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Abstract 

Oil-water emulsions encountered during production and refining of crude oil, as well as oil spills 

present technical challenges. There is need for low-cost technology to understand characteristics 

such as composition, droplets size distribution and other rheological properties of oils and their 

emulsions and monitor oil layer depth of spill.  

The main purpose of the first part of this work was to develop and test ultrasonic based technology 

to characterize oils and their emulsions using their acoustic velocities and attenuations. The 

technique captured an increase in both acoustic velocity and attenuation with asphaltenes 

concentration in crude oil. Thus, the fast response and low-cost ultrasonic techniques provide a 

plausible means of monitoring this impurity level in treated and upgraded crude oils. Tests with 

emulsions of oil samples exhibited that both acoustic velocity and attenuation decreased with time, 

which indicated water droplets settling. This was confirmed by direct measurements of water 

separation with time which were consistent with ultrasonic results. These findings have opened a 

new perspective for the ultrasonic technique to monitor and characterize emulsions online.  

 The main purpose of the last part of this work was to develop a low-cost ultrasonic-based 

technique to monitor the oil layer depth of the spills. Layers of water-in-oil emulsion and mineral 

and crude oil samples were added to the DI water surface at an increment of 1 mm thickness in a 

jacketed vessel. Acoustic velocity decreased with the thickness of oils and their emulsions layers, 

while attenuation increased as expected. This is significant progress towards the development of 

ultrasonic technology to detect and monitor oil spill depth. A suitable device configuration is 

proposed for further development and field testing.  

 

 

 

 

 Keywords:  Emulsion characterization, Crude oil, Ultrasonic techniques, acoustic velocity, Film 

Thickness, Oil Spill. 
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Summary for Lay Audience   

Oil-water emulsions encountered during the extraction and cleaning of crude oil, as well as oil 

spills present a lot of problems. An emulsion is a mixture of two immiscible liquids which are 

water and oil in this case. There is a need for a low-cost way of knowing the behavior of oils and 

their emulsions and knowing the oil layer depth of the spill.  

This study first developed and tested ultrasonic based technology (sound waves above human 

audible limit) to know the behavior such as composition and droplets size distribution of oils and 

their emulsions. It was observed that both acoustic velocity (speed of sound through a medium) 

and attenuation (loss of wave signal energy) increased with an increase in the amount of 

asphaltene (the substance that gives crude oil dark brown color) in crude oil samples. Thus, fast 

feedback and low-cost ultrasonic techniques provide a reasonable means of monitoring this 

impurity level in the treated and ready to be transported crude oils. Tests with emulsions of oils 

showed that both acoustic velocity and attenuation decreased with time, which indicated water 

settling out. This was confirmed by direct measurements of water separation with time which 

were consistent with ultrasonic results. These findings have opened a new perspective for the 

ultrasonic technique to monitor and know the behavior of emulsions online.  

 The last part of this study developed a low-cost ultrasonic-based technique to monitor the oil 

layer depth of the spills. Layers of oil samples and their emulsions were added to the deionized 

water surface at small increments. Acoustic velocity decreased with an increase in the thickness 

of oils and their emulsions layers, while attenuation increased. This is an important step towards 

developing ultrasonic technology to identify and measure oil spill depth. A suitable change in the 

shape of the ultrasonic device and how it works is proposed for further development and field 

testing.   
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1. Chapter 1. Introduction  

During the process of production of crude oil, water and crude oil are co-produced in the form of 

an emulsion that is highly undesirable due to compromised product quality. Emulsion which is a 

colloid of two or more immiscible liquids where one liquid is dispersed into the other liquid 

appearing as droplets are formed because of the intimate contact between these immiscible liquids. 

An emulsion system comprises two phases; the dispersed droplets are the internal phase while the 

external phase (continuous phase) is the liquid surrounding the dispersed droplets. An emulsion 

can either be stable (tight) or unstable (loose). Impurities such as asphaltene and fine solid 

particles, which are found in crude oil, stabilize emulsions (El-Sayed, 2012). Tight emulsions are 

difficult to separate into their phases, therefore increasing the cost of refining crude oil 

(Abdurahman H, 2006).  

The water-in-oil emulsion is the most common type of emulsion in the petroleum industry. It is a 

fine dispersion of water-in-oil or oil diameter may range from 0.1µm-20µm (Lissant, 1988). 

Although emulsions are generally undesirable, it is helpful when producing and transporting heavy 

crude oil. Heavy crude oil can be highly viscous and therefore water is usually added to reduce its 

viscosity for easy transportation (Zadymova et al., 2017).  During extraction of oil sand, steam is 

injected into the underground reservoir to pressurize crude oil to the surface in the form of water-

in-crude oil emulsions (Dalgleish et al, 2007). These emulsions are sent to the central processing 

facility to reduce the water content to approximately 0.5 to 2.0 %, which is the acceptable level for 

pipeline transportation because water contains dissolved salt that may cause corrosion (Silset et al, 

2008). These impurities of salts and fine particles in crude oil are removed in a desalter unit during 

refinery. Process water is mixed with incoming crude oil to dissolve out the salts, and the 
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emulsified mixture then enters separation vessels where the cleaned oil leaves from top and water 

containing dissolved salts leave from the bottom.  

The emulsion destabilization process involves several steps which include flocculation, 

sedimentation, coalescence, and finally phase separation due to the density difference between oil 

and water. Flocculation of water globules involves the aggregation of droplets to form clusters that 

sediment under the influence of gravity. During the coalescence step, flocculated droplets fuse to 

form larger ones leading to phase separation (Graham et al., 2008). The coalescence step can be 

slowed down by the presence of stabilizing agents such as clay particles and crude oil components 

such as asphaltenes, resins, and acids (Moradi et al., 2011; Graham et al., 2008). Emulsion stability 

can be determined by several methods such as bottle tests and electrical methods (Wang and 

Alvarado, 2009). Bottle tests that rely on water resolution are more common due to low cost and 

ease of tracking. It can be combined with other methods such as electrical and acoustic techniques.  

The high demand for petroleum products makes it necessary to transport these products using 

underwater pipelines or maritime ships internationally. Oil transportation leads to involuntary oil 

spill due to pipeline rupture, and ship accidents in addition to intentional petroleum waste spill in 

seawater. The European Space Agency puts the annual worldwide oil spill estimate at 4.5 million 

tons. Oil spills in seawater have a lasting effect on the maritime environment. These spills affect 

the ecosystem starting with marine life and extending to human life as well as environmental 

disasters. An oil spill can be spread across large water bodies by wind and water current with a 

few hours, therefore, making it more dangerous (Hammoud et al., 2019).  

The oil spill is a major local and global environmental concern (Onwurah et al., 2007). The toxic 

effect of the oil spill can last over a decade because the bulk of oil remains in the less-weathered 

subsurface. U.S. Environmental Protection Agency (USEPA) found 35% leaks in randomly 
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sampled oil storage tanks (United Press International, 1986). One of the biggest challenges facing 

researchers in the study of oil spills are the ability to measure oil layer thickness. More specifically, 

there are no laboratory methods or reliable field techniques to measure oil on water thickness. The 

desire to measure oil thickness is driven by the need for significant advances in the primary 

understanding of how oil thickness spread and the effective response like spill cleanup. Another 

motivation for determining the oil thickness is to determine the amount of oil spilled. Remote 

sensing is a widely used technology to monitor the oil spill. Remote sensing is the use of a sensor, 

that does not include the human eye to detect a specific target from a distance. Aerial remote 

sensing (employing aircraft) is the widely used remote sensing in oil spills. Satellite remote sensing 

has not been successful as it requires locating features at sites with an already known oil spill. The 

existing method of using airborne surveillance of oil thickness with the sensors usually 

overestimates oil quantity (Brown et al., 1998).   

Emulsions formed at sea due to wave current have been observed to be different and have varying 

film thicknesses. Their thickness range between 2 µm to 20mm. Currently, there is no existing 

technology to measure thick emulsions. Optimare, a three-channel microwave instrument is the 

only instrument currently available for measuring oil spill thickness. Despite microwave 

radiometry being a proven technique to remotely measure the thickness of fresh oil spill on the 

water surface, it has many limitations including water uptake is expected to degrade the signal, or 

otherwise may remove it completely, applicable to range between 0.5 to 1.2 mm oil layer thickness 

above which the signal is ambiguous – not suitable for thicker layers freshly spilled oil (Fingas, 

2018). Microwave radiometer sensors are expensive and complicated to install for operation. It 

requires numerous oil properties and environmental characteristics for accurate detection of the oil 
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spill. For these reasons, a microwave is not used for slick imaging presently (Hammoud et al., 

2019).  

There are two main focusses of the present work:  

The first being the development and testing of ultrasonic based technology to characterize oils and 

their emulsions as well as monitor changes in emulsion characteristics over time. These 

characteristics include composition, droplets size distribution and other rheological properties of 

oils. The emulsion characteristics are expected to be a function of the type of oil, level of impurities 

and mixing intensities, temperature, etc. The ultrasonic parameters recorded are changes in 

acoustic velocity, signal attenuation, and its frequency spectrum. The ultrasonic techniques were 

selected for their several advantageous features including; lower power consumption, in-line 

measurement, long-term stability, non-invasiveness, high resolution and accuracy, and rapid 

response. The technique provided good information regarding emulsion stability, changes in 

droplet size distribution, and concentration. Emulsions were prepared with mineral oil and crude 

oil samples and the effects of various factors including surfactant, and asphaltene content were 

investigated. Emulsion droplet structure is observed, and stability is examined by tracking the 

changes in ultrasonic parameters with time.   

The second focus of the current work is the development of low-cost ultrasonic-based technique 

to detect oil spills as well as to estimate the thickness of oil and emulsion layers. The approach is 

based on simultaneous measurements of two main acoustic parameters, namely acoustic velocity 

(or time of flight) and attenuation (or amplitude). These parameters depend on the physical and 

thermodynamic properties of the propagating medium. It is envisaged that a low-cost device with 

acceptable accuracy can be developed based on ingenious ideas while taking advantage of the new 

developments in the field.   
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1.1 Thesis Objectives and Scope 

The following are the main objectives of this work: 

• Develop and test the potential of ultrasonic based technology to detect sample oils 

characteristics such composition, droplets size distribution and other rheological 

properties of oils. Use these oil characteristics as the basis to detect and monitor 

emulsions characteristics such as ultrasonic parameters, acoustic velocity and attenuation. 

Investigate the effects of asphaltenes and deionized water content on emulsion stability 

and characteristics.  

• Development of an ultrasonic-based technique to quickly measure asphaltenes 

concentration online. First use the time-consuming solvent treatment and filtration off-

line mothed to estimate the asphaltenes content in the crude oil emulsions. Then test the 

potential of ultrasonic technique to detect changes in asphaltenes concentration by 

recording the acoustic velocity and attenuation of the same crude oil samples.  

• Development of low-cost ultrasonic-based technique(s) to detect the presence of oil spill 

as well as to estimate the thickness of oil and emulsion layers on the deionized water 

surface. The approach is based on simultaneous measurements of two main acoustic 

parameters, namely acoustic velocity, and attenuation. Layers of both mineral and crude 

oil and their emulsions are created in a jacketed vessel to simulate the experiments.  
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2. Chapter 2. Literature Review 

Emulsions are very significant in various applications (petroleum/detergent industries and food 

processing) and industrial products (pharmaceuticals or cosmetic products and food products). It 

contains a minimum of one immiscible liquid thoroughly distributed in other liquid appearing as 

droplets, whose diameter may range from 0.1µm-20µm. Where its stabilization is contributed by 

emulsifying agent, asphaltenes, resins, and finely dispersed solids. It is a fine dispersion of 

water-in-oil or oil-in-water with these micron-sized droplets. 

An emulsion system comprises two phases; the dispersed droplets are the internal phase while 

the external phase (continuous phase) is the liquid surrounding the dispersed droplets. The 

emulsifying agent is responsible for the separation of these dispersed droplets from the external 

phase (Lissant, 1988). During the previous century, research on the emulsions under deformation 

has been done resulting in significant and sequential theoretical and experimental studies. Many 

engineers and scientists participated in such investigations with a persistent interest in the 

understanding of nature and variance of the rheological properties of emulsions. These studies 

have been remained of prominent empirical attention due to its wide existence in daily routine. 

 

2.1 Emulsion Formations and Classification  

2.1.1 Emulsion Formation 

Schubert and Armbruster 1992 proposed three major criteria, which are required for the 

formation of crude oil emulsions; 

• Involvement of two immiscible liquids. 

• The presence of Surface-active compounds as an emulsifying agent. 

• Appropriate agitation to facilitate dispersion of one liquid into another as droplets. 
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When water and oil come into contact in the presence of the emulsifying agent and sufficient 

mixing, the crude oil emulsions are formed. For emulsion formation, the efficiency of agitation 

and the presence of emulsifier is very crucial. In oil production processes, there are multiple 

methods used for agitation, sometimes known as the shear amount.  

In general, more agitation results in small-sized droplets very distributed in oil, consequently 

tightening the emulsion formed. The enormous studies on emulsion provided the fact that the 

size of these water droplets may differ from less than one micrometer extending up to more than 

a thousand micrometers. The presence of emulsifiers is another element required for emulsion 

formation. The existence, quantity, and nature of emulsifier more considerably determine the 

emulsion type and its "tightness." In crude oils, natural emulsifiers exist in heavy fractions. 

Because of the variation of heavier fractions in crude oils, the tendency of emulsification widely 

differs. Less stable emulsions are produced with crudes having a lower quantity of emulsifier, 

resulting in emulsions that separate quickly. Many stable emulsions are formed in crudes which 

may have the proper type and adequate amount of emulsifier. 

2.1.2 Classification of Emulsions  

In a system containing oil and water, there are different classes of emulsions:  

• Water in oil emulsion consists of aqueous globules dispersed throughout the crude oil.  

• Oil in water emulsion is composed of oil globules dispersed into the water  

• Oil-in-oil (O/O), this class can be illustrated as the emulsion having polar oil as an 

internal phase dispersed in non-polar oil (continuous phase) or conversely, a non-polar oil 

as internal phase scattered in a polar oil (continuous phase). 

In addition to principal styles, an unusual type of emulsion that is referred to as multiple 

emulsion can exist. Multiple emulsion is a complex system, in which two classes of emulsions 
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(oil in water emulsion and water in oil emulsion) are dispersed throughout another immiscible 

phase; which includes oil in water in oil emulsion and water in- oil-in-water emulsion (Schramm, 

1992; Pal, 1994). 

Emulsions can also be categorized based on the droplet size present in the continuous phase. The 

term Macro-emulsion is used when these droplets are greater than 0.1 micrometers in size. 

Thermodynamically, such emulsions are not stable (concerning time, these two phases split up 

due to the proneness of the emulsion to minimize its interfacial energy due to coalescence and 

separation). Although, a stabilization mechanism can minimize or even diminish the droplet 

coalescence. Most oilfield emulsions are of such types. 

On the contrary, another class is known as Micro-emulsions. In the presence of two immiscible 

phases, such emulsions are generated spontaneously due to their exceptionally minimal 

interfacial energy. Such type of emulsions has a relatively tiny size of droplets i.e. less than 

nanometer and are very stable thermodynamically. This class of emulsion differs very much 

from macro-emulsions in the account of their stability and formation. Fig. 2.1 illustrates the 

types of emulsions. 

 

 

 

 

 

Fig. 2.1 Water in oil emulsion (a), Oil in water emulsion (b) (Khan et al., 2011) 

(a) 

(b) 
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2.2 Emulsion Stability  

Emulsion stability is a significant feature of water-in-oil emulsions and refers to the firmness and 

tenacity of an emulsion in the respective surrounding. Few types of emulsions, on removal from 

the sea surface, rapidly deteriorate into discrete phases (oil and water) but some are quite stable 

and can persist for days to years. Stable dispersions result due to the small size of drops with the 

existence of an interfacial film surrounding drops. For this reason, the suspended droplets do not 

float rapidly and do not coalesce quickly (Luma, 2002). 

 Emulsion stability is considered against three different procedures, which are: 

1. Creaming (sedimentation) 

2. Aggregation  

3. Coalescence  

The separation velocity relies on certain factors which include the viscosity of dispersed phase 

(droplet size) and the continuous phase as well as the difference in density of the two fluids. 

Variety of methods can be used to reduce separation i.e.  

• Minimization of the density difference between phases.  

• Reduction of the droplet size: Tiny droplets are formed due to the increase in energy 

input of the system, which lessens interfacial tension between oil and water and therefore 

it prevents coalescence. 

• Increase in viscosity of continuous phase: Elevating the viscosity of the surrounding 

liquid leads to the decreased velocity at which the droplets will move up.  

• Increase in the number of droplets: Due to substantially elevated concentration, droplets 

are compressed and become tightly packed, preventing their flow. Although, it may 

remain inflexible to raise the concentration of droplets due to physicochemical 

restrictions of the system. 
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Due to their thermodynamic nature, most emulsions tend to separate into two phases over time. 

Consequently, characteristics of emulsion such as droplet size distribution and flow behavior are 

altered. An emulsion can reach the stability level after the examined different mechanisms that 

could take place during the demulsification stage (emulsion breakdown), these mechanisms are 

summarized in Fig. 2.2. 

In most cases, the emulsion droplets and continuous phases have different densities. The force of 

gravity causes droplets in the emulsion to move up or down through the continuous phase. Low-

density droplets tend to move up high to produce a layer at the surface of emulsion that is 

referred to as the creaming process. Conversely, high-density droplets, tend to move down to 

produce bottom layer known as the sedimentation process. Since the density of water is higher 

than the density of oil, the droplets for water in oil emulsion tend to sediment. On the other hand, 

droplets for oil in water emulsions will tend to cream. 

                                                             

Fig. 2.2 emulsion destabilization mechanism (El-Sayed, 2012) 

2.2.1 Creaming/Sedimentation 

Certain exterior forces are responsible for Creaming and Sedimentation. These can be 

gravitational force or centrifugal phenomena. In some instances, the concentration gradient is 

generated if the external forces overreach Brownian motion of droplets. This results in either 

creaming of large droplets, shifting rapidly up at the surface (density of droplets < density of 

medium) or to the sedimentation phenomena in which droplets rests at the bottom of the 
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container (density of droplets > density of medium). In restrictive situations, droplets can 

assemble in a close-packed display either at the top or bottom of the container while the rest of 

the volume of the container filled by the continuous liquid phase.  

Creaming is the opposite of sedimentation, resulting from the density difference between the two 

liquid phases. The term Sedimentation is used if the particles show movement in the direction in 

which gravity acts (Δρ > 0). Alternatively, in the case of the flow against gravity (Δρ < 0), the 

process refers to Creaming. The sedimentation process applies to most water-in-oil emulsions 

and solid dispersions, whereas the creaming process applies to most oil-in-water emulsions and 

bubbles dispersed in liquids. 

2.2.2 Flocculation 

Flocculation is the accumulation of droplets of emulsions (with their size remaining the same) to 

form bigger sizes. This is due to the existence of Vander Waals forces, usually prevailing in all 

dispersive systems. Flocculation occurs when the repulsive forces to retain the droplets at a 

distance is not enough due to weak Vander Waals forces. The flocculation intensity depends on 

the force of attractive energy in the system.  

In the account of controlling the texture and structure of emulsions, the understanding of the 

flocculation process is very significant. Mathematical models have been progressed to clarify the 

process occurring during the formation of droplet flocs (frequency and efficiency of collisions) 

to foresee the effects of flocculation on the stability of emulsions, but these will not be described 

here. Relying on the need and choice of final products, different methods can be applied to 

control flocculation. The method can be chosen as directed by the components and nature of 

emulsion to be developed (it includes texture, structure, appearance, etc.).  
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2.2.3 Coalescence 

Coalescence is the disintegrative phenomenon of the liquid film between small droplets, 

resulting in merging. The combination of these little droplets produces bigger ones. The 

drawback of coalescence is the total separation of the emulsion into their liquid phases. For 

coalescence, film or surface variation is the main driving force that brings droplets close. Here, 

the strong van der Waals forces hinder separation. 

The combination of droplets occurs when the tinny thickness of the continuous phase separating 

two droplets breaks, and they fuse quickly to form a single large drop. Therefore, the rate of 

coalescence is a key factor in which the stability of an emulsion system depends. It should be 

noted that the characteristics of the thin film will determine whether emulsions are stable or 

unstable.  

The merger of these droplets to form a massive drop is followed by the emergence of an oil layer 

at the surface of the emulsion. It only happens because of the breakup of the thin film between 

the two droplets. When droplets are in the close neighborhood, their shape may get distorted, and 

the surface of droplets in contact may get flattened. This deformation increases the surface area 

between droplets in contact, and consequently, droplets show more proneness for coalescence. 

The estimation of coalescence can be significantly predicted by the rate of rupture of the thin 

film.  

Droplets are always in continuous motion with very brief collision time with each other. On the 

other hand, periods longer than how long are needed to form the film for emulsion stabilization, 

prevention of droplet coalescence is a big issue. For prevention and control of coalescence, few 

methods have been established. Since the coalescence greatly relies on colloidal and 

hydrodynamic interactions among droplets, as well as the physicochemical behavior of the 
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mechanism applied in the emulsion, minimization or restriction in the interaction of droplets as 

well as the breakup of thin film constitute key factors where much research and efforts are 

required. Adsorption of emulsifiers at the oil-water interface is the reason behind the coalescence 

of the droplet. The ability of surfactants in restricting coalescence relies on their physicochemical 

features such as, the electrostatic repulsion between the droplets, which tends to prevent droplet 

contact. 

2.2.4 Phase Inversion  

This inversion phenomenon is very much evident, although the concept is not clear yet. There 

are two modes of dispersion that are observed based on phase fraction and initial circumstances. 

Phase inversion is usually observed at the time mixture go through some variations in the phase 

dispersal. It is a phase inversion point when inversion occurs at critical phase fraction. The 

dispersion undergoes continuous coalescence i.e. breakup of the thin film between dispersed 

droplets. This dynamic process may reach equilibrium at low dispersed phase fractions. When 

dispersed phase fraction elevates, the phenomena may get unstable, resulting in much dominant 

coalescence due to the closeness of dispersed droplets. Ultimately, when these two phases are 

swapped their continuity results in phase inversion (Angeli, 1996; Nädlerand Mewes, 1995).  

2.2.5 Ostwald Ripening (Disproportionation) 

Ostwald Ripening or disproportionation appears due to the limited solubility of liquid phases. 

Immiscible liquids have mutual solubility which cannot be negated. For poly-dispersive 

emulsions, tiny droplets will have a comparatively higher solubility than huge droplets because 

of the curvature effects. These tiny droplets may vanish with a certain time interval, where they 

merge into the system to get left on the bigger droplets resulting in a distribution of droplets sizes 

to larger units. 
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Fig. 2.3. Diagram of the suggested phase inversion mechanism by Arirachakaran et al.  (1989). 

2.3 Emulsifying agent 

Emulsifying agent refers to the substances which aim to maintain the stability of the emulsion 

thus preventing the disperse phase from coalescing, flocculation, etc. The mechanism of each 

emulsifying agent is different. For instance, surfactant, as one broad kind of emulsifying agent, 

aims to lower the interfacial tension at the interface. The other agent, such as solid particles, 

create mechanical barriers at the interface. 

2.3.1 Surfactant 

Surfactants are a prevalent emulsifying agent, having adsorbing characteristics on interfaces and 

it can significantly change their interfacial free energy. In general, surfactants contain polar 

hydrophilic “heads” and non-polar hydrophobic “tails.” The polar “heads” would be the major 

classification of the surfactant. The most common species are non-ionic surfactants of 

polyoxyethylene moieties, which include alkylphenol ethoxylate. Further nonionic surfactants 

are lauric acids, ethoxylated sorbitan esters of oleic (M. Sztukowski, 2005). The nature of “head” 

and “tail” of surfactants differs, directing too many variations in properties of surfactant. 
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Surfactant solubility in the aqueous medium is also established by the affinity of the hydrophilic 

part of the surfactant with water. There are two limits to the surfactant concentration during 

emulsion preparation. Any concentration of emulsifier below the order of thousands of ppm 

(0.1%), implies the emulsifier is not enough to fully create a stable emulsion. While 

concentration above 5%, will not change the stability of the emulsion. The ideal surfactant 

concentration is in the range of 0.2-3%. Using a mixture of many surfactants as emulsifier 

minimizes cost and increase efficiency (Henríquez, 2009). Surfactants are classified based on the 

type of hydrophilic group present:  

• Anionic: the presence of negative charge as the head moiety  

• Cationic: the presence of positive charge as the head moiety  

• Non-ionic: no apparent charge observed in a head moiety 

• Zwitterionic: both negative and positive charge observed in the head moiety  
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Fig. 2.4. a) the structure of surfactant, b) interfacial surfactant molecules, and c) spherical 

surfactant micelles (Pichot, 2010). 

After surfactants dissolved in liquid, micelles would be formed by either adsorb at the interface 

or self-assembled. A micelle is an aggregate of surfactant molecules dispersed in a liquid colloid. 

The adsorbed surfactants at the interface offer an expanding force that weakens the natural 

tension between the continuous phase and the dispersed phase. This reduces interfacial free 

energy and increases the chance of emulsion not separating into their phases. Also, surfactants 

have the potential to increase the interfacial viscosity. This causes mechanical resistance to 

coalescence. Finally, the surfactant can form an electrostatic repulsion force among each micelle 

and reduce the chances of flocculation. The combination of these effects would thus essentially 

result in emulsion stabilization.  

2.3.2 Asphaltenes 

Asphaltenes are the largest molecular weight fraction in crude oil, have a density ranging from 

1132 to 1193 kg/m³ (Akbarzadeh et al., 2004).  

Asphaltenes have surface-active characteristics that prove them suitable emulsifiers. The 

collection of asphaltene molecules at the boundary leads to the creation of a rigid thickness, 

which restricts coalescence. For coalescence in between two droplets, the thin film needs to 

break up and drained off. However, this drainage of the film is prevented due to the natural 

presence of asphaltene. The principle feature for such restraint is steric repulsion exhibited by 

high molecular weight components of asphaltene present in the thin film. Asphaltenes are 

distinguished from the rest of the oil components because of their likelihood to self-aggregate 

(El-Sayed, 2012).  

The physical state of asphaltenes existing in crude oil provides remarkable outcomes on the 

properties of its emulsion stability. Asphaltenes in the colloidal state stabilize the emulsions, but 
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it is strongly evident that its stabilizing properties are notably intense when it occurs in the solid 

state as precipitated from crude. 

 

Fig 2.5. example of molecular structures in crude oil: Asphaltenes (El-Sayed, 2012) 

 

 

 

 

 

 

Fig. 2.6. mechanism of emulsion stabilization by asphaltenes (El-Sayed, 2012) 

2.3.3 Resins 

Like asphaltenes, resins are also large molecules which are complex compounds with high 

molecular weight and are insoluble in ethyl acetate but are soluble in n-heptane. It has a great 

tendency to couple with asphaltenes, resulting in the formation of the asphaltene-resin micelle. It 

plays a vital part in stabilizing emulsions. The asphaltene: resin ratio in the crude oil reveals the 
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type of film formed (solid or mobile), and emulsion stability directly depends on it. Fig. 2.7 

represents the composition of crude oil. Figure 2.7 shows the composition of crude oil. 

 

Fig. 2.7. composition of crude oil  (El-Sayed, 2012) 

2.3.4 Fine solid particles 

The fine solid particles are fine silicate, clays or ash in crude oil which are non-asphaltenic solids 

(Kotlyar et al., 1993). Numerous features determine the role and efficiency of these solids in 

stabilizing emulsions. These include density, concentration, and size distribution. When 

asphaltenes interact with these fine solids through adsorption or desorption, the result is the 

stabilization of emulsions.  

These fine solids particles can stabilize an emulsion by getting adsorbed directly on the interface 

of water and oil as well as adsorption on the film of the surfactant. Regardless of how fine solids 

are adsorbed, they can generate steric hindrance between neighboring water droplets, and 

resisting droplet collisions (Tambe and Sharma, 1993;). In the case where strong particle-particle 

interaction exists, these particles can majorly cause the mechanical rigidity of the thickness 

forming a compact system (Tambe and Sharma, 1993). When these fine solids partially cover the 

surface, it can be enough to stabilize emulsions (Vignati et al., 2003). When these fine solid 

particles are confined between the droplets, they may have the ability to decrease the process of 
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the aggregating emulsion as well as minimizes the probability of coalescence of droplets (Yan et 

al., 2001). This may increase the overall emulsion viscosity which will minimize the potential of 

discrete separation of oil and water (Aveyard et al., Houache and Yaghi, 2003. Solids-stabilized 

emulsions and intensity at where fine solids elevate stability of the emulsion are based on factors 

such as size, shape, the morphology of particle, and density, concentration, surface interaction, 

and wettability of system. It can be established that the stability of an emulsion maximizes in the 

case of a minimum size of particle and density and elevating particle concentrations. Potentially 

suitable arrangement of fine solids at the interface is where water in oil emulsions are stabilized 

by oil-wet solids, while oil in water emulsions are stabilized by water-wet solids (Fig. 2.8). 

Solids cause a mechanical barrier at the interface. 
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Fig. 2.8 possible distributions of course and fine solids in an emulsion (Sztukowski & Yarranton, 

2005) 

2.4 Demulsification 

The application of certain procedures accomplishes the demulsification of water-in-crude oil 

emulsion. It can be a mechanical process, chemical procedures, thermal process, or electrical 

application. Several other techniques may also be applied to attain demulsification, like pH 

adjustment, membrane separation technique, filtration process, and heat treatment applications 

(Gafonova, 2000). For fast and quick separation, a vast understanding of salient features of the 

emulsion is needed with knowledge of mechanisms that are intricated during coalescence of 

water droplets (Ese et al., 1999). Demulsification is a breakdown phenomenon of the emulsion 

into distinct phases, majorly water and oil. The initial process needed compulsorily in oil refining 

is the segregation of water from crude oil. It is a common requirement for either a petrochemical 

industry or an oil refinery. Presently, certain emulsion breakers are widely used as chemical 

additives to break the water-in-oil emulsions.  

The demulsification methods like thermal, mechanical, electrical or chemicals depend preferably 

on the physicochemical structure of oil from which they are formed, emulsification conditions, 
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and Aging. It concludes that the approach of demulsification for treating the water in oil 

emulsion may differ in respective industries. 

Demulsification is splitting of an oil emulsion into two phases i.e. oil and water. For an oil 

refinery, the processes are carried out to ensure the following aspects,  

(a) Rate of separation  

(b) The residual amount of water after demulsification  

The aspects that escalate the emulsion breaking phenomena include: 

• Removal of solid particles 

• Reduced agitation  

• High temperature 

• Increased retention time 

• Control of emulsifying agents 

The most common methods for emulsion treatment are: 

2.4.1 Chemical demulsification 

The addition of chemicals, named as demulsifiers is a very familiar procedure of treating 

emulsions. Such additives intend to counteract emulsifiers which tend to stabilize emulsions. 

Demulsifiers being surface-active compounds, act on the oil-water interface to destabilize and 

breaks hard film to speed up coalescence of water droplets. Following steps are needed for 

optimal demulsification: 

• Proper selection of demulsifier Appropriate amount of demulsifier 

• Enough agitation   

• Enough retention time within treaters to settle water droplets 

• Facilitating the system with the thermal application, electric grids, coalescers, etc. as per 

requirement  
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Demulsifiers consists of various solvents such as benzene, toluene, xylene, short-chain alcohols, 

and heavy aromatic naphtha, as well as surfactants, wetting agents and flocculants. Its functions 

are accomplished by partially or completely dismissing the stabilization polar interface thickness 

surrounding emulsion droplets. Removing the film can cause numerous changes in properties 

like viscosity or elasticity at the interface of the protecting film, which leads to destabilization. 

Some demulsifiers modify the wettability of fine solids that stabilizes emulsions and therefore 

resulting in the rupture of film. 

Dosage: Insufficient amount of demulsifier leaves the emulsion unresolved, and a high dosage 

can have disastrous consequences in the procedure because like emulsifiers, they are surface-

active, and it may produce stable emulsions if dosed excessively. It substitutes the natural 

emulsifiers at the interface. 

Since various components exist in crude, the efficiency of the demulsifier is majorly contributed 

by crude oil nature. Adsorption and displacement process rely on pH, salt content & temperature. 

The demulsifiers which quickly displaces the preformed rigid films and leave a mobile film 

(which shows minimal resistance to coalesce) as a substitute are the most efficient ones. 

2.4.2 Electrical demulsification 

Demulsification can also be done through the application of high voltage electricity. It is 

commonly accepted that water droplets are charged, and in an electric field, the droplets move 

quickly, the collisions between them lead to coalescence. Interface film is equally disrupted by 

an electric field through the relocation of the polar molecules. This reduces its rigidity and 

promotes coalescence. High voltage current is therefore supplied by the electrical system 

consisting of a transformer that is equipped with electrodes. Because the electrical field is 
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perpendicular to the direction of flow, the alignment of these electrodes is a very important 

factor.  

Some designs allow for adjustable distance between the electrodes. It helps to variate the voltage 

to meet the need for emulsion being treated. 

This type of demulsification is rarely used alone. It is used in synchronicity with the addition of 

chemical and application of heat. However, always the usage of electrostatic dehydration 

techniques is useful in terms of reducing the need for thermal application. Minimal temperature 

requirements result in reduced consumption of fuel, fewer troubles caused due to scale formation 

and corrosion and a decrease in losses of lighter fractions. Additionally, it may reduce the use of 

emulsion breaking chemicals. 

2.4.2.1 VIEC - Vessel Internal Electrostatic Coalescer 

VIEC is one of the three main separators (electrostatic coalescer) currently available. This 

equipment comprises high voltage modules that are isolated and fitted to the separator wall, 

specifically for the oil-water emulsion phase (Fig. 2.9). The main purpose of the high voltage 

electrostatic field is to induce coalescence of the droplets in oil, therefore, enabling easy 

separation. VIEC is highly flexible because it allows for the mixing of water, oil, and gas, hence 

it can be mounted in the first stage separator without monitoring. It promotes less heating, less 

chemical consumption, and cleaner oil, therefore improving performance. VIEC can reduce the 

water content in the emulsion from 13 to less than 5% while enhancing the capacity of water 

treatment as well as regulation of separator (Silset, 2008). 
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Fig. 2.9. VIEC Modul ((Silset, 2008). 

2.4.2.2 LOWACC - Low Water Content Coalescer 

 After VIEC, LOWACC is mounted to promote the quality of oil leaving the system (Fig. 2.10). 

The main component of LOWACC includes two corrugated electrode plates through which oil 

flow as it let smaller droplets to coalesce more. Using both VIEC and LOWACC promotes heavy 

oil and one step separation by subjecting water in an oil emulsion to the created electrostatic 

field. Short-circuiting may be avoided by insulating the electrodes. LOWACC is primarily 

designed for use in both high- and low-pressure separators, as well as for separators with 

problematic separation (Silset, 2008). 

 

Fig. 2.10. VIEC and LOWACC all installed in the same separator to accomplish total separation 

((Silset, 2008). 

2.4.3 Thermal Demulsifications  

The heating process enhances the breakage and separation of Emulsions. It decreases the oil 

viscosity and elevates the rate of settling for water. Low interfacial viscosity caused by elevated 

temperatures may also result in destabilizing rigid films. Additionally, the higher thermal energy 

of droplets promotes the coalescence frequency among water droplets i.e. heat promotes 
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demulsification. Despite the above facts, thermal demulsification rarely fixes the emulsion issue 

alone. High temperatures may have some damaging impacts as well.  

Primarily, heating the stream costs much. Secondly, it may lead to loss of lighter fractions of 

crude oil minimizing its volume and API gravity. Lastly, due to increased temperatures, treating 

vessels are more prone to corrosion and scale deposition. So, the decision to use heat for 

demulsification should be made after investigating the overall economic analysis of the treatment 

facility.  

 

2.5 Emulsion characterization techniques 

Various analytical techniques have been established to characterize the droplets in emulsions, 

e.g. electron microscopy, light microscopy, dynamic and static light scattering, neutron scattering 

and electrical conductivity, and Nuclear Magnetic Resonance (NMR). However, most of these 

techniques have limitations, or they are appropriate only for dilute applications, while most 

emulsions of practical status are concentrated and optically opaque. 

2.5.1 Microscopy   

The microscopic technique is used as a first step to characterize the emulsion system to 

determine the best option between physical and chemical separation techniques. There are 

different microscopic methods to characterize the two main types of emulsions (oil in water and 

water in oil emulsion). The three main microscopic techniques used in the crude oil industry for 

the separation of emulsions into their phases are as follow: 

 2.5.1.1 Light Microscopy (LM)   

Light microscopy is primarily employed at Fuel Processing Laboratory (FPL) to investigate 

various samples. It is very important to remember that a very thin sample for transmitted light 

observation leads to misrepresentation of the original sample. In addition to this, it can also 
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reverse water in oil emulsion into oil in water emulsion upon pressing it between two glass 

slides. Fluorescence is a property of many organic materials and this includes aromatic groups 

bonded to aliphatic polyenes, polar aromatics, and asphaltenes. Few inorganic particles have 

fluorescence properties like those of organic components concerning fluorescing color and 

intensity. Therefore, it is possible to identify the mineral and oil phases in each sample by LM. 

For instance, quartz and clay and most of the inorganic particles do not exhibit fluorescence 

whereas most of the oil components do. 

The small depth of field that makes an accurate determination of droplet sizes difficult, is the 

main drawback of optical microscopy. The water-in-oil emulsion has only a few droplets in 

focus as shown in Fig. 2.11. The ones above the plane of focus are larger than they are with 

fuzzy halos. Those below the plane of focus appear as points of reflected light. An image such as 

this is not amenable to automated image analysis.  

 

 

Fig. 2.11 Conventional light microscopy image of a water-in-oil emulsion (Munoz, et al, 1997) 

2.5.1.2 Cryogenic Scanning Electron Microscopy  

The principle of scanning electron microscopy comprises scanning the surface of a sample that is 

initially metal coated with a beam of electrons. However, for this technique to be significant, the 

samples must be solid. Therefore, Samples are frozen for the study purpose in the vacuum of a 
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scanning electron microscope (SEM). Rapid freezing in liquid nitrogen (78 K) or in a nitrogen 

slush (68 K), is typically accompanied by the fracturing of the sample to reveal the interior. It is 

important to rapid freeze samples to avoid changing morphology or the interaction between 

different parts. The frozen sample on a cold stage in the electron microscope allows imaging an 

emulsion as well as getting compositional information from the x-rays released as the electron 

beam penetrates the sample. When samples have high water content, water can be sublimed 

under controlled conditions, to reveal the associations between the various components.  

As shown in Fig. 2.12, a large depth of field in the SEM, make it relatively easy to determine the 

size distribution of the dispersed phase and with the electron probe exciting x-ray emission, we 

can get chemical compositional information about the sample as well. Until recently, this was the 

method of choice for characterizing emulsion systems. With the development of inexpensive 

computing power, an improvement in optical microscopy called confocal laser scanning 

microscopy is rapidly supplanting cryo-SEM (Munoz, et al, 1997). 

 

Fig. 2.12. Cryo-SEM image of a water-in-oil emulsion showing the interior fracture surface 

(Munoz, et al, 1997) 

2.5.1.3 Confocal Laser Scanning Microscopy (CLSM)  

This technique compensates for the depth of field limitations arising from light microscopy 

characterization. It combines some aspects of light microscopy and scanning electron 
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microscopy (SEM). Using a finely focused laser beam, CLSM scans the sample features point-

by-point. The most important aspect of CLSM is its ability to remove information that is out of 

focus from the image through a spatial filter that comprises of modifiable iris set. With digitized 

images and computer manipulation, a series of images collected as a function of depth can be 

combined and reconstructed with a depth of field like that in scanning electron microscope 

images. Through this, independent imaging of structures that are different in height differences 

on the order of the wavelength of the light source, therefore allowing construction of profiles, 

three-dimensional representations, and measurable dimensions of elevation. (Munoz, et al, 

1997). 

2.5.2 Light scattering 

Static light scattering techniques, also known as laser diffraction techniques for particle size 

characterization rely on the principle that the scattering pattern emitted as a result of the laser 

beam being focused on unstable emulsion correlates with the particle size dispersal of the 

emulsion. Equipment utilizing this technique is usually incorporated with software that 

comprises mathematical models which are often based on “Mie theory.” The models predict the 

scattering pattern from the particle characteristics: absorption coefficient, diameter, and 

refractive index ratio. Thereafter, the software that uses the measured scattering pattern and the 

predicted one establishes the best-fit and then generates reports as a data table or plots (particle 

concentration versus particle size. It should be noted that the concentration can either be in 

volume or number, while the size in either diameter or radius. Light scattering instruments that 

are commercially available are well suited for particle size ranging from ca. 0.1 to 1000 μm. 

Typically, the instrument requires sample preparation to a relatively low concentration (≤ 0.1 wt. 

%) to ensure the translational passage of a light beam while avoiding multiple scattering effects. 
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Therefore, emulsion samples need to be carefully and sufficiently diluted without compromising 

its microstructural properties. 

Dynamic light scattering (DLS) techniques exploit the temporal fluctuations in intensity, when 

a light is scattered by particles whose spatial locations change frequently owing to Brownian 

motion, for particle size characterization. The frequency of the fluctuations depends on the speed 

of the particle which is influenced by the particle size. Smaller particles move faster than bigger 

counterparts, thus would result in more relatively fast concentration variations. Emulsion’s 

particle size distribution is obtained from the alteration in the concentration of dispersed waves 

in each time at a scattering angle through applicable mathematical models. Commercially 

available DLS instruments are suitable for particles whose diameters range from 0.003 to 5 μm. 

However, the concentration requirement varies with the method used for determining the 

intensity fluctuations. Some instruments measure transmitted light through an emission, thus 

limiting their suitability to sufficiently dilute emissions (< 0.1 wt %); while others measure back-

scattered light instead, thereby making them suitable for both concentrated and dilute emissions 

(0.001 – 10 wt %). Moreover, diffusing wave spectroscopy (DWS) is an advanced DLS 

technique that extends the analytical capacity of light scattering to opaque samples (Dalgleish, 

2006). Generally, DWS works like DLS except for the detected photons which follow diffusive 

paths because of the highest multiple scattering in the opaque media, as opposed to sole 

scattering. The best application of the DWS technique is analyzing the mean size of particles or 

aggregates.  

2.5.3 Nuclear Magnetic Resonance (NMR) 

NMR-based particle sizing employs the interactions that exist between the proton nuclei and 

radio waves to provide insight on the microstructure of emulsions. It operates by subjecting an 
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emulsion to a static magnetic field gradient, which excited some of the nuclei to higher energy 

levels. The excitation, in turn, leads to a detectable signal whose amplitude relies on the motion 

produced by the nuclei in the sample. This amplitude has an inverse relationship with the motion 

of the nucleus. Hence, the rate of reduction in the signal amplitude is used for studying the 

molecular motion. Unlike in a bulk liquid, the motion of a liquid within an emulsion droplet 

undergoes restricted diffusion owing to the presence of interfacial boundaries. However, this 

phenomenon is not apparent within a short-time domain given the distance covered. The 

attenuation in NMR signals at different instances is used to determine when the diffusion is 

restricted, which is in turn utilized to estimate the droplet size distribution via suitable 

mathematical models. Commercially available NMR-based instruments are appropriate for 

particles ranging from 0.2 to 100 μm in size, whose concentrations in an emulsion may range 

from 1 to 80 wt %; thus, in most cases, dilution is not necessary. This technique determines the 

actual size of individual droplets in flocculated emulsion (not floc size) because the restricted 

diffusion is not affected by the flocculation process. Furthermore, using NMR techniques for a 

continuous phase of emulsions (flocs) provides insights into the structural organization of 

droplets within flocs. NMR techniques for particle size distribution are non-destructive and 

suitable for concentrated and optically opaque emulsions 

2.5.4 Coulter Counter 

Coulter counter techniques, also known as electrical pulse counting techniques relied on the 

difference in electrical conductivities when a dilute emulsion passed through a small orifice to 

count and size particles. In simple form, the emulsion under investigation is contained in the 

beaker containing two dipping electrodes, one of which is housed in a glass tube with a tiny hole 

for the suction of the emulsion. Upon the passage of each particle through the orifice, a transient 
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drop in electrical current is observed, owing to the relatively lower electrical conductivity of oil. 

The instrument records the transient drop as an electrical pulse, which in turn is converted to 

another useful parameter such as droplet concentration and particle size distribution (PSD). The 

concentration of droplets is estimated as the number of pulses through the hole in each volume of 

emulsion, while the PSD is analogous to the distribution of specific pulse height because an 

electrical pulse height depends on the volume of the particle. Commercially available colter 

counter determines the PSD for particle size ranging from 0.4 to 1200 μm. Typically, such a 

large range of particle size is usually covered by using a series of glass tubes with varying sizes 

of holes. For sample preparation, the instrument requires a relatively low concentration (≤ 0.1 wt. 

%) to ensure the passage of a single particle through the hole at a time. Hence prior to analysis, 

emulsion samples need to be well-diluted without compromising its microstructural properties. 

2.5.5 The Ultrasonic Spectrometry 

It is based on the variation of ultrasonic attenuation relative to frequency, as well as the shape of 

its spectra is a function of particle concentration and size distribution. An emulsion is positioned 

in a controlled chamber (temperature monitored) with provision for ultrasonic spectrum 

measurement, typically 0.1 – 150 MHz. Ultrasonic spectrometry instruments are usually 

incorporated into software (e.g. ECAHtheory) that allows the prediction of ultrasonic spectra of 

emulsions from the particle characteristics and the physical properties of dispersed and 

continuous phases. Particle characteristics include concentration, size and size distribution. 

Using the software, the best-fit particle size distribution is determined by comparing measured 

ultrasonic spectra and hypothetically projected ones and then generate suitable data which are 

presented as tables or plots of particle size against the concentration of particle. Most large-scale 

ultrasonic spectrometers have a measurement range of 0.01 to 1000 μm for particle diameter, 
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which in principle works for emulsions within the range of 1 – 50 wt % (particle concentration). 

However, at higher droplet concentrations or flocculated emulsion, the governing principle 

becomes non-applicable, and as such any data obtained outside the earlier specified range 

become inaccurate. (Chanamai, Alba & McClements, 2000a). it is important to note that 

ultrasonic spectrometry measurements are non-destructive hence may be performed in situ for 

optically opaque emulsions.  

The following are the advantages of ultrasound techniques: 

1. The sample does not need to be diluted in ultrasound spectroscopy, because it may 

change particle structure, causing aggregates to disperse and therefore contaminate the 

sample. 

2. Particle sizing is based on a thorough and essential theory, where the only requirement is 

requisite physical constants are known, and calibration is not required. Implying a high 

level of accuracy. 

3. Compared to light scattering intensity which varies with the sixth power of particle 

diameter, ultrasound scattering in aqueous systems is controlled by thermal and viscous-

inertial scattering for the smallest particles that vary as the inverse square power of 

particle diameter. Therefore, combining light scattering and ultrasound scattering will 

prove very efficient to characterize systems that contain both nanoparticles and larger 

particles. 

4. It has high measurement versatility and confidence in the determined the particle size 

distribution because it can measure both phase and signal amplitude simultaneously.   

5. Extant multiple scattering theories are capable of generalization to systems of several 

types of particles, allowing particle sizing in heterogeneous industrial systems. 
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6. Ultrasound spectroscopy can be engineered to provide particle size information, non-

intrusively and in-process, making it suitable for industrial use. 

7. It allows for a reduced impact of particle shape by selecting a suitable frequency range. 

Even in the case of rods, the volume fraction, diameter and length can often be 

determined. 

2.5.5.1 Ultrasonic attenuation spectroscopy 

All the various approaches to ultrasound attenuation spectroscopy have some common problems. 

For instance, accurate measurement of the speed of sound requires correction for diffraction and 

interference effects. These considerations create the need for fast signal processing, electrical 

matching circuitry and frequency generators which when combined comprise a significant 

investment in electronics and software. 

There are few instruments that measure the absolute speed of sound and attenuation. The most 

accurate being laser interferometry that directly measures the wavelength of an acoustic standing 

wave, produced at a known frequency (Vance and Brown, 2010). 

Very good data for water are used and then instruments are calibrated using water; even though it 

introduces several errors, it is a widely used technique. The greater the difference between the 

speeds of sound in the measuring system than the water, the bigger the errors are. Water 

temperature at 20 °C, gives the coefficient of the speed of sound as 3 m/ (s K). Temperature 

fluctuations as small as 0.1 °C will create velocity fluctuations of 0.3 m/ (s K), therefore, 

temperature control is an important parameter for accurate velocity spectrometry. On the other 

hand, temperature control is generally less critical where attenuation spectrometry is concerned. 

2.5.5.2 Particle size analysis by Acoustic Spectroscopy  

The analysis of the particle size by Acoustic Spectroscopy include: 
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• Measuring the attenuation and velocity spectra in the dispersion and normally the pure 

suspending phase 

• Predicting the spectra for a general particle size distribution and concentration by 

scattering theory 

• Inverting the measured spectrum to obtain the particle size distribution and the 

concentration by finding the predicted spectrum that best fits the measured spectrum. 

2.5.6 Ultrasonic Sensor System and Sensor Classification  

The effective use of ultrasonic sensors requires their combination with sensitive 

transmitter/receiver electronics and suitable data-acquisition electronics. As opposed to the past, 

current ultrasonic systems are feasible as compact devices at low cost due to modern 

microelectronics.  

Fig. 2.13 presents an ultrasonic sensor system and possible sensor configurations. There are two 

distinct methods: The first being the active transmission of acoustic waves and receiving of these 

waves later by ultrasonic sensors. Usually, piezoelectric transducers are used to transform an 

electrical signal into an ultrasonic wave and converse is true. The ability to use the same 

transducer for both transmitting and receiving functions in many applications makes important. 

Following the requirement for the acoustic path, characteristic parameters of the ultrasonic wave 

are modified. Therefore, the ultrasound signal carries information about the properties between 

transmitter and receiver, where an intelligent sensor system must extract this information. A time 

resolution of fewer than 1 ns down to a few picoseconds can be attained for the propagation time 

determination. This is equivalent to accuracy for the ultrasonic velocity better than 0.1% and the 

flow velocity of a liquid medium better than 1%. The amplitude accuracy is normally measured 

in the range of 1%. The higher resolution of both parameters can be reached by special electronic 
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circuits (e.g., 12- to 14-bit ADCs and very fast circuits), averaging and specific signal evaluation. 

The reliability of these measures depends on parameters such as pressure, temperature and so on, 

determined at the same time as ultrasonic parameters with extreme accuracy. Understanding 

these relations is necessary in order to develop new applications for ultrasonic sensors, for 

instance, in process control, for special distance measurements and others. The second way of 

using ultrasonic sensor system principles is shown in Figure 18, represented by 3 and 4, where 

one sensor is directly coupled with the medium under investigation and influenced by it. In 

example 3 the acoustic impedance or the reflection or transmission coefficient is measured by 

detection of the amplitude changes. The sensor acts as both transmitter and receiver. In example 

4 the resonance frequency of an ultrasonic sensor is changed by deposition of a material onto the 

sensor surface or by the interaction of a sensitive layer on the sensor with surrounding species in 

a gas or a liquid. The latter is the basis for the so-called mass-sensitive sensors. They can play an 

increasing role in the sensor scenery in the future. Based on the type of change ultrasonic signal 

following its path from transmitting to receiving transducer undergoes, ultrasonic sensors can be 

divided into four groups:  

• Flow sensors 

• Distance sensors  

• State sensors  

• Micro-sensors 

 The advantages of ultrasonic sensors include:  

• Being non-invasive 

• They have high resolution and accuracy 

• Ability to do an in-line measurement 
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• They have excellent long-term stability 

• Rapid response, usually a fraction of a second 

• They have a low power consumption 

The disadvantages of ultrasonic sensors are:  

• Increase in electronics for high accuracy and information) 

• Integration along the entire sound path 

• There is an increase of the attenuation of sound with a frequency 

 

 

Fig. 2.13 Ultrasonic sensor system (Hauptmann, Lucklum, Piittmer, & Henning, 1998). 

2.5.6.1 Ultrasonic flow sensors  

Many applications require measurement of the volume-flow velocity and mass-flow velocity. For 

this reason, flow sensors have been applied extensively in industrial processes compared to 

temperature and pressure sensors. For all these applications there is a trend towards a strong, 
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accurate measuring device without moving parts and with a minimum distortion of the flow. 

Besides ultrasonic flow meters, only thermal methods and vortex meters comply with this trend. 

Various methods available for ultrasonic flow meters are based on three acoustic effects. These 

include: (i) the drift effect (ii) the Doppler Effect and (iii) the attenuation or diffraction effect.  

2.5.6.2 Ultrasonic state sensors  

Many branches of industry such as chemistry, oil, biotechnology, food, and agriculture have 

turned their attention to ultrasonic techniques for process monitoring and control. Ultrasonic 

state sensors are ultrasonic sensors for the detection of typical process parameters. There were 

many limitations for ultrasound in-process monitoring in the past due to the lack of a technical 

base (Bergmann, 1954). In the present time, microelectronics can handle data with high speed 

and resolution, where it can be stored and compared. Using special software, new information 

can be extracted from experimental data. Therefore, giving new opportunities for ultrasonic 

techniques. An important advantage of ultrasonic techniques is the fact that they can be used 

non-invasively. The containment materials, particularly metals, are usually ‘transparent’ to 

ultrasound. Other advantages of ultrasonic techniques are that:  

• No moving parts are involved, making response time fast 

• The energy levels are low and non-hazardous equipment can be constructed 

• Provide a range of mutually compatible techniques.  

Another important feature of ultrasonic techniques, which makes them better than optical 

techniques, is that the velocity of ultrasound is relatively low compared with that of light. Hence, 

the wavelength of an acoustic wave, e.g., in the order of megahertz frequencies, is in the 

millimeter range. The following are the disadvantages of ultrasonic techniques:  
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• Integral information is always received (ultrasonic techniques are not suitable for trace 

analysis) 

• Very often special knowledge of the substance properties is necessary 

• Development and handling of sophisticated electronics  

The principal ultrasonic parameters which can be measured are velocity, attenuation, and 

impedance. From these parameters, one can derive the particle sizes or particle distributions of 

dispersed phases. Most ultrasonic state sensors use compressional ultrasound. The frequency is 

typically in the range of 0.5 - 10 MHz except for attenuation particle-size sensors. The 

ultrasound is normally generated by piezoelectric transducers of the small and convenient size 

which are readily available commercially. Some form of ‘coupling’ is used to transmit the 

ultrasound from the transducer into and back from the system under investigation. Electronic 

systems are developed and available which enable transducers to generate either continuous 

waves or pulses, or which detect and amplify the received signals, determine the time between a 

transmitted pulse and the received echoes and carry out data processing. Very high resolution 

and accuracy must be achieved, otherwise ultrasonic state sensors are not interesting for the 

applications mentioned (Hauptmann, Lucklum, Piittmer, & Henning, 1998).  

2.5.6.3 Ultrasonic Velocity Sensors   

Ultrasonic measurement principles for sound velocity are well known. An example is with a 

fixed distance of transmitter and receiver, which is the most commonly used arrangement in 

technical applications. The velocity is determined using the time of flight over a known distance. 

For very accurate measurements special tricks for the triggering of the echoes with different 

amplitudes are used and the thermal-expansion coefficient of the content material must be 

considered. This velocity can also be determined by other techniques such as interferometric or 
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resonance principles, but they do not play a role in applications in industrial equipment. 

Currently, the most significant ultrasonic parameter for use in-process monitoring and control is 

the velocity of sound. Once the velocity of ultrasound in the medium is determined, the data can 

be used in several ways. These include identification of liquids, concentrations of solutions, the 

behavior of mixtures of liquids and two-phase liquid systems. One of the most remarkable 

examples of this application is the continuous on-line measurement of the original gravity of beer 

(Sterbinger, 1985). Beer is a three-component mixture consisting of alcohol, extract, and water 

(Hauptmann, Lucklum, Piittmer, & Henning, 1998).   

2.5.6.4 Ultrasonic Attenuation Sensors  

It is very difficult to measure the attenuation of ultrasound more especially under plant 

conditions. The primary reason is the fact that ultrasonic signal strength decreases not entirely 

due to attenuation in the medium under investigation, but also because of other factors such as 

reflections at the interfaces, beam divergence and changes in transmitter and receiver 

performance because these factors are difficult to keep constant. The electronics challenge is to 

obtain the same or a similar accuracy and resolution for the attenuation determination in a wide 

range of received ultrasound signal amplitudes which can differ by a few orders of magnitude 

due to substance properties. In most cases, attenuation and velocity are measured simultaneously. 

Thus, the electronic requirements are stricter. When dealing with commercial systems for 

detecting the ultrasonic velocity, high accuracy is only achieved for a special category of liquids, 

e.g., two- or three-component solutions, special mixtures, etc. The question of whether the 

measurement of attenuation supplies new or more information about the investigated liquid 

systems, is answered as follows:  
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• Attenuation is only determined when dealing with a complicated multi-component 

system where the measurement of ultrasonic velocity is not very accurate or is very 

costly. Fig. 2.14 illustrates the block diagram of an ultrasonic device for simultaneous 

measurement of velocity and attenuation (Puttmer et al., 1995). It works at a frequency of 

1.5 MHz. The accuracy of the ultrasonic velocity is about 0.1%. The measurement of 

attenuation has an approximate error of 1%.  

• It is important to determine attenuation when ultrasound is used for particle-size 

determination. The relationships between acoustic parameters and the influences of 

several material data are relatively complicated. It is important to consider the ultrasonic 

attenuation in emulsions, suspensions or similar systems is caused by different effects, 

that include thermal, viscous, scattering and relaxation effects. They are determined 

strongly by specific material parameters (thermal conductivity, viscosity, particle 

diameter, etc.) and the applied frequency. A particle analyzer based on acoustic 

attenuation spectroscopy uses a frequency range from 1 - 100 MHz and particle diameters 

and distributions from 0.01 to 10 micrometers can be detected (Bedford Hills, 1995). The 

most interesting property of this analyzer is that it can measure volume fractions from 0 

to 50% (Hauptmann, Lucklum, Piittmer, & Henning, 1998) 
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Fig. 2.14 Block diagram showing an ultrasonic device for simultaneous measurement of 

ultrasonic velocity and attenuation (Hauptmann, Lucklum, Piittmer, & Henning, 1998) 
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3. Chapter 3. Characterization of oils and their emulsion by ultrasonic techniques 

Abstract 

An ultrasonic based method to characterize oils and their emulsions have been developed 

through a series of tests in different systems. The two measured acoustic parameters of the low 

intensity propagating wave are the time of flight and amplitude from which acoustic velocity and 

attenuation are estimated. The variations in asphaltene content of crude oil samples are linked to 

the stability of its emulsions. It is demonstrated that the changes in the composition of crude oil 

emulsions that cannot be seen visually, can be analyzed using acoustic parameters. The analyzed 

results show that the ultrasonic technique has high potential to be used for monitoring emulsion 

stability and track changes in emulsions characteristics such as droplet size and water content.   

3.1 Introduction   

Formation of emulsions specially water-in-oil emulsion presents challenging problems in many 

industrial operations more notably in crude oil production and its refining and petrochemical 

processes.  The emulsions are created as a result of intimate contact between the hydrocarbon 

and aqueous phases involved. This is the case during crude oil production steps where comingled 

water generates water-in-oil emulsions (Kokal, 2005; Yan et al., 2001). The crude oil collected 

from the ground also contains high levels of salts which can give rise to several problems such as 

heat exchanger fouling and catalyst poisoning in the downstream refining processes.  The 

impurities of salts and sand in crude oil are removed in a desalter unit in an oil refinery. Here 

process water is mixed with incoming crude oil to dissolve out the salts, and the emulsified 

mixture then enters separation vessels where the cleaned oil leaves from top and water 

containing dissolved salts leave from the bottom. However, the separation rate of the emulsion 

into the individual phases is affected by many factors such as crude oil composition, asphaltene 

content, droplet size distribution, presence of fine particles, etc.   The emulsion destabilization 
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process involves several steps which include flocculation, sedimentation, coalescence and finally 

phase separation due to the density difference between oil and water. Flocculation of water 

globules involves the aggregation of droplets to form clusters that sediment under the influence 

of gravity. During the coalescence step, flocculated droplets fuse to form larger ones leading to 

phase separation (Graham et al., 2008). The coalescence step can be slowed down by the 

presence of stabilizing agents such as clay particles and crude oil components such as 

asphaltenes, resins, and acids (Moradi et al., 2011; Graham et al., 2008). Emulsion stability can 

be determined by several methods such as bottle tests and electrical methods (Wang and 

Alvarado, 2009). Bottle tests that rely on water resolution are more common due to low cost and 

ease of tracking. It can be combined with other methods such as electrical and acoustic 

techniques. 

The emulsion properties such as appearance, stability, and rheological behavior rely on their 

natures and droplet interactions as well (Derkach, 2009 and McClements, 1996).  Various 

analytical techniques have been established to characterize the droplets in emulsions, e.g. 

electron microscopy, light microscopy, dynamic and static light scattering, neutron scattering and 

electrical conductivity, and Nuclear Magnetic Resonance (NMR) (Derkach, 2009; Coupland and 

McClements, 2001; McClements, 1996). However, most of these techniques have limitations or 

they are appropriate only for dilute applications, while most emulsions of practical status are 

concentrated and optically opaque (Coupland and McClements, 2001). For example, the NMR 

approach was utilized effectively to measure droplet size distribution and volume fraction of the 

dispersed phase. However, NMR spectrometers are quite expensive to purchase and are not 

easily adapted for on-line measurements. Moreover, they are not suitable for smaller droplets 

characterization, as well as require highly skilled operators. Ultrasonic attenuation spectroscopy 
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(UAS) is emerging as an attractive technique among other technologies to measure droplet size 

distributions in emulsions because of its ability to analyze concentrated and optically opaque 

emulsions. It depends on the conversion of the ultrasound measurements including the acoustic 

velocity and attenuation coefficient into droplet size information (Su et al, 2008 and 

McClements, 1996). Ultrasonic waves have frequencies ranging from 20 kHz to 10000 GHz 

(Ensminger and Bond, 2012). However, ultrasonic frequencies below 20MHz are the most 

commonly used in industrial applications.  The attenuation coefficient of the propagating wave is 

affected by fluid viscosity and frequency (Atkinson and Kytomaa, 1992). The systematic 

monitoring of acoustic properties of an emulsion including sound velocity and sound absorption 

(attenuation) may offer insightful information regarding the droplet size distribution and 

emulsion stability (Shukla et al., 2010 and Atkinson and Kytomaa, 1992). 

The focus of the present work is the development and testing of ultrasonic based technology to 

characterize oils and their emulsions as well as monitor changes in emulsion characteristics over 

time. The emulsion characteristics are expected to be a function of the type of oil, level of 

impurities and mixing intensities, etc. The ultrasonic parameters recorded are changes in acoustic 

velocity, signal attenuation, and its frequency spectrum. The ultrasonic techniques were selected 

for their several advantageous features including; lower power consumption, in-line 

measurement, long-term stability, non-invasiveness, high resolution and accuracy, and rapid 

response. The technique provided good information regarding emulsion stability, changes in 

droplet size distribution and concentration. Emulsions were prepared with mineral oil and crude 

oil samples and the effects of various factors including mixing speed, surfactant, and asphaltene 

content were investigated. Emulsion droplet structure is observed, and stability is examined by 

tracking the changes in ultrasonic parameters with time. 
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3.2 Experimental Details  

3.2.1 Materials and Methods 

The light mineral oil (LMO) used in the experiments was purchased from VWR International and 

the samples of different types of crude oils were provided by Imperial Oil Ltd. The properties of 

these oil samples are listed in Table 3.1. Density measurements were conducted using SG-Ultra 

Max Ex Petrol Density Meter, by Eagle Eye Power Solutions. Brookfield digital Rheometer was 

employed to determine the rheology of the emulsion at different temperatures controlled by a water 

bath thermostat.  The commercial non-ionic hydrophilic surfactant Tween 20 (Polyoxyethylene-

20-sorbitan Monolaurate) with chemical formula C58H114O26, was used as an emulsifying agent 

during the preparation of light mineral oil emulsions. It has a density of 1110 kg/m3, viscosity of 

450 cP at 250C. Deionized (DI) water with a density of 997.7 kg/m3 was used as a dispersed phase 

of the emulsions. 

Asphaltene content in crude oil samples was determined based on the modified ASTM D2007-80 

procedure. To achieve this, n-heptane was added to 100 mL of crude oil sample in a 1000 ml 

conical flask using a solvent-to-crude oil ratio of 5:1. The mixture was agitated for 45 minutes 

using a magnetic stirrer. The flask was covered with aluminum foil, to stop the evaporation of the 

solvent. After mixing, the content was left in the fume-hood for 48 hours. It was then vacuum 

filtered using a 0.22 µm filter paper funnel assembly (Fig. 3.1). The filter paper with asphaltenes 

content was left in the fume to dry for approximately 5 days to achieve constant weight. The dry 

asphaltenes were then transferred into the glass vial. Equation 3.1 is used to calculate the weight 

of asphaltenes: 

asphaltene Concentration =
Weight of dried asphaltene(g)

Weight of 100 mL crude oil sample 
                   (3.1) 

For the blend of crude oil, the concentration is estimated numerically using the equation like  
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the one applied for the density of the mixture. 

 

  

Fig. 3.1. Vacuum filter assembly for the asphaltenes concentration measurement 

 Table 3.1. Physical properties of different oil used for emulsion preparation 

3.2.2 Experimental Setup 

A schematic of the experimental set up used for emulsion preparation and testing is shown in 

Fig. 3.2. The transducers for generating and receiving the acoustic pulse were mounted on a 

Physical property LMO      LCO               HCO DI Water 

Sp. gravity @ 60 F
0
   0.861 0.872 0.909 1.0 

Density (kg/cm
3
) 858.7  860.6 907.4 997.7  

API
0
 32.08 31.17 24.23 10 

Kinematic viscosity (cP) 

@ 20.2
0
C 

91.20 11 107 1.02 

Asphaltene (wt %) 0 1.45 13.17 - 
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probe at a fixed distance of 51.2 mm.  The probe was connected to an ultrasonic pulse-receiver 

(UTEX Inc.) capable of exciting ultrasonic transducers with center frequencies from 1MHz to 

150MHz. However, the probe used in this study had a frequency of 3.5MHz. It was controlled by 

a software interface which allowed remote control and configuration of the instrument. 

Transducer excitation was achieved with an ultra-fast square wave pulse featuring adjustable 

pulse width and adjustable pulse voltage. The amplifiers in the instrument were directly gain 

controllable eliminating the need for attenuators that contribute to receiver noise. Data were 

collected at a sampling interval of 0.05 over 60 second to get 1200 data points of time-of-flight 

and amplitude per run. The arithmetic average of each set of values was calculated and 

subsequently used to calculate acoustic velocity and attenuation, respectively. The standard 

deviation of each set was also calculated to ensure the data was uniform and free of outliers.  

Emulsions were prepared in a jacketed vessel with the help of an agitator (from IKA) at a 

constant agitation speed of 1200 rpm.  To prepare water-in-mineral oil emulsions, a measured 

volume of the oil sample representing 90 or 80 vol.% oil content was placed in the jacketed 

vessel, then 1 wt.% of Tween 20 surfactant was added to the oil phase to prepare stable 

emulsions. The mixture was stirred for about 5 minutes to ensure a homogenous solution. This 

was followed by the gradual addition of 10 or 20 vol.% de-ionized content while maintaining 

constant stirring speed for about 30 minutes. For water-in-crude oil emulsions, no surfactant was 

needed to prepare a stable emulsion due to the presence of natural surfactants such as resins and 

asphaltenes in the crude oil. The prepared emulsion was then transferred into a graduated 

cylinder and an ultrasonic probe was inserted for data collection. At the initial stage of the 

experiment, readings were taken every one hour for the first 6 hours, then after 24 hours. There 

was an insignificant change in the data taken after 4 hours. Therefore, readings up to 4 hours 
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were only considered. In the first 1 hour, readings were taken every 15 minutes, then every 30 

minutes for the last 3 hours. 

 

Fig. 3.2. Schematic diagram of the experimental setup for emulsion characterization 

 

Fig. 3.3 is a waveform for LMO and LMO emulsion captured by the receiver. Where amplitude 

(voltage) is on the y-axis while TOF on the x-axis. As it is expected, the probe captured a bigger 

signal for the sample of LMO, compared to the emulsion of this sample where the signal is 

smaller. This is due to the change in the composition of MO when water and emulsifier are 

added.    
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Fig. 3.3 Changes in ultrasonic signal for LMO & LMO Emulsion at 1200 rpm. 

3.2.3 Calculation of Acoustic Parameters  

 Acoustic Velocity 

Acoustic velocity and attenuation of the propagating wave are the two ultrasonic parameters used 

to characterize the emulsions prepared in the experimental part of this work. The ultrasonic 

probe which operates in transmission mode is used to measure amplitude and TOF. The distance 

between the transmitter and the receiver of the probe is d. TOF is the time it takes the wave to 

travel from the transmitter to the receiver. d and TOF were used to calculate the speed of sound 

in each medium; in this case emulsions and oil samples (equation 3.2).  

𝑣 =  
𝑑

𝑇𝑂𝐹
                (3.2) 
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Acoustic velocity (v) equation 3.3 is governed by the thermodynamic properties of the medium 

through which it is traversing. Based on the concept that sound is propagated as a harmonic 

longitudinal compression wave, the Newton-Laplace equation presents acoustic velocity through 

a given medium as a function of its bulk modulus (b) and density (r) (Ament, 1953; Urick, 1947). 

l speed of sound 

 

𝑣 = √
𝛽

𝜌
=

1

√𝜌𝜅
                                          (3.3) 

If bulk modulus and density data are available, values for acoustic velocity can be predicted for 

different media using above equation.  

Attenuation  

The measured decline in the amplitude of an ultrasonic wave, traveling a known distance through 

the sample, was used to approximate the attenuation coefficient (α) as presented in equation 3.4.   

𝛼 =  −
1

𝑑
 ln (

𝐴

𝐴0
)           (3.4) 

Where A0, is the reference amplitude and A is the final amplitude of the transmitted signal. The 

reference amplitude in this work is the amplitude of the transmitted signal in the DI water 

sample. Whereas A is the amplitude of other samples or emulsions. To help understand the 

samples used in this experimental work, their physical properties are presented in table 3.1. 

3.2.4 Data Analysis 

The raw data collected for each run was analyzed for consistency and outliers and appropriate 

data filtration was applied before its usage. Fig. 3.4 presents a scatter plot for the time of flight 

data points collected in the emulsion of light mineral oil. The purpose of the scatter plot is to 

identify outliers and categorize potential sources such as suspended impurities and bubbles etc.  

Data filtration was applied based on the theoretical consideration that for the emulsion of DI 
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water in LMO, the data points should fall within the range of DI water and oil samples. For this 

reason, data points that fall outside this range are considered an effect of bubbles, hence filtered 

out. The frequency distribution plot as shown in Fig. 3.4 provides a clearer picture of the data 

points and helps identify the peak and the effects of filtration on peak value. The average of 

remaining data points for TOF is then used to calculate acoustic velocity and standard deviation. 

The procedure ensured that the standard deviation was less than 2%. 

 

Fig 3.4  Scatter plot of TOF data obtained with LMO emulsion 

                                    

Fig 3.5 Frequency distribution of TOF data obtained with LMO emulsion 
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3.3 Results and Discussions 

3.3.1 Acoustic properties of oil samples  

The acoustic and physical properties of the mineral and crude oils used for the tests were first 

measured due to a clear and direct link with emulsion properties. Fig. 3.6 compares the measured 

acoustic velocities values of oil samples with that of DI water. DI water has the highest acoustic 

velocity followed by mineral oil, heavy and light crude oils respectively. Deionized water and 

mineral oils are used as reference fluids for crude oil emulsion characterization.   

 

Fig. 3.6 Acoustic velocity values calculated from TOF by Eq. 3.2 

Acoustic impedance (z) and bulk modulus (β) are two useful material-specific acoustic 

parameters which can be estimated knowing the acoustic velocity and density of a fluid.  

     Z = ρ.ν      (3.5) 

     β = ρ.ν2     (3.6) 

Acoustic impedance determines the behavior at interfaces between different materials. The 

higher the difference between the acoustic impedances of materials, the greater is the intensity of 

the reflected wave. Table 3.2 lists the values of acoustic impedances and bulk modulus of water 

and different oils calculated based on measured densities and acoustic velocities. The table also 
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lists the values of bulk modulus reported in the literature and shows the percent difference for 

different media. The small percentage errors indicate that estimations based on ultrasonic 

techniques are reliable. The error observed can be mainly attributed to the density difference 

between oil samples and the literature studies. 

 

Table 3.2. Comparison of acoustic properties of water and oil samples 

Sr. 

No. 

Fluid 

Density 

(Kg/m3) 

Acoustic velocity 

(m/s) 

[Exptl.] 

Bulk 

Modulus (pa)  

(calc.) 

Bulk 

Modulus 

(pa) [18]  

% Relative 

Absolute 

Error 

1 DI Water 997.7 1460.77 2.14E+09 2.15E+09 0.47 

2 Light Mineral Oil 857.46 1436.50 1.686E+09 1.66E+09 1.54 

3 Light Crude Oil 860.6 1357.37 1.51E+09 1.50E+09 0.66 

4 Heavy Crude Oil 907.4 1393.58 1.68E+09 NA  

 

Fig. 3.7 Compares the calculated attenuation by equation 3.4 of different liquids used in this 

work. Attenuation normalizes the raw amplitude values with respect to a reference value (Ao). 

Amplitude is a raw signal whose value can vary from one run to another for the same fluid 

depending on instrument settings such as gain applied voltage. DI water has the lowest 

attenuation compared to oil samples. Low attenuation implies a lower loss of energy as the wave 

propagates through the medium. In this study, amplitude recorded in DI water is used as the 

reference for calculation of attenuation in oil samples. 
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Fig. 3.7. Calculated attenuation values from recorded amplitude 

 

3.3.2. Effects of asphaltenes concentration on acoustic parameters 

As pointed out in chapter 2, asphaltenes and resin molecules found in crude oils have a 

remarkable effect on its emulsion properties. Asphaltenes in the colloidal state stabilize the 

emulsions, but it is strongly evident that its stabilizing properties are notably intense when it 

occurs in the solid state as precipitated from crude oil. 

 

Fig. 3.8. Example of molecular structures in crude oil: Asphaltenes (El-Sayed, 2012) 

20.9164

14.4409

26.6497

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

Light Mineral Oil Light Crude Oil Heavy Crude Oil

A
tt

e
n

u
at

io
n

 (m
-1

)



 

58 
 

 

 

 

 

 

Fig. 3.9 Mechanism of emulsion stabilization by asphaltenes  (El-Sayed, 2012) 

 

Like asphaltenes, resins are also large molecules which are complex compounds with high 

molecular weight and are insoluble in ethyl acetate but are soluble in n-heptane. It has a great 

tendency to couple with asphaltenes, resulting in the formation of the asphaltene-resin micelle. It 

plays a vital part in stabilizing emulsions. The asphaltene: resin ratio in the crude oil reveals the 

type of film formed (solid or mobile), and emulsion stability directly depends on it.  

Asphaltenes concentration in crude oils is usually determined using a time-consuming offline 

method based on solvent treatment and filtration. Therefore, using the ultrasonic method will 

significantly save time because it takes only 60 seconds to take over 1200 data points of a single 

reading and the average of this provides an accurate value. Higher asphaltenes content 

contributes to higher viscosity, density, and results in highly stable emulsions. Two samples of 

crude oil light and heavy, along with two blends of these samples were used for the asphaltenes 

concentration measurements. Fig. 3.10 represents the effect of asphaltenes concentration on the 

acoustic velocity. It can be observed that higher asphaltenes concentration led to an increase in 

acoustic velocity. Hence, the acoustic velocity for the heavy crude oil was highest in all the crude 

oil samples 
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Fig. 3.10 Variation of acoustic velocity with asphaltenes concentration in crude oil 

 

The effect of asphaltenes on the acoustic velocity was also observed by calculating acoustic 

impedance using equation 3.5. The plot of acoustic impedance vs asphaltenes concentration 

is presented in Fig. 3.11. Where density and acoustic velocity were reported in kg/m3 and 

m/s respectively giving the acoustic impedance in kg/m2s. An increase in acoustic 

impedance with asphaltene concentration indicates a higher degree of reflection from the 

interface and therefore higher attenuation of the transmitted wave. This can be observed 

below from attenuation calculated from measurements of the amplitude of transmitted 

waves. 
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Fig. 3.11 Asphaltenes concentration vs acoustic impedance 

It can be seen from Fig. 3.12 Asphaltene concentration was found to increase with 

increasing attenuation. For the light crude oil, the asphaltenes concentration was the lowest 

giving the lowest attenuation. An increase in attenuation indicates a loss of energy as the 

wave propagates through the medium. This can be attributed to the absorption of energy by 

the larger asphaltene molecules in heavier crude oil samples. The propagating wave will 

experience intrinsic absorption as it interacts with the large dissolved asphaltenic molecules. 

As discussed above, the heterogeneous composition of heavy crude oils due to the presence 

of heavy asphaltenic molecules is contributing to this behavior. 

80

90

100

110

120

130

140

0 2 4 6 8 10 12 14

A
co

u
st

ic
 i

m
p

ed
e
n

ce
(1

0
4

k
g

/m
2
s)

Asphaltene concentration (Weight %)



 

61 
 

 

Fig. 3.12 Effects of asphaltenes concentration on acoustic attenuation 

  

It is also observed from Fig. 3.12 that changes in attenuation going from 4.7 to 7.4% asphaltene 

level is not significant which represents a change of about 2.7% while for the remaining points, 

the change is nearly 4%. This indicates that attenuation does not capture very small changes in 

asphaltenes. This is possibly because the ultrasonic probe frequency is not sensitive enough. This 

indicates the need to improve the sensitivity of attenuation measurements possibly by increasing 

wave frequency. 

3.3.3 Stability Tests with Mineral Oil Emulsions  
As pointed out earlier, the first set of stability tests were conducted with mineral oil emulsions 

which allowed visual observations of dispersion of water droplets and their separation compared 

to nearly opaque emulsions of crude oil. The thermodynamic instability of most emulsions causes 

them to separate into their phases when leftover time. The process of destabilization follows 

several steps that also include flocculation, sedimentation, and coalescence and finally phase 
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separation. Consequently, the characteristics of the emulsion such as composition, droplets size 

distribution and other rheological properties also change with time. Unstable emulsions are 

expected to separate into their phases faster than the stable emulsions.  

3.3.3.1 DI Water Separation and Attenuation with Mineral Oil Emulsions  
Fig. 3.13 shows the relationship between separation % of DI water and recorded variations of 

attenuation of propagating waves in the light mineral oil emulsions. A comparison of the two 

curves shows a reverse trend between water separation and attenuation. the increase in the 

separation curve is followed by a decrease in attenuation. This confirms that attenuation has 

captured changes in the characteristic of LMO emulsions since settling of DI water changes the 

composition of water in mineral oil emulsions. 90% LMO content and 10% DI water emulsion 

showed gradual separation. Near-complete separation for the emulsion of 10% DI water in light 

mineral oil is achieved in the first 1 hour.  Thus, fast water separation leads to a corresponding fast 

drop in attenuation indicating a strong contribution of dispersed water droplets to acoustic 

attenuation.  Higher residual attenuation with 10% DI water emulsions indicates the role of smaller 

droplets of more stable emulsions to acoustic attenuation. Equation 3.7 is used to calculate water 

separation percentages: 

Water separation % = (Settled water in emulsion/Initial water content in emulsion) *100        (3.7) 
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Fig. 3.13. Water separation and attenuation in LMO emulsions 

As discussed in the later section, several loss mechanisms such as scattering losses, viscous and 

thermal dissipations can contribute to attenuation of the wave. Their relative contribution needs 

to be ascertained for the system under investigation. 

3.3.3.2 DI Water Separation and Measured Acoustic Velocity with Mineral Oil Emulsions  

Fig. 3.14 shows the relationship between separation % of DI water and recorded acoustic 

velocity in the mineral oil emulsions of the corresponding Fig. 3.13. Acoustic velocity calculated 

from TOF is another important ultrasonic parameter for testing and characterizing emulsions.  

Fig. 3.14 illustrates a gradual decrease in acoustic velocity for the emulsions of 90% LMO 

content and 10% DI water content. As noted earlier (Fig. 3.7), acoustic velocity in DI water is 

higher than in mineral oil. Thus, a decrease in acoustic velocity with time corresponds to a 

decrease in the water content of the emulsion. This is consistent with the plot of the DI water 

separation percentage (Fig. 3.14). The highest drop in acoustic velocity is observed at about 1 

hour where there is near complete separation of the water phase. This indicates the ability of the 

0

10

20

30

40

50

60

70

80

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4

A
tt

e
n

u
at

io
n

 (m
-1

)

D
I W

at
e

r 
Se

p
. %

Time (h)

LMO Emulsion (90%LMO_10%DI Water)

Separation%

Attenuation



 

64 
 

ultrasonic probe to detect changes in the characteristics of LMO emulsions using acoustic 

velocity.  

         

Fig. 3.14. DI Water separation and acoustic velocity in MO emulsions 

3.3.3.3 DI Water Separation and Attenuation with Mineral Oil Emulsions  

Fig. 3.15 shows the comparison between separation % of DI water and recorded variations of 

attenuation of propagating waves in the LMO emulsions. The two curves show a revised trend 

between DI water separation and attenuation. The increase in the separation curve is followed by 

a decrease in attenuation. This confirms that attenuation has captured changes in the characteristic 

of LMO emulsions since settling of DI water changes the composition of water in mineral oil 

emulsions. 80% LMO content and 20% DI water emulsion showed fast separation. Contrary to 

Fig. 3.13 complete separation for the emulsion of 20% DI water in mineral oil is achieved in about 

30 minutes.  Thus, fast water separation leads to a corresponding fast drop in attenuation indicating 

a strong contribution of dispersed water droplets to acoustic attenuation.      
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On the other hand, 90% MO content and 10% DI water emulsion showed gradual separation. The 

quick separation of DI water for emulsions of 80% LMO and 20% DI water can be attributed to 

the formation of large droplets. Since the mixing time and rpm were the same for 10 and 20% DI 

water emulsions, smaller size droplets would be generated in 10% DI water emulsions. The large 

dispersed DI water droplets enhance the rate of coalescence and settling, leading to a fast 

separation of DI water. Changes in the two acoustic parameters of the emulsions were tracked with 

the probe simultaneously.  

 

Fig. 3.15. Water separation and attenuation in MO emulsions 

As discussed in the later section, several loss mechanisms such as scattering losses, viscous and 

thermal dissipations can contribute to attenuation of the wave. Their relative contribution needs 

to be ascertained for the system under investigation. 

3.3.3.4 Acoustic Velocity for the Mineral Oil Emulsions 

Acoustic velocity calculated from TOF is another important ultrasonic parameter for testing and 

characterizing emulsions. Fig. 3.16 illustrates a fast decrease in acoustic velocity for the 
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emulsions of 80% MO content and 20% water content. As noted earlier (Fig. 3.6), acoustic 

velocity in DI water is higher than in mineral oil. Thus, a decrease in acoustic velocity with time 

corresponds to a decrease in the water content of the emulsion. This is consistent with the plot of 

the DI water separation percentage (Fig. 3.16). The highest drop in acoustic velocity is observed 

at about 30 minutes where there is near complete separation of the water phase. This indicates 

the ability of the ultrasonic probe to detect changes in the characteristics of MO emulsions using 

acoustic velocity. On the other hand, the plot for 90% MO content and 10% DI water show a 

gradual decrease in acoustic velocity. This is like the observation made for the corresponding DI 

water separation percentage. 

 

Fig. 3.16. Water separation and acoustic velocity in MO emulsions 

3.3.4 Stability Test with Crude oil Emulsions  

These tests were carried out with both light and heavy crude oil samples to observe the effects of 

large asphaltene compounds on the emulsion characteristics of the crude oils. Due to the opaque 

nature of crude oils, separation of water phase could not be observed clearly in Fig. 3.17 
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Fig. 3.17. Pictures of light mineral oil and crude oil emulsions 

However, variations in acoustic parameters were easily captured with the probe. The trend for 

the measured amplitude values is plotted in Fig. 3.18 for emulsions with 10 and 20% water 

content. The rise in amplitude values for the first hour indicates the separation of water droplets 

as observed with the mineral oil emulsion test. It is also observed that amplitude value is lower in 

emulsion with 20% water content which can be attributed to a higher concentration of water 

droplets in the emulsion phase. Some fluctuations observed with the measured amplitude can be 

attributed to the heterogeneous nature of crude oils.  As expected from amplitude plots, higher 

attenuations are recorded in emulsion with 20% water content and sharper drop can be attributed 

to a quick separation of larger droplets (Fig. 3.19). 
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Fig. 3.18. Variations in amplitude values recorded with time with light crude oil emulsions 

 

 

Fig. 3.19 Variations of attenuation obtained with emulsions of LCO 
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It can be observed from Fig. 3.20 that higher initial velocity is recorded in emulsion with 20% 

water content compared to 10%. This can be attributed to higher acoustic velocity in the water 

phase contributing to the observed increase with higher water content. However, as the water 

droplets settle out, the measured acoustic velocity values drop quickly approaching that of crude 

oil. 

 

Fig. 3.20. Variations of acoustic velocity with time in LCO emulsions 

Equation 3.3 presented earlier, can be used to estimate acoustic velocity in homogenous fluids. 

However, for application to non-homogenous mediums such as emulsions, this equation needs to 

be modified by calculating the effective density and elasticity of the suspension (Pinfield and 

Povey, 1997, Kuster and Toksoz, 1974; Urick, 1947). The modification includes substituting the 

effective density and effective bulk modulus based on the volumetric fraction of respective phases 

in Eq. 3.3. the equation for the speed of sound in mixed media 
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peed of und in mixed media 

 
𝑣𝑒𝑚𝑢𝑙 = √

∑ 𝜙𝑖𝛽𝑖
𝑛
𝑖=1

∑ 𝜙𝑖𝜌𝑖
𝑛
𝑖=1

                     

      

                          (3.8) 

Where i is the volume fraction of component i in the non-homogeneous mixture. For two phase 

oil-water emulsion we have, 

eff = (1-)Oil + W     (3.8a) 

Ρeff = (1-)ρOil + ρW                  (3.8b) 

 

Determine Water Fraction from Acoustic Velocity 

The above equations can be combined and rearranged to estimate water fraction in the emulsion 

phase using measured acoustic velocity in the emulsion phase and known density and bulk 

modulus in each phase. The resulting equation shown below can be used to develop a calibration 

curve shown in Fig. 3.21.  

∅ =
[𝑉𝑒𝑚𝑢

2 𝜌𝑜𝑖𝑙−𝛽𝑜𝑖𝑙]

[𝑉𝑒𝑚𝑢
2 (𝜌𝑜𝑖𝑙−𝜌𝑤)+(𝛽𝑤−𝛽𝑜𝑖𝑙)]

        (3.9) 

 

Regarding the separation, even though the clear visible separation was not obtained, drop in 

attenuation and acoustic velocity confirmed the separation of water from light crude oil. 
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Fig. 3.21. Calibration curve to determine water fraction in emulsions of LCO 

Using this calibration procedure, we get a water content of about 3 vol.% in 10% DI water 

emulsion and 5% in 20% DI water emulsion, after four hours of settling time.  This indicates that 

water droplets are settling out from the bulk of the emulsion phase but seem to be accumulating 

near the bottom. 

Visual observations of water separation from emulsions were even more difficult with emulsions 

of HCO compared to LCO emulsions. However, both acoustic parameters recorded variations 

with time.  Fig. 3.22 shows that attenuation was nearly constant for about 30 minutes followed 

by a quick drop for the next 30 minutes and a gradual decrease for the next hour. Fig. 3.23 shows 

measured acoustic velocity, however, decreased from the beginning reaching a nearly constant 

value in about an hour. The decrease in acoustic velocity indicates droplet settling taking place 

even though there is no visible separation. 
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Fig. 3.22. Measured attenuation in HCO emulsions 

The presence of asphaltene content makes it difficult to see any possible separation.  Most of the 

change is observed in the first 30 minutes this could be a result of coalescence of larger droplets 

of the dispersed DI water. 

 

Fig. 3.23. Variation of acoustic velocity in HCO Emulsions 
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Since there was no clear separation of water, the recorded changes in acoustic parameters could 

be attributed to the accumulation of settled droplets near the bottom. Higher asphaltene 

concentration in HCO would prevent the coalescence of droplets by forming an interface layer. 

The attenuation measurements in such systems can be complicated by contributing effects of 

different terms as pointed out in literature studies (Dukhin and Goetz, 2002; Hauptmann et al., 

1998). 

𝛼 = 𝛼𝑖𝑛𝑡 + 𝛼𝑠𝑐 + 𝛼𝑣𝑖𝑠 + 𝛼𝑡ℎ      (3.10) 

Here, αins represent intrinsic losses of the medium, αsc the scattering losses, αvis describes the 

viscous losses and αth the thermal losses. Table 3.3 presents equations for each of these dissipation 

terms, as discussed in various literature studies (Babick et al., 2000; McClements and Coupland, 

1996). For a given system, scattering losses (αSC) are proportional to (k1r)
3 leading to the 

exponential increase in losses with the increase in droplet radius. However, what is observed is 

lower attenuation in emulsions of larger droplets (Fig. 4 to 6), indicating that the contribution of 

scattering losses is of little significance here. This could be contributed to relatively small 

differences incompressibility of liquid-liquid dispersion compared to liquid-solid or gas in liquid 

dispersions. For comparison, physical and thermal properties of different materials are presented 

in Table 3.3 from literature sources (Nadolny and Dombek, 2017; Das et al., 2007; Meng et al., 

2006; Holman (1990) Perry et al., (1984) Edwards et al. (1983)). In oil-water emulsions, the 

contribution due to viscous dissipation can be neglected due to the small density difference 

between the droplets and surrounding liquid (McClements, 1996 and McClements and Coupland, 

1996). Thus, high levels of attenuation observed in the emulsion phase can be attributed 

combination of two thermal losses, due to large differences in thermal properties of the two phases 
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and intrinsic absorption effects. Similar observations have been made by Hipp et al. (2002), who 

investigated acoustic attenuations in suspensions and emulsions. It was concluded by these authors 

that attenuations in emulsions are thermal in nature. Moreover, observed attenuations were higher 

in emulsions of smaller oil droplets. Additional details on the parameters of acoustic attenuation 

terms and their approximations are discussed in relevant literature studies (Babick et al., 2000 and 

McClements and Coupland, 1996). 
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Table 3.3. Contributing terms and their equation for acoustic attenuation 

Contributing 

loss term 

Governing Expression Remarks 

Intrinsic 

absorption 

 Phase 1 (oil) and 

phase 2 

(particles/droplets) 

 

 

Scattering 

losses 

 Particle/droplet size 

larger than 

wavelength 

 

 

 

Viscous 

losses 

 Negligible effect 

when   density 

difference between 

phases is small  

 

Thermal 

losses 

 

 

 

H and b1 parameters defined in McClements and 

Coupland (1996) 

Significant when 

difference between 

thermal expansion 

coefficients is large. 

𝜶𝒔𝒄 = 𝜑 𝑘1 (𝑘1𝑟)3 (
1

6
(

𝜅1 − 𝜅2

𝜅1
)

2

+
1

2

(1 −
𝜌1

𝜌2
)

2

(2 +
𝜌1

𝜌2
)

2) 

𝛼𝑣𝑖𝑠 =
(1

2⁄ )𝜑𝑘1 (
𝜌2

𝜌1
− 1)

2
9 4⁄ (

𝛿𝑣

𝑟 )(1 +
𝛿𝑣

𝑟 )

[
𝜌2

𝜌1
+

1
2 +

9
4 (

𝛿𝑣

𝑟 ) ]

2

+ [
9
4 (

𝛿𝑣

𝑟 ) (1 +
𝛿𝑣

𝑟 )]
2

  

𝛿𝑣 = √2 𝜈 𝜔⁄  

𝛼𝑡ℎ =
3𝜑𝑘1𝐻(𝛾 − 1)

2𝑏1
(1 −

𝛽2𝜌1𝐶𝑃1

𝛽1𝜌2𝐶𝑃2
)

2

 

α
int

 = φα
1
 + (1 - φ) α

2
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Table 3.4. Thermophysical properties of materials from literature 

 

3.3.5 Measurements with blends of crude oil and mineral oil 

These tests were conducted to investigate probe response and trends in the liquid mixtures of the 

two different oil types.  

While mineral oil is mostly paraffinic with an average carbon number of about 25 (C18 to C32), 

crude oils is a more complex mixture of different hydrocarbon type ranging from C4 to C50. Fig. 

3.24 shows acoustic velocities for the individual oils and their blend. To the left is HCO and 

thereafter, 30%, 50% and 70% of LMO are added to HCO to form the blend. As expected, 

acoustic velocity increases to the right with increasing LMO content and ends with the highest 

acoustic velocity (LMO only).                                  

Material Density 

(kg m-3) 

Compressibility  

(10-10. Nm-2) 

Thermal 

conductivity (W 

m-1 K-1 

Specific heat (J 

kg-1 K-1) 

Thermal 

expansion 

(104.K-1) 

Water 998 4.16 0.614 4180 2.27 

Mineral oil 864 6.25 0.133 1900 7.5 

Crude oil 867 5.86 0.134 1907 8 

Air 1.22 NA 0.025 1007 37 

Silica 2650  1.5 730 0.0075 
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Fig. 3.24. The Acoustic velocity for HCO/LMO and their blend in varying composition 

 

Table 3.5 shows that the acoustic velocity of the blend can be estimated within 1% using 

weighted average. 

Cblend = CHCO (Vol. frac. of HCO) + CLMO (Vol. frac. of LMO)   (3.11) 
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Table 3.5. Comparison of measured and calculated values of acoustic velocities in HCO/MO 

blends 

 

Fig. 3.25 presents corresponding attenuations obtained in the blends of the two oils. It is 

observed that the behavior of attenuation is not additive since, with 50% and 70 vol.% 

LMO/HCO mixtures, attenuation values are higher than expected. This behavior could be 

partially attributed to settling out of asphaltenes from heavy crude oil by the paraffinic mineral 

oil. Since the probe was vertically oriented, the settling asphaltenes molecules may have settled 

on the transducer surface causing additional resistance to wave propagation. Accumulation of a 

blob of heavy asphaltenic material was noticed at the bottom of the cylinder with an increase in 

mineral oil fraction in the blend. 

 

Blend % 

100% 

HCO 

70% HCO+ 

30% LMO 

50% HCO+ 

50% LMO 

30% HCO+ 

70% LMO 

100%LMO 

Measured Acoustic 

vel. (m/s) 

1380.96 

 

1395.54 1412.71 1424.02 1438.45 

Calculated Acoustic 

Vel. (m/s) 

NA 1398.21 1409.71 1421.2 NA 

Difference (%) NA 0.19 0.21 0.5 NA 
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Fig. 3.25. The Attenuations for HCO, LMO and their blend in varying composition 

3.3.5.1 Effects of adding LMO to HCO on Emulsions Characteristics 

 

  Blends of LMO and HCO in varying proportions were tested for their emulsion characteristics 

as well as test the potential of the ultrasonic probe to detect changes in the stability of their 

emulsions. As observed earlier the emulsions of the two oils exhibited extreme stability behavior 

while water separation was quick with mineral oil emulsions, there was very little separation 

from heavy crude oil emulsion. Both acoustic velocity and attenuation were calculated to 

establish the changes and water separations were recorded over 4 hours to test the stability of the 

emulsions.   

3.3.5.2 Water Separation Tests with Emulsions of HCO and LMO Blends 

Like HCO, the blend of HCO and LMO emulsions did not show visible water separation in the 

graduated cylinder. However, this does not imply that there was completely no separation taking 

place. After transferring emulsions from cylindrical to a conical separation vessel about 2.25% 
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separation of water was recorded, which is lower than HCO alone. This is contrary to 

expectation since emulsions of LMO alone show high separation, which implies adding LMO to 

HCO would increase water separation. The reason for the decreased separation could be a result 

of observed settling out of asphaltene content. Large dark brown lumps of asphaltenes were 

observed after 24 hours indicating that LMO contributes to the settling of asphaltenes.  

 

3.3.5.3 Acoustic parameters in Emulsions of the Blend of HCO and LMO  

Acoustic velocities measured in emulsions of the blends are compared in Fig. 3.26. The curve 

with the lowest acoustic velocity is for HCO only where the initial period of decrease is followed 

by an essentially constant value of acoustic velocity. However. With the LMO blends, after an 

initial period of decrease, the measured acoustic velocity increases towards that of LMO with its 

increasing content in the blends. For 70% LMO, at first, the acoustic velocity is low which then 

increases quickly closer to that of LMO only. In addition to settling out of asphaltenes in crude 

oil, LMO also separates from HCO over time to form the top layer due to its lower density. It 

may be noted that measurements are affected by the following simultaneous occurrences. 

1. Settling/separation of water droplets from the emulsion. 

2. Extraction of asphaltene molecules from the heavy crude oil by paraffinic mineral oil. 

3. Separation of mineral oil from the bulk of crude oil. 
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Fig. 3.26. Variations of acoustic velocity with time in emulsions of HCO/LMO blends 

 

Fig. 3.27 Compares the corresponding attenuations recorded simultaneously with acoustic 

velocities. It is observed that there is little change in attenuation until about 30 minutes. 

Following which there is a significant drop until about one and a half hours, beyond which there 

is very little change except for 70:30 LMO/HCO blend. Attenuation changes in this blend were 

significantly slower and remained higher until about three hours. A trend can be observed 

between thirty minutes and 1 hour where there is an increase in attenuation with increasing LMO 

content. This behavior could be attributed to the interferences caused by the simultaneous 

separation of asphaltenes and water droplets from the suspensions. Also, there is a general 

decrease in all the curves indicating possible separation of water taking place. Appropriate 

ultrasonic frequency should be chosen to increase the sensitivity of attenuation and therefore 

achieve better results. 
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Fig. 3.27. Change of attenuation with time in the emulsions of blends 

3.4 Conclusions 

The application of ultrasonic based technology to characterize oils and their emulsions has been 

demonstrated through a series of tests in different systems. The two measured acoustic 

parameters are the time of flight and amplitude of the received wave from which acoustic 

velocity and attenuations are estimated. Initial tests with mineral oil and its emulsions allowed 

visual observations of water separation steps from emulsions and demonstrated the potential of 

the technique. Mineral oil emulsions with high water content (20% DI water) separated into their 

phases faster than emulsions with 10% DI water content. This is possible because high water 

content forms large water droplets which are easy to coalesce. This trend was observed from the 

acoustic velocity measurements.  The technique also captured variations in asphaltene content of 

crude oil samples which is of practical significance in the petroleum industry. The link between 

asphaltene content and stability of crude oil emulsion stability is demonstrated. The decrease in 

acoustic velocity indicates water separation taking place. Therefore, changes in the composition 
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of HCO emulsions that cannot be seen visually can be analyzed using acoustic velocity. The 

analyzed results showed that the ultrasonic technique has high potential to be used for 

monitoring emulsion stability and track changes in emulsions characteristics.    

 

Notations 

 

A amplitude (V) 

A0         reference amplitude (V) 

c acoustic velocity (m.s-1) 

d distance between transducer and reflector surface (m) 

DI        deionized  

f wave frequency (s-1) 

h height of liquid column (mm or m) 

I intensity of acoustic wave (w.m-2) 

k1 wave number defined by equation 9 (-) 

P pressure (Pa) 

r particle radius (μm) 

R fraction of wave energy reflected from interface (-) 

TOF time of flight (μs) 

Z acoustic impedance of the medium (kg.m-2. s-1) 
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Greek Letters 

α attenuation coefficient (m-1) 

β bulk modulus of the medium (Pa) 

ƛ pulse wavelength (μm) 

ρ density of medium (kg.m-3) 

ω angular frequency (rad. s-1) 

κ isentropic compressibility (Pa-1) 

φ fraction of dispersed phase (-) 

 

Subscripts 

b bottom 

i interface 

o initial value 

r  reflector or reference 

w water 
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Appendix A 

Reproducibility of experimental results  

To ensure that experiments are reproducible, repeat runs were conducted. Fig. A3.28 shows the 

repeat run completely the same as the first run. Therefore, using this procedure the same results 

can be reproduced. On the other hand, Fig. A3.29 &A3.30 showed similar trends between the 

two runs and detected the slight difference in the two emulsions. This indicates that both 

ultrasonic parameters (acoustic velocity and attenuation) can capture the small difference in the 

emulsions that can be due to experimental errors when preparing emulsions. Therefore, this 

technique very reliable and has high accuracy. 

 

Fig. A3.28 Water separation % for LMO emulsions 
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Fig. A3.29. Acoustic Velocity for LMO emulsions 

 

 

Fig. A3.30. Attenuation for LMO emulsions 
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Fig. A3.31 shows that the ultrasonic technique can capture the change in the characteristic of 

HCO when LMO is added. Acoustic velocity increases with an increase in LMO content. This is 

expected since LMO alone has higher acoustic velocity than HCO alone.  

 

 

Fig. A3.31. Effect of adding LMO in HCO on its acoustic velocity 

 

HCO only and LMO only are added for more understanding. As explained in Fig. 3.25, Fig. 

A3.32 shows the acoustic velocity of the blends of HCO and LMO is between the acoustic 

velocity of the individual oils.  
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Fig. A3.32. Variations of acoustic velocity with time in emulsions of HCO/LMO blends 
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4. Chapter 4. Ultrasonic based techniques to monitor oil layer depth of spills 

Abstract 

There is a growing concern about the harmful environmental impact caused by spills of 

petroleum and its products during their storage and transportation. Currently, there is a lack of 

suitable measurement techniques to monitor these leaks. The applicability and potential of 

ultrasonic based methods to detect and monitor oil layer thickness of petroleum product spills 

have been demonstrated by conducting a series of tests. Initial tests were conducted with mineral 

oil samples to establish procedures and determine potential sources of errors. It is shown that 

simultaneous measurements of acoustic velocity and attenuation provide a strong combination to 

detect the presence of oil and emulsion layers. For the oil layer on the surface of the water, a 

simple method to determine oil layer thickness is proposed. Moreover, a more general and robust 

procedure has been proposed based on the observations and tests of the study. 

4.1 Introduction   

The high dependency of the economic base and industrial activities on crude oil and petroleum 

products has immensely increased their quantity being transported across the seas and other 

waterways. In addition, their storage underground poses a lot of environmental concerns. This is 

due to the occurrence of oil spills that cause both local and global environmental concerns 

(Onwurah et al., 2007). The toxic effect of the oil spill can last over a decade since the bulk of oil 

remains in the less-weathered subsurface. In their random sampling of underground fuel storage 

tanks, U.S. Environmental Protection Agency (USEPA) found 35% leaks in the sampled tanks 

(United Press International, 1986). One of the biggest challenges facing researchers in the study 

of oil spills is the ability to measure oil layer thickness. More specifically, there are no laboratory 

methods or reliable field techniques to measure oil on water thickness. The desire to measure oil 

thickness is driven by the need for significant advances in the primary understanding of how oil 
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thickness spread and the effective response like spill cleanup. Another motivation for 

determining the oil thickness is to determine the amount of oil spilled. The existing method of 

using airborne surveillance of oil thickness with the sensors usually overestimates oil quantity 

(Brown et al., 1998). 

A common and economical remote sensor is the one based on ultraviolet/infrared (UV/IR) 

scanners and cameras (Brown et al., 1995). While the UV portion of the sensor can detect the 

entire area of the slick including the thin sheen area, the thermal IR portion provides information 

on the thicker portions of the slick. These optically thick layers will absorb solar radiation, a 

portion of which is re-emitted in the thermal IR region. However, a thin sheen of the oil slick is 

undetectable in the thermal IR region of the spectrum. The data collected from the UV and IR 

portions can be integrated to provide an indication of the thick and thin portions of the slick. The 

UV/IR scanners, however, do not provide values for actual oil layer thickness and there is a need 

for calibration with a sensor capable of absolute slick thickness measurement (Brown et al.,1995; 

Belore, 1982). A sensor based on ultraviolet laser pulse has shown limited success in its ability to 

measure the slick thickness (Hoge and Swift, 1980; Kung and Itzkan, 1976). The ultraviolet laser 

pulse is used to excite the OH stretching vibration in water which leads to a phenomenon known 

as Raman scattering. When the oil is present on the water surface, the Raman signal is depressed 

in a manner proportional to the thickness of the oil. However, oil thickness cannot exceed its 

optical thickness – up to about 20 microns depending on the absorption properties of the oil.  

The Laser Ultrasonic Sensing of Oil thickness (LURSOT), is the most promising remote sensing 

technique that uses the concept of speed of sound being relatively constant in the liquid oils 

(Fingas, 2018). The sensor employs a short laser pulse to produce ultrasonic waves in an oil layer 

in conjunction with a second laser coupled to an optical interferometer for the remote detection 
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of ultrasonic surface movements (Brown et al., 1995). First, a thermal pulse is created in the oil 

layer by absorption of a powerful CO2 laser pulse which initiates a rapid thermal expansion of 

the oil near the surface where the laser beam was absorbed. As a result, there is a step-like rise of 

the sample surface together with an acoustic pulse of high frequency and large bandwidth. The 

generated acoustic pulse travels down the oil layer until it meets the oil-water interface, where it 

is partially transmitted and partially reflected toward the oil-air interface where a slight 

displacement of the oil surface occurs. The total time lapsed for the acoustic pulse to travel 

through the oil and back to the surface again is a function of the thickness and the acoustic 

velocity of the oil. A second laser probe aimed at the surface measures the displacement of the 

surface. This complex technique has met with only limited success due to several sources of 

errors and current instrument limitations, as listed below. 

• The weak acoustic impedance mismatch between oil and water results in a weak acoustic 

reflection coefficient leading to weak reflected signals. 

• Under certain conditions, the oil spills can also lead to the formation of water-in-oil 

emulsions which have acoustic properties even closer to those of water, reducing the 

reflection coefficient even further. This leads to an even weaker signal of echoed acoustic 

pulse, requiring more sensitive and expensive equipment. Impurities such as asphaltene 

and fine solid particles, found in crude oil, stabilize emulsions, making the persist for 

long (El-Sayed, 2012).  

• The accuracy of the laser-ultrasonic measurement of oil thickness also depends on the 

accuracy of the measurement of the acoustic velocity of the oil which can vary from 10 to 

25% depending on composition and weathering effects (Brown et al., 1995; Wang and 

Nur, 1991). 
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The focus of the current work is the development of low-cost ultrasonic-based techniques to 

detect the presence of oil spills as well as to measure the thickness of oil and emulsion layers. 

The approach is based on simultaneous measurements of two main acoustic parameters, namely 

acoustic velocity (or time of flight) and attenuation (or amplitude). These parameters depend on 

the physical and thermodynamic properties of the propagating medium. It is envisaged that a 

low-cost device with acceptable accuracy can be developed based on ingenious ideas while 

taking advantage of the new developments in the field.  

 

4.2 Experimental Details  

4.2.1 Materials and Methods  

The two types of oil used are Light mineral oil (LMO), and crude oil (CO). The LMO was 

purchased from VWR international while CO was provided by Imperial Oil Ltd. The commercial 

non-ionic hydrophilic surfactant Tween 20 (Polyoxyethylene-20-sorbitan Monolaurate) with 

chemical formula C58H114O26, was used as emulsifier during the preparation of mineral oil 

emulsions. Brookfield digital Rheometer was employed to determine the viscosity of the oils.  

Density measurements were conducted using SG-Ultra Max Ex Petrol Density Meter, by Eagle 

Eye Power Solutions. IKA mechanical mixer (model RW 20D), with a four-blade stainless steel 

propeller-type stirrer, was used to prepare the emulsion mixtures. The measured physical 

properties are summarized in Table 4.1. 
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Table 4.1. Physical properties of different oils used to prepare emulsions. 

Fluid Density (kg/m3) 
Viscosity 

(cP) 

Specific 

gravity 
0API 

Asphaltene 

content (wt. %) 

DI Water 997.7 1.02 1 - - 

LMO 858.7 91.20 0.861 - 
- 

HCO 907.4 107 0.909 24.23 
13.17 

   

4.2.2 Experimental Setup and Procedures 

A schematic of the experimental setup used is shown in Fig. 4.1. It consists of a jacketed vessel 

for preparing emulsions and taking readings of the thickness of oil and their emulsions layers. 

The ultrasonic measurements were taken with the help of a probe shown in Fig. 4.2. Its total 

length was 330 mm and the distance between the transmitting and receiving surface was 51.2 

mm.  It was inserted vertically into the vessel containing the liquid layers while ensuring that its 

transmitting and receiving surfaces were fully immersed in the liquid phase.  The transducer was 

connected to the pulse-receiver (UTEX Inc.), capable of exciting ultrasonic transducers with 

center frequencies from 1 MHz to 150 MHz. However, the probe used in this study had a 

frequency of 3.5MHz. For every reading of the time of flight (TOF) and amplitude, 1200 data 

points are taken over 60 seconds. The averages of these data points were then used to calculate 

the acoustic velocity and attenuation, respectively. It was controlled by a software interface 

which allowed remote control and configuration of the instrument. Transducer excitation was 

achieved with an ultra-fast square wave pulse featuring adjustable pulse width and adjustable 

pulse voltage. The amplifiers in the instrument were directly gain controllable eliminating the 

need for attenuators that contribute to receiver noise. 
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Fig. 4.1. Schematic diagram of the experimental setup 

 
Fig. 4.2.  Details of the ultrasonic probe 
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At first, the experiment was conducted by taking readings of layers of DI water and oil samples 

without emulsions. For the second set of experiments, the emulsion was prepared with samples 

of oil content (90 %) and 10% DI water at an agitation speed of 1200 rpm. For LMO, 4% Tween 

20 emulsifier was added to create a tight emulsion, then agitated for 5 minutes for a homogenous 

solution. On the other hand, crude oil does not require emulsifiers because it already has 

asphaltenes which act as natural surfactants. The final mixture is let to agitate for 30 minutes. A 

3 mm thick layer of this emulsion was placed at the DI water surface before taking the reading. 

A maximum of 10 mm of oil sample was added to the DI or emulsions layer. First, DI water is 

placed in the vessel then the oil layer or emulsion layer of different thickness is added to track 

changes in layer thickness. For three-layer DI water, emulsion and oil systems, the emulsion 

layer was added to the surface of DI water first followed by the oil sample layer.  

For initial tests, the probe was inserted into the container, every time a new layer of oil sample 

was added and was removed after taking the readings. This method was later changed especially 

with crude oil since oil was found sticking to the surface of the probe thus influencing the 

readings. In the revised method, the probe was inserted into the vessel containing DI water 

before adding the oil sample to avoid oil sticking on the active surface of the probe that will be in 

the DI water layer. The following steps were followed when taking the readings: 

1. First, DI water is added into the jacketed vessel, then the probe is inserted until its 

distance d is in the DI water layer.   

2. The emulsion is then added gradually. If emulsion is not used, oil sample is added instead 

3. DI water is drained out for emulsion or oil sample to reach the section of d. 

Measurements for ToF and amplitude are taken.   

4. The oil sample is added in the increments of 1 mm  
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5. DI water is now drained out to bring the oil layer within the active area of the probe.  

6. The maximum thickness of the oil sample is 10 mm or (3 mm emulsion+ 7 mm) of oil  

4.2.3. Calculation of Acoustic Parameters  

Acoustic velocity and attenuation of the propagating wave are the two ultrasonic parameters used 

to track the layers of oil and emulsions prepared in the experimental part of this work. The 

ultrasonic probe which operates in transmission mode is used to measure amplitude and TOF. 

Fig. 4.3 is captured waveform when the probe moves from DI water to a layer consisting of 3 

mm thickness of LMO emulsion and 1 mm thickness of LMO and remaining water phase.  
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Fig. 4.3. Comparison of ultrasonic signal in DI water vs. layer of MO and its emulsion in DI 

water 

The amplitude (voltage) is on the y-axis while TOF on the x-axis. As observed, the probe 

captured a bigger signal for the DI water compared to the thickness of (LMO + LMO emulsion) 

where the signal is reduced.  TOF is the time it takes the wave to travel from the transmitter to 

the receiver. The speed of sound is then calculated in each medium using equation 

𝑣 =  
𝑑

𝑇𝑂𝐹
                                                                   (4.1) 

Acoustic velocity is governed by thermodynamic properties of the medium through which it is 

traversing. This is based on the sound propagation as a harmonic longitudinal compression wave, 

The Newton-Laplace equation presents acoustic velocity through a given medium as a function of 

this bulk modulus (β) and density (ρ) (Povey, 1997; Ament, 1953; Urick, 1947).  

                       𝑣 = √
𝛽

𝜌
=

1

√𝜌𝐾𝑠
                                                           (4.2) 

Equation 4.2 can be used to predict values of acoustic velocity for different media if data for bulk 

modulus and density are provided. The drawback of this equation is that it is only applicable for 

homogenous fluids. For emulsions, which is the non-homogenous system, effective density and 

elasticity of the suspension are calculated to modify this equation. This is based on the 

volumetric fractions of the suspension.   

             

An acoustic wave traveling through a medium experiences energy loss which depends on the 

composition of the medium as well the frequency of the wave. This is measured by the decline in 

the amplitude of the wave traveling a known distance through the medium and expressed as the 

attenuation coefficient (α) as presented in equation 4.3.  
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𝛼 =  −
1

𝑑
 ln (

𝐴

𝐴0
)                                                                (4.3) 

Where Ao, is the reference amplitude and A is the final amplitude of the transmitted signal. The 

reference amplitude in this work is the amplitude of the transmitted signal in the DI water 

sample. Whereas A is the amplitude of other samples or emulsions.  

Data Analysis 

Prior to plotting, the data set collected was analyzed for possible outliers, random errors, etc. 

Two methods used to analyze the data set were frequency distribution and scatter plots to 

eliminate possible errors before using it to calculate acoustic velocity and attenuation. Fig 4.4 

and 4.5 are the representation of frequency distribution and scatter plots for readings of 1 mm 

thickness of MO on DI water. The readings are very consistent as can be seen in Fig. 4.5. The 

purpose of the scatter plot is to identify the outliers and use a frequency distribution to eliminate 

them. In this case, there are no outliers. However, frequency distribution was still plotted to show 

how close data points are. Theory suggests that the data point of emulsions fall within the range 

of DI water and oil sample which is consistent with the observation. Therefore, it was not 

necessary to apply data filtering in these experiments.  
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Fig 4.4. Frequency distribution plot for 1 mm film of LMO 

 

 

Fig 4.5. Scatter plot for data collected with 1 mm oil film of LMO 
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4.3 Results and Discussions 

Acoustic parameters were first measured in the oil samples and compared with DI water values, 

wherever applicable. Figure 4.6 presents the calculated acoustic velocity for samples of liquids 

used in this work. Water has the highest acoustic velocity as expected followed by LMO and 

crude oil. The low acoustic velocity in crude oil samples can be attributed to its complex 

composition. Table 4.2 compares the experimentally obtained acoustic velocities with predicted 

values using Urick’s equation 4.2. Part of the error can be attributed to fluid from literature 

having a density different than the density measured in the lab. Furthermore, it can be seen from 

Urick’s equation, the acoustic velocity is inversely proportional to the density of the fluid. 

However, considering the Urick’s equation, the bulk modulus contributes to the higher acoustic 

velocity. Therefore, the higher acoustic velocity for water and mineral oil is justifiable despite 

the higher value of density. 

 

Fig. 4.6. The acoustic velocities for fluids used in this work 
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Table 4.2. Comparison of acoustic velocity using experimental and literature data 

Sr. 

No. 
Fluid 

Density 

(Kg/m3) 

Bulk 

Modulus 

(pa) [18]  

Acoustic 

velocity (m/s) 

[Experimental] 

Acoustic 

velocity (m/s) 

[Literature] 

% Error 

1 Water 997.7 2.15E+09 1463.01 1467.976975 0.338355 

2 LMO 
858.7 1.66E+09 1434.66 1391.384334 3.110260 

3 HCO 
909.4 1.50E+09 1376.17 1320.215899 4.2382538 

 

Fig. 4.7 illustrates attenuations for the fluids used in this work. Low attenuation implies low energy 

loss. Attenuation plot does not have DI water since it is used as the reference point amplitude (Ao) 

in the calculation of attenuation for oil samples.  

 

Fig. 4.7. Amplitude and the Calculated Attenuation values for fluids 
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hydrocarbons in the carbon number range of 18 to 28 making. LMO is difficult to evaporate during 

an experiment. Moreover, it is a clear liquid, allowing visual observations to be recorded more 

easily thus serving as a good reference for trends of measured parameters. Measurements of 

acoustic velocity with increasing thickness of the LMO layer on DI water are presented in Fig. 4.8. 

The first reading is for the acoustic velocity of DI water without the addition of the LMO layer on 

the surface. It is observed that the acoustic velocity decreased with increasing thickness of the oil 

layer. The initial drop in the velocity is steep up to 1 mm oil layer thickness followed by a gradual 

decrease. Each additional increase in the thickness of the LMO resulted in a decrease in acoustic 

velocity towards the velocity of LMO only. At a low thickness of less than 1 mm, the transducer 

surface would be very close to the oil-water interface, where interference may occur with wave 

propagation from the transducer surface.  

 

Fig.4.8.  Variation of acoustic velocity with increasing thickness of MO layer 
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Fig. 4.9 shows the attenuations obtained from amplitude measurements of the corresponding 

acoustic velocity measurements. It can be observed that initially, attenuation increases quickly 

with the addition of the MO layer on the water surface, followed by a more gradual increase.  

 

Fig. 4.9. Changes in attenuation recorded with increasing thickness of MO layer 
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Fig. 4.10. Pictograph showing mineral Oil sticking on the surface of the Probe 

 

4.3.2 Measurements with Layers of LMO and its Emulsion on DI Water Surface 
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detect as well vary in thickness. To determine the effects of the emulsion layer on the measured 

parameters, experiments were conducted by adding a layer of LMO emulsion on the surface of the 
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layer on the water surface followed by the addition of the oil layer for the combined effects. It is 

observed from Fig. 4.11 that the addition of 3 mm of the emulsion layer led to a slight decrease in 
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acoustic velocity followed by a larger drop when only 1 mm of oil layer was added. However, 

essentially no change was observed when the next 2 mm of oil layer was added.  It was also noted 

that due to its inherent instability, the emulsion layer thickness was decreasing slowly thus 

affecting the measurements. Moreover, there was a tendency for the emulsion to stick to the surface 

of the probe which further exacerbated the effects. As discussed later, the measurement procedure 

was altered for crude oil to minimize these observed effects.  

 

Fig. 4.11. Ultrasonic velocity for the Film of MO + Emulsion 

Fig. 4.12 presents the corresponding attenuation data obtained with acoustic velocity 

measurements. There is an increase in attenuation due to the addition of the emulsion layer which 

can be attributed to the presence of water droplets and their interactions with the propagating wave. 
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observed with acoustic velocity, this behavior can be mainly attributed to changes in the emulsion 

layer due to its instability and water droplet separation effects. This illustrates that acoustic velocity 

and attenuation data can be used together to detect the presence of different layers on the water 

surface. This would, however, require the development of calibration plots appropriate for the 

desired application.  

 

Fig. 4.12. Attenuation of the Film of LMO + Emulsion 
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attenuation levels. Thus, the technique can detect differences in the characteristics of LMO and 

LCO emulsions.  

 

Fig. 4.13. Comparison of stability of LMO and LCO emulsions 
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technique to detect the presence of crude oil and its emulsion layers as well as to measure their 

thickness.  

               

Fig. 4.14. Photographs showing layers of crude oil on water surface in the test vessel 

Fig. 4.16 demonstrates variations of acoustic velocity with increasing thickness of the crude oil 

layer on the surface of the DI water and crude oil emulsion layer. A good trend can be seen from 

both curves. Following interesting observations can be made from these plots. 

• For the crude oil on the DI water surface plot, the addition of 1 mm of crude oil layer 

leads to a steep drop in acoustic velocity, followed by a more gradual decrease with a 

further build-up of the crude oil layer.   
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• As can be seen in Fig. 4.15 adding 5 mm layer of HCO decreased the ultrasonic signal  

 

 

Fig. 4.15. Changes in ultrasonic signal for DI Water Layer + 5 mm HCO Layer 

• Similar behavior was also observed with mineral oil (Fig. 4.8) which indicates an underlying 

effect due to the creation of an oil-water interface. This initial effect remains essentially 

constant for subsequent values. 
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Fig. 4.16. Acoustic Velocity of DI water + HCO layers and DI water + HCO Emulsions + HCO 
using the new procedure. 

•  When 3 mm of the water-crude oil emulsion is added on the water surface, there is a decrease 

in acoustic velocity that is lower than when 3 mm of crude oil added. This can be attributed to 
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is an important observation since it shows that the presence of water has been detected in the 
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Fig. 4.17 shows corresponding attenuation data obtained from measured amplitudes. Like 

acoustic velocity, attenuation showed a good trend in both curves from which the following 

important observations can be made.  
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• There is a significant increase in attenuation at the crude oil emulsion layer of 3 mm on 

the water surface. However, the subsequent increase in oil layer thickness results in a 

slower increase.  

• When 3 mm of crude oil emulsion is added above the surface of the water, there is a high 

increase in attenuation that is about four times higher than 3 mm of crude oil added on 

the surface of the water. This can again be attributed to heterogeneous nature of the 

emulsion phase. 

• After adding crude oil on the layer of emulsion, attenuation continued to increase 

significantly with a smooth trend. Overall, adding crude oil with emulsions increased 

attenuation more than when crude oil is added without emulsion.  

• Observations from Figure 4.16 and 4.17 show that when an emulsion layer is present, 

both attenuation and acoustic velocity will be on the higher side. 

 

Fig. 4.17. Attenuation of DI water + HCO layers and DI water + HCO Emulsions + HCO using 

the new procedure 
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4.4 Estimation of Oil Layer Thickness Based on Measurement of Acoustic Parameters 

The measured acoustic velocity could be used to estimate oil layer thickness using the following 

procedure. Since the distance between the transmitter and receiver’ is fixed, it can be written as 

the sum of the oil layer thickness (do) and the remaining water layer (dw).  

𝑑 =  𝑑𝑜 + 𝑑𝑤       (4.4) 

The time of flight recorded with layers of oil and water can be assumed to be additive. 

    𝑇𝑜𝐹𝑜𝑤 =  𝑇𝑜𝐹𝑜 + 𝑇𝑜𝐹𝑤     (4.5) 

Each of the distances in equation 4.4 can be divided by the corresponding acoustic velocity, 

making it equivalent to equation 4.5. Thus, 

     
𝑑

𝑉𝑜−𝑤
=

𝑑𝑜

𝑉𝑜
+

𝑑𝑤

𝑉𝑤
     (4.6) 

Substituting for dw from equation 4.4 into equation 4.6. 

𝑑

𝑉𝑜−𝑤
=

𝑑𝑜

𝑉𝑜
+

𝑑

𝑉𝑤
−

𝑑𝑜

𝑉𝑤
      (4.7) 

 

Rearranging and solving for oil layer depth (do) gives, 

             𝑑𝑜 =
𝑑[

1

𝑉𝑜−𝑤
−

1

𝑉𝑤
]

[
1

𝑉𝑜
−

1

𝑉𝑤
]

     (4.8) 

   

Equation 4.8 Was used to calculate oil layer thickness from measured acoustic velocity data. It is 

observed from Table 4.3 That the calculated values were higher by a nearly constant value of about 

5.1 mm. As noted earlier, this can be attributed to the presence of an oil-water interface which 

imparts additional resistance to the propagating wave due to acoustic impedance effects.  When 

this constant value is subtracted from the calculated values, the difference between calculated and 

actual values become much smaller with an average absolute error of less than 10%. The highest 
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error is obtained with the lowest thickness and the error reduces with increasing oil layer thickness. 

It may be pointed out that there are expected to be higher measurement errors while measuring the 

oil layer thickness of less than 3 mm in an apparatus used in the study. So, this could be a 

significant error source for smaller oil layer thickness in this study.   

Table 4.3. Comparison of measured and estimated oil layer thickness 

Crude oil 

thickness 

(mm) 

Acoustic 

velocity 

(m/s) 

Calculated oil 

layer 

thickness 

(mm) 

Difference 

between calc. 

and measured 

values (mm) 

Corrected 

oil layer 

thickness 

(mm) 

Absolute 

relative error 

(%) 

1.0 1450.7 6.5 5.5 1.4 40.0 

3.0 1448.7 8.4 5.4 3.3 10.0 

6.0 1445.7 10.6 4.6 5.5 8.3 

8.0 1442.44 13.0 5.0 7.9 1.25 

   Avg.: 5.1   

 

When all three layers are present, the distance between the transmitter and receiver ‘d’ can be 

written as the sum of the oil layer thickness (do), emulsion layer (dem) and the remaining water 

layer (dw).  

𝑑 =  𝑑𝑜 + 𝑑𝑒𝑚 + 𝑑𝑤      (4.4) 

The time of flight recorded with layers of oil and water can be assumed to be additive. 

    𝑇𝑜𝐹𝑜𝑤𝑒 =  𝑇𝑜𝐹𝑜 + 𝑇𝑜𝐹𝑒𝑚 + 𝑇𝑜𝐹𝑤    (4.5) 

Each of the distances in equation 4.4 can be divided by the corresponding acoustic velocity, 

making it equivalent to equation 4.5. Thus, 

     
𝑑

𝑉𝑜𝑤𝑒
=

𝑑𝑜

𝑉𝑜
+

𝑑𝑒𝑚

𝑉𝑒𝑚
+

𝑑𝑤

𝑉𝑤
     (4.6) 
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Substituting for dw from equation 4.4 into equation 4.6. 

 

𝑑

𝑉𝑜𝑤𝑒
=

𝑑𝑜

𝑉𝑜
+

𝑑𝑒𝑚

𝑉𝑒𝑚
+

𝑑

𝑉𝑤
−

𝑑𝑜

𝑉𝑤
−

𝑑𝑒𝑚

𝑉𝑤
     (4.7) 

 

The above set of equations can be used to estimate oil layer thickness in different ways. 

1. For some applications, emulsion layer thickness and acoustic velocity may be known or 

easily determined because the emulsion layer can stabilize under certain conditions of 

use. 

2. By using proper vertical movements of the probe (using suitable fixtures), it is possible to 

determine when it is only in the water phase. This procedure can provide combined 

thickness of oil and emulsion layers.  

3. Suitable calibration procedures/plots can be developed to cover the range of applications. 

Figure 4.18 shows a proposed procedure. 

a. The probe is initially located so that the transmitter is in contact with the oil layer.  

 

 

 

 

 

(a)                       (b)    (c) 

Oil layer 

Emulsion 
 layer 
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Fig. 4.18. Proposed procedure to detect oil and emulsion layers a) probe at the surface of oil 

layer; b) probe at the surface of emulsion layer; c) probe at the surface of water column 

 

 

Fig. 4.19. Expected trajectory of the measured acoustic velocity as the probe moves from oil 

layer to water phase 

 

a. It is then moved down and changes in acoustic velocity are recorded 

b. As it enters the emulsion phase, leaving the oil layer, there would be a change in 

the slope of recorded velocity, reflecting the high velocity of the emulsion phase. 

c. As the probe moves into the water phase only, the velocity will reach a constant 

value of the water phase. 
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4.5 Conclusions 

The potential of the proposed ultrasonic based technique to monitor oil spills has been 

demonstrated through a series of tests and oil layer thickness estimations. It is shown that 

simultaneous measurements of acoustic velocity and attenuation provide a strong combination to 

detect presence of oil and emulsion layers. For the oil layer on the surface of the water, a simple 

method to determine oil layer thickness is proposed based on acoustic velocity measurements. This 

can be extended to the oil-emulsion-water layer system for some cases. In the end, a more general 

and more robust procedure has been proposed based on the observations and tests of the study. As 

per the proposed method, the probe will be mounted on a retractable fixture to move the probe 

vertically up and down the layers while recording the signals. A plot of recorded acoustic 

parameters with respect to probe position can easily provide the thickness of each layer due to 

changes in the slope of the recorded parameter moving from one phase to next.  The probe response 

could be further improved by suitable alterations to probe design and selection of more appropriate 

frequency based on more extensive testing.  
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 Notations 

 

CO                 Crude oil 

MO                     Mineral Oil  

LMO                   Light Mineral Oil  

LCO                    Light Crude Oil  

HCO                   Heavy Crude Oil 

LURSOT            The Laser Ultrasonic Sensing of Oil thickness  

c                 acoustic velocity (m.s-1) 

d                distance between transducer and receiver (m) 

UV/IR                 ultraviolet/infrared  

USEPA               U.S. Environmental Protection Agency  

dw                                  Water layer (mm) 

dem                            Emulsion layer (mm) 

do                       Oil layer thickness (mm) 

ToFowe                 Time of flight recorded with layers of oil, emulsion and water (µs)  

ToFo                  Time of flight of oil (µs)  

ToFw                  Time of flight of water (µs)  

ToFem                 Time of flight of emulsion (µs) 

Vo                                  Acoustic velocity of oil (m.s-1)  

Vw                                Acoustic velocity of water (m.s-1)  

Vem                              Acoustic velocity of emulsion (m.s-1)  

Vowe                             Acoustic velocity of oil, water and emulsion (m.s-1)  

TOF               Time of flight (μs) 

A0                      Reference amplitude (V)  

A                       Reference amplitude (V) 

DI                      Deionized  
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Greek Letters 

α attenuation coefficient (m-1) 

β bulk modulus of the medium (Pa) 

ρ density of medium (kg.m-3) 

Subscripts 

em  emulsion  

w  water 

o    oil 

r     reflector or reference 
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Appendix B 

Comparison between results obtained with mineral and crude oils  

Mineral oil which is a fraction of crude oil consists of a mixture of hydrocarbons in the carbon 

number range of 18 to 28. It has some characteristics of petroleum such as high density and 

viscosity, but it is also different in several ways. In crude oil hydrocarbon molecules with carbon 

numbers as high as 60 can be found, these are usually asphaltene molecules which also impart a 

dark brown color to crude oil. Mineral oil, on the other hand, is nearly transparent allowing visual 

observations during experiments. Due to their similar physical characteristics such as density and 

viscosity, results obtained with mineral oils and their emulsions usually provide similar trends and 

provide reliable reference for crude oils measurements. Fig. B4.20 compares the results obtained 

with the two oils when both emulsion and oil layers were present on the surface of DI water. 

However, the crude oil (CO) curve is lower than LMO since the acoustic velocity for MO is higher 

than CO. For an additional increase in the thickness of CO, there is a higher decrease in acoustic 

velocity compared to LMO. 

 

Fig. B4.20. Comparison of acoustic velocity for film of LMO and CO and their 

emulsions layers 
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Fig. B4.21 shows the corresponding attenuation for acoustic velocity in Fig. B4.20 HCO curve is 

higher than LMO since the attenuation for HCO alone is higher than MO. For an additional 

increase in the thickness of HCO, there is a higher increase in attenuation compared to LMO.  

                                           

 

Fig. B4.21. Attenuation of mineral oil – Water content (10 & 20%) 
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5. Chapter 5. Conclusion 

In this work, ultrasonic based technology was developed to characterize oils and their emulsions, 

as well as to detect oil spill and estimate their thickness. Characteristics of oils such as acoustic 

velocity and attenuation that are calculated from the time of flight and amplitude respectively, of 

oils and their emulsions were studied. The initial tests were performed with mineral oil and its 

emulsions to allow for visual observations of water separation percentages from emulsions and 

demonstrated the potential of this technique to monitor emulsions stability. Mineral oil emulsion 

with 20% DI water content separated into their phases faster than emulsion with 10% DI water 

content. This is possible because high water content led to the formation of large water droplets 

which are easy to coalesce. The corresponding acoustic velocity and attenuations captured 

similar trends. The decrease in acoustic velocity corresponds to a decrease in DI water content in 

the emulsions. Therefore, indicating water separation taking place. Changes in the composition 

of heavy crude oil emulsions that cannot be seen visually observed can be analyzed using 

acoustic velocity since there was no water separation observed for heavy crude oil emulsion. 

Although, acoustic velocity showed separation taking of water taking place. The analyzed results 

showed that the ultrasonic technique has high potential to be used for monitoring emulsion 

stability and track changes in emulsions characteristics such as acoustic velocity and attenuation.  

The ultrasonic technique captured variations in asphaltenes content of crude oil samples which is 

of practical significance in the petroleum industry. It is, therefore, a time-saving method to 

measure asphaltene concentration compared to the time-consuming offline solvent-based 

treatment and filtration method. The link between asphaltene concentration and stability of crude 

oil emulsions was very clear as high asphaltene content increased the stability of the emulsion. 
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While for oil spill monitoring, it is shown that simultaneous measurements of acoustic velocity 

and attenuation provided a strong combination to detect the presence of oil and emulsion layers. 

For the oil layer on the surface of DI water, a simple method to determine oil layer thickness is 

proposed based on acoustic velocity measurements. This can be extended to the oil-emulsion-

water layer system for some cases. Through a series of simulated experiments, the result showed 

that the ultrasonic technique easily detected oils and their emulsions layers on the water surface. 

The acoustic velocity decreases immediately when oils and their emulsions were added on the 

surface of DI water. The decrease in acoustic velocity is due to the lower velocity of oils than DI 

water. Therefore, the technique detected the presence of oil and emulsions layers. It provided 

reasonable estimates of the thickness of the oil layer by tracking changes in acoustic velocity 

when an additional sample of oil is added. High acoustic velocity was observed in the first 1 mm 

oil layer. Each additional layer of the oil resulted in a gradual decrease in acoustic velocity. The 

corresponding attenuations showed a reversed trend. These results provided the expected trends. 

Therefore, paving the way for further studies to fully develop the ultrasonic technique for field 

testing. 

5.1 Recommendations  

Based on the analyzed results, the following are the recommendations: 

• Further development of probe design based on the probe response with different 

emulsions. The probe did not provide a good trend in some cases, more specifically the 

attenuation of the blend of HCO and LMO emulsions. To increase the sensitivity of the 

probe to get a good attenuation trend, a probe with higher frequency than the currently 

available one (3.5 MHz) can solve this issue and provide accurate results.  
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• Blend heavy and light crude oil to form intermediate to study characteristics of its 

emulsions. These characteristics include acoustic velocity and attenuation, density, and 

emulsions stability. The purpose of this is to test the ability of this technique to detect the 

difference between emulsions of LCO and HCO and their blend. This will eventually 

show how reliable this technique in monitoring emulsions during refinery.  

• Investigate the distribution of droplets in emulsions. It is important to understand how 

droplet concentration and size distribution affects the stability of emulsions. This can be 

done by testing a wide range of water content in emulsions. The higher the water content 

in the emulsion the larger the size of the droplets.  

• For the ultrasonic based technique to monitor the oil spill, a new method for field testing 

is proposed where the probe will be mounted on a retractable fixture to move the probe 

vertically up and down the layers with ease while recording the signals. This can be 

installed on a drone and be remotely controlled. A plot of the recorded acoustic 

parameters with respect to probe position can easily provide the thickness of each layer 

due to changes in the slope of the recorded parameter moving from one phase (i.e. oil, 

emulsion, and water layers) to the next.   

• The probe response could be further improved by suitable alterations to probe design and 

selection of more appropriate frequency based on more extensive testing. For field 

testing, the proposed new method will require changing the design of the probe. First, the 

size of the probe will have to be increased, thereby increasing d - the active part of the 

probe which is the distance between transmitting and receiving surface. The frequency 

should be increased from the current 3.5 MHz to 5 MHz to increase the sensitivity of the 

probe since seawater has a high content of impurities.  
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