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Abstract 

The goal of this thesis was to increase understanding of the role of the human microbiome in 

kidney stone disease, from stone nidus formation through to surgical stone treatment, using a 

combination of in vitro, in vivo, and human clinical investigations. 

We first optimized our methods of sample collection for the use of such protocols in clinical 

studies involving urinary and gut microbiota investigations. We developed a novel method of 

fecal sampling that is amenable to study participants, inexpensive, and results in reliable 

downstream sequencing results. 

We then utilized this sampling methodology in clinical investigations into the microbiota of 

surgical kidney stone patients using a systems-level approach. We determined that there is a 

microbiota present in all kidney stone crystalline compositions, which was previously 

unknown. The urinary microbiome was distinct between stone formers and controls in both 

microbiota composition and based on targeted metabolomics. Stone formers had higher 

urinary oxalate concentrations and elevated relative abundance of inflammatory and 

uropathogenic microbes throughout the course of stone treatment. In the gut, stone formers 

had altered microbial community composition at both a taxonomic and functional level, with 

implications for uropathogen abundance and host oxalate homeostasis. We determined that 

the gut has a significant and multipronged contribution to kidney stone formation.  

In a cohort of primarily nephrolithiasis-related urological patients, we further characterized 

the microbiota associated with ureteral stents, an almost ubiquitous component of surgical 

stone treatment. We determined that the stent microbiota is reproducible and patient specific, 

and not represented by the urinary microbiota. Patient factors and comorbidities drive the 

stent microbiota composition, and neither the microbial community nor degree of stent 

encrustation were altered by antibiotic use, indicating that perhaps antibiotic use in stent 

patients needs recalibration. 

Finally, we investigated host-microbe interactions in stone formation using in vitro and in 

vivo models, specifically how uropathogens may contribute to stone formation and how 

probiotics may provide therapeutic benefit. We determined that both pathogenic and 
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beneficial bacteria have the capability of shaping stone disease progression and should be 

considered in stone treatment. 

Collectively, these studies have shed light on the contribution of microbes in this prevalent 

and morbid condition, and elucidated novel ways to harness the microbiome in 

nephrolithiasis management. 

 

Keywords 

Kidney stone disease, microbiome, next generation sequencing, endourology, Drosophila 
melanogaster, ureteral stents 
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Summary for Lay Audience 

Kidney stone disease affects approximately 10% of the population; it has been described as a 

pain worse than childbirth and its treatment is a financial drain to the health care system. 

Many people develop stones time and time again, but why this happens is not well known. 

This project aimed to determine if the microbiota, the bacteria that live within us, is a factor 

in this disease. We determined that the bacteria, and the products they make, in the gut and 

urinary tract of people with stone disease are different from healthy individuals in ways that 

may exacerbate stone formation. The majority of kidney stones are composed of calcium 

oxalate, and the gut bacteria in stone formers may be causing the increased levels of oxalate 

that we measured in the patient’s urine. Stone formers that are exposed to antibiotics more 

often also carried antibiotic-resistant bacteria within them, indicating previous antibiotic 

exposure damages the beneficial microbial ecosystem. When we investigated medical 

devices (ureteral stents) that are used in stone patients which can become infected with 

bacteria, antibiotic use did not prevent the presence of harmful bacteria on the devices, or in 

the bladder. We also found that the stent microbiota was different if the patient had diabetes, 

IBS/IBD, and other comorbidities. These factors should be considered in future stone patients 

that require ureteral stents and we believe the standard of care of antibiotics needs to be 

modified. Using a model of stone disease in fruit flies, we determined that beneficial bacteria 

could protect against stone formation, and that harmful bacteria in the urinary tract may be 

making stone disease worse. Future research could lead to the development of effective 

probiotics against kidney stones. Overall, we have found that bacteria are intimately involved 

in stone formation — some harmful bacteria present in stone formers encourage stone 

formation, while beneficial bacteria in healthy people can be protective. This condition is 

increasing in prevalence, and we need better solutions to prevent it — this work illustrates 

that bacteria may be the key to future kidney stone treatment. 
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Chapter 1  

1 General Discussion 
Kidney stone disease, or nephrolithiasis, is one of the most prevalent urologic pathologies. 

The disease has existed in parallel with civilization: it is referred to in the Hippocratic Oath, 

and stones have even been discovered in ancient Egyptian mummies. Various different 

compositions of kidney stones exist, each with unique etiology and associated risk factors. 

Despite a wealth of research existing on the mechanisms of stone formation, much still 

remains elusively idiopathic.  

In the field of urology, bacteria have traditionally been thought of only in the context of 

infection, but we now know there to be a microbial community present in the healthy urinary 

tract. The microbial ecosystems living on and in us, as well as their genes and products are 

collectively referred to as the microbiome. The extensive human microbiome research field 

has uncovered previously unknown relationships with various states of systemic health and 

disease; however, consideration of the microbiome in urological conditions is only just 

emerging. The gut microbiome may indirectly affect stone disease by dictating what solutes 

ultimately end up in the urine, whereas the urinary microbiome may have a direct effect at 

the site of stone formation. Herein we explore how the human microbiome as a whole may 

impact stone disease, from the relative risk factors, to the inception of stone formation, and 

the role of bacteria in future disease treatment. 

1.1 Kidney stone disease 
Nephrolithiasis affects approximately 10% of the North American population; prevalence 

rates appear to be rising and have more than doubled over the last four decades in adult 

Americans (Pearle et al., 2005). Nephrolithiasis also has an extremely high rate of 

recurrence, estimated at 50% within 5 years (Pearle et al., 2005, Stamatelou et al., 2003). 

These features compound the burden of the disorder when the patient morbidity and 

economic onus are also considered. While some stones may be asymptomatic and detected 

incidentally, others can cause extreme renal colic and complications leading to emergency 

room visits, hospitalization, and surgical intervention (Khan et al., 2016). The loss of work 
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and treatment costs due to urolithiasis were associated with an estimated annual expenditure 

of greater than $ 5 billion in the United States (Pearle et al., 2005).  

Kidney stones are composed of organic and inorganic crystals combined with various urinary 

macromolecules (Rodgers, 2017) and can form in the renal pelvis and calyces either freely or 

bound to renal papillae (Figure 1). These calculi result from supersaturation of urinary 

solutes that can precipitate and crystallize, leading to crystal aggregation and stone growth. 

Many stones begin as Randall’s plaques, which are calcium phosphate deposits found on the 

tips of renal papillae and are often associated with recurrent stone formation (Daudon et al., 

2015; Kim et al., 2005; Kuo et al., 2003; Matlaga et al., 2007). Of the various compositions 

of kidney stones, calcium-based stones are by far the most common, comprising more than 

80% of all stones, the majority of which are calcium oxalate (CaOx) (Moe, 2006). Less 

common stone compositions include uric acid (5-10%), struvite (5-15%), cystine (1-2.5%), 

and drug-induced stones (<1%) (Moe, 2006).  

The propensity for stone formation differs by sex, age, geography, race, and body mass index 

(BMI) (Scales Jr. et al., 2012). Historically stone disease was between 2-3 times more 

common in men than women (Soucie et al., 1994), however in recent years this disparity has 

narrowed significantly (Ordon et al., 2015; Scales Jr. et al., 2007; Strope et al., 2010). In 

Ontario, it was found that the rate of kidney stone procedures performed per year between 

1991 and 2010 increased by approximately 48%, which was accounted for mainly by an 

increase in procedures performed on women (Ordon et al., 2015). This rise in disease burden 

in women may be due to inflating rates of obesity, decreased fluid intake, and other lifestyle 

changes that are associated with risk of stone formation, as discussed later (Strope et al., 

2010).  

Kidney stone data are collected in different fashions, but among countries with age-stratified 

stone prevalence data there is a rise and fall pattern where incidence normally peaks around 

age 50, and subsequently decreases (Romero et al., 2010). Geographical variation in stone 

disease in the United States reflects environmental risk factors; stone prevalence is increased 

in hotter climates leading to decreased hydration status and more concentrated urine, as well 

as areas with high sunlight and increased Vitamin D production. This manifests in the 

southeastern states, where stone prevalence is highest, compared to the lowest rates in the 
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northwest (Romero et al., 2010; Soucie et al.,1994). In the US, race impacts stone prevalence 

whereby rates are highest for non-Hispanic white individuals, followed by Hispanics, African 

Americans, and Asian-Americans (Scales Jr. et al., 2012). The reason for race differences has 

not been determined but may pertain to diet and lifestyle. 

Interestingly, conditions known to be associated with kidney stones include obesity, diabetes, 

metabolic syndrome, and cardiovascular disease. In a prospective study of over 240 000 

individuals, Taylor et al. (2005) determined weight, weight gain since early adulthood, waist 

circumference, and body mass index to all be positively associated with the risk of incident 

kidney stones. The mechanisms of these associations are unclear but may be related to 

increased urinary excretion of calcium, oxalate, and uric acid in larger body sizes, which may 

lead to stone formation (Lemann Jr. et al., 1996). Hyperinsulinemia and diabetes are also 

known to be associated with stone disease: Lieske et al. (2006) determined that the 

probability of being diabetic was increased by 22% when comparing kidney stone formers to 

a group of non-stone formers after adjusting for age and BMI. This increased risk may be due 

to altered urine composition and lower urine pH which can result in uric acid crystalluria, a 

risk factor for both calcium and uric acid stone formation (Daudon and Jungers, 2007; Khan 

et al., 2016; Lieske et al., 2006). Metabolic syndrome traits (abdominal adiposity, increased 

serum triglyceride level, decreased serum high-density lipoprotein cholesterol level, 

hypertension and impaired glucose tolerance) was determined to significantly increase the 

odds of self-reported kidney stone disease, and the presence of four or more traits was 

associated with an approximately two-fold increased odds (West et al., 2008). Kidney stone 

formers often have risk factors associated with atherosclerosis, and several studies have 

shown cardiovascular disease to be associated with stone formation (Alexander et al., 2014; 

Ferraro et al., 2013; Rule et al., 2010). Alexander et al. (2014) found that after adjusting for 

confounders, individuals that had at least one kidney stone were at higher risk for both 

myocardial infarction and stroke, but the reason for this correlation is not known. 

1.2 Mechanisms of stone formation 
Stone formation initiates by urinary salt supersaturation: when a solute (salt) is added to a 

solution (urine), it will dissolve until a certain concentration is reached, beyond which the 

solution is saturated and the solute crystallizes (Aggarwal et al., 2013). The concentration of 
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saturation can be altered based on the presence of crystallization inhibitors and promoters 

that are normally found in urine, however urine is generally reported as metastable with 

respect to most stone components (Ratkalkar and Kleinman, 2011). Despite this, if the 

supersaturation raises high enough, crystal nucleation will still occur. Crystal nucleation 

occurs when free solute ions dispersed in the solvent (urine) change to a solid phase and 

associate into particles (Ratkalkar and Kleinman, 2011; Rodgers, 2017). This nucleation can 

occur in free solution, on cell surfaces, or in other micro-environments such as areas within 

the nephron (Figure 1) (Evan et al., 2003; Khan et al., 2016). Following nucleation in 

solution, crystals will aggregate into larger particles, the surface of which can further act as a 

nucleation site for new crystals. The aggregation process can be promoted by various 

compounds and cell-derived material such as proteins, lipids, polysaccharides, and 

glycoproteins which can eventually form the organic matrix between crystals in the stone 

(Hess et al., 1993; Khan and Hackett, 1993). 
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A) Stones can form in the renal calyces or pelvis and can be either free-floating or attached to 

renal papillae. Struvite stones can often develop into a staghorn morphology, where the stone 

body occupies the entirety of the renal calyces and pelvis. Most stones less than 5 mm in size 

can pass on their own, but those > 5 mm may become lodged in the ureter or bladder. The 

length of the ureter shown is not to relative scale, the average adult ureter is between 25-30 

cm. B) The induction of a stone nidus is hypothesized to occur in two ways. In the fixed-

particle mechanism of Randall’s plaques, calcium phosphate precipitates in the basement 

membrane of the loop of Henle, aggregating in the interstitium and eventually eroding into 

the renal pelvis. In the free-particle mechanism of Randall’s plugs, crystals form in the renal 

tubules and aggregate, plugging the terminal collecting ducts. When both plaques and plugs 

are exposed to the renal pelvis, they act as a nidus of further crystal deposition from 

supersaturated pelvic urine. Image templates from Servier Medical Art by Servier were used 

and modified under the Creative Commons Attribution 3.0 Unported License. 

  

A B 

Figure 1. Anatomy of the urinary system and mechanisms of stone nidus formation 
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The two dominant models of stone formation were first described by Randall as plugs and 

plaques (Figure 1B) referring to the free and fixed particle mechanisms respectively 

(Randall, 1937; Randall, 1940). In the free particle model, urinary supersaturation leads to 

crystal formation in the renal tubules, which aggregate and plug the terminal collecting duct’s 

opening to the renal pelvis (Khan and Canales, 2015). These plugs are then exposed to the 

pelvic urine and act as a nidus for further crystal deposition and stone formation. In the fixed 

particle theory of Randall’s plaques, calcium phosphate (CaP) crystals precipitate in the 

basement membrane or vasa recta of the loop of Henle (Evan et al., 2003; Matlaga et al., 

2006; Stoller et al., 2004). These crystals then aggregate in the interstitium, accumulating 

and eventually eroding through the papillary surface. When exposed to the pelvic urine, the 

CaP crystals act as a nidus for CaOx crystal deposition. Indeed, several autopsy studies have 

shown CaOx stones to be formed attached to Randall’s plaques, while other studies have 

validated that CaP is often found at the nidus of CaOx stones (Haggitt and Pitcock, 1971; 

Meyer et al., 1975; Randall, 1940; Stoller et al., 1996; Weller et al., 1972; Xie et al., 2014). 

An examination of both modes of stone formation demonstrates various sites where bacteria 

could form a nidus in the kidney. 

1.3 Kidney stone composition 
As stated above, the most common kidney stones are calcium-based in the form of CaOx 

(75%) and CaP (5-10%) (Moe, 2006). The former can exist as CaOx monohydrate (COM) or 

dihydrate (COD). The COM crystals have a characteristic “dumbbell” appearance and form 

the most thermodynamically stable kind of stone (Alelign and Petros, 2018; Coe et al., 1992; 

Khan and Hackett, 1986). COD is seen less often than COM in clinically relevant stones, and 

forms crystals with tetragonal “envelope” appearance (Daudon et al., 2004; Khan and 

Hackett, 1986). Pure CaP stones are rare, but the crystals are the most abundant in mixed 

stones (Coe et al., 1992). CaP is most commonly found in the form of apatite 

(Ca10[PO4]6[OH]2) and brushite (CaHPO4∙2H2O) (Coe et al., 1992; Siener et al., 2013b). Risk 

factors for all calcium stones include hypercalciuria and hypocitraturia; hyperoxaluria and 

hyperuricosuria are risks for CaOx stones while urinary pH > 7.5 is a risk for CaP stones 

(Siener et al., 2013b).  
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Uric acid (UA) stones typically account for between 5-10% of all stones, with increased 

prevalence among patients with obesity, diabetes, and metabolic syndrome (Cameron and 

Sakhaee, 2007; Pearle et al., 2005). The urate anion is soluble at pH > 5.3, so consistently 

acidic urine is a risk factor for UA stones (Cameron et al., 2012). Hyperuricosuria can be 

caused by elevated endogenous UA production (for example in conditions such as gout), 

increased purine catabolism (as occurs in patients receiving chemotherapy), consumption of a 

purine-rich diet, or chronic diarrhea leading to loss of bicarbonate and acidified urine (Abou-

Elela, 2017; Landgren et al., 2017; Liebman et al., 2007; Tsimberidou and Keating, 2005). 

Struvite or infectious stones represent between 5-15% of all stones (Pearle et al., 2005). The 

magnesium ammonium phosphate crystals that struvite stones are composed of typically 

have a “coffin-lid” appearance (Khan et al., 1986). These form in patients with urinary tract 

infections due to organisms that produce urease, most commonly Proteus mirabilis and less 

frequently Klebsiella spp., Pseudomonas aeruginosa, Staphylococcus saprophyticus, and 

Ureaplasma urealyticum (Thompson and Stamey, 1973). Urease cleaves urea to ammonia 

and CO2, which elevates urinary pH and causes precipitation of the magnesium ammonium 

phosphate hexahydrate crystals (Das et al., 2017). These stones are approximately three 

times more common in women than men, presumably due to the higher prevalence of urinary 

tract infections in women (Han et al., 2015). Struvite stones commonly present as staghorn 

calculi, named for the horn-like shapes formed when the stones occupy the renal pelvis and 

extend into the calyces (Figure 1A) (Preminger, 2005). 

Cystine stones comprise less than 2% of all stones and unlike other compositions are the 

result of an inherited defect in renal cystine transport affecting about one out of every 20 000 

people (Knoll et al., 2005). Due to an autosomal recessive mutation on chromosome 2 in the 

dibasic amino acid transporter gene heavy chain subunit rBAT (SLC3A1) or its light chain 

subunit (SLC7A9) on chromosome 19, cystine is unable to be reabsorbed in the renal tubule 

and cystinuria occurs (Eggermann et al., 2012). At normal urinary pH cystine is insoluble 

and forms hexagonal crystals, though solubility is improved with alkalization. Traditionally 

cystine stones are quite hard and appear amber coloured and slightly opaque due to their 

sulphur content (Khan and Hackett, 1986). They tend to present as multiple, bilateral, large 

stones, (Han et al., 2015). Due to their genetic origin, cystine stones usually present earlier in 

life than other stone compositions (Harnevik et al. (2003) found that around 20% of patients 
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had their first stone before the age of 3) and have very high rates of recurrence (Shim and 

Park, 2014). No previous studies have investigated whether these stones or their high 

recurrence involves a bacterial component.  

A small proportion of stones (>1%) are miscellaneous in composition and are drug induced 

(Han et al., 2015). Various xenobiotics including medications and environmental toxicants 

can directly crystalize in urine forming stones, or cause urinary metabolic abnormalities 

forming stones from conventional components such as calcium oxalate or uric acid (Daudon 

and Jungers, 2004). Perhaps the most notorious example of a lithogenic drug is indinavir-

sulfate, a protease inhibitor used in HIV treatment, where incidence of stones in indinavir-

treated patients has been reported to exceed 40% (Saltel et al., 2000). Other drugs known to 

crystallize in urine and have been found in stones include antibiotics such as ciprofloxacin 

and trimethoprim-sulfamethoxazole that are ironically commonly prescribed in urological 

practice (Albala et al., 1994; Cek et al., 2012; Chopra et al., 2000; Daudon and Jungers, 

2004). Others include the diuretic triamterene (Daudon and Jungers, 2004; Ettinger et al., 

1979; Gault et al., 1981), and cough and stimulant preparations composed of ephedrine and 

guaifenesin (Assimos et al., 1999; Bennett et al., 2004; Daudon and Jungers, 2004; Whelan 

and Schwartz, 2004). Melamine consumption can cause stones in acidic urine (Dalal and 

Goldfarb, 2011; Grases et al., 2009), and cadmium exposure is associated with significant 

risk of calcium and uric acid stone formation (Guo et al., 2018; Ramaswamy et al., 2016; 

Thomas et al., 2013).  

In comparison to stones made of the crystallized drug itself, several xenobiotics can cause 

metabolically induced stones. For example, calcium and vitamin D supplements are known to 

induce hypercalciuria and calcium stones (Sorensen, 2014), vitamin C is an oxalate precursor 

and overdosing can lead to hyperoxaluria and calcium oxalate stone formation (Ferraro et al., 

2016), and laxative abuse can lead to formation of ammonium urate stones (Dick et al., 

1990). More generally, medications known to alter the urinary pH can also cause 

susceptibility to stones; acidic urine is a risk factor for uric acid stone formation, and alkaline 

urine can predispose to stones from urate salts and calcium phosphate (Abou-Elela, 2017; 

Daudon and Jungers, 2004; Moe, 2006). Although drug-induced stones are rare, they deserve 

consideration due to their preventable nature. 
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1.4 Kidney stone management and treatment 
While stones can be removed surgically or in some cases dissolved as described below, their 

prevention is deemed most important because of the extremely high recurrence rate and the 

potential for stones to cause serious complications such as chronic kidney disease and end-

stage renal disease (El-Zoghby et al., 2012; Rule et al., 2009). 

In addition to the specific metabolic changes required to prevent stones detailed in Table 1, 

the simplest risk factor to control for in the management of kidney stone disease is low urine 

volume. A preventative strategy should involve increasing water intake to achieve a urine 

volume of at least 2.5 litres per day (Borghi et al., 1996; Pearle et al., 2014; Xu et al., 2015). 

This increased hydration can be accompanied by several dietary modulations to further lower 

the risk of stone formation. A balanced diet with reduced animal protein intake has been 

shown to protect against recurrence of calcium and uric acid stones (Han et al., 2015; 

Nguyen et al., 2001; Borghi et al., 2002). Reduced sodium intake can also decrease the risk 

of calcium stones since sodium prevents renal calcium reabsorption and therefore increases 

urinary calcium levels (Nouvenne et al., 2010). In general, increased vegetable and fruit 

consumption is beneficial for stone formers as components such as potassium can be 

metabolized into alkali and thereby raise urinary pH (Berg et al., 1992; Moe, 2006; Rose and 

Westbury, 1975). It is important for stone formers to not restrict calcium intake, as this 

decreases the amount of calcium available in the gastrointestinal tract to bind to dietary 

oxalate, which subsequently increases oxalate absorption and oxaluria (Jaeger et al., 1985; 

von Unruh et al., 2004). Similarly, since oxalate is present in many common (and otherwise 

healthy) foods, stone formers should only avoid those that are very high in oxalate and shown 

to increase urinary oxalate levels such as rhubarb, spinach, green tea, chocolate, nuts, 

strawberries, and wheat bran (Grases et al., 2006; Massey et al.,1993). 

Other aspects of medical management of stone disease involve the treatment of renal colic, 

medical expulsive therapy, and stone dissolution therapy. Renal colic can occur when stones 

shift within the urinary tract, causing obstruction and/or hydronephrosis, and may be 

associated with hematuria, dysuria, urinary urgency and frequency, nausea, and vomiting 

(Teichman, 2004). Nonsteroidal anti-inflammatory (NSAID) drugs and opiates are the first 

line therapy for analgesia of renal colic, with an added benefit of NSAIDs being that they 
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reduce glomerular filtration rate (Clark et al., 2011; Portis and Sundaram, 2001). Medical 

expulsive therapy can involve the use of !- blockers such as tamsulosin which can inhibit 

ureteral spasm and uncontrolled contraction, dilating the ureter and increasing the probability 

of spontaneous stone passage (Assimos et al., 2016). Stone dissolution therapy is generally 

only effective for uric acid stones, where alkalizing urine with potassium citrate (or other 

compounds) to pH ≥6.0 with increased urine volume has been shown to partially dissolve the 

stones (Moran et al., 2002; Pearle et al., 2014; Teichman, 2004). 
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Table 1: Pathophysiology and associated treatment of nephrolithiasis 

Metabolic Anomaly Associated Stone Composition Treatment 

Hypercalciuria • Calcium oxalate 
• Calcium phosphate 

• Decreased sodium and 
protein consumption 

Hypocitraturia 
• Calcium oxalate 
• Calcium phosphate 
• Uric acid 

• Consumption of citrate (citrus 
fruits, potassium citrate) 

Hyperoxaluria • Calcium oxalate 

• Reduced oxalate 
consumption 

• Avoidance of calcium 
restriction 

Hyperuricosuria • Uric acid 
• Decreased consumption of 

purine-rich foods 
• Allopurinol 

Cystinuria • Cystine 

• Increase urine pH 
• Increased urine volume 
• Thiol-based chelating agents 

(Andreassen et al., 2016) 

Low urinary pH • Uric acid 
• Cystine 

• Potassium citrate 
• Sodium bicarbonate (Pinheiro 

et al., 2013) 
Urinary tract 

infection • Struvite • Antibiotics 
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Most stones less than 5 mm will pass on their own, but surgical management is required 

when stones are greater than 10 mm in diameter, cause severe colic, have not passed in four 

weeks, or cause other complications (Khan et al., 2016). The three most common methods of 

stone treatment are extracorporeal shockwave lithotripsy (ESWL), rigid or flexible 

ureteroscopy (URS), and percutaneous nephrolithotomy (PCNL). These procedures account 

for about 40-50%, 30-40%, and 5-10% of worldwide surgical stone treatments, respectively 

(Khan et al., 2016). The choice between treatment modalities depends on patient 

characteristics such as medical co-morbidities and anatomy, stone features such as location, 

radiodensity, size, and the experience of the treating physician. 

ESWL is a non-invasive method of fragmenting calculi; acoustic shock waves are created 

from electrohydraulic, electromagnetic, or other generators and focused on the stone with a 

lens (Rassweiler et al., 2014; Elmansy and Lingeman, 2016). The stone is visualized with 

ultrasonography or fluoroscopy, and fragmented when the focused shockwaves pass through 

it and energy is released (Elmansy and Lingeman, 2016). The stone fragments then pass out 

of the body during urination, and success of the ESWL is usually assessed by 

ultrasonography or radiography in the following weeks (Chiang et al., 2017; Elmansy and 

Lingeman, 2016). ESWL is usually the first line treatment for stones < 1 cm in size, and 

treatment success rates are lower for larger stones, those located in the lower pole, and in 

shockwave resistant stones such as calcium oxalate monohydrate and cystine (Turk et al., 

2016). ESWL success is also associated with lower BMI and skin-to-stone distance (McClain 

et al., 2013; Nakada et al., 2000; Pareek et al., 2005). General or regional anesthesia is 

utilized in ESWL procedures for analgesia and to minimize movement and the respiratory 

motion of the kidney (Eichel et al., 2004; Turk et al., 2016). ESWL has a low risk of 

complications and morbidities but can sometimes induce hematuria, infection, steinstrasse, 

and very rarely sepsis (Kelley, 1990). Interestingly, experiments performed almost thirty 

years ago demonstrated that bacteria suspended in urine lost viability when exposed to 

ESWL, and even more so when incorporated into agar beads mineralized with calcium 

carbonate crystals simulating stones (Reid, et al., 1990). 

Stone-free rates are comparable for treatment with ESWL and URS; URS may achieve better 

stone-free rates with a single procedure whereas ESWL may require multiple, however 

ESWL has fewer complications (Turk et al., 2016). URS is minimally invasive and involves 
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retrograde passage of a rigid or flexible endoscope from the urethra proximally to the ureter 

and kidney, aided by fluoroscopy. Ureteral stones have higher surgical success rates from 

treatment with rigid ureteroscopes, whereas flexible ureteroscopes are better utilized for 

proximal stones and less anatomically accessible calyces (Turk et al., 2016; Wright et al., 

2014). Lithotripsy during URS is most commonly achieved with the use of a holmium laser 

and has highest stone free rates in stones between 10-20 mm in size (Turk et al., 2016; 

Wright 2014). Spinal or general anesthesia is utilized in URS for analgesia and to minimize 

the visceral response to urinary tract dilation (Khan et al., 2016). Although URS 

complication rates are slightly higher than ESWL at 9-25%, most complications are minor 

and do not require intervention; the majority of complications following URS are secondary 

to the placement of a ureteral stent following the procedure which can cause morbidity and 

irritative voiding (Turk et al., 2016). 

Percutaneous nephrolithotomy was first introduced in 1976 and is now the standard of care 

for large (>20 mm) or complex renal stones (Fernström and Johansson, 1976; Turk et al., 

2016). The procedure is usually performed with the patient in prone position, where 

fluoroscopic imaging is utilized to aid endoscopic renal access via a posterior calyx through 

an initial needle puncture of the skin, muscle, and perineal fat (Khan et al., 2016; Vicentini et 

al., 2009; Turk et al., 2016). Once the access tract has been dilated, various instruments may 

be inserted and utilized for stone removal including lithoclast and ultrasound probes, 

graspers, and baskets. Overall, the stone free rate of PCNL is between 80-90% but it is more 

invasive and thus associated with more complications than both ESWL and URS. The most 

common complications postoperatively are fever, bleeding requiring transfusion, and stent-

associated morbidity, but more rarely PCNL can lead to sepsis, pneumothorax, embolization, 

or injury to other organs (Turk et al., 2016). 

In summary, management of renal calculi can be expensive, complicated, and in many 

patients, it does not prevent recurrence; these painful events adversely and multifactorially 

affect quality of life. Thus, investigation into the potential role that bacteria may play in stone 

formation, prevention, and treatment is required in order to decrease the burden of this 

disease. 
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1.5 Evidence for microbial involvement in nephrolithiasis 
The microbiota is the term used to describe the microorganisms present in a given 

environment (Whiteside et al., 2015). The term microbiome encompasses the biotic and 

abiotic factors in an environment, including the genes and genomes of the microbiota, as well 

as the products of the microbiota and the host (Whiteside et al., 2015). In the human body, 

the largest collection of bacteria resides in the colon (Sender et al., 2016). Although 

previously considered sterile, it is now known that the healthy urinary tract also harbours a 

unique microbiome that is distinct from the communities of the gut and vagina (Hilt et al., 

2014; Lewis et al., 2013; Wolfe et al., 2012). With the advent of next generation sequencing 

technologies, extensive research has been done on the role of the microbiome in human 

health.  

We now know that gut microbial dysbiosis can impact host metabolism (Larsen et al., 2010; 

Ley et al., 2006; Turnbaugh et al., 2006), immunity (Scher et al., 2013), the brain (Rhee et 

al., 2009), and even the heart (Gan et al., 2014). On the other hand, consuming beneficial 

microbes such as those present in probiotics and fermented foods may lower the risk of 

urinary conditions such as bladder cancer for reasons not yet uncovered (Larsson et al., 

2008). In addition, there are some studies suggesting that fermentation can reduce dietary 

derived phytates and oxalates, potentially lowering the risk of stones (Al-Wahsh et al., 2005). 

Overall, the intestinal microbiome and barrier is important for not only preventing pathogens 

from entering the bloodstream, but also for adsorption of nutrients, drugs, and coordinating 

immune responses. A range of proteins are key to its protective barrier, and if those are 

damaged a range of metabolic and inflammatory diseases can occur (Lee et al., 2018). 

To date, relatively little is known about the role of the gut and urinary microbiome in kidney 

stone disease. Several studies have identified differences in the gut microbiota of a small 

population of kidney stone formers compared to non-formers, and it has long been thought 

that gut colonization with Oxalobacter formigenes reduces oxalate kidney stone risk 

(Kaufman et al., 2008; Sidhu et al., 1998; Stern et al., 2016; Zampini et al., 2019). However, 

a closer investigation of the total human microbiome in nephrolithiasis as a whole is needed. 
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1.5.1 Oxalate and Oxalobacter 

As discussed above, urinary oxalate levels are a major risk factor for calcium oxalate kidney 

stone formation (Curhan et al., 2001). Blood oxalate levels are dictated by a combination of 

exogenous dietary consumption (Hatch and Freel 2005; Holmes et al., 2001), as well as 

endogenous production by the liver (Baker et al., 2004; Holmes and Assimos, 1998), 

erythrocytes (Jennings and Adame, 1996; Marengo and Romani, 2008), and the metabolism 

of ascorbate (Figure 2) (Knight et al., 2006; Linster and van Schaftingen, 2007; Marengo and 

Romani, 2008). One approach to lowering urinary oxalate levels is to decrease dietary 

oxalate intake by eliminating high oxalate foods, however the effectiveness of this method is 

not well established (Liebman and Al-Wahsh, 2011). Oxalate absorption occurs in the 

gastrointestinal tract (GIT) through both paracellular and transcellular transport (Hatch and 

Freel, 2005; Hatch and Freel, 2008), and can also be excreted from the circulation into the 

GIT (Figure 2) (Freel et al., 2006; Hatch et al., 2011).  

It has long been hypothesized that intestinal colonization by bacteria with oxalate-degrading 

capacity is inversely correlated with kidney stone risk. One such bacterium is the Gram-

negative obligate anaerobe O. formigenes, which utilizes oxalate in the intestine as its 

primary carbon source (Allison et al., 1985; Stewart et al., 2004). There have been numerous 

studies and reviews relating to O. formigenes, and it is now considered a keystone 

microorganism of the healthy microbiome (Barnett et al., 2016; Duncan et al., 2002; 

Goldfarb, 2004; Hatch et al., 2008; Knight et al., 2013; Liebman and Al-Wahsh, 2011; 

Prokopovich et al., 2007; Siener et al., 2013a; Stewart et al., 2004). However, until now, 

there has not been extensive research done on other bacterial types that may also be involved 

in human oxalate homeostasis. Some may degrade oxalate similarly to O. formigenes, while 

others may occupy important roles maintaining the intestinal barrier or altering oxalate 

transport in the GIT (Figure 2). We therefore need to consider the entire ecosystem including 

human intestinal barrier health for the handling of oxalate, and consequently, nephrolithiasis. 

1.5.2 The microbiota and kidney stone disease 

Several contemporary studies have looked to characterize the microbiota of kidney stones 

and of the stool of kidney stone formers (Barr-Beare et al., 2015; Stern et al., 2016; 

Tavichakorntrakool et al., 2012; Wang et al., 2014; Zampini et al., 2019). Although struvite, 
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not calcium oxalate stones, are typically associated with infection, Barr-Beare et al. (2015) 

revealed that oxalate stones retrieved from pediatric patients contained small numbers of 

bacteria. It may be that if bacteria ascend to the kidney from the bladder, an inflammatory 

event occurs which when combined with elevated urinary oxalate could form a nidus for 

crystal deposition (Figure 2) (Tavichakorntrakool et al., 2012). Thus, unlike urinary tract 

infections which tend to harbour 105 bacteria per mL urine, much smaller numbers may be 

sufficient to induce stone formation. In the first small study of the gut microbiota of kidney 

stone patients (23 patients, 6 healthy controls), Stern et al. (2016) detected higher levels of 

Bacteroides spp. and lower Prevotella spp. and beta diversity relative to healthy controls. 

Later in 13 stone patients and 13 healthy controls, Tang et al. (2018) showed similar findings 

with a decreased relative proportion of Eubacterium and bacterial beta diversity in the stone 

disease cohort. While interesting, these studies require a cautionary note: the tremendous 

heterogeneity of the gut microbiota can make drawing conclusions from so few participants 

extremely dubious, so it is evident that more studies are necessary. For now, the evidence 

suggests that members of the intestinal microbiota, not just O. formigenes, may affect stone 

disease. 

1.5.3 Sulfate-reducing bacteria 

An important factor connecting oxalate homeostasis, the microbiota, and intestinal barrier 

function is the sulfate anion transporter (Sat-1) protein, which is primarily expressed in the 

large intestine, but also in the liver and kidneys (Figure 2) (Schnedler et al., 2011). Albeit in 

a small cohort, a positive correlation has been shown for human variants of the SLC26A1 

gene (encoding Sat-1), and risk of recurrent calcium oxalate stones, suggesting a biologically 

and clinically relevant role for this protein in nephrolithiasis (Dawson et al., 2013). This 

transmembrane antiporter can be positioned on the apical and basolateral membrane surface 

of epithelial cells, acting to transport oxalate into the intestinal lumen for excretion via the 

bidirectional exchange of sulfate anions (Figure 2) (Hatch and Freel, 2005). One would 

expect populations of sulfate-reducing bacteria in the gut microbiota to play a key role in the 

activity of this transporter through modulating the bioavailability of its influx substrate, 

sulfate. This effect may be most notably observed in autistic cohorts that demonstrate three-

fold greater plasma oxalate levels, exhibit severe sulfate deficiencies, and harbour 

significantly higher levels of sulfate-reducing bacteria (e.g. Desulfovibrio spp.) in 
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comparison to controls (Konstantynowicz et al., 2012; Finegold, 2011). These traits when 

taken together are suspected to be involved in a greater risk of nephrolithiasis in these 

patients. 
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Oxalate is consumed in the diet and produced endogenously in the liver; it can be excreted 

through the intestine or kidneys. In the gut lumen, beneficial microbes can break down 

dietary oxalate, and O. formigenes is also able to stimulate the excretion of oxalate anions 

into the gut from the circulation via the SLC26A family of transporters. In the bladder, the 

beneficial endogenous microbiota can become displaced by uropathogens during urinary tract 

infections. If uropathogens ascend to the kidney, an inflammatory event can occur leading to 

the development of a crystal nidus. Consumption of fermented foods and beneficial bacteria 

may promote microbiota robustness, aiding in oxalate-handling and decreasing risk of stone 

formation. Substances that deplete the microbiota such as antibiotics, environmental 

pollutants, poor Western diet and lifestyle factors could alternatively increase the risk of 

stone formation. Dietary oxalate could be both beneficial (by stimulating oxalate-degrading 

bacteria within the gut), or detrimental (if the oxalate-handling capacity of the gut microbiota 

is insufficient and serum oxalate levels become elevated). Image templates from Servier 

Medical Art by Servier were used and modified under the Creative Commons Attribution 3.0 

Unported License. 

  

Figure 2. Oxalate flow in the body and proposed mechanism for microbial 

involvement in stone disease 



20 

 

 
 

1.6  Microbiome disruption and links to stone formation 

1.6.1 Antibiotics 

If the microbiome is involved in kidney stone disease, one would expect there to be a 

relationship between the disease and substances which disrupt or alter microbial populations, 

such as antibiotics. Disruptions to the microbiome have been well studied in metabolic 

syndromes such as obesity and diabetes, and there appears to be some correlation in the 

United States between where antibiotics are more frequently prescribed and these diseases, 

implicating the microbiome (Larsen et al., 2010; Turnbaugh et al., 2006; Turnbaugh et al., 

2009). There also appears to be some overlap of high antibiotic prescription and 

nephrolithiasis in the south-eastern United States (Mandel and Mandel, 1989; Fisang et al., 

2015; Hicks et al., 2013). It has been suggested that these “belts” of stone disease are related 

to dehydration; urinary solute precipitation is accelerated with decreased urine volume. 

Similarly, it has been suggested that the rise in kidney stone disease may be associated with 

global warming (Mandel and Mandel, 1989; Romero et al., 2010). Due to these multifactorial 

risks, it is difficult to ascertain whether these are just generally ailing populations, or whether 

their microbiomes have in fact been disrupted by antibiotic use, leading to stone formation 

and metabolic dysfunction. 

In a more direct fashion, a recent study by Tasian et al. (2018) showed significantly 

increased odds of urinary stone disease with the use of five classes of antibiotics. In an 

impressive study looking at over 285,000 healthy controls and nephrolithiasis patients, they 

determined the association between 12 oral antibiotic classes and stone disease. Specifically, 

significantly increased odds of stone disease were associated with sulfas, cephalosporins, 

fluoroquinolones, nitrofurantoin/methenamine, and broad-spectrum penicillins. These effects 

were most significant with recent exposure and use at younger ages.  

The incidence of nephrolithiasis in children also appears to be increasing rapidly, specifically 

in calcium-based calculi (Cameron et al., 2005). The reasons why this is occurring in 

children are unclear; it has been suggested that this is related to increasing BMI, salt 

consumption, decreased calcium and water intake, though perhaps it is due to the use of 

antibiotics in this young population (Sas, 2011). A mouse study modelling paediatric 

antibiotic treatment with either beta-lactam or macrolide antibiotics demonstrated altered 
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host and microbiota development, with a decrease in the relative abundance of oxalate 

metabolism genes, and fecal oxalate levels (Dethlefsen and Relman, 2011). Recent studies 

also suggest nephrolithiasis is up to four times more common in children with asthma, a 

condition that in turn has links with early childhood antibiotic use and microbiome dysbiosis 

(Nobel et al., 2015). Asthma is often treated with steroids, and glucocorticoid-mediated 

alterations on gut microbiota are known to occur (Kartha et al., 2017).  

In adults, patients treated with antibiotics for Helicobacter pylori had decreased detection of 

O. formigenes (Kelly et al., 2011; Kharlamb et al., 2011). Of four O. formigenes strains 

tested against commonly used antibiotics, all were resistant to amoxicillin, 

amoxicillin/clavulanic acid, ceftriaxone, and vancomycin and at least one strain to 

nitrofurantoin (Lange et al., 2012). This would imply that the organism would survive 

administration of these antibiotics, but it does not rule out the depletion of supportive or 

symbiotic bacterial types. 

Many mechanisms could be leading to these observed relationships with antibiotics and stone 

disease. If antibiotics increase stone formation, it could be that they are depleting other 

members of the gut microbiome that degrade and maintain oxalate homeostasis. 

Alternatively, direct crystallisation of various antibiotics can occur, and this precipitation in 

the kidney may act as a stone nidus (Chopra et al., 2000). Finally, the over- and misuse of 

antibiotics could be leading to antibiotic resistant uropathogens in the bladder which may 

ascend to the kidney, inciting inflammation and stone disease. The microbiome studies of the 

future will have to better control for antimicrobial substances (most recent usage, antibiotic 

class, use of sanitizers and detergents), as some of these compounds can have extremely 

long-term effects on the microbiome (Huang et al., 2015; Korpela et al., 2016). 

1.6.2 Environmental damage to the microbiota 

In addition to antibiotics, Western society is, in general, heavily medicated and bombarded 

with pharmaceuticals on a daily basis; in the United States, an average of over 11 

prescriptions were filled per person per year in 2011 (Nash, 2012). This reflects consumption 

of prescription or over-the-counter medication, but also inadvertently through drinking water 

(Khan and Nicell, 2015). It is now known that drugs originally developed to target human 

cells rather than microbes can alter the microbiome, and while many such drugs often induce 
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gastrointestinal side effects, the direct effect on the microbiome is rarely investigated. An 

exception to this, Maier et al. (2018) completed an extensive screening of more than 1000 

non-antibiotic marketed drugs against 40 representative gut bacterial strains. They found that 

almost a quarter of the tested drugs inhibited growth of at least one of the tested strains 

(Maier et al., 2018).  

Similar trends exist with other environmental pollutants such as pesticides and industrial 

chemicals. These compounds can persist in the environment thereby exposing humans 

through dietary consumption, allowing direct interaction with the microbiota in the 

gastrointestinal tract (Jin et al., 2017). Work by Defois et al. (2018) examined a panel of 

persistent organic pollutants in chemostat fermenters and determined that all chemicals tested 

shifted fecal microbial composition and metabolic activity, with the potential to induce a pro-

inflammatory state in the gut. 

Many lifestyle factors of Western society are also significantly damaging to the human 

microbiome. In the current age, stress is recognized to be a significant burden; in the United 

States, the Center for Disease Control and Prevention estimates stress to account for around 

75% of all doctor’s visits (Simmons and Simmons, 1997). Chronic psychosocial stress is 

known to have negative effects on the immune system and microbiome, which can ultimately 

result in diseases such as inflammatory bowel disease and colitis (Duffy et al., 1991; Gao et 

al., 2018; Langgartner et al., 2018). Kidney stone disease is also known to be impacted by 

stress and may be accounted for by the chain reaction of negative and microbiome-altering 

lifestyle factors that can be associated with stress such as poor diet, dehydration, and weight 

gain (Miyaoka et al., 2012).  

A sedentary lifestyle not only contributes to obesity but can also directly impact the 

microbiome. Exercise has been found to directly alter the microbiome composition and 

metabolic function independently of diet and can increase the bacterial production of 

beneficial short-chain-fatty acids important in maintaining intestinal barrier function (Allen 

et al., 2017; Allen et al., 2018). Importantly, light exercise can significantly decrease the risk 

of stone formation (Sorensen et al., 2014), and short-chain fatty acids as well as the bacteria 

responsible for their production have been shown to be depleted in the gut of kidney-stone 

patients compared to matched healthy controls (Liu et al., 2019; Ticinesi et al., 2018). A 
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potential mechanism for this relationship which warrants further investigation may be that 

the bacterially produced short-chain fatty acids, through maintaining intestinal barrier 

integrity, decrease the paracellular absorption of intestinal oxalate into circulation (Hatch and 

Free, 2005; Vaziri et al., 2016). 

The classical Western diet high in refined foods, animal protein, fat, and sugar, is known to 

cause negative alterations to the gut microbiome, including changes to bacterial abundance 

and community structure as well as decreased overall diversity (Turnbaugh et al., 2006; 

Turnbaugh et al., 2008). As discussed above, direct relationships between diet and stone 

formation have been established (for example, animal protein consumption and uric acid 

stone formation), and studies on the Western diet have shown it to promote risk factors for 

nephrolithiasis such as calcium oxalate crystalluria (Siener and Hesse, 2002). 

Alterations to the colonic microbiome can affect the intestinal environment at various levels, 

and lead to gut permeability (Marchesi et al., 2016). This can directly increase the absorption 

of oxalate and allow inflammatory bacterial components to enter the body (Hatch and Freel, 

2008). Alternatively, the repetitive insults against the microbiome through the average 21st 

century Western lifestyle can lead to indirect susceptibility to stone formation via collateral 

damage, depleting us of the protective microbial diversity we once had (Smits et al., 2017). 

1.7 Microbiome restoration therapies 
While the evidence of bacterial involvement in kidney stones is still emerging, it looks as if 

future preventative therapies will need to account for bacteria playing a role in the pathology 

of the disease. If childhood antibiotic use is truly determined to be a contributor to the 

condition, an objective of future treatments might be to cultivate or reacquire a beneficial 

microbiome. We obtain most of our bacteria externally, starting from our mothers, followed 

by other family members and then through our food and environment. In fact, while many 

factors determine the composition of the gut microbiome, diet has been shown to change its 

composition in as little as two days (David et al., 2014). Thus, it may be possible to resurrect 

or restore the microbiota of children exposed to antibiotics using beneficial microbes, before 

it moves to an intransigent profile. While high dietary oxalate has been associated with the 

risk of kidney stones in adults, it may be that it also facilitates propagation of oxalate-

degrading organisms. Studies suggest that the microbiota is an important factor allowing 
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humans to quickly adapt to altered diets, facilitating dietary diversity (David et al., 2014; 

Zimmermann et al., 2005). Thus, perhaps a compromise can be achieved whereby a diet can 

facilitate oxalate-degrading bacteria but not induce urolithiasis. In addition to dietary 

alterations, other approaches may be utilized to restore a beneficial and protective 

microbiome against stone disease. 

1.7.1 Oxalobacter replacement 

As detailed above, there are many studies which support the potential role that O. formigenes 

plays in degrading oxalate and enhancing its intestinal secretion; epidemiological evidence 

also supports its existence in ‘healthy’ people (Duncan et al., 2002). Studies have 

investigated the use of Oxalobacter as a probiotic, but surprisingly there have not been many 

studies in large cohorts that include O. formigenes supplementation while simultaneously 

controlling dietary oxalate intake (Duncan et al., 2002; Jairath et al., 2015). Although some 

stability and delivery studies have been performed on O. formigenes, its relatively limited use 

in human trials may be attributable to regulatory concerns when delivering a live 

microorganism without a history of safe use in foods for humans (Ellis et al., 2015). While 

the species is considered a strict anaerobe, it does appear to exhibit tolerability to bile salts 

and low pH, indicating O. formigenes could survive through the harsher regions of the GIT 

(Duncan et al., 2002). The Oxalobacter-containing probiotic Oxabact® is currently utilized 

for oxaluria and may be one such product urologists lean on in the future of kidney stone 

treatment and prevention. 

1.7.2 Probiotics 

Some species of lactic acid bacteria are also able to degrade oxalate, though to a much lesser 

degree than O. formigenes (Miller and Dearing, 2013). Studies have shown both positive and 

negative outcomes when testing non-Oxalobacter probiotic strains as therapy for patients 

with kidney stones (Abratt and Reid, 2010; Campieri et al., 2001; Lieske et al., 2010; 

Okombo and Liebman, 2010). It is important that probiotic studies be evaluated on a strain, 

dose, and format basis. It is not yet possible to determine whether this potential treatment has 

value due to the small numbers of patients, lack of follow-up, and broad preparations that 

have been used in these studies thus far (Abratt and Reid, 2010; Campieri et al., 2001; Lieske 

et al., 2010; Okombo and Liebman, 2010). Although yet inconclusive, the concept has merit 
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and deserves further investigation. Not only might some probiotic strains degrade dietary 

oxalate before absorption, but they could also stabilize intestinal barrier integrity- a factor 

known to be critical in oxalate absorption into circulation and the luminal secretion of oxalate 

during host-mediated detoxification (Del Piano et al., 2012). 

1.7.3 Engineered microbial solutions 

Oxazyme® is a non-systemic orally delivered drug composed of recombinant oxalate 

decarboxylase for the treatment of primary hyperoxaluria. In vitro studies have shown that 

Oxazyme® can degrade oxalate in both simulated gastric and small intestinal environments, 

acting as an intercept therapy for the management of dietary oxalate prior to absorption 

(Mufarrij et al., 2013). However, it remains to be seen how often the enzyme has to be taken, 

when and at what concentration, and what impact it has on the microbiome and long-term 

risk of urolithiasis. Bacillus subtilis contains the oxalate decarboxylase gene Yvrk and has 

also been investigated for its functionality in oxalate nephrolithiasis treatment (Tanner and 

Bornemann, 2000). An Escherichia coli strain expressing the Yvrk from B. subtilis was 

developed and successfully degraded oxalate in vitro; purified enzyme from the recombinant 

E. coli showed oxalate degradation ability in a rat model of hyperoxaluria (Jeong et al., 2009; 

Lee et al., 2014). Similarly, a recombinant Lactobacillus plantarum was created to express 

and secrete oxalate decarboxylase which showed some efficacy in a rat model (Sasikumar et 

al., 2014a; Sasikumar et al., 2014b). While these studies demonstrate it is possible to design 

and engineer strains to produce oxalate-degrading enzymes, it is undetermined if they will 

promote oxalate’s intestinal secretion. There are likely other factors that impact how O. 

formigenes has adapted to handle oxalate in the colonized human gut, and it is unclear if 

recombinant probiotics or purified enzymes would provide long-term therapeutic value to 

oxalate nephrolithiasis patients. 

1.7.4 Fecal microbiome transplantation 

Animal studies have demonstrated that improved oxalate degradation may be achieved after 

whole community microbial transplants. Miller et al. (2016) showed that a fecal microbiota 

transplant (FMT) from the wild mammalian herbivore Neotoma albigula into laboratory rats, 

resulted in significant increases in oxalate degradation, an effect that persisted up to 9 months 

after the initial transplant. The selection of Neotoma albigula was important as it is uniquely 
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attuned to consume a diet high in oxalate (up to 9% dietary oxalate by weight), a phenotype 

which, as in all mammals, in conferred exclusively by the gut microbiota as opposed to 

mammalian enzymes. It will be interesting to see if this approach is developed and shown to 

be efficacious in humans for the treatment for oxalate kidney stone disease. 

 

Currently, the primary use of FMT in humans is for recurrent Clostridium difficile infection, 

with reported success rates of up to 90% (Cammarota et al., 2015; Jiang et al., 2017; Kelly et 

al., 2016; van Nood et al., 2013). In Canada, FMT is performed on a routine basis for C. 

difficile infections and is proving to be one of the best treatment options (Chanyi et al., 

2017). The therapy is now being tested for treatment in extra-intestinal diseases, including 

metabolic syndrome, non-alcoholic fatty liver disease, and even multiple sclerosis (Borody et 

al., 2013; Craven et al., 2020; Henao-Mejia et al., 2012; Vrieze et al., 2012). Of interest, in a 

small metabolic syndrome study, patients who received an FMT from a lean donor often 

restored keystone microbes, including O. formigenes (Vrieze et al., 2012). This treatment 

method may be promising for nephrolithiasis because of the known role of intestinal bacteria 

in oxalate degradation, barrier function, and oxalate secretion. While introduction of O. 

formigenes or other single-strain probiotics to a dysbiotic microbiome may only have short-

term effects, an FMT could show promise as a more potent form of microbiome modification 

and treatment. Such an approach will require a new inclusion criterion for the donor, namely 

that they carry the Oxalobacter organism or other similarly beneficial traits. 

A potentially more regulated approach to the FMT would be strategic microbiome 

reconditioning (Allen-Vercoe, 2013; Petrof et al., 2013). A dysbiotic microbiome from a 

diseased individual could be collected, restored for specific functions ex vivo, then 

reintroduced to the patient (Chanyi et al., 2017). This could be achieved by culturing the 

original sample in fermenters, or chemostat systems that have been pulsed with specific 

substances in order to increase the relative abundance of bacterial groups of interest. As 

discussed above, patients with oxalate stones are often advised to limit dietary oxalate. This 

is controversial because some people with diets high in oxalates, such as vegetarians, are 

often not at an increased risk of developing stones, perhaps because their microbiome is well-

adapted to oxalate processing. Culturing of a stone patient’s fecal sample in the presence of 
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oxalate may offer a way to restore oxalate-degrading species to higher abundance, without 

the risks of the dietary oxalate consumption. The benefit of such a fermenter system would 

be that stone patients are receiving modified autologous transplants, thereby minimizing the 

risk of receiving any unwanted phenotypes that sometimes occur in allogeneic transplants 

(Alang and Kelly, 2015). 

1.8 In vivo models of stone disease 
It is important to utilize models to explore the many mechanistic questions that remain in 

nephrolithiasis and stone formation research. Both vertebrate and invertebrate models exist, 

each with their own strengths and limitations: models in both rats and mice have been 

developed, as well as in porcine, canine, and fruit flies. All models will be briefly reviewed 

with emphasis on similarities and differences compared to human stone pathophysiology and 

anatomy. 

1.8.1 Rodent models of stone disease 

In rats, hypercalciuria, several models of hyperoxaluria, as well as struvite stones have been 

developed. Bushinsky and Favus (1988) first published their model of hypercalciuria from an 

inbred strain of Sprague-Dawley rats. The model was developed after four successive 

generations of rats were selected with hypercalciuria caused by an increased number of 

vitamin D receptors in the gut, kidneys, and bones leading to increased calcium absorption 

(Bushinsky and Favus, 1988; Krieger et al., 1996; Li et al., 1993; Yao et al., 1998). 

Hyperoxaluria has also been induced in rats via intraperitoneal injection of sodium oxalate, 

dietary consumption of glycolic acid, ethylene glycol in drinking water, intraperitoneal 

injection of hydroxy-L-proline, dietary consumption of potassium oxalate, dietary vitamin B6 

deficiency, ileum resection, and Roux-en-Y gastric bypass (Canales et al., 2013; Gershoff 

and Andrus, 1961; Khan et al., 1992; O’Connor et al., 2005; Ogawa et al., 1990; Robinson et 

al., 1990; Tawashi et al., 1980; Wiessner et al., 2011). A struvite stone model was also 

developed in outbred Sprague-Dawley rats, whereupon zinc discs were implanted in the 

bladder followed by instillation of Proteus mirabilis, leading to subsequent bladder calculi 

formation (Olson et al., 1989). 
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In mice, hyperoxaluria is associated with the ob/ob model, and has been induced by similar 

methods to the rat models (ethylene glycol, hydroxy-L-proline and glyoxalate), but genetic 

knockout models are more commonly available and utilized in mice (Amin et al., 2018; Khan 

and Glenton, 2010). For example, knockouts for oxalate transporter SLC26A1 have been 

shown to induce CaOx stones, others for the sodium-hydrogen exchanger regulator factor-1 

(NHERF-1) have been shown to induce renal calcium phosphate crystals, and knockouts for 

the cystine transporter light chain subunit SLC7A9 induce cystinuria and cystine stones 

(Feliubadalo et al., 2003; Jiang et al., 2006; Weinman et al., 2006). Both mice and rats have 

quite disparate kidneys compared to humans as they are obviously significantly smaller and 

have unipapillate- compared to human multi-papillate structure, although microscopically 

they have similar components and the species are genetically around 90% similar to humans 

(Mullins and Mullins, 2004; Tzou et al., 2016). 

1.8.2 Porcine models of stone disease 

The porcine models of stone disease have utilized dietary supplementation of hydroxyproline 

and gelatin to induce hyperoxaluria (Mandel et al., 2004; Patel et al., 2012). Anatomically 

porcine and human kidneys are both multi-papillary, with comparable urine concentrations 

and glomerular filtration rates (Sachs, 1994). Although a benefit in terms of their relevance to 

humans, the major limitation of the porcine model is the animal’s size and subsequent high 

cost of husbandry. Another significant limitation for the purposes of urological study in pigs 

is that urine collection can also be quite challenging, as several studies have reported missed 

data due to urinary tract infections and catheter problems (Kaplon et al., 2010; Patel et al., 

2012). 

1.8.3 Canine models of stone disease 

Much like humans and unlike other experimental models, canines commonly suffer from 

highly recurrent, spontaneous kidney stones (Furrow et al., 2017). The breeds Bichon Frise, 

Miniature Schnauzer, and Shih Tzu are considered clinically at substantially higher risks than 

others for struvite, calcium oxalate, and apatite stone formation (Low et al., 2010). Based on 

the spontaneous nature of their stone formation, canines present an animal model that is easy 

to work with in the laboratory and appropriate for cross-sectional studies in pet breeds. 

Having said that, the high cost, stringent ethical standards, and smaller sample size studies 
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are a hindrance. In addition, canine kidneys are significantly smaller than that of humans 

(except in dogs with a height >70 cm (137 g vs 39 g)), and the glomerular filtration rate for 

canines is approximately 2-fold that of humans (Maurya et al., 2018; von Hendy-Willson and 

Pressler, 2011). The collecting system is also structurally disparate between humans and 

dogs, whereby dogs are unipapillary but multipyramidal (Pereira-Sampaio et al., 2009). 

1.8.4 Drosophila melanogaster models of stone disease 

The conception of urinary stones in Drosophila melanogaster (DM) was first described by 

Chi et al. (2010) and solidified as a model of nephrolithiasis by Chen et al. (2011). Since its 

advent, it is now one of the most utilized models of the disease, due to its numerous 

advantages (Miller et al., 2013). DM have a short life cycle of fewer than 60 days in a 

laboratory setting and reproduce prolifically, while husbandry costs are very economical. As 

invertebrates, experimentation on DM also rarely requires approval by organizational ethical 

review boards. These features all facilitate easy experimentation and rapid data generation. 

There is a wealth of genetic tools available in DM, and mutant fly lines are readily available 

and inexpensive from commercial and academic stock centres. While the anatomy of humans 

and DM are inherently different, there are many functional, structural, and genetic 

similarities between the DM Malpighian tubule and the human renal tubule, grounding DM 

as a valid model for the study of nephrolithiasis (Miller et al., 2013).  

The renal system in DM is composed of nephrocytes and Malpighian tubules (MTs)- two 

functionally distinct organs (Figure 3A). The DM hemolymph is filtered by the nephrocytes 

which are located in a cluster near the heart and esophagus, in a process which mirrors the 

filtration of blood by podocytes within the glomerulus in vertebrates (Weavers et al., 2009). 

Nephrocytes were at one point referred to as “storage kidneys”, where waste products filtered 

from haemolymph are actively endocytosed and are thought to be stored for the insect’s 

lifetime or coordinatively released in times of excessive diuresis (Weavers et al., 2009). The 

MTs resemble the remainder of the human nephron and collecting duct, actively transporting 

ions and solutes from the hemolymph and producing urine in the tubule lumen (Miller et al., 

2013). DM have a posterior and anterior pair of MTs which join at two common ureters 

between the mid- and hindgut. Despite their relatively small genome size on just four 

chromosomes, nearly 80% of renal transporters in humans have genetic orthologs in DM 

(Reiter et al., 2001).  
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Several models of stone formation exist in DM, including both dietary and genetic varieties. 

Hyperoxaluria and calcium oxalate stone formation can occur in flies’ MTs upon 

supplementation of ethylene glycol, sodium oxalate, and hydroxy-L-proline, as well as 

through genetic knockdown of dPrestin, the DM homolog of the anion exchanger SLC26A6 

(Chen et al., 2011; Hirata et al., 2012). A model of xanthine stone formation was generated 

through the silencing of xanthine dehydrogenase, while disruption of the Uro gene for urate 

oxidase is being investigated with regards to uric acid stone formation (Ali, 2017; Chi et al., 

2015; Lang et al., 2018). 

Some of the limitations of the DM stone models include the differences in anatomy between 

flies and humans. Where humans have the glomerulus and nephron, flies have the distinct 

organs nephrocytes and Malpighian tubules. The separate alimentary canals for liquid and 

solid waste in humans differ from flies which have a common cloaca where the ureters join 

the gut. Finally, as an invertebrate lacking bone, DM have a fundamentally different 

mechanism of calcium homeostasis from humans (Miller et al., 2013).  

Compared to the human microbiota, that of DM is extremely simplistic and of very low 

diversity. Specifically, the genera Lactobacillus and Acetobacter comprise upwards of 95% 

of the microbiota in DM (Figure 3B) (Wong et al., 2011; Blum et al., 2013). Although in 

some regards this is a disadvantage for direct comparability of DM to humans, it is useful in 

experimentation in order to deconstruct potentially complex polymicrobial effects. Taken 

together, this simple in vivo model is useful for understanding the effects of specific 

members of the microbiome and how they may impact stone disease.  
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Figure 3. Drosophila melanogaster excretory anatomy and microbiota 

A) The nephrocytes filter DM hemolymph, and urine is produced in the lumen of the 

Malpighian tubules. DM have one anterior pair and one posterior pair of Malpighian tubules; 

each pair connects at a common ureter at the junction of mid- and hindgut. B) The DM 

microbiota (i) is dominated by the genera Lactobacillus (phylum Firmicutes) and 

Acetobacter (phylum Proteobacteria), in comparison to the more complex human gut 

microbiota (ii). Average bacterial phyla present in i) DM based on Wong et al. (2011) and ii) 

humans based on Li et al. (2014). 
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1.9 Methodologies to assess microbial communities 
For around 350 years, microscopes have been used to evaluate microbial communities. When 

van Leeuwenhoek first visualized bacteria in water samples in the late 1670’s, he was able to 

characterize them by relative size and morphology (Bardell, 1982). Van Leeuwenhoek was 

later the first to describe human-associated microbiota in his microscopic surveys of human 

saliva (Bardell, 1982). Fast forward to today, and immense technical advancement has 

drastically improved the visualization of microbes. Optical microscopy is still a very useful 

tool when visualizing the diversity and spatial organization of bacteria in different 

environments, especially when combined with bacterial staining or labelling strategies 

(Tropini et al., 2018).  

Historically, when studying the human microbiota, culture techniques were utilized to grow 

bacterial isolates in predetermined medium. However, upwards of 80% of bacteria that reside 

within us are fastidious with very specific and complex growth requirements, making them 

“unculturable” under standard lab conditions. Thus, the diverse microbial composition of the 

human gut was drastically underestimated (Wilson et al., 1996).  For this reason, the 

development of molecular, culture-independent techniques has been paramount in 

understanding the human microbiome. Early studies of the microbiota involved the 

generation of clone libraries of the small subunit ribosomal RNA genes (16S rRNA) 

followed by Sanger sequencing of short inserts (Wilson et al., 1996). Denaturing gradient gel 

electrophoresis (DGGE) was also used but necessitates significant user skill and lacks 

sensitivity (Burton and Reid, 2002). Fluorescence in situ hybridization (FISH) can now be 

used to enumerate bacteria with flow cytometry based on the binding and subsequent 

fluorescence of complementary 16S rRNA sequence probes, but this is probe-dependent and 

cannot identify unknown species (Fraher et al., 2012; Namsolleck et al., 2004). PCR-

electrospray ionization mass spectrometry (PCR-ESI-MS) is yet another molecular technique 

capable of characterizing microbial communities, involving mass spectrometry of PCR 

amplicons such that the composition of nucleotides is deduced and compared against a 

database (Ecker et al., 2008; Nickel et al., 2015). This technique appears to perform 

comparatively to 16S rRNA gene sequencing with shorter workflow times but has not been 

widely implemented in the microbiome field, and instead has found favour for clinical 

diagnostics (Peeters et al., 2016; Zhang et al., 2019). Now, the most commonly used method 
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in the microbiota research field is 16S rRNA gene sequencing; it has become a powerful tool, 

requiring PCR with carefully designed barcoded primers and sequencing adapters that 

facilitate massive parallel sequencing output (Figure 4) (Gloor et al., 2010).  

Classical techniques such as Sanger sequencing are capable of sequencing the entire 16S 

rRNA gene length, but lack multiplexing capability; when utilizing next generation 

sequencing (NGS, for example with the Illumina platform as was used in Chapters 2, 3, 4, 

and 5 of this thesis), sequencing read length is limited. The bacterial 16S rRNA gene has 

regions of high conservation flanking 9 regions of hypervariability (V1-V9, Figure 4). Due to 

NGS’s shorter read lengths, the variable region of interest to be sequenced should be 

carefully chosen to optimize the resolution of the microbiota profiling (Soergel et al., 2012). 

Based on the GC content of variable regions within different bacterial genera, PCR 

amplification may not work optimally biasing the data (Alcon-Giner et al., 2017). 

Alternatively, the variable regions of different bacterial groups may not in fact be that 

“variable”, limiting differentiation at lower taxonomic levels (Alcon-Giner et al., 2017). 

Thus, the V-region primer selection should be mindful of the suspected bacterial populations 

found within the sampled environment. Primers 515F-806R targeting the V4 region are 

utilized in the Earth Microbiome project and throughout this thesis, and are capable of 

differentiating common genera within the gut upon paired end sequencing (Thompson et al., 

2017). Comparatively, primers targeting the V6 region can provide resolution between 

species of Lactobacillus, and thus would be utilized in sequencing of vaginal samples or 

yogurt, for example (Thompson et al., 2017). 

Through the early years of microbiota analysis, the Roche 454 method of pyrosequencing 

was favoured due to the ability to generate reads upwards of 500 bases in length, spanning 

multiple variable regions on the 16S rRNA gene (Caporaso et al., 2010). When the Illumina 

platform was first utilized in the human microbiota field in 2010, the sequence length was 75 

bases, but modern incarnations of the Miseq and HiSeq systems can generate lengths > 600 

bp and have superseded 454 as the favoured contemporary platform (DiBella et al., 2013; 

Hummelen et al., 2010; Salipante et al., 2014). Nascent long-read sequencing technologies 

(capable of generating read lengths of 10s to 100s of kilobases) including those developed by 

PacBio and Oxford Nanopore may soon replace 16S variable region amplicon sequencing 

altogether (Callahan et al., 2019; Dohm et al., 2020). 
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Where 16S rRNA gene amplicon sequencing is the classic microbiota sequencing, shotgun 

metagenomic sequencing surveys the entire genome and genetic material of all organisms 

present in a sample, as opposed to only the 16S rRNA gene in bacteria. Shotgun 

metagenomic sequencing was utilized in Chapter 3 of this thesis. Metagenomic sequencing is 

less susceptible to biases inherent in amplicon sequencing, can provide higher taxonomic 

resolution, and can capture information from host, bacterial, viral, and fungal DNA, as well 

as functional pathways present in a sample (Hillmann et al., 2018; Jovel et al., 2016). 

However, it is significantly more expensive than 16S rRNA gene sequencing for both 

sequencing platform and computational costs and has fewer computational tools and 

databases available for analysis (Gevers et al., 2012). 

The bioinformatic analysis of NGS data is complex, time-consuming, and there is no 

standard methodology across the field. Datasets generated by high-throughput sequencing are 

compositional in nature, as there is an arbitrary “total” imposed by the sequencing 

instrument; although the reads are discrete counts, they represent just a sampling of the 

original genetic material present in the sample (Gloor et al., 2017). When microbiome data 

are not treated in the appropriate compositional manner, incorrect assumptions and 

conclusions can be drawn (for example, the difference between claims of changes in absolute 

vs. relative abundance). Quantitative Insights Into Microbial Ecology (QIIME) is a 

commonly used analysis toolkit originally developed for pyrosequencing datasets, which 

facilitates data visualization, diversity analysis, and simple statistics (Caporaso et al., 2010). 

Several other analysis tools have been developed to overcome challenges in microbiome data 

analysis, including ALDEx2, and compositional data analysis packages within R software 

(van den Boogaart and Tolosana-Delgado, 2008; Fernandes et al., 2013; McMurdie and 

Holmes, 2013; R Core Team, 2013). These sequencing and bioinformatic tools have been 

utilized throughout the chapters of this thesis in various patient and sample populations, with 

the aim of determining how the microbiota influences stone disease. 
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A) The 16S rRNA gene has highly conserved (light blue) regions surrounding nine variable 

(dark blue) regions. B) The primers utilized in this thesis amplified base pairs 515-806 

encompassing the fourth variable region, and contained an Illumina adapter (sequences 

shown), followed by four random nucleotides, one of sixteen unique 12-mer barcodes (not 

shown), and the forward and reverse primers (sequences shown).   

Figure 4. Schematic of 16S rRNA gene and Illumina primer design 
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1.10 Project scope and purpose 
At the commencement of my doctoral studies, little was known about the gut or urinary 

microbiome’s role in nephrolithiasis beyond O. formigenes colonization and the weakly 

described association between stones and a history of urinary tract infections. Thus, this 

project sought to increase the understanding of how the microbiome as a whole impacts stone 

disease, with specific emphasis on non-infectious stones. The following chapters will address 

four objectives of this project.  

Objective 1. Before first evaluating the microbiome of kidney stone patients, the second 

chapter of this thesis aimed to establish a standard method of collecting and storing fecal 

samples for the purpose of next generation sequencing (NGS). While previous studies in our 

lab have evaluated best practices for processing urinary samples, the most patient-amenable 

and highest fidelity method of collecting fecal samples had not previously been assessed. In 

Chapter 2 it was determined whether toilet paper collected at home would be appropriate for 

NGS analyses after experiencing temporal and temperature variability, as would be 

experienced through the Canadian Postal Service. Additionally, it was investigated whether 

or not preservation with a nucleic acid stabilization agent was necessary. The methodology 

determined here was then utilized for the clinical study in Chapter 3 of this thesis. 

Objective 2. Chapter 3 involved a clinical study into the differences in the human 

microbiome at different anatomical sites in kidney stone forming patients and healthy control 

participants. This study is the first of its kind utilizing shotgun metagenomic sequencing to 

evaluate the entire genetic capability of the gut community, as well as 16S rRNA gene 

sequencing to characterize the bacterial communities present in the bladder from multiple 

time points throughout stone treatment, and the microbiota within the stone itself. We 

detected significant and novel alterations in both the urinary and gut bacterial communities 

between the cohorts at both a taxonomic and functional level, which may be directly 

implicated in stone disease. 

Objective 3. Chapter 4 describes a second clinical study that was undertaken to characterize 

the microbial communities associated with ureteral stents in a cohort of kidney stone forming 

patients, as stent placement is an almost ubiquitous component of surgical kidney stone 

management. This study is the largest and most comprehensive of its kind to date. The results 
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show that bacteria are commonly associated with stents and can lead to encrustation. It was 

established that the urinary microbiota is often not representative of the microbiota on the 

stent surface and is not an appropriate biomarker of stent encrustation. Several patient 

attributes were associated with altered stent microbiota, and antibiotic use was determined 

not to impact the microbiota, nor the degree of stent encrustation. 

Objective 4. The fifth chapter investigates how specific beneficial and pathogenic microbes 

impact stone formation utilizing in vivo and in vitro models of stone disease. This chapter 

includes further method development and establishment of novel imaging techniques, 

evaluation of the implications of uropathogen exposure, as well as determination of the 

therapeutic potential of a novel probiotic for the treatment of nephrolithiasis. Results 

demonstrate that different uropathogens have diverging implications for stone disease, and 

the bacterium Bacillus subtilis strain 168 has promising probiotic capacity, improving stone 

disease burden in our Drosophila melanogaster model. 

Overall, through both discovery and hypothesis-driven research, the unifying theme of this 

thesis is the desire to understand how the microbiome impacts stone disease, from the 

relative risk factors, to the inception of stone formation, and how it may further impact 

treatment and be exploited in preventative therapy. I hope that this body of work and the 

resulting publications from my PhD will have translational impact on urological practice and 

improve our understanding of microbes in human health. 
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Chapter 2  

2 Evaluation of sampling and storage procedures on 
preserving the community structure of stool microbiota: A 
simple at-home toilet-paper collection method 

This chapter is adapted with permission (Appendix A) from: 

Al, K.F., Bisanz, J.E., Gloor, G.B., Reid, G., and Burton, J.P. (2018). Evaluation of sampling 

and storage procedures on preserving the community structure of stool microbiota: A simple 

at-home toilet-paper collection method. J. Microbiol. Meth. 144, 117-121. 
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2.1 Abstract 
The increasing interest on the impact of the gut microbiota on health and disease has resulted 

in numerous human microbiome-related studies emerging. However, multiple sampling 

methods are being used, making cross-comparison of results difficult. To avoid additional 

clinic visits and increase patient recruitment to these studies, there is the potential to utilize 

at-home stool sampling. The aim of this pilot study was to compare simple self-sampling 

collection and storage methods. To simulate storage conditions, stool samples from three 

volunteers were freshly collected, placed on toilet tissue, and stored at four temperatures 

(−80, 7, 22 and 32 °C), either dry or in the presence of a stabilization agent (RNAlater®) for 

3 or 7 days. Using 16S rRNA gene sequencing with the Illumina MiSeq platform, the effect 

of storage variations for each sample was compared to a reference community from fresh, 

unstored counterparts. Microbial diversity and composition were not significantly altered by 

any storage method. Samples were always separable based on participant, regardless of 

storage method suggesting there was no need for sample preservation by a stabilization 

agent, which may complicate sample collection for the study participant and lead to increase 

costs. In summary, if immediate sample processing is not feasible, short term storage of 

unpreserved stool samples on toilet paper offers a reliable way to assess the microbiota 

composition by 16S rRNA gene sequencing. 
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2.2 Introduction 
The human body, specifically the intestinal tract, is the site of a vast array of metabolically 

active microbes, collectively referred to as the microbiome. Over recent years the accuracy 

and scale of microbiome studies have increased dramatically due to the availability of next 

generation sequencing, and it is now recognized that the gut microbiota has a role in human 

health and disease (Manichanh, 2006.; Turnbaugh et al., 2006). The most common method of 

assaying the gut microbiota is through a fecal sample, but unfortunately there is no standard 

protocol for sample collection or processing. A fresh sample with immediate DNA extraction 

is the gold standard for microbiome researchers, however immediate freezing at -80 °C has 

also been shown to maintain the microbial composition (Carrol et al., 2012; Fouhy et al., 

2015). Unfortunately, these are often not viable sampling procedures for clinical or field 

studies, where -80 °C may not be available or at the very least would require an additional 

clinic appointment for study participants. Thus, altered sampling and storage methodologies 

are often utilized for the purpose of maintaining the microbial community composition 

throughout storage (Choo et al., 2015; Song et al., 2016). 

Such factors can all contribute to additional study costs and reduced participant recruitment. 

Additionally, various methodologies can make cross comparison between studies difficult. 

The American Gut sampling methodology is the simplest developed protocol to date 

(McDonald et al., 2015). Participants use a swab to take a small amount of fecal material 

from a stool or soiled toilet paper and mail it to the laboratory for processing. Of note, the 

length of time in transit and temperature exposure for each sample is variable depending on 

the time of year and participant location. Others have suggested that nucleic acids from fecal 

bacteria should be preserved in hyperosmotic solutions containing agents to prevent their 

degradation (Voigt et al., 2015). We sought to determine if a method adapted from the 

American Gut Project would provide reliable 16S rRNA gene profiles, even if stored under 

different conditions modelling seasonal temperature changes experienced during postal 

shipment (Gilbert et al., 2014; McDonald et al., 2015). 

Although the immediate processing or deep freezing of samples is preferred, research groups 

have utilized cold chain storage and various nucleic acid preservation agents designed to 

maintain the bacterial DNA and microbial community structure of fecal samples (Blekhman 
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et al., 2016; Flores et al., 2015; Fouhy et al., 2015). In the present pilot study, we used a 

standard DNA extraction protocol based upon the Human and Earth Microbiome Project 

protocols and compared preservation-free stool to that stored in RNAlater® (Gilbert et al., 

2014). In addition, each stabilization condition was tested at multiple temperatures and 

lengths of time, to simulate those experienced in the mailing of samples through the 

Canadian postal service, which can range in extremes of temperature beyond 35 °C and −35 

°C. The use of RNAlater® was selected as it is nontoxic and quickly stabilizes RNA and 

DNA, thus may be easily utilized by study participants during at-home stool collection. 

Based on previous literature, we hypothesized that the use of RNAlater® would contribute to 

an initial skew in the microbiota profile compared to immediately extracted, unpreserved 

stool samples, but would minimize alterations in the profile over storage at increased 

temperature (Flores et al., 2015; Hale et al., 2015; Liang et al., 2020; Voigt et al., 2015). We 

also speculated that unpreserved samples would alter greatly in their microbiome profile over 

increasing temperatures and days in storage, while frozen samples would most closely 

resemble the immediately extracted, unpreserved stool samples (Hang et al., 2014). 

2.3 Materials and Methods 

2.3.1 Stool sample collection and processing 

Three volunteers were recruited at St. Joseph's Hospital in London, Canada. The Western 

University Health Science Research Ethics Board granted ethical approval for all 

experiments involved in the study. The methods were carried out in accordance with the 

approved guidelines and all participants provided written informed consent (REB #105443). 

The group was unrelated and comprised of one male recently immigrated to Canada from 

China, and one male and female Canadian of European ethnicity. Participants ranged in age 

from 23 to 29 years old and had not used antibiotics recently. Samples were collected in 

sterile containers from which 5 g was immediately removed (within 10 min of collection), 

suspended with 10 ml of sterile phosphate buffered saline (PBS), and vortexed in a sterile 

centrifuge tube until homogenization. A protocol was designed to model direct shipment of 

soiled toilet paper in sterile collection bags, as it would be a simple and more appealing 

method for study participants, compared to the use of sterile swabs. For this reason, 200 μL 

of the homogenized stool was aliquoted onto a sheet of clean toilet paper for every storage 

method condition to be tested (Figure 5). For samples stored in a preservation agent, the 



71 

 

 
 

paper was fully submerged in 5 mL RNAlater®, before being placed in a sterile 15 mL 

centrifuge tube; unpreserved paper was dry. A total of 18 aliquots were prepared from each 

individual (Figure 5, Table 2). 

DNA extraction was performed in accordance with the Earth Microbiome Project standard 

protocols, with the MoBio PowerSoil® DNA Isolation Kit (Mobio, Carlsbad, CA). Sterile 

PBS (5 mL) was added to unpreserved samples immediately prior to DNA extraction. 

Samples in either RNAlater® or PBS were vortexed for 5 min prior to extraction to 

homogenize the toilet paper with the stool sample. The stool homogenate (250 μL) was 

added to the PowerBead tubes provided in the PowerSoil® kit. All samples were extracted in 

duplicate. The fresh extraction samples (N/A days in storage) were extracted immediately 

following the sample preparation, while the flash frozen samples were placed at − 80 °C for 

30 min, and then immediately extracted. DNA was stored at −20 °C following extraction. 

  



72 

 

 
 

  

Figure 5. Methodological schematic of study design 
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Table 2. Sample identifiers 

  

Condition Sample identifier 

Subject of origin 3 individuals (sub1, sub2, sub3) 
Preservation method RNAlater, or no preservation (Pres, NoPres) 

Days in storage None, 3, or 7 (NA, d3, d7) 
Storage temperature -80, 7, 22, or 32°C (80C, 7C, 22C, 32C) 

DNA extraction Performed in duplicate (ex1, ex2) 
PCR Performed in duplicate (p1, p2) 
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For PCR amplification, 20 μL of the DNA template extract was transferred to 96-well PCR 

plates, in duplicate. These plates were then used with the BioMek® 3000 Laboratory 

Automation Workstation for automated PCR reagent set up. Amplifications of the V4 region 

of the 16S ribosomal RNA gene were carried out with the primers (5′-3′) 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNxxxxxxxxGTGCC 

AGCMGCCGCGGTAA and (5′-3′) CGGTCTCGGCATTCCTGCTGAACCG 

CTCTTCCGATCTNNNNxxxxxxxxGGACTACHVGGGTWTCTAAT wherein xxxxxxxx is 

a sample specific nucleotide barcode and the preceding sequence is a portion of the Illumina 

adapter sequence for library construction. Ten microlitres (3.2 pmol/μL) of a total of 32 

primers (16 left and 16 right) with unique barcodes were arrayed in 96 well plates. The 

BioMek® robot transferred 2 μL of the DNA template into a plate containing 10 μL of each 

unique primer. Then 20 μL of Promega GoTaq® Colourless Master Mix (Promega, 

Maddison, WI) was added to the DNA template and primers. The final plate was firmly 

sealed with a foil PCR plate cover. This plate was placed in the Eppendorf Mastercycler® 

thermal cycler (Eppendorf, Mississauga, ON), where the lid was kept at 105 °C. An initial 

warm-up temperature of 95 °C was used for 2 min to activate the GoTaq®. Afterwards, the 

volumes underwent 25 cycles of 95 °C for 1 min, 52 °C for 1 min, and 72 °C for 1 min. After 

completion, the temperature of the thermal cycler was held at 4 °C, and amplicons were then 

stored at −20 °C. 

2.3.2 DNA sequencing and data analysis 

Processing of DNA samples and DNA sequencing was conducted at the London Regional 

Genomics Centre at Robarts Research Institute (London, ON). Amplicons were quantified 

using pico green (Quant-It; Life Technologies, Burlington, ON) and pooled at equimolar 

concentrations before cleanup (QIAquick PCR clean up; Qiagen, Germantown, MD). The 

final samples were sequenced using the MiSeq by Illumina® platform, with 2 × 300 bp 

paired-end chemistry. The returned reads were then analyzed using Mothur, the SILVA 

database, Core R packages, and ALDEx2 (Fernandes et al, 2013, Quast et al., 2013; R Core 

Team, 2018; Schloss et al., 2009). Fastq files may be accessed in the NCBI Sequence Read 

Archive: BioProject ID PRJNA418287. 
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2.4 Results 
After employing all quality control criteria described above, 234 OTUs were identified from 

the 216 samples (18 conditions × 3 individuals × 2 duplicate DNA extractions × 2 duplicate 

PCR reactions). OTUs were filtered and removed if the mean read count across all samples 

was less than 10. A bar plot and dendrogram illustrating the relative proportion of genera in 

the samples is shown in Figure 6. The dendrogram illustrates that samples strongly clustered 

by each participant when analyzed by Aitchison distance, an appropriate metric for 

compositional data (Gloor and Reid, 2016; Gloor et al., 2017; Van den Boogaart and 

Tolosana-Delgado, 2013). Figure 6 also illustrates that the three participants were dominated 

by the genera Bacteroides, Faecalibaterium, and Prevotella. Using a centre log ratio (CLR) 

transformation, the sample-wise Aitchison distances were generated, and principal 

components analysis performed (Figure 7). Components 1 and 2 explain 79.3% of total 

variance. The samples from each individual participant clustered together regardless of 

preservation method (Figure 7). However, when observing on a per-participant basis the 

samples did not cluster by any storage condition (data not shown). When summarized to 

phylum or genus level, no trends in taxonomy were associated with the samples between or 

within individuals (data not shown). 

The distance between technical and inter-individual samples was compared (Figure 8). Paired 

Aitchison distances between PCR replicates, DNA extraction replicates, and preservative 

method (technical variants) were found to be lower than distances between paired samples 

from different participants. To further characterize the significance of the separation between 

individuals, k-means clustering was utilized to attempt partitioning all samples into n groups. 

When n = 3 which is the number of participants, samples clustered without overlap into 

groups based on the participant of origin (Figure 9). On a within-participant basis, no sample 

clustering was observed for any number n. 

The centres of the clusters (n = 3) on the PCA (Figure 7) were determined and sample 

distance-to-centre calculated. The samples closest to centre may be considered the most 

reliable or “true” within the cluster. Table 3 displays the distances of the closest 10 samples 

within each cluster to the cluster centre. Within and between participants there is no pattern 

for storage methods that cluster most closely to the centre.  
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The average of all PCR and DNA extraction replicates of the fresh extracted samples was 

then calculated to determine a “fresh centre” for each subject. Table 4 displays the distance to 

fresh centre of the samples from which the average was generated, as well as the closest 10 

samples within each cluster to the fresh centre; these are the 10 samples that most closely the 

fresh sample in microbial composition. For participants 1 and 3, samples that were stored at 

−80 °C without RNAlater most closely resembled the microbiota of fresh samples. For 

participant 2, there does not appear to be a definitive relationship between the storage method 

of the 10 closest samples to the fresh samples. 
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Figure 6. Microbial composition of stool samples 

Bar plot displays the stool microbiota profiles. Each bar represents a single sample, with each colour representing a different bacterial 

genus. Samples are clustered hierarchically by the dendrogram, where samples originating from Subjects 1, 2, and 3 are coloured on 

red, green, and blue branches, respectively. 
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PCA was performed on CLR-transformed Aitchison distances from samples with pooled 

PCR and DNA extraction duplicates. Samples (points) that cluster together on the two-

axis plot are similar in microbiota composition and abundance. As shown, samples 

cluster by participant of origin without overlap, but no distinct patterns exist between 

storage conditions. This exploratory analysis illustrates that 79.3% of the total variance of 

the samples is explained by the first two components.  
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Distance was measured between technical replicates and paired inter-individual samples. 

The violin plot illustrates the upper and lower quartiles with median and an overlapped 

kernel density estimation. The technical replicates were separated by significantly lower 

Aitchison distance than the paired inter-individual samples. 
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Figure 9. K-means clustering silhouette plot 

When n = 3 groups, k-means clustering analysis successfully partitions all samples based 

on subject of origin. High silhouette coefficients (0.68-0.79) illustrate high confidence 

and large separation between sample clusters. 
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Table 3. Distance of the ten closest samples within each participant cluster to the 

cluster centroid 

 
  

Subject 1 Subject 2 Subject 3 
Sample ID Distance 

to Centre 
Sample ID Distance 

to Centre 
Sample ID Distance 

to Centre 
sub1_Pres_d7_7C_ex
t2_pcr1 

21.3905401
1 

sub2_NoPres_d3_m80
C_ext2_pcr2 

19.7243205
9 

sub3_NoPres_d3_m80
C_ext1_pcr2 

7.00892770
8 

sub1_Pres_d7_7C_ex
t1_pcr1 

21.5611832
4 

sub2_NoPres_d3_m80
C_ext2_pcr1 

20.2465105
8 

sub3_NoPres_d3_m80
C_ext2_pcr2 

7.78201741
6 

sub1_Pres_d7_32C_e
xt2_pcr1 

21.7969815
7 

sub2_Pres_d3_m80C_
ext1_pcr2 

23.4302725
6 

sub3_Pres_d7_7C_ext2
_pcr1 

7.86135943
6 

sub1_NoPres_d7_7C
_ext1_pcr1 

23.2127724
5 

sub2_Pres_d3_m80C_
ext2_pcr2 

24.3277820
7 

sub3_NoPres_d7_7C_e
xt1_pcr2 

7.86727699
4 

sub1_NoPres_d7_22
C_ext1_pcr1 

23.7193545
7 

sub2_Pres_d3_m80C_
ext1_pcr1 24.3665596 sub3_NoPres_d7_7C_e

xt1_pcr1 
7.88688108
5 

sub1_NoPres_d7_32
C_ext1_pcr1 

24.0860736
3 

sub2_Pres_d3_22C_ex
t1_pcr1 

24.5908928
1 

sub3_Pres_d3_m80C_e
xt2_pcr2 

8.30008891
8 

sub1_Pres_d7_22C_e
xt2_pcr1 

25.0428990
7 

sub2_Pres_d3_7C_ext
1_pcr2 25.3202099 sub3_NoPres_d3_22C_

ext2_pcr1 
8.83229289
5 

sub1_NoPres_d7_7C
_ext2_pcr1 

25.3876228
9 

sub2_NoPres_d0_NA
_ext1_pcr2 25.397876 sub3_NoPres_d3_m80

C_ext2_pcr1 
8.89887260
1 

sub1_NoPres_d7_22
C_ext2_pcr1 

25.5216591
4 

sub2_Pres_d3_22C_ex
t2_pcr1 

25.7295934
6 

sub3_NoPres_d3_7C_e
xt1_pcr1 

9.18473290
2 

sub1_Pres_d7_7C_ex
t1_pcr2 

26.7598476
6 

sub2_NoPres_d3_22C
_ext1_pcr1 

25.8184855
9 

sub3_Pres_d3_m80C_e
xt1_pcr2 

9.31718906
3 
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Table 4. Distance of the 10 closest samples to the "fresh centre" within each 

participant cluster 

Subject 1 Subject 2 Subject 3 
Sample ID Distance to 

Fresh 
Centre 

Sample ID Distance to 
Fresh 
Centre 

Sample ID Distance to 
Fresh 
Centre 

sub1_NoPres_d0_N
A_ext2_pcr1 4.099769923 sub2_NoPres_d0_N

A_ext2_pcr2 7.741715028 sub3_NoPres_d0_
NA_ext2_pcr2 4.599199044 

sub1_NoPres_d0_N
A_ext2_pcr2 4.5118112 sub2_NoPres_d0_N

A_ext1_pcr2 7.865818862 sub3_NoPres_d0_
NA_ext2_pcr1 4.79650351 

sub1_NoPres_d0_N
A_ext1_pcr1 4.594732795 sub2_NoPres_d0_N

A_ext2_pcr1 7.894678476 sub3_NoPres_d0_
NA_ext1_pcr2 5.105475976 

sub1_NoPres_d0_N
A_ext1_pcr2 4.733602626 sub2_NoPres_d0_N

A_ext1_pcr1 8.014097687 sub3_NoPres_d0_
NA_ext1_pcr1 6.616679361 

sub1_NoPres_d0_m
80C_ext2_pcr2 6.931155897 sub2_NoPres_d3_m

80C_ext1_pcr2 9.518267963 sub3_NoPres_d7_
m80C_ext1_pcr1 7.138155018 

sub1_NoPres_d0_m
80C_ext1_pcr2 7.685999985 sub2_NoPres_d3_m

80C_ext1_pcr1 10.33991077 sub3_NoPres_d3_
m80C_ext2_pcr2 7.665244301 

sub1_NoPres_d7_m
80C_ext1_pcr2 8.531981606 sub2_Pres_d3_7C_

ext1_pcr1 11.22479013 sub3_NoPres_d3_
m80C_ext2_pcr1 8.254854519 

sub1_NoPres_d3_m
80C_ext2_pcr2 8.574646696 sub2_Pres_d3_7C_

ext1_pcr2 11.56172214 sub3_NoPres_d3_
m80C_ext1_pcr2 8.437884311 

sub1_NoPres_d0_m
80C_ext1_pcr1 8.904700784 sub2_NoPres_d0_m

80C_ext2_pcr2 11.94384465 sub3_NoPres_d7_
m80C_ext2_pcr1 8.509218755 

sub1_NoPres_d0_m
80C_ext2_pcr1 9.062602321 sub2_NoPres_d3_7

C_ext1_pcr2 12.01324338 sub3_NoPres_d3_
m80C_ext1_pcr1 9.726049853 

sub1_NoPres_d3_m
80C_ext2_pcr1 9.915761448 sub2_Pres_d3_7C_

ext2_pcr2 12.09124961 sub3_NoPres_d3_
7C_ext1_pcr1 10.09143841 

sub1_NoPres_d7_m
80C_ext1_pcr1 10.16077497 sub2_Pres_d3_m80

C_ext2_pcr2 12.7616741 sub3_NoPres_d0_
m80C_ext2_pcr1 10.43377554 

sub1_NoPres_d3_7
C_ext1_pcr2 10.36808667 sub2_Pres_d3_7C_

ext2_pcr1 13.00538835 sub3_NoPres_d7_
7C_ext1_pcr1 11.07853315 

sub1_NoPres_d3_m
80C_ext1_pcr2 10.88863058 sub2_NoPres_d3_m

80C_ext2_pcr2 13.03267418 sub3_NoPres_d3_
22C_ext2_pcr1 11.57081857 
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2.5 Discussion 
This study investigated if and how sampling and storage would impact the microbial 

community structure of fecal samples collected on toilet paper. With the use of various 

techniques including principal components analysis and k-means clustering, the samples 

consistently grouped by participant, not storage method. In the principal component 

analysis, all samples clustered based on their participant of origin without overlap. 

Technical replicates of participant samples had significantly less variation than the 

variation between paired samples from different participants. Similar to other studies in 

healthy people, we showed that Bacteroides, Faecalibaterium, and Prevotella dominated 

the gut microbiotas of the three participants (Arumugam et al., 2011; King et al., 2019). 

Together, these results illustrate that regardless of the storage conditions, a participant's 

stool samples still resemble “self”. 

It was somewhat surprising that no distinguishing patterns were found between storage 

methods and variance within participants (Tables 3 and 4). It was expected that the use of 

RNAlater® would initially alter the microbiome of exposed samples, skewing it to 

appear less like the fresh sample (Choo et al., 2015; Gorzelak et al., 2015; Hale et al., 

2015; Liang et al., 2020). Due to the preservative nature of RNAlater®, it was expected 

that samples would be stabilized over storage in increased temperatures (Hale et al., 

2015); surprisingly neither of these trends were observed. In two of the three participants, 

immediate freezing of the samples at −80 °C resulted in the microbiota most closely 

resembling that found in fresh stool. In the other participant, there were no storage 

methods that consistently resembled the fresh sample. These results imply that there is no 

“perfect” method of sample storage appropriate for every participant. It appears that 

utilizing a preservative agent such as RNAlater® is unnecessary for samples stored up to 

seven days from −80 °C to 32 °C, with an added study cost and inconvenience for 

participants. 

The analysis of next generation sequencing has become the favoured method to 

investigate the composition of the microbiome and how it relates to various clinical 

conditions. The methodology is sensitive and requires much standardization to achieve 

reproducible results. A strength of the current study is the use of paired-end Illumina 
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sequencing and exploration of the variation in DNA extraction and PCR technical 

replicates, which allowed us to explore the extent to which our entire sample-processing 

and sequencing pipeline may inadvertently vary between samples. Our results 

demonstrate that technical variation between sample replicates was extremely minor and 

did not contribute to demonstratable downstream effects when our bioinformatic filtering 

was applied. Because some of the methods utilized herein may be influenced by human 

error, others utilize robotic pipetting, and all were subject to basal variability inherent in 

Illumina MiSeq runs, this study was an important primary validation in establishing the 

microbiome analysis standard operating procedures at our centre (Wen et al., 2017). 

This study also verifies the use of toilet paper sampling, which is an extremely 

convenient and low-cost methodology for acquiring fecal samples for the purpose of 

microbiome analysis in clinical studies. Although the method of aliquoting stool onto 

toilet paper used herein does not account for the transfer of skin microbes during at-home 

sampling, the potential contamination from skin microbes would be negligible in 

abundance (Sender et al., 2016).  

The storage treatments investigated did not significantly impact the microbial 

communities and do not validate the use of storage preservative agents in the short term, 

although no conclusions can be made regarding the efficacy of such preservatives for 

long-term storage. These findings are comparable to similar studies in the literature 

(Dominianni et al., 2014; Nel van Zyl et al., 2020; Voigt et al., 2015). This method can 

be employed where patients are required to conduct at-home sampling, and based on the 

temperatures investigated herein, validate this method for the shipment of samples via 

standard postal service. Depending on the season, samples in post may be exposed to 

temperatures above 30 °C  or below 0 °C for up to a week, however we found that even 

storage for 7 days at 32 °C did not push the microbial communities beyond the 

recognition of “self” when compared to fresh samples from the same participant.  

Despite these conclusions, we suggest careful documentation of sample collection if this 

method is to be utilized in future clinical studies. For example, the study participant 

should record the date of sample collection, when it was mailed, and the lab should 
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record the samples receipt with regional weather trends throughout the sample’s 

shipment. Although no differences were determined based on temperature in this short-

term pilot study, curated sample metadata should always be utilized in downstream 

analysis to identify the true source of microbial community variability (Allaband, et al., 

2018). If this method is utilized in future studies, we also suggest the use of nuclease-free 

transport bags (such as VWR CA93000-724), such that external contamination after 

sample collection is minimized. Indeed, regardless of which sample collection method is 

chosen, consistency of methodology between samples in a study (down to the container) 

is an important feature of collection (Liang et al., 2020). 

In conclusion, although immediate processing of samples is preferable, fecal samples 

collected on toilet paper can be stored and shipped short-term in varied temperatures 

without the preservative agent RNAlater®, without fear of vast microbial changes. 
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Chapter 3  

3 The microbiome at multiple body sites in a kidney stone 
patient population: revisiting the role of Oxalobacter 
formigenes in stone formation 

3.1 Abstract 
Mounting evidence suggests a role for both the urinary and gut microbiome in 

nephrolithiasis. Intestinal colonization of Oxalobacter formigenes has been proposed to 

reduce the risk of oxalate stone disease through its capacity to degrade calcium oxalate. 

However, literature on the impact of this microbe in nephrolithiasis is controversial. The 

aim of the present study was to use a systems-level approach to fully characterize both 

the urinary and gut microbiota of stone formers and healthy controls and assess the 

bacterial contribution to this disease. Urine and fecal samples from 83 stone formers (SF) 

and 30 healthy controls (HC) were evaluated with 16S rRNA gene sequencing, and whole 

shotgun metagenomic sequencing. Stone fragments and intraoperative urine from SFs 

were also analyzed. The SF gut microbiota was significantly enriched in 

Enterobacteriaceae and potential uropathogens, however there was no observable 

difference in relative abundance of O. formigenes compared to HC. The urinary 

microbiota and oxalate concentrations were altered between HC and SF, and significantly 

differed in the SFs over time (pre-operative vs. intraoperative urine samples), exhibiting 

enrichment in pathogenic bacteria following perioperative antibiotic treatment. 

Interestingly, kidney stones harboured a microbiota distinct from urine, and this was not 

dictated by the stone’s crystalline composition. The gut microbiota of SFs was aberrant 

compared to HC in several functional capacities, including increased resistance to toxic 

compounds (antibiotics and heavy metals), altered micronutrient biosynthesis and 

utilization implicated in host oxalate homeostasis, and an elevated osmotic stress 

response. Together these findings suggest that the microbiota of SF is altered in a 

multimodal manner, aggravating stone formation. The microbiome as a system likely 

plays a much more significant role in nephrolithiasis beyond the dogmatic perspective 

that O. formigenes colonization is the key to stone prevention. 
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3.2 Introduction 
Kidney stone disease, or nephrolithiasis, is an extremely prevalent condition that causes 

significant morbidity to sufferers and is a draining financial burden to public health 

(Pearle et al., 2005). Although classically believed to be an affliction of the obese and 

middle-aged white man, prevalence has risen in recent decades, specifically in young 

women in children (Scales Jr. et al., 2007; Scales Jr. et al., 2012; Soucie et al., 1994; 

Tasian et al., 2016). The human microbiota, defined as the microorganisms present in a 

certain environment, is known for its role in systemic human health and disease, 

including metabolic syndrome, cardiovascular disease, and diabetes (Gan et al., 2014; 

Gurung et al., 2020; Turnbaugh et al., 2006; Whiteside et al., 2015). Interestingly, these 

conditions are known comorbidities associated with nephrolithiasis, and their increasing 

prevalence over recent years along with that of stone disease indicate systemic declines in 

our population’s overall health (Logan et al., 2016). Importantly, the human gut 

microbiota is also implicated in nephrolithiasis, but a consensus on the mechanisms 

behind this relationship remain elusive. 

Calcium oxalate (CaOx) is the most common crystalline composition of stones, followed 

by calcium phosphate, uric acid, struvite, and cystine (Moe, 2006). Oxalate is a toxic 

terminal metabolite produced endogenously and consumed in the diet (Hatch and Freel, 

2005). The infamous Oxalobacter formigenes utilizes oxalate as its sole carbon source, 

and some studies have shown that people intestinally colonized by the bacterium have 

lower urinary oxalate levels and are subsequently at lower risk of developing CaOx 

stones (Kaufman et al., 2008; Jiang et al., 2011). However, many studies also find no 

difference in colonization rates between healthy persons and stone formers (Magwira et 

al., 2012; Miller et al., 2019; Tang et al., 2018; Ticinesi et al., 2018). Other members of 

the gut microbiota are capable of degrading oxalate including various lactobacilli and 

bifidobacteria (Miller and Dearing, 2013). In kidney stone patients, supplementation with 

oxalate-degrading bacteria has been suggested as a potential preventive therapy, however 

trials thus far have been limited and inconclusive (Hoppe et al., 2006; Siener et al., 2013; 

Klimesova et al., 2015). It remains unclear if direct oxalate metabolism by gut colonizers 

is the key to preventing kidney stones. 
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Beyond oxalate utilization, previous studies have demonstrated generalized “dysbiosis” 

in the intestinal microbiota of kidney stone formers (Miller et al., 2019; Suryavanshi et 

al., 2018; Stern et al., 2016; Tang et al., 2018; Ticinesi et al., 2018; Zampini et al., 2019). 

However, the significant perturbations determined in these studies are often not 

consistent; this may be an artifact of small sample size, or different sequencing and 

analysis methodologies. Most of the studies to date have also focussed primarily on the 

presence or absence of O. formigenes and direct oxalate utilization pathways, but the 

narrow focus towards these analyses may be overemphasizing their true functional 

significance to the disease pathology.  

Although historically believed to be sterile, the urinary microbiota in healthy people has 

been well described in the last decade (Wolfe et al., 2012); it is compositionally distinct 

and of lower abundance than the microbiomes of the gut and vagina (Whiteside et al., 

2015). The recent characterization of this microbiome has led investigators to question 

the role it may play in nephrolithiasis (Xie et al., 2020). Indeed, while struvite stones are 

known to be associated with urinary tract infections (UTI), recent culture-dependent and -

independent studies have confirmed the presence of bacteria in calcium-based stones 

(Barr-Beare et al., 2015; Dornbier et al., 2019; Zampini et al., 2019). As direct bacterial 

oxalate utilization is likely not at play in the urinary tract, it is unknown how these 

bacteria may be contributing to the disease, and whether these stone-bound microbes 

result from an aberrant urinary microbiota. 

The use of multiple classes of oral antibiotics has been directly associated with increased 

risk of nephrolithiasis, with aggravated effects coinciding with more recent exposure and 

antibiotic use in younger ages (Tasian et al., 2018). The long-term perturbations to the 

microbiome caused by antibiotics and the associated stone risk are yet another indication 

of a role for the microbiome in this disease. Which body site is of most significance to the 

pathology is still unclear, and a role for the microbiome beyond direct oxalate utilization 

has been underexplored. 

The aim of the present study was to fully characterize the urinary and gut microbiota of 

kidney stone formers and healthy controls to assess the bacterial contribution to 



92 

 

 
 

nephrolithiasis. It was hoped that this would provide insights to the bacterial implications 

for stone formation from multiple body sites and provide foundational knowledge upon 

which personalized medicine and targeted therapies could be developed for the 

prevention and treatment of nephrolithiasis. 

3.3 Materials and Methods 

3.3.1 Study design and sample collection 

Nephrolithiasis patients were recruited from the Urology Department at St. Joseph’s 

Hospital in London, Ontario. Ethical approval for the study was granted by Lawson 

Health Research Institute (CRIC R 15-117) and the Health Sciences Research Ethics 

Board at the University of Western Ontario (REB #105443, Appendix B) in London, 

Ontario. Written consent was obtained from all the study participants at the time of study 

inclusion and the methods were carried out in accordance with the approved guidelines. 

The study aimed to recruit up to 200 participants over a 5-year period, but the final 

numbers of subjects enrolled were 83 stone patients and 30 healthy controls. Inclusion 

and exclusion criteria for the participants are provided in Table 5. All stone patients who 

met the inclusion criteria were recruited during regularly scheduled clinic appointments, 

and healthy control subjects were approached in the community and through poster 

advertisements. Upon recruitment, subjects were asked about relevant demographic and 

medical history including antibiotic usage and their history of urinary tract infections. 

Following enrolment, participants provided a mid-stream urine sample, oral swab, and 

mailed in a fecal sample on toilet paper (Al et al., 2018). During surgical stone removal, 

additional clinical samples were collected: urine, upon first insertion of the catheter and 

prior to instilling saline into the urinary tract, and where possible, stone fragments. These 

were placed by the surgeon into a sterile collection cup. An operating room (OR) 

environmental control sample was also collected where a sterile urine container 

containing 200 uL of nuclease-free water (Ambion, Mississauga, ON, CAN) was left 

open beside the patient for the duration of their surgery. 

From home, participants completed a diet history questionnaire either by paper copy 

which was mailed back to the laboratory, or online through the diet questionnaire 
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website. The food frequency questionnaire investigated past year intake and included 

questions about portion size, providing outputs with nutrient estimates (Subar et al., 

2001). 

3.3.2 Clinical sample processing 

All processing of clinical samples was performed with PCR-grade filter pipette tips in a 

biosafety cabinet (FroggaBio, Toronto, ON, CAN). All urine samples (i.e. from healthy 

subjects as well as pre-operative and intra-operative urine from stone patients) were 

processed in two portions within 2 hours of collection. Where possible, 10 mL of whole 

urine was collected and frozen at -80 °C for high-performance liquid chromatography 

(HPLC) analyses of urinary metabolites. The remainder was stored for future 16S rRNA 

gene sequencing: the entire remaining volume of urine was centrifuged for 10 minutes at 

5,000 x g, after which the supernatant was decanted off and the pellet was stored dry at -

80 °C until DNA extraction. If the total urine volume was under 25 mL, only 2 mL of 

whole urine was reserved for HPLC. The urine volume that resulted in the pellet for 16S 

rRNA gene sequencing was recorded to identify confounding factors in the downstream 

sequencing analysis associated with processing conditions.  

Oral swabs and fecal samples on toilet paper were frozen at -80 °C for future 16S rRNA 

gene sequencing: oral swabs within 2 hours of their initial collection and fecal samples 

within 2 hours of their receipt to the laboratory. Within 2 hours of collection, the water 

inside the OR-environmental control sample was shaken in the cup for 2 minutes and the 

entire volume was transferred to a PCR-grade Eppendorf tube (Thermo Scientific, 

Waltham, MA, USA), and frozen at -80 °C for future 16S rRNA gene sequencing. 

Within 2 hours of their initial collection, one stone fragment per patient was transferred 

to a PCR-grade Eppendorf tube, frozen at -80 °C and stored until DNA extraction. If 

further fragments were available, they were cultured using the streamlined Extended 

Quantitative Urine Culture technique (EQUC) (Hilt et al., 2014; Price et al., 2016). 

Stones for culture were first surface sterilized with 70% ethanol for 10 seconds, followed 

by 2 washes with sterile phosphate buffered saline (PBS). They were then pulverized 

with a mortar and pestle sterilized with 70% ethanol until only sand-like fragments were 
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present. The fragments were suspended in 1000 µL of sterile PBS, and 100 µL of the 

suspension was pipetted and spread onto plates of Columbia blood agar (CBA, BD, 

Mississauga, ON, CAN) with 5% defibrinated sheep’s blood (Cedarlane, Burlington, ON, 

CAN), colistin-nalidixic acid agar (CNA, BD), MacConkey agar (BD), and 

CHROMagar™ orientation plates (CHROMagar, Paris, FR). The CBA and CNA plates 

were incubated at 5% CO2 for 48 hours, and the MacConkey and CHROMagar plates 

were incubated aerobically for 48 hours. If colonies were cultured, DNA was extracted 

with the Monarch Genomic DNA Purification Kit (New England Biolabs, Whitby, ON, 

CAN) as per the manufacturer’s instructions. The DNA was then PCR amplified with 

pA/pH primers (8F and 1522R) of the 16S gene as previously described and Sanger 

sequenced at the London Regional Genomics Centre (http://www.lrgc.ca; London, ON, 

CAN) (Edwards et al., 1989). Sequences were then assessed with the Ribosomal 

Database Project to determine colony identification (https://rdp.cme.msu.edu). 

3.3.3 High performance liquid chromatography 

Urine samples were analyzed with HPLC to determine creatinine and oxalate levels 

(Maalouf et al., 2011; Murray et al., 1982). Reserved whole urine samples were thawed 

and vortexed for 30 seconds. Using PCR-grade filter tips, 50 μL of urine was transferred 

to an Eppendorf tube for creatinine quantification, and 950 μL of urine was transferred to 

a 15 mL conical tube for oxalate quantification.  

For quantifying creatinine, 450 μL HPLC H2O and 500 μL of HPLC acetonitrile were 

added to the urine and vortexed. The urine mixture was incubated at 4 °C for 15 minutes, 

facilitating precipitation of debris. Samples were then centrifuged for 15 minutes at 

16,000 × g at 4 °C and filtered through 0.2 μm syringe filters into labelled amber HPLC 

vials (Agilent, Mississauga, ON, CAN). Standards of creatinine were prepared in HPLC 

H2O at concentrations of 1 ppm, 5 ppm, 10 ppm, 50 ppm, 100 ppm, 150 ppm, 200 ppm, 

250 ppm, and 300 ppm. The Agilent 1100 HPLC was utilized with the conditions stated 

in Table 6. 

For oxalate quantification, the 950 μL of urine (or oxalic acid standards at concentrations 

of 1 ppm, 10 ppm, 25 ppm, 50 ppm, 100 ppm, 150 ppm, 200 ppm, 250 ppm) was 
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combined with 50 μL of 10 M HCl and 1 mL of 0.1 M o-phenylenediamine dissolved in 

4 M HCl and vortexed. The tubes were capped, being careful to tighten the lids as much 

as possible. The tubes were then incubated in a laboratory oven at 100 °C for 6-7 hours, 

then moved to 4 °C overnight. The following day, volume in the tube was carefully 

inspected and tubes that had experienced cracking or evaporation were discarded, 

requiring repeat processing. Five hundred μL of 200 mM KHPO4 (pH 7.0) and 480 μL of 

10 M KOH were added to the tubes with gentle vortexing. One mL of the mix was then 

transferred to labelled Eppendorf tubes and incubated at 4 °C for 15 minutes, then 

centrifuged for 15 minutes at 16,000 × g at 4 °C. Large pellets were present and were 

carefully avoided when transferring the entire volume to a 0.2 μm syringe filters; samples 

were filtered into labelled amber HPLC vials (Agilent). The HPLC was utilized with the 

conditions stated in Table 6. 

3.3.4 DNA extraction 

On the day of DNA extraction, the samples were thawed and processed in a sterile 

biosafety hood. Using tweezers sterilized with RNase AWAY™ (Thermo Fisher 

Scientific, Waltham, MA, USA), the kidney stone was transferred to a sterile cell strainer 

mounted onto an empty 50 mL conical tube (Thermo Fisher Scientific). New sterile cell 

strainers and conical tubes were used for every sample. Two mL of nuclease free water 

was gently rinsed over the external surface of the stone. The stone was then transferred to 

a mortar and pestle that was sterilized with 5% sodium hypochlorite followed by RNase 

AWAY™ and pulverized into sand-like fragments. The fragments were suspended in 100 

µL of nuclease-free water and pipetted directly into wells of the bead plate of the DNeasy 

PowerSoil HTP 96 Kit utilized for DNA extraction (Qiagen, Toronto, ON, CAN). Urine 

pellets were thawed and suspended in 100 uL of nuclease-free water, then pipetted into 

the bead plate. The 100 uL OR environmental control water sample was transferred 

directly to the bead plate. Toilet paper samples were dissected and trimmed with RNase 

AWAY™-treated scissors and forceps such that a piece of visibly soiled paper 

approximately 1 cm2 in size was added directly to the bead plate. 

Urine, stone, and OR environmental control samples were randomized across DNA 

extraction plates together; fecal samples were extracted on separate plates to mitigate 
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potential contamination to the other samples which were of significantly lower biomass 

in comparison. 

Two wells in every DNA extraction plate were left empty and acted as negative controls. 

Two positive controls, or “spikes”, were added to each plate and were 100 μL of pure 

bacterial culture: Spike 1 was Escherichia coli strain DH5α, and Spike 2 was 

Staphylococcus aureus strain Newman. For preparation of the spikes, a single colony of 

the bacteria was inoculated into 10 mL of Luria-Bertani (LB) broth and grown overnight 

at 37 °C. One hundred 100 μL aliquots of the overnight cultures were portioned into 1.5 

mL Eppendorf tubes and frozen at -80 °C. For each DNA extraction plate, a single tube 

of both spikes was thawed and pipetted directly into the PowerSoil HTP bead plate with 

PCR-grade filter tips. 

DNA was isolated from samples using the DNeasy PowerSoil HTP 96 Kit according to 

the manufacturer’s instructions. Briefly, 750 μL of bead solution and 60 μL of Solution 

C1 were added to the bead plate loaded with all samples and controls. Plates were shaken 

for 20 minutes at speed 20 using the MoBio 96-well plate shaker (Qiagen), then 

centrifuged for 10 minutes (all centrifuge steps were conducted at room temperature at 

2250 x g). Five hundred μL of the supernatant was added to a fresh plate with 250 μL 

Solution C2 and mixed by pipetting. The plates were incubated at 4 °C for 10 minutes 

followed by centrifugation for 10-minutes. The resulting supernatant was then transferred 

to a fresh plate and the centrifugation step was repeated. Approximately 600 μL of the 

solution was then transferred to a fresh plate containing 200 μL Solution C3 and mixed 

by pipetting. The plate was incubated at 4 °C for 10 minutes followed by centrifugation 

for 10-minutes. The entire volume, with the exception of the pellet, was again transferred 

to a fresh plate for centrifugation. Carefully avoiding the loose residual pellet, 650 μL 

was transferred from each well to a fresh plate containing 1300 μL Solution C4. The 

plates were then sealed with sealing tape and stored at 4°C overnight. The following day 

the plates were briefly centrifuged and sealing tape was removed. Solution in the wells 

was then mixed by pipetting and 500 μL was transferred to a Spin Plate, which was 

centrifuged for 5 minutes. The flow-through was discarded, and this step was repeated 

until the entire sample-Solution C4 mix was processed through the Spin Plate. A volume 
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of 500 μL Solution C5-D was then added to the Spin Plate and centrifuged twice for ten 

minutes, where the flow-through was discarded between spins. 100 μL Solution C6 was 

then added to the Spin Plate, incubated at room temperature in the biosafety hood for 10 

minutes and the resulting DNA was eluted to a Microplate via centrifugation for 15 

minutes. DNA was stored at -20 °C until downstream processing. 

3.3.5 16S rRNA gene sequencing 

Urine, stone, and OR-environmental control samples underwent 16S rRNA gene 

sequencing. PCR amplification was completed using the Earth Microbiome universal 

primers (515F and 806R) which are specific for the V4 variable region of the 16S rRNA 

gene (Figure 4). Primers contained an Illumina adapter, followed by four random 

nucleotides, one of 24 unique 12-mer barcodes, and the annealing left or right primer 

(Figure 4) (Parada et al., 2016). Primers and barcode sequences are listed in Table 7. 

PCR reagent set-up was performed using a Biomek® 3000 Laboratory Automation 

Workstation (Beckman-Coulter, Mississauga, ON, CAN). Ten μL of each left- and right- 

barcoded primers (3.2 pMole/μL) were arrayed in 96-well plates (Axygen-Corning, 

Oneota, NY, USA) such that each well contained a unique combination of left- and right- 

barcodes (up to a maximum of 576 unique combinations). Two μL of DNA template was 

added to the primer plate, followed by 20 μL of Promega GoTaq hot-start colourless 

master mix (Promega, Madison WI, USA). The reaction was briefly mixed by pipetting, 

then plates were sealed with foil plate covers (Axygen-Corning) and centrifuged for 2 

minutes at room temperature at 2250 x g. 

Amplification was carried out using an Eppendorf thermal cycler (Eppendorf, 

Mississauga, ON, CAN), where the lid temperature was maintained at 104 °C. An initial 

warm-up of 95 °C for 4 minutes was utilized to activate the GoTaq, followed by 25 

cycles of 1 minute each of 95 °C, 52 °C, and 72 °C. 

DNA extraction was completed across a total of 3 x 96-well plates. Sequencing was 

carried out at the London Regional Genomics Centre. Amplicons were quantified using 

pico green (Quant-It; Life Technologies, Burlington, ON) and pooled at equimolar 

concentrations before cleanup (QIAquick PCR clean up; Qiagen, Germantown, MD). 
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Using the 600-cycle MiSeq Reagent Kit (Illumina Inc., San Diego, CA, USA), paired-end 

sequencing was carried out as 2 × 260 cycles with the addition of 5% ɸX-174 at a cluster 

density of ~1100. Data was exported as raw fastq files and analyzed using R, DADA2, 

the SILVA database (version 132), and ALDEx2 (Callahan et al., 2016; Fernandez et al., 

2013; Quast et al., 2013; R Core Team, 2019). 

3.3.6 Shotgun metagenomic sequencing 

Fecal samples from 25 healthy control participants and 36 confirmed calcium-oxalate 

stone forming patients underwent shotgun metagenomic sequencing at The Centre for 

Applied Genomics (TCAG) at The Hospital for Sick Children in Toronto, ON, CAN. 

DNA concentration was quantified using the Qubit™ dsDNA HS Assay Kit (Invitrogen, 

Thermo Fisher Scientific). Approximately 100 ng of DNA was PCR amplified and 

prepared for sequencing using the Nextera DNA Flex Library Prep Kit (Illumina, Inc.). 

The amplified library was purified and enriched for amplicons ~350 bp, then sequenced 

using an S1 Flowcell on the Illumina NovaSeq 6000. Reads were exported as fastq files, 

quality assessed using FastQC (Andrews, 2010), trimmed with Trimmomatic (Bolger et 

al., 2014), and mapped against the human genome (Hg38) using Bowtie2 (Langmead and 

Salzberg, 2012). Human reads were discarded, and the remaining unmapped reads were 

utilized in downstream analyses. Taxonomy was assigned with Kaiju (Menzel et al., 

2016) and reads were assembled into contigs using MetaSPAdes (Nurk et al., 2017). 

Functional annotation was determined based on alignment to the SEED database 

(Overbeek et al., 2014). Downstream statistical analysis was performed with core R 

packages, as well as Aldex2, vegan, MaAsLin2, and LEfSe (Fernandez et al., 2013; 

Morgan et al., 2012; Oksanen et al., 2019; R Core Team, 2019; Segata et al., 2011). 
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Table 5. Study participant inclusion and exclusion criteria 

Kidney stone patients 
Inclusion Exclusion 

At least 18 years of age Taking/taken any antibiotic during the 
previous 30 days 

Scheduled for PCNL or URS as treatment 
of urinary stone disease 

Has an active gastro-intestinal infection 

Able and willing to provide informed 
consent 

Previously enrolled in this trial 

Able and willing to provide urine, saliva, 
and stool samples 

In the opinion of the treating urologist, it is 
not in the patient’s best interest to 
participate 

Able and willing to complete diet 
questionnaire at home 

 

Healthy control participants 
Inclusion Exclusion 

At least 18 years of age Taking/taken any antibiotic during the 
previous 30 days 

Able and willing to provide informed 
consent 

Has an active gastro-intestinal infection 

Able and willing to provide urine, saliva, 
and stool samples 

Has Crohn’s disease 

Able and willing to complete diet 
questionnaire at home 

Has ulcerative colitis 

Undergo renal ultrasound to confirm stone-
free status 

Has had gastric bypass surgery 
Has a history of urinary stone disease 
Has a history of urosepsis in the past year 
(365 days) 
Has a urinary diversion 
Has an indwelling catheter 
Performs clean intermittent catheterization 
Has previously enrolled in this trial 
In the opinion of the treating urologist, it is 
not in the subject’s best interest to 
participate 
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Table 6. HPLC running conditions 

 Creatinine quantification Oxalate quantification 

Flow rate 1 mL/minute 1 mL/minute 

Mobile phase 60% ACN / 40% 5 mM KHPO4 

(pH 2.8) 

15% ACN / 85% 50 mM KHPO4 

(pH 7.0) 

Column Poroshel 120 HILIC (4.6 × 150 

mm, 4μm) – ambient 

temperature (Agilent) 

Poroshel 120 EC-C18 (4.6 × 150 

mm, 4μm) – ambient temperature 

(Agilent) 

Injection volume 5 μL 5 μL 

Detector 215, 4 (ref = 320, 120) 312. 4 (ref = 355, 50) 

Retention time ~2.2 minutes ~ 2.7 minutes 

Run time 4 minutes 4 minutes 

  



101 

 

 
 

Table 7. Primer and barcode sequences 

Name Sequence (5’ – 3’) 
Left Illumina adapter ACACTCTTTCCCTACACGACGCTCTTCCGATCT 
Right Illumina adapter CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 
Left primer (515F) GTGCCAGCMGCCGCGGTAA 
Right primer (806R) GGACTACHVGGGTWTCTAAT 
Barcode #1 TGCATACACTGG 
Barcode #2 ACTCACAGGAAT 
Barcode #3 GTAGGTGCTTAC 
Barcode #4 CAGTCGTTAAGA 
Barcode #5 CACTACGCTAGA 
Barcode #6 GCTCGAAGATTC 
Barcode #7 TGAACGTTGGAT 
Barcode #8 ATGGTTCACCCG 
Barcode #9 CGAGGGAAAGTC 
Barcode #10 TACTACGTGGCC 
Barcode #11 GTTCCTCCATTA 
Barcode #12 ACGATATGGTCA 
Barcode #13 TATCGACACAAG 
Barcode #14 AGCATGTCCCGT 
Barcode #15 CCAGATATAGCA 
Barcode #16 GTGTCCGGATTC 
Barcode #17 ATCGCACAGTAA 
Barcode #18 CAGCTCATCAGC 
Barcode #19 GCATATGCACTG 
Barcode #20 TGTAGGTGTGCT 
Barcode #21 ACGAGACTGATT 
Barcode #22 CATCAGTACGCC 
Barcode #23 GTATCTGCGCGT 
Barcode #24 TGCGTCAGCTAC 
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3.4 Results 

3.4.1 Study recruitment and participant demographics 

Participant recruitment began in August of 2015 and was completed in January of 2019 

after the inclusion of 30 healthy control (HC) participants and 83 stone-forming (SF) 

patients. This yielded 178 urine samples, 113 oral swabs, 36 environmental (OR) control 

samples, 47 stone fragments, and 102 fecal samples. Healthy controls were matched to 

stone patients on the basis of age, BMI, and comorbidities, but differed in their smoking 

status and antibiotic history (Table 8). The stone patients were evenly divided between 

those that received percutaneous (PCNL) compared to ureteroscopic (URS) surgery. 

3.4.2 Urinary oxalate quantification 

The urinary oxalate concentration was measured in ppm with HPLC and normalized to 

creatinine concentration. The urinary oxalate/creatinine ratio was significantly higher in 

the SF patients at the pre-operative time point compared to both healthy controls and SF 

at the OR timepoint (Figure 10).  

3.4.3 Diet history analysis 

HC and SF participants did not significantly differ in their estimated intake of any of the 

216 measured features from the diet history questionnaire after multiple testing correction 

with Bonferroni adjustment. Similarly, no differences were statistically significant 

between study participants when they were grouped by their history of stones (i.e. no 

history of urolithiasis versus recurrent stone formers). Dietary metrics of interest that may 

play a role in stone formation (including water consumption, caffeine, Vitamins B6, C, D, 

and K, calcium, sodium, potassium, and oxalate) are displayed in Figure 11.  
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Table 8. Demographic and clinical data of study participants 

Metric  Healthy controls Stone patients P value* 
No. enrolled  30 83 NA 
Sex  n (%) n (%)  
 Female 11 (37) 32 (39)  
 Male 19 (63) 51 (61) 0.99 
Age  M (SD) M (SD)  
  55 (11.25) 58 (11.5) 0.29 
BMI  M (SD) M (SD)  
  27.6 (7.1) 30.2 (5.0) 0.06 
Other health features n (%) n (%)  
History of stones 

0 (0) 70 (84) <0.0001 

History of UTI  
9 (30) 43 (51) 0.06 

Smoking status 
   

 Current smoker 
0 (0) 12 (14.8)  

 Non-smoker 
30 (100) 71 (85.7) 0.03 

Comorbidities Cardiac 
3 (10) 8 (9.5) 0.99 

 Hypertension 
8 (27) 32 (38) 0.37 

 Diabetes 
3 (10) 16 (19) 0.39 

 Hypothyroidism 
3 (10) 9 (10.7) 0.99 

Years since antibiotic use M (SD) M (SD)  
  

5.53 (4.0) 3.5 (6.7) 0.04 

Stone removal procedure  n (%) 
 

 PCNL 
 40 (48.2) NA 

 Ureteroscopy 
 43 (51.8) NA 
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Urinary oxalate concentrations [ppm] were determined with HPLC and normalized to 

creatinine levels [ppm]. SF Pre-Op urine had the highest oxalate concentrations 

(Kruskall-Wallis test with Dunn’s multiple comparisons). HC = healthy control 

participants (n = 29); Pre-Op = SF urine at preoperative timepoint (n = 83); OR = SF 

intraoperative urine (n = 55). * P < 0.05, ** P < 0.01. 
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Figure 10. Urinary oxalate levels are higher in stone formers than healthy controls 
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Approximate daily values of macronutrients of interest were compared between patient 

groups; no macronutrients were significantly different by two-tailed Mann Whitney test. 

HC = healthy control participants (n = 14); SF = stone former (n = 64); NHS = no history 

of stones (n = 22); RSF = recurrent stone forming patients (n = 56). 
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Figure 11. Dietary macronutrients are comparable between cohorts 
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3.4.4 16S rRNA gene sequencing 

Microbiota sequencing was performed on urine, stone, and OR control samples with the 

Illumina MiSeq platform. There was a total of 277 samples that yielded 14,989,061 reads, 

ranging from 148 to 774,051 reads per sample. An average of 19.58% reads were 

removed from each sample following quality filtration performed utilizing the DADA2 

pipeline (Callahan, et al., 2017). The remaining filtered reads (13,766,536) were assigned 

taxonomy with the SILVA (v132) training set. Samples and sequence variants (SVs) 

were then further pruned such that the final dataset utilized in all downstream analyses 

retained samples with greater than 1,000 reads, SVs present at greater than 1% abundance 

in any sample, and SVs with greater than 10,000 total reads across all samples. This 

cleaning reduced the dimensions of the dataset from 935 SVs and 277 samples down to 

83 SVs and 232 samples. Two additional SVs were removed due to their alignment to 

human mitochondrial sequences. Due to the low-abundance nature of the samples, 

additional stringent assessment using the decontam R package was performed to assess 

the presence of likely contaminant sequence variants (Davis et al., 2018). After assessing 

prevalence, frequency, and combined metrics of contaminant detection with decontam, 

one additional SV was determined to be a potential contaminant and removed from 

downstream analyses (Figure 12). 

The most proportionally abundant genera in urine and stone samples were Escherichia 

(29.7%), Lactobacillus (12.8%), Staphylococcus (10.3%), Gardnerella (7.3%), and 

Streptococcus (7.3%). The sequence counts were centre log ratio (CLR) transformed, 

generating sample-wise Aitchison distances, which were analyzed with principal 

components analysis (PCA) (Gloor et al., 2017). The PCA biplot displays modest 

clustering of samples based on sample type (Figure 13A). Sample types also differed by 

alpha diversity, whereby SF urine taken during stone-removal surgery (OR urine) had the 

lowest diversity, and the HC and pre-operative SF urine samples had the highest diversity 

(Figure 13B). 

Significant confounders of microbiota variation were determined using the envfit function 

within the R package ‘vegan’ for various sample group comparisons (Table 9). General 

linear models (GLM) were then utilized in MaAsLin2 to further determine significant 
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effectors of microbial community variation whilst accounting for the confounders. With 

this technique, the relative abundance of several genera was determined to be discordant 

when evaluating the three urine sample types (HC, SF pre-operative, and SF-OR) (Figure 

14A). Within stone patients, Lactobacillus and Prevotella spp. were relatively more 

abundant at the pre-operative time point, and Acinetobacter, Escherichia, and 

Gardnerella spp. were more abundant in the OR (Figure 14 B-F). Notably, Gardnerella 

spp. were relatively more abundant in HC compared to SF pre-operative samples (Figure 

14G).  

Samples from the SF cohort were determined to differ by sample type (Table 9) and 

several genera were determined to be significantly discordant using a GLM (accounting 

for relevant confounders) when comparing the urine and stone samples (Figure 15A). 

Stones had relatively more Gardnerella spp. and less Acinetobacter spp. compared to SF-

OR urine (Figure 15B-C). Stones had relatively more Atopobium, Gardnerella, and 

Staphylococcus spp. and relatively less Dialister, Lactobacillus, and Prevotella than SF 

Pre-Op urine (Figure 15D-I). 

Finally, stone samples were investigated to determine if microbial communities differed 

by stone composition. The time since participants’ most recent UTI was determined to be 

a confounder of stone microbiota (Table 9), however when this was accounted for in a 

GLM, there were no significant differences in stone microbiota based on stone 

composition (Figure 16). Several stone samples were also cultured utilizing the EQUC 

method as a proof of principle that the microbiota composition determined with 16S was 

indeed due to living, culturable bacteria present within the stone. Table 10 illustrates that 

several colonies were grown from stone fragments and largely correlated with the 16S 

rRNA gene sequencing findings. 
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SVs were assayed with decontam “prevalence”, “frequency”, and “combined” methods. 

SVs determined to be contaminants are blue and “true” SVs are pink. One SV (circled in 

black) was detected in all three methods and subsequently removed from the downstream 

analyses. 
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A) PCA was performed on CLR-transformed Aitchison distances of all urine and stone 

samples. Each coloured point represents a sample. Distance between samples on the plot 

represents differences in microbial community composition, with 17.6% of total variance 

being explained by the first two components shown. Strength and association for genera 

are depicted by the length and direction of the gray arrows, respectively. Points are 

coloured by sample type and ellipses represent the 95% confidence intervals of sample 

types. B) Shannon’s Index of alpha diversity was compared between sample groups. OR 

urine samples from stone patients had the lowest diversity (Kruskall-Wallis test with 

Dunn’s multiple comparisons, * P < 0.05, ** P < 0.01, *** P < 0.001). 
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Figure 13. Compositional analysis of all urine and stone samples 
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Table 9. Significant covariates of microbiota variation at genus level PCA 

ordination 

Samples tested Metadata Feature P value* 

HC and SF Pre-Op urine Time since most recent UTI (years) 0.04995 

SF Pre-Op and SF-OR urine Time of sampling (Pre-Op vs. OR) 0.00099 

SF Pre-Op urine and Stone Sample type 0.00999 

SF- OR urine and Stone Sample type 0.00099 

PCNL or URS 0.03196 

History of orthopedic conditions 0.00999 

Stone samples Time since most recent UTI (years) 0.04895 

* P values calculated using the envfit function within the vegan R package 
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A)  PCA was performed on CLR-transformed Aitchison distances of all urine samples. 

Each coloured point represents a sample. Distance between samples on the plot 

represents differences in microbial community composition, with 18.4% of total variance 

being explained by the first two components shown. Strength and association for genera 

are depicted by the length and direction of the gray arrows, respectively. Points are 

coloured by sample type and ellipses represent the 95% confidence intervals of sample 

types. B-F) Significantly altered genera between stone formers’ preoperative (PreOp) and 

OR urine, and G) stone formers preoperative (PreOp) and healthy control (HC) urine 

samples, as determined with general linear models accounting for significant covariates. 

* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

Figure 14. Compositional differences in urine samples 
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A) PCA was performed on CLR-transformed Aitchison distances of all urine samples. Each 

coloured point represents a sample. Distance between samples on the plot represents 

differences in microbial community composition, with 18.2% of total variance being 

explained by the first two components shown. Strength and association for genera are 

depicted by the length and direction of the gray arrows, respectively. Points are coloured by 

sample type and ellipses represent the 95% confidence intervals of sample types. B-C) 

Significantly altered genera between stone formers’ OR urine and stones, and D-I) stone 

formers preoperative (PreOp) and stone samples, as determined with general linear models 

accounting for significant covariates. CLR-transformed relative abundances are plotted. * P < 

0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 

  

Figure 15. Compositional differences in stone-former samples 
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PCA was performed on CLR-transformed Aitchison distances of all stone samples. Each 

coloured point represents a sample. Distance between samples on the plot represents 

differences in microbial community composition, with 36.1% of total variance being 

explained by the first two components shown. Strength and association for genera are 

depicted by the length and direction of the gray arrows, respectively. Samples are coloured 

by stone composition (major component shown for stones with mixed composition). 
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Table 10. Proof-of-principle culture results of stone fragments 

Participant ID Culture 
+/- 

Stone 
composition 

Colony 
characteristics: 
16S ID* 

Dominant 
genus by 16S** 

171 + Calcium 
oxalate 

Yeast (not 
sequenced) 

N/A, below 
filter cut-off 

175 + Struvite Short Gram 
negative rods: 
Proteus mirabilis 

Proteus 

177 + Uric acid Gram negative 
rods: Escherichia 
coli 

Escherichia 

178 + Calcium 
oxalate 

Gram negative rods 
(not sequenced)  

Gardnerella 

181 - Calcium 
oxalate 

N/A N/A, below 
filter cut-off 

182 + Calcium 
oxalate 

Gram positive 
cocci and Gram 
negative rods (not 
sequenced) 

Staphylococcus 
and Klebsiella 

* Generic 16S colony identification with pA-pH primers 
** 16S rRNA gene microbiota sequencing 
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3.4.5 Whole shotgun metagenomic sequencing 

One hundred and two fecal samples were collected from which DNA was extracted. Of these, 

61 were selected to be sequenced with whole shotgun metagenomics. These comprised 

samples from 25 healthy controls, and 36 confirmed calcium oxalate (CaOx) stone forming 

patients, all with high enough DNA yield (100 ng of ds DNA) and quality (260/280 between 

1.8-2.0) for sequencing library preparation. After quality filtering and discarding reads that 

mapped to the human genome, samples contained an average of 21,805,652 reads from 4342 

taxa (including bacterial, archaeal, and viral annotations). After aligning filtered reads to 

functional outputs within SEED, 9299 gene products were annotated (Overbeek et al., 2014). 

The total proportional abundance of unclassified reads ranged from 5.0% to 24.8% (mean 

11.7%). The most abundant taxa were Bacteroides, Clostridium, Alistipes, Faecalibacterium, 

and Prevotella. The 100 most abundant taxa are shown in Figure 17, where each sample 

(column) is clustered by a hierarchical dendrogram based on Aitchison distance. With this 

method, samples that are more similar in composition are closer together on the tree; 

branches of the dendrogram were coloured based on cohort, but samples did not group by HC 

(purple) or SF (orange). 

Based on the findings that samples did not group based on cohort, an investigation was 

performed to determine what participant factors explained the microbiota variability. 

Significant confounders were determined using the envfit function within the R package 

‘vegan’ on all the gut metagenome samples from both taxonomic and functional annotations 

(Table 11). This pointed to samples being segregated by participant age as well as whether or 

not they were recurrent stone formers. Of all the patients in the SF cohort, nine were first 

time stone formers with no previous history of urolithiasis. Due to the findings that stone 

recurrence was a large driver of microbiota variation, further downstream analyses 

considered patients based on this feature, rather than just whether they were originally 

classified as HC or SF. Of note, dietary intake was not significantly different between 

participants with no history of stones (NHS) and recurrent stone formers (RSF) (Figure 11). 

Alpha diversity of the gut samples was determined with Shannon’s Diversity Index based on 

taxonomic annotation. Notably, SF samples were not significantly different from HC, but 

participants with NHS had significantly higher diversity than RSF (Figure 18).  
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General linear models (GLM) were then utilized in MaAsLin2 to further determine 

significant effectors of microbiome variation whilst accounting for the confounders (Table 

11). With this technique, the relative abundance of several genera and functional pathways 

was determined to be discordant between participants on the basis of stone history. Linear 

discriminant analysis was performed with LEfSe (Segata et al., 2011), and features with an 

effect size greater than 2 that also achieved a q value (FDR corrected P value) in MaAsLin2 

of <0.05 were retained (Morgan et al., 2012). 

Recurrent stone formers were found to have a higher relative abundance of several genera 

within the family Enterobacteriaceae, including Escherichia, Klebsiella, Shigella, and 

Citrobacter, among other taxa, compared to those with no history of stones (Figure 19). In 

contrast, study participants with no history of stones had higher relative abundance of 

Prevotella, Faecalibacterium, Roseburia, and Clostridium, among other taxa, compared to 

recurrent stone formers (Figure 19). 

Recurrent stone formers were elevated in the relative abundance of many functional 

pathways of interest, including resistance to antibiotics and toxic compounds, organic sulfur 

assimilation, osmotic stress, and quinone cofactors (Figure 20). In contrast, study participants 

with no history of stones had higher relative abundance in general cellular metabolism 

pathways including protein biosynthesis, DNA repair, and transcription, amongst others 

(Figure 20). Specific proteins of interest with differential relative gene abundance between 

the groups are illustrated in Figure 21. Recurrent stone formers had increased relative 

abundance of genes associated with heavy metal resistance, antibiotic and antiseptic 

resistance, osmoprotectants, and L-ascorbate utilization, and lower relative abundance of 

pyridoxine metabolism and synthesis relative to participants with no history of stones (Figure 

21). Interestingly, no differences in relative abundance of Oxalobacter formigenes (Figure 

22) were detected between groups. Enzymes involved in oxalate degradation such as formyl-

CoA transferase, oxalyl-CoA decarboxylase and oxalate decarboxylase were not annotated 

with SEED, however analysis is ongoing with a custom metagenomic database to annotate 

the relative abundance of these gene pathways between groups (Abratt and Reid, 2010; NCBI 

Resource Coordinators, 2018; Ticinesi et al., 2018). 
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CLR-transformed values of the 100 genera with highest average relative abundance are 

displayed. Samples (columns) are clustered according to average linkage clustering of per-

sample Aitchison distance, and branches of the resulting dendrogram are coloured by 

participant cohort. Phylum and genus (or otherwise lowest available taxonomic assignment) 

are listed. 

  

Figure 17. Bacterial composition of healthy and stone former gut microbiome 
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Table 11. Significant covariates of gut microbiome variation 

PCA ordination level Metadata Feature P value* 

Taxonomic mapping of metagenomic reads 

Genus Age 0.007 

Genus History of stones 0.007 

Genus Approximate number of previous stones 0.007 

Functional mapping of metagenomic reads 

SEED subsystem1 History of stones 0.002 

History of surgical treatment of stone disease 0.002 

Approximate number of previous stones 0.002 

SEED subsystem2 Approximate number of previous stones 0.008 

SEED subsystem3 Approximate number of previous stones 0.007 

SEED subsystem4 Approximate number of previous stones 0.003 

* P values were calculated using the envfit function within the vegan R package on all gut 
metagenome samples 
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 Shannon’s index of alpha diversity was compared between cohorts and between patients 

based on their history of stone formation: those with a history of stones had significantly 

lower intestinal diversity than those without a history of stone formation (Two tailed Mann-

Whitney U test, P = 0.016). 

Figure 18. Microbial diversity is different between participants with and without 

a history of stones, rather than between cohorts 
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Bacterial genera (or otherwise lowest available taxonomic assignment) with significantly 

altered relative abundance between stone history groups. Taxa with LDA effect size greater 

than 2 are plotted and coloured based on patient group of enrichment.  
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Figure 19. Differential genera between stone history groups 



124 

 

 
 

Functional pathways with significantly altered abundance between stone history groups. 

Pathways are summarized based on SEED subsystem 2. Those with LDA effect size greater 

than 2 are plotted and coloured based on patient group of enrichment. 
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Proteins of interest with significantly differential abundance (LDA effect size >2 [LEfSe] and 

q score < 0.05 [MaAsLin2]) between stone history groups. Group median is plotted, and all 

values were normalized to the average frequency in participants with no history of stones. 

Genes are coloured by functional implication. 

  

Figure 21. Differential proteins between stone history groups 
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Relative abundance of the genus Oxalobacter was not different between the healthy control 

and stone former cohorts, nor between participants with no history of stones and recurrent 

stone formers (by two tailed Mann-Whitney U test). 

  

Figure 22. Relative abundance of Oxalobacter sp. is not different between participant 

groups 
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3.5 Discussion 
Nephrolithiasis is a pervasive pathology, affecting upwards of 10% of the population in 

North America and increasing in prevalence (Scales Jr., et al., 2012; Tasian et al., 2016). 

Previous studies investigating the bacterial contribution to this disease have focussed on 

intestinal bacteria that degrade oxalate, primarily Oxalobacter formigenes (Jiang et al., 2011; 

Liu et al., 2017; Miller et al., 2019; Prokopovich et al., 2007). Several more recent studies 

have evaluated the gut microbiota in stone disease and describe generalized “dysbiosis” but 

have been unsuccessful at coming to a consensus with their findings (Miller et al., 2019; 

Stern et al., 2016; Suryavanshi et al., 2018; Tang et al., 2018; Zampini et al., 2019). 

Moreover, studies into the urinary and stone microbiota of stone formers has been prefatory, 

involving few patients or lacking a healthy control comparison group (Barr-Beare et al., 

2015; Dornbier et al., 2019; Xie et al., 2020; Zampini et al., 2019). Based on these 

knowledge gaps left unaddressed by previous investigations, it remained unclear i) exactly 

how the gut is altered, ii) whether O. formigenes colonization is a driving factor, and iii) how 

the urinary and stone microbiota may contribute to nephrolithiasis. The aim of the current 

study was to define the urinary and gut microbiome’s involvement in stone disease in the 

largest multi-omics -based investigation to date.  

The results of the current study describe the urinary, stone, and gut microbiota of stone 

formers and healthy controls. It was confirmed that stone patients had higher urinary oxalate 

concentrations and an altered urinary microbiota composition compared to healthy controls. 

The urinary microbiota was enriched in inflammation-associated microbes during surgical 

stone treatment. A sequence-positive microbiota was found in all stone crystalline 

compositions and was derived from urogenital microbes, yet compositionally distinct from 

both pre-operative and intraoperative urine. A lower relative abundance of O. formigenes in 

the gut of stone formers was not found, however, novel functional changes were detected 

indicative of risk of stone formation which was not dictated by altered dietary consumption. 

Pathways conferring resistance to toxic compounds were elevated in the gut of stone formers. 

These findings suggest that the gut is a reservoir of resistance, and likely the root of systemic, 

aberrant microbial interactions leading to stone formation. 



129 

 

 
 

Participant recruitment began in August of 2015 and was completed in January of 2019 after 

the enrolment of 30 healthy control (HC) participants and 83 stone-forming (SF) patients. 

The intent was to recruit 200 stone patients however the lower study enrolment rate was a 

direct reflection of the available patient pool and was still within a sample size suitable to 

draw conclusions. Despite the Urology Clinic at St. Joseph’s Hospital seeing upwards of 200 

stone patients per year, many had taken antibiotics within the last 30 days constituting an 

exclusion criterion for study participation. In contrast to the lower than expected participant 

eligibility, the recruitment rate of stone patients approached for study participation was above 

90%. Those that declined to participate cited lack of interest. 

A full assemblage of samples was collected from 36 out of 83 stone patients; a limiting factor 

was intraoperative stone collection, since stone fragments were collected only from SF 

patients who underwent PCNL, rather than ureteroscopic stone removal. All HC participants 

provided complete sample sets. The dietary questionnaire was introduced as an amendment 

to the study protocol in 2016 under the guidance of a registered dietician, and therefore the 

HC and SF participants who had been recruited within the first year prior to its adoption did 

not complete this. Although this is a limitation, this study was the largest of its kind and 

involved the most extensive sample and participant characterization. 

The urinary oxalate concentrations were significantly higher in SF compared to HC. Urinary 

levels were calculated to be (mean ± SE) 0.56 ± 0.07 mM, 0.84 ± 0.08 mM, and 0.37 ± 0.04 

mM for HC, SF (PreOp), and SF (OR), respectively, after comparing against the 

concentrations of the known oxalate and creatinine standards. These values are slightly 

higher than documented urinary levels in healthy and hyperoxaluric patients, indicating a 

potential error in quantitation due to urinary ascorbate breakdown throughout storage 

(Baadenhuijsen and Jansen, 1975; Fry and Starkey, 1991; Lemann et al., 1996; Thompson 

and Fennema, 1971). We therefore did not utilize the exact molarity measurements of urinary 

oxalate. Instead, the ratio of oxalate [ppm]/creatinine [ppm] was reported, assuming the 

erroneous methodology was applied to both participant cohorts evenly. With these 

assumptions in mind, it was concluded that the SF urine was significantly higher in the 

relative proportion of oxalate compared to HC. 
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Urinary oxalate is a product of both exogenous dietary consumption of the compound and 

endogenous production as a terminal product of metabolism (Holmes and Assimos, 1998; 

Holmes et al., 2001). It is estimated that 20-50 % of urinary oxalate results from dietary 

consumption (Holmes et al., 2001). However, in concordance with previous studies, the 

present study demonstrated that dietary oxalate consumption was not different between SF 

and HC (Taylor and Curhan, 2007). Estimates of other relevant nutrients that may play a role 

in stone formation including water, caffeine, Vitamins B6, C, D, and K, calcium, sodium, or 

potassium intake were also not different between cohorts (Han et al., 2015). Although some 

diet questionnaires tend to exhibit measurement errors due to under-reporting, it was 

confident that the dietary questionnaire utilized in this study provided accurate assessments 

of nutrient intake as it has been independently validated (Subar et al., 2001; Subar 2003). 

Because endogenous oxalate production is largely affected by body size and in this study the 

cohorts were matched for these characteristics, altered endogenous production was unlikely 

to be responsible for the elevated oxaluria in SF (Lemann et al., 1996). These findings 

instead point to altered absorption or bacterial breakdown of dietary oxalate, or its 

precursors, between cohorts as the divergent factor. 

Characterization of the urinary and stone microbiota was completed with 16S rRNA gene 

sequencing of the V4 region. Whole shotgun metagenomic sequencing is significantly more 

expensive than 16S rRNA gene sequencing and also requires a much higher DNA yield. 

Therefore, the urinary samples which were of much lower microbial biomass than the gut 

samples were assessed with 16S (Hillmann et al., 2018; Whiteside et al., 2015). The urinary 

microbiota was significantly distinct between HC and SF, and in SF throughout their course 

of treatment. It has been postulated that both commensal and pathogenic Gardnerella 

vaginalis strains exist (Harwich et al., 2010). Although this organism is recognized as a 

pathogen in the vagina, it is often detected in the urine of healthy individuals, and here it was 

of higher relative abundance in healthy subjects compared to PreOp SF (Gottschick et al., 

2017; Mueller et al., 2018). In SF when urine was collected in the OR, the relative abundance 

of Gardnerella fell along with Lactobacillus and Prevotella spp., while that of Acinetobacter 

and Escherichia spp. increased significantly compared to the PreOp samples. Explanations 

for these alterations could include variations in the sampling methodology, the effect of pre-

operative and peri-operative antibiotics, or that the urological procedure may have disrupted 
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and flushed out the Acinetobacter and Escherichia spp. If the latter, it implies that some 

genera may be deeply embedded within the uroepithelium (Goneau et al., 2015). Escherichia 

and Acinetobacter are known to be associated with infection and inflammation, so their 

increased detection might lead to additional or longer antibiotic administration (Flores-

Mireles et al., 2016; Govender et al., 2019). Lactobacillus and Prevotella on the other hand 

are present in typical urotypes of healthy individuals, so their depletion may allow for 

resistant, deep-seated pathogens to take over the niche (Goneau et al., 2015; Mueller et al., 

2018). Such beneficiaries could be pathogenic G. vaginalis strains with enhanced adherence 

and virulence properties (Harwich et al., 2010; Mueller et al., 2018). For such substantial 

urinary microbiota changes to occur in a short time frame, efforts should be made to 

understand the reasons and clinical implications.  

Although historically only struvite stones were associated with bacteria, recent studies using 

both culture and molecular techniques have identified their presence in non-struvite kidney 

stones (Barr-Beare et al., 2015; Dornbier et al., 2019; Tavichakorntrakool et al., 2012; 

Zampini et al., 2019). Concordantly, after stringent filtering, the present study detected a 

sequence-positive microbiota in 34 out of 47 stone samples, only 3 of which were composed 

of struvite. The presence of live bacteria was confirmed with extended quantitative urine 

culture in a limited number of samples, the results of which were in agreement with the next 

generation sequencing. Such confirmation is important to overcome criticisms that simply 

detecting bacterial DNA does not prove the presence of living bacteria (Emerson et al., 

2017).  

Several genera including Staphylococcus and Streptococcus have been detected in stones 

previously (Dornbier et al., 2019; Tavichakorntrakool et al., 2012). This was confirmed in 

the present study along with numerous novel stone-associated taxa such as Gardnerella and 

Atopobium spp. The finding that the stone-associated microbiota was dominated by urinary 

microbes but was compositionally distinct from both the PreOp and OR SF urine indicates 

that bacteria inside calculi likely do not derive out of coincidental entrapment in the growing 

stone matrix, or the resulting community would more closely resemble the PreOp urine. 

Instead, the results suggest that specific microbes are intimately involved in stone 
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development, potentially exacerbating crystal nidus formation through inflammation and 

crystal aggregation (Barr-Beare et al., 2015; Chutipongtanate et al., 2013).  

Dogma has held that intestinal colonization by O. formigenes lowers oxaluria and 

consequently the risk of stone formation, however recent studies have failed to detect 

differences in the colonization rates between stone-formers and non-formers (Batagello et al., 

2018; Kaufman et al., 2008; Kwak et al., 2003; Siener et al., 2013; Ticinesi et al., 2018). In 

congruence with these studies, we did not detect a difference in the relative abundance of this 

bacterium in fecal samples from HC and calcium oxalate (CaOx) SF by whole shotgun 

metagenomic sequencing (Magwira et al., 2012; Miller et al., 2019; Tang et al., 2018; 

Ticinesi et al., 2018). These results suggest that perhaps the previous emphasis put on O. 

formigenes colonization has been overstated. It appears that Western society is collectively 

losing carriage of this bacterium, but this may just be a sign of a progressively ailing 

population, or the influence of medical practices and prevalent antibiotic use, as opposed to a 

direct causal factor in stone prevalence (Barnett et al., 2016; PeBenito et al., 2019). 

Alpha diversity as well as overall gut microbiota variation were divergent between study 

participants based on their history of CaOx stone disease and previous stone treatment, rather 

than between HC and SF cohorts. Indeed, those with a previous history of stones (recurrent 

stone formers, RSF) had higher relative abundance of various Enterobacteriaceae and the 

opportunistic pathogens Pseudomonas and Finegoldia, compared to those with no history of 

stones (NHS) (de Bentzmann and Plésiat, 2011; Goto et al., 2008; Sassone-Corsi et al., 

2016). This may be a marker of microbiota damage, precipitated by the repetitive 

antimicrobial therapy and surgical interventions experienced by the RSF (Ng et al., 2013; 

Sassone-Corsi et al., 2016; Winter et al., 2013). RSF also had lower relative abundance of 

the known gut commensal genera Prevotella, Faecalibacterium, and Roseburia compared to 

NHS (Mangalam et al., 2017; Marchesi et al., 2016; Martín et al., 2014; Tamanai-Shacoori et 

al., 2017).  

Beyond taxonomic differences, many functional changes in the gut of RSF and NHS cohorts 

were noted. Mapping shotgun metagenomic reads to the SEED database allowed for 

detection of changes at the level of individual protein encoding genes, as well as from a 

higher-level view of subsystems, or functionally related protein families (Overbeek et al., 
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2014). With this approach, RSF samples were found to be enriched compared to NHS in 

osmotic stress-related proteins marked by higher relative abundance of aquaporins and 

choline/betaine transporters. Bacterial aquaporins were first described in 1995, but their 

characterization to-date remains scant (Calamita et al., 1995, Tong et al., 2019). These 

membrane channels facilitate the diffusion of water and solutes across cellular membranes, 

though a role for these proteins in kidney stone disease is undocumented beyond human renal 

aquaporins and their activation by urinary calcium (Earm et al., 1998). Prokaryotic 

aquaporins may play a role in bacterial persistence in harsh environments, virulence, and 

rapid growth in hypoosmotic conditions, and have been characterized in many bacteria 

including Escherichia, Pseudomonas, and Shigella spp., which were similarly enriched in 

RSF (Calamita et al., 1998; Kaenjak et al., 1993; Tanghe et al., 2006; Tong et al., 2019). 

Whether this enrichment in osmotic stress response has a pathogenic role in nephrolithiasis 

or is a result of altered gut osmolality or toxification warrants further research. 

Higher relative abundance of ascorbate utilization and depleted pyridoxine metabolism 

functional pathways in RSF may be of great consequence, as both of these pathways impact 

serum and urinary oxalate levels. These pathways may have been previously overlooked by 

groups solely focussed on direct oxalate breakdown. Ascorbate, or vitamin C, is a precursor 

to oxalate and its intake is associated with risk of incident kidney stones (Ferraro et al., 

2016). Elevated utilization of vitamin C by bacteria in the RSF gut may lead to higher 

intestinal levels of absorbable oxalate, despite no difference in vitamin C or oxalate dietary 

consumption between cohorts in this study (Baxmann et al., 2003; Eddy and Ingram, 1953; 

Stack et al., 2020). This ascorbate utilization has been documented in Pseudomonas and 

Acinetobacter spp. among others, both of which were elevated in (R)SF patients (Stack et al., 

2020). Thus, for some people suffering from recurrent stone formation, the levels of gut 

microbiota mediated ascorbate utilization (by qPCR or ELISA) might be worth determining. 

Pyridoxine, also known as vitamin B6, is a cofactor necessary for the enzyme alanine-

glyoxylate aminotransferase’s conversion of glyoxalate to glycine. Deficiency of this vitamin 

has been associated with elevated oxaluria (Curhan et al., 1999; Ferraro et al., 2017). 

Bacteria can biosynthesize B6, and also convert it to the active form, pyridoxal 5’ phosphate 

(PLP) (Dempsey, 1967; Eliot and Kirsch, 2004; Magnúsdóttir et al., 2015; Strohmeier et al., 
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2006). Gut colonizing species within the genera Prevotella, Corynebacterium, and 

Clostridium are capable of B6 and PLP biosynthesis, and these genera were of relatively 

higher abundance in the gut of NHS compared to RSF (Jochmann et al., 2011; Magnúsdóttir 

et al., 2015; Yoshii et al., 2019). The finding that antibiotic use can lead to B6 deficiency 

again raises the issue of the extent to which antibiotics influence recurrence of stone 

formation (Levy, 1969; Meletis and Zabriskie, 2007; Snider, 1980). Although vitamin B6 

intake was not different between participant cohorts, RSF may have reduced 

microbiologically synthesized pyridoxine, or lower levels of the microbiologically activated 

PLP, ultimately leading to increased urinary oxalate. Despite B6 supplementation being 

previously tested as a therapy for nephrolithiasis with some success, its use has not been 

widely implemented, nor has the microbial contribution to this vitamin been evaluated in the 

context of stone formers (Mitwalli et al., 1988; Pearle et al., 2014; Prien and Gershoff, 1974; 

Rao and Choudhary, 2005). Serum and fecal PLP concentration should be collected in future 

studies of the gut microbiome and nephrolithiasis to identify the keystone microbes necessary 

for host pyridoxine acquisition and confirm whether these are depleted in RSF. 

The gut microbiota of RSF was enriched in functional pathways associated with resistance to 

toxic compounds including heavy metals and a variety of antibiotic and antiseptic classes. 

Specifically, the cobalt/zinc/cadmium efflux system encoded on the czcCBA operon was 

significantly enriched in RSF (Liu et al., 2015). Interestingly, both zinc and cadmium 

exposure have been associated with elevated stone risk (Guo et al., 2018; Tang et al., 2012). 

Although biological levels of these metals were not investigated in the present study, because 

serum levels of these metals are largely derived from dietary consumption, they were likely 

not different between the cohorts due to their comparable diets (Canada Environmental 

Protection Act, 2007; Dabeka and McKenzie, 1992). However, if the gut microbiota of RSF 

effluxes more of these metals into the intestinal lumen instead of providing a “quenching” 

effect as some bacteria do, increased amounts may be bioavailable for unfavourable 

absorption by the host (Bisanz et al., 2014; Daisley et al., 2018). For this reason, heavy 

metals should be evaluated in future studies of the gut microbiome and stone formation; if 

cadmium-resistant bacteria in the gut such as Pseudomonas spp. are contributing to a 

biologically relevant increase of serum levels in stone formers, this cadmium may be 
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aggravating crystal precipitation and stone formation in the kidney (Liu et al., 2015; Thomas 

et al., 2013). 

The cmeABC operon encodes a multidrug efflux pump of the RND superfamily and confers 

resistance to a broad range of antibiotics including ciprofloxacin (Fernando and Kumar, 

2013; Lin et al., 2002; Yan et al., 2006). This operon as well as genes encoding resistance to 

β-lactams, macrolides, polymyxins, and the topical antiseptic acriflavine were significantly 

elevated in RSF compared to NHS. It is known that the use of antibiotics, particularly in 

early life, can have lasting impacts on the microbiome, host metabolism, and immunity (Cho 

et al., 2012; Cox et al., 2014; Ruiz et al., 2017). The recent report of a direct link between 

oral antibiotic use and the risk of nephrolithiasis highlighted sulfas, cephalosporins, 

fluoroquinolones, nitrofurantoin, and β-lactams as problematic, especially with recent and 

younger age exposures (Tasian et al., 2018).  

Although neither cohort had used antibiotics within 30 days prior to providing their fecal 

sample in the present study, antibiotics were prescribed significantly more recently in SF 

than HC. Indeed, throughout the course of surgical stone treatment, patients were treated with 

perioperative antibiotics, and those with planned PCNL additionally took pre-surgical 

prophylactic antibiotics. The data suggest this practice may be enriching for 

Gammaproteobacteria including Enterobacteriaceae and antibiotic-resistance in the gut of 

RSF subjects, as they were administered antibiotics at each previous surgical stone treatment. 

As the gut is a bacterial reservoir for the urinary tract, antibiotic-resistant strains may have 

ascended from the rectum (Magruder et al., 2019; Yamamoto et al., 1997). In support of this, 

Acinetobacter spp. (of class Gammaproteobacteria), often multidrug resistant and considered 

serious uropathogens with increasing nosocomial disease burden, were enriched in SF OR 

urine (Bergogne-Bérézin et al., 1996; Di Venanzio et al., 2019; Jiménez-Guerra et al., 2018). 

Therefore, patients with previous surgical intervention for calculi have likely experienced 

antibiotic-induced, functional changes to their gut microbiota resulting in the enrichment of 

potentially pathogenic, multidrug resistant microbes.  

We therefore propose, based on these collective findings and in corroboration with the work 

of others, that antibiotics induce a widespread assault on the gut and urinary microbiota, 

driving the depletion of beneficial gut microbes such as Faecalibacterium and Lactobacillus 
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spp., while simultaneously enriching for antibiotic resistant uropathogens. This ultimately 

leads to disrupted oxalate homeostasis due to altered microbiota-mediated micronutrient 

biosynthesis and utilization, intestinal toxin accumulation, and the blooming of uropathogens 

in the bladder via the interconnected pelvic floor microbiota (Moreno et al., 2006; Thomas-

White et al., 2018; Yamamoto et al., 1997). These biological consequences all collectively 

impact stone formation, and the repeated microbiome assaults inflicted by surgical stone 

treatment and its accompanying antibiotic use perpetuate the cyclic recurrence of the disease. 

With this in mind, future management of nephrolithiasis should comprise both prevention of 

microbiome disturbance and the use of agents for subsequent restoration of homeostasis. 

Antibiotic stewardship is a first and obligatory step in preventing the unnecessary disruption 

of microbial balance (Mossanen et al., 2014; Siemens and Nickel, 2015). Although often 

required to avert systemic infection, there is still debate over antibiotic prophylaxis for PCNL 

in low-risk patients (Chew et al., 2018). In such cases, avoidance of antibiotics may reduce 

the progression of microbial dysbiosis and its subsequent ramifications for stone formation. 

In addition, microbial restoration therapies such as probiotics and prebiotics could replenish 

organisms associated with a healthy urinary tract and may offer relief to recurrent stone 

formers that have already experienced substantial microbiota damage (Bustamante et al., 

2020; Collins et al., 2018; Falagas et al., 2006; Stapleton et al., 2011). Such restoration may 

even include fecal microbiota transplant (FMT), based on early evidence of efficacy against 

recurrent urinary tract infection (Hocquart et al., 2019; Tariq et al., 2017). Where previous 

studies implementing supplementation of a single microbe (as has been attempted with O. 

formigenes) have yielded mixed results, FMT may hold promise (Duncan et al., 2002; Ellis 

et al., 2015; Jairath et al., 2015; Stern et al., 2019). Future studies should investigate the 

therapeutic potential of FMT for nephrolithiasis, where it may restore the robust community 

and interactive network of beneficial microbes that becomes depleted in recurrent stone 

formers (Miller et al., 2017; Stern et al., 2019). It would also be important to validate how 

long the effects of an FMT persist in stone formers, and the extent to which altering the gut 

microbiome spills over to the urinary tract. 

In conclusion, the results of the current study demonstrate how antimicrobial use inherent in 

surgical stone management depletes beneficial microbes in the gut and urinary tract, causing 
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a decreased capacity to maintain oxalate homeostasis and the development of an intestinal 

reservoir of antibiotic resistant uropathogens. That these microbes are detected within stone 

fragments further suggests that elevated urinary oxalate in concert with the presence of 

inflammation-mediating microbes in the upper urinary tract leads to the development of 

crystal nidi and aggravates recurrent stone development. We postulate that the previous 

emphasis of direct oxalate degradation and O. formigenes colonization status in the gut has 

been overstated. Rather, a novel, inconspicuous method of oxalate homeostasis is causative 

and dependent on microbial micronutrient metabolism and biosynthesis. If the diversity and 

robust functional potential of the healthy human microbiome is repeatedly assaulted by the 

average Westernized lifestyle via diet, antibiotic use, and other environmental factors, then 

kidney stone prevalence will continue to increase (Lozupone et al., 2012; Tasian et al., 

2016). Reversing this trend through microbiome-targeted therapeutic applications should be 

studied as a means to prevent this debilitating condition. 
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Chapter 4  

4 Characterizing the microbial communities associated with 
ureteral stents 

4.1 Abstract 
Ureteral stents are commonly used in urological practice and can often become bacterially 

colonized and encrusted, leading to clinical complications. Despite recent discovery and 

characterization of the healthy urinary microbiota, stent-associated bacteria and their impact 

on encrustation are largely underexplored. We profiled the bacterial communities of ureteral 

stents and mid-stream urine from a single clinical centre over a one-year period. 16S rRNA 

gene sequencing was utilized to determine factors that impacted variation in the microbial 

communities. Two hundred and forty-one patients were examined, including typical short-

term stent insertion cases, as well as atypical cases of bilateral stenting, long-term indwelling 

stents, patients with multiple sequential stents over time, and antegrade stent placement. 

Indwelling time, age, and various patient comorbidities including diabetes and IBS/IBD 

impacted the stent microbiota, whereas antibiotic treatment, UTI, and stent placement 

method did not. The stent microbiota originates from adhesion of urinary microbes and 

subsequently diverges to a distinct and reproducible population, thereby negating the urine as 

an accurate biomarker for stent encrustation or microbiota. Urological practice should 

reconsider standalone prophylactic antibiotic use in favour of tailored therapies based on 

patient comorbidities in efforts to minimize bacterial burden, encrustation, and complications 

of ureteral stents. 

  



155 

 

 
 

4.2 Introduction 
Ureteral stents are hollow conduits placed in the ureter from the renal pelvis to the bladder 

and are commonly used in urological practice to maintain urine drainage, which can be 

impeded by obstruction caused by urolithiasis, stricture, or malignancy. Termed double 

pigtail or double J, typical stents involve a curl at either end to prevent displacement. They 

are typically composed of polyurethane, silicon, and new combination polymers (Chew and 

Denstedt, 2004; Mosayyebi et al., 2018). Due to constant contact with the urine, deposition 

of urinary crystals and formation of bacterial biofilms on stents are common (Reid et al., 

1992; Zumstein et al., 2017). The formation of these encrustations can lead to complications 

including infection, failure of the stent to drain urine, more frequent device exchanges, and 

subsequent difficulty with removal. Indwelling ureteral stents have been associated with the 

development of urinary tract infections (UTIs), and in more severe cases, pyelonephritis or 

urosepsis which may be related to single species or polymicrobial biofilms attached to the 

stent (Lange et al., 2015).  

The urinary tract harbours a unique microbiota which is distinct from that of the gut in 

composition and is of much lower abundance (Whiteside et al., 2015; Wolfe et al., 2012). 

Based on recent evidence, it is likely that the different sites and tissues throughout this 

system have different microbiotas (Barr-Beare et al., 2015; Cavarretta et al., 2017; Wolfe et 

al., 2012). The biofilms that form on stents may originate from this microbiota or 

contamination during insertion of the device. Regardless of their origin, the development of 

biofilms on these devices illustrates that even very low numbers of bacteria can quickly take 

advantage of the niche-altering foreign material to expand their populations. Previous studies 

in stent patients have identified bacterial colonization rates from 70 – 90% (Rahmann et al., 

2010; Reid et al., 1992). Bacteriuria can be common in upwards of 20% of patients with 

stents, and Escherichia coli is often the most commonly cultured and identified organism 

(Rahmann, et al., 2010). Bacterial isolates derived from stent biofilms of clinical origin often 

demonstrate resistance to multiple antibiotics, and antibiotic prophylaxis or concomitant 

antibiotic administration does not appear to reduce the incidence of stent-related symptoms 

or urinary tract infection incidence or severity (Chatterjee et al., 2014; Chew and Lange, 

2009; Moltzahn et al., 2013; Paz et al., 2005). Due to these findings, the use of antibiotic 
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prophylaxis for stents is controversial, and it is unclear how these compounds may impact the 

urinary microbiota during stenting.  

The purpose of this study was to elucidate how the urinary microbiota and other host factors 

impact bacterial colonization and encrustation of indwelling ureteral stents. As such, we 

utilized 16S rRNA gene sequencing and scanning electron microscopy to characterize the 

urine and stent microbiota from 241 patients that were sampled from a single urology centre. 

The large sample size and complementary nature of the samples provide the first high 

resolution insight into bacterial attachment to ureteral stents under different clinical 

scenarios. This work may help clinicians and scientists to have a better understanding of 

what types of bacteria colonize or adhere to ureteral stents, factors that increase or decrease 

the likelihood of stent colonization and encrustation, and provision of best management 

practises. 

4.3 Materials and Methods 

4.3.1 Study design and clinical sample collection 

Ureteral double-J stent patients were recruited from the Urology Department at St. Joseph’s 

Hospital in London, Ontario. Ethical approval for the study was granted by Lawson Health 

Research Institute and the Health Sciences Research Ethics Board at the University of 

Western Ontario (REB #107941, Appendix C) in London, Ontario. Written consent was 

obtained from all the study participants at the time of study inclusion and the methods were 

carried out in accordance with the approved guidelines. 

The study proposed to recruit up to 500 participants over a 2-year period; at study conclusion 

241 participants had been enrolled. Inclusion and exclusion criteria for the participants are 

provided in Table 12. All patients that met the inclusion criteria were recruited to the study 

during regularly scheduled clinic appointments. Upon recruitment, patients were asked about 

relevant demographic and medical history including antibiotic usage and their history of 

urinary tract infections. Following enrolment, participants provided a mid-stream urine 

sample. Stents were collected during cystoscopy (either in-clinic or OR) and placed by the 

surgeon into a sterile urine collection cup (Figure 23). 
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4.3.2 Clinical sample processing and DNA extraction 

Urine samples were processed in two portions within 6-hours of their collection. Where 

possible, 10 mL of whole urine was collected and frozen at -20 °C for future high-

performance liquid chromatography (HPLC) analyses of urinary metabolites. The remainder 

was stored for future 16S rRNA gene sequencing: the entire remaining volume of urine was 

centrifuged for 10 minutes at 5,000 x g, after which the supernatant was decanted off and the 

pellet was stored dry at -20 °C until DNA extraction. If the total urine volume was under 25 

mL, only 2 mL of whole urine was reserved for calcium oxalate quantitation by HPLC. The 

urine volume that resulted in the pellet for 16S rRNA gene sequencing was recorded to 

identify confounding factors in the downstream sequencing analysis associated with 

processing conditions.  

Within 6 hours of their collection, stents were frozen at -20 °C and stored until DNA 

extraction. On the day of DNA extraction, the stents were thawed and processed in a sterile 

biosafety hood. A scalpel sterilized with RNase AWAY™ (Thermo Scientific, Waltham, 

MA, USA) was utilized to slice two x 1 cm portions from both the proximal and distal curls 

of the stents (Figure 23). One 1 cm slice from each curl was utilized for 16S rRNA gene 

sequencing: using tweezers sterilized with RNase AWAY™, 1 mL of nuclease free water 

(Ambion, Mississauga, ON, CAN) was gently rinsed over the external surface of the stent 

and into the inner lumen of the stent where possible (this was sometimes inhibited by 

encrustation). The rinsed cut was then directly transferred into the bead plate of the DNeasy 

PowerSoil HTP 96 Kit utilized for DNA extraction (Qiagen, Toronto, ON, CAN). A second 1 

cm cut segment was reserved for scanning electron microscopy (SEM): both the internal 

lumen and exterior of the stent were of interest for imaging so the stent cut was sliced 

lengthwise and both halves were transferred to a sterile 1.5 mL Eppendorf tube for SEM 

preparation. 
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Table 12. Inclusion and exclusion criteria for study participation 

Inclusion Criteria Exclusion Criteria 
At least 18 years of age In the opinion of the treating urologist, it is 

not in the patient’s best interest to 
participate 

Has a ureteric stent scheduled for removal 
Able and willing to provide informed 
consent 
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Stents were collected by the surgeon and placed into a sterile urine collection cup. A sterile 

scalpel was utilized to slice two x 1 cm portions from both the proximal and distal curls of 

the stents. One 1 cm slice from each curl was utilized for SEM imaging, the other for 16S 

rRNA gene sequencing. The portion for 16S sequencing was gently rinsed externally and 

internally where possible with nuclease-free water over a sterile reservoir and added directly 

to the DNA extraction plate. Image templates from Servier Medical Art by Servier were used 

and modified under the Creative Commons Attribution 3.0 Unported License. 

  

Figure 23. Schematic of stent sample processing 



160 

 

 
 

For DNA extraction, frozen urine pellets were thawed and suspended in 100 uL of nuclease-

free water (Ambion), then pipetted into individual wells of the PowerSoil HTP bead plate 

with PCR-grade filter tips (FroggaBio, Toronto, ON, CAN). Two wells in every plate were 

left empty and acted as negative controls. Two positive controls, or spikes, were added to 

each plate and were 100 μL of pure bacterial culture: Spike 1 was Escherichia coli strain 

DH5α, and Spike 2 was Staphylococcus aureus strain Newman. For preparation of the 

spikes, a single colony of the bacteria was inoculated into 10 mL of Luria-Bertani (LB) broth 

and grown overnight at 37 °C. One hundred 100 μL aliquots of the overnight cultures were 

portioned into 1.5 mL Eppendorf tubes and frozen at -80 °C. For each DNA extraction plate, 

a single tube of both spikes was thawed and pipetted directly into the PowerSoil HTP bead 

plate with PCR-grade filter tips. 

DNA was isolated from urine and stent samples using the DNeasy PowerSoil HTP 96 Kit 

according to the manufacturer’s instructions. Briefly, 750 μL of bead solution and 60 μL of 

Solution C1 were added to the bead plate loaded with all samples and controls. Plates were 

shaken for 20 minutes at speed 20 using the MoBio 96-well plate shaker (Qiagen), then 

centrifuged for 10 minutes (all centrifuge steps were conducted at room temperature at 2250 

x g). Five hundred μL of the supernatant was added to a fresh plate with 250 μL Solution C2 

and mixed by pipetting. The plates were incubated at 4 °C for 10 minutes followed by 

centrifugation for 10-minutes. The resulting supernatant was then transferred to a fresh plate 

and the centrifugation step was repeated. Approximately 600 μL of the solution was then 

transferred to a fresh plate containing 200 μL Solution C3 and mixed by pipetting. The plate 

was incubated at 4 °C for 10 minutes followed by centrifugation for 10-minutes. The entire 

volume, with the exception of the pellet, was again transferred to a fresh plate for 

centrifugation. Carefully avoiding the loose residual pellet, 650 μL was transferred from each 

well to a fresh plate containing 1300 μL Solution C4. The plates were then sealed with 

sealing tape and stored at 4°C overnight. The following day the plates were briefly 

centrifuged and sealing tape was removed. Solution in the wells was then mixed by pipetting 

and 500 μL was transferred to a Spin Plate, which was centrifuged for 5 minutes. The flow-

through was discarded, and this step was repeated until the entire sample-Solution C4 mix 

was processed through the Spin Plate. A volume of 500 μL Solution C5-D was then added to 

the Spin Plate and centrifuged twice for ten minutes, where the flow-through was discarded 
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between spins. 100 μL Solution C6 was then added to the Spin Plate, incubated at room 

temperature in the biosafety hood for 10 minutes and the resulting DNA was eluted to a 

Microplate via centrifugation for 15 minutes. DNA was stored at -20 °C until PCR 

amplification. 

4.3.3 16S rRNA gene amplification and sequencing 

PCR amplification was completed using the Earth Microbiome universal primers, 515F and 

806R, which are specific for the V4 variable region of the 16S rRNA gene (Figure 4). 

Primers contained an Illumina adapter, followed by four random nucleotides, one of 24 

unique 12-mer barcodes, and the annealing left or right primer (Figure 4) (Parada et al., 

2016). Primers and barcode sequences are listed in Table 7. PCR reagent set-up was 

performed using a Biomek® 3000 Laboratory Automation Workstation (Beckman-Coulter, 

Mississauga, ON, CAN). Ten μL of each left and right- barcoded primers (3.2 pMole/μL) 

were arrayed in 96-well plates (Axygen-Corning, Oneota, NY, USA) such that each well 

contained a unique combination of left- and right- barcodes (up to a maximum of 576 unique 

combinations). Two μL of DNA template was added to the primer plate, followed by 20 μL 

of Promega GoTaq hot-start colourless master mix (Promega, Madison WI, USA). The 

reaction was briefly mixed by pipetting, then plates were sealed with foil plate covers 

(Axygen-Corning) and centrifuged for 2 minutes at room temperature at 2250 x g. 

Amplification was carried out using an Eppendorf thermal cycler (Eppendorf, Mississauga, 

ON, CAN), where the lid temperature was maintained at 104 °C. An initial warm-up of 95 °C 

for 4 minutes was utilized to activate the GoTaq, followed by 25 cycles of 1 minute each of 

95 °C, 52 °C, and 72 °C. 

DNA extraction was completed across a total of 11 x 96-well plates, as in some cases stent 

samples were extracted in parallel with samples from other experiments. Due to the total 

number of samples exceeding the number of unique barcode combinations, two Illumina 

MiSeq runs were completed to accommodate the sequencing of all the samples (Illumina 

Inc., San Diego, CA, USA). In order to identify potential batch effects between the two 

sequencing runs, several samples and controls were sequenced on both runs. In total, 

accounting for doubly sequenced samples, 822 samples were sequenced across 9 PCR plates 
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(5 x 96-well plates containing 438 samples on the first MiSeq run, 4 plates containing 384 

samples on the second). Sequencing was carried out at the London Regional Genomics 

Centre (http://www.lrgc.ca; London, ON, CAN). Amplicons were quantified using pico 

green (Quant-It; Life Technologies, Burlington, ON) and pooled at equimolar concentrations 

before cleanup (QIAquick PCR clean up; Qiagen, Germantown, MD). Using the 600-cycle 

MiSeq Reagent Kit (Illumina Inc.), paired-end sequencing was carried out as 2 × 260 cycles 

with the addition of 5% ɸX-174 at a cluster density of ~1100. Data was exported as raw fastq 

files (uploaded to NCBI Sequence Read Archive, BioProject ID #PRJNA601180). 

From the two sequencing runs, run 1 contained 438 samples and yielded a total of 16,211,576 

reads, ranging from 419 to 358,493 reads per sample. Run 2, containing 384 samples, yielded 

a total of 10,424,180 reads, ranging from 168 to 400,010 reads per sample. An average of 

20.8% and 18.8% of reads were removed from each sample in Runs 1 and 2, respectively, 

following quality filtering performed utilizing the DADA2 pipeline (Callahan et al., 2016). 

The remaining filtered reads from the two runs (14,477,624 and 9,697,990) were then 

merged by amplicon sequence variants (SVs). SVs that were only detected in one of the two 

runs were removed. Samples and SVs were then further pruned such that the final dataset 

utilized in all downstream analyses retained samples with greater than 1,000 filtered reads, 

SVs present at 1% relative abundance in any sample, and SVs with greater than 10,000 total 

reads across all samples in both runs. This cleaning reduced the dimensions of the dataset 

from 460 SVs and 822 samples down to 43 SVs and 711 samples. The remaining 43 SVs 

were assigned taxonomy with the SILVA (v132) training set, and a further 5 SVs were 

removed due to their alignment to human mitochondrial sequences (Quast et al., 2013). 

Downstream analysis was performed with ALDEx2, MaAslin2, Vegan, and core R packages 

(Fernandes et al., 2013; Morgan et al., 2012; Oksanen et al., 2019; R Core team, 2019).  

4.3.4 Scanning electron microscopy and X-ray diffraction 
spectroscopy 

One-centimetre stent sections were cut open lengthwise with a sterile razor and mounted 

upon aluminum stubs such that one half exposed the inner lumen, and the other half exposed 

the external surface. They were then gently rinsed with DI water to remove salt precipitation 
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prior to SEM and X-ray diffraction spectroscopy analysis at the Western University 

Nanofabrication Facility (https://nanofab.uwo.ca). 

4.4 Results 

4.4.1 Study recruitment and participant demographics 

Participant recruitment began in July of 2016 and concluded in May of 2017 after the 

recruitment of 241 stent patients. Their average age was 59 years; 122 were female and 119 

were male. Patient demographic characteristics are summarized in Table 13. The majority of 

samples were collected from typical stenting events, where one double-J stent links between 

one of the kidneys and the bladder. However, cases of bilateral (stents between both the left 

and right kidney to the bladder), longitudinal (receiving multiple consecutive devices), 

antegrade (placed downwards from the kidney percutaneously rather than upwards from the 

urethra), uncommonly long indwelling times, and various encrustation levels were also 

examined. The majority of study participants had an indwelling stent placed for treatment 

related to stone disease, though in 22 participants stents were necessitated for other reasons 

including radiation-induced ureteral stricture and the presence of retroperitoneal masses. 

Stent indwelling time ranged from 2 to 394 days. 
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Table 13. Demographic and clinical characteristics of study participants 

Participant characteristic N = 241 (%) 

Age 59.01 ± 13.84 (range 22 – 90) 

Sex 122 females (50.6), 119 males (49.4) 

Indwelling time 22.79 ± 34.61 days (range 2 – 394) 

BMI 31.04 ± 7.64 (range 17.00 – 60.00) 

Reason for stent placement: Urolithiasis 219 (90.9) 

 Stricture 5 (2.1) 

 Mass 10 (4.1) 

 Other 7 (2.9) 

Stent placement method: Retrograde 219 (90.9) 

 Antegrade 22 (9.1) 

Patients with bilateral stents  11  

Patients with multiple sequential stents over time 11 (9 patients with 2 devices, 2 

patients with 3 devices) 

Time between sequential stent placements 63.5 ± 28.6 days (range 25 – 105) 

Use of antibiotics within the last 30 days from stent 

collection 

225 (93.4) 

Previous history of UTI 99 (41.1) 

UTI within 7 days of stent placement or whilst 

indwelling 

37 (15.4) 

Diabetes 54 (22.4) 

Hyperlipidemia 99 (41.1) 

Hyperuricemia 16 (6.6) 

Hypertension 122 (50.6) 

IBS 17 (7.1) 

IBD 28 (11.6) 

Crohn’s disease 8 (3.3) 

Ulcerative colitis 20 (8.3) 

Pulmonary disease 72 (29.9) 
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4.4.2 16S rRNA gene sequencing 

Stringent bioinformatic filtering was performed such that 711 samples and 43 amplicon 

sequence variants (SVs) were maintained for downstream analysis. The most abundant SVs 

in stent and urine samples corresponded to the bacterial genera Staphylococcus, 

Enterococcus, Lactobacillus, and Escherichia (Table 14). The clinical samples (not including 

positive and negative controls) contained an average of 13.5 SVs, ranging from 3 to 31. 

There was a positive correlation between read count and observed SVs (Figure 24A); the 

correlation coefficient was 0.44 (P < 0.0001, 95% CI 0.38 - 0.50). Urine samples had 

significantly more SVs observed (Figure 24B) and higher total read count (Figure 24C) 

compared to stent samples (P = 0.0063 and P < 0.0001, respectively). 

The sequence counts were centred log ratio (CLR) transformed, generating sample-wise 

Aitchison distances (Gloor et al., 2017). A heatmap representing the relative abundance of 

CLR-transformed samples was generated based on the Aitchison distance average linkage 

clustering (Figure 25). The differences in microbiota composition at the genus level were not 

driven by sex or sample type (urine or stent). This was confirmed with a Benjamini-

Hochberg corrected Welch’s t-test and principal component analysis (PCA) performed on the 

log-ratio transformed data at SV-level (Figure 26), where all samples and sex subsets did not 

separate by sample type (Figure 27A). These findings demonstrate that the same microbes 

dominate both stent and urine samples from a single patient, and therefore the stent 

microbiota is likely to be urinary derived. 

Although sample types were dominated by similar organisms, stent samples were further 

compared based on curl position to determine if the two curls (proximal curl in the kidney, 

and distal in the bladder) had a distinct microbial profile compared to that of the patient’s 

urine (Figure 27B). Specifically, beta diversity was measured by Aitchison distance to 

evaluate the distance between proximal and distal curls from each stent, as well as between 

the stent curls and the urine. Stent curls had significantly shorter distances between proximal 

and distal curls versus the further distance between stent curls to the urine sample. Thus, 

microbiota composition of the stent curls was more similar to each other than either curl to 

the urine, indicating the presence of a stent-specific microbiota that doesn’t directly reflect 

the composition of the urine. 
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From the devices recovered from participants with multiple sequentially placed stents, many 

of the same organisms were detected within the same individual over time (Figures 28 and 

29). Upon PCA, samples from the same individual generally clustered together (Figure 29A). 

Distance between samples from the same participants at different time points was shorter 

than between samples from different participants (Figure 29B, Kruskall-Wallis test with 

Dunn’s multiple comparisons, P = 0.022). There were no significant effects of visit number 

on the samples (Benjamini-Hochberg corrected Wilcoxon rank sum test, data not shown). 

Thus, on a per-patient basis, the stent microbiota is a reproducible community over time, 

even over the course of up to 150 days. 

The microbiota of bilateral stents did not differ significantly, as determined from eleven 

subjects (Figures 30 and 31). Within patients, both proximal and distal ends of bilateral stents 

clustered separately from the urine (Figure 31A). Intraindividual samples were closer 

together than interindividual samples (Figure 31B). There was greatest spread between stent 

and urine samples from the same individual, and the distance between stent samples was the 

shortest (Figure 31B), again indicating the presence of a distinct and reproducible stent-

specific microbiota. 

To determine if patient and sample attributes (metadata) drove microbiota variation, CLR-

transformed sample-wise Aitchison distances were evaluated (Oksanen et al., 2019). With 

this approach, several metadata factors were determined to be microbiota confounders, 

including stent indwelling time and patient comorbidities (Table 15). These confounders 

were subsequently adjusted for, and several statistically significant drivers of microbiota 

variation remained between metadata characteristics and taxonomic features as determined 

using a general linear model, including patient age, BMI, stent indwelling time, pulmonary 

disease, hypertension, diabetes, IBS, IBD, and hyperlipidemia (Table 16) (Morgan et al., 

2012). 

To determine how the degree of encrustation impacted microbial composition, stents were 

categorized based on visible encrustation level (Table 17). There was a correlation between 

the degree of stent encrustation and the amount of time stents were indwelling (Figure 32A); 

the correlation coefficient was 0.32 (P < 0.0001, 95% CI 0.20 – 0.37). Shannon’s index of 

alpha diversity was negatively correlated with the degree of stent encrustation (Figure 32B); 
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the correlation coefficient was -0.14 (P = 0.0005, 95% CI -0.22 – -0.03). Shannon’s index 

was also significantly lower in grade-3 encrusted stents compared to grade-0 (Figure 32C; 

Kruskall-Wallis with Dunn’s multiple comparisons, P = 0.027). This suggests that the longer 

a stent is indwelling, the more likely it will be to become encrusted by a less diverse 

microbial community. 

Ten study participants had stents indwelling for greater than two months; these participants 

were determined to be outliers, having stents significantly longer than the average indwelling 

time of 23 days (“ROUT” method of outlier detection, Q = 0.1%) (Motulsky and Brown, 

2006). Microbial communities of participants with “long-term” stents indwelling for 60 or 

more days were evaluated (Figure 33). The microbiota of these patients was not significantly 

different when compared to all samples, or to samples from the ten participants with the 

shortest indwelling durations (Benjamini-Hochberg corrected Wilcoxon rank sum test, data 

not shown). However, as indwelling time increased, relative abundance of the genera 

Finegoldia and Porphyromonas increased, and Enterococcus and Escherichia decreased 

(Table 16). 

Antibiotic usage was widespread amongst participants; about 93% had used antibiotics 

within 30 days of sample collection (Table 13). However, the microbiota of the few 

participants without recent antibiotic usage was not significantly different than the majority 

(Table 16, Figure 34A and by Benjamini-Hochberg corrected Wilcoxon rank sum test, data 

not shown). These participants also did not differ by encrustation grade or alpha diversity 

(Figure  34B-C; Mann-Whitney U test, P = 0.091 and P = 0.25 respectively). 

Stents were evaluated based on their placement method. The majority (90.9%, Table 13) of 

stents were placed in a retrograde manner, however the microbiota of the stents placed 

antegrade (i.e. during percutaneous nephrolithotomy or nephroscopy) was not significantly 

different than those placed retrograde (Table 16, Figure 34D). These participants also did not 

differ by encrustation grade or alpha diversity (Figure 34E-F; Mann-Whitney U test, P = 0.90 

and P = 0.95 respectively). 

About 15% of patients had culture positive UTIs within 7 days of stent placement, or 

throughout the stent indwelling period (Table 13). The microbiota and degree of stent 
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encrustation in these patients was not significantly different than those without UTIs (Figure 

34G and H), however alpha diversity was lower for patients with UTIs (Figure 34I, Mann-

Whitney U test, P = 0.002).
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Table 14. Ten most abundant sequence variants in urine and stent samples 

Urine samples 

Rank Sequence Variant Corresponding Genus Average abundance (%) 

1 SV_603 Staphylococcus 18.09 

2 SV_705 Enterococcus 17.53 

3 SV_709 Lactobacillus 11.75 

4 SV_213 Escherichia 11.61 

5 SV_695 Lactobacillus 6.13 

6 SV_713 Lactobacillus 5.20 

7 SV_108 Prevotella 2.42 

8 SV_60 Pseudomonas 2.28 

9 SV_40 Ureaplasma 2.10 

10 SV_208 Citrobacter 1.63 

Stent samples 

Rank Sequence Variant Corresponding Genus Average abundance (%) 

1 SV_705 Enterococcus 21.43 

2 SV_603 Staphylococcus 18.73 

3 SV_213 Escherichia 16.21 

4 SV_709 Lactobacillus 9.15 

5 SV_713 Lactobacillus 4.98 

6 SV_695 Lactobacillus 4.24 

7 SV_60 Pseudomonas 3.67 

8 SV_208 Citrobacter 2.34 

9 SV_40 Ureaplasma 1.90 

10 SV_648 Veillonella 1.66 
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A) Sample read count was positively correlated with the number of observed SVs, as 

calculated by the Spearman correlation coefficient (r = 0.44, P < 0.0001). R2 was 

calculated as the least-squares fit of the semilog line. B) The number of SVs observed 

was higher in urine samples compared to stents (Mann-Whitney U test, P = 0.0063). C) 

The total read count was higher in urine samples compared to stents (Mann-Whitney U 

test, P < 0.0001). Box plot whiskers represent minimum and maximum. 

 

10

20

30

1 000 10 000 100 000

Total Reads

Ob
se

rv
ed

 S
Vs

Sample Type
Stent
Urine

R  = 0.15722

Urine Stent
0

10

20

30

40

O
bs

er
ve

d 
SV

s

**

Urine Stent
102

103

104

105

106

To
ta

l r
ea

ds

****

A B 

C 

Figure 24. Assessment of sample read count and microbiota richness as measured by 

the number of observed sequence variants 
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Figure 25. Heatmap and cluster dendrogram of relative abundances of CLR-

transformed samples 
Samples are plotted left to right and ordered by the dendrogram. The dendrogram was 

generated from CLR-transformed read counts grouped by genera, based on the average 

linkage clustering of per-sample Aitchison distance. Branches of the dendrogram are 

coloured by sample type (stents are navy, urine are orange). The heatmap represents the 

relative abundance of genera within samples (more abundant genera are lighter in 

colour). Colour coding below the heat map corresponds to patient sex (females are pink, 

males are blue). An excerpt from the fourteen left-most branches of the tree illustrates 

that in general, samples from the same individual group nearby on the dendrogram.  
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A PCA was performed on CLR-transformed Aitchison distances. Each coloured point 

represents a sample. Distance between samples on the plot represents differences in 

microbial community composition, with 20.5% of total variance being explained by the 

first two components shown. Strength and association for genera (sequence variants) are 

depicted by the length and direction of the gray arrows, respectively. Points are coloured 

by sample type (stents are navy, urine are orange); ellipses represent the 95% confidence 

interval of the sample types. All samples are shown in A) and shaped by participant sex 

(females are circles, males are triangles); female patients are shown in B), and males are 

shown in C). 

 
  

Figure 26. Principal component analysis of all samples 
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A) Aitchison distance was greater between samples from different participants than 

within samples from the same participant (Bonferroni corrected Mann-Whitney U test, P 

< 0.0001). B) Aitchison distance was greater from stent samples to urine within (W) the 

same participant than between proximal to distal stent curls of the same stent (Bonferroni 

corrected Mann-Whitney U test, P < 0.0001). Aitchison distance was greatest between 

(B) urine of one participant to stent samples from the other participants (Bonferroni 

corrected Mann-Whitney U tests, P < 0.0001). Box plot whiskers represent minimum and 

maximum. 

Figure 27. Microbiota similarity between samples assessed with beta diversity 
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Each vertical bar represents the relative SV abundance within a single sample. Samples are grouped by participant. Relative 

abundance of SVs is coloured by genera, with common genera shown in the legend. Sample and participant attributes are described in 

the legend and coloured accordingly (participant sex, grade of stent encrustation, sample type, and the visit number). Stents from the 

left side are denoted by “L” and from the right side by “R”, while urine are denoted by “U”. Days between sample collections are 

listed in the green visit code.

Figure 28. Microbial communities in longitudinally collected samples 
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A) PCA was performed on CLR-transformed Aitchison distances of longitudinally 

collected samples. Each coloured point represents a sample. Distance between samples 

on the plot represents differences in microbial community composition, with 24.9% of 

total variance being explained by the first two components shown. Strength and 

association for genera (sequence variants) are depicted by the length and direction of the 

gray arrows, respectively. Points are coloured by participant and shaped by visit number. 

B) Aitchison distance was greater between interindividual samples of the same type than 

between samples from the same participant of the same type at different visits (Mann-

Whitney U test, P < 0.0001). Box plot whiskers represent minimum and maximum.
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Figure 29. Principal component analysis of longitudinal samples 
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Figure 30. Microbial communities of bilateral stents 

Each vertical bar represents the relative SV abundance within a single sample. Samples are grouped by participant. Relative abundance 

of SVs is coloured by genus, with common genera shown in the legend. Sample and participant attributes are described in the legend 

and coloured accordingly (participant sex, grade of stent encrustation, sample type). Stents from the left side are denoted by “L” and 

from the right side by “R”; Urine are denoted by “U”. 
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A) PCA was performed on CLR-transformed Aitchison distances of samples from patients 

with bilateral indwelling stents. Each coloured point represents a sample. Distance between 

samples on the plot represents differences in microbial community composition, with 29.3% 

of total variance being explained by the first two components shown. Strength and association 

for genera (sequence variants) are depicted by the length and direction of the gray arrows, 

respectively. Points are coloured by participant and shaped by sample type. B) Aitchison 

distance was compared between interindividual and intraindividual samples. S = distance 

between stent samples from the same participant, U vs S = distance between urine and stent 

samples from the same participant, All =  all samples from a single participant. All 

intraindividual comparisons had significantly shorter distances than the distance between 

samples from different individuals (Kruskall-Wallis test with Dunn’s multiple comparisons, P 

<0.0001). In intraindividual comparisons, the distance was shortest between stent samples and 

furthest from urine to stent samples (P = 0.022). Box plot whiskers represent minimum and 

maximum. 

Figure 31. Principal component analysis of bilateral stents 
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Table 15. Significant covariates of microbiota variation at genus level PCA 

ordination 

Metadata P- value 

Stent indwelling time 0.008 

Pulmonary disease 0.001 

Hypertension 0.001 

Diabetes 0.001 

IBS 0.002 

Procedure (e.g. ureteroscopy, ESWL) 0.007 

  



182 

 

 
 

Table 16. Significant correlations between metadata attributes and the microbiota 

after adjusting for confounders 

Metadata Genus Coefficient FDR 
Age Campylobacter 0.250 0.034 

Lactobacilli -0.370 0.002 
Veillonella 0.457 0.002 

BMI Actinotignum 0.499 0.048 
 Morganella 0.546 0.049 
Stent indwelling time Enterococcus -0.292 0.008 
 Escherichia -0.309 0.034 
 Finegoldia 0.202 0.034 
 Porphyromonas 0.245 0.001 
Pulmonary disease Campylobacter 0.627 0.004 
 Ezakiella 0.498 0.034 
Hypertension Campylobacter -0.595 0.013 
 Klebsiella 0.592 0.034 
 Moryella 0.349 0.035 
Diabetes Citrobacter -1.653 0.002 
 Enterococcus 1.086 0.034 
IBS Prevotella 0.046 0.001 
 Veillonella 0.041 0.020 
IBD                Crohn’s Lactobacillus -0.112 0.023 
 Staphylococcus 0.009 0.061 

Ulcerative Colitis Veillonella 0.036 0.020 
Hyperlipidemia Aerococcus -0.424 0.049 
 Ureaplasma -0.816 0.003 
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Table 17. Classification of stent encrustation 

Grade of encrustation Visual characteristics Number 

0 Like-new 84 

1 Discolouration only 308 

2 Mild encrustation (≤1 mm thick) 135 

3 Heavy encrustation (>1 mm thick) 10 
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Figure 32. Relationship of stent encrustation to indwelling time and alpha diversity 

A) Indwelling time was positively correlated with the degree of stent encrustation, as calculated 

by the Spearman correlation coefficient (r = 0.3221, P < 0.0001). B) Shannon’s index of alpha 

diversity was negatively correlated with the degree of stent encrustation, as calculated by the 

Spearman correlation coefficient (r = - 0.1378, P = 0.0005). C) Shannon’s index was lower for 

grade-3 encrusted stents compared to grade-0 (Kruskall-Wallis test with Dunn’s multiple 

comparisons, P = 0.027). 
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Figure 33. Microbial communities of long-term stents 

Each vertical bar represents the relative SV abundance within a single sample. Samples are grouped by participant. Relative abundance 

of SVs is coloured by genus, with common genera shown in the legend. Sample and participant attributes are described in the legend 

and coloured accordingly (participant sex, grade of stent encrustation, sample type). Stents from the left side are denoted by “L” and 

from the right side by “R”, while urine are denoted by “U”. Stent indwelling time is stated under each participant (from 62 to 394 days). 
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PCA was performed on CLR-transformed Aitchison distances. Each coloured point 

represents a sample. Distance between samples on the plot represents differences in 

microbial community composition, with 20.5% of total variance being explained by the 

first two components shown. Strength and association for genera (sequence variants) are 

depicted by the length and direction of the gray arrows, respectively. Samples are 

coloured based on (A) whether the study participant had used antibiotics within the last 

30 days prior to sample collection (blue) or not (pink), (D) whether the stents were placed 

in a retrograde (purple) or antegrade (orange) manner, and (G) whether the participant 

had a UTI within 7 days of stent placement or throughout the indwelling period (orange), 

or not (green). Ellipses represent the 95% confidence interval. (B, E, H) The degree of 

stent encrustation was compared between groups of interest. Groups were not 

significantly different by two-tailed Mann-Whitney U test. Shannon’s index of alpha 

diversity was not significantly different between antibiotic (C) or placement (F) groups, 

but patients with a UTI had lower diversity than those without (I, two-tailed Mann-

Whitney U test, P = 0.002). Box plot whiskers represent minimum and maximum.  

Figure 34. Stent microbiota and encrustation are unchanged by antibiotics, device 

placement method, and UTI 
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4.4.3 SEM imaging of stents 

SEM imaging of stent samples revealed characteristic crystal phases and the presence of 

bacterial biofilms (Figure 35). Where bacteria-like structures were visualized, their 

morphology showed concordance which the genera that were present in the sample based 

on microbiota sequencing (Figure 35, samples 014 and 195). The predominant substances 

on the stent surfaces consisted of organic deposits and crystals. X-ray diffraction of 

crystalline structures confirmed the presence of calcium oxalate monohydrate in oval and 

multiple-twinning morphologies, calcium oxalate dihydrate, calcium phosphate (Figure 

35), uric acid, and struvite (not shown).  
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Representative scanning electron micrographs of stent encrustations illustrating typical 

bacterial biofilms and crystal morphologies. Based on microbiota sequencing, bacteria 

visible (white arrowheads) likely correspond the genera (014) Lactobacillus and (195) 

Enterococcus. X-ray diffraction of crystalline microstructures (white arrows) correspond 

to calcium oxalate dihydrate (010 and 019a), calcium oxalate monohydrate in oval (022) 

and multiple-twinning (095) morphologies, and calcium phosphate (019b and 195). Scale 

bars = 20 µm. 

Figure 35. Scanning electron micrographs of stents 



191 

 

 
 

4.5 Discussion 

This study is the first to characterize the urinary microbiota of ureteral stent patients and 

the largest of its kind to evaluate the microbiota present on the surface of ureteral stents. 

Importantly, we identified several novel patient factors and comorbidities as drivers of 

stent microbiota composition and demonstrated that sex, antibiotic use, and stent 

placement method did not have a significant impact on the urinary or stent microbiota. 

Our findings also demonstrate consistency in stent microbial community over time in 

patients with multiple stent placements, and in both left and right sides during bilateral 

stent placement, solidifying the true presence of a reproducible stent microbiota. 

Interestingly, intraindividual microbiotas of proximal and distal stent ends were more 

similar than either stent end compared to the urine, indicating that although the same 

genera may be present in the urine, it is not proportionally representative of the bacterial 

community colonizing the stent. 

Previous culture-based studies have shown that removed stents are frequently culture 

positive despite patients exhibiting a culture-negative urine profile (Kehinde et al., 2004; 

Riedl et al., 1999). Corroborating these findings, we demonstrated that urinary and stent 

microbiotas were dominated by similar bacterial genera; however, when investigating the 

patterns on a per-patient basis, both proximal and distal ends of the stent, as well as left 

and right bilateral stents, were more similar to each other in microbiota composition than 

to the urine. Additionally, culture confirmed UTI was not associated with increased 

encrustation level in this cohort. This illustrates that urine is not an accurate biomarker of 

stent encrustation, nor representative of the stent-adhered microbiota. Instead, the degree 

of stent encrustation was positively correlated with indwelling time and negatively 

correlated with microbial diversity, indicating that the longer a stent is indwelling, the 

greater the likelihood of it becoming encrusted and colonized with a less diverse 

microbial community. 

The urinary microbiome may extend as far as the renal collecting system. This renal 

microbiota may contribute to the microbial community of the proximal stent curl, or 

bacteria residing in the bladder could adhere to the proximal stent curl during retrograde 
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insertion (Barr-Beare et al., 2015; Tavichakorntrakool et al., 2017). Bacteria are also 

thought to ascend from the distal curl during movement of the stent whilst indwelling, or 

by utilizing active motility, a process that can occur quite rapidly (Chew et al., 2007; 

Lane et al., 2007; Nickel et al., 1992; Reid et al., 1992; Siitonen and Nurminen, 1992; 

Tenke et al., 2012). Our findings support these previous studies and suggest that the 

stent-associated microbiota is derived from the urinary bladder based on the fact that no 

difference was observed in microbial composition between antegrade or retrograde 

placement method (though only 9% of stents were inserted in an antegrade fashion). 

Further validation is provided by the stent-associated microbiota being dominated by 

common urinary bacteria which is unlikely to have originated from skin or gut 

contamination during placement (Gottschick et al., 2017). Taken together, our findings 

suggest that although the urinary microbiota may originally seed onto the stent, the stent 

microbial community is shaped and enriched for competitively adherent bacteria, and 

eventually diverges significantly from the urine. 

A previous microbiota study of stent encrustations demonstrated a lack of association 

between “urotype” and patient conditions including age, gender, BMI, diabetes, urinary 

crystals, and other factors (Buhmann et al., 2019). The current study differed by utilizing 

a non-partisan analysis method, whereby arbitrary community groups, or “urotypes” were 

not used and instead the entire dataset was tested against all patient and sample 

characteristics. With this approach, confounders were adjusted for and significant 

associations between eight metadata features and genus-level microbiota changes were 

established.  

In concordance with previous studies, age was determined to be significantly associated 

with decreased Lactobacillus spp. and increased Veillonella spp. (Liu et al., 2017; Rowe 

and Juthani-Mehta, 2013). In humans, Veillonella spp. are commensals of the oral cavity, 

gastrointestinal and urogenital tracts, with the potential to cause opportunistic infections, 

including UTI (Aujoulat et al., 2014; Berenger et al., 2015; Mashima and Nakazawa, 

2014; Scheiman et al., 2019; van de Wijgert et al., 2014). Veillonella spp. are also 

commonly associated with a more diverse urinary microbiota, an attribute often 

accompanied with urological disorders (Pearce et al., 2015; Thomas-White et al., 2017). 
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In contrast, Lactobacillus spp. are commensals, with a robust body of evidence detailing 

their beneficial effects in the healthy urinary tract of both men and women (Aragon et al., 

2018; Gottschick et al., 2017; Whiteside et al., 2015). It is unclear how the ageing 

process alters the urinary microbiota, however the observed decrease in protective urinary 

lactobacilli may account for common stent associated UTI and encrustation in older 

populations (Akay et al., 2007; Altunal et al., 2017).  

Patients with IBS and IBD had increased stent and urinary presence of Prevotella and 

Veillonella species, and decreased lactobacilli. These findings are consistent with 

previous literature on the gut microbiota in these conditions (Lee and Tack, 2010; Sha et 

al., 2013; Shankar et al., 2013). These genera have also been implicated in urogenital 

infections and disorders such as pelvic inflammatory disease (Brook, 2004; Haggerty and 

Taylor, 2011). Our findings add further credence to the hypothesis that the gut microbiota 

is a reservoir for the genito-urinary microbiota (Magruder et al., 2019; Yamamoto et al., 

1997). In the same manner that gut colonization with uropathogenic Escherichia coli 

(UPEC) increases the risk of UPEC UTI, the concurrence of inflammatory urinary tract 

symptoms in patients with IBS may be explained (Magruder et al., 2019; Matsumoto et 

al., 2012; Moreno et al., 2006; Moreno et al., 2008; Zingone et al., 2017). A limitation of 

the current study was that lower urinary tract symptoms were not evaluated in the stent 

patient population, but future studies should evaluate this if urological patients with 

IBS/IBD experience increased stent-associated complications in addition to the 

documented urinary tract symptoms. 

Of the various comorbidities that significantly impacted the stent microbiota, it was 

notable that they originated from distant sites (pancreas, respiratory tract, liver, and 

gastrointestinal tract), suggesting some common physiological denominator. Potentially, 

it is the gastrointestinal tract that is altered by these conditions, with systemic 

consequences of bacterial translocation. For this reason, it is feasible that microbiota-

based treatment including oral consumption of probiotic lactobacilli, or even fecal 

microbiota transplantation could be of therapeutic potential to stent patients. In addition 

to many other maladies, these treatments have shown efficacy against IBS/IBD 
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symptoms, urogenital infections in the elderly, and recurrent UTI (Ducrotte et al., 2012; 

Hocquart et al., 2019; Kim and Park, 2017; Tariq et al., 2017). 

The majority of stents imaged by SEM revealed encrustations composed of organic 

material and urinary crystals, while bacteria were only visualized in a small number of 

cases. This was expected due to the high proportion of urolithiasis patients amongst the 

study participants, as well as the low bacterial load present in urinary samples (Dyer and 

Nordin, 1967; Lewis et al., 2013). If these organisms were involved in crystal deposition 

on the biomaterial, the urologist should ensure device removal within 3 weeks, given the 

positive correlation between indwelling time and stent encrustation. 

Due to the low bacterial biomass nature of the samples collected, this study utilized 

stringent pre-sequencing processing methods in addition to the application of 

conservative bioinformatic cut-offs and analysis tools in order to minimize contamination 

effects (Karstens et al., 2019; Minich et al., 2019). In future studies, quantification of 

total 16S rRNA gene copies by qPCR or the use of extended quantitative urine culture 

may complement and validate microbiota analysis of urinary samples (Hilt et al., 2014; 

Buhmann et al., 2019). Nevertheless, the detection of reproducible, patient-specific, stent 

microbiota signatures provides confidence that our findings are not due to contamination. 

In summary, this study has characterized the urinary and stent microbiota of ureteral stent 

patients from a single centre over a one-year period, uncovering the importance of patient 

characteristics in explaining microbiota variation. Actions taken by the physician such as 

antibiotic treatment and stent placement method had little to no impact on the microbiota 

in these samples, but comorbidities and patient age did. The stent microbiota appears to 

originate from patient-specific adhesion of urinary microbes, and subsequently diverges 

to a distinct reproducible population, thereby negating the urine as an accurate biomarker 

for stent encrustation or microbiota status. These findings suggest that timely stent 

removal is likely the most important action to be taken by the treating urologist. Stent-

specific antibiotic administration practices need recalibration, perhaps interchanging 

prophylactic oral antibiotic use with targeted intravesical antimicrobial instillation during 

device placement (Pietropaolo et al., 2018). Elderly patients or those diagnosed with 
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pulmonary disease, hypertension, diabetes, or IBS/IBD may need closer evaluation to 

minimize stent- and microbiota-associated complications. 

4.6 References 

Akay, A.F., Aflay, U., Gedik, A., Sahin, H., and Bircan, M.K. (2007). Risk factors for 

lower urinary tract infection and bacterial stent colonization in patients with a double J 

ureteral stent. Int. Urol. Nephrol. 39, 95-98. 

Altunal, N., Willke, A., and Hamzaoglu, O. (2017). Ureteral stent infections: a 

prospective study. Braz. J. Infect. Dis. 21, 361-364. 

Aragon, I.M., Herrera-Imbroda, B., Queipo-Ortuno, M.I., Castillo, E., Sequeira-Garcia 

Del Moral, J., Gomez-Millan, J., Yucel, G., and Lara, M.F. (2018). The urinary tract 

microbiome in health and disease. Eur. Urol. Focus 4, 128-138. 

Aujoulat, F., Bouvet, P., Jumas-Bilak, E., Jean-Pierre, H., and Marchandin, H. (2014). 

Veillonella seminalis sp. nov., a novel anaerobic Gram-stain-negative coccus from human 

clinical samples, and emended description of the genus Veillonella. Int. J. Syst. Evol. 

Microbiol. 64, 3526-3531. 

Barr-Beare, E., Saxena, V., Hilt, E.E., Thomas-White, K., Schober, M., Li, B., Becknell, 

B., Hains, D.S., Wolfe, A.J., Schwaderer, A.L. (2015) The interaction between 

Enterobacteriaceae and calcium oxalate deposits. PLoS One. 10, e0139575.  

Berenger, B.M., Chui, L., Borkent, A., and Lee, M. (2015). Anaerobic urinary tract 

infection caused by Veillonella parvula identified using cystine-lactose-electrolyte 

deficient media and matrix-assisted laser desorption ionization-time of flight mass 

spectrometry. IDCases 2, 44-46. 

Brook, I. (2004). Urinary tract and genito-urinary suppurative infections due to anaerobic 

bacteria. Int. J. Urol. 11, 133-141. 

Buhmann, M.T., Abt, D., Nolte, O., Neu, T.R., Strempel, S., Albrigh, W.C., Betschart, P., 

Zumstein, V., Neels, A., Maniura-Weber, K., et al. (2019). Encrustations on ureteral 



196 

 

 
 

stents from patients without urinary tract infection reveal distinct urotypes and a low 

bacterial load. Microbiome 7, 60. 

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, 

S.P. (2016). DADA2: High resolution sample inference from Illumina amplicon data. 

Nat. Methods 13, 581-583. 

Cavarretta, I., Ferrarese, R., Cazzaniga, W., Saita, D., Lucianò, R., Ceresola, E.R., 

Locatelli, I., Visconti, L., Lavorgna, G., Briganti, A., et al. (2017). The microbiome of 

the prostate tumor microenvironment. Eur. Urol. 72, 625-631. 

Chatterjee, S., Maiti, P., Dey, R., Kundu, A., and Dey, R. (2014). Biofilms on indwelling 

urologic devices: microbes and antimicrobial management prospect. Ann. Med. Health 

Sci. Res. 4, 100-104. 

Chew, B.H., and Denstedt, J.D. (2004). Technology insight: novel ureteral stent materials 

and designs. Nat. Clin. Pract. Urol. 1, 44-48. 

Chew, B.H., Knudsen, B.E., Nott, L., Pautler, S.E., Razvi, H., Amann, J., and Denstedt, 

J.D. (2007). Pilot study of ureteral movement in stented patients: first step in 

understanding dynamic ureteral anatomy to improve stent comfort. J. Endorul. 21, 1069-

1075.  

Chew, B.H. and Lange, D. (2009). Ureteral stent symptoms and associated infections: a 

biomaterials perspective. Nat. Rev. Urol. 6, 440-448. 

Ducrotte, P., Sawant, P., and Jayanthi, V. (2012). Clinical trial: Lactobacillus plantarum 

299v (DSM 9843) improves symptoms of irritable bowel syndrome. World J. 

Gastroenterol. 18, 4012-4018. 

Dyer, R., and Nordin, B.E.C. (1967). Urinary crystals and their relation to stone 

formation. Nature 215, 751-752. 

Falagas, M.E., Betsi, G.I., Tokas, T., and Athanasiou, S. (2006). Probiotics for prevention 

of recurrent urinary tract infections in women. Drugs 66, 1253-1261. 



197 

 

 
 

Feder, H.M. Jr, Rasoulpour, M., and Rodriguez, A.J. (1986). Campylobacter urinary tract 

infection. Value of the urine Gram’s stain. JAMA 256, 2389. 

Fernandes, A.D., Macklaim, J.M., Linn, T.G., Reid, G., and Gloor, G.B. (2013). 

ANOVA-like differential gene expression analysis of single-organism and meta-RNA-

seq. PLoS ONE 8, e67019.  

Fourie, N.H., Wang, D., Abey, S.K., Sherwin, L.B., Joseph, P.V., Rahim-Williams, B., 

Ferguson, E.G., and Henderson, W.A. (2016). The microbiome of the oral mucosa in 

irritable bowel syndrome. Gut Microbes 7, 286-301. 

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egozcue, J. J. (2017). 

Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 

2224. 

Gottschick, C., Deng, Z., Vital, M., Masur, C., Abels, C., Pieper, D.H., and Wagner- 

Döbler, I. (2017). The urinary microbiota of men and women and its changes in women 

during bacterial vaginosis and antibiotic treatment. Microbiome 5, 99. 

Haggerty, C.L., and Taylor, B.D. (2011). Mycoplasma genitalium: an emerging cause of 

pelvic inflammatory disease. Infect. Dis. Obstet. Gynecol. 2011, 959816. 

Hilt, E.E., McKinley, K., Pearce, M.M., Rosenfeld, A.B., Zilliox, M.J., Mueller, E.R., 

Brubaker, L., Gai, X., Wolfe, A.J., and Schreckenberger, P.C. (2014). Urine is not sterile: 

use of enhanced urine culture techniques to detect resident bacterial flora in the adult 

female bladder. J. Clin. Microbiol. 52, 871-876. 

Hocquart, M., Pham, T., Kuete, E., Tomei, E., Lagier, J.C., and Raoult, D. (2019). 

Successful fecal microbiota transplantation in a patient suffering from irritable bowel 

syndrome and recurrent urinary tract infections. Open Forum Infect. Dis. 6, ofz398. 

Karstens, L., Asquith, M., Davin, S., Fair, D. Gregory, W.T., Wolfe, A.J., Braun, J., and 

McWeeney, S. (2019). Controlling for contaminants in low-biomass 16S rRNA gene 

sequencing experiments. mSystems 4, e00290-19. 



198 

 

 
 

Kehinde, E.O., Rotimi, V.O., Al-Hunayan, A., Abdul-Halim, H., Boland, F., and Al-

Awadi, K.A (2004). Bacteriology of urinary tract infection associated with indwelling J 

ureteral stents. J. Endourol. 18, 891-896. 

Kim, J. M. and Park, Y. J. (2017). Probiotics in the prevention and treatment of 

postmenopausal vaginal infections: review article. J. Menopausal Med. 23, 139-145. 

Lane, M.C., Alteri, C.J., Smith, S.N., and Mobley, H.L.T. (2007). Expression of flagella 

is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. 

Proc. Natl. Acad. Sci. U. S. A. 104, 16669-16674. 

Lange, D., Bidnur, S., Hoag, N., and Chew, B. H. (2015). Ureteral stent-associated 

complications--where we are and where we are going. Nat. Rev. Urol. 12, 17-25. 

Lee, K.J., and Tack, J. (2010). Altered intestinal microbiota in irritable bowel syndrome. 

Neurogastroenterol. Motil. 22, 493-498. 

Lewis, D.A., Brown,R., Williams, J., White, P., Jacobson, S.K., Marchesi, J.R., and 

Drake, M.J. (2013). The human urinary microbiome; bacterial DNA in voided urine of 

asymptomatic adults. Front. Cell. Infect. Microbiol. 3, 41. 

Liu, F., Ling, Z., Xiao, Y., Yang, Q., Zheng, L., Jiang, P., Li, L., and Wang, W. (2017). 

Characterization of the urinary microbiota of elderly women and the effects of type 2 

diabetes and urinary tract infections on the microbiota. Oncotarget 8, 100678-100690. 

Magruder, M., Sholi, A.N., Gong, C., Zhang, L., Edusei, E., Huang, J., Albakry, S., 

Satlin, M.J., Westblade, L.F., Crawford, C. et al. (2019). Gut uropathogen abundance is a 

risk factor for development of bacteriuria and urinary tract infection. Nat. Commun. 10, 

5521. 

Mashima, I., and Nakazawa, F. (2014). The influence of oral Veillonella species on 

biofilms formed by Streptococcus species. Anaerobe 28, 54-61. 

Matsumoto, S., Hashizume, K., Wada, N., Hori, J., Tamaki, G., Kita, M., Iwata, T., and 

Kakizaki, H. (2013). Relationship between overactive bladder and irritable bowel 



199 

 

 
 

syndrome: a large-scale internet survey in Japan using the overactive bladder symptom 

score and Rome III criteria. BJU Int. 111, 647-652. 

Minich, J.J., Sanders, J.G., Amir, A., Humphrey, G., Gilbert, J.A., and Knight, R. (2019). 

Quantifying and understanding well-to-well contamination in microbiome research. 

mSystems 4, e00186-19. 

Moltzahn, F., Haeni, K., Birkhäuser, F.D., Roth, B., Thalmann, G.N., and Zehnder, P. 

(2013). Peri-interventional antibiotic prophylaxis only vs continuous low-dose antibiotic 

treatment in patients with JJ stents: a prospective randomised trial analysing the effect on 

urinary tract infections and stent-related symptoms. BJU Int. 111, 289-295. 

Moreno, E., Andreu, A., Pérez, T. Sabaté, M., Johnson, J.R., and Prats, G. (2006). 

Relationship between Esherichia coli strains causing urinary tract infection in women 

and the dominant faecal flora of the same hosts. Epidemiol. Infect. 134, 1015-1023. 

Moreno, E., Andreu, A., Pigrau, C., Kuskowski, M.A., Johnson, J.R. and Prats, G. 

(2008). Relationship between Escherichia coli strains causing acute cystitis in women 

and the fecal E. coli population of the host. J. Clin. Microbiol. 46, 2529-2534. 

Morgan, X.C., Tickle, T.L., Sokol, H., Gevers, D., Devaney, K.L., Ward, D.V., Reyes, 

J.A., Shah, S.A., LeLeiko, N., Snapper, S.B., et al. (2012). Dysfunction of the intestinal 

microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79. 

Mosayyebi, A., Manes, C., Carugo, D., and Somani, B.K. (2018). Advances in ureteral 

stent design and materials. Curr. Urol. Rep. 19, 35. 

Motulsky, H.J., and Brown, R.E. (2006). Detecting outliers when fitting data with 

nonlinear regression- a new method based on robust nonlinear regression and the false 

discovery rate. BMC Bioinformatics 7, 123. 

Nickel, J. C., Downey, J., and Costerton, J. W. (1992). Movement of Pseudomonas 

aeruginosa along catheter surfaces. A mechanism in pathogenesis of catheter-associated 

infection. Urology 39, 93-98. 



200 

 

 
 

Oksanen, J.F., Blanchet, G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, 

P.R., O'Hara, R.B., Simpson, G.L., Solymos, P. et al. (2019). vegan: Community Ecology 

Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan. 

Parada, A.E., Needham, D.M., and Fuhrman, J.A. (2016). Every base matters: assessing 

small subunit rRNA primers for marine microbiomes with mock communities, time series 

and global field samples. Environ. Microbiol. 18, 1403–1414.  

Paz, A., Amiel, G.E., Pick, N., Moskovitz, B., Nativ, O., and Potasman, I. (2005) Febrile 

complications following insertion of 100 double-J ureteral stents. J. Endourol. 19, 147-

150. 

Pearce, M.M., Zilliox, M.J., Rosenfeld, A.B., Thomas-White, K.J., Richter, H.E., Nager, 

C.W., Visco, A.G., Nygaard, I.E., Barber, M.D., Schaffer, J., et al. (2015). The female 

urinary microbiome in urgency urinary incontinence. Am. J. Obstet. Gynecol. 213, 347. 

Pietropaolo, A., Jones, P., Moors, M., Birch, B., and Somani, B.K. (2018). Use and 

effectiveness of antimicrobial intravesical treatment for prophylaxis and treatment of 

recurrent urinary tract infections (UTIs): a systematic review. Curr. Urol. Rep. 19, 78. 

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and 

Glockner, F.O. (2013) The SILVA ribosomal RNA gene database project: improved data 

processing and web-based tools. Nucl. Acids Res. 41, D590-D596. 

R Core Team (2019). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

Rahman, M.A., Alam, M.M., Shamsuzzaman, S.M., and Haque, M.E. (2010). Evaluation 

of bacterial colonization and bacteriuria secondary to internal ureteral stent. Mymensingh 

Med. J. 19, 366-371. 

Reid, G., and Bruce, A.W. (2006). Probiotics to prevent urinary tract infections: the 

rationale and evidence. World J. Urol. 24, 28-32. 



201 

 

 
 

Reid, G., Denstedt, J.D., Kang, Y.S., Lam, D., and Nause, C. (1992). Microbial adhesion 

and biofilm formation on ureteral stents in vitro and in vivo. J. Urol. 148, 1592-1594. 

Riedl, C.R., Plas, E., Hübner, W.A., Zimmerl, H., Ulrich, W., and Pflüger, H. (1999). 

Bacterial colonization of ureteral stents. Eur. Urol. 36, 53-59. 

Rowe, T.A., and Juthani-Mehta, M. (2013). Urinary infection in older adults. Aging 

Health 9, 519-528. 

Scheiman, J., Luber, J.M., Chavkin, T.A., MacDonald, T., Tung, A., Pham, L., Wibowo, 

M.C., Wurth, R.C., Punthambaker, S., Tierney, B.T., et al. (2019). Meta-omics analysis 

of elite athletes identifies a performance-enhancing microbe that functions via lactate 

metabolism. Nat. Med. 25, 1104-1109. 

Sha, S., Xu, B., Wang, X., Zhang, Y., Wang, H., Kong, X., Zhu, H., and Wu, K. (2013). 

The biodiversity and composition of the dominant fecal microbiota in patients with 

inflammatory bowel disease. Diagn. Microbiol. Infect. Dis. 75, 245-251.  

Shankar, V., Agans, R., Holmes, B., Raymer, M., and Paliy, O. (2013). Do gut microbial 

communities differ in pediatric IBS and health? Gut Microbes. 4, 347-352. 

Siitonen, A., and Nurminen, M. (1992). Bacterial motility is a colonization factor in 

experimental urinary tract infection. Infect. Immun. 60, 3918-3920. 

Skirrow, M.B. (2006). John McFayden and the centenary of the first isolation of 

Campylobacter species. Clin. Infect. Dis. 43, 1213-1217. 

Stapleton, A.E., Au-Yeung, M., Hooton, T.M., Fredricks, D.N., Roberts, P.L., Czaja, 

C.A., Yarova-Yarovaya, Y., Fiedler, T., Cox, M., and Stamm, W.E. (2011). Randomized, 

placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given 

intravaginally for prevention of recurrent urinary tract infection. Clin. Infect. Dis. 52, 

1212-1217. 



202 

 

 
 

Tariq, R., Pardi, D.S., Pritish, K.T., Walker, R.C., Razonable, R.R., and Khanna, S. 

(2017). Fecal microbiota transplantation for recurrent Clostridium difficile infection 

reduces recurrent urinary tract infection frequency. Clin. Infect. Dis. 65, 1745-1747. 

Tavichakorntrakool, R., Boonsiri, P., Prasongwatana, V., Lulitanond, A., Wongkham, C., 

and Thongboonkerd, V. (2017). Differential colony size, cell length, and cellular 

proteome of Escherichia coli isolated from urine vs. stone nidus of kidney stone patients. 

Clin. Chim. Acta. 466, 112-119. 

Tenke, P., Koves, B., Nagy, K., Hultgren, S.J., Mendling, W., Wullt, B., Grabe, M., 

Wagenlehner, F.M.E., Cek, M. Pickard, R., et al. (2012). Update on biofilm infections in 

the urinary tract. World. J. Urol. 30, 51-57. 

Thomas-White, K.J., Kliethermes, S., Rickey, L., Lukacz, E.S., Richter, H.E., Moalli, P., 

Zimmern, P., Norton, P., Kusek, J.W., Wolfe, A.J. et al. (2017). Evaluation of the urinary 

microbiota of women with uncomplicated stress urinary incontinence. Am. J. Obstet. 

Gyneol. 216, 55. 

van de Wijgert, J.H.H.M., Borgdorff, H., Verhelst, R., Crucitti, T.,Francis, S., 

Verstraelen, H. and Jespers, V. (2014). The vaginal microbiota: what have we learned 

after a decade of molecular characterization? PLoS ONE 9, e105998. 

Whiteside, S.A., Razvi, H., Dave, S., Reid, G., and Burton, J.P. (2015). The microbiome 

of the urinary tract – a role beyond infection. Nat. Rev. Urol. 12, 81-90. 

Wolfe, A.J., Toh, E., Shibata, N., Rong, R., Kenton, K., Fitzgerald, M., Mueller, E.R., 

Schreckenberger, P., Dong, Q., Nelson, D.E., et al. (2012). Evidence of uncultivated 

bacteria in the adult female bladder. J. Clin. Microbiol. 50, 1376-1383. 

Yamamoto, S., Tsukamoto, T., Terai, A., Kurazono, H., Takeda, Y., and Yoshida, O. 

(1997). Genetic evidence supporting the fecal-perineal-urethral hypothesis in cystitis 

caused by Escherichia coli. J. Urol. 157, 1127-1129. 



203 

 

 
 

Zingone, F., Iovino, P., Santonicola, A., Gallotta, S., and Ciacci, C. (2017). High risk of 

lower urinary tract symptoms in patients with irritable bowel syndrome. Tech. 

Coloproctol. 21, 433-438. 

Zumstein, V., Betschart, P., Albrich, W.C., Buhmann, M.T., Ren, Q., Schmid, H.P., and 

Abt, D. (2017). Biofilm formation on ureteral stents - incidence, clinical impact, and 

prevention. Swiss Med. Wkly. 147, w14408. 

  



204 

 

 
 

Chapter 5  

5 Utilization of a Drosophila melanogaster model of stone 
formation to explore host-microbe interactions in 
nephrolithiasis 

5.1 Abstract 

The prevalence of nephrolithiasis in North America has risen to approximately 10% and 

is associated with significant morbidity. The microbiota is known for its role in human 

health and disease, including in kidney stone formation. Intestinal colonization with 

Oxalobacter formigenes has been suggested to protect against formation of calcium 

oxalate (CaOx) stones by reducing urinary oxalate, and kidney stones are known to 

harbour uropathogenic bacteria. In stone patients, probiotic supplementation with 

oxalate-degrading bacteria has been suggested as a potential preventive therapy, but 

clinical trials with O. formigenes have been limited and inconclusive. The aims of this 

study were to investigate the oxalate-degrading properties of Bacillus subtilis 168 

(BS168) as a potential probiotic candidate and to characterize how uropathogens may be 

contributing to stone formation using an established Drosophila melanogaster (DM) 

model of urolithiasis and in vitro cell line experiments. Flies administered BS168 

developed lower fecal and Malpighian tubule crystal burden compared to flies without 

bacterial treatment and had increased survival. Uropathogenic Escherichia coli strain 

UTI89 increased stone burden but did not impact DM survival, whereas Proteus mirabilis 

PM175 decreased survival irrespective of lithogenesis. In vitro cell line experiments with 

BS168 did not exhibit increased crystal aggregation, suggesting this strain is a promising 

probiotic candidate to reduce stone formation through degradation of oxalate. 

Conversely, uropathogenic E. coli but not P. mirabilis may increase stone burden through 

its capacity to increase CaOx crystal adhesion and aggregation. As strains of B. subtilis 

have been used safely to promote digestive health, strain BS168 is worthy of testing in 

humans to determine if it can reduce the incidence of recurrent nephrolithiasis. 
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5.2 Introduction 

The prevalence of nephrolithiasis, or kidney stone disease, in North America has risen to 

approximately 10% over recent decades. The condition is associated with significant 

patient morbidity and severe economic losses to the health care system. The human 

microbiota, defined as the microorganisms present in a certain environment, is 

recognized as an important facet in health and disease, including nephrolithiasis for 

several reasons (Whiteside et al., 2015). One reason involves the gut microbiota’s 

capacity to influence serum oxalate levels, a terminal metabolite implicated in 

approximately 80% of all kidney stones (Moe, 2006). Another reason deals with the 

urinary microbiota and how it may interact with stone formation at the site (Barr-Beare et 

al., 2015). 

The most common kidney stones are composed of calcium oxalate, of which oxalate is 

the limiting factor (Moe, 2006). Urinary oxalate is derived from both dietary and 

endogenous sources, where estimates of the relative contributions vary widely; studies 

have suggested that the proportion of dietary derived urinary oxalate ranges from 10-50% 

(Taylor and Curhan, 2008; Holmes et al., 2001). Dietary oxalate can be absorbed by both 

trans- and paracellular mechanisms in its soluble form, excreted in the feces as an 

insoluble crystal, or degraded by members of the gut microbiota. The bacterium 

Oxalobacter formigenes utilizes oxalate as its sole carbon source, and when present in the 

intestine, subjects have been reported to have lower urinary oxalate levels and are 

subsequently at lower risk of developing stones (Kaufman et al., 2008; Jiang et al., 

2011). Other members of the gut microbial community including lactobacilli and 

bifidobacteria are capable of degrading oxalate, though to a lesser extent (Miller and 

Dearing, 2013). In kidney stone patients, supplementation with oxalate-degrading 

bacteria has been suggested as a potential preventive therapy, however trials thus far have 

been limited and inconclusive (Hoppe et al., 2006; Siener et al., 2013; Klimesova et al., 

2014). 

As with O. formigenes, Bacillus subtilis strain 168 (BS168) can degrade oxalate (Tanner 

and Bornemann, 2000). The strain’s oxalate decarboxylase gene, YvrK, is acid- induced 

and encodes a ~43 kD manganese-requiring enzyme that converts oxalate to formate and 
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CO2 (Tanner et al., 2001). Some Bacillus subtilis strains have recently been identified for 

potential probiotic use for gastrointestinal disorders and have the added benefit of being 

highly heat and pH resistant due to spore formation (Sorokulova et al., 2008; 

Poormontaseri et al., 2017). It is for these reasons that BS168 may have therapeutic 

potential in nephrolithiasis treatment. 

Struvite stones have long been known to be associated with urinary tract infection by 

urease-producing organisms such as Proteus, Pseudomonas, or Klebsiella spp., whereas 

other stone compositions have historically not been thought to involve a bacterial 

component (Flannigan et al., 2014). However, recent culture-dependent and -independent 

studies have identified the presence of bacteria within non-struvite kidney stones (Barr-

Beare et al., 2015; Dornbier et al., 2019; Golechha and Solanki, 2001; Sohshang et al., 

2000; Tavichakorntrakool et al., 2012; Wang et al., 2014; Zampini et al., 2019). Whether 

these bacteria are coincidentally entrapped in the growing stone matrix, or if they are 

playing an active role in stone formation remains to be elucidated. 

In this study, the aim was to investigate the role of both pathogenic and non-pathogenic 

bacteria in nephrolithiasis. An established Drosophila melanogaster (DM) model of stone 

formation was used to evaluate stone burden after supplementation with both BS168 and 

uropathogenic bacteria (Chen et al., 2011). In addition, Madin-Darby renal epithelial cell 

culture was used to determine the impact of the microbes on calcium oxalate crystal 

adhesion and aggregation. Furthermore, to better assess the impact of various treatments 

on stone disease in the DM model, method development of an X-ray micro computed 

tomography (µCT) imaging protocol was undertaken. It was hypothesized that based on 

its safe nature and oxalate-degrading ability, that BS168 would reduce stone burden and 

promote markers of heath, in contrast to uropathogens.  

5.3 Materials and Methods 

5.3.1 Bacterial culture and growth curves 

Bacillus subtilis strain 168 (ATCC 23857, designated here as BS168), Escherichia coli 

UTI89 (Mulvey et al., 2001) and a clinical kidney stone isolate of Proteus mirabilis 

(referred to here as PM175, Table 10), were routinely cultured at 37 °C in Luria-Bertani 
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(LB) broth (Table 18). BS168 growth in oxalate was assayed in 96-well plates prepared 

as dilutions of sodium oxalate (NaOx) in LB broth with stationary-phase bacteria added 

at a final dilution of 1/100. Plates were incubated for 24 hours at 37 °C with optical 

density (OD) readings every 30 minutes using an Eon microplate spectrophotometer 

(BioTek, Winooski, VT, USA). NaOx concentrations were selected based on physiologic 

intestinal oxalate concentrations reported in the literature (Prokopovich et al., 2007). 

Statistical analyses of growth curves were performed with the R package Growthcurver 

(Sprouffske and Wagner, 2016). 

Bacteria were cultured from whole DM after homogenization. Fruit flies were surface 

sterilized with 70% ethanol and homogenized in 0.01 M PBS using a motorized pestle. 

Homogenates were then serially diluted and plated onto agar. Based on the known 

microbiota of DM, LB, MRS, and Mannitol agars were used to culture BS168, 

Lactobacillus spp., and Acetobacter spp., respectively (Table 18). LB and Mannitol plates 

were incubated aerobically at 37 °C, and MRS plates were incubated using an anaerobic 

gas pack (BD, Mississauga, ON, CAN) in a sealed jar at 37 °C. Colony forming units 

(CFU) were enumerated after 48-hours of incubation. Variation was observed between 

biological replicates, so oxalate-fed fly CFU counts were normalized to control diet-fed 

fly CFU counts.  
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Table 18. Bacterial media compositions 

Media Component Amount 
Luria-Bertani  DI water  1000 mL 

Tryptone 10 g 
NaCl 10 g 
Yeast extract 5 g 
Agar (omit for broth) 15 g 

MRS agar DI water 1000 mL 
Difco MRS Lactobacilli broth (BD) 55 g 
Agar 15 g 

Mannitol agar DI water 1000 mL 
Mannitol 25 g 
Yeast extract 5 g 
Peptone 3 g 
Agar 15 g 
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5.3.2 Drosophila melanogaster husbandry 

As insects, the use of Drosophila melanogaster (DM) in this study did not require 

institutional ethical review board approval. The DM stock used in this study was Canton-

S. Standard cornmeal-based media was utilized (Table 19), and the lithogenic diet 

included 0.1 or 1.0 % weight/volume NaOx (Chen et al., 2011). Food was generated by 

gently boiling the water on a hot plate, and slowly adding all components except the acid 

mix and NaOx (if including), being sure to bring to the boil in between additions. The 

food was then cooled to 55 °C, at which point the acid mix and oxalate were added and 

mixed well. The media was portioned to approximately 50 mL per bottle or 10 mL per 

vial and stored at 4 °C until use. Grape juice agar was made by boiling the water, agar, 

and juice in a microwave, cooling to 55 °C at which point the Tegosept was added and 

the solution was poured into Petri dishes. DM were maintained in a 25 °C incubator with 

60% humidity and a 12 h light-dark cycle. For maintenance, DM stocks were transferred 

to fresh 50 mL media bottles every two weeks; for experiments, DM were transferred to 

fresh 10 mL media vials every two days. Lifespan measurement was performed as 

previously described (Linford et al, 2013).  
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Table 19. Drosophila melanogaster media and chemicals 

Recipe Ingredient Amount 
Standard media DI water 1000 mL 
 Agar 15 g 
 Dried yeast 17.3 g 
 Cornmeal 73 g 
 Corn syrup 76 mL 
 Acid mix (50 mL propionic acid with 3.2 mL 

phosphoric acid) 
5.8 mL 

Grape juice agar DI water 750 mL 
 Agar 30 g 
 Welch’s grape juice 250 mL 
 Tegosept (10 % solution in ethanol) 10 mL 
Yeast paste DI water 6 mL 
 Dried yeast 3 g 
Carl’s solution DI water 28 mL 
 95% ethanol 17 mL 
 Formalin 6 mL 
 Glacial acetic acid 2 mL 
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5.3.3 Determining the effect of bacterial supplementation in the 
DM stone model 

An experimental timeline is displayed in Figure 36. At five days of age, adult DM were 

sorted into cohorts and supplemented with 5% sucrose solution with or without bacteria 

for 24 hours. Bacteria were prepared for supplementation to DM as follows: 25 mL 

overnight broth culture of BS168, UTI89, or PM175 (~ 108 CFU/mL) was pelleted by 

centrifugation at 5000 rpm for 5 minutes. The supernatant was decanted, and the pellet 

was completely resuspended in 25 mL sterile PBS by vortexing. The process was 

repeated whereby the PBS and BS168 was centrifuged at 5000 rpm for 5 minutes, after 

the supernatant was decanted, and the pellet was resuspended in 25 mL sterile PBS for a 

total of two PBS washes. The remaining pellet after the second PBS wash was 

completely resuspended in 25 mL of 5% weight/volume sucrose solution by vortexing. 

DM were transferred to polypropylene vials containing a cotton ball moistened with 3 

mL of 5% sucrose ± bacteria. After 24 hours, DM were transferred to standard media ± 

1.0% NaOx for BS168, or 0.1% NaOx for the uropathogen experiments.  

For larval exposure to bacteria, on Day 0 approximately 200 adult DM were mated in 

standard media bottles containing 1 cm x 1 cm x 0.25 cm grape juice agar and 1 cm 

diameter of yeast paste (water and yeast mixed to the consistency of smooth peanut 

butter) (Table 19). DM were allowed to lay eggs for 3 hours, after which all adults were 

removed along with the grape agar and any remaining yeast paste. Five hundred µL of 

5% sucrose ± bacteria (processed as above) was then pipetted on the top of the standard 

media. On Day 2, 100 mL of room temperature 20% sucrose solution was added to 

completely submerge the media in the bottles and float the larvae for 20 minutes. The 

sucrose solution containing larvae was then gently poured over a sterile cell strainer. The 

larvae collected in the strainer were briefly rinsed once with 70% ethanol, then twice with 

DI water. Cleaned larvae were added with a paintbrush to vials of standard media ± 1.0% 

NaOx.  

Stone burden was evaluated in adult DM Malpighian tubules on day 7. Briefly, DM were 

narcotized with CO2, treated for 2 minutes in Carl’s solution (Table 19) in a small glass 

petri dish, and transferred to a dissecting dish with cold sterile PBS. Using a Nikon 
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SMZ800N stereomicroscope, DM Malpighian tubules were dissected in the cold PBS, 

fixed in 4% formaldehyde/PBS for one hour at room temperature, and mounted on 

microscope slides in 50:50 PBS and glycerol. Clear nail polish was used to seal the 

coverslip to the microscope slides prior to polarized light microscopy. Birefringence 

microscopy of the dissected tubules was performed with a Nikon Ts2R inverted 

microscope, and NIH ImageJ software was utilized to determine the degree of 

birefringence per tubule (particle analysis function). Fecal excreta from adult DM was 

also evaluated for the presence of birefringent crystals throughout the duration of the 14-

day BS168 survival analysis, as previously described, Figure 37 (Ali et al., 2018). 

Briefly, glass cover slips were inserted into the fly vial plugs during the 14-day 

incubation period, then fixed to microscope slides with clear nail polish and imaged with 

polarized light (Nikon) to determine the percentage of excreta containing birefringent 

crystals. 

Stone burden was evaluated in third instar DM larvae on day 4 by means of a crawling 

assay; larval crawling is an indicator of behavioural and locomotor health in DM 

(Nichols et al., 2012; Gunther et al., 2016). Twenty mL of room temperature 20% 

sucrose solution was added to each media bottle for 20 minutes, during which larvae 

floated to the top. The solution was then poured over a sterile cell strainer, where the 

collected larvae were washed twice with DI water. A paint brush was used to transfer 

larvae from the strainer to a 15 mL petri dish containing 2% agar where they acclimatized 

for 10 minutes. A second petri dish of 2% agar was positioned over a 0.5 cm graph paper 

grid (Figure 37). A six mm diameter paper disk was submerged in apple cider vinegar 

and positioned near one side of the plate, and larvae were positioned at a starting point 4 

cm away. The time it took each larva to travel 3 cm from the starting point towards the 

vinegar stimulant was recorded. 
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Figure 36. Drosophila melanogaster experimental timeline 

Schematic outline of experimental design. A) Adults were supplemented +/- BS168, 

UTI89, or PM175 in 3 mL of 5% sucrose via cotton balls in empty vials on Day 0. On 

Day 1 they were transferred to standard media vials with or without 1.0% or 0.1% NaOx 

(weight/volume). Deaths were recorded daily, and dead flies were removed every two 

days during transfer to fresh food. Fecal excreta were assayed throughout the 14-day 

BS168 experiment by transferring the coverslip-embedded vial plug with each food 

transfer. Lifespan analysis of DM uropathogen experiments was conducted until the 

expiration of all DM (approximately 60 days). B) Adult DM mated for three hours in 

standard media bottles, after which they were removed and 500 uL of 5% sucrose +/- 

BS168, UTI89, or PM175 was pipetted over the top of the media. They were transferred 

via 20% sucrose suspension to standard media +/- 1.0% NaOx on Day 2 and their 

crawling was assayed on Day 4.  

  

A 

B 
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Figure 37. Assays of stone burden and DM health 

A) Fecal excreta assay. Microscope coverslips remained inserted in the vial plug 

throughout the duration of the 14-day adult DM survival experiment and were evaluated 

for crystal birefringence with polarized light microscopy.  B) Larval locomotion assay. 

Larvae were stimulated to crawl towards the apple cider vinegar attractant; the time taken 

to travel 6 squares (3 cm) was recorded. 
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5.3.4 Development of a µCT scanning protocol in DM 

As human kidney stones are normally assessed with computed tomography (CT) 

imaging, we sought to develop a mechanism of live imaging DM for the purpose of 

evaluating stone burden, in collaboration with the Robarts Research Institute Micro-CT 

lab (Assimos et al., 2016; Poinapen et al., 2017). A custom scanning apparatus was 

designed to house flies throughout the duration of scanning (Figure 38). Flies were 

imaged with a constant flow of CO2 anesthesia (0.5 mL/min) and X-ray radiation (90 

kVp; 70 uA; 0.3 degree incremental angle over 360 degrees) using the GE Locus MS 

scanner (GE Healthcare, Mississauga, ON, CAN). Image analysis was performed using a 

threshold of 700 Hounsfield units (HU) as the minimum density of stone particles 

(Shahnani et al., 2014). Particles greater than 10 voxels in size were retained for stone 

quantification analysis. Adult flies treated with BS168 and 1.0% NaOx as described 

above were imaged on Day 3 and Day 7. 
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Figure 38. DM µCT scanning apparatus 

A) Acrylic apparatus developed for live µCT imaging of anesthetized DM. The DM 

chamber (B) was mounted on the rotating base inside the CO2 chamber. Four DM were 

placed into wells on each of two foam scanning platforms, separated by cohort. 

Desiccation was prevented by the addition of hydrated foam, and a water-filled capillary 

was utilized for scan calibration. 

  

A B 
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5.3.5 CaOx crystal adhesion to renal epithelial tissue culture 

Cell culture experiments were performed in Madin-Darby canine kidney (MDCK) 

epithelial cells (Bigelow et al., 1998; Yamaguchi et al., 2002), which were initially 

isolated from the normal renal tubules of an adult male cocker spaniel dog (Gaush et al., 

1966), and were acquired from the American Type Culture Collection (ATCC). Cells 

were maintained in T75 flasks in a 5% CO2 tissue culture incubator with minimum 

essential medium (MEM; Gibco, Burlington, ON, CAN) supplemented with 10% fetal 

bovine serum (FBS; Gibco) and 2 mM L-Glutamine (Gibco), the combination of which is 

hereafter referred to as MEM. Cells were routinely passed when confluency reached 80% 

and above. To pass the cells, the spent MEM was removed from the flask and cells were 

washed with warmed phosphate buffered saline (PBS), followed by trypsinization for 

approximately 10 minutes at 37 °C and 5% CO2 by addition of 0.25% trypsin-

ethylenediaminetetraacetic acid (Trypsin-EDTA; Gibco). After 10 minutes the cells were 

observed under the microscope for 90% detachment, when MEM was added to inactivate 

the typsin. For cell maintenance, cell suspension was seeded to new flasks at a 

subcultivation ratio of 1:6 with fresh MEM. For experiments, an aliquot of the cell 

suspension was mixed 1:1 (v/v) with 0.4% trypan blue (Invitrogen, Carlsbad, CA, USA) 

and 10 μL of sample mixture added to the chamber of a Countess Cell Counting Chamber 

Slide (Invitrogen) for use with a Countess II Automated Cell Counter (Invitrogen). Cell 

suspensions were centrifuged at 2,000 rpm for 5 minutes, reconstituted in culture media, 

and subsequently seeded to 6-well tissue-culture treated plates (Sarstedt, Nümbrecht, 

Germany) at 1 x 105 cells/mL. Plates were incubated as above until the monolayer 

reached confluency, at approximately 48 hours. 

Utilizing a method adapted from Bigelow et al., calcium oxalate monohydrate (COM) 

crystal adhesion and aggregation was investigated in the MDCK cells (Bigelow et al., 

1998; Yamaguchi et al., 2002). An overnight broth culture of BS168, UTI89, or PM175 

was processed as described earlier but the bacterial pellet was reconstituted in MEM at a 

concentration of ~5 x 103 CFU per mL. Confluent monolayers of MDCK cells in 6-well 

plates were washed twice with warmed sterile PBS, then incubated with 2 mL MEM ± 

bacteria for 20 minutes at 37 °C and 5% CO2. Cells were then washed twice with warmed 
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sterile PBS and incubated with 2 mL of artificial urine ± 0.5 mg/mL COM for 20 minutes 

at 37 °C and 5% CO2 (Brooks and Keevil, 1997). The urine was then removed, and cells 

were gently washed with PBS. Two mL MEM was added, and cells were immediately 

imaged with light microscopy using a Nikon Ts2R inverted microscope. Crystal 

attachment was quantitated with ImageJ. 

Statistical analysis for DM and cell culture experiments was conducted with GraphPad 

Prism (version 8.1.2) for Mac OSX (GraphPad Software, San Diego CA, USA). Results 

were considered significant as follows: ****, P<0.0001; ***, P< 0.001; **, P < 0.01; *, P 

< 0.05. 

5.3.6 16S rRNA gene sequencing 

Analysis of the adult DM microbiota was determined by 16S rRNA gene sequencing of 

10 individual flies per cohort on Day 7. Specifically, five sex-separated vials were 

prepared per treatment group containing approximately 20 flies, and one fly (either male 

or female) was used from each. DNA was extracted from the single whole flies in 

accordance with the Earth Microbiome Project standard protocols, using the Qiagen 

DNeasy PowerSoil 96-well kit (Qiagen, Toronto, ON, CAN). A Biomek 3000 laboratory 

automation workstation (Beckman-Coulter, Mississauga, ON, CAN) was utilized for 

PCR reagent set up. Amplifications of the V4 region of the 16S ribosomal RNA gene 

were carried out with the primers (5′-3′) 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNxxxxxxxxxxxxGTGCC 

AGCMGCCGCGGTAA and (5′-3′) CGGTCTCGGCATTCCTGCTGAACCG 

CTCTTCCGATCTNNNNxxxxxxxxxxxxGGACTACHVGGGTWTCTAAT wherein 

xxxxxxxxxxxx is a nucleotide barcode and the preceding sequence is a portion of the 

Illumina adapter sequence for library construction (Parada et al., 2016). Two μL of DNA 

template was added to a 96-well plate containing 10 μL of both forward and reverse 

primers (3.2 pMole/μL) where unique barcode pairs were utilized for each sample. 20 μL 

of Promega GoTaq® Colourless Master Mix (Promega, Maddison, WI) was added to the 

DNA template and primers. The final plate was firmly sealed with a foil PCR plate cover. 

This plate was placed in the Eppendorf Mastercycler® thermal cycler (Eppendorf, 

Mississauga, ON), where the lid was kept at 105 °C. An initial warm-up temperature of 
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95 °C was used for 2 min to activate the GoTaq®. Afterwards, the volumes underwent 25 

cycles of 95 °C for 1 min, 52 °C for 1 min, and 72 °C for 1 min. After completion, the 

temperature of the thermal cycler was held at 4 °C, and amplicons were then stored at 

−20 °C.  

Processing of DNA samples and DNA sequencing was conducted at the London Regional 

Genomics Centre at Robarts Research Institute (London, ON). Amplicons were 

quantified using pico green (Quant-It; Life Technologies, Burlington, ON) and pooled at 

equimolar concentrations before cleanup (QIAquick PCR clean up; Qiagen, 

Germantown, MD). The final samples were sequenced using the MiSeq by Illumina® 

platform, with 2 × 260 bp paired-end chemistry. The returned reads were then analyzed 

using R, DADA2, the SILVA database (version 132), and ALDEx2 (R Core Team, 2019; 

Callahan et al., 2016; Quast et al., 2013; Fernandez et al., 2013).  

5.3.7 qPCR-based quantification of microbial communities in DM 

DNA template from the Qiagen DNeasy PowerSoil kit was also utilized for qPCR- based 

quantification. Bacterial loads were determined by qPCR using the Power SYBR Green 

kit (Applied Biosystems) following the manufacturer’s instructions. Universal 16S rRNA 

gene, genus-, and species-specific primer sets used in this study are listed in Table 20. All 

qPCR reactions were performed in DNase- and RNase-free 384-well microplates on a 

Quant Studio 5 Real-Time PCR System (Applied Biosystems) and analyzed with 

associated software. Copy numbers of target 16S rRNA genes were calculated as 

previously described using established primer efficiencies and limits of detection 

(Daisley et al., 2019; Walker et al., 2017). 
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Table 20. Primers used for qPCR 

Target Primer Sequence (5’>3’) Reference 
Host endogenous 
control 

DRO_B-act_F GGAAACCACGCAAATTCTCAGT Elgart et 
al., 2016 DRO_B-act_R CGACAACCAGAGCAGCAACTT 

Host endogenous 
control 

DRO_RpLP0_F CCGAAAAGTCTGTGCTTTGTTCT Daisley et 
al., 2017 DRO_RpLP0_R CGCTGCCTTGTTCTCCCTAA 

Universal bacteria 
BAC_UNI_F ACTCCTACGGGAGGCAGCAGT Hartman 

et al., 
2009 BAC_UNI_R ATTACCGCGGCTGCTGGC 

Acetobacter spp. 
BAC_Aceto_F TAGTGGCGGACGGGTGAGTA Elgart et 

al., 2016 BAC_Aceto_R AATCAAACGCAGGCTCCTCC 

Lactobacillus spp. 
BAC_Lacto_F AGGTAACGGCTCACCATGGC Elgart et 

al., 2016 BAC_Lacto_R ATTCCCTACTGCTGCCTCCC 

Wolbachia spp. 
BAC_wsp_F CATTGGTGTTGGTGTTGGTG Newton et 

al., 2015 BAC_wsp_R ACCGAAATAACGAGCTCCAG 

Bacillus subtilis 

BAC_B-
subtilis_F GCGGCGTGCCTAATACATGC 

Lahlali et 
al., 2013 

BAC_B-
subtilis_R CTCAGGTCGGCTACGCATCG 

 

  



221 

 

 
 

5.4 Results 

5.4.1 Increasing concentration of oxalate promotes the growth of 
BS168 

As oxalate can be toxic to bacteria, even those capable of degrading it, the viability of 

BS168 was assessed upon exposure to oxalate concentrations ranging from 50 μM to 50 

mM (Suryavanshi et al., 2016). Representative growth curves are presented in Figure 39. 

There was a significant, dose-dependent increase in growth when BS168 was 

supplemented with NaOx (Figure 39D).  

5.4.2 Effect of dietary oxalate on culturable DM microbiota 

DM reared on 0.1% or 1.0% w/v NaOx-containing media for seven days harboured 

significantly less (two-way ANOVA with Tukey’s multiple comparisons test, P < 

0.0001) culturable bacteria compared to normal food controls (Figure 40). NaOx had a 

dose-dependent effect towards DM microbes cultured on LB and the Acetobacter spp. 

cultivated on Mannitol agar (P = 0.0008 and P = 0.0049, respectively). BS168 was 

detected by culture on LB agar from pulverized adult DM up to 5 days following 

supplementation (data not shown). 
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Figure 39. Increasing concentration of oxalate promotes the growth of BS168 

A) Growth is represented as the increase in optical density at 600 nm over the course of 

24 hours. BS168 was grown in LB broth with NaOx at the stated concentrations. Three 

biological replicates were performed; the mean of 10 representative replicates and SD are 

plotted. B) Area under the logistic curve from A), n = 10. C) Time at curve inflection 

from A), n = 10. D) Significant NaOx concentration comparisons between BS168 growth 

by Kruskall-Wallis test with Dunn’s multiple comparisons. All other comparison pairs 

were not significant. 
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Adult DM consumed normal food, or media with 0.1% or 1.0% (weight/volume) of 

NaOx for 7 days. DM were homogenized and plated onto Luria-Bertani (LB), de Man, 

Rogosa, Sharpe (MRS), or Mannitol agars. CFU from lithogenic groups were normalized 

to CFU from normal food groups to simplify variation from biological replicates. 

Average CFU/ fly for normal food cohorts was 2 X 102, 4 X 104, and 5 X 104 for LB, 

MRS, and Mannitol agars, respectively. Three biological replicates were performed, n = 

15. Significance was determined with Tukey’s multiple comparisons test. Box plots 

illustrate the median, quartiles, minimum and maximum. ** P < 0.01, *** P < 0.001, 

**** P < 0.0001. 
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5.4.3 Effect of BS168 on stone burden in DM 

Stone burden and health were assayed in the DM model of urolithiasis after 

supplementation with NaOx and BS168; adult survival, adult Malpighian tubule crystal 

birefringence, adult fecal excreta birefringence, and larval locomotion were all evaluated 

(Figure 41). Kaplan-Meier survival analysis of adult DM (Figure 41A) demonstrated that 

the detrimental effects of the highly lithogenic 1% NaOx diet were improved with 

supplementation of BS168 (logrank test, P = 0.0057). Larval crawling was significantly 

increased in 4-day old larvae treated with BS168 on lithogenic media when compared to 

untreated controls (Parametric, D’Agostino-Pearson test; vs. normal media controls, two-

way ANOVA with Tukey’s multiple comparisons, P = 0.0073; vs. lithogenic controls, 

two-way ANOVA with Tukey’s multiple comparisons, P = 0.0013) (Figure 41B). On day 

7, dissected adult Malpighian tubules (Figure 41C) from BS168-treated DM had 

significantly less CaOx crystal deposition compared to untreated lithogenic controls 

(Nonparametric, D’Agostino-Pearson test; Wilcoxon rank-sum test, P < 0.0001) (Figure 

41D). The percentage of fecal excreta containing birefringent particles from adult DM 

vials after 14 days was significantly reduced in the BS168-treated cohorts relative to 

untreated lithogenic controls (Nonparametric, D’Agostino-Pearson test; Wilcoxon rank-

sum test, P = 0.0039) (Figure 41E). 
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A) Kaplan Meier survival analysis of five-day old DM that were supplemented with 2 X 

108 CFU of BS168 on Day 0, then transferred to normal or lithogenic media on Day 1 

and followed for 14 days. Error bars represent SE. n ≥ 100 per group from 4 biological 

replicates of n = 20-30 flies. B) Larval locomotion was determined on Day 4 after larvae 

were supplemented with 0.5 X 108 CFU of BS168 on Day 0 and transferred to normal or 

lithogenic media on Day 2, n = 19-24 larvae per group from 3 biological replicates. C) I- 

IV) CaOx crystals were imaged in dissected Malpighian tubules from adult DM on Day 7 

and quantitated with ImageJ particle analysis, n =21-29 adults per group from 3 

biological replicates. (D). C) V) Birefringent fecal excreta from coverslips in adult vials 

on Day 14 were imaged and the fraction that contained birefringent crystals was 

quantitated, n = 16-20 cover slips per group from 3 biological replicates. (E). Legend for 

group colours in A) is relevant for figures B), D), and E). Scale bar in C) is relevant for I-

IV. F) Microbial composition of adult urolithiasis DM model exposed to BS168. DNA 

was extracted from whole adult DM after 7 days consuming normal or lithogenic media 

following ± BS168 supplementation on day 0. 16S rDNA was sequenced using the 

Illumina platform. Each column represents a single fly and each colour corresponds to a 

different bacterial genus. Five females and five males, each from separate vials, were 

included in each treatment group. Reads corresponding to Wolbachia were removed. All 

box plots illustrate the median, quartiles, minimum and maximum. ** P < 0.01, **** P 

<0.0001. 

  

Figure 41. Effect of BS168 on DM model of urolithiasis 
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5.4.4 16S rRNA gene sequencing assessment of DM microbiota 

Microbial composition of whole pulverized adult DM was assessed after 7 days on 

normal or lithogenic media following BS168 treatment on Day 0. A common insect 

endosymbiont, Wolbachia, dominated the sequencing depth of all samples but was not 

significantly different between cohorts (Clark et al., 2005). Although Wolbachia is 

known to impact fertility, viral infection susceptibility, and longevity among other traits 

in DM, the bacterium is not known to play a role in the DM urolithiasis model, so reads 

corresponding to the genus were removed from downstream analysis (Clark et al., 2005; 

Teixeira, et al., 2008; Fry and Rand, 2002).  

After omitting sequencing control samples (based on their distinct clustering apart from 

DM samples, Figure 42) the DM microbiota dataset contained 1,974,659 total reads, 

ranging from 10,945 to 76,733 reads across the 40 samples. An average of 2.72 % of 

reads were removed from each sample following quality filtration performed utilizing the 

DADA2 pipeline (Callahan, et al., 2017). The remaining filtered 1,922,688 reads were 

assigned taxonomy with the SILVA (v132) training set. After filtering sequence variants 

to maintain those present at >1% in any sample, 69 sequence variants remained.  

A bar plot representing the relative proportions of genera in the samples is represented in 

Figure 41F. These results are consistent with past surveys of the DM microbiota which 

exhibit a distinct and low-diversity microbiota dominated by the genera Lactobacillus 

and Acetobacter, which was observed here in DM consuming normal media (Wong et al., 

2011). In the lithogenic diet cohorts the relative proportion of sequence variant 127, 

which based on sequence homology likely corresponds to Acetobacter tropicalis, was 

significantly decreased relative to normal media controls (Benjamini-Hochberg corrected 

Wilcoxon rank sum test, P = 0.0075), while lactobacilli proportions were unchanged. 

There were no differences in abundance of any bacterial groups when comparing BS168-

treated with -untreated groups. No sequences corresponding to the genus Bacillus were 

detected from the flies in any cohort.  

The sequence counts were centred log ratio (CLR) transformed, generating sample-wise 

Aitchison distances which were subsequently used to perform a principal component 
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analysis (PCA) (Figure 43A). Principal components 1 and 2 were plotted and represent 

36.8% of the total variance in the data (Figure 43A). Samples did not partition into 

distinct groups based on treatment (coloured points), however subtle drivers in the data 

separation across principal component 1 were noted for diet groups and denoted with 

95% confidence ellipses. Sequence variants driving separation of the dataset are depicted 

by the dark gray arrows and associated taxonomy. Differences in diversity metrics 

(Shannon’s Index of alpha diversity, Figure 43B, and Aitchison distance determination, 

Figure 43C) due to exposure to the lithogenic diet were observed in the un-supplemented 

controls but were mitigated when DM were supplemented with BS168. 
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Principal Component Analysis (PCA) plot of sequencing control and adult DM samples. 

A PCA was performed on CLR-transformed Aitchison distances. Distance between 

samples on the plot represents differences in microbial community composition, with 

34.9% of total variance being explained by the first two components shown. DM samples 

are coloured by treatment groups, and sequencing control samples are red. The black 

ellipse represents the 95% confidence interval of the DM samples. Sequence variants are 

depicted by the gray numbers.  

  

Figure 42. Sequencing controls distinctly separate from DM microbiota 
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A) Principal Component Analysis (PCA) plot of adult DM exposed to lithogenic media 

and BS168 supplementation. A PCA was performed on CLR-transformed Aitchison 

distances. Distance between samples (coloured points) on the plot represents differences 

in microbial community composition, with 36.3% of total variance being explained by 

the first two components shown. Strength and association for genera (sequence variants) 

are depicted by the length and direction of the gray arrows, respectively. Individual 

samples are coloured by treatment groups, and ellipses represent the 95% confidence 

interval of the diet groups. NF = Control diet, OX = 1.0% oxalate diet. B) Shannon’s 

Index of alpha diversity was calculated for each individual sample and plotted by 

treatment group. C) Intra-group Aitchison distance was determined within treatment 

groups. The distance of every individual sample to all others within the same treatment 

group was averaged to obtain a single distance value per sample. (B-C) Box plots 

illustrate the median, quartiles, and 5-95% confidence intervals. ** P < 0.01, **** P 

<0.0001).  

  

Figure 43. Exploratory analysis of DM microbiota 
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5.4.5 qPCR-based assessment of DM microbiota 

No differences were determined between fly sexes for any taxonomic comparisons (data 

not shown), so pooled sex data were illustrated in Figure 44. Total bacterial and 

Wolbachia spp. loads were unchanged between treatment groups (Figure 44A and 44B, 

respectively). Abundance of the genus Lactobacillus was not significantly changed, 

however the genus Acetobacter was significantly decreased in the lithogenic diet groups 

(Figure 44C and 44D, respectively). Intra-individual ratio of Lactobacillus to Acetobacter 

was increased by the lithogenic diet (P = 0.0007); however, this phenomenon was 

rescued with BS168 supplementation (1% Ox- BS168 was not significantly different 

from untreated controls; P = 0.048 between 1% Ox- NA and 1% Ox- BS168) (Figure 

44E). Species-specific primers were utilized to assess the load of Bacillus subtilis; 

BS168-treated groups trended towards increased loads, but these findings were not 

statistically significant (Figure 44F). 
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Molecular quantification of total bacteria, bacterial genera, and species in whole-body 

DM adults (A-F). Intra-individual ratios of Lactobacillus : Acetobacter loads were 

compared in (E). All comparisons were made after normalizing to total host DNA. Data 

are depicted as mean ± standard deviation. Significance was determined with Tukey’s 

multiple comparisons tests. Each point represents a single adult DM, each from a separate 

experimental vial (n = 10, three technical replicates were performed). Sexes are pooled. * 

P < 0.05, *** P < 0.001. 

  

Figure 44. qPCR-based assessment of DM microbiota 



235 

 

 
 

5.4.6 Effect of uropathogenic bacteria on stone burden in DM 

Stone burden and health were assayed in the DM model of urolithiasis after 

supplementation with NaOx, UTI89, and PM175; adult survival, adult Malpighian tubule 

crystal birefringence, and larval locomotion were all evaluated (Figure 45). Kaplan-Meier 

survival analysis of adult DM (Figure 45A) demonstrated that UTI89 did not impact DM 

survival, however PM175 decreased DM survival irrespective of dietary lithogenesis. 

Larval crawling was not impacted by treatment with either uropathogen (Figure 45B). On 

day 7, dissected adult Malpighian tubules from UTI89-treated DM had significantly 

increased crystal deposition compared to untreated and PM175-treated DM (Kruskall-

Wallis test with Dunn’s multiple comparisons, P < 0.0001 and P = 0.001, respectively) 

(Figure 45C-D). 
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A) Kaplan Meier survival analysis of five-day old DM that were supplemented with 2 X 

108 CFU of UTI89 or PM175 on Day 0, then transferred to normal or lithogenic media on 

Day 1 and followed until expiration. n ≥ 80 per group from 3 biological replicates of n = 

20-30 flies. B) Larval locomotion was determined on Day 4 after larvae were 

supplemented with 0.5 X 108 CFU of UTI89 or PM175 on Day 0 and transferred to 

normal or lithogenic media on Day 2, n = 20 larvae per group from 3 biological 

replicates. C) CaOx crystals from polarized light microscopy of dissected Malpighian 

tubules were quantitated with ImageJ particle analysis, n =20-25 adults per group from 3 

biological replicates. D) Representative polarized light images of dissected Malpighian 

tubules from adult DM on Day 7 treated with 0.1% NaOx (i), 0.1% NaOx + UTI89 (ii) or 

0.1% NaOx + PM175. The scale bar in D-iii) is applicable to all of D). All box plots 

illustrate the median, quartiles, minimum and maximum. *** P < 0.001, **** P <0.0001. 

  

Figure 45. The effect of uropathogens on stone burden in DM 
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5.4.7 Impact of microbes on renal calcium oxalate crystal 
adhesion and aggregation 

MDCK renal epithelial cells were utilized to assess the effect of BS168, UTI89, and 

PM175 on adhesion and aggregation of calcium oxalate monohydrate (COM) crystals 

(Figure 46A). Cells that were pre-treated with BS168 prior to treatment with COM 

crystals in artificial urine did not show an increase in crystal adhesion compared to cells 

that were pre-treated with a media control (Figure 46B). The average crystal size was not 

significantly different between BS168 and PM175 treated groups and the untreated 

control, indicating that BS168 did not encourage aggregation (Figure 46C). In contrast, 

cells treated with UTI89 had significantly increased crystal adhesion and aggregation 

(Kruskall-Wallis test with Dunn’s multiple comparisons, P = 0.016 and 0.021, 

respectively) (Figure 46B-C). 
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A) Crystal aggregates were visualized with light microscopy after MDCK monolayers 

were pre-treated with MEM ± bacteria, followed by artificial urine ± 5 mg/mL COM 

(Ox). Scale bars are 200 µm. B) Amount of adhered COM crystals to MDCK cells was 

not significantly different between Ox-BS168 or Ox-PM175 treated groups compared to 

Ox alone but was significantly higher for Ox-UTI89 (Kruskall-Wallis test with Dunn’s 

multiple comparisons). C) Average crystal aggregate size was not significantly different 

between Ox-BS168 or Ox-PM175 treated groups compared to Ox alone but was 

significantly higher for Ox-UTI89 (Kruskall-Wallis test with Dunn’s multiple 

comparisons). Three technical and three biological replicates were performed (n = 9). 

Box plots illustrate the median, quartiles, minimum and maximum. *P < 0.05. 

  

Figure 46. Effect of microbes on COM crystal adhesion to renal epithelial cells 
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5.4.8 Development of a live imaging µCT scanning protocol of DM 

The fruit flies tolerated three but not six or eight hours of constant flow of CO2 anesthesia 

in combination with X-ray radiation exposure throughout the µCT acquisition. During 

this time, the optimal scanning protocol achieved DM survival and minimal image-noise 

(Figure 47A). With this method, successful 3D reconstruction and visualization of DM 

adults were reproduced at 5.72 µm isotropic voxel spacing with stones clearly present; 

thus, this protocol was utilized for experimental scans.  

Adult DM were exposed to 1.0% Ox lithogenic media and BS168 supplementation as 

described above. Four adult males from each group were then selected for repeated µCT 

to validate the live, repeated scanning methodology (Figure 47C). After scanning it was 

apparent that the µCT detected calcification in the DM legs, head, and thorax, which was 

photoshopped out of the images prior to analysis, such that stone quantification only 

involved calcification within the abdomen. The calculated stone volume was unchanged 

in the 1% Ox group between scans, but surprisingly was decreased on day 7 compared to 

day 3 in the 1% Ox + BS168 group (P = 0.48 by unpaired, two tailed t-test) (Figure 47B). 
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A) DM survived less than six hours of CO2 anesthesia (n = 8 for each timed scan). 

Images were acquired under constant flow of CO2 (0.5 mL/min), over 360° (0.4° 

incremental angle). Survival was counted immediately after the scan and DM were 

followed for 3 days. On day 6 and 10, DM that had undergone a 3h scan had 100% 

survival. B) Quantification of stone burden in DM. Stone volume was calculated as the 

sum of all pixels >700 HU within the 3D CT reconstructed images. Stone size was 

unchanged between scans for OX-NA cohort but decreased from Day 3 to Day 7 scans in 

the OX-BS168 cohort by unpaired, two tailed t-test. n = 4 DM per cohort, one 

experimental replicate performed. C) Representative 3D CT reconstruction of live 

anesthetized male DM demonstrating the feasibility of repeated scanning of the same 

individual flies longitudinally. 3D volume representations were reconstructed at 5.7-

micron isotropic voxel size. Colour code is Hounsfield Units (HU), with structures >700 

HU coloured red. Calcification outside the abdomen (not stones) are visible in all groups. 

Box plots illustrate the median, quartiles, minimum and maximum. *P < 0.05. 

  

Figure 47. Repeated live imaging by µCT demonstrates stone burden in DM 
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5.5 Discussion 

This study is the first to characterize the role of both beneficial and pathogenic microbes 

in a Drosophila melanogaster (DM) model of urolithiasis, in a step towards 

understanding the host-microbe interactions involved in kidney stone disease. The 

Bacillus subtilis strain 168 (BS168) ameliorated stone burden in DM. Notably, growth of 

BS168 increased in the presence of sodium oxalate, and BS168 increased adult DM 

survival, increased markers of health in DM larvae, decreased stone burden in DM 

Malpighian tubules and fecal excreta, as well as altered the adult DM microbiota. In 

contrast, a clinical kidney stone isolate of Proteus mirabilis (PM175) decreased DM 

survival irrespective of lithogenesis, and the uropathogenic Escherichia coli (UTI89) 

increased stone burden in DM and aggravated crystal deposition to renal epithelial cells 

in vitro. A novel, sensitive, live imaging modality was developed for DM using µCT. 

Collectively, the in vivo, in vitro, and imaging findings suggested that BS168 may 

mitigate and UTI89 may contribute to, urolithiasis development and severity. This further 

supports a potential role for BS168 as a future therapeutic adjunct in the treatment of 

human nephrolithiasis. 

Oxalate is a toxin consumed in the diet and produced endogenously in the liver (Hatch 

and Freel, 2008). It can act as a chelating agent of metallic cations and can impart toxic 

effects by means of altered gene expression, membrane disruption, and production of 

reactive oxygen species, among other methods (Hess et al., 1998; Jonassen et al., 2005; 

Miller and Dearing, 2013). Humans are incapable of degrading oxalate and instead rely 

on excretion and microbial degradation (Miller and Dearing, 2013); accordingly, it is a 

common component in kidney stones (Moe, 2006). Many species of bacteria are able to 

degrade the compound; however, oxalate can still exert toxicity over bacterial cells and 

many gut commensals cannot tolerate high levels of oxalate (Suryavanshi et al., 2016). 

Here, it was demonstrated that BS168 exhibited prolific growth in media with up to 50 

mM NaOx present, which is expected to far exceed physiological relevance based on an 

approximated 2.0 mM daily dietary oxalate ingestion (Holmes and Assimos, 2004). 

Alongside its ability to form endospores, resist bile salts, and tolerate low pH conditions, 

these results suggest that BS168 would likely survive well in the human intestinal tract 
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despite even the highest levels of dietary oxalate consumption (Jeon et al., 2017). Hatch 

and colleagues (2011) demonstrated that the gut commensal bacterium Oxalobacter 

formigenes not only degrades oxalate, but also promotes enteric oxalate excretion from 

circulation. Future work on BS168 should investigate this potential and evaluate the 

degree to which BS168 may lower serum and urinary oxalate concentrations. 

In the well-established DM model of urolithiasis, BS168 was able to transiently colonize 

the intestinal tract for up to 5 days following a single treatment yet it could elicit marked 

improvements to DM survival during at least 14 days of lethal oxalate exposure (Ali et 

al., 2018; Chen et al., 2011; Miller et al., 2013). These findings suggest that, in addition 

to directly metabolizing oxalate, BS168 may reduce oxalate toxicity indirectly through 

priming of host cell physiology (Tanner and Bornemann, 2000). It is well known that 

renal oxalate toxicity is primarily mediated via mitochondrial dysfunction and excessive 

reactive oxygen species (ROS) generation propagated by phospholipase A2 (PLA2) 

activation (Cao et al., 2004). This process leads to inflammation and damage to the renal 

epithelium, which can become a crystal deposition site, accelerating stone formation 

(Albert et al., 2020; Miller et al., 2000; Zuo et al., 2011). Notably, B. subtilis can 

biosynthesize lipopeptides that are potent inhibitors of PLA2, which have been 

demonstrated in vivo to decrease inflammation (Selvam et al., 2009; Volpon et al., 2000). 

This suggests that the survival benefits afforded by BS168 in oxalate-exposed DM may 

be partly due to the prevention of oxalate-induced mitochondrial dysfunction via blunting 

of the PLA2-facilitated ROS signaling cascade. 

In corroboration with these findings, BS168 increased psychomotor activity, indicative of 

improved metabolic energy conversion and neuronal development, in both oxalate-

exposed and non-exposed DM larvae (Clark et al., 2018; Jakubowski et al., 2012; Yang 

and Hultmark, 2017). Given the integral role of PLA2 in modulating oxidative stress-

related degenerative diseases in DM, these results indicate that BS168-mediated 

modulation of PLA2 activity may represent a key mechanism of indirect protection 

against oxalate-based stone disease (Iliadi et al., 2018). Utilizing alternative mechanisms, 

recent evidence has also shown that B. subtilis from fermented foods can decrease 

mitochondrial dysfunction, oxidative stress, and DNA damage associated with metabolic 
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dysfunction (Prazdnova et al., 2015; Do et al., 2015; Boyd et al., 2018). Given the links 

between metabolic syndrome and urolithiasis, the conserved and multipronged ability of 

B. subtilis strains to promote mitochondrial health may offer a simple and effective 

solution for attenuating oxalate-induced renal damage in patients with recurrent stone 

formation (Boyd et al., 2018; Ramaswamy and Shah, 2014). 

Oxalate has been shown to alter the microbiota in humans, however, how this influences 

the microbiota in nephrolithiasis is still unclear (Miller and Dearing, 2013; Suryavanshi 

et al., 2016). For this reason, the simplicity of the DM urolithiasis model was 

advantageous for evaluating the effect of the lithogenic diet on the microbiota. Indeed, it 

was found that oxalate consumption could exact significant effects to the DM microbiota, 

some of which were mitigated by supplementation with BS168. DM exposed to the 

lithogenic diet yielded significantly lower culturable bacterial CFU; this was in contrast 

to unchanged total bacterial loads that were determined by qPCR. However, the flies 

were known to be heavily colonized by intracellular insect commensal Wolbachia spp. 

which accounts for this discrepancy, as this genus accounts for the majority of the qPCR 

load but is not cultivable in standard bacterial culture, instead requiring propagation in 

insect cell lines (O’Neill et al., 1997). Consumption of the lithogenic diet by adult DM 

also led to significant alterations in the microbial alpha and beta diversity, and 

additionally altered the ratio of the two dominant bacterial genera of the DM microbiota, 

Lactobacillus and Acetobacter. In both instances, BS168 was able to rescue these 

phenotypes. These findings suggest that BS168 exerts its protective effects without 

saturating the DM microbiota. Supporting this, BS168 was undetectable by culture from 

DM beyond experimental Day 5, while on Day 7, no sequence variants corresponding to 

Bacillus spp. were detected with 16S rRNA gene sequencing, and by qPCR, the B. 

subtilis loads were nearing the limits of detection and comparable between all groups. 

This is an important feature of B. subtilis, because as an oxalate-tolerant spore former, the 

potential existed for it to overtake the endogenous microbiota in a manner reminiscent to 

Clostridium difficile infection in humans, however this was not observed (Voth and 

Ballard, 2005). 
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For decades, struvite stones have been referred to as “infectious” stones, due to their 

association with urinary tract infections (UTIs) (Thompson and Stamey, 1973). 

Organisms such as Proteus mirabilis, Klebsiella spp., Pseudomonas aeruginosa, 

Staphylococcus saprophyticus, and Ureaplasma urealyticum produce urease, an enzyme 

that cleaves urea to ammonia and CO2, which subsequently elevates urinary pH and 

precipitation of magnesium ammonium phosphate hexahydrate crystals (Das et al., 2017; 

Thompson and Stamey, 1973). Until more recently, bacteria were not thought to 

contribute to the formation of non-struvite stone compositions (Coe et al., 1992; 

Schwaderer and Wolfe, 2017). Groups have now validated the presence of live bacteria 

within stones of various compositions with both culture and molecular techniques, and 

we have corroborated these findings (Chapter 3) (Barr-Beare et al., 2015; Dornbier et al., 

2019; Golechha and Solanki, 2001; Sohshang et al., 2000; Tavichakorntrakool et al., 

2012; Wang et al., 2014; Zampini et al., 2019). Based on results from our group and 

others, E. coli appears to be the most commonly isolated microbe from non-struvite 

stones, followed by Pseudomonas and Staphylococcus spp. Whether these microbes play 

an intimate role in stone formation, or if they are just passive bystanders, has not been 

well described. The concept of such well-known pathogens being bystanders is hard to 

imagine. Potentially, while not being metabolically active enough to induce a classical 

infection, they could still be causing an element of harm to the host. For example, very 

low abundances of Pseudomonas, E. coli and other pathogens have been identified in 

breast tissue of women with cancer despite no infectious process taking place (Urbaniak 

et al., 2014). 

The DM urolithiasis model proved useful in revealing that PM175 had a detrimental 

effect on DM survival, irrespective of lithogenesis as both PM175 alone and 0.1% Ox + 

PM175 groups had similar mortality, and 0.1% Ox + PM175 did not have increased stone 

formation compared to 0.1% Ox alone. This was unexpected, as P. mirabilis is not a 

known pathogen of DM (although its close relatives Providencia spp. are) and it was only 

supplemented at the initial Day 0 timepoint (Galac and Lazzaro, 2012; Ma et al., 2012). It 

is possible that this microbe exerts a pathogenic role on DM during a key developmental 

window in young adult flies, which could result in subsequent mortality effects later in 

life regardless of stone formation (Clark et al., 2015). In contrast to the findings in 
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PM175, we found UTI89 to significantly increase stone deposition in a manner that did 

not affect DM survival. This may indicate that the DM urolithiasis model is already quite 

severe, and although UTI89 impacts stone formation, it may not manifest worse mortality 

beyond that of the lithogenic diet alone (Miller et al., 2013). 

Previous studies with uropathogenic E. coli (UPEC) have demonstrated that they 

aggregate on and around CaOx monohydrate (COM) crystals, significantly more so than 

other crystal compositions (Barr-Beare et al., 2015; Chutipongtanate et al., 2013). Other 

groups have shown the ability for COM to adhere to MDCK renal epithelial cells, but the 

role of bacteria in this process had not been previously explored (Bigelow et al., 1998; 

Yamaguchi et al., 2002).  

It is unlikely that a large quantity of BS168 would be present in the kidney after oral 

administration, even though the gut is a reservoir for the urogenital microbiota 

(Yamamoto et al., 1997). However, as gut colonization with UPEC has been shown to 

increase the risk of UPEC UTI, experiments were performed here to address how BS168 

may impact the urinary tract and stone development should some cells traffic there 

(Moreno et al., 2006; Moreno et al., 2008). Here, BS168 did not encourage aggregation 

nor adherence of COM crystals to the MDCK cells. Accordingly, these in vitro findings 

suggest that if any orally consumed BS168 cells did migrate to the urinary tract, 

increased morbidity would be unlikely.  

Conversely, in agreement with previous UPEC work by Barr-Beare et al. and 

Chutipongtanate et al., UTI89 demonstrated the ability to aggregate COM crystals and 

encourage their adherence to renal epithelial cells (2015; 2013). This demonstrates how 

UPEC, unlike other uropathogens such as PM175 which had no appreciable effect on the 

COM crystals, could be actively involved in CaOx stone growth through its ability to 

potentiate crystal deposition. This may be the consequence of active bacterial adhesion to 

the crystals, charge interactions between the bacterial cell surface and urinary ions, or the 

expression of enzymes such as citrate lyase, which through its ability to convert citrate to 

acetyl-CoA can increase urinary CaOx supersaturation (Bayer and Sloyer, 1990; 

Chutipongtanate et al., 2013; Quentmeier et al., 1987; Zuckerman and Assimos, 2009). 
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Future research should investigate the microbes present in non-struvite kidney stones in 

the context of urine chemistry to determine if hypocitraturia is a significant, uropathogen-

induced factor leading to stone formation or recurrence (De Ferrari et al., 1996). 

Finally, this study was the first to demonstrate the ability to live image DM using a novel 

anesthetic and µCT protocol. Just as CT scans are used to visualize stones in humans, 

previous studies have utilized X-ray µCT to evaluate stones in narcotized, wax-embedded 

DM (Assimos et al., 2016; Hirata et al., 2012). Unfortunately, anatomical structures are 

often difficult to appreciate in narcotized flies and this method precludes longitudinal 

studies. Here, the successful application of an acrylic scanning apparatus enabled 

anesthesia and full-body immobilization of up to 16 flies at a time, with 100% recovery 

after two 3-hours scans. This methodology enabled repeated scanning and the capability 

of time course studies in DM. Although as an overall urolithiasis model DM are 

exceedingly economical, the use of flies as a high-throughput screening tool for the 

assessment of expensive pharmaceutical or nutraceutical stone therapies can still amount 

to significant costs (Miller et al., 2013). The ability to repeatedly scan DM and follow 

stone progression longitudinally throughout life is a significant advancement to the field. 

In summary, this study has characterized the beneficial properties of BS168, and the 

uropathogenic stone-promoting effects of UTI89 in the context of nephrolithiasis, as 

assayed in a DM model of the disease and in vitro cell culture experiments. This validates 

that in the capacity of both probiotics and pathogens, microbes can play an instrumental 

role in stone prevention and formation, respectively. Although probiotics are classically 

Lacotobacillus spp. or Bifidobacterium spp., strains of Bacillus subtilis are generally 

regarded as safe, gaining favour as probiotics for gut-related maladies, and are 

components of several fermented foods (Kim et al., 2014; Poormontaseri et al., 2017; 

Sorokulova et al., 2008). To date, studies employing various formulations of probiotics in 

nephrolithiasis patients have largely been inconclusive due to the broad variety of 

preparations tested alongside ill-defined strain selection, thereby making it unclear how 

efficacious this approach could be (Abratt and Reid, 2010; Campieri et al., 2001; Duncan 

et al., 2002; Jairath et al., 2015; Lieske et al., 2010; Okombo and Liebman, 2010). 

Instead, future studies should carefully evaluate mechanistically validated strains which 
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can be delivered effectively to the gut, such as BS168. Based on our seminal findings, 

this microbe may prove a novel therapeutic adjunct to reducing the incidence of recurrent 

CaOx nephrolithiasis in high-risk patients.  
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Chapter 6  

6 General Discussion 

The study of the human microbiome is regarded as one of the most pivotal scientific 

developments of the 2010’s (Nature, 2019). The advances in human microbial ecology 

have been aided by the information revolution, the advent of next generation sequencing 

(NGS) technologies, and big data analysis (Malla et al., 2018). Thanks to these 

innovations, we now know that the microbial “organ” living within us (the microbiota), 

and its genes and products (the microbiome), are intimately involved in human health and 

disease (Malla et al., 2018; Whiteside et al., 2015). In this thesis I provide evidence that 

the human microbiota at multiple anatomical sites is implicated in kidney stone formation 

and can be exploited in this disease’s treatment and prevention. 

6.1 Towards standards in microbiota studies 

Along with the rapidly developing discipline of microbiota research has come a wide 

variety of study methodologies, none of which are standardized across the field 

(Goodrich et al., 2014; Hiergeist et al., 2016). These differences in protocols extend from 

study inception and span through to the final publication, with areas of potential bias at 

every step along the way. These can come from sample collection (further diversified by 

biological sample type), sample processing and storage, DNA extraction, PCR 

amplification, sequencing, and bioinformatic analysis. Coupled with the sensitivity of 

NGS, these factors can make cross-comparison between studies very difficult, and meta-

analyses nearly impossible. In this thesis, urinary, gut, medical device, and in vivo model 

samples were investigated, all with the aim of making the highest fidelity 16S rRNA and 

whole shotgun metagenomic sequencing feasible. With these factors in mind, careful 

consideration was taken at all levels of study design and performance to yield next 

generation sequencing analysis to the very best of our ability. 

Previous studies in our lab by Dr. Yige Bao worked towards optimizing the handling of 

urine samples, as well as similar clinical samples with high host- and low microbial- 

biomass (Bao, 2018; Minich et al., 2019; Wolfe et al., 2012). These findings suggested 
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that voided urine retained optimal microbial resolution for studies with 16S rRNA gene 

sequencing when samples were greater than or equal to ten millilitres in volume and were 

centrifuged, with the supernatant discarded, retaining a pellet for frozen storage at -80 °C. 

Employing this method resulted in consistent, high quality sequencing results even after 

samples spent two years in frozen storage (Bao, 2018). Therefore, this method was 

utilized for the urine sample collection in Chapters 3 and 4 of this thesis. 

Although the bacterial biomass of feces is high, unlike most urinary samples, these 

samples present a different set of challenges (Sender et al., 2016). Study subjects are 

usually willing to provide urine samples, but less so fecal samples “on demand” per se, so 

at-home collection is commonly required. This was the case in the kidney stone study 

(Chapter 3), where fecal samples were to be collected prior to commencing pre-surgical 

antibiotic prophylaxis, as these drugs would affect the microbiota composition with 

consequences for the subsequent analysis. At-home collection is usually more amenable 

to participants than in-clinic deep rectal swabs, although both methods appear to 

approximate the gut microbiota comparably (Biehl et al., 2019; Liang et al., 2020). 

Whether participants collect a full fecal sample, just a portion on toilet paper, or a swab 

thereof is a second point of review, although again method acceptance by the participant 

should be considered to optimize study recruitment (especially where monetary 

incentives aren’t offered, as in the clinical studies performed in Chapters 2, 3, and 4) 

(Gilbert et al., 2014; Liang et al., 2020). Further confounders include interim storage of 

these samples and whether same-day lab delivery, or perhaps mailing of a sample is 

sufficient (Gilbert et al., 2014; Liang et al., 2020; Voigt et al., 2015). For this reason, 

Chapter 2 evaluated the feasibility of soiled toilet paper collection and storage for the 

purpose of NGS. Fecal samples were homogenized and transferred evenly to toilet paper, 

then stored dry or in the preservative agent RNAlater® at various temperatures and for 

various lengths of time. This study validated that unpreserved fecal samples collected on 

soiled toilet paper and stored in sterile sample bags are appropriate for NGS after being 

mailed. Specifically, it was determined that the length of time and temperatures 

experienced by unpreserved samples mailed via Canada Post would still resemble the 

origin with minimal variation. This methodology has since been utilized in numerous 

clinical studies from our group, including those of the gut microbiota in irritable bowel 
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syndrome, multiple sclerosis, non-alcoholic fatty liver disease, schizophrenia, chronic 

pain, and of course, nephrolithiasis (Craven et al., 2020). 

6.2 The microbiota of recurrent nephrolithiasis patients 
diverges from a healthy state 

A primary purpose of this thesis was to characterize how the microbiota is altered in 

kidney stone patients in order to elucidate whether bacteria are implicated in stone 

formation. Utilizing the methods established in earlier work, Chapter 3 involved a 

microbiota-targeted clinical study of both healthy adults and kidney stone patients 

receiving surgical treatment. Despite the publication of several studies aimed at 

addressing similar or associated questions since the onset of this thesis, a certain 

consensus has not been reached by others (Barr-Beare et al., 2015; Batagello et al., 2018; 

Dornbier et al., 2019; Magwira et al., 2012; Miller et al., 2019; Stern et al., 2016; 

Suryavanshi et al., 2018; Tang et al., 2018; Tavichakorntrakool et al., 2012; Ticinesi et 

al., 2018; Xie et al., 2020; Zampini et al., 2019). These studies have few similarities and 

many discrepancies between their design and results, epitomizing how the lack of 

standards in the microbiome research field can lead to faulty conclusions. To avoid such 

issues, this thesis sought to combine the individual strengths of several of these studies 

(large sample size, sampling at multiple timepoints and anatomic sites, dietary 

consideration, the combination of both 16S rRNA gene and whole shotgun metagenomic 

sequencing, and scrupulous bioinformatic analysis) into a single investigation that should 

stand up against re-examination with reproducibility in future studies. 

In this study, stone patients were found to have higher urinary oxalate concentrations 

compared to healthy subjects, despite similar dietary micronutrients consumption by both 

cohorts. In an effort to understand this finding, further investigation showed that the 

urinary and gut microbiota were distinct in kidney stone formers compared to healthy 

subjects. Based on the differential features, the microbiota is believed to play a 

significant role in nephrolithiasis. During the time period of surgical stone management, 

the urinary microbiota was enriched by bacterial genera known to be associated with 

inflammatory responses. In addition, a sequence-positive microbiota was detected within 

all crystalline compositions of kidney stones examined. Based on literature expectations, 
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it was surprising to not detect a lower relative abundance of Oxalobacter formigenes in 

the gut microbiota of stone formers. This further questions the correlation between this 

species and prevention of stone formation. 

A novel finding was the higher relative abundance of antibiotic resistance factors and 

uropathogenic bacteria, as well as previously unreported functional changes involved in 

oxalate homeostasis indicative of metabolic stone formation. Together, these findings 

implicate the gut as a reservoir for the urinary tract and stone formation. Interestingly, 

surgical stone management, which invariably includes antibiotic use, significantly 

disrupted the urinary and gut microbiota and led to blooming of antibiotic resistant 

uropathogens in the urinary tract, facilitating further crystal nidi development and disease 

recurrence, a finding observed epidemiologically (Johnson et al., 1979; Koşar et al., 

1999; Vaughan et al., 2019). 

6.3 The microbiota and kidney stone disease 
management 

A key step in applying microbiome findings to the clinic is to understand how the 

microbiota might influence kidney stone disease management. An almost ubiquitous 

component of such care involves ureteral stent placement. These stents along with 

urinary catheters are the most commonly used medical devices in urological practice and 

the most common source of device and hospital-acquired infections (Chatterjee et al., 

2014; Lo et al., 2014). In spite of the risk of infection, encrustation, and the morbidity 

associated with ureteral stent placement, they are used for nearly all nephrolithiasis 

patients at some point throughout their treatment, most routinely following surgical stone 

intervention (Assimos et al., 2016; Dyer et al., 2002; Haleblian et al., 2008). Thus, in 

Chapter 4, the goal was to characterize the microbiota adhering to ureteral stents and 

determine which, if any, patient factors influenced the microbiota composition and stent 

encrustation. 

Upon attempting to evaluate all ureteral stents removed from our centre over a one-year 

period, ultimately 241 patients were enrolled, of which 91% were receiving treatment for 

urolithiasis. Both mid-stream urine and ureteral stents were collected and characterized 
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with 16S rRNA gene sequencing. The presence of a reproducible, patient-specific stent 

microbiota was validated, even in visibly un-encrusted devices. Device indwelling time, 

patient age and comorbidities such as metabolic syndrome, irritable bowel syndrome, 

inflammatory bowel disease, and pulmonary disease were all significantly associated 

with stent and urinary microbial community variation. Unexpectedly, the use of 

antibiotics by participants throughout the course of stent placement did not alter the 

microbial community composition, microbial diversity, or degree of stent encrustation. 

Because antibiotics are often prescribed alongside stent placement and removal in an 

attempt to curb urinary tract infections (UTIs) and device encrustation, these findings 

raise questions about the necessity of this standard practice (Abbott et al., 2016; Riedl et 

al., 1999).  

6.4 The ramifications of disrupting the microbiome 

The finding that recurrent kidney stone formers have altered bacterial community 

composition in both the intestinal and urinary tracts markedly correlates with recent 

findings that oral antibiotics increase the risk of nephrolithiasis (Tasian et al., 2018). 

Moreover, findings in stent patients revealed that antibiotic use did not create a health-

associated urinary microbiota devoid of uropathogens, nor did it decrease device 

encrustation. Instead, the overall results raised potential disadvantages and long-term 

consequences of antibiotic use in urological practice. This is not to suggest that 

antibiotics do not fulfill a necessary and invaluable role in disease treatment (López 

Romo and Quirós, 2019; Paterson et al., 2016). However, the use of these agents remains 

debated for many urological scenarios — a particularly consequential fact given that 

urologists have higher antibiotic prescription rates than providers from any other surgical 

specialty (Durkin et al., 2017). Additionally, antimicrobial use by urologists is often 

discordant to the best practice guidelines published by the American Urological 

Association (AUA) (Khaw et al., 2018; Wolf et al., 2008). Clearly, the reasons for this 

must be examined given the knowledge emerging from microbiome studies, including 

those described here. 

Urinary tract infection is the second most common indication for all antibiotic 

prescriptions behind respiratory infections (Shively et al., 2018). In studies of antibiotic 
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use for acute uncomplicated UTIs, randomized placebo-controlled trials have 

demonstrated that patients given placebo exhibit significant symptom improvement and 

cure of bacteriuria after just days. Thus, uncomplicated UTIs are often cleared without 

drug treatment (Christiaens et al., 2002; Ferry et al., 2004; Little et al., 2010). 

Furthermore, antibiotic use does not provide significant benefit for UTI prevention in 

ureteral stent patients with normal risk profiles, yet they are still commonly prescribed for 

this indication (Abbott et al., 2016; Khaw et al., 2018; Lee et al., 2019). Similar 

controversy surrounds antibiotic use in ureteroscopic lithotripsy, transurethral resection 

of the prostate, and even PCNL (Baten et al., 2019; Deng et al., 2017; Khaw et al., 2018; 

Potretzke et al., 2016). Further, none of these studies have considered the damage 

incurred by antibiotics to the microbiome and to the patient’s health as a consequence of 

this. 

It is known that the use of antimicrobials can cause pronounced and long-lasting 

microbiota remodelling, which can have implications for host health for years to come 

(Cho et al., 2012; Cox et al., 2014; Dethlefsen and Relman, 2011; Korpela et al., 2016; 

Ruiz et al., 2017). Although much literature has focussed on oral antibiotic prescription, 

this is not where the assault to our microbiome ends (Lozupone et al., 2012). In Western 

society, people are constantly bombarded by antimicrobial substances, from prescription 

and over-the-counter medications, to preservatives in food, and even contaminants in 

drinking water (Khan and Nicell, 2015; Lozupone et al., 2012; Maier et al., 2018; Nash, 

2012). Many negative consequences of microbiome-disrupting substances have been 

reported to affect host metabolic syndrome, psoriasis, asthma, allergies, and intestinal 

diseases, among many others (Brown et al., 2013; Cho et al., 2012; Cox et al., 2014; Ni 

et al., 2019; Schulfer et al., 2018; Zanvit et al., 2015). Now, we also know there to be a 

direct role in urological conditions (Tasian et al., 2018). Even when used appropriately, 

antibiotics can lead to subsequent infection by resistant organisms in the patient, as well 

as the dissemination of resistant organisms in the community — a separate but very 

significant global public health issue (Barancheshme and Munir, 2018; Costelloe et al., 

2010). Together, these factors lead to a multi-pronged depletion in the diverse beneficial 

microbiome, reduction of key functional pathways, and enrichment of inflammatory, 

drug-resistant pathogens (Lozupone et al., 2012).  
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Simply put, substances capable of disrupting the microbiome are likely capable of 

causing disease. The net effect of disruption has been termed “dysbiosis”, but this is 

poorly defined and relatively uninformative, as there is no single healthy microbiome nor 

an all-encompassing harmful one. The relationships between the microbiome and 

diseased states are often not defined mechanistically. This knowledge gap with regards to 

a mechanistic role of uropathogens and stone formation was investigated in Chapter 5 

using a Drosophila melanogaster (DM) model of stone formation and in vitro tissue 

culture experiments. It was discovered that the Escherichia coli strain UTI89 and a 

struvite kidney stone isolate of Proteus mirabilis (PM175) had very different outcomes. 

The DM stone burden along with calcium oxalate monohydrate (COM) crystal 

aggregation and adhesion to renal epithelial cells increased significantly with UTI89. 

Whereas, PM175 increased DM mortality but did not exacerbate stone formation, and 

trended towards increased COM crystal adhesion, though that result was not statistically 

significant. Although only two uropathogenic bacteria were tested, these results 

demonstrated that the strains had vastly different mechanisms of action in their ability to 

potentiate kidney stone formation: one by a urease-mediated increase in urine pH 

(PM175), and the other potentially by bacterial adhesive mechanisms or citrate lyase-

mediated hypocitraturia (UTI89). It is mechanistic studies such as these that will push the 

microbiome research field beyond simply exploratory characterization, and towards 

hypothesis driven investigations and the development of biologically relevant solutions. 

6.5 Mitigating microbiome damage 

Although the negative impact of our ‘Western’ lifestyle on the microbiome may seem 

overwhelming, all hope is not lost. It is through first understanding the microbial 

involvement in human diseases and defining the relevant mechanisms of action, that we 

can then work towards targeted microbial-based therapeutics. Probiotics, or “live 

microorganisms that, when administered in adequate amounts, confer a health benefit on 

the host”, are just one potential course of action (Hill et al., 2014; WHO, 2001). It is 

important when investigating potential probiotic bacteria that they are evaluated for 

strain-specific niche applications. Where past studies have failed to demonstrate the 

benefit of a potentially beneficial microbe, they have often lacked a rationale for strain 
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selection (Suez et al., 2018). Indeed, although probiotics likely would not offer a 

community-wide shift from a depleted microbiota, they could be best utilized for 

replenishment of a specific functional outcome, such as repair a loss-of-function 

phenotype of oxalate degradation in stone-formers.  

In Chapter 5 of this thesis, Bacillus subtilis strain 168 (BS168), a resilient spore-forming 

bacterium with the capability to degrade oxalate through the enzyme oxalate 

decarboxylase, was investigated (Sorokulova et al., 2008; Tanner and Bornemann, 2000). 

The rationale was that oral consumption of this microbe could decrease urinary oxalate 

concentrations by degrading dietary oxalate in the gut. O. formigenes and other oxalate-

degrading bacteria are currently sold as “probiotics” for this purpose, although trials and 

validation studies have had underwhelming results, potentially due to O. formigenes’ 

strict anaerobic nature and difficulty in retaining its viability (Ellis et al., 2015; Milliner 

et al., 2018). Unlike current products on the market, BS168 was able to grow in very high 

levels of oxalate, reduce stone burden, and improve markers of health in our DM model 

of the disease (Ellis et al., 2015). This microbe is also a component of various fermented 

foods (Kim et al., 2014). Based on these findings and the fact that Bacillus spp. are 

gaining favour as probiotics for other purposes in humans, BS168 should be further 

evaluated for its therapeutic efficacy and safety in humans with nephrolithiasis 

(Poormontaseri et al., 2017; Sorokulova et al., 2008).  

6.6 Future directions 

Beyond probiotics, there are numerous other techniques available to reshape a damaged 

microbiome. These could include prebiotics, “a substrate that is selectively utilized by 

host microorganisms conferring a health benefit”, or whole community transformation 

via fecal microbiota transplant (FMT) (Gibson and Roberfroid, 1995; Gibson et al., 

2017). With recent interest in the gut microbiota of nephrolithiasis patients has come 

curiosity surrounding the therapeutic potential of FMTs (Miller et al., 2017; Stern et al., 

2019). As of yet, this has only been investigated in animal models, which tend to poorly 

recapitulate the complex human disease phenotype (Khan, 1997). As leaders in the field 

of FMT research (having established studies involving FMT for non-alcoholic fatty liver 

disease, multiple sclerosis, schizophrenia, and cancer immunotherapy, among others), as 
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well as utilizing the technique clinically for C. difficile infection, our centre has the 

potential to be the first to investigate this therapy in humans with stone disease (studies 

ongoing; Craven et al., 2020). 

A major point of attention when undertaking an FMT study is appropriate donor 

selection. Donors are routinely screened and excluded based on relevant diseases, family 

history, and detection of transmissible agents (Craven et al., 2017; Duvallet et al., 2019; 

Woodworth et al., 2017). However, the broader recommendations of what an appropriate 

donor looks like based on the disease of focus is often unclear, when we know for 

example that such phenotypes as leanness and obesity could be transferred through the 

microbiome (Vrieze et al., 2012). Without knowing what a healthy microbiome actually 

is, how can an optimal donor be identified? The criteria should encompass much more 

than simply a lean person that does not harbour Helicobacter pylori or HIV.  

It is hoped that the research undertaken in this thesis will advance the field in several 

ways. For example, based on the findings herein, the ideal FMT donor for a middle aged, 

male, nephrolithiasis patient should likely be: middle aged, male, with no family history 

of stones or urological conditions, consuming a healthy diet, physically active, hasn’t 

used antibiotics in the last 5 years, has a robust gut microbiota oxalate degradation 

network (i.e. Oxalobacter, Lactobacillus, and Bifidobacterium spp., or Bacillus subtilis), 

has low to normal urinary oxalate concentration, absent or low numbers of uropathogenic 

bacteria in the gut, absent or low numbers of antibiotic resistant organisms in the gut, 

robust gut microbiota capacity for vitamin production (i.e. B6), with reduced ascorbate 

utilization. The search for donors who match such criteria based on the recipient may be 

exceptionally expensive and challenging, and weighing each element may require some 

mathematical modeling. But ultimately, a study could test FMT from such a disease-

based selection process to determine whether stone recurrence rates in a patient 

population are decreased after receiving the autologous vs. an allogeneic transplant. 

In addition to investigating FMT as a potential therapeutic, many of the other findings in 

this work warrant further investigation and in vitro validation. To confirm the gut 

microbiota findings and functional differences detected by shotgun metagenomic 
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sequencing, a dynamic host-free model system of the gut (a chemostat) should be enlisted 

(Allen-Vercoe, 2013). In this in vitro culture vessel system that mimics microbial 

metabolism in the distal colon, stool from both healthy controls and recurrent stone 

patients could be separately investigated and compared for their functional capacity. For 

example, the concentration of free oxalate could be quantitated after dosing the systems 

with a known quantity of ascorbate (the oxalate concentration could be measured in 

chemostat effluent using HPLC, as was done in Chapter 3). Similarly, the capacity of the 

respective microbiomes to generate relevant micronutrients could be assessed following 

the addition of a standard media “meal” (i.e. concentrations of Vitamins B6 or K2, which 

could be quantitated with ELISA). 

Future studies should help to clarify the contribution of uropathogens to stone formation. 

In chapter 5, renal epithelial cell culture and COM crystal adhesion assays were 

combined to evaluate how bacteria may be directly interacting with crystals. These were 

quite short experiments by nature as the renal cell line and bacteria could not co-exist 

long term. A stone generator apparatus, as described previously, might prove to be a 

better way to investigate longer interactions (Ananth et al., 2002; Chow et al., 2004). 

This system involves the growth of crystal nidi into stones of clinically relevant size, in 

chambers supplied with COM-supersaturated artificial urine. Different urinary 

components, macromolecules, and stone types could be investigated simultaneously and 

multiplexed into a so-called “stone farm” (Ananth et al., 2002; Chow et al., 2004). 

Bacteria could be applied to the system at different stages of stone development, with 

absolute stone size and growth rate as a functional experimental output. Additionally, 

these experiments would benefit from image analysis, whereupon bacteria could be 

fluorescently labelled, and stones sectioned and imaged microscopically (Sivaguru et al., 

2018).  

What potentially makes the bacteria isolated from stones different from bacteria present 

in the bladder of healthy people is also of great interest. In Chapter 3, the genera 

Escherichia, Gardnerella, and Staphylococcus were sequenced and cultured from both 

healthy and stone forming participants’ urine samples, as well as the kidney stones 

themselves. These isolates could undergo whole genome sequencing to determine if 
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species or strain- specific traits are differentially pathogenic between the two cohorts. 

Perhaps the E. coli from stone patients harbour more adhesive pili, invoke inflammation 

or host tissue damage through toxin production, or have enhanced antimicrobial 

resistance compared to isolates from healthy participants (Wiles et al., 2008). Genomic 

differences could be investigated mechanistically using the in vitro models described 

above to determine their biological significance. 

6.7 Concluding remarks 

As we further our understanding about the intimate role that microbes play in human 

health, nephrolithiasis is an extremely important area to apply this knowledge. This often-

idiopathic condition may be better understood in the context of microbes, with beneficial 

ones harnessed as part of nephrolithiasis treatment and prevention. This disease affects a 

tremendous amount of people and causes severe morbidity and economic strain; its 

prevalence is only increasing, and we need novel solutions. This thesis provides 

information upon which to not only base future research, but also to attract the attention 

of urologists at the front line. It is my sincere hope that the work presented in this thesis 

(as well as the other publications resulting from my graduate studies) have advanced 

understanding of the microbiota, the 80th human organ, and its intertwined relationship to 

human health (Standring et al., 2015). 
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