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Abstract 

When the electromagnetic field of light is incident on metallic nanostructures of dimensions 

smaller than the incident wavelength of the light, there is a strong interaction, resulting in an 

enhanced, highly confined electromagnetic field in the vicinity of the nanostructure.  This 

effect is referred to as a localized surface plasmon resonance, most commonly exploited for 

plasmon-enhanced spectroscopies, such as surface-enhanced Raman spectroscopy (SERS) 

and tip-enhanced Raman spectroscopy (TERS).  The location, number and intensity of these 

regions of enhancement, or “hotspots”, can be tuned by changing the nature of the metal, the 

size, shape and arrangement of the nanoparticles, its surroundings, or the wavelength of the 

incident light.  When a molecule is located within these nanoscale hotspots, it is possible to 

obtain detailed spectroscopic information about the molecule with high sensitivity.   

The decay process of these plasmon resonances can result in the ejection of high energy 

“hot” carriers, either hot electrons or hot holes, and the subsequent heating of the 

nanoparticle lattice.  When a molecule is adsorbed to the surface of the nanoparticle, the 

presence of hot electrons and holes or the elevation of temperature can favour a chemical 

reaction.  This effect is most prevalent in metallic nanostructures that exhibit hotspots at their 

surface, that can in turn be used to photocontrol surface reactions through plasmon 

excitation. 

In this thesis, plasmon-mediated reactions are investigated using a variety of spectroscopic 

and microscopic techniques, along with the modelling of the light-matter interaction.  The 

reduction of aryl diazonium salts on a gold nanostructured surface is plasmon-catalyzed.  For 

a tip-enhanced Raman spectroscopy system involving a gold tip and a silver nanoplate as a 

substrate, plasmonic heating is discussed and modelled using finite element methods.  New 

fractal metallic nanostructures are developed and studied for future applications in plasmon-

mediated chemistry. 
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Summary for Lay Audience 

Nanoparticles are particles of dimensions less than 100 nanometres, or about a thousand 

times smaller than the diameter of a human hair.  Through a variety of synthesis approaches 

and techniques, nanoparticles can be made of many different materials and in many different 

shapes.  Of note are metallic nanoparticles, most often made in gold or silver, which can 

exhibit a very strong interaction when illuminated with visible light.  Interestingly, this 

interaction can be used for enhancing the signal of optical sensing techniques, improving the 

detection limit so that a signal can be obtained from a few, or even one, molecule.  Some side 

effects of this process are the production of high energy electrons and local heating.  These 

side effects can cause chemical reactions to occur under illumination by laser light when 

certain molecules are attached to these nanoparticles. 

As these reactions are happening on such small scales, techniques with high spatial resolution 

are needed to observe their progress.  These involve the interaction of light with the 

nanoparticles, with the signal enhanced by the local electric field of the nanoparticles, and the 

interaction of a sharp nanoscopic tip running along the surface of the nanoparticles, like a 

record player on the nanoscale, to obtain the topography of the sample.  Combination of 

these two techniques, running a nanoparticle-decorated tip along a surface, gives both the 

topography and an enhanced signal with a spatial resolution of several nanometres. 

Here, these reactions are studied using these techniques, along with the response as predicted 

by simulations.  One such reaction studied here is the grafting of a diazonium salt on a gold 

surface.  The rate of chemical reactions can be augmented by the production of high energy 

electrons, or through local heating, as heat acts as an energy source for the reaction.  To study 

the latter for a more complex system, involving a sharp gold-coated tip and a flat silver 

nanoplate, the heating process is modelled by simulations and compared to experimental 

observations.  Finally, new nanoparticles are made based on different self-similar, fractal 

patterns, and these are characterized for future applications in chemistry. 
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Chapter 1  

1 General Introduction 

When illuminated by an electromagnetic wave of visible light, metallic nanostructures 

can exhibit local enhancement of the electromagnetic field confined in their vicinity; this 

phenomenon is called localized surface plasmon resonance (LSPR).1,2  Most commonly, 

this electromagnetic enhancement is exploited for plasmon-enhanced spectroscopies, the 

most prominent of which is surface-enhanced Raman spectroscopy (SERS).  When a 

molecule is located within the nanoscale regions of enhancement, it is possible to achieve 

detailed spectroscopic information about the molecule, with sensitivity down to the 

single-molecule level.3,4  Through the effects of the enhanced electric field, and the 

localized heating and ejection of high-energy electrons and holes that are the result of the 

LSPR, chemical reactions can be triggered in these regions.5-7  We explore in this thesis 

tuning these regions of enhanced electric field, and exploiting them for plasmon-

enhanced spectroscopies and catalyzing chemical reactions. 

1.1 Plasmon-Mediated Chemistry 

The use of plasmons to mediate chemical reactions was first proposed in 1981,8 and 

experimentally realized two years later, in a reaction involving cadmium nanoparticles.9  

The field of plasmon-mediated chemistry grew in the 2000s, following the demonstration 

of the oxidation of para-aminothiophenol to 4,4’-dimercaptoazobenzene during SERS 

measurements.10,11  This coupling reaction, and that of para-nitrothiophenol, remain the 

most studied plasmon-mediated reactions, often used as a model for determining the 

involved mechanisms.12-15   

In parallel, plasmonic nanoparticles were emerging as a new class of hybrid 

photocatalysts, as Tian et al. demonstrated that the incorporation of small gold 

nanoparticles in porous titanium dioxide films photocatalyzed the oxidation of methanol 

and ethanol.16 
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1.1.1 Chemical Reactions of Interest 

In recent years, plasmon resonances have been used to catalyze increasingly complex 

chemical reactions.  Many reactions have been reported, including the oxidation of 

carbon monoxide,17,18 alcohols,16,19 alkenes,20 and amines;21,22 reduction of alkenes and 

alkynes,23,24 aldehydes and ketones;25,26 and coupling reactions.27-29  For the latter, the 

Suzuki-Miyaura cross-coupling reaction has emerged as a model reaction, plasmon-

catalyzed by Pd-Au nanostructures (Figure 1-1a).  These nanostructures include 

bimetallic alloys30 and core-partial shell structures involving gold nanorods,31,32 although 

other geometries like gold nanoprisms and bipyramids have been exploited for the 

increased electromagnetic field localization at their apices.33,34  The cleavage of C-N 

bonds in benzyl viologen and ethyl viologen has been shown to be plasmon-driven, and 

can be monitored by SERS.35  SERS has also been used to monitor other plasmon-

mediated reactions, such as the methyl cleavage on methylene blue36,37 and ethylene 

epoxidation.38 

Recently, work has shown that plasmon-catalyzed reactions may be the result of photo-

activated O2 at the surface, as opposed to the direct transfer of hot electrons or holes.39-41  

Takeuchi et al. demonstrated the oxidation of alkanes para-methylthiophenol, 

decylamine, and 1-butanethiol on silver nanoparticles under green light excitation, 

attributing the oxidation to activated oxygen species (Figure 1-1b).42  Polymerization 

reactions, as shown in Figure 1-1c, have also been shown to be plasmon-catalyzed, such 

as that of diazonium salts,43-45 resulting in the formation of thick poly(aryl) layers, and 

divinylbenzene, styrene and methyl methacrylate.46  Interestingly, such polymerization 

reactions also shift the frequency of the plasmon mode, allowing for tuning of the mode 

frequency through a plasmon-mediated reaction.47   

On a larger scale, the synthesis of metal nanoparticles can be catalyzed by plasmon 

resonance;48 the most common example of this is the synthesis of monodisperse silver 

nanoplates by the irradiation of small silver nanoparticles.49-52  However, many different 

nanoparticle geometries have been generated through plasmon-mediated syntheses, 

including highly anisotropic structures like bipyramids52,53 and icosahedra.54,55  These 
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syntheses are usually attributed to the plasmon-mediated oxidation of citrate (Figure 1-

1d), which in turn reduces the metal precursor.56,57    

 

Figure 1-1 a) Suzuki-Miyaura cross-coupling of bromobenzene and m-tolylboronic 

acid, as catalyzed by plasmonic Pd-decorated Au nanorods;31 Adapted with 

permission from ref. [31].  Copyright 2019 Wiley-VCH.  b) Proposed mechanism for 

the dehydrogenation of alkanes by activated oxygen species produced by plasmon 

resonance;42 Reproduced with permission from ref. [42].  Copyright 2019 Royal 

Society of Chemistry.  c) Mechanism of plasmon-induced polymerization;46 

Reproduced with permission from ref. [46].  Copyright 2018 Springer Nature.  d) 

Proposed mechanism for the oxidation of citrate in the plasmon-mediated synthesis 

of metallic nanoparticles.48  Reproduced with permission from ref. [48].  Copyright 

2013 Wiley-VCH. 

1.1.2 Applications to Energy Storage and CO2 Reduction 

Examples of chemical reactions of societal importance are water splitting, for the 

production of dihydrogen as an energy source, and carbon dioxide reduction, for the 

reduction of pollution and its role in climate change.  These reactions could be applied on 

larger scales if they could be catalyzed by sunlight.  One barrier to these large-scale 

applications is the short lifetime of hot carriers, which decay on the femtosecond 

timescale, often before coupling to a chemical reaction.58,59  The lifetime of these hot 

carriers can be extended through the formation of a Schottky barrier (Figure 1-2a) at the 
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interface between a noble metal and a large bandgap semiconductor, as this leads to an 

accumulation of hot electrons at the conduction band of the semiconductor, and hot holes 

at the Fermi level of the metal.60,61  This has led to a new class of hybrid photocatalysts 

with improved efficiencies.  Formation of these hybrid photocatalysts involves 

incorporation of plasmonic nanoparticles, often gold or silver nanorods or nanospheres, 

into semiconductors films or arrays, usually of TiO2.  Critical to the performance of these 

photocatalysts is the formation of the physical interfaces, and an appropriate band 

alignment between the Fermi level of the metal and the conduction band of the 

semiconductor.61  For the former, it has been shown that the electromagnetic 

enhancement at the interface influences the number of electrons tunneling through the 

Schottky barrier, further influencing the reaction in question.62,63 

Water splitting using a TiO2 photoanode was first demonstrated by Fujishima and Honda 

in 1972, followed by the reduction of CO2 in 1979.64,65  Since then, TiO2, and other wide 

band semiconductors such as WO3 and CeO2,66,67 have been used for applications in 

photoelectrochemical reactions, due to their stability over broadband semiconductors 

such as Si, CdS and CdSe, which are prone to photocorrosion.68,69  Due to its wide band 

gap, TiO2 responds only in the ultraviolet (UV) region of the spectrum, resulting in a 

limited efficiency;69,70 this is also an issue for wide-scale applications, considering that 

UV light constitutes only 5% of solar radiation.71  It is therefore desirable to sensitize 

these semiconductors to energies below that of the band gap, particularly those 

corresponding to visible light, improving the conversion ratio between solar energy and 

H2 production (or CO2 reduction).  This can be improved by doping or photosensitizing 

wide band semiconductors.72,73  Plasmonic nanoparticles are ideal candidates as 

photosensitizing agents, as they absorb strongly in the visible spectrum, and can transfer 

energy to the semiconductors either through resonant energy transfer or directly, through 

hot electron injection.74  The absorption of plasmonic nanoparticles is tunable, allowing 

for broadband absorption. 

Plasmonic nanoparticles have been incorporated into semiconductor arrays and 

nanoparticles in many different morphologies.  Ideally, there is a direct contact area 

between the plasmonic nanoparticle and the semiconductor for efficient  charge separation 
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to occur.70  Semiconductors take the form of planar thin films, arrays of nanowires or 

nanorods, or porous arrays of nanowires, as shown in Figure 1-2b – 1-2d.75-77  Plasmonic 

nanoparticles can be embedded or buried in the semiconductor support, or isolated from it 

with a thin dielectric layer.78  Recent work has focused on designing new hybrid 

photocatalyst morphologies in order to improve conversion efficiencies at increasingly 

longer wavelengths.  Recently, Naya et al. demonstrated water splitting under irradiation 

by red light (640 nm) using a half-cut Au core-CdS shell structure with a high quantum 

yield of 0.24%.79  Core-shell structures allow for good contact between the 

semiconductor and plasmonic nanoparticle, but can impede the reactant supply to the 

core and diffusion of the products; a half-cut allows for diffusion to the core while 

maintaining the metal-semiconductor contact.  Importantly, the photo-dissolution of CdS 

may be suppressed by the selective excitation of the LSPR of the gold nanoparticles. 

The incorporation of plasmonic nanoparticles may have advantages beyond enhanced 

broadband efficiencies.  In the reduction of CO2 under visible light as photocatalyzed by 

small silver nanoparticles, Kumari et al. perform dynamic in situ SERS measurements 

(Figure 1-2e). This allows for the identification of reaction intermediates, such as the 

surface-adsorbed hydrocarbonyl HOCO*, and elucidation of the reaction mechanism.80   

 

Figure 1-2 a) Plasmon-induced hot carrier generation in a metal in contact with a 

semiconductor.  A proportion of hot electrons has sufficient energy to pass the 

Schottky barrier of height φSB, and are injected into the semiconductor.81  

Reproduced with permission from ref. [81].  Copyright 2014 Elsevier.  Scanning 

electron micrographs of hybrid photocatalysts: b) with gold nanoparticles on a TiO2 
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film;75 Adapted with permission from ref. [75].  Copyright 2013 Elsevier.  c) 

semiconductor nanowire arrays sensitized by core-shell gold nanoparticles;76 

Adapted with permission from ref. [76].  Copyright 2014 American Chemical 

Society.  d) of a porous nanotube array, decorated with gold nanoparticles.77  

Adapted with permission from reference [77].  Copyright 2014 Elsevier.  Scale bars 

are 200 nm.  e) Proposed mechanisms of CO2 reduction under visible light, as 

determined by SERS.80  Adapted with permission from ref. [80].  Copyright 2018 

American Chemical Society. 

1.2 Scope of Thesis 

The present thesis is organized as follows: 

In Chapter 2, the essential theoretical background for the understanding of plasmon-

mediated chemistry is provided.  The principles of Raman spectroscopy and plasmonics 

are described, and their combination in the plasmon-enhanced spectroscopies, surface- 

and tip-enhanced Raman spectroscopy, is described.  Finally, the mechanism of plasmon 

decay and coupling to chemical reactions is elaborated. 

The experimental methods are described in Chapter 3, providing technical details of the 

spectroscopy and microscopy measurements that follow, as well as details of the 

calculations and synthesis of metallic nanostructures. 

In Chapter 4, the plasmon-catalyzed reduction of aryl diazonium salts on gold surfaces is 

discussed.  The reaction is investigated on different surfaces: gold nanoislands of random 

shape and size, and gold nanoprisms patterned by nanosphere lithography. 

Chapter 5 of this thesis focusses on the tip-enhanced Raman spectroscopic measurements 

on silver nanoplates.  Local ablation of the nanoplates is observed, and the possible 

causes, including plasmonic heating, are discussed.   

Chapter 6 contains details of designing fractal nanostructures for future applications in 

plasmon-mediated chemistry.  As the fractal generation is increased, the changes in the 

plasmonic response and subsequent optical properties are predicted by calculations, and 
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observed experimentally by nano-FTIR and electron energy loss spectroscopy combined 

with scanning transmission electron microscopy. 

In the conclusion chapter, the present work is summarized, and we give a review of the 

emerging fields in plasmon-mediated chemistry and their wider applications. 
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Chapter 2  

2 Plasmon-Enhanced Spectroscopies 

The application of plasmonic platforms for plasmon-mediated reactions requires a 

preliminary understanding of the optical properties of these structures in order to further 

exploit the plasmon resonances to trigger selected chemical surface reactions.  

Simultaneously, the Raman measurements of analytes deposited at the surface of these 

platforms allow for a better understanding of the properties of the material before and 

after photoinduced reactions.  The principles of Raman spectroscopy and plasmonics that 

are presented in this chapter form a basis to support the research work that follows in this 

thesis. 

2.1 Principles of Raman Spectroscopy 

The process of inelastic scattering of light by molecules was discovered in the early 

twentieth century by Chandrashekhara Venkata Raman, an Indian physicist.  His 

publication of the first Raman spectrum was in 1928, work for which he was awarded the 

Nobel Prize in 1930.1  As the Raman scattering process is inefficient, the technique went 

many years without widespread application, as it necessitated intense light sources and 

very long acquisition times, on the order of days, due to poorly efficient detectors.  The 

invention of the laser in 1960, along with the development of more efficient optical 

detectors, led to the development and application of Raman spectroscopy to many diverse 

fields.2  Further discovery of the high Raman signal on roughened metal surfaces in the 

1970’s led to further applications in surface-enhanced Raman spectroscopy (SERS) and 

beyond.3-5  The combination of Raman spectroscopy with microscopy, started in the 

1980’s, led to many new fields of application that benefitted from better spatial 

resolution.  The combination with confocal microscopy allowed for chemical analysis on 

the microscale level, while the later combination with tip-enhanced spectroscopy allowed 

for sub-10 nm resolution.6,7 

Raman spectroscopy, widely used to identify the vibrational fingerprint of a molecule, is 

a vibrational spectroscopic technique based on the analysis of the energy of scattered 
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photons.  Raman spectroscopy can reveal details of the structure, symmetry, bonding and 

electronic environment of molecules, and has found applications in fields as diverse as art 

analysis,8,9 forensic science10,11 and biomedicine.12,13  When a molecule is illuminated by 

light that does not match the energy of an electronic transition, the light is scattered 

(Figure 2.1).  Elastically scattered, or Rayleigh scattered, light exhibits no change in 

wavelength.  Inelastic scattering, or Raman scattering, can be experimentally detected at 

both a lower energy, therefore longer wavelength, relative to the incident light source 

(Stokes scattering), or higher energy (shorter wavelength; anti-Stokes scattering).  The 

relative population of these two inelastic scattering pathways can be described by the 

Boltzmann distribution, shown in Equation 2.1, that Stokes scattering is much more 

prevalent than anti-Stokes scattering at room temperature.14   

𝐼𝑆

𝐼𝐴𝑆

=
(𝜈𝑖 − 𝜈𝑣𝑖𝑏)4

(𝜈𝑖 + 𝜈𝑣𝑖𝑏)4
𝑒

(
ℎ𝑐𝜈̃𝑣𝑖𝑏

𝑘𝑏𝑇
)
                                              (𝟐.𝟏) 

Here, IS and IAS represent the intensities of the Stokes and anti-Stokes scattering, 

respectively; 𝜈𝑖 and 𝜈𝑣𝑖𝑏  represent the frequency of the incident light and the frequency of 

the vibration of the molecule, respectively; h is Planck’s constant; c is the speed of light; 

kb is the Boltzmann constant; and T is the temperature. 

 

Figure 2-1 Jablonski diagram showing depicting different light-matter interactions 
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Only molecular vibrations that involve a change in the polarizability α will be visible in 

the Raman spectrum; the selection rule is:15 

𝜕𝜶

𝜕𝒒
≠ 0                                                                  (𝟐.𝟐) 

where q is the normal coordinate of the molecule.  The polarizability of a molecule is the 

ease with which an electric field can distort the electron cloud of the molecule: in highly 

polarizable species, a dipole is easily induced by a local electric field.  For a linear 

process such as Raman spectroscopy, the polarizability is mathematically represented by 

a second-rank tensor, with nine elements, at least one of which needs to vary with the 

molecular vibration in order for the vibration to be Raman active.  In crystalline 

materials, with known symmetry, character tables relate the symmetry elements and 

Raman activity of vibrational modes.  The symmetry of different Raman-active modes 

can be revealed through the use of polarized light in Raman spectroscopy by rotating the 

polarization of the incident beam and the analyzer.16 

Raman scattering suffers from a very low quantum efficiency, such that only about 1 in 

108 photons will promote a molecule to an excited virtual state such that it will decay to 

an excited upper vibrational state.2,17  The low efficiency of this process generally yields 

a poor signal-to-noise ratio, necessitating the use of long acquisition times and higher 

laser powers in experiments.  This can be improved upon through the exploitation of the 

plasmon resonances of nanostructured metal, which is the main enhancement factor in 

surface-enhanced Raman spectroscopy.  Furthermore, signal enhancement can be 

combined with greater spatial resolution through the use of a nanoscale metal tip, in the 

application of tip-enhanced Raman spectroscopy (TERS).  When combined with 

electronic resonances, such as those observed in dye molecules like crystal violet and 

Prussian blue, the signal can be further increased by three to four orders of 

magnitude.18,19 

2.2 Plasmon Resonances in Nanostructured Metal 

Plasmonics is a field involving the use of conductive nanostructures to convert light into 

localized electric fields; this is made possible by the strong interaction between the 
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incident light and the free conduction electrons of the conductive surface, which is often 

a metal such as Al, Au or Ag.  Other conductive materials like graphene have been 

marginally exploited for surface enhancement.20,21  Alteration of the metallic surface 

through the creation of micro- or nanoscale features allows for the tuning of this 

interaction on a nanoscale level, optimizing the confinement of the light.22,23  Many 

applications based on such interactions are under development for sensing 

applications,24,25 faster opto-electronic circuitry,26 enhanced photovoltaic effect for the 

next generation of solar cells,27 and for plasmon-mediated reactions.28,29 

2.2.1 Plasmons 

Electromagnetic radiation, such as light, can interact with metallic structures to excite the 

oscillation of the free conduction electrons of the metal out of phase relative to the 

incident electromagnetic radiation.  This collective oscillation of the conduction electron 

is referred to as a plasmon.  The frequency of oscillation of a bulk plasmon ωp:22 

𝜔𝑝 =
1

2𝜋
√

𝑛𝑒𝑒2

𝑚𝑒𝜀0

                                                           (𝟐.𝟑) 

where ne is the electron density, e is the elementary charge, me is the effective mass of the 

electron, and ε0 is the permittivity of free space. 

2.2.2 Surface Plasmons 

When confined to the interface between a metal and a dielectric, plasmons are classified 

as surface plasmons (SP).  A surface plasmon is a term that refers to the collective 

oscillation of the electron density at the surface, driven by the oscillating field of the 

incident light.  The generation of these surface charges requires an electric field normal to 

the interface (Figure 2-2).  When also considering the electromagnetic field induced in 

the dielectric medium, the term “surface plasmon polariton” is used; when it is further 

confined on a nanostructure smaller than the wavelength of the incident light, it is called 

a localized surface plasmon (LSP).30 Figure 2.2 depicts the charge motion and resultant 

electromagnetic field associated with a surface plasmon polariton.  Crucially, an 
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evanescent electric field is established in the dielectric medium, decaying exponentially 

with distance from the metal-dielectric interface. 

 

Figure 2-2 Charge motion on a metal surface due to a surface plasmon, and the 

induced electromagnetic field 

In most instances, the establishment of a surface plasmon at the surface of a material 

requires that the dielectric function of the material has a negative real component and a 

positive imaginary component.  The relationship between the dielectric constant of the 

metal εm and the plasmon frequency ωp is given by:22 

𝜀𝑚 = 1 −
𝜔𝑝

2

𝜔2
                                                              (𝟐.𝟒) 

where ω is the frequency of the incident light.  This is satisfied when |ω| < |ωp|.  These 

conditions are most commonly satisfied by coinage metals, though other metals such as 

Pt and Al can exhibit these conditions.  The dielectric constant of metals can be 

calculated from the Drude-Lorentz model, and is shown for Ag, Au, Cu and Al in Figure 

2.3.31 
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Figure 2-3 Complex dielectric constants a) gold and silver and b) copper and 

aluminum, as calculated by the Drude-Lorentz model. 

2.2.3 Localized Surface Plasmon Resonance 

A localized surface plasmon occurs when a surface plasmon is confined to an isolated 

nanostructure smaller than the wavelength of the incident light in all dimensions, usually 

by about an order of magnitude.  Plasmon resonances may propagate in nanomaterials 

with at least one non-nanoscale dimension, such as in nanowires.  In localized surface 

plasmon resonances (LSPR), incident light will incite the free electrons of the metal 

nanostructure to oscillate collectively with respect to the incident electric field, creating a 

charge accumulation at the surface.22,32  This leads to a large enhancement in the local 

electric field, known as “hotspots” (Figure 2-4).  This effect is further enhanced when 

nanostructures are adjacent, as small gaps allow neighbouring hotspots to couple, and is 

strongest at sharp points, where charge accumulates easily.   
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Figure 2-4 Oscillating charge and the induced electric field of a localized surface 

plasmon resonance 

The spectral position of a localized surface plasmon resonance mode can be calculated 

using Mie theory, which provides the analytical solution to Maxwell’s equations for the 

extinction (σext), scattering (σscat) and absorption (σabs) coefficients, approximated for a 

small nanosphere:22  

𝜎𝑒𝑥𝑡 =  
18𝜋𝜀

𝑑

3
2 𝑉

𝜆
×

𝐼𝑚(𝜀𝑚)

[𝑅𝑒(𝜀𝑚) + 𝜒𝜀𝑑]2 + [𝐼𝑚(𝜀𝑚 )]2
                   (𝟐.𝟓) 

𝜎𝑠𝑐𝑎𝑡 =  
32𝜋 4𝜀𝑑

2𝑉2

𝜆4
×

[𝑅𝑒(𝜀𝑚) − 𝜀𝑑 ]2 + [𝐼𝑚(𝜀𝑚)]2

[𝑅𝑒(𝜀𝑚) + 𝜒𝜀𝑑]2 + [𝐼𝑚(𝜀𝑚)]2
               (𝟐.𝟔) 

𝜎𝑎𝑏𝑠 = 𝜎𝑒𝑥𝑡 − 𝜎𝑠𝑐𝑎𝑡                                                                             (𝟐.𝟕) 

Here, εd and εm are the dielectric constants of the surrounding medium and the metal, 

respectively; λ is the incident wavelength; χ is shape factor and  V is the volume of the 

nanoparticle.  These localized surface plasmon modes allow for the control of light on the 

nanometer regime, limited primarily by the dimensions of the metal nanostructure 

supporting these modes.  As shown in equations 2.4 – 2.6, the metal composition, size, 

dielectric environment, as well as shape of a nanoparticle determines the light-matter 

interaction, including absorption and scattering processes, the number of plasmon modes 

and their respective frequencies.  For anisotropic nanomaterials, no analytical solution to 

Maxwell’s equations exists, and thus LSPR modes are determined through semi-
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empirical calculations.  The field of plasmonics involves the tuning of these modes by 

changing the metal, shape, size, and spacing of these nanoparticles, and exploiting the 

resultant electromagnetic fields for applications in spectroscopy, biomedicine, and solar 

cells, among many other diverse fields.30 

2.3 Surface-Enhanced Raman Spectroscopy 

As previously discussed, the probability of an incident photon scattering inelastically in 

the Raman process is very low.  The localized electric field enhancement that is the result 

of localized surface plasmon resonance can be applied as a remedy to the low quantum 

efficiency of the Raman scattering process.  This was first seen experimentally by 

Fleischmann et al. in 1974, with the observation of an anomalously strong Raman signal 

of pyridine adsorbed on a roughened silver electrode.4  Further work by the groups of 

Van Duyne and Creighton in 1977 determined the nature of the enhancement, giving rise 

to the new field of surface-enhanced spectroscopies.3,5  Such techniques developed 

include are surface-enhanced Raman spectroscopy (SERS), surface-enhanced infrared 

absorption (SEIRA), and tip-enhanced Raman spectroscopy (TERS), which involves the 

application of the SERS mechanism to highly spatially resolved surface Raman 

measurements.4,6,33 

Inarguably, the most common technique exploiting this electromagnetic field 

enhancement is surface-enhanced Raman spectroscopy.  SERS is a technique that relies 

on a molecule of interest being in close proximity or adsorbed onto the surface of a 

metallic nanostructure or rough metallic surface.  In the initial SERS studies, rough 

metallic surfaces, obtained by electrochemical roughening or mechanical alterations, 

were the most common material used as active platforms.  In the decades since, the 

advent of advanced nanofabrication technologies has allowed the development of more 

efficient SERS platforms, with improved reproducibility and precise control over shape 

and size.  Such technologies have allowed for analytical signal detection down to the 

single molecule level.34,35  The enhancement of the Raman signal varies between 

nanostructures, with most reported enhancement factors lying in a range of 104-107.  

More recently, SERS studies have highlighted that two mechanisms must be accounted 
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for in the enhancement of the Raman signal: electromagnetic enhancement and chemical 

enhancement.  

2.3.1 Electromagnetic Enhancement Mechanism 

Electromagnetic enhancement is the dominant enhancement mechanism in SERS, with a 

typical signal increase of 104 – 106 over the normal Raman spectrum.36-38  The 

electromagnetic enhancement is a result of the LSPR of the metallic nanostructure.  The 

degree of enhancement depends on the plasmonic properties of the metal nanostructure, 

which are affected by the size and shape of the metal particles, as well as the interparticle 

distance and the polarization of the excitation source.23,32  Despite this local EM field 

increase, the intensity of this electric field decays exponentially with distance from the 

metal surface, which classifies SERS as a surface-specific technique.  Generally, the 

region of enhancement is limited to several nanometres from the surface of the metallic 

nanostructure;39 hotspots as small as 0.4 nm have been observed.40 

Sharp metallic plasmonic nanostructures act as optical nanoantennae, converting freely 

propagating optical radiation into localized hotspots of electromagnetic field 

enhancement.  When a molecule of interest is located in the vicinity of this nanoantenna, 

both incident light and Raman scattered light are enhanced.  Due to this, the enhancement 

factor (EF) of the SERS signal over the Raman signal follows the equation:22 

𝐸𝐹 =
|𝑬𝑳𝑺𝑷𝑹 |2|𝑬𝑳𝑺𝑷𝑹

′ |2

|𝑬𝟎|4
                                                (𝟐.𝟖) 

where E0 is the incident electric field, ELSPR is the electric field outside the metal 

nanoparticle at the frequency of the incident light, and E’
LSPR is the field at the frequency 

of the Raman scattering.  Therefore, the maximum enhancement of the signal is achieved 

when both the incident laser and the Raman scattered light are close in frequency to that 

of the LSPR mode.  The electromagnetic enhancement mechanism is the dominant 

mechanism in SERS; however, it fails to account for the entire enhancement observed 

experimentally.  In order to explain the other instances of SERS enhancement, the 

chemical enhancement mechanism must be introduced. 
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2.3.2 Chemical Enhancement Mechanism 

Chemical enhancement that is intrinsic to SERS involves the interaction between the 

adsorbate and the metal structure.  Chemical enhancement can be due to charge transfer 

or changes in the electronic properties of the molecule due to adsorption.  A charge 

transfer occurs when the applied field is in resonance with an electron transition 

occurring between the molecule and the metal.  Such charge transfers will change the 

polarizability of a molecule, thus changing its Raman scattering cross-section.41  This 

chemical enhancement typically accounts for 102-103 of the total enhancement of the 

SERS process.37,42,43  Chemical enhancement due to resonance occurs when the incident 

laser energy matches an allowed electronic transition of the adsorbed molecule; this is 

described as surface-enhanced resonance Raman spectroscopy (SERRS).41,44  Non-

resonant chemical enhancement can occur, as adsorption onto the metal often changes the 

energy levels of a molecule, changing its Raman cross-section.45,46  The degree of non-

resonant chemical enhancement is dependent upon the size, charge, binding site and 

orientation of the molecule, as well as the molecule-metal separation.45  As this 

enhancement mechanism is dependent upon the molecule of interest, it is much more 

common to optimize the SERS signal by exploiting the electromagnetic enhancement 

mechanism.  This is done experimentally by changing the opto-geometric properties of 

the metallic nanostructure in question, rather than changing the molecule of interest. 

2.4 Diffraction Limit in Optical Microscopy 

In optical measurements, the lateral spatial resolution is limited by diffraction.  This can 

be understood through the interferences of Airy patterns, which describe the distribution 

of light intensity of an optimally focused beam by a perfect lens with a circular apex.  

The Airy diffraction pattern follows the equation:47 

𝐼 = 𝐼0 [
2𝐽1(𝑥)

𝑥
]

2

                                                 (𝟐.𝟗) 

such that the maximum intensity is I0, J1(x) is the Bessel function of the first kind of order 

one, and x is the distance from the centre of the pattern.  The Airy diffraction pattern is a 

bright area in the middle, of maximum intensity, and a series of concentric bright rings, 
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as shown in Figure 2.5. The minimum distance at which adjacent patterns can be resolved 

is such that the first minimum of one pattern is aligned with the maximum of the adjacent 

one.   

 

Figure 2-5 a) Top view of an Airy diffraction pattern, with a dotted line indicating 

the side view b); c) Overlap of two Airy diffraction patterns, showing the minimum 

resolvable distance Δx 

This minimum resolvable distance Δx is given by the Rayleigh criterion:48 

Δ𝑥 =
1.22𝜆

2𝑛 sin 𝛼𝑟

                                                         (𝟐.𝟏𝟎) 

for an incident wave of wavelength λ travelling in a medium of refractive index 𝑛 with a 

half-angle 𝛼𝑟 .  The value 𝑛 sin 𝛼 is a property of the objective, and is defined as the 

numerical aperture (NA).  In ideal experimental conditions, using an objective with a 

high NA, this limit reaches several hundreds of nanometres, too large to probe materials 

on the nanoscale (i.e. with at least one dimension less than 100 nm).  Therefore, recent 

developments in optical microscopy have been focused on surpassing this diffraction 

limit.48,49  One such method is achieved through accessing the optical near-field of the 

system.  In this regime, less than one wavelength from the surface, evanescent waves that 

contain nanoscale details propagate; however, these waves cannot be detected directly, as 

they decay exponentially with distance from the sample.50   
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Despite its high sensitivity, surface-enhanced Raman spectroscopy is restricted by the 

diffraction limit of light; for this reason, tip-enhanced Raman spectroscopy was 

developed.  In tip-enhanced Raman spectroscopy, high spatial resolution is achieved by 

accessing the optical near-field of the sample by using a metallic probe, which mimics a 

single particle probing the surface. 

2.5 Tip-Enhanced Raman Spectroscopy 

In surface-enhanced Raman spectroscopy (SERS), an enhancement of typically several 

orders of magnitude (106 - 108) is achieved by placing the analyte on a roughened metal 

film, metallic nanostructures, or in a colloidal solution of metal nanoparticles.  However, 

such measurements are still limited in spatial resolution: optical diffraction limits the 

applicability of SERS to objects on the order of several hundred nanometres in size, or 

larger.  For this reason, the principles of SERS have been extended to develop tip-

enhanced Raman spectroscopy (TERS), first experimentally reported in 2000.6,51,52   

Tip-enhanced Raman spectroscopy involves a controlled interaction between a sharp 

metallic tip, as shown in Figure 2-6a, and a sample, and the collection of the Raman 

signal resulting from the scattering of the tip.  TERS offers both an enhanced signal and 

spatial resolution beyond the diffraction limit of light.  The TERS tip serves two 

functions: first, it acts as an optical nanoantenna that confines the local electric field in its 

vicinity (Figure 2-6b); secondly, in scanning the surface, the tip acts as a perturbing 

element, interacting with evanescent waves confined at the surface of the sample.50  

These evanescent waves, that contain the small spatial details of the sample, are 

converted into propagating waves by the metallic tip.  This is the reciprocity theorem of 

light: if a propagating wave can be partly transformed into an evanescent wave, then an 

evanescent wave can be transformed into a propagating wave.  These propagating waves 

are then detectable in the far-field by a conventional detector.53  Enhancement occurs via 

the lightning rod effect and electromagnetic enhancement.  The lightning rod effect 

occurs as charge accumulates in the sharp corners of metallic structures.54,55  The 

electromagnetic mechanism is based on the LSPR of the tip, also contributing to a charge 

accumulation at the tip apex.  This leads to a strongly localized electromagnetic field at 

the apex, enhancing the TERS signal. 
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Figure 2-6 a) Scattering electron micrograph of a gold-coated TERS tip; b) 

Simulation of the confined electric field around the gold TERS tip. 

As for SERS, the LSPR effect is the main driving source of enhancement.  Many factors 

can influence the electromagnetic enhancement, including the tip geometry, the substrate, 

the laser polarization and the surrounding medium.  Enhancement is optimal when the 

laser wavelength spectrally matches the LSPR of the TERS tip and when the incident 

beam has a polarization component along the tip axis.56,57  The tip must be sufficiently 

close to the substrate (< 5 nm) to see enhancement, and a stronger enhancement is seen 

when the tip is coupled with a noble metal substrate.  The LSPR of the TERS system is 

affected by the material of the tip and the surrounding medium.  The spatial resolution of 

TERS is generally limited by the tip apex; however, resolution of dimensions smaller 

than the apex of the tip has been achieved, and attributed to smaller protrusions or 

nanocavities.55,58,59 

2.6 Plasmon Decay 

As discussed, the field of plasmonics has largely involved exploiting the localized surface 

plasmon resonance of metal nanoparticles for plasmon-enhanced spectroscopies, such as 

SERS and TERS.  In addition to this, the byproduct of these resonances, the generation of 

hot carriers and local heating, have been exploited for applications such as photothermal 

therapy and catalyzing chemical reactions.28,60-62 
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2.6.1 Hot Carrier Generation 

The illumination of a metal structure or surface can lead to many complex processes, 

such as the generation of strong optical fields via surface plasmons; the ejection, or fast 

internal relaxation, of hot electron-hole pairs; or the emission of a photon.  The latter 

comprises the radiative decay pathway of the plasmon resonance.  Non-radiative decay 

consists of Landau damping, a quantum mechanical process where a plasmon is 

transferred to an electron-hole pair; this occurs on a timescale of 1 -100 fs.63,64  The 

branching ratio of radiative to non-radiative decay depends on the geometry and 

composition of the nanostructure.  Landau damping is related to the imaginary 

component of the dielectric function of a material Im(εm) such that a plasmon resonance 

at a wavelength corresponding to a larger Im(εm) of the metal results in a higher 

generation of hot carriers.65  Mie theory predicts that radiative decay follows R6, where R 

is the radius of a small nanosphere, while non-radiative decay follows R3;66 therefore, 

smaller nanoparticles produce more hot carriers, but also have a lower electromagnetic 

field strength, as their LSPRs decay through hot carrier generation.67  The combination of 

high field strength and high generation of hot carriers is achieved through the fabrication 

of arrays of plasmonic nanostructures.  

The distribution of carriers in a material is a function of plasmon energy, particle size, 

and the electronic structure and density of states of the material.  Hot carriers are 

preferentially emitted from regions of high electromagnetic field, such as in plasmonic 

hotspots, and then accelerated by evanescent fields.  In this way, they are steered by the 

geometry of the nanostructure.28,29  

Coinage metals, typical materials for applications in plasmonics, are characterized by a 

filled valence d-band, and a diffuse band of hybridized s and p states (sp-band), reaching 

both above and below the Fermi energy (EF), as seen in Figure 2-7a.  The sp-band has a 

near-constant density of states, which is lower than that of the d-band.65  When 

illuminated by a photon of an energy less than the difference between the d -band and EF, 

that is, the interband transition threshold, phonons and intraband transitions between sp-

band states are excited (Figure 2-7b).  The probability of a plasmon-derived charge 

carrier in this energy window [EF – hν, EF + hν] is approximately constant, due to the 
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relatively constant density of states of the sp-band.  Above this interband transition 

threshold, plasmons decay through the excitation of interband transitions (Figure 2-7c).  

As a result, the plasmon-derived hot carriers above this threshold are mainly hot 

holes.65,68 

 

Figure 2-7 a) Density of states of Ag, showing allowed electronic transitions;  Hot 

carrier distribution in Ag, involving hot holes (red) and hot electrons (blue) at 

excitation b) below and c) above the interband threshold.  Here, ρ is the density of 

electronic states, and Δρ is the change in density following electronic excitation.   

2.6.2 Heating Effects 

After the hot electron-hole pairs are excited by Landau damping of the plasmon 

resonance, their energy is averaged through electron-electron and hole-hole interactions.  

This occurs in femtoseconds after the excitation of the hot carriers.  The population of the 

electronic states resembles a Fermi-Dirac-like distribution, characterized by a high 

temperature Tel.  In the following picoseconds, the lower energy electrons and holes will 

experience more interactions with phonons, such that their excess energy is thermalized 

through electron-phonon or hole-phonon interactions.  The lattice temperature and 

electron temperature Tel equilibrate over several picoseconds.  Finally, the temperature 

equilibrates with the surroundings. 64 This process is summarized in Figure 2-8.  Current 
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research involves decoupling the contributions of hot carrier generation and the local 

increase in temperature to the increased reaction rate of plasmon-mediated reactions.69,70  

Such heating can reach over a hundred K under continuous wave laser irradiation;71,72 

heating as high as 650 K has been measured by Raman thermometry.73 

 

Figure 2-8 Decay process following plasmon excitation at t = 0, including the 

corresponding density of electronic states, with hot holes depicted in red, hot 

electrons in blue. 

2.6.3 Coupling to Chemical Reactions 

When a molecule is adsorbed on the surface of the metal nanoparticle, hot electrons can 

transfer to the molecule by one of two mechanisms: i) indirectly, through the excitation 
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of hot electrons in the metal nanostructure, which eventually get transferred to the 

molecule, or ii) directly, where plasmons decay by exciting an electron from the metal to 

the molecule.  The Menzel-Gomer-Redhead model describes the indirect hot electron 

transfer.74,75  In the model, a hot electron approaches the surface of a metal nanoparticle, 

where a molecule is adsorbed.  The electron can transiently localize in an unpopulated 

metal-adsorbate state, which then equilibrates to an excited state of the metal-adsorbate 

system.  In this excited state, bond lengths differ from their equilibrium positions; 

therefore, the nuclei move to attain equilibrium again.  These vibrations help overcome 

the activation barrier for the reaction.  Due to the high number of unpopulated metal 

electronic states near the Fermi energy, the decay of the electron in this metal-adsorbate 

state is very probable, leading to a lifetime of this state to several femtoseconds.65 

In contrast to Landau damping (Figure 2-9a), wherein hot electrons are excited inside a 

metal, chemical interface damping involves plasmons decaying directly into an interfacial 

charge transfer state, involving no hot carrier transfer in the metal (Figure 2-9b).  As this 

mechanism avoids the loss of energy to electron scattering interactions, it is much more 

efficient; however, as the efficiency of the decay pathway is increased, the plasmon 

lifetime is decreased, resulting in a lower localized electric field.67,76  For use in 

applications such as photovoltaics, a balance is struck between the energy of the plasmon 

and the efficiency of the charge transfer by changing the geometry and size of the metal 

nanoparticles.77 
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Figure 2-9 Hot carriers transferred to an adsorbate a) indirectly, by Landau 

damping, involving the excitation of a hot electron-hole pair in the metal, and b) 

directly, by chemical interface damping, where an interfacial electronic transition 

separates the hot electron and hole. 

2.7 Summary 

In this chapter, the principles of plasmonics and its application to Raman spectroscopy 

was reviewed.  In short, Raman spectroscopy involves the inelastic scattering of light by 

molecular vibrations.  This is an inefficient process, necessitating large sample volumes, 

high laser powers and long acquisition times.  In a localized surface plasmon resonance, 

the electric field around a metal nanoparticle is locally enhanced, creating nanoscale 

hotspots of intense electric field.  The degree of this enhancement depends on the size, 

shape, chemical composition, and surroundings of the metal nanoparticle, as well as 

interparticle spacing.  These hotspots are used to increase the poor efficiency of Raman 

scattering, leading to surface-enhanced Raman spectroscopy.  In surface-enhanced 

Raman spectroscopy, the spatial resolution of measurements is limited by optical 

diffraction.  This physical limit led to the development of tip-enhanced Raman 

spectroscopy, where metal nanoprobe is used to both enhance the local electric field and 

perturb the evanescent fields in the near-field, converting them to propagating waves 

detectable in the far-field, thus overcoming the diffraction limit.  Lastly, the dynamic 
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behavior of plasmon decay is discussed, as the resultant hot carriers and local heating can 

be coupled to molecules adsorbed on the surface of the metal nanoparticle, triggering 

chemical reactions.  Chemical reactions of societal interest, such as the splitting of water 

(for hydrogen production) or CO2 reduction, are presently investigated with the goal of 

using plasmon-mediated reactions using sunlight. 
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Chapter 3  

3 Characterization and Fabrication of Plasmonic 

Platforms 

As the appropriate potential applications of plasmonic nanoparticles and platforms 

depend heavily on its morphology and optical properties, several methods are necessary 

to characterize these nanoparticles to better understand the light-matter interaction.  In 

this chapter, we describe the methods used in this work. 

3.1 Visible-NIR and Mid-Infrared Absorption 

Upon irradiation, the metallic nanoparticles will couple with the excitation light at 

specific wavelengths.  Depending on their chemical nature, shape and size, the 

nanoparticles will scatter or absorb the incident light, the sum of which is probed by 

absorption spectroscopy.  The absorption spectrum will reveal the optical resonances 

referred to as the plasmon resonances.  Such knowledge is important to determine which 

wavelength to use in order to efficiently excite a plasmon of a nanostructure.  Such 

absorption measurements were conducted in transmission through the samples deposited 

over a glass coverslip.  The detected signal is compared to that of a blank coverslip, and 

the extinction spectrum is obtained by calculating their ratio.  A diagram of the set-up for 

micro-absorption measurements is shown in Figure 3-1. 
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Figure 3-1 Set-up for absorption measurements in the visible-near infrared spectral 

range 

In this thesis, absorption measurements were performed using a homebuilt setup to probe 

small fields of view.  For the measurements in Chapter 5.2, a halogen lamp was coupled 

to an inverted optical microscope by a 100 μm optical fibre.  The source beam was first 

expanded by a 10× (NA = 0.25) objective, and recollimated using a 20× (NA = 0.4) 

objective onto the sample, resulting in a spot size of about 50 μm.  After passing through 

the sample, the transmitted light was collected by a 20× (NA = 0.5) objective.  A pinhole 

size of 200 µm and a diffraction grating of 150 gr/mm were used, with a spectrometer of 

800 mm focal length equipped with a liquid-nitrogen-cooled charge-coupled device (HR 

LabRam).  Analysis was performed in the 400–1000 nm range, with an acquisition time 

of 1 s per spectrum over 50 accumulations to increase the signal-to-noise ratio.  For the 

work in Chapter 4, a similar set-up was built on a Nikon Diaphot inverted optical 

microscope, with the analysis of the scattered light using a USB 4000-VIS-NIR-ES 

spectrometer (Ocean Optics, USA) with a grating of 600 gr/mm. 

Fourier transform infrared (FT-IR) microspectroscopy measurements (Chapter 6.2) were 

performed by Dr. Greg Wallace at the Mid-IR synchrotron beamline located at the 

Canadian Light Source (Beamline 01B-01).  The beamline end station consists of a 

Bruker Optics Vertex 70v FT-IR spectrometer coupled to a Hyperion 3000 IR 

Microscope.  Light was focused and collected in absorbance mode using a 36× objective 



36 

 

(NA = 0.65).  The collected light was measured using a narrowband fast DC coupled 

mercury cadmium telluride (liquid nitrogen-cooled) Kolmar detector.  Measurements 

were collected from 8000 to 800 cm-1 with a spectral resolution of 4 cm-1.  Each spectrum 

is the average of 512 spectra.  The absorbance measurements were performed with the 

background acquired on regions of the substrate void of the fractal nanostructures. 

3.2 Atomic Force Microscopy 

In atomic force microscopy, a sharp nanoscale tip made of silicon or silicon dioxide and 

supported by a flexible cantilever, is brought into contact or near-contact with a sample.  

By focusing a laser spot on the cantilever and tracking its deflection as it interacts with 

the surface, measurements of the topography of the sample can be obtained with spatial 

resolution of about 1 nm in the xy-direction and 0.1 nm in the z-direction.  Focusing a 

laser on the apex of this tip has important applications in spectroscopy, leading to 

techniques such as nano-FTIR (Chapter 3.2.1) and tip-enhanced Raman spectroscopy 

(Chapter 3.3.2). 

In this work, the most frequently used mode for AFM is tapping, or intermittent contact, 

mode.  In tapping mode, the cantilever is driven by a piezoelectric element to oscillate 

near its resonance frequency, typically around 150-300 kHz.  The amplitude of this 

oscillation is a few to tens of nanometres.  The amplitude and frequency of the driving 

signal is held constant.  When there is interaction with the sample, forces such as van der 

Waals and electrostatic forces change the amplitude of this oscillation.  The feedback 

loop corrects for this change in amplitude and adjusts the height of the head to keep the 

amplitude constant.1  The sample topography is obtained by interpreting this change in 

height over the sample surface.  A diagram of this is shown in Figure 3-2. 
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Figure 3-2 Diagram of atomic force microscope 

The topographies of the samples in Chapters 4 and 5 were analyzed with a commercial 

atomic force microscope (NanoWizard II, JPK Instruments Inc.) in intermittent contact 

mode with 512 × 512 points per image.  The AFM is equipped with a high-resolution 

piezoelectric xy TAO stage, independent of the xyz control of the tip.  Commercial silicon 

tips (NCL-50, NanoWorld Inc.), with resonance frequency of 190 kHz and force constant 

of 48 N/m, were typically used in the measurements, unless otherwise specified.   

3.2.1 Nano-FTIR 

Due to the diffraction limit of light, Fourier-transform infrared spectroscopy (FTIR) 

cannot be applied to nanoscale samples.  In order to measure the infrared spectrum of 

samples on the nanoscale, a technique called nano-FTIR was used.  In nano-FTIR, a laser 

is focused on the apex of tip as it interacts with the sample.  As the tip moves over the 

sample, the laser light scattered from the tip changes as a function of the properties of the 

sample.  Nano-FTIR involves tracking this scattered light.  In an optical heterodyne 

configuration, the beam is modulated, the further analysis of which yields amplitude- and 

phase-resolved measurements in the near-field.2 
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The stage of the sample is placed into one arm of a Michelson interferometer, with the 

reference arm as a mirror on a piezo stage (Figure 3-3).  A quantum cascade laser (QCL), 

tunable between 3.6 and 12 µm, is focused on the surface of the sample through the use 

of a parabolic mirror.  A mirror on top of the sample collects the light onto the detector.  

The backscattered signal of the laser on the tip while translating the reference mirror 

yields an interferogram.  Subsequently, the Fourier transform of this interferogram can be 

calculated, resulting in the near-field spectrum of the sample.  By tuning the QCL to a 

specific plasmon mode and scanning over the surface, a map of the intensity of this signal 

over the surface is obtained.3  In this work, the s-SNOM instrument is the neaSNOM 

(Neaspec GmbH).  The experiments, in Chapter 6.2.1, were conducted at Neaspec in 

Germany by Dr. Max Eisele. 

 

Figure 3-3 Set-up for nano-FTIR measurements 

3.3 Raman Spectroscopy 

As discussed in Chapter 2.1, Raman spectroscopy is based on the detection of the 

inelastic scattering of light.  As most light is scattered elastically, Raman spectroscopy 

has a very low quantum efficiency, necessitating the exploitation of the enhanced electric 

fields near metallic nanoparticles in surface- and tip-enhanced Raman spectroscopy.  

Here, only the methods of these techniques are discussed. 

3.3.1 Surface-Enhanced Raman Spectroscopy 

In Raman and surface-enhanced Raman spectra, a laser, having passed through an 

interference filter to clean-up the excitation source, is focused on the sample by an 
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objective.  The laser light is scattered by the sample, and collected back by the same 

microscope objective and filtered using an edge or notch filter that removes the 

elastically scattered photons from the excitation laser line.  Interestingly, the edge (or 

notch) filter fully reflects the incident excitation, but transmits the Stokes Raman 

photons, and is generally a key optical component of compact Raman microscopes.  In 

the spectrometer, a confocal pinhole controls the spot size on the diffraction grating, 

which diffracts the light on the charge-coupled device (CCD) detector.  This principle is 

shown in Figure 3-4 and was similar to the three Raman microscopes used in this thesis. 

 

 

Figure 3-4 Set-up for the measurements of Raman and surface-enhanced Raman 

spectra 

For the work in Chapter 4, SERS was measured using a Horiba Xplora Plus Raman 

spectrometer with a 600 gr/mm grating and an excitation wavelength of 638 nm.  The 

spectrometer slit width was 100 µm and a 100× objective (NA = 0.7) was used to collect 

the scattered Raman signal.  The laser power at the sample was 1 mW, with an 

acquisition time of 10 s.  
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For the work in Chapter 6.3.2, SERS measurements were performed on a Renishaw inVia 

Raman spectrometer available at Surface Science Western.  The StreamLineHR mode 

was used, with an excitation wavelength of 632.8 nm.  A 100× objective was used to 

collect the scattered Raman signal, with a spectrometer slit width of 50 µm.  The laser 

power at the sample was 0.88 mW, with an acquisition time of 500 ms.   

All other SERS spectra were recorded on the HR LabRam set-up, in the same manner as 

the TERS spectra as described in the following section, but in the absence of the TERS 

tip. 

3.3.2 Tip-Enhanced Raman Spectroscopy 

The TERS setup (Figure 3-5) combines a Raman spectrometer (HR LabRam, Horiba) 

connected to an inverted optical microscope (Olympus IX71) with an AFM (NanoWizard 

II, JPK Instruments).  The laser is focused by a 100× objective (NA = 0.9, PlanAPO 

Olympus) on the sample and metallized tip from below, in transmission mode, and the 

same objective collects the scattered Raman signal.  This signal is detected through the 

use of a liquid-nitrogen-cooled charge-coupled device (Horiba, Symphony), with the 

fundamental laser line (632.8 nm) removed by a notch filter.  The temperature of the 

CCD is typically -124 °C.  In order to align the metallized tip in the focal point of the 

objective, a photodiode is connected to the AFM control so that the Rayleigh scattering 

from the tip is detected. 
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Figure 3-5 TERS set-up, with inset showing the tip interaction with the sample as 

controlled by the AFM 

The excitation laser of 632.8 nm was set to an intensity of 1 mW before the sample, and 

the Rayleigh scattering from the TERS tip was measured by the photodiode.  The tip was 

aligned to the centre of the focal point, and the tip was frozen in the x- and y-directions.  

An AFM topography scan was first obtained by scanning the sample under the tip while 

the tip remains frozen in position.  All AFM measurements were performed in 

intermittent contact mode, with a setpoint of ca. 10-20 nm. 

The TERS signal was then collected at selected points or arrays with a 600 gr/mm grating 

and a spectrometer slit width of 200 µm.  Spectra were typically recorded in the 700 – 

1800 cm-1 range, with a 10 s acquisition per spectrum, and the corresponding SERS 

spectra collected under the same conditions in the absence of the TERS tip.  TERS results 

are presented in Chapter 5.2. 

In the following sections, the technical aspects of TERS and the factors influencing the 

TERS enhancement are discussed. 
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3.3.3 Tip Fabrication 

One challenge in obtaining successful TERS measurements is the fabrication of 

reproducible TERS active probes.  Ideally, TERS probes exhibit a localized surface 

plasmon resonance that matches the excitation wavelength, with the shape and size of the 

tip suitable for atomic force microscopy measurements.  Silver and gold are the most 

common candidates for efficient TERS enhancement, sometimes with a protective layer 

on silver tips to protect from oxidation.4  There are commercial TERS tips available for 

purchase, but they are often also fabricated in-house.  Tips may be fabricated through the 

electrochemical etching of metal wires.5,6  Most simply, commercial AFM tips, made of 

Si or Si3N4, are coated with gold or silver through physical evaporation or sputtering 

methods,7 or through wet chemical or electrochemical deposition.8,9  The geometry of the 

apex of the tip is critical to the TERS enhancement, as any variation in the geometry will 

change the localized electric field.  Due to this, TERS tips have a poor reproducibility, 

even among tips prepared in the same manner. 

The TERS tips used in this study were commercial AFM tips (NCL-50, NanoWorld) onto 

which was deposited an adhesion layer of 5 nm of Ti, followed by 20 nm of Au by 

electron-beam evaporation.  The deposition rate was typically 0.3–0.5 Å/s.  An SEM 

image of a TERS tip prepared in this manner is shown in Figure 3-6a. 

3.3.4 Alignment of Tip and Laser Focal Spot 

Another challenge in TERS measurements is obtaining a precise alignment of the tip with 

the focused laser spot, which is critical to TERS enhancement.  This requires the precise 

determination of the position of the tip apex on the cantilever, in order to then move it to 

the focal spot of the focused laser.   

In this work, the method of alignment relies on the Rayleigh scattering of the tip.  The 

laser is focused on the sample, and the TERS tip is scanned over the laser spot.  The 

scattered signal is detected using a photodiode, which is input into the AFM controller.  

This generates an image of the scattered light.  If the laser focus is optimal, the tip apex 

can be located as a bright spot near the top of the cantilever (Figure 3-6b,c).  Depending 

on the geometry of the tip and the focus, other bright spots can be observed; however, the 
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tip apex is usually located a symmetrical distance from the edges of the cantilever, aiding 

in discriminating the scattering from the tip apex from other bright spots.  After 

determination of the position of the tip apex, the tip and the focal spot are precisely 

aligned using piezoelectric actuators that provide lateral positioning of the tip above the 

focal spot with sub-nanometer resolution.  Subsequent scans of the sample surface are 

performed with the tip frozen in the x- and y-directions, moving only the sample. 

 

Figure 3-6 a) SEM image of a gold-coated TERS tip; Alignment by Rayleigh 

scattering of the tip with b) improper focus and c) proper focus. 

It is also possible to align the tip and the laser focal spot by measuring the Raman signal 

of the tip, with the point of highest intensity corresponding to the tip apex, under 

appropriate focus of the excitation laser.  As the TERS tips in question are gold - or silver-

coated silicon, it is possible to measure a strong signal of silicon. 

3.3.5 Laser Polarization 

The polarization of the excitation laser is crucial to local enhancement at the tip apex in 

TERS measurements.  Optimal enhancement is achieved when a large component of the 

excitation light is polarized along the tip axis.10,11  In a transmission TERS system, with 

bottom illumination, there is a polarization component along the tip axis when irradiated 

by a tightly focused, linearly polarized laser; however, it is fairly weak, as the main 

polarized component is perpendicular to the tip axis, providing no strong charge 

confinement at the tip apex.  A larger polarization component along the tip axis can be 

achieved in a side-illumination geometry, with a large incident angle.  The enhancement 

possible in the TERS measurements presented here is, in part, limited by the laser 

polarization and geometry of the system. 
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3.3.6 Limitations and Difficulties in TERS 

TERS measurements are limited by the quality of the TERS tip, which is susceptible to 

both mechanical and chemical degradation.  Mechanical damage to the tip occurs during 

use in AFM scans before obtaining TERS measurements, resulting in the change of shape 

or removal of the metal at the tip apex.  This can be mitigated by changing AFM 

parameters to minimize tip-sample interaction.  When necessary, an AFM scan of higher 

quality was obtained after TERS measurements.  Tip degradation could also be caused by 

laser-induced heating, potentially changing the size and shape of the tip apex.   

Chemical degradation of the tip can be caused by the reaction of ambient gases with the 

metal coating of the tip.  For example, the oxidation of silver tips greatly reduces their 

TERS enhancement over time, necessitating their application to TERS measurements 

soon after preparation.  Resistance of the tips to mechanical or chemical damage could be 

improved through coating an additional layer of alumina or silicon oxide, but this is 

likely to decrease the TERS enhancement of the tip.11,12 

Additionally, during TERS measurements it is possible that small molecule analytes 

migrate from the sample to the tip, contaminating the tip.  When this occurs, a SERS 

spectrum of the molecule on the tip is obtained, dominating over the spatially resolved 

TERS measurement.  It is possible to ascertain whether a spectrum in question originates 

from a molecule adsorbed on the tip by placing the tip in a position where no sample is 

present (for example, on a clean glass coverslip) and collecting a spectrum.  I f a strong 

signal is obtained, it is likely that the tip is contaminated. 

Lastly, the overall enhancement in TERS is typically lower than the enhancement 

achieved in SERS measurements, in part due to the fact that TERS exploits the 

enhancement of a single or very few nanoparticles at the apex of the tip, while SERS 

typically uses arrays or assemblies of nanoparticles.  This can result in low or no TERS 

signal for some materials, which can be improved through the use of a metal substrate, 

allowing for gap-mode TERS.13,14 
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3.4 Modelling the Electric Field  

Computational modelling can be used in order to determine the electric field in the near-

field of plasmonic nanoparticles; while the electromagnetic field of simple geometries, 

such as spheres, can be computed analytically, no exact solutions can be calculated for 

more complex geometries.15  These methods allow for the determination of the 

electromagnetic hotspots of plasmonic nanoparticles, individually or in arrays, 

ascertaining their efficacy in applications such as surface- and tip-enhanced Raman 

spectroscopy.  This can be done through developing approximate solutions to Maxwell’s 

equations, either in integral or differential form.  Most commonly, solutions to the 

integral forms of Maxwell’s equations are computed through discrete dipole 

approximation (DDA), involving the approximation of a nanoparticle by a finite array of 

polarizable points, or boundary element method (BEM), involving the calculation of the 

electric field at interfaces.  Both of these techniques generally constitute calculations in 

the frequency domain, and are only valid for free-space scattering, inapplicable to 

scatterers on a substrate without further modification.16,17  Due to the slow convergence 

of frequency-domain methods, solutions are limited to order 107 electromagnetic field 

unknowns; in time-domain techniques such as the finite-difference time-domain (FDTD) 

method, more than 1012 electromagnetic field unknowns can be calculated.18  In solving 

Maxwell’s differential equations, FDTD and finite element method (FEM) are the most 

common techniques.   

3.4.1 Finite-Difference Time-Domain Method 

Finite-Difference Time-Domain (FDTD) is an efficient method to apply to the wave 

optics regime, where the structures are on the order of the wavelength of the impinging 

light.  FDTD involves numerically discretizing and solving Maxwell’s equations on a 

grid in space and time, with derivatives calculated by finite differences.  The advantages 

of this method are that, apart from the finite mesh and time steps, no approximations or 

assumptions are made; it solves all vector components of the electric and magnetic fields; 

and, as it is a time-domain method, a single simulation can give broadband results.19 
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To calculate the local electromagnetic field, Maxwell’s equations, which describe the 

electric field E and magnetic field B in a medium, are discretized.  These equations can 

first be expressed as a series of differential equations: 

𝛁 ∙ 𝑬 =
𝜌

𝜀0

                          𝛁 ∙ 𝑩 = 0 

𝛁 × 𝑬 = −
𝜕𝑩

𝜕𝑡
                          𝛁 × 𝑩 = 𝜇0 (𝑱 + 𝜀0

𝜕𝑬

𝜕𝑡
)                     (𝟑.𝟏) 

where ρ and J are the charge and current density, and 𝜇0 and 𝜀0 are the permittivity and 

permeability of free space, respectively. 

In FDTD, Maxwell’s curl equations are discretized on a mesh, such that a point in a 

Cartesian coordinate system can be expressed as (𝑖, 𝑗, 𝑘) = (𝑖∆𝑥, 𝑗∆𝑦,𝑘∆𝑧).  In this 

instance, ∆𝑥, ∆𝑦 and ∆𝑧 represent the size of the grid in each respective direction.  This 

discretization is called a Yee cell (Figure 3-7), where the components of E and B are 

spatially offset, with the electric field components on the edges of the cubic lattice and 

the magnetic field components on the faces.  Material properties, such as the permittivity, 

are also discretized on this cell.  Due to this, there can be staircasing effects when the 

interface of a material lies on an angle with respect to the Cartesian axes of the cell, 

resulting, in some cases, in unphysical hotspots. 
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Figure 3-7. Illustration of a Cartesian Yee cell, showing the distribution of the 

electric field (red) and magnetic field (blue) vector components over the cell. 

Calculation of B and E involves a “leapfrog” update: 𝑯 = 𝜇𝑩 is first calculated at time n, 

and E is calculated at time n + ½.  This allows for second order accuracy in time. 

𝑬𝑛 +
1
2 = 𝑬𝑛−

1
2 +

∆𝑡

𝜀
𝛁 × 𝑯𝑛                                               (𝟑.𝟐) 

𝑯𝑛+1 = 𝑯𝑛 −
∆𝑡

𝜇
𝛁 × 𝑬𝑛+

1
2                                                 (𝟑.𝟑) 

Where ∆𝑡 is the time step, and 𝜇 and 𝜀 are the permittivity and permeability of the 

material, respectively.19  This leapfrog process is repeated until the results converge and a 

steady-state solution is achieved.  As the memory required to run the simulation scales as 

(
𝜆

Δ𝑥
)

3

 and the time required scales as (
𝜆

Δ𝑥
)

4

, where λ is the wavelength of interest, the 

size of the Yee cell must be chosen to balance between the required simulation time and 

memory and the precision of the simulation.   

In this thesis, Lumerical FDTD Solutions (Vancouver, Canada) is used to carry out 

FDTD calculations of optical scattering cross-section, and electromagnetic field and 
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charge distribution of fractal structures.  Convergence testing was performed to determine 

the appropriate mesh size. 

In Chapter 6.2.1, the Bethe lattice nanostructures were modelled with a rod width of 50 

nm, with the length, number of branches and generation varying as indicated.  The 

thickness of the titanium layer was 3 nm, with a gold layer of 20 nm, modelled using the 

dielectric values for gold and titanium from Palik.20  The structures were placed on a 

substrate with a constant refractive index of 1.42, representing the CaF2 window.  A 

plane wave source was used for all calculations, along with periodic boundary conditions 

along the x- and y-directions, and perfectly matched layers along the z-direction.  Mesh 

sizes of 3 nm along the x-, y-, and z-directions were used near the structure.  For the iso-

wavelength maps, the electric field maps were calculated for a wavelength range of 1.4 to 

12 μm, and analyzed in MATLAB (MathWorks, USA).  The electric field maps of the 

gold Sierpiński nanostructures (Chapter 6.3.2) were constructed in a similar manner, with 

nanoprisms with a base length of 125 nm, with the same metal thickness and dielectric 

constants.  In order to truncate the simulation area, perfectly matched layers were applied 

along all boundaries, at least 400 nm from the Sierpiński nanostructures.  The structures 

were meshed by a grid of 2 × 2 nm in the x- and y-directions, with a mesh of 3 nm in the 

z-direction.  A maximum of 10 mesh cells per wavelength was applied outside of the 

Sierpiński nanostructures. 

For the simulations presented in Chapter 6.3.1, the silver Sierpiński fractal structures 

were of sizes as indicated, with a thickness of 30 nm to match the structures as fabricated.  

The inverse fractal structures were modelled by etching the same fractal structures in a 

silver layer of the same thickness.  All structures were placed on a SiN substrate.  

Materials were modelled using the dielectric functions of silver from Palik20 and that of 

silicon nitride from Luke.21  The Sierpiński fractal structures of 285 nm side length were 

meshed with a grid with sizes of 1.5 nm in the x- and y-directions, and 2 nm in the z-

direction.  For the largest Sierpiński structures, a mesh of 6.5 nm was used for the x- and 

y-directions, while maintaining the 2 nm mesh in the z-direction.  In the simulation region 

outside of the structure, the mesh was set to at least 10 mesh cells per wavelength.  

Perfectly matched layers (PML) were applied in the x-, y-, and z-axes to truncate the 
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simulation region.  When applicable, symmetry boundary conditions were applied along 

the x-minimum boundary, in order to reduce computation time.   

3.4.2 Finite Element Method 

In the finite element method (FEM), Maxwell’s equations are also discretized on a mesh, 

much like FDTD.  Compared to FDTD, FEM is much more computationally expensive 

and is computed in the frequency domain, making broadband simulations difficult.22  

However, the advantage of FEM is such that it is a versatile method and can easily be 

used to solve differential equations apart from Maxwell’s equations; it is for this reason 

that FEM is used here, as the electric field result is used in subsequently solving for the 

resultant heating. 

In this thesis, COMSOL Multiphysics 5.2 was employed for finite-element modelling of 

the electric field of the TERS tip and the resulting temperature rise in Chapter 5.3.4.  The 

TERS tip was modelled as an inverted Si cone with an angle of 22.5°, with a 30 nm 

diameter spherical tip and a 20 nm thick Au shell.  The simulation area was 2 µm wide 

and 600 nm tall.  The tip was positioned above the silver nanoplate layer, which was 50 

nm thick, in air.  The simulation area was meshed by tetrahedral elements, with a size of 

2 – 50 nm, a growth rate of 1.45 and a curvature factor of 0.5.  Where necessary, the 

relative permeability was set as 1. The initial conditions were such that there is no electric 

field present and the temperature is 293.15 K.  All boundaries were held at the initial 

temperature, except the top of the tip, which was thermally insulated.  To truncate the 

simulation region by absorbing reflections, perfectly matched layers (PMLs) of 200 nm 

were set at the edges of the simulation region, and the PML was meshed using a swept 

mesh of eight layers.  A scattering boundary condition was applied along the top face of 

the air boundary.  The bottom of the simulation region was illuminated by a tightly 

focused Gaussian beam with a wavelength of 632.8 nm, 1 µm spot size and 1 mW of 

power.  As the beam was tightly focused, the longitudinal component of the electric field 

was set to be:23 

𝐸𝑧 = 𝑖𝑘0  
𝜕𝐸𝑥

𝜕𝑥
                                                           (𝟑.𝟒)  
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The electric field is calculated using the Wave Optics module, and is linked to the Heat 

Transfer Module using the Multiphysics approach. 

3.5 Electron Microscopy 

Up to this point, techniques discussed have been based on the interaction of light with 

materials.  Electron microscopy uses electrons in the place of light, with the short 

wavelength of electrons allowing for increased spatial resolution compared to 

conventional light microscopy.  Advanced techniques, such as electron energy loss 

spectroscopy (EELS), allow for the spectroscopic imaging of plasmon modes of 

nanomaterials through their interaction with electrons. 

3.5.1 Scanning Electron Microscopy 

In scanning electron microscopy, an image of the topography of a sample is formed by 

scanning a beam of focused electrons over a sample and detecting the electrons after they 

have interacted with the sample.  These interactions can include:  the generation of 

secondary electrons as ionization products; back-scattering electrons, reflecting off the 

sample; and the emission of characteristic X-rays or photons (Figure 3-8).24  

Measurements are performed under vacuum, to avoid electrons scattering off molecules 

in the air.  Electron microscopy requires conductive samples, except for the case of 

certain partial vacuum SEM, to avoid charging the sample, which significantly decreases 

spatial resolution of the image. 

With back-scattered electrons, electrons from the incident beam are elastically scattered.  

This scattering occurs deeper in the sample, resulting in poorer spatial resolution of 

images formed from this process.  However, the probability of elastic scattering is related 

to the atomic mass of the element, allowing for the identification of areas of different 

elemental composition.  This technique is often used with energy-dispersive X-ray 

spectroscopy (EDX), where the characteristic X-rays of a sample are analyzed, in order to 

determine the chemical composition of these different areas.24 
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Images formed from secondary electrons are of better spatial resolution, due to this 

process occurring at or closer to the surface of the sample.  For this reason, this is the 

main method of imaging samples in SEM. 

 

Figure 3-8 Diagram of typical interactions between the incident electron beam and 

the sample in electron microscopy 

Scanning electron microscopy was used to image nanomaterials in Chapter 4.3, 5.2, 6.2 

and 6.3, and TERS tips in Chapter 5.4.  For the imaging of nanomaterials, a LEO Zeiss 

1530 SEM was used.  To image and analyze TERS tips, a LEO Zeiss 1540XB (Zeiss, 

Oberkochen, Germany) fitted with an Oxford Instruments X-ray system, allowing for in 

situ EDX analyses and mapping, was used. 

3.5.2 Transmission Electron Microscopy 

In transmission electron microscopy (TEM), a micrograph of the sample is formed by 

passing the electron beam through the very thin sample.  Instead of detecting scattered 

electrons as in SEM, transmitted electrons are detected.  The probability of an electron 

passing through the sample without scattering is inversely proportional to its mass.  
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Therefore, heavier elements scatter more electrons, and these regions appear darker in the 

transmission electron micrograph.  High-angle annular dark-field scanning transmission 

electron microscopy (HAADF-STEM) was performed in conjunction with the electron 

energy loss spectroscopy in Chapter 6.3.  HAADF-STEM images were acquired by 

Isobel C. Bicket, in the group of Prof. Gianluigi Botton at McMaster University, at the 

Canadian Centre for Electron Microscopy. 

3.5.3 Electron Energy Loss Spectroscopy 

In electron energy loss spectroscopy (EELS), electrons that undergo inelastic scattering 

are spectroscopically analyzed in order to determine their energy loss.  The sample is 

exposed to an electron beam narrow in energy width.  Electrons are scattered inelastically 

as they pass through the sample, and the cause of their energy loss is determined.  In this 

thesis, this is most relevant to the study of plasmonic nanoparticles: electrons that scatter 

off these plasmon resonances will differ by the energy of the plasmon mode.  This allows 

for an accurate experimental determination of the energy of a plasmon mode, with the 

nanoscale spatial resolution of the TEM.25  EELS images can be obtained by measuring 

the EELS spectrum over the surface of the nanostructure, as it is exposed to the electron 

beam. 

Electron energy loss spectrum images in Chapter 6.3.1 were acquired by Isobel C. Bicket 

on a monochromated FEI Titan microscope at 80 kV, equipped with a Gatan Tridiem 

(model 865) spectrometer.  An energy resolution of approximately 60 meV (about 15 nm) 

was achieved, as measured from the full width at half maximum of the zero loss peak 

(ZLP).  The Richardson-Lucy deconvolution algorithm was used on the acquired 

spectrum images to deconvolve the effect of the point spread function (PSF) of the 

microscope from the response of the fractal nanostructures, effectively improving the 

energy resolution to approximately 40 meV.  Analysis of the EELS images was 

performed using custom Python software.  All spectra were normalized to the maximum 

intensity of the ZLP.  Nanostructures for EELS were study by EELS were fabricated by 

electron-beam lithography using silver, so that higher-order modes would lie in the 

visible range rather than the mid-infrared. 
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3.6 Fabrication of Plasmonic Nanomaterials 

One important aspect of the study of plasmonic nanomaterials is the fabrication of such 

nanomaterials.  Nanoparticles are formed in two different ways: by wet chemical 

synthesis, termed “bottom-up”, or by lithographic “top-down” methods.  Both are 

discussed here, in the bottom-up synthesis of colloidal silver nanoplates, and the top-

down methods of nanosphere lithography and electron-beam lithography. 

3.6.1 Synthesis of Silver Nanoplates 

As the shape and size of a nanoparticle is critical to its optical properties, many synthesis 

methods have been developed for nanoparticles of different shapes, including spheres,26
 

rods,27,28
 worms,29

 cubes,30
 stars31

 and rice grains.28  Here, as the TERS measurements occur 

in transmission, an ultrathin nanoplate is critical to allow the laser to pass through the 

nanoplate and reach the analyte on its surface.  A flat surface is crucial to avoid parasitic 

SERS scattering.  These characteristics are met by a synthesis method reported by Zhang 

et al.,32 wherein a seed solution is first made, and then successive slow rounds of growth 

are performed to achieve the nanoplates with high aspect ratio.  These nanoplates are 

used for tip-enhanced Raman measurements in Chapter 5. 

A seed solution was prepared by combining aqueous AgNO3 (0.1 mM, 25 mL), trisodium 

citrate (30 mM, 0.3 mL), poly(vinylpyrrolidone) (MW ∼ 29 000 g/mol, 3.5 mM, 1.5 mL), 

and H2O2 (30 wt %, 60 μL) under stirring.  An aqueous NaBH4 solution (100 M, 250 μL) 

was injected, and the solution was stirred for 30 min.  The solution was centrifuged at  11 

000 rpm for 8 min, and the nanoplates were redispersed in deionized water.  This 

washing step was repeated twice, and the seeds were then dispersed in 40 mL of 

deionized water.  In the seeded growth process, L-ascorbic acid (0.1 M, 0.375 mL) and 

trisodium citrate (0.075 M, 0.125 mL) were injected to 10 mL of the seed solution under 

stirring.  A solution of AgNO3 (1 mM, 20 mL), citric acid (0.1 M, 0.125 mL), and sodium 

citrate (1.5 mM, 0.1 mL) was prepared.  It was added to the seed solution using a syringe 

pump at a rate of 0.2 mL/min.  After injection, 20 mL of the reaction solution was 

removed and the remaining solution was used as seeds for the next growth cycle.  In total, 

four rounds of growth were performed.  Nanoplates were drop-cast onto clean coverslips, 
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for characterization by atomic force microscopy and scanning electron microscopy.  SEM 

images are shown in Figure 3-9. 

 

Figure 3-9 Scanning electron micrographs of the silver nanoplates, showing a) 

stacked nanoplates, with the byproduct multifaceted nanoparticles; b) an isolated 

nanoplate, suitable for TERS measurements. 

3.6.2 Fabrication of Gold Nanoislands 

Gold nanoisland substrates were fabricated through the electron beam-induced 

evaporation of 4 nm of gold onto clean glass slides, resulting in nanoparticles of diverse 

size, shape and orientation.  The gold nanoisland substrates are used in Chapter 4.3.1, for 

the plasmon-mediated reduction of aryl diazonium salts. 

3.6.3 Nanosphere Lithography 

Nanosphere lithography (NSL) is a simple method to form a plasmonic platform over 

larger areas (cm2).  Instead of individually forming the nanoprisms in solution, a colloidal 

technique is used.  First, a layer of polystyrene spheres is formed on a clean glass 

coverslip.  Layers of titanium, as an adhesion layer, and gold, to form the plasmonic 

nanostructures, are deposited over the layer of polystyrene beads.  The beads are removed 

by sonication.  If a monolayer of polystyrene beads was properly formed in the first step, 

this leaves the glass coverslip patterned with gold nanoprisms in the areas that were not 

protected by the polystyrene beads (Figure 3-10). 
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Figure 3-10 Nanosphere lithography procedure: a monolayer of polystyrene spheres 

is deposited on a glass coverslip.  An adhesion layer of Ti is deposited, followed by a 

layer of gold.  The nanoparticles are removed by sonication, leaving gold 

nanoprisms. 

Polystyrene spheres (1 µm, ThermoScientific Co.) in a solution of 50% ethanol were 

dropcast onto a clean glass coverslip.  After drying, 3 nm of Ti were deposited by 

electron-beam evaporation, followed by 20 nm of Au.  The coverslips were then 

sonicated in order to remove the polystyrene spheres.  NSL-patterened samples were used 

for the plasmon-mediated reduction of diazonium salts in Chapter 4.3.2. 

3.6.4 Electron-Beam Lithography 

Nanosphere lithography, as discussed in section 3.6.2, is a simple and quick method of 

forming plasmonic nanostructures; however, it is not without the drawback of many 

defects in the structures, due to poor packing of the polystyrene beads.  Furthermore, the 

experience of the operator often greatly influences the quality of the resulting platform.  

Electron beam lithography is a more precise technique, allowing for the exact 

determination of shape and position of nanoparticles on a substrate, due to its spatial 

resolution of approximately 20 nm.33  In electron beam lithography, a polymer layer, 

acting as a photoresist, is precisely exposed to the electron beam in a scanning electron 

microscope, forming the desired pattern.  Exposure to the electron beam causes scission 

of the polymer chains, locally increasing its solubility.  The sample is placed in 

developing solution to remove this exposed area, and metal is deposited.  The remaining 
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polymer is then removed, leaving only the areas that had originally been exposed to the 

electron beam.  A summary of this process is shown in Figure 3-11. 

 

Figure 3-11 Electron-beam lithography procedure 

For the nanostructures in Chapter 6.3.1, Isobel C. Bicket performed the electron-beam 

lithography.  The nanostructures were fabricated on TEM grids with 50 nm thick 

suspended silicon nitride membranes.  Here, the very thin substrate added to the 

complexity of the fabrication, but was necessary for subsequent TEM measurements.  

Poly(methyl methacrylate) (3% in anisole) with a molecular weight of 950 kg/mol was 

spin-coated into the TEM grids at 6000 rpm for 90 s.  The grids were then baked at 175 

°C for 5 min.  Exposure of the patterns was done using Nanometer Pattern Generation 

System (NPGS) on a JEOL JSM-7000F SEM.  The patterned resist was developed in 

methyl isobutyl ketone in isopropanol (MIBK/IPA) for 2 min before deposition of 30 nm 

of silver using electron beam evaporation and a lift-off process in acetone.  A series of 

nanoprisms is shown in Figure 3-12a. 
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Figure 3-12 SEM images of a) silver Sierpiński nanoprisms and b) gold Bethe lattice 

nanostructures, as fabricated by electron-beam lithography.  Scale bar inset in a) is 

150 nm. 

A similar method was used for the fabrication of the fractal nanostructures in Chapter 6.2 

and 6.3.2.  A 100 nm thick film of poly(methyl methacrylate) (PMMA, A2 950 resist, 

MicroChem Corp., MA, USA), was spin-coated on a clean glass coverslip, followed by a 

thin conductive layer (AquaSAVE, Mitsubishi Rayon America, NY, USA).  The fractal 

structures were designed in DesignCAD 2000.  Inscription of the fractal pattern on the 

coated coverslip surface was achieved using a LEO 1530 field emission scanning electron 

microscope at an acceleration voltage of 30.0 kV with an aperture of 10 µm.  After 

inscription, the conductive layer was dissolved in water and the exposed photoresist was 

developed in a 1:4 mixture of MIBK/IPA (Microchem Corp., MA, USA) followed by 

IPA alone (VWR International, PA, USA), to halt the development process, and dried 

under nitrogen.  A thin film of 3 nm titanium was deposited by e-beam evaporation, 

which served as an adhesion layer for gold, 20 nm of which was deposited by the same 

method.  The desired structure was obtained by removing the photoresist using a liftoff 

procedure in acetone (CHROMASOLV, Sigma-Aldrich, MO, USA).  Scanning electron 

micrographs of the structures were then obtained using the Leo Zeiss 1530 SEM, and 

shown in Figure 3-12b.   

3.7 Functionalization of Plasmonic Nanomaterials 

The surface of the nanostructures, fabricated by electron-beam lithography or wet 

chemical synthesis, was functionalized through the self-assembly of a thiol monolayer, 
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for study by SERS or TERS.  For the work in Chapter 5, the molecule chosen was 4-

mercaptophenyl benzoic acid (4-MPBA); for the work in Chapter 6.3.2, the molecule was 

4-nitrothiophenol (4-NTP).  In both cases, a 1 mM solution of the analyte in ethanol was 

prepared, in which the cover slip with the nanostructures was immersed for 24 h.  The 

cover slip was then rinsed in absolute ethanol and deionized water, and dried under 

nitrogen.  For the work in Chapter 4, the spontaneous functionalization process was 

contrasted with the plasmon-mediated process. 

3.7.1 Plasmon-Mediated Functionalization 

Functionalization of the plasmonic nanostructures was enhanced by plasmon excitation 

using a white light source (LightningCure, Hamamatsu) with a UV filter for the work on 

gold nanoislands in Chapter 4.3.1, and using a laser source in Chapters 4.3.1 and 4.3.2.  

Diazonium salt solutions, of either 4-nitrobenzenediazonium tetrafluoroborate or 4-

cyanobenzendiazonium tetrafluoroborate, were prepared at a concentration of 3 mM, 

unless indicated otherwise.  The 632.8 nm laser was focused using a 10× objective in 

transmission, with a power of 5.5 mW. Exposure times ranged between 10 – 90 s.  After 

exposure, the sample was rinsed in distilled water and ethanol.   

 

Figure 3-13 Procedure for plasmon-mediated functionalization under focused laser 
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Chapter 4  

4 Nanolocalized Chemical Reactions Induced by 

Plasmon Resonances 

As discussed in Chapter 2.6.3, chemical reactions can be catalyzed by nanostructured 

surfaces through the excitation of the plasmon resonance, due to some combination of the 

locally enhanced electromagnetic field, hot carrier ejection and temperature increase. 

Since these plasmon resonances are spatially localized, it opens the possibility to trigger 

photochemically-induced reactions that are spatially confined.  In this chapter, the 

plasmon-mediated reaction of aryl diazonium salts on plasmonic surfaces is described. 

4.1 Introduction 

Among the plasmon-mediated chemical reactions currently under study, the 

functionalization of the surface of nanoparticles is increasingly interesting, as it allows 

for the generation of locally tailored chemical reactivity on surfaces.  Through further 

reactions, this can be used to guide larger molecules and structures, such as proteins or 

quantum dots, into hotspots of the nanoparticle surface.1  The spatial location of these 

hotspots can change as a function of the intensity, wavelength and polarization of the 

excitation source; therefore, the multi-functionalization of plasmonic surfaces is possible 

through modification of the excitation beam.  The reduction of aryl diazonium salts is one 

such reaction that is catalyzed by plasmon excitation, resulting in the grafting of 

poly(aryl) films in the hotspots of the nanostructured gold surface.2,3  An example is 

shown in Figure 4.1.   
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Figure 4-1 Reduction of 4-nitrobenzenediazonium on a gold nanoisland surface, as 

catalyzed by a plasmon resonance. 

The grafting mechanism involves the hot electron transfer from the surface to the 

diazonium salt concomitantly with the cleavage of the dinitrogen, resulting in the 

production of aryl radicals.4  These aryl radicals are then able to bind to the gold surface 

via covalent bonds, but can also bind to the aromatic rings already attached to the gold 

surface, forming extended structures through a polymerization process.5,6  This leads to 

the formation of multilayers.  The radicals may also diffuse in solution, potentially 

leading to side products that may precipitate on the surface.4 

Interestingly, the regioselective grafting of these poly(aryl) layers derived from 

diazonium salts by plasmon excitation of gold nanoparticles has been shown in the 

literature.2,3  This is a promising strategy for the nanoscale patterning of organic layers in 

the hotspots of nanostructured surfaces.   

In this chapter, two types of aryl diazonium salts were used, 4-nitrobenzenediazonium 

tetrafluoroborate (DNO2) and 4-cyanobenzendiazonium tetrafluoroborate (DCN), along 

with two substrates, gold nanoislands and gold nanoprisms, as produced by nanosphere 

lithography (NSL).  AFM and SEM were primary tools used to investigate the spatial 

grafting of the materials.  
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4.2 Plasmon-Mediated Chemical Reactions 

Chemical reactions can be photo-induced in diverse ways using plasmon resonances, and 

are heavily influenced by their surroundings and the optical properties of the 

nanostructures. 

4.2.1 Inciting Plasmon-Mediated Reactions 

Plasmon-mediated reactions can be incited or catalyzed by one or more of three 

properties of plasmon resonances and their decay: reactions can be photocatalyzed by the 

enhanced electric field at the surface of the nanoparticle; reactions can be catalyzed by 

the hot carriers that are ejected as the result of the plasmon decay; and they can be 

catalyzed by the resultant rise in temperature.   

Reactions incited by the enhanced electric field depend upon the electronic excitation of 

the reactant molecules.  For reactions to be photocatalyzed by the nanolocalized electric 

field at the surface of the nanoparticles, there must be an overlap in the absorption 

spectrum of the plasmonic nanostructure and the reaction precursor, as for traditional 

photocatalysis.7  This method of catalysis has been applied to the catalytic 

photodegradation of phenol using TiO2 with gold and silver nanoparticles,8 and the 

evolution of hydrogen under visible light irradiation of a gold nanorod/carbon nitride 

nanotube hybrid system,9 among others. 

Reactions promoted by the hot electrons or holes that are the result of plasmon decay 

must also have suitable energy levels in contact with the plasmonic nanostructure, such 

that there is a metal-adsorbate state near the Fermi energy that can be accessed by the hot 

carrier.  Many reactions have been attributed to the excitation of hot carriers; of interest, 

these include the demethylation of methylene blue, triggered by direct hot electron 

transfer,10 and the oxidation of glucose, involving the direct transfer of both hot electrons 

and hot holes.11  

Local heating can also increase the reaction rate, following the Arrhenius law.12,13  

Nanoparticles can be exploited in this method as nanosources of heat, as will be 

described in Chapter 5.3.  
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Reactions can be catalyzed by one of the above mechanisms, or any combination of them.  

Determining the method of catalysis for a given plasmon-mediated reaction is of great 

research interest.14-16  It can easily be ascertained whether the photocatalysis mechanism 

is applicable to a given reaction through measurement of the plasmon resonance of the 

nanostructure and the reactant.  Whether reactions are catalyzed by hot carriers or 

plasmonic heating can be more difficult to ascertain; this is further discussed in Chapter 

5.3.1.   

4.2.2 Factors Influencing Plasmon-Mediated Reactions 

A given plasmon-mediated reaction and the resulting yield is influenced by the localized 

surface plasmon resonance (LSPR) of the metallic nanostructure, and the efficiency of 

the coupling between the LSPR and the plasmon-mediated reaction.  As discussed in 

Chapter 2.2.3, the LSPR of a metallic nanostructure is a function of its composition, 

shape, size, spacing from other nanoparticles, and the surrounding medium.  These 

factors, along with the characteristics of the excitation source, determine the location of 

the plasmonic hotspots, the regions at which the reaction is most likely to occur.17,18   

Often, the lifetime of the hot carriers as excited by plasmon resonance is too short to 

participate in chemical reactions.  This leads to a low efficiency of charge transfer from 

the plasmonic nanostructure to the reaction precursor.19,20  Charge transfer mediators, 

such as semiconductors, are used to increase this efficiency, and can be tuned to influence 

the population of charge carriers.  Under Schottky contact, hot electrons can be separated 

from hot holes, preventing their fast recombination.21,22  Conversely, with Ohmic contact, 

lower energy electrons, such as those from interband transitions, are permitted to transfer 

from the metal to the semiconductor.22  

4.2.3 Plasmon-Catalyzed Polymerization Reactions 

Polymerization reactions have been catalyzed through plasmon excitation.  As the 

polymer product are not typically soluble, this allows for the correlation between 

nanoparticle geometry and hotspots in which hot carriers are generated.  This permits the 

experimental mapping of the LSPR resonances for reactions that are primarily catalyzed 

by hot carriers.  Such reactions have been carried out using a variety of nanoparticles, 
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including nanorods,3 nanodisks and spheres,6,23,24 and nanoprisms.2  Plasmon-catalyzed 

polymerization reactions have also been catalyzed through tip-enhanced Raman 

spectroscopy (TERS).  The Deckert group has demonstrated the polymerization of 

dibenzo(1,2)dithiine-3,8-diamine on a gold nanoplate, involving the coupling of amino 

groups to form azo groups as observed in the TERS spectra.25  As the silver-coated tip 

scans during measurement, the polymerization occurs over the surface of the nanoplate.  

This could be further extended to locally generate one-dimensional materials through 

further control of the polymerization reaction. 

Conversely, in reactions primarily catalyzed by the localized heating that results from 

plasmon excitation, a uniform polymer coating is typically formed.12  These 

polymerizations have found applications as molecular thermometers, to estimate the 

temperature reached due to plasmonic heating.  For example, soybean oil, a mix of 

triglycerides, polymerizes above 230 °C, allowing for a rough estimation of the 

temperature upon observation of the polymerization reaction.26   

4.3 Reduction of Diazonium Salts Catalyzed by Plasmons 

Here, the reduction of aryl diazonium salts, DCN and DNO2, are studied on gold 

nanoisland and NSL substrates. 

The work in Chapter 4.3.1 was conducted in collaboration with the groups of Profs. C. 

Mangeney and N. Félidj at Université de Paris, within a collaboration funded by a Mitacs 

Globalink Research Award. 

4.3.1 Gold Nanoisland Substrate 

In order to study the reduction of diazonium salts, gold nanoisland substrates were 

fabricated as described in Chapter 3.6.2 and characterized by scanning electron 

microscopy (SEM), as shown in Figure 4-2.  The surface shows nanoparticles of random 

shape, size and orientation. 
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Figure 4-2 SEM image of the gold nanoisland surface 

To determine the ideal excitation for plasmon-mediated functionalization, an absorption 

spectrum was collected, and is shown in Figure 4-3.  This shows a broad resonance, due 

to the random nature of the gold nanoisland assembly. 

 

Figure 4-3 Absorption spectrum of the gold nanoisland substrate 
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SERS spectra were recorded for both DCN and DNO2, as shown in Figure 4-4.  The 

spectra are easily distinguishable by their characteristic peaks: for DCN, the nitrile stretch 

is observed at 2240 cm-1;27 for DNO2, the symmetric NO2 stretch is observed at 1335   

cm-1.28  This is critical for the potential future studies involving multi-functionalized 

nanoparticles. 

 

 

Figure 4-4 Comparison of the SERS spectrum of DCN (blue), indicating the nitrile 

stretch, and DNO2 (red), indicating the symmetric NO2 stretch. 

The gold nanoisland substrates were grafted with DCN and DNO2, through both 

spontaneous and plasmon-mediated methods, as described in Chapter 3.7.  In both 

instances, the sample was placed in a dish of diazonium salt solution.  For plasmon-

mediated grafting, the dish was placed under a bright white light; for spontaneous 

grafting, it was kept in the dark.  The functionalization time was kept constant for the 

methods, in order to compare the efficiency; typically, it was three minutes.   

For comparison, SERS spectra were collected for plasmon-mediated vs. spontaneously 

grafted gold nanoislands.  Typically, the plasmon-mediated functionalized sample is, at 
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maximum, a factor of 2-3× more intense than the spontaneously functionalized sample.  

An example is shown in Figure 4-5.  It can be concluded that, although the reaction is 

plasmon-catalyzed, it spontaneously reacts sufficiently to obtain a decent SERS signal.  It 

is such that the difference between plasmon-mediated and spontaneously grafted areas 

can be comparable to the difference between different spots on the gold nanoisland 

substrate, as the random nature of the arrangement of the nanoislands means that the 

SERS signal intensity is not reproducible over the surface.  It may be that there are 

differences between the plasmon-mediated and spontaneously grafted samples that 

cannot be probed by SERS, as SERS is highly distance-dependent and can only probe up 

to a few nanometres.29,30  Ideally, for use in further applications, the reaction is catalyzed 

such that there is only substantial grafting localized in the hotspots.  To investigate 

whether the spontaneous grafting observed was concentration dependent, 

functionalization was performed for concentrations from mM to nM range.  As all 

concentrations showed minimal difference between plasmon-mediated and spontaneous 

grafting, it was concluded that the effect was not greatly influenced by the concentration, 

and the original mM concentration was used for further experiments. 
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Figure 4-5 Comparison of the SERS spectrum of DCN on gold nanoislands 

functionalized spontaneously (red) and under plasmon resonance (blue).  Spectra 

have been offset for clarity. 

As no great difference was seen in the SERS spectra between spontaneous and plasmon-

mediated functionalization, other methods, such as atomic force microscopy (AFM) and 

scanning electron microscopy (SEM), were selected to evaluate the plasmon-mediated 

grafting.  Additionally, a 632.8 nm laser was used to excite the plasmon resonance, 

replacing the white light source.  With a focused laser, a higher power density is 

achieved, and the reaction is localized. 

Gold nanoislands were functionalized with DNO2 by focusing a 632.8 nm laser (5.5 mW 

at the sample) using a 10× (NA 0.25) objective, with a 1 mM solution of the diazonium 

salt.  After exposure, the sample is rinsed with water and ethanol.  The sample was 

investigated using AFM, and material build-up is observed where the laser was focused 

(Figure 4-6a).  The objective was changed from 10× to 40× (NA 0.75), using the same 

laser and power at the sample.  For an exposure of 1.5 minutes, a periodic structure is 

seen where the laser is focused.  This can be seen in the SEM images in Figure 4-6b and 

4-6c. 

200

400

600

800

1000

1200

1400

1600

500 1000 1500 2000 2500 3000 3500

In
te

n
s
it

y
 /
a
rb

. 
u

n
it

s

Wavenumber /cm
-1



70 

 

 

Figure 4-6 a) AFM image of diazonium salt functionalized on gold nanoislands 

under laser excitation; b) SEM image of a similar spot; c) SEM image of the 

grating-like structure, showing the spacing. 

This periodic structure appears similar to laser-induced periodic surface structures 

(LIPSS), which can form on almost any material upon irradiation with a beam of 

sufficient intensity.31  In LIPSS formation, the pump beam intensity is sufficient to cause 

a phase change, like melting, and has been observed in many different materials, 

including semiconductors, metal and dielectrics.  Experimentally, the period of the LIPSS 

depends on the material, the wavelength, and the incident angle:32  

Λ =
𝜆

𝑛(1 ± sin 𝜃)
                                                      (𝟒.𝟏) 

where Λ is the grating period, 𝜆 is the excitation wavelength, n is the refractive index of 

the medium, and 𝜃 is the angle of incidence.  In most cases, LIPSS involves the 

formation of ripples parallel to the direction of polarization.  Using an excitation of 632.8 

nm at normal incidence, and the refractive index for nitrobenzene at 633 nm of 1.5472,33 

the period of the grating is expected to be 409 nm, which roughly matches our 

experimental observations.  Contrary to the observation, however, is the difference in 

power necessary for the formation of the periodic structure compared to LIPSS 

formation.  Typical LIPSS formation involves pulsed lasers, with power density on the 

order of ~1 J/cm2, though it depends on the material;32,34 here, with a power of several 

milliwatts over several µm2 for several minutes, the power needed is about eight orders of 

magnitude lower than typical LIPSS formation.  Therefore, the periodic structures do not 
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necessarily have the energy as required for LIPSS, but may originate from a similar 

phenomenon, further amplified by the presence of the nanostructured metal. 

A 100× objective (NA 0.90) was used to irradiate the same sample in the presence of the 

diazonium salt, reducing the spot for plasmon-mediated functionalization to ~1 µm and 

subsequently increasing the irradiance to ~5 mW/µm2.  After a long functionalization, 

mapping for several minutes, no periodic structures are seen, and the nanoislands appear 

annealed; therefore, further experiments were carried out using the lower magnification 

objectives.  Plasmonic heating is further discussed in Chapter 5.3. 

 

Figure 4-7 a) SEM image of annealed nanoislands under laser irradiation; b) 

Zoomed in, showing the change in shape of the nanoislands. 

4.3.2 Patterned Au Surfaces 

In order to better predict the spatial locations of hotspots, gold nanostructures in a regular 

pattern were also fabricated by nanosphere lithography (NSL).  The regular pattern of the 

nanoprisms allow for better prediction of the localization of the plasmonic hotspots, and 

thus the regions where plasmon-mediated grafting is expected.  This is an advantage over 

the gold nanoislands, which are of random size and arrangement.  An SEM image is 

shown in Figure 4-8. 



72 

 

 

Figure 4-8 SEM image of the gold nanoprism surface, as produced by nanosphere 

lithography 

As for the gold nanoislands, an absorption spectrum was collected, in order to determine 

the ideal excitation for plasmon-mediated functionalization, and is shown in Figure 4-9.  

The absorption spectrum shows that a 632.8 nm excitation is also appropriate for the gold 

NSL sample. 



73 

 

 

Figure 4-9 Absorption spectrum of the gold nanoprism substrate, as produced by 

nanosphere lithography 

Gold nanoprisms made by NSL were functionalized using a 10× objective, 632.8 nm 

laser with 0.5 mW of power at the sample for 1.5 minutes.  Similar periodic structures are 

seen after functionalization (Figure 4-10).  Near the edge of the periodic structure, the 

grafting appears more localized to the nanoprisms, as shown in Figure 4-10c.  Outside of 

the focused beam, these areas are subject to lower irradiance under laser excitation; this 

suggests that a lower laser power, or an unfocused or expanded laser spot, may induce 

grafting localized to the hotspots of the nanoprisms.  
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Figure 4-10 AFM images of a) gold nanoprisms, as produced by NSL; b) NSL 

pattern after functionalization by DNO2 under laser irradiation, showing the 

formation of periodic structures; c) Functionalized NSL pattern, showing grafting 

more localized to the nanoprisms. 

4.4 Conclusions 

In summary, gold nanostructures (gold nanoislands, nanoprisms formed by NSL) were 

functionalized with 4-nitrobenzenediazonium and 4-cyanobenzene diazonium.  As there 

was only a small difference in the SERS spectra in comparing plasmon-mediated to 

spontaneous grafting, the grafting was studied using AFM and SEM instead.  Under laser 

excitation, large, periodic structures were observed where the laser beam was focused. 

Further investigation of the grafting is necessary to determine the origin of these periodic 

structures, including determining whether the effect is truly plasmon-mediated or if it is 

simply photo-induced.  For future grafting experiments, there likely exists an 

intermediate between a white light source, with low irradiance, and a focused laser beam, 

that will induce localized grafting in the hotspots of the nanostructures.  The laser power 

and exposure time can be optimized to achieve this grafting.  When this is achieved, it 

can be applied to novel nanostructures, and the grafting can be observed as a function of 

different laser polarization and wavelengths.  Further chemical modification of the 

surface can be exploited for better detection sensitivity. 
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Chapter 5  

5 Nanomaterial Heating and Damage as Induced by 

Plasmon Resonances 

Photoinduced heating of nanomaterials has been exploited for applications such as 

photothermal therapy1-3 or photothermal-induced polymerization4,5 through the 

generation of hot carriers in metals.  However, the elevation of temperature in 

nanostructures is dependent on the opto-geometric parameters used for a given light-

structure interaction, which can yield local overheating and damage of the nanostructures.  

In this chapter, the observation of plasmon-induced “drilling” of nanostructures is 

described, and potential heating causes are discussed. 

5.1 Introduction 

In tip-enhanced Raman spectroscopy (TERS), further signal enhancement is achieved 

when the analyte is placed on a metallic substrate, forming a nanoscale metallic junction 

between the metallic substrate and the metallic TERS tip.  This mode is referred to as 

gap-mode TERS, and has been used to probe a variety of molecular systems such as 

small molecules,6-11 nanostructured materials, and biomaterials.12-20  In the transmission 

geometry, the excitation laser must first pass through the metallic substrate to reach the 

analyte and the TERS tip.  The metallic substrate must be atomically flat, reducing 

parasitic scattering processes, and thin enough to essentially be optically transparent.  

Previous studies have been focused on the use of gold nanoplates as substrates, as these 

exhibit the required attributes and are chemically stable.8,10,16-18,20,21  The use of silver 

nanoplates with silver TERS tips has been marginally reported, presumably due to the 

poor chemical stability of silver.12,13  

Here, we have synthesized silver nanoplates (as described in Chapter 3.6.1) for use in 

gap-mode TERS with a gold-coated TERS tip, in order to compare the resultant 

enhancement of the common gold-silver and gold-gold substrate-tip configurations.  

After observation of a TERS signal, the nanoplate appears locally ablated, and the 
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possible origin of plasmon-mediated damage is investigated, given the weak irradiance 

conditions in TERS. 

5.2 Plasmon-Mediated Drilling of Silver Nanoplates 

For gap-mode TERS experiments using an inverted optical microscope, the metallic 

nanoplate should exhibit a high width/thickness aspect ratio with minimal surface 

roughness.  Large lateral dimensions of the nanoplates, on the order of several microns, 

facilitate their observation under an optical microscope, whilst being thin enough for the 

laser to penetrate through the nanoplate and reach the metal tip without too much loss of 

intensity of the incident laser.  Protocols for the synthesis of gold nanoplates that meet 

these requirements have been well established.22,23  Conversely, the synthetic approaches 

to preparing silver nanoplates often yield smaller nanoplates with side lengths less than 

500 nm, making them less ideal for gap-mode TERS applications.  In this study, silver 

nanoplates were synthesized based on a seed-mediated method developed by Zhang et 

al., as previously described in Chapter 3.6.1.24  As can be seen in the scanning electron 

microscopy (SEM) image of Figure 5-1a, the resulting nanoplates of the seed-mediated 

synthesis are large, with a distribution in size ranging between two to six microns in side 

length.  The prepared silver nanoplates were commonly found to be triangular or 

truncated triangles, as shown in Figure 5-1a.  To determine the thickness of the 

nanoplates, atomic force microscopy (AFM) scans were performed.  The inset of Figure 

5-1a shows a representative AFM image of a silver nanoplate with the corresponding 

cross-section in Figure 5-1b.  Here, the thickness of the nanoplates was found to vary 

from 40 – 60 nm, and that the surface exhibits an RMS roughness on the order of several 

nanometers, compared to about 500 pm for gold nanoplates.8   
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Figure 5-1 a) SEM of silver nanoplates, with representative AFM image inset, with 

scale bar of 2 µm; b) Cross-section of nanoplate along white line as indicated in the 

inset of a). 

The absorbance spectrum of the silver nanoplates was measured and can be seen in 

Figure 5-2.  It shows an absorption of 1.3 at 632.8 nm for a 35-40 nm thick plate.  The 

as-prepared nanoplates often stack (Figure 5-1a), or have smaller nanostructures, such as 

multifaceted nanoparticles, on their surfaces; however, clean, isolated silver plates can be 

found and used for the TERS experiments.   
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Figure 5-2 Absorbance spectrum of silver nanoplates 

Prior to performing tip-enhanced measurements, the surface of the nanoplate was 

functionalized with a monolayer of 4-mercaptophenylboronic acid (4-MPBA).  Figure 5-

3a shows an AFM scan of a functionalized nanoplate with an intrinsically rough surface, 

but without other particles or plates present.  The nanoplates as synthesized do provide 

SERS activity, as shown in Figure 5-3b, where the SERS spectrum has been multiplied 

by a factor of 10.  This is likely due to the rough surface of the nanoplates, as the 

nanoscale roughness can support hotspots.  As a linearly polarized laser was used in an 

axial geometry, the tip was localized slightly off-centre of the focused laser beam to 

benefit from the z-component of the tightly focused beam.  To collect the TERS 

measurements, the tip was approached to the centre of the triangular nanoplate to 

minimize any effects from the edges of the nanoplates.  Due to the thickness of the 

nanoplates, a laser intensity of 1 mW was used, as lower laser power (i.e. 100 µW) did 

not allow for collection of a TERS signal.  Considering the thickness of the nanoplate 

(i.e. 40 nm), the effective power is 33 W at the sample, which is focused by the 100×, 

0.9 NA objective.  To differentiate the TERS and SERS contributions, a collection of 

spectra was collected at increasing tip-sample distances, from 0 nm (tip engaged) to 500 

nm with varying step sizes, and the results are shown in Figure 5-3b.  When the tip is at 
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the surface of the nanoplate, the electromagnetic enhancement offered by the tip is able to 

locally enhance the Raman spectrum of the 4-MPBA molecules adsorbed on the Ag 

nanoplate.  As the tip is retracted from the surface, the signal decays, but not completely.  

Instead, the signal from a tip retracted 500 nm above the nanoplate surface is more 

intense than the reference SERS spectrum collected on flat nanoplates without any TERS 

tip.  To ascertain the origin of this increase in signal, a post-TERS AFM scan was 

performed (Figure 5-3c).  The scan clearly shows that the centre of the nanoplate has 

been “drilled”, with considerable additional roughness having been introduced around the 

ablated area.  This deformation has amplified the SERS effect through an increase of the 

localized roughness, as shown in the AFM topography (Figure 5-3c).   

 

Figure 5-3 a) AFM image of silver nanoplate; b) TERS spectra obtained upon 

increasing the tip-sample distance, as indicated, compared to the SERS spectrum 

(multiplied by 10).  Spectra have been offset for clarity. c) AFM image of silver 

nanoplate after TERS experiment.  

To determine if this drilling effect is facilitated by the presence of an adsorbed molecule, 

the same process was repeated on a bare nanoplate (Figure 5-4a).  Once again, after the 

tip-enhanced measurements were performed, deformation of the nanoplate was observed, 

and as shown in Figure 5-4b, is sufficiently large to be seen optically under a microscope. 
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Figure 5-4 a) AFM image of a non-functionalized drilled silver nanoplate, with the 

arrow indicating damage; b) Optical image of the same nanoplate, with the arrow 

indicating the same point. 

To further investigate the cause of this localized destruction, a TERS experiment was 

performed under optical misalignment, where the tip was placed on the edge of the 

focused laser focal plane.  Under such a configuration, little to no electromagnetic 

enhancement at the tip apex should be present.  As depicted in Figure 5-5a and 5-5b, 

selected points for spectral collection were chosen on and off the nanoplate.  Under the 

misaligned conditions, no TERS spectra of the adsorbed molecule could be collected 

(Figure 5-5c).  However, there is some silicon and 4-MPBA contributions, as shown in 

Figure 5-4c, since the tip is still in the vicinity of the focal point.  As the irradiation time 

for this experiment was significantly shorter (by more than a minute) than that used in 

Figure 5-3, the sample was exposed to the laser for an additional five minutes to 

determine if the nanoplate had been damaged by laser-induced heating.  The post-

irradiation AFM scan (Figure 5-5d) did not exhibit any damage.  To verify that the 

nanoplate was not impervious to drilling, the tip and laser were realigned to be in an ideal 

TERS configuration.  Spectra were collected on and off the nanoplate in aligned 

conditions (red and blue dots, Figure 5-5a).  When the tip is away from the nanoplate, 

spectral features of 4-MPBA and the silicon second-order transverse optical phonon 

mode from the tip can be observed.  The 4-MPBA contribution is presumably coming 

from the presence of 4-MPBA at the surface of glass, while the silicon peak is coming 

from the AFM tip.  Importantly, Figure 5-5e highlights that the system is well aligned, as 

shown by the intense contribution of 4-MPBA over the nanoplate compared to the 



83 

 

contamination seen in the spectrum collected off the nanoplate.  Ten further spectra were 

collected in the centre of the nanoplate, at varying tip-sample distances.  Additional 

single point measurements were collected at other positions on the nanoplate (Figure 5-

5b).  After collection of the TERS spectra in the selected areas, the AFM tip was changed 

to a new, non-coated tip, and a subsequent AFM scan was acquired (Figure 5-5f).  Once 

again, local damage was observed in the exact position where the spectra were collected.  

The defects exhibit two critical structural components.  Firstly, in the region that was 

irradiated over a longer period (barycentre of the triangle), the degree of damage is 

considerably greater than that of the areas where single TERS measurements were 

performed.  Furthermore, regardless of the exposure time, the defects adapt a triangular 

shape, similar to that of the AFM tip.  As the positions and relative sizes of the holes can 

be readily changed based on the TERS experiments, this approach could be used to 

pattern nanostructures through localized metal ablation. 

 

Figure 5-5 AFM images of a silver nanoplate, showing a) points at which spectra 

were collected on (red) and off (blue) the nanoplate, and b) other points of 

collection. c) No TERS signal is measured off alignment, resulting in d) no damage 

to the nanoplate.  e) TERS spectrum is measured on the nanoplate (red), resulting in 

f) damage to the nanoplate, at the points as shown in a) and b). 
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Time-lapse series of experiments were conducted to monitor the 4-MPBA Raman 

spectral changes over irradiation time (Figure 5-6).  Noticeable spectral changes such as 

weaker intensity and spectral profile changes are observed for spectra collected after a 

longer irradiation time, highlighting the onset of the structural damages to the Ag 

nanoplate.  

 

Figure 5-6 a) AFM images showing two distinct points (1) and (2) chosen for time 

lapse experiments; b) Series of three spectra collected under continuous irradiation 

on point 1 after irradiation of 10, 20 and 120 s. The Au-coated tip was new; c) Series 

of 5 spectra collected on point (2) after irradiation of 10, 20, 30, 40, 50 s. The Au 

coated tip was used to conduct the experiments in point (1). 

Overall, these observations indicate that under an ideal TERS configuration, the TERS tip 

can induce significant damage on a metallic surface, and can be used to drill triangular 

holes into the nanoplates.  As metallic nanoplates are commonly used in gap-mode TERS 

measurements, the source of this nanoscale surface ablation was further investigated.  

Possible causes of this drilling are multiple and can presumably be assigned to i) 

mechanical damage from the tip; ii) plasmonic heating; iii) a plasmon-mediated chemical 

or electrochemical reaction; or iv) some combination of these processes.  As mentioned 

earlier, no hole generation was observed when the laser was not focused on the tip.  Since 

pseudo-TERS measurements were performed (single point and tip-retraction), it is 

unlikely that mechanical damage is the cause, despite the triangular shape matching that 

of the metallized AFM tips.  Furthermore, under prolonged irradiation with this 
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configuration, no damage was observed.  This means that laser heating from a far-field 

focused beam alone is insufficient to drive this process, and that the presence of the tip at 

the focal point of the laser is necessary to induce local damage.  The excitation source 

was set at 632.8 nm, and since the plasmon excitation is quite weak at this wavelength, 

this may exclude thermal effects in these experimental conditions.  This does not 

preclude the possibility of heating due to the plasmonic resonance of the tip.  As such, we 

focus here on the effect of an ideal TERS configuration, where the metallized tip is 

aligned with the laser. 

5.3 Plasmonic Heating and Nanostructure Annealing 

Optical confinement of the electric field in small volumes of metal nanoparticles results 

in plasmonic heating.25,26  This heating has been exploited, among other uses, for cancer 

phototherapy1-3 and molecular delivery.27,28  Plasmonic heating can be sufficient to 

vaporize the surrounding medium,29,30 or under intense continuous wave sources,31 or 

pulsed lasers,32 locally melt the nanoparticle.  Previous studies have shown plasmonic 

heating to adversely affect the SERS spectra, as molecules are desorbed or nanoparticles 

are damaged.33,34 

5.3.1 Hot Electron Generation vs. Plasmonic Heating 

In plasmon-mediated reactions, an increased rate of reaction is observed, owing to either 

or both plasmonic heating and hot electron generation.  There has been recent debate on 

which factor contributes more to enhanced reaction rates, and is still a topic of great 

interest.35-37  It is therefore desirable to decouple these two mechanisms.  In theory, this 

can be done by reproducing an experiment in the dark, under appropriate heating, but 

without plasmon excitation, and comparing the rate of reaction, if any.  The difficulty in 

doing so involves accurately determining the temperatures achieved in plasmonic 

heating. 

Temperatures in nanostructured systems are often measured through the injection of 

nanoprobes, such as fluorescent probes and quantum dots,38,39 or through changes in the 

surroundings, by phase transitions of lipid bilayers.40  These techniques are largely 

unsuited for temperature measurements in plasmon-mediated reactions, due to the 
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potential interference of the probes on the reaction.  Experimentally, the temperature is 

sometimes measured by Raman thermometry, where the ratio of the intensities of the 

anti-Stokes and Stokes scattering peaks is obtained and the local temperature is extracted 

(following the Boltzmann distribution, equation 2.1).34,36,41  When such measurements are 

not possible under the given reaction conditions, the temperature is estimated through 

simulations, often followed by bulk measurements of the temperature, when the reaction 

occurs in solution.1 

5.3.2 Mechanism of Plasmonic Heating 

The main source of heating during plasmon decay is Joule heating, resistive heating in a 

conductor.  Within a picosecond of excitation, hot electrons have redistributed their 

energy to lattice phonons.  Subsequently, the heated lattice undergoes phonon-phonon 

coupling to exchange energy with the surrounding medium.42  This heat transfer can be 

written as:26,43 

𝜌𝐶𝑝

𝜕𝑇(𝒓)

𝜕𝑡
= ∇ ∙ [𝜅∇𝑇(𝒓)] + 𝑄                                        (𝟓.𝟏) 

where 𝜌 is the density, Cp is the specific heat capacity at constant pressure, T(r) is the 

absolute temperature, 𝜅 is the thermal conductivity, and 𝑄 is the external source of heat: 

in this case, the amount of heat produced per unit time and volume, originating mainly 

from Joule heating in the nanostructure.  By Poynting’s theorem, this can be written:26  

𝑄 = ∭ 𝑞𝐸𝑀𝑑𝑉                                                          (𝟓.𝟐) 

where V is the volume and 𝑞𝐸𝑀 =
1

2
𝑅𝑒(𝑱 ∙ 𝑬∗ ) is the electromagnetic power loss density, 

with 𝑱 = 𝜎𝑬 the current density inside the nanoparticle as a function of the conductivity 

𝜎 and electric field E.  Therefore, in order calculate the heat production, the electric field 

inside the nanoparticle must be determined.  This can be calculated through Maxwell’s 

equations (equation 3.1).  Most commonly, this is done through modelling the electric 

field and resultant heat transfer using FEM.26  For small spherical nanoparticles of radius 

R, it can be shown that:44  
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Δ𝑇(𝑟) =
𝜎𝑎𝑏𝑠 𝐼0

4𝜋𝜅𝑟
 , 𝑟 > 𝑅                                     (𝟓.𝟑) 

where Δ𝑇(𝑟) is the temperature increase, 𝜎𝑎𝑏𝑠  is the absorption cross-section of the 

nanoparticle, 𝐼0 is the intensity of the incident light, and r is the distance from the surface 

of the nanostructure.  This can be extended for non-spherical particles through the use of 

a correction factor 𝛽:43  

Δ𝑇(𝑟) =
𝜎𝑎𝑏𝑠 𝐼0

4𝜋𝜅𝑅𝑒𝑓𝑓𝛽
                                                    (𝟓.𝟒) 

with 𝑅𝑒𝑓𝑓  as the effective radius of the nanoparticle.   

5.3.3 Magnitude of Photoinduced Heating 

As described by equation 5.3, the degree of heating is influenced by the incident light  

(𝐼0), the surrounding medium (𝜅), and the optical properties of the metal nanoparticle 

(𝐶𝑎𝑏𝑠) as determined by the size and shape of the nanoparticle, and the identity of the 

metal.  There are many studies investigating different nanostructures and optimizing their 

opto-geometric properties using the finite element method (FEM): geometries such as 

nanospheres, nanorods, nanocages, and nanostars.26,33,45  Depending on these factors, 

temperature increases achieved through plasmonic heating range from several K to 

hundreds of degrees.26,34,46  Locally, this has been shown to form a vapor layer around the 

nanoparticle above T = 200 °C.29 

Bulk materials have a much higher melting point than their nanostructured materials.  

Melting and reshaping of gold nanorods has been shown to occur at temperatures as low 

as 200 °C, while bulk gold has a melting point of 1064 °C.47  Thermal annealing of gold 

nanospheres causes structural changes after 200 °C.48 Nanostructures with finer features, 

such as nanostars, are expected to have a lower melting temperature.26 

Here, the temperature is calculated using FEM, and compared to similar simulations of 

heating in TERS, as the extended tip structure may influences heating effects compared 

to single nanoparticle studies. 
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5.3.4 Modelling of Heating in Tip-Enhanced Raman Spectroscopy 

To investigate the heating of the tip, finite element method (FEM) calculations were 

performed to evaluate the temperature gradient in the vicinity of the tip-nanoplate 

assembly.  The geometry and material properties were set to match the experiment, with 

the laser linearly polarized and propagating along the tip axis. The power of the laser 

source was 1 mW before the nanoplate.  The normalized electric field was calculated for 

a tip-sample separation of 2 nm, as shown in Figure 5-7a.  The corresponding 

temperature change is reported in Figure 5-7b.   

 

Figure 5-7 a) Electric field in the plane of polarization, with 2 nm between the TERS 

tip and the silver nanoplate; b) Resultant temperature increase. 

For a tightly focused Gaussian beam in transmission geometry polarized along the x-

direction, there is a component of the electric field along the tip axis:49 

𝐸𝑧 = 𝑖𝑘0  
𝜕𝐸𝑥

𝜕𝑥
                                                           (𝟓.𝟓)  

where 𝐸𝑥 and 𝐸𝑧 are the x-and z-components of the electric field, respectively; i is the 

imaginary unit; and 𝑘0 is wavevector of the incident wave.  However, it is difficult to 

ascertain the exact value of this component in a real system. To determine the maximum 

electric field, and thus the maximum heating expected, the case where the laser is 

polarized along the tip axis with a side illumination geometry is also calculated (Figure 5-

8). 
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Figure 5-8 a) Electric field at tip, with the laser polarized along the tip axis; b) 

Temperature rise at tip-sample contact; c) Temperature rise at a tip-sample 

distance of 2 nm. 
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This result for the electric field calculation (Figure 5-7a) is consistent with previous 

results.50,51  The resultant weak temperature increase, limited to about 2 K as shown in 

Figure 5-7b, is comparable to the work of Balois et al., who have predicted an increase of 

several degrees under 50 µW plane wave side illumination with a gold tip-gold substrate 

junction.50  Other work from Downes et al. predicts a much larger temperature increase, 

up to T = 360 K in the gold tip-silver substrate junction at 533 nm using side 

illumination;52 in comparison, the reciprocal metal configuration (Ag tip and Au 

substrate) illuminated at 633 nm increases by only 30 K under the same irradiance 

conditions of 1 mW/µm2.46  Differences between these results and ours can be attributed 

to distinct excitation wavelengths and geometry.  More specifically, in the backscattering 

configuration that we have used for our experiment and modelling, it is likely that the 

metal substrate has decreased the laser intensity reaching the tip, leading to limited 

heating at the tip apex as observed in Figure 5-7b.  As shown in Figure 5-8, polarization 

along the tip axis yields a higher temperature increase of T  25 K but, to reiterate, the 

difference between our study and that of Downes et al. is their illumination with 532 nm 

compared to our excitation with 632.8 nm, as both calculations were conducted with 

irradiances of 1 mW/µm2.  The FEM simulations show that the calculated temperatures at 

the tip-substrate junction are insufficient to cause drastic damage to the nanoplates. 

5.4 Analysis by Energy-Dispersive X-Ray Spectroscopy 

To further investigate the role of the tip in the nanoplate drilling, the TERS tip was 

investigated under SEM and energy-dispersive X-ray (EDX) spectroscopy.  SEM images 

were first obtained for a pristine TERS tip.  A tip coated at the same time as the pristine 

tip was used for the TERS experiment.  The tip selected for EDX measurements was 

minimally used.  In this instance, the laser was focused on the nanoplate.  When the tip 

was raster scanned over the nanoplate during the laser-tip alignment, the tip drilled a hole 

near the middle of the nanoplate (Figure 5-9).  As this tip was not in the focal spot of the 

laser for only a few seconds, and was in motion during this time, plasmon-induced 

heating was minimized. 
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Figure 5-9 Atomic force micrograph of drilled silver nanoplate corresponding to the 

tip examined by EDX. 

The SEM images of the pristine tip are shown in Figure 5-10a and 5-10 b.  Figure 5-10c 

and 5-10d show the damage to the tip after the TERS experiment.  As seen in Figure 5-

10d, the gold layer is delaminated from the tip, revealing the silicon that constitutes the 

bulk of the tip.  There are two distinct sections chosen for EDX measurement, just below 

and above the tip apex, as highlighted in Figure 5-6d.  In the area above the tip apex, 

EDX measurements show the expected gold and silicon (Figure 5-10e): this section is the 

gold layer, ripped away from the tip during alignment.  On the lower section, contribution 

from silver are also seen (Figure 5-10f).  A small contribution from aluminum is 

observed (Figure 5-10f), but belongs to the background noise, since no contrast could be 

seen in the aluminum EDX map.  
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Figure 5-10 SEM images of a, b) a pristine TERS tip; c) a TERS tip after silver 

nanoplate drilling, indicating d) areas at which EDX spectra were collected.  e), f) 

Corresponding EDX spectra. 

Maps showing the distribution of each element of interest were also acquired, correlating 

to the SEM of the damaged tip (Figure 5-11a).  The gold map, in Figure 5-11b, shows 

gold in all undamaged areas of the tip, but not the exposed silicon or the area below the 

tip apex.  Conversely, the silicon map shows the highest signal in the area exposed 



93 

 

(Figure 5-11c), is also present under the undamaged layer of gold, but no signal is seen in 

the area below the tip apex.  The map of silver shows only a presence in the area below 

the tip apex (Figure 5-11d).  Gold and silicon are also likely present under the tip apex, 

but are shielded by the silver structure. 

 

Figure 5-11 a) SEM image of a TERS tip after drilling; EDX maps of b) gold; c) 

silicon; d) silver. 

5.4.1 Plasmon-Mediated Reaction 

The presence of amorphous silver on the TERS tip suggests silver species are transferred 

from the nanoplate to the tip by a plasmon-mediated reaction.  Such reactions are 

triggered by the combination of the locally enhanced electric field and the presence of hot 

electrons, highly energetic electrons that are the result of non-radiative plasmon decay.  

The generation of hot electrons has been described for both silver and gold 

nanostructures.  To further understand the relationship between TERS and hot-electron 

generation, it is necessary to compare our configuration to other gap-mode TERS 

experiments.  

Typically, gap-mode TERS experiments employ the use of gold nanoplates.  For the 

resulting tip-plate junctions (gold-gold, silver-gold), to the best of our knowledge, no 
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previous studies have demonstrated deformation of the nanoplate after TERS 

measurements to the degree we have shown and under modest irradiation conditions.  

The use of a silver nanoplate with a gold tip is likely the driving force behind the ablation 

of the nanoplate.  Here, we surmise that two factors either individually or in combination, 

yield the changes to the structure of the nanoplate.  It has been shown the citrate can be 

oxidized by hot holes; electrons released from this oxidation can then reduce Ag+ ions.53  

Under different conditions, Ag+ can be reduced directly by hot electrons.54  The transfer 

of the hot electrons from the tip to the nanoplate can be aided by the layer of atmospheric 

water at the tip-substrate interface, or from the direct contact between the tip and 

nanoplate during measurement.  As citrate is used in the synthesis of the nanoplates 

described in this study, it is possible that even after functionalization with 4-MPBA, 

some citrate remains on the surface.  Citrate residues have been observed in the TERS 

spectrum, at 1400 cm-1, as shown in Figure 5-12.55-57   

 

Figure 5-12 Comparison of a TERS spectra including citrate (blue) to a typical 

TERS spectrum of 4-MPBA (red).  Spectra have been offset for clarity. 

It is known that coating a surface with a thin layer of SiO2 can prevent hot electrons from 

reaching or escaping the surface.58  However, in the case of coating the metal tip with 

such a layer, we have previously shown that this diminishes the EM enhancement and the 



95 

 

resulting TERS compatibility of the tip.51  As the use of silver nanoplates with gap-mode 

TERS is limited,12,13 it is difficult to ascertain if this effect occurs exclusively with silver 

nanoplates.  In those described works, a silver tip was used in conjunction with the silver 

plates; however, we employ the use of a gold tip as opposed to a silver tip.  As our 

conditions use a heterometallic junction, the hot electron generated by the gold tip could 

reduce surface silver species onto the tip, potentially when the tip makes contact with the 

surface.  The triangular geometry of the resulting hole is related  to the direction of the hot 

electron coming off of the tetrahedral tip. 

5.5 Conclusions 

In summary, silver nanoplates were synthesized by the seed-mediated method for use as 

substrates for gap-mode TERS experiments.  During both the alignment process and the 

collection of TERS spectra, nanoscale holes with a triangular shape were ablated in the 

nanoplate when the tip was aligned with the laser.  Using FEM calculations, we 

investigated the role of plasmon-induced heating and determined that the elevation in 

temperature at the junction between the tip and nanoplate was not enough to account for 

the surface damage.  EDX measurements of a tip used to generate the triangular 

nanoholes showed the presence of silver on the tip, making the reduction of silver species 

from the nanoplate onto the tip a likely cause of this nanoplate drilling.  Further 

investigations to determine the exact trigger of this process could provide greater insight 

into plasmon-mediated chemical reactions, especially when they can be controlled with 

nanoscale precision.   
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Chapter 6  

6 Exploiting Fractal Patterns for the Rational 

Development of Metallic Nanostructure Geometries 

As applications of plasmonics are invariably linked to their optical properties, as 

determined by the geometry and composition of the nanostructure, as well as the 

irradiation conditions, it is important to develop and characterize new structures for 

future applications.  This is particularly true for applications in plasmon-mediated 

reactions, where hot carriers are steered by the geometry of the nanostructure.1,2  In this 

chapter, the development of fractal nanostructures and the simulated and experimental 

behaviour of their plasmon modes, investigated using a variety of techniques and 

calculations, is discussed.  Finally, the structures are functionalized and their applicability 

for surface-enhanced measurements is demonstrated.  

6.1 Introduction 

Metallic nanostructures with simple geometries, such as small gold nanospheres, are 

generally limited to two resonances in the visible regime: the dipolar and quadripolar 

mode (Figure 6-1a).3  This limits their applicability to plasmon-mediated reactions and 

other applications.  In order to develop a broadband plasmonic response, fractal 

nanostructures have been examined.4-6  A fractal structure results in multiple plasmonic 

resonances, which can be predicted by modelling and measured experimentally, using 

techniques such as mid-infrared nanoscopy (nano-FTIR) and electron energy loss 

spectroscopy (EELS).  By tuning the polarization and wavelength of the incident beam, 

the hotspots associated with confinement of electromagnetic field can be selectively 

excited, enabling full optical control over the plasmons associated with a given structure.  

The numerous plasmonic resonances occurring in fractal structures can be explained 

using a hybridization model, wherein the modes of a structure and a cavity can 

constructively or destructively interfere to create new modes (Figure 6-1b).7,8  In the case 

of a nanoshell, the plasmons induce surface charges at the inner and outer interfaces of 

the metal shell; due to the finite thickness of the shell, these plasmons interact, splitting 

into two new plasmon resonances. 
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Figure 6-1 a) Dipole and quadrupole modes of a gold nanosphere; b) Hybridization 

model of plasmonic resonances, where the energies of the plasmon modes of a gold 

nanoshell are described as a combination of those of a nanosphere and a cavity. 

The fractals on which the nanostructures in this thesis are based are the Bethe lattice and 

the Sierpiński triangle.  The Bethe lattice is a branching structure, identified by the 

number of branches b.  In each subsequent generation of the fractal, each branch leads to 

b – 1 new branches, as shown in Figure 6-2a.9  Bethe lattice fractals are labelled by the 

number of branches and the generation i.e. 3BG2 indicates a three-branched structure 

with two generations (Figure 6-2a).  The Sierpiński triangle involves removing a section 

of an equilateral triangle, as defined by the midpoints of the sides of the triangle, as in 

Figure 6-2b.10  This process is repeated iteratively, each new generation n comprising 3n
 

triangles.   
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Figure 6-2 a) Three-branched Bethe lattice, from first generation (3BG1) to the 

third (3BG3); b) Sierpiński triangle, from the base unit (equilateral triangle, G0) to 

the second generation (G2) 

Mathematically, fractals are infinite; experimentally, these fractals are truncated after 

several generations, so that they can be reproduced through nanofabrication techniques 

which have an intrinsic spatial resolution of about 10 nm.  Additionally, the terms Bethe 

lattice and Sierpiński triangle both refer to two-dimensional fractals; typically, they are 

fabricated with metal thicknesses in the range of tens of nanometres. 

In this chapter, we will: 

i) use nano-FTIR to investigate the plasmonic modes of a Bethe Lattice fractal 

nanostructure, and compare to those predicted by finite-difference time-domain 

(FDTD) simulations; 

ii) study the evolution of the plasmon modes of a silver Sierpiński nanostructure by 

EELS and FDTD; 

iii) apply the gold Sierpiński nanostructure to surface-enhanced Raman mapping, and 

compare to the electric field simulated by FDTD. 
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6.2 Bethe Lattice 

Five-branched Bethe lattice of the second generation (5BG2) and three-branched, fifth-

generation (3BG5) metastructures were fabricated in arrays of 50 × 50 μm2 (10 × 10 to 30 

× 30 individual fractal structures, separated by 0.8 μm) by electron-beam lithography 

(Chapter 3.6.3).  SEM images of individual structures are shown in Figure 6-3a,b.  

Microabsorption measurements were conducted, using a mid-IR synchrotron source 

combined with a far-field microscope.  As shown in Figure 6-3c, the 5BG2 fractal 

exhibits two dominant resonances in the near- to mid-IR range (6000–1000 cm-1), while 

the 3BG5 fractal exhibits a series of 4-5 resonances spanning the same spectral domain 

(Figure 6-3d).  These resonances, dependent upon the number of fractal generations, are 

associated with both dipolar and multipolar modes.  The first-order generation exhibits a 

single resonance, with each subsequent generation introducing a new plasmon resonance.  

Applying the hybridization model (as shown in Figure 6-1b), it appears that the modes 

with the higher energies are associated with the outermost generation, while the modes 

with the lower energies appear as coupling of modes from the outer structure towards the 

inner, first-generation structure.5  This holds true for the lowest energy resonances of the 

3BG5 fractal.  
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Figure 6-3 SEM images of a) 5BG2 with rod length 300 nm and b) 3BG5 with rod 

length 200 nm.  Near- to mid-IR absorption spectra of the c) 5BG2 and d) 3BG5 

fractal, with rod lengths varying from 200 to 400 nm.  

Figures 6-3c and 6-3d further demonstrate that by changing the length of the rods, the 

“G0” building block, the spectral positions and the number of resonances can be tailored.  

The ability to tune the plasmonic properties is a critical factor for potential applications.  

Further study of these resonances is achieved through the combination of FDTD 

calculations and experimental nano-FTIR measurements. 

6.2.1 Electromagnetic Field Modelling and Nano-FTIR Measurements 

In order to correlate these resonances observed in the IR absorption spectra with the 

spatial distribution of the enhanced electromagnetic field, mid-infrared nanoscopy (nano-

FTIR) measurements were made on the 5BG2 fractal.  As previously discussed (Chapter 

3.2.1), this involves using a sharp metal tip, and tracking the backscattered IR light to 

yield the IR spectrum of the sample in the near-field.  This is usually modelled through 

simulations; however, such simulations can be of limited accuracy, largely due to 

differences between the simulated and experimental geometries caused by rounding of 
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edges experimentally, surface roughness introduced during the metal deposition, and 

potential defects.  Additionally, as in investigating arrays of relatively large structures 

(micron scale) with small features (nanometer scale), these simulations can be costly in 

time or computational resources.  

Firstly, an AFM image of the 5BG2 nanostructure array was acquired (Figure 6-4a).  This 

array is with the rod length of 300 nm, making the entire fractal structure about 1.2 µm 

wide, which are then arranged in an array of 27 × 27 nanostructures.  Subsequently, the 

near-field distribution of |Ep| was collected (Figure 6-4b), polarized along one of the 

branches of the fractal, as indicated by the black arrow in the figure.  This was acquired 

at a wavelength of 5.88 µm, corresponding to the resonance at 1700 cm-1, as shown in the 

IR absorption spectrum (Figure 6-3c; blue line).  The strongest response in the near-field 

distribution of |Ep| is observed along the branch parallel to the direction of polarization.  

Following this, the near-field phase φp and Re(Ep) are measured (Figure 6-4c,d), with the 

relation Re(Ep) = |Ep|cos(φp).  This phase map shows a 180° phase change perpendicular 

to the direction of polarization; this is characteristic of a dipolar resonance.11-13  In all of 

these maps, the homogeneity of the signal from structure to structure is clear, indicating 

that the array gives a uniform response.  In order to compare the efficacy of these 

experimental techniques to the standard simulation methods, finite-difference time-

domain (FDTD) simulations were performed on the fractal nanostructure.  In the 

simulation, this resonance occurs at 6.2 µm, redshifted from the experimental 

measurement by about 320 nm; this is due to the limitations of simulated as discussed 

above.  The calculated Re(Ez) near-field distribution, as shown in Figure 6-4e, matches 

the experimental Re(Ep) well; this implies that the electric field components as detected 

experimentally are largely polarized in the z-direction.  The calculated electric field 

amplitude |E| (Figure 6-4f) is similar to the experimental distribution, with the branches 

along the direction of polarization showing the strongest response. 
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Figure 6-4 a) AFM image of 5BG2 fractal, with rod length 300 nm, with 

corresponding experimental b) amplitude, c) phase and d) Re(Ep) maps.  Calculated 

results of e) Re(Ez/E0) and f) near-field amplitude |E| for the same structure. 

Despite the limitations of simulations as previously discussed, the broadband nature of 

FDTD simulations allows for insights that are not easily achieved using nano-FTIR.  In 

Figure 6-5a and 6-5b, the 5BG2 and 3BG5 structures are shown, corresponding to the 

isowavelength maps in Figure 6-5c and d.  These maps are constructed from simulating 

the electromagnetic field at the surface of the nanostructure at 54 wavelengths, spaced out 

between 1.4 and 12 µm.  The component of the electric field along the direction of 

polarization, Ex, is mapped, forming a 4-D tensor: the value of Ex as a function of position 

(x, y) and wavelength.  For each point (x, y) of the map, the maximum value of Ex is 

found, and the wavelength for which this maximum occurred is recorded in the 

isowavelength map.  Therefore, the constructed map simply shows the enhanced electric 

field as a function of wavelength.  In the isowavelength map of the 5BG2 structure, only 

one main resonance is shown: the 6.2 µm dipolar resonance mapped previously.  The 
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map of the 3BG5 resonances shows more resonances, with those of higher energy 

including less of the structure, tending toward the outer branches.  There is some overlap 

of enhancement regions, as these outermost branches contribute consistently to more than 

one resonance; in sensing, this could mean adsorbed molecules could be probed at more 

than one wavelength. 

 

Figure 6-5 SEM images of the a) 3BG5 and b) 5BG2 structures, corresponding to 

the isowavelength maps c) and d). 

The Bethe lattice and the application of nano-FTIR and FDTD to study the resonances in 

the IR region has been discussed.  In the following sections, the response of the 

Sierpiński triangle-based nanostructures in the visible region is studied both by FDTD 

and electron-energy loss spectroscopy (EELS), and applied to SERS. 

6.3 Sierpiński Nanostructures 

Sierpiński nanostructures were fabricated by electron-beam lithography, using both silver 

and gold.  Firstly, a series of triangles were fabricated in silver, for study by electron 

energy loss spectroscopy (EELS).  In order to study the effect of introducing an aperture 

to the solid G0 silver nanostructure in moving from G0 to G1, a series of nanoprisms 

with increasingly large apertures was created (Figure 6-6a).  Additionally, nanostructures 
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with a side length of 125 nm were fabricated, with 3 nm of titanium followed by 20 nm 

of gold.  In order to study the effect of the fractal pattern, the fractal nanostructure was 

made from G1 to G8, comprising up to 38 = 6561 individual nanoprisms; G3, G4, G6 and 

G8 are shown in Figure 6-6b-d.   

 

Figure 6-6 a) HAADF-STEM images of Sierpiński structures in silver, showing the 

transition from G0 to G1, with a scale bar of 150 nm.  SEM images of the gold 

Sierpiński nanostructures at a) G3, b) G6 and c) G9, with G4 inset (scale bar of 500 

nm).  

In this chapter, the smaller silver nanostructures are studied by FDTD, and the evolution 

of the plasmon modes in creating the fractal pattern is investigated by STEM-EELS.  In 

this instance, a subtractive, or convergent, fractal is studied, as the higher-order 

generations of the fractal are obtained through the removal of material at the centre of the 

building block G0 structure.  Silver was chosen for so that higher order modes were in 

the visible range, such that they can be probed by EELS.  The larger gold nanostructures 

are studied using FDTD calculations, and applied to SERS measurements of 4-

nitrothiophenol (4-NTP).  These fractals are considered additive, or divergent, fractals, 

such that the individual building block, the G0 triangle, is maintained at the same size, 

and the triangles are added to obtain higher generation fractals.   
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6.3.1 Modelling and Electron Energy Loss Spectroscopy of Silver 
Sierpiński Nanostructures 

Through finite-difference time-domain (FDTD) calculations, it is possible to simulate the 

electromagnetic field of nanostructure as a function of wavelength, allowing for the 

further calculation of the surface charges and scattering or absorption cross-sections.  

From the electric field surrounding the nanostructure, the divergence of the electric field 

can be calculated.  Assuming there are no bound charges, this allows for the calculation 

of the surface charge on the nanostructure through the application of Gauss’ Law.  This 

was applied to the study of the silver, subtractive fractal.  The aim was to determine how 

fractalization affected the plasmon modes of the Sierpiński fractal.  To achieve this, a 

series of G0 and G1 fractals of side length 285 nm were simulated.  The series of fractals 

have an increasing aperture size, from G0, with no aperture, to a G1 fractal that is three 

individual nanoprisms, the latter matching the shape of the gold fractal discussed in 

Chapter 6.3.2.   

The surface charges of the G0 inverse structure, a triangular aperture of 285 nm in a thin 

metal surface, followed by the G0 to G1 series, are shown in Figure 6-7.  The two lowest 

energy optical modes are mapped.  As observed from the energies of the modes, these are 

orthogonal, degenerate modes, until the fractal is separated into three nanoprisms and  the 

degeneracy is broken, forming new hybridized modes (Figure 6-7e).  The modes are 

redshifted as the size of the aperture is increased.  Additionally, it can be noted that the 

respective energies of the modes are the same for the positive and inverse G0 structure 

(Figure 6-7a and b).  This follows from the Babinet principle, which states that incident 

light will excite an aperture antenna when the light polarization is orthogonal to that used 

to excite the complementary positive structure.14,15  This complementary behaviour is 

observed in comparing the charge maps: in the inverse structure, charges can flow around 

corners, but are confined by the edges, and build-up of charge along the edges creates 

dipolar fields across the aperture.  Conversely, the positive structure confines charges at 

the vertices. 
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Figure 6-7 Calculated surface charge distributions for the first mode i) and second 

mode ii) of a) a 285 nm inverse G0 aperture in a silver film; b) a silver G0 triangle of 

the same size; c) a 285 nm G1 structure with a 73 nm hole; d) a 285 nm G1 structure 

with a hole 10 nm from the edge of the triangle; e) a 285 nm G1 structure with no 

coupling between individual triangles.  Wavelengths in e) correspond to 1130 nm = 

1.097 eV; 1030 nm = 1.204 eV; 871 nm = 1.423 eV; and 765 nm = 1.621 eV.  

Polarization, wavelength and corresponding energies are as indicated; a diagram of 

the structure is shown in the inset. 

By monitoring the incident and scattered electric fields around the nanostructure, the 

absorption or scattering cross-sections can be calculated.  In the study of the silver, 

subtractive fractals, the scattering cross-section was calculated for the G0 to G1 series 
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(Figure 6-8a) as well as the inverse structures, triangular apertures of 73 nm, 142.5 nm 

and 285 nm, corresponding to the aperture size corresponding to the spectrum in orange 

in Figure 6-8a (and mapped in Figure 6-8c); the aperture size corresponding to the 

spectrum in purple in Figure 6-9a (and mapped in Figure 6-8e); and the inverse, 285 nm 

aperture, mapped in Figure 6-7a, respectively.  As expected from the energies of the 

calculated surface charge maps, there is a redshift in the resonance as the size of the 

aperture is increased, until the fractal is no longer one solid structure and the degeneracy 

is broken (Figure 6-8a; purple spectrum).  This trend is also observed in the spectrum of 

the apertures alone: as the size of the aperture is increased from 73 nm to 285 nm, the 

resonance peak redshifts. 

 

Figure 6-8 Calculated scattering cross-section of a) a solid G0 285 nm silver 

structure (red); the same structure with a 73 nm aperture (orange); with a 122.5 nm 

aperture (yellow); with 10 nm (green); with 6 nm (blue); with no coupling between 

individual triangles (purple); and b) the inverse structure, an aperture of 73 nm in a 

silver film (light blue); 142.5 nm (magenta); and 285 nm (mint, cross-section divided 

by 2).  Polarization is vertical (solid line) or horizontal (dashed line); spectra are 

offset for clarity. 
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After simulation of the optical modes of the fractals, the modes were probed 

experimentally by electron energy loss spectroscopy (EELS).  Differences between the 

modes as observed by EELS and the optical simulations are due to several factors, 

including that EELS can observe dark modes, and EELS is polarization insensitive.  Dark 

modes are non-radiative, having zero net dipole moment and are thus not excited 

optically.16,17 

All EELS experiments were conducted at the Canadian Centre for Electron Microscopy 

at McMaster University, within a collaboration with Prof. Gianluigi Botton and his 

student, Isobel Bicket, and post-doctoral researcher, Dr. Edson Bellido. 

Structures were fabricated as silver nanostructures, with a side length 285 nm, within an 

accuracy of 10 nm.  All structures were fabricated simultaneously, to achieve uniformity.  

In Figure 6-9, the high-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) images are shown for the G0 to G1 series with increasing 

aperture size.  Maps of the plasmon resonances are extracted at the energies as indicated, 

with energy windows chosen to minimize overlap between the maps.  The resulting maps 

are classified as edge modes, where the EELS probability distribution is confined to the 

edges, and cavity modes, where the distribution lies in the structure.  These cavity modes 

are dark modes, as they are not excited optically and thus are not observed in the 

simulated results above. 
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Figure 6-9 HAADF-STEM images and corresponding EELS intensity distributions 

of edge and cavity modes at energies as indicated, for a) G0 triangle; b) G1 fractal 

with small circular aperture; c) G1 fractal with larger triangular aperture; d) G1 

fractal with slightly larger triangular aperture.  Scale bar in HAADF-STEM images 

is 150 nm. 

As was shown in the simulated results, the dipole mode (lowest energy edge mode) 

redshifts after the introduction of the aperture, to 0.78 eV, and is further grown, to 0.74 

and 0.73 eV.  The EELS probability distribution, proportional to the normal component 

of the electric field of this mode, does not change greatly as the size of the aperture is 

increased; this implies that the electric field distribution does not greatly modify the 

distribution of the electric field.  This is supported by the calculated surface charges 

(Figure 6-7c,d), where there is only a small build-up of charge around the aperture. 

This redshift can be described by the coupling of the solid G0 structure and the modes of 

the aperture.  Although these modes are of very different energies (Figure 6-8a vs. b), 

their electric field distributions are similar, as described by the Babinet principle.  This 

allows the modes to couple, shifting the energy of the dipole modes.  As the G0 
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nanoprism and the aperture are of the same symmetry, both degenerate dipole modes shift 

equally when the aperture is introduced.  As the aperture size increases, this mode is 

redshifted, resulting in more spectral overlap with the mode of the G0 parents and a 

stronger redshift.  When the structure is broken into three nanoprisms, the aperture no 

longer supports a resonance, breaking this coupling and resulting in the loss of 

degeneracy of the modes. 

The second-order edge mode is a dark mode, not observed in the FDTD simulations.  It 

varies only a little in energy, with no strong trend, but the EELS distribution is affected 

by the growth of the aperture, with the antinode shifting from the centre of the edge 

toward the central aperture.  Unlike the first-order mode, it does not couple to the 

aperture mode, potentially because the Babinet principle does not necessarily apply to 

dark modes. 

The third-order edge mode consists of three nodes and four antinodes along each edge of 

the triangle, and is the second optical mode observed in the FDTD simulations.  Upon 

introduction of the aperture, there is a blueshift of 100 meV in the energy of this mode, 

but further increase in the size of the aperture does not greatly affect the energy.  The 

polarization-sensitivity of the optical simulations is useful here, in revealing that this 

mode consists of two degenerate modes with orthogonal polarizations. 

Two dark cavity modes are observed in the EELS maps.  The lowest energy mode is only 

slightly shifted (20 meV) by the introduction of the aperture, implying that the energy of 

the mode is not greatly affected by the introduction of the aperture.  Similar in behaviour 

to the dark, second-order edge mode, the EELS distribution changes, moving towards the 

inner aperture in accommodating its introduction.  The second-order cavity mode 

blueshifts with the introduction of the aperture, and further blueshifts as the aperture is 

grown.  In the EELS probability distribution, a high EELS signal is seen in the centre of 

the smaller G0 fractal units. 
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6.3.2 Modelling and Surface-Enhanced Raman Spectroscopy of Gold 
Sierpiński Nanostructures 

Determination of the spatial location of these hotspots is critical for applications in 

plasmon-mediated chemistry, where reactions are catalyzed in the hotspots.1,2 The gold, 

additive G1 fractal was modelled by three 125 nm nanoprisms of 20 nm of Au on top of 3 

nm of Ti on a glass substrate.  When irradiated with vertically polarized plane wave, the 

electric field distribution at 800 nm shows the highest intensity at the top apices of the 

individual nanoprisms forming the G1 fractal structure (Figure 6-10a).  For the 

orthogonal polarization, the electric field at 800 nm is confined to the bottom apices of 

the nanoprisms, as shown in Figure 6-10b.  The fractal metastructure is self-similar, such 

that this result for the electric field can be extrapolated for higher-order generations.  As 

individual nanoprisms are added, in moving from G1 to G8, the polarization-dependent 

hotspots are located in the gaps between the nanoprisms. 

 

Figure 6-10 Calculated normalized distributions of the electric field at 800 nm, 

polarized a) vertically and b) horizontally. 

From the calculated map of the electric field of the gold G1 fractal structure (Figure 6-

10), it was determined that the higher-order metastructures could be used for applications 

in surface-enhanced Raman spectroscopy (SERS) due to the multiple resonances in the 

visible range.  To investigate this, the nanostructures were incubated in a 10 mM solution 

of 4-nitrothiophenol (4-NTP) in order to obtain a monolayer.  Both 632.8 nm and 785 nm 

laser excitations were used for the SERS study, as shown in the spectra in Figure 6-11a.  

Microspectroscopy measurements allowed for the determination of the distribution of the 

4-NTP over the surface of the metastructure: at each point of the map of the 
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metastructure, a SERS spectrum is acquired.  Through the integration of a particular 

mode, in this instance the symmetric NO2 stretching mode of 4-NTP ([1300-1375] cm-1 

range), the distribution of the 4-NTP over the metastructure is determined.  Uniform 

functionalization of the gold fractal nanostructures is achieved, as shown in Figure 6-11b, 

exhibited by the minimal variation of the signal intensity.  Regions off the gold 

metastructures appear darker in the map, with little to no 4-NTP adsorbed on the 

substrate and no enhancement of the Raman signal in these areas.  Under 632.8 nm 

excitation, SERS maps were acquired on G6, G7 and G8 metastructures; under 783 nm 

excitation, the G7 metastructure was investigated (Figure 6-11b, i-iv).  SERS 

measurements are diffraction-limited, so in these measurements it is not possible to 

spatially resolve metastructures smaller than G5 (Figure 6-11b, i & iv), and individual 

hotspots as predicted by the calculation in Figure 6-10, are not distinguishable.  Under 

these conditions the G5 structure (~ 4000 nm across) is sufficiently larger than the beam 

diameter.  With a longer excitation wavelength, a poorer spatial resolution is obtained, as 

is expected for diffraction-limited measurements, resulting in more difficulty in 

distinguishing G5 in the map at 785 nm (Figure 6-11b iv), than the maps at 632.8 nm 

(Figure 6-11b i-iii). 

A further map of G6 was collected with the laser power increased tenfold, from 0.88 mW 

to 8.8 mW, in order to further investigate the optical properties of the functionalized 

metastructure.  This map was then analyzed by principle component analysis (PCA), 

transforming the data set constituting the map into uncorrelated principle components.  

Analysis of the one of the principle components (Figure 6-11c) shows that it matches the 

SERS spectrum of 4,4’-dimercaptoazobenzene (DMAB), the dimer of 4-NTP, which 

shows characteristic peaks at 1134 cm-1 (C-H bend + C-N stretch), and 1387 and 1434 

cm-1 (N=N stretch + C-C stretch + C-H bend).18  The dimerization of p-NTP to DMAB, 

as triggered in the hotspots of metal nanostructures, is a well-studied plasmon-mediated 

reaction.18,19  Figure 6-11d shows the distribution of this component over the surface of 

the metastructure, showing in red the areas of highest prevalence of this component, and 

thus the areas of highest electric field enhancement.  The non-uniformity of these 

hotspots could be due to defects in the structure; although electron-beam lithography can 

reproducibly fabricate the structures (as shown in Figure 6-6b-d), sub-nanoscale 
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variations and ultrathin gaps at the metal surface further increase the confinement of the 

electromagnetic field.20-22 

 

Figure 6-11 a) SERS spectra collected on the gold Sierpiński structures at λ = 632.8 

nm (red) and λ = 785 nm (blue), with the νs NO2 mode highlighted; b) SERS maps 
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obtained from the integration of the mode highlighted in a) on i) G6, ii) G7, iii) G8 

at λ = 632.8 nm; and iv) G7 at λ = 785 nm. c) Principle component with peaks of 

DMAB and d) map of the distribution of this component over the metastructure 

surface.   

6.4 Conclusions 

Overall, the plasmon modes of Bethe lattice and Sierpiński fractal nanostructures have 

been methodically evaluated using both experimental measurements and numerical 

calculations. By performing s-SNOM measurements on the Bethe Lattice fractals, the 

experimental distributions for the near-field enhancement can be obtained at the level of a 

single structure and compared with numerical results.  For silver Sierpiński fractal 

nanostructures, the behaviour of the plasmon modes was investigated using FDTD 

simulations and EELS measurements.  For this subtractive fractal, it  was found that 

increasing the generation number redshifted the primary dipolar energy, with no change 

in the physical footprint of the nanostructure.  Increasing the generation number of the 

fractal may be an efficient way to redshift the dipolar modes of  the nanostructure, but is 

limited practically by the resolution of nanofabrication techniques.  Gold Sierpiński 

fractal metastructures, fabricated from the first to the eighth generation, were studied 

through FDTD calculations, and their applicability to SERS measurements was 

demonstrated.   
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Chapter 7  

7 Conclusions and Outlook 

In this thesis, we have investigated plasmon-mediated chemistry, and designed new 

fractal structures for future applications.  This has involved experiments using a variety 

of plasmon-mediated techniques, including surface- and tip-enhanced Raman 

spectroscopy, which are particularly useful for monitoring the plasmon-mediated 

reactions. 

A general introduction of the wider application of plasmon-mediated reactions, to water 

splitting and carbon dioxide reduction, is elaborated.  The goal of this research is to 

improve the efficiency of these plasmon-catalyzed reactions under visible light 

irradiation, such that they could be photocatalyzed by sunlight.1,2  Following this 

discussion, the essential theoretical background for the understanding of plasmon-

mediated chemistry is provided.  The principles of Raman spectroscopy and plasmonics 

are described, followed by their combination in plasmon-mediated spectroscopy, 

particularly surface- and tip-enhanced Raman spectroscopy.  The decay of plasmons, 

involving the ejection of hot carriers and subsequent heating effects, is discussed, 

including its coupling to chemical reactions.  In Chapter 3, the technical details of these 

techniques are described, including the details of the fabrication of metallic 

nanostructures, the relevant optical microscopic and spectroscopic techniques, and the 

modelling of the light-matter interaction. 

In Chapter 4, the plasmon-catalyzed reduction of aryl diazonium salts on gold surfaces is 

discussed.  The reaction of both 4-nitrobenzenediazonium and 4-cyanobenzenediazonium 

was investigated on both gold nanoisland and gold nanoprisms formed by nanosphere 

lithography.  Differentiation of plasmon-mediated and spontaneous grafting was not 

possible using surface-enhanced Raman spectroscopy.  Using atomic force microscopy 

and scanning electron microscopy instead, large, periodic structures were observed where 

the laser was focused for plasmon-mediated grafting; this is preliminarily attributed to a 
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process similar to laser-induced periodic surface structures (LIPSS).  This process is 

observed on both gold nanoisland and gold nanoprism substrates.  

Chapter 5 of this thesis focusses on the tip-enhanced Raman spectroscopic measurements 

on silver nanoplates, which were synthesized by seed-mediated synthesis.  Local ablation 

of the nanoplates was observed during spectral acquisition, with a pattern matching that 

of the tetrahedral tip.  Plasmonic heating was discussed as a possible cause, followed by 

the estimation of plasmonic heating in our system through finite element calculations.  It 

was concluded that plasmonic heating alone was not the cause of the damage; following 

energy dispersive X-ray spectroscopic measurements, it was discovered that silver had 

migrated to the tip.  This makes the reduction of silver from the nanoplate onto the tip a 

likely cause of the ablation.  Investigation into the precise processes and reactions 

involved could provide insight into plasmon-mediated chemical reactions controlled with 

nanoscale precision.   

Designing new fractal nanostructures for future applications in plasmon-mediated 

chemistry is the focus of Chapter 6.  Two fractal-based nanostructures are used, the Bethe 

lattice and the Sierpiński triangle, both of which were studied using experimental 

measurements and numerical calculations.  For the Bethe lattice fractals, the experimental 

distributions of the electromagnetic near-field are observed through scanning near-field 

optical microscopy, for individual structures.  This is then compared to the expected 

response as calculated through finite-difference time-domain methods.  Sierpiński fractal 

nanostructures were fabricated in both silver and gold, and studied using the combination 

of finite-difference time-domain methods with electron energy loss spectroscopy and 

surface-enhanced Raman spectroscopy, respectively.  For the fractal in silver, the effect 

of increasing the generation number of the fractal was studied, and it was concluded that 

this redshifted the primary dipolar energy.  This can be used in future work to redshift the 

dipolar resonances without changing the footprint of the nanostructure, keeping in mind 

limits of nanofabrication techniques.  Gold Sierpiński fractal metastructures were 

fabricated up to the eighth generation.  The location of the electromagnetic hotspots was 

predicted by calculations, and the enhanced electric field was applied to surface-enhanced 
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Raman measurements.  Analysis of the resultant maps showed the plasmon-mediated 

dimerization of the analyte during measurements. 

Extension of this work could involve further investigation of the plasmon-mediated 

grafting of the diazonium salts.  This would include determining if the effect is plasmon-

mediated or photo-induced, and to what degree plasmonic heating contributes.   

Laser power and exposure time can be optimized to achieve grafting patterned precisely 

at plasmonic hotspots.3-5  As the location of the hotspots are dependent upon the intensity, 

wavelength and polarization of the excitation laser, the plasmonic platform can be multi-

functionalized through sequentially grafting diazonium salts while changing polarization 

or wavelength parameters.5  Multi-functionalization of surfaces represents a new and 

exciting avenue for surface chemistry (Figure 7-1a).  Tip-enhanced Raman microscopy 

would be useful in investigating such functionalized platforms, the nanoscale resolution 

allowing for distinguishing regions where different molecules are functionalized. 

These functionalized regions could be further modified to bind to a certain analyte, with 

the diazonium salt modified to detect only a select target.  This could include glycan 

sensing, a molecule that is overexpressed in cancer cells, which has previously been 

investigated in the Lagugné group.6   

When this is achieved, it can be applied to novel nanostructures, and the grafting can be 

observed as a function of different laser polarization and wavelengths.  For this, the 

fractal structures recently developed, such as those described in Chapter 6 and shown in 

Figure 7-1b, are of particular interest since they present multiple resonances that can be 

excited by changing the wavelength and the polarization of light.7,8   
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Figure 7-1 a) Multi-functionalization of simple gold nanodisks using different 

excitation polarizations.  Adapted with permission from ref. [5].  Copyright 2018 

Royal Society of Chemistry.  b) Sierpiński fractal nanostructure, applicable to 

future studies in plasmon-mediated chemistry. 

Critical to many fields of science, including food safety,9,10 medicine,11 and 

environmental monitoring,9 is the detection of molecules in very low concentrations.  

This necessitates characterization methods that exhibit high sensitivity, label-free 

detection and high spatial resolution.  Beyond the research community, this approach 

ultimately aims at developing more sensitive sensors with higher specificity towards a 

selected analyte.   
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