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Abstract 

Head trauma that occurs during sporting events is responsible for an increasing number of 

emergency department visits in Canada and is associated with an increased risk of 

developing neurodegenerative diseases. While head injury in American football has been 

extensively studied, it cannot be extrapolated to non-helmeted sports. Approximately 265 

million people are actively participating in soccer and many are 18 years of age and younger. 

Soccer is unique in that players use their head to redirect the ball; however, the effects of 

cumulative purposeful soccer heading on brain health are unknown. Accordingly, the 

objective of this thesis was to quantify head impact magnitudes that female youth soccer 

players sustain during games and evaluate their influence on electrophysiological functioning 

both at rest and exercise. This was achieved through three research projects that studied 

female youth soccer players for an entire soccer season and investigated repetitive soccer 

heading using methodological equipment including, game video analysis, headbands 

instrumented with wireless microsensors, as well as electroencephalogram (EEG) recordings. 

Results indicated that the median number of headers experienced during a single game was 

one, while the maximum is nine, and minimum is zero (Chapter 2). Furthermore, player age 

is positively associated with an increasing number of purposeful soccer headers, but there is 

no association between head impact location and game scenario (Chapter 2). Chapter 3 

reveals that game scenario and head impact location significantly affect both linear head 

acceleration and rotational head velocity magnitudes. As an initial attempt to detect 

neurocognitive change (Chapter 4), EEG recordings revealed a statistically significant 

increase in EEG power during exercise compared to rest at each EEG frequency band 

(Alpha1, Alpha2, Beta1, Beta2, Theta). These differences were amplified when cumulative 

number of headers were considered, but only for Alpha1, Alpha2 and Beta2. In conclusion, 

this thesis shows cumulative soccer heading experienced by female youth soccer players 

could lead to neurocognitive changes after one season of soccer. Furthermore, exercise may 

help to reveal sub-clinical brain changes due to cumulative soccer heading that are not shown 

at rest. These findings can help guide data-driven approaches to improve player safety in 

youth soccer.  
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Summary for Lay Audience 

While there are numerous personal and societal benefits from participation in sport, head 

injuries are a healthcare concern that are responsible for an increasing number of emergency 

department visits. More recently, evidence highlights that repetitive head impacts 

experienced through sport may be responsible for the onset of long-term cognitive deficits 

including Alzheimer’s Disease and Chronic Traumatic Encephalopathy (CTE). Considerable 

research has evaluated American football, while females and adolescents are understudied; 

even though females have a higher rate of head injury compared to males, and adolescents 

report more prolonged symptomology. In soccer, players experience repetitive head impacts 

through purposeful soccer heading; however, their cumulative effects are unknown. 

Determining the relationship between purposeful soccer heading and brain function can help 

inform evidence-based interventions to improve player safety. Accordingly, this thesis seeks 

to delineate the relationship between repetitive head impacts and brain health by evaluating 

purposeful soccer heading in female youth soccer players. Game video was recorded during 

an entire season of soccer, and players wore headbands containing microsensors to quantify 

head impact accelerations. Purposeful headers were characterized by head impact location 

(front, top, side), player position (defense, midfield, forward) and game scenario (corner 

kick, throw in, goal kick etc.).  In addition, measures of brain activity were collected using 

electroencephalogram (EEG) recordings to determine changes in brain function, related to 

cumulative purposeful soccer heading. The findings from this thesis indicate that female 

youth soccer players frequently head the ball during soccer games, and increasing player age 

is associated with an increasing number of headers experienced. In addition, the head impact 

accelerations that result from purposeful soccer heading depend on game scenario as well as 

head impact location. Lastly, our EEG measures indicate that brain activity increases 

compared to rest during combined exercise and cognitive load, and that an increasing number 

of cumulative headers amplifies this difference. These results provide important information 

to help develop evidence-based criteria to reduce the risk of head injury that results from 

repeated head impacts, and could improve the safety of players in the short- and long-term.  
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Chapter 1  

1 Introduction 

Mild-traumatic brain injury (mTBI), which includes sport-related concussion, is common 

among athletes where up to 3.8 million mTBI injuries related to sport and recreational 

activities occur each year.1,2 Head injury in sport has led to an increasing number of 

emergency department visits in Canada3,4 and across the globe.1  Furthermore, emerging 

evidence has identified that sports related head injury is associated with an increased risk 

of developing neurodegenerative diseases including, chronic traumatic encephalopathy 

(CTE)5 and Alzheimer’s disease.6 These health conditions result in a substantial health 

and financial burden to individuals, families and communities, and incurs significant 

economic costs to healthcare.7 

 

The most recent international consensus statement on sport-related concussion defines 

concussion as a traumatic brain injury that is caused by biomechanical forces.8 The 

brain’s pathophysiological response to concussion has been described previously in 

animal models.9,10 Following concussion injury, neurological sequalae can include 

neuronal depolarization, release of excitatory neurotransmitters, ionic shifts, altered 

glucose metabolism and cerebral blood flow as well as impaired axonal function.11,12 One 

of the hallmarks of concussion injury is that the neurological signs and symptoms 

associated with injury occur in the absence of macroscopic neuronal damage.11  

Furthermore, concussions are a difficult injury to diagnose, evaluate, and manage as there 

is no single clinical or diagnostic test to reliably and immediately identify them. 

Clinically, the immediate signs and symptoms of concussion can include confusion, 

memory disturbance, dizziness, headache, nausea and visual disturbance.13 While most 

players recover within seven to ten days following concussion, concussion-related 

symptoms may last for weeks, months or even persist in some cases.14,15 These injuries 

are particularly worrisome since sport-related concussions may be associated with 

second-impact syndrome as well as progressive neurodegenerative diseases later in life.16 
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Currently, the majority of concussion research has evaluated American football, but such 

findings cannot be extrapolated to non-helmeted sports, nor to vulnerable populations. 

Several experts advocate for research into sports related head injury, with specific 

emphasis on vulnerable populations such as, youths and female athletes.17 This is 

especially important since sport participation is encouraged in an effort to improve 

physical health, and also enhance psychological and social health outcomes. Current 

clinical evidence demonstrates that youths and females are at a greater risk of sports 

related head trauma including concussion and prolonged recovery compared to adult 

males.18–21 An 11-year prospective study in high school sports reveals that female soccer 

has the highest concussion rate among female sports, and the second highest overall 

concussion rate (0.35 per 1000 athletic exposures) after American football.18 

Furthermore, concussions represent a greater proportion of total injuries in female 

athletes, where almost 16% of total sport-related injuries are concussions, while only up 

to 11% of total sport-related injuries are concussions for males.20–22 Nevertheless, there is 

still limited data from youth and female populations. 

 

The human brain is a complex system. From birth to early adulthood, the developing 

brain undergoes rapid changes in neuronal synapses, myelination,23 and metabolism.24,25 

While adolescents may indeed have greater capacity for neuroplasticity,26 the developing 

brain has distinct immaturities27 and may be more vulnerable to head injury.23 For 

example, significant changes in neuronal synapses occur in the developing brain, and 

certain brain regions develop at different times.28 The degree of myelination differs, in 

that the amount of myelin increases throughout the brain in later years of development. 

Rodent models demonstrate that the pathologies of concussion between myelinated and 

unmyelinated fibers are different.23 Damage to unmyelinated axons may influence the 

degree of morbidity associated with head injury and myelination may provide protection 

against head injury. Consequently, the less myelinated immature brain of youth athletes 

may be more vulnerable to head injury. In addition, youth athletes have an immature 

musculoskeletal system, which may influence head injury. For example, cervical strength 

as well as head and neck size can influence the magnitude of peak linear and rotational 

head accelerations.29 Compared to adults, youth athletes have less-developed cervical 
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musculature. Accordingly, youth athletes may not be as effective at transferring energy 

that is directed at the head throughout the rest of their body, and ultimately increasing 

their risk for head injury.12 Collectively, such differences in brain and musculoskeletal 

development between youth and adulthood suggest that the developing brain responds 

differently to head injury and may be more vulnerable.  

 

Many researchers investigating head injury in sport conclude that females have a higher 

incidence rate of concussion compared to males30 as well as have more neurological 

deficits and delayed symptom resolution.31,32 A recent study on children and adolescent 

concussion-related emergency department visits or physician visits revealed a 5.5 fold 

increase in concussion rates from 2003 to 2013.30 The authors concluded that females had 

the greatest increase in concussion rates (6.3-fold increase) compared to males (3.6-fold 

increase). Clearly, there is a need to understand heady injury in such populations. 

 

Approximately 4% of the world’s population ( 265 million people) are actively playing 

soccer worldwide and many of these players are 18 years of age and younger.33 

Internationally, soccer is one of the fastest growing sports for youths and females; and 

while it is associated with various health benefits including improved cardiovascular 

fitness,34  there is risk of head injury, including concussion.35,36  For example, concussion 

is the second most common injury reported in soccer, representing 24% of all injuries 

sustained.37 The incidence of soccer related concussions range between 0.22 to 1.2 

concussions per 1000 athletic exposures,18,21,22,38 and the rate of concussions increases 

with increasing player age.39 Furthermore, soccer is unique in that players are actively 

encouraged to use their head to redirect the ball, a technique referred to as purposeful 

soccer heading.20 Purposeful heading in soccer is an integral part of the game, it is a 

complex skill, requiring players to develop the ability to judge the trajectory of the ball 

and coordinate their body movements accordingly. Purposeful soccer heading presents an 

opportunity to understand head injury in youth and females in what is a naturally 

occurring environment. 
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Over the last two decades, concerns have also been raised surrounding the potential short- 

and long-term neurological complications associated with repetitive head impacts 

sustained during sports such as American football, ice hockey and soccer. These 

repetitive head impacts are often referred to as subconcussion impacts.40 While these 

subconcussion impacts were initially thought to be harmless, since there are no 

immediate signs and symptoms of brain injury, these impacts lead to neurocognitive 

impairment over time, even in athletes without a history of concussion.40  In soccer, 

players experience subconcussion head impacts through purposeful soccer heading, 

which accounts for the majority of head impacts that players experience.41  The number 

of repetitive head impacts from purposeful soccer heading per playing hour ranges from 

1.8 in females to 2.7 in males.42  Accordingly, a player who heads the ball several times 

per game (such as a defender or midfielder) could perform more than 1,000 purposeful 

soccer headers over the course of a 15-year playing career regardless of playing level.  

 

While the threshold for acute symptomatic head injury is unknown, a theoretical 

threshold of linear acceleration (82g) and rotational acceleration (5900 rad/s2) is thought 

to have a 50% probability of causing a concussion.43 Laboratory studies have quantified 

both the linear and angular head impact accelerations associated with purposeful soccer 

heading.44–46 One laboratory study reveals that player age does not affect head impact 

accelerations at constant ball velocities, but there is a significant difference in head 

impact accelerations between males and females.47 Female soccer players experience 

larger linear and rotational head impact accelerations (40.9 ± 13.3 g; 3279 ± 1065 rad/s²) 

compared to males (27.6 ± 8.5 g, 2219 ± 823 rad/s²), which may be related to intrinsic 

factors such as, neck strength. Nevertheless, these impact magnitudes are much lower 

than the theoretical trauma threshold.43 However, the neurocognitive consequences that 

result from purposeful heading in soccer are unknown, but could be associated with 

dementia in later life.48  

 

Currently, there is minimal objective evidence evaluating the frequency and magnitude of 

head impacts during youth soccer. Self-report methods for quantifying soccer heading 

frequency are cautioned, as recent evidence demonstrates youth players may overestimate 



5 

 

heading exposure by up to 51%.49 In addition, data collected from youth soccer 

scrimmages50 and weekend soccer tournaments51 reveal that purposeful soccer heading 

leads to linear head impact accelerations up to 62.9 g.  Head impact magnitudes recorded 

using sensors positioned in helmets reveal no specific concussion threshold, but can be 

used to predict the likelihood of concussion.52 Such technology may prove useful to 

quantify and evaluate cumulative head impact burden in youth soccer. Still, the majority 

of studies that measure on-field head impact accelerations are in collegiate athletes, 41,53–

56 and may not be generalizable to youth populations.  For example, one study 

demonstrates that the largest head impact accelerations female collegiate soccer players 

experience during games occurs from goal kicks and drop kicks.55 Yet, such data has not 

been measured during youth soccer games. While one laboratory study suggests player 

age does not influence the resulting head impact magnitudes from purposeful soccer 

heading;47 such conclusions may be different in varying sporting environments such as 

practices and games. Other investigations in American football have quantified head 

impact characteristics; concluding that player position and impact location are significant 

factors in accounting for differences in head impact magnitudes.57,58 Objective 

evaluations of head impact magnitudes such as player position, game scenario, and head 

impact location would prove useful in youth soccer age groups to help limit cumulative 

head impact burden. 

 

Currently, there is no consensus on whether the cumulative effect of purposeful soccer 

heading leads to neurocognitive changes. This may be due to differences in 

methodologies, confounding variables, populations, outcome measures, and 

neuropsychological testing. Studies reveal no differences in neurocognitive testing 

performance or symptomology between low-, moderate-, and high-exposure header 

groups,59 as well as no differences in neuropsychological testing performance,60 

following a 15-minute heading session. Other research has also observed no association 

between repetitive soccer heading and decreases in neurocognitive functioning.45–49 

Conversely, other emerging evidence reveals that repetitive soccer heading is associated 

with altered brain neurochemistry,66 biochemical markers of brain tissue damage67 as 

well as structural changes in the brain.68–70 Short-term effects of purposeful soccer 
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heading are also highlighted in reduced postural control,71 headache72 and near point 

convergence.73 Nevertheless, due to inconsistent findings, there is no consensus on 

whether repetitive soccer heading should be banned from youth soccer.74,75  

 

The United States Soccer Federation eliminated purposeful soccer heading in players 

under ten years of age and limited heading to only practices in players aged 11 to 13.76 If 

heading restrictions and limitations are implemented in youth soccer, decisions need to be 

data-driven that are based on youth soccer players. To determine whether exposing 

youths to repetitive head impacts can result in short- and long-term harm and accelerate 

neurodegenerative diseases, we need to characterize head impact exposures experienced 

by youth players and use reliable measures to assess neurocognitive changes. If we are 

able to identify that purposeful soccer heading is a modifiable risk factor of brain injury, 

this could help reduce the rate of developing neurodegenerative diseases in the future, 

leading to improved public health in the long-term.   

Considerable effort has been devoted to advanced neuroimaging techniques and serum 

blood markers, to identify diagnosis and prognosis of sports related head trauma.77–81 

However, the associated costs, invasiveness, limited access to equipment as well as 

potential risk of harm due to small doses of radiation, reduce their clinical utility.82 Low 

risk, non-invasive tests of brain function such as electroencephalogram (EEG) offer 

critical advantages over other imaging techniques to understand repetitive head impact 

exposures including, purposeful soccer heading. EEG recordings measure brain activity, 

and is cost effective, portable, and accessible to the public and healthcare teams. This 

technique positions surface electrodes on the scalp to record the electrical activity 

generated by the underlying brain structures.83 In specific, EEG records synaptic 

excitation of the dendrites of pyramidal neurons in the cerebral cortex.84 EEG captures 

brain waves that are categorized into frequency bands including Theta (4.0–7.9 Hz), 

Alpha1 (8.0–9.9 Hz), Alpha2 (10.0–12.9 Hz), Beta1 (13.0–17.9 Hz), and Beta2 (18.0–

29.9 Hz).85,86 Unlike imaging modalities such as fMRI and PET, EEG provides high 

temporal resolution.84 Accordingly, complex patterns of neuronal activity can be recorded 

immediately following stimulus administration.83 EEG is widely used to study the brain 

organization of cognitive processes such as perception, memory, and attention.83 The 
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non-invasive procedure can be applied repeatedly to healthy individuals as well as patient 

populations with no risk or harm. 

 

In mTBI research, EEG recordings can successfully evaluate the degree of head injury,87–

91 and detect subtle abnormalities in brain neurons and networks, even in asymptomatic 

athletes.92 For instance, spectral EEG recordings reveal abnormal brain functioning in 

people diagnosed with a concussion that had otherwise cleared clinical testing measures, 

such as the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT).93 

Individuals that have normal clinical testing scores with abnormal EEG findings may be 

exhibiting some type of compensatory brain mechanism. The cumulative effects of 

repetitive soccer heading may show similar EEG findings, in that participants can 

successfully perform a neurocognitive task, but only by engaging additional brain 

resources to compensate for the inability to produce the necessary power. A continuous 

performance task (CPT) requires patients to respond to target stimuli or refrain from 

responding to non-target stimuli. The omission and commission errors obtained during 

CPTs provide valuable information regarding inattention and impulsivity, respectively.94 

It is expected that brain activity abnormalities will become amplified when the task 

requires additional effort, such as moderate exercise. This approach reflects the clinical 

experience that exercise can exacerbate concussive symptoms,8,95 and may highlight 

neurophysiologic changes compared to resting conditions. Moderate exercise combined 

with EEG data collection has been successfully used to monitor the brain activity in 

healthy individuals.96,97 It is not known whether cumulative head impacts affect how the 

brain responds to increases in physiological stress combined with cognitive load, similar 

to that seen in concussion.  

1.1 Overall Purpose 

The overall objective of this thesis is to delineate the relationship between repetitive head 

impacts experienced during female youth soccer games and their influence on 

electrophysiological functioning both at rest and under physiological stress (exercise). 

This was achieved through three research projects involving female youth soccer players 

for an entire soccer season and investigated repetitive soccer heading using 
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methodological equipment including, game video analysis, headbands instrumented with 

biomechanical sensors, as well as electroencephalogram (EEG) recordings.  

1.2 Chapter 2 Purpose 

To describe head impacts from players on three competitive female youth soccer age 

groups and compare the number of headers that players perform based on player age, 

position, and impact location.  

1.3 Chapter 3 Purpose 

To quantify the linear and angular head impact accelerations that result from purposeful 

heading during female youth soccer games, and whether the magnitude of head impact 

accelerations differ depending on the game-scenario and head impact location.  

1.4 Chapter 4 Purpose 

To explore the relationship between cumulative purposeful soccer heading and 

electrophysiological brain functioning during a single season of female youth soccer.  
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Chapter 2  

2 The number of purposeful headers female youth soccer 

players experience during games depends on player 

age but not player position 
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2.1 Introduction 

Purposeful soccer heading can account for up to 90% of the head impacts that players 

sustain during soccer games.1,2 Recent work indicates that purposeful soccer heading 

does not appear to cause concussions in high school soccer players;3,4 however, repetitive 

heading exposure may lead to subsequent neurological disorders over time.5 

Nevertheless, methodological short comings make findings inconclusive. For example, 

one group describes a dose-relationship response between years of professional soccer 

participation and risk of developing amyotrophic lateral sclerosis (ALS).6 However, this 

study recruited a small number of participants and no follow-up studies confirm a causal 

link.  

 

Neuroimaging studies show that repetitive sub-concussive head impacts may be 

associated with abnormal changes in white matter integrity. For instance, soccer players 

without a history of concussion demonstrated increases in radial and axial diffusivity in 

areas of the brain such as the inferior frontal gyrus, compared to swimmers.7 This study, 

however, did not quantify heading frequency in their sample, and while comparisons can 

be made between the control swimmers group, we cannot conclude whether purposeful 

soccer heading is responsible for these neural alterations. Other neuroimaging work 

reveals increased heading exposure is associated with abnormal white matter 

microstructure and poor memory scores in amateur soccer players.8 This study only 

recruited 39 amateur soccer players, with no control group for comparison. Furthermore, 

recent work in male soccer players shows alterations in neurophysiological and 

neuropsychological indices of cognitive function.9 Still, heading exposures were 

estimated retrospectively by players, and therefore may not accurately represent true 

heading exposures.10 The possible effects of heading are even more concerning for youth 

soccer players,11,12 as their brains are still developing13 and may be more vulnerable to 

the possible neurological effects of repetitive heading.  

 

To fully explore the potential association between purposeful heading and brain health, it 

is necessary to evaluate the head impacts (type, direction, number) that players incur over 

an entire soccer season rather than a single game or practice. While heading behavior of 
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collegiate players has previously been measured throughout entire soccer seasons, 2,14,15 

youth purposeful heading behavior has not been extensively studied. Accordingly, there 

is a critical knowledge gap regarding this vulnerable population. Among collegiate soccer 

players, the number of headers that players perform during a game varies between 

positions.2,15 As well, collegiate players perform, on average, a greater number of headers 

than high school players.14 These data do not exist for youth age groups. Similarly, 

purposeful heading behaviors may vary between different age groups but this potentially 

important moderator has yet to be empirically explored.  

 

Furthermore, the quality of heading impact16 and impulse arising as a function of the 

impact velocity of the ball and head17 are also expected to have an effect on forces 

accrued from each individual header. Proper heading technique requires players to 

engage their neck musculature as well as meeting the ball with the os frontale (forehead) 

rather than the vertex (top of the head).18 Improper heading technique, such as poor 

muscle activation, may lead to greater head impact accelerations.16,19 Moreover, 

depending on soccer ball velocity, the magnitude of each purposeful header varies based 

on game scenario such as a throw-in compared to a goal kick. 17 As a result, certain game 

scenarios combined with improper heading technique could create even larger head 

impact magnitudes. Therefore, it is important to identify whether heading technique 

varies across different youth age groups, but also whether heading technique varies based 

on game scenario. This information could help inform possible rule revisions for heading 

in youth soccer, and may inform coaching and training in the development of proper 

heading technique. The purpose of this observational study was to describe purposeful 

heading from three competitive youth soccer age groups and compare the number of 

purposeful headers a player performs based on player age, position, and impact location. 

We hypothesized that there would be differences in head impact location between player 

age as well as the game scenario such as drop kicks, goal kicks, and throw-ins. 
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2.2 Methods 

2.2.1 Participants 

A convenience sample of three elite (Ontario Player Development League – OPDL) 

female soccer teams from three different youth age groups in the city of Burlington, 

Ontario, Canada [under-13 (U13); under-14 (U14); and under-15 (U15)] were recruited 

for this study. Each of the three teams participated in 20 regular season games over a six-

month period. Purposeful heading data were captured for each team as well as the 

opposing team for each match. Each team and their opposition consisted of up to 18 

players per team, with 11 players per team participating on the field at a time. This study 

was part of a larger scale study exploring the associations between header exposure and 

brain activity, and some preliminary findings have been previously reported.10 All players 

and their legal parent guardians provided written informed consent prior to participation. 

This study protocol was approved by the Health Science Research Ethics Board at the 

University of Western Ontario. 

2.2.2 Protocol 

Game video was recorded and analyzed for all regular season games using a Sony Vixia 

HD camera mounted to a telescoping tower (EVS25, Endzone Video Systems, Sealy, 

Texas, United States). Each game video was uploaded to a video analysis software 

program (dba HUDL, Agile Sports Technologies Inc., Lincoln, Nebraska, United States). 

The game videos for each age group were reviewed using this video software tool. We 

also used the software tool to identify each purposeful header impact. Headers were 

classified according to the team, player, player position, head impact location, and game 

scenario by a single rater using a standardized rubric created for this study. Player 

positions were defined as: defense, forward, and midfield. Goalies were excluded from 

header analysis as they did not perform a single purposeful header. Head impact locations 

were classified as: front, side, top of the head, back and face. In addition, the game 

scenario for each head impact was classified as: pass, goal kick, drop kick, deflection, 

corner kick, throw-in and free kick. Scenarios are described in Table 2.1.  
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Table 2.1. Description of Game Scenario. 

2.2.3 Data Analysis 

To ensure a single rater was appropriate to review game video, a subset of five soccer 

games were reviewed separately by a researcher and a trained expert in soccer. The 

interrater reliability of purposeful header impact identification from game videos was 

assessed using Cohen’s Kappa. The number of purposeful headers that players performed 

during all games are reported descriptively as median, minimum, and maximum. In 

addition, purposeful headers for the Burlington U13, U14, and U15 teams were captured 

for their entire season, therefore we also report the median number of headers that players 

experience throughout an entire soccer season. Each team and their opponent has 10 

players (not including goalies) on the field at a given time. The U13 and U14 players 

participated in 75-minute soccer games, and U15 players had 90-minute soccer games.  

Accordingly, incidence rates were calculated as the quotient between purposeful soccer 

heading exposure and total exposure hours.20 The incidence of purposeful headers are 

presented as per 1000 match hours. 

 

To identify predictors of the number of purposeful headers that players performed during 

games, a linear mixed effects model was used with player age (U13, U14, U15) and 

player position (midfield, forward, defense) entered as fixed effects. It was expected that 

some players would be more or less inclined to perform purposeful headers, and also that 

 

Header Context Description of scenario 

Corner Kick Kick taken from the corner of the field.  

Drop Kick Kick made by goalie by dropping the ball from the hands and 

kicking it before it touches the ground. 

Free Kick Kick from a stationary ball awarded to one team as a penalty for a 

foul by the opposition. 

Goal Kick Kick taken from the six-yard box after the ball has gone over the 

goal line by the attacking team.   

Throw In Player throwing the ball in from the sideline.  

Long Range Kick Ball kicked from the ground into the air during regular game play 

Deflection Ball being deflected off player before header occurred.  
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the number of purposeful headers within each game may be affected by the unique 

combination of players on the field during that time. Therefore, individual differences 

and game differences were modelled as random effects. To determine the model-of-best-

fit for the purposeful heading data, four separate models (null hypothesis, age effects 

only, position effects only, and age by position interactions) were tested. The null model 

consisted of the dependent variable (total number of purposeful headers) predicted only 

by error (i.e., the random effects), the age and position effects models tested age and 

position as fixed effects within the analysis, and the interaction model added the 

intersection of age and position to the prediction equation.  In evaluating the goodness-of-

fit among the models, the age and position models were compared with the null model, 

while the interaction model was compared with a model in which age and position were 

allowed to predict number of purposeful headers without interacting. Differences among 

levels of the fixed effect were tested using t-tests, evaluated with a Satterthwaite 

approximation of the degrees of freedom.21 

 

A chi-square test was used to assess the statistical significance of the influence of head 

impact location (front, side, top) and age (U13, U14, U15) on purposeful heading, as well 

as head impact location and the game scenario where the purposeful header occurred. All 

statistical analyses were completed using R (R Core Team, 2017), with mixed effects 

models evaluated using the lme422 and lmerTest23 packages. Experiment-wise alpha was 

held to 0.05 within all families of comparisons. 

2.3 Results 

We observed a substantial interrater reliability for the subset of five games that were 

scored by two researchers (κ=0.76, 95% CI [0.4 to 1.0]). Accordingly, based on this level 

of reliability,24 all of the remaining videos were evaluated by a single rater. In total, there 

were 1,661 purposeful headers captured during the 20-game season. The U13 players 

performed 404 purposeful headers, U14 players 589 purposeful headers, and U15 players 

668 purposeful headers. None of the players experienced a concussion during games that 

resulted from purposeful heading. The median number of purposeful headers experienced 

for the entire soccer season of the Burlington teams increased with age: U13 median = 6 
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(range 1 to 42), U14 = 17 (1 to 56), U15 = 23 (4 to 66). The incidence of purposeful 

heading was 74.04 (95% CI [73.9, 74.6]) purposeful headers per 1000 match hours.  

For all age groups, the median number of purposeful headers experienced during games 

was one, and the minimum number of purposeful headers was zero. The maximum 

number of purposeful headers performed during a single game by a U13 player was eight, 

and nine for both U14 and U15 players. Age had a statistically significant effect on the 

number of purposeful headers that a player performs [2 (2) = 10.33, p = 0.006]. U15 

players head the ball more during games compared to U14 [t(360) = 2.13, p = 0.034] and 

U13 [t(146) = 3.15, p = 0.001] players.  

 

Player position had no statistically significant effect on the number of purposeful headers 

that a player performs [2 (2) = 3.09, p = 0.21], and the interaction between age and 

position had no statistically significant effect on the number of purposeful headers that a 

player performed [2 (4) = 5.48, p = 0.24]. The number of purposeful headers that players 

performed during games based on position and age are reported in Table 2.2. 

Table 2.2. Number of headers players performed based on player age and position 

during a single 90-minute (U15) and 75-minute soccer game (U13, U14). 

 

No purposeful headers occurred at the back of the head (occipital) or face, therefore were 

not included in head impact location analysis (Table 2.3). Our results indicated a 

statistically significant association between head impact location and age [χ2 (4) = 10.40, 

p = 0.034] (Table 3). There was no significant association between head impact location 

and game scenario [χ2 (12) = 12.02, p = 0.44] (Table 2.4). However, the most frequent 

purposeful heading scenarios resulted from long-range passes (42.4%) and throw-ins 

(26.7%).  

 
 U13 U14 U15 

 Median Range Median Range Median Range 

Midfield 1 0 - 8 1 0 – 7 2 0 – 9 

Defense 1 0 - 6 1 0 – 9 2 0 – 8 

Forward 1 0 - 7 1 0 - 4 1 0 - 4 
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Table 2.3. Headers characterized by head impact location and age. 

Table 2.4. Headers characterized by head impact location and kicking scenario. 

2.4 Discussion 

Relatively little information is known about the heading behaviors and header burden 

among different youth age groups. Therefore, the current study followed three 

competitive youth soccer teams for an entire soccer season to evaluate purposeful 

heading behaviors. Results from this study indicate that the number of purposeful headers 

performed by players increases as player age increases. Furthermore, our findings reveal 

that the U14 players make contact with the ball using the front of their head less 

frequently than expected, and strike the ball with the top of their head more frequently 

than expected. In addition, the U13 players make contact with the ball using the side of 

their head less frequently than expected. However, there is no significant association 

between head impact location and game scenario.  

 

 Head Impact Location 

Age Front Top Side Back Face 

U13 271 124 9 0 0 

U14 352 209 28 0 0 

U15 439 199 30 0 0 

 

 Head Impact Location 

Game Scenario Front Side Top Total # of headers 

Corner Kick 45 2 17 64 

Drop Kick 97 3 52 152 

Free Kick 42 3 24 69 

Throw In 271 22 151 444 

Long Range Kick 453 29 222 704 

Goal Kick 42 3 24 69 

Deflection 125 8 46 179 

 



25 

 

Youth soccer teams participating in the Ontario Player Development League are limited 

to a maximum number of training hours per week. Players on the U13 and U14 teams are 

allowed up to 6 hours of training per week, while U15 age groups are allowed up to 7.5 

hours of training per week (excluding games and sport sciences related training). 

Nevertheless, while the Ontario Player Development league has requirements that players 

need to be educated through training on increased heading skills, there are no 

requirements to heading limitations/restrictions. Given our findings reveal that players in 

all age groups struck the ball with the top of their heads (improper heading) between 30 

and 35% of the time, it may be that there should be consideration for improved header 

training in youth age groups.   

 

Recent guidelines for limiting and restricting soccer heading have been implemented in 

the United States25 with the intent of reducing concussion risk. This initiative was created 

due to the concern that repetitive head impacts could lead to both short- 26 and long 

term27,28 neurological impairments. Youth players may be more vulnerable to the 

potential neurological consequences that result from repetitive head impacts due to 

ongoing brain development.29 Consequently, as a precaution, this initiative bans heading 

for youth players ten years old and younger, while players between 11-13 years old can 

only perform up to 20 headers per week or 30-minutes of heading drills during practice. 

Nevertheless, these heading limits are arbitrary. In our study, the maximum number of 

purposeful headers that each age group performed during games were greater than 

previous work evaluating head impacts during youth soccer tournaments1 and female 

youth soccer scrimmages.30 These differences may be due to shorter duration of soccer 

tournaments and scrimmages compared to regular 90-minute season games.  

While previous work has associated cumulative heading with changes in white matter 

microstructure,8 electrophysiological changes,9 as well as symptoms associated with 

concussion,31 the number of headers experienced by these studies are greater than our 

sample. The number of purposeful headers is particularly important since transient 

changes in corticomotor inhibition have been measured following 20 consecutive headers 

over a ten-minute period;32 however, these laboratory findings are limited to recreating 

game situations in controlled/artificial settings, which lack external validity. Furthermore, 
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in our sample youth players experience a smaller number of purposeful headers, over a 

larger amount of time, during games. Consequently, most laboratory studies may not 

accurately represent true heading exposures for this age group19,32 as well as studies that 

estimate heading exposures from player self-report.8,33 The long-term impact of whether 

improper heading technique leads to worse neurological sequalae, compared to proper 

heading technique is unknown. Our results illuminate realistic heading exposures for 

these youth age groups and accordingly, may be helpful to inform laboratory studies 

examining the relationship between heading exposure and potential neurological 

sequelae. In turn, this will help to develop rules and regulations for youth players based 

on youth data rather than relying on findings from controlled laboratory studies or 

extrapolating findings from collegiate player data.  

 

In our study sample, 29-35% of purposeful headers experienced by all age groups were 

performed with the top of the head. This is concerning because head impact location may 

lead to greater head impact accelerations. For instance, one study indicated that during 

female youth soccer scrimmage front and side headers result in greater rotational head 

accelerations compared to the back of the head.30 While the authors reported no 

differences in magnitude of linear or rotational acceleration between the top and front of 

the head, only 47 headers were captured and compared. Furthermore, heading technique 

is influenced by both muscle pre-tensing, and head-torso alignment, which can decrease 

the magnitude of linear accelerations following heading, but is less consistent for 

reducing rotational acceleration.16 Finally, there are differences in how these skull 

accelerations relate to actual brain strains, such that lateral impacts to the head could 

result in higher shear stress compared to frontal head impacts.34  

 

Compared to collegiate female players,15 our findings demonstrate that youth females 

experience less headers during their soccer season, even when participating in a greater 

number of season games. Moreover, in contrast to collegiate players,2,15 the number of 

headers that youth players perform do not vary between player positions. In our current 

study, the majority of purposeful headers resulted from throw-ins and long-range passes, 

which according to previous work results in lower impact magnitudes compared to goal 
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drop kicks and goal kicks.17 Future studies should quantify these impacts over an entire 

youth soccer season using wearable acceleration sensors to quantify head impact 

exposures.  

 

There are some limitations to our current findings. Firstly, this study only captures 

heading behaviors for female youth soccer players in the Ontario Player Development 

League, and therefore we cannot comment on whether other soccer leagues and/or 

calibers would show similar purposeful heading exposures. Female soccer players have a 

greater rate of concussion compared to male soccer players;35 however, heading should 

be described in male soccer seasons as previous work indicates males head the ball more 

frequently than females.1 It is possible male soccer players engage in more aggressive 

play during games compared to females, contributing to their increased purposeful 

heading burden. Furthermore, our heading data only includes games and not practices, 

therefore we cannot comment on any differences in heading behaviors, nor the number of 

purposeful headers, between games and practices. Also, our study only assessed 

purposeful headers and did not include unintentional head impacts. Lastly, the low 

number of headers per game per player was challenging to analyse using inferential 

statistics.   

 

We believe our results provide important information towards data-driven approaches to 

help guide decisions regarding heading restrictions in youth soccer. The magnitude of 

head impact accelerations in youth soccer have been quantified in some youth age 

groups;1,30 however, the understanding of the cumulative effects of these subconcussive 

impacts remains unknown.  Therefore, larger-scale, longitudinal studies are needed to 

help understand whether there is a relationship between the magnitude of these impacts 

and brain health. Such studies will help inform decisions regarding game scenarios 

associated with larger head impact accelerations, and drive clinical decisions regarding 

possible heading thresholds. While youth players experience fewer head impacts than 

collegiate teams, our study shows that purposeful heading in youth soccer is a frequent 

and expected part of the game that requires further investigation.  
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2.5 Conclusion 

The current study captured purposeful headers from players on three competitive youth 

age groups as well as their opposition, and compared the number of purposeful headers 

that a player performs based on player age, position, impact location, and game scenario. 

We observed that the number of purposeful headers that youth players perform increases 

as player age increases; however, proper heading technique, as judged by head impact 

location, is not influenced by player age. Furthermore, head impact location is not 

influenced based on the game scenario. Although youth players experience fewer 

purposeful headers during games, as well as entire soccer seasons, compared to collegiate 

players, purposeful heading is a frequent part of youth soccer. 
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Chapter 3  

3 Head Impact magnitudes that occur from purposeful 

soccer heading depend on game scenario and head 

impact location 

 

A version of this manuscript has been published: Harriss A, Johnson AM, Walton DM, et 

al. Head impact magnitudes that occur from purposeful soccer heading depend on the 

game scenario and head impact location. Musculoskelet Sci Pract 2019; 40: 53–57. doi: 

10.1016/j.msksp.2019.01.009 
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3.1 Introduction 

The potential for long-term neurological impairment resulting from repetitive head 

impacts is a concern for athletes participating in contact and collision sports such as ice 

hockey, rugby, and American football.1,2 Emerging evidence also shows neurocognitive 

effects associated with purposeful soccer heading.3–6 Observational research has 

determined that under-14 youth female soccer players can perform up to nine purposeful 

headers during a single soccer game, and can accumulate more than 50 purposeful 

headers during a soccer season.7 While the cumulative linear and rotational head impact 

accelerations experienced by collegiate players8 are greater than that of high school 

players,9 the developing brains of younger players10 may be more vulnerable to 

neurological impairments, even at lower head impact accelerations and cumulative loads.  

 

In 2016 the United States Soccer Federation announced the Recognize to Recover 

program to limit the number of purposeful headers that youth players perform.11,12 This 

initiative bans heading for players younger than ten years old, and limits the number of 

headers that players aged 11-13 can perform during practices. These thresholds for safe 

headers were defined through expert consensus rather than empirical evidence, raising 

questions as to their appropriateness for preventing neurocognitive problems. Other 

leagues have used data-driven models to reduce the incidence of impacts during sport.13,14 

For example, the number of head impacts that collegiate American football players 

experience during practices is limited by imposing practices with no equipment, and 

enforcing that no tackling occurs during these practices.15 We cannot create empirically-

derived guidelines for this vulnerable population without such data for youth soccer.  

 

Several studies have quantified the magnitude of head impact accelerations during soccer 

games16–18 though few have fully characterized these head impacts as far as their context 

is concerned. For example, one study evaluating female collegiate soccer players 

revealed that purposeful headers occurring from common maneuvers such as “shots” and 

“clears” result in larger linear head accelerations compared to “passes”;8 however, it did 

not report rotational head accelerations that may be a better predictor of neurological 
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consequences of repetitive head impacts.19 Most such work has been conducted on adult 

collegiate players,8,9,16,17,20,21 and youth players have been relatively understudied. 22,23 

 

Purposeful headers account for the majority of impacts sustained by female youth soccer 

players during scrimmages, and result in large peak linear and rotational accelerations 

(4.5 – 62.9 g and 444.8 – 8869.1 rad/s2, respectively).24 Other work has quantified youth 

head impacts during weekend soccer tournaments and report similar impact 

magnitudes.22  Youth players have reduced head mass and neck strength, compared to 

adults, which may lead to larger head accelerations with impact.25,26 One group revealed 

that female high school soccer players showed moderate, consistent negative correlations 

between neck strength (flexion, extension, left lateral flexion, and right lateral flexion) 

and resultant linear head acceleration in header drills.27 Other work indicates greater head 

size and neck strength are associated with lower peak linear and rotational 

accelerations,28 while sex and age may not influence head impact accelerations.29  

 

Cellular, structural, and metabolic changes,30 as well as neurocognitive outcome 

measures such as, verbal learning31 are also critical components to understanding 

impairment that results from heading. Although the number of headers alone is unlikely 

to be enough to fully understand the risk of purposeful heading, the game scenario in 

which the header occurred may also influence the head impact magnitude. For example, 

“drop kicks” and “goal kicks” result in significantly larger head accelerations than 

“kicks”.18  

Laboratory,21 and on-field,23 studies reveal that head impact location influences the 

magnitude of linear and rotational head accelerations that result from purposeful soccer 

heading. Accordingly, to fully understand the linear and rotational head accelerations that 

result from purposeful heading in youth soccer, game scenario and head impact location 

may provide valuable information for developing informed guidelines in youth soccer.  

 

The purpose of this study was to quantify the linear and angular head kinematics that 

result from purposeful heading during youth soccer games, and to determine whether the 

magnitude of these head impacts are influenced by the game scenario and head impact 
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location. Consistent with previous work18,21,23,32 it is hypothesized that purposeful headers 

occurring from drop kicks will result in the largest linear head accelerations, and that 

purposeful headers occurring from corner kicks will result in the largest rotational 

velocity. Furthermore, we hypothesize that purposeful headers performed with the top of 

the head will result in larger head accelerations compared to the front or side of the head. 

3.2 Material and methods 

3.2.1 Participants 

This observational study recruited a convenience sample of 36 female soccer players (13.4 

(SD 0.9) years old, 1.6 (SD 0.1) m, 50.6 (SD 8.7) kg) from three elite youth soccer teams 

(U13, U14, U15) participating in the Ontario Player Development League (OPDL). Players 

competed in one game per week during their soccer season. Players also participated in 

weekly practices; however, these data were not recorded. Written informed consent from 

parents and written informed assent from players was obtained prior to participation. This 

study was approved by the Health Sciences Research Ethics Board at The University of 

Western Ontario. 

3.2.2 Instrumentation 

Head impacts for each game were recorded using wireless sensors (GForce Tracker 

(GFT2), Artaflex Inc., Markham, Ontario, Canada) at the back of the head that were 

secured with a headband, similarly to other work.18,27 The GForce Tracker sensors contains 

a tri-axial accelerometer and a tri-axial gyroscope that measure linear acceleration, and 

rotational velocity, respectively. The sensors triggered when head impacts exceeded a 

linear acceleration of 7 g, as preliminary data measured prior to the soccer season indicated 

that purposeful header impacts can be as low as 8 g. The devices recorded 8 ms of data 

preceding the threshold and 32 ms of the data following the threshold. Linear accelerations 

were sampled at 3000 Hz, and filtered through an onboard analog low-pass filter with a 

cutoff frequency of 300 Hz. Rotational velocity was sampled at 800 Hz, and low pass 

filtered with a cutoff frequency of 100 Hz. All data were time stamped and stored on the 

sensors’ onboard memory. Although some researchers have incorporated a rigid body 
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kinematic transformation to predict the accelerations at the center of mass of the head,18,29 

we report impact measurements based on sensor data, similarly to some other 

researchers.27,33,34 Following each game, head impact data were uploaded to a cloud-based 

server. Peak linear acceleration, and peak rotational velocity for each head impact were 

extracted for further analysis.  

3.2.3 Study Protocol 

A total of 60 regular season games (20 games per team) were recorded using a Sony 

Vixia HD camera that mounted to a telescoping system (EVS25, Endzone Video 

Systems, Sealy, Texas, United States). Game video was uploaded to a video analysis 

software program (dba HUDL, Agile Sports Technologies Inc., Lincoln, Nebraska, 

United States). An appointed researcher matched each purposeful header from the video 

with the associated peak linear acceleration and peak rotational velocity collected from 

the sensor. One rater was deemed appropriate for this analysis based on previous work.7 

The appointed researcher also categorized heading events by game scenario (Table 3.1) 

as well as head impact location: front, top, back, and side of the head.  

Table 3.1. Description of game scenario. 

 

 
 

 

Descriptive statistics for peak linear acceleration and peak rotational velocity are reported 
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as mean and standard deviation. Both linear acceleration and rotational velocity were 

evaluated using a linear mixed effects model to test whether the game scenario and head 

impact location predicted head impact magnitude resulting from purposeful heading. 

Game scenario (pass, shots, free kick, corner, deflection, goal kick, drop kick, throw-in), 

and head impact location (top, front, side, back) were entered as fixed effects. Individual 

differences and game differences were modelled as random effects.  To determine the 

model of best fit, four separate models were tested: null hypothesis, game scenario by 

head impact location interactions, including their main effects. All statistical analyses 

were carried out using R35 with linear mixed effects models evaluated using lme436 and 

lmerTest.37 Effect sizes can be misleading and inaccurate when using linear mixed effect 

modelling,36 and are therefore not reported. Statistical significance was defined using a 

threshold of 0.05.  

3.3 Results 

A total of 434 purposeful headers were identified from video analysis with matching 

events recorded with microsensors. Overall, the mean linear head acceleration 

experienced by players was 18.8 (SD 10.2) g, and the mean rotational velocity was 

1039.0 (SD 571.3) °/s. The majority of purposeful headers occurred from passes in the air 

and throw-ins (Table 3.2). On average, purposeful headers that occurred from shots 

resulted in the largest linear head acceleration, while corner kicks resulted in the largest 

rotational velocity (Table 3.2).  

Table 3.2. Linear acceleration and rotational velocity resulting from different game 

scenarios. 

 

In terms of head impact location, headers that occurred on the top of the head resulted in 

 

Game Scenario Frequency (%) Linear Acceleration (g) Rotational Velocity (°/s) 

Pass in air 179 (41%) 19.74 ± 10.86 1098.29 ± 590.95 

Throw In 129 (30%) 17.33 ± 6.67 959.22 ± 488.34 

Deflection 43 (10%) 12.55 ± 4.02 793.87 ± 521.58 

Punt 35 (8%) 20.40 ± 16.14 1021.34 ± 614.82 

Shot 20 (5%) 27.35 ± 13.11 1202.30 ± 497.81 

Goal Kick 16 (4%) 20.11 ± 6.88 1206.75 ± 765.43 

Corner 12 (2%) 22.92 ± 7.21 1447.42 ± 589.80 
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the largest linear acceleration and rotational velocity (Table 3.3). Most purposeful 

headers were performed by players using the front of their head. No purposeful headers 

occurred using the back of the head, and therefore this header location was not 

considered in the statistical analyses.  

Table 3.3. Linear acceleration and rotational velocity resulting from different head 

impact locations. 

 

The mixed effects model evaluating linear acceleration revealed that game scenario had a 

statistically significant effect on the linear acceleration that resulted from purposeful 

headers, compared to the null model [χ2 (6) = 37.97, p = 0.0001]. Headers that occurred 

from passes in the air resulted in larger linear head accelerations as compared to 

deflections [t(417.79) = - 3.88, p = 0.0001], and smaller linear head accelerations as 

compared to shots [t(426.93) = 3.70, p = 0.002]. There were no other statistically 

significant findings for game scenario. Head impact location did not significantly 

influence linear head accelerations [χ2 (2) = 1.81, p = 0.40]. There was a statistically 

significant interaction between head impact location and game scenario on linear head 

acceleration, since the interaction model fit the data significantly better than the main 

effects model [χ2 (9) = 20.10, p = 0.02]. Drop kicks resulted in significantly larger linear 

head accelerations when completed with the top of the head compared to the front of the 

head [t(410.26) = 3.34, p = 0.001].   

 

The mixed effects model evaluating rotational velocity indicated that game scenario had a 

statistically significant effect on the rotational velocity that resulted from purposeful 

headers [χ2 (6) = 20.84, p = 0.002]. Passes in the air resulted in significantly larger 

rotational head velocities compared to deflections [t(419.58) = 3.20, p = 0.001] and 

throw-ins [t(425.98) = 2.18, p = 0.03].  Furthermore, the rotational head velocity from 

 Head Impact 

Location 

Frequency Linear 

acceleration (g) 

Rotational 

velocity (°/s) 

Front 277 18.35 ± 8.50 951.88 ± 550.52 

Top 137 19.69 ± 12.23 1215.44 ± 588.56 

Side 20 19.41 ± 14.89 1037.66 ± 469.62 

Back 0 n/a n/a 
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purposeful headers varied significantly between head impact locations 

[χ2 (2) = 18.15, p = 0.0001]. Purposeful headers that occurred at the top of the head 

resulted in larger rotational velocities compared to the front of the head [t(429.49) = 4.30, 

p = 0.0001]. There was no statistically significant difference in rotational velocity 

between purposeful headers that occurred at the front of the head compared to the side of 

the head [t(430.35) = 0.54, p = 0.59]. The game scenario did not significantly influence 

the rotational head velocity for the different head impact locations [interaction not 

statistically significant: χ2 (9) = 8.89, p = 0.45]. 

3.4 Discussion 

While the United States Soccer Federation implemented heading guidelines with the 

intent of reducing youth heading exposure,11 there is relatively little information about 

linear and angular heading kinematics for this age group.22,23,38 Understanding the 

frequency, magnitude and on-field characteristics of purposeful heading will provide 

valuable information to soccer federations to develop data-driven models designed to 

limit youth cumulative heading exposure. We observed that head impact location affected 

head impact magnitudes; purposeful headers occurring on the top of the head result in 

larger rotational velocities compared to the front of the head. When considering both 

game scenario and head impact location, we found that purposeful headers occurring 

from drop kicks completed with the top of the head had the largest linear head 

acceleration magnitudes. However, this relationship was not maintained for rotational 

head velocity where there was no interaction between game scenario and head impact 

location.  

 

The head impact accelerations experienced by the youth soccer players in our study were 

comparable to earlier work that quantified purposeful headers during youth soccer 

scrimmages23 and games;22,38 however, these studies did not categorize headers by the 

soccer game scenario. This component of soccer heading is important as we observed that 

there were significant differences in impact magnitudes between the various game 

scenarios. For example, we observed that purposeful headers occurring from deflections 

result in reduced linear head acceleration and rotational head velocity compared to passes 
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in the air. Such differences in head impact magnitude between the various game scenarios 

were likely due to varying ball velocities in these situations. For example, controlled 

laboratory testing has reveal that headers performed with soccer balls projected at 

13.4 m/s result in smaller head impact accelerations compared to 22.4 m/s (30.6 ± 6.2 g 

vs. 50.7 ± 7.7 g, respectively).24 As well, soccer ball velocity is reduced when the ball 

bounces from the ground, or off another player (i.e. deflections), which would lead to a 

smaller head impact acceleration compared to a pass in the air or goal kick.  

 

One research study suggests that limiting purposeful headers from drop kicks and goal 

kicks could help reduce the cumulative load of heading in female collegiate soccer;18 

however, our findings indicate this strategy may not be effective for youth age groups. 

Drop kicks and goal kicks occurred infrequently in our study, and therefore do not add 

substantially to the cumulative heading load experienced by youth players. Passes in the 

air accounted for the greatest proportion (41%) of purposeful headers performed by youth 

players, and shots were the only game scenario that resulted in larger head impact 

acceleration magnitudes. Passing the ball on the ground, rather than in the air could help 

reduce the number of recorded headers in this study sample by as much as 41%.  

 

Previous work also indicates that repetitive long-range headers, can negatively influence 

cognitive functions. For example, soccer players who perform a greater number of long-

range headers have slower reaction times on pointing tasks compared to players with 

fewer long-range headers.39 However, other work shows no negative changes in 

computerized neurocognitive functioning among both male and female youth soccer 

players.40 It is possible that repetitive exposure to specific purposeful headers, such as 

long-range kicks, may be more likely to impair cognitive functioning in youth soccer 

players. Accordingly, limiting the number of purposeful headers that youth players 

perform from long-range passes in the air could reduce their overall heading exposure.  

 

Previous work has identified differences between head impact location and the magnitude 

of head impact accelerations in female youth soccer players.23 Our findings demonstrate 

that purposeful headers performed using the top of the head result in larger rotational 
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velocities compared to the front of the head, while headers performed using the side of 

the head did not influence rotational head velocity magnitude compared to the front of the 

head. These results indicate that players should be trained to execute proper heading 

technique, impacting the ball with the front of their heads, as this reduces the magnitude 

of the linear head impact accelerations. In contrast, improper heading technique (i.e. 

headers performed with the top of the head) can result in larger rotational velocities as 

well as shear forces.41 These findings support US Soccer’s stance that limiting the overall 

head impact exposure in soccer, rather than only concussive impacts, is an important 

aspect of policy development and player safety.12 

 

There are some limitations to the current study that should to be acknowledged. The 

impact magnitudes in this paper are based on sensor data rather than predictions for the 

head center of mass. This study only quantified head impact accelerations for female 

youth soccer players during soccer games, and not practices. This study provides 

meaningful data about purposeful heading for a population that is notably absent in head 

injury literature; however, we cannot make any comparisons between sexes or different 

soccer leagues/calibers. Recent findings suggest that heading may cause greater head 

injury in female soccer players compared to males,42 and accordingly these findings are 

pertinent to this at-risk population. The data presents both the linear and angular head 

impact kinematics for different game scenarios and head impact locations, but we do not 

report head impact exposure per player. A comparison paper presents information on the 

different game scenarios and head impact location per player for purposeful headers.43  

Our study only quantified impacts that resulted from purposeful headers, and did not 

consider non-header impacts. Non-header impacts occur infrequently compared to 

purposeful heading events,8 and therefore may not substantially contribute to overall head 

impact exposure. However, unintentional headers may pose a greater risk of CNS 

symptoms than intentional headers.44 It is important to recognize that non-header 

impacts, such as player to player contact, would be a separate focus for rule changes 

compared to intentional heading.  

Our findings show that purposeful heading in female youth soccer is a common activity, 

that occurs from various game scenarios, but predominately passes in the air and throw-
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ins. While similar impact magnitudes were recorded from each of the various scenarios, 

limiting headers from passes in the air could help reduce youth heading exposure by up to 

41%. Furthermore, while most headers were performed using the front of the head, 

players still use the top of their head for almost one-third of purposeful headers. This is a 

concern because the rotational head velocity was larger for headers performed with the 

top of the head compared to the front of the head. Coaching strategies should focus on 

methods for limiting the number of headers that players perform, perhaps by encouraging 

players to avoid heading passes in the air, but also educate players on heading technique 

to reduce cumulative heading burden.   
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Chapter 4  

4 Cumulative soccer heading amplifies the effects of 

brain activity observed during concurrent moderate 

exercise and continuous performance task in female 

youth soccer players 

 

A version of this manuscript has been published: Harriss, A., Johnson, A.M., Thompson, 

J., Walton, D.M., Dickey, J.P. Cumulative soccer heading amplifies the effects of brain 

activity observed during concurrent moderate exercise and continuous performance task 

in female youth soccer players. J Concussion. doi: 10.1177/2059700220912654 
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4.1 Introduction 

Most soccer-related head injuries occur from contact with other players; 1 however, 

soccer players routinely experience head impacts through purposely heading the ball. 

Purposeful soccer heading occurs when players deliberately use their head to direct the 

soccer ball. There is concern that cumulative head impacts through purposeful soccer 

heading may influence neurological functioning. For example, some studies show that 

repetitive head impacts, such as purposeful soccer heading, do not lead to immediate 

changes in neuropsychological testing or advanced neuroimaging, 2–4 while other 

investigations report adverse sequelae. Using diffusion-tensor imaging, one group 

reported that the number of headers a soccer player performed within the last year was 

associated with the degree of axonal injury for specific regions of interest.5 Another study 

revealed, elite male soccer players show evidence of increased radial and axial diffusivity 

in areas of the brain including the corpus callosum, over the course of a normal season.6 

Similar neuroimaging findings have also been reported in American football players who 

experience repetitive head impacts. 7,8 Collectively, these findings indicate that 

cumulative head impacts may cause impairments in areas of the brain that are not 

explained by a history of a diagnosed concussion.  

 

Electroencephalogram (EEG) recordings reveal abnormal brain functioning in people 

diagnosed with a concussion, yet they have normal clinical concussion test scores. 9 

Similarly, EEG abnormalities are shown in people diagnosed with a concussion while 

performing virtual reality balance and spatial tasks. 10 Taken together, these findings 

suggest that some type of compensatory brain mechanism is occurring to achieve what 

appears to be normal functioning. A continuous performance test (CPT) presents patients 

with stimuli that requires them to respond to target stimuli or refrain from responding to 

non-target stimuli. Omission and commission errors during CPTs provide valuable 

information regarding inattention and impulsivity, respectively. 11 Omission errors result 

when the participant fails to respond to target stimuli, whereas commission errors result 

when the participant responds to non-target stimuli.  
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The cumulative effects of purposeful soccer heading may demonstrate EEG abnormalities 

that are currently reported in patients diagnosed with a concussion9,10 in that participants 

can successfully perform a CPT by engaging additional brain resources to compensate for 

the injured brain areas. It is expected that these abnormalities will become amplified with 

additional effort, such as moderate exercise, 12–14 making neurological deficits more 

readily identifiable.    

 

Heading is a frequent part of youth soccer, 15  yet this population is understudied. The 

youth age period is a sensitive time for the developing brain, 16 potentially rendering this 

group more vulnerable to the negative effects of purposeful heading. Still, it is not known 

whether purposeful heading can lead to abnormal brain activity during or after a single 

soccer season. Accordingly, the purpose of this study was to explore the relationship 

between cumulative purposeful soccer heading and electrophysiological brain functioning 

during a single season of female youth soccer. We examined female youth soccer players 

as they have a higher risk of concussion. 17 This study examined a spectral analysis of 

EEG to determine whether youth female soccer players demonstrate spectral changes in 

EEG activity at electrode locations Fp1, Fp2, F3, F4, F7, F8, C3, and C4 at rest and 

during moderate exercise, while participants completed a CPT. Previous studies show 

increases in brain activity as a result of exercise. 18,19 Accordingly, our hypothesis was 

that exercise will result in increased EEG activity for each frequency band across all 

electrode sites compared to rest. In addition, we hypothesized that these differences 

between rest and exercise would be amplified as players experience a greater number of 

cumulative purposeful headers. 

4.2 Methods 

4.2.1 Participants 

Twenty-four elite female soccer players from three different youth age groups (under 13, 

under 14, and under 15) were recruited for this study. All players were part of the Ontario 

Player Development League, and competed in 20 regular season games during a six-

month period. Participants were excluded if they were diagnosed with a concussion 
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during the season or within the previous six months, or if they had a diagnosed learning 

disability or any neurological or psychiatric disorders. Participant assent and parent 

consent were obtained prior to participation. This study protocol was approved by the 

Health Sciences Research Ethics Board at the University of Western Ontario (HSREB# 

107948).  

4.2.2 Electroencephalogram recordings 

In accordance with the International 10-20 system, 20 22 electrodes were positioned on 

the participants scalp using a spandex EEG recording cap (Electro-Cap. Eaton, OH, USA: 

Electro-Cap, International). Nineteen scalp locations were recorded, and all leads used 

linked ears as reference, and AFz as the ground. Impedances at all recording sites were 

below10 kΩ. Electroencephalogram recordings were twenty minutes in duration (ten 

minute resting, ten minute moderate exercise) and completed using the eVox system 

(Evoke Neuroscience, Inc., New York, NY). The system bandwidth defined by post-

processing filters was  1–30 Hz, and the sampling frequency was 250 Hz. Since the 

antialiasing filter only attenuated the signals to 20% at 60 Hz (Smith 1997), a 60 Hz 

notch filter was employed to further attenuate any potential signal from power mains.21 

Data were recorded to a Dell Latitude E6440 laptop running an i7 processor. 

 

EEG frequencies were divided into the following bands: Theta (4.0 - 7.9 Hz), Alpha1 (8.0 

- 9.9 Hz), Alpha2 (10.0 - 12.9 Hz), Beta1 (13.0 - 17.9 Hz), Beta2 (18.0 - 29.9 Hz).22,23 

Female soccer players frequently experience the majority of purposeful soccer headers on 

the front and top of the head. 24 Accordingly, we assessed power for each frequency band 

at electrode sites at the frontal (Fp1 & Fp2), mid-frontal (F3 & F4), lateral-frontal (F7 & 

F8), and central (C3 & C4) locations as these electrodes are preferentially influenced by 

neural activity close to these regions, though also affected by neural activity from more 

distant areas due to volume conduction. Temporal electrode sites were not assessed due 

to excessive contamination with artifact from masseter muscle activation. 

 

Off-line analysis was performed using Evoke Neuroscience’s Report Generator software. 

Artifact removal and data filtering were specifically tuned for exercise condition, and 
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were used to process the resting conditions as well. Data were manually inspected and 

segments that contained movement artifacts or excessive muscle activity at any electrode 

site were eliminated from further analyses.  Independent component analysis was used to 

detect and correct eye blinks in order to improve signal quality.  

4.2.3 Experimental Protocol 

Video from each of the 20 matches was recorded using a Sony Vixia HD camera 

mounted to a telescoping tower (EVS25, Endzone Video Systems, Sealy, Texas, United 

States). The game video was analyzed using a video analysis software tool (dba HUDL, 

Agile Sports Technologies Inc., Lincoln, Nebraska, United States) and the number of 

headers was recorded by one researcher for all games. Previous research has determined 

that one rater is sufficient to reliably record the number of purposeful soccer headers.15   

 

Participants avoided caffeine and high intensity physical activity on each of the testing 

days. EEG testing was conducted at four time points during the soccer season: baseline, 

two mid-seasons, and a post-season measure. At baseline, anthropometric data and 

concussion history were collected. Participant EEG were recorded at two conditions, rest 

and during moderate exercise. During each condition participants completed a CPT, 

whereby either target (big circle) or non-target (small circle) stimuli were presented on a 

computer monitor at defined time intervals and the participants responded. The 

participants were instructed to press a button as quickly as possible when presented with 

the target stimuli, and refrained from responding to non-target stimuli. Omission errors 

occurred when the participant failed to respond to target stimuli. Commission errors 

occurred when the participant responded to non-target stimuli.  

 

For the moderate exercise condition, a cycle ergometer was used to limit movement 

artifact. 18 Preferred seat height and handle bar position was consistent across sessions. 

Participants selected a cycling cadence that they could maintain throughout the entire ten 

minutes. Biking intensity increased each minute throughout the test, based on participant 

mass and rpm, similarly to other concussion exercise protocols.25 The Borg rating of 

perceived exertion (RPE) scale 26 was used at the start and end of the rest and exercise 
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condition. This scale is a simple numeric list and participants verbally reported a number 

between 6 (no exertion at all) to 20 (maximal exertion) corresponding to their perceived 

exertion. Participants rested for up to ten minutes between conditions.  

4.2.4 Data Analysis 

The mean and range are reported for the number of cumulative purposeful headers at 

each testing time-point. Descriptive statistics for participant demographics and RPE 

during each condition (rest and exercise) are reported as means and standard deviations. 

In order to ensure that the effects of sustained exercise were present, we chose to analyze 

the second half of both the exercise and rest conditions, and treated the initial five 

minutes as warm-up periods.  

 

Commission and omission errors are reported as median and range as they were not 

normally distributed. A Wilcoxon signed-rank test was used to determine the statistical 

significance of the differences in commission errors between rest and exercise. The same 

analysis was used for omission errors. These analyses were carried out in IBM SPSS 

Statistics (version 25). A p-value of < 0.05 was considered statistically significant.  

The EEG signals were digitized using a separate 24-bit analog-to-digital converter for 

each channel. Power for Theta, Alpha1, Alpha2, Beta1, and Beta2 were considered as 

dependent variables. A linear mixed effects model evaluated whether the main effects of 

testing time, experimental condition (rest, exercise), and electrode site (Fp1, Fp2, F3, F4, 

F7, F8, C3, C4) predicted EEG power for each dependent variable. Testing time, 

experimental condition, and electrode site were entered as fixed effects to determine 

whether the main effects model predicted EEG power for each dependent variable. This 

main effects model was tested against a null model consisting of only subject variance. 

Cumulative number of headers was then entered into the main effects model as a random 

effect, and this revised model was tested against the original main effects model to 

determine whether or not accounting for this source of error significantly improved the 

prediction. The interaction (condition by site) was then tested against the main effects 

model that included cumulative headers. A p-value < 0.05 was considered significant. 
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4.3 Results 

One player sustained a concussion during the soccer season and was excluded from 

analysis. The mean age of the remaining 23 participants was 13.1 (SD 0.8) years old, 

with a mass of 49.5 (SD 8.6) kg and height of 1.6 (SD 0.1) m. The average cumulative 

number of purposeful headers at follow-up was 6.4 (range: 0 - 29), 15.4 (range: 1 - 49), 

and 23.5 (range: 6 - 61) at follow-ups one, two and post-season, respectively.  

4.3.1 Continuous performance test 

At each testing session, all players successfully completed the rest and exercise condition. 

Overall, average RPE difference before (6.55 SD 1.02), and after (6.86 SD 1.75) the rest 

condition was not statistically significant (p = 0.34). During exercise, participants cycled 

at 57.30 (SD 6.31) rpm. RPE statistically significantly increased throughout the exercise 

condition (before 6.59 SD 1.30, after 15.7 SD 1.7). Median errors for omission and 

commission scores are presented in Table 4.1.  

Table 4.1. Continuous performance test omission errors and commission errors. 

 

There was a statistically significant difference between rest and exercise omission scores, 

in that omission errors increased during exercise compared to rest at baseline (z = -3.87, p 

= 0.001), follow-up 1 (z = -3.56, p = 0.001), follow-up 2 (z= -3.10, p = 0.002), and post-

season (z = -2.26, p = 0.024). Conversely, there were no statistically significant 

differences in rest and exercise commission errors at all testing sessions: baseline (z = -

1.18, p = 0.24), follow-up 1 (z = -0.13, p = 0.90), follow-up 2 (z = -0.85, p = 0.40), and 

post-season (z = 0.29, p = 0.77). Regardless of experimental condition, all players scored 

Condition Outcome 

measure 

Baseline Follow up 

1 

Follow up 

2 

Post 

Season 

Rest (median %, 

range) 

Omission 0.0 (0.0-

8.57) 

0.0 (0.0-

11.43) 

2.86 (0.0-

11.43) 

0.0 (0.0-

48.57) 

Exercise (median 

%, range) 

Omission 11.43 (0.0-

54.29) 

11.43 (0.0-

34.29) 

5.71 (0.0-

40.0) 

7.41 (0.0-

45.71) 

Rest (median %, 
range) 

Commission 1.63 (0.0-
3.27) 

0.41 (0.0-
4.49) 

0.0 (0.0-
3.27) 

0.41 (0.0-
3.27) 

Exercise (median 
%, range) 

Commission 0.82 (0.0-
4.90) 

0.41 (0.0-
7.76) 

0.0 (0.0-
4.90) 

0.41 (0.0-
2.04) 
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within normal ranges for omission and commission errors, and there was no statistical 

evidence that cumulative headers influenced the number of omission and commission 

errors. Therefore, cumulative number of headers were not considered in this analysis.   

4.3.2 Alpha1  

Considering the Alpha1 frequency band, the main effects model (experimental condition, 

site, and testing time) were significantly better at predicting EEG power compared to the 

null hypothesis [χ2 (11) = 533.94, p < 0.0001]. When cumulative headers were entered as 

a random effect, the main effects model was statistically significantly improved at 

predicting EEG power [χ2 (1) = 84.36, p < 0.0001]. The interaction model (condition by 

site) was significantly better at predicting these data compared to the main effects model 

[χ2 (7) = 56.09, p < 0.0001].  Exercise caused EEG power to increase compared to the rest 

condition (Figure 4.1). Specifically, a statistically significant difference in EEG power 

between rest and exercise was demonstrated at the frontal electrode sites (Fp1: 0.15 μV2 

SE 0.02, t(1205)=7.29, p < 0.0001; Fp2: 0.14 μV2, SE 0.02, t(1205)=6.43, p < 0.0001; 

F3: 0.08 μV2, SE 0.02, t(1205)=3.9, p = 0.0001; F4: 0.07 μV2, SE 0.02, t(1205)=3.35, 

p = 0.008; F7: 0.14 μV2, SE 0.02, t(1205)=6.61, p < 0.001; F8: 0.14  μV2, SE 0.02, 

t(1205)=6.64, p < 0.001). There were no statistically significant differences at central 

electrode sites (C3: 0.03 μV2, SE 0.02, t(1205)=1.41, p = 0.16; C4: 0.01 μV2, SE 0.02, 

t(1205)=0.35, p = 0.72). 

4.3.3 Alpha2  

Alpha2 power demonstrated that the main effects model (experimental condition, site, 

and time) was significantly better at predicting the data than the null model [χ2 (11) = 

461.64, p < 0.0001]. When cumulative headers were entered as a random effect, the main 

effects model was significantly better at predicting EEG power [χ2 (1) = 29.09, p < 

0.0001]. The interaction model (condition by site) was significantly better at predicting 

EEG power than the main effects [χ2 (7) = 33.81, p < 0.0001]. Exercise caused EEG 

power to increase compared to the rest condition (Figure 4.2). In particular, a statistically 

significant difference in EEG power between rest and exercise were demonstrated at the 

frontal sites (Fp1: 0.11 μV2, SE 0.02, t(1206)=6.37, p < 0.0001; Fp2: 0.10 μV2, 
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SE 0.02, t(1206)=5.86, p < 0.0001; F3: 0.08 μV2, SE 0.02, t(1206)=4.64,  p = 0.0001; F4: 

0.08 μV2, SE 0.02, t(1206)=4.26, p < 0.001; F7: 0.11 μV2, SE 0.02, 

t(1206)=6.12, p < 0.0001; F8: 0.11 μV2, SE 0.02, t(1206)=6.07, p < 0.0001). There were 

no statistically significant differences at central electrode sites (C3: 0.04 μV2, SE 0.02, 

t(1206)=1.93, p = 0.05; C4: 0.01 μV2, SE 0.02, t(1206)=0.52, p = 0.60). 

 

 

Figure 4.1 Interaction plot illustrating the spectral power in Alpha1 band between 

electrode site and experiment condition (rest and exercise). The points indicate least 

square means and error bars represent standard error. Asterisk (*) represents statistically 

significant differences between rest and exercise (p < 0.05). 
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Figure 4.2 Interaction plot illustrating the spectral power in Alpha2 band between 

electrode site and experiment condition (rest and exercise). The points indicate least 

square means and error bars represent standard error. Asterisk (*) represents statistically 

significant differences between rest and exercise (p < 0.05). 

4.3.4 Beta1 

Considering the Beta1 power, the main effects (experimental condition, site, and time) 

were significantly better at predicting the data than the null hypothesis model [χ2 (11) = 

452.79, p < 0.0001]. The main effects model was significantly better at predicting EEG 

power when cumulative number of headers were entered as a random effect [χ2 (1) = 

68.71, p < 0.0001]. The interaction model (condition by site) was not better at predicting 

EEG power than the main effects [χ2 (7) = 2.33, p = 0.93].  

4.3.5 Beta2 

Considering the Beta2 power, the main effects (experimental condition, site, and time) 

were significantly better at predicting the data than the null hypothesis model [χ2 (11) = 

199.25, p < 0.0001]. When cumulative headers were entered as a random effect, the main 
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effects model was significantly better at predicting EEG power [χ2 (1) = 13.10, p < 

0.0001]. The interaction model (condition by site) was significantly better at predicting 

EEG power than the main effects [χ2 (7) = 20.65, p < 0.004]. Exercise caused EEG power 

to increase compared to the rest condition (Figure 4.3). A statistically significant 

difference in EEG power between rest and exercise were demonstrated at electrode sites 

Fp1 ( 0.01 μV2, SE 0.02, t(1209)=1.19, p = 0.004), F3 ( 0.07 μV2, SE 0.02, t(1209)=4.20, 

p < 0.0001), F4 (0.06 μV2, SE 0.02, t(1209)=3.87, p < 0.001), F8 (0.05 μV2, SE 0.02, 

t(1209)=2.89, p = 0.004), C3 (0.08 μV2, SE 0.02, t(1209)=4.84, p <0.0001), C4 

(0.08 μV2, SE 0.02, t(1209)=4.80, p < 0.0001). There were no statistically significant 

differences at electrode sites Fp2 (0.01 μV2, SE 0.02, t(1209)=0.35, p = 0.72), and F7 

(0.03 μV2, SE 0.02, t(1209)=1.67, p = 0.10).  

 

Figure 4.3 Interaction plot illustrating the spectral power in Beta2 band between 

electrode site and experiment condition (rest and exercise). The points indicate least 

square means and error bars represent standard error. Asterisk (*) represents statistically 

significant differences between rest and exercise (p < 0.05). 
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4.3.6 Theta 

The main effects model (experimental condition, site, and time) were statistically 

significant for Theta power [χ2 (11) = 508.16, p < 0.0001]. When cumulative number of 

headers was entered into the model as a random effect, the main effects model was 

significantly better at predicting EEG power [χ2 (1) = 130.91, p < 0.0001]. The interaction 

model (condition by site) did not better predict EEG power than the main effects [χ2 (7) = 

13.77, p = 0.06]. 

4.4 Discussion 

This study evaluated changes in neurophysiological functioning at different times over 

the course of a female youth soccer season. Consistent with our hypothesis, EEG power 

during exercise increased at each frequency band compared to rest. As players 

experienced a greater number of cumulative purposeful headers, these differences in EEG 

power between conditions were amplified, but only for Alpha1 and Alpha2 power at all 

electrode locations, but C3 and C4 as well as Beta2 for all electrode locations, but Fp2 

and F7.  

 

Similar to previous work, 10 our CPT outcome measures suggest normal functioning, 

while EEG recordings reveal that the exercise condition had increased Alpha as well as 

Beta2 power compared to rest. Notably, players that experienced a greater number of 

cumulative purposeful headers showed a statistically significant increase in Alpha and 

Beta2 when engaged in moderate exercise. Since the same effect was not seen at rest, 

these findings suggest that moderate exercise can amplify differences in cortical 

functioning and may serve as a more sensitive test of impairment in Alpha1, Alpha2 and 

Beta2 functioning. Although there were statistically significant main effects, none of the 

interaction models for the remaining frequency bands were better at predicting EEG 

power. Continuous performance task findings revealed a statistically significant increase 

in omission errors during exercise compared to rest. This is consistent with previous 

work, in that error rates increased with exercise intensity 27,28. We did not observe any 
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statistically significant changes in commission errors between conditions, suggesting no 

impulsivity or hyperactivity behaviors during the CPT. 

 

Previous work has used exercise to evaluate concussion injury as well as recovery. 12–14 

However, we are unaware of any studies that have examined the effects of cumulative 

header impacts on brain function when measured during moderate exercise. Previous 

work has shown EEG activity appears to increase during and after exercise in otherwise 

healthy people. 18 Our findings revealed statistically significant increases in Alpha1, 

Alpha2 and Beta2 power between rest and exercise. This difference was amplified when 

cumulative purposeful headers were incorporated into the model as a covariate. The 

impact of brain injury on alpha power has received much attention due to its possible 

association with several brain processes, such as its inhibitory control mechanisms.   

Following mild traumatic brain injury (mTBI), one study showed alpha power 

suppression during balance tasks pre- and post-mTBI injury. 30 Other work has shown 

neurophysiological abnormalities in concussed athletes compared to controls including 

decreased whole brain beta and theta power during EEG baseline testing, as well as 

reductions in frontal beta power during ImPACT testing that achieved a similar level of 

performance on clinical tests.10 These findings suggest that patients with mTBI injuries 

utilize compensatory neural processes -  adaptive strategies and altered brain resources to 

successfully perform required tasks. It is possible that our findings indicate such 

compensatory mechanisms.   

 

In collegiate soccer players, there is accumulating evidence indicating a possible 

association between repetitive head impacts and abnormal changes in neural functioning 

31  and structure.  32 However, in youth soccer players, findings from neuropsychological 

testing batteries have not observed neurocognitive impairment immediately following 

soccer heading,3 a weekend soccer tournament, 2 or one month of soccer participation. 33 

The lack of findings for neuropsychological testing have been purported to be due to 

compensatory processes that allow for normal overt behavior function in spite of altered 

neurological processes.  Our findings show that cumulative purposeful soccer heading 

may be associated with negative changes in neurological function and processes, in 
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female youth soccer players, as indicated by increased alpha power. The novel aspect of 

this study is that we have demonstrated that measures of EEG power during exercise have 

the potential to inform researchers and clinicians, such as physiotherapists, of possible 

cognitive deficits, even at the subclinical level. This information may help provide the 

opportunity for early intervention remediation for individuals that do not show clinical 

symptoms.  

 

There are some limitations to our study that should be considered. This study only 

recorded purposeful soccer headers during games and did not consider practices or non-

header impacts (such as head to ground). Purposeful soccer heading has become a health 

concern, 5  particularly for youth players. 34  In addition, we only evaluated female youth 

soccer players. Youth male soccer players perform a greater number of headers compared 

to youth female soccer players during games 35 and practices. 36 Still, female youth soccer 

players experience a greater number of concussions as well as larger peak linear and 

rotational header accelerations compared to males. 37 Our study only reported omission 

and commission errors. We did not report reaction time as it can be challenging when 

working with special populations.  27 We only reported EEG from anterior sites due to 

their role in early deployment of cognitive processes, specifically the top-down 

processes. 38  Recent imaging work also reveals abnormal findings in the anterior region 

of the brain related to soccer heading such as, frontal temporal atrophy. 32 However, this 

study did not assess temporal electrode sites such as, T3, T4, T5, T6 due to contamination 

from masseter muscle activation, particularly during exercise. Accordingly, it is not 

known whether EEG activity would show meaningful differences in the temporal region, 

as well as other locations of the brain, such as the posterior region.  

 

While the majority of studies evaluating cumulative soccer heading assessed participants 

at rest, we explored the effects of cumulative soccer heading during moderate exercise. 

Omission and commission errors obtained during the CPT reveal that participants at rest 

are able to achieve normal clinical testing scores; however, increasing task complexity 

(exercise) reveals statistically significant increases in omission error scores. In addition, 

EEG recordings show that moderate exercise leads to significant increases in alpha 
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activity compared to rest, and that cumulative number of headers amplified this 

difference. This suggests that players that experience a greater number of cumulative 

headers throughout the season produce increased alpha power during exercise. We 

believe that this increased alpha power reflects a compensatory mechanism in that by 

engaging additional brain resources, participants can successfully perform a continuous 

performance test.  

4.5 Conclusions 

The implications of cumulative soccer heading on brain function in youth soccer players 

are unknown and understudied. Our findings show that neuropsychological outcome 

measures (such as omission and commission errors) may show normal cognitive 

functioning, but that EEG recordings during moderate exercise show sub-clinical 

neurocognitive dysfunction related to cumulative soccer heading. This study evaluated 

female youth soccer players for one season of play, and it is not known whether males, or 

other ages, or duration of study, or soccer calibers, will show similar findings. While 

omission and commission error scores were within normal clinical scores, measuring 

EEG recordings during exercise may reveal sub-clinical impairments resulting from 

cumulative soccer heading.  

  



62 

 

4.6 References 

1.  Pickett W. Head injuries in youth soccer players presenting to the emergency 

department * Commentary. Br J Sports Med 2005; 39: 226–231. 

2.  Chrisman SPD, Mac Donald CL, Friedman S, et al. Head Impact Exposure During 

a Weekend Youth Soccer Tournament. J Child Neurol 2016; 31: 971–978. 

3.  Gutierrez GM, Conte C, Lightbourne K. The Relationship between Impact Force, 

Neck Strength, and Neurocognitive Performance in Soccer Heading in Adolescent 

Females. Pediatr Exerc Sci 2014; 26: 33–40. 

4.  Kaminski TW, Wikstrom AM, Gutierrez GM, et al. Purposeful heading during a 

season does not influence cognitive function or balance in female soccer players. J 

Clin Exp Neuropsychol 2007; 29: 742–751. 

5.  Lipton ML, Kim N, Zimmerman ME, et al. Soccer Heading Is Associated with 

White Matter Microstructural and Cognitive Abnormalities. Radiology 2013; 268: 

850–857. 

6.  Koerte IK, Ertl-Wagner B, Reiser M, et al. White Matter Integrity in the Brains of 

Professional Soccer Players Without a Symptomatic Concussion. JAMA 2012; 308: 

1859. 

7.  Breedlove EL, Robinson M, Talavage TM, et al. Biomechanical correlates of 

symptomatic and asymptomatic neurophysiological impairment in high school 

football. J Biomech 2012; 45: 1265–1272. 

8.  Poole VN, Breedlove EL, Shenk TE, et al. Sub-Concussive Hit Characteristics 

Predict Deviant Brain Metabolism in Football Athletes. Dev Neuropsychol 2015; 

40: 12–17. 

9.  Munia TTK, Haider A, Schneider C, et al. A Novel EEG Based Spectral Analysis 

of Persistent Brain Function Alteration in Athletes with Concussion History. Sci 

Rep 2017; 7: 17221. 

10.  Teel EF, Ray WJ, Geronimo AM, et al. Residual alterations of brain electrical 

activity in clinically asymptomatic concussed individuals: An EEG study. Clin 

Neurophysiol 2014; 125: 703–707. 

11.  Leark RA, Greenberg LM, Kindschi CL, Dupuy TR, et al. The TOVA Company. 

Test of variables of attention continuous performance test. 2007. 

12.  Hilz MJ, DeFina PA, Anders S, et al. Frequency Analysis Unveils Cardiac 

Autonomic Dysfunction after Mild Traumatic Brain Injury. J Neurotrauma 2011; 

28: 1727–1738. 



63 

 

13.  Gall B, Parkhouse W, Goodman D. Heart Rate Variability of Recently Concussed 

Athletes at Rest and Exercise: Med Sci Sports Exerc 2004; 36: 1269–1274. 

14.  Woehrle E, Harriss AB, Abbott KC, et al. Concussion in Adolescents Impairs 

Heart Rate Response to Brief Handgrip Exercise: Clin J Sport Med 2018; 1. 

15.  Harriss A, Walton DM, Dickey JP. Direct player observation is needed to 

accurately quantify heading frequency in youth soccer. Res Sports Med 2018; 26: 

191–198. 

16.  Paus T. Growth of white matter in the adolescent brain: Myelin or axon? Brain 

Cogn 2010; 72: 26–35. 

17.  Kerr ZY, Cortes N, Caswell AM, et al. Concussion Rates in U.S. Middle School 

Athletes, 2015–2016 School Year. Am J Prev Med 2017; 53: 914–918. 

18.  Bailey SP, Hall EE, Folger SE, et al. Changes in EEG during graded exercise on a 

recumbent cycle ergometer. J Sports Sci Med 2008; 7: 505–511. 

19.  Gutmann B, Mierau A, Hülsdünker T, et al. Effects of Physical Exercise on 

Individual Resting State EEG Alpha Peak Frequency. Neural Plast 2015; 2015: 1–

6. 

20.  Jasper HA. The Ten-Twenty System of the International Federation. 

Electroencephalogr Clin Neurophysiol 1958; 10: 371–375. 

21.  Smith SW. The scientist and engineer’s guide to digital signal processing. San 

Diego, Calif.: California Technical Pub., 1999. 

22.  Harada H, Shiraishi K, Kato T, et al. Coherence analysis of EEG changes during 

odour stimulation in humans. J Laryngol Otol 1996; 110: 652–656. 

23.  Mazzotti DR, Guindalini C, Moraes WA dos S, et al. Human longevity is 

associated with regular sleep patterns, maintenance of slow wave sleep, and 

favorable lipid profile. Front Aging Neurosci; 6. Epub ahead of print 24 June 2014.  

24.  Harriss A, Johnson AM, Walton DM, et al. The number of purposeful headers 

female youth soccer players experience during games depends on player age but 

not player position. Sci Med Footb 2019; 3: 109–114. 

25.  Leddy JJ, Willer B. Use of Graded Exercise Testing in Concussion and Return-to-

Activity Management. Curr Sports Med Rep 2013; 12: 370–376. 

26.  Williams N. The Borg Rating of Perceived Exertion (RPE) scale. Occup Med 

2017; 67: 404–405. 

27.  Shalev N, Humphreys G, Demeyere N. Manipulating perceptual parameters in a 

continuous performance task. Behav Res Methods 2018; 50: 380–391. 



64 

 

28.  Labelle V, Bosquet L, Mekary S, et al. Decline in executive control during acute 

bouts of exercise as a function of exercise intensity and fitness level. Brain Cogn 

2013; 81: 10–17. 

29.  Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory 

performance: a review and analysis. Brain Res Rev 1999; 29: 169–195. 

30.  Slobounov S, Sebastianelli W, Hallett M. Residual brain dysfunction observed one 

year post-mild traumatic brain injury: Combined EEG and balance study. Clin 

Neurophysiol 2012; 123: 1755–1761. 

31.  Moore RD, Lepine J, Ellemberg D. The independent influence of concussive and 

sub-concussive impacts on soccer players’ neurophysiological and 

neuropsychological function. Int J Psychophysiol 2017; 112: 22–30. 

32.  Adams J, Adler CM, Jarvis K, et al. Evidence of Anterior Temporal Atrophy in 

College-Level Soccer Players: Clin J Sport Med 2007; 17: 304–306. 

33.  Chrisman SPD, Ebel BE, Stein E, et al. Head Impact Exposure in Youth Soccer 

and Variation by Age and Sex. Clin J Sport Med 2019; 29: 3–10. 

34.  Comstock RD, Currie DW, Pierpoint LA, et al. An Evidence-Based Discussion of 

Heading the Ball and Concussions in High School Soccer. JAMA Pediatr 2015; 

169: 830–837. 

35.  Janda DH, Bir CA, Cheney AL. An evaluation of the cumulative concussive effect 

of soccer heading in the youth population. Inj Control Saf Promot 2002; 9: 25–31. 

36.  Kontos AP, Dolese A, Elbin RJ, et al. Relationship of soccer heading to 

computerized neurocognitive performance and symptoms among female and male 

youth soccer players. Brain Inj 2011; 25: 1234–1241. 

37.  Caccese JB, Buckley TA, Tierney RT, et al. Sex and age differences in head 

acceleration during purposeful soccer heading. Res Sports Med 2018; 26: 64–74. 

38.  Polich J. Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol 

2007; 118: 2128–2148. 

 



65 

 

Chapter 5  

5 Discussion 

This thesis characterizes purposeful soccer headers that female youth players experience 

throughout a season of soccer, and the associated head impact magnitudes. We also 

investigated whether the cumulative head impact burden experienced by female youth 

soccer players leads to changes in brain function during combined exercise and cognitive 

load. The findings of this thesis reveal statistically significant differences in the number 

of headers performed among the different youth age groups, which were not significantly 

different between the different player positions. Interestingly, both linear head 

acceleration and rotational head velocity vary significantly between head impact location 

as well as game scenario. Finally, players who experience a greater number of headers 

throughout their soccer season demonstrate increased brain activity for Alpha1, Alpha2, 

and Beta2 during combined exercise and cognitive load.  

 

The total number of headers that a player experienced during a single soccer game in this 

thesis was greater compared to youth soccer scrimmages1 and weekend tournaments.2 In 

contrast, another group evaluating heading exposures during soccer games for players 

between nine and fifteen years of age, revealed that players experience on average 1.64 

headers per game.3 This is greater than the median number of headers recorded in this 

thesis. The duration of playing time in regular season games is longer compared to 

playing time in scrimmages and tournaments, which may explain these differences in 

heading exposures. Furthermore, this thesis identified that player age is related to the 

number of headers a player performs. This is consistent with previous work in youth 

soccer, which demonstrates a trend between increasing number of headers and increasing 

player age.3,4 Compared to collegiate findings,5 collegiate players experience a greater 

number of purposeful soccer headers compared to our study sample. Interestingly, in 

terms of player position, while mean values for heading exposure indicate that the 

midfielders head the ball more often in our study sample, these findings were not 

statistically different compared to the other player positions. These findings were similar 

to one epidemiological study evaluating youth heading exposures.3  
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The biomechanical sensor data revealed that the mean linear head acceleration and mean 

rotational head velocity experienced by female youth soccer players is 18.8 (SD 10.2) g, 

and 1039.0 (SD 571.3)/s, respectively. The linear head accelerations measured in this 

study are smaller than linear head accelerations reported in controlled laboratory 

scenarios. For example, the mean linear head impact accelerations that result from 

purposeful soccer heading in youth players is 38.5 (SD13.6) g when soccer balls are 

projected at 11.2 m/s. 6 Another laboratory study demonstrated that soccer balls projected 

at 13.4 m/s and 22.4 m/s result in head impact accelerations of 30.6 (SD 6.2) g and 

50.7 (SD 7.7)g.7 It is possible laboratory studies do not accurately reflect head impact 

magnitudes that occur during regular soccer games, as games scenarios and head impact 

location can result in varying ball velocities. 

 

On field analysis among youth age groups demonstrate comparable head impact 

magnitudes to our current findings.1,2 In contrast, one study measuring head impacts over 

a one-month period reported median linear head accelerations in females of 47.4 g and 

males of 33.3 g,4 which are larger compared to the findings reported in this thesis. The 

variability in head impact magnitudes across these studies may be due to the use of 

different biomechanical sensors and methodological protocols. For instance, the high 

triggering threshold for one study4 (15 g) means that they did not measure lower head 

impact magnitudes. It is recommended that head impact data should use a 10 g impact 

threshold,8 and accordingly the 15 g impact threshold would overestimate mean linear 

head accelerations. When comparing our biomechanical sensor data to collegiate players, 

youth athletes experience similar5 or possibly smaller linear head impact magnitudes.9,10  

 

In addition, this thesis identified that purposeful headers from shots result in the largest 

linear head accelerations, while purposeful headers that occurred from corner kicks result 

in the largest rotational head velocities. These findings are different compared to 

collegiate data. For example, larger linear head accelerations and rotational head 

accelerations occur from goal kicks and drop kicks during collegiate soccer games.11 

Another study indicates that shots and clears result in larger linear head accelerations 
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compared to passes;10 however, this study did not measure rotational head velocity. 

Furthermore, our results indicate that all players, regardless of age, will perform incorrect 

heading technique. This is concerning since improper heading technique (top of the head) 

was related to greater linear head accelerations and rotational head velocities compared to 

proper heading technique (front of the head). These findings have also been observed in 

soccer scrimmages.1 It is possible that youth soccer players may not be as proficient with 

judging soccer ball trajectory in the various game scenarios or are unable to coordinate 

the necessary body movements to successfully head the ball with proper technique. This 

skill is something coaches can educate players to help them acquire the necessary 

techniques for tracking the soccer ball in flight and appropriately coordinating their 

actions.  

 

In healthy individuals, EEG can be used to track the increases in cortical activity that 

accompany exercise. For example, increases in EEG power are revealed in the frontal 

regions during high intensity cycling12 as well as during graded exercise combined with 

cognitive load.13 Our EEG findings revealed statistically significant increases in brain 

activity during combined exercise and cognitive load across all frequency bands. 

However, when the cumulative number of headers was considered, these differences in 

brain activity between conditions were further amplified for the Alpha1, Alpha2, and 

Beta2 frequency bands. The amplification of cortical activity in these frequency bands 

suggests that a possible compensatory mechanism is occurring to provide the necessary 

brain power to successfully complete the task.  

 

In asymptomatic patients recovering from concussion, EEG is able to detect residual 

abnormalities that are not shown at rest.14 The authors demonstrated that the YMCA Bike 

protocol significantly increased absolute power for alpha, beta, delta and theta across all 

brain regions in the asymptomatic concussion group, compared to controls. Nevertheless, 

EEG findings in concussion are inconsistent across studies. Patients diagnosed with a 

concussion demonstrate reductions in alpha15–17 and beta power.15,18,19 Our study did not 

identify any statistically significant changes in theta power related to cumulative head 

impact burden, which is different from concussed individuals. Some research groups 
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indicate changes in theta frequency bands related to concussion injury; however, the 

outcome measures used and direction of effects are not consistent. For example, relative 

to baseline or control data, athletes diagnosed with a concussion demonstrate lower theta 

power,14,15,20 increased theta coherence18 and increased frontotemporal theta power.21 

Still, electroencephalogram findings that evaluate the consequences of repetitive head 

impacts as well as concussion vary. These differences are possibly explained due to 

different research methodologies, populations, outcome measures, and testing paradigms. 

 

Limitations on purposeful soccer heading were implemented by the US Soccer 

Federation.22 This legislation bans heading for youth players 10 years of age and 

younger, while players 11 and 12 years of age may engage in a limited number of headers 

per week. Currently, there is little scientific evidence that supports the age-specific 

guidelines imposed by the US Soccer Federation. Prevention strategies in other sports 

such as American football, have successfully implemented data-driven guidelines to limit 

head impact exposure and risk. For example, reducing tackling by regulation of practice 

equipment worn by American football players reduces the number and magnitude of 

repetitive head impacts players experience.23  For soccer, a common mechanism of sport-

related concussions occur from aerial challenges related to soccer heading.24  

Furthermore, this thesis demonstrates that the majority of purposeful soccer headers 

occur from long-range kicks and throw-ins. Clearly, an emphasis on ball control could 

help to minimize aerial challenges as well as the majority of heading scenarios in youth 

soccer.  Accordingly, this simple coaching strategy could help reduce overall cumulative 

head impact burden as well as concussion risk in youth soccer.  

 

Neck strengthening has been proposed as a possible modifiable risk factor to reduce head 

impact accelerations and concussion incidence; however, findings are not consistent 

across the various studies. One laboratory study reveals that sternocleidomastoid strength 

significantly predicts both linear and rotational head impact acceleration, while head 

mass significantly predicts rotational head acceleration.25 Another study had participants 

perform eight-weeks of isotonic cervical muscle training, which led to increased neck 

girth in females, and increased isometric strength in cervical flexors for males, and 
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cervical extensors for females. However, these improvements in neck strength were not 

associated with decreases in head acceleration.26 The authors concluded that while 

participants reveal improvements in neck strength, the neuromuscular changes required to 

improve dynamic restraint and reduce head acceleration do not occur.  

 

When we consider limiting or restricting heading exposure, the age of the participants 

must be taken into account. The brain is still developing during adolescence, with distinct 

immaturities in white matter27,28 that are more vulnerable to injury. For instance, youths 

demonstrate an increased number of unmyelinated axonal tracts that are more suspectable 

to damage compared to myelinated axonal tracts.29 Currently, there are no studies that 

empirically investigate the effects of age-dependent restrictions on heading. Clinical 

evidence has long demonstrated that the developing brain shows unique responses to 

brain injury compared to adults. Accordingly, research regarding repetitive head impacts 

in various youth age groups is essential to establishing data-driven guidelines.  Future 

work should be directed towards understanding age-related differences in response to 

repetitive head impact exposure that will aid in such data-driven models to develop age-

relevant clinical management guidelines and identifying risk of brain injury.  

 

There are some limitations that should be considered in this thesis. Firstly, this thesis only 

assessed purposeful soccer heading in female youth soccer players. Male soccer players 

experience a greater number of head impacts compared to female players, yet female 

soccer players sustain larger head impact magnitudes.4 Accordingly, given such 

differences, future studies should investigate sex-related differences in response to 

repetitive head impact exposures. Nevertheless, it is not known whether youth males 

would show similar EEG findings as demonstrated in this thesis. In addition, due to the 

nature of the experimental protocol, movement artifact in the EEG signal may have 

occurred, and accordingly, efforts to minimize signal artifacts were taken. For example,  

data were manually inspected and segments that contained movement artifacts or 

excessive muscle activity at any electrode site were eliminated. In addition, independent 

component analysis was used to remove eye blinks similar to previous work.12 Our 

findings are also limited to the frontal electrode regions, and therefore we are unable to 
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comment on other electrodes sites. However, the frontal and temporal lobes appear to be 

most vulnerable to concussion injury,30 and disruption in these areas are associated with 

impaired executive function, learning and memory, as well as behavioral changes.31  

 

Given that the EEG device is portable and more affordable compared to other imaging 

modalities (MRI, DTI), the use of EEG to evaluate head injury is expected to increase. 

Our EEG results expand on previous work performed on healthy individuals, showing 

that combined task and cumulative number of headers are associated with greater neural 

activation in the frontal regions. Such findings could be valuable in developing models to 

reveal residual neurocognitive deficits associated with repetitive head impacts as well as 

in sport-related concussion. Yet, whether a correlation exists between repetitive head 

impacts and concussive injury has not been established. Future research should evaluate 

the early signs of head injury resulting from cumulative head impact burden across 

athletes of different ages and sex.  

 

In conclusion, female youth soccer players experience frequent head impacts during a 

season of soccer, and some of these impacts are comparable to those experienced by 

collegiate soccer players. Furthermore, the cumulative head impact burden resulting from 

purposeful soccer heading is associated with underlying subclinical changes that become 

apparent during combined exercise and cognitive load. This thesis identifies that youth 

athletes that are exposed to cumulative head impacts exhibit neurocognitive changes, as 

indicated by EEG. These results provide evidence for the need of data-driven models to 

identify players at risk for brain injury during the soccer season. Such information could 

help to establish preventative guidelines through early detection of players at risk for 

brain injury. 
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