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Abstract

We propose and analyze an extension to the classic Competitive Lotka-Volterra (CLV)
model. The goal is to model competition between species, with a response from the
environment. This response is a function of the population of all species and can represent
numerous physical phenomena including resource limitation and immune response of a
host due to infection. We name this new system a Functional Competitive Lotka Volterra
(FCLV) model. We mainly use the construction of contraction metrics, to determine
global properties of the model. We use this result to analyze the competition between
Plasmodium sp. and genetically engineered bacteria within the midgut of a mosquito. We
find that the effect of the immune response of the mosquito on invaders has a significant
effect on whether Plasmodium or the genetically engineered bacteria dominates, but that
under certain conditions the bacterium can eliminate the Plasmodium from the mosquito.

Lay Abstract

The burden of malaria on the human race, especially in developing countries demands
the development of novel approaches to fight the spread of Plasmodium sp. parasites
which cause malaria, and are transmitted by mosquitoes. One of the most promising is
paratransgensis, a technique for eliminating a parasite from a disease vector populations
(in this case mosquitoes) through the genetic engineering of a common colonizer of the
host. We propose a simple model that can describe many different different examples
of paratransgenesis, which we term a Functional Competitive Lotka Volterra (FCLV)
system. Our main focus is analyzing FCLV systems with contraction analysis, which we
believe has been underused, but has great promise in the area of model analysis. We
show that using contraction theory the analysis of an FCLV model can be reduced to
a system of two dimensions less. This allows us to reach the conclusion that given a
sufficiently strong genetically modified bacteria, once introduced into a mosquito it will
always eliminate Plasmodium sp. within a mosquito.

Keywords: Dynamical Systems, Competitive Lotka Volterra System, Microbiota
Modelling, Contraction Analysis, Within Host Dynamics
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Chapter 1

Introduction

The burden of malaria on the human race, especially in developing countries demands
the development of novel approaches to fight the spread of Plasmodium parasites which
cause malaria. One strategy that has been developed is to engineer symbiotic bacteria
to render the mosquito resistant to the parasite. We present here a brief summary of the
use of engineered bacteria in mosquitoes to combat the spread of malaria and an ordinary
differential equation (ODE) model, which models the competition between Plasmodium
and engineered bacteria within the midgut of the mosquito.

Of all known vector born diseases, mosquito borne infectious diseases (MBID) have the
greatest disease burden [33]. In particular malaria contributes the most to this burden,
with it disproportionally affecting developing countries. In the future, if current climate
change trends continue, there will be a large increase in global malaria rates. The worse
case prediction being that a billion people will be exposed within the next century [32].
Given the human costs associated with MBIDs better methods are needed to control the
spread of malaria. Comparing the relative effectiveness of mosquito control is outside the
scope of this thesis, see the following reviews for more information on different strategies
[5, 27]. We limit the discussion to modelling a specific strategy, paratransgensis.

Paratransgensis is a technique for eliminating a pathogen from a host vector by trans-
mitting a symbiont to kill/out-compete the undesired pathogen. The goal is not to kill
the mosquitoes, but rather convert them to ineffective diease vectors. There are exam-
ples of successful paratransgensis with both non-mosquitoes and mosquito hosts, though
the real world success of these trials is limited due to numerous factors1 [11, 40]. The
ultimate factors that limit the success of paratransgensis are the following [11,40]:

1. The symbiont fails to colonize the host.

2. The initial colonisation is successful, but the long term population of the symbiont
is unstable within the host and the population collapses.

3. The symbiont fails to be transmitted to other members of the host population.

1The closest widely applied strategy with real world success is infecting mosquitoes with genetically
modified Wolbachia bacteria. Male mosquitoes infected with Wolbachia are infertile. There are long
term concerns on over the effectiveness of the treatment mainly accidental gene transfer and low fitness
of genetically modified Wolbachia compared to Wild Wolbachia [29].

1
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4. There are unintended side effects of paratransgensis (e.g. unintentional gene trans-
fer, unintended damage on the host microbiome, reduced host fitness).

5. The symbiont fails to be transmitted between life stages of the same host (this is
known as transstadial transmission).

We will focus the rest of discussion on factors 1, 2, and 5, as 3 has been modelled ex-
tensively for similar strategies including Wolbachia2 [29] and 4 is dependent on specific
ecological interactions. We create a simple model to better understand factors 1 and 2
within a specific example. We then generalize the model into what we term the Func-
tional Competitive Lotka Volterra model (FCLV (n)). We then develop tools to better
understand the global properties of the FCLV (n) and similar models. The specific exam-
ple of paratransgensis was chosen because it is an example of paratransgensis designed to
eliminate malaria within a mosquito host which has evidence that it can be transmitted
multiple ways between members of the host population (See Figure 1.1).

Symbionts

Original
Hosts

Mates

Offspring

Nearby
Hosts

colonize

veneral
transmission

vertical
transmission

horizontal
transmission

Figure 1.1: Transmission pathways for symbionts between hosts in a paratransgensis
strategy. There is evidence that the genetically modified bacteria AS1 can be transmitted
by all of these pathways [38]. Note that for horizontal transmission of AS1 is by water. In
other species horizontal transfer occurs through behaviours such as biting and scratching.

2Note there is still the potential for future complex models which focus on the unique modelling
challenges of paratransgensis strategies.



1.1. AS1 Bacteria and Mosquito Biology 3

1.1 AS1 Bacteria and Mosquito Biology

In the paper by Wang et al. [38], a new strain of Serratia bacteria named AS1 was isolated
from Anopheles stephensi ovaries and genetically engineered to secrete anti-Plasmodium3

effector proteins4. The main benefit of this new strain compared to previous recombi-
nant bacteria is the limited effect on mosquito fitness, its ability to readily colonize the
mosquito midgut that is already populated, the ability to spread via blood meals, water,
transmission via ovaries to offspring, and venereally from male to female mosquitoes.
When fed to male mosquitoes AS1 bacteria colonized their accessory glands. In the lab-
oratory a 5 percent infection rate is enough to infect the rest of the population and their
progeny. This implies the infection is spread vertically, horizontally and transstadially
through the mosquito population and life cycle. This success can be attributed to the
fact a close relative of AS1, Serratia marcescens, is the most populous species in the
microbiome of many different mosquito species [4, 6–8, 13, 21, 24]. Previous attempts for
a promising symbiont used easily modified laboratory species such as E. coli, which are
not native to the mosquito midgut.

To understand why AS1 is an ideal candidate for paratransgensis and for modelling the
paratransgensis in mosquitoes, we need to discuss Plasmodium biology within mosquitoes.
To hinder the development of Plasmodium within a mosquito it is best to focus on an
appropriate life stage to target. The most obvious target is the life stages within the
mosquito midgut [10]. Once the oocyst life stage travels past the midgut epithelium into
the hemolymph (the blood of the insects), Plasmodium will eventually reach the mosquito
salivary glands where Plasmodium can be transferred to another organism see Figure 1.2
[37]. As the lumen and epithelium of the midgut are the major physical barriers that
prevent Plasmodium from reaching the salivary glands and the most vulnerable life stages
of Plasmodium are in the midgut, it is important that AS1 can colonize the midgut.

3The Plasmodium genus is the parasite genus the causes malaria in humans. The five most common
species that infect humans are P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlsei.

4Unless otherwise noted whenever we refer to AS1, we are referring to genetically modified AS1.
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Salivary
Glands

Vertebrate
Host

Gametocytes in
Mosquito Midgut

Gametes

Zygotes

Ookinetes

Oocyst

Sporozoites

Figure 1.2: Life stages and migration of Plasmodium in a mosquito host. After ingesting
a blood meal from a malaria infected vertebrate host, ingested gametocytes produce male
and female gametes in the midgut. Fertilisation produces zygotes, which develop into
mobile ookinetes. This life stage will transverse the midgut epithelium. The mosquito
immune system kills the majority of Plasmodium during this life cycle. Once Plasmodium
has matured into oocysts on the other side of the midgut epithelium, several thousand
sporozoites will emerge travelling through the mosquito hemolymph eventually reaching
the salivary glands of the mosquito. Once Plasmodium has reached the salivary ducts
they can be ejected into a new vertebrate host. For more details on the life stages of see
[37].
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Colonizing the mosquito midgut is a challenge. The mosquito midgut itself is host
to a large complex microbiome within the midgut, with the main food source being
the mosquito’s blood meal [9]. As mentioned, previous attempts to create engineered
bacteria to colonize the midgut failed, as the engineered bacteria in the midgut were
outcompeted. But another challenge is transstadial transmission from pre-molting to
post-molting mosquito life stages. Although larva gut microbiota are eliminated dur-
ing mosquito metamorphosis, AS1 continues to proliferate in the midguts of the adult
mosquito [24,38]. In order to be able to recolonize the midgut, the bacteria must be in a
reservoir outside of the midgut where AS1 can reside during the transition (currently un-
known but likely to be the hemolymph, or an organ in direct contact with hemolymph).
This and the observation that AS1 colonizes the ovaries of mosquitoes given only a blood
meal means that at some point AS1 must cross the midgut epithelium.

The third main participant in this interaction is mosquito’s immune system. Mosquitoes,
unlike most of their vertebrate hosts, do not posses an adaptive immune response [10].
Without AS1 present the mosquito’s immune system initiates the innate response which
consists of two responses, cellular and humoral. The cellular response consists of hemo-
cytes (insect blood cells in the hemolymph) engulfing or surrounding (known as phago-
cytosis and encapsulation) Plasmodium. The humoral response to pathogens involve
melanization and antimicrobial effector molecules. Melanization kills microbes by gen-
erating melanin and free radicals. Likewise the production of antimicrobial effector
molecules are regulated by intracellular immune signalling pathways that are activated by
pattern recognition receptors (PRRs) upon interaction with pathogen associated molec-
ular patterns (PAMPs). This is important to consider as there is evidence that bac-
teria within the mosquito midgut plays an important role in reducing Plasmodium in
mosquitoes by stimulating the immune response [10]. The non-specificity of the immune
response means that an increase in either AS1 or Plasmodium will increase the activa-
tion of the innate mosquito immune response, with an increased immune response there
should be a decrease in both populations.

With the mosquito’s biology considered we can develop a simplistic mechanistic
model, in the next section.

1.2 A simple model of paratransgensis

Our goal is to establish a model to understand the dynamics of AS1 paratransgensis, and
outline tools for the analysis of the model. Ideally we want a model whose analysis can
be expanded to other biological systems. We can think of paratransgensis within a single
host to be modelled by two feedback loops:

• Inter- and intraspecific competition of colonizing species within the host act as a
negative feedback mechanism, preventing one or more species from growing with-
out bound. An example of this type of feedback is the classic Competitive Lotka
Volterra (CLV) model [42].

• Between the immune system and the microbiota community there is an feedback
response. For a host with only the innate immune response, higher populations
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of microbes will increase its immune response. Once activated the innate immune
response lowers the populations of foreign organisms. However once immune re-
sponse decreases the microbiota will increase if not eliminated. This feedback is
highly dependent on the host organism’s immune system. If the immune system
is adaptive, the relationship becomes more complicated, with the primary factor
being that when the foreign organism is present within the host, either the host ac-
quires resistance to the foreign invader, the invader is commensalistic with the host,
or invader organism overcomes the adaptive immune response (e.g. retroviruses).

For the purposes of modelling we can summarize the complex interactions in the following
simple heuristic model demonstrated in Figure 1.3. Here the mosquito is simplified into
two compartments: the “midgut” and all other parts within the mosquito which are
considered to be part of the “hemolymph”. The main assumptions behind this heuristic
model are the following:

• The main physical barrier that prevents Plasmodium from colonizing the salivary
glands is the midgut lumen/epithelium.

• The main factors that limit the growth of Plasmodium within the mosquito is AS1
and mosquito immune system.

• AS1 and Plasmodium have a reduced carrying capacity outside of the mosquito
midgut (based on the assumption that organisms in the midgut has access to the
mosquito’s blood meals supporting larger populations).

• AS1 can reach the hemolymph.

• AS1 can re-enter the midgut from the hemolymph.

• We only consider one life stage for both Plasmodium and AS1.

• AS1 releases only one anti-Plasmodium molecule or combinations of multiple anti-
Plasmodium molecules are not synergistic 5.

5We say two or more anti-Plasmodium molecules have synergy when they have a greater anti-
Plasmodium effect than when expressed individually. Because potential synergy is not our focus, we
assume that synergy can be modelled as a single strong anti-Plasmodium molecule.
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Mosquito 
Midgut

Plasmodium

Bacteria

Mosquito 
Hemolymph

Plasmodium

Bacteria

Lum
en

Figure 1.3: A simple heuristic model of Serratia bacteria (AS1) and Plasmodium parasites
in a mosquito. The model only considers the interactions between AS1, Plasmodium and
the mosquitoe’s immune system. Within a mosquito, two simplified compartments are
considered: midgut and hemolymph.

We can express this heuristic model as the following system of ordinary differential
equations (ODE).

I ′(t) = f(P,B)− µI, (1.1a)

P ′1(t) = r1P1(1− αB1 + P1

K1

)− d1IP1 −mP1, (1.1b)

P ′2(t) = r2P2(1− αB2 + P2

K2

)− d2IP2 +mP1, (1.1c)

B′1(t) = r1B1(1− B1

K1

)− d̄1IB1 − m̄(B1 −B2), (1.1d)

B′2(t) = r2B2(1− B2

K2

)− d̄2IB2 − m̄(B2 −B1). (1.1e)

Here parameters with the subscript 1 refers to parameters for the midgut, and the sub-
script 2 refers to parameters in the mosquito’s hemolymph. Bar parameters refers to
parameters effecting bacteria, parameters without bars refer to parameters effecting
Plasmodium. Detailed explanations of model parameters are in Table 1.1. All model
parameters are positive and non-zero.

Within the mosquito midgut there are three primary interactions that will determine
the growth rate of Plasmodium: intraspecific competition, AS1 killing Plasmodium and
deaths caused by the immune system of the mosquito. In contrast to Plasmodium, the
growth of AS1 bacteria is not limited by Plasmodium. The immune system also reduces
the growth of Plasmodium and AS1. Different constants are choosen for each of these
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factors to reflect the fact that AS1 and Plasmodium have different growth rates, and
interact with the mosquito immune system differently. In addition there is movement
between the midgut and the hemolymph. Based on the information available for AS1 and
Plasmodium in the literature we should expect Plasmodium to migrate from the midgut
to the hemolymph and AS1 to have the ability to move both to and from the midgut (if
this is not true than it is difficult to explain why AS1 can persist in mosquito midgut
after the moulting stage).

f(P,B) is a general function that represents the activation of the immune response
by the population of Plasmodium and AS1. As the mosquito immune system consists
of only an innate response and not an adaptive response we assume that the immune
response depends only on the populations of microbiota within the mosquito and is an
autonomous function that does not depend directly on time. While the exact form of
f(P,B) (which we shall call the immune response function) is not specified, we assume
that it has the properties discussed in Section 2.1. Possible candidates to model the
immune response function include, but are not limited to:

f(P,B) = σP + σ̄B, (1.2)

f(P,B) = σ
P

1 + P
+ σ̄

B

1 +B
, (1.3)

f(P,B) =
P n

σ + P n
+

Bn

σ̄ +Bn
, n ≥ 1. (1.4)

We include a decay term in the differential equation for I, so the immune response decays
in the absence of Plasmodium and bacteria.

Table 1.1: State functions and model parameters.

Symbol Description

I(t) strength of immune response at time t

P (t) total population of Plasmodium at time t

P1(t) population of Plasmodium at time t, within the midgut of the mosquito

P2(t) population of Plasmodium at time t, within the hemolymph of the
mosquito

B(t) total population of bacteria at time t

B1(t) population of bacteria at time t, within the midgut of the mosquito

B2(t) population of bacteria at time t, within the hemolymph of the mosquito

σ,σ̄ controls the growth of the immune response rate of the mosquito in re-
sponse to Plasmodium, or bacteria, see equation (1.2)

µ decay rate of the immune response

r1,r2,r1,r2 growth rates of Plasmodium (in the midgut and hemolymph) and bacteria
(in the midgut and hemolymph)
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Table 1.1: State functions and model parameters.

Symbol Description

α competitive effect of bacteria on Plasmodium

K1,K2,K1,K2 carrying capacity of Plasmodium (in the midgut and hemolymph) and
bacteria (in the midgut and hemolymph)

d1,d2,d1,d2 death rates of Plasmodium (in the midgut and hemolymph) and bacteria
(in the midgut and hemolymph) due to the immune response of the
mosquito

m,m permeability of the midgut epithelium to Plasmodium or bacteria

In (1.1), we have implicitly assumed that the amount of anti-Plasmodium proteins that
an individual AS1 bacteria produces does not depend on the population of Plasmodium.
In addition, we do not assume that the transport of AS1 depends on whether the midgut
or the hemolymph has a higher population of Plasmodium. This is because genetically
modified AS1 does not have the ability to sense the population of Plasmodium or control
the production of anti-Plasmodium proteins as a function of Plasmodium (that is it lacks
the ability to sense Plasmodium).

When neglecting the permeability of the midgut epithelium (i.e. letting m = 0 = m),
we end up with a one compartment system of the form:

I ′(t) = f(P,B)− µI, (1.5a)

P ′(t) = rP (1− αB + P

K
)− dIP, (1.5b)

B′(t) = rB(1− B

K
)− d̄IB. (1.5c)

This form is useful if we are interested only in the dynamics within the midgut or
hemolymph.

We can generalize (1.1) and (1.5) into what we term as the Functional Competitive
Lotka Volterra system6. We denote the Functional Competitive Lotka Volterra systems
(FCLV (n)) as7:

dx0

dt
= F0(x) = f(x1, ..., xn)− x0

dxi
dt

= Fi(x) = xi(1−
n∑
j=0

aijxj) aij > 0, i = 1, ..., n, j = 0, ..., n.
(1.6)

6The name was chosen because there is a “Functional” response from the environment combined with
a traditional Competitive Lotka Volterra system (CLV (n)) [42].

7Note that (1.1) and (1.5) have more parameters that FCLV (n). We reduce the number of parameters
through nondimensionalization.
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where aij are positive non-zero constants (the matrix aij ∈ A is called the community
matrix), and f(x1, ..., xn) ∈ C1, which we term the functional response8. Note n in
FCLV (n), refers to the number of species to make it more comparable to Competitive
Lotka Volterra models with the same number of species. If we are considering movement
between two compartments we can adapt (2.1) into:

dx0

dt
= F0(x) = f(x1, ..., xn, xn+1, ..., xn+n)− x0,

dxi
dt

= Fi(x) = xi(1−
n∑
j=0

a1
ijxj)−mi(xi − xn+i),

dxn+i

dt
= Fn+i(x) = xn+i(1−

n∑
j=0

a2
ijxn+j)−mi(xn+i − xi),

a1
ij > 0, a2

ij > 0, i = 1, ..., n.

(1.7)

Note that a1
ij, a

2
ij refers to constants (the notation is chosen such the community matrices

a1
ij ∈ A1, a2

ij ∈ A2 have the same dimensions as the community matrix associated with
(2.1)). The focus of the rest of the paper is to develop a general theory that covers
FCLV (n) systems. Before the main result is proven we need to introduce the appropriate
mathematical background which we cover in sections 1.3 and 3.

1.3 Mathematical Introduction

We cover here notations used and review the relevant parts of the theory of monotone
dynamical systems. Those who are familiar with the content of Hal Smith’s book [34] on
monotone dynamical systems can skip this section. There is a separate section (Section
3) devoted to contraction theory, which we expect most readers to not be familiar with,
so we do not include it here in the introduction.

1.3.1 Notations Used Throughout

Table 1.2 gives a list of common abbreviations and symbols used. We clarify some
notation choices that may confuse some readers. Superscripts on vectors or scalars are
used repeatedly to enumerate vectors and scalars, while subscripts are used to denote
components of vectors. Next it is common in the literature to denote the carrying simplex
with Σ (the carrying simplex is explained in Section 1.3.2), sums will always come with
an index to distinguish them from carrying simplexes and avoid confusion. Finally for
each non-empty set Ω ⊂ Rn and each x ∈ Rn, we denote the distance of x to Ω by

|x|Ω := inf
y∈Ω
||x− y||. (1.8)

For example |x|{0} is equivalent is the Euclidean norm.

8We use f , f(x), and f(x1, ..., xn) interchangeably to refer to the functional response depending on
context.
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Table 1.2: List of abbreviations and symbols

x1, x2 Two scalars/vectors x1, x2

x1, x2 First and second component of the vector x

||x|| Euclidean norm of the vector x

|x|Ω The point to set distance of x to the set Ω

Ω Some subset of Rn

K Any positive cone

K+ The standard positive cone

K∗ The dual of a positive cone

x ≤K y x− y ∈ K and ≤K is the partial order generated by the
positive cone K

C The cone defined by the Cartesian product C = K ×
(−K)

ΣCLV The carrying simplex of competitive Lotka Volterra sys-
tem

J(f(x)) Jacobian of the vector field f(x)

X (Rn) The space of continuously differentiable vector fields on
Rn

Comparison functions are also used throughout. We define the most used comparison
function KL below:

Definition 1.3.1. (Kappa-Ell Class of Comparison Functions) A continuous func-
tion β : [0, a)× [0,∞)→ [0,∞) belongs to the KL (Kappa-Ell) class if:

• For fixed x, the function β(x, t) is strictly increasing in t and β(0, t) = 0.

• For fixed t, the function β(x, t) is strictly decreasing in x and β(x, t) goes to zero
as t→∞.

For a summary of the properties of comparison functions see [20].

1.3.2 Monotone Systems Review

Monotone dynamical systems are defined on subsets of ordered Banach spaces. We are
mainly concerned with the standard positive cone K = Rn

+ which induces the partial
order ≥K on Rn. We say two vectors x1, x2 are ordered with respect to the partial order
x1 ≥K x2 if and only if x1 − x2 ∈ K. Note that any property we discuss here applies to
any other positive but if K is the standard positive cone then x1 ≥K x2 also means that
each coordinate of x1 is greater or equal to x2. Strict ordering is denoted by x1 >K x2
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meaning that x1 ≥K x2 and x1 6= x2. With a partial order established, we can say a
non-linear system,

dx

dt
= f(x), (1.9)

is monotone, if x1(t) ≥K x2(t), whenever x1(t0) ≥K x2(t0) ∀t ≥ t0. An important
sufficient condition used to determine if a system is monotone is the Kamke condition.
System (1.9) satisfies the Kamke condition in Ω if for each i, fi(a) ≥K fi(b) for any two
points a, b ∈ Ω satisfying a ≥K b and ai = bi.

A important subset of monotone systems is cooperative and competitive systems. We
say that system (1.9) is called cooperative on a convex set Ω ⊆ Rn if

∂fi(x)

∂xj
≥ 0 i 6= j ∀x ∈ Ω. (1.10)

Likewise a system is term competitive on Ω if

∂fi(x)

∂xj
≤ 0 i 6= j ∀x ∈ Ω. (1.11)

There are several important properties for cooperative and competitive systems, with
one of the most being the following theorem.

Theorem 1 (Theorem 3.4 in [34]). The flow on a compact limit set of a competitive or
cooperative system in Rn is topologically equivalent to a flow on a compact invariant set
of Lipschitz system of differential equations Rn−1

The most interesting case of the invariant set in Rn−1 is the carrying simplex which
is exactly n− 1 dimensional called the carrying simplex (Theorem 1 does not guarantee
that the invariant set is not a single point or that the set is connected). A unique carrying
simplex is a set Σ ⊂ Rn

+ \ {0} which has the following properties [15]:

• Σ is compact and invariant.

• For every x1 ∈ Rn
+ \ {0}, the trajectory of x1 is asymptotic with some x2 ∈ Σ.

• Σ is unordered with respect to the partial order. That is if x1, x2 ∈ Σ and x1 ≥k x2

then x1 = x2.

From the above it follows that Σ is n − 1 dimensional (see [15]). It can be difficult
to determine if a dynamical system admits a single unique carrying simplex, though
Hirsch [15] has provided some conditions which a dynamical system much have if it has
a unique carrying simplex. The simplest (non-trivial) example of a system with a unique
carrying simplex are Competitive Lotka Volterra (CLV) systems. We denote the space
of n-dimensional CLV systems (CLV (n)) by

dxi
dt

= xi(1−
n∑
j=1

aijxj), aij > 0, i = 1, ..., n, j = 1, ..., n, (1.12)
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where aij are positive non-zero constants. CLV (n) systems are well studied though there
are still some open questions (mainly the qualitative behaviour of CLV (n) for n ≥ 3, on
the carrying simplex ΣCLV ). We will mention the properties of CLV (n) systems when
we use them for proofs. For those interested in the general properties of CLV (n) we
recommend [42] which explains the general patterns of ΣCLV . For more specific results
see the following [17,18,35,41].

The Competitive Lotka Volterra (CLV) model is a very well understood, and describes
the competition between multiple species. It is well understood in part because it is a
monotone system of differential equations, as the partial order relation between the initial
conditions is preserved by the dynamics of the system with respect to the positive cone
Rn

+. CLV models are competitive as the off diagonal elements of the Jacobian matrix at
every point in Rn

+ are non-positive. If the entries are non-negative the system is instead
referred to as a cooperative system. By Theorem 1, a limit set of the system can be no
more complicated than those of a general dynamical system of n− 1 dimension.

The Competitive Lotka Volterra model has been used numerous times to model many
problems from ecology, epidemiology, and chemistry. There are also several examples in
the literature of models which have extended the CLV model to include features such
as movement between compartments9, delays and stochasticity. The analysis behind the
papers on each of these extensions relies on the CLV models being monotone (specifically
being competitive). In contrast to these methods the extension we propose here, adding
a functional response from the environment that creates a strong negative feedback loop,
renders the system nonmonotone. We use here a combination of techniques to show the
existence of a topological conjugacy between this extended Competitive Lotka Volterra
model which we term as Functional Competitive Lotka Volterra (FCLV) system10 and a
traditional CLV model.

If system (1.9) consists of cooperative and competitive parts it becomes difficult to
determine the global properties of such systems, as often these systems are no longer
monotone with respect to K+. We focus here on systems (1.9) that can be thought of
two non-linear connected systems. That is, systems (1.9) that can be written as

dy

dt
= g(y, z) (1.13)

dz

dt
= h(y, z) (1.14)

where x = (y, z), f(x) = (g(y, z), h(y, z)). Using mainly contraction theory and the the-
ory of monotone systems we will derive a general scheme for understanding such systems
if dy

dt
= g(y, z) is monotone for constant z and dz

dt
= h(y, z) is monotone for constant y.

Using this framework we can obtain global results for the functional competitive Lotka-
Volterra system (FCLV). We then apply the results to a specific biological system which
was introduced in Section 1.

9or depending on context the term habitat or environment is used.
10Another appropriate name would be Feedback Competitive Lotka Volterra (FCLV)
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1.4 Statement of Results

The rest of the thesis is organized as follows. In Section 3 we introduce the basics of
contraction theory and provide the necessary background for later proofs. One important
idea that appears in contraction theory is the difference between incremental stability
(i.e. trajectories coming closer to each other) and convergent stability (i.e. trajectories
moving closer to a point), using [30] we can formally define these two notions of stabil-
ity in Section 3.3. We then discuss when these notions are different and when they are
equivalent. We then prove the main result in Section 4 which is a theorem that combines
monotone systems theory and contraction theory giving necessary and sufficient condi-
tions for convergence to a subset. We then apply this theorem to FCLV (n) systems and
derive global results in 4. We finish by a discussion concerning the interpretation of the
main result in regards to biological models in general.



Chapter 2

The Functional Competitive Lotka
Volterra Model

Having covered the background to the Functional Competitive Lotka Volterra (FCLV)
model in the previous chapter, we now focus solely on the analysis of the FCLV model.
This section focuses on the basic analysis of the FCLV model using common tools of
dynamical systems. We establish here properties such as boundness of solutions, number
of fixed points and so on. We will go further into properties of FCLV (n) systems in
Section 4 using the theory reviewed in Section 3 to determine the global dynamics of
FCLV (n) systems. Section 5 looks at specific examples of the FCLV model including
competition between the Immune system of a mosquito, bacteria and parasites within
the mosquito midgut. We include a more general discussion on what biological systems
are appropriate to model as FCLV (n) systems.

2.1 Definition of FCLV (n)

We denote the Functional Competitive Lotka Volterra systems as:

FCLV (n) :


dx0

dt
= F0(x) = f(x1, ..., xn)− x0,

dxi
dt

= Fi(x) = xi(1−
n∑
j=0

aijxj) aij > 0, i = 1, ..., n,
(2.1)

where aij are positive non-zero constants (the matrix aij ∈ A is called the coefficient ma-
trix), and f(x1, ..., xn) ∈ C1 which we term the functional response. The name Functional
Competitive Lotka Volterra comes from the resemblance of the vector field (F1, ..., Fn) to
a CLV (n) system and the component F0 including the functional response f . We specif-
ically use the notation FCLV (n) rather than FCLV (n+ 1) to refer to n+ 1 dimensional
systems to emphasize this connection between CLV (n) systems and FCLV (n) systems.
As a CLV (n) model describes the behaviour of n competing species, we say FCLV (n)
models the behaviour of n competing species with a functional response f .

We only consider a subset of the FCLV (n) family where the matrix of coefficients
A = (aij) i = 1, ..., n, j = 0, 1, ..., n, has rank equal to n. If rank(A) 6= n, this means

15
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that one or more of the nullclines

Ni(x) = 1−
n∑
j=0

aijxj i = 1, ..., n, (2.2)

overlap. For CLV (n), the matrix A is known as the community matrix and CLV (n)
systems which do not have community matrix with full rank are known as degenerate
Competitive Lotka Volterra systems [42]. Degenerate CLV (n) systems are not the focus
of study in the literature, as their analysis reduces to a system of dimension rank(A).
If rank(A) = 1 the ω−limit set is a line of fixed points. We thus focus only on non-
degenerate FCLV (n) systems.

2.1.1 Functional Response f

Important to understanding the dynamics of FCLV (n) are the two feedback loops
present. CLV (n) systems also have a feedback mechanism, in that the higher popu-
lation of any species leads to lower growth of all species, conversely, a lower population
of any species leads to a higher growth rate in all species1. The functional response f in
F0 creates a different feedback loop. If f(x) 6= x0, then x0 either decreases or increases
appropriately. So the FCLV (n) model has two negative feedbacks loops which feed into
each other. We refer to the first type of negative feedback loop present in a Functional
Competitive Lotka-Volterra model as the competitive feedback loop and the second type of
feedback loop as the functional feedback loop. To focus the analysis of FCLV (n) models
and to ensure biological realism we assume the functional response f has the following
properties:

(H.1) f(x) : Rn
+ → R+ and f ∈ C1.

(H.2) f(x) is bounded by a constant for (x1, ..., xn) ∈ {x ∈ Rn
+ : 0 ≤ xi ≤ 1

aii
, 1 ≤ i ≤ n}.

(H.3) For x 6= 0, f(x) is positive2; if x = 0 then f(0) = 0.

(H.4) f(x) is a monotone with respect to each xi for each i ∈ {1, ..., n}.

Examples of f satisfying the above conditions include f :(σi and αi are constants):

• Linear functions: e.g. f(x1, ..., xn) = σ1x1 + ...+ σnxn.

• Saturating functions, that is functions that approach a constant as (x1, ..., xn) ap-

proaches infinity: e.g. f(x1, ..., xn) =
σ1x1

α1 + x1

+ ...+
σnxn
αn + xn

.

In addition, the coefficients ai0 can be chosen to help tune the effect of f , so that the
effect on each species is different.

1This comes with the caveat that if the population of any individual species is zero, it remains zero
for all time.

2We use 0 to denote the zero vector (0, ..., 0) in addition to the scalar zero.
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2.2 Basic Properties of FCLV (n)

In this section we prove basic properties of FCLV (n) that are easily obtained through
basic dynamical systems theory.

Lemma 2. Assume f(x) satisfies conditions (H.1)-(H.4). Then FCLV (n) is positively
invariant in Rn+1

+ . In addition, for any initial value in Rn+1
+ , the corresponding solution

(2.1) is bounded.

Proof. The positive invariance of Rn+1
+ is trivial, as trajectories cannot cross the boundary

of Rn+1
+ given the restriction on the functional response [34]. We sketch here a bounded-

ness argument for large t via a comparison to a bounded system of differential equations.
For each i = 1, ..., n

dxi
dt

= xi(1−
n∑
j=0

aijxj) ≤ xi(1− aiixi), (2.3)

so

lim
t→∞

supxi(t) ≤
1

aii
. (2.4)

Because of condition (H.2) we have the following

dx0

dt
= f(x1, ..., xn)− x0 ≤ fmax − x0, (2.5)

lim
t→∞

supx0(t) ≤ fmax, (2.6)

where fmax is the maximum value on (x1, ..., xn) ∈ Ω = {x ∈ Rn
+ : 0 ≤ xi ≤ 1

aii
, 1 ≤ i ≤

n}. Let

m = max

{
1

a11

, ...,
1

ann
, fmax

}
. (2.7)

The above analysis shows that the bounded set {x ∈ Rn+1
+ : 0 ≤ xi ≤ m, 0 ≤ i ≤ n} at-

tracts all initial conditions in Rn+1
+ . Hence for any initial value in Rn+1

+ , the corresponding
solution remains bounded.

Lemma 3. The trivial equilibrium point of (2.1), x = 0, is a saddle point having a one
dimensional stable manifold and n dimensional unstable manifold.

Proof. By the stable manifold theorem [26], if the Jacobian of a dynamical system at
a fixed point has k eigenvalues with negative real part and n + 1 − k eigenvalues with
positive real part, then W s, the stable manifold, is k dimensional and W u, the unstable
manifold, is n+ 1− k dimensional. The Jacobian of FCLV (n) is

J(x) (2.8)

=


−1 ∂f(x1,...,xn)

∂x1

∂f(x1,...,xn)
∂x2

. . . ∂f(x1,...,xn)
∂xn

−a10x1 1− a11x1 −
∑n

j=0 a1jxj −a12x1 . . . −a1nx1

−a20x2 −a21x2 1− a22x2 −
∑n

j=0 a2jxj . . . −a2nx2

...
...

...
. . .

...
−an0xn −an1xn −an2xn . . . 1− annxn −

∑n
j=0 anjxj

 .
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At the trivial fixed point, x = 0, it becomes

J(0) =



−1
∂f(0)

∂x1

. . . . . . . . .
∂f(0)

∂xn
0 1 0 0 . . . 0
... 0 1 0 . . . 0
... 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


, (2.9)

which has the characteristic equation −(λ + 1)(λ − 1)n = 0. So there are n positive
eigenvalues and one negative eigenvalue. By the stable and unstable manifolds theorems,
this means that there is a one dimensional stable manifold and a n dimensional unstable
manifold.

With respect to Lemma 3, note that the unstable manifold is tangential to the
(x1, ..., xn) hyperplane and the stable manifold is tangential to the x0−axis. This is
important as it tells how all solutions approach the trivial equilibrium. The lowest pos-
sible point on the x0−axis which does not repel local trajectories, is

x0 = min
i∈[1,n]

{
1

ai0

}
. (2.10)

At this value of x0 the i-th derivative is negative definite as

1−
n∑
j=0

aijxj = 0 < 0, (2.11)

so this point attracts local trajectories on the x0, xi plane. Consequently if the x0 com-
ponent of the solution x(t) is sufficiently large for some t, mainly

x0 ≥ max
i∈[1,n]

1

ai0
, (2.12)

then solutions converge to the point on the x0-axis (2.10). This is a significant difference
between FCLV (n) and CLV (n) systems. No trajectories in CLV (n) models are at-
tracted to the trivial equilibrium point as the carrying simplex acts as a global attractor.
Despite this difference the FCLV (n) and CLV (n) models share an important property,
the number and type of fixed points are the same between the two.

Lemma 4. If the functional response f satisfies (H.4), system (2.1) has at most 2n fixed
points. Each of the fixed points of FCLV (n) can be classified as trivial, axial, planar,
and interior fixed points.

Proof. First note that the fixed points of any CLV (n) model can can be classified into
four distinct groups based on how many nullclines of the form

Ni(x) = 1−
n∑
j=1

aijxj = 0 (2.13)

for i = 1, ..., n, intersect each other in Rn
+ [42]. The four groups are:
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• The trivial fixed point at the origin 0.

• Axial fixed points, located where the Ni(x) nullcline meets the xi-axis.

• planar fixed points, located where k number of Nj nullclines meet on the coordinate
plane xi = 0, where k = n − 1 and j = 1, .., n such that i 6= j. For example, if
n = 3, then k = 2 and j = 1, 2, 3, so their are there are three possible planar fixed
points: 1) N2, N3 intersect on the x1 = 0 plane, 2) N1, N3 intersect on the x2 = 0
plane, 3) N1, N2 intersect on the x3 = 0 plane.

• The interior fixed point, which is located at the intersection of all the nullclines Ni,
i = 1, ..., n in int(Rn

+).

Counting up all of the equilibrium points, the maximum number of equilibrium points
for any given CLV (n) model is 2n. With 2n− 1 equilibrium points located on either the
boundary or interior of the carrying simplex3. We now determine the maximum number
of fixed points of FCLV (n) by determining the number of axial, planar, and interior
equilibrium points of FCLV (n). The nullclines Ni have their analogues in FCLV (n) as
the following nucllines4

N f
i (x) = 1−

n∑
j=0

aijxj = 0, (2.14)

for i = 1, ..., n. As f(0) = 0 and f is monotone the total number of times the hyper
surface 0 = f(x1, ..., xn)−x0 can cross the cross the nullclines N f

i is once. This means that
if a combination of the nullclines N f

i intersect in Rn+1
+ , they can only intersect the hyper

surface 0 = f(x1, ..., xn)−x0 once (that is the conditions on f means 0 = f(x1, ..., xn)−x0

cannot be parallel to any of the nullclines N f
i ). We can write formulas/conditions for

each type of fixed point for FCLV (n):

• The trivial fixed point at the origin 0.

• An axial fixed point occurs at each solution of,

0 = f(x1, ..., xn)− x0, (2.15)

0 = N f
i (x), (2.16)

0 = xi, (2.17)

for each i.

• A planar fixed point exists if k number of Nj nullclines meet at the intersection
of 0 = f(x1, ..., xn) − x0 and the coordinate plane xi = 0, where k = n − 1 and
j = 1, .., n such that i 6= j.

3This pattern comes from the carrying simplex being homeomorphic to a carrying simplex of dimen-
sion n. 2n − 1 is the total number of vertices, edges and faces of a n−dimensional simplex.

4Despite the notation the nullclines Nf
i have no dependence on f .
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• The interior fixed point, exists if the following system.

0 = f(x1, .., xn)− x0 (2.18)

0 = N f
i (x) ∀i = 1, ..., n (2.19)

has a solution in int(Rn+1
+ ).

If we break the assumption in Lemma 4 that the functional response f is non-
monotone, a FCLV (n) model has at most m(2n) − 1 fixed points. Where m is the
number of regions where the partial derivatives of f change sign.

2.3 Defining Γf and ΓCLV

As it is very useful for discussing the properties of FCLV (n) systems we will define two
sets Γf and ΓCLV . The importance of these sets will become evident within the following
sections. Heuristically we say that Γf is a subset of the state space where all solutions
of FCLV (n) tend to in the absence of the competitive feedback loop, while ΓCLV is a
subset of the state space where all solutions of FCLV (n) tend to in the absence of the
functional feedback loop.

We define Γf as the following set,

Γf = {x ∈ Rn+1
+ |f(x1, . . . , xn) = x0}. (2.20)

The definition of ΓCLV is more complex. For convenience we define the following system,

FCLVc(n) :


dx0

dt
= F0(x) = 0,

dxi
dt

= Fi(x) = xi(1−
n∑
j=0

aijxj) aij > 0, i = 1, ..., n,
. (2.21)

where (2.21) differs from (2.1) only in that x0 remains constant and does not change from
the initial condition. We define ΓCLV as

ΓCLV =


⋃

x0∈Rn+1
+

ω(x0)| ω(x0)is the ω-limit set of FCLVc(n)

 , (2.22)

where x0 is an initial condition. Unlike Γf , it is not possible to explicitly define a set
of equations that defines ΓCLV , as each x0

0 gives rise to a CLV (n) system, which has
its own carrying simplex. Finding equations to define ΓCLV would be equivalent to
finding explicit equations for the carrying simplex of CLV (n) (which remains a very
difficult problem). However we do know ΓCLV is continous [2]. Next, the ω-limit set
of FCLVc(n) is monotone in the following sense; for x1

0 ≥ x2
0 then ω(x1) ≥ ω(x2).

The continuity property is guaranteed to hold true for monotone systems [2], while the
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ordering property comes from increasing x0, effectively reducing the carrying capacity of
the CLV (n) part of the FCLVc(n) system. For a sketch of Γf and ΓCLV see Fig. 2.1.

Figure 2.1: Sketch of Γf and ΓCLV for a FCLV (2) system. The different views are
for visual clarity. The sketch is to help visualize the shape of ΓCLV , and the order
relation x1

0 ≥ x2
0 implies ω(x1) ≥ ω(x2). Note that the concavity of ΓCLV does need to

stay the same for increasing x0. The Immune response function used for this sketch is
f(x1, x2) = x2

1 + x2
2.

In accordance with the definitions of Γf and ΓCLV the fixed points of FCLV (n) lie in
the intersection of Γf ∩ΓCLV (other than the origin which is located only on Γf ) as, Γf is
the x0-nucline and the intersections of the x1, ..., xn nuclines are in ΓCLV . In follows that
the stability properties of FCLV (n) can be phrased in terms of questions related to Γf
and ΓCLV . e.g. Do solutions converge to Γf ∩ ΓCLV or do some solutions diverge away
from Γf ∩ ΓCLV ? Contraction analysis (specifically the results in Section 4.3) provides a
definite answer to most of these related questions.



Chapter 3

Contraction Analysis

This section is meant to serve as a review of contraction analysis using contraction metrics
and is necessary background for the theorems in the section. Those who are familiar with
contraction analysis can skip this section, for a introductory review see [19].

Consider a non-linear system1

dx

dt
= f(x), (3.1)

where x ∈ Rn and f : Rn → Rn. Assuming f ∈ C1, there exists the exact differential
relation

δẋ = J(f(x))δx, (3.2)

where J(f(x)) is the Jacobian of f evaluated at x, and δx formally defines a linear tangent
differential form2. Note that differential forms are well defined mathematical objects that
appear in a wide variety of fields including differential geometry and calculus of variations
[28]. If we now consider two neighbouring trajectories governed by equation (3.1) and
the infinitesimal displacement δx between them, the squared distance between the two
trajectories is given by δxT δx. If f is continuously differentiable, the rate of change
between trajectories at a point is given by

d

dt
(δxT δx) = 2δxT δẋ = 2δxTJ(f(x))δx ≤ 2λmaxδx

T δx, (3.3)

where λmax is the largest eigenvalue of the symmetric part of the Jacobian J(f(x)), which
we denote as Js(f(x)) = 1

2
(J(f(x)) + JT (f(x))). Hence

||δx|| ≤ ||δx0||e
∫ t
t0
λmax(x,t)dt

, (3.4)

1Note that the background covered here applies to non-autonomous systems as well, but we exclude
these as our focus is on autonomous systems. Those who are interested in non-autonomous systems
should read the related references given in the text.

2Note δx can be thought of an infinitesimal displacement for fixed time and that δẋ = dδx
dt is the rate

of change of the differential.

22
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and so, if λmax is uniformly strictly negative, any infinitesimal length ||δx|| converges
exponentially to zero.

Now, consider a differential coordinate transformation

δz = Θδx, (3.5)

where Θ(x) ∈ Rn×n is a uniformly invertible square matrix. Then, the rate of change of
δzT δz is given by

d

dt
(δzT δz) = 2δzT δż = 2δzT (Θ̇ + ΘJ(f(x)))Θ−1δz. (3.6)

Note that Θ̇ij(x) = ∇Θij(x) · f(x), and Jg(f(x)) = (Θ̇ + ΘJ(f(x)))Θ−1 is called the
generalized Jacobian3. So the exponential convergence of ||δz|| to zero is guaranteed if
the symmetric part of the generalized Jacobian,

Jgs(f(x)) =
1

2
(Jg(f(x)) + JTg (f(x)), (3.7)

is uniformly negative definite. With this we can definite two central concepts of contrac-
tion analysis; contraction metrics and contracting systems.

Definition 3.0.1. (Contraction metric) For any Θ defining the transformation (3.5)
the matrix M(x) ∈ Rn×n defined by

M(x) = ΘTΘ. (3.8)

is called a contraction metric for system (3.1), if it is positive definite (which is guaranteed
for uniformly invertible square matrix, Θ) and the associated Jgs is negative definite.

This definition comes from the generalization of squared length as δzT δz = δxTΘTΘδx =
δxTMδx. M(x) is a symmetric and continuously differentiable metric. A contraction
metric, M(x) exists if and only if there is a neighbourhood around x where nearby tra-
jectories are moving closer to each other at an exponential rate. See [22] for a proof.

Definition 3.0.2. (Contracting System) A dynamical system is contracting on some
set if there exists a positive definite contraction metric M(x) on that set.

Note that equation (3.6) can be written in terms of M(x) and δx

d

dt
(δzT δz) =

d

dt
(δxTM(x)δx) = δxT (JT (f(x))M + Ṁ +MJ(f(x)))δx. (3.9)

We also define here, the related term “partial contraction” [22,39].

3It is called the generalized Jacobian, because it is the Jacobian expressed in any coordinate change
defined by Θ(x)
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Definition 3.0.3. (Partially Contracting) Consider a nonlinear system of the form

dx

dt
= f(x, x), (3.10)

and assume the the auxiliary system4

dy

dt
= f(y, x), (3.11)

is contracting with respect to y, that is there exists a contraction metric M(y) for any
x. Then the original system is said to be partially contracting.

If a particular solution of the auxiliary system verifies a smooth specific property5,
then all trajectories of the original system verify this property exponentially. This is
because the auxiliary system has two particular solutions, namely y(t) = x(t) for all
t ≥ t0 and the solution with a specific property (i.e. the solution where y(t) 6= x(t) for
all t ≥ t0). As all trajectories of the auxiliary system converge to a single trajectory, it
implies that x(t) converges to y(t) exponentially.

Initially the relationship between contraction and partial contraction is not obvious.
The connection is that partial contractions are the generalizations of contractions (based
on the definitions presented here). If a system is globally contracting then all solutions
converge to a single trajectory, that is, initial conditions are “quickly forgotten”. In
contrast, the long term behaviour of partially contracting systems (in general) depends
on initial conditions. The theory of partially contracting systems only guarantees that
the y(t) solution converges to the x(t) solution. Despite being more general, in many
cases it is much simpler to find partial contractions, see [39].

The following Lemma (which is Example 2.1 in [39]) is the basis for many results
in contraction analysis. We present it here as it is very useful for most applications of
partial contraction analysis as many systems can be written into convenient forms similar
to (3.13).

Lemma 5 (Example 2.1 in [39]). Consider a system of the form

dx

dt
= c(x) + d(x), (3.12)

where x ∈ Rn
+, c, d ∈ C1. If the auxiliary system

dy

dt
= c(y) + d(x), (3.13)

is contracting for any x, then any smooth property that (3.13) satisfies system (3.12)
exponentially

Proof. System (3.12) is partially contracting.

4Note that y is the same dimension as x.
5e.g. convergence to a equilibrium point, satisfying a Lyapunov function, periodicity
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In addition we note that partial contraction should not be confused with semi-
contraction.

Definition 3.0.4. (Semi-Contracting) If a contraction metric M(x) ∈ Rn×n is only
positive semi-definite and Jgs(f(x)) is uniform negative semi-definite then system (3.1)
is semi-contracting.

If system (3.1) is semi-contracting, then there are some principal directions pi corre-
sponding to uniformly positive definite eigenvalues of M(x). As Jgs(f(x)) is uniformly
negative definite, then this implies exponential convergence to zero of the components
of ||δx|| on the linear subspace spanned by pi. An example of a system that is semi-
contracting (this example comes from the Appendix of [39]) is the following Van der Pol
oscillator

dx

dt
= ωy − α

3
x3 − βx, (3.14)

dy

dt
= −ωx. (3.15)

Note that ω, β, α are positive constants. The Van der Pol oscillator, has the following
Jacobian

J =

[
−β − αx2 ω
−ω 0

]
, (3.16)

which is negative semi-definite. Further analysis shows that δzT δz (where δz = [δx, δy]T )
tends to a lower limit, which implies that δx tends to 0. Because the Van der Pol
oscillator is two dimensional this implies that all solutions converge to a single trajectory,
independent of initial conditions. If system was three dimensional the system would not
converge to a single trajectory.

3.1 Convergence in a Sphere

Having covered the background for contraction metrics, we focus on the most basic and
important results from contraction analysis as it is the basis of properties of contraction
metrics (Note the following lemma is adapted from Theorem 2 in [22]).

Lemma 6. Assume system (3.1) is a contracting system. Any trajectory of (3.1) which
starts in a ball of constant radius with respect to a contraction metric M(x) centred at
a given trajectory (which we will call the reference trajectory) and contained at all times
in a contraction region with contraction metric M(x), remains in that ball and converges
exponentially to this trajectory.

Proof. We provide an abbreviated proof here see [22] for more details. Consider a ball of
constant radius, such that a given trajectory remains in the ball and within a contraction
region for all t ≥ t0. Once this reference trajectory has been established, as it is in a
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contraction region any distance between trajectories within the ball decreases exponen-
tially. In addition, any trajectory starting within the ball remains in the ball (since the
center of the ball is at a particular system trajectory) and converges exponentially to the
reference trajectory. See Figure 3.1 for a sketch of this proof.

Contraction Region

Sphere of constant radius around 
a point on the reference trajectory

Reference 
Trajectory

Figure 3.1: Convergence of trajectories within in a contraction region. Black dot is the
point which the sphere is centred at. The red dot is a fixed point where the reference
trajectory ends at. All neighbouring trajectories within the contraction region converge
to the reference trajectory.

3.2 Properties of Contraction Metrics

We summarize here many of the properties of the contraction metrics not covered in
Sections 3 and 3.1. While many of these properties are not used, they are necessary to
understand the applications of contraction metrics. Unless otherwise cited, the properties
of contraction metrics come from [22,39].

• The following statements are equivalent for equation (3.1) on some Ω ⊆ Rn.

– (JTM + Ṁ + MJ) ≤ −βM where β is a positive constant and M(x) is
uniformly positive definite.

– Jgs(f(x)) is uniformly negative definite and M(x) is uniformly positive defi-
nite.

– equation (3.1) is contracting on Ω.

• The results in all of Section 3 can be extended to other vector norms and their
induced matrix norms, see [1].
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• A convex contraction region contains at most one equilibrium point, since any
length between two trajectories shrinks exponentially in that region. If a contract-
ing system is autonomous, the system converges exponentially to a fixed point.

• If system (3.1) is contracting, then the function V (x) = fT (x)M(x)f(x) is a Lya-
punov function for (3.1). Indeed, taking the derivative of V (x) yields

dV (x)

dt
= fT (x)(JT (f(x))M + Ṁ +MJ(f(x)))f(x) ≤ −βV. (3.17)

This shows that V satisfies the requirement of a Lypunov function as the equilibrium
point contained in the contraction region is exponentially stable.

• The types of contraction metrics that we discussed thus far are not suitable for
determining the stability of periodic trajectories. What is needed is a contrac-
tion metric that can be used to determine whether nearby trajectories contract in
a direction transverse to the periodic trajectory (this is in contrast to definition
3.0.1 which is for contraction in every direction, not just the transverse direction).
Recently a linear first order matrix valued PDE was found whose solution is a
contraction metric that determines if the system is contracting in the transverse
direction [12,23].

• Similar to Lyapunov functions, there is no known general method to find M(x)
analytically.

• There are methods to find M(x) numerically for any given system [3]. If a contrac-
tion region can be found around a fixed point it proves exponential stability in the
region that the contraction metric exists.

• Contraction analysis as presented here, is a generalized version of Krasovskii’s The-
orem [14]. The difference being the constant matrix is replaced with the contraction
metric M(x). Note that if the system is linear, M(x) is constant.

• M(x) is not unique for a given system.

• Contraction theory can be used to show the opposite of convergence, exponential
divergence of neighbouring trajectories; if the minimal eigenvalue λmin of Jgs is
strictly positive, then ||δxT δx|| is exponentially increasing, implying that nearby
trajectories exponentially diverge away from each other.

3.3 Relation between Incremental and Convergent

Stability

We highlight in this section the difference between two notations of incremental stability
and convergent stability and when they are equivalent. The definitions are important
as they establish and important connection between monotone systems and contraction.
The existence of carrying simplex implies that CLV (n) systems are contracting outside
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of ΣCLV . This is important to FCLV (n) systems because it establishes that the Jacobian
of the CLV (n) part is negative definite. We note that the definitions and theorems in
Section 3.3.1 are the same as in [30].

3.3.1 Definitions related to Incremental and Convergent Sta-
bility

Consider a system

dx(t)

dt
= f(x, t), (3.18)

with f : Rn+1 → Rn being locally Lipschitz in x ∈ Rn and measurable in t. These
assumptions are to guarantee local existence and uniqueness of solutions.

Definition 3.3.1. (Uniform Convergence) Definition 1 in [30] System (3.18) is
uniformly convergent in a positively invariant set Ω ⊂ Rn if:

• All solutions x(t) exist for all t ≥ t0 for all initial conditions in Ω.

• There exists a unique solution x̄(t) in Ω defined and bounded for all t

• The solution x̄(t) is uniformly asymptotically stable in Ω, that is, there exists a
function β ∈ KL such that for all (x0, t0) ∈ Ω× R and t ≥ t0,

||x(t, x0, t0)− x̄(t)|| ≤ β(||x0 − x̄(t0)||, t− t0). (3.19)

If the above holds for Rn, the system (3.18) is globally uniformly convergent.

Note that this definition of stability is the standard notion of stability used in most
of dynamical systems and Lyapunov stability theory.

Definition 3.3.2. (Incrementally Stability) Definition 2 in [30] System (3.18) is
incrementally asymptotically stable in a positively invariant set Ω ⊂ Rn if there exists a
function β ∈ KL such that for all ξ1, ξ2 ∈ Ω and t ≥ t0,

||x(t, ξ1, t0)− x(t, ξ2, t0)|| ≤ β(||ξ1 − ξ2||, t− t0). (3.20)

If the above holds for Rn, the system (3.18) is globally incrementally stable6.

In general these two notions of stability are equivalent under appropriate conditions.

Theorem 7 (Theorems 8 and 11 in [30]). System (3.18) is uniformly convergent on a
compact set Ω, if and only if, it is also incrementally stable on that set.

6Note that a system is contracting if and only if exponentially, incrementally stable ||x(t, ξ1, t0) −
x(t, ξ2, t0)|| ≤ ||ξ1 − ξ2||et

0−t [19].
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Theorem 7 is necessary as there systems that are either uniform convergent or incre-
mentally stable but not both. We provide two examples that demonstrate these different
between the notions of stability. Consider the following system

dx

dt
= −x+ t, (3.21)

which has the solution

x(t) = x0et
0−t − (t0 − 1)et

0−t + (t− 1). (3.22)

With the initial condition (x0, t0) the solution x(t) is unbounded. Hence the system
(3.21) cannot be globally convergent as the definition of uniform convergence (Definition
3.3.1) requires x(t) to be bounded, so any system with an unbound attracting solution
cannot be globally convergent. If we take ξ1, ξ2 ∈ R then

d

dt

(
x(t, t0, ξ1)− x(t, t0, ξ2)

)
= −(x(t, t0, ξ1)− x(t, t0, ξ2)), (3.23)

this implies

||x(t, t0, ξ1)− x(t, t0, ξ2)|| ≤ ||ξ1 − ξ2||et0−t. (3.24)

Inequality (3.24) provides a KL bound on the difference between any two solutions, so
the system (3.21) is globally incrementally stable.

Now for our second example we consider the following system (which is example 3 in
[30]) in polar coordinates

dr

dt
= −r, (3.25a)

dφ

dt
= r2, (3.25b)

where r is the radius and φ is the angle in the counter clockwise direction. From inspection
it is obvious system (3.25) converges to the origin for all initial values and so is globally
uniformly convergent. We now determine whether the system is globally incrementally
stable. System (3.25) has the following solution

r(t) = r0e−t, (3.26)

φ(t) = φ0 + (1− e−2t)
(r0)2

2
, (3.27)

then let z(t) = (r(t), φ(t)) and z̄(t) = (cos(t), sin(t)). Let us consider a region such that
r = R > 1 be large enough such that the two solutions z1(t), z2(t) starting at the initial
conditions (r1, phi1, t0) = (

√
R +M + 1, 0, 0) and (r2, phi2, t0) = (

√
R + 1, 0, 0) (with

M = 2πe
e−1

) satisfies

||zi(t)− z̄(t)|| > 1, i = 1, 2 ∀t ∈
[
0,

1

2

]
. (3.28)
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We note that

||(r1, phi1, t0)− (r2, phi2, t0)|| =
√
M +

√
R(2
√
R− 2

√
R +M) ≤

√
M. (3.29)

With these two initial conditions at time t = 1
2

the distance between the two solutions is

||z1(1/2)− z2(1/2)|| =
√
R +M +

√
R√

e
. (3.30)

As the two solutions move further apart after the initial time, there cannot be a KL
bound such that the definition of globally incrementally stable is satisfied, hence system
(3.25) is not globally incrementally stable.

While we use Theorem 7 for other proofs, for the sake of completeness we mention
theorems for the requirements for globally uniform convergence and global incremental
stability.

Theorem 8 (Theorems 7 and 10 in [30]). Assume that system (3.18) is globally uniformly
convergent, and that it is continuous in t and C1 in x. Also assume, that f(x, t) Jacobian
J(f(x)) with respect to x is bounded, uniformly in t. In addition, assume there is a
positive definite matrix P ∈ Rn×n, a continuous positive definite function α : R+ → R+,
and a positive constant C > 0 such that for all times t ∈ R and all x1, x2 ∈ Rn

(x1 − x2)TP (f(x1, t)− f(x2, t)) ≤

{
−α(||x1 − x2||) if max{||x1||, ||x2||} ≥ C,

0 otherwise.
(3.31)

Then the system (3.18) is globally incrementally stable.

Note there is a known class of systems which satisfy Theorem 8, called quadratically
convergent systems [25].

Theorem 9 (Theorems 12 in [30]). Suppose that the system (3.18) is globally incremen-
tally stable. Then, the following statements hold:

• There exists a sufficiently small c ≥ 0 such that if c ≥ ||f(0, t)|| for all t, then
system (3.18) is globally uniformly convergent.

• If there exists a compact Ω ⊂ Rn that is positively invariant, then system (3.18) is
globally uniformly convergent.

3.3.2 Minor Lemmas

The lemmas define a form of contraction that is slower than described in Section 3.
This is needed as the contraction is very restrictive and limits direct application to some
systems which converge slowly.

Lemma 10. Uniform asymptotic convergence does not imply asymptotic incremental
stability.
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Proof. We do a proof by contradiction. Assume that uniform asymptotic convergence
does imply asymptotic incremental stability. Consider the following simple example7

dx

dt
= −x3, (3.32)

which has the following solution for the initial conditions (x0, t0)

x(t) =
±1√

2(t− t0) + 1
(x0)2

. (3.33)

The equation (3.32) converges asymptotically to zero by Definition 3.3.1 as∥∥∥∥∥∥∥
1√

2(t− t0) + 1
(x0)2

− 0

∥∥∥∥∥∥∥ ≤ β(||x(t)− 0||, t− t0), (3.34)

as the left hand side is a KL function, so (3.32) is asymptotically stable. It is not
exponentially stable as x(t) converges at a rate proportional to 1√

2t
which is slower than

exponential convergence.
However, the derivative of the right hand side of (3.32) is strictly negative definite

(except at zero) and so there exists a contraction metric for equation (3.32) and it must be
exponentially incrementally stable. This directly contradicts the statement that uniform
asymptotic convergence implies asymptotic incremental stability, so th onlye statement
is false.

The above lemma is important as it shows that the speed of uniform convergence and
the speed of incremental stability of a system are not necessarily linked.

Lemma 11. If system8 (3.1) or (3.18) is incrementally stable by Definition 3.3.1, on a
compact set it is contracting.

Proof. In [19, 22] if a system is incrementally stable either the general Jacobian is uni-
formly negative definite or the maximum eigenvalue of the Jacobian satisfies the following∫ t+T

t

λmax(x, t) dτ < 0, (3.35)

for some T > 0. In the first case the system is exponentially contracting, while in the
second case it is contracting but at an asymptotic rate.

The above lemma implies that for any CLV (n) system outside of ΣCLV there exists
a contraction metric.

7Global uniqueness of the solutions of (3.32) is not important for the analysis.
8Note a system which is C1 is also locally Lipschitz.



Chapter 4

Application of Contraction Theory
to FCLV (n) Systems

Having covered the necessary background on contraction theory we now focus on appli-
cations to FCLV (n). We organize our thoughts and results as follows. In Section 4.1
we explain in detail why in general the combination of two contracting systems does not
imply that the combination is contracting. This is important because the functional part
and the CLV (n) part are both contracting for constant x1, . . . xn and x0 respectively.
Once this argument is presented it is clear that unless an explicit contraction metric for
any CLV (n) is found (which is equivalent in difficulty to finding a Lyapunov function
for any CLV (n) system, an open problem that has not been solved despite the wide
interest in CLV (n) systems) it is necessary to use estimates to determine stability of
FCLV (n). We cover estimates/sufficient conditions for stability in Section 4.2 derived
using contraction theory. Finally in Section 4.3 we provide a simple proof that shows that
any initial condition all solutions of FCLV (n) converges to Γf if the immune response
function is strictly monotone increasing. The information from these sections is used in
the examples in Section 5.

Note that most of these sections focus on contraction metrics in the interior of Rn
+ as

a well known property of CLV (n) systems is that in any facet on the boundary of Rn
+,

CLV (n) behaves as a lower dimensional CLV (n) system (e.g. For CLV (3) the x3 = 0
plane is equivalent to a CLV (2) system). FCLV (n) has this same property (expect that
the x0 = 0 plane resembles a CLV (n) system and is not invariant), hence our focus on
the interior of Rn

+.

4.1 On connections between subsystems

As discussed in Section 3, the functional part and the CLV (n) part of FCLV (n) are
contracting when not connected. This brings up the natural question, what conditions
ensure that two contracting dynamical systems when connected in a non-linear way is
still contracting? We explore the answer to this question in this section.

A well known property of contracting systems [39] is given a nonlinear system with

32
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generalized virtual nonlinear displacements δzi,[
δż1

δż2

]
= Jgs(f(x))

[
z1

z2

]
, (4.1)

where Jgs(f(x)) is the generalized Jacobian and has the form,

Jgs(f(x)) =

[
J1gs G
GT J2gs

]
, (4.2)

if J1gs and J2gs are uniformly negative definite in the same metric by assumption (they
can be thought of as the dynamics of f1(x) and f2(x) independent of each other), the
overall system is contracting (Jgs(f(x)) is negative definite) if and only if the following
matrix inequality holds

J2gs < GTJ−1
2gsG. (4.3)

Note the reason this inequality is necessary is that it is the sufficient and necessary
condition for a block matrix to be negative definite [16].

However this statement by itself is not very useful (e.g. How can we verify that J1gs

and J2gs are contracting in the same metric? What metric is G contracting in?). We do
the following calculations to provide more context. We start with the following non-linear
system

dx

dt
= g(x), (4.4)

and assume it can be written as

dx1

dt
= g1(x1, x2), (4.5a)

dx2

dt
= g2(x1, x2), (4.5b)

with dim(x1) + dim(x2) = dim(x). The virtual dynamics of the system are then given
by

δẋ1 = J1,1δx1 + J1,2δx2, (4.6)

δẋ2 = J2,1δx1 + J2,2δx2, (4.7)

where Ji,j = ∂gi(x)
∂xj

. For reasons that will be obvious shortly it is much more convenient

to express the above as the matrix equation[
δẋ1

δẋ2

]
=

[
J1,1 J1,2

J2,1 J2,2

][
δx1

δx2

]
. (4.8)
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We assume that the coordinate transformation δz = Θδx can be written as four sub-
matrices [

δz1

δz2

]
=

[
Θ1,1 Θ1,2

Θ2,1 Θ2,2

][
δx1

δx2

]
. (4.9)

Using the property with these base assumptions we can now calculate δż in terms of δz.[
δż1

δż2

]
=

[
Θ̇1,1 Θ̇1,2

Θ̇2,1 Θ̇2,2

][
δx1

δx2

]
+

[
Θ1,1 Θ1,2

Θ2,1 Θ2,2

][
δẋ1

δẋ2

]
, (4.10)

=

[
Θ̇1,1 Θ̇1,2

Θ̇2,1 Θ̇2,2

][
Θ1,1 Θ1,2

Θ2,1 Θ2,2

]−1 [
δz1

δz2

]
(4.11)

+

[
Θ1,1 Θ1,2

Θ2,1 Θ2,2

][
J1,1 J1,2

J2,1 J2,2

][
Θ1,1 Θ1,2

Θ2,1 Θ2,2

]−1 [
δz1

δz2

]
, (4.12)

=

[Θ̇1,1 Θ̇1,2

Θ̇2,1 Θ̇2,2

]
+

[
Θ1,1 Θ1,2

Θ2,1 Θ2,2

][
J1,1 J1,2

J2,1 J2,2

][Θ1,1 Θ1,2

Θ2,1 Θ2,2

]−1 [
δz1

δz2

]
. (4.13)

Note that matrix on the right of (4.13) is the generalized Jacobian of g(x). Further
caclulation is very tedious if we don’t make additional assumptions. For the purposes of
our argument, the most reasonable assumption is that Θ1,2 = Θ2,1 = 0 then[

δż1

δż2

]
=

[Θ̇1,1 0

0 Θ̇2,2

]
+

[
Θ1,1 0

0 Θ2,2

][
J1,1 J1,2

J2,1 J2,2

][Θ−1
1,1 0
0 Θ−1

2,2

][
δz1

δz2

]
, (4.14)

=


(

Θ̇1,1 + Θ1,1J1,1

)
Θ−1

1,1 Θ1,1J1,2Θ−1
2,2

Θ2,2J2,1Θ−1
1,1

(
Θ̇2,2 + Θ2,2J2,2

)
Θ−1

2,2

[δz1

δz2

]
. (4.15)

Then if the systemic part of J1g =
(

Θ̇1,1 + Θ1,1J1,1

)
Θ−1

1,1 and J2g =
(

Θ̇2,2 + Θ2,2J2,2

)
Θ−1

2,2

are negative definite the independent systems:

dx1

dt
= g1(x1, x2) x2 held constant, (4.16)

dx2

dt
= g2(x1, x2) x1 held constant, (4.17)

are contracting with two different contraction metrics M1 = ΘT
1 Θ1 and M2 = ΘT

2 Θ2. As
mentioned before this is a necessary condition to ensure that system (4.5) is contracting,
but by itself does not ensure that the symmetric part of (4.15) is negative definite. This
is true only if the following matrix inequality holds

J2gs < GTJ1gsG, (4.18)

J2gs <
1

4

(
(Θ2,2J2,1Θ−1

1,1)T + Θ1,1J1,2Θ−1
2,2

)T
J1gs

(
(Θ2,2J2,1Θ−1

1,1)T + Θ1,1J1,2Θ−1
2,2

)
.

(4.19)
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Note that a sufficient condition for the above inequality to hold is [39],

λmax(J2gs) < λmin(J−1
1gs)σ

2(G), (4.20)

where λmax(J2gs) is the largest eigenvalue of J2gs, λmin(J1gs) is the smallest eigenvalue of
J1gs and σ2(G)is the largest singular value of G.

To apply this in the FCLV (n) system we replace g1 with F0 and g2 with F1, ..., Fn. It is
obvious from the calculations above that M1 can be any positive scalar to ensure that J1gs

is negative definite. M2 would then be a contraction metric to ensure that J2gs is negative
definite. Explicitly finding a contraction metric for any FCLV (n) for n ≥ 3 is a significant
challenge as this would be equivalent to finding a Lyapunov function for CLV (n) systems,
an open problem despite significant interest. Thus verifying whether inequality (4.19)
does or does not hold is exceedingly difficult if M2 is the contraction metric that makes
J2gs negative definite. We cover two ways to surpass to limitations, obtaining estimates for
regions of contraction in Section 4.2 derived using contraction theory. Another approach
is presented in Section 4.3 is based instead on finding a contraction metric such that
Θ1,1J1,2Θ−1

2,2 + Θ2,2J2,1Θ−1
1,1 = 0, then the symmetric part of equation (4.15) becomes[

δż1

δż2

]
=

[
J1gs 0

0 J2gs

][
δz1

δz2

]
. (4.21)

Such a matrix represents a hierarchical or cascading system [22], that is the first and
second equations do not depend on each other. So the convergence of δz1 to zero only
depends on the negative definiteness of J1gs and likewise the convergence of δz2 to zero
only depends on the negative definiteness of J2gs. Details of this process and the impli-
cations are covered in Section 4.3.

4.1.1 A Note on the Θ̇ in combination with other systems.

We have ignored a small issue when looking at combinations of contracting systems, which
we will now address. The is problem is we have assumed that a change of coordinates
matrix Θ(x) will be suitable when we consider two systems that are connected and
contracting. To express this problem more concretely consider the following nonlinear
system,

dx1

dt
= g1(x1, x2) with x2 held constant, (4.22)

and the nonlinear system (4.5). With systems (4.22) and (4.5) in mind the following ques-
tion occurs, under what conditions does the negative definiteness of generalized Jacobian
(Θ̇ + Θ∂f(x1,x2))

∂x1
)Θ−1 for system (4.22) imply that the same submatrix in the generalised

Jacobian of (4.5) is negative definite.

Lemma 12. If the generalised Jacobian (4.22) is negative definite the principle submatrix
of the generalized Jacobian system (4.5) is also negative definite if one of the following
sufficient conditions is met
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1. Θ is a constant matrix.

2. Θ is a function of only x1 but not x2.

3. The matrix ∂
∂x2

(
Θ(x)

)
Θ−1 is negative definite.

Proof. The difference between (Θ̇ + Θ∂f(x1,x2))
∂x1

)Θ−1 in (4.22) and (4.5) is that Θ̇ has a
different value for system (4.5). From the background on contracting systems the ij-th
entry of Θ̇ is

Θ̇i,j = ∇Θi,j ·
dx

dt
. (4.23)

Since x2 is constant for system (4.22) and non-constant in (4.5) it is obvious why sufficient
conditions 1 and 2 are true. For sufficient condition 3,(

Θ̇ + Θ
∂f(x1, x2))

∂x1

)
Θ−1 (4.24)

=

(
∂

∂x1

(
Θ(x)

)
+

∂

∂x2

(
Θ(x)

)
+ Θ

∂f(x1, x2))

∂x1

)
Θ−1, (4.25)

=

(
∂

∂x1

(
Θ(x)

)
+ Θ

∂f(x1, x2))

∂x1

)
Θ−1 +

∂

∂x2

(
Θ(x)

)
Θ−1. (4.26)

By the assumptions of the theorem
(

∂
∂x1

(
Θ(x)

)
+ Θ∂f(x1,x2))

∂x1

)
Θ−1 is negative definite,

if ∂
∂x2

(
Θ(x)

)
Θ−1 is negative definite there sum is negative definite. Note that by neg-

ative definite we mean that the symmetric part of
(

∂
∂x1

(
Θ(x)

)
+ Θ∂f(x1,x2))

∂x1

)
Θ−1 and

∂
∂x2

(
Θ(x)

)
Θ−1 is negative definite.

4.2 Estimating Regions of Contraction

As explained in Section 4.1 unless a nonlinear dynamical system has a special form it is
usually not possible analytically to construct a contraction metric from combining metrics
from two independently contracting systems. Without contrary evidence, in general we
should not expect two contracting systems when combined together in a non-linear fash-
ion to be contracting. However while the analytical construction of contraction methods
is limited, conditions for contraction can be used to estimate regions of contraction (this
should not be confused with the numerical construction of contraction metrics, which is
similar to searching for Lyapunov functions of a specific function, see [3]). In this section
we examine a few simple estimates for FCLV (n) systems. Note that it is not possible
to find a contraction region that covers all of Rn

+ for FCLV (n) and CLV (n) systems as
explained in the following minor lemma.

Lemma 13. There is no contraction metric that defines a contraction region for all of
Rn

+ for FCLV (n) and CLV (n) systems.
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Proof. There are two reasons why there cannot be a single contraction region that covers
all of Rn

+. First there is a region around the origin that is repelling. As covered in the
background on contraction theory it is not possible for a contraction metric to exist at
an repelling fixed point. Next there are always n-axial fixed points for CLV (n) and
FCLV (n) systems. A single contraction region which covers all of Rn

+ would contain all
of these points. The existence of such a contraction region would be a contradiction as
the existence of a contraction metric implies the convergence of all trajectories to a single
point and no other fixed points in that region (as solutions which start fixed points do not
converge to each other). To resolve the contradiction, there must be subsets within Rn

+

where either no contraction metric exists or two subsets have two different contraction
metrics.

With Lemma 13 in mind, if we have a condition that implies contraction, we should
expect that condition to not hold at the boundary between basins of attraction. For
example consider a bistable CLV (2) system (there are two one species population that
are stable) versus a CLV (2) system in which only one species has a stable population.
In the interior of Rn

+ there must be at least two subsets where any condition required
for the existence of a contraction metric does not hold. Likewise for the system with
one stable population there must be at least one subset where any condition required for
the existence of a contraction metric does not hold (near the origin). So if we know if a
system does not have periodic orbits we can estimate regions of contraction by whether
the conditions for contraction hold or not.

4.2.1 Contraction with respect to the Identity Metric

When looking for stability properties with contraction metrics, it is best to test what is
possible to discern from the using the simplest contraction metric M(x) = I (i.e. there
is no change of coordinates from the original system). We obtain sufficient conditions for
stability based on contraction theory for FCLV (n) systems.

We first explain solutions near the origin, because the analysis is simple. From the
basic properties of FCLV (n) systems section (see Section 2.2) we know that the origin 0
is locally repelling in all directions except the x0-axis. That is the stable manifold is the
x0-axis and the x0 = 0 plane is the unstable manifold. Independent of the stable/unstable
manifold theorems, contraction theory implies that the local neighbourhood around 0 is
a region of expansion except if we are restricted to the x0-axis. Along the x0-axis all
solutions move to the origin. So FCLV (n) is contracting along the x0-axis. If we move
from the origin along the x0-axis we find the point on the x0-axis that that attracts



38

solutions outside x0-axis. The Jacobian along the x0-axis is

−1
∂f(0, . . . , 0)

∂x1

. . . . . . . . .
∂f(0, . . . , 0)

∂xn
0 1− a10x0 0 0 . . . 0
... 0 1− a20x0 0 . . . 0
... 0 0 1− a30x0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1− an0x0


. (4.27)

As the Jacobian is upper triangular the eigenvalues are the diagonal entries of this matrix.
Therefore the lowest point on the x0-axis, which does not have n-positive eigenvalues is

x0 = min
i∈[1,n]

{
1

ai0

}
. (4.28)

If we move further up x0-axis until we reach the point where

x0 = max
i∈[1,n]

{
1

ai0

}
. (4.29)

At that point FCLV (n) is fully contracting, and there is a neighbourhood that is con-
tractive around that point. So the basin of attraction for origin extends from this neigh-
bourhood. Similarly if x0 is large enough (anywhere not just x0-axis) then the Jacobian
of FCLV (n) is negative definite, because the Jacobian is either row or column diagonally
dominant and the Gershgorin disc theorem guarantees that such matrices have all nega-
tive eigenvalues [16]. Thus for large enough x0 there should be a sequence of points that
form solutions that will converge to the x0-axis and therefore the origin. We can deter-
mine the basin of attraction of x0 by the following process. For each point (x1, . . . , xn)
determine the smallest x0 such that J(FCLV (n)) is not longer diagonally dominant at
(x0, x1, . . . , xn). That point is part of the edge of the basin of attraction for the origin.

For all the other fixed points, which are located in Γf ∩ ΓCLV , we can consider the
Jacobian of FCLV (n) as the following block matrix

J(FCLV (n)) =

(
−1 ∇f(x1, . . . , xn)

(−ai0xi)i∈[1,n] J(CLV (n, x0))

)
, (4.30)

where J(CLV (n, x0)) is used to denote the dependence on x0. We note that

J(CLV (n, x0)) = Diag(1− A1,nx1,n)−Diag(x1,n)A1,n −Diag((ai0x0)i∈[1,n])), (4.31)

= J(CLV (n))−Diag((ai0x0)i∈[1,n]), (4.32)

where J(CLV (n)) denotes the Jacobian of an CLV (n) system, A1,n denotes the ele-
ments of the community matrix of FCLV (n) without ai0 elements, x1,n denotes the
vector (x1, ..., xn), and Diag(·) denotes a diagonal matrix whose entries come from the
argument vector. An important observation is that if J(CLV (n)) is negative definite
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than J(CLV (n, x0)) is negative definite. If we assume J(CLV (n)) is negative definite
(that is the competitive Lotka-Volterra part of the FCLV (n) is contracting) then in order
for J(FCLV (n)) to be negative definite we need the symmetric Jacobian Js(FCLV (n))
to be negative definite. For Js(FCLV (n)) is negative definite if and only if the following
matrix inequality holds (see as well Section 4.1),

Js(CLV (n, x0)) < GT (−1)−1G, (4.33)

< −GTG, (4.34)

where G = 1
2

(
∂f(x)
∂x1
− a10x1, . . . ,

∂f(x)
∂xn
− an0xn

)
. For FCLV (2) we can write the matrix

GTG as

1

4

[
f 2
x1

+ a2
10(x1)2 − 2fx1a10x1 fx1fx2 − a10x1fx2 − a20x2fx1 + a10a20x1x2

fx1fx2 − a10x1fx2 − a20x2fx1 + a10a20x1x2 f 2
x2

+ a2
20(x2)2 − 2fx2a20x2

]
,

which has eigenvalues

λ1 =
1

4

(
∂f(x)

∂x1

− a10x1

)2

+
1

4

(
∂f(x)

∂x2

− a20x2

)2

, (4.35)

λ2 = 0. (4.36)

The pattern continues for FCLV (n) with GTG having n− 1 eigenvalues

λ1 =
1

4

(
∂f(x)

∂x1

− a10x1

)2

+ . . .+
1

4

(
∂f(x)

∂xn
− an0xn

)2

, (4.37)

λ2 = 0, (4.38)

...

λn−1 = 0. (4.39)

From [39] a sufficient condition for the inequality (4.33) to hold is

λmax(Js(CLV (n, x0))) < (−1)σ2
max(G), (4.40)

< −λmax(GTG), (4.41)

< −1

4

(
∂f(x)

∂x1

− a10x1

)2

+ . . .+
1

4

(
∂f(x)

∂xn
− an0xn

)2

, (4.42)

where σ2
max(G) is the largest singular value of G. Note that σ2

max(G) = λmax(G
TG). We

can see that λmax(G
TG) can be thought as a destabilizing influence (the larger λmax(G

TG)
the less likely FCLV (n) is to be contracting). We can be a bit more specific as (note we
use λmax,s(A) to denote the largest eigenvalue of the symmetric part of A)

λmax(Js(CLV (n, x0))) = (4.43)

λmax
(
Diag(1− A1,nx1,n)−Diag(x1,n)A1,n −Diag((ai0x0)i∈[1,n])

)
, (4.44)

≤ λmax
(
Diag(1− A1,nx1,n)−Diag((ai0x0)i∈[1,n])

)
− λmax,s(Diag(x1,n)A1,n), (4.45)
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as for the sum of symmetric matrices this property holds. With the note that

max
i∈[1,n]

1−
n∑
j=0

aijxj

 = λmax
(
Diag(1− A1,nx1,n)−Diag((ai0x0)i∈[1,n])

)
. (4.46)

So we have the inequality

λmax,s(Diag(x1,n)A1,n) >

1

4

(
∂f(x)

∂x1

− a10x1

)2

+ . . .+
1

4

(
∂f(x)

∂xn
− an0xn

)2

+ max
i∈[1,n]

1−
n∑
j=0

aijxj

 .
(4.47)

At a fixed point x∗ (other than the origin) of FCLV (n) this inequality becomes

λmax,s(Diag(x∗1,n)A1,n) >
1

4

(
∂f(x∗)

∂x1

− a10x
∗
1

)2

+ . . .+
1

4

(
∂f(x∗)

∂xn
− an0x

∗
n

)2

. (4.48)

4.2.2 Contraction with Respect to Other Metrics

We have some far focused on contraction with respect to the euclidean norm | · | and its
induced matrix norm || · ||. If we consider contraction with respect to other norms we can
obtain other conditions for contraction other than determining the positive definiteness
of a matrix. To do so we need to introduce the matrix measure. Given a norm | · | and
it’s induced matrix norm || · ||, the associated matrix measure is [1]:

µ(A) = lim
h→0+

1

h
(||I + hA|| − 1). (4.49)

A nonlinear system is contracting if there exists a uniformly invertible matrix Θ(x) such
that

∃c > 0, µ(Jg(f(x))) ≤ −c, ∀x ∈ Rn, (4.50)

where Jg(f(x)) is the generalized Jacobian of the nonlinear system [1]. The most common
matrix measures used for contraction analysis are induced by the p-norms 1, 2 and ∞.
The induced matrix measures given a square matrix A with entries aij are respectively

µ1(A) = max
j

ajj +
∑
i 6=j

|aij|

 , (4.51)

µ2(A) = Largest eigenvalue of
A+ AT

2
, (4.52)

µ∞(A) = max
i

aii +
∑
i 6=j

|aij|

 . (4.53)
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As expected µ2(Jg(f(x))) ≤ −c is the same as requiring the symmetric part of Jg(f(x))
to be negative definite. Now again after a change of coordinates δz = Θ(x)δx, the virtual
dynamics of a nonlinear system is

δż = Jg(f(x, t))δz. (4.54)

Which can be bounded by the Coppel inequality ([36]; which is just a generalized version
of the same inequality (3.4) in the Section 3)

|δz|i ≤|δz0|ie
∫ t
0 µi(Jg(f(x(τ),τ)))dτ , (4.55)

|δz|i ≤|δz0|iecit, (4.56)

where ci = max{µi(Jg(f(x, t)))} and is the rate at which the system contracts. It is clear
the contraction rate is highly dependent on the particular norm being used. However
there is a clear relationship between the contraction rates associated with different norms.
For finite dimensional systems all vector norms are equivalent [16], that is

|x|∞ ≤ |x|2 ≤ |x|1 ≤
√
n|x|2 ≤ n|x|∞. (4.57)

where n is the dimension1 of x. Thus convergence with respect to one norm also implies
convergence to the Euclidean norm with some rescaling factor (and visa versa). Suppose
that contraction has been established for the 1-norm, with rate c1 with dimension n. We
then have

|δz|2 ≤
√
n|δz0|2ec1t, (4.58)

or equivalently

|δz|2 ≤|δz0|2ec1(t− lnn
2c1

)
. (4.59)

So changing types of norms means a rescaling or time shifting the bound. See [1, 31] for
more details. Note that contraction with respect to the 1,∞-norms is strongly connected
to Gershgorin disk Theorem [16] as µ1(Jg(f(x))), µ∞(Jg(f(x))) ≤ −c is equivalent to the
requirement that all of the Gershgorin disks of Jg(f(x)) are on left side of complex plane.

Applying this to FCLV (n) systems we have the following statement: A sufficient
condition for a FCLV (n) system to be contracting is for J(FCLV (n)) or Jg(FCLV (n))
to be row or column diagonally dominant. The simplest useful contraction metric, other
that the identity matrix, for this statement is a constant diagonal matrix

Θ =

q0 . . . 0
...

. . .
...

0 . . . qn

 . (4.60)

1The scaling factors needed for inequality to hold depend on the dimension of the dynamical system
being analysed.



42

Note q0, q1, . . . , qn do not have to positive, but do have to be non-zero. Any FCLV (n)
system with this metric can be written as

Jg(FCLV (n)) =
−1 q0

q1
fx1 . . . q0

qn
fxn

−a10
q1
q0
x1 1− a11x1 −

∑n
j=0 a1jxj . . . −a1n

q1
qn
x1

...
...

. . .
...

−an0
qn
q0
xn −an1

qn
q1
xn . . . 1− annxn −

∑n
j=0 anjxj

 .

(4.61)

We can choose q0 to be small small enough such that

1 >

∣∣∣∣q0

q1

fx1

∣∣∣∣+ . . .+

∣∣∣∣ q0

qn
fxn

∣∣∣∣ (4.62)

and if remaining rows can be made diagonally dominant by choosing appropriate q1, . . . , qn
then the system is contracting. Note that we can do the same for column diagonal dom-
inance. We suggest another appropriate contraction metric for this analysis in Section
4.3.

4.3 Semi Contraction of FCLV (n)

So far we have used contraction theory to provide the estimates for regions of stability
FCLV (n). The usefulness of contraction theory, like monotone theory, is that it can
greatly simplify the analysis of nonlinear systems given the appropriate conditions are
satisfied. We layout here a theorem, which is simple to prove with the necessary back-
ground, that describes very well the general behaviour of any FCLV (n) based on the
concept of semi contraction.

Theorem 14. For FCLV (n) if the immune response function is monotone and increas-
ing all solutions converges to Γf and δxT0 δx0 decreasing to zero.

Proof. We focus on FCLV (2) systems, first as there is a simple pattern that can be
expanded to general FCLV (n) systems. The conclusion of the theorem comes from
searching for a contraction metric that simplifies any FCLV (n) system to a n-dimensional
system. Specifically we look for a metric M(x) such that

Mdot = Ṁ +MJ(FCLV (n)) + JT (FCLV (n))M < 0 (4.63)

and the first row and columns of Mdot are as simple as possible for further analysis. After
trial and error searching through the space of diagonal contraction metrics2. Our choice

2It is significantly easier to search through just the space of diagonal matrices to find a suitable
contraction metric rather than any general matrix both to ensure M(x) is positive definite and Mdot is
negative definite
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of contraction metric is

M(x) =

1 0 0

0
fx1
a10x1

0

0 0
fx2
a20x2

 (4.64)

where we denote partial derivatives as fxi = ∂f(x1,x2)
∂xi

for convenience. Note that because
M(x) is a diagonal matrix and we are only considering a monotone immune response
function M(x) is a positive definite matrix. Calculating Mdot we have

Mdot

= Ṁ +MJ(FCLV (n)) + JT (FCLV (n))M,
(4.65)

=


0 0 0

0
−ẋ1fx1
a10x21

+
ẋ2fx1x2+ẋ1fx1x1

a10x1

0 0
−ẋ2fx2
a20x22

+
ẋ1fx1x2+ẋ2fx2x2

a20x2


+

 −1 fx1 fx2
−fx1

(1−a10x0−2a11x1−a12x2)fx1
a10x1

−a12fx1
a10

−fx2 −a21fx2
a20

(1−a20x0−a21x1−2a22x2)fx2
a20x2


+

 −1 fx1 fx2
−fx1

(1−a10x0−2a11x1−a12x2)fx1
a10x1

−a12fx1
a10

−fx2 −a21fx2
a20

(1−a20x0−a21x1−2a22x2)fx2
a20x2


T

,

(4.66)

=


−2 0 0

0
−2a11x21fx1+ẋ1fx1−x1(ẋ2fx1x2+ẋ1fx1x1 )

a10x21
−a12fx1

a10
− a21fx2

a20

0 −a12fx1
a10
− a21fx2

a20

−2a22x22fx2+ẋ2fx2−x2(ẋ1fx1x2+ẋ2fx2x2 )

a20x22

. (4.67)

We can extended the pattern of matrix (4.67) to FCLV (n) systems, with

M(x) =


1 0 . . . 0

0
fx1
a10x1

. . . 0
...

...
. . .

...

0 0 . . . fxn
an0xn

 . (4.68)

The resulting lower block matrix Mdot for FCLV (n) systems, has off-diagonal entries

−aijfxj
ai
− ajifxi

aj
and diagonal entries3 −2aiix

2
i +ẋifxi−xi(fxit)
ai0x2i

for all i, j ∈ [1, . . . , n].

Now from definition in the background section on contraction (Section 3)

d

dt
(δxTM(x)δx) = δxTMdot(x)δx. (4.69)

3Note that fxit = ∂2f(x1,...,xn)
∂x∂t
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For any δx

d

dt
(δxTM(x)δx) = −2(δx0)2 +O(δx1δx2, . . . , δxn−1δxn) +O((δx1)2, ..., (δxn)2) (4.70)

where O((δx1)2, ..., (δxn)2) is all δxi terms of order 2 and O(δx1δx2, . . . , δxn−1δxn) is
all terms of order 2 that are combinations of δxi, δxj terms. This is the sufficient and
necessary condition to ensure that FCLV (n) is always semi-contracting4 which respect
to x0. That is, no matter the initial condition, the solutions of a FCLV (n) system with
a monotone immune response will always converge to constant x0 that is, δxT0 δx0 → 0
as t → 0. This implies that all solutions of FCLV (n) converge to Γf given sufficient
time. Note however this does not imply (by itself) convergence to fix points. Solutions
converge to the interior fixed point of FCLV (n) if and only if the lower block matrix of
Mdot is negative definite.

Theorem 14 can also be used to show that all solutions of FCLV (n) converge to a
n− 1 dimensional subset of R+

n+1 (see Theorem 18).

4.3.1 Notes on Theorem 14 and Related Lemmas

There are a few important notes for Theorem 14:

• Without further analysis Theorem 14 does not tell which level set of Γf solutions
of FCLV (n) converge to.

• The contraction metric for Theorem 14 is only for the interior of R+
n+1. If we are

restricted to the boundary of R+
n+1 we can adjust M(x). For example if we are

considering only R+
n+1 with x1 = 0 then we can choose the following contraction

metric:

M(x) =


1
fx1

0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . fxn
an0xnfx1

 (4.71)

.

• Similarly if we are interested in a region where the immune response function is
monotone decreasing we can use the following contraction metric:

M(x) =


1 0 . . . 0

0 − fx1
a10x1

. . . 0
...

...
. . .

...

0 0 . . . − fxn
an0xn

 (4.72)

.

4Not to be confused with partial contraction.
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• If the immune response function is constant we can use the identity matrix as the
contraction metric to obtain similar conclusions as Theorem 14.

• From the conclusions of Theorem 14, Mdot eventually represents the dynamics of
FCLV (n) constrained to a level set of Γf . As any level set of Γf is a CLV (n)
system which depends on x0, whether FCLV (n) has periodic orbits thus depends
on n. It is well known that for n ≤ 2 it is not possible for a CLV (n) system to
have a periodic trajectory as the dimension of the carrying simplex is less than 2.

• In addition it is not possible for a FCLV (n) system to have a periodic orbit outside
of Γf ∩ ΓCLV . Suppose that such a periodic orbit exists. Assume that there exists
a periodic trajectory that oscillates in and out of any x0 = ε, where ε is a positive
non-zero constant. It is impossible for all points along such a trajectory to have
δxT0 δx0 = 0 which is a contradiction to Theorem 14. Now instead assume that a
periodic trajectory is instead contained within x0 = ε. Such a level set of FCLV (n)
is equivalent to a CLV (n) system which depends on x0 (which is constant). Unless
the periodic orbit is contained entirely instead the carrying simplex (ΓCLV ) then
monotone theory guarantees that such a periodic trajectory cannot exist. Any
other periodic orbit is a combination of these two cases so any periodic trajectory
is not possible unless it is contained within Γf ∩ ΓCLV

• Note that semi contraction for δx0 does not imply that x0 monotonically approaches
Γf , only that it approaches Γf asymptotically. It fact even for the simplest strictly
increasing monotone immune response function (linear) x0 oscillates around Γf ∩
ΓCLV .

In addition we can apply the estimates from Section 4.2 to the lower block matrix of
Mdot in Theorem 14 to determine if this matrix is negative definite or not (and so ensure
FCLV (n) is contracting). For convenience we use Mdot,L to denote this lower matrix.
The entries of the contraction metric chosen in Theorem 14 (other than M0,0(x) = 1) can
be thought of as the ratio between the rate of change of the immune response function,
over the rate of change of a species in response to the change in the immune response.
The following is lemma is an sufficient condition in terms of these ratios to ensure the
stability of FCLV (n) in the interior of Rn

+.

Lemma 15. FCLV (n) (with a strictly increasing monotone immune response function)
is contracting in the interior of Rn

+ if either µ1(Mdot,L) or µ∞(Mdot,L) is negative definite
(given by equations (4.76) and (4.77) respectively).

Proof. We focus on FCLV (2) first then generalize for n ≥ 3. We denote the diagonal
entries of M(x) as Mi,i with i ∈ [0, n] with M0,0 being the first entry (to keep the notation
consistent to the FCLV (n) system). Mdot,L for FCLV (2) in terms of Mi,i(x) is as follows.

Mdot,L =(
2M1,1(1− a10x0 − 2a11x1 − a12x2) + dM1,1

dt
−a12M1,1x1 − a21M2,2x2

−a12M1,1x1 − a21M2,2x2 2M2,2(1− a20x0 − a21x1 − 2a22x2) + dM2,2

dt

)
.

(4.73)
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Note that a necessary condition for negative definiteness of a matrix (for matrix measures
µ1, µ2, µ∞) is that the trace of a matrix is negative definite. Using this and the fact that
Mdot,L is symmetric we have the following inequality:

λmax(Mdot,L) ≤max{2M1,1(1− a10x0 − 2a11x1 − a12x2) +
dM1,1

dt

+ 2M2,2(1− a20x0 − a21x1 − 2a22x2) +
dM2,2

dt
}

+ a12M1,1x1 + a21M2,2x2.

(4.74)

Note that the largest eigenvalue of the matrix,(
0 −a12M1,1x1 − a21M2,2x2

−a12M1,1x1 − a21M2,2x2 0

)
, (4.75)

is a12M1,1x1 + a21M2,2x2. To extend this result to Mdot,L for FCLV (n) we use the
condition that contraction with respect to µ1, µ∞ requires a negative definite diagonal
entries and diagonal dominance. We have the following (note i subscript denotes rows
and j subscript denotes columns):

µ1(Mdot,L) =

max
j∈[1,n]

2Mi,i(1− aiixi −
n∑
j=0

aijxj) +
dMi,i

dt
+
∑
i 6=j

(
aijMi,ixi + ajiMj,jxj

) ,
(4.76)

µ∞(Mdot,L) =

max
i∈[1,n]

2Mi,i(1− aiixi −
n∑
j=0

aijxj) +
dMi,i

dt
+
∑
i 6=j

(
aijMi,ixi + ajiMj,jxj

) ,
(4.77)

λmax(Mdot,L) ≤ min{µ1(Mdot,L), µ∞(Mdot,L)}. (4.78)

Thus if µ1(Mdot,L) or µ∞(Mdot,L) is negative definite all the eigenvalues are of Mdot are
negative definite and thus FCLV (n) is contracting in the interior of Rn

+.

Finally using Theorem 14 we can note a connection between FCLV (n) systems and
CLV (n) systems.

Lemma 16. Consider a FCLV (n) system and CLV (n, b) system (a CLV (n) with de-

pendence on vector b) with the following community matrix A =
(
aij
ai0

)
ij
, i, j ∈ [1, n] and

the components of b are bi = 1
ai0
−f(x∗). By construction if FCLV (n) has a interior fixed

point, then both systems have an interior fixed point and same x∗1, . . . , x
∗
n components.

The interior fixed point of a FCLV (n) system with ∂f
∂xi

= xi ∀i ∈ [1, n] is locally
stable if and only if the interior fixed point of CLV (n, b) is locally stable.

Proof. We consider a CLV (n, b) system with the community matrix described in the
conditions of the lemma. The Jacobian for any CLV (n, b) system can be written as

J(CLV (n, b)) = Diag(b− Ax)−Diag(x)A. (4.79)
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Note that at the interior fixed point x∗ of CLV (n, b)

J(CLV (n, b)) = −Diag(x∗)A. (4.80)

The symmetric part of J(CLV (n, b)) at x∗ is

Js(CLV (n, b)) =
−a11
a10
x∗1

1
2
(−a12

a10
x∗1 − a21

a20
x∗2) . . . 1

2
(−a1n

a10
x∗1 − an1

an0
x∗n)

1
2
(−a12

a10
x∗1 − a21

a20
x∗2) −a22

a20
x∗2 . . . 1

2
(−a2n

a20
x∗2 − an2

an0
x∗n)

...
...

. . .
...

1
2
(−a1n

a10
x∗1 − an1

an0
x∗n) 1

2
(−a2n

a20
x∗2 − an2

an0
x∗n) . . . −ann

an0
x∗n

 .
(4.81)

From Theorem 14 at the interior fixed point x∗ of FCLV (n) the matrix Mdot,L is

Mdot,L(x∗) =
−2a11

a10
fx1(x

∗) −a12
a10
fx1(x

∗)− a21
a20
fx2(x

∗) . . . −a1n
a10
fx1(x

∗)− an1

an0
fxn(x∗)

−a12
a10
fx1(x

∗)− a21
a20
fx2(x

∗) −a22
a20
fx2(x

∗) . . . −a2n
a20
fx2(x

∗)− an2

an0
fxn(x∗)

...
...

. . .
...

−a1n
a10
fx1(x

∗)− an1

an0
fxn(x∗) −a2n

a20
fx2(x

∗)− an2

an0
fxn(x∗) . . . −ann

an0
fxn(x∗)

. (4.82)

It is clear to see that Mdot,L = 2Js(CLV (n, b)) if ∂f
∂xi

= xi ∀i ∈ [1, n] and that if either
is negative definite both systems are contracting at x∗ (which is equivalent to x∗ being
locally stable).

The above lemma suggests shows that there is a link between the stability of FCLV (n)
systems and CLV (n) systems with a carrying capacity b. Lemma 16 is for the case where
the stability for both types of systems is exactly the same near the interior equilibrium.
For more complex immune response functions the connection becomes more tenuous.

4.3.2 Discussion on Semi Contraction

Theorem 14 is similar to the behaviour of cascading systems in that the contraction
behaviour of one or more components is independent the rest of the system. We can
think of the choice of contraction metric in Theorem 14 as the one which transforms
FCLV (n) into system which has cascading behaviour. However use of this contraction
metric comes with its own catch, the CLV (n) part of the FCLV (n) becomes Mdot,L

which is much more difficult to analyse in general. Nevertheless the use of metric is useful
as it qualitative conclusions to be proved easily. Admittedly the biggest restriction of
Theorem 14 is that it has been limited to apply to immune response functions whose
partial derivatives do not change sign. Observant readers who have read the notes for
Theorem 14 may say why not combine the proposed contraction metrics into a single
piecewise continuous contraction metric. To the authors best knowledge there has been
no significant research into the area of partially continuous contraction metrics. There
are obvious problems with piecewise continuous contraction metrics, for example, while
the existence of a contraction metric implies convergence to a single fixed point in the
region in which it is defined, a piecewise continuous metric constructed by combining
continuous metrics would not have this property.
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4.4 Convergence Rates to Γf

We expand on Section 4.3 by showing the rate at which the solutions of FCLV (n)
converge to Γf . Using the contraction metric given by Theorem 14 we have the following
for the x0-component

d

dt
(δx0Mδx0) ≤ −β(δx0)2. (4.83)

The rate at which FCLV (n) semi-contracts, β, in this case is equal to 2. So for any
initial conditions x1, x2 if f(P,B) is strictly increasing then

||x0(x1
0, t)− x0(x2

0, t)|| ≤ k||x1
0 − x2

0||e−βt, (4.84)

||x0(x1
0, t)− x0(x2

0, t)|| ≤ ||x1
0 − x2

0||e−2t. (4.85)

Note that for the value of k is given by Lemma 1 in [19] and that the bound (4.85) is
a local result (if FCLV (n) only had one attracting fixed point it would be global). It
does not hold if x1 and x2 are within two different basins of attraction. Fig. 4.1 shows
an example FCLV (2) system and a plot of the competent of the x0 trajectories bounded
by (4.85). Notice that some of the trajectories over shoot Γf , that is they move Γf then
bend back towards Γf . We know which trajectories have a local maxima or minima in
Fig. 4.1b. This overshooting causes some of the trajectories to oscillate around Γf∩ΓCLV .
If we increase the partial derivatives of f the magnitude of oscillations become move
extreme. Conversely if f(x) = 0 there are no oscillations and all x0 components decrease
monotonically (see Fig. 4.2).
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(a) Phase plot
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(b) x0 components

Figure 4.1: A example FCLV (2) system with f(P,B) = P
2

+ 10 B
1+B

and community
matrix (5.52). Fig. 4.1a is the phase plot of the system, where the black line is Γf ∩
ΓCLV . Fig. 4.1b is the x0-component versus time graph the black lines indicate the
upper and lower bounds given by inequality (4.85), given the random initial starting
trajectories. Because there is one stable fixed point on Γf ∩ ΓCLV with x0 ≈ 9.5 all
trajectories x0-component converges to this value. Note that some trajectories oscillate
around Γf ∩ ΓCLV .

(a) Phase plot
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(b) x0 components

Figure 4.2: The same system as in Fig. 4.1 (including same initial conditions) except
f(P,B) = 0. The black lines indicate the bounds given by x0 = x0

0e
−t, where x0

0 is the
initial value of the x0 component. In comparison to Fig. 4.1b, Fig. 4.2b shows that the
system components converge in a monotone manner.
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While convergence to Γf is guaranteed the invariance of Γf is not from semi-contraction
alone. We lay out here two different arguments one that is conditional on the speed at
which x1, ...xn contract based on perturbation theory, the other is much stronger and
guarantees the eventually monotonicity and convergence of solutions of FCLV (n) to a
n− 1 invariant subspace.

Lemma 17. If we assume that the x0 contracts faster than x1, ..., xn then FCLV (n)
systems are eventually monotone.

Proof. Because x0 is always semi-contracting while the x1, ..., xn are not guaranteed to be
semi-contracting in general it is safe to assume that x′0 will vanish faster than x′1, ..., x

′
n.

In that case we can write a FCLV (n) system as the following singular perturbation
problem with 0 < ε << 1,

ε
dx0

dt
= f(x1, ..., xn)− x0,

dxi
dt

= xi(1−
n∑
j=0

aijxj) aij > 0, i = 1, ..., n.
(4.86)

As ε→ 0 then x0 → f(x1, ..., xn), the resulting system

dxi
dt

= xi(1− a10f(x1, ..., xn)−
n∑
j=1

aijxj) aij > 0, i = 1, ..., n, (4.87)

has a Jacobian
1−

∑n
j=1 a1jxj − a10f(x)− x1(a11 + a10

∂f
∂x1

) . . . (−a1n − a10
∂f
∂x1

)x1

...
. . .

...

(−an1 − an0
∂f
∂x1

)xn . . . 1−
∑n

j=1 anjxj − an0f(x)− xn(ann + an0
∂f
∂xn

)

. (4.88)

with negative off diagonal entries meaning the system is competitive. So as long as the
assumption holds FCLV (n) systems will be eventually monotone.

Theorem 18. Because FCLV (n) systems are monotone on Γf , FCLV (n) systems are
eventually monotone and will reach an invariant subset within Γf .

Proof. To prove the statement of the theorem we need to note that any periodic orbit
needs to either be contained in within Γf or pass through Γf twice. If there was a
periodic orbit that did not satisfy this requirement it would contradict the x0 component
of the vector field. On Γf ( the local vector field is monotone (see system (4.87) and
it’s associated Jacobian (4.88)). The monotone nature of the system on Γf means that
each time a solution passes through Γf it moves closer towards ΓCLV (the ω-limit set of
a FCLV (n) if x0 is held constant). For a solution that keeps entering and exiting Γf
the radius of the periodic trajectory must decrease moving towards Γf ∩ΓCLV upon each
time it enters Γf . Therefore there cannot be a periodic or recurrent trajectory outside
of Γf ∩ ΓCLV . The curve Γf ∩ ΓCLV is invariant as the x0, x1, ..., xn components of the
vector field point inwards. Therefore once solutions reach Γf ∩ ΓCLV solutions will be
monotone and so FCLV (n) will be eventually monotone.
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If FCLV (n) was not monotone convergence to Γf does occur but there could be
periodic trajectories or recurrent behaviour outside of Γf ∩ ΓCLV and thus the system
would not be eventually monotone.

Now that we have fully covered how to apply contraction theory to a general FCLV (n)
system. In the next section we specially focus on FCLV (2) systems focusing on examples
and additional theorems specific to the n = 2 case.



Chapter 5

Characterization of FCLV (2)
Systems With Focus on Competition
Between Plasmodium and AS1

Having established the semi-contraction of FCLV (n) systems in Section 4.3, in the x0

direction it is relatively simple to determine the remaining properties of FCLV (2) sys-
tems because the possibility of periodic orbits and chaotic behaviour has been eliminated.
We now focus on our original motivation analysing the competition between Plasmodium
and AS1. We demonstrate the simple model of one compartment competition between
Plasmodium and AS1 can be nondimensionalized to have the same number of parameters
as a FCLV (2). Next using methods traditional dynamical systems methods to analyse
the stability of fixed points. We finish by providing so examples of FCLV (2) systems
where we should how contraction region gives rough estimates for basins of attraction.

5.1 Notes on Figures

To avoid excessive repetition in the explanation of figures we explain elements common to
most figures in Section 5. First to reduce clutter, instead of listing the aij parameters of
each example FCLV (n) and CLV (n) system in the main text, the values are organized
into A matrices which can all be found in Section 5.5, and we will refer to the section as
needed. Next, most figures use random initial conditions, with each trajectory starting
from an different initial condition being coloured differently. These initial conditions are
within what we call the bounding box (which is included in some figures as a blue box).
We define the bounding box as

Bounding Box = {x ∈ Rn+1 : l0 ≤ x0 ≤ k0 ∧ . . . ∧ ln ≤ xn ≤ kn} (5.1)

pmin = {l0, l1, . . . , 1n} = {0, . . . , 0} Lower corner of the box (5.2)

pmax = {k0, k1, . . . , kn} = {fmax,
1

a11

, . . . ,
1

ann
} Upper corner of the box

(5.3)
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where fmax is the maximum value of f on Ω = {x ∈ Rn
+ : 0 ≤ xi ≤ 1

aii
, 1 ≤ i ≤ n} and ∧

denotes the wedge product. We called this box the bounding box because all solutions of
FCLV (n) (or CLV (n) systems if we remove the x0 coordinate) converge to some region
within the bounding box (see Section 2.2). If we choose initial conditions too far away
from the bounding box, some initial conditions maybe in the basin of attraction of the
origin (we will take about this case more in Section 5.4.1). As we are mostly interested
in the behaviour of FCLV (n) systems not in the basin of attraction of the origin or the
boundary of Rn

+, we choose random initial conditions near the bounding box that are in
the interior of Rn

+ (as initial conditions on the boundary of Rn
+ are invariant). Finally,

fixed points are always denoted with a red sphere and on some figures we include either
the carrying simplex (for CLV (n) systems) or Γf ∩ ΓCLV (for FCLV (n) systems) as a
black line or black outline. These are generated by perturbing initial conditions around
unstable fixed points and then following solutions1.

For figures which show contraction regions we use colouring and shading, to show
regions where one or more eigenvalues (of the symmetric part of the Jacobian) are nega-
tive definite. The meaning of the colouring and shading for each region is defined within
figure captions. For regions where only one eigenvalues is negative definite, solutions will
converge to one dimensional subspace and solutions will escape such regions, unless the
solution converges to a chaotic trajectory, periodic trajectory, or fixed point contained
entirely within the region.

Finally we drop the x0, x1, x2 notation used throughout the previous sections for
FCLV (n) and CLV (n) for I, P,B respectively (though we change the order to P,B, I)
to emphasize the connection to modelling competition between the bacterium AS1 and
Plasmodium.

5.2 Notes on FCLV (2) for Modelling Competition in

the Mosquito Midgut

We now expand a bit more on the one compartment model for AS1 and Plasmodium
competition seen originally seen in Section 1.2, which we restate below,

I ′(t) = f(P,B)− µI, (5.4a)

P ′(t) = rP (1− αB + P

K
)− dIP, (5.4b)

B′(t) = rB(1− B

K
)− d̄IB. (5.4c)

Instead of stating the results in terms of the original model parameters in System 5.4 we
use nondimensionalization to reduce the number of parameters in equations and rewrite
(5.4a),(5.4b), and (5.4c) into a form which is equivalent to a FCLV (n) system. We
assume the following scaling:

I = Ĩ Î , P = P̃ P̂ , B = B̃B̂, t = t̃t̂,

1As far as the authour is aware this is the simplest method for visualizing Γf ∩ ΓCLV .
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where Ĩ , P̃ , B̃, t̃ are dimension-carrying scales to be chosen, and Î , P̂ , B̂, t̂ are the dimen-
sionless variables. Subbing these into our ODEs leads to

d(Ĩ Î)

d(t̃t̂)
= f(P̃ P̂ , B̃B̂)− µĨÎ, (5.5)

d(P̃ P̂ )

d(t̃t̂)
= P̃ P̂ (r − rαB̃B̂ + P̃ P̂

K
− dĨÎ), (5.6)

d(B̃B̂)

d(t̃t̂)
= B̃B̂(r − r B̃B̂

K
− d̄Ĩ Î). (5.7)

For f we let the nondimensionalization function f̂ be defined as

f̂(P̂ , B̂) ≡ 1

µ
f(P̃ P̂ , B̃B̂). (5.8)

Dividing both sides by the dimension-carrying scales we obtain,

dÎ

dt̂
=

[
t̃µ

Ĩ

]
f̂(P̂ , B̂)−

[
µt̃
]
Î , (5.9)

dP̂

dt̂
= P̂ (

[
rt̃
]
−

[
rt̃αB̃

K

]
B̂ −

[
rt̃P̃

K

]
P̂ −

[
dt̃Ĩ
]
Î), (5.10)

dB̂

dt̂
= B̂(

[
rt̃
]
−

[
rt̃B̃

K

]
B̂ −

[
d̄t̃Ĩ
]
Î), (5.11)

which can be rewritten as,

dÎ

dt̂
=

[
t̃µ

Ĩ

]
f̂(P̂ , B̂)−

[
µt̃
]
Î , (5.12)

dP̂

dt̂
= P̂ (1−

[
αB̃

K

]
B̂ −

[
P̃

K

]
P̂ −

[
dĨ

r

]
Î), (5.13)

dB̂

dt̂
= B̂(1−

[
B̃

K

]
B̂ −

[
d̄Ĩ

r

]
Î), (5.14)

where the square brackets indicate the number of independent choices for the dimension-
carrying scales Ĩ , P̃ , B̃, t̃. Out of the possible choices we set[

t̃µ

Ĩ

]
= 1,

[
µt̃
]

= 1,

so that the ODE system matches a FCLV (n) system. This implies that

t̃ =
1

µ
, Ĩ = 1.
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We can now rewrite (5.4a),(5.4b), and (5.4c) as

I ′(t) = f(P,B)− I,
P ′(t) = P (1− a11P − a12B − a10I),

B′(t) = B(1− a22B − a20I).

(5.15)

Where the constants are given by entries in the following community matrix

A =

(
a11 a12 a10

a21 a22 a20

)
=


P̃

K

αB̃

K

d

r

0
B̃

K

d̄

r

 , (5.16)

and the accents have been dropped for simplicity. From herein refer to the nondimension-
alized system (5.15) rather than the original (5.4) unless otherwise noted. Fortunately
the nondimensionalized parameters have clear and distinct biological interpretation. ai0
is proportional to the death rate of the species from the immune response of the mosquito
over the growth rate of the species, aii is inversely proportional to the carrying capacity
of Plasmodium and the AS1 bacteria in the midgut, and a12 is proportional to the com-
petitive effect of bacteria on Plasmodium, α. While the model for competition between
bacteria and Plasmodium in the mosquito model can be reduced to a FCLV (2) type
model there is an important distinction that we have so far ignored. In the analysis of
FCLV (n) models we only did analysis for models with non zero ai,j constants. With
a21 = 0, the analysis becomes very simple and we are able to obtain some of our strongest
results. We focus now on the stability of the fixed points (for completeness we find the
stability of general FCLV (2) systems first then for system (5.15)), the dimension of the
stable/unstable manifolds, and then basins of attractions. This combined with the previ-
ous theorems on contraction provide a complete view on the role of the immune response
function in the competition between Plasmodium and AS1.

5.2.1 On the Existence of the Interior Fixed Point for FCLV (2)
Systems

Before continuing we want to make a comment on the immune response function and
the existence of the interior equilibrium point. Consider the FCLV (2) systems depicted
in Fig. 5.1a and Fig. 5.1b. The both have the same coefficient matrices (5.55), but the
stability of each fixed point has changed (even the basin of attraction of P -axial fixed
point has changed).
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(a) f(P,B) = (P +B)/10 (b) f(P,B) = P +B

Figure 5.1: A FCLV (2) system with the same coefficient matrix (5.55) but two different
immune response functions. In Fig. 5.1a the system has one stable fixed point (where P
dominates) and one unstable fixed point. In Fig. 5.1b the coexisting fixed point repels
and both of the single population points are stable.

So why is there a difference between the systems depicted in Fig. 5.1a and Fig. 5.1b?
The difference is that the immune response function in Fig. 5.1a does intersect the crossing
of the nullclines

0 = 1− a11P − a12B − a10I, (5.17)

0 = 1− a21P − a22B − a20I, (5.18)

while it does in Fig. 5.1b. In general the requirement for the immune response function
to intersect the crossing of the nullclinlines is that f(P,B) needs to cross the line (the
equation below is written in vector form)

(P,B, I) =
(a22 − a12, a11 − a21, 0)

a11a22 − a12a21

+

(
a12a20 − a10a22

a11a22 − a12a21

,
a10a21 − a11a20

a11a22 − a12a21

, 1

)
I. (5.19)

We can see in Fig. 5.2 that the intersection of the nullclines does not occour for all values
of I ∈ [0,mini∈[1,2]{ 1

ai0
}] (that is the are values of I such that the line (5.19) is not in

the positive quadrant), and so there as some immune response functions which do not
cross the line (5.19). We emphasise this feature of FCLV (2) systems as uncertainty in
the immune response function has a serious effect on determining stability. That is, for
certain values of aij, such that the line (5.19) is not present in the positive quadrant for
I ∈ [0,mini∈[1,2]{ 1

ai0
}] changes in the immune response function can dramatically change

system dynamics. We will later discuss a special example in Lemma 26 were changing
the immune response function does not change the dynamics of an FCLV (2) system.
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Figure 5.2: The P,B nullclines of the FCLV (2) system pictured in Fig. 5.1a with Γf ∩
ΓCLV being labelled as black.

5.2.2 Stability of Fixed Points

We cover here a collection of small lemmas that help determine the stability of fixed
points for FCLV (2) systems. We start by examining the fixed points where the only
the Plasmodium population is non-zero and bacteria population is non-zero. We refer to
those points as the P -axial and B-axial fixed points respectively (See Lemma 4 for more
details).

Lemma 19. The axial fixed points (P ∗, 0, I∗) and (0, B∗, I∗) of a FCLV (2) system are
stable if and only if the inequalities hold respectively

1− a21P
∗ − a20I

∗ < 0, (5.20)

1− a12B
∗ − a10I

∗ < 0. (5.21)

In addition both of these fixed points have a stable manifold of at least two dimensions.

Proof. We first prove the lemma for the fixed point (P ∗, 0, I∗). The Jacobian of a

FCLV (2) system at the fixed point (P ∗, 0, I∗) is (note fP = ∂f(P,B)
∂P

and fB = ∂f(P,B)
∂B

)

J((P ∗, 0, I∗)) =

 −1 fP fB
−a10P

∗ −a11P
∗ −a12P

∗

0 0 1− a21P
∗ − a20I

∗

 . (5.22)

The characteristic polynomial of the Jacobian can be factored as

p(λ) = (λ− 1 + a21P
∗ + a20I

∗)
(
λ2 + (1 + a11P

∗)λ+ a10P
∗fP + a11P

∗) . (5.23)
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As all the coefficients of the polynomial
(
λ2 + (1 + a11P

∗)λ+ a10P
∗fP + a11P

∗) are pos-
itive the Routh–Hurwitz stability criterion guarantees that the remaining eigenvalues are
negative and there exists a stable manifold of at least two dimensions.

The same procedure as above can be used to show that the Jacobian of the fixed
point (0, B∗, I∗) has an eigenvalue of 1 − a12B

∗ − a10I
∗ and the rest of the eigenvalues

are guaranteed to be negative.

We can be more specific for system 5.15 thanks to our knowledge of the nullclines of
FCLV (2).

Lemma 20. For system 5.15, the P -axial fixed point is always unstable, so long as the
immune response function is monotone increasing and f(0, 0) = 0.

Proof. From Lemma 19 the stability of the P -axial fixed point is stable if and only if

1− a20I
∗ < 0, (5.24)

I∗ >
1

a20

, (5.25)

and at the I-axial fixed point,

f(P ∗, 0) >
1

a20

. (5.26)

However f(P ∗, 0) < 1
a20

, because f is monotone, increasing and f(0, 0) = 0, so Γf must
cross the nucllines

0 = 1− a11P − a12B − a10I, (5.27)

0 = 1− a22B − a20I, (5.28)

at points where the I-component is less than min{ 1
a10
, 1
a20
}. Therefore the P -axial point

is always unstable.

For the stability of the interior fixed point (also known as the coexistence fixed point
as both Plasmodium and AS1 at this fixed point) we have the following Lemma.

Lemma 21. If a11a22 − a12a21 + (a10a22 − a12a20)∂f(P,B)
∂P

+ (a11a20 − a10a21)∂f(P,B)
∂B

and
a11a22−a12a21 are both positive definite then the interior fixed point of a FCLV (2) system
(if it exists) is stable.

Proof. The Jacobian of FCLV (n) at an interior equilibrium point is (note fP = ∂f(P,B)
∂P

and fB = ∂f(P,B)
∂B

)

J((P ∗, B∗, I∗)) =

 −1 fP fB
−a10P

∗ −a11P
∗ −a12P

∗

−a20B
∗ −a21B

∗ −a22B
∗

 . (5.29)
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The characteristic polynomial of the Jacobian is

P (λ) = λ3 + q2λ
2 + q1λ+ q0, (5.30)

q2 = 1 + a11P
∗ + a22B

∗,

q1 = (a11a22 − a12a21)P ∗B∗ + (a11 + a10)P ∗fP + (a22 + a20)B∗fB,

q0 =
(
a11a22 − a12a21 + (a10a22 − a12a20)fP + (a11a20 − a10a21)fB

)
P ∗B∗.

(5.31)

We can use Routh–Hurwitz stability criterion on the characteristic polynomial (5.30)
to determine conditions under which all eigenvalues have negative real parts. The first
condition in required by the Routh–Hurwitz stability criterion is that all coefficients are
positive. This holds if a11a22 − a12a21 > 0 and a11a22 − a12a21 + (a10a22 − a12a20)fP +
(a11a20 − a10a21)fB > 0. The second condition that needs to be satisfied is

(1 + a11P
∗ + a22B

∗)
(
(a11a22 − a12a21)P ∗B∗ + (a11 + a10)P ∗fP + (a22 + a20)B∗fB

)
>
(
a11a22 − a12a21 + (a10a22 − a12a20)fP + (a11a20 − a10a21)fB

)
P ∗B∗. (5.32)

Rearranging and simplifying we have

(a11P
∗ + a22B

∗)
(
1 + a11P

∗ + a22B
∗ + (a11a22 − a12a21)P ∗B∗

)
+ (a10 + a10a11P

∗ + a12a20B
∗)P ∗fP + (a20 + a20a22P

∗ + a21a20B
∗)B∗fB > 0

(5.33)

which holds because we have already assumed that a11a22 − a12a21 > 0. We em-
phasize again that a11a22 − a12a21 > 0 and a11a22 − a12a21 + (a10a22 − a12a20)fP +
(a11a20 − a10a21)fB > 0 are sufficient, easy to verify conditions, and are not the nec-
essary conditions. The full necessary and sufficient conditions are given by the con-
ditions of the Routh-Huritz stability criterion, that is the coefficients (5.31) satisfy
q1 > 0, q0 > 0, q1q2 − q0 > 0.

We can delve a bit further than Lemma 21 by examining the Routh array from the
Routh-Hurwitz conditions are derived from.

Lemma 22. The interior fixed point of FCLV (2) has a stable manifold of at least one
dimension.

Proof. The Routh array of the characteristic polynomial (5.30) is
1 q1

q2 q0
q1q2−q0

q2
0

q0 0

 , (5.34)

where q2, q1, q0 are coefficients given in (5.31). The number of sign changes in the first
column of (5.34) is the number of eigenvalues with positive real parts. As q2 > 0 there
can be at most two sign changes, that is q1q2− q0 < 0, q0 > 0 so there are two eigenvalues
with positive real parts. So the interior fixed point must have at least one negative
eigenvalue, which from the stable manifold theorem, there is at least a one dimensional
stable manifold.
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The Routh array in Lemma 22 also gives the necessary and sufficient conditions for
one and two dimensional unstable manifolds. If the coefficients (5.31), satisfy q2 >
0, q1q2 − q0 < 0, q0 > 0 there are two sign changes in the Routh array, so there is a two
dimensional unstable manifold. If q1q2 − q0 < 0, q0 < 0 or q1q2 − q0 > 0, q0 < 0 there
is one sign change in the Routh array, so there is a one dimensional unstable manifold.
The existence of the one dimensional stable manifold is important because it divides the
phase space into three basins of attraction (one for each fixed point). We have one final
Lemma which clarifies this relationship further.

Lemma 23. For system (5.15) if a10a22 − a12a20 > 0 or q0 > 0 the interior fixed point
is attracting. Otherwise if q0 < 0 there is one dimensional unstable manifold which is
composed of two heteroclinic orbits.

Proof. The statement is obtained from Lemmas 21 and 22 if a21 = 0. If a21 = 0 then
q1q2 − q0 is always positive. Examining the Routh array (5.34) only q0 can be negative
thus if q0 > 0 at the interior fixed point it is attracting and has a three dimensional
stable manifold. Conversely if q0 < 0 then the system has a one dimensional unstable
manifold (as shown later with examples this agrees with contraction theory). To prove
that the one dimensional unstable manifold is composed of two heteroclinic orbits we use
two previous results. First the B and P axial points always exist, second the system is
eventually monotone converging to a one dimensional space due to Theorem 18. Suppose
that the one dimensional unstable manifold does not connect to the stable manifolds of
the P -axial and B-axial fixed points on each side. Then we have a contradiction with
Theorem 18 as the carrying simplex is not unique. This would cause a contradiction
as the monotone system which a FCLV (n) system converges to in Theorem 18, has a
single carrying simplex. Therefore from an unstable interior fixed point there must be
two heteroclinic orbits which connect to the axial fixed points.

We mention but do not prove (the proof is similar to Lemma 23 and we provide
examples that shows it is true) that if the fixed point is attracting there are still two
heteroclinic orbits but the direction is from the axial fixed points to interior fixed point.

Now that the important theorems related to fixed points have been covered, we change
our focus to the other benefit2 of contraction theory, estimating basin of attractions.

5.3 Basins of Attraction for FCLV(2) Systems

Basins of attraction are important for understanding the behaviour of systems with
multiple attractors. While it is necessary for a fixed point to have a contraction region
around it, with a system with multiple fixed points or attractors contraction regions will
under or overestimate basins of attraction for the following reasons:

• A basin of attraction includes regions which are not contracting. For example
consider the region near the trivial fixed point of a CLV (n) system whose ω-limit
set consists of fixed points. The region repels all solutions, so it is cannot be a

2The first main benefit the semi-contraction of I, which causes the system to be eventually monotone.
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contracting region. Nevertheless all solutions which start in this region are in the
basin of attraction for a fixed point. So any contraction region is an underestimate
for the basins of attraction.

• Convergence to a fixed point is guaranteed only if the contraction region is spherical.
If the region is not spherical it is possible for solutions to escape (if the region is
convex rather than spherical the radial distance between trajectories decrease, but
the tangential velocities do not vanish so trajectories can escape).As our examples
will show, most contraction regions will not be spherical and so will overestimate
basins of attraction. However if we just restrict ourselves to contraction regions
within a closed ball centred at a fixed point we are underestimating the basin of
attraction.

So at best contraction regions are estimates for basins of attraction. There are tech-
niques which refine estimates for basins of attraction. In addition from the requirement
that contraction regions need to be spherical to guarantee convergence, we come to the
following small lemma.

Lemma 24. If a FCLV (2) has an interior fixed point then the largest possible region of
contraction that guarantees convergence for an axial fixed points is

{(P,B, I) ∈ Rn
+|d((P,B, I), (P ∗A, B

∗
A, I

∗
A)) < r and P,B, I ≥ 0} (5.35)

where r = d
(
(P ∗A, B

∗
A, I

∗
A), (P ∗int, B

∗
int, I

∗
int)
)
, (P ∗A, B

∗
A, I

∗
A) is the axial fixed point, and

(P ∗int, B
∗
int, I

∗
int) is the interior fixed point.

Proof. Again if the contraction region is not spherical then solutions can escape from
it, so the region in the statement of the lemma must be spherical. Now that we have
a specific shape (a ball) suppose that the contraction region is larger than the ball 5.35
centred at an axial fixed point. We would have a contradiction as the ball will contain
two fixed points and be a region of contraction which is not possible, therefore the region
needs to be smaller. An open ball (which does not include the interior fixed point) will
be the largest region of contraction such that contracting solutions do not escape the
region and contain only one fixed point. Note that the actual contracting region may be
much smaller than the region suggested in this lemma.

Before applying contraction metrics to FCLV (2) systems to use as indicators of
basin of attractions we lay out a few simple rules that are useful for determining basins
of attractions.

5.3.1 Simple Rules for Contraction Metrics

We layout here simple rules for finding contraction metrics. These rules consist of sugges-
tions and checks, designed to make it simple to find valid contraction metrics. In contrast
to the literature who’s focus is often on metrics found using computational methods3,

3If there isn’t a focus on computational methods, the focus is on metrics which can cover the whole
system, because the system has one fixed point.
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the focus here is to get qualitative information quickly for systems with multiple fixed
points. We believe these rules can and should be used for other systems to obtain a quick
understanding of system behaviour4.

• Contraction metrics should be as simple as possible with the least dependence on
parameters as possible.

• If possible contraction metrics should be restricted to diagonal matrices. Choosing
to find metrics in the space of non-diagonal matrices makes both the numerical
and analytical search for good metrics significantly more complicated. At the time
of writing it is not clear that the trade off in terms of complexity for examining
non-diagonal contraction metrics is worth the insight into the dynamics.

• In most cases it is easier to find a Θ that is non singular and then calculate M ,
rather than finding a positive definite M and then finding Θ.

• Only eigenvalues at fixed points are coordinate invariant, but differ in the rest of
the state space. That is for any fixed point x∗, J(f(x∗)) and Jg(f(x∗)) have the
same eigenvalues for any Θ as

Jg(f(x∗)) = J(f(x∗)), (5.36)

= ΘJ(f(x∗))Θ−1. (5.37)

So J(f(x∗)) and Jg(f(x∗)) are similar matrices and so have the same eigenvalues.
But if x 6= x∗ then

Jg(f(x∗)) = (Θ̇ + ΘJ(f(x∗)))Θ−1 6= ΘJ(f(x∗)))Θ−1. (5.38)

However, in general, the eigenvalues of the symmetric part of the Jacobian are not
coordinate invariant as

Jgs(f(x∗)) =
ΘJs(f(x∗))Θ−1 + Θ−TJs(f(x∗))ΘT

2
. (5.39)

So J(f(x∗)) and Jg(f(x∗)) are similar matrices.

• If the contraction region is not convex it is possible for two fixed points to be
present in the same region.

• As discussed in previous sections for systems with multiple equilibrium points it
will not be possible to find a single contraction metric/change of coordinates such
that the entire state space is contracting. When comparing multiple contraction
metrics to study the same region, the condition for any point to be in a contraction
region is for the largest eigenvalue of any generalized Jacobian at that point to be
negative. Likewise for any point to be expanding (the opposite of contracting) the
smallest eigenvalue of every generalized Jacobian at that point needs to be positive.
It follows that it is much simpler to prove a point is in a contraction region rather
than an expanding region.

4As far as the authour is aware a collection of such rules has not been proposed in the literature.



5.3. Basins of Attraction for FCLV(2) Systems 63

• From the above it follows the ideally one should choose Θ that is non singular
over the largest possible state space (and that it should be easy to verify that Θ is
non-singular).

The main point which we emphasize here is that even non-optimal metrics can provide
useful information.

5.3.2 Examples of Contracting Systems

We first consider a bistable CLV (2) system depicted in Fig. 5.3. We can overlay informa-
tion on the phase plot, starting with the eigenvalues associated with the identity metric
in Fig. 5.4. We can see the CLV (2) system is divided into four regions:

• Expanding region. All solutions are repelled from this region, which contains the
origin.

• Semi-contracting region (non-dominant eigenvalue is negative).

• Semi-contracting region (dominant eigenvalue is negative).

• Fully contracting region. Solutions are fully contracting within the region, and
because the system is bistable the ends of the carrying simplex are within this
region, causing convergence to the P and B axial fixed points.

A visual interpretation of choosing different contraction metrics (or different methods to
verify the eigenvalues) is that size and total proportion of each region changes. Fig. 5.5
shows the contraction regions with the change of the coordinates

Θ(P,B) =

(
(P +B)n + n 0

0 (P +B)n + n

)
(5.40)

where n = 2 and the contraction metric is M(P,B) = ΘTΘ (changing n changes the
size of the contraction regions). We see that using this metric refines what we previously
knew from using just the identity metric, expanding the region which is contracting.
Instead of using a different contraction metric we could look at contraction with respect
to µ1 or µ∞ metrics, as contraction under either is sufficient to guarantee contraction
(see Section 4.2.2 for details). Fig. 5.6 shows this for our example CLV (n) system. If we
want to know the largest contracting region we, can combine the fully contracting region
in Figures 5.4,5.5,5.6 to obtain a more accurate picture of contraction.
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Figure 5.3: A bistable CLV (2) system with community matrix (5.53). The black line is
the carrying simplex.
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Figure 5.4: Same system as in Fig. 5.3 but with information about the eigenvalues of
the symmetric part of the Jacobian overlayed on the phase plot. Regions where both
eigenvalues of the Jacobian are negative are blue and orange chequered. If only one
eigenvalue is negative the region is either solid orange or blue chequered. In the orange
region (either solid or chequered) the largest eigenvalue by magnitude is negative, while
in blue chequered region the smaller eigenvalue by magnitude is negative. Regions that
are white have two positive eigenvalues.
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Figure 5.5: Same system as Fig. 5.3 but with information about the eigenvalues of the
symmetric part of the generalized Jacobian (with change of coordinates matrix (5.40))
overlayed on the phase plot. Colouring of regions is the same as Fig. 5.4.
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Figure 5.6: Same as system as Fig. 5.3 but overlayed is information on the position of the
Gershgorin disks of the Jacobian (this is equivalent to contraction under the µ1 or µ∞
metrics). Orange regions have the Gershgorin disk associated with a11 entirely located
in the left hand side of the complex plane. Blue chequered regions have the Greshgorin
disk associated with a22 located in the left hand side of the complex plane. The blue
and orange chequered region has all Greshgorin discs located in the left hand side of the
complex plane.
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We can now display regions of contraction for FCLV (2) systems in two different ways.
In Fig. 5.8 we show contraction regions on the surface Γf using the eigenvalues of Mdot,L

and can display that surface in the full three dimensional phase plot (See Fig. 5.9). The
second method is to display contraction regions as a solid volume as seen in Fig. 5.10.
Each figure uses the contraction metric in Theorem 14.

Figure 5.7: The phase plot of a FCLV (2) system with a stable coexistence fixed point
system with community matrix (5.56) and f(P,B) = 5P

2+P
+ 3B

2+B
.
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Figure 5.8: A stable FCLV (2) coexistence interior fixed point system with community
matrix (5.56) and f(P,B) = 5P

2+P
+ 3B

2+B
. The regions shown are regions of contraction on

Γf . Regions where both eigenvalues of Mdot,L are negative are blue and orange chequered.
If only one eigenvalue is negative the region is either solid orange or blue chequered. In
the orange region the largest eigenvalue by magnitude is negative, while in blue chequered
region the smaller eigenvalue by magnitude is negative. Regions that are white have two
positive eigenvalues.

Figure 5.9: A stable FCLV (2) coexistence interior fixed point system with community
matrix (5.56) and f(P,B) = 5P

2+P
+ 3B

2+B
. The regions shown are regions of contraction

on Γf here shown in three dimensional space with Γf ∩ ΓCLV added. Colouring of the
regions are the same as Fig. 5.8.
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Figure 5.10: A stable FCLV (2) coexistence interior fixed point system with community
matrix (5.56) and f(P,B) = 5P

2+P
+ 3B

2+B
. Here we show the fully contracting region of

system where both eigenvalues of Mdot,L are negative. As Mdot always has one negative
eigenvalue we only need to track if the values of Mdot,L are negative.

5.4 Important Questions in the Competition Plas-

modium and AS1

We finish our investigate of system (5.15) by answering three important questions with
regards to the competition between Plasmodium and AS1. The focus of these questions
is what type of intervention specifically: Is adding more initial AS1 bacteria effective?
Can the immune system of the mosquito change the competition outcome between Plas-
modium and AS1? And most importantly how strong does AS1 need to be to eliminate
Plasmodium?

5.4.1 The Effect of Introducing AS1 to a Mosquito Already
Colonized by Plasmodium

One of the central questions that we want to answer is what are the necessary condi-
tions to ensure that Plasmodium is eliminated from the mosquito midgut or reduce the
population of Plasmodium in the long term. In the context of FCLV (n) models this
translates to if the fixed point (I∗, P ∗, 0) of the FCLV (2) system (5.15) is stable un-
der the introduction of non-zero population of AS15. To solidify our ideas we use the

5We do not say perturbation as it is not a realistic assumption that the introduced population of AS1
is small.
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following notation

Inew = I∗old Pnew = P ∗old Bnew = ∆B (5.41)

where (Inew, Pnew, Bnew) is the initial condition of system (5.15) after adding some sudden
∆B and I∗old, P

∗
old are the values of I∗ and P ∗ at the P -axis fixed point (important note

is that we do not assume that 0 = f(Pnew,∆B) − Inew at least initially). The inter-
vention of adding ∆B should be considered successful if the population of Plasmodium
collapses (e.g. either both populations collapse or only the population of AS1 remains).
We consider the intervention is semi-successful if the total population of Plasmodium is
reduced but not eliminated (since periodic trajectories are not allowed) this means the
long term behaviour is towards the coexistence fixed point which will always have a lower
population of Plasmodium than the Plasmodium axial fixed point. The intervention will
be considered unsuccessful if the Plasmodium population is not reduced (that is the so-
lution converges to the Plasmodium axial fixed point). The population collapse case is
interesting because it is not possible in a CLV (n) system and depends highly on the
immune response function chosen. Lemma 25 is a useful rule for detecting whether it is
possible for a population to collapse.

Lemma 25. A necessary condition for a particular solution of system (5.15) to reach
the origin (0, 0, 0) if the I component of the initial condition is I0 < mini∈1,2

1
ai0

is that

max{f(B,P )} > mini∈1,2
1
ai0

.

Proof. As mentioned earlier in Section 2.2 there is a point on the I-axis, (mini∈1,2
1
ai0
, 0, 0),

which all points must travel to reach (0, 0, 0). Except for the initial condition and
the time it takes for the system to first cross f(P,B) − I = 0 the maximum value
at which I can obtain is max{f(P,B)}. So an initial condition I0 < mini∈1,2

1
ai0

will

never reach (mini∈1,2
1
ai0
, 0, 0) if max{f(P,B)} < mini∈1,2

1
ai0

. However max{f(P,B)} >
mini∈1,2

1
ai0

is not sufficient to guarantee that a solution will that initial condition to

reach (mini∈1,2
1
ai0
, 0, 0). The sufficient requirement is that max{f(P,B)} is sufficiently

large such that when a solution crosses f(P,B) − I = 0 it reaches the I-axis before
I(t) < mini∈1,2

1
ai0

.

Lemma 25 is important as, for example, a system with a10 = 1
4
, a20 = 1

5
and a satu-

rating immune response function f(P,B) = P
1+P

+ 3B
2+B

cannot have a population collapse

given a initial condition (Inew, Pnew,∆B) as max{f(P,B)} = 2.5 < mini∈1,2
1
ai0

= 4 and

I∗ < mini∈1,2
1
ai0

. This system has the immune response function that must cross the
other nullclines at a point lower then which the P and B nullclines cross the I-axis. This
shows that there are certain cases where no matter how large ∆B, Plasmodium will not
eliminated. Likewise if there is no coexistence fixed point and the Plasmodium axial fixed
point is unstable than any intervention will be successful. Likewise if the Plasmodium
axial fixed point is stable any ∆B is not sufficiently large to cause a population collapse.
We summarize the effect of interventions on systems within Tables 5.1 and 5.2.
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Successful Semi-Successful Unsuccessful

1� ∆B > 0
• Coexistence fp does not exist.
• At P -axial fp 1− a20I

∗ > 0
• At B-axial fp 1− a12B

∗ − a10I
∗ < 0

• Interior fp exists
• q0 > 0 at interior fp

• At P -axial fp 1− a20I
∗ < 0

1
a22
≥ ∆B � 0

• At B-axial fp 1− a12B
∗ − a10I

∗ < 0
• Solution in the basin of B-axial fp

• Interior fp exists
• q0 > 0 at interior fp exists

• At P -axial fp 1− a20I
∗ < 0

• Solution in the basin of P -axial fp

Table 5.1: A summary of the possible results of adding a population of AS1, ∆B, as an
intervention to eliminate Plasmodium. To keep the table compact we used the abbrevia-
tions fp for fixed point, and basin for basin of attraction. For larger interventions of ∆B,
see Table 5.2.

Both Populations Collapse At Least One Species Remains

∆B > 1
a22

• Lemma 25 is satisfied.
• Solution is within the basin of attraction of (mini∈1,2{ 1

ai0
}, 0, 0)

See Row 2 of Table 5.1

Table 5.2: A summary of the possible results of adding a population of AS1, ∆B, as
an intervention to eliminate Plasmodium for large ∆B. See Table 5.1 for the results of
smaller interventions.

5.4.2 Can the Immune System Change the Outcome of Plas-
modium and AS1 Competition?

An important question about system (5.15) is whether the immune system can change the
outcome of competition of between Plasmodium and AS1. To clarify when we mean both
the immune response function (which controls how much the immune system is activated
in response to Plasmodium and AS1) and the a10, a20 coefficients (which controls how
much the growth rate of Plasmodium and AS1 are decreased when the immune response
increases). If we refer to just changes in the immune response function, we will assume
that the a10, a20 do not change.

If we remove the immune system (I(t) and a10, a20 are removed) from system (5.15)
we have a CLV (2) system whose community matrix is(

a11 a12

0 a22

)
. (5.42)

As the determinant, a11a22, is always positive the interior fixed point 6 if it exists is always
stable, so given the constraints of CLV (2) systems the B and P axial fixed points are
unstable. Likewise if the fixed point does exist then the P -axial fixed point is unstable
and the B axial point is stable7. From the lemmas in Section 5.2.2 it is apparent that
the appropriate f(P,B), a10, a20 will reverse the effects competition (that is Plasmodium
cannot be eliminated and/or the the interior fixed point if it exists is unstable).

6The interior fixed point is (P,B) = (a22−a12a11a22
, 1
a22

), so the interior fixed point exists if a22 > a12.
7The P -axial fixed point always has an eigenvalue of 1. The B-axial fixed point has eigenvalues

1− a12
a22
,−1. If 1− a12

a22
< 0 the B axial fixed point is stable and the interior fixed point does not exist.
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5.4.3 How strong does AS1 need to be to eliminate Plasmod-
ium?

Out of all parameters in system (5.15) which experimenters have the most control over
is a12 which controls the rate at which AS1 kills Plasmodium. The manner in which this
can be altered is by changing the anti-Plasmodium effector molecule. The strength of
AS1 (the magnitude of the a12 parameter) should be proportional to the effectiveness of
the anti-Plasmodium effector molecule and the amount of the effector molecule that is
produced per bacterium (we assumed earlier that AS1 cannot sense the population of
Plasmodium present, so the amount of effector molecule is proportional to a12B). The
other aij parameters and the immune response function are in comparison immutable as
they depend of the biology of wild type mosquitoes and Plasmodium.

So what changes in dynamic behaviour can we expect as a12 increases while other
parameters are fixed? It is obvious for sufficiently large a12 the B∗-axial fixed point is
stable (a12 >

1−a10I∗
B∗ where I∗ and B∗ are the values at the B∗ fixed point). We can be

more specific by using equation for the intersection of the nullclines (5.19) with a21 = 0,

(P,B, I) =

(
a22 − a12

a11a22

,
1

a22

, 0

)
+ (

a12a20 − a10a22

a11a22

,−a20

a22

, 1)I. (5.43)

The following inequality guarantee the existence of the interior fixed point (in terms of
f(P,B) where P and B are on the line (5.43))

f(P,B) <
1

a20

and a10 <
a22 + a12(a11a20a22f(P,B)− 1)

a11a2
22f(P,B)

. (5.44)

Using this information we can write a lemma for how strong a12 needs to be to ensure
that Plasmodium successfully eliminated regardless of the immune function response
function.

Lemma 26. If a12a20 − a10a22 ≤ 0, then the fixed point if it exists is stable. However,
if in addition a12 ≥ a22 then there can be no interior fixed point, and the B-axial fixed
point is stable. As long as the initial condition is not on the P -axis, the immune response
function is monotone increasing, and f(0, 0) = 0 then Plasmodium is eliminated.

Proof. If a12 > a22 then equation (5.43) shows, that the line on which the interior fixed
points are found on begins outside of the positive quadrant (if a12 = a22 the B-axial fixed
point and the interior fixed point overlap). If a12a20−a10a22 > 0 than for some I > 0 the
line on which the interior fixed points occur on will cross into the positive quadrant. So
if a10

a20
≥ a12

a22
≥ 1 the P coordinate of this line will never cross the B-axis. If (5.43) never

reaches the interior of the positive quadrant than there cannot be an interior fixed point.
If the line (5.43) crosses part of the interior of R2

+ it is still possible that there will be no
interior fixed point (that is Γf does not cross the line (5.43)).

Now we need to verify whether a10
a20
≥ a12

a22
≥ 1 guarantees the stability of the B-axial

fixed point. From Lemma 19 the condition needed for stability of the fixed point is

a12 >
1− a10I

∗

B∗
. (5.45)
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Subbing in the values of I∗ and B∗ at the B-axial fixed point we have

a12 >
1− a10f(0, B∗)

1−a20f(0,B∗)
a22

, (5.46)

a12

a22

>
1− a10f(0, B∗)

1− a20f(0, B∗)
. (5.47)

Now in order for both inequalities

a10

a20

≥ a12

a22

≥ 1 and
a12

a22

>
1− a10f(0, B∗)

1− a20f(0, B∗)
, (5.48)

to hold we need

0 < f(0, B∗) <
1

a20

. (5.49)

Inequality (5.49) holds true because f is monotonically increasing and f(0, 0) = 0, so Γf
must cross the nucllines

0 = 1− a11P − a12B − a10I, (5.50)

0 = 1− a22B − a20I, (5.51)

at points where the I-component is less than min{ 1
a10
, 1
a20
}. Thus inequality (5.49) holds.

Note that Lemma 20 shows that the P -axial fixed point is always unstable. Combining
this with the semi-contraction of x0 and any FCLV (2) system being eventually monotone
means that there can be only two possible points were all solutions of system (5.15) not
on the P -axis (which is invariant) converge to either the B-axial fixed point or the
origin. In either case System (5.15) satisfies the conditions in Lemma 26. Plasmodium is
eliminated.

5.5 Coefficient Matrices Used in Examples

There is a list of different community matrices used in Section 5. They have all been
listed in this section to reduce clutter. The community matrices for FCLV (n) systems
are A = (aij) ∈ Rn×n+1 and i ∈ [1, n], j ∈ [0, n] (the first column contains the coefficients
ai0). The community matrices for CLV (n) systems are A = (aij) ∈ Rn×n and i, j ∈ [1, n].

A =

(
1
50

1
4

1
20

1
40

0 1
26

)
(5.52)

A =

(
1
20

1
7

1
10

1
15

)
(5.53)
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A =

(
1
50

1
20

1
7

1
40

1
10

1
15

)
(5.54)

A =

(
1 1 1

0.475 1.31 2

)
(5.55)

A =

(
1.2 0.8 0.6

0.475 1.31 2

)
(5.56)



Chapter 6

Conclusion

Our simple model of the competition between AS1 and Plasmodium has lead to an inves-
tigation into contraction analysis. Contraction analysis while a powerful technique that
generalizes different common notions in dynamical systems1, has limitations. For com-
plex non-linear systems use of contraction analysis over large regions is often analytically
intractable. This becomes even more complex if there are multiple equilibrium points or
periodic orbits in the phase space of the dynamical system because there cannot be one
single contraction region that covers the entire phase space. This limits the conclusions
that can be reached by using contraction theory alone. There have been three major
ways to overcome this limitation in the literature; one: choose a system that has spe-
cial properties that makes the Jacobian simple, two: choose a system that is partially
contracting, three: show that a system contracts to smaller invariant region.

As far as the author is aware there is no dynamical system in the literature which
has been analysed by contraction analysis, where convergence to a region that is not
invariant was guaranteed and important to the analysis of the system. Although semi-
contraction has been used since the original paper on which contraction analysis was
originally purposed it has been underused. The main reason for the under use is that
there is a trade off. The subset which the systems contracts to can be very complex and
is usually non-invariant. Why semi-contraction is useful here is that the subset which
the system converges to is monotone. The monotone nature prevents the trajectories
that enter Γf from becoming periodic. A strong avenue for future research would be
finding connections between semi-contraction and monotonicity. A natural question is
what implies semi-contraction and monotonicity? Systems that semi-contract maintain
monotonicity until they reach the region that they contract towards. We conjecture that
there is a deeper connection between semi-contraction and monotonicity, but the scope
of this connection is outside the scope of this work.

Successfully applying semi-contraction to FCLV (n) systems leads to the conclusion

1While contraction analysis generalizes can generalize many different concepts, a common comparison
is between the eigenvalues of the symmetric part of the Jacobian and Lyapunov exponents [22]. That
is the eigenvalues of the symmetric part of the Jacobian can be thought of as instantaneous Lyapunov
exponent (Lyapunov exponents are not defined at a point; a finite time Lyapunov exponent is the
instantaneous Lyapunov exponent to which we are referring.) and a Lyapunov exponent can be thought
of as the average of the symmetric eigenvalue over time.
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that all solutions converge to Γf (the surface f(x1, ..., xn)− x0 = 0). Though Γf is not-
invariant all solutions tend to Γf and when solutions pass through Γf their behaviour is
determined by a CLV (n)-like system. This interaction causes FCLV (n) systems to be
eventually monotone on Γf . Thus the semi-contraction of FCLV (n) in the x0 direction
reduces the possible ω-limit set by one dimension, once the system is monotone the ω-
limit set is reduced further by one dimension. For FCLV (2) systems this means that
the ω-limit sets consists of a set of fixed points.

The simple model of AS1 and Plasmodium competition system (5.15), can be cate-
gorized as a FCLV (2) model with one of the aij parameters is equal to zero (a21 = 0).
Because semi-contraction shows that the system is eventually monotone all solutions
eventually converge to one of the fixed points. Further analysis has shown two important
results:

• The fixed point were the AS1 population is eliminated and Plasmodium is present
is always unstable.

• To ensure that Plasmodium is eliminated regardless of the immune response it is
necessary that the model parameters satisfy a10

a20
≥ a12

a22
≥ 1.

We hope that these results and the use of simple contraction metrics to determine
qualitative behaviour can be used on other systems to obtain deeper insight. We believe
our model demonstrates that given a symbiont has a high enough competitive effect
Plasmodium can be eliminated from the mosquito midgut.
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