences on the basis of disease type), human-haplogroup classification (assign human mtDNA

sequences on the basis of maternal lineage), etc.

Sequence comparison and analysis methods are broadly categorized into two groups: (i)

alignment-based, and (ii) alignment-free methods. Alignment-based methods search for base-

to-base correspondences in two or more sequences and it requires the sequences to be more or

less conserved. Sequence similarity is measured by computing a score based on the number of

matches, mismatches, and insertions/deletions between compared sequences. These methods

can accurately align closely related sequences, but it is difficult to compute a reliable alignment

for divergent sequences. Alignment-free methods provide an alternative by bypassing base-

to-base comparisons altogether. The sequence similarity analysis is based on the concept of

genomic signatures. The next subsections discuss a variety of these methods proposed and

developed in the literature.

2.2.1 Alignment-based methods

The development of sequence analysis methods started around four decades ago [11]. Initially,

algorithms were mostly borrowed from existing computer science methodologies such as string
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processing [12], a natural choice considering the availability of a limited amount of genomic

data. Alignment-based methods search for a correspondence between individual bases that are

in the same order in two or more sequences [11]. The sequence similarity is quantitatively

measured by computing an alignment-score based on the number of matches, mismatches, and

indels (insertions/deletions) [13]. Many alignment-based tools have been developed such as,

BLAST [14], FASTA [15], MUSCLE [16], ClustalW [17], ClustalX [18], MAFFT [19], etc.

Though alignment-based methods have been successfully used for genome classification, they

are not applicable when one needs to compare sequences originating from different regions of

various genomes. Some limitations of alignment-based methods are [11, 20, 21]:

(i) Alignment-based methods assume sequences to be continuous and homologous (more or

less conserved sequence fragments that have remained essentially unchanged through-

out evolution). Sequences with great variation and high mutation rates, such as viral

sequences, usually don’t strictly follow this assumption. Moreover, the long-range in-

teractions resulting from recombination (with shuffling) of conserved segments are over-

looked [22, 23].

(ii) The accuracy of sequence alignment depends on the amount of sequence identity (amount

of exact matches between two sequences). When sequence identity falls below a thresh-

old value, the accuracy can rapidly drop off.

(iii) Alignment-based methods are generally computationally demanding. As the number and

lengths of sequences grow, so does the demand for computation time and memory.

(iv) Computationally, it is not possible to solve multiple-sequence alignment, (which is an

NP-hard problem) for thousands of complete genomes in a feasible time.

(v) The alignment score depends on multiple a priori assumptions. The selection of input

parameters e.g. gap penalty, match/mismatch scores, etc., may often change the results.
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2.2.2 Alignment-free methods

The alignment-free methods have been proposed as an alternative to address situations where

alignment-based methods are computationally inefficient or fail [11, 20, 21]. They have follow-

ing advantages: (i) alignment-free methods are capable of recognizing homology even when

the loss of contiguity is beyond the possibility of alignment [20]. (ii) With alignment-free

methods, similarities can be found that can’t be discovered through edit distances (counting

the minimum number of operations required to transform one string into the other), which are

used in alignment-based methods [24]. (iii) ability to compare unrelated sequences. There are

a variety of alignment-free methods proposed over the last few decades.

Random walk [25, 26] was one of the first alignment-free methods that were proposed.

It generates two-dimensional graphical representations of genomic sequences and compares

them using Manhattan and Euclidean distances. More specifically, the four nucleotides T, A, C,

G are encoded by four possible moves corresponding to the directions up, down, left, right re-

spectively, to generate a graphical representation in a plane. Susceptible to degeneracy, initially

this method was considered unsuitable for genomic analysis. The method was later improved

[27, 28] by using the geometric center of the points in the walk for sequence comparison.

Modified versions of the random walk technique have been used to produce the similarity ma-

trices from the first exon of the β-globin gene of several mammals [29, 30, 31, 32, 33] and

to generate the phylogenetic trees for primate mitochondrial DNA [30], coronaviruses [34],

etc. The random walk technique has also been used to analyze proteins [35, 36, 37], bacteria

[38] and yeast [39]. In the random walk technique, the plotting of the current point depends

on the preceding points. Randic et al. [40, 41] proposed an alternative representation, called

“cell” representation, where the plotting of points is independent of the preceding points. They

proposed the construction of a 12-component vector by using the leading eigenvalues of the

L/L matrix (Length by Length matrix) for the comparison of the first exon of β-globin region

of 11 mammals. The elements of the L/L matrix are defined as the quotient of the Euclidean

distance between a pair of dots of the plotted curve and the sum of distances between the same
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pair of dots measured along the curve. Various modifications were proposed following this

study [42, 43, 44], but these techniques failed to receive attention because the representation

construction is computationally inefficient.

Qi et al. proposed a graph theory based method [45], where for each DNA sequence a

weighted directed graph with four vertices (one vertex for each nucleotide) is constructed.

Each edge of the graph represents a unique dinucleotide and graph has sixteen edges in total.

The edge weights are updated based on both ordering and frequency of nucleotides, and an

adjacency matrix of size 4 × 4 corresponding to the edge weights is constructed. The dissim-

ilarity between any two DNA sequences is measured by computing a distance between their

respective adjacency matrices.

Over the years, other alignment-free methods have been proposed which used different

approaches. Markov models have been used to cluster coding DNA sequences [46], to study

intra-genomic variations for viruses and some animals [47], and to build phylogenies of S.

flexneri, E. Coli [48], Hepatitis-E virus [49] and HIV-1 [50]. Thermal melting profiles have

been used to classify several mammalian species using β-globin and αchain class II MHC genes

[51]. Lempel-Ziv complexity has been used to cluster protein families into functional subtypes

[52]. This method has also been used to build phylogenetic trees of fungi using ribosomal DNA

sequences [53], perennial plant genus Galanthus using nuclear and chloroplast DNA sequences

[54], and HEV and mammals using DNA sequences [55, 56, 57, 58] .

Another popular category of alignment-free methods makes use of word frequencies [59,

60, 61]. The difference between the two sequences can be obtained by computing the k-mer

(subsequences of length k) frequencies first and then distance between them. The word-based

alignment-free technique was first used to construct accurate phylogenetic trees for mammalian

alpha- and beta-globin genes [62]. Bao et al. [63] proposed a Category-Position-Frequency

(CPF) model, which utilized word frequency and position information of nucleotides in DNA

sequences. The main disadvantage of this method is that the adjacent word matches are de-

pendent on each other. Leimeister et al. [64] proposed a method based on spaced-words
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frequencies to address the problem of dependency on adjacent word matches. This method

used spaced-words, defined by patterns of ‘match’ and ‘don't care’ positions, for alignment-

free sequence comparison. Sims et al. [65] proposed a k-mer vectors based method called

Feature Frequency Profiles (FFP). FFP has been used for phylogenetic analysis using a variety

of sequences including intron sequences of mammals [65], mitochondrial DNA sequences of

primates and nuclear DNA sequences of plants [66], and bacterial genomes [67]. Many au-

thors [68, 69, 70, 71, 72, 73, 74, 75, 76, 77] have used Chaos game Representation (CGR)

[78] for k-mer-based sequence analysis. CGR is a two-dimensional graphical representation of

DNA sequence, and the details of the CGR construction are given in Section 2.3.1. CGR has

been used in literature on a variety of sequences e.g. to build phylogenies using mitochondrial

DNA sequences [71, 72], nuclear DNA sequences [73, 75], bacterial sequences [76], and viral

sequences [77, 70].

In recent years, Genomic Signal Processing (GSP) [79] based alignment-free methods have

also been proposed. GSP-based methods apply techniques of Digital Signal Processing (DSP)

to genomic data. GSP-based methods have been successfully used for a variety of applications,

e.g., to distinguish introns from exons [80, 81, 82], for complete genome phylogenetic analysis

of primates, bacteria and influenza [83], and for classification of whole bacterial genomes

[84]. Borraya et al. [85] proposed a GSP-based method for the computation of alignment-

free distances between DNA sequences, where DNA sequences were mapped to numerical

sequences based on the nucleotide doublet values (0 − 15 for all possible 16 combinations).

The analysis was done on relatively small dataset composed of the ribosomal S 18 subunit gene.

Yin et al. [86] proposed another alignment-free method that encoded each DNA sequence to

four binary indicator sequences and applied Discrete Fourier Transform (DFT) to compute

the power spectra. The Euclidean distance of full DFT power spectra of the DNA sequences

was used as a dissimilarity measure. Other DSP techniques have also been used for genome

similarity analysis, e.g. comparing the phase spectra of the DFT of digital signals of full

mtDNA genomes [87, 88].
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Though existing alignment-free methods have successfully addressed most of the limita-

tions of the alignment-based methods, they have some disadvantages of their own. Zielezinski

et al. [11] reviewed the majority of existing alignment-free methods and highlighted the fol-

lowing limitations:

(i) A majority of existing alignment-free methods are still exploring the technical founda-

tions and lack software implementation, so it is not possible to compare their perfor-

mance on common datasets. Without comparison or existing proven results, it is difficult

for users to pick one method for their specific application.

(ii) Most of the existing alignment-free methods that have software implementations avail-

able are tested using very small real-world datasets or simulated sequences. Their appli-

cability to a variety of applications is untested.

(iii) Though alignment-free methods have lower time-complexity, their memory consump-

tion is still an issue, at least for k-mer based methods. The use of longer k-mers for

multigenome data can cause possible memory overhead.

We propose a novel alignment-free GSP-based methodology that addresses the limitations

of the existing alignment-free methods in addition to the alignment-based methods, see Section

2.3 for details.Though our proposed approach addresses the previously identified limitations of

both alignment-based and alignment-free algorithms, high memory use remains an issue when

CGR, a k-mer dependent numerical representation, is used. The high memory use is because

of the length of sequences, and large size of datasets. In particular, high memory use is un-

avoidable if the required analysis demands the use of full genomes. Another notable limitation

of our methodology is inherited from the use of supervised machine learning algorithms. More

specifically, our approach can only predict the label of an unknown new sequence by assigning

a label from the available labels in the training set. In case the actual label is missing from

the training set, our approach assigns a closest available label (the label of the most similar

sequence in the training set).
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2.3 Our approach

Any DNA sequence can be represented as a string over a four-letter alphabet consisting of

letters A, C, G, and T. Consequently, by using an appropriate numerical encoding, a DNA se-

quence can be encoded as a discrete numerical sequence using DNA numerical representations

such as the ones in [89, 90, 91], and hence treated as a digital signal. These digital signals

(discrete numerical sequences) generated from the genomic sequences are called genomic sig-

nals [92]. The genomic signals can be analyzed using various Digital Signal Processing (DSP)

[93, 94] techniques, and the whole process can be termed Genomic Signal Processing (GSP)

[85, 79].

Our objective is to develop a GSP-based alignment-free method in combination with ma-

chine learning, and use it for sequence analysis and comparison. We propose and test a GSP-

based pipeline that maps genomic sequences to genomic signals, computes magnitude spectra

by applying DFT to genomic signals, computes a pairwise distance matrix by evaluating the

dissimilarities between pairs of magnitude spectra of any two genomic signals, and uses super-

vised machine learning algorithms to classify genomic sequences based on these distances. The

proposed methodology is outlined in the flowchart shown in Figure 2.1. Various components

of the proposed methodology are discussed in sub-sections 2.3.1-2.3.5.

2.3.1 DNA numerical representations

We tested our approach on 14 DNA numerical representations, of which 13 are one-dimensional

representations and the last one is a two-dimensional representation. The thirteen different one-

dimensional numerical representations for DNA sequences are grouped as: Fixed mappings

DNA numerical representations (Table 2.1 representations #1, #2, #3, #6, #7, see [89], and rep-

resentations #10, #11, #12, #13 - which are one-dimensional variants of the binary represen-

tation proposed in [89]), mappings based on some physio-chemical properties of nucleotides

(Table 2.1 representation #4, see [89, 95], and representation #5, see [89, 95, 96]), and map-
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Figure 2.1: Flowchart showing MLDSP methodology.
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pings based on the nearest-neighbour values (Table 2.1 representations #8, #9, see [85]). Table

2.1 gives the rules for constructing genomic signals from DNA sequences using the 13 one-

dimensional representations. For example, if the numerical representation is Integer (#1 in

Table 2.1), then for the sequence S = CGGT AT , the corresponding numerical representation

is N = (1, 3, 3, 0, 2, 0). The comparison analysis of 13 one-dimensional representation is given

in sub-section 3.3.2.

Table 2.1: Rules for numerical representations of DNA sequences.

# Representation Rules Output for S = CGGTAT
1 Integer T=0, C=1, A=2, G=3 [1 3 3 0 2 0]
2 Integer (other variant) T=1, C=2, A=3, G=4 [2 4 4 1 3 1]
3 Real T=−1.5, C=0.5, A=1.5, G=−0.5 [0.5 −0.5 −0.5 −1.5 1.5 −1.5]
4 Atomic T=6, C=58, A=70, G=78 [58 78 78 6 70 6]

5
EIIP
(electron-ion interaction potential)

T=0.1335, C=0.1340,
A=0.1260, G=0.0806

[0.1340 0.8060 0.8060
0.1335 0.1260 0.1335]

6 PP (purine/pyrimidine) T/C=1, A/G=−1 [1 −1 −1 1 −1 1]
7 Paired numeric T/A=1, C/G=−1 [−1 −1 −1 1 1 1]
8 Nearest-neighbor based doublet 0−15 for all possible doublets [14 11 10 2 1 7]
9 Codon 0−63 for all possible 64 Codons [6 51 11 56 22 44]
10 Just-A A=1, rest=0 [0 0 0 0 1 0]
11 Just-C C=1, rest=0 [1 0 0 0 0 0]
12 Just-G G=1, rest=0 [0 1 1 0 0 0]
13 Just-T T=1, rest=0 [0 0 0 1 0 1]

Numerical representations of DNA sequences used in genomic classification. The second
column lists the numerical representation name, the third column describes the rule it uses,
and the fourth is the output of this rule for the input DNA sequence S = CGGT AT . For the
nearest-neighbor based doublet representation and codon representation, the DNA sequence is
considered to be wrapped (the last position is followed by the first).

In addition to 13 one-dimensional numerical representation, we also used a two-dimensional

representation, called Chaos Game Representation (CGR) [78]. CGR was suggested as a good

candidate for the role of genomic signature by Deschavanne et al. [73, 74]. CGR is a square-

shaped graphical representation with four corners labeled as A,C,G,T respectively (represent-

ing four different DNA nucleotides). For every letter in the DNA sequence, a dot is plotted

within the square. The first dot is plotted in the middle of the segment defined by the square.

For each consecutive nucleotide, a dot is plotted in the middle of the last plotted dot and the
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corner labelled by that nucleotide. Figure 2.2 shows the steps involved in creating the CGR

plot of the DNA sequence CGGTAT. Figure 2.3a shows the CGR plot of the complete mtDNA

sequences of Canadian beaver (Castor canadensis), NCBI accession NC_007011.1, 16767 bp

long and Figure 2.3b shows the CGR plot of the complete mtDNA sequence of Canada goose

Branta canadensis, NCBI accession KY311838.1, 16760 bp long. The use of CGR as a nu-

merical representation for our method is given in Section 5.3.

Figure 2.2: The Chaos Game Representation (CGR) of the DNA sequence CGGTAT.



18 Chapter 2. Literature review

Figure 2.3: The Chaos Game Representation (CGR) of the mtDNA sequence of (a) Canadian
Beaver (Castor canadensis), NCBI accession NC_007011.1, 16767 bp length and (b) Canada
goose (Branta canadensis), NCBI accession KY311838.1, 16760 bp length.
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2.3.2 Discrete Fourier Transform

Discrete Fourier Transform (DFT) [97] is applied to the genomic signals (discrete numerical

representations of the genomic sequences) to compute the magnitude spectra. Suppose we have

a dataset of n sequences. For CGR numerical representation, columns of each 2D vector are

concatenated to reshape it as a 1D vector similar to the outcome of 1D numerical representa-

tions. For selected k value (k being the length of k-mers), CGR of any sequence i (0 ≤ i ≤ n−1)

will be of size 2k × 2k and its corresponding 1D vector will of size p, where p = 2k × 2k. Then,

the DFT of an ith (0 ≤ i ≤ n − 1) genomic signal Ni = Ni(0),Ni(1), ....,Ni(p − 1) results in an-

other sequence of complex numbers, Fi(k) = Fi(0), Fi(1), ...., Fi(p − 1) where, for 0 ≤ k ≤ p−1

we have:

Fi(k) =

p−1∑
j=0

Ni( j) · e(−ι2π/p)k j (2.1)

The magnitude spectrum of a genomic signal Ni is the absolute value of the vector Fi.

2.3.3 Distance measures

In this thesis, there are three different dissimilarity measures being used: Euclidean distance

[98], Manhattan distance [99], and Pearson Correlation Coefficient (PCC) [100, 101].

The Euclidean distance dEUC between two magnitude spectra X and Y , each of length p, is

computed as:

dEUC =

√√√ p−1∑
i=0

(Xi − Yi) (2.2)
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The Manhattan distance dMAN between two magnitude spectra X and Y , each of length p,

is computed as:

dMAN =

p−1∑
i=0

|Xi − Yi| (2.3)

The Pearson Correlation Coefficient rXY between two magnitude spectra X and Y , each of

length p, is computed as:

rXY =

∑p−1
i=0 (Xi − X)(Yi − Y)√∑p−1

i=0 (Xi − X)2 ×

√∑p−1
i=0 (Yi − Y)2

(2.4)

where the average X is defined as (
∑p−1

i=0 Xi)/p and similarly for Y . The results are normal-

ized by taking (1 − rXY)/2, to obtain dissimilarity values between 0 and 1. It should be noted

that 1 − rXY is not a metric, whereas
√

1 − rXY is a metric.

2.3.4 Multi-dimensional scaling

Multi-Dimensional Scaling (MDS) is a means of visualizing the degree of similarity between

individual objects in a given dataset. Classical multidimensional scaling takes a pairwise dis-

tance matrix (n × n matrix, for n objects) as input, and produces n points in a q-dimensional

Euclidean space, where q ≤ n − 1. More specifically, the output is an n × q coordinate matrix,

where each row corresponds to one of the n input objects, and that row contains the q coor-

dinates of the corresponding object-representing point [102]. The Euclidean distance between

each pair of points is meant to approximate the distance between the corresponding two objects

in the original distance matrix. These points can then be simultaneously visualized in a 2- or

3-dimensional space by taking the first 2, respectively 3, coordinates (out of q) of the coordi-

nate matrix. The result is a Molecular Distance Map (MoDMap) [103], and the MoDMap of

a genomic dataset represents a visualization of the simultaneous interrelationships among all
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DNA sequences in the dataset. Figure 2.4 shows a MoDMap generated by applying MDS to the

pairwise distances between six most populated Canadian cities (Toronto, Montreal, Vancouver,

Calgary, Edmonton, and Ottawa). A 6 × 6 pairwise distance matrix D is created, where any

element di j, 1 ≤ i ≤ 6, of matrix D is the distance in kilometers between the ith and jth city. The

MDS algorithm takes matrix D as input, and produce the set of coordinates (two dimensional

for this example) of six cities as output. Figure 2.4 shows a MoDMap produced by plotting

the output of MDS as points, and the placement of points represents the estimated distances

between the cities.

Figure 2.4: A MoDMap generated by applying multi-dimensional scaling to the pairwise dis-
tances between six most populated Canadian cities.
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2.3.5 Supervised learning classification models

Supervised learning classification algorithms learn from the labelled training data and classify

the new observations (testing data) into the training classes (a class is a group of similar obser-

vations). In this thesis, we used six classification models: Linear Discriminant, Linear SVM,

Quadratic SVM, Fine KNN, Subspace Discriminant, and Subspace KNN. The 10-fold cross-

validation score is used to assess the classification performance. In this approach, the dataset is

randomly partitioned into ten equal-sized subsets. The classification model is trained using 9

of the subsets with available class labels, and the prediction accuracy is measured by testing the

remaining subset. The process is repeated 10 times, and the accuracy score of the classification

model is then computed as the average of the accuracies obtained in the 10 separate runs.

(i) Linear Discriminant: Linear discriminant analysis [104] is a fast classification method,

and its memory usage is small. The space of X data points divides into K regions (num-

ber of classes). For linear discriminant analysis, the regions are separated by straight

lines. This model assumes that the data in each class has a Gaussian mixture distribu-

tion. The model has different means, but the same covariance matrix for each class. The

sample mean is computed first for each class. Then the sample covariance is computed

by taking the empirical covariance matrix of the difference between the sample mean of

each class and the observations of that class. The prediction function used to classify the

observations is based on three factors: posterior probability, prior probability, and cost.

The multi-objective minimization function used to predict the class ŷ of any observation

x is:

ŷ = arg min
y=1,...,K

K∑
c=1

P̂ (c | x) C (y | c) (2.5)

where P̂ (c | x) is the posterior probability that an observation x belongs to class c and

C (y | c) is the cost of classifying an observation as y when its true class is c. Cost C is 0

if y = c, and 1 otherwise.
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The posterior probability P̂ (c | x) is computed by Bayes’ rule taking the product of prior

probability P (c) and the multivariate Gaussian (or normal) distribution:

P̂(c | x) =
P(x | c)P(c)

P(x)
(2.6)

where, P(x) is the normalization constant equal to the sum over c of P(x | c)P(c). The

prior probability P (c) of class c is computed by dividing the number of training sam-

ples of that class by the total number of training samples. The density function of the

multivariate Gaussian with mean and covariance at an observation x is:

P(x | c) =
1

(2π|
∑

c |)
1
2

exp(−
1
2

(x − µc)T
∑−1

c
(x − µc)) (2.7)

where |
∑

c | is the determinant of
∑

c, and
∑−1

c is the inverse matrix.

(ii) Linear Support Vector Machine: Linear Support Vector Machine (SVM) [105, 106]

makes a linear separation between classes. The SVM model finds the best hyperplane

that separates all data points of one class from the data points of the other class. For

binary classification, the best hyperplane means the one that has the largest distance

to the nearest data points of any class i.e. the largest margin between the two classes.

For three or more classes, multiple binary SVMs are used with Error-Correcting Output

Codes (ECOC) classifier. An ECOC model reduces the problem of classification with

three or more classes to a set of binary classification problems. For n classes, n(n − 1)/2

one-versus-one binary classifiers are constructed.

(iii) Quadratic Support Vector Machine: It is not always possible to get a linear separation

between the clusters (classes). The Quadratic SVM [105, 106] uses a quadratic function
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instead of a linear function to gain separation between the clusters. The data points are

then mapped to a higher dimensional space to get linear separation. Quadratic SVM has

slow prediction speed and large memory usage for multi-class classification.

(iv) Fine KNN (K-Nearest Neighbours): Fine KNN [107, 108] classifier performs a prox-

imity search that typically has good predictive accuracy in low dimensions. The testing

data points are categorized based on their distance to data points (neighbors) in a training

dataset. In the Fine KNN classification model, the number of neighbors (K) is set to 1.

The model calculates the Euclidean distance between the feature vectors of the testing

data point and of the training data points. Given a set X of n data points, the Fine KNN

model finds the K closest points in X to a testing data point or set of points. The testing

data point is assigned a predictive class the same as of its closest neighbor (data point).

(v) Subspace Discriminant: The subspace discriminant is an ensemble model that uses a

combination of linear discriminant weak learners [109]. We used the default 30 linear

discriminant learners. Suppose n is the number of weak learners and d is the number

of dimensions (features) in the data, an ensemble model chooses without replacement a

random set of m predictors from d possible features (where, m = |d/n|) for each weak

learner. The weak learners are trained on their respective sets of m predictors. The

prediction is made by taking the average of prediction scores of all the weak learners.

The class with the highest average score is assigned to the testing data point.

(vi) Subspace KNN: The subspace KNN is an ensemble model that uses a combination of

Fine KNN weak learners [109]. We used the default 30 Fine KNN learners. The use of

multiple learners makes the classification process slower. It has been shown that the com-

bined (average) accuracies of the ensemble models typically increase with the increasing

number of component classifiers, and with an appropriate subspace dimensionality, the

ensemble methods can be superior to the individual learner models. Subspace ensembles

also have the advantage of using less memory than ensembles with all predictors.
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Linear discriminant and linear SVM models are more suitable if linear boundaries are expected

between the classes. The linear discriminant model is the most popular because it is simple and

fast. The discriminant analysis assumes that different classes generate data based on different

Gaussian distributions and are linearly separable. Linear SVM model tries to find linear sep-

arability between data points that are most difficult to separate. For more than two classes, a

classification problem is reduced to a set of binary classification sub-problems, and one SVM

learner is used for each sub-problem. For higher-dimensional data, where it is challenging to

linearly separate the variables, quadratic SVM gives better results than the linear SVM, with

a little compromise on the time performance. Fine-KNN works well with a small number of

data points but doesn’t scale well to large input data. The ensemble models (Subspace Dis-

criminant, and Subspace KNN) comprise several supervised learning models. The constituting

models are individually trained and the final prediction is achieved by merging the results of

individual models. This gives higher predictive power to the ensemble models, than any of

their constituting learning algorithms independently. The higher predictive power comes at the

cost of poor time performance and more memory usage.
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Chapter 3

ML-DSP: Machine Learning with Digital

Signal Processing for ultrafast, accurate,

and scalable genome classification at all

taxonomic levels

3.1 Background

Of the estimated 8.7 million (±1.3 million) species existing on Earth [1], only around 1.5 mil-

lion distinct eukaryotes have been catalogued and classified so far [2], leaving 86% of existing

species on Earth and 91% of marine species still unclassified. To address the grand challenge

of all species identification and classification, a multitude of techniques have been proposed

for genomic sequence analysis and comparison. These methods can be broadly classified

into alignment-based and alignment-free. Alignment-based methods and software tools are

numerous, and include, e.g., MEGA7 [3] with sequence alignment using MUSCLE [4], or

CLUSTALW [5, 6]. Though alignment-based methods have been used with significant success

for genome classification, they have limitations [7] such as the heavy time/memory computa-

38
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tional cost for multiple alignment in multigenome scale sequence data, the need for continuous

homologous sequences, and the dependence on a priori assumptions on, e.g., the gap penalty

and threshold values for statistical parameters [8]. In addition, with next-generation sequenc-

ing (NGS) playing an increasingly important role, it may not always be possible to align many

short reads coming from different parts of genomes [9]. To address situations where alignment-

based methods fail or are insufficient, alignment-free methods have been proposed [10], includ-

ing approaches based on Chaos Game Representation of DNA sequences [11, 12, 13], random

walk [14], graph theory [15], iterated maps [16], information theory [17], category-position-

frequency [18], spaced-words frequencies [19], Markov-model [20], thermal melting profiles

[21], word analysis [22], among others. Software implementations of alignment-free methods

also exist, among them COMET [23], CASTOR [24], SCUEAL [25], REGA [26], KAMERIS

[27], and FFP (Feature Frequency Profile) [28]. While alignment-free methods address some

of the issues faced by alignment-based methods, [7] identified the following challenges they

face:

(i) Lack of software implementation: Most of the existing alignment-free methods are still

exploring technical foundations and lack software implementation, which is necessary

for methods to be compared on common datasets.

(ii) Use of simulated sequences or very small real world datasets: The majority of the

existing alignment-free methods are tested using simulated sequences or very small real-

world datasets. This makes it hard for experts to pick one tool over the others.

(iii) Memory overhead: Scalability to multigenome data can cause memory overhead in

word-based methods, especially when long k-mers are used.

To overcome these challenges, we propose ML-DSP, a novel combination of supervised

Machine Learning with Digital Signal Processing of the input DNA sequences, as a general-

purpose alignment-free method and software tool for genomic DNA sequence classification at

all taxonomic levels.
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The main contribution of ML-DSP is the feature vector that we propose to be used by the

supervised learning algorithms. Given a genomic DNA sequence, its feature vector consists of

the pairwise Pearson Correlation Coefficient (PCC) between (a) the magnitude spectrum of the

Discrete Fourier Transform (DFT) of the digital signal obtained from the given sequence by

some suitable numerical encoding of the letters A, C, G, T into numbers, and (b) the magnitude

spectra of the DFT of all the other genomic sequences in the training set. The use of this new

feature vector, which has not previously been used in conjunction with machine learning algo-

rithms, allows ML-DSP to significantly outperform existing methods in terms of speed, while

achieving an average classification accuracy of > 97%. This substantial performance improve-

ment allows ML-DSP to scale up and successfully classify much larger datasets than existing

studies. Indeed, in contrast with previous benchmark datasets, each comprising less than fifty

sequences, this study accurately classifies thousands of genomes from a variety of species: eu-

karyotic (7,396 complete mitochondrial genomes), viral (4,271 genomes), and bacterial (4,710

genomes). In addition, this study provides the first comprehensive analysis and comparison of

all thirteen one-dimensional numerical representations of DNA sequences used in the Genomic

Signal Processing (GSP: digital signal processing applied to genomes) literature for classifica-

tion purposes. We conclude that the “Purine/Pyrimidine (PP)”, “Just-A”, and “Real” numerical

representations are the top three performers in terms of classification accuracy of ML-DSP for

our main dataset. This is surprising given that these three numerical representations do not

appear to contain sufficient biological information for the accuracy attained. For example, the

numerical representation “Just-A” (encoding A as “1”, and G,C,T as “0”) retains the incidence

and spacing for A, but not individually for the other three nucleotides.

3.1.1 Numerical representations of DNA sequences

Digital Signal Processing (DSP) can be employed in the context of comparative genomics be-

cause genomic sequences can be numerically represented as discrete numerical sequences and

hence treated as digital signals. Several numerical representations of DNA sequences, that



3.1. Background 41

use numbers assigned to individual nucleotides, have been proposed in the literature [29], e.g.,

based on a fixed mapping of each nucleotide to a number, without biological significance; using

mappings of nucleotides to numerical values deduced from their physio-chemical properties; or

using numerical values deduced from the doublets or codons that the individual nucleotide was

part of [29, 30]. In [31, 32] three physio-chemical based representations of DNA sequences

(atomic, molecular mass, and Electron-Ion Interaction Potential, EIIP) were considered for

genomic analysis, and the authors concluded that the choice of numerical representation did

not have any effect on the results. A recent study comparing different numerical representa-

tion techniques on a small dataset [33] concluded that multi-dimensional representations (such

as Chaos Game Representation) yielded better genomic comparison results than some one-

dimensional representations. However, in general there is no agreement on whether or not the

choice of numerical representation for DNA sequences makes a difference on the genome com-

parison results, or on which numerical representations are best suited for analyzing genomic

data. We address this issue by providing a comprehensive analysis and comparison of thirteen

one-dimensional numerical representations, for suitability in genome analysis.

3.1.2 Digital Signal Processing

Following the choice of a suitable numerical representation for DNA sequences, DSP tech-

niques can be applied to the resulting discrete numerical sequences, and the whole process has

been termed Genomic Signal Processing (GSP) [30]. DSP techniques have previously been

used for DNA sequence comparison, e.g., to distinguish coding regions from non-coding re-

gions [34, 35, 36], to align genomic signals for classification of biological sequences [37],

for whole genome phylogenetic analysis [38], and to analyze other properties of genomic se-

quences [39]. In our approach, genomic sequences are represented as discrete numerical se-

quences, treated as digital signals, transformed via DFT into corresponding magnitude spectra,

and compared via Pearson Correlation Coefficient (PCC) to create a pairwise distance matrix.
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3.1.3 Supervised Machine Learning

Machine learning has been used in small-scale genomic analysis studies [40, 41, 42], and clas-

sification analyses associated with microarray gene expression data [43, 44, 45]. In this vein,

ML-DSP focusses on the use of the primary DNA sequence data for taxonomic classification,

and is based on a novel combination of supervised machine learning with feature vectors con-

sisting of the pairwise distances between the magnitude spectrum of the DFT obtained from

the digital signal generated from a DNA sequence, and the magnitude spectra of the DFT of

the digital signals generated from all other sequences in the training set. The taxonomic labels

of sequences are provided for training purposes. Six supervised machine learning classifiers

(Linear Discriminant, Linear SVM, Quadratic SVM, Fine KNN, Subspace Discriminant, and

Subspace KNN) are trained on these pairwise distance vectors, and then used to classify new

sequences. Independently, classical MultiDimensional Scaling (MDS) generates a 3D visual-

ization, called Molecular Distance Map (MoDMap) [46], of the interrelationships among all

sequences.

For our computational experiments, we used a large dataset of 7, 396 complete mtDNA

sequences, and six different classifiers, to compare one-dimensional numerical representations

for DNA sequences used in the literature for classification purposes. For this dataset, we con-

cluded that the “PP”, “Just-A”, and “Real” numerical representations were the best numerical

representations. We analyzed the performance of ML-DSP in classifying the aforementioned

genomic mtDNA sequences, from the highest level (domain into kingdoms) to lower level

(family into genera) taxonomical ranks. The average classification accuracy of ML-DSP was

> 97% when using the “PP”, “Just-A”, and “Real” numerical representations.

To evaluate our method, we compared its performance (accuracy and speed) on three

datasets: two previously used small benchmark datasets [47], and a large real world dataset

of 4, 322 complete vertebrate mtDNA sequences. We found that ML-DSP had significantly

better accuracy scores than the alignment-free method FFP on all datasets. When compared
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to the state-of-the-art alignment-based method MEGA7 (with alignment using MUSCLE or

CLUSTALW), ML-DSP achieved similar accuracy but superior processing times (2,250 to

67,600 times faster) for the small benchmark dataset of 41 mammalian genomes. The con-

trast in running time was even more extreme for the large dataset of 4,322 mtDNA genomes,

where ML-DSP took 28 seconds, while MEGA7(MUSCLE/CLUSTALW) could not complete

the computation after 2 hours/6 hours and had to be terminated.

Lastly, we provide preliminary computational experiments that indicate the potential of

ML-DSP to successfully classify viral genomes (4,271 complete dengue virus genomes into

four subtypes) and bacterial genomes (4,710 complete bacterial genomes into three phyla).

3.2 Methods and Implementation

The main idea behind ML-DSP is to combine supervised machine learning techniques with

digital signal processing, for the purpose of DNA sequence classification. More precisely, for

a given set S = {S 1, S 2, . . . , S n} of n DNA sequences, ML-DSP uses:

- DNA numerical representations to obtain a set N = {N1,N2, . . . ,Nn} where Ni is a

discrete numerical representation of the sequence S i, 1 ≤ i ≤ n.

- Discrete Fourier Transform (DFT) applied to the length-normalized digital signals Ni,

to obtain the frequency distribution; the magnitude spectrum Mi of this frequency distri-

bution is then obtained.

- Pearson Correlation Coefficient (PCC) to compute the distance matrix of all pairwise

distances for each pair of magnitude spectra (Mi,M j), where 1 ≤ i, j ≤ n.

- Supervised Machine Learning classifiers which take the pairwise distance matrix for a

set of sequences, together with their respective taxonomic labels, in a training set, and
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output the taxonomic classification of a new DNA sequence. To measure the perfor-

mance of such a classifier, we use the 10-fold cross-validation technique.

- Independently, Classical Multidimensional Scaling (MDS) takes the distance matrix as

input and returns an (n × q) coordinate matrix, where n is the number of points (each

point represents a unique sequence from set S ) and q is the number of dimensions. The

first three dimensions are used to display a MoDMap, which is the simultaneous visual-

ization of all points in 3D-space.

3.2.1 DNA numerical representations

To apply digital signal processing techniques to genomic data, genomic sequences are first

mapped into discrete numerical representations of genomic sequences, called genomic signals

[48]. In our analysis of various numerical representations for DNA sequences (Table 3.1), we

considered only 1D numerical representations, that is, those which produce a single output

numerical sequence, called also indicator sequence, for a given input DNA sequence.

We did not consider other numerical representations, such as binary [29], or nearest dis-

similar nucleotide [49], because those generate four numerical sequences for each genomic

sequence, and would thus not be scalable to classifications of thousands of complete genomes.

3.2.2 Discrete Fourier Transform (DFT)

Our alignment-free classification method of DNA sequences makes use of the DFT magnitude

spectra of the discrete numerical sequences (discrete digital signals) that represent DNA se-

quences. In some sense, these DFT magnitude spectra reflect the nucleotide distribution of the

originating DNA sequences.

To start with, assuming that all input DNA sequences have the same length p, for each

DNA sequence S i = (S i(0), S i(1), . . . , S i(p − 1)), in the input dataset, where 1 ≤ i ≤ n, S i(k) ∈
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Table 3.1: Numerical representations of DNA sequences.

# Representation Rules Output for S 1 = CGAT
1 Integer T = 0, C = 1, A = 2, G = 3 [1 3 2 0]
2 Integer (other variant) T = 1, C = 2, A = 3, G = 4 [2 4 3 1]
3 Real T = −1.5, C = 0.5, A = 1.5, G = −0.5 [0.5 − 0.5 1.5 − 1.5]
4 Atomic T = 6, C = 58, A = 70, G = 78 [58 78 70 6]
5 EIIP (electron-ion interaction potential) T = 0.1335, C = 0.1340, A = 0.1260, G = 0.0806 [0.1340 0.8060 0.1260 0.1335]
6 PP (purine/pyrimidine) T/C = 1, A/G = −1 [1 − 1 − 1 1]
7 Paired numeric T/A = 1, C/G = −1 [−1 − 1 1 1]
8 Nearest-neighbor based doublet 0 − 15 for all possible doublets [14 8 1 7]
9 Codon 0 − 63 for all possible 64 Codons [2 35 22 44]
10 Just-A A = 1, rest = 0 [0 0 1 0]
11 Just-C C = 1, rest = 0 [1 0 0 0]
12 Just-G G = 1, rest = 0 [0 1 0 0]
13 Just-T T = 1, rest = 0 [0 0 0 1]

Numerical representations of DNA sequences analyzed for usability in genomic classification
with ML-DSP. The second column lists the numerical representation name, the third column
describes the rule it uses, and the fourth is the output of this rule for the input DNA sequence
S 1 = CGAT . For the nearest-neighbor based doublet representation and codon representation,
the DNA sequence is considered to be wrapped (the last position is followed by the first).

{
A,C,G,T

}
, 0 ≤ k ≤ p − 1, we calculate its corresponding discrete numerical representation

(discrete digital signal) Ni defined as

Ni = ( f (S i(0)), f (S i(1)), . . . , f (S i(p − 1)))

where, for each 0 ≤ k ≤ p − 1, the quantity f (S i(k)) is the value under the numerical represen-

tation f of the nucleotide in the position k of the DNA sequence S i.

Then, the DFT of the signal Ni is computed as the vector Fi where, for 0 ≤ k ≤ p − 1 we

have

Fi(k) =

p−1∑
j=0

f (S i( j)) · e(−2πi/p)k j (3.1)

The magnitude vector corresponding to the signal Ni can now be defined as the vector Mi

where, for each 0 ≤ k ≤ p − 1, the value Mi(k) is the absolute value of Fi(k), that is, Mi(k) =

|Fi(k)|. The magnitude vector Mi is also called the magnitude spectrum of the digital signal Ni
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and, by extension, of the DNA sequence S i. For example, if the numerical representation f is

Integer (row 1 in Table 3.1), then for the sequence S 1 = CGAT , the corresponding numerical

representation is N1 = (1, 3, 2, 0), the result of applying DFT is F1 = (6, −1 − 3i, 0, −1 + 3i)

and its magnitude spectrum is M1 = (6, 3.1623, 0, 3.1623).

Fig 3.1a shows the discrete digital signal (using the “PP” numerical representation, row 6 of

Table 3.1) of the DNA sequence consisting of the first 100 bp of the mtDNA genome of Branta

canadensis (Canada goose, NCBI accession number NC_007011.1), and of the DNA sequence

consisting of the first 100 bp of the mtDNA genome of Castor fiber (European beaver; NCBI

accession number NC_028625.1). Fig 3.1b shows the DFT magnitude spectra of the same

two signals/sequences. As can be seen in Fig 3.1b, these mtDNA sequences exhibit different

DFT magnitude spectrum patterns, and this can be used to distinguish them computationally

by using. e.g., the Pearson Correlation Coefficient, as described in the next subsection. Other

techniques have also been used for genome similarity analysis, for example comparing the

phase spectra of the DFT of digital signals of full mtDNA genomes, as seen in Fig 3.2 and

[50, 51].

Note that, with the exception of the example in Fig 3.1, all of the computational experiments

in this paper use full genomes.

3.2.3 Pearson Correlation Coefficient (PCC)

Consider two variables X and Y (here X and Y are the magnitude spectra Mi and M j of two

signals), each of length p, that is, X = {X0, . . . , Xp−1} and Y = {Y0, . . . ,Yp−1}. The Pearson

Correlation Coefficient rXY between X and Y is the ratio of their covariance (measure of how

much X and Y vary together) to the product of their standard deviations [52, 53], that is,

rXY =
σXY

σXσY
(3.2)
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Figure 3.1: Canada goose (blue) vs European beaver (red): comparison of the DFT magnitude
spectra of the first 100 bp of their mtDNA genomes. (a): Graphical illustration of the discrete
digital signals of the respective DNA sequences, obtained using the “PP” representation. (b):
DFT magnitude spectra of the signals in (a).
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Figure 3.2: Canada goose (blue, 16,760 bp) vs. European beaver (red, 16,722 bp) - comparison
between the DFT phase spectra of their full mtDNA genomes.
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where the covariance of X and Y is σXY =
∑p−1

i=0 (Xi − X)(Yi − Y)/(p − 1), and the standard de-

viation is σX =

√∑p−1
i=0 (Xi − X)2/(p − 1), and similarly for σY , where the average is defined as

X = (
∑p−1

i=0 Xi)/p and similarly for Y . Now the formula for the Pearson Correlation Coefficient

becomes

rXY =

∑p−1
i=0 (Xi − X)(Yi − Y)√∑p−1

i=0 (Xi − X)2 ×

√∑p−1
i=0 (Yi − Y)2

(3.3)

The Pearson Correlation Coefficient between X and Y is a measure of their linear correlation,

and has a value between +1 (total positive linear correlation) and −1 (total negative linear

correlation); 0 is no linear correlation. We normalized the results, by taking (1 − rXY)/2, to

obtain distance values between 0 and 1 (value 0 for identical signals, and 1 for negatively

correlated signals). For our data sets, the PCC values between any two digital signals of DNA

sequences ranged between 0 and 0.6.

For each pairwise distance calculation, the Pearson Correlation Coefficient requires the

input variables (that is, the magnitude spectra of the two sequences) to have the same length.

The length of a magnitude spectrum is equal to the length of corresponding numerical digital

signal, which in turn is equal to the length of the originating DNA sequence. Given that genome

sequences are typically of different lengths, it follows that their corresponding digital signals

need to be length-normalized, if we are to be able to use the Pearson Correlation Coefficient.

Hoang et al. avoided normalization and considered only the first few mathematical moments

constructed from the power spectra for comparison, after applying DFT [54]. The limitation of

this method is that one loses information that may be necessary for a meaningful comparison.

This is especially important when the genomes compared are very similar to each other.

Different methods for length-normalizing digital signals were tested: down-sampling [55],

up-sampling to the maximum length using zero padding [30], even scaling extension [56],

periodic extension, symmetric padding, or anti-symmetric padding [57]. For example, zero-
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padding, which adds zeroes to all of the sequences shorter than the maximum length, was

used in [30], e.g., for taxonomic classifications of ribosomal S18 subunit genes from twelve

organisms. While this method may work for datasets of sequences of similar lengths, it is not

suitable for datasets of sequences of very different lengths (our study: fungi mtDNA genomes

dataset - 1,364 bp to 235,849 bp; plant mtDNA genomes dataset - 12,998 bp to 1,999,595 bp;

protist mtDNA genomes dataset - 5,882 bp to 77,356 bp). In such cases, zero-padding acts as

a tag and may lead to inadvertent classification of sequences based on their length rather than

based on their sequence composition. Thus, we employed instead anti-symmetric padding,

whereby, starting from the last position of the signal, boundary values are replicated in an

anti-symmetric manner. We also considered two possible ways of employing anti-symmetric

padding: normalization to the maximum length (where shorter sequences are extended to the

maximum sequence length by anti-symmetric padding) vs. normalization to the median length

(where shorter sequences are extended by anti-symmetric padding to the median length, while

longer sequences are truncated after the median length).

3.2.4 Supervised Machine Learning

In this paper we used the Linear discriminant, Linear SVM, Quadratic SVM, Fine KNN, Sub-

space discriminant and Subspace KNN classifiers from the Classification Learner application

of MATLAB (Statistics and Machine Learning Toolbox). The default MATLAB parameters

were used.

To assess the performance of the classifiers, we used 10-fold cross validation. In this ap-

proach, the dataset is randomly partitioned into 10 equal-size subsets. The classifier is trained

using 9 of the subsets, and the accuracy of its prediction is tested on the remaining subset. As

part of the supervised learning, taxonomic labels are supplied for the DNA sequences in the

9 subsets used for training. The process is repeated 10 times, and the accuracy score of the

classifier is then computed as the average of the accuracies obtained in the 10 separate exper-

iments. The standard algorithms were modified so that no information about sequences in the



50 Chapter 3. ML-DSP: Machine Learning with Digital Signal Processing

testing set (that is, no distance matrix entries containing distances to/from any sequence in the

testing set to any other sequence) was available during the training stage.

3.2.5 Classical Multidimensional Scaling (MDS)

Classical multidimensional scaling takes a pairwise distance matrix (n × n matrix, for n input

items) as input, and produces n points in a q-dimensional Euclidean space, where q ≤ n − 1.

More specifically, the output is an n × q coordinate matrix, where each row corresponds to

one of the n input items, and that row contains the q coordinates of the corresponding item-

representing point [11]. The Euclidean distance between each pair of points is meant to ap-

proximate the distance between the corresponding two items in the original distance matrix.

These points can then be simultaneously visualized in a 2- or 3-dimensional space by taking

the first 2, respectively 3, coordinates (out of q) of the coordinate matrix. The result is a

Molecular Distance Map [46], and the MoDMap of a genomic dataset represents a visualization

of the simultaneous interrelationships among all DNA sequences in the dataset.

3.2.6 Software implementation

The algorithms for ML-DSP were implemented using the software package MATLAB R2017A,

license no. 964054, as well as the open-source toolbox Fathom Toolbox for MATLAB [58] for

distance computation. All software can be downloaded from https://github.com/grandhawa/

MLDSP. The user can use this code to reproduce all results in this paper, and also has the

option to input their own dataset and use it as training set for the purpose of classifying new

genomic DNA sequences.

All experiments were performed on an ASUS ROG G752VS computer with 4 cores (8

threads) of a 2.7GHz Intel Core i7 6820HK processor and 64GB DD4 2400MHz SDRAM.

https://github.com/grandhawa/MLDSP
https://github.com/grandhawa/MLDSP
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3.2.7 Datasets

All datasets in this paper can be found at https://github.com/grandhawa/MLDSP in the “DataBase”

directory. The mitochondrial dataset comprises all of the 7,396 complete reference mtDNA se-

quences available in the NCBI Reference Sequence Database RefSeq on June 17, 2017. We

performed computational experiments on several different subsets of this dataset. The bacteria

dataset comprises all 4, 710 complete bacterial genomes with lengths between 20, 000 bp and

500, 000 bp, available in the aforementioned NCBI database on the same date. The dengue

virus dataset contained all 4,721 dengue virus genomes available in the NCBI database on

August 10, 2017. Note that any letters “N” in these DNA sequences were deleted.

For the performance comparison between ML-DSP and other alignment-free and alignment-

based methods we also used the benchmark datasets of 38 influenza virus sequences, and 41

mammalian complete mtDNA sequences from [47].

3.3 Results and Discussion

Following the design and implementation of the ML-DSP genomic sequence classification

tool prototype, we investigated which type of length-normalization and which type of distance

were most suitable for genome classification using this method. We then conducted a com-

prehensive analysis of the various numerical representations of DNA sequences used in the

literature, and determined the top three performers. Having set the main parameters (length-

normalization method, distance, and numerical representation), we tested ML-DSP’s ability to

classify mtDNA genomes at taxonomic levels ranging from the domain level down to the genus

level, and obtained average levels of classification accuracy of > 97%. Finally, we compared

ML-DSP with other alignment-based and alignment-free genome classification methods, and

showed that ML-DSP achieved higher accuracy and significantly higher speeds.

https://github.com/grandhawa/MLDSP
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3.3.1 Analysis of distances and of length normalization approaches

To decide which distance measure and which length normalization method were most suit-

able for genome comparisons with ML-DSP, we used nine different subsets of full mtDNA

sequences from our dataset. These subsets were selected to include most of the available com-

plete mtDNA genomes (Vertebrates dataset of 4,322 mtDNA sequences), as well as subsets

containing similar sequences, of similar length (Primates dataset of 148 mtDNA sequences),

and subsets containing mtDNA genomes showing large differences in length (Plants dataset of

174 mtDNA sequences).

The classification accuracy scores obtained using the two considered distance measures

(Euclidean and Pearson Correlation Coefficient) and two different length-normalization ap-

proaches (normalization to maximum length and normalization to median length) on several

datasets are listed in Table 3.2. The classification accuracy scores are slightly higher for PCC,

but sufficiently close to those obtained when using the Euclidean distance to be inconclusive.

In the remainder of this paper we chose the Pearson Correlation Coefficient because it

is scale independent (unlike the Euclidean distance, which is, e.g., sensitive to the offset of

the signal, whereby signals with the same shape but different starting points are regarded as

dissimilar [59]), and the length-normalization to median length because it is economic in terms

of memory usage.

3.3.2 Analysis of various numerical representations of DNA sequences

We analyzed the effect on the ML-DSP classification accuracy of thirteen different one-dim-

ensional numeric representations for DNA sequences, grouped as: Fixed mappings DNA nu-

merical representations (Table 3.1 representations #1, #2, #3, #6, #7, see [29], and represen-

tations #10, #11, #12, #13 - which are one-dimensional variants of the binary representation

proposed in [29]), mappings based on some physio-chemical properties of nucleotides (Ta-

ble 3.1 representation #4, see [29, 32], and representation #5, see [29, 31, 32]), and mappings

based on the nearest-neighbour values (Table 3.2 representations #8, #9, see [30]).
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Table 3.2: Maximum classification accuracy scores when using Euclidean vs. Pearson’s corre-
lation coefficient (PCC) as a distance measure.

Data Set No. of
Seq.

Max
Length
(bp)

Min
Length
(bp)

Median
Length
(bp)

Maximum Accuracy
Euclidean PCC

Norm.
to Max
Length

(a)

Norm.
to Median

Length
(b)

Norm.
to Max
Length

(c)

Norm.
to Median

Length
(d)

Primates
(Haplorrhini: 115, Strepsirrhini: 33) 148 17531 15467 16554 98.6% 100% 100% 100%

Protists
(Alveolata: 34, Rhodophyta: 46,
Stramenopiles: 79)

159 77356 5882 35660 89.3% 90.6% 96.2% 91.2%

Fungi
(Basidiomycota: 30, Pezizomycotina: 104,
Saccharomycotina:92)

226 235849 1364 39154 70.1% 82.6% 87.9% 89.3%

Plants
(Chlorophyta: 44, Streptophyta: 130) 174 1999595 12998 128211 95.4% 94.8% 90.2% 91.4%

Amphibians
(Anura: 161, Caudata:95, Gymnophiona: 34) 290 28757 15757 17271 95.2% 97.6% 98.3% 99.0%

Mammals
(Xenarthrans: 30, Bats: 54,
Carnivores: 135, Even-toed Ungulates: 242,
Insectivores: 40, Marsupials: 34,
Primates: 148, Rodents and Rabbits: 147)

830 17734 15289 16537 95.2% 96.1% 97.8% 97.1%

Insects
(Coleoptera: 95, Dictyptera: 77,
Diptera: 149, Hemiptera: 126,
Hymenoptera: 47, Lepidoptera:294,
Orthoptera: 110)

898 20731 10662 15529 87.9% 90.0% 91.3% 94.2%

3 classes
(Amphibians: 290, Mammals: 874, Insects: 1006) 2170 28757 8118 16361 99.9% 99.7% 99.8% 99.7%

Vertebrates
(Amphibians: 290, Birds: 553, Fish: 2313,
Mammals: 874, Reptiles: 292)

4322 28757 14935 16616 99.6% 99.8% 99.6% 99.7%

Table Average Accuracy —— —— —— —— 92.4% 94.6% 95.7% 95.7%

(a)(c) Genomes normalized to the maximum genome sequence length; (b)(d) Genomes
normalized to the median genome sequence length

The datasets used for this analysis were the same as those in Table 3.2. The supervised

machine learning classifiers used for this analysis were the six classifiers listed in the Methods

and Implementation section, with the exception of the datasets with more than 2,000 sequences

where two of the classifiers (Subspace Discriminant and Subspace KNN) were omitted as being

too slow. The results and the average accuracy scores for all these numerical representations,

classifiers and datasets are summarized in Table 3.3.

As can be observed from Table 3.3, for all numerical representations, the table average

accuracy scores (last row: average of averages, first over the six classifiers for each dataset,
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Table 3.3: Average classification accuracies for 13 numerical representations.

DataSet/
Classification
Model

Numerical Representation

Integer
Integer
(Other) Real Atomic EIIP PP

Paired
Num.

NN
based

doublet
Codon Just-A Just-C Just-G Just-T

Primates (148 sequences)
Linear
Discriminant 97.3% 98.0% 99.3% 98.6% 99.3% 99.3% 97.3% 97.3% 98.0% 98.0% 97.3% 96.6% 96.6%

Linear SVM 97.3% 95.9% 98.6% 96.6% 97.3% 98.0% 95.9% 97.3% 94.6% 98.0% 96.6% 96.6% 95.3%
Quadratic SVM 97.3% 95.9% 98.6% 93.2% 95.9% 98.6% 96.6% 98.6% 95.9% 98.0% 98.0% 97.3% 95.9%
Fine KNN 98.0% 98.0% 100.0% 98.0% 96.6% 100.0% 99.3% 99.3% 98.0% 100.0% 98.6% 100.0% 98.6%
Subspace
Discriminant 98.0% 97.3% 99.3% 98.0% 99.3% 98.6% 95.3% 97.3% 95.9% 98.0% 97.3% 98.0% 95.3%

Subspace KNN 98.0% 97.3% 98.6% 96.6% 95.9% 98.0% 100% 98.0% 98.0% 99.3% 97.3% 98.6% 98.6%
Average 97.7% 97.1% 99.1% 96.8% 97.4% 98.8% 97.4% 98.0% 96.7% 98.6% 97.5% 97.9% 96.7%
Protists (159 sequences)
Linear
Discriminant 83.6% 84.9% 85.5% 86.2% 86.2% 84.3% 85.5% 83.0% 85.5% 84.3% 83.6% 83.0% 83.6%

Linear SVM 84.3% 83.0% 83.6% 83.0% 83.0% 71.7% 82.4% 83.0% 83.6% 83.6% 83.6% 83.6% 83.0%
Quadratic SVM 84.9% 84.9% 83.6% 82.4% 83.0% 81.1% 85.5% 84.9% 86.2% 83.0% 84.3% 83.0% 86.2%
Fine KNN 86.8% 86.2% 81.8% 84.3% 88.1% 78.0% 89.9% 88.7% 91.8% 86.8% 88.7% 93.7% 92.5%
Subspace
Discriminant 85.5% 84.9% 88.1% 86.8% 85.5% 86.8% 83.6% 83.0% 85.5% 84.9% 83.6% 83.0% 83.6%

Subspace KNN 88.7% 87.4% 91.8% 85.5% 88.1% 91.2% 89.9% 88.1% 93.1% 86.8% 88.1% 92.5% 93.7%
Average 85.6% 85.2% 85.7% 84.7% 85.7% 82.2% 86.1% 85.1% 87.6% 84.9% 85.3% 86.5% 87.1%
Fungi (226 sequences)
Linear
Discriminant 76.3% 76.8% 82.1% 50.9% 57.1% 80.4% 75.4% 68.8% 77.7% 81.7% 70.5% 71.9% 79.0%

Linear SVM 66.5% 58.0% 76.8% 49.1% 46.0% 73.7% 73.2% 66.1% 71.0% 75.9% 64.7% 66.1% 75.4%
Quadratic SVM 58.9% 59.8% 82.6% 33.9% 37.9% 79.9% 71.4% 67.4% 63.4% 71.0% 67.9% 71.4% 64.3%
Fine KNN 61.6% 56.7% 84.4% 49.6% 54.9% 85.7% 72.3% 65.2% 58.0% 68.8% 61.6% 68.8% 67.9%
Subspace
Discriminant 74.6% 75.0% 78.6% 46.0% 55.4% 79.0% 75.0% 71.4% 78.1% 79.9% 68.8% 69.2% 78.6%

Subspace KNN 63.4% 58.9% 89.3% 51.8% 58.0% 89.3% 68.3% 63.8% 59.8% 67.9% 65.6% 72.8% 64.3%
Average 66.9% 64.2% 82.3% 46.9% 51.6% 81.3% 72.6% 67.1% 68.0% 74.2% 66.5% 70.0% 71.6%
Plants (174 sequences)
Linear
Discriminant 96.0% 95.4% 76.4% 92.5% 93.7% 91.4% 95.4% 96.0% 95.4% 96.0% 96.0% 96.0% 96.0%

Linear SVM 96.0% 96.0% 85.6% 96.0% 96.0% 87.9% 94.8% 96.0% 96.0% 96.0% 96.0% 96.0% 96.0%
Quadratic SVM 96.0% 96.0% 86.8% 96.0% 96.0% 88.5% 94.3% 96.0% 96.0% 96.0% 96.0% 96.0% 96.0%
Fine KNN 93.1% 94.8% 91.4% 94.3% 94.3% 90.8% 86.8% 93.1% 94.3% 93.7% 91.4% 93.1% 93.1%
Subspace
Discriminant 96.0% 95.4% 87.4% 94.8% 95.4% 87.9% 94.8% 96.0% 96.0% 96.0% 96.0% 96.0% 96.0%

Subspace KNN 93.7% 94.3% 90.2% 94.3% 94.3% 90.2% 92.5% 92.5% 94.8% 93.7% 94.3% 94.8% 94.3%
Average 95.1% 95.3% 86.3% 94.7% 95.0% 89.5% 93.1% 94.9% 95.4% 95.2% 95.0% 95.3% 95.2%
Amphibians (290 sequences)
Linear
Discriminant 92.1% 91.4% 95.5% 89.0% 89.3% 99.0% 94.5% 93.4% 91.4% 96.2% 93.4% 93.8% 91.7%

Linear SVM 91.0% 90.0% 89.0% 88.3% 88.6% 93.1% 89.0% 91.4% 90.0% 93.1% 92.1% 92.4% 90.3%
Quadratic SVM 90.3% 89.0% 92.4% 59.3% 83.4% 96.6% 91.0% 93.1% 86.9% 94.1% 93.1% 93.4% 90.7%
Fine KNN 90.0% 86.9% 96.6% 83.8% 83.4% 98.3% 87.9% 92.1% 89.7% 93.4% 91.7% 94.8% 89.7%
Subspace
Discriminant 90.7% 90.3% 90.0% 89.3% 89.3% 96.6% 90.3% 91.7% 90.3% 95.2% 92.8% 92.1% 91.0%

Subspace KNN 88.3% 86.6% 94.1% 85.2% 84.5% 98.3% 89.7% 92.8% 87.2% 94.5% 90.0% 94.8% 90.3%
Average 90.4% 89.0% 92.9% 82.5% 86.4% 97.0% 90.4% 92.4% 89.3% 94.4% 92.2% 93.6% 90.6%
Mammals (830 sequences)
Linear
Discriminant 98.3% 97.6% 97.7% 97.0% 96.0% 97.1% 96.6% 97.2% 96.7% 98.0% 96.9% 96.3% 96.3%

Linear SVM 90.6% 89.6% 88.9% 84.5% 85.3% 91.6% 86.5% 91.2% 88.8% 90.8% 90.0% 88.2% 88.1%
Quadratic SVM 92.4% 89.9% 91.0% 32.9% 41.7% 93.4% 88.0% 93.4% 89.9% 90.7% 92.5% 89.8% 90.5%
Fine KNN 94.1% 92.3% 96.0% 79.9% 81.0% 96.6% 93.9% 93.7% 91.7% 96.3% 96.3% 94.8% 95.5%
Subspace
Discriminant 92.3% 91.9% 92.3% 88.3% 87.7% 94.0% 90.2% 91.7% 90.4% 92.3% 93.4% 91.9% 91.3%

Subspace KNN 92.8% 90.8% 95.5% 78.2% 79.2% 96.4% 91.2% 93.3% 89.2% 94.8% 94.3% 94.9% 92.2%
Average 93.4% 92.0% 93.6% 76.8% 78.5% 94.9% 91.1% 93.4% 91.1% 93.8% 93.9% 92.7% 92.3%
Insects (898 sequences)
Linear
Discriminant 92.2% 92.7% 90.1% 91.6% 92.2% 94.2% 93.3% 92.4% 89.2% 93.1% 92.1% 94.4% 90.4%

Linear SVM 86.9% 82.6% 85.9% 66.7% 69.5% 85.3% 86.4% 90.0% 80.5% 89.4% 87.4% 88.4% 86.2%
Quadratic SVM 85.0% 81.8% 86.7% 24.4% 21.3% 87.1% 85.7% 89.6% 82.6% 89.5% 88.0% 89.6% 85.3%
Fine KNN 82.0% 79.3% 80.0% 62.5% 68.0% 93.2% 83.3% 87.9% 80.8% 85.6% 83.6% 87.9% 83.0%
Subspace
Discriminant 85.7% 83.9% 88.3% 77.5% 79.3% 89.1% 88.0% 88.2% 82.1% 87.1% 87.6% 88.2% 86.4%

Subspace KNN 80.4% 77.3% 90.5% 61.0% 67.6% 92.0% 81.4% 86.9% 77.4% 85.4% 86.0% 89.3% 81.4%
Average 85.4% 82.9% 86.9% 64.0% 66.3% 90.2% 86.4% 89.2% 82.1% 88.4% 87.5% 89.6% 85.5%
3Classes (2170 sequences; Subspace Discriminant & Subspace KNN omitted)
Linear
Discriminant 99.9% 99.9% 99.6% 99.4% 99.7% 99.7% 99.7% 99.7% 99.8% 99.8% 99.9% 99.9% 99.6%

Linear SVM 94.1% 90.2% 99.4% 89.8% 89.3% 99.6% 99.2% 98.1% 94.6% 99.1% 97.3% 99.3% 97.9%
Quadratic SVM 97.5% 92.5% 99.4% 66.6% 78.8% 99.7% 99.5% 98.7% 97.6% 99.4% 98.4% 99.5% 98.8%
Fine KNN 95.9% 95.2% 97.6% 93.3% 94.4% 95.9% 97.6% 97.7% 96.4% 98.9% 98.0% 99.2% 98.4%
Average 96.9% 94.5% 99.0% 87.3% 90.6% 98.7% 99.0% 98.6% 97.1% 99.3% 98.4% 99.5% 98.7%
Vertebrates (4322 sequences; Subspace Discriminant & Subspace KNN omitted)
Linear
Discriminant 99.7% 99.7% 99.6% 99.3% 99.5% 99.7% 99.2% 99.3% 99.3% 99.3% 99.4% 99.5% 99.2%

Linear SVM 98.3% 98.2% 98.5% 96.3% 96.8% 97.9% 98.0% 98.4% 98.2% 98.2% 98.5% 98.8% 98.4%
Quadratic SVM 98.1% 96.6% 99.0% 40.6% 34.0% 98.7% 98.4% 98.2% 96.7% 98.5% 98.7% 98.8% 98.6%
Fine KNN 97.1% 96.1% 98.4% 88.3% 91.7% 97.9% 96.4% 96.3% 95.3% 96.4% 97.5% 97.6% 97.2%
Average 98.3% 97.7% 98.9% 81.1% 80.5% 98.6% 98.0% 98.1% 97.4% 98.1% 98.5% 98.7% 98.4%
Table
Average 90.0% 88.7% 91.6% 79.4% 81.3% 92.3% 90.5% 90.7% 89.4% 91.9% 90.5% 91.5% 90.7%
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and then over all datasets), are high. Surprisingly, even using a single nucleotide numerical

representation, which treats three of the nucleotides as being the same, and singles out only

one of them (“Just-A”), results in an average accuracy of 91.9%. The best accuracy, for these

datasets, is achieved when using the “PP” representation, which yields an average accuracy of

92.3%.

For subsequent experiments we selected the top three representations in terms of accuracy

scores: “PP”, “Just-A”, and “Real” numerical representations.

3.3.3 ML-DSP for three classes of vertebrates

As an application of ML-DSP using the “PP” numerical representation for DNA sequences, we

analyzed the set of vertebrate mtDNA genomes (median length 16,606 bp). The MoDMap, i.e.,

the multi-dimensional scaling 3D visualization of the genome interrelationships as described

by the distances in the distance matrix, is illustrated in Fig 3.3. The dataset contains 3,740 com-

plete mtDNA genomes: 553 bird genomes, 2,313 fish genomes, and 874 mammalian genomes.

Quantitatively, the classification accuracy score obtained by the Quadratic SVM classifier was

100%.

3.3.4 Classifying genomes with ML-DSP, at all taxonomic levels

We tested the ability of ML-DSP to classify complete mtDNA sequences at various taxonomic

levels. For every dataset, we tested using the “PP”, “Just-A”, and “Real” numerical representa-

tions.

The starting point was domain Eukaryota (7, 396 sequences), which was classified into

kingdoms, then kingdom Animalia was classified into phyla, etc. At each level, we picked the

cluster with the highest number of sequences and then classified it into the next taxonomic level

sub-clusters. The lowest level classified was family Cyprinidae (81 sequences) into its six gen-

era. For each dataset, we tested all six classifiers, and the maximum of these six classification

accuracy scores for each dataset are shown in Table 3.4.
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Table 3.4: Maximum classification accuracy (of the accuracies obtained with each of the six
classifiers) of ML-DSP, for datasets at different taxonomic levels, from ‘domain into kindgoms’
down to ‘family into genera’.

Test No. of
Seq.

Max
Length

Min
Length

Median
Length

Mean
Length

Numerical Representation Maximum Accuracy
PP Real Just-A Random3* Random13**

Domain to Kingdom
Domain:Eukaryota
Kingdoms:
Plants:,254, Animals: 6697,
Fungi: 267, Protists :178

7396 1999595 1136 16580 25434 96.2% 97.3% 96.1% 95.5% 92.8%

Domain to Kingdom (No Protists)
Domain:Eukaryota
Kingdoms:
Plants:254, Animals: 6697,
Fungi: 267

7218 1999595 1136 16573 25254 97.9% 98.4% 97.9% 97.4% 94.4%

Kingdom to Phylum
Kingdom: Animalia
Phylum:
Chordata:4367, Cnidaria: 127,
Ecdysozoa: 1572, Porifera: 60,
Echinodermata: 44, Lophotrochozoa: 403,
Platyhelminthes: 100

6673 48161 5596 16553 16474 96.2% 95.9% 95.3% 93.6% 85.6%

Phylum to SubPhylum
Phylum:Chordata
SubPhylum:Cephalochordata:9,
Craniata: 4334, Tunicata:24

4367 28757 13424 16615 16791 99.7% 99.8% 99.8% 99.5% 99.7%

SubPhylum to Class
SubPhylum:Vertebrata
Class:
Amphibians(Amphibia):290,
Birds(Aves): 553,
Fish(Actinopterygii, Chondrichthyes,
Dipnoi, Coelacanthiformes): 2313,
Mammals(Mammalia): 874,
Reptiles(Crocodylia, Sphenodontia,
Squamata, Testudines): 292

4322 28757 14935 16616 16806 99.7% 99.6% 99.3% 99.2% 86.2%

Class to SubClass
Class:Actinopterygii
SubClass:
Chondrostei: 24, Cladistia: 11,
Neopterygii: 2141

2176 22217 15534 16589 16656 100% 99.9% 99.9% 99.8% 99.2%

SubClass to SuperOrder
SubClass: Neopterygii
SuperOrder:
Osteoglossomorpha:23, Elopomorpha: 60,
Clupeomorpha: 75, Ostariophysi: 792,
Protacanthopterygii: 66, Paracanthopterygii: 46,
Acanthopterygii:426

1488 22217 15534 16597 16669 96.2% 96.4% 95.4% 94.4% 78.8%

SuperOrder to Order
SuperOrder:Ostariophysi
Order:
Cypriniformes: 643, Characiformes: 31,
Siluriformes: 107

781 17859 16123 16597 16621 99.0% 98.7% 98.8% 97.6% 92.2%

Order to Family
Order: Cypriniformes
Family:
Balitoridae: 25, Catostomidae:12,
Cobitidae: 51, Cyprinidae: 502,
Nemacheilidae: 47

635 17859 16411 16601 16627 98.9% 97.8% 98.3% 97.3% 85.7%

Family to Genus
Family: Cyprinidae
Genus:
Schizothorax: 19, Labeo: 19,
Acrossocheilus: 12, Acheilognathus: 10,
Rhodeus: 11, Onychostoma: 10

81 17155 16563 16597 16630 91.8% 92.6% 91.4% 85.2% 66.7%

Table Average Accuracy —– —– —– —– —– 97.6% 97.6% 97.2% 96.0% 88.1%

At each level, the cluster with the highest number of sequences was chosen as the next dataset
to be classified into its sub-taxa. *Random3: each sequence is represented by a random
representation among PP, Real, or Just-A. **Random13: each sequence is represented by
random representation among 13 representations (Integer, Integer(Other), Real, Atomic, EIIP,
PP, Paired Numeric, Nearest neighbor based doublet, Codon, Just-A, Just-C, Just-G or Just-T).
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Figure 3.3: MoDMap of 3,740 full mtDNA genomes in subphylum Vertebrata, into three
classes: Birds (blue, Aves: 553 genomes), fish (red, Actinopterygii 2,176 genomes, Chon-
drichthyes 130 genomes, Coelacanthiformes 2 genomes, Dipnoi 5 genomes), and mammals
(green, Mammalia: 874 genomes). The accuracy of the ML-DSP classification into three
classes, using the Quadratic SVM classifier, with the “PP” numerical representation, and PCC
between magnitude spectra of DFT, was 100%.

Note that, at each taxonomic level, the maximum classification accuracy scores (among

the six classifiers) for each of the three numerical representations considered are high, ranging

from 91.4% to 100%, with only three scores under 95%. As this analysis also did not reveal

a clear winner among the top three numerical representations, the question then arose whether

the numerical representation we use mattered at all. To answer this question, we performed

two additional experiments, that exploit the fact that the Pearson correlation coefficient is scale

independent, and only looks for a pattern while comparing signals. For the first experiment

we selected the top three numerical representations (“PP”, “Just-A”, and “Real”) and, for each

sequence in a given dataset, a numerical representation among these three was randomly cho-

sen, with equal probability, to be the digital signal that represents it. The results are shown
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under the column “Random3” in Table 3.4: The maximum accuracy score over all the datasets

is 96%. This is almost the same as the accuracy obtained when one particular numerical rep-

resentation was used (1% lower, which is well within experimental error). We then repeated

this experiment, this time picking randomly from any of the thirteen numerical representations

considered. The results are shown under the column “Random13” in Table 3.4, with the table

average accuracy score being 88.1%.

Overall, our results suggest that all three numerical representations “PP”, “Just-A”, and

“Real” have very high classifications accuracy scores (average >97%), and even a random

choice of one of these representations for each sequence in the dataset does not significantly

affect the classification accuracy score of ML-DSP (average 96%).

We also note that, in addition to being highly accurate in its classifications, ML-DSP is

ultrafast. Indeed, even for the largest dataset in Table 3.2, subphylum Vertebrata (4,322 com-

plete mtDNA genomes, average length 16,806 bp), the distance matrix computation (which is

the bulk of the classification computation) lasted under 5 seconds. Classifying a new primate

mtDNA genome took 0.06 seconds when trained on 148 primate mtDNA genomes, and clas-

sifying a new vertebrate mtDNA genome took 7 seconds when trained on the 4,322 vertebrate

mtDNA genomes. The result was updated with an experiment whereby QSVM was trained on

the 4,322 complete vertebrate genomes in Table 3.2, and querried on the 694 new vertebrate

mtDNA genomes uploaded on NCBI between June 17, 2017 and January 7, 2019. The ac-

curacy of classification was 99.6%, with only three reptile mtDNA genomes mis-classified as

amphibian genomes: Bavayia robusta, robust forest bavayia - a species of gecko, NC_034780,

Mesoclemmys hogei, Hoge’s toadhead turtle, NC_036346, and Gonatodes albogularis, yellow-

headed gecko, NC_035153.
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3.3.5 MoDMap visualization vs. ML-DSP quantitative classification re-

sults

The hypothesis tested by the next experiments was that the quantitative accuracy of the clas-

sification of DNA sequences by ML-DSP would be significantly higher than suggested by the

visual clustering of taxa in the MoDMap produced with the same pairwise distance matrix.

As an example, the MoDMap in Fig 3.4a, visualizes the distance matrix of mtDNA genomes

from family Cyprinidae (81 genomes) with its genera Acheilognathus (10 genomes), Rhodeus

(11 genomes), Schizothorax (19 genomes), Labeo (19 genomes), Acrossocheilus (12 genomes),

Onychostoma (10 genomes); only the genera with at least 10 genomes are considered. The

MoDMap seems to indicate an overlap between the clusters Acheilognathus and Rhodeus,

which is biologically plausible as these genera belong to the same sub-family Acheilognathi-

nae. However, when zooming in by plotting a MoDMap of only these two genera, as shown

in Fig 3.4b, one can see that the clusters are clearly separated visually. This separation is con-

firmed by the fact that the accuracy score of the Quadratic SVM classifier for the dataset in

Fig 3.4b is 100%. The same quantitative accuracy score for the classification of the dataset in

Fig 3.4a with Quadratic SVM is 91.8%, which intuitively is much better than the corresponding

MoDMap would suggest. This is likely due to the fact that the MoDMap is a three-dimensional

approximation of the positions of the genome-representing points in a multi-dimensional space

(the number of dimensions is (n − 1), where n is the number of sequences).

This being said, MoDMaps can still serve for exploratory purposes. For example, the

MoDMap in Fig 3.4a suggests that species of the genus Onychostoma (subfamily listed “un-

known” in NCBI) (yellow), may be genetically related to species of the genus Acrossocheilus

(subfamily Barbinae) (magenta). Upon further exploration of the distance matrix, one finds

that indeed the distance between the centroids of these two clusters is lower than the distance

between each of these two cluster-centroids to the other cluster-centroids. This supports the hy-

potheses, based on morphological evidence [60], that genus Onychostoma belongs to the sub-

family Barbinae, respectively that genus Onychostoma and genus Acrossocheilus are closely
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Figure 3.4: MoDMap of family Cyprinidae and its genera. (a): Genera Acheilognathus (blue,
10 genomes), Rhodeus (red, 11 genomes), Schizothorax (green, 19 genomes), Labeo (black, 19
genomes), Acrossocheilus (magenta, 12 genomes), Onychostoma (yellow, 10 genomes); (b):
Genera Acheilognathus and Rhodeus, which overlapped in (a), are visually separated when
plotted separately in (b). The classification accuracy with Quadratic SVM of the dataset in (a)
was 91.8%, and of the dataset in (b) was 100%.

related [61]. Note that this exploration, suggested by MoDMap and confirmed by calculations

based on the distance matrix, could not have been initiated based on ML-DSP alone (or other

supervised machine learning algorithms), as ML-DSP only predicts the classification of new

genomes into one of the taxa that it was trained on, and does not provide any other additional

information.

As another comparison point between MoDMaps and supervised machine learning outputs,

Fig 3.5a shows the MoDMap of the superorder Ostariophysi with its orders Cypriniformes

(643 genomes), Characiformes (31 genomes) and Siluriformes (107 genomes). The MoDMap

shows the clusters as overlapping, but the Quadratic SVM classifier that quantitatively classifies

these genomes has an accuracy of 99%. Indeed, the confusion matrix in Fig 3.5b shows that

Quadratic SVM mis-classifies only 8 sequences out of 781 (recall that, for m clusters, the

m × m confusion matrix has its rows labelled by the true classes and columns labelled by the

predicted classes; the cell (i, j) shows the number of sequences that belong to the true class i,
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and have been predicted to be of class j). This indicates that when the visual representation

in a MoDMap shows cluster overlaps, this may only be due to the dimensionality reduction

to three dimensions, while ML-DSP actually provides a much better quantitative classification

based on the same distance matrix.

3.3.6 Applications to other genomic datasets

The two experiments in this section indicate that the applicability of our method is not lim-

ited to mitochondrial DNA sequences. The first experiment, Fig 3.6a, shows the MoDMap

of all 4,721 complete dengue virus sequences available in NCBI on August 10, 2017, classi-

fied into the subtypes DENV-1 (2,008 genomes), DENV-2 (1,349 genomes), DENV-3 (1,010

genomes), DENV-4 (354 genomes). The average length of these complete viral genomes is

10,595 bp. Despite the dengue viral genomes being very similar, the classification accuracy

of this dataset into subtypes, using the Quadratic SVM classifier, was 100%. The second

experiment, Fig 3.6b, shows the MoDMap of 4,710 bacterial genomes, classified into three

phyla: Spirochaetes (437 genomes), Firmicutes (1,129 genomes), and Proteobacteria (3,144

genomes). The average length of these complete bacterial genomes is 104,150 bp, with the

maximum length being 499,136 bp and the minimum length being 20,019 bp. The classifica-

tion accuracy of the Quadratic SVM classifier for this dataset was 95.5%.

3.3.7 Comparison of ML-DSP with state-of-the-art alignment-based and

alignment-free tools

The computational experiments in this section compare ML-DSP with three state-of-the-art

alignment-based and alignment-free methods: the alignment-based tool MEGA7 [3] with align-

ment using MUSCLE [4] and CLUSTALW [5, 6], and the alignment-free method FFP (Feature

Frequency Profiles) [28].
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Figure 3.5: MoDMap of the superorder Ostariophysi, and the confusion matrix for the
Quadratic SVM classification of this superorder into orders. (a): MoDMap of orders Cyprini-
formes (blue, 643 genomes), Characiformes (red, 31 genomes), Siluriformes (green, 107
genomes). (b): The confusion matrix generated by Quadratic SVM, illustrating its true class vs.
predicted class performance (top-to-bottom and left-to-right: Cypriniformes, Characiformes,
Siluriformes). The numbers in the squares on the top-left to bottom-right diagonal (blue) in-
dicate the numbers of correctly classified DNA sequences, by order. The off-diagonal pink
squares indicate that 6 mtDNA genomes of the order Characiformes have been erroneously pre-
dicted to belong to the order Cypriniformes (center-left), and 2 mtDNA genomes of the order
Siluriformes have been erroneously predicted to belong to the order Cypriniformes (bottom-
left). The Quadratic SVM that generated this confusion matrix had a 99% classification accu-
racy.
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Figure 3.6: (a) MoDMap of 4,271 dengue virus genomes. The colours represent virus sub-
types DENV-1 (blue, 2, 008 genomes), DENV-2 (red, 1, 349 genomes), DENV-3 (green, 1, 010
genomes), DENV-4 (black, 354 genomes); The classification accuracy of the Quadratic SVM
classifier for this dataset was 100%. (b) MoDMap of 4,710 bacterial genomes. The colours
represent bacterial phyla: Spirochaetes (blue, 437 genomes), Firmicutes (red, 1,129 genomes),
Proteobacteria (green, 3,144 genomes). The accuracy of the Quadratic SVM classifier for this
dataset was 95.5%.

For this performance analysis we selected three datasets. The first two datasets are bench-

mark datasets used in other genetic sequence comparison studies [47]: The first dataset com-

prises 38 influenza viral genomes, and the second dataset comprises 41 mammalian complete

mtDNA sequences. The third datase, of our choice, is much larger, consisting of 4, 322 verte-

brate complete mtDNA sequences, and was selected to compare scalability.

For the alignment-based methods, we used the distance matrix calculated in MEGA7 from

sequences aligned with either MUSCLE or CLUSTALW. For the alignment-free FFP, we used

the default value of k = 5 for k-mers (a k-mer is any DNA sequence of length k; any increase

in the value of the parameter k, for the first dataset, resulted in a lower classification accuracy

score for FFP). For ML-DSP we chose the Integer numerical representation and computed the

average classification accuracy over all six classifiers for the first two datasets, and over all

classifiers except Subspace Discriminant and Subspace KNN for the third dataset.
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Table 3.5 shows the performance comparison (classification accuracy and processing time)

of these four methods. The processing time included all computations, starting from reading

the datasets to the completion of the distance matrix - the common element of all four methods.

The listed processing times do not include the time needed for the computation of phylogenetic

trees, MoDMap visualizations, or classification.

Table 3.5: Comparison of classification accuracy and processing time for the distance matrix
computation with MEGA7(MUSCLE), MEGA7(CLUSTALW), FPP, and ML-DSP.

DataSet Parameter MEGA7
(MUSCLE)

MEGA7
(CLUSTALW) FFP ML-DSP

Influenza Virus
(38 sequences)

Average Length: 1407bp

Maximum Classification Accuracy 97.4% 97.4% 68.4% 100%
Average Classification Accuracy 93.4% 95.6% 57.0% 94.7%
Processing Time 7.44 sec 2 min 14 sec 0.2 sec 0.2 sec

Mammalia
(41 sequences)

Average Length: 16647bp

Maximum Classification Accuracy 95.1% 95.1% 49.6% 92.7%
Average Classification Accuracy 89.7% 90.7% 41.5% 87.8%
Processing Time 11 min 15sec 5 hr 38 min 0.3 sec 0.3 sec

Vertebrates
(4322 sequences)

Average Length: 16806bp

Maximum Classification Accuracy —— —— 61.7% 99.7%
Average Classification Accuracy —— —— 48.3% 98.3%
Processing Time >2 hours >6 hours 94 sec 28 sec

As seen in Table 3.5 (columns 3, 4, and 6) ML-DSP overwhelmingly outperforms the

alignment-based software MEGA7(MUSCLE/CLUSTALW) in terms of processing time. In

terms of accuracy, for the smaller virus and mammalian benchmark datasets, the average ac-

curacies of ML-DSP and MEGA7(MUSCLE/CLUSTALW) were comparable, probably due to

the small size of the training set for ML-DSP. The advantage of ML-DSP over the alignment-

based tools became more apparent for the larger vertebrate dataset, where the accuracies of

ML-DSP and the alignment-based tools could not even be compared, as the alignment-based

tools were so slow that they had to be terminated. In contrast, ML-DSP classified the entire

set of 4,322 vertebrate mtDNA genomes in 28 seconds, with average classification accuracy

98.3%. This indicates that ML-DSP is significantly more scalable than the alignment-based

MEGA7(MUSCLE/CLUSTALW), as it can speedily and accurately classify datasets which

alignment-based tools cannot even process.

As seen in Table 3.5 (columns 5 and 6), ML-DSP significantly outperforms the alignment-

free software FFP in terms of accuracy (average classification accuracy 98.3% for ML-DSP vs.
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48.3% for FFP, for the large vertebrate dataset), while at the same time being overall faster.

This comparison also indicates that, for these datasets, both alignment-free methods (ML-

DSP and FFP) have an overwhelming advantage over the alignment-based methods (MEGA7

(MUSCLE/CLUSTALW)) in terms of processing time. Furthermore, when comparing the two

alignment-free methods with each other, ML-DSP significantly outperforms FFP in terms of

classification accuracy.

As another angle of comparison, Fig 3.7 displays the MoDMaps of the first benchmark

dataset (38 influenza virus genomes) produced from the distance matrices generated by FFP,

MEGA7 (MUSCLE), MEGA7 (CLUSTALW), and ML-DSP respectively. Fig 3.7a shows that

with FFP it is difficult to observe any visual separation of the dataset into subtype clusters.

Fig 3.7b, MEGA7 (MUSCLE), and Fig 3.7c MEGA7 (CLUSTALW) show overlaps of the

clusters of points representing subtypes H1N1 and H2N2. In contrast, Fig 3.7d, which visual-

izes the distance matrix produced by ML-DSP, shows a clear separation among all subtypes.

Finally Figures 3.8 and 3.9 display the phylogenetic trees generated by each of the four

methods considered. Fig 3.8a, the tree generated by FFP, has many misclassified genomes,

which was expected given the MoDMap visualization of its distance matrix in Fig 3.7a. Fig 3.9a

displays the phylogenetic tree generated by MEGA7, which was the same for both MUSCLE

and CLUSTALW: It has only one incorrectly classified H5N1 genome, placed in middle of

H1N1 genomes. Fig 3.8b and Fig 3.9b display the phylogenetic tree generated using the dis-

tance produced by ML-DSP (shown twice, in parallel with the other trees, for ease of compar-

ison). ML-DSP classified all genomes correctly.

3.3.8 Discussion

The computational efficiency of ML-DSP is due to the fact that it is alignment-free (hence it

does not need multiple sequence alignment), while the combination of 1D numerical repre-

sentations, Discrete Fourier Transform and Pearson Correlation Coefficient makes it extremely

computationally time efficient, and thus scalable.
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Figure 3.7: MoDMaps of the influenza virus dataset from Table 3.5, based on the four
methods. The points represent viral genomes of subtypes H1N1 (red, 13 genomes), H2N2
(black, 3 genomes), H5N1 (blue, 11 genomes), H7N3 (magenta, 5 genomes), H7N9 (green,
6 genomes); ModMaps are generated using distance matrices computed with (a) FFP; (b)
MEGA7(MUSCLE); (c) MEGA7(CLUSTALW); (d) ML-DSP.
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CY014788.1 Influenza A virus (A/turkey/Minnesota/1/1988(H7N9)) segment 6, complete sequence

CY186004.1 Influenza A virus (A/mallard/Minnesota/AI09-3770/2009(H7N9)) neuraminidase (NA) gene, complete cds

KF259688.1 Influenza A virus (A/duck/Jiangxi/3096/2009(H7N9)) segment 6 neuraminidase (NA) gene, complete cds

KC609801.1 Influenza A virus (A/wild duck/Korea/SH19-47/2010(H7N9)) segment 6 neuraminidase (NA) gene, complete cds

KF259734.1 Influenza A virus (A/chicken/Rizhao/713/2013(H7N9)) segment 6 neuraminidase (NA) gene, complete cds

KF938945.1 Influenza A virus (A/chicken/Jiangsu/1021/2013(H7N9)) segment 6 neuraminidase (NA) gene, complete cds

CY039321.1 Influenza A virus (A/avian/Delaware Bay/226/2006(H7N3)) segment 6, complete sequence

CY076231.1 Influenza A virus (A/American green-winged teal/California/44242-906/2007(H7N3)) segment 6, complete sequence

AY646080.1 Influenza A virus (A/chicken/British Columbia/GSC_human_B/04(H7N3)) neuraminidase (NA) gene, complete cds

EU500854.1 Influenza A virus (A/American black duck/NB/2538/2007(H7N3)) segment 6, complete sequence

CY129336.1 Influenza A virus (A/American black duck/New Brunswick/02490/2007(H7N3)) neuraminidase (NA) gene, complete cds

DQ017487.1 Influenza A virus (A/mallard/Postdam/178-4/83(H2N2)) from Germany segment 6, complete sequence

CY005540.1 Influenza A virus (A/duck/Hong Kong/319/1978(H2N2)) segment 6, complete sequence

JX081142.1 Influenza A virus (A/emperor goose/Alaska/44297-260/2007(H2N2)) segment 6 neuraminidase (NA) gene, complete cds

FM177121.1 Influenza A virus (A/chicken/Germany/R3234/2007(H5N1)) NA gene for neuraminidase

AF509102.2 Influenza A virus (A/Chicken/Hong Kong/822.1/01 (H5N1)) neuraminidase (NA) gene, complete cds

AB684161.1 Influenza A virus (A/chicken/Miyazaki/10/2011(H5N1)) NA gene for neuraminidase, complete cds

JF699677.1 Influenza A virus (A/mandarin duck/Korea/K10-483/2010(H5N1)) segment 6 neuraminidase (NA) gene, complete cds

KF572435.1 Influenza A virus (A/wild bird/Hong Kong/07035-1/2011(H5N1)) segment 6 neuraminidase (NA) gene, complete cds

HQ185381.1 Influenza A virus (A/chicken/Eastern China/XH222/2008(H5N1)) neuraminidase (NA) gene, complete cds

HQ185383.1 Influenza A virus (A/duck/Eastern China/JS017/2009(H5N1)) segment 6 neuraminidase (NA) gene, complete cds

EU635875.1 Influenza A virus (A/chicken/Yunnan/chuxiong01/2005(H5N1)) neuraminidase (NA) gene, complete cds

AM914017.1 Influenza A virus (A/domestic duck/Germany/R1772/07(H5N1)) N1 gene for neuraminidase, genomic RNA

EF541464.1 Influenza A virus (A/chicken/Korea/es/2003(H5N1)) segment 6 neuraminidase (NA) gene, complete cds

GU186511.1 Influenza A virus (A/turkey/VA/505477-18/2007(H5N1)) segment 6 neuraminidase (NA) gene, complete cds

AM157358.1 Influenza A virus (A/mallard/France/691/2002(H1N1)) NA gene for neuraminidase, genomic RNA

AB546159.1 Influenza A virus (A/pintail/Miyagi/1472/2008(H1N1)) NA gene for neuraminidase, complete cds

HQ897966.1 Influenza A virus (A/mallard/Korea/KNU YP09/2009(H1N1)) segment 6 neuraminidase (NA) gene, complete cds

AB470663.1 Influenza A virus (A/duck/Hokkaido/w73/2007(H1N1)) NA gene for neuraminidase, complete cds

HM370969.1 Influenza A virus (A/turkey/Ontario/FAV110-4/2009(H1N1)) segment 6 neuraminidase (NA) gene, complete cds

KM244078.1 Influenza A virus (A/turkey/Virginia/4135/2014(H1N1)) segment 6 neuraminidase (NA) gene, complete cds

EU026046.2 Influenza A virus (A/mallard/Maryland/352/2002(H1N1)) segment 6 neuraminidase (NA) gene, complete cds

FJ357114.1 Influenza A virus (A/mallard/MD/26/2003(H1N1)) segment 6 neuraminidase (NA) gene, complete cds

CY149630.1 Influenza A virus (A/thick-billed murre/Canada/1871/2011(H1N1)) neuraminidase (NA) gene, complete cds

CY140047.1 Influenza A virus (A/mallard/Minnesota/Sg-00620/2008(H1N1)) neuraminidase (NA) gene, complete cds

CY138562.1 Influenza A virus (A/mallard/Nova Scotia/00088/2010(H1N1)) neuraminidase (NA) gene, complete cds

KC608160.1 Influenza A virus (A/duck/Guangxi/030D/2009(H1N1)) segment 6 neuraminidase (NA) gene, complete cds

GQ411894.1 Influenza A virus (A/dunlin/Alaska/44421-660/2008(H1N1)) segment 6 neuraminidase (NA) gene, complete cds
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KF259734.1 Influenza A virus (A/chicken/Rizhao/713/2013(H7N9)) segment 6 neuraminidase (NA) gene, complete cds

KF938945.1 Influenza A virus (A/chicken/Jiangsu/1021/2013(H7N9)) segment 6 neuraminidase (NA) gene, complete cds

KF259688.1 Influenza A virus (A/duck/Jiangxi/3096/2009(H7N9)) segment 6 neuraminidase (NA) gene, complete cds

DQ017487.1 Influenza A virus (A/mallard/Postdam/178-4/83(H2N2)) from Germany segment 6, complete sequence

CY005540.1 Influenza A virus (A/duck/Hong Kong/319/1978(H2N2)) segment 6, complete sequence

CY186004.1 Influenza A virus (A/mallard/Minnesota/AI09-3770/2009(H7N9)) neuraminidase (NA) gene, complete cds

KC609801.1 Influenza A virus (A/wild duck/Korea/SH19-47/2010(H7N9)) segment 6 neuraminidase (NA) gene, complete cds

CY014788.1 Influenza A virus (A/turkey/Minnesota/1/1988(H7N9)) segment 6, complete sequence

CY149630.1 Influenza A virus (A/thick-billed murre/Canada/1871/2011(H1N1)) neuraminidase (NA) gene, complete cds

KC608160.1 Influenza A virus (A/duck/Guangxi/030D/2009(H1N1)) segment 6 neuraminidase (NA) gene, complete cds

EU026046.2 Influenza A virus (A/mallard/Maryland/352/2002(H1N1)) segment 6 neuraminidase (NA) gene, complete cds

FJ357114.1 Influenza A virus (A/mallard/MD/26/2003(H1N1)) segment 6 neuraminidase (NA) gene, complete cds

CY138562.1 Influenza A virus (A/mallard/Nova Scotia/00088/2010(H1N1)) neuraminidase (NA) gene, complete cds

GQ411894.1 Influenza A virus (A/dunlin/Alaska/44421-660/2008(H1N1)) segment 6 neuraminidase (NA) gene, complete cds

FM177121.1 Influenza A virus (A/chicken/Germany/R3234/2007(H5N1)) NA gene for neuraminidase

HM370969.1 Influenza A virus (A/turkey/Ontario/FAV110-4/2009(H1N1)) segment 6 neuraminidase (NA) gene, complete cds

CY140047.1 Influenza A virus (A/mallard/Minnesota/Sg-00620/2008(H1N1)) neuraminidase (NA) gene, complete cds

JX081142.1 Influenza A virus (A/emperor goose/Alaska/44297-260/2007(H2N2)) segment 6 neuraminidase (NA) gene, complete cds

CY039321.1 Influenza A virus (A/avian/Delaware Bay/226/2006(H7N3)) segment 6, complete sequence

AY646080.1 Influenza A virus (A/chicken/British Columbia/GSC_human_B/04(H7N3)) neuraminidase (NA) gene, complete cds

HQ185381.1 Influenza A virus (A/chicken/Eastern China/XH222/2008(H5N1)) neuraminidase (NA) gene, complete cds

HQ185383.1 Influenza A virus (A/duck/Eastern China/JS017/2009(H5N1)) segment 6 neuraminidase (NA) gene, complete cds

EU500854.1 Influenza A virus (A/American black duck/NB/2538/2007(H7N3)) segment 6, complete sequence

AM914017.1 Influenza A virus (A/domestic duck/Germany/R1772/07(H5N1)) N1 gene for neuraminidase, genomic RNA

CY129336.1 Influenza A virus (A/American black duck/New Brunswick/02490/2007(H7N3)) neuraminidase (NA) gene, complete cds

CY076231.1 Influenza A virus (A/American green-winged teal/California/44242-906/2007(H7N3)) segment 6, complete sequence

AB684161.1 Influenza A virus (A/chicken/Miyazaki/10/2011(H5N1)) NA gene for neuraminidase, complete cds

JF699677.1 Influenza A virus (A/mandarin duck/Korea/K10-483/2010(H5N1)) segment 6 neuraminidase (NA) gene, complete cds

AF509102.2 Influenza A virus (A/Chicken/Hong Kong/822.1/01 (H5N1)) neuraminidase (NA) gene, complete cds

EU635875.1 Influenza A virus (A/chicken/Yunnan/chuxiong01/2005(H5N1)) neuraminidase (NA) gene, complete cds

KM244078.1 Influenza A virus (A/turkey/Virginia/4135/2014(H1N1)) segment 6 neuraminidase (NA) gene, complete cds

AM157358.1 Influenza A virus (A/mallard/France/691/2002(H1N1)) NA gene for neuraminidase, genomic RNA
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Figure 3.8: Phylogenetic tree comparison: FFP with ML-DSP. The phylogenetic tree generated
for 38 influenza virus genomes using (a): FFP (b): ML-DSP.
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Figure 3.9: Phylogenetic tree comparison: MEGA7(MUSCLE/CLUSTALW) with ML-
DSP. The phylogenetic tree generated for 38 influenza virus genomes using (a):
MEGA7(MUSCLE/CLUSTALW) (b): ML-DSP.

ML-DSP is not without limitations. We anticipate that the need for equal length sequences

and use of length normalization could introduce issues with examination of small fragments

of larger genome sequences. Usually genomes vary in length and thus length normalization

always results in adding (up-sampling) or losing (down-sampling) some information. Although

the Pearson Correlation Coefficient can distinguish the signal patterns even in small sequence

fragments, and we did not find any considerable disadvantage while considering complete

mitochondrial DNA genomes with their inevitable length variations, length normalization may
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cause issues when we deal with the fragments of genomes, and the much larger nuclear genome

sequences.

Lastly, ML-DSP has two drawbacks, inherent in any supervised machine learning algo-

rithm. The first is that ML-DSP is a black-box method which, while producing a highly ac-

curate classification prediction, does not offer a (biological) explanation for its output. The

second is that it relies on the existence of a training set from which it draws its “knowledge”,

that is, a set consisting of known genomic sequences and their taxonomic labels. ML-DSP uses

such a training set to “learn” how to classify new sequences into one of the taxonomic classes

that it was trained on, but it is not able to assign it to a taxon that it has not been exposed to.

3.4 Conclusions

We proposed ML-DSP, an ultrafast and accurate alignment-free supervised machine learning

classification method based on digital signal processing of DNA sequences (and its software

implementation). ML-DSP successfully addresses the limitations of alignment-free methods

identified in [7], as follows:

(i) Lack of software implementation: ML-DSP is supplemented with freely available source-

code. The ML-DSP software can be used with the provided datasets or any other cus-

tom dataset and provides the user with any (or all) of: pairwise distances, 3D sequence

interrelationship visualization, phylogenetic trees, or classification accuracy scores. A

quantitative comparison showed that ML-DSP significantly outperforms state-of-the-art

alignment-based MEGA7 (MUSCLE/CLUSTALW) and alignment-free (FFP) software

in terms of speed and classification accuracy.

(ii) Use of simulated sequences or very small real-world datasets: ML-DSP was success-

fully tested on a variety of large real-world datasets, comprizing thousands of complete

genomes, such as all complete mitochondrial DNA sequences available on NCBI at the
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time of this study, and similarly large sets of viral genomes and bacterial genomes. ML-

DSP was tested in different evolutionary scenarios such as different levels of taxonomy

(from domain to genus), small dataset (38 sequences), large dataset (4,322 sequences),

short sequences (1,136 bp), long sequences (1,999,595 bp), benchmark datasets of in-

fluenza virus and mammalian mtDNA genomes etc.

(iii) Memory overhead: ML-DSP uses neither k-mers nor any compression algorithms. Thus,

scalability does not cause an exponential memory overhead, and a high classification ac-

curacy is preserved with large datasets.

In addition, we provided a comprehensive quantitative analysis of all 13 one-dimensional

numerical representations of DNA sequences used in the Genomic Signal Processing literature

and found that, on average, the “PP”, “Just-A”, and “Real” representations performed better

than others. We also showed that the classification accuracy of ML-DSP was significantly

higher than the corresponding MoDMap visualizations of the dataset would indicate, likely

due to the inherent dimensionality limitations of the latter. Lastly, we showed the potential for

ML-DSP to be used for classifications of other DNA sequence genomic datasets, such as large

datasets of complete viral or bacterial genomes.

3.5 Availability and Requirements

Project name: ML-DSP

Project home page: https://github.com/grandhawa/MLDSP

Operating system(s): Microsoft Windows

Programming language: MATLAB R2017A, license no. 964054

License: Creative Commons Attribution License

Any restrictions to use by non-academics: MATLAB license required

https://github.com/grandhawa/MLDSP
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Chapter 4

MLDSP-GUI: An alignment-free

standalone tool with an interactive

graphical user interface for DNA sequence

comparison and analysis

4.1 Introduction

Alignment-based methods have been successfully used for genome classification, but their use

has limitations such as the need for contiguous homologous sequences, the heavy memory/time

computational cost, and the dependence on a priori assumptions about, e.g., the gap penalty

and threshold values for statistical parameters. To address these challenges, alignment-free

methods have been proposed. [7] defined two categories of alignment-free methods: those

that use fixed-length word (oligomer) frequencies, and those that do not require finding fixed-

length segments. MLDSP-GUI (Machine Learning with Digital Signal Processing and Graph-

ical User Interface) combines both approaches in that it can use one-dimensional numerical

representations of DNA sequences that do not require calculating k-mer (oligomers of length
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k) frequencies, see [5] but, in addition, it can also use k-mer dependent two-dimensional Chaos

Game Representation (CGR) of DNA sequences, see [1, 3].

While alignment-free methods address some of the limitations of alignment-based methods,

they still face some challenges. First, most of the existing alignment-free methods lack software

implementations, which is necessary for methods to be compared on common datasets. Second,

among methods that have software implementations available, the majority have been tested

only on simulated sequences or on small real-world datasets. Third, the scalability issue in the

form of, e.g., excessive memory overhead and execution time, still remains unsolved for large

values of k, in the case of k-mer based methods.

MLDSP-GUI is a software tool that addresses all of these major challenges and introduces

novel features and applications such as: An interactive graphical user interface; Output as ei-

ther a 3D plot or phylogenetic tree in Newick format; Inter-cluster distance calculation; k-mer

frequency calculation (k = 2, 3, 4) for analysis of under- and over-representation of oligomers;

Visualisation of DNA sequences as two-dimensional CGRs; Use of Pearson Correlation Co-

efficient (PCC), Euclidean or Manhattan distances; Success in classifying large, real-world,

datasets. The use of k-mer independent one-dimensional numerical representations and Dis-

crete Fourier Transform make MLDSP-GUI ultrafast, memory-economical and scalable, while

the use of supervised machine learning leads to classification accuracies over 92%. Lastly,

MLDSP-GUI is user-friendly and thus ideally designed for cross-disciplinary applications.

4.2 Materials and methods

MLDSP-GUI is an interactive software tool which implements and significantly augments the

ML-DSP approach proposed in [5] for the classification of genomic sequences. It is a pipeline

which consists of: (i) Computing numerical representations of DNA sequences, (ii) apply-

ing Discrete Fourier Transform (DFT), (iii) calculating pairwise distances, and (iv) classifying

using supervised machine learning (see Supplementary Material). More precisely, numeri-
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Figure 4.1: Screenshot of MLDSP-GUI showing a MoDMap3D of 7,881 full mtDNA genomes
of the Flavivirus genus, classified into species. More details in Supplementary Material.

cal representations are used to represent genomic sequences as discrete numerical sequences

that can be treated as digital signals. The corresponding magnitude spectra are then obtained

by applying DFT to the numerically represented sequences. A distance measure (PCC, Eu-

clidean, or Manhattan distance) is used to calculate pairwise distances between magnitude

spectra. Lastly, supervised machine learning classifiers are trained on feature vectors (con-

sisting of the columns of the pairwise distance matrix of the training set), and then used to

classify new sequences. We use 10-fold cross-validation to verify the classification accuracy.

Independently, classical multidimensional scaling, see [2, 4, 6], generates a visualization of the

classification results in the form of a 3D Molecular Distance Map (MoDMap3D) that displays

the dissimilarity-based inter-sequence relationships.

4.3 Software description

MLDSP-GUI not only gives the user the option to visualize an approximation of the inter-

relationships among sequences in three-dimensional space, but also provides precise quantita-
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tive information for further analysis. The distance matrix provides the quantitative dissimilarity

between any two points/sequences, while the classification accuracy scores and confusion ma-

trix give a measure of the classification success for each individual classifier. Figure 1 shows

a screenshot of MLDSP-GUI used to classify a dataset of 7,881 full mtDNA genomes of the

Flavivirus genus. The computation of the distance matrix took 12 seconds (PCC, CGR, k = 6),

the one-time training of the four classifiers and 10-fold cross-validation accuracy computation

took 22 mins, and the classification of a new sequence 1 min.

MLDSP-GUI takes DNA sequences in fasta file format as input. Users can select any of the

provided datasets, or can input their own dataset. The tool is capable of processing a variety of

DNA sequences including natural, simulated, or synthetic sequences. The 3D interactive plot

can be rotated, zoomed in/out, and explored by clicking on any of the points. It auto-updates the

selected point/sequence statistics such as sequence length, k-mer frequencies, name of parent

fasta file, accession number, etc. The supervised machine learning component gives MLDSP-

GUI the capability to predict the taxon of any new sequence, provided that it has been trained

on a dataset containing that taxon. MLDSP-GUI is implemented using MATLAB R2019a App

Designer, license no. 964054. A single executable platform-independent file is provided that

can be used to install and run the software tool. The Supplementary Material file provides

additional information on MLDSP-GUI features, as well as the provided datasets.
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Chapter 5

Machine learning using intrinsic genomic

signatures for rapid classification of novel

pathogens: COVID-19 case study

5.1 Introduction

Coronaviruses are single-stranded positive-sense RNA viruses that are known to contain some

of the largest viral genomes, up to around 32 kbp in length [1, 2, 3, 4, 5]. After increases in the

number of coronavirus genome sequences available following efforts to investigate the diversity

in the wild, the family Coronaviridae now contains four genera (International Committee on

Taxonomy of Viruses, [6]). While those species that belong to the genera Alphacoronavirus

and Betacoronavirus can infect mammalian hosts, those in Gammacoronavirus and the recently

defined Deltacoronavirus mainly infect avian species [4, 7, 8, 9]. Phylogenetic studies have

revealed a complex evolutionary history, with coronaviruses thought to have ancient origins

and recent crossover events that can lead to cross-species infection [8, 10, 11, 12]. Some of

the largest sources of diversity for coronaviruses belong to the strains that infect bats and birds,

providing a reservoir in wild animals for recombination and mutation that may enable cross-
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species transmission into other mammals and humans [4, 7, 8, 10, 13].

Like other RNA viruses, coronavirus genomes are known to have genomic plasticity, and

this can be attributed to several major factors. RNA-dependent RNA polymerases (RdRp)

have high mutation rates, reaching from 1 in 1000 to 1 in 10000 nucleotides during replication

[7, 14, 15]. Coronaviruses are also known to use a template switching mechanism which

can contribute to high rates of homologous RNA recombination between their viral genomes

[9, 16, 17, 18, 19, 20]. Furthermore, the large size of coronavirus genomes is thought to be

able to accommodate mutations to genes [7]. These factors help contribute to the plasticity and

diversity of coronavirus genomes today.

The highly pathogenic human coronaviruses, Severe Acute Respiratory Syndrome coron-

avirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) belong

to lineage B (sub-genus Sarbecovirus) and lineage C (sub-genus Merbecovirus) of Betacoron-

avirus, respectively [9, 21, 22, 23]. Both result from zoonotic transmission to humans and lead

to symptoms of viral pneumonia, including fever, breathing difficulties, and more [24, 25]. Re-

cently, an unidentified pneumonia disease with similar symptoms caused an outbreak in Wuhan

and is thought to have started from a local fresh seafood market [26, 27, 28, 29, 30]. This was

later attributed to a novel coronavirus (the COVID-19 virus), and represents the third major

zoonotic human coronavirus of this century [31]: On February 28, 2020, the World Health

Organization set the COVID-19 risk assessment for regional and global levels to “Very High”

[32].

From analyses employing whole genome to viral protein-based comparisons, the COVID-

19 virus is thought to belong to lineage B (Sarbecovirus) of Betacoronavirus. From phyloge-

netic analysis of the RdRp protein, spike proteins, and full genomes of the COVID-19 virus and

other coronaviruses, it was found that the COVID-19 virus is most closely related to two bat

SARS-like coronaviruses, bat-SL-CoVZXC21 and bat-SL-CoVZC45, found in Chinese horse-

shoe bats Rhinolophus sinicus [12, 33, 34, 35, 36, 37]. Along with the phylogenetic data,

the genome organization of the COVID-19 virus was found to be typical of lineage B (Sar-
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becovirus) Betacoronaviruses [33]. From phylogenetic analysis of full genome alignment and

similarity plots, it was found that the COVID-19 virus has the highest similarity to the bat coro-

navirus RaTG13 [38]. Close associations to bat coronavirus RaTG13 and two bat SARS-like

CoVs (ZC45 and ZXC21) are also supported in alignment-based phylogenetic analyses [38].

Within the COVID-19 virus sequences, over 99% sequence similarity and a lack of diversity

within these strains suggest a common lineage and source, with support for recent emergence

of the human strain [12, 31]. There is ongoing debate whether the COVID-19 virus arose fol-

lowing recombination with previously identified bat and unknown coronaviruses [39] or arose

independently as a new lineage to infect humans [38]. In combination with the identification

that the angiotensin converting enzyme 2 (ACE2) protein is a receptor for COVID-19 virus, as

it is for SARS and other Sarbecovirus strains, the hypothesis that the COVID-19 virus origi-

nated from bats is deemed very likely [12, 33, 35, 38, 40, 41, 42, 43, 44].

All analyses performed thus far have been alignment-based and rely on the annotations of

the viral genes. Though alignment-based methods have been successful in finding sequence

similarities, their application can be challenging in many cases [45, 46]. It is realistically im-

possible to analyze thousands of complete genomes using alignment-based methods due to

the heavy computation time. Moreover, the alignment demands the sequences to be continu-

ously homologous which is not always the case. Alignment-free methods [47, 48, 49, 50, 51]

have been proposed in the past as an alternative to address the limitations of the alignment-

based methods. Comparative genomics beyond alignment-based approaches have benefited

from the computational power of machine learning. Machine learning-based alignment-free

methods have also been used successfully for a variety of problems including virus classifi-

cation [49, 50, 51]. An alignment-free approach [49] was proposed for subtype classification

of HIV-1 genomes and achieved ∼ 97% classification accuracy. MLDSP [50], with the use

of a broad range of 1D numerical representations of DNA sequences, has also achieved very

high levels of classification accuracy with viruses. Even rapidly evolving, plastic genomes

of viruses such as Influenza and Dengue are classified down to the level of strain and sub-
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type, respectively with 100% classification accuracy. MLDSP-GUI [51] provides an option

to use 2D Chaos Game Representation (CGR) [52] as numerical representation of DNA se-

quences. CGR’s have a longstanding use in species classification with identification of biases

in sequence composition [48, 51, 52]. MLDSP-GUI has shown 100% classification accuracy

for Flavivirus genus to species classification using 2D CGR as numerical representation [51].

MLDSP and MLDSP-GUI have demonstrated the ability to identify the genomic signatures

(a species-specific pattern known to be pervasive throughout the genome) with species level

accuracy that can be used for sequence (dis)similarity analyses. In this study, we use MLDSP

[50] and MLDSP-GUI [51] with CGR as a numerical representation of DNA sequences to as-

sess the classification of the COVID-19 virus from the perspective of machine learning-based

alignment-free whole genome comparison of genomic signatures.Using MLDSP and MLDSP-

GUI, we confirm that the COVID-19 virus belongs to the Betacoronavirus, while its genomic

similarity to the sub-genus Sarbecovirus supports a possible bat origin.

This paper demonstrates how machine learning using intrinsic genomic signatures can pro-

vide rapid alignment-free taxonomic classification of novel pathogens. Our method delivers

accurate classifications of the COVID-19 virus without a priori biological knowledge, by a

simultaneous processing of the geometric space of all relevant viral genomes. The main con-

tributions are:

• Identifying intrinsic viral genomic signatures, and utilizing them for a real-time and

highly accurate machine learning-based classification of novel pathogen sequences, such

as the COVID-19 virus;

• A general-purpose bare-bones approach, which uses raw DNA sequences alone and does

not have any requirements for gene or genome annotation;

• The use of a “decision tree" approach to supervised machine learning (paralleling taxo-

nomic ranks), for successive refinements of taxonomic classification.



86 Chapter 5. COVID-19 case study

• A comprehensive and “in minutes” analysis of a dataset of 5538 unique viral genomic se-

quences, for a total of 61.8 million bp analyzed, with high classification accuracy scores

at all levels, from the highest to the lowest taxonomic rank;

• The use of Spearman’s rank correlation analysis to confirm our results and the relatedness

of the COVID-19 virus sequences to the known genera of the family Coronaviridae and

the known sub-genera of the genus Betacoronavirus.

5.2 Materials and methods

The Wuhan seafood market pneumonia virus (COVID-19 virus/SARS-CoV-2) isolate Wuhan-

Hu-1 complete reference genome of 29903 bp was downloaded from the National Center for

Biotechnology Information (NCBI) database on January 23, 2020. All of the available 28 se-

quences of COVID-19 virus and the bat Betacoronavirus RaTG13 from the GISAID platform,

and two additional sequences (bat-SL-CoVZC45, and bat-SL-CoVZXC21) from the NCBI, were

downloaded on January 27, 2019. All of the available viral sequences were downloaded from

the Virus-Host DB (14688 sequences available on January 14, 2020). Virus-Host DB covers

the sequences from the NCBI RefSeq (release 96, September 9, 2019) and GenBank (release

233.0, August 15, 2019). All sequences shorter than 2000 bp and longer than 50000 bp were

ignored to address possible issues arising from sequence length bias. Accession numbers for

all the sequences used in this study can be found in supplementary tables D.S2 and D.S3.

MLDSP [50] and MLDSP-GUI [51] were used as the machine learning-based alignment-

free methods for complete genome analyses. As MLDSP-GUI is an extension of the MLDSP

methodology, we will refer to the method hereafter as MLDSP-GUI. Each genomic sequence

is mapped into its respective genomic signal (a discrete numeric sequence) using a numerical

representation. For this study, we use a two-dimensional k-mer (oligomers of length k) based

numerical representation known as Chaos Game Representation (CGR) [52]. The k-mer value

7 is used for all the experiments. The value k = 7 achieved the highest accuracy scores for
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the HIV-1 subtype classification [49] and this value could be relevant for other virus related

analyses. The magnitude spectra are then calculated by applying Discrete Fourier Transform

(DFT) to the genomic signals [50]. A pairwise distance matrix is then computed using the

Pearson Correlation Coefficient (PCC) [53] as a distance measure between magnitude spectra.

The distance matrix is used to generate the 3D Molecular Distance Maps (MoDMap3D) [54]

by applying the classical Multi-Dimensional Scaling (MDS) [55]. MoDMap3D represents an

estimation of the relationship among sequences based on the genomic distances between the

sequences. The feature vectors are constructed from the columns of the distance matrix and

are used as an input to train six supervised-learning based classification models (Linear Dis-

criminant, Linear SVM, Quadratic SVM, Fine KNN, Subspace Discriminant, and Subspace

KNN) [50]. A 10-fold cross-validation is used to train, and test the classification models and

the average of 10 runs is reported as the classification accuracy. The trained machine learn-

ing models are then used to test the COVID-19 virus sequences. The unweighted pair group

method with arithmetic mean (UPGMA) [56] and neighbor-joining [57] phylogenetic trees are

also computed using the pairwise distance matrix.

In this paper, MLDSP-GUI is augmented by a decision tree approach to the supervised

machine learning component and a Spearman’s rank correlation coefficient analysis for result

validation. The decision tree parallels the taxonomic classification levels, and is necessary so

as to minimize the number of calls to the supervised classifier module, as well as to main-

tain a reasonable number of clusters during each supervised training session. For validation of

MLDSP-GUI results using CGR as a numerical representation, we use Spearman’s rank corre-

lation coefficient [58, 59, 60, 61], as follows. The frequency of each k-mer is calculated in each

genome. Due to differences in genome length between species, proportional frequencies are

computed by dividing each k-mer frequency by the length of the respective sequence. To de-

termine whether there is a correlation between k-mer frequencies in COVID-19 virus genomes

and specific taxonomic groups, a Spearman’s rank correlation coefficient test is conducted for

k = 1 to k = 7.
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5.3 Results

Table 5.1 provides the details of three datasets Test-1, Test-2, Test-3a and Test-3b used for

analyses with MLDSP-GUI. Each dataset’s composition (clusters with number of sequences),

the respective sequence length statistics, and results of MLDSP-GUI after applying 10-fold

cross-validation as classification accuracy scores are shown. The classification accuracy scores

for all six classification models are shown with their average, see Table 5.1.

As shown in Table 5.1, for the first test (Test-1), we organized the dataset of sequences into

12 clusters (11 families, and Riboviria realm). Only the families with at least 100 sequences

were considered. The Riboviria cluster contains all families that belong to the realm Riboviria.

For the clusters with more than 500 sequences, we selected 500 sequences at random. Our

method can handle all of the available 14668 sequences, but using imbalanced clusters, in

regard to the number of sequences, can introduce an unwanted bias. After filtering out the se-

quences, our pre-processed dataset is left with 3273 sequences organized into 12 clusters (Ade-

noviridae, Anelloviridae, Caudovirales, Geminiviridae, Genomoviridae, Microviridae, Orter-

virales, Papillomaviridae, Parvoviridae, Polydnaviridae, Polyomaviridae, and Riboviria). We

used MLDSP-GUI with CGR as the numerical representation at k = 7. The maximum clas-

sification accuracy of 94.9% is obtained using the Quadratic SVM model. The respective

MoDMap3D is shown in Fig 5.1(a). All six classification models trained on 3273 sequences

were used to classify (predict the labels of) the 29 COVID-19 virus sequences. All of our ma-

chine learning-based models correctly predicted and confirmed the label as Riboviria for all 29

sequences (Table 5.2).

Test-1 classified the COVID-19 virus as belonging to the realm Riboviria. The second

test (Test-2) is designed to classify the COVID-19 virus among the families of the Riboviria

realm. We completed the dataset pre-processing using the same rules as in Test-1 and ob-

tained a dataset of 2779 sequences placed into the 12 families (Betaflexiviridae, Bromoviridae,

Caliciviridae, Coronaviridae, Flaviviridae, Peribunyaviridae, Phenuiviridae, Picornaviridae,

Potyviridae, Reoviridae, Rhabdoviridae, and Secoviridae), see Table 5.1. MLDSP-GUI with
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CGR at k = 7 as the numerical representation was used for the classification of the dataset

in Test-2. The maximum classification accuracy of 93.1% is obtained using the Quadratic

SVM model. The respective MoDMap3D is shown in Fig 5.1(b). All six classification models

trained on 2779 sequences were used to classify (predict the label of) the 29 COVID-19 virus

sequences. All of our machine learning-based models predicted the label as Coronaviridae for

all 29 sequences (Table 5.2) with 100% classification accuracy. Test-2 correctly predicted the

family of the COVID-19 virus sequences as Coronaviridae. Test-3 performs the genus-level

classification.

Figure 5.1: MoDMap3D of (a) 3273 viral sequences from Test-1 representing 11 viral families
and realm Riboviria, (b) 2779 viral sequences from Test-2 classifying 12 viral families of realm
Riboviria, (c) 208 Coronaviridae sequences from Test-3a classified into genera.
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Table 5.1: Classification accuracy scores of viral sequences at different levels of taxonomy.

Dataset Clusters Number of
sequences

Classification
model

Classification
accuracy (in %)

Test-1:
11 families and Riboviria;
3273 sequences;
Maximum length: 49973
Minimum length: 2002
Median length: 7350
Mean length: 13173

Adenoviridae
Anelloviridae
Caudovirales
Geminiviridae
Genomoviridae
Microviridae
Ortervirales
Papillomaviridae
Parvoviridae
Polydnaviridae
Polyomaviridae
Riboviria

198
126
500
500
115
102
233
369
182
304
144
500

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

91.7
90.8
95
93.4
87.6
93.2
92

Test-2:
Riboviria families;
2779 sequences;
Maximum length: 31769
Minimum length: 2005
Median length: 7488
Mean length: 8607

Betaflexiviridae
Bromoviridae
Caliciviridae
Coronaviridae
Flaviviridae
Peribunyaviridae
Phenuiviridae
Picornaviridae
Potyviridae
Reoviridae
Rhabdoviridae
Secoviridae

121
122
403
210
222
166
107
437
196
470
192
133

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

91.2
89.2
93.1
90.3
89
90.4
90.5

Test-3a:
Coronaviridae;
208 sequences;
Maximum length: 31769
Minimum length: 9580
Median length: 29704
Mean length: 29256

Alphacoronavirus
Betacoronavirus
Deltacoronavirus
Gammacoronavirus

53
126
20
9

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

98.1
94.2
95.2
95.7
97.6
96.2
96.2

Test-3b:
Coronaviridae;
60 sequences;
Maximum length: 31429
Minimum length: 25402
Median length: 28475
Mean length: 28187

Alphacoronavirus
Betacoronavirus
Deltacoronavirus

20
20
20

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

100
93.3
93.3
95
95
95
95.3

All classifiers trained on Test-1, Test-2, Test-3a, and Test-3b datasets were used to predict the
labels of 29 COVID-19 virus sequences. All classifiers predicted the correct labels for all of
the sequences (Riboviria when trained using Test-1, Coronaviridae when trained using Test-2,
and Betacoronavirus when trained using Test-3a and Test-3b).
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Table 5.2: Predicted taxonomic labels of 29 COVID-19 virus sequences.

Training
dataset

Testing
dataset

Classification
models

Prediction
accuracy (%)

Predicted
label

Test-1
29 COVID-19
virus sequences

Linear Discriminant
Linear SVM
Quadratic SVM
Fine KNN
Subspace Discriminant
Subspace KNN

100
100
100
100
100
100

Riboviria
Riboviria
Riboviria
Riboviria
Riboviria
Riboviria

Test-2
29 COVID-19
virus sequences

Linear Discriminant
Linear SVM
Quadratic SVM
Fine KNN
Subspace Discriminant
Subspace KNN

100
100
100
100
100
100

Coronaviridae
Coronaviridae
Coronaviridae
Coronaviridae
Coronaviridae
Coronaviridae

Test-3(a\b)
29 COVID-19
virus sequences

Linear Discriminant
Linear SVM
Quadratic SVM
Fine KNN
Subspace Discriminant
Subspace KNN

100
100
100
100
100
100

Betacoronavirus
Betacoronavirus
Betacoronavirus
Betacoronavirus
Betacoronavirus
Betacoronavirus
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The third test (Test-3a) is designed to classify the COVID-19 virus sequences at the genus

level. We considered 208 Coronaviridae sequences available under four genera (Alphacoro-

navirus, Betacoronavirus, Deltacoronavirus, Gammacoronavirus) (Table 5.1). MLDSP-GUI

with CGR at k = 7 as the numerical representation was used for the classification of the dataset

in Test-3a. The maximum classification accuracy of 98.1% is obtained using the Linear Dis-

criminant model and the respective MoDMap3D is shown in Fig 5.1(c). All six classification

models trained on 208 sequences were used to classify (predict the label of) the 29 COVID-19

virus sequences. All of our machine learning-based models predicted the label as Betacoron-

avirus for all 29 sequences (Table 5.2). To verify that the correct prediction is not an artifact of

possible bias because of larger Betacoronavirus cluster, we did a secondary Test-3b with clus-

ter size limited to the size of smallest cluster (after removing the Gammacoronavirus because

it just had 9 sequences). The maximum classification accuracy of 100% is obtained using the

Linear Discriminant model for Test-3b. All six classification models trained on 60 sequences

were used to classify the 29 COVID-19 virus sequences. All of our machine learning-based

models predicted the label as Betacoronavirus for all 29 sequences (Table 5.2). This secondary

test showed that the possible bias is not significant enough to have any impact on the classifi-

cation performance.

Given confirmation that the COVID-19 virus belongs to the Betacoronavirus genus, there

now is a question of its origin and relation to the other viruses of the same genus. To examine

this question, we preprocessed our dataset from our third test to keep the sub-clusters of the

Betacoronavirus with at least 10 sequences (Test-4). This gives 124 sequences placed into four

clusters (Embecovirus, Merbecovirus, Nobecovirus, Sarbecovirus) (Table 5.3). The maximum

classification accuracy of 98.4% with CGR at k = 7 as the numerical representation is obtained

using the Quadratic SVM model. The respective MoDMap3D is shown in Fig 5.2(a). All six

classifiers trained on 124 sequences predicted the label as Sarbecovirus, when used to predict

the labels of 29 COVID-19 virus sequences. For Test-5, we added the COVID-19 virus with

29 sequences as the fifth cluster, see Table 5.3. The maximum classification accuracy of 98.7%
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with CGR at k = 7 as the numerical representation is obtained using the Subspace Discriminant

model. The respective MoDMap3D is shown in Fig 5.2(b). In the MoDMap3D plot from

Test-5, COVID-19 virus sequences are placed in a single distinct cluster, see Fig 5.2(b). As

visually suggested by the MoDMap3D (Fig 5.2(b)), the average inter-cluster distances confirm

that the COVID-19 virus sequences are closest to the Sarbecovirus (average distance 0.0556),

followed by Merbecovirus (0.0746), Embecovirus (0.0914), and Nobecovirus (0.0916). The

three closest sequences based on the average distances from all COVID-19 virus sequences are

RaTG13 (0.0203), bat-SL-CoVZC45 (0.0418), and bat-SL-CoVZXC21 (0.0428).

For Test-6, we classified Sarbecovirus (47 sequences) and COVID-19 virus (29 sequences)

clusters and achieved separation of the two clusters visually apparent in the MoDMap3D,

see Fig 5.2(c). Quantitatively, using 10-fold cross-validation, all six of our classifiers re-

port 100% classification accuracy. We generated phylogenetic trees (UPGMA and neighbor-

joining) based on all pairwise distances for the dataset in Test-6 that show the separation of the

two clusters and relationships within the clusters (Fig 5.3 and 5.4). As observed in Test-5, the

phylogenetic trees show that the COVID-19 virus sequences are closer to the Betacoronavirus

RaTG13 sequence collected from a bat host.

Figure 5.2: MoDMap3D of (a) 124 Betacoronavirus sequences from Test-4 classified into sub-
genera, (b) 153 viral sequences from Test-5 classified into 4 sub-genera and COVID-19 virus,
(c) 76 viral sequences from Test 6 classified into Sarbecovirus and COVID-19 virus.
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Table 5.3: Genus to sub-genus classification accuracy scores of Betacoronavirus.

Dataset Clusters Number of
sequences Classification model Classification

accuracy (in %)
Test-4:
Betacoronavirus;
124 sequences;
Maximum length: 31526
Minimum length: 29107
Median length: 30155
Mean length: 30300

Embecovirus
Merbecovirus
Nobecovirus
Sarbecovirus

49
18
10
47

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

97.6
98.4
98.4
97.6
98.4
97.2
97.6

Test-5:
Betacoronavirus and
COVID-19 virus;
153 sequences;
Maximum length: 31526
Minimum length: 29107
Median length: 29891
Mean length: 30217

Embecovirus
Merbecovirus
Nobecovirus
Sarbecovirus
COVID-19 virus

49
18
10
47
29

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

98.6
97.4
97.4
97.4
98.7
96.1
97.5

Test-6:
Sarbecovirus and
COVID-19 virus;
76 sequences;
Maximum length: 30309
Minimum length: 29452
Median length: 29748
Mean length: 29772

Sarbecovirus
COVID-19 virus

47
29

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

100
100
100
100
100
100
100
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nCoV2019 BetaCoV Wuhan IPBCAMS WH 02 2019 EPI ISL 403931

nCoV2019 BetaCoV Wuhan IPBCAMS WH 04 2019 EPI ISL 403929

Sarbecovirus FJ882954 SARS coronavirus ExoN1

nCoV2019 BetaCoV Wuhan IVDC HB 04 2020 EPI ISL 402120

Sarbecovirus EU371560 SARS coronavirus BJ182a

Sarbecovirus KC881006 Bat SARS like coronavirus Rs3367

Sarbecovirus AY864805 SARS coronavirus BJ162

Sarbecovirus KF569996 Rhinolophus affinis coronavirus

nCoV2019 BetaCoV Wuhan WIV04 2019 EPI ISL 402124

Sarbecovirus KC881005 Bat SARS like coronavirus RsSHC014

Sarbecovirus GQ153541 Bat SARS coronavirus HKU3 6

nCoV2019 BetaCoV Nonthaburi 61 2020 EPI ISL 403962

Sarbecovirus NC 004718 Severe acute respiratory syndrome related coronavirus

Sarbecovirus FJ882942 SARS coronavirus MA15 ExoN1

Sarbecovirus BetaCoV bat Yunnan RaTG13 2013 EPI ISL 402131

nCoV2019 BetaCoV Wuhan WIV05 2019 EPI ISL 402128

Sarbecovirus GQ153543 Bat SARS coronavirus HKU3 8

Sarbecovirus MG772934 1 Bat SARS like coronavirus isolate bat SL CoVZXC21 complete genome

Sarbecovirus GQ153539 Bat SARS coronavirus HKU3 4

Sarbecovirus DQ648857 Bat CoV 279 2005

Sarbecovirus EU371563 SARS coronavirus BJ182 8

nCoV2019 BetaCoV Wuhan IPBCAMS WH 03 2019 EPI ISL 403930

nCoV2019 BetaCoV Zhejiang WZ 01 2020 EPI ISL 404227

Sarbecovirus DQ412042 Bat SARS CoV Rf1 2004

Sarbecovirus DQ640652 SARS coronavirus GDH BJH01

Sarbecovirus AY278491 SARS coronavirus HKU 39849

nCoV2019 MN908947 3 Wuhan seafood market pneumonia virus isolate Wuhan Hu 1 complete genome

Sarbecovirus AY350750 SARS coronavirus PUMC01

nCoV2019 BetaCoV Wuhan HBCDC HB 01 2019 EPI ISL 402132

Sarbecovirus EU371564 SARS coronavirus BJ182 12

Sarbecovirus GQ153547 Bat SARS coronavirus HKU3 12

Sarbecovirus AY278554 SARS coronavirus CUHK W1

nCoV2019 BetaCoV Wuhan IPBCAMS WH 01 2019 EPI ISL 402123

nCoV2019 BetaCoV Guangdong 20SF040 2020 EPI ISL 403937

Sarbecovirus EU371559 SARS coronavirus ZJ02

Sarbecovirus FJ882963 SARS coronavirus P2

Sarbecovirus AY864806 SARS coronavirus BJ202

nCoV2019 BetaCoV Guangdong 20SF028 2020 EPI ISL 403936

nCoV2019 BetaCoV Zhejiang WZ 02 2020 EPI ISL 404228

nCoV2019 BetaCoV Wuhan WIV06 2019 EPI ISL 402129

nCoV2019 BetaCoV USA WA1 2020 EPI ISL 404895

Sarbecovirus GQ153542 Bat SARS coronavirus HKU3 7

Sarbecovirus GQ153548 Bat SARS coronavirus HKU3 13

nCoV2019 BetaCoV Shenzhen HKU SZ 005 2020 EPI ISL 405839

Sarbecovirus FJ882945 SARS coronavirus MA15

nCoV2019 BetaCoV Wuhan IVDC HB 01 2019 EPI ISL 402119

nCoV2019 BetaCoV Guangdong 20SF013 2020 EPI ISL 403933

nCoV2019 BetaCoV USA IL1 2020 EPI ISL 404253

Sarbecovirus GQ153544 Bat SARS coronavirus HKU3 9

Sarbecovirus AY278741 SARS coronavirus Urbani

nCoV2019 BetaCoV Wuhan IVDC HB 05 2019 EPI ISL 402121

nCoV2019 BetaCoV Nonthaburi 74 2020 EPI ISL 403963

Sarbecovirus JX993987 Bat coronavirus Rp Shaanxi2011

Sarbecovirus GQ153540 Bat SARS coronavirus HKU3 5

Sarbecovirus FJ882935 SARS coronavirus wtic MB

Sarbecovirus GQ153545 Bat SARS coronavirus HKU3 10

nCoV2019 BetaCoV Wuhan WIV07 2019 EPI ISL 402130

nCoV2019 BetaCoV Guangdong 20SF025 2020 EPI ISL 403935

Sarbecovirus EU371562 SARS coronavirus BJ182 4

Sarbecovirus AY357076 SARS coronavirus PUMC03

Sarbecovirus AY515512 SARS coronavirus HC SZ 61 03

Sarbecovirus DQ412043 Bat SARS CoV Rm1 2004

nCoV2019 BetaCoV Wuhan Hu 1 2019 EPI ISL 402125

Sarbecovirus GQ153546 Bat SARS coronavirus HKU3 11

Sarbecovirus AY278488 SARS coronavirus BJ01

Sarbecovirus KF367457 Bat SARS like coronavirus WIV1

Sarbecovirus DQ648856 Bat CoV 273 2005

nCoV2019 BetaCoV Wuhan IPBCAMS WH 05 2020 EPI ISL 403928

Sarbecovirus AY394850 SARS coronavirus WHU

nCoV2019 BetaCoV Wuhan WIV02 2019 EPI ISL 402127

nCoV2019 BetaCoV Guangdong 20SF014 2020 EPI ISL 403934

Sarbecovirus EU371561 SARS coronavirus BJ182b

Sarbecovirus JX993988 Bat coronavirus Cp Yunnan2011

nCoV2019 BetaCoV Guangdong 20SF012 2020 EPI ISL 403932

Sarbecovirus AY357075 SARS coronavirus PUMC02

Sarbecovirus MG772933 1 Bat SARS like coronavirus isolate bat SL CoVZC45 complete genome

Figure 5.3: The UPGMA phylogenetic tree using the Pearson Correlation Coefficient gen-
erated pairwise distance matrix shows COVID-19 virus (Red) sequences proximal to the bat
Betacoronavirus RaTG13 (Blue) and bat SARS-like coronaviruses ZC45/ZXC21 (Green) in a
distinct lineage from the rest of Sarbecovirus sequences (Black).
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Figure 5.4: The neighbor-joining phylogenetic tree using the Pearson Correlation Coefficient
generated pairwise distance matrix shows COVID-19 virus (Red) sequences proximal to the
bat Betacoronavirus RaTG13 (Blue) and bat SARS-like coronaviruses ZC45/ZXC21 (Green) in
a distinct lineage from the rest of Sarbecovirus sequences (Black).
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Fig 5.5 shows the Chaos Game Representation (CGR) plots of different sequences from the

four different genera (Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gammacoron-

avirus) of the family Coronaviridae. The CGR plots visually suggest and the pairwise distances

confirm that the genomic signature of the COVID-19 virus Wuhan-Hu-1 (Fig 5.5(a)) is closer to

the genomic signature of the BetaCov-RaTG13 (Fig 5.5(b); distance: 0.0204), followed by the

genomic signatures of bat-SL-CoVZC45 (Fig 5.5(c); distance: 0.0417), bat-SL-CoVZXC21(Fig

5.5(d); distance: 0.0428), Alphacoronavirus/DQ811787 PRCV IS U-1 (Fig 5.5(e); distance:

0.0672), Gammacoronavirus/Infectious bronchitis virus NGA/A116E7/2006/FN430415 (Fig

5.5(f); distance: 0.0791), and Deltacoronavirus /PDCoV/USA/Illinois121/2014/KJ481931

(Fig 5.5(g); distance: 0.0851).

Figure 5.5: Chaos Game Representation (CGR) plots at k = 7 of (a) COVID-19 virus /
Wuhan seafood market pneumonia virus isolate Wuhan-Hu-1/MN908947.3, (b) Betacoron-
avirus / CoV / Bat / Yunnan / RaTG13 / EPI_ISL_402131, (c) Betacoronavirus / Bat SARS-
like coronavirus isolate bat-SL-CoVZC45 / MG772933.1, (d) Betacoronavirus / Bat SARS-
like coronavirus isolate bat-SL-CoVZXC21 / MG772934.1, (e) Alphacoronavirus /DQ811787
PRCV ISU−1, (f) Gammacoronavirus / Infectious bronchitis virus NGA /A116E7 / 2006 /
FN430415, and (g) Deltacoronavirus / PDCoV / USA / Illinois121 /2014/KJ481931. Chaos
plot vertices are assigned top left Cytosine, top right Guanine, bottom left Adenine and bottom
right Thymine.
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The Spearman’s rank correlation coefficient tests were used to further confirm the MLDSP

findings. The first test in Fig 5.6 shows COVID-19 virus being compared to the four genera;

Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus. The COVID-

19 virus showed the highest k-mer frequency correlation to Betacoronavirus at k = 7 (Table

5.4), which is consistent with the MLDSP results in Test-3 (Table 5.2). The COVID-19 virus

was then compared to all sub-genera within the Betacoronavirus genus: Embecovirus, Merbe-

covirus, Nobecovirs and Sarbecovirus seen in Fig 5.7. The Spearman’s rank test was again con-

sistent with the MLDSP results seen in Table 5.3, as the k-mer frequencies at k = 7 showed the

highest correlation to the sub-genus Sarbecovirus (Table 5.4). These tests confirm the findings

in MLDSP and are consistent with the COVID-19 virus as part of the sub-genus Sarbecovirus.

Table 5.4: Spearman’s rank correlation coefficient (ρ) values from Fig 5.6 and 5.7, for which
all p-values < 10−5. The strongest correlation value was found between Betacoronavirus and
Sarbecovirus when using the data sets from Test 3a from Table 5.2 and Test 4 from Table 5.3,
respectively.

Dataset Comparison Groups
COVID-19 virus vs. ρ value

Test-3a

Alphacoronavirus 0.70
Betacoronavirus 0.74
Gammacoronavirus 0.63
Deltacoronavirus 0.60

Test-4

Embecovirus 0.59
Merbecovirus 0.64
Nobecovirus 0.54
Sarbecovirus 0.72
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Figure 5.6: Hexbin scatterplots of the proportional k-mer (k = 7) frequencies of the COVID-
19 virus sequences vs. the four genera: (a) Alphacoronavirus, ρ = 0.7; (b) Betacoronavirus,
ρ = 0.74; (c) Gammacoronavirus, ρ = 0.63 and (d) Deltacoronavirus, ρ = 0.6. The color
of each hexagonal bin in the plot represents the number of points (in natural logarithm scale)
overlapping at that position. All ρ values resulted in p-values < 10−5 for the correlation test.
By visually inspecting each hexbin scatterplot, the degree of correlation is displayed by the
variation in spread between the points. Hexagonal points that are closer together and less
dispersed as seen in (b) are more strongly correlated and have less deviation.
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Figure 5.7: Hexbin scatterplots of the proportional k-mer (k = 7) frequencies of the COVID-
19 virus sequences vs. the four sub-genera: (a) Embecovirus, ρ = 0.59; (b) Merbecovirus, ρ
= 0.64; (c) Nobecovirus, ρ = 0.54 and (d) Sarbecovirus, ρ = 0.72. The color of each hexagonal
bin in the plot represents the number of points (in natural logarithm scale) overlapping at that
position. All ρ values resulted in p-values < 10−5 for the correlation test. By visually inspecting
each hexbin scatterplot, the degree of correlation is displayed by the variation in spread between
the points. Hexagonal points that are closer together and less dispersed as seen in (d) are more
strongly correlated and have less deviation.
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5.4 Discussion

Prior work elucidating the evolutionary history of the COVID-19 virus had suggested an origin

from bats prior to zoonotic transmission [12, 33, 35, 38, 41, 62]. Most early cases of individuals

infected with the COVID-19 virus had contact with the Huanan South China Seafood Market

[26, 27, 28, 29, 30, 31]. Human-to-human transmission is confirmed, further highlighting the

need for continued intervention [33, 62, 63, 64]. Still, the early COVID-19 virus genomes that

have been sequenced and uploaded are over 99% similar, suggesting these infections result

from a recent cross-species event [12, 31, 40].

These prior analyses relied upon alignment-based methods to identify relationships be-

tween the COVID-19 virus and other coronaviruses with nucleotide and amino acid sequence

similarities. When analyzing the conserved replicase domains of ORF1ab for coronavirus

species classification, nearly 94% of amino acid residues were identical to SARS-CoV, yet

overall genome similarity was only around 70%, confirming that the COVID-19 virus was ge-

netically different [64]. Within the RdRp region, it was found that another bat coronavirus,

RaTG13, was the closest relative to the COVID-19 virus and formed a distinct lineage from

other bat SARS-like coronaviruses [38, 40]. Other groups found that two bat SARS-like coron-

aviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, were also closely related to the COVID-19

virus [12, 33, 34, 35, 36, 37]. There is a consensus that these three bat viruses are most similar

to the COVID-19 virus, however, whether or not the COVID-19 virus arose from a recombina-

tion event is still unknown [38, 39, 40].

Regardless of the stance on recombination, current consensus holds that the hypothesis

of the COVID-19 virus originating from bats is highly likely. Bats have been identified as a

reservoir of mammalian viruses and cross-species transmission to other mammals, including

humans [4, 7, 8, 10, 13, 65, 66, 67]. Prior to intermediary cross-species infection, the coron-

aviruses SARS-CoV and MERS-CoV were also thought to have originated in bats [24, 25, 34,

68, 69, 70]. Many novel SARS-like coronaviruses have been discovered in bats across China,

and even in European, African and other Asian countries [34, 71, 72, 73, 74, 75, 76, 77]. With
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widespread geographic coverage, SARS-like coronaviruses have likely been present in bats for

a long period of time and novel strains of these coronaviruses can arise through recombination

[4]. Whether or not the COVID-19 virus was transmitted directly from bats, or from interme-

diary hosts, is still unknown, and will require identification of the COVID-19 virus in species

other than humans, notably from the wet market and surrounding area it is thought to have

originated from [30]. While bats have been reported to have been sold at the Huanan market,

at this time, it is still unknown if there were intermediary hosts involved prior to transmission

to humans [27, 31, 33, 39, 78]. Snakes had been proposed as an intermediary host for the

COVID-19 virus based on relative synonymous codon usage bias studies between viruses and

their hosts [39], however, this claim has been disputed [79]. China CDC released information

about environmental sampling in the market and indicated that 33 of 585 samples had evi-

dence of the COVID-19 virus, with 31 of these positive samples taken from the location where

wildlife booths were concentrated, suggesting possible wildlife origin [80, 81]. Detection of

SARS-CoV in Himalyan palm civets and horseshoe bats identified 29 nucleotide sequences

that helped trace the origins of SARS-CoV isolates in humans to these intermediary species

[13, 24, 38, 77]. Sampling additional animals at the market and wildlife in the surrounding

area may help elucidate whether intermediary species were involved or not, as was possible

with the SARS-CoV.

Viral outbreaks like COVID-19 demand timely analysis of genomic sequences to guide the

research in the right direction. This problem being time-sensitive requires quick sequence simi-

larity comparison against thousands of known sequences to narrow down the candidates of pos-

sible origin. Alignment-based methods are known to be time-consuming and can be challeng-

ing in cases where homologous sequence continuity cannot be ensured. It is challenging (and

sometimes impossible) for alignment-based methods to compare a large number of sequences

that are too different in their composition. Alignment-free methods have been used success-

fully in the past to address the limitations of the alignment-based methods [48, 49, 50, 51]. The

alignment-free approach is quick and can handle a large number of sequences. Moreover, even
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the sequences coming from different regions with different compositions can be easily com-

pared quantitatively, with equally meaningful results as when comparing homologous/similar

sequences. We use MLDSP-GUI (a variant of MLDSP with additional features), a machine

learning-based alignment-free method successfully used in the past for sequence comparisons

and analyses [50]. The main advantage alignment-free methodology offers is the ability to

analyze large datasets rapidly. In this study we confirm the taxonomy of the COVID-19 virus

and, more generally, propose a method to efficiently analyze and classify a novel unclassified

DNA sequence against the background of a large dataset. We namely use a “decision tree"

approach (paralleling taxonomic ranks), and start with the highest taxonomic level, train the

classification models on the available complete genomes, test the novel unknown sequences to

predict the label among the labels of the training dataset, move to the next taxonomic level, and

repeat the whole process down to the lowest taxonomic label.

Test-1 starts at the highest available level and classifies the viral sequences to the 11 fami-

lies and Riboviria realm (Table 5.1). There is only one realm available in the viral taxonomy,

so all of the families that belong to the realm Riboviria are placed into a single cluster and a

random collection of 500 sequences are selected. No realm is defined for the remaining 11

families. The objective is to train the classification models with the known viral genomes and

then predict the labels of the COVID-19 virus sequences. The maximum classification accu-

racy score of 95% was obtained using the Quadratic SVM model. This test demonstrates that

MLDSP-GUI can distinguish between different viral families. The trained models are then

used to predict the labels of 29 COVID-19 virus sequences. As expected, all classification

models correctly predict that the COVID-19 virus sequences belong to the Riboviria realm, see

Table 5.2. Test-2 is composed of 12 families from the Riboviria, see Table 5.1, and the goal is

to test if MLDSP-GUI is sensitive enough to classify the sequences at the next lower taxonomic

level. It should be noted that as we move down the taxonomic levels, sequences become much

more similar to one another and the classification problem becomes challenging. MLDSP-GUI

is still able to distinguish between the sequences within the Riboviria realm with a maximum
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classification accuracy of 91.1% obtained using the Linear Discriminant classification model.

When the COVID-19 virus sequences are tested using the models trained on Test-2, all of the

models correctly predict the COVID-19 virus sequences as Coronaviridae (Table 5.2). Test-3a

moves down another taxonomic level and classifies the Coronaviridae family to four genera

(Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gammacoronavirus), see Table 5.1.

MLDSP-GUI distinguishes sequences at the genus level with a maximum classification accu-

racy score of 98%, obtained using the Linear Discriminant model. This is a very high accuracy

rate considering that no alignment is involved and the sequences are very similar. All trained

classification models correctly predict the COVID-19 virus as Betacoronavirus, see Table 5.2.

Test-3a has Betacoronavirus as the largest cluster and it can be argued that the higher accuracy

could be a result of this bias. To avoid bias, we did an additional test removing the smallest

cluster Gammacoronavirus and limiting the size of remaining three clusters to the size of the

cluster with the minimum number of sequences i.e. 20 with Test-3b. MLDSP-GUI obtains

100% classification accuracy for this additional test and still predicts all of the COVID-19

virus sequences as Betacoronavirus. These tests confirm that the COVID-19 virus sequences

are from the genus Betacoronavirus.

Sequences become very similar at lower taxonomic levels (sub-genera and species). Test-

4, Test-5, and Test-6 investigate within the genus Betacoronavirus for sub-genus classification.

Test-4 is designed to classify Betacoronavirus into the four sub-genera (Embecovirus, Merbe-

covirus, Nobecovirus, Sarbecovirus), see Table 5.3. MLDSP-GUI distinguishes sequences at

the sub-genus level with a maximum classification accuracy score of 98.4%, obtained using

the Quadratic SVM model. All of the classification models trained on the dataset in Test-4

predicted the label of all 29 COVID-19 virus sequences as Sarbecovirus. This suggests sub-

stantial similarity between the COVID-19 virus and the Sarbecovirus sequences. Test-5 and

Test-6 (see Table 5.3) are designed to verify that the COVID-19 virus sequences can be dif-

ferentiated from the known species in the Betacoronavirus genus. MLDSP-GUI achieved a

maximum classification score of 98.7% for Test-5 and 100% for Test-6 using Subspace Dis-
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criminant classification model. This shows that although the COVID-19 virus and Sarbecovirus

are closer on the basis of genomic similarity (Test-4), they are still distinguishable from known

species. Therefore, these results suggest that the COVID-19 virus may represent a geneti-

cally distinct species of Sarbecovirus. All the COVID-19 virus sequences are visually seen in

MoDMap3D generated from Test-5 (see Fig 5.2(b)) as a closely packed cluster and it supports

a fact that there is 99% similarity among these sequences [12, 31]. The MoDMap3D gener-

ated from the Test-5 (Fig 5.2(b)) visually suggests and the average distances from COVID-19

virus sequences to all other sequences confirm that the COVID-19 virus sequences are most

proximal to the RaTG13 (distance: 0.0203), followed by the bat-SL-CoVZC45 (0.0418), and

bat-SL-CoVZX21 (0.0428). To confirm this proximity, UPGMA and neighbor-joining phyloge-

netic trees are computed from the PCC-based pairwise distance matrix of sequences in Test-6,

see Fig 5.3 and 5.4. Notably, the UPGMA model assumes that all lineages are evolving at

a constant rate (equal evolution rate among branches). This method may produce unreliable

results in cases where the genomes of some lineages evolve more rapidly than those of the

others. To further verify the phylogenetic relationships, we also produced a phylogenetic tree

using the neighbor-joining method that allows different evolution rates among branches and

obtained a highly similar output. The phylogenetic trees placed the RaTG13 sequence clos-

est to the COVID-19 virus sequences, followed by the bat-SL-CoVZC45 and bat-SL-CoVZX21

sequences. This closer proximity represents the smaller genetic distances between these se-

quences and aligns with the visual sequence relationships shown in the MoDMap3D of Fig

5.2(b).

We further confirm our results regarding the closeness of the COVID-19 virus with the

sequences from the Betacoronavirus genus (especially sub-genus Sarbecovirus) by a quanti-

tative analysis based on the Spearman’s rank correlation coefficient tests. Spearman’s rank

correlation coefficient [58, 59, 60, 61] tests were applied to the frequencies of oligonucleotide

segments, adjusting for the total number of segments, to measure the degree and statistical sig-

nificance of correlation between two sets of genomic sequences. Spearman’s ρ value provides
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the degree of correlation between the two groups and their k-mer frequencies. The COVID-19

virus was compared to all genera under the Coronaviridae family and the k-mer frequencies

showed the strongest correlation to the genus Betacoronavirus, and more specifically Sarbe-

covirus. The Spearman’s rank tests corroborate that the COVID-19 virus is part of the Sarbe-

covirus sub-genus, as shown by CGR and MLDSP. When analyzing sub-genera, it could be

hard to classify at lower k values due to the short oligonucleotide frequencies not capturing

enough information to highlight the distinctions. Therefore despite the Spearman’s rank corre-

lation coefficient providing results for k = 1 to k = 7, the higher k-mer lengths provided more

accurate results, and k = 7 was used.

Attributes of the COVID-19 virus genomic signature are consistent with previously re-

ported mechanisms of innate immunity operating in bats as a host reservoir for coronaviruses.

Vertebrate genomes are known to have an under-representation of CG dinucleotides in their

genomes, otherwise known as CG suppression [82, 83]. This feature is thought to have been

due to the accumulation of spontaneous deamination mutations of methyl-cytosines over time

[82]. As viruses are obligate parasites, evolution of viral genomes is intimately tied to the

biology of their hosts [84]. As host cells develop strategies such as RNA interference and

restriction-modification systems to prevent and limit viral infections, viruses will continue to

counteract these strategies [83, 84, 85]. Dinucleotide composition and biases are pervasive

across the genome and make up a part of the organism’s genomic signature [84]. These host

genomes have evolutionary pressures that shape the host genomic signature, such as the pres-

sure to eliminate CG dinucleotides within protein coding genes in humans [83]. Viral genomes

have been shown to mimic the same patterns of the hosts, including single-stranded positive-

sense RNA viruses, which suggests that many RNA viruses can evolve to mimic the same

features of their host’s genes and genomic signature [82, 83, 84, 85, 86]. As genomic com-

position, specifically in mRNA, can be used as a way of discriminating self vs non-self RNA,

the viral genomes are likely shaped by the same pressures that influence the host genome [83].

One such pressure on DNA and RNA is the APOBEC family of enzymes, members of which
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are known to cause G to A mutations [86, 87, 88]. While these enzymes primarily work on

DNA, it has been demonstrated that these enzymes can also target RNA viral genomes [87].

The APOBEC enzymes therefore have RNA editing capability and may help contribute to the

innate defence system against various RNA viruses [86]. This could therefore have a direct

impact on the genomic signature of RNA viruses. Additional mammalian mechanisms for

inhibiting viral RNA have been highlighted for retroviruses with the actions of zinc-finger an-

tiviral protein (ZAP) [82]. ZAP targets CG dinucleotide sequences, and in vertebrate host cells

with the CG suppression in host genomes, this can serve as a mechanism for the distinction of

self vs non-self RNA and inhibitory consequences [82]. Coronaviruses have A/U rich and C/G

poor genomes, which over time may have been, in part, a product of cytidine deamination and

selection against CG dinucleotides [89, 90, 91]. This is consistent with the fact that bats serve

as a reservoir for many coronaviruses and that bats have been observed to have some of the

largest and most diverse arrays of APOBEC genes in mammals [67, 68]. The Spearman’s rank

correlation data and the patterns observed in the CGR images from Fig 5.5, of the coronavirus

genomes, including the COVID-19 virus identify patterns such as CG underepresentation, also

present in vertebrate and, importantly, bat host genomes.

With human-to-human transmission confirmed and concerns for asymptomatic transmis-

sion, there is a strong need for continued intervention to prevent the spread of the virus [32,

33, 62, 63, 64]. Due to the high amino acid similarities between the COVID-19 virus and

SARS-CoV main protease essential for viral replication and processing, anticoronaviral drugs

targeting this protein and other potential drugs have been identified using virtual docking to

the protease for treatment of COVID-19 [29, 43, 44, 92, 93, 94, 95]. The human ACE2 recep-

tor has also been identified as the potential receptor for the COVID-19 virus and represents a

potential target for treatment [41, 42].

MLDSP-GUI is an ultra-fast, alignment-free method as is evidenced by the time-performance

of MLDSP-GUI for Test-1 to Test-6 given in Fig 5.8. MLDSP-GUI took just 10.55 seconds

to compute a pairwise distance matrix (including reading sequences, computing magnitude
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spectra using DFT, and calculating the distance matrix using PCC combined) for the Test-1

(largest dataset used in this study with 3273 complete genomes). All of the tests combined

(Test-1 to Test-6) are doable in under 10 minutes including the computationally heavy 10-fold

cross-validation, and testing of the 29 COVID-19 virus sequences.

Figure 5.8: Time performance of MLDSP-GUI for Test1 to Test-6 (in seconds).

The results of our machine learning-based alignment-free analyses using MLDSP-GUI sup-

port the hypothesis of a bat origin for the COVID-19 virus and classify COVID-19 virus as

sub-genus Sarbecovirus, within Betacoronavirus.
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5.5 Conclusion

This study provides an alignment-free method based on intrinsic genomic signatures that can

deliver highly-accurate real-time taxonomic predictions of yet unclassified new sequences,

ab initio, using raw DNA sequence data alone and without the need for gene or genome anno-

tation. We use this method to provide evidence for the taxonomic classification of the COVID-

19 virus as Sarbecovirus, within Betacoronavirus, as well as quantitative evidence supporting

a bat origin hypothesis. Our results are obtained through a comprehensive analysis of over

5000 unique viral sequences, through an alignment-free analysis of their two-dimensional ge-

nomic signatures, combined with a “decision tree" use of supervised machine learning and

confirmed by Spearman’s rank correlation coefficient analyses. This study suggests that such

alignment-free approaches to comparative genomics can be used to complement alignment-

based approaches when timely taxonomic classification is of the essence, such as at critical

periods during novel viral outbreaks.
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Chapter 6

Conclusion

In this thesis, we show that certain genomic signatures can be used to measure the quantitative

dissimilarity between any two genomic sequences. In Chapter 3, we show that, irrespective

of the one-dimensional numerical representation used, the intergenomic dissimilarity is strong

enough to classify sequences at different taxonomic levels. The successful classification of

virus subtypes shows that the concept of genomic signature holds even for sequences at the

subspecies level where they become very similar. These genomic signatures, coupled with su-

pervised machine learning lead to highly accurate classification. In Chapter 4, we show that

the two-dimensional Chaos Game Representation (CGR) can also be used as a genomic sig-

natures, for superior classification results. In addition, the software tool that we developed is

open-source, ultra-fast, scalable, stand-alone with a user-friendly graphical user interface, and

it provides an assurance to the users that their private data is safe and secure. In Chapter 5, we

show the importance of the proposed methodology when a timely analysis of novel unclassi-

fied sequences is required. We demonstrate the use of a “decision tree” approach (paralleling

taxonomic ranks) to supervised machine learning, for successive refinements of taxonomic

classification. This study provides a proof of concept that alignment-free methods can deliver

highly-accurate real-time taxonomic predictions of yet unclassified new sequences, ab initio,

using raw DNA sequence data alone, and without the need for gene or genome annotation.
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In this thesis, we used six different classifiers covering a wide gamut from low to high time

complexity. In the near future, multi-factor selection criteria can be established to include an

even wider variety of classifiers such as Random Forest, Decision tree, etc. Also, there is a

possibility to include more dissimilarity measures, especially the ones which are considered a

natural choice for spectral analysis in the field of signal processing wherein, e.g. coherence is

widely used to examine the relation between two signals.

Future directions of the research should explore factors beyond genetic relatedness and

include potential impacts of environmental influences upon genomic signatures. It is presumed

that genomic signatures are a product of the complex interactions of genetic relatedness and

environment.

An important future direction is the examination of genomic signature diversity with ge-

nomic instability and disease phenotypes. Applications of this type of classification may exist

for cancer phenotypes and a wide spectrum of inherited diseases. Whereas entire genome se-

quences have been the focus of this classification approach, it is well worth testing capabilities

at lower genome sequence resolution. There is a wealth of human single nucleotide geno-

typing data publicly available and with extensive phenotypic data. Genotypes for sequence

classification may prove useful and efficient materials for discovery of as yet unrecognized ge-

netic variants associated with classes of phenotypic information like cancer type and inherited

disease type.
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Copyright Releases

Chapter 3 contains the article “ML-DSP: Machine Learning with Digital Signal Processing

for ultrafast, accurate, and scalable genome classification at all taxonomic levels” from BMC

Genomics. According to their website, https://bmcgenomics.biomedcentral.com/submission-

guidelines/copyright

“Copyright on any open access article in a journal published by BioMed Central is retained

by the author(s). Authors grant BioMed Central a license to publish the article and identify

itself as the original publisher. Authors also grant any third party the right to use the article

freely as long as its integrity is maintained and its original authors, citation details and publisher

are identified. The Creative Commons Attribution License 4.0 formalizes these and other terms

and conditions of publishing articles.”

Chapter 4 contains the article “MLDSP-GUI: an alignment-free standalone tool with an

interactive graphical user interface for DNA sequence comparison and analysis” from Bioinfor-

matics. According to their website, https://academic.oup.com/journals/pages/open_access/fund

er_policies/chorus/standard_publication_model

“Journals content which is published and distributed under the Oxford University Press

(OUP) Journals, Standard Publication Model is published on an exclusive licence or copyright

assignment basis, and reuse rights are retained and controlled by OUP. Individuals accessing
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OUP journals content may view, reproduce or store copies of such content provided that it is

used only for personal, non-commercial use. Any use of such content in whole or in part must

include the bibliographic citation, including author attribution, date, article title, journal title,

and URL and MUST include a copy of the copyright notice.”

Chapter 5 contains the article “Machine learning using intrinsic genomic signatures for

rapid classification of novel pathogens: COVID-19 case study” from PLoS ONE. According

to their website http://journals.plos.org/plosone/s/content-license

“PLOS applies the Creative Commons Attribution (CC BY) license to works we publish.

This license was developed to facilitate open access namely, free immediate access to, and
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articles legally available for reuse, without permission or fees, for virtually any purpose. Any-

one may copy, distribute or reuse these articles, as long as the author and original source are

properly cited.”

“Using PLOS Content: No permission is required from the authors or the publishers to

reuse or repurpose PLOS content provided the original article is cited. In most cases, appro-

priate attribution can be provided by simply citing the original article. If the item you plan to

reuse is not part of a published article (e.g., a featured issue image), then indicate the originator

of the work, and the volume, issue, and date of the journal in which the item appeared. For any

reuse or redistribution of a work, you must also make clear the license terms under which the

work was published.”
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Software description

ML-DSP (Machine Learning with Digital Signal Processing) implements a four-step pipeline

for the analysis of the genomic sequences comprising: (i) One-dimensional numerical repre-

sentations of DNA sequences to map genomic sequences to the genomic signals, (ii) Discrete

Fourier Transform (DFT) to get magnitude spectra from the genomic signals, (iii) pair-wise

distance calculation using Pearson Correlation Coefficient (PCC) between the magnitude spec-

tra of any two genomic signals, and (iv) supervised machine learning classification to obtain

quantitative classification accuracies scores and to predict the labels of new sequences. The

algorithms for ML-DSP were implemented using the software package MATLAB R2017a, li-

cense no. 964054. MATLAB license is required to run and use ML-DSP. The source code used

for the results in this thesis was optimized by implementing most of the components designed

to run in parallel. The source code (1015 lines of MATLAB code) of ML-DSP is available at

the following link: https://github.com/grandhawa/MLDSP

We further refined the ML-DSP code by adding more flexibility to accept sequences con-

tained in the ‘.fna’, and ‘.txt’ files, in addition to the default ‘.fasta’ files. Our code cleans the

sequences by removing all the unrecognized characters and keeping only the occurrences of

A ,C, G, and T. Our preprocessing code omits the shorter sequences based on the minimum

sequence length parameter entered as input by the user. The user can also alter the value of
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the maximum sequence length parameter, which is used to select the random fragments of the

selected length for the longer sequences. The default value ‘0’ selects the complete sequences

with their original length. For the longer sequences, the user can also select the option to select

multiple non-overlapping fragments per sequence. Another valuable feature is the balancing of

the clusters, where the user can select any value for the maximum cluster size parameter. This

parameter puts an upper limit on the size of clusters, and the clusters smaller than the selected

value remain unchanged. For the clusters larger than the selected value, random sequences

(number of sequences are equal to the selected value) are chosen to capture the diversity of

the whole dataset. The default value ‘0’ selects the balanced clusters, where every cluster has

an equal number of sequences limited by the size of the smallest cluster. The improved script

also provides an option to test multiple sequences at once using already trained classification

models.

The software package also includes a script to download a customized dataset from the

National Center for Biotechnology Information (NCBI) database. The default bulk download

feature of NCBI demands a list of accession numbers and has restrictions on the number of

sequences, number of download requests per minute, download data limit, etc. Moreover, the

only way to download contigs of Whole Genome Shotgun (WGS) sequences is the manual

browsing and saving individual contigs one at a time. This cumbersome manual approach may

take hours just to download a few hundred sequences. Our script reads a list of accession

numbers, identifies if any accession number is of a WGS sequence, parses the NCBI webpages

for the available contigs of the WGS sequences, and downloads the sequences in parallel. Our

script handles the NCBI restriction on the number of download requests by introducing a delay

and re-requesting a sequence if the NCBI server produces an error. The exception handling

block keeps on adjusting the delay parameter and generating the download requests until the

download succeeds. The script also cleans the sequences by keeping only the occurrences of

A, C, G, and T before writing the downloaded data to the ‘.fasta’ files.
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MLDSP-GUI is an extension of ML-DSP that comes with multiple valuable additions of

(i) user-friendly interactive Graphical User Interface (GUI), (ii) two-dimensional Chaos Game

Representation (CGR) to numerically represent DNA sequences, (iii) Euclidean and Manhattan

distances as additional distance measures, (iv) Phylogenetic tree output in Newick-formatted

file, (v) oligomer (sub-word) frequency information to study the under-and-over representa-

tion of any particular sub-sequence in a selected sequence, (vi) Inter-cluster distances analysis.

MLDSP-GUI gives users an option to export and save to the disk the customized results such

as distance matrix, inter-cluster distances, oligomer frequencies, 3D molecular distance map,

CGR plots of all sequences, etc. MLDSP-GUI is implemented using MATLAB R2019a App

Designer, license no. 964054. A single executable platform-independent file is provided that

can be used to install and run the software tool. Though MLDSP-GUI is a MATLAB applica-

tion, MATLAB license is not required to run and use this tool. The MATLAB source code is

2296 lines of code long. MLDSP-GUI is an open-source tool with Graphical User Interface that

is publicly available for download at the following link: https://sourceforge.net/projects/mldsp-

gui/

https://sourceforge.net/projects/mldsp-gui/
https://sourceforge.net/projects/mldsp-gui/


Appendix C

MLDSP-GUI: Supplementary Material

C.A Interactive MLDSP-GUI features

MLDSP-GUI implements a four-step pipeline that takes as input a set of genomic DNA se-

quences and outputs their taxonomic classification. It consists of: (i) computing numerical

representation of DNA sequences, (ii) applying Discrete Fourier Transform (DFT), (iii) calcu-

lating pairwise distances (Pearson Correlation Coefficient PCC, Euclidean, or Manhattan), and

(iv) classifying using supervised machine learning, see Figure C.S1. Independently, multi-

dimensional scaling uses the pairwise distance matrix to display an interactive 3D molecular

distance map. The user also has the option to generate a phylogenetic tree from the pairwise

distance matrix. A new sequence can be classified using the trained classifiers.
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Supplementary Figure C.S1: MLDSP-GUI implements a four-step pipeline for data transfor-
mation from genomic sequences to taxonomic classification.

The methods used in the MLDSP-GUI pipeline are discussed below:

(i) Numerical representations: Genomic sequences are mapped into discrete numerical repre-

sentations. Users can pick one of the 14 available numerical representations. MLDSP-GUI

implements 13 one-dimensional numerical representations (Integer, Integer-other variant,

Real, Atomic, EIIP-electron-ion interaction potential, PP – purine/pyrimidine, Paired nu-

meric, Nearest-neighbor based doublet, Codon, Just-A, Just-C, Just-G, Just-T), see [4] and

1 two-dimensional representation (Chaos Game Representation - CGR), see [2]. One-

dimensional representations replace every ‘A, C, G, T’ in a genomic sequence with a

specific numeric value (depending on the choice of the representation) to compute a one-

dimensional discrete numerical vector. CGR computes a k-mer (subword of length k) de-

pendent two-dimensional plot for each genomic sequence by using the method described

in [2]. These discrete numerical sequences computed from the genomic sequences can be

treated as digital signals and have been called in the literature “genomic signals", see [1].

The whole process of applying the Digital Signal Processing (DSP) techniques to genomic
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data (numerical sequences in our case) has been termed Genomic Signal Processing (GSP),

see [3]. For any genomic sequence S i of length p, its corresponding one-dimensional nu-

merical sequence (genomic signal) Ni will be of length p. If CGR is selected as a numerical

representation, then a two-dimensional plot of the size 2k × 2k will be generated for a se-

lected k-mer value k, that is the length of the corresponding genomic signal Ni will be

2k × 2k.

(ii) Discrete Fourier Transform (DFT):

Discrete Fourier Transform (DFT) is applied to the genomic signals (discrete numerical

representations of the genomic sequences) to compute the magnitude spectra. Suppose

we have a dataset of n sequences. Then, the DFT of an ith (0 ≤ i ≤ n − 1) genomic

signal Ni = Ni(0),Ni(1), ....,Ni(p − 1) results in another sequence of complex numbers,

Fi(k) = Fi(0), Fi(1), ...., Fi(p − 1) where, for 0 ≤ k ≤ p − 1 we have:

Fi(k) =

p−1∑
j=0

Ni( j) · e(−ι2π/p)k j (C.1)

The magnitude spectrum of a genomic signal Ni is the absolute value of the vector Fi.

(iii) Pairwise distance calculation:

MLDSP-GUI implements three distance measures: the Pearson Correlation Coefficient

(PCC), Euclidean distance and Manhattan distance.

The Pearson Correlation Coefficient rXY between two magnitude spectra X and Y , each of

length p, is computed as:

rXY =

∑p−1
i=0 (Xi − X)(Yi − Y)√∑p−1

i=0 (Xi − X)2 ×

√∑p−1
i=0 (Yi − Y)2

(C.2)
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where the average X is defined as (
∑p−1

i=0 Xi)/p and similarly for Y . The results are normal-

ized by taking (1 − rXY)/2, to obtain distance values between 0 and 1.

The Euclidean distance dEUC between two magnitude spectra X and Y , each of length p, is

computed as:

dEUC =

√√√ p−1∑
i=0

(Xi − Yi) (C.3)

The Manhattan distance dMAN between two magnitude spectra X and Y , each of length p,

is computed as:

dMAN =

p−1∑
i=0

|Xi − Yi| (C.4)

(iv) Supervised Machine Learning classification:

Supervised machine learning algorithms train the classification models using given input-

output pairs consisting of the feature vector corresponding to a genomic sequence as the

input, and the label of the sequence (taxon) as the output. In our case, the feature vec-

tor for any given sequence consists of the pairwise distances between (a) the magnitude

spectrum obtained from the given sequence, and (b) the magnitude spectra obtained from

all the other genomic sequences in the training set. The trained classification models can

then be used to predict the labels of testing sequences. MLDSP-GUI implements the 10-

fold cross-validation technique, and gives the choice of six classifiers (Linear Discriminant,

Linear SVM, Quadratic SVM, Fine KNN, Subspace Discriminant, and Subspace KNN) for

performing the task of supervised machine learning. Subspace Discriminant and Subspace

KNN are omitted if the dataset contains more than 2000 sequences, because they are com-

putationally heavy. 10-fold cross-validation consists in dividing the dataset randomly into
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10 equal sets (9 used for training and 1 used for testing). The feature vectors of the se-

quences in the training set are constructed using columns of the pairwise-distance matrix,

as follows: All columns and rows which correspond to the sequences in the testing set are

omitted, and the remaining columns are used as feature vectors for the training. The trained

models are then used to predict the labels of the sequences from the testing test. The whole

process is repeated 10 times, and the average classification accuracy scores (prediction ac-

curacy) are reported as the output. MLDSP-GUI also has the option whereby a novel input

sequence can be tested (its label can be predicted) using the trained classifiers.

MLDSP-GUI displays results as three vertical panels, each panel subdivided into multiple

sub-panel components. Figure S2 shows a test run of MLDSP-GUI on the Flavivirus dataset.

The 7,881 complete genomes of the Flavivirus genus (average length 10,632 bp - the right

panel shows the CGR representation of one of the Dengue virus genomes) are clustered into

the virus species of Dengue (blue, 4,721 sequences), Tick-Borne Encephalitis (red, 134 se-

quences), West Nile (green, 2,254 sequences), Yellow Fever (black, 121 sequences), and Zika

(magenta, 651 sequences). The classification accuracy using any of the four classifiers (Linear

Discriminant, Linear SVM, Quadratic SVM, or Fine KNN) is 100%. MLDSP-GUI is also able

to suggest classification of some virus species into subtypes, e.g., the four blue clusters corre-

spond to the Dengue virus subtypes Dengue-1, Dengue-2, Dengue-3, and Dengue-4.
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The next subsections of this Supplementary Material discuss the three panels (Left panel,

Center panel, and Right panel) and their components in detail.

Supplementary Figure C.S2: MLDSP-GUI can be viewed as a combination of 3-vertical panels
(Left panel, Center panel, and Right panel). Each panel has multiple sub-panel components.

All experiments were performed on an ASUS ROG G752VS computer with 4 cores (8

threads) of a 2.7GHz Intel Core i7 6820HK processor and 64GB DD4 2400MHz SDRAM.
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C.A.1 Left panel

The left panel components are shown in Figure C.S3.

1. Input parameters:

Supplementary Figure C.S3: Left panel
components: Input parameters, progress
status, dataset statistics, and logos.

The user can select a dataset among one

of the provided datasets, or “browse” to se-

lect a user-defined dataset. Some additional

datasets are also provided, see Table C.S1.

The user has the option to select one

of the 13 one-dimensional numerical rep-

resentations of DNA sequences (Inte-

ger, Integer-other variant, Real, Atomic,

EIIP, purine/pyrimidine, Nearest neighbor

based doublet, Codon, Just-A, Just-C, Just-

G, Just-T) or the two-dimensional Chaos

Game Representation (CGR).

For example, the one-dimensional numer-

ical representation “purine/pyrimidine" as-

signs A/G the value -1, and C/T the value

+1, whereby the DNA sequence ACGT-

TAGC is represented as the numerical se-

quence [-1 1 -1 1 1 -1 -1 1]. If the user se-

lects any of the one-dimensional represen-

tations, then a value for the length normal-

ization parameter (maximum, minimum, mean or median) can be selected. The default

is the length normalization using the median length.

Alternatively, given a fixed value of the parameter k, the two-dimensional CGR repre-

sentation of a DNA sequence simultaneously represents its k-mer frequencies as a two-
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dimensional plot (see Figure C.S4 for examples; for details on how to generate the CGR

of a DNA sequence see Jeffrey H.J., 1990 Nucleic Acids Res., 18, 2163 − 2170). If the

user selects CGR, then a k-value (k is the length of k-mers to be considered when con-

structing the CGR) can be selected. The default value is k = 9 (the computations for this

value could be somewhat slower), and the recommended value for a larger dataset (more

than two thousand sequences) is k = 6.

The user can also select a distance measure: Pearson Correlation Coefficient (PCC, the

default distance), Euclidean distance, or Manhattan distance.

After selecting the input parameters, the user can click on the Start Processing button

to start the computation.

A RESET button to reset all parameters to default is also available.

2. Progress status:

This sub-panel dynamically lists all the processing steps of a MLDSP-GUI computation.

Each step has a colored lamp to highlight their respective status: Red means not started,

yellow means in process, and green means completed.

3. Dataset statistics:

This sub-panel shows some statistics of the selected dataset: number of sequences,

length statistics (maximum length, minimum length, mean length, and median length),

the selected dataset name, cluster names, and the size of clusters.

4. Logos:

MLDSP-GUI is licensed under a Creative Commons Attribution 4.0 International Li-

cense. This sub-panel contains the logos for Creative Commons, authors’ affiliated insti-

tutions (The University of Western Ontario, and University of Waterloo), and MLDSP-

GUI.
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Supplementary Figure C.S4: Chaos Game Representation (CGR) of (a): Homo sapiens chro-
mosome 1, first 100, 000 bp segment, NCBI accession: NC_000001.11 (b): Bacterium (In-
trasporangium flavum) complete genome, NCBI accession: MLJO01000003.1 (c): Dengue
virus 1 complete genome, NCBI accession: AB608789.1 (d): Pseudomonas phage Andromeda
complete genome, NCBI accession: NC_031014.1.
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C.A.2 Center panel

The center panel components are shown in Figure C.S5.

1. MoDMap3D:

Supplementary Figure C.S5: Center panel
components: MoDMap3D, selected se-
quence statistics, inter-cluster distances,
and k-mer frequencies of the selected se-
quence. Export buttons for: saving 3D
plot, distance matrix, UPGMA tree and
inter-cluster distances.

This sub-panel shows the interactive

three-dimensional Molecular Distance

Map (MoDMap3D) visual representation

of the interrelationships among the DNA

sequences in the dataset. Each point repre-

sents a DNA sequence, and the positioning

of points indicates the inter-sequence

relationships based on the distance used

(Pearson Correlation Coefficient, Eu-

clidean, Manhattan). Clicking on a point

results in information about the selected

point/sequence being displayed in the panel

Selected sequence. The user also has

the option to Export Distance Matrix as

an excel spreadsheet, to Export UPGMA

tree (UPGMA = Unweighted Pair Group

Method with Arithmetic mean) in Newick

phylogenetic tree format, and to Capture

3D plot of the visualized molecular dis-

tance map, as a .png file, by clicking the

respective buttons.

Note that the MoDMap3D should only be viewed as a visualization tool, and is not

necessarily indicative of the classification accuracy of MLDSP-GUI. This is because
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MoDMap3D is based on multidimensional scaling and it tries to map a multi-dimensional

space onto a three-dimensional space. As such, the visual information it conveys may be

imperfect (depending on the real dimensionality of the dataset that is visualized). In other

words, clusters that appear to be overlapping in a MoDMap3D could in fact be perfectly

separated by MLDSP-GUI, and the quantitative separability of clusters can only be ac-

curately ascertained by looking at the accuracy scores of classifiers and at the confusion

matrix.

As an example, Figure C.S6b shows some overlapping clusters (which indicates poor

classification accuracy) in the MoDMap3D of 1,150 randomly chosen complete human

mtDNA haplogroups (A, B, C, D, E, F, G, H, I, J, K, L, M, N, Q, R, T, U, V, W, X, Y, Z)

sequences. However, the classification accuracy of the Linear Discriminant classifier for

this dataset is reported to be 99%. The high accuracy of the quantitative classification

is further confirmed by the clear visual separation obtained if we “zoom in" into the

overlapping clusters of Figure C.S6b. Indeed Figure C.S6a, which displays human

mtDNA haplogroups C, D, E, G, M, Q, Z, and Figure C.S6c which displays human

mtDNA haplogroups I, K, R, W, X, both show clear separation.

As a concluding remark, when there is a discrepancy between MoDMap3D and the clas-

sification results of supervised machine learning, the latter is usually much better and

also is the reliable quantitative result that should be used.

2. Selected sequence:

Any point in a MoDMap3D can be selected by clicking on it. This sub-panel displays

information about a selected point/sequence: Header (accession number, scientific name

or other information available in the fasta file), FileName (name of its fasta file), and

Length (in base pairs) of the selected sequence.
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Supplementary Figure C.S6: “Zooming in" a ModMap3D, by re-plotting a subset of its dataset,
can sometimes clarify cluster separations (separations can also be independently confirmed by
the output of the supervised machine learning classifiers). Here, subfigures (a) and (c) are
each obtained by re-plotting clusters which appear to be overlapping in the ModMap3D of
the dataset of human mtDNA genomes from subfigure (b), as follows: (a) ModMap3D of 350
complete human mitochondrial genomes from the dataset in Table S1, line 13 (subset of dataset
in line 12); (b) ModMap3D of 1,150 human mitochondrial genomes from the dataset in Table
S1, line 12; (c) ModMap3D of 250 human mitochondrial genomes from the dataset in Table
S1, line 14 (subset of dataset in line 12).
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3. Inter-cluster distances:

Inter-cluster distances are shown in this sub-panel. For n clusters, the inter-cluster dis-

tances are shown as an n × n matrix as follows. If Mi is the number of sequences in the

cluster i, and dist(as, bt) gives the distance between any two sequences as, bt, then the

inter-cluster distance between any two clusters i and j where, 0 ≤ i, j ≤ n, 1 ≤ s ≤ Mi,

1 ≤ t ≤ M j, is computed as:

C(i, j) =

∑Mi
s=1

∑M j

t=1 dist(as, bt)
Mi · M j

(C.5)

The user also has the option to Export Inter-cluster Distances as an excel spreadsheet.

4. k-mer frequencies of the selected sequence:

This sub-panel shows the k-mer frequencies (counts) for 2 ≤ k ≤ 4, listed, for each

k, in increasing order. This information can serve to analyze under-representation or

over-representation of the respective oligomers.
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C.A.3 Right panel

The right panel components are shown in Figure C.S7.

1. Digital Signal Representation:

Supplementary Figure C.S7: Right panel
components: Digital signal representation,
classification accuracies, confusion ma-
trix, and classify a new sequence.

This sub-panel displays either the magni-

tude spectrum of the Discrete Fourier Trans-

form applied to the numerical represen-

tation of a DNA sequence (if the one-

dimensional representation was selected,

Figure C.S8), or the CGR image of the

DNA sequence (if the two-dimensional rep-

resentation was selected, Figure C.S7).

2. Classification accuracy:

The classification accuracies of six

supervised machine learning classifiers

(Linear Discriminant, Linear SVM,

Quadratic SVM, Fine KNN, Subspace

Discriminant, and Subspace KNN) us-

ing 10-fold cross validation is shown.

Subspace Discriminant and Subspace

KNN are omitted if the dataset has

more than two thousand sequences.

The average accuracy over all classi-

fiers is also displayed.
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3. Confusion matrix:

A confusion matrix is displayed in this sub-panel, which changes dynamically depending

on the classifier that is selected in the sub-panel above. For m clusters, the m ×m confu-

sion matrix has its rows labeled by the true classes and columns labeled by the predicted

classes; the cell (i, j) shows the number of sequences that belong to the true class i, and

have been predicted by the classifier to be of class j.

4. Classify a new sequence:

MLDSP-GUI gives the option to predict the label of a new sequence, using all of the

classifiers trained on a given dataset. The user can browse for a sequence (fasta file), and

obtain the predicted label(s) as a result. Note that the new sequence will not be displayed

in the MoDMap3D. Note also that any new sequence will be classified into one of the

clusters that are displayed in the current MoDMap3D. This is an inherent limitation of

supervised machine learning, in that a supervised machine learning classifier can only

classify a new sequence into one of the clusters it has been trained on (it therefore clas-

sifies erroneously if the new sequence does not belong to any of the clusters that the

classifier has previously “learned").
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Supplementary Figure C.S8: MLDSP-GUI test run for the 7,881 Flavivirus genomes in the
dataset in Table S1, line 10 using the “purine/pyrimidine” representation with length normal-
ization to median length. The Digital Signal Representation component (top right panel) shows
the magnitude spectrum of the selected point/sequence. Note that even though this is the same
dataset as the one in Figure C.S2, the visual shape of clusters is different and the classification
accuracy is lower for the Linear Discriminant classifier. The visual differences in the clusters
are due to the different numerical representations used. In general, the choice of numerical
representation, supervised classifier, and other parameters depend on the specific dataset, and
one should choose those that achieve the best numerical classification accuracy or confusion
matrix.
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C.B Provided datasets

Besides the datasets provided in the executable file (primates’ mtDNA, influenza virus sub-

types, Flavivirus viruses, mitochondrial disease genomes), MLDSP-GUI provides additional

datasets that can be downloaded separately and imported into the already installed tool. All

datasets were obtained from the NCBI Reference Sequence Database RefSeq on July 11, 2019,

with the exception of the Disease-classification dataset (Table S1, line 6), which was obtained

from Human Mitochondrial Database hmtDB on November 13, 2018. The additional datasets’

details are given in Table C.S1.

C.C Availability

MLDSP-GUI is open-source, cross-platform compatible, and is available under the terms of the

Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/

by/4.0/). The executable and dataset files are available at https://sourceforge.net/projects/mldsp-

gui/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://sourceforge.net/projects/mldsp-gui/
https://sourceforge.net/projects/mldsp-gui/


146 Appendix C. MLDSP-GUI: SupplementaryMaterial

Supplementary Table C.S1: Additional datasets provided.

S.No. Dataset Number of
sequences Clusters

1 3classes 3,200 Amphibians: 264, Mammals: 1,133, Insects:1,803
2 Amphibians 264 Anura: 142, Caudata: 89, Gymnophiona: 33

3 Birds-Fish-Mammals 4,565 Birds (Aves): 698, Mammals (Mammalia): 2,734
Fish (Actinopterygii, Chondrichthyes, Coelacanthiformes, Dipnoi): 1,133

4 ClassToSubclass
(Actinopterygii) 2,566 Chondrostei: 28, Cladistia: 11, Neopterygii: 2,527

5 Dengue 4,721 DENV-1: 2,008, DENV-2: 1,349, DENV-3: 1,010, DENV-4: 354
6 Disease-Classification 102 Epilepsy: 81, Glaucoma: 21

7 DomainToKingdom
(Eukaryota) 9,727 Plants: 265, Animals: 8,825, Fungi: 393, Protists: 244

8 DomainToKingdom
(Eukaryota_noProtists) 9,483 Plants: 265, Animals: 8,825, Fungi:393

9 FamilyToGenus
(Cyprinidae) 92 Schizothorax: 24, Labeo: 21, Acrossocheilus: 15,

Acheilognathus: 11, Rhodeus: 11, Onychostoma: 10
10 Flavivirus 7,881 Dengue: 4,721, TickBorneEncephalitis: 134, WestNile: 2,254, YellowFever: 121, Zika: 651
11 Fungi 340 Basidiomycota: 77, Pezizomycotina: 160, Saccharomycotina: 103

12 Human haplogroups 1,150 A:50, B:50, C:50, D:50, E:50, F:50, G:50, H:50, I:50, J:50, K:50, L:50,
M:50, N:50, Q:50, R:50, T:50, U:50, V:50, W:50, X:50, Y:50, Z:50

13 Human haplogroups subgroup1 350 C:50, D:50, E:50, G:50, M:50, Q:50, Z:50
14 Human haplogroups subgroup2 250 I:50, K:50, R:50, W:50, X:50
15 Influenza 38 H1N1: 13, H2N2: 3, H5N1: 11, H7N3: 5, H7N9: 6

16 Insects 1636 Coleoptera: 196, Dictyptera: 235, Diptera: 253, Hemiptera: 272,
Hymenoptera: 71, Lepidoptera: 442, Orthoptera: 167

17 KingdomToPhylum
(Animalia) 8,792

Chordata: 5,224, Cnidaria: 157, Ecdysozoa: 2,585,
Porifera: 64, Echinodermata: 67,
Lophotrochozoa: 567, Platyhelminthes: 128

18 Mammalia 1,075 Xenarthrans: 36, Bats: 90, Carnivores: 145, Even-toed Ungulates: 271,
Insectivores: 45, Marsupials: 35, Primates: 211, Rodents and Rabbits: 242

19 OrderToFamily
(Cypriniformes) 756 Balitoridae: 29, Catostomidae: 14, Cobitidae: 55,

Cyprinidae: 597, Nemacheilidae: 61

20 PhylumToSubphylum
(Chordata) 5,224 Cephalochordata: 9, Craniata: 5,189, Tunicata:26

21 Plants 265 Chlorophyta: 66, Streptophyta: 199
22 Primates 211 Haplorrhini: 127, Strepsirrhini: 84
23 Protists 222 Alveolata: 38, Rhodophyta: 80, Stramenopiles: 104

24 SubclassToSuperorder
(Neopterygii) 1,759

Osteoglossomorpha: 23, Elopomorpha: 63, Clupeomorpha: 92,
Ostariophysi: 953, Protacanthopterygii: 76, Paracanthopterygii: 48,
Acanthopterygii: 504

25 SubfamilyToGenus
(Acheilognathinae) 26 Acheilognathus: 15, Rhodeus: 11

26 SubphylumToClass
(Vertebrata) 5,176

Amphibians (Amphibia): 264, Birds (Aves): 698,
Fish (Actinopterygii, Chondrichthyes, Dipnoi, Coelacanthiformes): 2,734,
Mammals (Mammalia): 1,133,
Reptiles (Crocodylia, Sphenodontia, Squamata, Testudines): 347

27 SuperorderToOrder
(Ostariophysi) 942 Cypriniformes: 768, Characiformes: 40, Siluriformes: 134
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D.A Software availability

MLDSP-GUI is an open-source alignment-free tool with Graphical User Interface is publicly

available for download at the following link (No license is required to download and use the

tool):

https://sourceforge.net/projects/mldsp-gui/

MLDSP is an open-source alignment-free tool (MATLAB license required to run this pro-

gram) available at the following link:

https://github.com/grandhawa/MLDSP
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https://github.com/grandhawa/MLDSP
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D.B Spearman’s rank correlation coefficient test results

The ρ values from the Spearman’s correlation coefficient test for k = 1 to k = 7 are given in

Supplementary Table S1. The P-value is < 1e − 5 for k = 2 to k = 6, 0.0833 for k = 1 with an

exception of 0.3333 in case of Deltacorovavirus.

COVID-19 vs. k=1 k=2 k=3 k=4 k=5 k=6 k=7
Alphacoronavirus 1 0.97 0.96 0.96 0.94 0.88 0.70
Betacoronavirus 1 0.95 0.95 0.95 0.94 0.89 0.74
Gammacoronavirus 1 0.93 0.91 0.92 0.90 0.83 0.63
Deltacoronavirus 0.8 0.98 0.94 0.92 0.90 0.81 0.60

Embecovirus 1 0.85 0.88 0.88 0.86 0.79 0.59
Merbecovirus 1 0.96 0.95 0.94 0.92 0.84 0.64
Nobecovirus 1 0.89 0.83 0.83 0.80 0.73 0.54
Sarbecovirus 1 0.98 0.97 0.97 0.95 0.88 0.72

Supplementary Table D.S1: Spearman’s rank correlation coefficient (ρ) value for k = 1 to
k = 7.

D.C Dataset availability

All sequences downloaded from NCBI and Virus-Host-DB are uploaded to the SourceForge as

fasta files. Accession numbers of 29 sequences downloaded from GISAID (28 COVID19 and

a bat betacoronavirus RaTG13) are provided in ’GISAIDsequences.txt’.

https://sourceforge.net/projects/mldsp-gui/files/COVID19Dataset

The sequences are downloaded from three databases: Virus-Host-DB, NCBI, and GISAID.

Virus-Host-DB

All the viral sequences (apart from the ones downloaded from NCBI and GISAID) used in this

study are obtained from the Virus-Host-DB available at:

https://www.genome.jp/virushostdb/

https://sourceforge.net/projects/mldsp-gui/files/COVID19Dataset
https://www.genome.jp/virushostdb/
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NCBI

Wuhan-Hu-1 complete genome (Accession: NC_045512.2), bat-SL-CoVZC45 (Accession:

MG772933.1), and bat-SL-CoVZXC21 (Accession: MG772934.1) are obtained from the Virus-

Host-DB available at:

https://www.ncbi.nlm.nih.gov/

GISAID

28 COVID-19 sequences and Beta-CoV-RaTG13 sequence (from Bat) are downloaded from

the GISAID. We gratefully acknowledge the Authors, the Originating and Submitting Labora-

tories for their sequence and metadata shared through GISAID, which is used in this research.

All submitters of 28 COVID-19 sequences and 1 BetaCoV/Bat/RaTG13 sequence may be con-

tacted directly via

www.gisaid.org

https://www.ncbi.nlm.nih.gov/
www.gisaid.org


D.C. Dataset availability 151

Accession ID Originating lab Submitting lab Authors

EPI_ISL_404227
Zhejiang Provincial
Center for Disease
Control and Prevention

Department of Microbiology,
Zhejiang Provincial Center
for Disease Control and
Prevention

Yin Chen, Yanjun Zhang, Haiyan Mao,
Junhang Pan, Xiuyu Lou, Yiyu Lu,
Juying Yan, Hanping Zhu, Jian Gao,
Yan Feng, Yi Sun, Hao Yan, Zhen Li,
Yisheng Sun, Liming Gong, Qiong Ge,
Wen Shi, Xinying Wang, Wenwu Yao,
Zhangnv Yang, Fang Xu, Chen Chen,
Enfu Chen, Zhen Wang, Zhiping Chen,
Jianmin Jiang, Chonggao Hu

EPI_ISL_404228
Zhejiang Provincial
Center for Disease
Control and Prevention

Department of Microbiology,
Zhejiang Provincial Center
for Disease Control and
Prevention

Yanjun Zhang, Yin Chen, Haiyan Mao,
Junhang Pan, Xiuyu Lou, Yiyu Lu,
Juying Yan, Hanping Zhu, Jian Gao,
Yan Feng, Yi Sun, Hao Yan, Zhen Li,
Yisheng Sun, Liming Gong, Qiong Ge,
Wen Shi, Xinying Wang, Wenwu Yao,
Zhangnv Yang, Fang Xu, Chen Chen,
Enfu Chen, Zhen Wang, Zhiping Chen,
Jianmin Jiang, Chonggao Hu

EPI_ISL_402132 Wuhan Jinyintan Hospital
Hubei Provincial Center for
Disease Control and Prevention

Bin Fang, Xiang Li, Xiao Yu, Linlin Liu,
Bo Yang, Faxian Zhan, Guojun Ye,
Xixiang Huo, Junqiang Xu, Bo Yu,
Kun Cai, Jing Li, Yongzhong Jiang

EPI_ISL_402127
EPI_ISL_402128
EPI_ISL_402129
EPI_ISL_402130
EPI_ISL_402124

Wuhan Jinyintan Hospital
Wuhan Institute of Virology,
Chinese Academy of Sciences

Peng Zhou, Xing-Lou Yang, Ding-Yu Zhang,
Lei Zhang, Yan Zhu, Hao-Rui Si, Zhengli Shi

EPI_ISL_403963
EPI_ISL_403962 Bamrasnaradura Hospital

1. Department of Medical Sciences,
Ministry of Public Health, Thailand
2. Thai Red Cross Emerging Infectious
Diseases - Health Science Centre
3. Department of Disease Control,
Ministry of Public Health, Thailand

Pilailuk, Okada; Siripaporn, Phuygun;
Thanutsapa, Thanadachakul; Supaporn,
Wacharapluesadee; Sittiporn,Parnmen;
Warawan,Wongboot; Sunthareeya, Waicharoen;
Rome, Buathong; Malinee, Chittaganpitch;
Nanthawan, Mekha

EPI_ISL_402120
EPI_ISL_402119
EPI_ISL_402121

National Institute for Viral Disease
Control and Prevention, China CDC

National Institute for Viral Disease
Control and Prevention, China CDC

Wenjie Tan, Xiang Zhao, Wenling Wang,
Xuejun Ma, Yongzhong Jiang, Roujian Lu,
Ji Wang, Weimin Zhou, Peihua Niu,
Peipei Liu, Faxian Zhan, Weifeng Shi,
Baoying Huang, Jun Liu, Li Zhao,
Yao Meng, Xiaozhou He, Fei Ye, Na Zhu,
Yang Li, Jing Chen, Wenbo Xu,
George F. Gao, Guizhen Wu

EPI_ISL_402123
Institute of Pathogen Biology, Chinese
Academy of Medical Sciences &
Peking Union Medical College

Institute of Pathogen Biology,
Chinese Academy of Medical
Sciences & Peking Union
Medical College

Lili Ren, Jianwei Wang, Qi Jin, Zichun Xiang,
Zhiqiang Wu, Chao Wu, Yiwei Liu

EPI_ISL_402125 unknown

National Institute for Communicable
Disease Control and Prevention (ICDC)
Chinese Center for Disease Control
and Prevention (China CDC)

Zhang,Y.-Z., Wu,F., Chen,Y.-M., Pei,Y.-Y.,
Xu,L., Wang,W., Zhao,S., Yu,B., Hu,Y.,
Tao,Z.-W., Song,Z.-G., Tian,J.-H., Zhang,Y.-L.,
Liu,Y., Zheng,J.-J., Dai,F.-H., Wang,Q.-M.,
She,J.-L. and Zhu,T.-Y.

EPI_ISL_403931
EPI_ISL_403928
EPI_ISL_403930
EPI_ISL_403929

Institute of Pathogen Biology, Chinese
Academy of Medical Sciences &
Peking Union Medical College

Institute of Pathogen Biology,
Chinese Academy of Medical
Sciences & Peking Union
Medical College

Lili Ren, Jianwei Wang, Qi Jin, Zichun Xiang,
Zhiqiang Wu, Chao Wu, Yiwei Liu

EPI_ISL_403937
EPI_ISL_403936
EPI_ISL_403935
EPI_ISL_403934
EPI_ISL_403933
EPI_ISL_403932

Guangdong Provincial Center for
Diseases Control and Prevention;
Guangdong Provincial Public Health

Department of Microbiology,
Guangdong Provincial Center
for Diseases Control and Prevention

Min Kang, Jie Wu, Jing Lu, Tao Liu,
Baisheng Li, Shujiang Mei, Feng Ruan,
Lifeng Lin, Changwen Ke, Haojie Zhong,
Yingtao Zhang, Lirong Zou, Xuguang Chen,
Qi Zhu, Jianpeng Xiao, Jianxiang Geng,
Zhe Liu, Jianxiong Hu, Weilin Zeng, Xing Li,
Yuhuang Liao, Xiujuan Tang, Songjian Xiao,
Ying Wang, Yingchao Song, Xue Zhuang,
Lijun Liang, Guanhao He, Huihong Deng,
Tie Song, Jianfeng He, Wenjun Ma

EPI_ISL_404895 Providence Regional Medical Center
Division of Viral Diseases,
Centers for Disease Control
and Prevention

Queen,K., Tao,Y., Li,Y., Paden,C.R., Lu,X.,
Zhang,J., Gerber,S.I., Lindstrom,S.

EPI_ISL_404253
IL Department of Public Health
Chicago Laboratory

Pathogen Discovery, Respiratory
Viruses Branch, Division of Viral
Diseases, Centers for Dieases
Control and Prevention

Ying Tao, Krista Queen, Clinton R. Paden,
Jing Zhang, Yan Li, Anna Uehara, Xiaoyan Lu,
Brian Lynch, Senthil Kumar K. Sakthivel,
Brett L. Whitaker, Shifaq Kamili, Lijuan Wang,
Janna’ R. Murray, Susan I. Gerber, S
tephen Lindstrom, Suxiang Tong

EPI_ISL_405839
The University of Hong Kong -
Shenzhen Hospital

Li Ka Shing Faculty of Medicine,
The University of Hong Kong

Chan,J.F.-W., Yuan,S., Kok,K.H., To,K.K.-W.,
Chu,H., Yang,J., Xing,F., Liu,J., Yip,C.C.-Y.,
Poon,R.W.-S., Tsai,H.W., Lo,S.K.-F., Chan,K.H.,
Poon,V.K.-M., Chan,W.M., Ip,J.D., Cai,J.P.,
Cheng,V.C.-C., Chen,H., Hui,C.K.-M., Yuen,K.Y.

EPI_ISL_402131
(Bat RaTG13)

Wuhan Institute of Virology,
Chinese Academy of Sciences

Wuhan Institute of Virology,
Chinese Academy of Sciences

Yan Zhu, Ping Yu, Bei Li, Ben Hu, Hao-Rui Si,
Xing-Lou Yang, Peng Zhou, Zheng-Li Shi

Supplementary Table D.S2: Accession IDs of the sequences downloaded from the GISAID.
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The accession numbers and the sources for all the used sequences are given below:

Test-1; Source: Virus-Host-DB
Adenoviridae
AB448767,AC_000007,JN880453,JN880454,JN880455,JN880456,JN935766,JQ326209,
JQ776547,KC529648,KC693021,KF268207,AC_000008,KF279629,KF528688,KF802426,
KF906413,KM591901,KM591902,KM591903,NC_000899,NC_000942,NC_001405,
AC_000009,NC_001454,NC_001460,NC_001720,NC_001734,NC_001813,NC_001876,
NC_001958,NC_002501,NC_002513,NC_002685,AC_000010,NC_002702,NC_003266,
NC_004037,NC_006144,NC_006879,NC_009989,NC_010956,NC_011202,NC_011203,
NC_012584,AC_000011,NC_012959,NC_014564,NC_014899,NC_014969,NC_015225,
NC_015323,NC_015455,NC_015932,NC_016437,NC_016895,AC_000012,NC_017825,
NC_017979,NC_020074,NC_020485,NC_020487,NC_021168,NC_021221,NC_022266,
NC_022612,NC_022613,AC_000013,NC_024150,NC_024474,NC_024486,NC_024684,
NC_025678,NC_025962,NC_027705,NC_027708,NC_028103,NC_028105,AC_000014,
NC_028107,NC_028113,NC_029898,NC_029899,NC_029902,NC_030116,NC_030792,
NC_030860,NC_030874,NC_031503,AC_000016,NC_031948,NC_032105,NC_034382,
NC_034626,NC_034834,NC_035072,NC_035207,NC_035619,NC_038332,NC_038333,
AC_000017,NC_038334,NC_039032,NC_040811,NC_043094,NC_043405,NC_043696,
U46933,X73487,Y09598,AB724351,AC_000018,AC_000019,AC_000020,AC_000189,
AC_000190,AC_000191,AF036092,AF083975,AF108105,AM749299,AB765926,
AP012285,AP012302,AY458656,AY737797,AY737798,AY803294,AY849321,AY875648,
DQ086466,DQ315364,AC_000001,DQ393829,DQ792570,DQ900900,DQ923122,
EF121005,EF564601,FJ025899,FJ025900,FJ025901,FJ025902,AC_000002,FJ025903,
FJ025904,FJ025905,FJ025906,FJ025907,FJ025908,FJ025909,FJ025910,FJ025911,
FJ025912,AC_000003,FJ025913,FJ025914,FJ025915,FJ025916,FJ025917,FJ025918,
FJ025919,FJ025920,FJ025921,FJ025922,AC_000004,FJ025923,FJ025924,FJ025925,
FJ025926,FJ025927,FJ025928,FJ025929,FJ025930,FJ349096,FJ404771,AC_000005,
FJ597732,FJ643676,FJ824826,GQ384080,GU191019,HM770721,HQ241818,HQ241820,
HQ883276,JF964962,AC_000006,JN860676,JN860677,JN860678,JN860679,JN860680,
JN880448,JN880449,JN880450,JN880451,JN880452
Anelloviridae
AM711976,AM712003,AM712004,AM712030,AM712031,AM712032,AM712033,
AM712034,FR823283,GU450331,HQ335082,HQ335083,HQ335084,HQ335085,JN704611,
KJ194622,KM262781,KM262785,NC_001427,NC_002076,NC_002195,NC_007013,
NC_007014,NC_009225,NC_012126,NC_014068,NC_014069,NC_014070,NC_014071,
NC_014072,NC_014073,NC_014074,NC_014075,NC_014076,NC_014077,NC_014078,
NC_014079,NC_014080,NC_014081,NC_014082,NC_014083,NC_014084,NC_014085,
NC_014086,NC_014087,NC_014088,NC_014089,NC_014090,NC_014091,NC_014092,
NC_014093,NC_014094,NC_014095,NC_014096,NC_014097,NC_014480,NC_015212,
NC_015396,NC_015783,NC_017091,NC_018401,NC_020498,NC_022788,NC_022789,
NC_024890,NC_024891,NC_024908,NC_025215,NC_025726,NC_025727,NC_025966,
NC_026138,NC_026662,NC_026663,NC_026664,NC_026764,NC_026765,NC_027059,
NC_027430,NC_030297,NC_030650,NC_034978,NC_035135,NC_035136,NC_035192,
NC_038336,NC_038337,NC_038338,NC_038339,NC_038340,NC_038341,NC_038342,
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NC_038343,NC_038344,NC_038345,NC_038346,NC_038347,NC_038348,NC_038349,
NC_038350,NC_038351,NC_038352,NC_038353,NC_038354,NC_038355,NC_038356,
NC_038357,NC_038358,NC_038359,NC_038360,NC_038361,NC_038362,NC_038363,
NC_040531,NC_040546,NC_040547,NC_040617,NC_040618,NC_040668,NC_040686,
NC_040687,NC_040720, NC_040801,NC_043413,NC_043414,NC_043415
Caudovirales
AB626963,AB746912,AB757801,AF527608,AP011956,AY526908,AY526909,CP000711,
CP008753,DQ113772,DQ121662,DQ222851,DQ289556,DQ394806,DQ394807,
DQ394808,DQ394809,DQ394810,DQ426905,DQ838728,EU056923,EU568876,EU622808
,FQ482084,GQ303261,GQ478082,GQ478083,GQ478085,GQ478087,GU196281,HE614282
,HE956707,HE983844,HG428758,HG793132,HG796219,HG796220,HG796221,
HM152765,HQ110083,HQ634152,HQ641341,HQ641343,HQ641344,HQ641346,JF314845,
JF767210,JF773396,JN175269,JN254801,JN255163,JN699002,JN811560,JQ067085,
JQ267518,JQ691610,JQ740790,JQ740791,JQ740792,JQ740793,JQ740794,JQ740795,
JQ740796,JQ740797,JQ740798,JQ740799,JQ740800,JQ740801,JQ740802,JQ740803,
JQ740805,JQ740806,JQ740807,JQ740808,JQ740809,JQ740810,JQ740811,JQ740812,
JQ740814,JQ780163,JQ957925,JQ965700,JQ965701,JQ965702,JQ965703,JX000007,
JX174275,JX274646,JX274647,JX403939,JX409894,JX409895,JX421753,JX483873,
JX483874,JX483875,JX483879,JX483880,JX564242,JX570703,JX570707,JX570708,
JX570711,JX681814,KC182543,KC182544,KC182545,KC182548,KC182549,KC182550,
KC330681,KC333879,KC348598,KC348599,KC348600,KC348601,KC348602,KC348603,
KC348604,KC413987,KC413988,KC522412,KC542353,KC556893,KC556894,KC556895,
KC556896,KC556898,KC787107,KC787108,KC821615,KC821627,KC911856,KC911857,
KC969441,KF030445,KF302032,KF302033,KF302035,KF302036,KF302037,KF591601,
KF669657,KF676640,KF751793,KF751794,KF751795,KF751796,KF751797,KF771236,
KF800937,KJ018210,KJ021043,KJ417497,KJ502657,KJ545483,KJ572844,KJ578763,
KJ578764,KJ578766,KJ578769,KJ578771,KJ578775,KJ578777,KJ617393,KJ725374,
KM058087,KM091442,KM091443,KM091444,KM233455,KM591905,KM612260,
KM612261,KM612262,KM612263,KM612265,KM923970,KP017310,KP209285,
KP296794,KP791807,KP869108,KR131710,LK985321,LN610580,LN681534,M11813,
NC_000871,NC_000872,NC_000896,NC_000929,NC_000935,NC_001271,NC_001317,
NC_001416,NC_001604,NC_001609,NC_001629,NC_001697,NC_001706,NC_001825,
NC_001835,NC_001895,NC_001900,NC_001901,NC_001902,NC_001909,NC_001978,
NC_002072,NC_002166,NC_002167,NC_002185,NC_002214,NC_002321,NC_002371,
NC_002486,NC_002515,NC_002519,NC_002628,NC_002649,NC_002661,NC_002666,
NC_002667,NC_002668,NC_002669,NC_002670,NC_002671,NC_002703,NC_002730,
NC_002747,NC_002796,NC_003050,NC_003085,NC_003157,NC_003216,NC_003278,
NC_003288,NC_003291,NC_003298,NC_003313,NC_003315,NC_003356,NC_003390,
NC_003444,NC_003524,NC_003907,NC_004066,NC_004112,NC_004165,NC_004166,
NC_004167,NC_004302,NC_004303,NC_004305,NC_004313,NC_004333,NC_004348,
NC_004456,NC_004466,NC_004584,NC_004585,NC_004586,NC_004587,NC_004588,
NC_004589,NC_004615,NC_004616,NC_004617,NC_004664,NC_004665,NC_004678,
NC_004679,NC_004740,NC_004745,NC_004746,NC_004775,NC_004777,NC_004814,
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NC_004821,NC_004827,NC_004831,NC_004902,NC_004996,NC_005045,NC_005056,
NC_005069,NC_005178,NC_005263,NC_005294,NC_005340,NC_005342,NC_005344,
NC_005345,NC_005354,NC_005355,NC_005356,NC_005357,NC_005822,NC_005833,
NC_005841,NC_005879,NC_005882,NC_005884,NC_005886,NC_005887,NC_005891,
NC_005893,NC_006356,NC_006548,NC_006557,NC_006882,NC_006936,NC_006940,
NC_006949,NC_006953,NC_007019,NC_007046,NC_007047,NC_007048,NC_007049,
NC_007050,NC_007051,NC_007052,NC_007053,NC_007054,NC_007055,NC_007056,
NC_007057,NC_007058,NC_007059,NC_007060,NC_007061,NC_007062,NC_007063,
NC_007064,NC_007065,NC_007145,NC_007149,NC_007291,NC_007456,NC_007458,
NC_007497,NC_007501,NC_007603,NC_007637,NC_007709,NC_007710,NC_007734,
NC_007804,NC_007805,NC_007806,NC_007807,NC_007808,NC_007814,NC_007924,
NC_007967,NC_008152,NC_008193,NC_008201,NC_008202,NC_008265,NC_008363,
NC_008364,NC_008367,NC_008370,NC_008371,NC_008376,NC_008583,NC_008617,
NC_008689,NC_008694,NC_008695,NC_008717,NC_008721,NC_008722,NC_008723,
NC_008798,NC_008799,NC_009014,NC_009016,NC_009018,NC_009232,NC_009234,
NC_009235,NC_009236,NC_009237,NC_009382,NC_009514,NC_009526,NC_009531,
NC_009540,NC_009541,NC_009542,NC_009543,NC_009551,NC_009552,NC_009554,
NC_009603,NC_009604,NC_009643,NC_009737,NC_009761,NC_009762,NC_009763,
NC_009799,NC_009810,NC_009812,NC_009813,NC_009814,NC_009815,NC_009818,
NC_009819,NC_009875,NC_009935,NC_009936,NC_009990,NC_010147,NC_010179,
NC_010275,NC_010325,NC_010326,NC_010342,NC_010353,NC_010363,NC_010463,
NC_010495,NC_010807,NC_010808,NC_010945,NC_011038,NC_011040,NC_011042,
NC_011043,NC_011045, NC_011046,NC_011048,NC_011085,NC_011104,NC_011107,
NC_011142,NC_011201,NC_011216,NC_011222,NC_011267,NC_011291,NC_011308,
NC_011318,NC_011344,NC_011373,NC_011534,NC_011551,NC_011589,NC_011611,
NC_011612,NC_011613,NC_011614,NC_011645,NC_011646,NC_011801,NC_011802,
NC_011976,NC_012223,NC_012418,NC_012419,NC_012662,NC_012742,NC_012753,
NC_012756,NC_012784,NC_012788,NC_012884,NC_013055,NC_013059,NC_013152,
NC_013153,NC_013154,NC_013155,NC_013195,NC_013594,NC_013597,NC_013598,
NC_013599,NC_013600,NC_013638,NC_013643,NC_013644,NC_013645,NC_013646,
NC_013647,NC_013648, NC_013649,NC_013651,NC_013696,NC_014229,NC_014460,
NC_014900,NC_015158,NC_015159,NC_015208
Geminiviridae
KF229718,KF229722,KF652077,KJ628309,KM189819,L14460,L14461,L39638,
NC_000869,NC_000870,NC_000882,NC_001346,NC_001359,NC_001369,NC_001412,
NC_001438,NC_001439,NC_001466,NC_001467,NC_001468,NC_001478,NC_001507,
NC_001508,NC_001647,NC_001828,NC_001868,NC_001917,NC_001928,NC_001929,
NC_001930,NC_001931,NC_001932,NC_001933,NC_001934,NC_001935,NC_001936,
NC_001937,NC_001938,NC_001939,NC_001983,NC_001984,NC_002046,NC_002047,
NC_002048,NC_002049,NC_002510,NC_002543,NC_002555,NC_002556,NC_002817,
NC_002981,NC_002984,NC_002985,NC_003199,NC_003326,NC_003357,NC_003379,
NC_003418,NC_003434,NC_003493,NC_003504,NC_003505,NC_003556,NC_003609,
NC_003664,NC_003665,NC_003708,NC_003709,NC_003722,NC_003744,NC_003803,
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NC_003804,NC_003822,NC_003825,NC_003828,NC_003830,NC_003831,NC_003856,
NC_003857,NC_003860,NC_003861,NC_003862,NC_003865,NC_003866,NC_003867,
NC_003868,NC_003887,NC_003891,NC_003896,NC_003897,NC_003898,NC_004005,
NC_004042,NC_004043,NC_004044,NC_004071,NC_004090,NC_004091,NC_004096,
NC_004097,NC_004098,NC_004099,NC_004100,NC_004101,NC_004147,NC_004153,
NC_004192,NC_004300,NC_004356,NC_004558,NC_004559,NC_004569,NC_004580,
NC_004581,NC_004582,NC_004583,NC_004607,NC_004608,NC_004609,NC_004611,
NC_004612,NC_004613,NC_004614,NC_004618,NC_004625,NC_004626,NC_004627,
NC_004628,NC_004630,NC_004634,NC_004635,NC_004637,NC_004638,NC_004639,
NC_004640,NC_004641,NC_004642,NC_004644,NC_004645,NC_004646,NC_004647,
NC_004648,NC_004650,NC_004651,NC_004654,NC_004655,NC_004656,NC_004657,
NC_004658,NC_004659,NC_004660,NC_004661,NC_004662,NC_004673,NC_004674,
NC_004675,NC_004676,NC_004732,NC_004755,NC_004824,NC_004825,NC_005031,
NC_005032,NC_005319,NC_005320,NC_005321,NC_005330,NC_005331,NC_005338,
NC_005347,NC_005348,NC_005635,NC_005636,NC_005807,NC_005811,NC_005812,
NC_005842,NC_005843,NC_005844,NC_005845,NC_005846,NC_005850,NC_005851,
NC_005852,NC_005853,NC_005855,NC_006358,NC_006359,NC_006384,NC_006631,
NC_006874,NC_006876,NC_006995,NC_007210,NC_007211,NC_007290,NC_007338,
NC_007339,NC_007638,NC_007723,NC_007724,NC_007726,NC_007727,NC_007730,
NC_007965,NC_007966,NC_008056,NC_008057,NC_008058,NC_008059,NC_008236,
NC_008267,NC_008283,NC_008284,NC_008299,NC_008304,NC_008305,NC_008316,
NC_008317,NC_008329,NC_008373,NC_008374,NC_008377,NC_008492,NC_008493,
NC_008494,NC_008495,NC_008517,NC_008559,NC_008779,NC_008780,NC_008793,
NC_008794,NC_009030,NC_009031,NC_009088,NC_009354,NC_009451,NC_009490,
NC_009491,NC_009545,NC_009546,NC_009547,NC_009548,NC_009549,NC_009550,
NC_009553,NC_009605,NC_009606,NC_009607,NC_009612,NC_009644,NC_009645,
NC_009646,NC_009647,NC_010238,NC_010293,NC_010294,NC_010307,NC_010313,
NC_010352,NC_010417,NC_010435,NC_010439,NC_010440,NC_010441,NC_010618,
NC_010647,NC_010648,NC_010713,NC_010714,NC_010791,NC_010792,NC_010797,
NC_010799,NC_010812,NC_010818,NC_010833,NC_010834,NC_010835,NC_010836,
NC_010837,NC_010838,NC_010839,NC_010840,NC_010946,NC_010947,NC_010948,
NC_010949,NC_010950, NC_010951,NC_010952,NC_010953,NC_011024,NC_011052,
NC_011058,NC_011096,NC_011135,NC_011181,NC_011182,NC_011268,NC_011309,
NC_011346,NC_011347,NC_011348,NC_011583,NC_011584,NC_011804,NC_011805,
NC_011919,NC_012041,NC_012118,NC_012120,NC_012137,NC_012206,NC_012481,
NC_012482,NC_012492,NC_012553,NC_012554,NC_012664,NC_012665,NC_012786,
NC_012787,NC_013017,AB007990,AB110218,AB162141,AB192965,AB192966,
AB236321,AB236323,AB236325,AB306314,AB439841,AB439842,AB921568,AF105975,
AF112352,AF112353,AF141897,AF141922,AF173555,AF173556,AF241479,AF291705,
AF291706,AF329886,AF329888,AF329889,AF379637,AF416741,AF416742,AF428255,
AF490004,AF491306,AJ132574,AJ132575,AJ223505,AJ224504,AJ311031,AJ314739,
AJ314740,AJ319674,AJ420316,AJ420317,AJ420318,AJ457823,AJ457824,AJ457985,
AJ457986,AJ496286,AJ496287,AJ512761,AJ512762,AJ543429,AJ564742,AJ564743,
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AJ566744,AJ579307,AJ579308,AJ781302,AJ810156,AJ810157,AJ849916,AJ865337,
AJ971263,AM181683,AM183224,AM230634,AM230635,AM261326,AM421522,
AM691745,AM712436,AM940137,AM980883,AM989927,AY036009,AY036010,
AY090555,AY090556,AY090557,AY090558,AY190290,AY190291,AY650283,AY754814,
D00200,D00201,D00940,DQ845787,DQ868525,EF011559,EF015778,EF190217,
EF536859,EF536861,EF536868,EF536873,EF536876,EF536878,EF536886,EU024118,
EU024119,EU024120,EU273816,EU273817,EU273818,EU365686,EU856366,FJ176701,
FJ560719,FJ751234,FM179613,FM210034,FM877474,FN252890,FN256256,FN256257,
FN256258,FN256259,FN256260,FN256261,FN256292,FN297834,FN401520,FN436001,
GU001879,GU076440,GU076443,GU076445,GU076447,GU076449,GU076451,
GU076452,GU076454,GU180085,GU256531,GU440580,GU732203,HE580236,HE616777
,HE659516,HE659517,HE793429,HM140364,HM140365,HM140366,HM140368,
HM140369,HM140370,HM140371,HM626516,HM626517,HM859902,HM859903,
JF451352,JN676150,JN676151,JN680352,JN680353,JN989417,JN989425,JN989441,
JN989446,JQ247188,JQ303121,JQ303122,JQ621843,JX082259,JX448368,JX911332,
K02029,K02030,KC149941,KC172700,KC427995,KC476655,KF176552
Genomoviridae
JN704610,KF371641,KF371642,KP133076,KP133077,KP133078,KP133079,KP133080,
NC_013116,NC_023844,NC_023870,NC_023871,NC_023872,NC_024689,NC_024690,
NC_024691,NC_024909,NC_025728,NC_025729,NC_025730,NC_025731,NC_025732,
NC_025733,NC_025734,NC_025735,NC_025736,NC_025737,NC_025738,NC_025741,
NC_026144,NC_026161,NC_026162,NC_026163,NC_026164,NC_026165,NC_026166,
NC_026167,NC_026168,NC_026169,NC_026254,NC_026261,NC_026806,NC_026807,
NC_026808,NC_026809,NC_026810,NC_026817,NC_026818,NC_027776,NC_027820,
NC_027821,NC_028459,NC_028460,NC_030138,NC_030139,NC_030140,NC_030141,
NC_030142,NC_030143,NC_030144,NC_030145,NC_030146,NC_030147,NC_030447,
NC_030448,NC_030887,NC_033270,NC_033736,NC_033742,NC_033743,NC_033747,
NC_035137,NC_035138,NC_035139,NC_035197,NC_035477,NC_037062,NC_038479,
NC_038480,NC_038481,NC_038482,NC_038483,NC_038484,NC_038485,NC_038486,
NC_038487,NC_038488,NC_038489,NC_038490,NC_038491,NC_038492,NC_038493,
NC_038494,NC_038495,NC_038496,NC_038497,NC_038498,NC_038499,NC_038501,
NC_038502,NC_040317,NC_040326,NC_040327,NC_040330,NC_040338,NC_040339,
NC_040340,NC_040346,NC_040347,NC_040348,NC_040351,NC_040370,NC_040371,
NC_040372,NC_040379
Microviridae
AJ550635,AY751298,DQ079873,DQ079878,DQ079880,DQ079881,DQ079882,DQ079883,
DQ079884,DQ079885,DQ079886,DQ079887,DQ079888,DQ079889,DQ079890,
DQ079891,DQ079892,DQ079893,DQ079894,DQ079895,DQ079896,DQ079897,
DQ079898,DQ079899,DQ079900,DQ079901,DQ079902,DQ079903,DQ079904,
DQ079905,DQ079906,DQ079907,DQ079908,DQ079909,KC237308,KC821628,
KC821631,KF044309,KF044310,KJ997912,M14428,NC_001330,NC_001420,
NC_001422,NC_001730,NC_001741,NC_001998,NC_002180,NC_002194,NC_002643,
NC_003438,NC_007461,NC_007817,NC_007818,NC_007819,NC_007820,NC_007821,
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NC_007822,NC_007823,NC_007824,NC_007825,NC_007827,NC_007856,NC_012868,
NC_015785,NC_021797,NC_021805,NC_022790,NC_026013,NC_026665,NC_027633,
NC_027634,NC_027635,NC_027636,NC_027637,NC_027638,NC_027639,NC_027640,
NC_027641,NC_027642,NC_027643,NC_027644,NC_027645,NC_027646,NC_027647,
NC_027648,NC_028993,NC_028994,NC_029012,NC_029014,NC_030458,NC_030472,
NC_030476,NC_040328,NC_040329,NC_040341,NC_040342,NC_040349,NC_040350,
NC_040373,NC_040374,NC_040375
Ortervirales
AB187566,AB611707,AF033809,AF053745,AF126467,AF221065,AF411814,DQ093792,
DQ241301, DQ241302,DQ365814,DQ399707,DQ451009,DQ822073,EF133960,EF494181
,EU293537,EU523109,FJ195346,FN692043,HM210570,HQ154630,HQ246218,HQ540591,
HQ540595,J01998,JF274252,JF908815,JN032736,JN134185,JQ303225,JX245014,
KC802224,KF029431,KF313137,KJ668270,KJ668271,KP284572,M11841,M14008,
M16605,M23385,NC_000858,NC_001343,NC_001362,NC_001364,NC_001402,Y13051
NC_001403,NC_001407,NC_001408,NC_001413,NC_001414,NC_001436,NC_001450,
NC_001452,NC_001463,NC_001482,NC_001488,NC_001494,NC_001497,NC_001499,
NC_001500,NC_001501,NC_001502,NC_001503,NC_001506,NC_001511,NC_001514,
NC_001549, NC_001550,NC_001574,NC_001618,NC_001634,NC_001648,NC_001654,
NC_001702,NC_001722, NC_001724,NC_001725,NC_001739,NC_001802,NC_001815,
NC_001831,NC_001839,NC_001866,NC_001867,NC_001885,NC_001914,NC_001940,
NC_002201,NC_003031,NC_003059,NC_003138,NC_003323,NC_003378,NC_003381,
NC_003382,NC_003498,NC_003554,NC_004036,NC_004324,NC_004450,NC_004455,
NC_004540,NC_004994,NC_005947,NC_006934,NC_006955,NC_007002,NC_007003,
NC_007015,NC_007654,NC_007815,NC_008017,NC_008018,NC_008034,NC_008094,
NC_009010,NC_009424,NC_009889,NC_010737,NC_010738,NC_010820,NC_010955,
NC_011097,NC_011546,NC_011592,NC_011800,NC_011920,NC_012728,NC_013262,
NC_013455,NC_014474, NC_014648,NC_015116,NC_015228,NC_015328,NC_015502,
NC_015503,NC_015504,NC_015505,NC_015506,NC_015507,NC_015655,NC_015784,
NC_017830,NC_018105,NC_018505,NC_018616,NC_018858,NC_020999,NC_022365,
NC_022517,NC_022518,NC_023153,NC_023485,NC_024301,NC_026020,NC_026238,
NC_026472,NC_026819,NC_027117,NC_027131,NC_027924,NC_028462,NC_029303,
NC_029852,NC_029853,NC_030205,NC_030462,NC_031326,NC_033738,NC_033739,
NC_034252,NC_035472,NC_038378,NC_038379,NC_038380,NC_038381,NC_038382,
NC_038512,NC_038669,NC_038858,NC_038922,NC_038923,NC_038986,NC_038987,
NC_038995,NC_039022,NC_039023,NC_039024,NC_039025,NC_039026,NC_039027,
NC_039028,NC_039029,NC_039030,NC_039031,NC_039085,NC_039228,NC_039238,
NC_039242,NC_040461,NC_040462,NC_040552,NC_040622,NC_040635,NC_040692,
NC_040693,NC_040712,NC_040807,NC_040808,NC_040809,NC_040841,NC_043194,
NC_043195,NC_043382,NC_043445,NC_043491,NC_043523,NC_043534,NC_043535,
U04327,U21247,U85505,U85506,U94692,X00255,X13744,X54482,X57540,Y07725,
Papillomaviridae
AB027020,AB027021,AB211993,AB331650,AB331651,AB361563,AB543507,
AB793779,AF020905,AF092932,AF151983,AF293960,AF349909,AJ400628,AJ620205,
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AJ620208,AJ620209,AJ620211,AY395706,AY904722,AY904723,AY904724,D21208,
D90252,D90400,DQ080079,DQ080080,DQ080082,DQ080083,DQ090005,DQ098913,
DQ098917,DQ180494,DQ344807,EF028290,EF117891,EF422221,EF558838,EF558839,
EF558840,EF558841,EF558842,EF558843,EF591300,EU240895,EU360723,EU410347,
EU410348,EU410349,EU490515,EU490516,EU493091,EU918769,FJ492742,FJ492743,
FJ947080,FM955837,FM955838,FM955839,FM955840,FM955841,FM955842,FN547152,
FN598907,FN677755,FN677756,FR751039,GQ180114,GQ227670,GQ244463,GQ246950,
GQ246951,GQ845441,GQ845442,GQ845444,GQ845445,GQ845446,GU117620,
GU117624,GU117629,GU117630,GU117633,GU129016,HE963025,HG939559,
HM999990,HM999991,HM999993,HM999994,HM999995,HM999997,HM999998,
HM999999,J04353,JF304766,JF304767,JF304768,JF800658,JF906559,JN171845,
JN709469,JN709470,JN709471,JN709472,JQ798171,JX174438,JX899359,KC138720,
KC470240,KC858265,KF006398,KF006400,KJ145795,KM085343,KM983393,KP276343,
L41216,M12732,M12737,M14119,M20219,M32305,M62877,M73236,M74117,
NC_001352,NC_001354,NC_001355,NC_001356,NC_001357,NC_001457,NC_001458,
NC_001522,NC_001523,NC_001524,NC_001526,NC_001531,NC_001541,NC_001576,
NC_001583,NC_001586,NC_001587,NC_001591,NC_001593,NC_001595,NC_001596,
NC_001605,NC_001619,NC_001676,NC_001678,NC_001690,NC_001691,NC_001693,
NC_001694,NC_001789,NC_002232,NC_003348,NC_003748,NC_003973,NC_004068,
NC_004104,NC_004195,NC_004197,NC_004500,NC_004765,NC_005134,NC_006563,
NC_006564,NC_006951,NC_007150,NC_007612,NC_008032,NC_008184,NC_008188,
NC_008189,NC_008297,NC_008298,NC_008519,NC_008582,NC_010107,NC_010226,
NC_010329,NC_010739,NC_010817,NC_011051,NC_011109,NC_011280,NC_011530,
NC_011765,NC_012123,NC_012213,NC_012485,NC_012486,NC_013035,NC_013117,
NC_013237,NC_014143,NC_014185,NC_014326,NC_014469,NC_014952,NC_014953,
NC_014954,NC_014955,NC_014956,NC_015267,NC_015268,NC_015325,NC_015691,
NC_015692,NC_016013,NC_016014,NC_016074,NC_016075,NC_016157,NC_016898,
NC_017716,NC_017862,NC_017993,NC_017994,NC_017995,NC_017996,NC_017997,
NC_018074,NC_018075,NC_018076,NC_018575,NC_019023,NC_019852,NC_020084,
NC_020085,NC_020500,NC_020501,NC_021472,NC_021483,NC_021930,NC_022095,
NC_022253,NC_022373,NC_022647,NC_022892,NC_023178,NC_023496,NC_023852,
NC_023873,NC_023882,NC_023891,NC_023894,NC_023895,NC_024300,NC_024893,
NC_026640,NC_026946,NC_027528,NC_027779,NC_028125,NC_028126,NC_028267,
NC_028492,NC_030151,NC_030795,NC_030796,NC_030797,NC_030798,NC_030799,
NC_030800,NC_030801,NC_030839,NC_031756,NC_033740,NC_033745,NC_033781,
NC_034616,NC_035193,NC_035199,NC_035201,NC_035208,NC_035478,NC_035479,
NC_037059,NC_037061,NC_037064,NC_037067,NC_037069,NC_038516,NC_038517,
NC_038518,NC_038519,NC_038520,NC_038521,NC_038522,NC_038523,NC_038524,
NC_038525,NC_038526,NC_038527,NC_038531,NC_038889,NC_038914,NC_039036,
NC_039037,NC_039038,NC_039039,NC_039040,NC_039041,NC_039042,NC_039086,
NC_039089,NC_040548,NC_040550,NC_040569,NC_040578,NC_040579,NC_040580,
NC_040583,NC_040604,NC_040619,NC_040620,NC_040640,NC_040655,NC_040688,
NC_040691,NC_040709,NC_040727,NC_040728,NC_040785,NC_040787,NC_040803,
NC_040804, NC_040805,NC_040806,NC_040818,NC_040827,U06714,U21941,U31778,
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U31779,U31780,U31781, U31782,U31783,U31784,U31785,U31786,U31787,U31788,
U31791,U31793,U31794,U37537,U83595,X05015,X05817,X55964,X55965,X70829,
X74462,X74466,X74467,X74468,X74469,X74470,X74471, X74473,X74478,X74479,
X74481,X74483,X77858
Parvoviridae
AF028704,AF028705,DQ196318,DQ196319,DQ335246,DQ778300,DQ898166,EF441262,
EF584447, FJ375127,FJ375128,FJ375129,FJ440683,FJ441297,FJ445512,GQ368252,
HM053694,JF429836,JN681175,JQ268283,JQ268284,JX645345,JX827169,KC580640,
KF170373,KF214638,KF214640,KF214645,KJ486491,KJ634207,KM105951,KM390024,
KM598414,KM598419,KP280068,M81888,NC_000883,NC_000936,NC_001401,
NC_001510,NC_001539,NC_001540,NC_001662,NC_001701,NC_001718,NC_001729,
NC_001829,NC_001899,NC_002077,NC_002190,NC_003346,NC_004284,NC_004285,
NC_004286,NC_004287,NC_004288,NC_004289,NC_004290,NC_004295,NC_004442,
NC_004828,NC_005040,NC_005041,NC_005341,NC_005889,NC_006147,NC_006148,
NC_006152,NC_006259,NC_006260,NC_006261,NC_006263,NC_006555,NC_007018,
NC_007218,NC_007455,NC_011317,NC_011545,NC_012042,NC_012564,NC_012636,
NC_012685,NC_012729,NC_014357,NC_014358,NC_014468,NC_014665,NC_015115,
NC_015718,NC_016031,NC_016032,NC_016647,NC_016744,NC_016752,NC_017823,
NC_018399,NC_018450,NC_019492,NC_020499,NC_022089,NC_022104,NC_022564,
NC_022748,NC_022800,NC_023020,NC_023673,NC_023842,NC_023860,NC_024452,
NC_024453,NC_024454,NC_024888,NC_025825,NC_025891,NC_025965,NC_026251,
NC_026815, NC_026943,NC_027429,NC_028136,NC_028650,NC_028973,NC_029133,
NC_029300,NC_029797,NC_030296,NC_030402,NC_030837,NC_030873,NC_031450,
NC_031670,NC_031695,NC_031751,NC_031959,NC_032097,NC_034445,NC_034532,
NC_035180,NC_035185,NC_035186,NC_037053,NC_038532,NC_038533,NC_038534,
NC_038535,NC_038536,NC_038537,NC_038538,NC_038539,NC_038540,NC_038541,
NC_038542,NC_038543,NC_038544,NC_038545,NC_038546,NC_038547,NC_038883,
NC_038895,NC_038898,NC_039043,NC_039044,NC_039045,NC_039046,NC_039047,
NC_039048,NC_039049,NC_039050,NC_040533,NC_040562,NC_040603,NC_040623,
NC_040626, NC_040652,NC_040671,NC_040672,NC_040694,NC_040695,NC_040843,
NC_043446,U12469,X01457
Polydnaviridae
AY651828,AY651829,AY651830,DQ075354,DQ075355,DQ075356,DQ075357,DQ075358
,DQ075359,DQ075360,EF067319,EF067320,EF067321,EF067322,EF067323,EF067324,
EF067325,EF067326,EF067327,EF067328,EF067329,EF067330,EF067331,EF067332,
NC_005165,NC_006633,NC_006634,NC_006635,NC_006636,NC_006637,NC_006638,
NC_006639,NC_006640,NC_006641,NC_006642,NC_006643,NC_006644,NC_006645,
NC_006646,NC_006647,NC_006648,NC_006649,NC_006650,NC_006651,NC_006652,
NC_006653,NC_006654,NC_006655,NC_006656,NC_006657,NC_006658,NC_006659,
NC_006660,NC_006661,NC_006662,NC_007028,NC_007029,NC_007030,NC_007031,
NC_007032,NC_007033,NC_007034,NC_007035,NC_007036,NC_007037,NC_007038,
NC_007039,NC_007040,NC_007041,NC_007044,NC_007985,NC_007986,NC_007987,
NC_007988,NC_007989,NC_007990,NC_007991,NC_007992,NC_007993,NC_007994,
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NC_007995,NC_007996,NC_007998,NC_007999,NC_008000,NC_008001,NC_008002,
NC_008003,NC_008004,NC_008005,NC_008006,NC_008007,NC_008008,NC_008847,
NC_008848,NC_008849,NC_008850,NC_008851,NC_008852,NC_008853,NC_008854,
NC_008855,NC_008856,NC_008857,NC_008858,NC_008859,NC_008860,NC_008861,
NC_008862,NC_008863,NC_008864,NC_008865,NC_008866,NC_008867,NC_008868,
NC_008869,NC_008870,NC_008871,NC_008872,NC_008873,NC_008874,NC_008875,
NC_008876,NC_008877,NC_008878,NC_008879,NC_008880,NC_008881,NC_008882,
NC_008883,NC_008884,NC_008885,NC_008886,NC_008887,NC_008888,NC_008889,
NC_008890,NC_008891,NC_008892,NC_008893,NC_008894,NC_008895,NC_008896,
NC_008897,NC_008898,NC_008899,NC_008900,NC_008901,NC_008902,NC_008903,
NC_008904,NC_008905,NC_008906,NC_008907,NC_008908,NC_008909,NC_008910,
NC_008911,NC_008912,NC_008913,NC_008914,NC_008915,NC_008916,NC_008917,
NC_008918,NC_008919,NC_008920,NC_008921,NC_008922,NC_008923,NC_008924,
NC_008925,NC_008926,NC_008927,NC_008928,NC_008929,NC_008930,NC_008931,
NC_008932,NC_008933,NC_008934,NC_008935,NC_008936,NC_008937,NC_008938,
NC_008939,NC_008940,NC_008941,NC_008946,NC_008947,NC_008948,NC_008949,
NC_008950,NC_008951,NC_008952,NC_008953,NC_008954,NC_008955,NC_008956,
NC_008957,NC_008958,NC_008959,NC_008960,NC_008961,NC_008962,NC_008963,
NC_008964,NC_008965,NC_008966,NC_008967,NC_008968,NC_008969,NC_008970,
NC_008971,NC_008972,NC_008973,NC_008976,NC_008977,NC_008978,NC_008979,
NC_008980,NC_008981,NC_008982,NC_008983,NC_008984,NC_008985,NC_008986,
NC_008987,NC_008988,NC_008989,NC_008990,NC_008991,NC_008992,NC_008993,
NC_008994,NC_008995,NC_008996,NC_008997,NC_008998,NC_008999,NC_009000,
NC_009001,NC_009002,NC_009003,NC_043261,NC_043262,NC_043263,NC_043264,
NC_043266,NC_043267,NC_043270,NC_043271,NC_043273,NC_043307,NC_043308,
NC_043309,NC_043310,NC_043311,NC_043312,NC_043315,NC_043316,NC_043318,
NC_043319,NC_043320,NC_043321,NC_043322,NC_043323,NC_043324,NC_043325,
NC_043326,NC_043327,NC_043328,NC_043329,NC_043330,NC_043331,NC_043332,
NC_043333,NC_043334,NC_043335,NC_043336,NC_043337,NC_043338,NC_043339,
NC_043340,NC_043341,NC_043342,NC_043343,NC_043344,NC_043345,NC_043346,
NC_043347,NC_043348,NC_043349,NC_043350,NC_043351,NC_043352,NC_043354,
NC_043356,NC_043357,NC_043358,NC_043359,NC_043360,NC_043361,NC_043362
Polyomaviridae
AB767295,AF118150,DQ192570,DQ192571,EF127906,EF127907,EF127908,FR823284,
HG764413, HQ385747,HQ385750,J02288,JX259273,JX262162,KJ577598,KM496323,
KM496324,KM496325,M30540,NC_001442,NC_001505,NC_001515,NC_001538,
NC_001663,NC_001669,NC_001699,NC_004763,NC_004764,NC_004800,NC_007611,
NC_007922,NC_007923,NC_009238,NC_009539,NC_009951,NC_010277,NC_011310,
NC_013439,NC_013796,NC_014361,NC_014406,NC_014407,NC_014743,NC_015150,
NC_017085,NC_017982,NC_018102,NC_019844,NC_019850,NC_019851,NC_019853,
NC_019854,NC_019855,NC_019856,NC_019857,NC_019858,NC_020065,NC_020066,
NC_020067,NC_020068,NC_020069,NC_020070,NC_020071,NC_020106,NC_020890,
NC_022519,NC_023008,NC_023845,NC_024118,NC_025259,NC_025368,NC_025370,
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NC_025380,NC_025790,NC_025800,NC_025811,NC_025892,NC_025894,NC_025895,
NC_025896,NC_025898,NC_025899,NC_026012,NC_026015,NC_026141,NC_026244,
NC_026473,NC_026762,NC_026766,NC_026767,NC_026768,NC_026769,NC_026770,
NC_026942,NC_026944,NC_027531,NC_027532,NC_028117,NC_028119,NC_028120,
NC_028121,NC_028122,NC_028123,NC_028127,NC_028635,NC_030148,NC_030838,
NC_031757,NC_032005,NC_032120,NC_033737,NC_034218,NC_034219,NC_034220,
NC_034221,NC_034251,NC_034253,NC_034378,NC_034456,NC_035181,NC_038554,
NC_038555, NC_038556,NC_038557,NC_038558,NC_038559,NC_039051,NC_039052,
NC_039053,NC_040538,NC_040566,NC_040573,NC_040598,NC_040600,NC_040607,
NC_040634,NC_040638,NC_040676,NC_040677,NC_040705,NC_040714,NC_040715,
NC_040821,NC_040822
Riboviria
AB032553,AB042808,AB050936,AB073912,AB090161,AB187514,AB194796,AB205396,
AB220921,AB252582,AB365435,AB426611,AB447427,AB447428,AB447429,AB447430,
AB447431,AB447432,AB447433,AB447434,AB447435,AB447436,AB447437,AB447438,
AB447439,AB447440,AB447441,AB447442,AB447443,AB447444,AB447445,AB447446,
AB447447,AB447448,AB447449,AB447450,AB447451,AB447452,AB447453,AB447454,
AB447455,AB447456,AB447457,AB447458,AB447459,AB447460,AB447461,AB447462,
AB447463,AB541201,AB541202,AB541203,AB541204,AB541205,AB543808,AB558119,
AB593690,AB614356,AB678778,AB690461,AB795432,AC_000192,AF002227,AF039205
,AF046869,AF057136,AF059242,AF059243,AF070476,AF079457,AF081485,AF083069,
AF086833,AF091605,AF091736,AF093797,AF103734,AF123432,AF123433,AF145896,
AF162711,AF201929,AF227250,AF230973,AF241359,AF260508,AF274010,AF309418,
AF311056,AF311938, AF311939,AF316321,AF326963,AF327920,AF327921,AF327922,
AF338106,AF352027,AF361253, AF389115,AF389116,AF389117,AF389452,AF389453,
AF389454,AF389455,AF389456,AF389462,AF389463,AF389464,AF389465,AF389466,
AF407339,AF457102,AF524867,AF525933,AJ005695,AJ132961,AJ132997,AJ276479,
AJ276480,AJ276481,AJ577589,AJ781401,AJ880277,AJ889866,AJ889867,AJ889868,
AJ889918,AM113988,AM157175,AM235750,AM404308,AM498051,AM498052,
AM498053,AM744987,AM744988,AM744989,AM744997,AM744998,AM744999,
AM745007,AM745008,AM745009,AM745017,AM745018,AM745019,AM745027,
AM745028,AM745029,AM745035,AM745037,AM745038,AM745039,AM745047,
AM745048,AM745049,AM745057,AM745058,AM745059,AM745067,AM745068,
AM745069,AM745077,AM745078,AM745079,AM910652,AY010722,AY032605,
AY134748,AY260942,AY260943,AY260944,AY260949,AY260950,AY260951,AY278488,
AY278491,AY278554,AY278741,AY297819,AY302539,AY302540,AY302541,AY302542,
AY302543,AY302544,AY302545,AY302546,AY302547,AY302548,AY302549,AY302550,
AY302551,AY302552,AY302553,AY302554,AY302555,AY302556,AY302557,AY302559,
AY302560,AY350750,AY353550,AY357075,AY357076,AY394850,AY429470,AY462107,
AY485642,AY486084,AY508697,AY515512,AY518894,AY554397,AY556057,AY556070,
AY575773,AY588319,AY593765,AY593796,AY593805,AY593806,AY593808,AY593809,
AY593840,AY593847,AY593851,AY646283,AY646511,AY685920,AY685921,AY686687,
AY729016,AY741811,AY743910,AY751783,AY772730,AY773285,AY800279,AY842931,
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AY843297,AY843298,AY843299,AY843300,AY843301,AY843302,AY843303,AY843304,
AY843305,AY843306,AY843307,AY843308,AY859526,AY863002,AY864805,AY864806,
AY876912,AY876913,AY898809,CY011117,CY011118,CY011119,CY011125,CY011126,
CY011127,CY011133,CY011134,CY011135,CY011141,CY011142,CY011143,D00239,
D00435,D00507, D00538,D00627,D00820,D13096,D90457,DQ011234,DQ011855,
DQ028633,DQ058829,DQ070852,DQ217792,DQ238861,DQ256132,DQ256133,DQ256134
,DQ286292,DQ294633,DQ315670,DQ328874,DQ328875,DQ358078,DQ369797,
DQ399290,DQ412042,DQ412043,DQ447649,DQ447652,DQ447657,DQ456824,
DQ473486,DQ473488,DQ473489,DQ473490,DQ473491,DQ473492,DQ473493,
DQ473494,DQ473497,DQ473499,DQ473500,DQ473504,DQ473505,DQ473506,DQ473507
,DQ473508,DQ473510,DQ473511,DQ480514,DQ640652,DQ648794,DQ648856,
DQ648857,DQ658413,DQ811787,DQ812092,DQ812093,DQ848678,DQ851494,DQ902712
,DQ902713,DQ911368,DQ915164,DQ995634,DQ995640,DQ995647,EF011023,EF014462,
EF015886,EF017707,EF065505,EF065506,EF065507,EF065508,EF065509,EF065510,
EF065511,EF065512,EF065513,EF065514,EF065515,EF065516,EF067923,EF067924,
EF107097,EF108464,EF173414,EF173415,EF173420,EF173423,EF173425,EF424615,
EF424616,EF424617,EF424618,EF424619,EF424620,EF424621,EF424622,EF424623,
EF424624,EF424625,EF424626,EF424627,EF424628,EF424629,EF429197,EF429198,
EF429199,EF429200,EF446132,EF446615,EF552688,EF552689,EF552690,EF552691,
EF552692,EF552693,EF552694,EF552695,EF552696,EF552697,EF555644,EF555645,
EF558545,EF667343,EF667344,EU004663,EU004664,EU004665,EU004666,EU004667,
EU004668,EU004669,EU004670,EU004671,EU004672,EU004673,EU004674,EU004675,
EU004676,EU004677,EU004678,EU004679,EU004680,EU004681,EU004682,EU004683,
EU020009,EU037962,EU140838,EU143843,EU155216,EU155260,EU371559,EU371560,
EU371561,EU371562,EU371563,EU371564,EU420137,EU420138,EU439428,EU563512,
EU627591,EU716175,EU755009,EU779803,EU815052,EU854589,FJ009367,FJ355929,
FJ355930,FJ376620,FJ387164,FJ415324,FJ425184,FJ425185,FJ425186,FJ425187,
FJ425188,FJ425189,FJ434664,FJ445112,FJ445113,FJ445114,FJ445116,FJ445118,
FJ445119,FJ445120,FJ445121,FJ445122,FJ445123,FJ445124,FJ445125,FJ445126,
FJ445127,FJ445128,FJ445129,FJ445130,FJ445131,FJ445132,FJ445133,FJ445134,
FJ445135,FJ445136,FJ445138,FJ445140,FJ445141,FJ445142,FJ445143,FJ445144,
FJ445145,FJ445146,FJ445147,FJ445148,FJ445149,FJ445150,FJ445151,FJ445152,
FJ445153,FJ445154,FJ445155,FJ445156,FJ445157

Test-2; Source: Virus-Host-DB
Betaflexiviridae
AF057136,NC_001946,NC_038324,NC_038325,NC_038966,NC_039087,NC_040545,
NC_040554,NC_040564,NC_040568,NC_040616,NC_040627,NC_001948,NC_040630,
NC_040643,NC_040689,NC_040703,NC_040797,NC_040800,NC_043081,NC_043082,
NC_043086,NC_043087,NC_002468,NC_043088,NC_043412,NC_002500,NC_002552,
NC_002729,NC_002795,NC_003462,NC_003499,NC_003557,AY646511,NC_003602,
NC_003604,NC_003689,NC_003870,NC_003877,NC_005138,NC_005343,NC_006550,
NC_006946,NC_007289,EU020009,NC_008020,NC_008266,NC_008292,NC_008552,
NC_009087,NC_009383,NC_009759,NC_009764,NC_009892,NC_009991,FJ009367,



D.C. Dataset availability 163

NC_010305,NC_010538,NC_011062,NC_011106,NC_011525,NC_011540,NC_011552,
NC_012038,NC_012210,NC_012519,JF320811,NC_012869,NC_013006,NC_013527,
NC_014730,NC_014821,NC_015220,NC_015395,NC_015782,NC_016080,NC_016404,
JX559646,NC_016440,NC_017859,NC_018175,NC_018448,NC_018458,NC_018714,
NC_019025,NC_019029,NC_019030,NC_020996,NC_001361,NC_023295,NC_023892,
NC_024449,NC_024686,NC_025388,NC_025468,NC_025469,NC_026248,NC_026616,
NC_027527,NC_001409,NC_028111,NC_028868,NC_028975,NC_029085,NC_029086,
NC_029087,NC_029088,NC_029089,NC_029301,NC_030657,NC_001749,NC_030926,
NC_031089,NC_034264,NC_034376,NC_034377,NC_034833,NC_035202,NC_035203,
NC_035462, NC_037058
Bromoviridae
AJ276479,AJ276480,AJ276481,NC_001440,NC_001495,NC_002024,NC_002025,
NC_002026,NC_002027,NC_002028,NC_002034,NC_002035,NC_002038,NC_002039,
NC_002040,NC_003451,NC_003452,NC_003453,NC_003464,NC_003465,NC_003480,
NC_003541,NC_003542,NC_003543,NC_003546,NC_003547,NC_003548,NC_003568,
NC_003569,NC_003570,NC_003649,NC_003650,NC_003651,NC_003671,NC_003673,
NC_003674,NC_003808,NC_003809,NC_003810,NC_003833,NC_003834,NC_003835,
NC_003836,NC_003837,NC_003838,NC_003842,NC_003844,NC_003845,NC_004006,
NC_004007,NC_004008,NC_004120,NC_004121,NC_004122,NC_004362,NC_004363,
NC_005848,NC_005849,NC_005854,NC_006064,NC_006065,NC_006566,NC_006567,
NC_006568,NC_006999,NC_007000,NC_007001,NC_008037,NC_008038,NC_008039,
NC_008706,NC_008707,NC_008708,NC_009536,NC_009537,NC_009538,NC_011553,
NC_011554,NC_011555,NC_011807,NC_011808,NC_011809,NC_012134,NC_012135,
NC_012136,NC_013266,NC_013267,NC_013268,NC_018402,NC_018403,NC_018404,
NC_022127,NC_022128,NC_022129,NC_022250,NC_022251,NC_022252,NC_025477,
NC_025478,NC_025481,NC_025482,NC_025483,NC_025484,NC_027928,NC_027929,
NC_027930,NC_038776,NC_038777,NC_039074,NC_039075,NC_039076,NC_040389,
NC_040390,NC_040391,NC_040392,NC_040393,NC_040394,NC_040435,NC_040436,
NC_040437,NC_040469,NC_040471
Caliciviridae
AB042808,AB187514,AB220921,AB365435,AB447427,AB447428,AB447429,AB447430,
AB447431,AB447432,AB447433,AB447434,AB447435,AB447436,AB447437,AB447438,
AB447439,AB447440,AB447441,AB447442,AB447443,AB447444,AB447445,AB447446,
AB447447,AB447448,AB447449,AB447450,AB447451,AB447452,AB447453,AB447454,
AB447455,AB447456,AB447457,AB447458,AB447459,AB447460,AB447461,AB447462,
AB447463,AB541201,AB541202,AB541203,AB541204,AB541205,AB543808,AB614356,
AF091736,AF093797,AF145896,AY032605,AY134748,AY485642,AY741811,AY772730,
DQ058829,DQ369797,DQ456824,DQ658413,DQ911368,EF014462,EU004663,EU004664,
EU004665,EU004666,EU004667,EU004668,EU004669,EU004670,EU004671,EU004672,
EU004673,EU004674,EU004675,EU004676,EU004677,EU004678,EU004679,EU004680,
EU004681,EU004682,EU004683,EU854589,FJ355929,FJ355930,FJ387164,FJ514242,
FJ515294,FJ537135,FJ537136,FJ537137,FJ537138,GQ475301,GQ475302,GU594162,
GU980585,GU991353,GU991354,GU991355,HF952119,HF952120,HF952121,HF952122,
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HF952123,HF952124,HF952125,HF952126,HF952127,HF952128,HF952129,HF952130,
HF952131,HF952132,HF952133,HF952134,HF952135,HM002617,HQ009513,HQ392821,
HQ449728,HQ664990,JF320644,JF320645,JF320646,JF320647,JF320648,JF320649,
JF320650,JF320651,JF320652,JF320653,JF781268,JN400599,JN400600,JN400601,
JN400602,JN400603,JN400604,JN400605,JN400606,JN400607,JN400608,JN400609,
JN400610,JN400611,JN400612,JN400613,JN400614,JN400615,JN400616,JN400617,
JN400618,JN400619,JN400620,JN400621,JN400622,JN400623,JN400624,JN400625,
JN400626,JN595867,JQ388274,JQ613567,JQ613568,JQ613569,JQ613570,JQ622197,
JQ798158,JQ911594,JQ911595,JQ911596,JQ911597,JQ911598,JX018212,JX023285,
JX023286,JX047864,JX126912,JX126913,JX439815,JX439816,JX439817,JX439818,
JX439819,JX448566,JX459900,JX459901,JX459902,JX459903,JX459904,JX459905,
JX459906,JX459907,JX459908,JX846924,JX846927,JX989073,JX989074,JX989075,
JX993277,KC013592,KC175323,KC175342,KC175343,KC175344,KC175345,KC175346,
KC175347,KC175348,KC175349,KC175350,KC175351,KC175352,KC175353,KC175354,
KC175355,KC175356,KC175357,KC175358,KC175359,KC175360,KC175361,KC175362,
KC175363,KC175364,KC175365,KC175366,KC175367,KC175368,KC175369,KC175370,
KC175371,KC175372,KC175373,KC175374,KC175375,KC175376,KC175377,KC175378,
KC175379,KC175380,KC175381,KC175382,KC175383,KC175384,KC175385,KC175386,
KC175387,KC175388,KC175389,KC175390,KC175391,KC175392,KC175393,KC175394,
KC175395,KC175396,KC175397,KC175398,KC175399,KC175400,KC175401,KC175402,
KC175403,KC175404,KC175405,KC175406,KC175407,KC175408,KC175409,KC175410,
KC409301,KC409302,KC463910,KC464496,KC464497,KC464498,KC464499,KC464500,
KC577174,KC577175,KC631827,KC792553,KC894731,KC894942,KC894943,KC960615,
KF204570,KF306212,KF306213,KF306214,KF429760,KF429761,KF429765,KF429766,
KF429768,KF429770,KF429773,KF429774,KF429776,KF429777,KF429778,KF429783,
KF429787,KF429789,KF429790,KF712491,KF712496,KF712497,KF712498,KF712499,
KF712501,KF712502,KF712504,KF712510,KJ196276,KJ196277,KJ196278,KJ196279,
KJ196280,KJ196281,KJ196282,KJ196283,KJ196284,KJ196285,KJ196286,KJ196287,
KJ196288,KJ196289,KJ196293,KJ196294,KJ196295,KJ196296,KJ196297,KJ196298,
KJ196299,KJ407072,KJ407073,KJ407074,KJ407075,KJ407076,KJ508818,KJ541743,
KJ649705,KJ685403,KJ685405,KJ685408,KJ685412,KJ685413,KJ685414,KJ685415,
KJ685417,KM272334,NC_000940,NC_001481,NC_001543,NC_001959,NC_002551,
NC_002615,NC_004064,NC_004541,NC_004542,NC_006269,NC_006554,NC_006875,
NC_007916,NC_008311,NC_008580,NC_010624,NC_011050,NC_011704,NC_012699,
NC_017936,NC_019712,NC_024031,NC_024078,NC_025676,NC_027026,NC_027122,
NC_029645,NC_029646,NC_029647,NC_030793,NC_031324,NC_033081,NC_033776,
NC_034444,NC_035675,NC_039475,NC_039476,NC_039477,NC_039897,NC_040674,
NC_040876,NC_043512,NC_043516,NC_044045,NC_044046,NC_044047,U15301,
U54983,X86557
Coronaviridae
MG772933.1,MG772934.1,AC_000192,AF201929,AY278488,AY278491,AY278554,
AY278741, AY350750,AY357075,AY357076,AY394850,AY515512,AY518894,AY646283,
AY864805,AY864806,D13096,DQ011855,DQ412042,DQ412043,DQ640652,DQ648794,
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DQ648856,DQ648857,DQ811787,DQ848678,DQ915164,EF065505,EF065506,EF065507,
EF065508,EF065509,EF065510,EF065511,EF065512,EF065513,EF065514,EF065515,
EF065516,EF424615,EF424616,EF424617,EF424618,EF424619,EF424620,EF424621,
EF424622,EF424623,EF424624,EF446615,EU371559,EU371560,EU371561,EU371562,
EU371563,EU371564,EU420137,EU420138,FJ376620,FJ415324,FJ425184,FJ425185,
FJ425186,FJ425187,FJ425188,FJ425189,FJ647218,FJ647219,FJ647220,FJ647221,
FJ647222,FJ647223,FJ647224,FJ647225,FJ647226,FJ647227,FJ882935,FJ882942,
FJ882945,FJ882954,FJ882963,FJ884686,FJ938051,FJ938052,FJ938053,FJ938054,
FJ938055,FJ938056,FJ938057,FJ938058,FJ938059,FJ938060,FJ938061,FJ938062,
FJ938063,FJ938064,FJ938065,FJ938066,FJ938067,FN430414,FN430415,GQ153539,
GQ153540,GQ153541,GQ153542,GQ153543,GQ153544,GQ153545,GQ153546,GQ153547
,GQ153548,GU553361,GU553362,HM211098,HM211099,HM211100,HM211101,
HM245926,HQ392469, HQ392470,HQ392471,HQ392472,JF705860,JF792616,JN183882,
JN183883,JQ173883,JQ410000,JQ989272,JX169867,JX860640,JX869059,JX993987,
JX993988,KC667074,KC776174,KC881005,KC881006,KF367457,KF569996,KF793824,
KF906249,KJ473821,KJ481931,KJ567050,KJ601777,KJ601778,KJ601779,KJ601780,
KJ769231,KM820765,KP981395,LM645057,LN610099,NC_001451,NC_001846,
NC_002306,NC_002645,NC_003045,NC_003436,NC_004718,NC_005831,NC_006213,
NC_006577,NC_009019,NC_009020,NC_009021,NC_009657,NC_009988,NC_010437,
NC_010438,NC_010646,NC_010800,NC_011547,NC_011549,NC_011550,NC_012936,
NC_014470,NC_016991, NC_016992,NC_016993,NC_016994,NC_016995,NC_016996,
NC_017083,NC_018871,NC_019843,NC_022103,NC_023760,NC_025217,NC_026011,
NC_028752,NC_028806,NC_028811,NC_028814,NC_028824,NC_028833,NC_030292,
NC_030886,NC_032107,NC_032730,NC_034440,NC_034972,NC_035191,NC_038294,
NC_038861,NC_039207,NC_039208,BetaCoV/bat/Yunnan/RaTG13/2013|EPI_ISL_402131
Flaviviridae
NC_027819,NC_027998,NC_027999,NC_028137,NC_028377,NC_029054,NC_029055,
NC_030289,NC_030290,NC_030291,NC_030400,NC_030401,NC_030653,NC_030791,
NC_031327,NC_031916,NC_031947,NC_031950,NC_032088,NC_033693,NC_033694,
NC_033697,NC_033698,NC_033699,NC_033715,NC_033721,NC_033723,NC_033724,
NC_033725,NC_033726,NC_034007,NC_034017,NC_034018,NC_034151,NC_034204,
NC_034222,NC_034223,NC_034224,NC_034225,NC_034242,NC_034442,NC_035071,
NC_035118,NC_035187,NC_035432,NC_035889,NC_038425,NC_038426,NC_038427,
NC_038428,NC_038429,NC_038430,NC_038431,NC_038432,NC_038433,NC_038434,
NC_038435,NC_038436,NC_038437,NC_038882,NC_038912,NC_038964,NC_039218,
NC_039219, NC_039237,NC_040555,NC_040589,NC_040610,NC_040645,NC_040682,
NC_040776,NC_040788,NC_040815,NC_043110,U70263,Z46258,AB690461,AB795432,
AF002227,AF070476,AF091605,AF311056,AF326963,AF407339,AJ132997,AM404308,
AM910652,AY554397,AY842931,AY859526,AY863002,AY898809,DQ480514,EF424625,
EF424626,EF424627,EF424628,EF424629,EF429197,EF429198,EF429199,EF429200,
EU155216,EU155260,FJ654700,GQ275355,HQ231763,JN704144,JN860200,JQ289550,
JQ920421,JX196334,JX227952,JX227953,JX227954,JX227955,JX227958,JX227960,
JX227962,JX227963,JX227965,JX227967,JX227970,JX227972,JX227979,JX477686,
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KC815310,KC815311,KC990542,KF907503,KF917538,KJ469370,KJ660072,KM225263,
KM225264,KM225265,KM408491,M91671,NC_000943,NC_001437,NC_001461,
NC_001474,NC_001475,NC_001477,NC_001563,NC_001564,NC_001655,NC_001672,
NC_001710,NC_001809,NC_001837,NC_002031,NC_002640,NC_002657,NC_003635,
NC_003675,NC_003676,NC_003678,NC_003679,NC_003687,NC_003690,NC_003996,
NC_004102,NC_004119,NC_005039,NC_005062,NC_005064,NC_006551,NC_007580,
NC_008604,NC_008718,NC_008719,NC_009026,NC_009028,NC_009029,NC_009823,
NC_009824,NC_009825,NC_009826,NC_009827,NC_009942,NC_012532,NC_012533,
NC_012534,NC_012671,NC_012735,NC_012812,NC_012932,NC_015843,NC_016997,
NC_017086,NC_018705,NC_018713,NC_020902,NC_021069,NC_021153,NC_021154,
NC_023176,NC_023424,NC_023439,NC_024017,NC_024018,NC_024077,NC_024111,
NC_024112,NC_024113,NC_024114,NC_024299,NC_024377,NC_024805,NC_024806,
NC_024889,NC_025672,NC_025673,NC_025677,NC_025679,NC_026620,NC_026623,
NC_026624,NC_026797,NC_027709,NC_027817
Peribunyaviridae
NC_001925,NC_001926,NC_004108,NC_004109,NC_005775,NC_005776,NC_009894,
NC_009895,NC_018459,NC_018461,NC_018463,NC_018465,NC_018466,NC_018467,
NC_018476,NC_018478,NC_021242,NC_021243,NC_022038,NC_022039,NC_022595,
NC_022596,NC_024074,NC_024076,NC_026281,NC_026283,NC_026617,NC_026618,
NC_026619,NC_027715,NC_027717,NC_031135,NC_031136,NC_031221,NC_031222,
NC_031287,NC_031288,NC_031291,NC_031292,NC_034459,NC_034460,NC_034461,
NC_034468,NC_034475,NC_034477,NC_034479,NC_034482,NC_034487,NC_034488,
NC_034489,NC_034490,NC_034491,NC_034492,NC_034493,NC_034495,NC_034497,
NC_034499,NC_034500,NC_034504,NC_034505,NC_034506,NC_034631,NC_034633,
NC_038713,NC_038714,NC_038715,NC_038717,NC_038718,NC_038720,NC_038723,
NC_038724,NC_038727,NC_038728,NC_038729,NC_038730,NC_038733,NC_038734,
NC_038735,NC_038736,NC_038738,NC_038739,NC_038741,NC_038742,NC_038942,
NC_039183,NC_039184,NC_039186,NC_039187,NC_043036,NC_043037,NC_043546,
NC_043548,NC_043550,NC_043551,NC_043552,NC_043553,NC_043555,NC_043556,
NC_043559,NC_043560,NC_043561,NC_043563,NC_043564,NC_043565,NC_043567,
NC_043568,NC_043570,NC_043571,NC_043573,NC_043575,NC_043577,NC_043578,
NC_043579,NC_043580,NC_043583,NC_043584,NC_043586,NC_043587,NC_043588,
NC_043589,NC_043591,NC_043592,NC_043594,NC_043595,NC_043597,NC_043599,
NC_043600,NC_043602,NC_043603,NC_043605,NC_043607,NC_043608,NC_043612,
NC_043614,NC_043615,NC_043617,NC_043618,NC_043619,NC_043621,NC_043623,
NC_043627,NC_043629,NC_043630,NC_043632,NC_043633,NC_043634,NC_043637,
NC_043638,NC_043639,NC_043641,NC_043645,NC_043646,NC_043651,NC_043652,
NC_043653,NC_043655,NC_043674,NC_043675,NC_043687,NC_043688,NC_043690,
NC_043691,NC_043692,NC_043694,NC_043697,NC_043699
Phenuiviridae
NC_002323,NC_002324,NC_002325,NC_002326,NC_002327,NC_002328,NC_003753,
NC_003754,NC_003755,NC_003776,NC_005214,NC_005220,NC_006319,NC_006320,
NC_014396,NC_014397,NC_015373,NC_015374,NC_015411,NC_015412,NC_015450,
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NC_015451,NC_018136,NC_018138,NC_022630,NC_022631,NC_023633,NC_023635,
NC_024494,NC_024495,NC_027140,NC_027141,NC_029082,NC_029127,NC_029128,
NC_029901,NC_029903,NC_031138,NC_031139,NC_031295,NC_031298,NC_031313,
NC_031316,NC_031317,NC_031318,NC_031320,NC_031321,NC_032158,NC_032159,
NC_032257,NC_032276,NC_032277,NC_032278,NC_032280,NC_032282,NC_033830,
NC_033835,NC_033836,NC_033838,NC_033840,NC_033841,NC_033842,NC_033844,
NC_033846,NC_033847,NC_033848,NC_033849,NC_036597,NC_036598,NC_036602,
NC_036604,NC_036605,NC_037612,NC_037614,NC_037616,NC_038257,NC_038258,
NC_038261,NC_038262,NC_038748,NC_038750,NC_038751,NC_038752,NC_038754,
NC_038757,NC_038934,NC_039191,NC_039192,NC_040450,NC_040493,NC_040494,
NC_043045,NC_043046,NC_043049,NC_043051,NC_043450,NC_043451,NC_043477,
NC_043481,NC_043482,NC_043509,NC_043510,NC_043609,NC_043611,NC_043679,
NC_043680,X89628
Picornaviridae
AB090161,AB205396,AB252582,AB426611,AB678778,AF039205,AF081485,AF083069,
AF123432,AF123433,AF162711,AF230973,AF241359,AF274010,AF311938,AF311939,
AF316321,AF327920,AF327921,AF327922,AF352027,AF361253,AF524867,AJ005695,
AJ132961,AJ577589,AJ889918,AM235750,AY302539,AY302540,AY302541,AY302542,
AY302543,AY302544,AY302545,AY302546,AY302547,AY302548,AY302549,AY302550,
AY302551,AY302552,AY302553,AY302554,AY302555,AY302556,AY302557,AY302559,
AY302560,AY429470,AY462107,AY508697,AY556057,AY556070,AY593765,AY593796,
AY593805,AY593806,AY593808,AY593809,AY593840,AY593847,AY593851,AY686687,
AY751783,AY773285,AY843297,AY843298,AY843299,AY843300,AY843301,AY843302,
AY843303,AY843304,AY843305,AY843306,AY843307,AY843308,AY876912,AY876913,
D00239,D00435,D00538,D00627,D00820,D90457,DQ256132,DQ256133,DQ256134,
DQ294633,DQ315670,DQ358078,DQ473486,DQ473488,DQ473489,DQ473490,DQ473491
,DQ473492,DQ473493,DQ473494,DQ473497,DQ473499,DQ473500,DQ473504,
DQ473505,DQ473506,DQ473507,DQ473508,DQ473510,DQ473511,DQ812092,
DQ812093,DQ902712,DQ902713,DQ995634,DQ995640,DQ995647,EF015886,EF067923,
EF067924,EF107097,EF173414,EF173415,EF173420,EF173423,EF173425,EF552688,
EF552689,EF552690,EF552691,EF552692,EF552693,EF552694,EF552695,EF552696,
EF552697,EF555644,EF555645,EF667343,EF667344,EU140838,EU716175,EU755009,
EU815052,FJ445112,FJ445113,FJ445114,FJ445116,FJ445118,FJ445119,FJ445120,
FJ445121,FJ445122,FJ445123,FJ445124,FJ445125,FJ445126,FJ445127,FJ445128,
FJ445129,FJ445130,FJ445131,FJ445132,FJ445133,FJ445134,FJ445135,FJ445136,
FJ445138,FJ445140,FJ445141,FJ445142,FJ445143,FJ445144,FJ445145,FJ445146,
FJ445147,FJ445148,FJ445149,FJ445150,FJ445151,FJ445152,FJ445153,FJ445154,
FJ445155,FJ445156,FJ445157,FJ445160,FJ445161,FJ445162,FJ445163,FJ445164,
FJ445165,FJ445167,FJ445168,FJ445169,FJ445170,FJ445171,FJ445172,FJ445173,
FJ445174,FJ445175,FJ445176,FJ445178,FJ445179,FJ445180,FJ445181,FJ445182,
FJ445183,FJ445185,FJ445186,FJ445187,FJ445188,FJ445189,FJ445190,FM955278,
GQ122332,GQ249161,GQ323774,GQ485310,GQ485311,GQ865517,HM185056,
HM777023,HQ400942,HQ654774,HQ702854,HQ728260,HQ728261,HQ728262,
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HQ875059,JF905564,JN088541,JN379039,JN710381,JQ277724,JQ814852,JQ818253,
JQ898342,JQ911763,JQ975417,JX050181,JX174177,JX262382,JX491648,JX961709,
JX982257,KC663628,KC811837,KF312882,KF422142,KF831027,KF874626,KF958308,
KF990476,KJ857508,KM203656,KM609480,KP036483,L24917,LK021688,M12197,
M16560,M20301,NC_001366,NC_001430,NC_001472,NC_001479,NC_001489,
NC_001490,NC_001612,NC_001617,NC_001859,NC_001897,NC_001918,NC_002058,
NC_003976,NC_003983,NC_003985,NC_003987,NC_003988,NC_003990,NC_004421,
NC_004441,NC_004451,NC_006553,NC_008250,NC_008714,NC_009448,NC_009891,
NC_009996,NC_010354,NC_010415,NC_010810,NC_011349,NC_011829,NC_012798,
NC_012800,NC_012801,NC_012802,NC_012957,NC_012986,NC_013695,NC_014411,
NC_014412,NC_014413,NC_015626,NC_015934,NC_015936,NC_015940,NC_015941,
NC_016156,NC_016403,NC_016769,NC_018226,NC_018400,NC_018506,NC_018668,
NC_021178,NC_021201,NC_021220,NC_021482,NC_022332,NC_022802,NC_023162,
NC_023422,NC_023858,NC_023861,NC_023984,NC_023985,NC_023987,NC_023988,
NC_024070,NC_024073,NC_024120,NC_024765,NC_024766,NC_024767,NC_024768,
NC_024769,NC_024770,NC_025114,NC_025432,NC_025474,NC_025675,NC_025890,
NC_025961,NC_026249,NC_026314,NC_026315,NC_026316,NC_026470,NC_026921,
NC_027054,NC_027214,NC_027818,NC_027918,NC_027919,NC_028363,NC_028364,
NC_028365,NC_028366,NC_028380,NC_028964,NC_028970,NC_028981,NC_029854,
NC_029905,NC_030454,NC_030843,NC_031105,NC_031106,NC_032126,NC_033695,
NC_033793,NC_033818,NC_033819,NC_033820,NC_034206,NC_034245,NC_034267,
NC_034381,NC_034385,NC_034453,NC_034617,NC_034971,NC_035110,NC_035198,
NC_035779,NC_036588,NC_037654,NC_038303,NC_038304,NC_038305,NC_038306,
NC_038307,NC_038308,NC_038309,NC_038310,NC_038311,NC_038312,NC_038313,
NC_038314,NC_038315,NC_038316,NC_038317,NC_038318,NC_038319,NC_038878,
NC_038880,NC_038957,NC_038961,NC_038989,NC_039004,NC_039209,NC_039210,
NC_039211,NC_039212,NC_039235,NC_040605,NC_040611,NC_040642,NC_040673,
NC_040684,NC_043071,NC_043072,NC_043544,U05876,U16283,U22521,V01149,
X00925,X05690, X56019,X67706,X77708,X84981,X92886
Potyviridae
AB194796,AJ889866,AJ889867,AJ889868,AM113988,AM157175,AY010722,AY575773,
D00507,DQ851494,EF017707,EF558545,EU563512,HE608963,HE608964,HF585099,
HF585103,HM590055,JQ924285,JQ924286,NC_000947,NC_001445,NC_001517,
NC_001555,NC_001616,NC_001671,NC_001768,NC_001785,NC_001814,NC_001841,
NC_001886,NC_002349,NC_002350,NC_002509,NC_002600,NC_002634,NC_002990,
NC_002991,NC_003224,NC_003377,NC_003397,NC_003398,NC_003399,NC_003482,
NC_003483,NC_003492,NC_003501,NC_003536,NC_003537,NC_003605,NC_003606,
NC_003742,NC_003797,NC_004010,NC_004011,NC_004013,NC_004016,NC_004017,
NC_004035,NC_004039,NC_004047,NC_004426,NC_004573,NC_004752,NC_005028,
NC_005029,NC_005136,NC_005288,NC_005304,NC_005778,NC_005903,NC_005904,
NC_006262,NC_006941,NC_007147,NC_007180,NC_007216,NC_007433,NC_007728,
NC_007913,NC_008028,NC_008393,NC_008558,NC_008824,NC_009741,NC_009742,
NC_009744,NC_009745,NC_009805,NC_009994,NC_009995,NC_010521,NC_010735,
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NC_010736,NC_010954,NC_011541,NC_011560,NC_011918,NC_012698,NC_012799,
NC_013261,NC_014037,NC_014038,NC_014064,NC_014252,NC_014325,NC_014327,
NC_014536,NC_014742,NC_014790,NC_014791,NC_014898,NC_014905,NC_015393,
NC_015394,NC_016044,NC_016159,NC_016441,NC_017824,NC_017967,NC_017970,
NC_017977,NC_018093,NC_018176,NC_018455,NC_018572,NC_018833,NC_018872,
NC_019031,NC_019409,NC_019412,NC_019415,NC_020072,NC_020105,NC_020896,
NC_021065,NC_021197,NC_021786,NC_022745,NC_023014,NC_023175,NC_023628,
NC_024471,NC_025250,NC_025254,NC_025821,NC_026615,NC_026759,NC_027210,
NC_027706,NC_028144,NC_028145,NC_029051,NC_029076,NC_030118,NC_030236,
NC_030293,NC_030391,NC_030794,NC_030840,NC_030847,NC_031339,NC_032912,
NC_034208,NC_034273,NC_034835,NC_035134,NC_035458,NC_035459,NC_035461,
NC_036802,NC_037051,NC_038560,NC_038561,NC_038562,NC_038920,NC_038984,
NC_039002,NC_039088,NC_040507,NC_040508,NC_040650,NC_040802,NC_040836,
NC_043133,NC_043141,NC_043149,NC_043165,NC_043168,NC_043171,NC_043172,
NC_043424,NC_043532,NC_043536, NC_043537,U05771
Reoviridae
AF389452,AF389453,AF389454,AF389455,AF389456,AF389462,AF389463,AF389464,
AF389465,AF389466,AM498051,AM498052,AM498053,AM744987,AM744988,
AM744989,AM744997,AM744998,AM744999,AM745007,AM745008,AM745009,
AM745017,AM745018,AM745019,AM745027,AM745028,AM745029,AM745035,
AM745037,AM745038,AM745039,AM745047,AM745048,AM745049,AM745057,
AM745058,AM745059,AM745067,AM745068,AM745069,AM745077,AM745078,
AM745079,FN563984,HG513046,NC_002557,NC_002558,NC_002559,NC_002560,
NC_002567,NC_003006,NC_003007,NC_003008,NC_003009,NC_003010,NC_003016,
NC_003017,NC_003018,NC_003019,NC_003020,NC_003654,NC_003655,NC_003656,
NC_003657,NC_003658,NC_003659,NC_003696,NC_003697,NC_003698,NC_003699,
NC_003700,NC_003701,NC_003702,NC_003703,NC_003728,NC_003729,NC_003730,
NC_003734,NC_003735,NC_003736,NC_003737,NC_003749,NC_003750,NC_003751,
NC_003752,NC_003759,NC_003761,NC_003762,NC_003771,NC_003772,NC_003773,
NC_003774,NC_004181,NC_004182,NC_004183,NC_004184,NC_004185,NC_004186,
NC_004187,NC_004188,NC_004210,NC_004211,NC_004212,NC_004213,NC_004214,
NC_004217,NC_004218,NC_004219,NC_005166,NC_005167,NC_005168,NC_005169,
NC_005170,NC_005171,NC_005986,NC_005989,NC_005990,NC_005996,NC_005997,
NC_005998,NC_005999,NC_006000,NC_006013,NC_006014,NC_006017,NC_006021,
NC_006023,NC_007154,NC_007155,NC_007157,NC_007158,NC_007159,NC_007160,
NC_007163,NC_007524,NC_007525,NC_007533,NC_007534,NC_007535,NC_007536,
NC_007546,NC_007547,NC_007548,NC_007549,NC_007550,NC_007551,NC_007559,
NC_007560,NC_007561,NC_007562,NC_007563,NC_007572,NC_007574,NC_007582,
NC_007583,NC_007584,NC_007586,NC_007592,NC_007656,NC_007657,NC_007658,
NC_007666,NC_007667,NC_007668,NC_007669,NC_007670,NC_007736,NC_007737,
NC_007738,NC_007739,NC_007748,NC_007749,NC_007750,NC_008171,NC_008172,
NC_008173,NC_008174,NC_008175,NC_008729,NC_008730,NC_008731,NC_008732,
NC_008733,NC_008735,NC_008736,NC_009243,NC_009244,NC_009247,NC_009248,



170 Appendix D. COVID-19 case study: SupplementaryMaterial

NC_009249,NC_010584,NC_010585,NC_010586,NC_010587,NC_010588,NC_010589,
NC_010666,NC_010667,NC_010668,NC_010669,NC_010670,NC_010743,NC_010744,
NC_010745,NC_010746,NC_010747,NC_010748,NC_011506,NC_011507,NC_011508,
NC_011510,NC_012535,NC_012536,NC_012537,NC_012538,NC_012539,NC_012754,
NC_012755,NC_013225,NC_013226,NC_013227,NC_013228,NC_013229,NC_013230,
NC_013396,NC_013397,NC_013398,NC_014236,NC_014237,NC_014238,NC_014239,
NC_014240,NC_014241,NC_014511,NC_014512,NC_014513,NC_014514,NC_014522,
NC_014523,NC_014598,NC_014599,NC_014600,NC_014601,NC_014602,NC_014708,
NC_014709,NC_014710,NC_014714,NC_014715,NC_014716,NC_014717,NC_015126,
NC_015127,NC_015128,NC_015129,NC_015130,NC_015877,NC_015878,NC_015879,
NC_015880,NC_015881,NC_016874,NC_016875,NC_016876,NC_016879,NC_016880,
NC_016881,NC_020439,NC_020440,NC_020441,NC_020442,NC_020447,NC_021541,
NC_021543,NC_021545,NC_021551,NC_021580,NC_021581,NC_021589,NC_021590,
NC_021625,NC_021626,NC_021630,NC_021631,NC_022553,NC_022554,NC_022555,
NC_022620,NC_022626,NC_022627,NC_022633,NC_022634,NC_022639,NC_023420,
NC_023486,NC_023487,NC_023488,NC_023491,NC_023492,NC_023813,NC_023814,
NC_023815,NC_023816,NC_023819,NC_023820,NC_024503,NC_024504,NC_024505,
NC_024506,NC_024507,NC_024916,NC_024917,NC_024918,NC_024919,NC_025485,
NC_025486,NC_025487,NC_025488,NC_025493,NC_025801,NC_025802,NC_025803,
NC_025804,NC_025808,NC_025845,NC_025846,NC_025847,NC_025848,NC_025849,
NC_025850,NC_025851,NC_026825,NC_026826,NC_026827,NC_026828,NC_027533,
NC_027534,NC_027535,NC_027539,NC_027553,NC_027554,NC_027567,NC_027568,
NC_027569,NC_027572,NC_027574,NC_027803,NC_027808,NC_027809,NC_027811,
NC_027812,NC_027816,NC_028465,NC_029904,NC_029911,NC_029912,NC_029913,
NC_029914,NC_029917,NC_029918,NC_030158,NC_030159,NC_030160,NC_030161,
NC_030162,NC_030163,NC_030405,NC_030406,NC_030412,NC_030413,NC_030414,
NC_030415,NC_033782,NC_033783,NC_033784,NC_034168,NC_034169,NC_034170,
NC_034171,NC_034172,NC_035935,NC_035936,NC_036468,NC_036469,NC_036470,
NC_036471,NC_036476,NC_036477,NC_037570,NC_037571,NC_037572,NC_037573,
NC_037574,NC_037578,NC_037579,NC_037580,NC_037581,NC_037582,NC_037583,
NC_038564,NC_038565,NC_038568,NC_038570,NC_038574,NC_038575,NC_038582,
NC_038584,NC_038588,NC_038592,NC_038594,NC_038595,NC_038600,NC_038604,
NC_038605,NC_038610,NC_038614,NC_038615,NC_038620,NC_038624,NC_038625,
NC_038629,NC_038630,NC_038634,NC_038635,NC_038636,NC_038637,NC_038640,
NC_038641,NC_038645,NC_038648,NC_038649,NC_038652,NC_038657,NC_038660,
NC_038661,NC_038662,NC_038664,NC_038665,NC_038945,NC_038948,NC_040408,
NC_040409,NC_040413,NC_040414,NC_040440,NC_040443,NC_040444,NC_040445,
NC_040447,NC_040472,NC_040473,NC_040476,NC_040478,NC_040479,NC_040499,
NC_040501,NC_040502,NC_040503,NC_040504,NC_040506,NC_043180,NC_043182,
NC_043183,NC_043184,NC_043185,NC_043190,NC_043368,NC_043369, NC_043370
Rhabdoviridae
KC519324,KC685626,KP688373,NC_000855,NC_000903,NC_001542,NC_001560,
NC_001615,NC_001652,NC_002251,NC_002526,NC_002803,NC_003243,NC_003746,
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NC_005093,NC_005974,NC_005975,NC_006429,NC_006942,NC_007020,NC_007642,
NC_008514,NC_009527,NC_009528,NC_009608,NC_009609,NC_011532,NC_011558,
NC_011568,NC_011639,NC_013135,NC_013955,NC_016136,NC_017685,NC_017714,
NC_018381,NC_018629,NC_020803,NC_020804,NC_020805,NC_020806,NC_020807,
NC_020808,NC_020809,NC_020810,NC_022580,NC_022581,NC_022755,NC_024473,
NC_025251,NC_025253,NC_025255,NC_025340,NC_025341,NC_025342,NC_025353,
NC_025356,NC_025358,NC_025359,NC_025362,NC_025364,NC_025365,NC_025371,
NC_025376,NC_025377,NC_025378,NC_025382,NC_025384,NC_025385,NC_025387,
NC_025389,NC_025391,NC_025393,NC_025394,NC_025395,NC_025396,NC_025397,
NC_025399,NC_025400,NC_025401,NC_025405,NC_025406,NC_025408,NC_028230,
NC_028231,NC_028232,NC_028234,NC_028236,NC_028237,NC_028239,NC_028241,
NC_028244,NC_028246,NC_028255,NC_028266,NC_028867,NC_030451,NC_031079,
NC_031083,NC_031093,NC_031215,NC_031216,NC_031225,NC_031227,NC_031232,
NC_031236,NC_031240,NC_031268,NC_031272,NC_031273,NC_031276,NC_031278,
NC_031282,NC_031283,NC_031301,NC_031303,NC_031305,NC_031690,NC_031691,
NC_031955,NC_031957,NC_031958,NC_031988,NC_033701,NC_033705,NC_034240,
NC_034443,NC_034447,NC_034448,NC_034449,NC_034450,NC_034451,NC_034454,
NC_034508,NC_034529,NC_034530,NC_034531,NC_034533,NC_034534,NC_034535,
NC_034536,NC_034537,NC_034538,NC_034539,NC_034540,NC_034541,NC_034542,
NC_034543,NC_034544,NC_034545,NC_034546,NC_034548,NC_034549,NC_034550,
NC_034551,NC_036390,NC_038236,NC_038275,NC_038276,NC_038277,NC_038278,
NC_038279,NC_038280,NC_038281,NC_038282,NC_038283,NC_038284,NC_038285,
NC_038286,NC_038287,NC_038755,NC_038756,NC_039020,NC_039021,NC_039200,
NC_039201,NC_039202,NC_039206,NC_040532,NC_040599,NC_040602,NC_040664,
NC_040669,NC_040786,NC_043065,NC_043066,NC_043067,NC_043525,NC_043538,
NC_043648,NC_043649,Z93414
Secoviridae
NC_001632,NC_003003,NC_003004,NC_003445,NC_003446,NC_003495,NC_003496,
NC_003502,NC_003509,NC_003544,NC_003545,NC_003549,NC_003550,NC_003615,
NC_003621,NC_003622,NC_003623,NC_003626,NC_003628,NC_003693,NC_003694,
NC_003738,NC_003741,NC_003785,NC_003786,NC_003787,NC_003788,NC_003791,
NC_003792,NC_003799,NC_003800,NC_003839,NC_003840,NC_004439,NC_004440,
NC_005096,NC_005097,NC_005266,NC_005267,NC_005289,NC_005290,NC_006056,
NC_006057,NC_006271,NC_006272,NC_006964,NC_006965,NC_008182,NC_008183,
NC_009013,NC_009032,NC_010709,NC_010710,NC_010987,NC_010988,NC_011189,
NC_011190,NC_013075,NC_013076,NC_013218,NC_013219,NC_015414,NC_015415,
NC_015492,NC_015493,NC_016443,NC_016444,NC_017938,NC_017939,NC_018383,
NC_018384,NC_020897,NC_020898,NC_022004,NC_022006,NC_022798,NC_022799,
NC_023016,NC_023017,NC_025479,NC_025480,NC_027915,NC_027926,NC_027927,
NC_028139,NC_028146,NC_029036,NC_029038,NC_031763,NC_031766,NC_032270,
NC_032271,NC_033492,NC_033493,NC_034214,NC_034215,NC_035214,NC_035215,
NC_035218,NC_035219,NC_035220,NC_035221,NC_038320,NC_038744,NC_038759,
NC_038760,NC_038761,NC_038762,NC_038763,NC_038764,NC_038765,NC_038766,
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NC_038767,NC_038768,NC_038862,NC_038863,NC_039072,NC_039073,NC_039077,
NC_039078,NC_040399,NC_040400,NC_040416,NC_040417,NC_040586,NC_043076,
NC_043385,NC_043388, NC_043411,NC_043447,NC_043448,NC_043684,NC_043685

Test-3a; Source: Virus-Host-DB; NCBI; GISAID
Alphacoronavirus
AY518894,FJ938054,FJ938055,FJ938056,FJ938057,FJ938058,FJ938059,FJ938060,
FJ938061,FJ938062,GU553361,D13096,GU553362,HM245926,HQ392469,HQ392470,
HQ392471,HQ392472,JN183882,JN183883,JQ410000,JQ989272,DQ811787,LM645057,
NC_002306,NC_002645,NC_003436,NC_005831,NC_009657,NC_009988,NC_010437,
NC_010438,NC_018871,DQ848678,NC_022103,NC_023760,NC_028752,NC_028806,
NC_028811,NC_028814,NC_028824,NC_028833,NC_030292,NC_032107,EU420137,
NC_032730,NC_034972,NC_035191,NC_038861,EU420138,FJ938051,FJ938052,
FJ938053
Betacoronavirus
EU371561,EU371562,EU371563,EU371564,FJ415324,FJ425184,FJ425185,FJ425186,
FJ425187,FJ425188,FJ425189,FJ647218,FJ647219,FJ647220,FJ647221,FJ647222,
FJ647223,FJ647224,FJ647225,FJ647226,FJ647227,FJ882935,FJ882942,FJ882945,
FJ882954,FJ882963,FJ884686,FJ938063,FJ938064,FJ938065,FJ938066,FJ938067,
GQ153539,GQ153540,GQ153541,GQ153542,GQ153543,GQ153544,GQ153545,
GQ153546,GQ153547,GQ153548,HM211098,HM211099,HM211100,HM211101,
JF792616,JQ173883,JX169867,JX860640,JX869059,JX993987,JX993988,KC667074,
KC776174,KC881005,KC881006,KF367457,KF569996,KF906249,KJ473821,NC_001846,
NC_003045,NC_004718,NC_006213,NC_006577,NC_009019,NC_009020,NC_009021,
NC_012936,NC_017083,NC_019843,NC_025217,NC_026011,NC_030886,NC_038294,
NC_039207,AC_000192,AF201929,AY278488,AY278491,AY278554,AY278741,
AY350750,AY357075,AY357076,AY394850,AY515512,AY864805,AY864806,DQ011855,
DQ412042,DQ412043,DQ640652,DQ648794,DQ648856,DQ648857,DQ915164,EF065505
,EF065506,EF065507,EF065508,EF065509,EF065510,EF065511,EF065512,EF065513,
EF065514,EF065515,EF065516,EF424615,EF424616,EF424617,EF424618,EF424619,
EF424620,EF424621,EF424622,EF424623,EF424624,EF446615,EU371559,EU371560,
MG772933.1,MG772934.1,EPI_ISL_402131
Deltacoronavirus
FJ376620,KJ481931,KJ567050,KJ601777,KJ601778,KJ601779,KJ601780,KJ769231,
KM820765,KP981395,NC_011547,NC_011549,NC_011550,NC_016991,NC_016992,
NC_016993,NC_016994,NC_016995,NC_016996,NC_039208
Gammacoronavirus
AY646283,FN430414,FN430415,JF705860,KF793824,LN610099,NC_001451,
NC_010646,NC_010800

Test-3b; Source: Virus-Host-DB; GISAID
Alphacoronavirus
JQ989272,JQ410000,DQ811787,FJ938058,NC_022103,NC_028752,EU420137,
NC_038861,FJ938051, FJ938056,FJ938059,NC_034972,NC_028811,HQ392471,FJ938057
,NC_028824,NC_028814,FJ938060,HM245926,NC_028833
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Betacoronavirus
EF065513,FJ882942,FJ425185,HM211100,GQ153540,NC_006213,GQ153543,EF424624,
FJ647220,FJ938065,EPI_ISL_402131,FJ938066,AY278554,DQ915164,DQ011855,
FJ882945,FJ647225,FJ425184, FJ415324,FJ882935
Deltacoronavirus
FJ376620,KJ481931,KJ567050,KJ601777,KJ601778,KJ601779,KJ601780,KJ769231,
KM820765,KP981395,NC_011547,NC_011549,NC_011550,NC_016991,NC_016992,
NC_016993,NC_016994,NC_016995,NC_016996,NC_039208

Test-4; Source: Virus-Host-DB; NCBI; GISAID
Embecovirus
AC_000192,EF424620,EF424621,EF424622,EF424623,EF424624,EF446615,FJ415324,
FJ425184,FJ425185,FJ425186,AF201929,FJ425187,FJ425188,FJ425189,FJ647218,
FJ647219,FJ647220,FJ647221,FJ647222,FJ647223,FJ647224,DQ011855,FJ647225,
FJ647226,FJ647227,FJ884686,FJ938063,FJ938064,FJ938065,FJ938066,FJ938067,
JF792616,DQ915164,JQ173883,JX169867,JX860640,KF906249,NC_001846,NC_003045,
NC_006213,NC_006577,NC_012936,NC_026011,EF424615,EF424616,EF424617,
EF424618, EF424619
Merbecovirus
DQ648794,EF065505,EF065506,EF065507,EF065508,EF065509,EF065510,EF065511,
EF065512,JX869059,KC667074,KC776174,KJ473821,NC_009019,NC_009020,
NC_019843,NC_038294,NC_039207
Nobecovirus
EF065513,EF065514,EF065515,EF065516,HM211098,HM211099,HM211100,HM211101,
NC_009021,NC_030886
Sarbecovirus
MG772933.1,MG772934.1,EPI_ISL_402131,FJ882935,FJ882942,FJ882945,FJ882954,
FJ882963,GQ153539,GQ153540,GQ153541,GQ153542,GQ153543,GQ153544,GQ153545,
GQ153546,GQ153547,GQ153548,JX993987,JX993988,KC881005,KC881006,KF367457,
KF569996,NC_004718,AY278488,AY278491,AY278554,AY278741,AY350750,AY357075,
AY357076,AY394850,AY515512,AY864805,AY864806,DQ412042,DQ412043,DQ640652,
DQ648856,DQ648857,EU371559,EU371560,EU371561,EU371562,EU371563,EU371564

Test-5; Source: Virus-Host-DB; NCBI; GISAID
Embecovirus; Merbecovirus; Nobecovirus; Sarbecovirus: same as Test-4
2019-nCoV
EPI_ISL_402119,EPI_ISL_402130,EPI_ISL_402132,EPI_ISL_403928,EPI_ISL_403929,
EPI_ISL_403930,EPI_ISL_403931,EPI_ISL_403932,EPI_ISL_403933,EPI_ISL_403934,
EPI_ISL_403935,EPI_ISL_402120,EPI_ISL_403936,EPI_ISL_403937,EPI_ISL_403962,
EPI_ISL_403963,EPI_ISL_404227,EPI_ISL_404228,MN908947.3,EPI_ISL_402121,
EPI_ISL_402123,EPI_ISL_402124,EPI_ISL_402125,EPI_ISL_402127,EPI_ISL_402128,
EPI_ISL_402129,EPI_ISL_404253,EPI_ISL_404895,EPI_ISL_405839

Test-6; Source: Virus-Host-DB; NCBI; GISAID
Sarbecovirus; 2019-nCoV: same as Test-5

Supplementary Table D.S3: Accession IDs of sequences used in Test-1 to Test-6.



Appendix E

Addendum

Alignment-based methods require regions of contiguous homologous sequences to be able to

compare the (dis)similarities between sequences. DNA is a double-stranded molecule, with

two strands complementary to one another, and sometimes complementary sequences are de-

posited to the databases. In our proposed method, a few numerical representations, such as

Purine/Pyrimidine representation can process the sequences from different strands without re-

sulting in erroneous classification. In contrast, for alignment-based methods, the sequences

to be compared must be from the same strand. Moreover, mitochondrial DNA is circular in

nature, and most often authors deposit the corresponding linear sequences to the databases

with different starting positions. Alignment-free methods can handle sequences with differ-

ent starting positions, but this puts the alignment-based methods at undue disadvantage, when

comparing the performance of alignment-free methods with that of alignment-based methods.

In this addendum, we describle a new experiment that is intended to address this issue.

In Chapter 3, we compared the performance of our proposed alignment-free methodology

with two alignment-based methods (MUSCLE, CLUSTALW), and one alignment-free method

(FFP). We used three datasets for comparison, two benchmark datasets (38 Influenza sequences

and 41 Mammalian sequences), and one larger dataset of 4322 complete mtDNA sequences.

The two curated benchmark datasets have been used in the past for sequence analysis and are
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free from the possible anomalies that may cause difficulties for alignment-based methods. The

third dataset used for the comparison was not curated to verify if all the sequences belong to the

same DNA strand and start from the same position. Due to the large dataset size, alignment-

based methods (MUSCLE, CLUSTALW) were unable to complete the processing on the third

dataset and hence no classification accuracy scores were reported for this dataset. However, one

could argue that, in this comparison (Chapter 3), alignment-based methods were not utilized

optimally.

To address this issue, we performed a new test that utilizes alignment-based methods in

the way they were intended, by using a benchmark dataset of cytochrome c oxidase subunit

I (COXI, also known as COI) gene of 3089 vertebrates (bats: 840, birds: 1623, fish: 626),

previously used for DNA Barcoding analysis [1]. We curated the dataset by removing all of the

unrecognized characters and keeping only the occurrences of ‘A’, ‘C’, ‘G’, ‘T’. We discarded

all the sequences with length less than 600 after removing the unrecognized letters to have a

curated dataset of 2630 vertebrates (bats: 819, birds: 1199, fish: 612). The performance of

ML-DSP [2] was compared with two state-of-the-art alignment-based methods, CLUSTALW

[3], and MUSCLE [4], both available as part of MEGAX [5]. CLUSTALW was tested us-

ing a default ‘slow and accurate mode’, as well as, ‘fast and approximate mode’ with the

respective default parameters. MUSCLE was tested with default parameters. ML-DSP was

tested using two numerical representations, Chaos Game Representation (CGR) at k-value 6,

and Purine/Pyrimidine (PP) representation with the sequences normalized to the median length

[2]. For both representations, Pearson Correlation Coefficient (PCC) was used as a dissimi-

larity measure to compute a pairwise distance matrix. The dataset details and the results of

performance comparison are given in Table E.S1. The reported processing time included all

computations, starting from reading the datasets to the completion of the distance matrix - the

common element of all three methods. All experiments were performed on an ASUS ROG

G752VS computer with 4 cores (8 threads) of a 2.7 GHz Intel Core i7 6820 HK processor and

64 GB DD4 2400 MHz SDRAM.
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ML-DSP achieved an average classification accuracy (over six classifiers used in this thesis)

of 99.7% using CGR at k-value 6 (see the respective MoDMap3D in Figure E.S1(a)). An av-

erage classification accuracy of 100% is achieved when ML-DSP is used with PP as numerical

representation (see the respective MoDMap3D in Figure E.S1(b)). MUSCLE achieved similar

average accuracy score of 99.8%. CLUSTALW achieved slightly lower average classification

accuracy of 98.5% when tested using ‘fast and approximate mode’.

The selected dataset of 2630 sequences does not pose a challenge to the multi-sequence

alignment methods, because this is a relatively smaller dataset with an average sequence length

of only 650 bp, with each sequence representing the same region of the genome. ML-DSP

completed the dataset processing in under 3 seconds, whereas MUSCLE took 3 minutes to

complete. CLUSTALW completed the processing in 38 minutes when tested using ‘fast and

approximate mode’. With ‘slow and accurate mode’, CLUSTALW was unable to complete the

processing in 2 hours 30 minutes and was terminated.

To summarize, ML-DSP overwhelmingly outperformed the alignment-based methods MUS-

CLE and CLUSTALW in terms of processing time. ML-DSP and MUSCLE achieved (near-)

perfect classification accuracy scores. Our results show that while the ML-DSP can easily

adapt to the short and conserved sequences (suitable and sometimes strictly required for the

alignment), it is challenging for alignment-based methods to process larger datasets of com-

plete genomes. A few alignment-based methods, such as MUSCLE, can process the smaller

datasets quickly, but that involves a lot of manual effort and biological expertize on data cura-

tion, which is often ignored and not included in the computational cost.
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Supplementary Table E.S1: Performance comparison of CLUSTALW, MUSCLE, and ML-
DSP.

CLUSTALW ML-DSPDataset Parameter Slow mode Fast mode MUSCLE CGR(k=6) PP
Processing time >2 hr 30 min 38 min 3 min 2.33 sec 1.61 sec

Linear Discriminant —- 95.8 98.9 99.9 100
Linear SVM —- 98.9 100 99.8 100
Quadratic SVM —- 99.7 100 99.9 100
Fine KNN —- 99.6 100 99.9 100
Subspace Discriminant —- 97.6 100 98.9 100
Subspace KNN —- 99.5 100 99.9 100

DNA Barcoding dataset
(COXI gene, 2630 sequences)
Bats: 819, Birds: 1199,
Fish: 612

Length statistics:
Maximum: 678, Mean: 650
Minimum: 600, Median: 653

Classification
Accuracy (%)

Average —- 98.5 99.8 99.7 100

Performance of CLUSTALW, MUSCLE, and ML-DSP is compared using a dataset
comprising cytochrome c oxidase subunit I (COXI) gene of 2630 vertebrates (bats: 819, birds:
1199, fish: 612). ML-DSP shows superior processing time and similar accuracy scores in
comparison with MUSCLE and CLUSTALW.

Supplementary Figure E.S1: MoDMap3D representing a dataset comprising of COXI gene
of 2630 vertebrates (bats: 819, birds: 1199, fish: 612) computed using ML-DSP with two
different numerical representation, (a) Chaos Game Representation (CGR) at k-value 6 and,
(b) Purine/Pyrimidine (PP) representation.



Bibliography

[1] Weitschek E, Fiscon G, Felici G. Supervised DNA Barcodes species classification: analy-

sis, comparisons and results. BioData Mining. 2014; 7(4).

[2] Randhawa GS, Hill KH, Kari L. ML-DSP: Machine Learning with Digital Signal Process-

ing for ultrafast, accurate, and scalable genome classification at all taxonomic levels. BMC

Genomics. 2019; 20: 267.

[3] Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high through-

put. Nucleic Acids Res. 2004; 32(5): 1792–7.

[4] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of pro-

gressive multiple sequence alignment through sequence weighting, position-specific gap

penalties and weight matrix choice. Nucleic Acids Res. 1994; 22(22): 4673–80.

[5] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Ge-

netics Analysis across computing platforms. Molecular Biology and Evolution. 2018; 35(6):

1547–1549.

178



Curriculum Vitae

Name: Gurjit Singh Randhawa

Post-Secondary The University of Western Ontario
Education and London, ON
Degrees: 2015 - 2020 Ph.D. (Computer Science)

The University of Western Ontario
London, ON
2013 - 2014 M.Sc. (Computer Science)

Guru Nanak Dev University
Amritsar, India
2008 - 2010 M.C.A.

Guru Nanak Dev University
Amritsar, India
2005 - 2008 B.C.A.

Honours and Student and New Investigator Travel Award (×2)
Awards: Environmental Mutagenesis and Genomics Society (EMGS) 2018, 2019

First prize in Software Engineering and Programming Languages,
Bioinformatics and Theory of Computer Science
UWO Research in Computer Science (UWORCS) 2019

First prize in Bioinformatics & Distributed Systems
UWO Research in Computer Science (UWORCS) 2018

Western Graduate Research Scholarship (WGRS)
2015-19

Related Work Graduate Teaching Assistant
Experience: The University of Western Ontario

2015 - 2020

179



180 Curriculum Vitae

Publications:

1. Gurjit S. Randhawa, Maximillian P.M. Soltysiak, Hadi El Roz, Camila P.E. de Souza,

Kathleen A. Hill, and Lila Kari,“Machine learning using intrinsic genomic signatures

for rapid classification of novel pathogens: COVID-19 case study”, PLoS ONE. 2020;

15(4): e0232391;

2. Gurjit S. Randhawa, Kathleen A. Hill, and Lila Kari,“MLDSP-GUI: An alignment-free

standalone tool with an interactive graphical user interface for DNA sequence compari-

son and analysis”, Bioinformatics. 2019; btz918.

3. Gurjit S. Randhawa, Kathleen A. Hill, and Lila Kari,“ML-DSP: Machine Learning with

Digital Signal Processing for ultrafast, accurate, and scalable genome classification at all

taxonomic levels”, BMC Genomics. 2019; 20: 267.

4. Sunny Sharma, and Gurjit S. Randhawa, “Optimization of Online Job Shop Partition-

ing and Scheduling for Heterogeneous Systems using Genetic Algorithm”, International

Journal of Computer Trends and Technology (IJCTT). 2016; 34(3): 144–149.

5. Palak Sharma, Shelza, Gurjit S. Randhawa, and Rajinder S. Virk, “Cost Optimization of

Pipeline Systems Using Genetic Algorithm”, International Journal of Computer Engi-

neering and Technology (IJCET). 2013; 4(4).

6. Sookham R.P. Singh, Gurjit S. Randhawa, and Rajinder S. Virk, “Efficacy of Genetic Al-

gorithms in Staging Cervical Cancer”, International Journal of Cancer Research. 2013;

47(2): 1164–1168.

7. Gurvinder Singh, Rajinder S. Virk, Gurjit S. Randhawa, “Enhancing Computational Ca-

pabilities in Higher Education by use of GA’s”, International Conference on Role of

Technology in Enhancing the Quality of Higher Education (ICRT-12), Oct 26-27, 2012;

Kanya Maha Vidyalaya, Jalandhar, India.


	Machine Learning with Digital Signal Processing for Rapid and Accurate Alignment-Free Genome Analysis: From Methodological Design to a Covid-19 Case Study
	Recommended Citation

	Introduction
	Literature review
	Biological background
	Genomic sequence analysis methods
	Alignment-based methods
	Alignment-free methods

	Our approach
	DNA numerical representations
	Discrete Fourier Transform
	Distance measures
	Multi-dimensional scaling
	Supervised learning classification models


	ML-DSP: Machine Learning with Digital Signal Processing
	Background
	Numerical representations of DNA sequences
	Digital Signal Processing
	Supervised Machine Learning

	Methods and Implementation
	DNA numerical representations
	Discrete Fourier Transform (DFT)
	Pearson Correlation Coefficient (PCC)
	Supervised Machine Learning
	Classical Multidimensional Scaling (MDS)
	Software implementation
	Datasets

	Results and Discussion
	Analysis of distances and of length normalization approaches
	Analysis of various numerical representations of DNA sequences
	ML-DSP for three classes of vertebrates
	Classifying genomes with ML-DSP, at all taxonomic levels
	MoDMap visualization vs. ML-DSP quantitative classification results
	Applications to other genomic datasets
	Comparison of ML-DSP with state-of-the-art alignment-based and alignment-free tools
	Discussion

	Conclusions
	Availability and Requirements

	MLDSP-GUI: ML-DSP with Graphical User Interface
	Introduction
	Materials and methods
	Software description

	COVID-19 case study
	Introduction
	Materials and methods
	Results
	Discussion
	Conclusion

	Conclusion
	Copyright Releases
	Software description
	MLDSP-GUI: Supplementary Material
	Interactive MLDSP-GUI features
	Left panel
	Center panel
	Right panel

	Provided datasets
	Availability

	COVID-19 case study: Supplementary Material
	Software availability
	Spearman's rank correlation coefficient test results
	Dataset availability

	Addendum
	Curriculum Vitae

