
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

5-21-2020 9:40 AM

Edge-cloud IoT Data Analytics: Intelligence at the Edge with Deep Edge-cloud IoT Data Analytics: Intelligence at the Edge with Deep

Learning Learning

Ananda Mohon M. Ghosh, The University of Western Ontario

Supervisor: Katarina Grolinger, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering

Science degree in Electrical and Computer Engineering

© Ananda Mohon M. Ghosh 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, Business Analytics Commons,

Computational Engineering Commons, Computer and Systems Architecture Commons, Data Science

Commons, Data Storage Systems Commons, Digital Communications and Networking Commons,

Graphics and Human Computer Interfaces Commons, Numerical Analysis and Scientific Computing

Commons, Other Applied Mathematics Commons, Other Computer Sciences Commons, Software

Engineering Commons, Statistical Models Commons, Systems and Communications Commons, Systems

and Integrative Engineering Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
Ghosh, Ananda Mohon M., "Edge-cloud IoT Data Analytics: Intelligence at the Edge with Deep Learning"
(2020). Electronic Thesis and Dissertation Repository. 7005.
https://ir.lib.uwo.ca/etd/7005

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

Chapter 2. Background 11

Figure 2.3: Feed Forward Neural Network.

the input layer is equal to the number of input features, while the number of output neurons

corresponds to the number of classes or the number of function outputs.

The FFNN training process starts by initializing weights to random values. Next, in the

feedforward pass: an input sample represented as a vector with the number of elements corre-

sponding to the number of input features is passed to the input layer. Information flows from

the input layer, through a hidden layer(s), to the output layer, and activation for each neuron

in the network is calculated. Once the output neuron activation is calculated, the error is de-

termined by comparing the network output with the desired/known output from the training

sample. This error is backpropagated [24] through the network, and the weights are updated

according to the optimization method to reduce the error for that specific training sample. This

forward pass and the backward pass are repeated for all samples in the training set: this is re-

ferred to as an epoch. Typically, NN requires several epochs for the weights to converge. After

the weights converge, the NN is ready for use.

Chapter 2. Background 12

Figure 2.4: Deep Learning [1].

2.4 Deep Learning

Deep learning (DL) is a class of machine learning algorithms that use a cascade of multiple lay-

ers, with each one performing a non-linear transformation [25]. In recent years, DL has gained

popularity because it demonstrated an ability to learn complex models and perform representa-

tion learning [3]. Figure 2.4 illustrates the deep learning process on the object recognition task.

Each layer learns a specific feature: edges, corners and contours, and object parts. The final

layer performs the ML task using the learned features. Deep learning uses data representations

rather than explicit data to perform learning: data are transformed into hierarchical abstract

representations that enable learning based on the features.

DL architectures are versatile, and a few popular examples include autoencoders, convo-

lutional, and recurrent neural networks. Because of the ability to extract global relationships

from data and reliance on high level abstractions, deep learning can be used for both supervised

and unsupervised learning. This thesis uses unsupervised learning, specifically autoencoders,

to reduce data sent from the edge to the cloud.

Autoencoders (AE) [26] are a subcategory of deep learning approaches used for learning

Chapter 2. Background 13

data representations (encodings) in an unsupervised way. Essentially, an autoencoder is a neu-

ral network (NN) that learns to reconstruct its inputs; bottleneck NN layers prevent it from

merely copying the input to the output and force it to learn data representations.

As illustrated in Figure 2.5, an AE consists of Encoder and Decoder, each one possibly

composed of several stacked layers. The encoder part of the network is responsible for re-

ducing dimensionality (encoding); therefore, the number of neurons typically reduces starting

from the input layer to the last encoder layer. In contract, the decoder part is responsible for

reconstructing the input signal from the encoded values and thus typically consists of layers

with a gradually increasing number of neurons.

For example, if a input vector x1, x2, ..., xn is passed through the AE, the input vector is

compressed through the hidden layers which have a fewer number of neurons than the input

layer, into lower dimensional space and then uncompressed to reproduce the x′1, x
′
2, ..., x

′
n as the

output.

An AE can be used for noise removal and anomaly detection, but they often serve as a pre-

processing step for another ML task [3]. AEs have great potential in the IoT context because

they can carry out representation learning by transforming data into hierarchical abstract repre-

sentations that enable learning good features [27]. Once an AE is trained, the encoder network

can be used for dimensionality reduction by taking encoder outputs (encodings) as inputs to

another ML model.

In this thesis, the encoder part of the trained AE is deployed on the edge to reduce dimen-

sionality before the data are sent to the cloud. Moreover, the decoder is employed on the cloud

to reconstruct the original signal.

2.5 Principal Component Analysis

Principal Component Analysis (PCA) [28] is a widely used linear dimensionality reduction

technique. It uses orthogonal transformations to convert a set of possibly correlated features

Chapter 2. Background 14

Figure 2.5: Autoencoder.

into a set of linearly uncorrelated features, referred to as principal components. The first prin-

cipal component explains the largest part of the data variation, and each following component

explains the next highest variance under the constraint that it is orthogonal to the preceding

components. Dimensionality reduction is achieved by using only the first n principal compo-

nents.

Let us consider a data set X of dimension p × q were p is the number of observations

and q the number of features. This X matrix is first centered by subtracting the mean µ from

X resulting in X′ matrix. Then, the covariance matrix is computed, and the eigenvalues and

eigenvectors of this covariance matrix are calculated. Eigenvectors form the columns of V ma-

trix; thus, V dimension is q× k where q represents features, and k is the eigenvector dimension.

Then, PCA projection of X′ can be calculated as:

Z = X′V (2.1)

Here, Z dimension is p × k, where p is the number of samples, and k is the number of com-

ponents. Dimensionality reduction is achieved by only using m components, where m < k

[29].

When dimensionality reduction is carried out with PCA, the original feature values (q fea-

ture space) can be restored from k principal components by taking advantage of matrix V .

Chapter 2. Background 15

Specifically, X′ can be restored as:

X′ = ZVT = X′VVT (2.2)

Next, mean µ needs to be added to reconstruct original matrix X:

X = X′VVT + µ (2.3)

If only n principal components are used, the original signal will be restored with some error.

In this thesis, data reduction with autoencoders is compared to data reduction using PCA.

2.6 Evaluation Metrics

The presented edge-cloud architecture for IoT data analytics was evaluated on the human activ-

ity recognition (HAR) task. As HAR is a multi-class classification problem where activities are

categorized as standing, walking, and similar, classification metrics have been used [30]. Table

2.1 shows the confusion matrix: Actual Class stands for the known labels from the dataset, and

Predicted Class stands for the output of the classification model. Remaining values in the table

are as follows:

• True positives (TP) - the number of samples correctly identified as belonging to the

positive class

• True negatives (TN) - the number of samples correctly identified as belonging to the

negative class

• False positives (FP) - the number of samples incorrectly identified as belonging to the

positive class

Chapter 2. Background 16

• False negatives (FN) - the number of samples incorrectly identified as belonging to the

negative class

Table 2.1: Confusion Matrix.

Actual Class
Positive Negative

Predicted Class Positive TP FP
Negative FN TN

With the help of the values from confusion matrix, the classification Accuracy, Precision,

and Recall can be calculated as follows:

Accuracy =
T P + T N

T P + T N + FP + FN
(2.4)

Precision =
T P

T P + FP
(2.5)

Recall =
T P

T P + FN
(2.6)

Accuracy is the proportion of the samples correctly classified, precision is the proportion of

positive identifications that was correct, and recall is the proportion of actual positives correctly

identified as positives.

In addition to classification accuracy, the performed experiments also evaluate how similar

is the reconstructed sample to its corresponding original sample. This is done with Mean

Squared Error (MSE) and Mean Absolute Error (MAE):

Chapter 2. Background 17

MS E = 1/N
N∑

i=1

(yi − ŷi)2

MAE = 1/N
N∑

i=1

|yi − ŷi|

where yi and ŷi are the actual and the corresponding predicted values, and N is the number of

observations.

When autoencoders reduce data and then reconstruct the original sample, there will be an

error depending on how much data was reduced in the autoencoder bottleneck. This error is

evaluated with MSE and MAE.

Chapter 3

Related Work

This section first discusses related edge computing work including edge computing applica-

tions in smart homes and cities, healthcare, and manufacturing. The edge computing approach

presented in this thesis was evaluated on the human activity recognition task; therefore, this

chapter also reviews related work in human activity monitoring.

3.1 Edge Computing

Edge computing has been gaining popularity, especially with applications that require fast

response time and those with limited bandwidth because it locates computation close to the data

sources. Applications of edge computing including smart street lamps [31], face identification

[32], smart manufacturing [33], and vehicular networks [34] have demonstrated great success

and prompted further investigations.

Wang et al. [35] presented a survey on mobile edge networks focusing on computing-

related issues, edge offloading, and communication techniques for edge-based systems. The

use cases highlighted in their study include IoT, connected vehicles, content delivery, and big

data analysis. At the same time, Wang et al. [35] identified real-time analytics as one of

the open challenges. Similarly, Abbas et al. [21] surveyed mobile edge computing and also

identified big data analytics as a future research direction. While Wang et al. [35] and Abbas

18

Chapter 3. RelatedWork 19

et al. [21] examined mobile edge computing, El-Sayed et al. [7] focused on IoT applications

of edge computing. They compared the characteristics of cloud, multi-cloud, fog, and edge

computing and identified low bandwidth utilization and latencies as the main edge computing

advantages. Mao et al. [36] see edge computing as a key enabling technology for realizing the

IoT vision and, similar to Wang et al. [35] and Abbas et al. [21], recognize data analytics as

one of the future research directions in edge computing.

Discussed surveys [7, 21, 35, 36] note the potential of edge computing in data analytics

and point out the importance of edge computing in IoT for handling the rapid increase of the

number of connected devices. This thesis contributes to employing edge computing for data

analytics by combining edge and cloud computing for the delivery of ML applications.

Several studies present various scenarios with accompanying edge-based architectures demon-

strating edge computing capabilities. Sinaeepourfard et al. [37] proposed the fog to cloud

(F2C) data management architecture incorporating the data preservation block to provide faster

data access than the cloud. To illustrate the possible benefits of the proposed architecture, they

calculated the potential reduction in the data transfer volume and latency decrease, taking the

city of Barcelona as an example. Sinaeepourfard et al. did not run real-world experiments.

Jararweh et al. [38] proposed a hierarchical model composed of mobile edge computing servers

and cloudlets, small clouds located close to the edge of the network. Their experiments con-

sisted of simulation scenarios; varying numbers of requests were generated with the objective

of demonstrating how the offloading impacts the power consumption and the incurred delay.

While Sinaeepourfard et al. [37] and Jararweh et al. [38] demonstrate potentials of edge

computing, this thesis is concerned with embedding intelligence in the edge for data analytics

tasks.

Edge computing has been used to reduce network traffic in a variety of applications, while

video compression has been a common way of dealing with video downloads, uploads, and

streaming. Video compression is based on the understanding that information between consec-

utive frames changes very slowly. For example, the background may not need to be encoded

Chapter 3. RelatedWork 20

for each frame but can be reused. As the name indicates, video compression targets specif-

ically videos and takes advantage of relationships between video elements. In contrast, our

approach is designed for IoT data with the objective of reducing network traffic specifically for

machine learning applications. In our approach, autoencoders find relationships between read-

ings within the same timestep and well as between consequent timesteps through the sliding

window approach.

In addition to studies investigating edge computing architectures, potentials, and advan-

tages in general scenarios, a number of studies investigated applications of edge computing in

specific domains. The three most commonly discussed areas of edge computing applications

are smart homes and cities, healthcare, and manufacturing; therefore, the following subsections

discuss edge computing applications in those domains.

3.1.1 Edge Computing in Smart Home and Smart City

Smart home and city scenarios are one of the most commonly discussed use cases and applica-

tions of edge computing [7]. While the smart grid, smart traffic lights, and smart vehicles are

sometimes considered separately [7], here we consider them as use cases within the smart city

domain.

Mohammad et al. [39] examined possibilities of service-oriented middleware for cloud and

fog enabled smart city services. They did not discuss specific smart city services but focused

on the middleware. Their experiments demonstrated the benefits of edge computing in terms

of response time.

Tang et al. [11] presented a hierarchical fog computing architecture for the support of

connected devices in smart cities. In addition to the hierarchy of fog nodes, the proposed

model includes the cloud as the top layer. The evaluation was performed on an event detection

task in a smart pipeline monitoring system: the preliminary results demonstrated the feasibility

of the proposed architecture. Similar to Mohammad et al. [39] and Tang et al. [11], this

dissertation also employs both edge/fog and cloud, but differs from theirs in that it also includes

Chapter 3. RelatedWork 21

an extensive evaluation of the presented edge-cloud architecture.

A fog-enabled real-time traffic management system investigated by Wang et al. [40] of-

floads computation to the fog nodes to minimize average response time for events reported by

vehicles. Their system consists of three layers: the cloud, cloudlet, and fog layer. Vehicles act

as fog nodes, cloudlets are assigned to the city regions, and cloud servers act as the integration

system if needed. Conducted simulation experiments are based on the real-world traces of tax-

ies and focus on exploring the effects of the number of fog nodes and service requests. Wang

et al. [40] focused on message passing and processing while this thesis deals with machine

learning for IoT.

The study by He et al. [41] presented a multi-tier fog computing model for large-scale

data analytics services in smart cities. The multi-tier fog consists of ad-hoc fogs and dedicated

fogs with opportunistic and dedicated computing resources, respectively. Offloading, resource

allocation, and Quality of Service (QoS) aware job admission were designed to support data

analytics and maximize analytics service utilities. In their experiment setup, ad-hoc nodes are

lower resource devices such as Raspberry PIs and desktops, while higher resource servers are

used as dedicated nodes. They evaluated the proposed model on the classification tasks: the

results demonstrated that fogs can improve the performance of smart city services. While the

work of He et al. [41] deals with the fog architecture, our study takes advantage of both edge

and cloud for the ML task.

Jia et al. [31] proposed a Smart Street Lamp (SSL) system based on fog computing for

smart cities to reduce maintenance periods, decrease energy consumption, providing fine-grain

control, and reducing theft. The evaluation demonstrated that the SSL system is capable of

self-understanding various static, pre-defined states, and consequently able to improve issue

detection and maintenance. Their experiments focused on the overall features of the system

and did not specifically consider and compare the advantage of fog servers over cloud servers.

Hossain et. al [42] presented an edge computing framework for enabling situation aware-

ness in a smart city. In their approach, a part of the processing is carried out on edge servers,

Chapter 3. RelatedWork 22

and the computation is finalized on the cloud server by aggregating information forwarded

from the edge nodes. Finally, the end user is presented by the situation awareness image-like

view. Like this thesis, Hossain et. al employed edge nodes to carry out part of the computation;

however, while Hossain et. al addressed a specific scenario (situation awareness), this thesis is

concerned with employing edge computing for machine learning tasks.

3.1.2 Edge Computing in Healthcare

This thesis evaluates the presented edge-cloud approach on the use case of human activity

recognition (HAR). Applications of HAR include assisted living, healthcare monitoring, fitness

tracking, and work assessment. As many HAR applications fall into the healthcare category, it

is important to review edge-based systems in healthcare.

Rahmani et al. [43] presented a fog-assisted architecture for smart e-Health which embeds

intelligence between sensors and the could. In a traditional healthcare IoT system, gateways

are used to translate between protocols and send data to the cloud. Rahmani et al. exploit the

position of these gateways to offer computing services such as storage, real-time processing,

and data mining. The fog computing concepts are employed by using gateways to form a

geo-distributed intermediary between edge nodes and cloud. Rahmani et al. demonstrate the

proposed approach with a prototype Early Warning Score (EWS) health monitoring system for

estimating the degree of illness and the risk of the patient deterioration in a hospital. In their

study, fog nodes are quite powerful and thus able to handle data filtering, compression, fusion,

and analysis with only minimal data sent to the cloud. This dissertation, on the other hand, still

performs a large part of the computation on the cloud.

Ritrovato et al. [44] also dealt with healthcare and proposed an edge-cloud computing ar-

chitecture for real-time anomaly detection from sensor data streams. In their work, the main

role of the edge nodes is to collect data from the sensor layer, convert it into different represen-

tations, and send it to the cloud. While Ritrovato et al. focus on stream processing algorithms

and use edge devices solely for representation transformation, this dissertation deals with ML

Chapter 3. RelatedWork 23

algorithms and combines edge and cloud to carry out ML tasks.

Chen et. al [45] proposed edge-cognitive computing-based smart healthcare system. The

system uses cognitive and edge computing to monitor and analyze the physical health of users.

Machine learning and deep learning are the key technologies of their cognitive engine respon-

sible for processing and analyzing data. While Chen et. al position the ML task on the edge

nodes, in our work, the edge and cloud are combined for ML.

Wang et. al [46] proposed HealthEdge, a task scheduling approach for edge-cloud health-

care systems with health emergency considerations. HealthEdge assigns different priorities to

tasks and determines if the task should be executed on the edge or cloud based on human health

status data. The main objective of their approach is to reduce processing time for medically

urgent tasks.

Overall, in the healthcare domain, the potential of edge-cloud systems has been recognized,

and various studies considered edge computing for different healthcare tasks. However, the

reviewed studies consider general purpose computing, while this thesis considers combining

edge and cloud for machine learning tasks. Chen et. al [45] did consider ML, but, in their work

ML is located on the edge nodes while in our work the edge and cloud are combined for ML.

3.1.3 Edge Computing in Manufacturing

In manufacturing, edge computing offers not only the benefit of reduced network traffic and

latencies but also enables the company to keep data on premises, therefore, reducing exposure

to cloud-related privacy and security threats.

Li et al. [33] proposed a manufacturing inspection system based on deep learning and fog

computing for defect detection in large factories with big data. In their system, production

images are captured by cameras and sent to the convolutional neural network (CNN) for defect

detection. In contrast to traditional CNN, where all layers are located on a single computing

node, in the architecture proposed by Li et al., lower-level layers are located on the fog nodes

and higher-level layers on the server. Performed experiments demonstrated high defect detec-

Chapter 3. RelatedWork 24

tion accuracy, decreased load on the central servers, and reduced overall computation time;

however, latencies and communication overhead were not analyzed.

Chen et al. [47] presented an edge computing architecture for IoT-based manufacturing

and analyzed four aspects of edge computing including edge devices, network communication,

information fusion, and integration with cloud computing. They highlighted edge computing

benefits of agility, real-time processing, and autonomy in intelligent manufacturing. Also,

Chen et. al [47] recognized that edge devices could be used for artificial intelligence and

machine learning, but they did not provide any specifics on how this would be achieved, nor

they consider combining the edge and cloud for ML.

A hybrid computing solution for smart manufacturing proposed by Li et. al [48] consists

of four layers: device layer, edge computing, cloud system, and Software Defined Network

(SDN) layer. The focus of their work is on resource scheduling strategy in the edge-cloud

system to achieve low latencies. Experiments demonstrated that the proposed strategy reduces

latencies in comparison to cloud computing and edge computing without scheduling. Like

this thesis, the work of Li et. al [48] considered AI tasks and their location in the edge-cloud

system. The difference is that Li et. al used the scheduling algorithm to find the node for the

AI task allocation, while this thesis is concerned with combining edge and cloud nodes for the

ML task.

Wu et. al [49] presented a fog enabled framework for monitoring machine conditions

and for predictive analytics. In their work, the cloud is responsible for building (training) the

predictive model, while the local node is responsible for applying the trained model to new

data. By locating the trained model on the edge, prediction latency is reduced. The streaming

data is sent to the cloud for ML training. The presented case study demonstrated the ability

of the proposed architecture on the task of predicting tool wear and investigated the accuracy

of the achieved prediction but did not analyze the computation benefits of edge computing. In

Wu et. al [49] approach, the cloud is not involved in the prediction/inference stage while in our

work, the cloud is still involved as data from different edge nodes needs to be integrated for the

Chapter 3. RelatedWork 25

final ML task. Moreover, our study reduces the quantity of data sent to the cloud.

Reviewed edge-computing studies in manufacturing demonstrate benefits highlighting re-

duced latencies and reliance on the on-site facilities. Moreover, some consider AI and/or ML

[48, 49] in their case studies. Nevertheless, our study is different as it merges cloud and fog

nodes to achieve a single task, and it analyzes the reduction in network traffic.

3.2 Human Activity Monitoring

As this thesis evaluates the edge-cloud data analytics approach on sensor-based human activity

recognition (HAR), it is important to review recent works from this category.

Given the fact that deep learning has been quite successful and extensively used for HAR

[50], the work of Wang et al. [50] surveyed deep learning approaches for activity recognition;

they highlighted the importance of model selection and the significance of preprocessing in-

cluding the sliding window technique. Zdravevski et al. [51] specifically focused on feature

engineering for HAR. This thesis incorporates the sliding window technique from Wang et al.

[50] work and, to addresses the feature engineering challenge discussed by Zdravevski et al.

[51], we take advantage of autoencoders’ representation learning characteristics.

Uddin [52] proposed a wearable sensor-based activity recognition system for smart health-

care. Data from wearable sensors including magnetometer, accelerometer, gyroscope, and elec-

trocardiography (ECG) sensors, are sent to the edge node, i.e., personal computer or laptop,

for activity recognition. The recognition is carried out on the edge node using the Recurrent

Neural Network (RNN) with Graphics Processing Unit (GPU) acceleration. In their experi-

ments, proposed RNN outperformed Deep Belief Network (DBN) and Hidden Markov Models

(HMM). Like Uddin [52], we also use edge nodes and RNNs; however, while Uddin only used

the edge nodes (without the cloud), our work combines the edge and cloud. Moreover, this

thesis also analyzes network traffic reduction achieved through edge computing.

There were also studies investigating human detection and identification from pictures and

Chapter 3. RelatedWork 26

videos. Bellavista et. al [53] studied dynamically extending edge computing to mobile devices

to exploit the crowd for mobile computing. Their main focus is on investigating the intercon-

nections among continuously moving geographically distributed nodes, while video analysis

for face recognition is only mentioned as a use case.

Hu et al. [32] similarly used fog computing first to detect a face in an image and then to

identify the individual. Like our study, the work of Hu et al. [32] used edge nodes to extract

features, but Hu et al. dealt with images and face identifiers, while our work is concerned with

IoT sensor data. The presented experiments [32] demonstrated a reduction in network traffic

and response time. While their approach allows for a single degree of data reduction on the

edge, our work considers different degrees of data reduction and their impact on accuracy.

Nikouei et al. [54] also investigated human detection from surveillance video streams:

they proposed a lightweight Convolutional Neural Network (L-CNN) to detect pedestrians with

edge devices. While our work uses a combination of edge and cloud nodes, Nikouei et al. [54]

use only edge nodes.

Uddin [52], Hu et al. [32], and Nikouei et al. [54] used edge computing for different

human activity-related tasks. Uddin [52] and Nikouei et al. [54] only used edge nodes while

Hu et al. [32] combined edge and cloud nodes. Moreover, Hu et al. employed edge nodes for

feature extraction as we do in our work. However, while they are concerned with videos and

one degree of data reduction, our work deals with sensor data and compares different degree of

data reduction on the edge.

Chapter 4

Edge Cloud ML System Models

This chapter first describes the edge-cloud computing architecture for machine learning with

IoT data and data reduction with autoencoders for edge-cloud systems. Next, the single-node

edge-cloud computation model will be discussed, followed by the multi-node model.

4.1 Edge-cloud Computing Architecture

The edge-cloud architecture for data analytics is depicted in Figure 4.1. Similar to any other

edge-based system, data from sensor-equipped devices such as smartphones, activity monitors,

and smart meters, are transferred to the edge nodes for further processing. Pure edge com-

puting systems perform complete computation on the edge nodes, whereas typical edge-cloud

systems carry out task-specific computation on the edge and possibly connect to the cloud for

integration purposes [40].

Sensors are capable of high-frequency sampling: for example, voltage sensor can record

thousands of readings per second. Because of this, the quantity of data that need to be trans-

ferred is very large. Attempting to move all these data to the cloud for processing will result in

high latencies and increased network traffic. Moreover, ML with such large data sets is chal-

lenging, time consuming, and sometimes infeasible. Therefore, the role of the edge nodes in

the edge-cloud architecture for data analytics presented in Figure 4.1 is to reduce the quantity

27

Chapter 4. Edge CloudML SystemModels 28

Figure 4.1: Edge-cloud computing architecture for data analytics.

of data transferred to the cloud in a way suitable for machine learning. While other edge com-

puting solutions also reduce data transfer, the solution presented here focuses on data reduction

for ML tasks.

The two main categories of data reduction techniques in ML are dimensionality reduction,

which reduces the number of variables under consideration, and instance selection, which se-

lects a data subset for ML [3]. This thesis uses a dimensionality reduction-based technique.

After the data are reduced on the edge layer, they are sent to the cloud for ML tasks. Data from

different sensors may be sent to different edge nodes, as illustrated in Figure 4.1, but all nodes

forward the reduced data to the centralized location. In this way, ML models residing on the

cloud can take advantage of the data coming from different places and through different edge

nodes. Specific tasks could possibly be carried out on the edge nodes, but those would only

have access to data from a subset of sensors.

Chapter 4. Edge CloudML SystemModels 29

4.2 Data Reduction with Autoencoders

For data reduction on edge nodes, this thesis uses autoencoders. As already mentioned, autoen-

coders are capable of dimensionality reduction by learning hierarchical data representations.

As illustrated in Figure 4.2, autoencoders take input data and process them through several hid-

den layers. The number of neurons in the hidden layers is smaller than the number of neurons

in the input layer, which forces an autoencoder to learn an internal representation of data. An

autoencoder consists of two parts: the encoder part compresses data by transforming it into

abstract representation (encodings), and the decoder part is responsible for reconstructing the

original data from the abstract representation. The inner layers of the autoencoder can be used

as features for ML tasks.

To use an autoencoder for data reduction in the edge-cloud architecture, the encoder part of

the trained model is located on the edge, and the decoder part is on the cloud. This way, when

high-dimensional data ahttps://www.overleaf.com/project/5e31eb096847d40001ff38d5rrive at

the edge node, they are reduced to a smaller number of dimensions according to the encoder

architecture. After these data are sent to the cloud, they can be directly used for ML tasks, or

the original signal can be reconstructed through the decoder part of the autoencoder located

Figure 4.2: Autoencoder for dimensionality reduction in edge-cloud architecture.

