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Abstract 

Vegetative state (VS) is a disorder of consciousness often referred to as “wakefulness 

without awareness”. Patients in this condition experience normal sleep-wake cycles, but lack 

all awareness of themselves and their surroundings. Clinically, assessing consciousness relies 

on behavioural tests to determine a patient’s ability to follow commands. This subjective 

approach often leads to a high rate of misdiagnosis (~40%) where patients who retain 

residual awareness are misdiagnosed as being in a VS. Recently, functional neuroimaging 

techniques such as functional magnetic resonance imaging (fMRI), has allowed researchers 

to use command-driven brain activity to infer consciousness. Although promising, the cost 

and accessibility of fMRI hinder its use for frequent examinations. Functional near-infrared 

spectroscopy (fNIRS) is an emerging optical technology that is a promising alternative to 

fMRI. The technology is safe, portable and inexpensive allowing for true bedside assessment 

of brain function.  

This thesis focuses on using time-resolved (TR) fNIRS, a variant of fNIRS with enhanced 

sensitivity to the brain, to detect brain function in healthy controls and patients with disorders 

of consciousness (DOC). Motor imagery (MI) was used to assess command-driven brain 

activity since this task has been extensively validated with fMRI. The feasibility of TR-

fNIRS to detect MI activity was first assessed on healthy controls and fMRI was used for 

validation. The results revealed excellent agreement between the two techniques with an 

overall sensitivity of 93% in comparison to fMRI. Following these promising results, TR-

fNIRS was used for rudimentary mental communication by using MI as affirmation to 

questions. Testing this approach on healthy controls revealed an overall accuracy of 76%. 

More interestingly, the same approach was used to communicate with a locked-in patient 

under intensive care. The patient had residual eye movement, which provided a unique 

opportunity to confirm the fNIRS results. The TR-fNIRS results were in full agreement with 

the eye responses, demonstrating for the first time the ability of fNIRS to communicate with 

a patient without prior training. Finally, this approach was used to assess awareness in DOC 

patients, revealing residual brain function in two patients who had also previously shown 

significant MI activity with fMRI.  
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Summary for Lay Audience 

In its most basic form, consciousness can be defined as the state of being ‘awake’ and 

‘aware’ to one’s self and one’s surroundings. While determining if someone is awake is 

relatively simple, assessing awareness is not trivial. The current clinical practice relies on 

behavioural testing of patients to infer awareness, which often leads to a high rate (~40%) of 

misdiagnosis, since patients who retain cognitive function may be unable to physically or 

verbally respond to commands. Recently, neuroimaging techniques such as functional 

magnetic resonance imaging (fMRI) have been used to assess brain function in patients 

diagnosed as suffering from a disorder of consciousness (DOC). Instead of asking patients to 

physically or verbally follow commands, patients were asked to perform a certain mental task 

in respond to commands. One such task is motor imagery (MI), which activates specific areas 

in the brain associated with motor planning. Detecting this command-driven brain activity 

can therefore be used to infer awareness. Although promising, the cost and more importantly 

the accessibility of fMRI limit its use at the bedside. Functional near-infrared spectroscopy 

(fNIRS) is a promising optical technique that is safe, inexpensive and portable, allowing for 

bedside assessment of brain function.   

To this end, the aim of this work was to develop an fNIRS system that can be used to assess 

brain function in DOC patients. The feasibility of this system was first assessed in a group of 

healthy participants prior to translating the technology to patients with brain injuries. Overall, 

our in-house built system provided excellent sensitivity to MI-related brain activity. Given 

these promising results, the next step was to use our system to communicate with a patient on 

life support who was unable to verbally communicate. By asking clinically relevant 

questions, and using MI for affirmation, we were able to establish binary mental 

communication with this patient. Finally, this technology was used to assess consciousness at 

the bedside in DOC patients. Two patients who were clinically diagnosed as showing no 

signs of awareness were able to produce command-driven brain activity, suggesting the 

presence of residual awareness.  
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Chapter 1  

 “Let there be light” 

-Genesis 1:3 

1 Introduction 

The aim of this introductory chapter is to provide the reader with an understanding of the 

motivation for this thesis topic entitled: “Detecting Command-Driven Brain Activity in 

Patients with Disorders of Consciousness Using TR-fNIRS”. This section will highlight 

the clinical challenges associated with assessing residual awareness in patients with 

disorders of consciousness (DOC), along with the main research conducted to date. 

Challenges and limitations of the current approaches are also discussed and the rationale 

for using time-resolved functional near-infrared spectroscopy (TR-fNIRS) to detect 

command-driven brain activity is presented. Finally, the objectives of this thesis and a 

brief description of each chapter are included.  

1.1 Clinical Motivation 

One of the simplest definitions of consciousness is the state of being awake and aware to 

one’s self and one’s surrounding (Fernández-Espejo and Owen, 2013). Wakefulness (also 

referred to as arousal) is categorized by the absence of sleep, while awareness is 

determined by the awareness of content (i.e. cognitive, sensory and emotional 

experience) (Giacino et al., 2018). Wakefulness can be easily measured by ensuring that 

eyes are open or using electroencephalography (EEG) to confirm that brain patterns 

observed are typical for a waking state (Fernández-Espejo and Owen, 2013; Sander et al., 

2016). On the other hand, clinically measuring awareness is difficult and relies on 

subjective behavioral assessments of a patient’s ability to follow commands (Naci and 

Owen, 2013). Currently, no objective biomarkers are available to assess awareness. 

Severe brain injury can affect the brain’s awareness and arousal systems, which are 

controlled by the cortex and brain stem, respectively (Demertzi et al., 2017; Giacino et 

al., 2018). This can result in impaired consciousness leading to a disorder of 

consciousness (DOC), which is an umbrella term encompassing the comatose state, 

unresponsive wakefulness syndrome (UWS) (more commonly known as vegetative state, 
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VS) and minimally conscious state (MCS) (Monti, 2012). Comatose patients are in a state 

of deep unconsciousness and lack all motor and cognitive ability (Naci et al., 2012a). In 

rare scenarios, comatose patients may regain their sleep-wake cycle, reclassifying them to 

a VS. This condition is often defined as “wakefulness without awareness” as VS patients 

demonstrate signs of wakefulness (eye-opening and closing) but lack all awareness of 

themselves and their environment (Silva et al., 2010; Owen, 2019). Indeed, repeated 

behavioral examination of VS patients will yield no evidence of a purposeful and 

reproducible voluntary behavioral response to various forms of stimulation (e.g. visual, 

auditory or noxious) (Fernández-Espejo and Owen, 2013). Hence, it is on this basis that 

the awareness component of consciousness in these patients is assumed to be absent. 

While the incidence of VS is low (approximately 4,200 people per year in the United 

States), the cost associated with lifetime care for patients with prolonged DOC (i.e., 

lasting greater than 28 days) can exceed $1,000,000 (Monti et al., 2009b; Giacino et al., 

2018). Over time, if a VS patient demonstrates inconsistent but purposeful behavioral 

responses, they are said to progress to MCS. These patients, similar to VS patients, 

experience sleep-wake cycles but also retain inconsistent ability to behaviorally follow 

commands (Giacino et al., 2002). Differentiating between patients in a VS and a MCS is 

critical since MCS patients are more likely to experience pain and suffer, and may benefit 

from treatments aimed to improve their quality of life (Boly et al., 2008). Moreover, 

MCS patients are also more likely to recover higher levels of consciousness over time 

(Hirschberg and Giacino, 2011). 

Clinically, the Glasgow Coma Scale (GCS), Full Outline of Unresponsiveness (FOUR), 

the Coma Recovery Scale-Revised (CRS-R) and Sensory Modality Assessment and 

Rehabilitation Technique (SMART) are the common behavioral measures used to assess 

consciousness at the bedside. The CRS-R (Kalmar and Giacino, 2005) assesses a 

patient’s auditory, visual, motor, oromotor, communicative and arousal levels, while the 

GCS scale tests a patient’s motor and verbal responses and their eye-opening ability 

(Teasdale et al., 2014). FOUR scale, on the other hand, measures the eye and motor 

responses, brainstem reflexes, and a patient’s respiratory ability (Iyer et al., 2009). 

Finally, SMART assesses a patient’s level of sensory, communicative and motor 

responses (Gill-Thwaites and Munday, 2004). Patients are then measured against the 
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criteria of the chosen scale and given a score indicating their level of consciousness, with 

a low score suggesting impaired consciousness (for example, GCS < 8 indicates a patient 

is in a comatose state).  

For DOC patients, detecting behavioral responses can be particularly challenging as it 

relies on subjective interpretation of inconsistent motor or verbal responses, which often 

leads to a high rate (~40%) of misdiagnosis of VS (Naci et al., 2012b). In addition, a 

small subgroup of VS patients may retain residual awareness even though they lack all 

physical and verbal ability to do so (Owen et al., 2006).  

1.2 Neuroimaging as a Tool to Assess Awareness 

In 2006, Owen and colleagues showed that functional magnetic resonance imaging 

(fMRI) could be used as a tool to assess residual awareness by detecting command-driven 

brain activity (Owen et al., 2006). fMRI indirectly measures brain activity by detecting 

the increase in regional blood flow and blood volume associated with increase in regional 

neuronal activity (i.e. neurovascular coupling) (Glover, 2011). This leads to an overall 

increase in oxyhemoglobin and a concurrent decrease in deoxyhemoglobin. fMRI relies 

on the paramagnetic susceptibility of deoxyhemoglobin acting as an endogenous contrast 

agent, which leads to lowering of the local MR signal due to microscopic field gradients 

around and within the blood vessels (Buxton et al., 2004). The main advantage of fMRI is 

the global coverage of brain activity and the excellent spatial resolution that can be 

achieved.  

In the study by Owen et al., they showed that a patient clinically diagnosed as being in a 

VS, was in fact aware and able to regulate her brain activity in response to commands. 

More specifically, the patient was asked to imagine playing a game of tennis in the 

scanner every time she heard the word ‘tennis’, and to imagine spatially navigating her 

house whenever she heard the word ‘house’. Interestingly, the corresponding brain 

activity detected was indistinguishable from that of healthy controls performing the same 

tasks (Owen et al., 2006). A follow-up study on a cohort of twenty-three VS patients 

concluded that four patients were able to produce consistent and reliable brain activity in 

responses to commands and therefore were covertly aware (Monti et al., 2010). 
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Since the first report of detecting residual brain function in a DOC patient in 2006 (Owen 

et al., 2006), various paradigms have been adopted to identify neural correlates of 

consciousness and identify patients who are aware but are misdiagnosed as being in a VS. 

Bekinschtein and colleagues investigated whether command-driven brain activity during 

motor preparation could be used instead of behavioral command following (Bekinschtein 

et al., 2011). A group of VS patients were instructed to concentrate on moving their right 

or left hand in an MRI scanner. Of the five patients, two produced activity in the 

contralateral premotor areas when instructed to move their hand. Other examples include 

asking a patient to listen to a sequence and count the number of times a word was 

repeated (Monti et al., 2009a), shifting attention from one picture to another (Monti et al., 

2013) and passively watching a movie in an attempt to follow the plot (Naci et al., 2014). 

All these tasks elicited brain activity similar to that observed in healthy controls, 

suggesting the patients were in fact aware even though they were diagnosed as suffering 

from a DOC.  

Functional MRI has also been adopted as a brain-computer interface (BCI) to establish 

rudimentary mental communication with DOC patients. Monti and colleagues instructed 

a DOC patient to use motor imagery (MI) and spatial communication to answer yes/no 

autobiographical questions (Monti et al., 2010). MI was used as affirmation while spatial 

navigation was used as the negative response. The patient was able to answer five of six 

questions correctly in the scanner, even though bedside communication remained 

impossible. Other work, such as that conducted by Bardin et al., used MI and a multiple-

choice paradigm to attempt to communicate with DOC patients (Bardin et al., 2011). 

While one of six patients showed significant brain activity during the task, mental 

communication was not possible as incorrect responses were obtained to both questions 

asked. 

An alternative approach for assessing awareness is positron emission tomography (PET) 

using 18F-fluorodeoxyglucose (FDG) to image metabolic activity in the brain 

(Vanhaudenhuyse et al., 2010, 2011). Certain regions in the brain such as the 

frontoparietal cortices, precuneus, thalamus and cingulate gyrus are thought to play a role 

in supporting consciousness. Since glucose metabolism is directly proportional to 

neuronal activity, lower glucose metabolic rate in these regions is an indication of 
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impaired function. Previous work by Stender et al. compared the diagnostic and 

prognosis usefulness of 18F-FDG PET and fMRI in discriminating between VS patients 

and patients in a MCS, and validated their results against each patient’s CRS-R score 

(Stender et al., 2014). By investigating metabolism in the frontoparietal networks, they 

hypothesized that VS patients show broad bilateral frontoparietal dysfunction, whereas 

MCS patients have partial preserved metabolism in this network. Their results revealed 

that 18F-FDG PET had a sensitivity of 93% for identifying MCS patients and high 

agreement of 85% with behavioral CRS-R scores. On the other hand, mental imagery-

based fMRI method had lower sensitivity (45%) at identifying MCS patients and overall 

lower agreement of 63% with behavioral scores than PET. However, the lower sensitivity 

of fMRI is unsurprising since mental imagery requires high-level cognitive function, and 

thus can be used to provide information about preserved cognitive function. The authors 

also investigated the ability of each modality to predict long-term outcome in patients; 

i.e., the presence of consciousness one-year post examination. FDG-PET correctly 

predicted outcome in 74% of patients while fMRI correctly predicted outcome in 56% of 

patients. 

A follow-up study by Stender et al. showed that PET could be used to identify the 

minimum energetic requirement for consciousness (Stender et al., 2016). Since conscious 

awareness can be preserved with only one brain hemisphere (Gazzaniga, 2005), the 

authors reasoned that the index of glucose metabolism in the least injured hemisphere is a 

better indicator of conscious awareness than whole-brain metabolic activity. The main 

finding of this study is that 42% of normal cortical activity is the minimal requirement for 

the presence of awareness. With this criterion, the authors were able to discriminate 

between MCS and VS patients with an 88% classification accuracy. In addition, every 

healthy participant and patient who emerged from MCS was correctly identified as being 

conscious. 

Other techniques such as electroencephalography (EEG) have been investigated as a 

portable technology for assessing residual awareness at the bedside. Given its high 

temporal resolution (on the order of milliseconds), low cost and portability, EEG is a 

promising alternative to PET and fMRI. The systems are simple and compact, allowing 

for true bedside monitoring of brain activity. EEG detects neuronal activity by measuring 
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electrical activity during synaptic excitation of neuronal dendrites, primarily in the 

cerebral cortex but also in deep brain regions (Abiri et al., 2019). EEG primarily records 

the overall electrical activity of pyramidal cells measured by placing electrodes on the 

scalp. As a result, it can reliably detect postsynaptic potentials, which are changes in 

membrane potentials as a result of synaptic activity. These changes are slower than action 

potential, which are the result of rapid depolarization of neurons primarily due to changes 

in membrane permeability to potassium and sodium ions.  

EEG was first used to assess awareness by Schnakers et al. who asked MCS patients to 

count the number of times they heard their name in a sequence of names (Schnakers et 

al., 2008). A subgroup of patients showed larger P300 signal (which is an event-related 

potential elicited during decision making) when counting the occurrence of their own 

name. Later studies have attempted to replicate fMRI studies by using MI to assess 

command-driven brain activity. This task leads to event-related desynchronization (ERD) 

or reduction of the mu and/or beta bands over appropriate areas of the motor cortex. In 

some cases ERD is accompanied by event-related synchronization (ERS) over the 

contralateral motor areas (Jeon et al., 2011). A study on a cohort of DOC patients showed 

that three patients clinically diagnosed as being in a vegetative state were aware, as they 

were able to produce mental imagery responses that were decoded using EEG (Cruse et 

al., 2011). This pattern of brain activity is elicited only when a patient is willfully 

performing the task and thus infers consciousness. Even when the results were analyzed 

using a more conservative statistical approach, one of the three patients still showed 

statically significant results (Goldfine et al., 2013). Further studies have attempted to 

evaluate different mental imagery tasks (such as attempted feet movement, sport imagery 

and spatial navigation) in MCS patients and concluded that spatial navigation yielded 

significant results less often than MI tasks (Horki et al., 2014).  

EEG was also used in conjunction with PET to disseminate between VS and MCS 

patients and predict outcome after one-year post-examination (Chennu et al., 2017). This 

study showed that the strength of EEG connectivity matched the re-emergence of 

behavioral awareness, with VS patients exhibiting a lack of structured connectivity over 

the frontoparietal networks. Furthermore, they categorized patients as PET positive if 

they had partial preservation of activity in the frontoparietal cortex and PET-negative 
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otherwise. The PET results were then compared to the alpha and delta band connectivity 

obtained from EEG. Patients that were labeled as PET-positive showed higher alpha and 

lower delta band connectivity. 

The EEG response to transcranial magnetic stimulation (TMS), known as perturbational 

complexity index (PCI), was also used to distinguish between conscious and unconscious 

states (Bodart et al., 2017). A cross-validation study between FDG-PET and TMS-EEG 

reported excellent agreement between the two techniques with 22 of the 24 patients 

recruited classified as either conscious or unconscious with both modalities. Furthermore, 

the study reported a PCI cut-off of 0.31 could be used to distinguish between conscious 

and unconscious states. Therefore, using this threshold level, TMS-EEG could be used as 

a part of a screening tool to classify patients with partially preserved metabolism 

(obtained from PET) as either MCS or lacking consciousness at the time of exam.  

Although promising, fMRI, EEG and PET have disadvantages. PET and fMRI are 

expensive, and more importantly, do not allow for bedside monitoring of brain activity. 

In addition, they are prone to significant motion artifacts, which can be challenging since 

DOC patients can have difficulties lying still in a scanner. Also, given the exclusion 

criteria of fMRI, some patients with metallic implants cannot participate in studies 

limiting the accessibility of this technique. EEG, on the other hand, allows for bedside 

measurements and has excellent temporal resolution, but suffers from low spatial 

resolution, making it difficult to localize where the neuronal activation is happening. It 

can also be difficult to collect useful EEG data on patients with traumatic brain injuries 

suffering from focal skull defects, such as a craniotomy, as it can lead to increases in the 

alpha, mu and beta rhythms, leading to what is known as the breach effect (Brigo et al., 

2011).  

More recently, functional near-infrared spectroscopy (fNIRS) has been proposed as a 

promising alternative to fMRI. Functional NIRS provides relatively high temporal 

resolution with good spatial resolution (depending on the number of source-detector pairs 

used). The technology is safe, portable and inexpensive, making it ideal for bedside 

studies of DOC patients. This thesis will focus on fNIRS – specifically time-resolved 

fNIRS – as a tool for assessing command-driven brain activity. The next few sections 
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will cover the basics of fNIRS, the different modalities available, and a summary of the 

studies conducted to date on DOC patients.  

1.3 Theory of NIRS  

1.3.1 Absorption and Scattering of Light in Tissue 

The two main phenomena affecting light propagation in tissue are scattering and 

absorption (Delpy and Cope, 1997a). These phenomena are categorized by their 

respective scattering (μs) and absorption (μa) coefficients, which refer to the reciprocal of 

the distances travelled prior to a photon being scattered or absorbed, respectively. Typical 

μs and μa values for different tissues are reported in Table 1.1. These values were 

retrieved from Strangman et al (Strangman et al., 2003). The values reported are for a 

wavelength of 830 nm. 𝜇𝑠′ is the reduced scattering coefficient (see equation 1.1 for more 

detail) and n is the refractive index of tissue. 

Table 1.1: Optical properties of various tissues in the head calculated for a 

wavelength of 830 nm 

Layer 𝜇𝑠′ (𝑐𝑚−1) 𝜇𝑎 (𝑐𝑚−1) n 

Scalp 6.6 0.19 1.4 

Skull 8.6 0.13 1.4 

CSF 0.1 0.03 1.3 

Brain 11.1 0.19 1.4 

Scattering refers to a change in direction of a photon and in tissue it is often modeled 

using Mie scattering, which refers to the scattering of light by particles of similar size to 

the wavelength of incident light (Saltsberger et al., 2012). This results in an elastic 

scattering event where the kinetic energy of the photon does not change. In tissue, the 

main scattering constituents of near-infrared light include lipoprotein membranes, red 

blood cells, mitochondria as well as other cellular components (Cope, 1991).  

Light propagation in a medium is directionally oriented, which means that scattered 

photons are likely to travel in a forward direction given the higher probability of small-

angle scattering events occurring. However, over time and with each event, this forward 

directionality decreases as the scattering angle becomes increasingly homogenous. For 

highly scattering media, the direction of a photon quickly becomes random or isotropic. 
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The distance that a photon travels before its path becomes isotropic is given by the 

inverse of the reduced scattering coefficient:  

𝜇𝑠
′ = 𝜇𝑠(1 − 𝑔),   (1.1) 

where, g is the anisotropy factor. Since light in tissue is predominantly forward scattered, 

the value of g is around 0.9. In tissue, diffusively reflected photons can be detected some 

distance away from the emission fiber since NIR light propagation is overwhelmingly 

scattering; that is, the likelihood of a scattering event happening is nearly ten times that of 

an absorption event.  

Absorption is the transfer of energy from a photon to atoms or molecules in tissue. The 

main chromophores i.e. light absorbers in tissue are oxy- and deoxyhemoglobin, water 

and lipids (Wahr et al., 1996). NIRS uses light in the range of 650-900 nm to illuminate 

biological tissue and extract information about the concentrations of chromophores. This 

range is known as the ‘optical window’ since light absorption by tissue is relatively low 

within this range (Delpy and Cope, 1997b). Below 650 nm, most incident light will be 

absorbed by hemoglobin, while above 950 nm, light will be absorbed by water (see 

Figure 1.1). Other optical windows exist, one between 1100-1350 nm and another 

between 1600-1870 nm, but the 650-900 nm window is the most widely used as detectors 

suitable for these higher wavelength ranges are expensive and typically have a lower 

signal-to-noise ratio (SNR) (Sordillo et al., 2014). 



10 

 

 

Figure 1.1: Absorption spectrum of water (blue), oxyhemoglobin (red) and 

deoxyhemoglobin (green) plotted against wavelength. The absorption coefficient 

values for hemoglobin are multiplied by 15 for illustration purposes 

1.3.2 Beer-Lambert Law 

The Beer-Lambert Law describes the attenuation of light in a non-scattering medium due 

to absorption. Bouguer was the first to document this phenomenon in 1729, and Lambert 

later expanded on this finding stating that absorption was directly proportional to the path 

length of light, which is defined by the thickness of the sample. A proportionality 

constant μa is used to relate the amount of light absorbed in the medium to the thickness 

of a small layer. In 1852, Beer extended the Lambert-Bouguer Law to relate μa to the 

concentration of light absorbers in tissue producing the Beer-Lambert Law (Wahr et al., 

1996): 

 ∆𝑂𝐷(𝜆) = −𝑙𝑜𝑔10 (
𝐼(𝜆)

𝐼0(𝜆)
) = ∑ 𝜀𝑘(𝜆)𝐶𝑘𝑑𝑘 ,   (1.2) 

where ΔOD is the change in optical density at wavelength 𝜆 and is given by the ratio of 

the measured light intensity (I) to the initial incident light intensity (Io). ΔOD can be 

subsequently related to the concentration of the kth chromophore (𝐶𝑘), the corresponding 

molar extinction coefficient 𝜀𝑘(𝜆), and the physical distance, d.  

The first application of NIRS to monitor changes in cerebral oxygenation was conducted 

by Jobsis et al. in 1977 (Jobsis, 1977). In this study, changes in the concentration of 
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chromophores were shown to be related to changes in the spectrum measured from the 

head. Using the specific absorption spectra of hemoglobin and cytochrome oxidase (a 

metabolic marker of neuronal activity) and applying the Beer-Lambert Law, he was able 

to estimate changes in concentrations (Delpy and Cope, 1997a).  

Adopting the Beer-Lambert Law to tissue requires modifying equation (1.2) to account 

for the effects of light scattering. First, this requires accounting for the greater distance 

that photons will travel due to the larger number of scattering events that occur before a 

photon is absorbed (Delpy et al., 1988):  

∆𝑂𝐷(𝜆) = ∑ 𝜀𝑘(𝜆)𝐶𝑘𝐷𝑃𝐹(𝜆)𝑑𝑘 + 𝐺,  (1.3) 

where, DPF is the differential pathlength factor. Note, the product of DPF and d 

represents the mean pathlength that photons travel, which is typically 3-6 times larger 

than the physical separation between the light source and detector (Scholkmann and 

Wolf, 2013). The final term G accounts for loss of intensity due to scattering. Although G 

is large compared to absorption, it can be ignored in functional activation studies because 

the scattering properties of tissue remain constant (Kocsis et al., 2006). Under this 

condition, the change in μa is given by the following equation:  

∆𝜇𝑎(∆𝑡, 𝜆) = (
∆𝑂𝐷(∆𝑡,𝜆)

𝐷𝑃𝐹(𝜆)𝑑
) ln (10)   (1.4) 

where, Δt is the change in time and ln (10) is used to convert the extinction coefficients to 

specific absorption coefficients. For functional activation studies, the objective is to 

detect changes in the concentration of oxy- and deoxyhemoglobin since these 

chromophores depict the BOLD response. This can be achieved using two wavelengths 

of light, one that has a higher sensitivity to oxyhemoglobin (e.g. 830 nm) and another that 

has a higher sensitivity to deoxyhemoglobin (e.g. 760 nm). By measuring the change in 

μa at two wavelengths, the change in concentrations of oxy- and deoxyhemoglobin at a 

given time t can be calculated by solving a set of two linear equations:  

∆𝜇𝑎,𝑖(𝑡, 𝜆𝑘) = (∆𝐶𝐻𝑏𝑂2
(∆𝑡)𝜀𝐻𝑏𝑂2

(𝜆𝑘) + ∆𝐶𝐻𝑏(∆𝑡)𝜀𝐻𝑏(𝜆𝑘)) ln (10), (1.5) 

where, ∆𝜇𝑎,𝑖(𝑡, 𝜆𝑘) is the time-varying change in absorption and once again ln (10) is 

used to convert the extinction coefficients to specific absorption coefficients. 
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1.3.3 Diffusion Approximation  

A limitation of the Beer-Lambert Law is the inability to quantify the optical properties 

since it only characterizes changes in light absorption. One approach for calculating the 

optical properties is to use the diffusion approximation (DA) of the Radiative Transfer 

Equation (RTE). This approximation is extremely useful since the RTE has no general 

analytical solutions. By assuming that light propagation is in the diffusive regime (i.e. 

random direction due to multiple scattering events) then the fluence rate in tissue, Φ (r,t), 

is given by the following equation (Kacprzak et al., 2007): 

1

𝜐

𝜕

𝜕𝑡
Φ(𝑟, 𝑡) − 𝐷∇2Φ(𝑟, 𝑡) + 𝜇𝑎Φ(𝑟, 𝑡) = 𝑆(𝑟, 𝑡), (1.6) 

where, r is the vector describing the position in tissue, ν is the speed of light in tissue, 

S(r,t) describes the light source, and D is the diffusion coefficient given by:  

𝐷 =
1

3(𝜇𝑠
′+𝜇𝑎)

 ,    (1.7) 

Analytical solutions for equation 1.6 exist for specific boundary conditions and 

geometries. The most commonly used solution in biomedical applications is for a semi-

infinite medium with the light source and detector location on the surface (Figure 1.2). 

For instance, this could represent diffusely reflected light collected on the surface of a 

head. For a point source that is defined by an extremely short pulse of light, the time-

dependent solution to the DA is given by: 

𝑅ℎ(𝑟, 𝑡) = (𝜇𝑠′)−1(4𝜋𝐷𝜐)−3/2𝑡−5/2exp (−
𝑟2

4𝐷𝜐𝑡
− 𝜇𝑎𝜐𝑡), (1.8) 

where, Rh (r,t) is the diffuse reflectance as a function time (t) and the distance between 

the source and detector (r).  

Figure 1.2 shows an infinitesimal short pulse injected into tissue and the resulting 

distribution of times-of-flight (DTOF) of reflected photons recorded on the surface of the 

turbid medium. The broad range of times-of-flight is a result of the dispersion of light 

caused by scattering in the medium. The optical properties of the medium can be 
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determined by fitting the measured DTOF with an analytical solution to the diffusion 

equation (in this case it would be the solution for a semi-infinite medium). 

 

Figure 1.2: Illustration of time-resolved approach where a pulse with intensity Io(t) 

is injected into tissue and the resulting DTOF with intensity I(t). 

1.4 Functional NIRS Instrumentation  

In its simplest form, NIRS systems consist of a light source and a detector placed on the 

surface of the head some distance apart. For studies on adult heads, the sources and 

detectors are arranged in reflectance mode and the distribution of photon pathlengths for 

a given source-detector pair is typically represented by a ‘banana shape’ (see Figure 1.3). 

The depth penetration of light is related to the source-detector distance. However, 

increasing the source-detector distance comes at a cost as the detected light intensity 

decays exponentially with distance (Strangman et al., 2013). For fNIRS studies, the 

typical source-detector distance is around 3 cm.  
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Figure 1.3: Schematic of light propagation in tissue. The yellow banana illustrates 

the photon profile between the source (red arrow) and detector (green arrow) 

placed 1 cm apart. The pink banana illustrates the photon profile between the 

source (red arrow) and detector (green arrow) placed 3 cm apart.  

The most widely used NIRS technique is referred to as continuous wave (CW) as it 

employs continuous light sources and detectors that only measure changes in light 

intensity. The light sources are typically light-emitting diodes (LED) or laser diodes 

(Ferrari and Quaresima, 2012). LEDs have the advantage of being compact, come in wide 

range of wavelengths and are inexpensive. However, LEDs suffer from broad divergence 

and large spectral bandwidth since they emit incoherent light. Both of these challenges 

can be overcome by using laser diodes. Lasers emit coherent light, making it easier to 

couple the light into optical fibers with minimum power loss. Although lasers have a 

higher power output, thus providing more light than LEDs, they are generally bulkier, 

more expensive, and are usually only available at certain wavelengths (Scholkmann et al., 

2014).  

The most common form of detector used in fNIRS are photodiodes (PD), which generate 

an electrical current proportion to the intensity of light absorbed through the photoelectric 

effect (Liu, 2005). PDs provide high dynamic range, are easy to use, and are not 

susceptible to magnetic fields or ambient light exposure. They are also compact and 

inexpensive. However, PDs have no internal amplification, hence requiring preamplifiers 

that need to be designed carefully. Avalanche photodiodes (APDs) are also used in fNIRS 

systems. These detectors share the same benefits of PDs including the small size and 

insensitivity to ambient light and magnetic fields. While they are faster than photodiodes, 

they have lower dynamic range and require stabilizing power supplies.  

The major advantages of CW-NIRS systems are high temporal resolution (up to 100 Hz) 

and the ability to use large numbers of source-detector pairs. The latter can be used to 

improve coverage across the head. Commercial systems can provide up to 64 sources and 

32 detectors, allowing for full head coverage. More recently, high-density diffuse optical 

systems have been developed with 96 sources and 92 detectors, resulting in 1,200 useable 

source-detector channels. Eggebrecht et al. showed that high-density CW-fNIRS could 

achieve comparable spatial resolution to fMRI during various cognitive tasks (Eggebrecht 
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et al., 2014). However, their approach does require sophisticated image reconstruction 

algorithms that incorporate structural magnetic resonance images. While promising, this 

research does not represent the current state of CW-fNIRS, as the majority of groups do 

not have access to such advanced systems or image reconstruction algorithms.  

There are a number of limitations with CW-NIRS. First, concentrations of oxy- and 

deoxyhemoglobin cannot be quantified because the pathlength of photons cannot be 

measured. In general, this is not a major issue in functional studies, since relative changes 

in regional oxy- and deoxyhemoglobin concentrations are sufficient to map brain 

activation. However, the inability to quantify limits the use of fNIRS in longitudinal 

studies as well as comparisons across participants. A more significant challenge is the 

lack of depth sensitivity as CW-NIRS is inherently sensitive to the superficial tissues 

(scalp and skull). Previous work has shown that the sensitivity to the brain ranges from 1 

to 9%, depending on the source-detector distance (Mansouri et al., 2010). Strangman and 

Zhang showed that even at source-detector distances as large as 6.5 cm, the sensitivity to 

the brain is only 22% (Strangman et al., 2013).  

The low sensitivity to the brain is problematic for functional studies since hemodynamic 

changes in the superficial layers, whether task-evoked or spontaneous, can mask brain 

activity or lead to false positives. One approach for reducing scalp effects is to 

incorporate short-channel measurements (Gagnon et al., 2012). Short channels are placed 

as close as possible to the emission fiber (typical a distance of 8 mm), limiting the depth 

penetration to the superficial layers. Changes in the scalp can be monitored and later 

regressed from the signals recorded at larger source-detector distances. Two schools of 

thought exist when it comes to recording short channel measurement. The first relies on 

the underlying assumption that physiological changes are homogenous across the scalp; 

therefore, multiple short channels distributed across the head can be used to estimate 

global physiological changes. On the other hand, Gagnon et al. showed that scalp changes 

are heterogeneous across the scalp and hence short channels should be located as close as 

possible to the site of activation. The authors also reported that the benefits of using a 

short channel decreased as the distance between the short and long channels increased 

(Gagnon et al., 2012). As a final point, the effectiveness of short-channel regression is 

reduced if signal artifacts related to changes in systemic physiology are correlated with 



16 

 

the functional task (e.g., task-related blood pressure changes that affect scalp blood flow). 

In general, the response characteristics of scalp hemodynamics are slower than their 

cerebral counterparts, which helps separate the two signals. Nevertheless, developing 

robust classification algorithms to effectively separate these signal remains a challenging 

task for fNIRS (Scholkmann et al., 2014). 

1.5 Time-Resolved NIRS 

An alternative approach to handling the challenges associated with scalp signal 

contamination is to improve the depth sensitivity of the NIRS measurements. This 

reduces the impact of scalp signal fluctuations, thereby improving both the sensitivity and 

quality of fNIRS in terms of detecting activation-related cerebral hemodynamic changes. 

One approach for improving depth sensitivity is by time-resolved (TR) detection. 

Although TR-NIRS was initially proposed as a method for measuring the optical 

properties of tissue, it can also enhance depth sensitivity. The basic principle of TR-NIRS 

involves injecting extremely short pulses of light – no more than a few hundred 

picoseconds in width – into tissue and recording the arrival times of each detected 

photon. Since the arrival time of a photon reflects the distance it has travelled, late-

arriving photons have a higher probability of reaching the brain compared to early-

arriving photons that primarily interrogate superficial tissue.  

TR-NIRS involves recording the arrival times of millions of photons in order to build up 

a DTOF. An example of a DTOF obtained on the surface of the head for a source-

detector distance of 3 cm is shown in Figure 1.4. The right skewness of the DTOF is 

typical for scattering media such as tissue, and it reflects the basic principle that there are 

far more early photons detected than late photons. The most direct approach of exploiting 

the temporal information of a DTOF to enhance depth sensitivity is by time binning 

(Contini et al., 2006). Time-binning involves measuring signal changes in a selected 

range of arrival times, such as during the tail of the DTOF to focus on late-arriving 

photons. The width can range from picoseconds to nanoseconds depending on the SNR of 

the recorded DTOFs.  
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Figure 1.4: An example of a DTOF of photons. This DTOF was obtained on the 

surface of the head for a source-detector distance of 3 cm and a pulse repetition rate 

of 80 MHz. The DTOF is plotted on a log scale.  

Although conceptually straightforward, a practical limitation of time-binning is the 

temporal dispersion of recorded DTOFs due to the instrumentation itself. That is, the 

finite width of the light pulses, the effects of fiber optics used to couple reflected light to 

a detector, and the response time of detectors will all smear the true, or theoretical, 

DTOF. Consequently, arrival-time information from early and late photons will be 

mixed, reducing the expected depth benefit of a selected late bin (Diop and St Lawrence, 

2013). Removing the effects of the instrumentation requires deconvolving the instrument 

response function from the measured DTOF to obtain the true DTOF from tissue (Diop 

and St Lawrence, 2013).  

An alternative approach for extracting depth information from a DTOF is by calculating 

its statistical moments (Liebert et al., 2004). Due to the right skewness of the DTOF, 

higher moments are weighted towards the tail of the distribution and thus have higher 

sensitivity to late-arriving photons (Liebert et al., 2004). The equation used to calculate 

the kth statistical moment is:  

𝑚𝑘 =  ∫ 𝑡𝑘∞

−∞
𝐷𝑇𝑂𝐹(𝑡)𝑑𝑡,   (1.9) 

Generally, changes in the first three statistical moments are used since higher moments 

(skewness, kurtosis etc.) tend to have lower SNR. The zero-moment is referred to as the 

number of photons (N) and is analogous to CW intensity measurements. The first 

moment is the mean time-of-flight of photons <t>, which is the mean time taken by 
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photons to travel between a source and a detector and can be used to calculate the mean 

pathlength of photons. Lastly, the variance is related to the first and second moment and 

is calculated as V = m2 - (m1)
2 (Kacprzak et al., 2007). 

Similar to the modified Beer-Lambert law, the change in a statistical moment can be 

directly related to the change in μa (Δμa) by using the appropriate sensitivity factor (Milej 

et al., 2016; Gerega et al., 2018). These factors describe the sensitivity of each moment to 

a change in absorption at a specific depth in tissue (see Figure 1.5) and are calculated 

using either the DA or Monte Carlo simulations to model light propagation through the 

head. 

 

Figure 1.5: Illustration of a layered model of the head with j representing the 

different layers and d the thickness of each layer. The pink banana illustrates the 

photon profile between the source (red arrow) and detector (green arrow) placed at 

a source-detector distance of ‘r’. 

Sensitivity factors are generated by altering μa in a specific layer (typically by 1% from 

the initial μa value) and calculating the corresponding change in the moments (Liebert et 

al., 2004; Milej et al., 2014a, 2015): 

𝑀𝑃𝑃𝑗 =
∆𝑁

∆𝜇𝑎,𝑗
 , 𝑀𝑇𝑆𝐹𝑗 =

∆<𝑡>

∆𝜇𝑎,𝑗
, 𝑉𝑆𝐹𝑗 =

∆𝑉

∆𝜇𝑎,𝑗
   (1.10) 

where, Δμa,j is the change in the absorption coefficient in layer j, MPPj is the mean partial 

pathlength, MTSFj is the sensitivity factor for <t>, and VSFj is the variance sensitivity 

factor. ∆N is the change in the number of photons, ∆<t> is the change in mean-time-of-

flight and ∆V is the change in variance. The sensitivity of each moment to the brain is 

then calculated as the sum of the sensitivity factors for layers below a certain depth.  
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A drawback with TR-NIRS is that the systems are complex compared to CW system 

(Torricelli et al., 2014). Time-resolved measurements require pulsed lasers operating at 

extremely high repetition rates (e.g. 80 MHz) and require specialized laser drivers. In 

addition, single-photon counting, which is necessary to generate a DTOF, requires fast, 

very sensitive photodetectors such as photomultiplier tubes (PMTs) coupled to photon 

counting board. These components not only increase the cost of TR systems, but also the 

overall size of the instruments, making the units less portable than CW systems. Due to 

their complexity, TR-NIRS systems typically have limited number of sources and 

detectors, and in fact there are no commercially available TR-fNIRS units. However, a 

number of research labs have developed their own systems for investigating the potential 

advantage of enhanced depth sensitivity for fNIRS applications. These have included 

studies of motor execution (Kacprzak et al., 2007; Re et al., 2013; Milej et al., 2014b; 

Lachert et al., 2017) and working memory (Kirilina et al., 2012). Motor execution, such 

as finger tapping, has been the most investigated functional task with TR-fNIRS studies 

since it produces robust brain activity in a well-defined cortical region. The study by 

Kirilina et al. elegantly demonstrated the potential benefit of TR detection by monitoring 

oxygenation changes from probes placed on the forehead during a working memory task. 

They showed that the extracerebral contribution to the ∆N signal, which is analogous to 

CW-NIRS, was twice as large as for the ∆V signal. As a consequence, the oxygenation 

signal derived from ∆N was heavily contaminated by hemodynamic oscillations in the 

scalp, while the corresponding ∆V signal exhibited the expected task-related change 

(Kirilina et al., 2012).  

1.6 Functional NIRS Data Analysis 

Functional NIRS data analysis requires preprocessing the raw time courses to eliminate 

artifacts that can potentially mask brain activity. Various MATLAB based packages are 

available for preprocessing fNIRS time courses and statistical analysis, including, but not 

limited to, HOMER2, SPM-fNIRS, NIRS toolbox for MATLAB and nirsLAB. This 

section will discuss some of the common preprocessing steps applied to fNIRS time 

courses, starting with motion correction and frequency filtering.  
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1.6.1 Motion Correction 

Probe motion in fNIRS can lead to significant artifacts, which present as large and rapid 

transient signal changes. These artifacts are generally easy to detect and eliminate from 

the signal, unlike other sources of motion artifacts such as movement of the eyebrows 

and jaw, which may be correlated with task-evoked cerebral responses (Brigadoi et al., 

2014). An example of this is during a task paradigm that requires participants to say 

words aloud, which causes movement of the sources and detectors on the head and leads 

to artifacts highly correlated with the task frequency (Brigadoi et al., 2014).  

The most common and straightforward approach to eliminate motion artifacts is to 

exclude trials with excess artifacts. This is more suitable for event-related studies as the 

number of trials is generally large. However, for block-design paradigms and studies with 

fewer trials, this approach may not be useful. Another approach that is commonly used is 

spline interpolation, which first requires identifying the motion artifacts before 

eliminating them. Once the artifacts are detected, they are modeled via a cubic spline 

interpolation that is subtracted from the original signal to eliminate the artifacts (Brigadoi 

et al., 2014).  

More recently, more sophisticated approaches such as wavelet filtering (Molavi and 

Dumont, 2012; Duan et al., 2018), Principle Component Analysis (PCA) (Hu et al., 2011; 

Santosa et al., 2013) and Kalman filtering (Izzetoglu et al., 2010) have been proposed to 

reduce motion artifacts. Wavelet filtering involves decomposing the signal using wavelet 

transform, filtering the signal by setting a threshold in the wavelet space and finally 

reconstructing the original signal (now filtered) by inverse wavelet transform. PCA 

attempts to maximize the variance between the subcomponents of the signal and can be 

used to remove motion artifacts since these changes are considered a covariant in the 

overall fNIRS signals acquired across different channels. An important consideration 

when applying PCA is that the overall performance depends on the number of channels, 

and hence PCA is not typically used to remove noise when the number of channels is 

small (Naseer and Hong, 2015). Finally, Discrete Kalman filtering is a recursive method 

used to estimate an unknown variable given the measurements (and uncertainty in the 

measurements) observed over time. To reduce motion artifacts, Kalman filtering acts on 
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noisy data to estimate the underlying hemodynamic signal (Brigadoi et al., 2014). 

Previous work comparing different motion reduction algorithms has shown that wavelet 

filtering is the most effective approach to remove hemodynamic-correlated artifacts 

(Brigadoi et al., 2014). 

1.6.2 Frequency Filtering  

The next step after motion reduction is to perform frequency filtering. Spontaneous 

physiological confounds such as heart rate (~0.1 Hz), breathing (~0.2 Hz), Mayer waves 

(~0.1 Hz) and very slow frequency oscillations (<0.04 Hz) are often present in fNIRS 

signals (Yücel et al., 2016; Pinti et al., 2019). In addition, changes in these physiological 

parameters can be elicited in the intra and extracerebral layers during the execution of 

complex or stressful tasks, which can either mask brain activity or lead to false positives 

if their frequencies overlap with the task period (Caldwell et al., 2016; Tachtsidis and 

Scholkmann, 2016; Yücel et al., 2016). Hence, most fNIRS studies apply frequency 

filtering to reduce the effect of these physiological signals on the data. Filtering can be 

applied to the raw changes in intensity prior to converting the signals to hemoglobin 

changes or directly on the hemoglobin time courses. Generally, zero-phase filters are 

preferred since they do not induce time shifts in the data. The cut-off frequencies of the 

filters will vary depending on the experimental protocol. For example, if the task 

frequency is 0.3 Hz, a filter with cut-off frequencies that prevents filtering of the task 

frequency is critical. In this case, it would be difficult to filter out the participant’s 

breathing. Hence, care should be taken while designing the study protocol and preferably 

avoiding task frequencies that overlap with the physiological signals (Tachtsidis and 

Scholkmann, 2016).  

Low, high and band-pass filters have all been previously used in the literature. A recent 

review by Pinti et al. showed that band-pass and low-pass filters are used more often in 

comparison to high-pass filters. However, there was no consensus as to what type of filter 

is best (i.e. moving average, butterworth, wavelet etc.) or what cut-off frequencies should 

be used (Pinti et al., 2019). Filtering also includes detrending the signal. Detrending 

refers to removing very slow frequencies that lead to slow drifts in the signal. These 

oscillations could be physiological in nature or due to electrical noise in the system. A 
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major advantage of the filtering approaches is their ability to be implemented in real-

time, making them ideal for BCI applications (Kober et al., 2014). Other algorithms that 

have been used to remove physiological noise include PCA and ICA.  

1.6.3 General Linear Modeling  

After preprocessing the raw time courses, the next step is to determine if the changes in 

oxy- and deoxyhemoglobin during task periods are statistically significant. The most 

common approach to analyze these hemoglobin time-series is by General Linear 

Modelling (GLM) (Monti, 2011). GLM analysis involves modeling oxy- and 

deoxyhemoglobin time-courses from each channel as a weighted sum of one (or more) 

known predictors plus a residual error term. In its simplest formulation, the GLM can be 

expressed using equation 1.11. The overall aim of the GLM analysis is to estimate the 

extent to which each predictor contributes to the variability in the signal. The signal from 

each channel is analyzed by fitting the experimental design that is modeled as a 

convolution of the hemodynamic response function with the experimental block design 

(Pernet, 2014). The fitting step involves finding the scaling factors for model regressor 

that will minimize the least square difference between the experimental data and the 

model. In addition to the task design, other commonly included regressors account for 

motion artifacts and physiological signals by including time-courses from short channels:  

𝑌 = 𝑋𝛽 + 𝜀 ,     (1.11) 

The above equation is the compact formulation of GLM, where y is a vector consisting of 

n rows (corresponding to the signal from n channels) and one column. X is matrix 

consisting of n rows and k columns, each representing a different predictor. ε represents 

the residual error values (not explained by the predictors) for each observation and is a 

vector of n rows and one column. The amplitude parameters, or scaling factors β, and 

their variances are calculated as follows: 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌,     (1.12) 

𝑣𝑎𝑟(𝛽) = 𝜎2(𝑋𝑇𝑋)−1,   (1.13) 
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where, σ2 is the mean-squared error of the residual after fitting the model. The 

significance of the β is tested using a one-sample t-test and the t values are given by 

equation 1.14 below (Huppert, 2016):  

𝑡 =
𝑐𝛽

√𝑣𝑎𝑟(𝛽)𝑐𝑇𝑐
 ,   (1.14) 

where, c is the contrast vector determining the respective array elements of β. In order to 

convert the t-static to a p-value, the degrees of freedom must be known. This is not 

simply the number of acquisitions because neighbouring time points are temporally 

correlated due to the relatively slow hemodynamic response to neuronal activation. The 

corrected degrees of freedom can be estimated by modelling the hemodynamic response 

function (Friston et al., 1995; Uga et al., 2014). GLM analysis can be conducted on a 

single-channel basis or after averaging the hemoglobin signals across multiple channels. 

The latter is useful to improve the SNR and reduce the chance of false positives. 

However, it is important to average across channels that interrogate the same brain region 

instead of an entire grid of optodes in order to not remove the desired signal of interest.  

1.6.4 Machine Learning  

An emerging approach for analyzing fNIRS data that is particularly relevant for BCI 

applications is feature extraction and machine learning. This multi-step approach requires 

extracting features to characterize the oxy- and deoxyhemoglobin time series. Common 

features include the signal slope at the onset of the task period, mean or median change in 

the signal during the entire task period or during a specific period post task onset, and 

higher order features such as skewness or kurtosis. Some features, such as calculating the 

relative signal change, are considered fast features since they do not require a large 

number of data points for calculation. These features are ideal for pseudo real-time 

applications, such as displaying results for mental communication. On the other hand, 

features such as the correlation coefficient between the hemoglobin time-course and the 

theoretical activation model require a large number of data points to calculate and are 

thus rendered slow features. While slow features are not suitable for real-time mental 

communication, they generally lead to higher accuracies, making them a good choice for 
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applications where accuracy is more critical than speed (for example assessing residual 

brain function in DOC patients).  

A challenge with feature extraction is the lack of consensus as to how to determine the 

relevant features. For instance, calculating the rate-of-change of oxy- or 

deoxyhemoglobin (i.e. the signal slope) requires defining a specific time duration. Given 

the ambiguity in choosing this duration, various groups have reported using time bins 

consisting of only the first few seconds to half the task period. The same ambiguity holds 

true for other features, such as the mean task-related signal change. Previous work has 

shown that classification accuracy can vary by over 20% depending on the chosen time 

window used to calculate the feature (Hong et al., 2015). 

The most commonly used classifiers for fNIRS BCI studies are linear-discriminant 

analysis (LDA) and support vector machines (SVM) (Naseer and Hong, 2015). LDA, in 

particular, is simple to implement and does not require large computational power, 

making it suitable for online BCI applications. Nearly half of all fNIRS-BCI studies 

within the last 20-year have implemented LDA for data classification (Naseer and Hong, 

2015). The main reason for its popularity is the good compromise between execution 

speed and classification accuracy. The goal of LDA is to maximize the distance between 

the classes of features and minimizing the interclass variance. This is done by 

implementing a discriminant hyperplane (s) to differentiate the features into two or more 

classes. Similarly, SVM attempts to classify data into different groups by finding a 

hyperplane that distinctly classifies the points. The goal with SVM is to maximize the 

distance between the hyperplane and the nearest training points often referred to as 

support vectors.  

Other classifiers that have been used in fNIRS-BCI studies include the Hidden Markov 

model (HMM) and the Random Forest. The former is a non-linear classifier that outputs 

the probability of observing certain features and can be used for the classification of time 

series (Naseer and Hong, 2015). The Random Forest classifier is considered an ensemble 

algorithm as it combines multiple algorithms for classifying objects. This classifier is 

particularly useful as it overcomes the tendency of overfitting the training data set. In 
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simple terms, random forest involves building various decision trees during the training 

process and produces an output that is the mean prediction of individual trees.  

The classifiers discussed thus far are all examples of supervised machine learning, which 

requires the user to extract features to train and test the classifier. In the training step, the 

features are labeled into different classes (for example, for rudimentary mental 

communication the two classes are “yes” or “no”). Another class of machine learning is 

called unsupervised machine learning, in which the user does not have to supervise the 

model. Instead, the model is free to discover information and make decisions based on 

unlabeled training data sets. The main advantage of this approach is the ability to feed 

unlabeled data and allowing the model to identify features that may have been 

overlooked by the user. However, a major drawback is the lack of control over the 

features extracted, which leads to the possibility of the model selecting meaningless 

features. Work by Erdoĝan et al. showed that artificial neural networks (ANN) provided 

higher accuracy than SVM in classifying hemodynamic responses during rest, MI and 

motor execution (Erdoĝan et al., 2019) 

1.7 fNIRS-based BCIs for Mental Communication  

The rapid advancement of fNIRS instrumentation, particularly with regards to 

commercially available, multi-channel systems, has dramatically increased its use in a 

variety of neuroscience and clinical fields (Rupawala et al., 2018). State-of-the-art 

applications include hyperscanning methods to study brain activity during social 

interactions, wearable systems for studies in naturalistic settings, and high-density 

devices for cortical mapping at spatial resolutions that rival fMRI (Yücel et al., 2017; 

Quaresima and Ferrari, 2019). BCI applications for mental communication are also 

becoming increasingly popular, with the intent of enabling patients with brain injuries to 

communicate by regulating their brain activity.  

The most common BCI approach for mental communication is to use a mental imagery 

task for affirmation. In this case, the presence of task-related brain activity would indicate 

a positive response while the absence of the aforementioned brain activity would indicate 

a negative response. This is the easiest approach to implement since it requires 

monitoring brain activity from a single brain area. A challenge however, is the increased 
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chance of detecting false positives, particularly if the hemodynamic fluctuations from 

superficial layers are in-phase with the response period. To overcome this issue, two 

active tasks could be used for mental communication; one for affirmation and another for 

a negative response (Hong et al., 2015). This approach to spatially decoding brain activity 

reduces the chance of false positives since it relies on detecting significant signal change 

for both “yes” and “no” responses. The benefit of both approaches is speed; however, 

spatially decoding brain activity requires additional channels to map activity from 

different regions, and participants must be able to recall multiple mental tasks for 

different responses. Alternatively, temporal decoding can be used with a single task by 

having the subject perform the task in a specific time window corresponding to the 

correct answer (Nagels-Coune et al., 2017). While this approach allows users to only 

perform a single mental task to respond to multiple-choice questions, it is considerably 

slower than spatially decoding brain activity. Some of the common tasks used for “yes” 

and “no” include MI and mental arithmetic (MA). The rest of this section will focus on 

these cognitive tasks starting with MI.  

Motor imagery (MI): MI or covertly imagining coordinated movement is one of the 

most commonly used tasks in BCI studies involving fNIRS. MI consists of two 

components: kinesthetic and visual. The former refers to the feeling of muscle movement, 

while the latter refers to the visualization of movement (Chholak et al., 2019). Kinesthetic 

MI activates areas of the motor cortex, primarily the supplementary motor area (SMA) 

and the premotor cortex (PMC), which are brain regions associated with motor planning 

(Fernández-Espejo et al., 2014). Visual MI activates areas of the parietal cortex, which is 

involved in spatial navigation and orientation.  

MI, unlike motor execution, does not require intact thalamocortical tracts (Fernández-

Espejo et al., 2015), making it a great choice for patients with severe physical 

impairment. However, it is important to note that the magnitude of signal change 

associated with MI is generally lower than that caused by motor execution (Batula et al., 

2017), and is dependent on the complexity of the MI task (Holper and Wolf, 2011). 

Furthermore, MI is not detectable in 10 to 15% of participants (Fernández-Espejo et al., 

2014). This has been attributed to sensitivity issues with current imaging modalities and 

the inability of some participants to perform a MI task reliably.  
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A large variety of tasks have been used in fNIRS studies, all designed to elicit MI 

activation: drawing different shapes such as circles or squares (Nagels-Coune et al., 

2017), hand or arm movements (Mihara et al., 2013; Kaiser et al., 2014), squeezing a ball 

(Coyle et al., 2004), and coordinated finger tapping (Sitaram et al., 2007; Holper and 

Wolf, 2011). To be considered effective for BCI applications, a task should achieve a 

minimum classification accuracy of 70% (Proulx et al., 2018); however, large 

discrepancies in classification accuracy have been reported between different MI tasks. 

The initial study using fNIRS as a BCI reported an accuracy of 75% (Coyle et al., 2004), 

and in a follow-up study involving just three participants, they reported an accuracy of 

80% (Coyle et al., 2007). Another early study reported an accuracy as high as 89% using 

more sophisticated classifiers, but again the sample size was small with only five 

participants (Sitaram et al., 2007). More recent studies have reported individual 

classification accuracies ranging from 63% to 98%, with the highest accuracy achieved 

using ANN (Erdoĝan et al., 2019). The discrepancy between studies is likely due to 

multiple factors. First, the sample size has varied drastically, with some studies testing 

the same participants on multiple sessions and reporting the overall mean accuracy. 

Secondly, differences in the chosen MI task could have an effect since complex tasks are 

likely more difficult for participants to perform. Another key issue is the location of the 

probes on the head. The majority of studies placed a grid of optodes over the entire motor 

cortex, instead of just focusing on the secondary motor areas. This could lead to partial 

volume errors, which would lower overall sensitivity. Finally, all MI studies conducted to 

date have used CW-fNIRS. The lack of depth sensitivity could have also been a 

contributing factor to the overall low accuracy, since some of the primary brain areas 

activated during MI (e.g. SMA) are situated deeper in the cerebral cortex (Owen et al., 

2006).  

A further challenge with MI-based fNIRS studies has been the observation of inverse 

oxygenation; that is, the reversal of the oxy- and deoxyhemoglobin signals during the 

task period (Holper et al., 2011). This phenomenon adds to the complexity of building a 

generic BCI since most are designed to detect the expected BOLD responses that are 

characterized by an increase in oxyhemoglobin and a concurrent decrease in 

deoxyhemoglobin. Inverse oxygenation has been attributed to task complexity or a 
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possible reduction in oxygen consumption, leading to focal deactivation (Holper et al., 

2011).  

Determining which MI task produces the best results is not trivial due to differences in 

study paradigms, data collection and analysis. In addition, fMRI studies comparing 

different MI paradigms have shown that a MI task that has good inter-subject reliability 

in healthy participants may not necessarily perform as well with patients who have some 

form of brain injury (Bodien et al., 2017). With regards to DOC, Kempny and colleagues 

have been the only group to conduct an fNIRS study investigating MI activation in DOC 

patients (Kempny et al., 2016). No reliable activation pattern was found across fourteen 

patients with five showing the expected fNIRS response (i.e., an increase in oxy- and a 

concurrent decrease in deoxyhemoglobin), six showing inverse oxygenation, and the 

remaining three could not be classified into either response group. No significant 

differences between VS and MCS patients were found based on the fNIRS results. 

Mental arithmetic (MA): MA is another task that has been investigated for BCI 

applications involving fNIRS. It activates areas of the prefrontal cortex (Artemenko et al., 

2018), which are brain regions preferred in many fNIRS studies due to the practical 

advantage of avoiding issues regarding hair. Qureshi and colleagues reported that the 

signal quality obtained with MA is generally better than for MI (Qureshi et al., 2017). 

MA has been successfully applied as a paradigm for BCI studies involving healthy 

participants and patients with brain injuries. In general, MA tasks involve covert mental 

calculation without the use of external aids such as a pen or paper (Naseer and Hong, 

2015). Some of the most commonly used tasks involve multiplication of numbers, or 

sequential subtraction/addition. MA has also been previously used as “no” response for 

mental communication (Naito et al., 2007).  

The only study to date that used MA to assess residual awareness in a DOC patient was 

conducted by Kurz and colleagues (Kurz et al., 2018). In this study, brain activity was 

detected in a patient over multiple trails; however, this was not reproducible across 

sessions. Furthermore, comparing the brain activity observed in the patient to that of 

healthy controls yielded inconsistent correlation, suggesting that the results obtained may 

have been a result of random chance. Overall, while the authors observed task 
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synchronous patterns in the patient, they could not conclude if this activation was task 

driven and hence could not infer awareness.  

Passive BCI tasks: Besides MI and MA, other passive tasks such as thinking “yes” or 

“no” to respond to questions has been used to communicate with functionally locked-in 

patients suffering from Amyotrophic Lateral Sclerosis (ALS). Gallegos-Ayala et al. 

reported that a completely locked-in patient was able to answer factual and open-ended 

questions using this passive technique (Gallegos-Ayala et al., 2014). Their approach 

relied on acquiring numerous training data sets in order to train a classifier to discern the 

patient’s responses. Using only the deoxyhemoglobin signal for classification, they 

obtained a sensitivity and specificity of 80.9% and 72.9%, respectively. This study 

represents the first account of using fNIRS to communicate with a completely locked-in 

patient. A follow-up study by the Chaudhary et al. reported that fNIRS could be used to 

communicate with four locked-in patients (Chaudhary et al., 2017). Although promising, 

concerns regarding the validity of the results led to the retraction of this publication 

(Expression of Concern: Brain–Computer Interface–Based Communication in the 

Completely Locked-In State, 2019; Spüler, 2019). In particular, it was not possible to 

reproduce the results due to questions regarding data analysis and the unavailability of all 

the data sets. This raises the question of whether fNIRS data analysis should be 

standardized across studies.  

More importantly, the controversies surrounding the Chaudhary study stresses the need 

for careful assessment of BCI applications involving such vulnerable patient populations. 

For assessing residual awareness in DOC patients, the enhanced depth sensitivity of TR-

fNIRS should improve the detection of command-driven brain activation, leading to more 

reliable results. This would also help reduce the influence of hemodynamic fluctuations 

in the scalp, which would lower the incidence of false positives. Finally, despite the 

limited number of optodes with current TR-NIRS systems, the technology is well suited 

to BCI applications involving MI considering the cortical regions that are activated are 

well known (namely, the motor planning regions). The work in this thesis is focused on 

this novel application of TR-fNIRS. 



30 

 

1.8 Research Objectives 

The goals of this doctoral research were to develop a portable TR-fNIRS system that 

could be used to assess awareness in DOC patients, identify patients with residual brain 

function who may be misdiagnosed as being in a VS, and provide rudimentary mental 

communication. The following objectives were addressed: 

1. Assess the feasibility of TR-fNIRS to detect brain activity caused by MI and 

validate the results against fMRI.  

2. Assess the sensitivity and specificity of TR-fNIRS as a BCI for binary mental 

communication with healthy participants. 

3. Demonstrate the BCI capabilities of TR-NIRS on a functionally locked-in patient.  

4. Develop a portable TR-fNIRS system that can be transported to patients’ homes 

and long-term care facilities.  

5. Investigate if TR-fNIRS can detect brain activity in patients diagnosed with a 

disorder of consciousness due to a brain injury. 

Each chapter in this dissertation attempts to answer one or more of the above objectives, 

with the ultimate goal of advancing the field of fNIRS-based BCIs involving patients 

who are unable to physically or verbally communicate.  

1.9 Thesis outline  

The rest of this thesis includes six chapters, five of which were adapted from previously 

published/or submitted work. Chapter 6 presents the first account of using TR-fNIRS to 

assess residual brain function in DOC patients, while chapter 7 is the final concluding 

chapter.  

1.9.1 Detecting Brain Activity During Motor Imagery in Healthy 
Participants Using TR-fNIRS and Validating the Results 
using fMRI (Chapter 2)  

TR-fNIRS was used to detect command-driven brain activity during MI in a group of 

healthy participants. fMRI was also acquired sequentially to validate the NIRS results. 

This chapter is based on a publication titled “Can time-resolved NIRS provide the 

sensitivity to detect brain activity during motor imagery consistently?” published in the 
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Journal of Biomedical Optics Express in 2017 by Androu Abdalmalak, Daniel Milej, 

Mamadou Diop, Mahsa Shokouhi, Lorina Naci, Adrian M. Owen, and Keith St. 

Lawrence. 

1.9.2 Assessing the Prevalence and a Potential Cause of Inverse 
Oxygenation Reported in fNIRS Studies of Motor Imagery 
(Chapter 3) 

The data acquired and presented in Chapter 2 was re-analyzed using a different approach 

to determine the presence, if any, of inverse oxygenation previously reported in fNIRS 

studies of MI. This chapter was adapted from the publication titled “Using fMRI to 

investigate the potential cause of inverse oxygenation reported in fNIRS studies of motor 

imagery” published in the Journal of Neuroscience Letters in 2020, by Androu 

Abdalmalak, Daniel Milej, David J. Cohen, Udunna Anazodo, Tracy Ssali, Mamadou 

Diop, Adrian M. Owen, and Keith St. Lawrence.   

1.9.3 Using TR-fNIRS as a BCI for Rudimentary Mental 
Communication with a Locked-in Patient on Life Support 
(Chapter 4) 

 TR-fNIRS was used for bedside communication with a functionally locked-in patient 

under intensive care. This chapter is based on the publication titled “Single-session 

communication with a locked-in patient by functional near-infrared spectroscopy”, 

published in the Journal of Neurophotonics in 2017, by Androu Abdalmalak, Daniel 

Milej, Loretta Norton, Derek B. Debicki, Teneille Gofton, Mamadou Diop, Adrian M. 

Owen and Keith St. Lawrence. 

1.9.4 Using TR-fNIRS as a BCI for Rudimentary Mental 
Communication with Healthy Controls (Chapter 5) 

This chapter builds up on the work presented in chapter 4 by investigating different 

machine learning approaches that could be used to improve accuracy for mental 

communication. This work was conducted on a cohort of healthy participants. This 

chapter is based on the publication titled “Assessing time-resolved fNIRS for brain-

computer interface applications of mental communication”, published in the Journal of 
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Frontiers in Neuroscience in 2020, by Androu Abdalmalak, Daniel Milej, Lawrence 

C.M. Yip, Ali R. Khan, Mamadou Diop, Adrian M Owen and Keith St Lawrence. 

1.9.5 Using TR-fNIRS to Assess Brain Function in DOC Patients 
(Chapter 6) 

This chapter presents the first account of using TR-fNIRS to assess command driven 

brain activity in DOC patients. For some patients, fMRI data was also available to 

validate the NIRS results. This chapter is based on a paper submitted to IEEE SMC 2020 

titled “Shining Light on the Human Brain: An Optical BCI for Communicating with 

Patients with Brain Injuries” in 2020, by Androu Abdalmalak, Geoffrey Laforge, 

Lawrence C.M. Yip, Daniel Milej, Laura Gonzalez-Lara, Udunna Anazodo, Adrian M. 

Owen and Keith St. Lawrence and is currently under review.  

1.9.6 Conclusion and Future Directions (Chapter 7)  

In this chapter, the overall objectives of this thesis are revisited and the main findings are 

summarized. Finally, promising future directions for TR-fNIRS are discussed and the 

overall conclusion of this work is presented.  
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Chapter 2  

2 Can Time-Resolved NIRS Provide the Sensitivity to 
Detect Brain Activity During Motor Imagery 
Consistently? 

This chapter was adapted from the publication titled “Can time-resolved NIRS provide 

the sensitivity to detect brain activity during motor imagery consistently?” published in 

the Journal of Biomedical Optics Express in 2017 by Androu Abdalmalak, Daniel Milej, 

Mamadou Diop, Mahsa Shokouhi, Lorina Naci, Adrian M. Owen, and 

Keith St. Lawrence, vol. 8, issue 4, pp. 2162-2172.  

2.1 Abstract  

Previous functional magnetic resonance imaging (fMRI) studies have shown that a 

subgroup of patients diagnosed as being in a vegetative state are aware and able to 

communicate by performing a motor imagery task in response to commands. Due to the 

fMRI’s cost and accessibility, there is a need for exploring different imaging modalities 

that can be used at the bedside. A promising technique is functional near infrared 

spectroscopy (fNIRS) that has been successfully applied to measure brain oxygenation in 

humans. Due to the limited depth sensitivity of continuous-wave NIRS, time-resolved 

(TR) detection has been proposed as a way of enhancing the sensitivity to the brain, since 

late arriving photons have a higher probability of reaching the brain. The goal of this 

study was to assess the feasibility and sensitivity of TR-fNIRS in detecting brain activity 

during motor imagery. Fifteen healthy subjects were recruited in this study, and the 

fNIRS results were validated using fMRI. The change in the statistical moments of the 

distribution of times of flight (number of photons, mean time of flight and variance) were 

calculated for each channel to determine the presence of brain activity. The results 

indicate up to an 86% agreement between fMRI and TR-fNIRS and the sensitivity 

ranging from 64 to 93% with the highest value determined for the mean time of flight. 

These promising results highlight the potential of TR-fNIRS as a portable brain computer 

interface for patients with disorder of consciousness. 
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2.2 Introduction  

Consciousness can be empirically defined as the state of being awake and aware of 

oneself and one’s surroundings. (Fernández-Espejo and Owen, 2013). While determining 

wakefulness is a relatively simple task, assessing awareness is not trivial. In clinical 

scenarios, the presence of awareness is measured by the ability to follow commands, 

either behaviourally or verbally (Fernández-Espejo et al., 2014). Because of this reliance 

on observable responses, a subset of patients who retain some cognitive function but are 

unable to follow commands are frequently diagnosed incorrectly as suffering from 

unresponsive wakefulness syndrome (UWS) or what is commonly referred to as a 

vegetative state (VS) (Laureys et al., 2004; Fernández-Espejo and Owen, 2013). 

An objective approach to assessing cognitive function without relying on behavioral 

assessment is by functional neuroimaging. In 2006, functional magnetic resonance 

imaging (fMRI) was used to demonstrate that a patient who fulfilled all the clinical 

diagnostic criteria of UWS exhibited command-driven brain activity, indicating that she 

was in fact aware (Owen et al., 2006). Using a motor imagery (MI) task (i.e. imagine 

playing tennis) and by activating the brain regions associated with motion planning (i.e. 

supplementary motor area (SMA) and premotor cortex (PMC)), the patient was able to 

follow commands and produce brain activity that was indistinguishable from that of 

healthy volunteers (Owen et al., 2006). This finding has revolutionized studies involving 

patients with disorders of consciousness (DOC), with various follow up studies 

demonstrating the ability to communicate with UWS patients using fMRI (Monti et al., 

2010). 

While fMRI provides global coverage of brain activity, its accessibility, cost and 

exclusion criteria make it impractical for long-term use with DOC patients. Clearly, there 

is a need for portable and low-cost alternatives that could be used at the bedside of 

patients. A promising technology is functional near-infrared spectroscopy (NIRS), which 

can detect changes in regional brain activity due to its sensitivity to the concurrent 

changes in oxy- and deoxyhemoglobin concentrations (Ferrari and Quaresima, 2012; 

Scholkmann et al., 2014). Coyle and colleagues were the first to demonstrate the utility of 

fNIRS as a brain computer interface (BCI) by asking participants to imagine squeezing 
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and releasing a soft ball (Coyle et al., 2004). Further studies have been conducted using 

other MI tasks such as imagining simple or complex sequence of finger tapping (Holper 

and Wolf, 2011) and imagining wrist flexion (Naseer and Hong, 2013, 2015). This 

approach has been used as a tool to communicate with totally locked-in amyotrophic 

lateral sclerosis patients (Naito et al., 2007; Gallegos-Ayala et al., 2014), although it was 

only successful in 40% of cases. Only one study to date has investigated the application 

of fNIRS to DOC (Kempny et al., 2016). A significant difference between hemispheric 

oxyhemoglobin responses during MI of squeezing a ball was found in a group of patients 

diagnosed with either UWS or minimally conscious state. However, the effect was only 

significant at the group-wise level and an inverted oxyhemoglobin response was reported 

for several participants (both controls and patients). Although promising, the 

inconsistencies in these patient studies highlight the need to explore alternative fNIRS 

methods and MI tasks that together can provide a reliable BCI that works on individual 

participants and thus allow for this technology to be successfully translated to DOC 

patients.  

A major challenge with fNIRS is its limited depth sensitivity (Milej et al., 2015), which 

can reduce its ability to detect brain activity and makes it prone to signal contamination 

from extracerebral tissue. Variations in scalp blood flow and oxygenation due to systemic 

factors, such as fluctuations in arterial blood pressure, can mask brain activity by 

increasing signal variability and lead to false activation if systemic effects are 

synchronized with the task paradigm (Kirilina et al., 2012; Tachtsidis and Scholkmann, 

2016; Yücel et al., 2016). In terms of detecting MI activation, these confounders present 

an even a greater challenge considering the reported higher inter-subject variability and 

smaller signal change compared to motor execution tasks (Sitaram et al., 2007; Holper et 

al., 2011, 2012). One approach for enhancing depth sensitivity is time-resolved (TR) 

detection (Alfano et al., 1998; Liebert et al., 2003b; Diop and St Lawrence, 2012; Diop 

and St Lawrence, 2013), which records the arrival times of individual photons to build a 

distribution of times of flight (DTOF) (Milej et al., 2016a, 2016b). Depth sensitivity is 

based on the principle that photons that only interrogate superficial tissue will have 

shorter time of flight compared to late-arriving photons that have a higher probability of 

reaching the brain. Depth information can be extracted from a DTOF using time bins 
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centred on late arrival times or by calculating the statistical moments (area under the 

curve, mean time of flight, and variance) (Liebert et al., 2004; Re et al., 2013; Milej et al., 

2014). The area under the curve reflects total light intensity, analogous to conventional 

continuous-wave NIRS, whereas the higher moments have greater sensitivity to late-

arriving photons because of the positive skewness of DTOFs. 

The aim of this study was to investigate the feasibility of using a simple four-channel TR-

NIRS system to detect brain activity associated with the same tennis-playing MI task 

used previously to detect activation in DOC patients (Owen et al., 2006). Despite the 

limited number of detection channels, it was hypothesized that the enhanced depth 

sensitivity of TR-NIRS would provide robust detection of MI activation by strategic 

placement of the probes over motor planning regions, given these regions show the most 

consistent activation (de Vries and Mulder, 2007; Fernández-Espejo et al., 2014). This 

hypothesis was tested on healthy participants by also acquiring fMRI data, which was 

used as a benchmark for calculating the sensitivity and precision of the fNIRS method. 

2.3 Methods 

2.3.1 Experimental Protocol  

Fifteen healthy subjects (5 females, aged 22 to 34 years with mean age = 26, all right-

handed) with no history of any neurological or psychiatric disorders were recruited for 

the study. All subjects provided written consent and were compensated for their 

participation in the study. The study was approved by the Research Ethics Board at the 

University of Western Ontario. 

The experimental design consisted of participants performing the MI task in two separate 

blocks: one in the MRI scanner and the other in a research lab that housed the TR-fNIRS 

system. The order of data acquisition by the two modalities was randomized to avoid 

possible training effects, with 8 subjects performing the task first in the MRI scanner. The 

delay between the two acquisitions was between 15 minutes and an hour. The MI 

protocol consisted of 30 s alternating blocks of rest and tennis imagery, for a total 

acquisition time of 330 s (Fernández-Espejo et al., 2014; Abdalmalak et al., 2016). 

During the task, participants were asked to remain as still as possible and to imagine 
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hitting a tennis ball repeatedly as if they were playing a vigorous game of tennis. The cue 

words used to indicate the start of imagery and rest periods were “tennis” and “rest”, 

respectively. 

2.3.2 Data Acquisition and Analysis 

fMRI 

Imaging data were acquired on a 3 Tesla (T) Biograph mMR scanner (Siemens 

Healthcare, Erlangen, Germany) using a 32-channel receive-only head coil. High-

resolution T1-weighted magnetization prepared rapid gradient echo (MPRAGE) images 

(TR = 2000 ms, TE = 2.98 ms, FA = 9°, voxel size = 1x1x1 mm) were acquired for 

anatomical registration of the fMRI images. The functional data were acquired with an 

echo-planar imaging (EPI) sequence (TR = 3000 ms, TE = 30 ms, FA = 90°, slice 

thickness = 3 mm, voxel size = 3x3x3 mm). A noise attenuating MRI-compatible headset 

was used to present the verbal cues to the participants regarding the start of the 

alternative rest and task periods. 

The functional images were pre-processed and analyzed using SPM8 (Wellcome Trust 

Center for Neuroimaging, University College London, UK). The scans were realigned to 

correct for motion artifacts, spatially normalized to the EPI template in SPM8, and 

smoothed with an 8-mm full width half maximum (FWHM) Gaussian kernel. Image data 

were filtered using a high-pass filter with a cut-off period of 128 s to remove slow signal 

drifts in the time-series. Single subject analysis based on the general linear model (GLM) 

was performed using the canonical hemodynamic response function. The condition of 

each scan was defined as belonging to either MI or rest condition. 

Statistically significant brain activity was determined by whole-brain analysis with the 

statistical threshold set to a false discovery rate (FDR) corrected p = 0.05. For subjects 

who presented with no activation at the whole-brain level, small volume correction 

(SVC) was performed using two 20-mm spheres placed over regions in the SMA and 

PMC, with the statistical threshold set to Family Wise Error (FWE) corrected p = 0.05. 

The location of each sphere was set based on the group average of the subjects that 

showed activity at the whole-brain level (n = 11). This small volume approach was 
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considered reasonable for avoiding the removal of data sets that did not reach statistical 

significant at the more conservative whole-brain level given the a prior knowledge of the 

brain regions activated during MI (Boly et al., 2007; Gibson et al., 2014). 

Group level analysis was also performed for all participants that showed activity at the 

whole-brain level. SVC was used with the statistical threshold set to FWE p < 0.05 on 

10-mm spherical ROIs centered on coordinates previously documented for the SMA, pre-

SMA, dorsal PMC and the inferior parietal lobule (Boly et al., 2007). 

fNIRS 

The TR-fNIRS system was designed and built in-house, and it has been described in 

detail elsewhere (Diop et al., 2010b, 2010a; Abdalmalak et al., 2016). These experiments 

used two picosecond pulsed lasers emitting at 760 and 830 nm at a pulse repetition rate of 

80 MHz (PicoQuant, Berlin, Germany). The output powers from the laser heads were 

attenuated using neutral density filters (NDC-50-4M, Thorlabs, Newton, NJ, United 

States) in order to adjust the power delivered to the participant’s head. An objective lens 

(NA = 0.25, magnification 10X, Olympus, Japan) was used to couple the light pulses 

from the laser head into a 1.5 m long multimode bifurcated fiber (ϕ = 0.4 mm, NA = 0.22, 

Fiberoptics Technology, Pomfret, Connecticut, United States). One emission fiber and 

four detection fiber bundles (ϕ = 3.6 mm, NA = 0.55, Fiberoptics Technology, Pomfret, 

Connecticut, United States) were secured on the head using an fNIRS cap built in-house 

(Abdalmalak et al., 2016). The emission fiber was placed over the FCz location, 

according to the international 10-20 system. Each detector was placed 3 cm from the 

emitter in a cross formation (see Figure 2.1). This orientation was chosen to record light 

that interrogated the SMA and PMC in each hemisphere. The placement of the detection 

channels was consistent across subjects with channel 1 placed posterior to the emission 

fiber, channel 2 on the left hemisphere, channel 3 anterior to the emission fiber, and 

channel 4 on the right hemisphere. The diffusively reflected light from the surface of the 

head was delivered to hybrid photomultiplier tubes (PMA Hybrid 50, PicoQuant, Berlin, 

Germany) via fiber bundles. A HydraHarp 400 (PicoQuant, Berlin, Germany) time-

correlated single-photon counting unit was used to record the arrival times of the photons 

and DTOFs were built using LabView software. 
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Figure 2.1: Optode holder used to collect light from bilateral SMA and PMC and a 

picture of a participant showing the cap and probe locations for the MI experiment. 

DTOFs were continuously acquired with a sampling interval of 300 ms throughout the 

330 s min of the activation paradigm. For moment analysis, the lower and upper 

integration limits were set to 10% and 1% of the arrival time corresponding to the peak of 

the DTOF, respectively (Liebert et al., 2003a). The first three moments – number of 

photons N, mean time of flight <t>, and variance V – were calculated as outlined in 

reference (Liebert et al., 2004). The corresponding time series for each moment was 

processed using functions adapted from the SPM-fNIRS toolbox. First, each time course 

was corrected for motion artifacts using the MARA approach (Scholkmann et al., 2010) 

and filtered using a fourth order Butterworth band-stop filter with stop-band frequencies 

between 0.08 and 1.5 Hz. The time courses were detrended to remove any slow signal 

drifts and smoothed using a hemodynamic response function with a FWHM of 4 s. Only 

the time courses for absorption changes at 830 nm were analyzed as this wavelength is 

more sensitive to the larger oxyhemoglobin changes (Liao et al., 2010). Statistically 

significant signal changes were determined by fitting the general linear model to a time 

series (p < 0.05). This was performed for each of the three moments for every detection 

channels. FDR correction was applied to account for multiple comparisons (12 per 

subject: 4 channels, 3 moments each). 

Sensitivity and precision were calculated by comparing the occurrence of activation 

detected by moment analysis and by fMRI. With this approach, the fMRI results were 

accepted as the ground truth. That is, a subject that showed activation by both fMRI and 

fNIRS was regarded as a true positive (TP) and a subject that showed no activation by 

both modalities as a true negative (TN). A false positive (FP) was defined as a subject 
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that showed activation by fNIRS only, while a false negative (FN) was a subject that 

showed fMRI activation only. 

The contrast-to-noise ratio (CNR) was calculated for each time series that showed 

significant activation. It was defined as the difference between the median task and rest 

signals divided by the median absolute deviation of the rest signal. The results were 

averaged across subjects and channels to obtain overall CNR estimates for N, <t> and V. 

Finally, the absorption coefficient values at 760 and 830 nm were calculated using the 

mean time of flight sensitivity factor and the <t> signals (Liebert et al., 2004). These 

values were then used to derive the median changes in the concentrations of oxy- and 

deoxyhemoglobin during MI. 

2.4 Results 

Functional NIRS and fMRI data from one participant for whom robust activation was 

detected by both techniques is presented in Figure 2.2. Displayed are the N, <t> and V 

time-series from channel 3 (anterior to the emission probe) and the corresponding GLM 

fit. A significant decrease in N, <t> and V was found during MI periods, reflecting the 

increased oxyhemoglobin concentration caused by functional hyperemia. In this example, 

all three moments showed significant task-related signal changes. The corresponding 

fMRI results exhibited robust activity in the PMC, SMA and regions of the parietal 

cortex at the whole-brain level. The fMRI time course for one voxel shows the expected 

increase in the BOLD signal during the task periods. 
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Figure 2.2: Functional activation data from one subject. (Left) The time courses of 

all three moments – N (red), <t> (green) and V (blue) – are shown for the same 

channel. The black line in each graph is the best fit of the GLM model. The grey 

boxes indicate the periods of MI. (Right) The fMRI activation results were overlaid 

on the single subject rendered image in SPM with the BOLD time course from one 

voxel [-20, 0, 68] shown. 

Figure 2.3 presents the fMRI and fNIRS results from all 15 subjects. The majority of the 

activation maps generated by fMRI were determined at the whole-brain level (FDR, 

p < 0.05); however, small volume correction was used for subjects 1, 12 and 13 (FWE, 

p < 0.05). Significant brain activity was detected in 13 of 15 subjects by both modalities, 

with activation consistently observed by fMRI in the SMA and/or the PMC. For fNIRS, 

channels 2 and 4, which were located on the left and right hemispheres respectively, 

provided the most consistent activation across subjects. In subject 3, activation was only 

detected in the variance time series of one channel, while subject 10 showed no fNIRS 

activation despite showing significant activation by fMRI. 
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Figure 2.3: fMRI and fNIRS results for all 15 subjects plotted on a single subject 

rendered image with the dorsal view shown. The red, green and blue circles indicate 

significant fNIRS activation detected by N, <t> and V, respectively. afMRI results 

presented are after applying SVC. For display purposes, the results are thresholded 

at an uncorrected p < 0.001. bfNIRS results for subject 2 were only from 3 channels 

due to a technical issue with the 4th channel during the experiment. 

The TR-fNIRS sensitivity and precision calculations for each of the individual moments 

(N, <t> and V) are presented in Table 2.1. The <t> and V had higher numbers of true 

positives compared to N, which is reflected in the higher sensitivity values. On the other 

hand, the precision estimates for all moments was high as only one FP was detected by V. 

The mean CNR for each moment was as follows: N = 5.9 ± 5.6, <t> = 5.2 ± 4.0 and 

V = 4.0 ± 2.9. 
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Table 2.1: Sensitivity and precision measurements for N, <t> and V. TP = true 

positive, FP = false positive, FN = false negative and TN = true negative. 

 

N 

(TP=9, FN=5, 

TN=1, FP=0) 

<t> 

(TP=13, FN=1, 

TN=1, FP=0) 

V 

(TP=12, FN=2, 

TN=0, FP=1) 

Sensitivity1 64% 93% 86% 

Precision2 100% 100% 92% 

1Sensitivity = TP / (TP+FN); 2Precision = TP / (TP+FP)  

The time courses of oxy- and deoxyhemoglobin showed the expected changes with 

increased oxyhemoglobin and decreased deoxyhemoglobin during MI activation (Figure 

2.4). 

 

Figure 2.4: Median change in concentration (ΔC) of oxyhemoglobin (red) and 

deoxyhemoglobin (blue) across participants that showed activity and averaged 

across the task cycles. The error bars represent the standard error of the median 

across subjects. 

The group-wise fMRI analysis for all subjects who showed activation at the whole-brain 

level revealed significant activity in regions of the SMA, dorsal PMC, pre-SMA and 

inferior parietal lobule. The coordinates of the peak voxels in each cluster within the 

predefined ROIs are given in Table 2.2. For illustration purposes, whole-brain activation 

is presented in Figure 2.5 with the statistical threshold set to an uncorrected p < 0.001.  
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Figure 2.5: Group-wise fMRI results from 11 participants that showed activity at 

the whole-brain level. The results are plotted on a canonical single subject T1 image. 

For display purposes, the results are thresholded at an uncorrected p < 0.001 at the 

whole-brain level. 

Table 2.2: Brain regions that showed significant activity at the group-wise level 

(FWE corrected p < 0.05) during MI using SVC. 

MNI coordinates 

Brain area x y z Z score  p value  

Pre-SMA 10 2 62 3.45 0.007 

Dorsal PMC 
-30 

46 

-8 

2 

52 

54 

3.50 

3.45 

0.017 

0.026 

SMA -6 -4 64 3.69 0.002 

Inferior parietal lobule -46 -34 28 3.45 0.026 

2.5 Discussion 

The aim of this study was to assess the ability of fNIRS to detect MI activation 

consistently across a group of healthy participants in order to assess its validity for 

translation to DOC patients. The rationale for conducting a control study was based on 

previous studies showing that the signal change associated with MI is less than that for 

corresponding motor execution tasks (Holper et al., 2011, 2012) and there can be 

considerable inter-subject variability, in part because of inverse oxyhemoglobin 

responses measured with some participants (Holper et al., 2011; Kempny et al., 2016). A 

further consideration is that MI blood oxygenation level dependent (BOLD) activation is 

not always detectable in all subjects; a recent fMRI study by our group found no 
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activation in 20% of healthy participants (Fernández-Espejo et al., 2014). Although the 

lack of MI activity in some subjects has been based on physiological (e.g. magnitude of 

the alpha rhythms), or psychological (e.g. kinesthetic MI scores) factors (Ahn and Jun, 

2015), there remains no definitive reason as to why this occurs. Therefore, for the current 

study independent confirmation of MI activation was achieved by having subjects 

perform the same tennis-imagery task during an fMRI session. 

Significant activation in the SMA and/or the PMC – areas known to be involved with the 

kinesthetic component MI (Guillot et al., 2009) – was detected by fMRI in all but one of 

the 15 subjects, albeit it was necessary to use small-volume correction in three cases. 

Detecting activation in each subject by fNIRS was based on finding a statistically 

significant signal decrease for at least one of the four optodes since they were all 

positioned over motor planning regions. Based on this criterion, the fNIRS and fMRI 

results were in good agreement, with discordance in only two cases. The overall 

agreement demonstrates the ability of fNIRS to detect MI activation on a single subject 

basis despite using a NIRS system with a limited number of optodes and the inherent 

uncertainties in probe placement based solely on the 10-20 system. This confirms our 

hypothesis that strategic placement of the probes would be sufficient for detecting tennis 

imagery activation considering previous studies have shown that the most robust 

activation is found in motor planning areas (Boly et al., 2007). The choice of these areas, 

as opposed to focusing on the primary motor cortex (M1) (Coyle et al., 2007; Holper and 

Wolf, 2010; Naseer and Hong, 2013), was also confirmed by the fMRI results that 

showed no significant M1 activation at the group level. Individually, M1/parietal lobe 

activation was found in six participants, but the M1 component was inconsistent across 

participants and considerably smaller than activation in the secondary motor regions. This 

variability agrees with previous studies that also reported variable M1 activation with MI 

tasks (de Vries and Mulder, 2007, Hanakawa et al., 2003; de Lange et al., 2005). The 

parietal lobe activity did reach statistical significance at the group-wise level and is likely 

associated with the visual component of MI (Guillot et al., 2009). 

A potential concern with using only a few optodes is adequate removal of signal changes 

in the scalp, which is frequently performed by adding closely spaced optodes that are 

sensitive to superficial tissue (Gagnon et al., 2012). In this study, TR detection was used 
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as an alternative means of reducing scalp contamination and enhancing the sensitivity to 

brain activity. This emerging technology has been used in a number of fNIRS studies 

involving motor and cognitive tasks (Torricelli et al., 2014), however, to the best of our 

knowledge, this is the first study involving MI. The improvement in detecting MI activity 

achieved by using TR-NIRS was assessed by calculating the sensitivity and precision of 

each of the first three statistical moments (N, <t> and V) using the fMRI results for 

comparison. It was expected that the higher moments (<t> and V) would perform better 

given their greater depth sensitivity (Liebert et al., 2004), which has been shown to 

reduce the effects of task-related changes in scalp blood flow (Kirilina et al., 2012). This 

was confirmed by the results given in Table 2.1 showing lower numbers of false 

negatives for <t> and V compared to that for N, which translated into better sensitivity 

values for the higher moments. The trade-off with weighting the signal to late-arriving 

photons is a reduction in the overall SNR, as indicated by the inverse relationship 

between the activation-related CNR and moment order. This likely explains why 

consistent agreement between significant signal changes obtained by the <t> and V 

analyses for a specific optode was only found in 50% of participants. In most of the other 

cases, such as subjects 4 and 9, MI was detected by both <t> and V, but the specific 

optodes were not always the same. The higher sensitivity and precision estimates for <t> 

compared to V suggests that the former represents a good compromise between detection 

ability and CNR. 

Another consideration with fNIRS is the presence of Mayer waves, which are 

spontaneous blood pressure oscillations around 0.1 Hz that can negatively impact the 

ability to detect activation-related oxygenation changes (Yücel et al., 2016). To 

investigate this potential effect in the current study, Mayer wave amplitude analysis was 

conducted on the pre-task data for each channel and moment (i.e. each statistical 

moment’s time course before preprocessing). The amplitude of the Mayer wave was 

calculated from the power spectrum for frequencies between 0.06 and 0.14 Hz, as 

proposed by Yücel et al. (Yücel et al., 2016). The data were grouped into activated and 

inactivated channels for each moment since Mayer wave amplitude has been shown to 

vary across channels (Yücel et al., 2016). While the mean amplitude for the inactivated 
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channels was higher than for the activated channels, this difference did not reach 

statistical significance. 

Two previous fNIRS studies reported a high incidence of inverted NIRS signals during 

MI (between 40 to 60%), which was attributed to an inverse oxygenation response 

(Holper et al., 2011; Kempny et al., 2016). In contrast, the fNIRS results presented in 

Figure 2.3 were based on the assumption that the signal at 830 nm would decrease during 

activation due to an increase in the oxyhemoglobin concentration. This relationship was 

confirmed by converting the average <t> and V time courses across subjects into the 

corresponding changes in oxy- and deoxyhemoglobin, as shown in Figure 2.4. Similarly, 

the fMRI activation maps were generated assuming a signal increase with activation (i.e. 

a hyperemic response leading to greater blood oxygenation). The discrepancy between 

studies may be related to differences in MI tasks, location of the probes with regards to 

motor planning regions, and NIRS systems as Kempny et al. and Holper et al. both used 

multichannel continuous-wave devices (Holper et al., 2011; Kempny et al., 2016) without 

correcting for extracerebral blood flow changes. Although the results of the current study 

cannot explain this discrepancy, this is an important issue regarding the confidence in 

using fNIRS as a BCI and warrants further investigation. 

There are several limitations with this study. First, electromyography was not used to 

monitor for muscle movement. The minimal M1 activation detected by fMRI in a few 

subjects indicates that movement was minimal. However, including electromyography 

would be valuable in future studies involving only fNIRS. Second, fNIRS and fMRI were 

not acquired simultaneously because of technical challenges. The NIRS components are 

not MR compatible and would require long optical fibers (of the order of 6 to 8 m). The 

substantial increase in instrument dispersion would cause a temporal smearing of the 

measured DTOFs, hampering the ability to separate early and late arrival times (Diop and 

St Lawrence, 2013). The overall agreement between the fNIRS and fMRI results suggests 

that most subjects were able to perform the MI in both sessions. Moreover, we have 

previously reported consistent MI activation across imaging sessions (Fernández-Espejo 

et al., 2014). However, variability in task performance cannot be completely ruled out as 

an explanation for the between-modality disagreement for subject 3 (classified as a false 

positive by V analyses) and subject 10 (classified as a false negative by all three 
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moments). Given that MI activation is not observed in all people (Fernández-Espejo et 

al., 2014), subject 3’s fMRI results were not unexpected and the false positive 

categorization is likely correct considering the NIRS activation was based on a single 

moment from one optode. On the other hand, subject 10 showed robust fMRI activation 

that was not based on small-volume correction, but completely lacked any detectable 

fNIRS activation. Without simultaneous acquisition, this subject’s classification as a false 

negative must remain.  

A final consideration is that only using data from the 830-nm channel was used to detect 

MI-related activity. With continuous-wave fNIRS systems, both oxy and deoxy 

hemoglobin signals are frequently used in the statistical model as a means of controlling 

for potential scalp effects (Tachtsidis and Scholkmann, 2016). In the current study, 

moment analysis was used to enhance depth sensitivity, which is a simple approach for 

analyzing time-resolved data that could be easily used in BCI applications. To investigate 

the possibility of scalp contamination with this approach, GLM analysis was repeated 

using the oxy- and deoxyhemoglobin signals derived from the mean time of flight data 

for both channels. This analysis resulted in activation detected in the same subjects as 

determined from the 830 nm channel alone. 

 

2.6 Conclusion 

This study demonstrated the ability of TR-fNIRS to detect brain activity during MI in 

healthy subjects, suggesting this optical technology is well suited to act as a BCI for DOC 

patients. The greater sensitivity shown by the higher moment analysis underlines the 

advantages of TR detection. It should be noted that moment analysis is relatively simple 

and could be easily incorporated into real time BCI algorithms. Furthermore, the 

development of small lasers and detectors that can be placed directly in contact with the 

skin highlight the possibility of building compact, low-cost TR-fNIRS systems that could 

be readily distributed to DOC patients (Dalla Mora et al., 2015). 
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Chapter 3  

3 Using fMRI to Investigate the Potential Cause of 
Inverse Oxygenation Reported in fNIRS Studies of 
Motor Imagery 

This chapter has been adapted from the publication titled “Using fMRI to investigate the 

potential cause of inverse oxygenation reported in fNIRS studies of motor imagery” 

published in the Journal of Neuroscience Letters in 2020 by Androu Abdalmalak, Daniel 

Milej, David J. Cohen, Udunna Anazodo, Tracy Ssali, Mamadou Diop, Adrian M. Owen 

and Keith St. Lawrence, vol. 714, 134607 

3.1 Abstract 

Motor imagery (MI) is a commonly used cognitive task in brain-computer interface (BCI) 

applications because it produces reliable activity in motor-planning regions. However, a 

number of functional near-infrared spectroscopy (fNIRS) studies have reported the 

unexpected finding of inverse oxygenation: increased deoxyhemoglobin and decreased 

oxyhemoglobin during task periods. This finding questions the reliability of fNIRS for 

BCI applications given that MI activation should result in a focal increase in blood 

oxygenation. In an attempt to elucidate this phenomenon, fMRI and fNIRS data were 

acquired on 15 healthy participants performing a MI task. The fMRI data provided global 

coverage of brain activity, thus allowing visualization of all potential brain regions 

activated and deactivated during task periods. Indeed, fMRI results from seven subjects 

included activation in the primary motor cortex and/or the pre-supplementary motor area 

during the rest periods in addition to the expected activation in the supplementary motor 

and premotor areas. Of these seven subjects, two showed inverse oxygenation with 

fNIRS. The proximity of the regions showing inverse oxygenation to the motor planning 

regions suggests that inverse activation detected by fNIRS may likely be a consequence 

of partial volume errors due to the sensitivity of the optodes to both primary motor and 

motor planning regions. 
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3.2 Introduction  

Brain-computer interfaces (BCIs) are devices that can be used to bridge the gap between 

thoughts and actions, allowing patients with physical impairment to control external 

devices or communicate with the outside world (Naseer and Hong, 2015). BCI 

applications often use motor imagery (MI), which relies on participants actively 

imagining movement and simultaneously recording brain activity from the motor-

planning regions of the brain (i.e. the supplementary motor area (SMA) and premotor 

cortex (PMC)) (Owen et al., 2006; Naci et al., 2012). There has been a growing interest 

in using functional near-infrared spectroscopy (fNIRS) for BCI applications since the 

technology is portable, safe, and can detect cortical brain activity associated with MI 

(Coyle et al., 2007; Sitaram et al., 2007; Batula et al., 2017; Rupawala et al., 2018). 

Analogous to functional magnetic resonance imaging (fMRI) based on blood oxygen 

level dependent (BOLD) contrast, fNIRS maps regional brain activity by detecting 

activation-induced changes in oxyhemoglobin and deoxyhemoglobin concentrations 

(Strangman et al., 2002; Moreau et al., 2016; Modi et al., 2018). The resulting 

hemodynamic response (i.e., increased oxyhemoglobin and decreased deoxyhemoglobin) 

is a result of regional increases in blood flow and blood volume that exceed the 

corresponding increase in regional metabolic demand (Glover, 2011). These changes in 

the concentration of oxyhemoglobin and deoxyhemoglobin can be determined by 

measuring absorption changes at two or more wavelengths of light (Boas et al., 2014). A 

number of studies involving both healthy and patient populations have reported the 

feasibility of fNIRS for BCI applications (Gallegos-Ayala et al., 2014; Naseer and Hong, 

2015; Abdalmalak et al., 2017b). 

Although promising, questions regarding inter-subject variability need to be addressed if 

fNIRS is to become a reliable BCI. One concern is the phenomenon of ‘inverse 

oxygenation’ observed during MI tasks in a number of previous studies (Holper et al., 

2011; Kempny et al., 2016). Inverse oxygenation is the reverse of the expected 

hemoglobin signal changes during a task; namely, the concentration of oxyhemoglobin 

decreases while the concentration of deoxyhemoglobin increases. Holper and colleagues 

reported this phenomenon in up to 50% of participants, which presents a potential 

challenge in designing a generic BCI based on the conventional hemodynamic response 
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during a task. This unexplained finding has been attributed to the complexity of MI task; 

i.e. inverse oxygenation was observed more frequently during simple versus complex MI 

tasks (Holper et al., 2011). Kempny et al. also reported similar changes in the signal 

during motor imagery in some patients with disorders of consciousness (Kempny et al., 

2016). A second concern is the lack of consensus regarding the best location for optodes 

to detect MI activity, with numerous studies placing a grid of optodes over the entire 

motor cortex (Kempny et al., 2016; Noori et al., 2017) despite fMRI studies showing that 

the secondary motor regions are the most consistently activated (Owen et al., 2006; Boly 

et al., 2007; Fernández-Espejo et al., 2014). 

To this end, the goals of this study were to investigate the prevalence of inverse 

oxygenation during MI and to provide a plausible explanation by comparing fNIRS 

results to whole-brain fMRI results. It was our hypothesis that inverse oxygenation could 

be caused by inadvertent movement during rest periods, leading to activation in the 

primary motor cortex. Considering this region is adjacent to the motor planning regions, 

this out-of-phase activation could be misinterpreted as inverse oxygenation due to the 

poor spatial resolution of fNIRS. That is, probes that are sensitive to activation in both 

areas are prone to partial volume errors, leading to suboptimal recording of MI activity. 

To test this hypothesis, fNIRS and fMRI were acquired on a cohort of fifteen healthy 

participants performing a well-established MI task (Monti et al., 2010; Fernández-Espejo 

et al., 2014). Having access to fMRI data allowed for the visualization of potential 

changes in brain activity during both task and rest periods. To further test our hypothesis, 

Monte Carlo simulations were conducted on a layered head model with the primary and 

secondary motor areas defined in order to assess the relative probe sensitivity to each 

region at various probe locations. This allowed us to investigate if incorrect probe 

placement could lead to significant signal contributions (i.e. contamination) from the 

primary motor cortex. 

The data presented in this study were acquired as part of a previous study conducted to 

assess the sensitivity and feasibility of fNIRS to detect brain activity during MI 

(Abdalmalak et al., 2017a). The purpose of the previous study was to investigate the 

potential advantage of time-resolved (TR) detection for enhancing the sensitivity of 

fNIRS to MI-related brain activation. Using fMRI as the standard, it was shown that TR-



72 

 

fNIRS increased detection sensitivity from 64% to 93%. At the time of that publication, 

the occurrence of inverse oxygenation had not been investigated since the fMRI data 

were only analyzed to look for the contrast of task greater than rest. Possible activation in 

brain regions during the rest periods (i.e., contrast of rest > task) was not investigated.  

3.3 Materials and Methods  

Fifteen healthy subjects were recruited (5 females and 10 males, 22 to 34 years, mean age 

= 26), with each subject undergoing sequential fMRI and fNIRS scans involving a MI 

session of imagining playing tennis. The protocol consisted of a 30 s baseline period 

followed by 5 cycles of 30-s alternating blocks of rest and MI, for a total experimental 

time of 5:30 minutes (Fernández-Espejo et al., 2014). The participants were instructed to 

imagine playing a vigorous game of tennis every time they heard the word “tennis” and 

to relax when they heard the word “rest”. They were also instructed to keep their eyes 

closed and stay as still as possible throughout the entire study. This study was approved 

by the Research Ethics Board at Western University. 

3.3.1 Data acquisition 

The fMRI scans were done on a 3 Tesla Biograph mMR scanner (Siemens Healthcare, 

Erlangen, Germany) at St. Joseph’s Health Care Centre, London, Ontario using a 32-

channel receive-only head coil. Magnetization prepared rapid gradient echo (MPRAGE) 

images (echo time = 2.98 ms, recovery time = 2000 ms, FA = 9°, voxel size = 

1×1×1 mm) were first acquired, followed by acquiring functional data using an echo-

planar imaging (EPI) sequence (echo time = 30 ms, recovery time = 3000 ms, FA = 90°, 

slice thickness = 3 mm, voxel size = 3×3×3 mm, total number of scans = 110). An MRI-

compatible headset was used to deliver the verbal cues to the participants. 

The fNIRS system was an in-house built time-resolved system with four detection 

channels that operated at 760 and 830 nm (Milej et al., 2016, 2017). To interrogate the 

SMA and PMC, the fNIRS emission and detection channels were centered over FCz 

according to the international system for EEG electrode placement. The fibers were 

secured to the head using a 3D printed holder and an EEG cap (EasyCap) (Abdalmalak et 
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al., 2016). Throughout each MI experiment, distributions of times-of-flight of photons 

(DTOFs) were continuously recorded every 300 ms with a temporal resolution of 16 ps. 

3.3.2  Data analysis 

Functional MRI data were analyzed using SPM8 (Wellcome Trust Center for 

Neuroimaging, University College London, UK). The functional images were realigned, 

spatially normalized to the EPI template, smoothed and filtered to correct for any baseline 

drifts. Single subject analysis was performed with the condition of each scan defined as 

belonging to rest or MI. Whole brain analysis was performed to determine statistically 

significant brain activity, with the statistical threshold set to a false discovery rate (FDR) 

corrected with p < 0.05. The contrasts of task > rest and rest > task were generated to 

investigate which brain regions were activated during MI and during rest periods, 

respectively. Finally, for participants who failed to show activity at the whole brain level 

for the contrast of task > rest, small volume correction was used with spheres set over the 

SMA and PMC (Boly et al., 2007). 

The fNIRS data were analyzed using code developed in MATLAB. To begin with, the 

integration limits were set to 10% and 1% of the arrival time corresponding to the peak of 

the DTOF (Liebert et al., 2003), and the first three statistical moments of each DTOF 

were calculated since higher moments provide greater sensitivity to late-arriving photons 

(Liebert et al., 2004). Subsequent analysis was conducted using the first moment (the 

mean time-of-flight, <t>) as it was previously shown to provide the best balance between 

depth enhancement and detecting MI-related brain activation (Abdalmalak et al., 2017a). 

The <t> time courses for each channel were independently pre-processed using functions 

adapted from the SPM-fNIRS toolbox. Briefly, all <t> time courses were corrected for 

motion artifacts using the movement artifact reduction algorithm (MARA) approach 

(Scholkmann et al., 2010). Next, the signals were filtered using a band stop filter with 

stopband frequencies between 0.08 and 1.5 Hz, detrended to remove any slow drifts in 

the signals, converted to hemoglobin signals using sensitivity factors (Milej et al., 2016) 

and analyzed using the General Linear Model (Abdalmalak et al., 2017a). Each time-

course was visually inspected after each pre-processing step to ensure the quality of the 

signals were adequate for further processing. Inverse oxygenation was defined as a 
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significant (p < 0.05) increase in deoxyhemoglobin and a concurrent significant (p < 

0.05) decrease in oxyhemoglobin during the task periods. 

3.3.3 Monte Carlo simulations 

Simulations were conducted in MATLAB using a mesh-based Monte Carlo method 

(Fang, 2010). A 5-layer segmented adult head model (Fonov et al., 2009) available from 

the NIRFAST website was used with optical properties previously reported by Jäger and 

colleagues (Jäger and Kienle, 2011). Two regions of interests were defined and 

segmented using 3D slicer: the secondary motor regions, consisting of the SMA and 

PMC, and the primary motor region (Figure 3.1). The initial positions of the emission and 

detection fibers were the same as those used in the MI activation studies (i.e., the 

emission fiber centered over FCz). Next, the fibers were moved posterior to FCz in 

0.5 cm increments until the emission fiber was 2 cm from the correct position. This was 

done to simulate incorrect positioning of the probes relative to secondary motor regions. 

For each position, 100 million photons were injected as a delta function using a single 

point source at the source location and diffusively reflected photons were recorded at 

each of the four detector locations with a detector diameter of 3 mm. Contamination from 

the primary motor cortex (i.e. sensitivity to the primary motor cortex) was calculated as 

the ratio of the sum of photon pathlengths that interrogated the primary motor cortex to 

the sum of pathlengths that interrogated secondary and primary motor areas. 

 

Figure 3.1: Segmented head model with the simulated positions of the optodes 

shown: red for the emission fiber (placed over FCz) and the blue for the four 

detection fibers, which were placed in a cross orientation (detector 1 (back), detector 
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2 (left), detector 3 (front), detector 4 (right)) at a source-detector distance of 3 cm. 

The SMA and PMC are also shown in yellow and the primary motor cortex in 

magenta. 

3.4 Results 

3.4.1 fNIRS and fMRI 

Expected activation in the SMA and/or PMC was detected in 13 of the 15 participants by 

both fMRI and fNIRS, as reported previously (Abdalmalak et al., 2017a). Whole-brain 

analysis of the fMRI data revealed that during the rest periods (i.e., rest > task), seven 

subjects (two females) had activity in the primary motor cortex, six subjects had activity 

in the visual cortex, and three showed activity in the pre-SMA (Figure 3.2). This figure 

also shows the fNIRS channels with significant increases and decreases in oxygenation 

(red and blue dots, respectively).  

 

Figure 3.2: (a) fMRI and fNIRS activity for 7 subjects overlaid on a single-subject 

T1 template. For the fMRI results, the brain regions activated during the task 

period (contrast: task > rest) are shown in red, while the regions activated during 

rest periods (contrast: rest > task) are shown in blue. aIndicates small-volume 
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correction for the contrast of task > rest. A template of the brain regions activated 

across these subjects is provided with the brain regions colour-coded as follows: red 

Pre-SMA, SMA and PMC; yellow primary motor cortex; green parietal cortex; and 

blue visual cortex. This template is provided to aid in understanding the fMRI 

results. For the fNIRS results, red dots indicate channels that showed significant 

typical or expected oxygenation changes while blue dots indicate channels that 

showed significant inverse oxygenation. fMRI time courses for subject 1 obtained 

from two different voxels are also shown with (b) showing the expected changes 

during the task and (c) showing inverse oxygenation. The grey boxes indicate the 

task periods. 

Of these seven subjects, only two (subjects 1 and 4) showed inverse oxygenation with 

fNIRS (one female and one male). The hemoglobin time courses for these two subjects 

averaged across all 5 trials are shown in Figure 3.3, along with the time courses from 

another two subjects who showed the expected oxygenation patterns. For subject 1 (first 

row), three channels showed inverse oxygenation (channels 1, 2 & 4), while for subject 4 

(second row), two channels showed inverse oxygenation (channels 1 & 3). Figure 3.4 

presents the average oxy- and deoxyhemoglobin time courses across all subjects who had 

the expected oxygenation response and for the two participants who had inverse 

oxygenation. Note, the inverse oxygenation time courses were generated from channels 

that had a significant decrease in oxygenation. 
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Figure 3.3: Changes in the concentration of oxy- (red) and deoxyhemoglobin (blue) 

for each channel averaged across 5 trials. The model fit for oxy- and 

deoxyhemoglobin are plotted using a solid and dashed line, respectively. Each row 

represents data from one subject. Red squares indicate channels that had a 

significant decrease in oxy- and a concurrent significant decrease in 

deoxyhemoglobin. Conversely, green circles indicate channels that showed a 

significant increase in oxy- and a concurrent significant decrease in 

deoxyhemoglobin. The error bars represent the standard error of mean across trials 

and the grey boxes indicate the task periods. 
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Figure 3.4: Changes in the concentrations of oxyhemoglobin (red) and 

deoxyhemoglobin (blue) averaged across all five cycles and all channels. The data 

were divided into the expected oxygenation response or the inverted oxygenation 

response found in two subjects. The error bars represent the standard error of 

mean across all participants in the two groups (n = 13 for the expected activation 

and n = 2 for inverse oxygenation). Grey boxes indicate the task periods. 

3.4.2 Monte Carlo Simulations 

The sensitivity of each detector to the primary motor cortex for each of the five locations, 

starting at FCz and moving posteriorly by 0.5 cm, is presented in Table 3.1. As expected, 

detector 1 placed at the back showed the highest sensitivity to the primary motor cortex 

for each position. 

Table 3.1: Monte Carlo predictions of the sensitivity of each channel to the primary 

motor cortex relative to the secondary motor areas. 

Position 
Sensitivity to the primary motor cortex (%) 

Detector 1 (back) Detector 2 (left) Detector 3 (front) Detector 4 (right) 

FCz 17.8 5.1 1.7 6.4 

FCz+0.5 cm 24.4 7.1 2.6 10.1 

FCz+1.0 cm 32.6 12.0 3.3 13.8 

FCz+1.5 cm 39.2 17.9 4.7 19.0 

FCz+2 cm 51.4 27.1 7.8 31.5 
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3.5 Discussion 

The goals of this study were to investigate the prevalence of inverse oxygenation during 

MI and to provide a plausible explanation for this phenomenon. By acquiring fMRI data 

for each participant, we were able to provide global coverage of brain activity to assess 

which regions were activated during task periods, as well as possible activation during 

rest periods. Considering the BOLD contrast is tightly coupled to synaptic activity, 

positive contrast reflects the expected increase in activity during task periods, while 

negative contrast reflects higher activity during rest periods (Shmuel et al., 2002). An 

example of the latter is the negative BOLD signal commonly observed in regions of the 

default mode network during cognitive tasks (Čeko et al., 2015). As previously reported, 

increased brain activity in the secondary motor regions during MI was observed in 13 of 

15 participants by both fMRI and fNIRS based on the analysis of <t> data (Abdalmalak 

et al., 2016, 2017a). Reanalyzing the fMRI data in terms of rest signal greater than task 

signal, and using FDR-corrected threshold, revealed activation in the primary motor 

cortex during the rest periods for seven participants. Similarly, inverse oxygenation was 

found by fNIRS in two of these subjects. To demonstrate that the fMRI deactivation 

findings were not dependent on the statistical tests used, the analysis was repeated using 

corrected threshold Gaussian random field. Significant activation remained for 6 of the 7 

subjects shown in Figure 3.2. Deactivation results for subject 7 failed this more 

conservation threshold, which is not unexpected considering activation based on FDR 

was considerably weaker compared to the other subjects.  

The relationship between regional brain activity and BOLD contrast provides a plausible 

explanation for the inverted fNIRS signals (i.e. increased deoxyhemoglobin 

concentration) observed in this study (Holper et al., 2011). The fMRI results showed the 

expected positive contrast in motor planning regions during the MI task, while negative 

contrast (i.e. higher during the rest periods) was found predominately in the primary 

motor cortex and the visual cortex in seven of fifteen subjects. These inverted signals 

were likely due to inadvertent motion and eye opening during the rest periods, possibly as 

a de-stressing mechanism after performing MI. Considering that the fNIRS signals should 

mirror the BOLD contrast, the fMRI results suggest that inverse oxygenation observed by 

fNIRS in two subjects was likely due to increased activity during the rest periods and was 
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not related to the MI task. This inadvertent activity during the rest periods is compounded 

by partial volume errors due to the poorer spatial resolution of fNIRS and uncertainties 

associated with probe placement on the scalp. That is, the relative contributions of MI-

related activation in the motor planning regions and the out-of-phase activation in the 

primary motor cortex activity will vary depending on the sensitivity of the probes to these 

adjacent brain regions and on the relative strength of the activation in these regions. 

Uncertainties with respect to probe placements have been reported in the literature and 

are attributed to human error and anatomical variability between subjects (Holper et al., 

2011) when relying on a 10-20 template to define probe locations. That being said, the 

fact that inverse oxygenation was only detected in two subjects by fNIRS suggests the 

probes were generally positioned properly, such that they had greater sensitivity to 

secondary motor regions than the primary motor cortex. 

The results from the Monte Carlo simulations confirm the hypothesis that incorrectly 

placing the probes can lead to partial volume errors. That is, there can be significant 

signal contributions from the primary motor cortex due to its close proximity to motor 

planning regions and the relatively large source-detector separation used in the current 

study (3 cm). As expected, the most posterior probe (detector 1) was the most sensitive to 

the primary motor cortex, with more than half the signal coming from this region if the 

probe position was 2 cm posterior to FCz. Previous work has shown that anatomical 

variations between subjects can lead to localization errors of up to 18 mm (Cooper et al., 

2012). In addition, relying on the 10-20 template has been shown to lead to errors of up 

to 13 mm from the true 10-20 landmark (Xiao et al., 2017). Furthermore, spatial 

variability of the 10-20 system with race has been reported by Noh et al., with key 

anatomical locations being significantly different between Asian and Caucasian 

decedents (Noh et al., 2017). However, this difference likely did not contribute to the 

inverse oxygenation reported in the current study as both subjects were Caucasian. 

Contamination will also depend on if there is inadvertent movement during rest periods 

and its relative signal strength compared to MI activity in the secondary motor regions. 

As a result, it should be emphasized that although more than 50% of the signal could 

originate from the primary motor at larger positional errors, the primary motor cortex 

must be activated during the rest periods in order to detect inverse oxygenation. 
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Consistent with the predictions of the Monte Carlo results, inverse oxygenation detected 

for two participants was found for detector 1, which was the probe location closest to the 

primary motor cortex. Inverse oxygenation was also found for subject 1 for the two 

lateral channels, and the simulations revealed that a substantial fraction of the signal for 

these channels could come from the primary motor cortex. Interestingly, channel 3, the 

most distal channel, also had significant inverse oxygenation for subject 4. The fMRI 

maps for this subject revealed activity during the rest periods in the pre-SMA a brain 

region involved in higher-level planning such as switching actions and selective 

inhibition table (Dehghani et al., 2009; Nguyen and Hong, 2016), suggesting conscious 

inhibition of the MI task during the rest periods. To further confirm the Monte Carlo 

predictions, activation data were acquired from three subjects for a sensory task (brushing 

the palm) that activates the somatosensory cortex, but not motor-planning regions (Jang 

et al., 2013). Activation was not detected when the probes were placed over FCz (data not 

shown). In contrast, when the probes were placed 2 cm posterior, as per the Monte Carlo 

simulations, activation was detected for all participants from channel 2, which 

interrogated the contralateral somatosensory cortex. 

Functional NIRS-BCI studies using various MI paradigms have focused on placing 

probes covering the entire motor cortex (Coyle et al., 2007; Noori et al., 2017). For 

instance, Kempny et al. placed their probes over C3 and C4 to get MI activity in disorders 

of consciousness patients, and they reported inverse oxygenation in around 40% of 

patients (Kempny et al., 2016). Similarly, Holper et al. reported inverse oxygenation in 

up to 50% of healthy participants performing a MI task (Holper et al., 2011). Although 

we cannot conclude that inverse activity reported in those studies was due to subject 

motion, the percentage of subjects with inverse oxygenation is similar to the percentage 

of participants in the current study who showed activation during rest periods in the 

primary motor cortex with fMRI. These results suggest that it is critical to focus on 

probes placed over the secondary motor regions to reduce signal contamination from the 

primary motor cortex. In the current study, the probes were centered over FCz to 

optimize the sensitivity to functional activation in the SMA and PMC. 

A limitation with this study is that both imaging sessions were not performed 

simultaneously and hence it is not possible to conclude that participants were moving to 
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the same extent during both sessions. Another potential limitation is the poor spatial 

resolution of the four-channel TR systems. While a higher density of optodes could 

enhance the spatial resolution and aid in resolving activation in adjacent brain regions 

(Dehghani et al., 2009; Nguyen and Hong, 2016), previous work has shown that the four-

channel approach is well suited for MI tasks given the highly localized activation (i.e. 

SMA and PMC) and the enhanced depth sensitivity provided by TR detection 

(Abdalmalak et al., 2017a). The fact that only two participants showed inverse 

oxygenation with TR-fNIRS supports the argument that the four-channel approach is well 

suited for detecting MI activation. Finally, the small sample size of subjects that showed 

inverse oxygenation with TR-fNIRS (i.e. 2 subjects) could be conceived as a potential 

limitation. However, it should be emphasized that the main conclusions of this study are 

drawn from the fMRI results, where seven participants showed activation in the primary 

motor cortex during the rest periods. As a result, the effective sample size is nearly 50% 

of all the subjects recruited (7/15 participants).  

In conclusion, this study demonstrated that a likely cause of inverse oxygenation detected 

by fNIRS during MI is due to inadvertent subject movement during rest periods. To avoid 

this confounding effect, it is important to place the probes over the motor planning 

regions instead of the primary motor cortex. 
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Chapter 4  

4 Single-Session Communication with a Locked-In 
Patient by Functional Near-Infrared Spectroscopy 

This chapter has been adapted from the publication titled “Single-session Communication 

with a Locked-In Patient by Functional Near-Infrared Spectroscopy” published in the 

Journal of Neurophotonics in 2017 by Androu Abdalmalak, Daniel Milej, Loretta Norton, 

Derek B. Debicki, Teneille Gofton, Mamadou Diop, Adrian M.  Owen, 

Keith St. Lawrence, vol. 4, issue 4: 040501 

4.1 Abstract 

There is a growing interest in the possibility of using functional neuroimaging techniques 

to aid in detecting covert awareness in patients who are thought to be suffering from a 

disorder of consciousness. Immerging optical techniques such as time - resolved 

functional near infrared spectroscopy (TR-fNIRS) are ideal for such applications due to 

their low cost, portability and enhanced sensitivity to brain activity. The aim of this case 

study was to investigate for the first time the ability of TR-fNIRS to detect command 

driven motor imagery (MI) activity in a functionally locked-in patient suffering from 

Guillain-Barré syndrome. In addition, the utility of using TR-fNIRS as a brain-computer 

interface (BCI) was also assessed by instructing the patient to perform a MI task as 

affirmation to three questions: 1) confirming his last name, 2) if he was in pain, and 3) if 

he felt safe. At the time of the study, the patient had regained limited eye movement, 

which provided an opportunity to accurately validate a BCI after the fNIRS study was 

completed. Comparing the two sets of responses showed that fNIRS provided the correct 

answers to all the questions. These promising results demonstrate for the first time the 

potential of using a MI paradigm in combination with fNIRS to communicate with 

functionally locked-in patients without the need for prior training. 

4.2 Introduction 

Disorders of consciousness (DOC) are conditions in which normal consciousness is 

impaired as a result of brain damage. These disorders are classified based on a patient’s 
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level of arousal and awareness, with vegetative state (VS) patients only exhibiting 

evidence of arousal and minimally conscious state (MCS) patients displaying inconsistent 

signs of awareness (Laureys et al., 2004). The difficulties of differentiating between these 

states using behavioral tests is reflected in the high rate of MCS patients being 

misdiagnosed as being vegetative (up to 40%) (Schnakers et al., 2009). One approach for 

improving differential diagnosis is to use functional neuroimaging to detect activation in 

specific brain regions in response to command-following tasks. This was first 

demonstrated using functional magnetic resonance imaging (fMRI) to detect motor 

imagery (MI) activity in a patient diagnosed as being vegetative (Owen et al., 2006).  

Given the limitations associated with fMRI in terms of cost and accessibility, there is an 

unmet need to develop techniques to detect command-driven brain activity at the bedside. 

Not only would this help differentiate between VS and MCS, such techniques could also 

provide a rudimentary means of communicating with DOC patients (Owen et al., 2006; 

Monti et al., 2010; Cruse et al., 2011). Functional near-infrared spectroscopy (fNIRS) is a 

promising alternative to fMRI given its portability and relatively low cost; however 

despite these advantages, only one fNIRS study to date attempted to use a MI paradigm 

to assess residual brain function in DOC patients and significant effects were only found 

at the group level (Kempny et al., 2016). Although promising, assessing consciousness in 

DOC patients requires a method that can reliability detect activation on a single-subject 

basis. 

One of the challenges with fNIRS is its inherent sensitivity to light absorption in 

superficial tissue, which can reduce the reliability of detecting brain activity. One 

approach for enhancing depth sensitivity is to use time-resolved (TR) NIRS (Liebert et 

al., 2004; Farina et al., 2015). Depth sensitivity is achieved by discriminating between 

early-arriving photons that only interrogate the extracerebral layers and late-arriving 

photons that have a higher probability of reaching the brain (Milej et al., 2015, 2016a). 

Previous work has shown that TR-NIRS provides a higher contrast-to-noise ratio (CNR) 

compared to conventional continuous wave (CW) approaches (Selb et al., 2005). In 

addition, in a recent study involving healthy participants performing MI, it was 

demonstrated that the change in the mean-time of flight signals could be used to detect 

MI activation with a sensitivity of 93% compared to fMRI while the change in the 
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number of photons, which is analogous to the CW approaches, only provided a sensitivity 

of 64% (Abdalmalak et al., 2017). Given these promising results, the first aim of this case 

study was to investigate if the same TR-fNIRS approach could detect MI activity in a 

locked-in patient under intensive care. This patient had Guillain-Barré syndrome (GBS), 

an acute paralytic neuropathy (Willison et al., 2016) that in severe cases results in a 

functionally locked-in state. The second aim was to determine if the patient without any 

prior training could use MI to respond to a series of yes/no questions. In general, locked-

in patients represent an ideal case to test the method in the intensive-care unit (ICU) 

given they are awake and aware, unlike DOC patients, but lack almost all ability to 

respond to commands (Lulé et al., 2009). At the time of this experiment, the patient had 

regained limited eye movement, which provided a unique opportunity to confirm the 

answers obtained by fNIRS.  

4.3 Methods 

The study was conducted on a patient with severe GBS who required ventilator support 

and was under intensive care at London Health Science Centre (London, Ontario). The 

patient (male, age 75 y, Hughes GBS Disability Scale score of 5 on a scale where 0 

indicates normal and 6 corresponds to death) was functionally locked-in with no 

voluntarily control of his muscles except for very restricted (few millimeters) vertical and 

horizontal eye movements, which were inconsistent in the days leading up to the study. 

Prior to becoming functionally locked-in, the patient has requested not to be sedated once 

in a locked-in state. His decision allowed us to test our MI approach on a patient 

completely free of the effects of sedatives. The study was approved by the Research 

Ethics Board of Western University and informed consent was obtained from the 

patient’s legal guardian. 

The fNIRS data were acquired with a four-channel TR system described in details 

elsewhere (Abdalmalak et al., 2016, 2017). Briefly, the system is optimized to detect 

activation in the motor planning regions: the supplementary motor area (SMA) and the 

premotor cortex (PMC) (Abdalmalak et al., 2017). A bifurcated emission fiber was 

centered over FCz according to the international system for electroencephalography 

(EEG) electrode placement and the detection fiber bundles were placed in a cross 



91 

 

orientation with a source detector distance of 3 cm (Figure 4.1). The fibers were secured 

to the head using a 3D printed holder imbedded in an EEG cap (EASYCAP, GmbH, 

Germany). Ultra-short pulses of light were emitted at 760 and 830 nm, and at a pulse 

repetition rate of 80 MHz. Distribution of time-of-flight of photons (DTOFs) were 

acquired every 300 ms with a temporal resolution of 16 ps. The system was controlled 

using custom LabVIEW software (National Instruments, United States).  

 

Figure 4.1: Schematic of the TR-fNIRS probes on the head. The red circle illustrates 

the location of the emission fiber (FCz) while the blue circles represent the detection 

fiber positions with a source-detector distance of 3 cm. 

MI was invoked using a well-established ‘imagine playing tennis’ task that required 

subjects to imagine themselves on a tennis court playing a vigorous game of tennis where 

they are swinging their arm back and forth trying to hit a tennis ball over and over (Owen 

et al., 2006; Fernández-Espejo et al., 2014). The fNIRS experiment was organized in two 

parts: First, the patient was instructed to perform the tennis imagery task to verify his 

ability to successfully perform MI. The experimental protocol consisted of five 30-s 

alternating blocks of MI and rest for a duration of 330 s. Next, the patient was asked three 

questions confirming his last name, if he was in pain and if he felt safe. The first question 

was chosen as a control, while the other two open-ended questions were chosen for their 

clinical relevance. He was instructed to stay relaxed if he wanted to answer “no” to any 

of the questions or to perform tennis imagery if the answer was “yes”. Each question was 

repeated 5 times in the same block design of 30-s intervals used for the MI task 

(Fernández-Espejo et al., 2014; Abdalmalak et al., 2017). A schematic of the paradigm is 

presented in Figure 4.2. Immediately following the fNIRS experiment, the patient 
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answered the same three questions using vertical (“yes”) and horizontal (“no”) eye 

movements while his eyelids were held open.  

 

Figure 4.2: Schematic of the MI paradigm used to communicate with the patient 

The fNIRS signals were analyzed by calculating the change in the statistical moments of 

each recorded DTOF (Liebert et al., 2004). Only the change in the mean time-of-flight 

(<t>) was used in the analysis since the previous study demonstrated that it provided the 

highest sensitivity to MI activity (Abdalmalak et al., 2017). All <t> time courses were 

corrected for motion artifacts using the movement reduction artifact rejection algorithm 

(MARA) approach (Scholkmann et al., 2010), filtered using a band-stop filter with cut-

off frequencies of 0.08 and 1.5 Hz, and detrended to remove any slow signal drifts 

(Abdalmalak et al., 2017). Finally, the signals were converted to oxy- and 

deoxyhemoglobin using sensitivity factors (SF) obtained from Monte Carlo simulations 

(Milej et al., 2016b). The Monte Carlo model consisted 10 layers, each with a thickness 

of 0.2 cm. The SF for the intracerebral layer was calculated as the sum of the SF obtained 

from layers 5 to 10 (i.e. below 1 cm).  

An increase in oxyhemoglobin during MI from each of the four detection channels was 

detected by a support vector machine classifier. The contrast-to-noise ratio (CNR) and 

the correlation coefficient (r) between the oxyhemoglobin time course and the theoretical 

model were used as features to train the classifier. The CNR was defined as the difference 

in signal between the mean task and rest periods divided by the standard deviation of the 

rest period. The classifier was trained on one hundred simulated data sets with varying 

degrees of noise added to replicate experimental data. The theoretical activation signals 

were simulated as a five-cycle boxcar convolved with the hemodynamic function, while 

the rest signals were simulated as the combination of three sinusoidal signals with 
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frequencies of 0.1, 0.2 and 1 Hz corresponding to the Mayer waves, average breathing 

rate and average heart rate respectively. Random noise was added with a normal 

distribution and standard deviation ranging from 1 to 10.  

Testing on fifteen MI and five rest data collected previously from healthy controls 

(Abdalmalak et al., 2017) demonstrated that the classifier had an accuracy of 80% and a 

precision of 75%. The final step was to confirm the “yes” or “no” responses obtained by 

applying the classifier to the oxyhemoglobin time series by comparison to the responses 

obtained by eye movements. Since all four channels were located over motor planning 

regions, at least one of them had to be classified as activated for a “yes” response.  

4.4 Results 

Analysis of the fNIRS data acquired during tennis imagery alone revealed activation in 

one channel. Compared to the responses using eye movements, the fNIRS results 

predicted the correct answers to all three questions: 1) “Yes”, the patient heard his last 

name (3 channels, average CNR = 5.85, average r = 0.76); 2) “No”, he was not in pain (4 

channels, average CNR = 1.13, average r = 0.23); and 3) “Yes”, he felt safe (4 channels, 

average CNR = 12.72, average r = 0.83). The CNR and correlation values for the “Yes” 

responses were similar to that of healthy participants performing the same MI task 

(Abdalmalak et al., 2017a). The average time courses of oxy- and deoxyhemoglobin 

concentrations for each of the three questions are shown in Figure 4.3.  

 

Figure 4.3: Changes in the concentration of oxyhemoglobin (red) and 

deoxyhemoglobin (blue) averaged across all 5 cycles for each of the three questions. 

For the responses classified as “yes” (i.e. correct last name and do you feel safe) the 

signals were averaged across all activated channels, whereas, for the response 

classified as “no” (i.e. are you in pain), the signals were averaged across all four 

channels. The baseline time course labeled ‘Rest’ refers to data acquired without MI 
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activation and is presented as a reference for the contrast observed during the 

question periods. The error bars represent the standard error of mean across the 

specific activated/inactivated channels. The grey boxes indicate the response period. 

4.5 Discussion 

The main result of this case study was to demonstrate that a four-channel TR-fNIRS 

system could detect command-driven brain activity in a functionally locked-in patient in 

the ICU. By implementing a MI paradigm validated in healthy controls and by 

strategically targeting motor-planning regions, rudimentary communication was 

conducted with a patient who had undergone no previous training. A major strength of 

this study was confirmation of the fNIRS results since the patient was able to answer the 

same questions with eye movements.  

The MI trial performed at the beginning of the study confirmed the patient’s ability to 

perform the task, which is essential if a patient is going to use MI to respond to questions. 

Compared with the data from the two “yes” responses in which MI activity was detected 

in at least three channels, the MI trial only resulted in detectable activity in a single 

channel. It could be expected that the number of probes detecting MI activity should be 

fairly consistent across trials. In this experiment, the positions of the four probes were 

adjusted after the MI task, due to evidence of suboptimal signals, which could explain the 

difference in activated channels between trials. 

As a feasibility study, the number of questions was limited to three due to time 

constraints in the ICU (each question was repeated 5 times for a total of 5:30 minutes per 

question). An additional concern was the potential for patient fatigue as roughly a third of 

GBS patients exhibit mental status abnormalities (Cochen et al., 2005). Consequently, 

priority was given to clinically relevant questions instead of including an incorrect 

autobiographical question (e.g. false name) to demonstrate that the method can accurately 

predict a correct “no” response. However, the negative response to the question: “are you 

in pain” obtained by both communication methods demonstrated the ability of the fNIRS 

approach to confirm a negative response. In order to reduce the overall time per question, 

further testing is required to determine how many cycles are required to obtain a reliable 

answer. For this case study, a five-cycle MI protocol was adopted since it has been 
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rigorously tested in both fMRI and fNIRS studies (Owen et al., 2006; Abdalmalak et al., 

2017).  

A potential limitation with the fNIRS method used in this study was the lack of a task-

driven “no” response, which raises uncertainties as to whether or not a lack of MI activity 

truly indicates “no” or just a lack of awareness. To address this issue, the patient was first 

asked to perform MI prior to using this mental activity to answer questions. However, a 

“no’ response involving another mental imagery task that activates different brain 

regions, such as spatial navigation (Fernández-Espejo et al., 2014), could enhance the 

confidence in negative answers since it would elicit its own activation pattern. The 

current method could be extended to monitoring another brain region, such as regions of 

the parietal cortex associated with spatial navigation, but this should be validated in 

control studies prior to translation to DOC patients. Another frequent issue with fNIRS 

studies is the potential for signal contamination from changes in systemic physiology 

(Kirilina et al., 2012; Tachtsidis and Scholkmann, 2016), particularly heart rate and 

arterial CO2 tension caused by changes in respiration. In this case, the patient’s heart rate 

was monitored, and no changes were observed during the task periods. Furthermore, the 

patient was mechanically ventilated so there were no changes in respiration rate. 

The potential of using fNIRS as a BCI to communicate with locked-in patients was 

recently demonstrated by Gallegos-Ayala et al. (Gallegos-Ayala et al., 2014). In this 

study a patient underwent a battery of training sessions in order to establish individual 

“yes” and “no” fNIRS responses. This passive approach is intended for patient 

populations who lack any physical ability to communicate but retain full awareness, such 

as those with late-stage amyotrophic lateral sclerosis. This is different from the approach 

used in the current study that requires participants to perform a specific mental imagery 

task and was originally designed to assess awareness by detecting command-following 

activation. Although in this study MI was used for rudimentary communication, the 

primary goal is to develop an fNIRS technique that can reliably assess consciousness at 

the bedside of DOC patients.  

Finally, translating this research to DOC patients may pose certain technical challenges. 

First, brain damage in DOC patients could result in post injury brain reorganization. This 
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would affect the choice of probe placement if the position of the SMA and PMC relative 

to the 10-10 EEG template was altered. Furthermore, some patients may also suffer from 

brain ischemia or heamatoma, which can affect the scattering and absorption of light, 

respectively. It will likely be crucial to examine each patient’s imaging data, either 

computed tomography (CT) or MRI, prior to applying the fNIRS BCI method. For 

patients who have undergone previous fMRI scans and who do not suffer from damage to 

the secondary motor regions of the brain, their scans could be used to guide probe 

placement on the scalp. On the other hand, for patients with damage to the SMA and/or 

PMC, alternate paradigms that activate other cortical regions, such as spatial navigation, 

could be used. Lastly, while detecting MI activity in DOC patients can be used to infer 

covert awareness, no claims about residual awareness can be made from a negative 

finding (i.e. failing to detect MI activity). As a result, conclusions regarding the 

preservation of awareness in DOC patients should be drawn from positive outcomes only 

(Fernández-Espejo et al., 2014). 

In summary, this case study demonstrated the potential of using fNIRS as a bedside tool 

to detect command-driven brain activity in an ICU patient who had extremely limited 

physical ability to communicate. The results suggest that fNIRS could be used to ask 

patients questions that have a direct bearing on their clinical management, particularly 

regarding pain and other aspects of well-being. To our knowledge, this is the first account 

of an fNIRS approach being used to communicate with a locked-in patient without the 

need for prior training. The accuracy of the approach was confirmed by obtaining ground 

truth answers through eye movements. Given the portability of fNIRS, repeat 

measurements could be performed to monitor levels of awareness and perhaps assist in 

patient prognosis. Future work will focus on testing the approach on a larger cohort of 

locked-in and DOC patients to estimate reliability and reproducibility. 
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Chapter 5  

5 Assessing Time-Resolved fNIRS for Brain-Computer 
Interface Applications of Mental Communication 

This chapter has been adapted from the publication titled “Assessing time-resolved 

fNIRS for brain-computer interface applications of mental communication” published in 

the Journal of Frontiers in Neuroscience in 2020 by Androu Abdalmalak, Daniel Milej, 

Lawrence C.M. Yip, Ali R. Khan, Mamadou Diop, Adrian M. Owen and Keith St. 

Lawrence, 14:105,  

Available online: https://www.frontiersin.org/article/10.3389/fnins.2020.00105 

5.1 Abstract  

Brain-computer interfaces (BCIs) are becoming increasingly popular as a tool to improve 

the quality of life of patients with disabilities. Recently, time-resolved functional near-

infrared spectroscopy (TR-fNIRS) based BCIs are gaining traction because of the 

enhanced depth sensitivity leading to lower signal contamination from the extracerebral 

layers. This study presents the first account of TR-fNIRS based BCI for “mental 

communication” on healthy participants. Twenty-one (21) participants were recruited and 

were repeatedly asked a series of questions where they were instructed to imagine 

playing tennis for “yes” and to stay relaxed for “no”. The change in the mean time-of-

flight of photons was used to calculate the change in concentration of oxy- and 

deoxyhemoglobin since it provides a good compromise between depth sensitivity and 

signal-to-noise ratio. Features were extracted from the average oxyhemoglobin signals to 

classify them as a “yes” or “no” responses. A linear-discriminant analysis (LDA) and a 

support vector machine (SVM) classifiers were used to classify the responses using the 

leave-one-out cross-validation method. The overall accuracies achieved for all 

participants were 75% and 76%, using LDA and SVM respectively. The results also 

reveal that there is no significant difference in accuracy between questions. In addition, 

physiological parameters (heart rate (HR) and mean arterial pressure (MAP)) were 

recorded on seven of the 21 participants during motor imagery and rest to investigate 

changes in these parameters between conditions. No significant difference in these 
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parameters was found between conditions. These findings suggest that TR-fNIRS could 

be suitable as a BCI for patients with brain injuries. 

5.2 Introduction 

Brain-computer interfaces (BCIs) are devices that can be used to establish a 

communication pathway between the brain and external devices (Shih et al., 2012). For 

people with chronic paralysis following a severe spinal cord injury, surgical implants that 

record activity directly from the brain can provide a means of interacting with the 

environment, such as controlling a prosthetic (Mak and Wolpaw, 2009; Shih et al., 2012). 

However, the need to implant electrodes limits the applications of this invasive approach 

(Waldert, 2016). The use of neuroimaging modalities as non-invasive BCI devices has 

garnered attention for applications such as assessing cognition in patients with disorders 

of consciousness (DOC), providing rudimentary communication for patients in a 

completely locked-in state, and as a feedback tool for stroke therapy (Naseer and Hong, 

2015a; Kurz et al., 2018; Rupawala et al., 2018). The most frequently used portable BCI 

devices are based on electroencephalography (EEG). Although EEG provides excellent 

temporal resolution, making it ideal for real-time applications, the technology suffers 

from poor spatial resolution and an inherent sensitivity to motion artifacts (Padfield et al., 

2019). Motion artifacts can have an impact on the spectral content of EEG in the 

frequency range below 20 Hz and lead to large spikes in the signal that may be difficult 

to correct (Mihajlovic et al., 2014). A promising alternative is functional near-infrared 

spectroscopy (fNIRS) (Rupawala et al., 2018) since it provides a good compromise 

between spatial and temporal resolution. 

Analogous to functional magnetic resonance imaging (fMRI), fNIRS detects increases in 

neuronal activity through the hemodynamic response – that is, the change in blood 

oxygenation that occurs due to increased cerebral blood flow (Monti et al., 2010). By 

measuring light absorption at a minimum of two wavelengths, changes in concentrations 

of oxy- and deoxyhemoglobin can be calculated (Strangman et al., 2002). A number of 

activation paradigms have been combined with fNIRS for BCI applications, including 

motor imagery, mental arithmetic, working memory, and other mental activities (Naseer 

and Hong, 2015a; Rupawala et al., 2018). Motor imagery (MI) was the first task proposed 
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for BCI applications, which requires participants to perform kinesthetic imagining, such 

as imagining squeezing a ball (Coyle et al., 2004), finger tapping (Sitaram et al., 2007) 

and hand grasping (Fazli et al., 2012). More recent fNIRS-BCI applications have focused 

on activation paradigms that involve the prefrontal cortex, such as mental arithmetic, to 

avoid signal loss due to the presence of hair and concerns regarding the quality of the 

NIRS signal for MI tasks (Qureshi et al., 2017; Shin et al., 2017). However, MI has 

proven extremely valuable in fMRI studies of DOC. Using tennis imagery as a mental 

task and focusing on activation in the supplementary motor area (SMA), fMRI was used 

to demonstrate residual brain function in a patient with a diagnosis of vegetative state 

(Owen et al., 2006) and in a subsequent study, to provide “yes” and “no” answers to 

series of questions (Monti et al., 2010).  

To improve the sensitivity of fNIRS to MI, time-resolved (TR) fNIRS has been 

investigated (Abdalmalak et al., 2017a, 2020). TR detection involves recording the 

arrival times of single photons, which can be used to enhance depth sensitivity since 

photons that interrogate superficial tissue are detected earlier than photons that travel 

farther (i.e. deeper). Consequently, improved sensitivity to the brain can be achieved by 

focusing on late-arriving photons (Diop and St Lawrence, 2013; Lange and Tachtsidis, 

2019). This can be achieved by calculating the statistical moments of the recorded 

distribution of arrival times since higher moments are weighted towards late-arriving 

light (Liebert et al., 2004; Milej et al., 2015). Previous work has shown that the first 

moment (i.e. the mean time-of-flight, <t>) provided a good compromise between depth 

sensitivity and signal-to-noise for detecting MI activation from probes interrogating the 

SMA and premotor cortex (PMC) (Abdalmalak et al., 2017a). Using fMRI as a 

benchmark, the classification accuracy of TR-NIRS based on <t> analysis was 93% 

(Abdalmalak et al., 2017a). In a follow-up study, rudimentary communication was 

established with a locked-in patient who was instructed to use tennis imagery as 

affirmation to a series of questions (Abdalmalak et al., 2017b). The accuracy of the 

fNIRS-BCI responses was confirmed because the patient had regained sufficient eye 

movement to answer the same questions after the fNIRS study. 

The promising results of the two previous studies suggest that time-resolved functional 

near-infrared spectroscopy (TR-fNIRS) combined with MI could be a suitable BCI for 
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mental communication with DOC patients. The purpose of this study was therefore to 

evaluate the classification performance of this BCI approach on healthy volunteers. Each 

participant was asked a series of four questions requiring yes-or-no answers. They were 

instructed to imagine playing tennis to communicate “yes” and to stay relaxed if the 

answer was “no” (Monti et al., 2010). Linear discriminant analysis (LDA) and support 

vector machine (SVM) algorithms were evaluated for classification accuracy as these are 

the most commonly used machine-learning approaches used in fNIRS-BCI studies 

(Naseer and Hong, 2015a). 

5.3 Methods 

5.3.1 BCI Study  

Twenty-one healthy participants with no history of any neurological disease were 

recruited (6 females and 15 males, mean age of 29 ± 5 years, age range 24-40 years). All 

participants except one were right handed with no history of neurological condition or 

severe brain injury. Written informed consent was obtained from all participants and this 

study was approved by the Research Ethics Board at Western University, which complies 

with the guidelines of the Tri-Council Policy Statement (TCPS), Ethical Conduct for 

Research Involving Humans.  

For each experiment, the participants were seated in a Fowler’s position on a reclining 

chair with a cushioned pillow to support their neck. The TR system consisted of one 

emission and four detection fibers (see section “TR-NIRS system”), which were placed 

on the head in a cross pattern with the emission fiber over FCz (according to the 

international template for EEG electrode placement) in order to interrogate the SMA and 

PMC (Abdalmalak et al., 2016). The fibers were secured on the head using a 3D printed 

holder (TAZ 5, LulzBot, United States), which was covered by an EEG cap (EASYCAP 

GmbH, Germany). Figure 5.1a shows a picture of one of the participants wearing the cap 

with the TR-NIRS optodes inserted.  
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Figure 5.1: (a) A participant wearing the TR-fNIRS cap with the probes positioned 

over the SMA and PMC. (b) Study protocol illustrating the rest and response 

periods. The total time per question was 5:30 minutes, which consisted of five 30-s 

answer periods. 

Each participant was asked the following four questions that could all be answered with a 

“yes” or “no” response:  

1. Do you have any brothers?  

2. Do you have any sisters? 

3. Are you at St. Joseph’s Hospital?  

4. Are you feeling cold right now?  

The order that questions were asked in was randomized between participants to avoid any 

biases that may exist based on the questions. These questions were chosen for their 

applicability to patient studies. For instance, the first two questions were factual with 

definitive known answers, while question 3 (“Are you at St. Joseph’s Hospital?) served 

as a control since all participants were expected to answer “yes”. The final question was 

chosen to simulate asking patients a question where only they would know the answer. 

Each question was asked five times in a block design consisting of a 30-s baseline rest 

period followed by five cycles of 30-s alternating blocks of “answer” and “rest” periods 

for a total duration of 5:30 min (Figure 5.1b). Answering all four questions took 22 min 

to complete. Each question was asked prior to the beginning of the run, and during the 

experiment the participants were cued to either “rest” or “answer”. For a positive 

response, the participants were asked to imagine playing a game of tennis where they 
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pictured themselves on a tennis court, swinging their arm back and forth trying to hit a 

tennis ball over and over again. For a negative response, the participants were asked to 

remain completely relaxed; i.e., a “no” response would result in 5:30 min of complete 

rest. 

5.3.2 Physiological Monitoring Study  

Since previous work has shown that changes in physiological variables such as heart rate 

(HR) and mean arterial pressure (MAP) can confound the fNIRS signal (Tachtsidis and 

Scholkmann, 2016), a subset (seven of the 21) of the participants were brought back for a 

separate session to investigate if the MI paradigm would elicit changes in HR and MAP. 

A non-invasive monitoring system was secured to the participant’s left arm (Finapres 

Medical Systems, Netherlands) to record HR and MAP continuously (sampling rate = 

200 Hz) during a 5:30 minute experiment consisting of 30-s alternating blocks of rest and 

MI. The cues given to the participants were similar to those given in the BCI study, 

except in this experiment, the participants were asked to imagine playing tennis every 

time they heard the word “tennis”. 

For each participant, the Finapres® data were subsequently downsampled to 1 Hz and 

analyzed by averaging the data across each of the five MI and rest blocks. This resulted 

in five HR and five MAP values for each condition per participant. A paired t-test was 

used to determine if there was a significant difference between the two conditions across 

all participants while correcting for multiple comparisons using Bonferroni.  

5.3.3 TR-NIRS System  

Data were collected using an in-house built TR-fNIRS system (Milej et al., 2016b; Kewin 

et al., 2019). The system consisted of two lasers (λ= 760 and 830 nm) pulsing at 80 MHz 

and controlled by a Sepia laser driver (PicoQuant, Germany). The laser heads were 

coupled in a 2.5 m bifurcated fiber (φ = 0.4 mm, NA = 0.39, Thorlabs, United States) and 

four 1.5 m detection fiber bundles (φ = 3.6 mm, NA = 0.55, Fiberoptics Technology, 

United States) were used to deliver the diffusively reflected light from the scalp to one of 

four hybrid photomultiplier tubes (PMA Hybrid 50, PicoQuant, Germany). A time-

correlated single-photon counting module (HydraHarp 400, PicoQuant, Germany) was 



106 

 

used to record the distribution of times-of-flight (DTOF) of photons for each detector 

every 300 ms using in-house-developed LabVIEW software (Milej et al., 2016a).  

5.3.4 TR-fNIRS Data Analysis  

Data were analyzed in MATLAB using the following processing steps. First, <t> was 

calculated for every DTOF in a time series after truncating each DTOF at 10% of the 

ascending side and 1% of the descending side to reduce noise (Liebert et al., 2004). <t> 

was chosen previous work has shown that it provided a good compromise between 

activation sensitivity and signal-to-noise ratio (Abdalmalak et al., 2017a). The change in 

mean time-of-flight (<t>) relative to the initial values was calculated, and these time 

series were corrected for motion artifacts using an algorithm based on a moving standard 

deviation and spline interpolation (Scholkmann et al., 2010; Metz et al., 2015). The time 

course was detrended to remove slow drifts by filtering with a high-pass filter with a cut-

off period of 128 s and smoothed using a hemodynamic response function (full width half 

maximum = 4 s) to remove fast frequencies components, such as due to arterial pulsation. 

Next, the two <t> time-courses for λ= 760 and 830 nm were converted into changes in 

concentration of oxy- and deoxyhemoglobin using sensitivity factors obtained from 

Monte Carlo simulations. These simulations were generated based on a 10-layer model in 

which each layer was 0.2 cm thick. At each wavelength, the sensitivity factor for the 

brain was calculated as the sum of the sensitivity factors for layers below 1 cm (i.e., 

layers 5 to 10) (Kacprzak et al., 2007; Abdalmalak et al., 2017b).  

To calculate the changes in the concentrations of oxyhemoglobin (∆𝐶𝐻𝑏𝑂2
) and 

deoxyhemoglobin (∆𝐶𝐻𝑏), <t> was first converted to the corresponding change in the 

absorption coefficient, ∆𝜇𝑎(𝜆), for the two wavelengths (λ= 760 and 830 nm):  

∆𝜇𝑎(𝜆) =
∆〈t〉

𝑀𝑇𝑆𝐹
=

〈t〉−〈𝑡〉0

𝑀𝑇𝑆𝐹
    (5.1) 

where, MTSF is the sensitivity factor derived from Monte Carlo simulations for <t> in 

the brain. Next, ∆𝜇𝑎(𝜆) values determined at 760 and 830 nm were converted to ∆𝐶𝐻𝑏𝑂2
 

and ∆𝐶𝐻𝑏 by:  

∆𝜇𝑎(𝜆) = (𝜀𝐻𝑏𝑂2
(𝜆)∆𝐶𝐻𝑏𝑂2

+ 𝜀𝐻𝑏(𝜆)∆𝐶𝐻𝑏) ln (10) (5.2) 
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where, 𝜀𝐻𝑏𝑂2
(𝜆) and 𝜀𝐻𝑏(𝜆) are the molar extinction coefficients for oxy- and 

deoxyhemoglobin, respectively. After preprocessing, signals were averaged across all 

five trials and across all channels for each question; i.e., the response for each question 

was reduced to a single average time course (60 s consisting of two 15 s rest periods and 

30 s response period) for oxy- and deoxyhemoglobin, respectively. Averaging was 

conducted to improve the signal-to-noise ratio and reduce the chance of detecting false 

positives based on the assumption that all four channels were interrogating motor-

planning areas.  

Features (listed in Table 5.1) were then extracted from the average time courses for 

oxyhemoglobin only, since previous work has shown that oxyhemoglobin yields better 

performance for assessing task-induced brain activation (Mihara et al., 2012; Naseer and 

Hong, 2013). In order to investigate which combination of features produced the highest 

accuracy, a linear discriminate analysis (LDA) and a support vector machine (SVM) 

classifier were used to classify the result using the leave-one-out cross-validation method 

with all possible unique feature combinations (15 combinations in total). The classifier 

with the combination of feature(s) that yielded the highest accuracy was used to obtain all 

the results presented in this study. The code used for the analysis was developed in 

MATLAB (MathWorks Inc., United States) using functions implemented in the 

Statistical and Machine Learning Toolbox. Furthermore, a one-way ANOVA was used to 

determine if there was a significant difference in accuracy between questions (i.e. 

questions 1 to 4). Finally, to investigate the effect of the number of cycles on the overall 

accuracy, the analysis was initially conducted with only the first cycle and then repeated 

with increasing number of cycles until all five cycles were included.  
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Table 5.1: Features extracted from the oxyhemoglobin time-courses and how each 

feature was calculated 

Feature Calculation 

Median change in signal (SM) 

Difference between the median change during the 

task (excluding the first 10 seconds) and the 

preceding rest period 

Signal slope (SS) Slope of the first 16 seconds during the task period  

Contrast-to-noise ratio (CNR) 

Difference between the mean change during the task 

and the preceding rest period divided by the 

standard deviation of the rest period 

Correlation coefficient (r) 

Correlation coefficient between the change in the 

hemoglobin concentration time-courses and the 

theoretical activation model (i.e. box function 

convolved with a hemodynamic response function) 

5.4 Results 

Of the 21 participants, three had to be excluded due to significant motion artifacts and 

overall low signal quality. The overall classification accuracy across all included subjects 

using LDA was 75% with a sensitivity of 83% and specificity of 58%. Similarly, the 

classification accuracy using SVM was 76% with a sensitivity of 79% and specificity of 

71%. Individual classification accuracies using both classifiers are shown in Table 5.2. 

The combination of features that produced the highest accuracy using LDA was SM, 

CNR and r, while SS and r contributed the most to the SVM model. Since SVM 

produced higher accuracy, it was used for all further analyses. Figure 5.2 shows the SS 

and r plotted in a 2D feature space for the “yes” and “no” responses in order to visualize 

the difference between the two responses. 
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Figure 5.2: 2D feature space showing the relationship between SS and r for all of the 

“yes” and “no” responses 

Table 5.2: Individual classification results for each participant 

Participant 

number 

LDA 

Accuracy (%) 

SVM 

Accuracy (%) 

1 75 75 

2 50 50 

3 75 75 

4 50 75 

5 100 100 

6 100 100 

7 75 75 

8 100 100 

9 75 75 

10 100 100 

11 75 100 

12 75 75 

13 75 75 

14 50 75 

15 50 50 

16 100 75 

17 75 50 

18 50 50 

The oxy- and deoxyhemoglobin time courses for one participant and for two different 

questions are shown in Figure 5.3. For the time course shown on the left, which 

corresponded to the question: “Are you at St. Joseph’s Hospital?”, a clear increase in 
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oxyhemoglobin and a concurrent, but smaller, decrease in deoxyhemoglobin can be 

observed during the response periods. For the second question in which the participant’s 

response was “no”, there were no noticeable changes in either ∆𝐶𝐻𝑏𝑂2
 or ∆𝐶𝐻𝑏. As 

expected, these two questions were classified as “yes” and “no”, respectively.  

 

Figure 5.3: Sample time courses of ∆𝑪𝑯𝒃𝑶𝟐
 and ∆𝑪𝑯𝒃 for one participant and two 

questions. Each time course was averaged across data from all four channels. The 

time course on the left was classified as “yes” while the one on the right was 

classified as “no”. The grey boxes indicate the response periods. The error bars 

represent the standard error of mean across channels. 

Average time courses of ∆𝐶𝐻𝑏𝑂2
 and ∆𝐶𝐻𝑏 for each consecutive question are presented in 

Figure 5.4. Since the order of the questions was randomized, each subplot does not 

represent the response to a particular question, but rather the response to all questions 

asked in one period. For each participant, the time courses were first averaged across 

trials and channels, resulting in a single time course per question. These time-courses 

were then averaged across all participants for the “yes” and “no” responses based on the 

classifier output. The “yes” responses show the expected hemodynamic changes in oxy-

and deoxyhemoglobin, which are absent in the “no” responses. 
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Figure 5.4: ∆𝑪𝑯𝒃𝑶𝟐
(red) and ∆𝑪𝑯𝒃 (blue) for each question averaged across all trials, 

channels and participants. Each column represents a different question. The first 

row (a) shows the signals that were classified as “yes” while the second row (b) 

shows the signals that were classified as “no”. The grey boxes indicate the response 

period. The error bars represent the standard error of mean across participants 

(n=18). 

The overall accuracy of the SVM results is plotted as a function of the number of cycles 

in Figure 5.5a. As expected, increasing the number of cycles used for classification 

improved accuracy. The boxplot in Figure 5.5a shows variation in accuracy for each 

cycle for all unique combinations of features (15 in total), and the red circles represent 

the accuracy obtained using the optimum combination of features for SVM (i.e. SS and 

r). Since the best combination of features was optimized for 5 cycles, using only one, two 

or four cycles leads to different sets of optimum features. The classification accuracies 

for questions one to four are shown in Figure 5.5b. Once again, the accuracy presented is 

not for a particular question but based on the order of the questions asked. Although there 

are differences in accuracy between questions, there were no statistically significant 

differences. 
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Figure 5.5: (a) Classification accuracy obtained versus the number of cycles used for 

classification. The box plot shows the variation in accuracy for all 15 unique 

combinations of features. The red circles represent the accuracy for the set of 

features that were selected as optimum (b) Classification accuracy obtained for 

questions 1 to 4 using five cycles for classification. 

To further investigate the performance of the SVM classifier, the oxyhemoglobin signals 

that were classified as “yes” or “no” were averaged together for all trials, channels, 

participants, and questions. In other words, the oxyhemoglobin time-courses for the “yes” 

and “no” responses in Figure 5.4 were averaged together to end up with one-time course 

for all “yes” responses and one-time course for all “no” responses. In addition, the 

oxyhemoglobin time courses for the ground truth responses, i.e. based on the participants' 

responses recorded after the study, were averaged together to produce ground-truth “yes” 

and “no” oxyhemoglobin time courses. The ground-truth “yes” signal represents the 

group average for all oxyhemoglobin signals for which participants answered “yes”. 

Likewise, the ground-truth “no” is the group average for questions that participants 

answered “no”. These two sets are shown in Figure 5.6. As expected, the “yes” responses 

showed an increase in the signal during the response period. Interestingly, the ground 

truth “no” time-course showed an unexpected increase in the signal during the response 

period upon visual inspection. This change was approximately 25% of the maximum 

change observed for the corresponding “yes” time-course. 
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Figure 5.6: ∆𝑪𝑯𝒃𝑶𝟐
averaged across channels, trials and participants for (a) the “yes” 

responses and (b) the “no” responses. The solid lines show the signals based on the 

SVM classifier output while the dashed lines represent the ground truth responses. 

The error bars represent the standard error of mean across participants (n=18). 

The MAP and HR values averaged across the seven participants for MI and rest, 

respectively, are shown in Table 5.3. No significant difference between the two 

conditions was found.  

Table 5.3: Physiological parameters obtained during motor imagery and rest 

 Rest Change during MI Range 

MAP (mmHg) 77±8 2±1 -3,5 

HR (bpm) 70±10 3±2 -5,5 

MAP= Mean arterial pressure, HR= Heart rate 

5.5 Discussion 

The goal of this study was to assess the feasibility of TR-fNIRS as a BCI for mental 

communication. The study focused on a MI paradigm (i.e., imagine playing tennis) that 

has been used previously with fMRI to assess residual brain function in DOC patients and 

to provide rudimentary mental communication (Monti et al., 2010). Furthermore, the 

detection sensitivity of TR-fNIRS for this tennis imagery task was found to be 

comparable to fMRI in a cohort of healthy participants (Abdalmalak et al., 2017a). Based 

on these promising results, the motivation for this study was to evaluate the combination 



114 

 

of TR-NIRS and MI for mental communication involving multiple closed-ended 

questions. A series of four questions was asked of each healthy participant and 

classification accuracy was assessed for two commonly used machine-learning 

algorithms (LDA and SVM) (Hong et al., 2018). Both algorithms produced similar 

accuracies (76% for SVM and 75% for LDA); however, SVM resulted in a better balance 

between sensitivity and specificity (79% and 71%, respectively) compared to LDA (83% 

and 58%, respectively). Overall, these estimates of classification accuracy are in-line with 

previous reports (Naseer and Hong, 2015a) and meet the minimum threshold of 70% for 

a BCI to be considered effective for communication (Proulx et al., 2018).  

Although the classification accuracy is comparable to results from other fNIRS studies 

involving various activation tasks for mental communication (Naseer and Hong, 2015b), 

it was less than the accuracy reported in an fMRI study involving the same tennis 

imagery task (Monti et al., 2010). One possible explanation is related to the challenges of 

detecting MI by fNIRS due to the presence of hair and the increased scalp-brain distance 

over the motor-planning areas relative to the frontal regions (Cui et al., 2011). The latter 

was likely compounded by the observation from fMRI studies that MI-related activation 

in the SMA frequently occurs at a greater distance from the cortical surface (Monti et al., 

2010; Taube et al., 2015). Time-resolved detection will help compensate for activation at 

greater depths (Milej et al., 2019); however, these challenges reflect the lower 

classification accuracy generally reported for MI compared to tasks that activate the 

prefrontal cortex (Qureshi et al., 2017; Shin et al., 2017). It should also be noted that the 

activation contrast elicited by MI is less than for motor execution tasks (Batula et al., 

2017), and activation for mental imagery tasks is not detectable in a small subset of 

participants, typically on the order of 10% to 15%. (Fernández-Espejo et al., 2014) 

Unlike our previous study (Abdalmalak et al., 2017a), the current study did not include 

fMRI to confirm detectable MI activation for all participants. This would explain why the 

sensitivity in the current study (of the order of 80%) was lower than the sensitivity 

calculated previously when MI activation detected by TR-fNIRS was compared to fMRI 

results (Abdalmalak et al., 2017a).  

While classification accuracy has been the most commonly used metric in fNIRS BCI 

studies (Naseer and Hong, 2015a; Rupawala et al., 2018), sensitivity and specificity were 
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also computed in the current study. These are important metrics in BCI applications for 

evaluating the confidence that can be placed on a measured response. This is relevant to 

applications involving DOC patients that are aimed at evaluating residual brain function 

and providing rudimentary mental communication (Peterson et al., 2015). The sensitivity 

of the LDA and SVM algorithms were similar (83% and 79%, respectively), but 

specificity was lower for both: 58% for LDA and 71% for SVM. Considering that 

specificity reflects the ability of the classifier to accurately detect a “no” response, the 

poorer results indicate that the inherent fluctuations in NIRS time courses were leading to 

false positives. This is confirmed by the average time courses shown in Figure 5.6. The 

ground truth “no” response showed an unexpected signal increase during the response 

period at approximately the 40-s mark. Similar artifacts are evident in other fNIRS-BCI 

studies that relied on a stable signal time course to reflect a “no” response (Naseer et al., 

2014), and reflect the challenges of removing all sources of noise in the pre-processing 

steps, particularly motion artifacts and low-frequency spontaneous oscillation.  

There are a number of potential approaches that could be used to improve specificity. The 

first would be to use an active task for the “no” response as used in fMRI studies (Monti 

et al., 2010). For example, the “yes” response could be MI, while the “no” response could 

be a mental arithmetic task that activates areas of the frontal cortex (Bauernfeind et al., 

2011). Since there is minimal overlap between brain regions activated by these two tasks, 

the overall specificity should improve. However, it is important to acknowledge that 

asking patients to perform two complex tasks, such as MI and mental arithmetic, could be 

challenging. Alternatively, “yes” and “no” responses could be decoded temporally 

instead of spatially. Bettina and colleagues demonstrated that healthy controls were able 

to encode at least four distinct answers on a single trial level by performing MI to the 

temporal prompt corresponding to the desired answer (Sorger et al., 2009; Nagels-Coune 

et al., 2017). Finally, participants could undergo some form of training to provide some 

familiarization with using MI for mental communication. None of the participants in this 

study received training prior to data collection, and it would be valuable to assess if 

classification accuracy would be improved on a return visit. 

A variety of features have been investigated for fNIRS-BCI applications, including mean 

changes in concentration of oxy- and/or deoxyhemoglobin, signal slope, the shape of the 
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signal responses (i.e. skewness and kurtosis), et cetera (Naseer and Hong, 2015a). This 

study included similar features (SM, SS, CNR, see Table 5.1) as well as the correlation 

coefficient (r) between the HbO2 time course and the model function obtained by 

convolving a box function representing task periods with the hemodynamic response 

function. For features such as the SS, there is some ambiguity regarding the appropriate 

period for calculating the signal slope. In this study, the slope was calculated over 16 s; 

however, a shorter period could have been selected based on the hemodynamic response 

function that peaks at 7 s. To investigate the potential impact of reducing the period, the 

analysis was repeated for a slope calculated over the first 7 s of the task period. This 

change resulted in a small reduction (4%) in the accuracy for the SVM algorithm, which 

is likely due to variability is the peak hemodynamic response between individuals (see 

Figure 5.4 question 2 for example). 

A limitation with using features like r is the large amount of data required to obtain a 

reliable estimate. This was confirmed by the results presented in Figure 5.5a, showing the 

expected improvement in accuracy as the number of task cycles increased from 1 to 5. 

The obvious disadvantage of using all five cycles is the approach is not suitable for real-

time applications. However, for our goal of applying this methodology to helping 

evaluate consciousness in DOC patients, this is not a concern. Furthermore, r was the 

only feature common to both the final SVM and LDA algorithms, highlighting its value 

for optimizing classification accuracy.  

One of the challenges with generic BCIs is inter-subject variability. Individual accuracies 

in this study varied from chance level to classifying all four questions correctly (Table 

5.2). Psycho-physiological factors, such as attention and memory load, could contribute 

to the observed inter-subject variability. It has also been suggested that females, 

individuals over the age of 25, and those who play instruments are likely to perform 

better at mental imagery tasks (Randolph, 2012; Ahn and Jun, 2015). In this study, there 

was an imbalance between males and females; however, the total number of participants 

was not sufficient to assess if sex or age could have affected task performance. 

Additionally, it is known that task-induced changes in HR and MAP can potentially 

degrade the fNIRS signals, leading to false positive (Caldwell et al., 2016). To assess this 

potential source of error, HR and MAP were measured in seven participants performing 
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MI in the same block designed used in the BCI experiments, and no significant difference 

between the two conditions was found. 

Another common challenge with most BCIs for mental communication is the trade-off 

between accuracy and the time delay before defining a response. In general, the greater 

the number of trails acquired prior to feature extraction and classifying the signals, the 

greater the SNR and hence the overall classification accuracy. BOLD-dependent 

modalities such as fMRI and fNIRS are inherently slow as the hemodynamic response 

peaks around 7 s post-stimulus. In contrast, EEG which directly measures neuronal 

activity can provide much faster responses. However, the majority of EEG-based BCIs do 

not display the results in real-time since they often take time to judge and classify the 

signals to improve accuracy. It is important to emphasize that the intended goal of our 

TR-fNIRS BCI is to assess residual awareness in DOC patients and therefore our 

protocol is intentionally long in order to maximize the confidence in the recorded 

responses. 

In conclusion, this work highlights the potential of TR-fNIRS as a BCI for mental 

communication. Our approach focused on using a few detection channels that targeted 

specific brain regions known to be involved with MI. This is a relatively simple approach 

that is well suited for BCI applications without the need for training (Abdalmalak et al., 

2017b). Our results indicate that the current method provides sufficient classification 

accuracy for clinical application. Since the technology is readily adaptable to other 

tasks/brain regions, incorporating separate active tasks for a “no” response could be 

considered to further improve the accuracy. In addition, the use of more sophisticated 

classifiers could be explored to further enhance performance.  
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Chapter 6  

6 Shining Light on the Human Brain: An Optical BCI for 
Communicating with Patients with Brain Injuries  

This chapter has been adapted from the paper titled “Shining Light on the Human Brain: 

An Optical BCI for Communicating with Patients with Brain Injuries” submitted to IEEE 

SMC 2020 by Androu Abdalmalak, Geoffrey Laforge, Lawrence C.M. Yip, Daniel Milej, 

Laura E. Gonzalez-Lara, Udunna Anazodo, Adrian M. Owen and Keith St. Lawrence and 

is currently under review. 

6.1 Abstract 

Functional near-infrared spectroscopy (fNIRS) is an emerging optical technology that can 

be used to monitor brain function at the bedside. Recently, there has been a great interest 

in using fNIRS as a tool to assess command-driven brain activity in patients with severe 

brain injuries to infer residual awareness. In this study, time-resolved (TR) fNIRS, a 

variant of fNIRS with enhanced sensitivity to the brain, was used to assess brain function 

in patients with prolonged disorders of consciousness (DOC). A portable system was 

developed in-house, and patients were assessed in their homes or long-term care facilities 

across London and the Greater Toronto Area, Canada. Six patients were recruited in this 

study, and motor imagery was used to elicit command-driven brain activity. TR-fNIRS 

data were analyzed using the general linear modelling (GLM) approach, as well as with 

basic machine learning. Three patients showed activity with GLM, four with machine 

learning, and two with both techniques. Interestingly, the two patients that showed 

activity by both approaches also had detectable motor imagery activity by functional 

magnetic resonance imaging. These promising preliminary results highlight the potential 

of TR-fNIRS as a tool to probe consciousness and map brain activity at the bedside. 

6.2 Introduction 

In its most basic form, consciousness can be referred to as the state of being awake and 

aware (Fernández-Espejo and Owen, 2013). While wakefulness is relatively easy to 

determine, assessing awareness is not trivial. Clinically, determining if someone is aware 
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relies on assessing their ability to follow commands. Due to the subjective nature of 

behavioral assessments, a high rate of misdiagnosis (~40%) exists where patients who are 

aware are misdiagnosed as suffering from a disorder of consciousness (DOC) (Monti et 

al., 2010). DOC refers to an abnormal state of consciousness and includes the vegetative 

state (VS), which is often defined as “wakefulness without any awareness”. In some 

scenarios, VS patients start exhibiting inconsistent but reliable responses to commands, 

altering their diagnosis to a minimally conscious state (MCS). 

In recent years, functional neuroimaging has played a vital role in assessing residual 

awareness in DOC patients. Work by Owen et al. showed that functional magnetic 

resonance imaging (fMRI) could be used to detect command-driven brain activity in 

patients clinically diagnosed as being in a VS (Owen et al., 2006). More specifically, a 

VS patient was asked to imagine playing tennis whenever she heard the word ‘tennis’ and 

to imagine moving from a room to room in her house when she heard the word ‘house’. 

The patient was able to reliably produce activity in brain areas associated with motor 

planning and spatial navigation, which were indistinguishable from that of healthy 

volunteers. Follow-up studies have shown that motor imagery (MI) can be used as an 

affirmation for questions to establish binary communication with patients who lack all 

physical and verbal ability to communicate (Monti et al., 2010).  

Although promising, fMRI does not enable bedside assessments, and the high cost 

inhibits frequent examinations. An alternative technology is functional near-infrared 

spectroscopy (fNIRS), which is safe, portable and inexpensive. It is often considered the 

optical equivalent of fMRI since brain activity is detected by measuring changes in light 

absorption due to activation-induced changes in oxy- and deoxyhemoglobin 

concentrations. Previous work has shown that fNIRS can be used to monitor brain 

activity during a wide range of cognitive tasks (Yücel et al., 2017; Rupawala et al., 2018; 

Quaresima and Ferrari, 2019), and could be even used as a brain-computer interface 

(BCI) for binary mental communication (Hong et al., 2015; Abdalmalak et al., 2017b).  

However, the reliability of fNIRS is hindered by substantial signal contamination from 

the scalp, which can easily mask the smaller signal related to brain activity. One approach 

to circumvent this issue is to use time-resolved (TR) fNIRS. TR-NIRS detects the time-
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of-flight of individual photons, which enables light that only interrogates the superficial 

tissues (i.e. early-arriving) to be distinguished from light that interrogates the brain (i.e. 

late-arriving) (Torricelli et al., 2014). Previous work has shown TR-fNIRS can detect 

motor imagery (MI) activity with excellent sensitivity in comparison to fMRI 

(Abdalmalak et al., 2017a). In addition, TR-fNIRS was successfully used as a BCI to 

communicate with a functionally locked-in patient at the bedside (Abdalmalak et al., 

2017b). Given these promising results, the goal of this work was to assess the feasibility 

of using TR-fNIRS to detect brain activity in DOC patients at the bedside. 

6.3 Methods 

6.3.1 Patient Population 

Five DOC patients and one locked-in patient were recruited. Two patients resided in 

London, Canada, while the remaining patients were visited in their homes/long term care 

facilities across the Greater Toronto Area (GTA), Canada. The five DOC patients were 

behaviorally assessed using the Coma Recovery Scale-Revised (CRS-R) to determine 

their respective diagnosis. Overall, one patient was diagnosed as VS and the remaining 

four as MCS. The demographics, along with the etiology for each patient, are presented 

in Table 6.1. Of the six patients, four had fMRI data previously acquired, which provided 

a unique opportunity to validate the TR-fNIRS data. All fMRI scans were acquired on a 

3T scanner at Robarts Research Institute in London, Canada. For patients that had 

undergone previous fMRI examination, the time between when the fMRI data were 

collected, and the fNIRS acquisition was at least one year. 

Table 6.1: Demographics of patients included in the study 

Patient ID 
Approximate time since 

onset of injury (months) 
CRS-R Diagnosis Etiology 

1 56 MCS TBI 

2 34 MCS TBI 

3 31 MCS ABI 

4 36 VS TBI 

5 100 Locked-In BSS 

6 59 MCS TBI 

TBI- Traumatic brain injury, ABI-Anoxic brain injury, BSS-Brainstem stroke 
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6.3.2 Experimental Paradigm 

The MI paradigm used in this study was adopted from Owen et al. (Owen et al., 2006). 

All patients were either seated in a wheelchair in a Fowler’s position or laid flat on a bed 

in a supine position. The paradigm started with a 30-s rest period followed by five 30-s 

alternating blocks of tennis imagery and rest for a total duration of 5:30 minutes. The 

patients were instructed to imagine themselves on a tennis court playing a vigorous game 

of tennis every time they heard the word “tennis” and to relax when they heard the word 

“rest”. This study was approved by the Research Ethics Board at Western University, and 

all patient’s substitute decision-makers provided consent to participate in the study. 

6.3.3 fNIRS System 

The TR-fNIRS system used was designed and built in-house. The system consisted of 

two pulsed lasers (λ = 760 and 830 nm) with a pulse repetition rate of 20 MHz. The lasers 

were controlled using a Sepia laser driver (PicoQuant, Germany) and the light was 

coupled into a 2.5 m bifurcated fiber (ϕ = 0.4 mm, NA=0.39, Fiberoptics Technology, 

United States). The emission fiber was secured on the head over FCz and four detection 

fiber bundles (2.5 m each, ϕ = 3.7 mm, NA=0.55, Fiberoptics Technology, United States) 

were placed in a cross-orientation with a source-detector distance of 3 cm. This probe 

placement was chosen in order to interrogate the secondary motor areas of the brain. The 

fibers were held using a 3D-printed holder (TAZ 5, LulzBot, United States) made of 

flexible material (NinjaFlex 3D Flexible Printing Filament, Fenner Drives Inc. United 

States), and an electroencephalography (EEG) cap (EASYCAP, Germany) was used to 

secure the holder to the surface of the head. For patients with severe traumatic brain 

injury where securing the fibers to the head using the EEG cap was difficult, a member of 

the research team physically affixed the holder to the head for the entire duration of the 

study.  

The diffusively reflected light from the head was detected using photomultiplier tubes 

(PMC-150, Becker & Hickl, Germany), and time-correlated single-photon counting 

boards (Becker & Hickl, Germany) were used to build a distribution of times-of-flight of 

photons (DTOF), which were recorded at a sampling rate of 0.3 s. All components of the 

system were enclosed in two cases allowing the system to be easily transported (see 
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Figure 6.1). Finally, to prevent the detectors from saturating during the study, the top of 

the patients’ heads was covered using an opaque blanket to reduce ambient light. 

 

Figure 6.1: Picture of the TR-fNIRS system after setup at a long-term care facility 

6.3.4 Data Analysis 

Depth sensitivity was achieved by calculating the statistical moments of the recorded 

DTOFs. Because of the right skewness of these distributions, higher moments are 

weighted towards late-arriving photons. For this analysis, each DTOF was truncated to 

reduce the effect of background noise. The cut-off levels were 10% of the maximum 

count from the ascending side and 1 to 5% of the maximum count from the descending 

side (Milej et al., 2015). Next, the change in the mean-time-of-flight (<t>) was calculated 

for each DTOF as previous work has shown that <t> provides a good compromise 

between enhancing depth sensitivity while maintaining a good signal-to-noise ratio 

(Abdalmalak et al., 2017a). The resulting <t> time courses were corrected for motion and 

filtered to remove high-frequency noise and slow temporal drifts. Next, the change in the 

mean time-of-flight (Δ<t>) and the mean time-of-flight sensitivity factor (MTSF) derived 

from Monte Carlo simulations were used to calculate the change in absorption coefficient 

(Δμa) for both wavelengths using (Kacprzak et al., 2007; Milej et al., 2016b, 2016a):  

∆𝜇𝑎(𝜆) =
∆<𝑡>

𝑀𝑇𝑆𝐹
 .    (6.1) 

The Δμa for both wavelengths were then converted to changes in concentration of oxy- 

(∆𝐶𝐻𝑏𝑂2
) and deoxyhemoglobin (∆𝐶𝐻𝑏) by:  

∆𝜇𝑎(𝜆) = (𝜀𝐻𝑏(𝜆)∆𝐶𝐻𝑏 + 𝜀𝐻𝑏𝑂2
(𝜆)∆𝐶𝐻𝑏𝑂2

) ln(10),  (6.2) 
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where, 𝜀𝐻𝑏(𝜆) and 𝜀𝐻𝑏𝑂2
(𝜆) are the molar extinction coefficients for deoxy- and 

oxyhemoglobin, respectively. 

The resulting hemoglobin time courses were analyzed using two different approaches. 

The first involved using the general linear model (GLM) to determine if changes in both 

oxy- and deoxyhemoglobin during the task periods were statistically different from rest. 

The presence of brain activity was based on the criteria that both a significant increase in 

oxyhemoglobin and a significant decrease in deoxyhemoglobin were observed in at least 

one of the four channels (Tachtsidis and Scholkmann, 2016).  

The second approach relied on using machine learning to classify the signals in order to 

determine the presence of brain activity. Features were extracted from both oxy- and 

deoxyhemoglobin time courses. The first feature was the signal slope during the first 16 

seconds of the task period, and second, was the correlation coefficient between the time 

course and the theoretical activation model consisting of a box function convolved with a 

hemodynamic response function. These features were chosen since previous work on 

healthy participants has shown that they provide the highest accuracy (Abdalmalak et al., 

2020). Two support vector machine (SVM) classifiers (one for oxyhemoglobin and 

another for deoxyhemoglobin) were used to classify each patient’s data. The classifiers 

were trained with 72 tennis imagery data sets previously acquired from 18 healthy 

volunteers. Each channel was classified independently, and at least one channel had to be 

classified as showing MI activation with both oxy- and deoxyhemoglobin to conclude the 

presence of brain activity.  

6.4 Results  

Preliminary fMRI results revealed MI activity in three (patients 3, 4 and 6) of the four 

patients who previously underwent fMRI. Of these patients, TR-fNIRS activity was 

detected in patients 3 and 4 with both GLM and machine learning. MI activity was also 

detected in patient 5 using the machine learning approach, albeit the absence of activity 

with fMRI. However, of all six patients, MI activity was detected in three patients using 

the GLM approach and in four patients using machine learning. A summary of the results 

is presented in Table 6.2. The last column in the table under TR-fNIRS labeled “overall” 

indicates whether brain activity was detected by both GLM and machine learning. 
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fMRI and TR-fNIRS results from one patient are presented in Figure 6.2. The fMRI 

shows clear activation across the secondary motor areas (supplementary motor area and 

the premotor cortex), while the TR-fNIRS results show a clear increase in 

oxyhemoglobin and a concurrent decrease in deoxyhemoglobin during the task period. 

Table 6.2: Summary of the fMRI and TR-fNIRS results. A green check mark 

indicates the presence of MI activity while a red cross indicates the absence of MI 

activity 

Patient ID Diagnosis fMRI TR-fNIRS 

 

GLM 

Analysis 

SVM 

Classifier 

Overall 

 

1 MCS 
Not 

acquired 
✓   

2 MCS 
Not 

acquired 
 ✓  

3 MCS ✓ ✓ ✓ ✓ 

4 VS ✓ ✓ ✓ ✓ 

5 Locked-in   ✓  

6 MCS ✓    

 

 

Figure 6.2: (a) fMRI activation from patient 3 laid over the patient’s T1 anatomical 

image. (b) Change in the concentration of oxy- (red) and deoxyhemoglobin (blue) 

from one channel averaged across all five trails. The error bars represent the 

standard error of the mean across trials. The grey box indicates the task period. 

6.5 Discussion and Conclusion  

This study presents the first account of using TR-fNIRS to assess brain function in DOC 

patients. In recent years, neuroimaging has played a vital role in assessing brain function 

in these patients. fNIRS, in particular, is well suited for such applications given the 
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systems are portable and inexpensive. In this study, a portable TR-fNIRS system was 

build and used to assess residual awareness in seven DOC patients, four of whom had 

undergone a similar fMRI protocol to assess command-driven brain activity, providing an 

opportunity to validate the fNIRS results.  

To date, two previous fNIRS studies have attempted to assess residual brain function in 

DOC patients. Work by Kempny et al. used a MI task and reported mixed results in a 

cohort of 16 DOC patients (Kempny et al., 2016). Nearly a third of the patients showed 

the typical fNIRS response of an increase in oxy- and a concurrent decrease in 

deoxyhemoglobin, roughly half showed an inverted BOLD response, and the remaining 

patients could not be classified into either category. Similarly, Kurz et al. used mental 

arithmetic to assess brain function in one DOC patient (Kurz et al., 2018). While brain 

activity was observed over a single trial, this was un-reproducible over different sessions. 

In addition, inconsistent correlation was found between the patient’s brain activity over 

different regions of interests and that of healthy participants, suggesting the results were 

random and hence did not depict command following. The absence of command-driven 

brain activity meant that the authors could not conclude residual awareness in this patient.  

Based on the fMRI examinations, the GLM approach provided more accurate results than 

the SVM classifier. However, it is important to emphasize that this conclusion is based on 

a sample size of four patients who had previously undergone fMRI. Looking at the results 

from all six patients, MI activity was detected in four patients using the machine learning 

approach and in three patients using GLM. The discrepancy between the two methods 

should be further assessed to determine which method works best. Given the ability to 

transport the TR-fNIRS system to patients, future work will focus on collecting repeated 

assessments of individual patients on separate days to assess reproducibility and 

accuracy. Patients that show promising results with TR-fNIRS could then undergo fMRI 

examination for additional confirmation. Using fNIRS as a pre-screening approach could 

reduce overall costs and risks associated with transporting patients to imaging facilities 

(Rohaut et al., 2019). In addition, detecting MI activity on multiple sessions would 

increase confidence in any conclusions regarding residual awareness. This conservative 

approach will reduce the chance of detecting false positives, albeit potentially increasing 

false negatives. 
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Balancing sensitivity and specificity is crucial as it can have a direct bearing on patient 

management (Abdalmalak et al., 2020). False positives could lead to false hope for 

families and prolonging unnecessary medical care, while false negatives could impact 

patient care and affect the interaction between health care workers and patients (Peterson 

et al., 2015). However, it is important to emphasize that conclusions regarding residual 

awareness can only be drawn from statistically significant positives results. Negative 

findings do not infer the absence of awareness since a small subgroup of healthy controls 

(~15%) do not show significant change in brain activity during MI (Fernández-Espejo et 

al., 2014). Moreover, some patients may be unmotivated to perform the task rather than 

being unable to perform it. It is therefore important to interpret negatives findings with 

caution.  

A potential limitation with this work was the small sample size used to train the SVM 

classifier. 72 data sets acquired from 18 participants were used for training purposes, 

which is a small number for machine learning. This could affect the overall accuracy of 

the classification. Given the challenges of collecting data sets involving large numbers of 

participants, the use of simulated activation data could mitigate this issue. This approach 

was used in a previous fNIRS study to train an SVM classifier for establishing 

rudimentary mental communication with a functionally locked-in patient (Abdalmalak et 

al., 2017b). Another potential limitation is that only SVM was tested in this study. This 

classifier was chosen based on results from a previous study, which showed that it 

provided good sensitivity without compromising specificity (Abdalmalak et al., 2020). 

Future work could investigate more sophisticated classifiers to improve overall accuracy.  

As with most clinical studies, there are certain challenges that can hinder the quality of 

the data acquired. For some patients, the overall background noise was relatively high 

due to large windows in the patient’s room. This is particularly challenging for TR-fNIRS 

since the technology relies on extremely sensitive detectors to detect single photons. In 

this study, extra care was required to ensure the detectors were not exposed to excessive 

ambient light, which increased the setup time. Another challenge was the difficulty of 

securing the probes to the heads of patients with traumatic brain injuries. For some 

patients, the probes had to be held to the scalp by a member of the research team for the 

duration of the study. This increased the chance of motion artifacts due to subtle 
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movements throughout the study. While motion reduction algorithms aid in reducing 

these artifacts, future work could incorporate better probe design or even investigate 

affixing the probes to the head using collodion to reduce probe motion (Yücel et al., 

2014).  

In summary, this study demonstrates the potential of TR-fNIRS as a tool to assess brain 

function in DOC patients. With recent advancement in TR technologies (Re et al., 2016; 

Buttafava et al., 2017), a wearable system that could provide continuous bedside 

communication is a possibility.  
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Chapter 7  

7 Conclusions and Future Directions  

This final chapter revisits the main objectives of this thesis and summaries the important 

findings from each chapter. Overall limitations of this work are discussed, and potential 

solutions presented. Finally, potential future directions and the overall impact of this 

research on the field of fNIRS-based BCIs will be discussed.  

7.1 Research Objectives  

In it most basic form, consciousness can be defined as the state of being ‘awake’ and 

‘aware’. Since fundamental questions regarding overall wellbeing rely on accurately 

assessing consciousness, a misdiagnosis of individuals as suffering from a disorder of 

consciousness (DOC) can have a significant impact on their quality of life. A patient 

population that is particularly vulnerable to high rates of misdiagnosis (~40%) is patients 

with brain injuries who retain residual awareness but lack all behavioral ability to 

purposefully interact with their environment. In recent years, neuroimaging has played a 

vital role in identifying these patients by assessing their ability to regulate their brain 

activity in response to commands.  

Owen at al., used motor imagery (MI) combined with functional magnetic resonance 

imaging (fMRI) to show that a patient clinically diagnosed as being in a vegetative state 

(i.e. experiencing sleep-wake cycles but lacking all clinical signs of awareness) was able 

to regulate her brain activity in response to commands, suggesting she was in fact aware 

(Owen et al., 2006). More specifically, the patient was asked to imagine playing a game 

of tennis every time she heard the word “tennis” and to stay relaxed when she heard the 

word “relax”. This led to activation in the motor planning areas of the brain, particularly 

the supplementary motor area (SMA) and premotor cortex (PMC), which were 

indistinguishable from that of healthy volunteers. Follow up work demonstrated the 

ability of using the same paradigm to establish mental communication with a subgroup of 

these patients, providing for the first time an opportunity to interact with them (Monti et 

al., 2010). These studies have revolutionized the field of neuroscience, providing critical 

information to clinical teams and patients’ caregivers. It also raises the question of 
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whether portable modalities could be used to assess brain function at the bedside and 

overcome some of the challenges associated with cost and accessibility of fMRI.  

One such modality is fNIRS, which is an emerging optical technique that is safe, portable 

and inexpensive. Previous work has demonstrated the ability of fNIRS to detect brain 

activity in healthy and patient populations (Eggebrecht et al., 2014; Yücel et al., 2017; 

Rupawala et al., 2018). While promising, the main challenge with fNIRS is the limited 

depth sensitivity resulting in the majority of the detected signal arising from superficial 

tissue (scalp and skull). This translates to lower accuracies and in some instances can lead 

to false positives, which is particularly concerning for studies attempting to assess 

residual brain function. One approach to enhance depth sensitivity is by using time-

resolved (TR) detection, which can discriminate between photons that interrogate the 

superficial tissue and ones that reach the brain, based on differences in their times of 

flight (Torricelli et al., 2014). In theory, using TR detection should therefore improve the 

overall accuracy and provide more reliable results. Prior to the body of work included in 

this dissertation, limited work has been conducted using TR-NIRS for functional studies.  

The overarching goal of this work was to use TR-fNIRS to assess brain function in DOC 

patients and advance our knowledge in the field of fNIRS-based BCIs. This was achieved 

by utilizing the well-established “imagine playing tennis” paradigm and developing a 

portable TR-fNIRS system tailored towards detecting MI-related activation in the motor 

planning regions.  

As a result, the following specific research objectives were addressed:  

1. Assess the feasibility of TR-fNIRS to detect brain activity caused by MI and 

validate the results against fMRI (Chapter 2).  

2. Demonstrate the BCI capabilities of TR-NIRS on a functionally locked-in 

patient (Chapter 4).  

3. Assess the sensitivity and specificity of TR-fNIRS as a BCI for binary mental 

communication with healthy participants (Chapter 5).  

4. Develop a portable TR-fNIRS system that can be transported to patients’ homes 

and long-term care facilities (Chapter 6).  
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5. Investigate if TR-fNIRS can detect brain activity in patients diagnosed with a 

disorder of consciousness due to a brain injury (Chapter 6).  

7.2 Summary of Individual Chapters  

7.2.1 Detecting Motor Imagery Activity on Healthy Controls using 
TR-fNIRS 

Chapter 2 focused on assessing the feasibility of TR-fNIRS to detect MI activity in 15 

healthy participants and investigating the improvement, if any, of using TR-NIRS over 

conventional NIRS. fMRI data were also acquired for each participant to provide a 

‘ground truth’ for comparison to validate the TR-fNIRS results. fMRI revealed 

significant brain activity in the SMA and PMC in 14 participants, along with areas of the 

parietal cortex due to the visual component of MI. The TR-fNIRS results revealed an 

increase in oxyhemoglobin and a concurrent decrease in deoxyhemoglobin during the 

task period for most participants. A clear improvement was observed using TR detection, 

since the change in the number of photons, which is analogous to continuous wave 

measurements, provided a sensitivity of 64%, while the mean time-of-flight achieved a 

sensitivity of 93%. Although it is possible to extract even greater depth sensitivity from 

the TR data, the mean time-of-flight provided a good compromise between depth 

sensitivity and signal-to-noise ratio.  

7.2.2 Understanding Inverse Oxygenation using fMRI and TR-
fNIRS  

Chapter 3 discussed the prevalence of inverse oxygenation (that is, the reversal of the 

oxy- and deoxyhemoglobin signals during the task period). Using fMRI and TR-fNIRS 

acquired on healthy participants during MI, the presence of inverse oxygenation and the 

potential cause of this phenomenon were explored. The fMRI data revealed that areas of 

the primary motor cortex and the visual cortex were activated during the rest periods, 

which was attributed to inadvertent motion and eye opening, respectively. This was 

observed in 7 of the 15 participants. Activation of the primary motor cortex is of 

particular concern since it is immediately adjacent to the secondary motor areas, which 

are activated during the task period. If the fNIRS probes are incorrectly placed on the 

head so as to interrogate the primary motor cortex, then the out-of-phase activity related 
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to inadvertent movement during the rest periods could be detected leading to inverse 

oxygenation. In this study, two of the seven participants that showed inverse oxygenation 

with fMRI also showed this phenomenon with TR-fNIRS. Monte Carlo simulations 

demonstrated that placement errors of the order of 2 cm could lead to 50% of the signal 

arising from the primary motor cortex.  

7.2.3 TR-fNIRS as a BCI for Mental Communication  

Chapters 4 and 5 presented the potential of TR-fNIRS as a BCI for mental 

communication. In this application, mental communication refers to responding to 

questions by regulating one’s brain activity. By mapping brain activity during various 

mental tasks, simple yes/no questions can be answered. In chapter 4, bedside mental 

communication was established with a functionally locked-in patient suffering from 

Guillian Barré Syndrome. The patient had minimal eye movements, which provided the 

opportunity to confirm the TR-fNIRS results. The patient was asked a series of questions 

(both factual and open ended) to which he responded using tennis imagery for affirmation 

or staying relax for a negative response. Using basic machine learning, the 

oxyhemoglobin time-courses calculated using the mean-time-of-flight data were 

classified as either “yes” or “no” responses, and the results achieved were in full 

agreement with the patient’s eye responses.  

In chapter 5, we further validated the concept of using MI-based BCI for binary mental 

communication with healthy participants. Once again, machine learning was used to 

classify the signals as yes or no responses. The NIRS results were compared to the 

ground truth responses provided by each participant after the study. The overall accuracy 

achieved was 76% using a support vector machine (SVM) classifier with a sensitivity of 

79% and specificity of 71%. The second classifier tested was a linear discriminant 

analysis (LDA), and the overall accuracy achieved was comparable to that of SVM. 

Interestingly, LDA provided a higher sensitivity of 83% but lower specificity of 58%. 

Another important conclusion from this work is that reporting accuracy alone for BCI 

studies is not sufficient, and better metrics such as sensitivity and specificity should be 

reported to accurately evaluate the performance of a classifier. The results of this study 
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also revealed no significant difference in accuracy between the four questions, suggesting 

the absence of any training effect as well as the absence of mental fatigue.  

7.2.4 Assessing Brain Function in DOC Patients using TR-fNIRS 

Chapter 6 combined various aspects from the previous chapters and presented a novel 

approach to assessing brain function in DOC patients. A portable TR-fNIRS system was 

developed that could be transported to patients’ homes and long-term care facilities, 

providing a true bedside assessment of brain function. Vegetative state (VS) and 

minimally conscious state (MCS) patients were behaviorally assessed using the Coma 

Recovery Scale-Revised (CRS-R) scale, and functionally assessed using TR-fNIRS. A 

locked-in patient was also recruited to serve as a control since locked-in patients are 

aware and have intact cognitive function. Four of the six patients included in this study 

had previously undergone fMRI, which provided an opportunity to validate the fNIRS 

results. Two approaches were used to analyze the TR-fNIRS data: general linear 

modelling (GLM) and machine learning.  

Preliminary results revealed MI activity in three of the four patients who previously 

underwent fMRI. Of these patients, TR-fNIRS activity was detected in two patients with 

both GLM and machine learning. MI activity was also detected in one patient using 

machine learning, albeit the absence of activity with fMRI. However, of all six patients, 

MI activity was detected in three patients using the GLM approach and in four patients 

using machine learning. Although promising, to use TR-fNIRS to infer consciousness, a 

conservative approach should be taken, i.e. MI activity must be reproducible over 

different sessions. This is because patient’s awareness can fluctuate throughout the day 

and in some instances, patients maybe unmotivated to perform the task instead of being 

unable to perform it. Moreover, because TR-fNIRS is portable, our system could also be 

used as a screening tool to identify patients who may have residual awareness and 

recommend more testing with sophisticated techniques such as fMRI. This will reduce 

the overall cost since less frequent fMRI examinations would be conducted. This would 

also lower the risk involved in transporting patients to an fMRI scanner.  
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7.3 Limitations  

This section discusses the limitations with aspects of the work presented in Chapters 2 to 

6. In addition, general limitations of this work that are common to all chapters are 

discussed. Please note that detailed study specific limitations are presented in the 

Discussion section of each individual chapter. 

7.3.1 Study Specific Limitations  

Chapters 2 and 3: The results presented in Chapter 2 and 3 were obtained using the 

same fMRI and TR-fNIRS data, therefore the general limitations apply to both studies. 

The most significant limitation is that the fMRI and TR-fNIRS data were not acquired 

simultaneously, therefore it was impossible to know if the participants were consistent in 

performing the MI task between sessions. Given the excellent agreement between the two 

modalities observed in Chapter 2, we can assume that in general, the participants were 

able to perform the task reliably with minimal-to-no habituation effects. This is also 

supported by previous fMRI studies that tested participants on different sessions and 

concluded the presence of consistent MI activity (Fernández-Espejo et al., 2014).  

For Chapter 3, the inability to acquire data simultaneously meant there was no way to 

determine if participants moved to the same extent between the MRI and NIRS sessions. 

Another limitation was the lack of electromyography to confirm movement during the 

rest periods. While no EMG was collected, the presence of significant activity in the 

primary motor cortex observed with fMRI during the rest periods confirmed subject 

movement. Another potential limitation was that only two participants showed inverse 

oxygenation with NIRS, resulting in a small sample size to make any definitive 

conclusions. However, it is important to emphasize that the main conclusion of this study 

was based on the fMRI results that showed primary motor cortex activity during the rest 

periods in nearly half of the participants.  

Chapter 4: This was only a case study since the incidence of GBS is relative rare 

(roughly 5 patients/million per year). It is therefore not possible to make any conclusions 

regarding reliability of our approach for locked-in patients as a group. This is an 

important consideration given the recent controversies surrounding Chaudhary and 
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colleague’s work, which highlights the need to be extremely judicious when applying a 

BCI for these vulnerable patients (Expression of Concern: Brain–Computer Interface–

Based Communication in the Completely Locked-In State, 2019; Spüler, 2019).  

Chapter 5: The main limitation with this study was the lack of an active task for the “no” 

response, which may have resulted in increased incidences of false positives. Due to the 

limited number of channels with our TR-fNIRS system, only one active task was chosen 

for affirmation. A “no” response required the participant to stay relaxed and not think of 

anything in particular for the session (i.e., a no response is essentially 5:30 minutes of 

rest). Fluctuations, whether task-evoked or even due to changes in systemic physiology, 

that coincided with the response period could have led to false positives. Another 

limitation was that the paradigm relied on asking each question multiple times to ensure 

good signal-to-noise ratio and the response period for each trial was 30 s in duration. 

These factors would clearly not work for real-time communication. However, it is 

important to note that the goal of this work was to obtain the most accurate results, since 

accuracy is more important than speed when attempting to communicate with patients 

with brain injuries.  

Chapter 6: A challenge with this work was the difference in accuracy obtained using the 

GLM and machine learning approaches, raising questions as to which approach is more 

accurate. Based on the fMRI results, the GLM approach was more accurate. However, 

given the small sample size, it is difficult to make any definitive conclusions, and further 

assessments must be conducted. Another limitation is that the SVM classifier was trained 

with only 72 data sets obtained from 18 healthy volunteers. While a larger training data 

set could improve performance, it is generally difficult to obtain large data sets on 

healthy controls. The final limitation was that patients were only assessed once, and since 

patient’s awareness can fluctuate throughout the day, it is difficult to conclude that the 

timing of the study was optimal for each patient.  

7.3.2 General Limitations 

A potential limitation common to all studies presented in this thesis is the limited number 

of channels used to detect MI activity. It was our hypothesis that given the focal brain 

activity during MI and prior knowledge of where the activation would occur that a four-
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channel TR system should be sufficient to accurately detect MI-related brain activity. 

This was confirmed by the results obtained in chapter 2. Another limitation is that only 

one probe holder design (i.e. cross-orientation with the emission fiber in the middle) was 

adopted for all studies. This probe design was chosen after initial testing with multiple 

designs; however, recent work can better guide probe placement and improve the overall 

sensitivity to the SMA and PMC (Zimeo Morais et al., 2018).  

7.4 Future work  

The promising results of this work highlight the potential of TR-fNIRS as a portable tool 

to detect brain activity at the bedside and provide an objective marker for assessing 

consciousness in DOC patients. In chapters 4 and 5, TR-fNIRS was also used as a BCI 

for mental communication. While the overall accuracy achieved of 76% is above the 

minimum required accuracy of 70% for a BCI to be viable for mental communication, 

there is still room for improvement. 

In order to reduce false positives caused by inherent fluctuations in NIRS signals, two 

active tasks, one for affirmation and another for the negative response, could be used 

(Hong et al., 2015). The most obvious choice would be to use MI for the “yes” response 

and mental arithmetic (MA) for the “no” response. This is a reasonable approach since 

MA activates areas of the prefrontal cortex, which are easily accessible by fNIRS. 

However, care must be taken when choosing the appropriate MA task in order to 

minimize the working memory component. This is critical since working memory can 

activate the SMA (see Figure 7.1), which is also activated during MI. The fMRI results 

presented in Figure 7.1 were acquired by Amandeep Jhajj, an undergraduate student 

working in the St. Lawrence lab. These results question the efficacy of previous studies 

that used MI and MA as a two class BCI for mental communication (Hong et al., 2015). 

Another active task that could be considered is imagining speaking, which activates 

cognitive regions within the temporal and parietal areas (Yücel et al., 2017). These brain 

areas are also accessible by fNIRS, and previous work has shown that reliable brain 

activity can be detected during this task (Eggebrecht et al., 2014). 
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Figure 7.1: fMRI activity from one participant during a mental arithmetic task 

(Figure courtesy of Amandeep Jhajj) 

In order to map brain activity from different regions, an 8 or 16 channel TR system 

would greatly improve spatial coverage. Recent advancement in TR technology including 

the development of compact pulsed lasers and silicon photomultiplier (SiPM) tubes 

greatly reduce the size of these instruments (Dalla Mora et al., 2015; Re et al., 2016; 

Buttafava et al., 2017). SiPM detectors are also less vulnerable to ambient light, making 

them ideal for use at the bedside (Scholkmann et al., 2014). Another advancement is the 

development of gated detectors (Mora et al., 2020), which utilize a time-windowing 

approach to separate early from late-arriving photons. The advantage of these detectors is 

the ability to reduce the source-detector distance and still interrogate the brain. This 

enables highly localized detection of brain activity, which can substantially enhance 

spatial resolution. These detectors also do not require photon-counting electronics, which 

significantly reduces the complexity and cost of TR-NIRS.  

Developing a compact TR system would also provide the opportunity to test different 

tasks to assess awareness. For example, high-density systems could provide the 

opportunity to measure functional connectivity, and unlike CW-fNIRS, provide the added 

benefit of enhanced depth sensitivity. This passive task would be ideal for patients who 

retain awareness but are unable to perform active tasks due to the nature of their brain 

injury.  
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7.4.1 BCI for Communicating with Patients who are Aware but 
Misdiagnosed as Suffering from a DOC  

One of the most interesting applications of this work is communicating with patients who 

are aware but misdiagnosed as being in VS. Chapter 6 demonstrated the ability of TR-

fNIRS to detect residual brain function in DOC patients. However, since patient’s 

awareness can fluctuate throughout the day, future work could involve testing patients on 

different days to assess reproducibility and provide a more reliable assessment of brain 

function. In addition, once a patient is identified as having residual brain function, mental 

communication might be possible using the techniques highlighted in chapters 4 and 5. 

Being able to communicate with these patients and not only ask clinically relevant 

questions, but also questions aimed at improving quality of life is the ultimate goal of this 

work. In order to achieve this, advances in data processing such as developing more 

sophisticated machine-learning algorithms could improve the overall accuracy and 

efficacy of TR-fNIRS based BCIs. One such approach would be to use unsupervised 

machine learning, which eliminates the need for labelling data prior to training the model. 

This approach can also be used to extract features that may be missed or not realized by 

the user.  Work by Erodĝan et al. showed that artificial neural networks provided the 

highest accuracy in differentiating between MI activation and rest in comparison to SVM 

and Random Forest classifiers (Erdoĝan et al., 2019). 

Another promising future direction for TR-based BCIs is pseudo-real time mental 

communication. Achieving this requires optimizing ‘fast’ features that do not require a 

large number of prior data before classifying the signals. A promising approach is to use 

vector phase analysis to identify the initial dip, which precedes the peak of the 

hemodynamic response and could be detected in the first couple of seconds post task 

onset. This would greatly increase speed and reduce the lag time between when a patient 

responds to a question and when the answer is recorded (Zafar and Hong, 2018).  

7.5 Conclusion 

In conclusion, this thesis enhances our understanding of brain function in patients with 

brain injuries and advances our knowledge in the field of fNIRS-based BCIs. The studies 

presented provide strong evidence that optical techniques such as TR-fNIRS could be 
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used as a tool to probe brain function in DOC patients at the bedside. We have also 

shown for the first time the ability of fNIRS to communicate with a locked-in patient 

under intensive care without the prior need for training. To this end, this work brings us a 

step closer to developing an objective marker for assessing consciousness, with the 

ultimate goal of improving the quality of life of patients with brain injuries.  
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