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Abstract 

Patterns of multimorbidity are complex and difficult to summarise using static visualization 

techniques like tables and charts. We present a visual analytics system with the goal of facilitating 

the process of making sense of data collected from patients with multimorbidity. The system 

reveals underlying patterns in the data visually and interactively, which enables users to easily 

assess both prevalence and correlation estimates of different chronic diseases among multimorbid 

patients with varying characteristics. To do so, the system uses count-based conditional 

probability, binary logistic regression, softmax regression and decision tree models to dynamically 

compute and visualize prevalence and correlation estimates for subsets of the data characterized 

by a user-selected set of pre-existing chronic conditions. The system also allows the user to 

examine the impact of adjusting for characteristics like age and gender on both the prevalence 

estimates and on correlations among diseases. By dynamically changing patient characteristics of 

interest and examining the resulting visualizations, the user can explore how prevalence and 

correlation estimates change with disease diagnosis and with other patient characteristics.  This 

thesis is therefore a significant effort in understanding high-dimensional joint distributions of 

random variables and the created system can be used in any domain, such as economics, politics 

or social sciences, in which investigating the relationships between several random variables is 

vital to drawing the right conclusion.  

Keywords: multimorbidity, visual analytics system, conditional probability, binary logistic 

regression, softmax regression, decision tree  
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Summary for Lay Audience 

Multimorbidity, which is defined as the presence of multiple chronic diseases, is a growing health 

care problem especially for older adults. The traditional single-disease-centric approaches are no 

longer efficient to address the challenge of multimorbidity and a holistic framework is required to 

create effective prevention and treatment strategies. Therefore, we designed a visual analytics 

system for investigating multimorbidity patterns. Visual analytics is defined as the science of 

analytical reasoning facilitated by interactive visual interfaces. Unlike many studies in 

multimorbidity whose patterns are represented using simple tables and graphs, our system employs 

interactive visualizations. Through these visualizations, users can interact with different subsets of 

data and select a set of chronic diseases as well as several categories of age, gender and 

socioeconomic scores for investigation. To do so, the system uses statistical and machine learning 

algorithms including count-based conditional probability, binary logistic regression, softmax 

regression and decision tree to compute and visualize prevalence and correlation estimates of the 

diseases. Machine learning models are trained on the data to perform learning tasks by relying on 

patterns and inference created from the observations. Every time by every selection, the 

visualizations update the prevalence and correlation of diseases. The visual analytics system can 

be used in different areas of healthcare or other disciplines where investigating the associations 

between random variables with joint probability distributions is interesting.  
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Chapter 1 

 

1 Introduction 

1.1 Motivation 

Multimorbidity, which is known as the presence of two or more chronic conditions (The Lancet, 

2018), has been a persistent challenge for primary health care for many years (Nicholson, 2017). 

Almost one-third of adults in the world live with multimorbidity (Hajat & Stein, 2018). In 2012, 

38 million (68%) deaths worldwide were due to chronic diseases, and according to The World 

Health Organization, this number will increase to 52 million by 2030 (World Health Organization, 

2015). 

     Patients suffering from multiple chronic medical conditions are usually high-need, high-cost 

patients (Navickas et al. 2016). The higher the number of coexisting conditions and medications, 

the more challenges exist in managing people with multimorbidity in primary care (Wallace et al. 

2015). Health care systems have mostly focused on single-disease-centric frameworks rather than 

practical solutions for the prevention of multiple medical conditions (Farmer et al. 2016, Wallace 

et al. 2015). Therefore, it is necessary to enhance the prevention efforts and develop more 

integrated models of care for multimorbid patients. For this purpose, a good knowledge of 

epidemiology and risk factors is needed. Patients with specific characteristics may develop a 

particular disease. These characteristics can be categorized according to gender, age, household 

income, household education, aboriginal status, immigration status, area of residence and risk 

factors like high blood pressure, obesity, high stress, etc. Besides, analysis of the association 

between chronic diseases plays an important role in the prevention and monitoring of these 

diseases, as the patients with multimorbidity face more health risks than those living with one 

chronic illness.  
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     The volume of data generated by primary care practitioners, health care institutions, and patient 

self-reports is dramatically increasing as their tendency to update their services and use of 

Electronic Health Record (EHR) and Electronic Medical Record (EMR) systems is growing 

(Murdoch & Detsky, 2013). EHR and EMR databases are valuable, systematized platforms that 

can help researchers access more accurate and complete information about patients. The rapid 

growth of health data brings new challenges for physicians and policymakers who aim to manage 

and analyze extremely large and complex datasets. They need to communicate data effectively and 

extract patterns, associations, trends and gaps to improve and ensure the health of the public. 

Interactive visualization can be considered as an effective solution in the process of knowledge 

discovery and decision making (Shneiderman et al. 2013). The high prevalence and myriad 

combinations of chronic conditions present a good opportunity for visual analytics systems to 

examine the problem of multimorbidity and its underlying mechanisms. Visual analytics can deal 

with large, complex data extracted from EHR and EMR databases and aid stakeholders to make 

faster and more reliable decisions (Raghupathi & Raghupathi, 2018). 

     The main contribution of this thesis is to introduce a web application that is beyond simple 

charts and tabular presentation of the data and provides useful insights into multimorbidity. We 

use statistical and machine learning algorithms to identify the prevalence of different chronic 

diseases as well as the correlation estimate between each pair of diseases given varying patient 

characteristics and a set of pre-existing chronic conditions. This thesis attempts to provide a 

foundation for the design and use of visual analytics systems in examining the prevalence and 

patterns of multimorbidity. The visualizations in our system can be implemented for other 

purposes in the area of healthcare or other disciplines where high-dimensional joint distributions 

of random variables are of significance. For example, the system can be used to understand the 

relationship between economic growth and categorical variables containing economic freedom, 

political freedom and the level of income. As another example, the system can explore the effects 

of job involvement, job stress, job satisfaction, and organizational commitment on job burnout, 

adjusting for personal characteristics of gender, race, age, educational level, position, etc.  

     We present our analyses through an interactive bar chart and a dynamic correlation matrix in 

our visual analytics system. The bar graph displays disease prevalence estimated by count-based 

conditional probability, logistic regression, and decision tree models, while the correlation matrix 

employs softmax regression and decision tree to display disease association. By performing actions 
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such as selecting, filtering, ordering and comparing, the user can reach into the multimorbidity 

data to operate upon it. The actions contribute to the completion of user’s tasks leading to a series 

of reactions that occur within the representation and computing spaces. The user may perform a 

series of tasks in order to make sense of data. During the process, the user engages in cognitive 

activities such as knowledge discovery, learning, decision making and problem solving which are 

made up of the tasks. Then the user may carry out another sequence of tasks until he/she achieves 

his/her goal.  

 

1.2 Organization of the Thesis 

In this research we present our visual analytics system which is an interactive platform for 

identifying and analyzing multimorbidity patterns. In this chapter, we explained the purpose of the 

thesis and the importance of uncovering the association between chronic conditions. The rest of 

this thesis is divided into four chapters: 

     Chapter 2 presents the general background concepts of multimorbidity, primary care EMRs, 

count-based conditional probability, supervised machine learning models and visual analytics. 

This chapter also briefly discusses the use of interactive visualizations in healthcare and the 

possible challenges for designing visual analytics systems using large and complex data. Chapter 

3 provides a review of current research that is closely related to this thesis. We compare the 

contribution of our work with existing research and present some improvements. Chapter 4 

outlines the research methodology, the description of the data, the prepossessing steps, the 

components of our visual analytics system and the ways in which the user can interact with 

different parts of it. This chapter also presents the results of the research obtained from performing 

several interactive tasks. Finally, we draw conclusions from the findings, describe the limitations 

and suggest corresponding possible future work in the fifth chapter. 
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Chapter 2 

 

2 Background 

 

2.1 Multimorbidity 

Multimorbidity is defined as the co-existence of two or more chronic medical conditions within a 

single patient (Gallacher et al. 2019). There is an increase in the number of primary care patients 

with multimorbidity due to some factors like aging population or medical care improvement 

(Fortin et al. 2004). A chronic condition is a progressive, irreversible disease that lasts for a long 

time. Aetiology, duration, onset, recurrence/pattern, prognosis, sequelae, diagnosis, severity and 

prevalence are the factors by which the chronic conditions can be described (O’Halloran et al. 

2004). 

     In the fiscal year 2011/12, the prevalence of multimorbidity was reported to be 26.5% among 

Canadian adult population at the age of 40 and over (Feely et al. 2017). Patients with 

multimorbidity usually come from the households with lower incomes and lower education levels 

(Roberts et al. 2015). In addition, the co-occurrence of multiple chronic diseases increases when 

patients get older (Feely et al. 2017, Roberts et al. 2015).  Gender is another factor that influences 

the patterns of multimorbidity. According to a study conducted by Abad-Diez et al (2014), women 

present a higher prevalence in the different examined patterns of multimorbidity, and the reason 

may be in relation to their higher life expectancy and/or their worse health. Alimohammadian et 

al (2017) obtained similar results as the percentages of female patients and male patients with 

multiple disorders were 25% and 13.4%, respectively. They also highlighted that women suffer 

from multimorbidity at a younger age than men.  

     People with multi-morbid chronic diseases encounter significant challenges related to 

preventive care and self-management, since multimorbidity delays detection of early signs 
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of deterioration in patients and makes the management of taking prescription medications more 

difficult (Jowsey et al., 2009).  

     Traditional disease-focused guidelines are often not appropriate for patients with 

multimorbidity, based on the complex multiple conditions in which patients with multimorbidity 

are involved (Muth et al., 2019). These complex conditions affect the development of clinical 

decision-making skills as well (Muth et al., 2019).   

     Regarding the measurement of multimorbidity, there is a debate about whether routinely-

collected data sources are more valuable and effective than self-reported datasets. It should be 

considered that both have their pros and cons; for instance, patients may be unaware that they have 

a condition and in turn they do not report it. On the other side, clinicians and health care providers 

who collect datasets may not collect accurate information about some conditions like depression 

or may not grade the severity of chronic pain precisely (Gallacher et al. 2019). 

2.2 Primary Care  

Primary care, known as a part within primary health care, provides accessible health care services. 

It plays an important part in improving health care and preventing and diagnosing diseases, 

disorders and injuries (Health Canada, 2012). Primary health care as a broader concept includes 

both services delivered to individuals (primary care services) and population level (public health 

care), such as income, housing, education, and environment (Health Canada 2012, Muldoon et al. 

2006). 

     The integrated health care services and person-focused (not disease-oriented) care over time 

are provided by primary care clinicians who are responsible for tackling personal health care needs 

and developing sustained partnership with patients (Starfield, 1998).  

 

2.3 Primary Care EMRs 

An EMR is a system used to record and store patient’s medical information electronically and 

leads to health improvement and less medical errors (Stewart et al. 2009). EMRs facilitate the 

process of diagnosis and treatment. Compared to EHR which is an inclusive version of EMR 

available throughout diverse health care settings, EMR is not designed to be shared outside 

an organization. Using EMR databases, health care providers can improve the quality of health 
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care delivery, reduce costs and fulfil timely preventative screening and examinations. EMRs bring 

a lot of advantages, especially in primary care research and surveillance with the goal of control 

and prevention of chronic diseases (Coleman et al., 2015). 

     The aggregation of EMR data sources from several primary care practices throughout Canada 

provides stakeholders and patients with a rich source of data at a regional, provincial, and national 

level (Birtwhistle & Williamson, 2015). To do this aggregation, CPCSSN (The Canadian Primary 

Care Sentinel Surveillance Network) was established as the first and largest primary care EMR-

based database in the country. CPCSSN supports the management of eight chronic diseases 

including hypertension, diabetes, osteoarthritis, depression, chronic obstructive pulmonary 

disease, dementia, epilepsy and Parkinson’s disease. The network is being expanded to investigate 

pelvic floor disorders in women, childhood asthma, speech disorders in the elderly, chronic kidney 

disease, chronic pain and heart failure (Garies et al. 2017). 

2.4 Conditional Probability 

Conditional probability is defined as the probability of an event occurring, given that one or more 

events have already occurred. If the event A is the interest event in the presence of event B in a 

sample space S, the formula for the conditional probability of A is defined as follows: 

 𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
      when  𝑃(𝐵) > 0 (2.1) 

 

𝑃(𝐴, 𝐵) is the probability of the intersection of A and B and it means they both occur. Marginal 

probability is another term quantifying the likelihood that an event takes place regardless of other 

preceding events. As an example, a die is rolled and given the number is an even number, the 

probability that the die shows two is 
1

3
 , while the marginal probability of rolling a two is 

1

6
.  

     Equation 2.1 can be generalized for the cases with more than one condition. For example, the 

probability of C under the multiple conditions A and B is an expanded form of the equation 2.1: 

 𝑃(𝐶|𝐴 ∩ 𝐵) =
𝑃(𝐴 ∩ 𝐵 ∩ 𝐶)

𝑃(𝐵|𝐴)𝑃(𝐴)
 (2.2) 
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     Consider a binary random variable X that takes on values in {0,1}. Its Probability Mass Function 

(PMF) P(x) gives the probability that X takes on the value x. The PMF satisfies constraints that 

 𝑝(𝑥) ≥ 0 for all x, and it satisfies 𝑃(0) + 𝑃(1) = 1. 

     A binary vector-valued random variable [𝑋1, 𝑋2, . . . , 𝑋𝑝] takes on values in {0,1}𝑃. Its 

probability mass function  𝑃([𝑋1, 𝑋2, . . . , 𝑋𝑝]) gives the probability that the random vector takes 

on a particular (completely specified) sequence of values, i.e. it gives the probability that 𝑋1 = 𝑥1 

and 𝑋2 = 𝑥2, ..., and 𝑋𝑝 = 𝑥𝑝. The domain of the PMF is all binary strings of length p, it is 

nonnegative for every string of length p, and its sum over all possible binary strings of length p is 

1.0. The marginal probability of one or more of the random variables in the random vector is 

computed by summing over all possible configurations of the unspecified variables. For example, 

for  𝑝 = 2, the marginal probability that 𝑋1 = 𝑥1 is given by 𝑃([𝑋1 = 𝑥1, 𝑋2 = 0]) +

𝑃([𝑋1 = 𝑥1, 𝑋2 = 1]). We often write this simply by omitting the unspecified variables, so the 

marginal probability that 𝑋1 = 𝑥1 is written 𝑃(𝑋1 = 𝑥1). 

     A binary vector-valued random variable can be used to represent the chronic disease status of 

a patient. In this case, each 𝑋𝑖 is an indicator variable that is set to 1 if the patient has been 

diagnosed with disease i, and 0 otherwise. There are 20 chronic diseases that are commonly 

considered in the study of multimorbidity (Nicholson et al., 2015). Given a population of patients, 

we can talk about the probability distribution of this binary vector-valued random variable, which 

reflects the distribution of co-occurring chronic diseases in the population. 

     Understanding this distribution is important from a health research perspective. Most basically, 

it is important to understand the relative prevalence for each disease, which is given by the 

marginal probabilities 𝑃(𝑋𝑖 = 1). It is also important to understand when there are associations 

between diseases, meaning that the amount that they co-occur is either more or less likely than 

would be expected if they occurred independently. Statistically, this can be tested using known 

methods (e.g. Chi-squared test, Fisher's exact test.) These tests essentially compare estimates of 

the value of 𝑃(𝑋𝑖 = 1, 𝑋𝑗 = 1) to estimates of the value of 𝑃(𝑋𝑖 = 1)𝑃( 𝑋𝑗 = 1). If in fact there 

is no association between diseases i and j, these quantities will be equal. (When the probabilities 

are estimated from data, they will be near-equal.) The more different the estimates are, the more 
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evidence there is that there is dependence between the diseases -- for example, they may have a 

common cause.  

     An equivalent way of assessing dependence is to compare 𝑃(𝑋𝑖 = 1) to 𝑃(𝑋𝑖 = 1 | 𝑋𝑗 = 1), 

where the second quantity is the probability that  𝑋𝑖 = 1 among patients for whom 𝑋𝑗 = 1. This is 

known as a "conditional probability." For example, if the conditional probability is larger than the 

marginal probability, then there is a positive association between diseases i and j. 

2.5 Supervised Machine Learning 

It is useful to distinguish between three principal types of data: unstructured, semi-structured and 

structured data. Unstructured data is usually difficult to sort, store, manage and analyze through 

traditional databases and programs. Indeed, a value assignment (manually or automatically) to 

every data unit is needed for this type of data before  analysis (Balducci & Marinova, 2018). Some 

examples of unstructured data are video and audio files, texts, social media activity and NoSQL 

databases. Semi-structured data represents a lower level of organization and predictability than 

structured data. However, semi-structured data types encompass semantic tags and markings 

which make them easier to group and analyze. XML and JSON data formats are two examples of 

semi-structured data. Structured data, by contrast, is searchable and organizable in tabular formats. 

Common examples of structured data contain characters, numbers, and strings whose patterns 

make them easily understandable. In this thesis we use structured data in order to identify the 

underlying patterns of multimorbidity in patients with one or more chronic conditions.  

     Machine learning models can perform a number of sophisticated learning tasks by relying on 

patterns and inference created from the observations (training set) (Japkowicz & Shah 2011, Mohri 

et al. 2018). Indeed, these techniques are trained on data from which they learn instead of being 

explicitly programmed. Due to this potential capability, the field of machine learning is growing 

rapidly in computer science (Alpaydin, 2014). Machine learning basically tackles a wide range of 

problems involving unstructured and structured data. Within this field, two main types of 

algorithms are applied: unsupervised learning algorithms, and supervised learning algorithms. 

Unsupervised learning algorithms aim to discover underlying structure and distribution in an 

unlabelled dataset. Most of unsupervised learning algorithms group inputs into clusters hidden in 

the data so that every input can belong to only one cluster. On the contrary, supervised machine 
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learning algorithms are utilized to learn a mapping function from input variables known as 

independent variables, covariates, predictors and features (X) to an output variable, also known by 

a variety of other names including dependent variable, response variable, and target (Y):  

 𝑌 = 𝑓(𝑋) (2.3) 

     Supervised learning models recognize the patterns in a pre-existing labeled training data and 

predicts outputs for the corresponding input vectors. These models are also employed for class 

probability estimation. In other words, they predict the probability of an observation belonging to 

each known class.  

     The learning process continues until the mapping function is optimized and the machine 

learning model achieves the best possible level of performance (Schrider & Kern, 2018). 

     When training models for prediction and validating the predictive ability of those models, the 

data is sometimes split into three datasets: train, validation and test datasets. The model is initially 

trained on the training set and all parameters and weights are fit using this sample. The validation 

dataset evaluates the given models and is used to choose the best between them based on their 

performances and fine-tune the hyperparameters. Finally, the test set is used to assess the 

performance of the final model that is completely trained.  

     There are various, effective supervised machine learning algorithms including logistic 

regression, support vector machine, decision trees, k-nearest neighbor algorithm, neural networks 

and naïve bayes which are widely applied in classification problems. These algorithms are 

different in terms of the level of explainability/interpretability. For instance, linear regression, 

logistic regression and decision tree models are usually interpretable, while support vector 

machine, ensemble methods like random forests, and neural networks are mostly considered as 

less explainable models (Molnar 2019, Adadi & Berrada 2018). There is a strong demand of 

understanding the reasoning behind machine learning algorithms. Researchers attempt to satisfy 

this demand by creating a suite of machine learning techniques that generate more transparent and 

explainable models that continue to generate accurate predictions. Stakeholders in the domain of 

healthcare require researchers to justify and verify machine learning models and their results as 

this domain is faced with life and death decisions (Adadi & Berrada, 2018). 
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     Another usage of machine learning algorithm is estimating the class probability of each 

observation. A value 𝑃𝑘 ∈ [0,1] is assigned to each class k, which indicates an estimated 

probability that the observation belongs to that class, based on the selected data samples. 

     In this thesis, three machine learning algorithms of decision tree, logistic regression and a 

generalization of the logistic regression model namely softmax regression will be used to provide 

three different ways to estimate conditional probabilities. 

2.5.1 Decision Trees 

Decision tree is a supervised learning algorithm widely used in decision analysis and has a 

flowchart-like or tree-like structure. This model comprises a number of nodes, leaves and 

branches; every node tests a feature, every leaf represents the class or label of the feature and every 

branch represents the connection of the feature coming to the outcome label (Shaikhina et al. 

2017). Decision trees are constructed based on recursive partitioning. Recursive partitioning is a 

simple statistical method that creates decision trees with the goal of correctly classifying 

observations. To do so, it splits the observations into subsets given dichotomous features. Each of 

these subsets of observations may be split several times until the top-down construction stops after 

reaching a stopping criterion.  

     There are two criteria used to decide which feature to split on at each step in constructing a 

decision tree: entropy and information gain. Entropy indicates the degree of uncertainty or 

disorganization in a dataset. For example, in a sample with two classes, the entropy increases when 

the number of positive instances and the number of negative instances tend to be equal. The entropy 

decreases if the sample is homogeneous. The entropy is measured by the following equation:  

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = ∑ −𝑃𝑖 log2 𝑃𝑖

𝑐

𝑖=1

 (2.4) 

 

Where 𝑃𝑖 is the fraction of instances belonging to class 𝑖𝑡ℎ and c is the number of possible classes 

in a sample S. Information gain is the reduction of entropy and determines the amount of 

information provided by a feature about the target. The features that maximize the information gain 

or minimize the entropy are tested first. The mathematical formula for information gain is as 

follows: 
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 𝐼𝐺(𝑌|𝑋) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑌) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑌|𝑋) (2.5) 

  

Where 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑌|𝑋) = ∑ 𝑃(𝑋 = 𝑥) × 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑌|𝑋 = 𝑥)𝑥 . In other words, the information 

gain from X on Y is the reduction in entropy of target Y when the feature X is known and takes the 

value X=x. As mentioned in Section 2.5, decision tree is one of the three algorithms used in this 

thesis to predict the probability distribution of output classes. The decision tree model calculates 

the probability of a class k by returning the number of observations that belong to class k on a 

given leaf l over the total number of observations captured by that leaf 𝑃(𝑌 = 𝑘|𝑋) =
𝑛𝑘

(𝑙)

𝑛(𝑙). 

 

2.5.2 Binary Logistic Regression Models 

Logistic regression is a classification algorithm in statistics and machine learning which is 

commonly employed to examine the relationship between a binary or dichotomous dependent 

variable and a set of independent variables (either continuous or categorical) (Manogaran & Lopez, 

2018). 

     Logistic regression models can be applicable to any types of sampling: cross-sectional, 

prospective and retrospective; consequently, it is widely used in various disciplines including 

health, education, banking industry, and politics. (Wilson & Lorenz, 2015).  

     Logistic regression estimates the probability of an input belonging to the positive class. Let X 

denotes a n by M+1 matrix where n is the number of observations, M is the number of independent 

variables, and  𝑥𝑖𝑗 is the 𝑗𝑡ℎ independent variable in the 𝑖𝑡ℎ  row of the matrix X allocated to 𝑖𝑡ℎ 

observation. In addition, let 𝛽 = (𝛽0, 𝛽1, … 𝛽𝑀) denotes a vector of M+1 coefficients. Using a 

sigmoid function, the probability that the 𝑖𝑡ℎ observation belongs to class 1 (positive class) can be 

computed by the following formula:  

 
𝑃(𝑌𝑖 = 1|𝑋𝑖, 𝛽) =

1

1 + 𝑒−(𝛽0𝑥𝑖0+𝛽1𝑥𝑖1+⋯+𝛽𝑀𝑥𝑖𝑀)
 

 

(2.6) 

Subsequently, the probability of Y becoming 0 is 𝑃(𝑌 = 0|𝑋, 𝛽) = 1 − 𝑃(𝑌 = 1|𝑋, 𝛽). 
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2.5.3 Softmax Regression Models 

Softmax regression, also known as multi class LR, multinomial logistic regression, and Maximum 

Entropy Classifier, is a supervised classification technique which predicts the probability of each 

particular value of the multi-class dependent variable through softmax function (Jiang et al. 2018).  

The softmax function is an extension of the sigmoid function to problems with more than two 

levels that takes a vector of K values and normalizes it into K outcomes which form a probability 

distribution and sum up to one. If we assume a two-class classification, the obtained probabilities 

from softmax regression equal to the probabilities estimated by the sigmoid function through the 

two-class logistic regression. There is no intrinsic ordering to the classes of the dependent 

variable. In addition, the independent variables can be either categorical (nominal, dichotomous, 

or ordinal) or continuous. 

     Given a K dimensional dependent variable Y and a vector of M covariates 𝑋𝑖 collected from  

𝑖𝑡ℎ observation, we estimate the probability of the output belonging to each K possible classes 

(𝑘 = 1, … , 𝐾) using a linear predictor function as follows:  

 

 

𝑓(𝑘, 𝑖) = 𝛽0,𝑘 + 𝛽1,𝑘𝑥1,𝑖 + 𝛽2,𝑘𝑥2,𝑖 + ⋯ + 𝛽𝑀,𝑘𝑥𝑀,𝑖   for  𝑘 = 1, … , 𝐾 

 

(2.7) 

where 𝛽𝑚,𝑘 is the coefficient of mth independent variable and the kth class of the outcome. If we 

group the coefficients and independent variables into vectors of size M+1, we can write the linear 

predictor function compactly: 

 𝑓(𝑘, 𝑖) = 𝛽𝑘. 𝑋𝑖    for k=1,...,K (2.8) 

 

where 𝛽𝑘 denote the vector of M+1 coefficients associated with outcome k, and 𝑋𝑖 denote the 

vector of independent variables corresponding to observation i. To clarify, based on the 

assumption that all K probabilities must sum to one, we can estimate the probability of each class 

from the following equations: 
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 𝑃(𝑦𝑖 = 𝑘) =
𝑒𝛽𝑘.𝑋𝑖

1 + ∑ 𝑒𝛽𝑘.𝑋𝑖𝐾−1
𝑘=1

        for  𝑘 = 1, … , 𝐾 − 1 (2.9) 

 

 𝑃(𝑦𝑖 = 𝑘) =
1

1 + ∑ 𝑒𝛽𝑘.𝑋𝑖𝐾−1
𝑘=1

        for  𝑘 = 𝐾 (2.10) 

 

     The softmax regression is broadly utilized in image analysis, text classification and generally 

deep neural networks (Yang et al. 2018, Jiang et al. 2018), since this model calculates the 

probability of each input belonging to a class and the obtained probabilities add up to 1.  

2.6 Visual Analytics  

As Sedig and Parsons (2016) mention in their book, until the second half of the 20th century, 

visualization was not considered as an effective method in the process of data analysis. This 

approach changed when some early researchers like Bertin, Tukey, Tufte and Cleveland indicated 

the importance of visualizations (Sedig & Parsons, 2016). Using visualizations, scientists can 

represent the data or information embedded in an object in many ways. Color and shape can show 

the difference between attributes and size can encode length, width, height or weight of 

components (Spence, 2014). A powerful visualization tool should be interactive and human-

centered, should handle several tasks and have proper canvasses and number of variables. 

Innovative visualization techniques are beyond traditional graphs like bar charts, pie charts, or line 

graphs. They use complex data such as EHRs to discover information, patterns and variables 

without specific hypotheses (West et al. 2014). 

     Although existing computational systems bring a lot of benefits and tackle certain 

concerns, they cannot support various cognitive activities such as analytical reasoning, decision 

making, interpreting and problem solving. Visual analytics is a new approach of computational 

analysis that contains both data analytics and interactive visualizations and help users control their 

interactions with information (Ola & Sedig, 2014). Visual analytics systems play a mediator role 

between humans and information. 
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     Thomas and Cook (2005) define Visual analytics as the science of analytical reasoning 

facilitated by interactive visual interfaces. Visual analytics systems allow users to gain reliable 

information from large and often complex data and discover patterns and outliers (Andrienko et al 

2018) in order to improve the process of understanding, reasoning and decision making. 

2.6.1 Components of Visual Analytics Systems 

Analytics engine and interactive visualization engine are two main components of visual analytics 

systems with which stakeholders interact to perform various cognitive activities. Analytics engine 

encompasses two spaces of information and computation. In information space, data pre-

processing and data transformation stages occur. During the stage of pre-processing, data is 

cleansed, integrated from diverse sources, fused and normalized. Following this, the data is 

transformed into a format or structure that is required for the process of analysis. In computing 

space, statistical and machine learning techniques are employed to recognize patterns in various 

types of data including integers, text, audio, images and video (Sedig & Parsons 2013, Sedig et al. 

2017, Sedig & Parsons 2016). 

     Interactive visualization engine is the other component of visual analytics systems. It gets the 

results from analytics engine and creates representations to depict information in a mostly non-

textual way (Ola & Sedig, 2014). These interactive visual representations allow users to interact 

with and reason about data. In other words, by visual analytics systems, users can examine several 

forms of display, change the subset of information and select and order analysis techniques. 

Representation space bridges the gap between stakeholders and processed information items by 

encoding them through interactive visualizations. Designers use navigational components, input 

controls, informational components and containers through representation space to let users easily 

navigate, select items, expand sections of content and filter options. Visual marks are atomic visual 

entities by which data items are encoded. Points, lines, shapes, colours, letters, digits and symbols 

are some examples of visual marks. These encoding units are classified based on the number of 

dimensions they display on the plane, for example, points (zero dimensions), lines (one 

dimension), surfaces or areas (two dimensions), and volumes (three dimensions). Visual structures 

are combinations of visual marks; hence they can communicate more dimensions of information. 

Visual structures can be either concrete or abstract. First, the designer chooses an abstract structure 

for representation and then implements it in the representation space with physical details and in a 
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concrete form. Visual marks and visual structures have certain properties called visual variables 

through which individual information items are encoded and represented in a meaningful manner 

(Sedig & Parsons, 2016). Visual variables are commonly listed as color intensity, color hue, size, 

motion, texture, orientation, shape, enclosure and curvature. 

     In interaction space, the user acts upon external representations exhibited at the interface of 

visual analytics system. This coupling between the user and the interface is accomplished through 

a series of epistemic actions, such as navigating, searching, filtering, comparing, measuring, 

selecting, linking, accelerating, etc (Sedig & Parsons, 2013). Following this, a subsequent reaction 

occurs within different components of the visual analytics system, particularly, computing, 

representation, interaction and mental spaces. The mental space is considered as the location 

through which a wide range of internal, complex cognitive activities emerges. Learning, planning, 

knowledge discovery, sense making, problem solving, analytical reasoning and decision making 

are some types of these cognitive activities. The process of action and reaction results in 

exploration and better discourse with the information in information space (Sedig et al. 2017). The 

whole process is shown in Figure 2-1 and is repeated until the user fulfills an overall activity and 

obtains satisfaction. 

     Visual analytics systems are used in various domains including ontology engineering, software 

evolution, security analysis (García-Peñalvo, 2015), healthcare (Simpao et al. 2015, Caban & 

Gotz, 2015) social media (Chen et al. 2017), economics (Evans & Basole, 2016) and management 

(Flood et al. 2016). 
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 Figure 2-1: Human-information discourse through visual analytics systems  

     However, it should be considered that there is uncertainty inherent in real-world data which can 

originate from obsolete sources, missing values and noises, measurement limitation, inaccurate 

data entry and mixed data types. The data uncertainty which propagates in the visual analytics 

system through using machine learning, statistical analysis and visualization techniques, may lead 

to impaired reasoning and problem-solving abilities. In addition, the more complex the data is, the 

more complicated the visual analytics systems are designed, and in turn the more difficult 

analytical purposes are to achieve (Ceneda et al. 2017). Visualizing a large amount of data and 

summarizing the relationships between variables within the data in a single screenshot so that it 

can meet user cognitive needs and offer flexibility is a big challenge (West et al. 2014). Hence, 

Ceneta et al. (2017) introduce a general model that guides users to structure a goal and then find 

out a sequence of tasks to solve it. Their guidance also provides additional information about 

visualization techniques and algorithms with the aim of facilitating the process of insight 

generation and pattern exploration through visual analytics systems.  
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Chapter 3 

 

3 Related Works 

 

K. C. Roberts et al (2015) believe the traditional single-disease-focused approaches are no longer 

efficient to tackle the challenge of multimorbidity and a holistic approach is needed. They define 

multimorbidity as 2 or more or 3 or more of nine chronic diseases: asthma, arthritis, chronic 

obstructive pulmonary disease, diabetes, heart disease, mental disorder (mood disorder and/or 

anxiety), Alzheimer's disease and related dementias, cancer, and stroke. Their research is a 

valuable reference regarding the examination of prevalence and patterns of chronic diseases among 

Canadian adults. They present descriptive statistics of distribution and prevalence of 

multimorbidity given different groups of patient characteristics including gender, age, household 

income, aboriginal status, household education level, area of residence, immigration status and 

risk factors. They also provide analysis of the association between patient characteristics, 

behavioural risk factors and the chronic diseases. However, all of these analyses are presented in 

simple tables rather than using interactive visualizations.  

     Lian Leng Low et al. (2019) also emphasize on the importance of multimorbidity and its 

associations with epidemiologic characteristics and sociodemographic factors such as 

Socioeconomic Status (SES), age, race, and gender. They examine the patterns of multimorbidity 

among 1181024 Asian patients. The distribution of health care use and costs related to top 10 most 

common chronic diseases in 2016, and the physical and mental health diseases associated with 

sociodemographic factors are also investigated in their research. They do not rely only on tables 

to represent their results and employ static line charts a long with the tables to demonstrate the 

prevalence of multimorbidity varied by sociodemographic factors.  

     There is little research focusing on elaborate and interactive visualizations for enhancing the 

detection of multimorbidity patterns. Investigations in this area are mostly represented through 

static charts and tables without enabling users to filter, select, control and customize data points. 
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Nick Strayer et al (2019) used data derived from a combination of mega biobanks and EHRs to 

demonstrate the association between clinical multimorbidity patterns and a genetic variant. They 

designed a web application using Shiny package in R. The application lets users enhance their 

discourse with the data through its different views. The user selects a set of phenotypes and 

consequently the individuals who have one or more of the selected phenotypes are shown. Name, 

description, and statistical results of the phenotypes are displayed by hovering over them in the 

visualization. An information panel provides information about the application as well as the 

selected SNP (Single Nucleotide Polymorphism), the minor allele frequency, chromosome, and 

gene. A Manhattan plot displays the PheWAS (Phenome-Wide Association Study) analysis 

including phenotype diagnosis and statistical significance. Besides, an interactive upset plot 

demonstrates multimorbidity patterns accompanied by summary statistics, and a bipartite network 

plot represents the links between individuals and phenotypes.  

     Ingmar Schäfer et al (2014) have a different approach towards the analysis of chronic diseases 

and their associations. They use network analysis to explore the linking between disease 

combinations and clusters as well as the diseases which are responsible for overlapping these 

clusters. The study is conducted on insurance claims data set of the Gmünder ErsatzKasse that 

includes 43,632 women and 54,987 men aged 65 years and older in 2006. The chronic disease 

clusters are determined based on a previous study. The disease network created by Ingmar Schäfer 

et al is based on the combinations of three diseases (triads) with a prevalence greater than or 

equal to 1 percent. Thus, the associations between only two chronic diseases are not considered in 

the study. The static disease network represents the associations between diseases using lines with 

the same thickness for all the connections. Therefore, it is hard to discover the degree of 

associations between diseases using the network. However, the article offers some measures for 

the connectedness of a disease and its potential influence on the distribution of the other diseases 

in the format of a table. 

     W. Raghupathi and V. Raghupathi (2018) analyze the prevalence of chronic diseases and the 

relationship among them in the United States. They also investigate the associations between these 

diseases and behavioral habits, mental health, demographics, and overarching conditions. The 

study is conducted on a dataset from the Centers for Disease Control and Prevention which is the 

leading national public health institute of the United States. They use visualization techniques to 

apply descriptive analytics on the data and represents the patterns of multimorbidity. Both the title 
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and the content of the article give the reader an overview that a visual analytics system is created 

to explore multimorbidity and its patterns; while the visualizations offered in this article are single, 

static graphs that are potentially limited to let users interact with data, manipulate subsets of data 

and examine the distribution of multimorbidity.  

3.1 Contributions 

In this thesis, statistical and machine learning techniques are combined with interactive 

visualizations to help users make more sense of our multimorbidity data. Based on our knowledge, 

the visual analytics system offered in this thesis is the first attempt to interactively visualize the 

prevalence of and the associations between chronic diseases conditioned on a user-selected set of 

diseases and sociodemographic factors. The system allows users to interact with data and gain an 

extensive insight into the multimorbidity dataset. The user can perform a series of actions such as 

selecting, filtering, comparing and arranging on visual items to customize the data and increase 

cognitive load. In other words, this coupling between the user and the application facilitates 

analytical reasoning, knowledge discovery, problem solving and evidence-based decision making.  

 

 

 

 

 

 

 

 

 

 

 



20 
 

 

 

Chapter 4 

 

4 Research Methods 

 

Analyzing and evaluating data in the area of healthcare offer opportunities for developing visual 

analytics solutions. Besides, the increase in multimorbidity and the complexity of its underlying 

patterns and associations motivate researchers for further investigations. These motivations led us 

to design a visual analytics system in order to facilitate making sense of multimorbidity data. 

In this chapter, we describe the data and its available variables used in this thesis as well as data 

pre-processing steps. Following this, we discuss our visual analytics system created to explore, 

analyze, compare and measure multimorbidity patterns. We utilize several statistical and machine 

learning models in our system to investigate the relationships between chronic diseases themselves 

and the associations between these diseases with patient attributes. The main goal of using different 

models in this thesis is to adjust for covariates including age, sex and SES when estimating disease 

diagnosis effects, rather than making predictions. This chapter ends with some screenshots of our 

visualization and the result section. 

     To design our visual analytics system, we have taken the following steps: 

1. Those variables with more than two categories in the data are converted into dummy 

variables for further analysis.   

2. The categories with small number of observations are merged together.   

3. Five drop down lists are created to allow users select different categories of 

sociodemographic characteristics available in the data as well as the types of the models 

applied to the visualizations in the system. 

4. A bar graph is designed interactively to represent the prevalence of chronic diseases. The 

three techniques, count-based conditional probability, logistic regression and decision tree 
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are being used by the bar graph. Based on the user selections, the model of interest would 

be chosen to represent the results on the bar chart. 

5. A dynamic correlation matrix is created to show the pairwise correlations between chronic 

diseases. Two machine learning models, decision tree and softmax regression are employed 

to estimate these correlation values. The users can determine which of these two models 

represent the computed correlations by selecting the type of the model in the visual 

analytics system.  

6. One more drop down menu is provided in the system to let users order the cells in the 

correlation matrix by disease name and correlation value.  

7. When the data is filtered by the users, the sample size of the filtered data is shown in the 

system 

  

4.1   Source of Data 

Our dataset is drawn from DELPHI (Deliver Primary Healthcare Information) collection. DELPHI 

project is one of the eleven regional networks included in CPCSSN (Stewart, 2016). The database 

is the first Canadian primary care database derived from EMR data which coded symptoms and 

diagnoses for a subset of patient encounters using the International Classification of Primary Care. 

In 2005, the Centre for Studies in Family Medicine at Western University in London, Ontario 

started DELPHI project based on ten primary health care practices conducted across Southwestern 

Ontario. DELPHI collection provides surveillance data about chronic diseases to improve primary 

care research. It is now developed to contain information on 20 chronic diseases and 64,377 

patients. This database includes more than 1.9 million patient-provider encounters and 60 family 

physicians from 18 practice sites (Centre for Studies in Family Medicine, 2020) 

     The data includes 20 chronic disease categories and a total of 13697 patients who have at least 

one chronic disease. Each patient is characterized by three features of age, gender, and 

socioeconomic score. Among 7565 females and 6132 males in the dataset, 6303 patients have only 

one disease, 3183 patients have developed two chronic diseases and 4211 patients face more than 

two chronic conditions. The individuals in DELPHI database are split into six age groups: 0 to 9 

years (child), 10 to 19 years (adolescent), 20 to 29 years (young adult), 30 to 39 years (adult), 40 

to 60 years (middle age), and over 60 (elder). SES is the other sociodemographic factor considered 
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in this thesis. It is a criterion for representing the level of education, income, occupation and wealth 

in a given population. SES is strongly involved in the prevalence of multimorbidity as lower SES 

results in an increase in multimorbidity prevalence (Salisbury et al. 2011, Violán et al. 2014) This 

factor is categorized into five equal-sized quintiles. First quintile represents to the lowest-income 

people and fifth quintile refers to the highest income group of individuals in the society. In our 

database there is no patient belonging to the first two quintiles and all individuals have been 

distributed among moderate, high and the highest income levels.  

     The distribution of sociodemographic factors among 13697 patients is represented in Table 4-

1. ‘Child’ and ‘Adolescent’ age groups and ‘Third (Moderate) Income Quintile’ have the smallest 

population of patients among all age groups and socioeconomic categories according to our 

dataset.   

 Table 4-1: The distribution of patient characteristics (data is given as number of each 

category) 

Female Male  

 

 

Total 

 

 

Age Group 

SES  

 

Age Group 

SES 

Third 

quintile 

Fourth 

quintile 

Fifth 

quintile 

Third 

quintile 

Fourth 

quintile 

Fifth 

quintile 

Child 0 58 20 Child 0 83 17 178 

Adolescent 2 154 33 Adolescent 0 155 47 391 

Young 

Adult 

7 312 142 Young 

Adult 

6 210 58 735 

Adult 8 493 157 Adult 6 340 86 1090 

Middle 

Age 

20 2077 647 Middle 

Age 

29 1678 491 4942 

Elder 9 2423 1003 Elder 18 2106 802 6361 

Total 46 5517 2002 Total 59 4572 1501 13697 

 

     Table 4-2 depicts the list of twenty chronic diseases ordered by patient counts according to the 

dataset, which was derived from the DELPHI database using the same methodology as Nicholson 

(2017). In the dataset, each row of the data table indicates an observation (a patient) and 20 

columns of the data table are allocated to 20 chronic diseases. The data table has been created such 

that the patient i has the specific disease j when the corresponding cell 𝐶𝑖𝑗 in the data table has a 
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value 1 otherwise it is equal to 0. Therefore, by counting the number of cells with value 1 in the 

column corresponding to a disease we can conclude how common a disease is based on our dataset. 

As shown in table 4-2, ‘Hypertension’, ‘Hyperlipidemia’ and ‘Bronchitis’ are the most common 

diseases and ‘Kidney Disease’, ‘Dementia’, and ‘Liver Disease’ are the least common diseases 

among all patients in our database. 

 Table 4-2: The distribution of chronic disease among 13697 patients 

 Chronic Disease Patient Counts 

1 Hypertension 4345 

2 Hyperlipidemia 3442 

3 Bronchitis 2617 

4 Cardiovascular Disease 2332 

5 Musculoskeletal Problem 2163 

6 Diabetes 2161 

7 Depression 1747 

8 Arthritis 1718 

9 Cancer 1589 

10 Thyroid Disease 1510 

11 Obesity 1266 

12 Colon Problem 1216 

13 Osteoporosis 926 

14 Urinary Problem 861 

15 Stomach Problem 804 

16 Heart Failure 306 

17 Stroke 231 

18 Kidney Disease 212 

19 Dementia 210 

20 Liver Disease 45 

 

     We have chosen the ten most common chronic diseases based on our dataset to use for further 

analysis (‘Hypertension’, ‘Hyperlipidemia’, ‘Bronchitis’, ‘Cardiovascular Disease’, 

‘Musculoskeletal Problem’, ‘Diabetes’, ‘Depression’, ‘Arthritis’, ‘Cancer’ and ‘Thyroid 

Disease’). The main reason is that the dataset is not large enough to allow a good estimation of 

disease prevalence and correlations when multiple selections are made by the user. The number of 

data points becomes smaller with every selection until some variables possibly emerge with no 

observation or too small a number of observations. 
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4.2 Preprocessing 

4.2.1 Creating Dummy Variables 

Dummy variables are used in statistical analysis, particularly in regression models and they can 

take only two quantitative values, 1 or 0. 1 indicates the presence of the independent variable that 

means its coefficient has an effect on the dependent variable, while 0 represents the absence of the 

dependent variable leading to no impact on the prediction. A categorical variable with n categories 

is converted into n dummy variables when 𝑖𝑡ℎ dummy variable is equal to 1 if the observation 

belongs to 𝑖𝑡ℎ category, otherwise it is equal to 0. If the model has an intercept, one of the dummy 

variables should be dropped from the model (Garavaglia et al. 1998) as the 𝑛𝑡ℎ category can be 

represented when all other dummy variables get the value 0. Including the dummy variable 

corresponding to the last subgroup in the model adds redundant information that results in 

multicollinearity.  

     All chronic diseases as well as gender are already binary variables taking values either 0 or 1 

in the dataset. Age is, however, a categorical variable with more than two categories as mentioned 

in Section 4.1 and needs to be converted into dummy variables so that it can be introduced into the 

regression equation.  

4.2.2 Merging Categories with Few Observations 

As mentioned in Section 4.1, the prevalence of chronic conditions decreases in children and 

adolescents as well as individuals belonging to the moderate-income level. These three categories 

have the lowest number of patients and it becomes lower when the user filters data and selects 

chronic diseases and other patient attributes in order to observe their associations. Indeed, we use 

different models to predict the prevalence and correlation of diseases. Since some dummy 

variables in the dataset have too few observations, the classification models in our visual analytics 

system are unable to fit models properly and return NaN values as coefficients which result in 

NaNs as prevalence and correlation estimates. One solution for tackling this problem could be to 

merge the categories of predictors with small number of patients together. To do so, the three 

groups of ‘Child’, ‘Adolescent’ and ‘Young Adult’ have been merged together and labeled as 

‘Child and Young Adult’. We also merged ‘Adult’ and ‘Middle Aged’ to one category. Therefore, 
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the modified age variable in the dataset has three categories of ‘Child and Young Adult’, ‘Adult 

and Middle-Aged’ and ‘Elder’. 

     ‘Third Income Quintile’ and ‘Fourth Income Quintile’ have also been merged together. 

According to Statistics Canada (Statistics Canada, 2010) average adjusted after-tax income is 

divided into five quintiles in 2010 as it is shown in Table 4-3.  

 

 Table 4-3: Average Adjusted After-Tax Income by five quintiles for population in 2010 

Quintile Average adjusted after-tax income 

Lowest income quintile $16000 

Second income quintile $28000 

Third income quintile $38500 

Fourth income quintile $50600 

Highest income quintile $85500 

 

     Statistics Canada’s income grouping is used in this thesis to label the new categories of SES 

after merging them. This attribute  breaks down the patients into two groups of ‘Less than or Equal 

to $50600’ and ‘Greater than $50600’ average adjusted after-tax income. 

     Now, except the age variable, all other variables including chronic diseases, gender and SES 

are binary random variables in our dataset. Based on Sections 4.2.1 and 4.2.2, the age variable 

with three categories should be converted to dummy variables. So, we created two dummy 

variables age1, age2 with the reference category being ‘Child and Young Adult’ (first category).  

4.3 Covariate Adjustment 

There are three different approaches for data assessment: explanatory modeling, descriptive 

modeling and predictive modeling (Shmueli, 2010). In explanatory modeling, we investigate the 

underlying causal relationships between independent variables and outcomes. Descriptive analysis 

refers to applying statistical models to the data in order to assess the association between one or 

more independent variables and a dependent variable. Predictive modeling is a process with the 

aim of predicting the target values for new observations given their input values (Shmueli, 2010). 

In this thesis, the goal is to examine the relationships between variables rather than predicting new 
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or future observations. We focus on including covariates for analyzing the association between the 

independent variable(s) of interest (disease diagnosis) and the outcome (disease prevalence and 

disease correlation). The techniques developed in this thesis are mostly descriptive, but they are 

moving towards explanatory modeling as we have included different covariates like age, gender 

and SES. We estimate the prevalence of chronic diseases as well as their correlations adjusting for 

these covariates. We could support explanatory analysis for some kinds of problems if we are 

given the right data and theoretical underpinning. 

     Covariate adjustment is a statistical strategy through which the covariates are held constant in 

order to capture the relative relationship of the dependent and independent variables. In other 

words, if the baseline covariate(s) is correlated with the dependent variable, their hidden effects 

on the dependent variable will be removed through this process. Controlling for covariates results 

in less bias and more precise estimates (Raab et al. 2000, Pocock et al. 2002). 

4.4 Our Visual Analytics System 

The visual analytics system in this thesis is designed using Flask and D3.js. Flask is a Python web 

application framework and D3.js is a library in JavaScript for creating interactive visualizations. 

We built our binary logistic regression and softmax regression models with Statsmodels and our 

decision tree model using Scikit-Learn library for Python. This visual analytics system 

encompasses two interactive graphs: a bar chart and a correlation matrix (see Figure 4-1). The bar 

graph depicts the prevalence of the chronic diseases and the correlation matrix represents the 

correlation between two diseases at the time. Both graphs assess the effects of the user-selected 

chronic conditions and patient characteristics on the target in their estimations.  

https://en.wikipedia.org/wiki/Dependent_and_independent_variables
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 Figure 4-1: Screenshot of our visual analytics system and its components 

     As it is shown in Figure 4-2, three drop-down lists allow users to select different categories of 

patient characteristics, age, gender, and SES. There are two more drop-down lists on the top right 

corner of Figure 4-2 indicating the type of models the bar chart and the correlation matrix use to 

represent the results, respectively. The first or top left drop-down list represents three age groups 

including children and young adults, adults and middle aged, and elderly people. The drop-down 

list in relation to gender shows ‘Female’ and ‘Male’ categories and the third drop-down list enables 

users to select one of the two income groups. Right below the aforementioned dropdown lists, 

there is another drop-down list through which the user can order the pairwise correlations shown 

in the correlation matrix by their values and their names. The last line illustrates the sample size 

of filtered data changing based on user selection and filtering. As it is shown in Figure 4-2, the 

user has selected ‘Adult and Middle-Aged’, ‘Male’ and ‘Less than $50600’. Therefore, the data 

would be filtered based on the selected attributes and by clicking on “Run” button, the prevalence 

of chronic diseases would be represented through count-based bar chart and the correlation 

estimates between each pair of diseases would be displayed on softmax-regression-based matrix 

plot. These correlation coefficients are estimated based on all patients in the data and in the 

presence of ‘Adult and Middle-Aged’ group and ‘Male’ category. More details about how the 

correlation matrix works are provided in Section 4.4.3 and 4.4.4. After filtering the data, the user 

can observe the change on the sample size that indicates 2053 patients in the dataset are adult or 

middle-aged and male with average income less than 50600 dollars.  
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 Figure 4-2: Screenshot of the system dropdown lists with ‘Adult and Middle-Aged’, 

‘Female’ and ‘Less than $50600’ groups, Count-Based Bar Chart and Softmax-Regression-

Based Correlation Matrix selected 

     Furthermore, three radio buttons are associated with each bar in the bar chart represented in our 

system allowing end-users to select a single item at a time. More clearly, every bar encodes the 

prevalence of a chronic disease and its corresponding radio buttons take one of the labels 1, 2, or 

null. if users select the first and nearest radio button to a bar with label 1, the presence of its 

corresponding disease is considered as the pre-existing condition for further analysis. In contrast, 

selecting the second radio button means the absence of the corresponding disease. Finally, a radio 

button with null label under each bar indicates the marginal probability of its corresponding disease 

in the count-based bar chart. It means the data is not filtered on a disease whose null radio button 

is selected for calculating the conditional probabilities. Using machine learning algorithms, the 

diseases with the third radio button selected, have no role in influencing the target. As an example, 

it is shown in Figure 4-3 that the user has selected the presence of bronchitis and ‘Depression’ and 

the absence of ‘Diabetes’ to identify their effects on the prevalence and correlation estimates. 

  

 Figure 4-3: Screenshot of the system’s radio button lists in the presence of bronchitis and 

depression and the absence of diabetes 

     The system analyzes and visualizes the underlying patterns in the multimorbidity data through 

its interactive graphs. The bar chart uses conditional probability as a measure for investigating the 

distribution of co-occurring chronic disease in the population. It also employs binary logistic 
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regression and decision tree model in order to examine the influence of sociodemographic factors 

and disease diagnosis on the prevalence of chronic diseases. Besides, the interactive correlation 

matrix in the system represents the pairwise correlation estimates of chronic conditions through 

two statistical and machine learning algorithms, softmax regression and decision tree. All these 

algorithms and methods are described in detail as follows: 

4.4.1 Count-Based Bar Chart 

Through selecting “Count-Based Bar Chart” from the drop-down list corresponding to the type of 

the interactive bar chart, the prevalence of chronic diseases is displayed on the bar chart in our 

visual analytics system. Each bar on the x-axis is allocated to one disease 𝑋𝑖 and the prevalence of 

that disease 𝑃(𝑋𝑖 = 1) is presented on the y-axis. When the user selects a disease 𝑋𝑖 by clicking 

on its radio button with label 1, the bar graph would be animated to display the conditional 

probabilities of each disease (conditioned on 𝑋𝑖=1). Similar to it, by selecting the zero-labeled 

radio button associated to 𝑋𝑖, the probabilities of each disease conditioned on 𝑋𝑖=0 would be 

calculated and shown on the related bar to that disease. In former, the height of the bar allocated 

to 𝑋𝑖 changes to 1, while in latter the bar shows the probability of 𝑋𝑖 equal to 0.  

     If the user selects an additional disease, the system calculates the probability of each unselected 

disease conditioned on both selected diseases. Then, the system animates the change and updates 

the visualization. The selection process can be continued by the user to look for further associations 

within the subgroup who have the selected diseases, and so on. Therefore, the bar graph enables 

users to compare the original marginal probability of each disease with its conditional probabilities 

every time by every selection. 

     The user can also interact with the visualizations by selecting different age, gender and 

socioeconomic groups from the dropdown lists. As a result, the dataset of multimorbid patients 

would be filtered on the selected sociodemographic factors and the conditional probabilities would 

be updated. For example, if the user selects ‘Child and Young Adult’ as the age group, ‘Male’ 

from the gender groups, and the existence of diabetes, the dataset would be filtered and a subset 

of patients diagnosed with diabetes who are male and categorized as child and young adult would 

be chosen. Then the relative prevalence of each unselected disease 𝑋𝑗 among child or young adult, 

male patients with diabetes would be computed and represented on its related bar and the 
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prevalence of diabetes would change to 1 in the bar graph. In this case, the conditional probability 

formula for the jth unselected disease is as follows:  

𝑃(𝑋𝑗 = 1|𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠 = 1, 𝑎𝑔𝑒 = child and young adult, 𝑔𝑒𝑛𝑑𝑒𝑟 = male) 

     Since all chronic diseases in the dataset are binary random variables taking value 0 or 1, the 

prevalence of a disease is equivalent with the mean of that binary random variable.  Therefore, 

after user selections, the mean of every unselected disease is computed based on filtered data and 

shown in the related bar.  

4.4.2 Logistic-Regression-Based Bar Chart  

Selecting “Logistic-Regression-Based Bar Chart” from the corresponding drop-down list, the bar 

graph represents the prevalence of chronic diseases predicted by binary logistic regression. Similar 

to the count-based type, the user can reason with data through this predictive bar chart and discover 

the impacts of patient characteristics as well as one or a group of pre-existence diseases on the 

prevalence of other diseases. In other words, the binary logistic regression used in the system 

allows the user to estimate the association between diseases of interest as independent variables 

and an unselected disease as the outcome, while adjusting for (or controlling for) selected 

sociodemographic factors that are included in the model. 

     Each time the user makes a selection from the different dropdown lists and radio buttons with 

different labels available in the system, a logistic regression model would be built to determine the 

strength of the relationship between an unselected chronic disease as dependent variable and the 

selected attributes as independent variables. Therefore, in logistic-regression-based bar chart, the 

height of every bar corresponds to the prevalence estimated by relative logistic regression model, 

unless the bar is related to a selected disease whose radio button with label 0 or 1 is checked. The 

logistic regression model uses the entire data with all 13697 patients for estimating the prevalence 

and only the selected sociodemographic factor (factors) and pre-existing disease (diseases) are 

included in these models. The model would be changed and updated if the user changes the 

selection.  

     As an example, if the user clicks on the radio button with label 0 related to arthritis (the absence 

of arthritis), selects the radio button with label 1 corresponding to thyroid disease (the presence of 
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thyroid disease) and ‘Elder’ age group, the logistic regression model for finding a mathematical 

relationship between them and ‘Cancer’ as the target is as follows:  

𝑧 = log (
𝑃

1 − 𝑃
) = β0 + β1(𝑎𝑟𝑡ℎ𝑟𝑖𝑡𝑖𝑠) + β2(𝑎𝑔𝑒1) + β3(𝑎𝑔𝑒2) + β4(𝑡ℎ𝑦𝑟𝑜𝑖𝑑 𝑑𝑖𝑠𝑒𝑎𝑠𝑒) 

Where P is the probability of developing cancer which can be defined as cancer prevalence in a 

given time period, and 𝛽1 is the estimated coefficient that quantifies the association between 

arthritis, thyroid disease and cancer, adjusted for age1, age2. It is important to note that when age 

is in the list of selected attributes, one of its three dummy variables should be dropped from the 

model to avoid multicollinearity. More clearly, ‘Child and Young Adult’ would be excluded from 

the model and if the user selects this category, it can influence the target by assigning value 0 to 

both age1 and age2 dummy variables. In addition, both subgroups of each independent variable 

are used by the logistic regression to model an unselected disease. Then, the predictor variables in 

the standard model above are replaced by specific selected values to predict the probability of 

developing that disease. In this example, we change the independent variables in the model above 

such that arthritis is absent from the model, the age group is ‘Elder’ (age1=0 and age2=1), and 

thyroid disease is present in the model to estimate the conditional prevalence of cancer:  

𝑧 = log (
𝑃

1 − 𝑃
) = β0 + β1(𝑎𝑟𝑡ℎ𝑟𝑖𝑡𝑖𝑠 = 0) + β2(𝑎𝑔𝑒1 = 0) +  β3(𝑎𝑔𝑒2 = 1) 

+ β4(𝑡ℎ𝑦𝑟𝑜𝑖𝑑 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 = 1) 

     The bar chart displays diseases on the x-axis and their prevalence recovered by 

exponentiating the log odds on the y-axis. Based on the following equation, the probability of 

developing cancer for the mentioned instance would be predicted and shown on the 

corresponding bar in the bar chart.  

𝑃(𝑐𝑎𝑛𝑐𝑒𝑟 = 1|𝑎𝑟𝑡ℎ𝑟𝑖𝑡𝑖𝑠 = absent, 𝑎𝑔𝑒 = elder, 𝑡ℎ𝑦𝑟𝑜𝑖𝑑 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) =
1

 1 + 𝑒−𝑧
 

     Following this, the prevalence of arthritis changes to 0, the prevalence of thyroid disease 

changes to 1, and the prevalence of other unselected diseases are also estimated through the 

aforementioned estimation process and represented in the logistic-regression-based bar chart.  
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4.4.3 Decision-Tree-Based Bar Chart 

Decision tree is another model used in our system to assess the associations between multiple 

chronic diseases and patient attributes. If the user selects ‘Decision-Tree-Based Bar Chart’ from 

the dropdown list, a decision tree model would be created such that all diseases of interest as well 

as selected patient characteristics would be included in the model. It is important to note that if a 

categorical variable with more than two categories is selected (e.g. age), we do not use one-hot 

encoding to binarize each category, which converts the categorical variable into dummy variables. 

We avoid this process because dummy variables make a decision tree sparse and obscure the order 

of feature importance, which results in inefficiency and poor performance. We also build the model 

based on all patients included in the dataset.  

     Furthermore, we do not divide the dataset into train and test sets, since we aim to examine the 

relationships between binary random variables and sociodemographic factors rather than improving 

the prediction of the prevalence or the correlation of diseases. However, to avoid overfitting and 

reduce complexity, we utilize pruning methods by changing the parameters ‘max_depth’ (=3) and 

‘min_samples_leaf’ (=200) in Python server, which refer to the maximum number of nodes in a 

branch and the minimum number of samples required at the leaf node (a node without further split), 

respectively.  In this way we remove the sections of the tree that do not add significant value to the 

classification power of the tree and avoid unstable probability estimates.  

     The prevalence of disease 𝑋𝑖 estimated using the decision tree model would be displayed on 

the corresponding bar in the bar chart. The height of the bar (bars) for the disease (diseases) whose 

radio button with label 1 or label 0 is selected changes to 1 and 0, respectively.  

 

4.4.4 Softmax-Regression-Based Correlation Matrix 

Correlation matrix is known as an appropriate statistical technique for describing the relationship 

between variables. It is a square matrix which each element demonstrates the association between 

a pair of variables. All values on the main diagonal of a correlation matrix are 1 since the 

correlation of a variable with itself is always 1. The strength and direction of a relationship between 

variables can be explained by correlation as a statistical measure. However, a correlation between 

variables does not imply causation. In other words, the correlation estimate does not assure that 

the change in the value of one variable is the cause of the change in the other variables. A 
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correlation value near 1 means the two variables have a strong positive correlation, while a value 

near -1 shows they are highly correlated but in the opposite direction. A correlation coefficient 

with value 0 indicates there is no linear relationship between the pair of variables.  

     The dynamic correlation matrix in our visual analytics system displays the pairwise correlations 

between ten chronic diseases. It calculates the correlation between two diseases at a time, 

conditioned on selected other diseases and covariates. A row and a column are allocated to each 

disease and each cell in the matrix shows the linear relationship between two diseases. Suppose 

we aim to measure the association between two chronic diseases 𝐷1 and 𝐷2. We create a new 

variable 𝐴 having the following four levels:  

𝐴 = 0 if 𝐷1 = 0 and 𝐷2 = 0 

𝐴 = 1 if 𝐷1 = 0 and 𝐷2 = 1 

𝐴 = 2 if 𝐷1 = 1 and 𝐷2 = 0 

𝐴 = 3 if 𝐷1 = 1 and 𝐷2 = 1 

     Since our new target is variable 𝐴 with four levels (K=4), we need to build a softmax regression 

in order to predict the pairwise correlation between these two diseases. As mentioned in Section 

2.5.3, softmax regression utilizes a linear predictor function 𝑓(𝑘, 𝑖) to predict the probability that 

observation i belongs to class k: 

 𝑓(𝑘, 𝑖) = 𝛽0,𝑘 + 𝛽1,𝑘𝑥1,𝑖 + 𝛽2,𝑘𝑥2,𝑖 + ⋯ + 𝛽𝑀,𝑘𝑥𝑀,𝑖     for 𝑘 = 1, … , 𝐾  

Where M is the number of independent variables in the model and i is an observation from 13697 

inputs in the data. We assign value 0 to ‘Male’ category and value 1 to ‘Female’ category, since 

in this dataset, gender is encoded as a binary variable. 

     If the user selects the presence depression and ‘Male’ group, the softmax regression model built 

for class zero is as follows: 

𝑓(0) = β0,0 + β1,0(𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 1) + β2,0(𝑔𝑒𝑛𝑑𝑒𝑟 = 0) 

     After computing the linear predictor function for all four classes of the dependent variable 𝐴, 

we can also compute the probability of each class as follows:  

𝑃(𝐴 = 0) =
𝑒β0,0+β1,0(𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛=1)+β2,0(𝑔𝑒𝑛𝑑𝑒𝑟=0)

1 + ∑ 𝑒𝑓(𝑘)3
𝑘=1

         

https://en.wikipedia.org/wiki/Linear_predictor_function
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𝑃(𝐴 = 1) =
𝑒β0,1+β1,1(𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛=1)+β2,1(𝑔𝑒𝑛𝑑𝑒𝑟=0)

1 + ∑ 𝑒𝑓(𝑘)3
𝑘=1

 

𝑃(𝐴 = 2) =
𝑒β0,2+β1,2(𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛=1)+β2,2(𝑔𝑒𝑛𝑑𝑒𝑟=0)

1 + ∑ 𝑒𝑓(𝑘)3
𝑘=1

 

𝑃(𝐴 = 3) =
1

1 + ∑ 𝑒𝑓(𝑘)3
𝑘=1

 

     The correlation between the two random variables X and Y is calculated through the following 

formula:  

 𝜌𝑋,𝑌 =
𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌)

𝜎𝑋𝜎𝑌
 (4.1) 

 

Where 𝜎𝑋 and 𝐸(𝑋) denote the standard deviation and the expected value of X, respectively, and 

𝐸(𝑋𝑌) is defined as follows when X and Y are discrete random variables and not independent:  

 𝐸(𝑋𝑌) = ∑ ∑ 𝑥𝑦 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑦∈𝑌𝑥∈𝑋

 (4.2) 

 

     We name 𝑃(𝐴 = 0) = 𝑃00, 𝑃(𝐴 = 1) = 𝑃01, 𝑃(𝐴 = 2) = 𝑃10 and 𝑃(𝐴 = 3) = 𝑃11. We also 

define 𝑃1. = 𝑃10 + 𝑃11 and 𝑃.1 = 𝑃01 + 𝑃11 . Given that all chronic diseases in our thesis are 

random variables from Bernoulli distribution we have 𝐸(𝐷1) = 𝑃1. , 𝜎𝐷1

2 = 𝑃1.(1 − 𝑃1.) , 𝐸(𝐷2) =

𝑃.1 and 𝜎𝐷2

2 = 𝑃.1(1 − 𝑃.1). 

     According to Equation 4.2 and given that 𝐷1 and 𝐷2 might influence each other, we calculate 

𝐸(𝐷1𝐷2) = (0 × 0 × 𝑃00) + (0 × 1 × 𝑃01) + (1 × 0 × 𝑃10) + (1 × 1 × 𝑃11)=𝑃11. Then, the 

correlation between 𝐷1 and 𝐷2 is computed as follows:  

 𝜌𝐷1,𝐷2 =
𝑃11 − 𝑃1.𝑃.1

√𝑃1.(1 − 𝑃1.)√𝑃.1(1 − 𝑃.1)
 (4.3) 
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     This process would be repeated for each pair of chronic diseases, and their estimated correlation 

would be depicted by the corresponding cell in the interactive matrix. By hovering over each cell, 

the corresponding correlation value appears. The direction of the relationships between diseases 

are encoded by color. Blue and orange are used for positive and negative correlations, respectively. 

In addition, color intensity encodes the magnitude of the correlation coefficients such that a darker 

color represents a greater absolute value. The user can also re-arrange the correlation matrix by 

disease name and correlation value.  

     As mentioned in Sections 4.3.1, 4.3.2 and 4.3.3, the height of the bar corresponding to a selected 

disease 𝑋𝑖 changes to 1 or 0, based on the selection. Similar to this process, if the user selects 𝑋𝑖, 

the color of all cells in the row i and the column i corresponding to 𝑋𝑖 in the correlation matrix 

would change to black, which indicates the undefined correlations. The reason is that in calculating 

the correlation coefficient between two variables, if one variable does not vary, its standard 

deviation changes to zero that results in the denominator of the fraction to be zero and in turn the 

correlation coefficient is undefined.  

 

4.4.5 Decision-Tree-Based Correlation Matrix 

By selecting ‘Decision-Tree-Based-Correlation Matrix’ from the dropdown menu related to the 

type of matrix, a decision tree is made given the selected variables and with the parameters 

max_depth’=3 and ‘min_samples_leaf’=200 to prevent overfitting. As mentioned in 4.3.4, the 

target in the correlation matrix is the variable A corresponding to a pair of chronic diseases and 

has four levels. For instance, suppose the user selects ‘adult and middle aged’ and the presence of 

hyperlipidemia, and aims to observe their influence on the association between cardiovascular 

disease and hypertension as the target. Therefore, the model would examine the relationship 

between hyperlipidemia and the target controlling for age. Then the probability of occurring each 

class of the target would be estimated using one instance (in this case age=’Adult and Middle-

Aged’ and hyperlipidemia=1). According to equation 4.3, the four computed probabilities would 

be used in estimating the correlation coefficient between cardiovascular disease and hypertension. 

This analysis would be repeated for all other pairs of unselected diseases. The correlation of those 

pairs whose one or both diseases are selected, is undefined. In this example, all correlations 

between hyperlipidemia and the other nine chronic diseases would be undefined and their relative 

cells in the correlation matrix would change to black.  
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     To design interaction, we considered the tasks that the user can perform with the data. These 

tasks encompass exploring the associations between the chronic diseases, analyzing the effects of 

different sociodemographic factors on the prevalence of diseases and comparing the correlation 

estimates in the presence of a set of diseases as well as patient attributes. Supporting these tasks, 

we have operationalized the following actions in the system: selecting, filtering, arranging, and 

comparing.  

     The visual marks such as shape, color, letter and digit along with their properties as visual 

variables including size, value and color saturation are utilized in our system to encode information 

items and represent quantity, association and order.  

     During performing the tasks, cognitive activities like analytical reasoning, sensemaking and 

decision-making can emerge. For example, a user decides to discover the effect of gender on the 

probability of developing thyroid disease. Therefore, he/she engages in testing the hypothesis if 

the prevalence of thyroid disease differs among woman and men and through selecting gender 

categories and filtering data, he/she would make sense of the relationship between these two 

variables.   

 

4.5 Results 

The goal of designing the visual analytics system in this thesis is to identify and analyze 

multimorbidity and its associations with patient attributes. Users can set their intentions, then select 

a group of items to achieve their purposes. There could be a large number of task sequences though 

which users can accomplish their overall goals. In our visual analytics system, through every user 

selection and filtering, several multimorbidity patterns would be explored and categorized. We 

aim to present one of these sequences, as an example, to clarify how multimorbidity patterns can 

appear in our visualization.  

     Analysis 1: Assume the user aims to observe the marginal probability of diseases for ‘Child 

and Young Adult’ category. The data would be filtered on the age group of interest and the results 

would be displayed on the Count-Based Bar Chart. As it is shown in Figure 4-4, bronchitis and 

depression are the most prevalent diseases among 1304 children and young adults in the data.  
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 Figure 4-4: Screenshot of the Count-Based Bar Chart for Analysis 1 with ‘Child and Young 

Adult’ age category selected 

     Figure 4-5 shows the correlations between the ten diseases on Softmax-Regression-Based 

Correlation Matrix in Analysis 1. The user can observe the number of cells denoted by orange is 

more than the number of blue cells, though, all values are between -0.3 and 0.3 which indicate 

weak correlations between the diseases.  
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 Figure 4-5: Screenshot of the Softmax-Regression-Based Correlation Matrix for Analysis 1 

with ‘Child and Young Adult’ age category selected 

     Analysis 2: Looking at the original bar graph, if the user selects ‘Elder’ age group and Count-

Based Bar chart and he/she does not select any of chronic diseases as a pre-existing condition, the 

data would be filtered on only the selected age group and the marginal probability for every disease 

is computed in the server and shown on the corresponding bar in the client side. Figure 4-6 depicts 

the updated bar chart when ‘Elder’ group is selected. The user can observe that the most common 

chronic diseases among 6361 older adults are hypertension, hyperlipidemia and cardiovascular 

disease. Besides, compared to Figure 4-4, the probabilities of developing almost all chronic 

diseases grow noticeably except depression and bronchitis which are less prevalent among older 

adults than among children and younger adults.   
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 Figure 4-6: Screenshot of the Count-Based Bar Chart for Analysis 2 with ‘Elder’ age 

category selected 

     Analysis 3: Following this, suppose the user selects the presence of hypertension and chooses 

Decision-Tree Based Bar Chart from the fourth dropdown list to observe and interpret the results. 

Therefore, the prevalence of the other diseases conditioned on the presence of hypertension 

appears on this type of bar chart. The probabilities of diabetes, hyperlipidemia and ‘Cardiovascular 

Disease’ increase by 3.86%, 7.78% and 5.3%, respectively (see Figure 4-6 and Figure 4-7); while 

the probabilities for bronchitis and depression stay almost the same.  
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 Figure 4-7: Screenshot of the Decision-Tree-Based Bar Chart for Analysis 3 with ‘Elder’ 

category and the presence of hypertension selected 

     In analysis 3, the user also selects Decision-Tree-Based Correlation Matrix to explore the 

associations between the chronic diseases. As shown in Figure 4-8, all cells corresponding to the 

correlation coefficients between hypertension and the other diseases change to black as these 

correlations are undefined. The user can hover over every cell to observe the exact correlation 

value of a disease pair. Compared to Figure 4-5, the number of positive correlations (blue cells) 

has been increased, which means for two diseases 𝑋𝑖 and 𝑋𝑗, increased 𝑋𝑖 results in an increase in 

𝑋𝑗. Figure 4-8 also shows that for older people diagnosed with hypertension, the most correlated 

diseases are hyperlipidemia and cardiovascular disease with the value 0.227.   
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 Figure 4-8: Screenshot of the Decision-Tree-Based Correlation Matrix for Analysis 3 with 

‘Elder’ category and the presence of hypertension selected 

     Analysis 4: Then if the user selects ‘Female’ group, the prevalence of diabetes, hyperlipidemia 

and cardiovascular disease decreases, the prevalence of ‘Arthritis’, ‘Thyroid Disease’ and 

‘Musculoskeletal Problem’ increases, and the prevalence of bronchitis, cancer and depression stays 

almost the same (see Figures 4-7 and 4-9, and Table 4-4). In other words, after the diagnosis of 

hypertension, gender does not affect the probability of developing bronchitis, cancer and 

depression. In contrast, the probability of living with arthritis, thyroid disease and musculoskeletal 

problem goes up among elderly adults who are female in the presence of hypertension. Of course, 

the actual increases and decreases depend on the estimated probabilities, which are derived from 

EHR data and DELPHI database.  
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 Table 4-4: A comparison between the prevalence of the ten chronic diseases estimated based 

on the selections in Analysis 3 and 4. Abbreviations: HT=Hypertension, DB=Diabetes, 

BC=Bronchitis, HL=Hyperlipidemia, CC=Cancer, CD=Cardiovascular Disease, 

DP=Depression, AT=Arthritis, TD=Thyroid Disease, MP=Musculoskeletal Problem 

 

 

HT DB BC HL CC CD DP AT TD MP 

Analysis 3 1 0.253 0.144 0.423 0.136 0.311 0.080 0.204 0.128 0.117 

Analysis 4 1 0.221 0.153 0.382 0.136 0.260 0.091 0.243 0.179 0.139 

 

 

 Figure 4-9: Screenshot of the Decision-Tree-Based Bar Chart for Analysis 4 with ‘Elder’ 

and ‘Female’ categories and the presence of hypertension selected 
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     Analysis 5: As the next step, suppose the user selects the radio button with label 1 for arthritis, 

the probability of chronic diseases conditioned on the diagnosis of hypertension and arthritis would 

be represented on the corresponding bars. Depicted in Figure 4-10, the prevalence of 

musculoskeletal problem increases by six percent in the presence of hypertension and arthritis. 

 

 Figure 4-10: Screenshot of the Decision-Tree-Based Bar Chart for Analysis 5 with ‘Elder’ 

and ‘Female’ categories, the presence of hypertension and the presence of arthritis selected 

     Table 4-5 shows the prevalence estimates of the ten diseases obtained from count-based 

conditional probability, decision tree and logistic regression model based on the selections in 

Analysis 5. Comparing the two classifiers with count-based conditional probability, the estimated 

probabilities are close to each other, which means the models are generating the outputs accurately. 

Nevertheless, it is necessary to compare these models using statistical significance testing in order 
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to evaluate if there is no real difference. It is also important to mention that we use all of these 

models for stratifying for different kinds of covariates in the data. In other words, although the 

models improve the prediction of the prevalence of and the correlations between chronic diseases, 

they are being used for our statistical strategy which is investigating the relationships between the 

diseases and the sociodemographic characteristics. 

 Table 4-5: A comparison between three algorithms count-based Conditional Probability, 

Decision Tree and Binary Logistic Regression, by assessing the prevalence estimates based 

on the selections in Analysis 5. Abbreviations: HT=Hypertension, DB=Diabetes, 

BC=Bronchitis, HL=Hyperlipidemia, CC=Cancer, CD=Cardiovascular Disease, 

DP=Depression, AT=Arthritis, TD=Thyroid Disease, MP=Musculoskeletal Problem 

 

 

HT DB BC HL CC CD DP AT TD MP 

Conditional 

Probability 

(Count-Based) 

1 0.235 0.171 0.468 0.165 0.331 0.085 1 0.233 0.220 

Decision 

Tree 

1 0.221 0.170 0.382 0.161 0.261 0.088 1 0.179 0.198 

Logistic 

Regression 

1 0.222 0.145 0.401 0.127 0.326 0.068 1 0.170 0.140 

 

     Furthermore, the two machine learning algorithms softmax regression and decision tree predict 

the same correlation coefficients in the cases the user only makes one selection. We examined the 

correlations between cardiovascular disease and the other chronic disease, as an example, to 

compare the performance of the two models through the five analyses.  As it is shown in Table 4-

6, for both Analysis 1 and Analysis 2 in which only one variable is selected, the correlations 

estimated by softmax regression and decision tree are the same. As the number of selections 

increases, the results obtained from the two models differ from each other for some pairs of the 

diseases. For instance, in Analysis 5, the correlation between cardiovascular disease and bronchitis 

estimated by the softmax regression differs from the correlation between these two diseases 

predicted by the decision tree. The reason could be that softmax regression is not a count-based 

model. It borrows information from the other examples that are not selected, especially in the cases 
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like Analysis 5 with multiple selections that the number of selected examples is low, and the model 

needs additional information. Since the goal of our visual analytics system is to explore the 

associations between variables rather than improving the predictions or determining the best 

classifier, we don’t focus on the slight difference between the outputs of the decision tree and those 

of the softmax regression.  

 Table 4-6: A comparison between two machine learning models, Softmax Regression and 

Decision Tree, which are used for correlation estimation, for all five analyses. Cardiovascular 

disease is chosen as an example to compare the estimated correlations between this disease 

and the other nine diseases in the data. Abbreviations: HT=Hypertension, DB=Diabetes, 

BC=Bronchitis, HL=Hyperlipidemia, CC=Cancer, CD=Cardiovascular Disease, 

DP=Depression, AT=Arthritis, TD=Thyroid Disease, MP=Musculoskeletal Problem, 

SR=Softmax Regression, DT =Decision Tree. 

  

Type 

 

 

HT 

 

DB 

 

BC 

 

HL 

 

CC 

 

DP 

 

AT 

 

TD 

 

MP 

Analysis1 SR 

Model 

0.122 0.004 0.087 0.140 0.035 0.010 0.044 0.002 0.017 

DT 

Model 

0.122 0.004 0.087 0.140 0.035 0.010 0.044 0.002 0.017 

Analysis2 SR 

Model 

0.112 0.033 0.060 0.158 -0.016 0.107 0.041 0.027 0.047 

DT 

Model 

0.112 0.033 0.060 0.158 -0.016 0.107 0.041 0.027 0.047 

Analysis3 SR 

Model 

- 0.044 0.107 0.228 0.0002 0.158 0.067 0.082 0.068 

DT 

Model 

- 0.016 0.143 0.198 -0.003 0.193 0.051 0.091 0.128 

Analysis4 SR 

Model 

- 0.025 0.147 0.191 -.019 0.224 0.075 0.121 0.120 

DT 

Model 

- 0.019 0.076 0.181 -.035 0.140 0.091 0.127 0.056 

Analysis5 SR 

Model 

- 0.061 0.206 0.248 0.029 0.251 - 0.239 0.196 

DT 

Model 

- 0.018 0.076 0.181 -.035 0.140 - 0.127 0.056 
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     As shown in Figure 4-11, the rows and columns corresponding to hypertension and arthritis in 

the matrix are represented by black color, which indicate these two diseases are selected and 

their correlations with the other diseases are not defined. 

 

 

 Figure 4-11: Screenshot of the Decision-Tree-Based Correlation Matrix for Analysis 5 with 

‘Elder’ and ‘Female’ categories, the presence of hypertension and the presence of arthritis 

selected 
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Chapter 5 

 

5  Conclusion 

This chapter provides a summary of the purpose of the thesis, the visual analytics system designed 

in this thesis and its components. It also describes briefly how these visual and interactive 

components are developed and work, and how users can engage in a meaningful discourse with 

multimorbidity data through interaction. The chapter concludes by discussing the limitations of 

this research and the issues to be addressed in the future.  

 

5.1 Thesis Summary  

Multimorbidity is a growing healthcare challenge especially for older adults and results in greater 

vulnerability, higher risk of functional decline and disability and higher mortality (Low et al 2019, 

Schäfer et al 2014). Focusing on chronic diseases individually no longer meets the needs of 

healthcare providers in preventing and managing these chronic conditions. A holistic approach to 

chronic diseases and their associations with sociodemographic characteristics and risk factors is 

needed to design effectual prevention and control strategies. Therefore, we designed an application 

system for analyzing and exploring multimorbidity associations in a visual, interactive manner. 

Unlike many studies in the area of multimorbidity whose results are shown through simple charts, 

tables and flowcharts, our visual analytics system allows users to interact with several subsets of 

data and select a set of chronic diseases and specific categories of age, gender and socioeconomic 

scores for investigation. The system encompasses two dynamic graphs, a bar chart and a 

correlation matrix. The interactive bar chart uses count-based conditional probability, decision tree 

and binary logistic regression to show how a selected disease or a sociodemographic factor affects 

the prevalence of the other diseases. The correlation matrix builds a softmax regression and a 

decision tree for each pair of chronic diseases considering the disease diagnosis and selected 
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patient characteristics to estimate the correlations of disease pairs. This matrix indicates the 

magnitude of correlation coefficients by color intensity and their positivity or negativity using blue 

and orange, respectively. The user can also observe the estimated correlations of disease pairs by 

hovering over the related cell in the correlation matrix.  

     This thesis designs the foundation for the use of visual analytics systems in investigating 

multimorbidity patterns. The visualizations in our system can be implemented for other purposes 

in the area of healthcare or other disciplines where high-dimensional joint distributions of random 

variables are of significance. The system can also apply the other statistical and machine learning 

models and interpret more data with more available features.  

 

5.2 Discussion 

As mentioned in Chapter 3, most of the investigations on multimorbidity patterns are presented in 

static charts and tables.  Besides, there are several visual analytics systems applied to healthcare 

data that investigate the relationships between chronic conditions. Some of these tools and 

applications enable users to select a set of sociodemographic characteristics, filter the data and 

consequently observe the associations of diseases. The difference between the visual analytics 

system designed in this thesis and other applications is that this system allows users to select not 

only different categories of patient characteristics but also a list of pre-existing chronic conditions 

to explore their effects on the prevalence and correlation of other unselected diseases in the data. 

For example, the user can select four chronic diseases as the diagnosed conditions. Therefore, these 

four diseases would be included in softmax regression, logistic regression and decision tree models 

for estimation. Then, these models estimate the prevalence and the pairwise correlation of the 

unselected diseases.  

     However, as mentioned in Section 4.4.4, the target variable A has 4 levels and is created based 

on the possible outcomes of two chronic diseases. In other words, the system provides the 

correlation between two diseases in the correlation matrix, while estimating the multiple 

correlation coefficients (the correlation between more than two unselected diseases) can be 

interesting as well.  

     Since some of the categories of patient characteristics have few observations in our data, we 

merged them together. Although merging small categories is a common way in preprocessing data 
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steps, it may hide some information. Thus, using count-based techniques like conditional 

probability (count-based bar chart) that show which categories are very small or missing can be 

useful. It is also important to note that our system shows disease correlation and prevalence 

estimates to help users discover more knowledge about the data provided by DELPHI collection. 

Therefore, changing the data that the system uses may result in completely different estimated 

values. The system may also represent different results in analyses with user-selected age and 

income groups if we shift these arbitrary categories slightly.  

 

5.3 Limitations and Future Directions 

Need for a larger dataset: The dataset used in this thesis includes 13697 patients with one or 

more chronic diseases. It is not a small number of observations, but through every selection by 

the user, the amount of data with certain attributes decreases quickly and the selected data can 

include categorical variables with too small a number of observations or even no observations. 

Due to our small dataset and to avoid more variables with too few observations through 

interaction, we presented the underlying patterns of the ten most common chronic diseases in our 

visual analytics system. The database provides information about a list of 20 chronic conditions 

among multimorbid patients across Ontario.  Analyzing and visualizing all 20 diseases and their 

associations using a bigger dataset with more observations for every specific variable would be 

interesting and can be considered for future work.  

     Lack of risk factors and other sociodemographic attributes in the data: Apart from 

analysis of associations between chronic diseases and sociodemographic factors and associations 

among chronic diseases themselves, adding various risk factors like obesity, smoking, poor 

nutrition, lack of exercise and genetic and environmental factors to the system can be helpful for 

users in identifying the causal effect of risk factors on the likelihood of developing chronic 

diseases. Unfortunately, our dataset is not large enough and it does not provide any risk factors 

in the patients diagnosed with one or multiple chronic diseases. There is also a lack of other 

sociodemographic information such as aboriginal status, immigration status, area of residence 

and race/ethnicity.   

     Using other machine learning algorithms: As outlined in Chapter 4, decision tree, binary 

logistic regression and softmax regression models are employed to analyze multimorbidity and 
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explore its patterns. It should be mentioned that our visual analytics system is not limited to these 

three supervised learning algorithms and it can potentially comprise a wide variety of other 

statistical and machine learning models in order to enable users to compare the results obtained 

from different classifiers and their performances. 

     Quantifying the results by statistical significance: The correlation estimates represented by 

each cell in the correlation matrix plot are computed using softmax regression and decision tree 

models. It is necessary to determine if these association estimates are statistically significant. In 

this case, the null hypothesis states that there is no relationship between two chronic diseases, 

and they are independent. If the test result exceeds the significance level, which is often 0.05, the 

null hypothesis will be rejected and the alternative hypothesis is accepted, which indicates the 

two measured chronic conditions are strongly associated with each other.   
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