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Earthquake site characterization of rock sites in Eastern Canada and stiff ground sites 

in Vancouver, British Columbia 

Abstract 

Site characterization is a crucial component in assessing seismic hazard, typically involving 

in situ shear-wave velocity (VS) depth profiling, and measurement of site amplification 

including site period. These methods are ideal for soil sites and less reliable in more complex 

geologic settings including rock sites. A multi-method approach to earthquake site 

characterization is tested at 25 seismograph stations across Eastern Canada. It is typically 

assumed these stations are installed on hard rock. We seek to identify which site 

characterization methods are most suitable at rock sites as well as to confirm the hard rock 

assumption. Active-source refraction and surface wave array techniques consistently provide 

velocity measurements at rock sites; passive-source array testing is less consistent but most 

suitable to constraining the rock Vs. Bayesian inversion of surface wave dispersion curves 

provides Vs probability distributions and importantly includes uncertainty in the rock Vs. We 

succeed in estimating rock Vs at 16 stations, among those we measure rock Vs at only 7 

stations. The majority of sites are classified as hard rock but span hard-to-soft rock 

classification due to variance in Vs. A multi-method site characterization approach is also 

tested at stiff glaciated upland sites across Vancouver, British Columbia. From the 10 sites 

investigated, we determine an average Vs of 438 m/s for the glaciated sediments beneath 

Vancouver which vary in thickness from 20 m to over 100 m from north to south. 

Keywords 

Earthquakes, hard rock, earthquake site classification, surface wave dispersion, 

microzonation, Vs30, seismic hazard, microtremors, shear wave velocity, site effects 

 

 



 

iii 

 

Summary for Lay Audience 

There is earthquake hazard present in both Eastern and Western Canada. Eastern Canada is 

not near a plate boundary but has had historical large events that are possible in future. 

Western Canada is nearby an active plate boundary with lots of earthquakes, and 

southwestern British Columbia has the highest seismic hazard in Canada. Earthquakes cannot 

be predicted, but we can estimate the resulting ground shaking. The geology of the near 

surface impacts the amount of shaking that occurs in the event of an earthquake. Stiffer 

materials (e.g. rock) have a higher stiffness (velocity) than material that is softer (e.g. sand) 

and typically have lower intensity shaking than soft soil sites. 

In Canada, networks of earthquake recording instruments (seismometers) are deployed in 

areas susceptible to earthquakes and near high consequence infrastructure (e.g. nuclear power 

plants) to monitor events. The earthquake recordings are used to develop models to predict 

expected shaking at the surface. Seismometers of the Canadian National Seismograph 

Network are installed on rock surfaces, assumed as hard rock. No testing is done at the 

seismometer location to verify this hard rock assumption. If the assumed stiffness of the rock 

is incorrect, then the model we develop to predict earthquake shaking will be incorrect. We 

perform non-invasive seismic testing at 25 seismic stations across Eastern Canada to verify 

this hard rock assumption. We also test a variety of non-invasive seismic methods to 

determine which method is most useful in confirming the rock’s stiffness. These non-

invasive seismic methods are best suited to soft ground, so we also test their applicability to 

measure stiffness at 10 stiff glaciated sites in Vancouver.  
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Chapter 1 Introduction and Literature Review 

This chapter provides the necessary prior information to understand the rationale for the thesis 

work. This chapter first presents the seismic hazard from earthquake occurrence in Eastern 

Canada and in Southwest British Columbia.  Seismic hazard can be quantified through 

earthquake site characterization where local geology plays an important role in seismic hazard 

assessment. Local site conditions affect the frequency and amplitude content of seismic waves 

travelling from source to site, termed as an earthquake site effect. Earthquake site 

characterization involves the use of in situ seismic methods to determine properties of the 

subsurface ground conditions at a site of interest to predict earthquake site effects. Methods of 

earthquake site characterization can be grouped into non-invasive and invasive methods. 

Invasive methods are typically costly and intrude the subsurface. The focus of this thesis is on 

non-invasive methods due to their cost-effectiveness and ease in operation in not disturbing the 

subsurface. Non-invasive methods for site characterization have had success at soil sites whereas 

at non-soil sites (i.e. rock) they have had limited application. Results of earthquake site 

characterization can be simplified into earthquake site classification outlined by Canadian 

seismic design guidelines. This thesis focuses on the advancement of non-invasive site 

characterization techniques at stiff ground and rock sites in Eastern Canada and Vancouver, 

British Columbia respectively. Earthquake site characterization is important because earthquake 

recordings are used to develop ground motion models which use a seismic station’s local site 

conditions and emphasizes them to be known and classified accurately. Classifying sites is 

important in creating microzonation maps to display seismic hazard (amplification, site class, 

displacement, etc.) due to local site effects. 

1.1 Seismicity in Eastern Canada 

About 450 earthquakes occur each year in Eastern Canada above magnitude (M) 2.5 with an 

average of 4 exceeding M 4 (Natural Resources Canada, 2018). The seismic hazard in Eastern 

Canada is high in some areas, e.g. Charlevoix, Quebec (Lamontagne and Ranalli, 1996), which 

have been historically known to produce large magnitude (M > 5) events. Seismicity in Eastern 

Canada occurs in clusters dominated by northeast to east regional compressive stress fields 
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(Adams and Basham, 1989). Most large earthquakes in Eastern Canada have occurred near 

Paleozoic or younger rifts or along rifted margins in areas where the continent has been 

weakened. The cause of these earthquakes has been thought to be the reactivation of crustal 

faults in areas of weakness (e.g. Adams, 1989 and Natural Resources Canada, 2018). Therefore, 

earthquakes typically occur in the shallow 30 km of the crust in Eastern Canada (Natural 

Resources Canada, 2018). There is seismic hazard present in Eastern Canada with some regions 

having larger hazard than others. The seismic risk is high in dense, highly populated areas which 

have been subject to seismicity in the past (i.e. Montreal, Ottawa, Quebec City, etc.).  

A study reported by the Insurance Bureau of Canada (IBC) (AIR Worldwide, 2013) estimates 

that a moment magnitude (M) 7.1 earthquake in Charlevoix would cause $49 billion in direct 

damages (e.g. shaking, liquefaction, and fires caused) with an additional $11 billion in indirect 

damage (e.g. supply chain and network interruptions and other problems with connectivity 

between economic sectors) with most of the damage occurring in Quebec City. Seismic risk 

results from the hazard in factoring the vulnerability and exposure to a population and their 

economic loss (e.g. Ploeger et al., 2013). The 1944 M 5.8 Cornwall-Massena Earthquake caused 

an estimated 2 million dollars in damage at the time in mainly housing and infrastructure in 

Cornwall, Ontario and Massena, New York (Bent, 1996) and would cost approximately 30 

million dollars (CAD) in 2019 (Bank of Canada, 2019). It is assumed by the public that there is 

little earthquake hazard in Eastern Canada due to not being near major plate boundaries but other 

components related to historic plate tectonics can trigger earthquakes.  Figure 1 shows historical 

seismic events as well as measured earthquake locations until 2018 in Eastern Canada with sub-

regions of interest outlined by Natural Resources Canada. Sub-regions of interest to this thesis 

are: Western Quebec (WQU), Northern Appalachians (NAP), Lower St. Lawrence (BSL), and 

Charlevoix (CHV).  
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Figure 1.1: Seismicity in Eastern Canada (locations and magnitude shown by coloured circle) with 

sub-regions of interest outlined by solid lines (Natural Resources Canada, 2018).  

The WQU encompasses the Ottawa valley from Montreal to Temiscaming which shows two 

patterns of seismicity (Figure 1.2). A concentrated region of seismicity occurs from Lake 

Timiskaming to Ottawa. This seismicity is associated with rift faults formed in the late 

Proterozoic and were active into the Paleozoic along the Ottawa River which is part of a larger 

rift fault structure which form the Ottawa Graben (Adams and Basham, 1989; Forsyth, 1981). A 

second region of concentrated seismicity occurs from Montreal to the Baskatong reservoir 

(North-West of Mont Laurier). This seismicity is likely related to crustal weakening from the 

Mesozoic track of the Great Meteor Hotspot (Ma and Eaton, 2007). Historical seismicity in the 

WQU includes 3 large (M > 5.5) earthquakes including the1732 M 5.8 (near Montreal), 1935 M 

6.1 (near Timiskaming), and 1944 M 5.8 (near Cornwall) causing damage in areas such as 

Montreal.  
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Figure 1.2: Sub-region WQU showing the seismicity of Western Quebec which encompasses 

Eastern Ontario (Natural Resources Canada, 2018). 

Further northeast, CHV comprises Quebec City and is the most seismically active region in 

Eastern Canada with an estimated five M > 6 events (Figure 1.3). WQU, CHV, and BSL all lie 

among the same rift system. In CHV it gets a bit more complicated in containing part of a 

Devonian meteorite crater impact with a diameter of ~ 54 km consisting of a multi-ringed basin 

with central uplift (Adams, 1989; Ma, 2009). It has been proposed that meteor impacts weakened 

the rift faults and introduced its own fractures (Lamontagne, 1987). Typically, meteor impacts do 

not leave seismic signatures but Lamontagne (1987) exemplified that the Charlevoix impact 

crater may present a different case due to the weakening of paleorift faults. This sub-region 

contains the only loss of life directly due to an earthquake in Canada from the 1870 M 6.5 

earthquake where the death of two children occurred in Les Èboulements (Lamontagne, 2008). 



 

5 

 

 
Figure 1.3: CHV seismic sub-region encompasses Quebec City and the St. Lawrence River and is 

the most seismically active area in Eastern Canada (Natural Resources Canada, 2018). 

Continuing northeastward, the concentrated or clustered seismicity in CHV trends along the St. 

Lawrence in the BSL sub-region between Baie-Comeau and Sept-Iles (Figure 1.4). This region 

contains old rift faults similar to other areas on the St. Lawrence. Through studying focal 

mechanisms, it is suggested that Paleozoic rift faults are weak zones susceptible to seismicity 

related to glacial isostatic rebound (Adams, 1989). Magnitude three and four earthquakes occur 

at similar rate to CHV in its close proximity. 
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Figure 1.4: BSL seismic sub-region which is the Lower. St. Lawrence (Natural Resources Canada, 

2018). 

Southeast of CHV, the NAP sub-region includes most of New Brunswick (Figure 1.5). New 

Brunswick has a concentration of earthquakes in the Miramichi Highlands and near 

Passamaquoddy Bay (West of Saint John). There have been 3 M > 4.5 earthquakes near the New 

Brunswick and Maine border in 1817, 1869 and 1904 with an 1855 earthquake near Moncton. 

Geological and geophysical investigations have exemplified that all the earthquakes have 

occurred within a single granodiorite pluton (Adams, 1989). 
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Figure 1.5: NAP seismic sub-region which contains some M > 4.5 events throughout New 

Brunswick (Natural Resources Canada, 2018). 

1.2  Seismicity in Greater Vancouver 

In contrast to Eastern Canada, the driving force of earthquakes in Southwest Canada is plate 

tectonics. The Pacific Coast is the most earthquake-prone area of Canada (Earthquakes Canada, 

2019). The southwest coast of Canada is a unique area where three types of earthquakes can 

occur which contribute to its high hazard. These include shallow crustal, deeper inslab, and 

subduction zone interface earthquakes (Figure 1.6). Crustal earthquakes are shallow (< 30 km) 

and occur in the continental North American crust (e.g. 1946 M 7.3 Vancouver Island). The 

main source of crustal earthquakes in Greater Vancouver is the North American plate overriding 

the subducting Juan De Fuca plate. Crustal earthquakes are considered hazardous and damaging 

in the region due to their proximity to the surface. Inslab earthquakes are deeper (~40-60 km) 

and are generated in the subducting Juan De Fuca plate. Inslab events are concentrated along 

Georgia Strait, British Colombia to south of Puget Sound, Washington. The inslab 2001 M 6.8 

Nisqually earthquake strongly shook the Seattle area and it was felt in Victoria and Vancouver 
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(Earthquakes Canada, 2011). The largest magnitude earthquakes occur along the interface 

boundary between the subducting Juan De Fuca plate and the overriding North American plate, 

known as the Cascadia subduction zone (CSZ). Paleoseismicity and historical records confirm a 

M 9 (e.g. Atwater et al., 1995; Satake et al., 1996) earthquake last occurred along the Cascadia 

Subduction Zone in 1700. Interface earthquakes have the potential to cause tsunamis which 

compounds the regional seismic hazard.  

 
 Figure 1.6: Earthquake source types occurring in southwest Canada and northwest United States 

(Modified from Pacific Northwest Seismic Network, 2011). 

Southwestern British Columbia has the highest seismic risk in Canada due to its high seismic 

activity and exposure of its large population and critical infrastructure (e.g. Onur et al., 2005). 

The population of greater Vancouver is approximately 2.5 million people with important 

infrastructure connecting Canadians to the rest of the world (e.g. international airport, shipping 

and port facilities, etc.). Onur et al. (2005) performed risk assessments for a M 6.5 inslab event 

in the Strait of Georgia and estimated that the economic loss for only the municipality of 

Vancouver is around $3.5 billion. The IBC estimated that a M 9 CSZ interface event (AIR 

Worldwide, 2013) would cause $62 billion in direct loss and $12.7 billion in indirect losses. Site 

effects looked at in both studies assumed a standard site class C (discussed in 1.3 and 1.4). In 

reality, there is not one standard site class to describe earthquake shaking across greater 

Vancouver. Seismic microzonation mapping to capture variations in expected earthquake 

shaking due to site effects is underway for Metro Vancouver (e.g. Molnar et al., 2020). 
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1.3 Earthquake site effects  

It is known through events such as the 2001 M 6.8 Nisqually, Washington earthquake that 

seismic waves propagating through soft sediments are amplified relative to stiffer ground 

(Shearer and Orcutt, 1987). In this event, artificial fill and soft soil sites were the most severely 

damaged areas as well as triggering other hazards (i.e. liquefaction) causing more damage 

(Frankel et al., 2008). Sites situated on hard rock had significantly less damage due to less 

amplification occurring at the surface. Greater damage typically occurred when the natural 

period of the buildings and the site closely matched. These observations suggest that a correct 

quantification of site effects is necessary for a complete assessment of seismic hazard. 

Earthquake site characterization involves the use of in situ methods to measure properties of 

subsurface ground materials that are important for predicting earthquake site effects. The 

contrast in softer and stiffer site conditions highlights the importance of earthquake site 

characterization due to the link between ground motion amplification and shear-wave velocity 

(Vs) of subsurface strata and bedrock (Kramer, 1996). Characteristics of ground motion at the 

surface (amplitude, frequency, and duration) is strongly controlled by subsurface earth materials 

where seismic waves travel through, especially in the upper 100 m (or less) of sediment (Hunter 

and Atukorala, 2015).  

Earthquake site amplification is observed from shear waves which have travelled through the 

crust and reflect back and forth between a free surface of the ground and a significant impedance 

boundary at the soil-bedrock interface. Shear wave energy can be trapped in the soil layer 

causing a ringing at the fundamental resonance frequency (f0) (Equation 1); site period is the 

inverse of f0. For a one-dimensional soil column model with a single soil layer over rigid 

bedrock and the upward propagation of horizontally polarized shear (SH) waves, the resonance 

frequencies are dependent on the soil layer’s average Vs (VsAVG) and thickness (h) where  

 𝑓𝑛 = (2𝑛 + 1) (
𝑉𝑠𝐴𝑉𝐺

4ℎ
)  𝑓𝑜𝑟 𝑛 = 0, 1, 2, 3…. (1) 

fn is the resonance frequency at every mode (n), where n = 0 is the fundamental mode (Haskell, 

1960). The SH-wave transfer function is defined by one dimensional (1D) site amplification; a 

transfer function is physically defined as the ratio between the output and input of a system in the 
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frequency domain. The resonance amplification depends on the seismic impedance (Z) (density 

(ρ) * Vs) contrast between soil and underlying rock,  

𝐴𝑟𝑒𝑠~
𝜌𝑟𝑜𝑐𝑘𝑉𝑠𝑟𝑜𝑐𝑘

𝜌𝑠𝑜𝑖𝑙𝑉𝑠𝑠𝑜𝑖𝑙
=

𝑍𝑟𝑜𝑐𝑘

𝑍𝑠𝑜𝑖𝑙
. (2) 

Broadband amplification occurs from shortening of shear wave wavelengths and an increase of 

shear wave amplitudes over a broad frequency bandwidth due to conservation of energy as 

waves travel from rock into soil. The predicted broadband amplification is  

𝐴𝑏𝑟𝑜𝑎𝑑~√
𝜌𝑟𝑜𝑐𝑘𝑉𝑠𝑟𝑜𝑐𝑘

𝜌𝑠𝑜𝑖𝑙𝑉𝑠𝑠𝑜𝑖𝑙
. 

(3) 

For predicting 1D site amplification, the most important measure is a site’s subsurface Vs depth 

profile. Hence, the significant efforts to develop Vs-based metrics to categorize sites (described 

in section 1.4) and in situ Vs depth profiling methods (described in section 1.5).  

Lateral and vertical variability in subsurface materials leads to two- and three-dimensional 

earthquake site effects caused by sedimentary basins and/or topography. This thesis is focused on 

only 1D site amplification. Site effects can be expressed regionally by microzonation mapping. 

Microzonation maps have been produced for cities in Canada including Vancouver (Taylor et al. 

2006), Victoria (Monahan et al., 2000), Ottawa (Motazedian et al. 2011), Quebec City (Perret 

and Lamarche, 2013), and Montreal (Rosset et al., 2015). There is a current project underway to 

generate microzonation maps for Greater Vancouver, including earthquake site effects and 

liquefaction and landslide susceptibility, discussed in Chapter 4. 

1.4 Earthquake site classification 

A relatively simple and quantitative measure to differentiate (categorize or group) sites based on 

their earthquake site response was sought for ground motion prediction and seismic design 

guidelines. The most ubiquitous earthquake site classification metric is the time-averaged Vs of 

the upper 30 m, known as Vs30. Vs30 was first introduced by Borcherdt (1994) as most boreholes 

in California were drilled to a maximum of 30 m (100 feet), the maximum depth attainable in 

one day with available drilling equipment.  

In Canada, the use of Vs30 for earthquake site classification was adopted in the National Building 

Code of Canada (NBCC) and Canadian Highway and Bridge Design Code (CHBDC) in 2005 

and 2015, respectively (Table 1.1). There are six earthquake site classes, termed A to F. For 
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soils, the average standard penetration resistance (N60) and undrained shear strength (Su) of the 

upper 30 m can also be used for site classification. As this thesis is focused on stiff sediment and 

rock sites, these other average soil properties are not discussed further. Vs is considered the most 

practical site classification metric with its ability to classify any site class (including rock). Vs30 

is calculated by taking into account the time the shear waves propagate in each subsurface layer 

(n), where 𝑉𝑠30 =
30

∑
ℎ𝑛
𝑉𝑠𝑛

. 

1D broadband amplification is then predicted for other site classes based on a reference site 

class; in Canada, site class C (Vs30 of 450 m/s, Finn & Wightman 2003) was selected as the 

reference site class in NBCC 2005 to 2015. Period dependent factors were used to adjust hazard 

to different site classes. In NBCC 2020 (Adams et al., 2019; Kolaj et al., 2019) 450 m/s is no 

longer used as the reference condition and instead a direct calculation of hazard is performed 

using Vs30 directly. 

 Table 1.1: Seismic site classification defined by the NBCC 2015 for average properties in the top 30 

m (National Research Council, 2015). 

Site 

Class 
Description 

Average Shear 

Wave Velocity, 

𝑽𝒔 (m/s) 

Average 

Standard 

Penetration 

Resistance 𝑵𝟔𝟎 

Soil Undrained 

Shear Strength, 

𝑺𝒖 (kPa) 

A Hard rock 𝑉𝑠 > 1500 N/A N/A 

B Rock 760 < 𝑉𝑠≤ 1500 N/A N/A 

C Very dense soil and soft rock 360 < 𝑉𝑠 < 760 𝑁60 > 50 𝑆𝑢 > 100 

D Stiff soil 180 < 𝑉𝑠 < 360 15 ≤ 𝑁60 ≤ 50 50 <  𝑆𝑢 ≤ 100 

E Soft soil 𝑉𝑠< 180 𝑁60 < 15 𝑆𝑢 < 50 

F Other soil Site-specific evaluation is required 

Proxy-based methods which use readily available remote sensing datasets to estimate Vs30 are 

desirable especially for large-scale seismic hazard assessment or when/where in situ 

measurements are not accomplished for various reasons (difficult location access, expense, etc.). 

Proxy Vs30 methods include the use of topographic slope (Allan and Wald, 2009; Lemoine et al., 

2012), surficial geology including lithological units and age (Tinsley and Fumal, 1985; Wills et 

al., 2000), and combining both surficial geology and topography (Wills et al., 2015; Parker et al., 

2017). Proxy based methods are very useful for regional mapping purposes but lead to greater 

error in Vs30 compared to direct Vs30 measurements. Yong (2016) demonstrated proxy methods 

underpredict Vs30 at lower velocities (site classes D and E) and overpredicts at higher velocities 

(site classes B and C) at several sites in California. It is possible to use proxy methods for Vs30 
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estimation, but the end-user must remember that uncertainty in Vs30 is greater and the only way 

to reduce this uncertainty is to perform proper in situ site characterization.  

Vs30 is only appropriate for 1D broadband amplification and poorly captures resonance 

amplification (f0 or site period) or 3D basin or topographic effects. Site period has been proposed 

as a site classification parameter (e.g. Di Alessandro et al., 2012 and Zhao et al., 2006) or as a 

Vs30 proxy (Hassani and Atkinson, 2016) in areas where direct Vs measurement cannot be 

performed. Hassani and Atkinson (2016) examined the applicability of using site period as a Vs30 

proxy for sites in Central and Eastern North America but concluded it is limited compared to 

using topographic slope or surficial geology and suggests that it is best to use all three together.  

There have been attempts to have a robust scheme in site classification scheme using the 

microtremor horizontal-to-vertical spectral ratio (MHVSR) method (introduced in 1.5). A 

classification scheme of the MHVSR method was first proposed by Zhao et al. (2006) and 

developed further by Fukushima et al. (2007) but most recently by Di Alessandro et al. (2012). 

Using a site classification scheme for HVSR measurements helps classify and characterize 

stations into groups which have a similar site response. Di Alessandro et al. (2012) developed the 

classification scheme from Italian earthquake records where earthquake HVSR’s (EHVSR) were 

computed to then classify them into categories (Table 1.2). Most importantly, from previous 

authors Di Alessandro et al. (2012) introduced the flat HVSR category to incorporate low 

amplification rock sites. Even though velocity is not measured with this scheme, it provides a 

classification scheme especially in areas where velocity measurements cannot be computed. This 

method of classification can test flat or broadband responses which can be an indicative of 

weathered rock site conditions as well as resonant peaks indicating surficial layers. 

Table 1.2: Site classification scheme based on predominant site period (Tg) (Di Alessandro et al., 

2012). 

Class Criterion (Tg indicates natural site period measured in seconds) 
CL-I Tg < 0.2 s 

CL-II 0.2 s ≤ Tg < 0.4 s 

CL-III 0.4 s ≤ Tg < 0.6 s 

CL-IV 0.6 s ≤ Tg 

CL-V Tg not identifiable (Flat H/V and amplification < 2) 

CL-VI Broadband amplification/multiple peaks at Tg < 0.2 s 

CL-VII Tg not identifiable with multiple peaks over the entire period range 
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1.5  Non-invasive seismic methods for site characterization  

Non-invasive seismic methods offer an affordable alternative to Vs profiling by using body or 

surface wave techniques. There are two types of waves generated when an applied force is acted 

upon the subsurface. The first are body waves which propagate spherically in a homogeneous 

medium from its energy source and the second is surface waves which propagate cylindrically 

from its respective energy source (Socco and Strobia, 2004). Body waves can be described by 

two types of waves: compressional (P) and shear (S) waves. In P waves, the particle motion of 

the wave is in the same direction as wave propagation whereas S waves’ particle motion is 

perpendicular to the direction of the propagating wave. Surface waves mainly consist of 

Rayleigh waves and Love waves. Rayleigh waves have an elliptical particle motion where their 

ground motion is mainly perpendicular to their wavefront. Love waves are horizontally polarized 

shear waves where their particle motion is primarily in the horizontal plane (Hunter and Crow, 

2015). Compared to body waves, surface waves are slower and arrive to the surface at a time 

later than body waves.  

In vertically heterogeneous media, surface waves are dispersive in nature meaning that different 

frequencies (and wavelengths) travel with different velocities. Waves of high frequency (shorter 

wavelength) travel in the lower-velocity near surface compared to low frequency (longer 

wavelength) waves that travel in higher-velocity material at depth in the subsurface. In 

measuring surface (Rayleigh or Love) waves of increasing wavelength on the ground surface 

using geophones or seismometers, a dispersion curve is generated. A dispersion curve consists of 

the phase (or group) velocities of the surface waves at particular frequencies. Generally, seismic 

velocities are observed to increase with depth, i.e. waves with longer wavelengths (lower 

frequency) propagate faster than waves with shorter wavelengths as indicated by: λ(f) = VR(f)/f, 

where λ(f) is the Rayleigh wave wavelength at frequency f and VR(f) is the phase velocity of 

Rayleigh wave components of frequency f. Hence, a dispersion curve is essentially the site’s 

velocity profile with depth. Inversion of the dispersion curve is required to model the 1D layered 

profile (including Vs) that gives rise to the measured surface wave phase velocities (Socco and 

Strobia, 2004).  

There are many non-invasive seismic methods developed for measuring subsurface material 

velocities important to site characterization. Hunter and Crow (2015) list 8 Vs profiling methods 
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which are sub-divided into active- and passive-source seismic array methods for the purpose for 

site characterization in Canada. Active source methods are where body and surface waves are 

generated from a source (e.g. sledgehammer, dynamite, etc.). Active body wave methods used 

for the purpose of this thesis include compression wave velocity (Vp) refraction; vertical source 

generation and vertical-component geophones are used. Based on Snell’s Law, a wave will 

refract away from the normal when it encounters a boundary of higher seismic impedance. 

Figure 1.7 presents a simple two-layer case where the upper layer 1 has lower velocity than the 

bottom layer 2, i.e., v1 < v2 (Lowrie 2007). In this case, the refracted wave is generated at 

acritical angle (ic) which travels horizontally along the higher velocity interface as the head wave 

and will emerge at the same critical angle towards the surface to be measured by an array of 

geophones. The arrival times of the first wave breaks on the recorded waveforms are picked and 

plotted according to distance from the seismic source point (travel-time vs. distance plot in 

Figure 1.7). Two slopes are readily apparent (the hyperbolic arrival times of reflected arrivals is 

ignored here). A steeper slope line denoting relatively long travel-time of direct wave arrivals 

with increasing geophone distance; direct waves travel at lower v1 in the upper layer. And a 

shallower-sloped line denoting relatively fast travel-time of refracted wave arrivals with 

increasing geophone distance; refracted waves travel at faster v2 in the second layer. The critical 

angle (ic) is  

 sin(𝑖𝑐) =
𝑣1

𝑣2
. (5) 

Through analyzing the raypaths geometrically, the depth (d) to layer 2 (thickness of layer 1) is  

 
𝑑 =

(𝑡𝑖 ∗ 𝑣1)

2 ∗ cos(𝑖𝑐)
, 

(6) 

where ti is the intercept time determined by extrapolating the travel time of the refracted waves 

to x=0. Active source refraction surveying thereby provides direct measurement of the velocities 

of, and depths to, subsurface ‘layers’ of differing seismic impedance. 



 

15 

 

 
Figure 1.7: Travel time vs distance curves for the direct and refracted ray at a horizontal interface 

between two layers with a velocity of v1 and v2 separated at a depth d (Lowrie, 2007). 

Active source surface wave techniques also involve source generation but instead focuses on 

measurement of later arriving, slower surface waves. The most popular version of this technique 

is known as multi-channel analysis of surface waves (MASW); (Park et al., 1999). MASW is an 

extension of the spectral analysis of surface waves (SASW) method (Nazarian and Stokoe, 1984) 

which takes advantage of multi-channel capabilities of seismographs (Phillips and Sol, 2015). 

MASW data is similarly acquired to seismic refraction surveying. The same equipment, layout of 

receivers, and shot locations are used with slightly different acquisition parameter settings. A 

line of 12 or more geophones are inserted at a particular spacing, connected to a seismic cable 

which is connected to the multi-channel seismograph. Increasing the number of geophones is 

beneficial to increase the array length (increases measurable wavelengths and therefore depth of 

investigation) as well as improve spatial sampling which aids in mode identification. A generally 

accepted axiom is that the source offset should be equal or greater than the desired depth of 

investigation. In this thesis, a vertical impact source and vertical-component geophones are used 

to measure Rayleigh wave velocities, whereas a shear-wave source and horizontal-component 

geophones would be required to measure Love waves.  
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MASW data are typically processed using a frequency-wavenumber (f-k) method. Phase 

velocities can be plotted versus frequency using energy maxima in the f-k domain (Gabriels et 

al., 1987). This is accomplished by a 2-D Fourier transform of the cross-correlation of recordings 

to calculate the 2-D amplitude spectrum (Molnar, 2015). The local energy maxima in the f-k 

domain is associated with the modes of propagation and from their location in the (f, k) plane, 

the surface wave phase velocity as a function of frequency (dispersion curve) can be resolved 

(Foti, 2000). Swept-sine filtering (Park et al., 1999) is another method that can be used to 

generate a dispersion curve but for this thesis, the f-k method was used. Using the f-k method for 

Vs profiling was first shown by Asten and Henstridge (1985) based on f-k methods of Capon 

(1969) and Lacoss et al. (1969). The phase velocity (c) of the dominant wave and its propagation 

direction () is calculated by the wavenumber coordinates of the peak of the f-k spectrum (kx,ky) 

and is calculated for each frequency according to:  

 𝑐 =
2𝜋𝑓

√𝑘𝑥
2+𝑘𝑦

2
. (7) 

The propagation direction of the dominant wave is calculated by 

 𝜑 = tan−1(
𝑘𝑥

𝑘𝑦
). (8) 

Two-dimensional (2D) wavenumber coordinates are used in 2D array configurations, having 

both an “x and y” coordinate. 1D array configurations have 1D (“x or y”) wavenumber as they 

are configured in one direction. 2D wavenumber coordinates (kx and ky) are simplified to only k 

in a 1D case in equations 7 and 8. The phase velocity and propagation direction of the dominant 

wave propagating across the array is defined by the vector of the peak in the wavenumber 

spectrum for a certain frequency (Molnar, 2015). Hence, the f-k method works best for surface 

waves of high energy with a limited azimuthal distribution (Molnar, 2015). A histogram of phase 

velocities is developed from time windows at certain frequencies. To improve the original f-k 

method, high resolution f-k (HRFK) was developed by Capon (1969) where weighting factors 

were added to each sensor’s contribution in the array output to minimize uncorrelated noise. The 

HRFK method is theoretically able to distinguish between two waves travelling at close 

wavenumbers better than the f-k method (Wathelet, 2005).  

Passive source methods do not require generating seismic waves but instead take advantage of 

the natural vibrations of the earth spanning low frequency (< 1 Hz) surface waves caused by 
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wind and lake/ocean waves as well as higher frequency (> 1 Hz) vibrations caused by human 

activity such as people walking or traffic. Seismic noise was traditionally sub-divided into lower 

frequency microseisms and higher frequency microtremors but is now simply referred to as 

‘microtremors’ or ‘ambient vibrations’. Surface waves become predominant at large distances 

due to their low geometric attenuation (Socco and Strobbia, 2004); hence, the basic assumption 

is the microtremor wavefield is typically dominated by surface waves.  

Two main passive seismic methods are used for site characterization and are applied in this 

thesis. The first is the MHVSR method developed by Nogoshi and Igarashi (1971) in Japan 

which was then popularized by Nakamura (1989). To calculate the MHVSR, a single three-

component (tri-axial) seismometer is needed. Basic workflow of the method includes measuring 

microtremors for an accustomed time (typically < 1 hour) for the site, calculating the mean 

Fourier spectrum over time for each component, and then calculating the ratio between the 

averaged horizontal and vertical spectra to produce the MHVSR. The maximum of the MHVSR 

generally occurs at the site fundamental frequency (Equation 1) due to shear-wave resonance 

when there is a significant impedance contrast at depth. 

 The MHVSR is a site amplification spectrum referenced to vertical component vibrations which 

are assumed to not be amplified by shear motions. Peaks in the MHVSR spectrum therefore 

relate to amplified shear motions, i.e., resonance amplification related to the soil’s thickness and 

Vs (Equation 1). Hence, MHVSR is a useful technique at soil sites where f0 is sensitive to the 

thickness and Vs of the soil layer whereas, rock sites theoretically display no site amplification (a 

“flat” MHVSR with amplification of one). In reality, at rock sites there can be some 

amplification over a wide frequency range (i.e., broadband) or at higher frequencies due to a 

weathered/fractured surface or the presence of surficial layers. The low cost of using this method 

and the simplicity in processing data is what makes it so popular in the use of earthquake site 

response studies. 

The most appropriate measure of earthquake site amplification is the earthquake standard 

spectral ratio (SSR) introduced by Borcherdt (1970); the average horizontal Fourier spectrum at 

a soil recording site is divided by (referenced to) the average horizontal Fourier spectrum at a 

nearby rock site or downhole recording. The SSR is ideally averaged using recordings of 
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earthquakes of various magnitude, distance, and azimuths. In general, earthquake SSRs are 

relatively difficult to obtain, e.g., requires two seismometers, siting an appropriate nearby rock 

site, and for the instrumented rock site to have triggered or recorded, particularly in low 

seismicity regions. Field and Jacob (1993) applied MHVSR methodology but instead used 

earthquake motions. They demonstrated similarity of EHVSR with earthquake SSRs at soft lake 

basin sites in Mexico City. The SSR is the ideal (correct) method to obtain earthquake site 

amplification referenced to bedrock (soil column base); however, earthquake and microtremor 

HVSR methods are a “suitable approximation” to the SSR and only require one seismometer on 

soil. Suitable approximation means the site fundamental frequency is always obtained regardless 

of methodology (Molnar et al. 2018); however, the EHVSR and MHVSR amplification level 

often underestimates SSR amplification at the fundamental frequency (when impedance contrasts 

are lower than ~3) and consistently at higher frequencies. It is generally recommended that the 

MHVSR method will provide the site fundamental frequency but is not a direct measure of 

earthquake site amplification (e.g., Bard et al. 2005).   

Through the MHVSR method, it is common application to estimate the depth to a major 

impedance boundary or to bedrock. It is possible to invert the MHVSR peak or the entire curve 

for layered earth models, i.e., Vs profiles. The forward problem is nonlinear and depends on 

several uncorrelated parameters which leads to non-uniqueness in that a single MHVSR is 

consistent with multiple Vs profiles (Piña-Flores et al., 2016). The inversion can be improved 

with joint inversion of dispersion (velocity) data and/or constraining model parameters based on 

external subsurface information (e.g. geotechnical testing). For rock sites with a flat MHVSR 

response, inversion cannot resolve model velocities, and additional information is needed. 

Whether there is broadband or high frequency peak amplification can be used as an indicator of 

the condition of the rock (i.e. soft/hard or fractured rock).  

The second passive source method is the ambient vibration array (AVA) method where multiple 

sensors are used in 2D geometries (e.g., circles, triangles) to measure surface wave dispersion 

across the array. Spatial Autocorrelation (SPAC) is a technique developed by Aki (1957) to 

obtain dispersion estimates representative of the subsurface. Aki (1957) considered ambient 

noise as a temporal and stochastic process to evaluate the coherency between all sensors in the 

array (Okada, 2006; Claprood, 2015). The coherency spectra generated between all sensor pairs 
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are azimuthally averaged over interstation separations (Henstridge, 1979) to determine the 

average SPAC coefficient at each select frequency (SPAC curves) which have the shape of a 

zero-order Bessel function (Aki, 1957). Aki (1957) developed this method on the basis of the 

azimuthal average of the normalized spatial autocorrelation function (r,f) at a distance (r) and 

frequency (f) can be shown as Equation 9:  

 
𝜌(𝑟, 𝑓) =

1

2𝜋𝜑(𝑟 = 0, 𝑓)
∫ 𝜑(𝑟, 𝜃, 𝑓)𝑑𝜃 = 𝐽0(

2𝜋𝑟𝑓

𝑐
)

2𝜋

0

, 
(9) 

where J0 is the zero-order Bessel function,  (r=0, f) is the average autocorrelation function at the 

centre of the array,  (r, , f) is the cross correlation function for several stations located on a 

semi-circle in polar coordinates (r,) and the record at the origin with phase velocity (c) at 

frequency (f) (Chavez-Garcia et al., 2014).  

A modified SPAC method (MSPAC) was developed by Bettig et al. (2001) to take into account 

asymmetrical array types for real-world applicability. The main difference between MSPAC and 

SPAC is that MSPAC does not calculate the average spatial autocorrelation through a constant 

radius but with rings instead (i.e., range in radius). MSPAC calculates the average spatial 

autocorrelation (𝜌𝑟1,𝑟2  ̅̅ ̅̅ ̅̅ ̅̅ ) for ring radii r1 and r2 at angular frequency (). r and φ indicating the 

distance and azimuth of the direction between stations respectively, and θ being the azimuth of 

propagation shown as: 
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In using properties of the zeroth and first order Bessel functions, Equation 10 can be simplified 

to: 
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An array can then be broken up into several symmetrical semicircular “sub-arrays” (k) defined 

by station pairings (i,j) that satisfy 𝑟𝑘1 < 𝑟𝑖𝑗 < 𝑟𝑘2. For each “sub-array” the average spatial 

autocorrelation is calculated in: 

 
𝜌𝑘(𝜔) =

2

𝜋(𝑟𝑘2
2 − 𝑟𝑘1

2 )
∑ 𝜌(𝑟𝑖𝑗, 𝜑𝑖𝑗 , 𝜔) 𝑟𝑘∆𝑟𝑘∆𝜑𝑖𝑗.

𝑟𝑘1 < 𝑟𝑖𝑗 <𝑟𝑘2 

 
(12) 
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The determination of rk1 and rk2 results from a compromise between the number of stations per 

ring (azimuthal resolution) and the ratio ∆rk which should be as small as possible. The average of 

the spatial autocorrelation for each sub-array is calculated in Equation 12 and reduced in 

Equation 13 by: 𝑟𝑘 =
(𝑟𝑘2+𝑟𝑘1)

2
 , ∆𝑟𝑘 = 𝑟𝑘2 − 𝑟𝑘1, ∆𝜑𝑖𝑗 =

(𝜑𝑖𝑗+1−𝜑𝑖𝑗−1)

2
, and ∑ ∆𝜑𝑖𝑗𝑟𝑘1 < 𝑟𝑖𝑗 <𝑟𝑘2 

=

𝜋:  

 
𝜌𝑘(𝜔) =

1

𝜋
∑ 𝜌(𝑟𝑖𝑗, 𝜑𝑖𝑗 , 𝜔)∆𝜑𝑖𝑗

𝑟𝑘1 < 𝑟𝑖𝑗 <𝑟𝑘2 

. 
(13) 

Once the average spatial autocorrelation 𝜌𝑘(𝜔) is obtained from Equation 13, dispersion 

histogram plots are computed with phase velocity c() against frequency. Phase velocities are 

acquired by non-linear inversion based on least squares adjustment (Tarantola and Valette, 1982) 

with the problem shown in Bettig et al. (2001). SPAC is preferable to other methods in that it 

requires fewer stations and smaller station separation to achieve similar dispersion characteristics 

than other methods (Okada, 2006). The f-k method mentioned above for MASW processing can 

also be applied in AVA to acquire dispersion histogram plots. 

A dispersion curve is built through both active and passive methods where AVA obtains low 

frequency estimates and active MASW acquires high frequency estimates. The dispersion curve 

is later inverted in order to acquire a 1D Vs profile. The inversion of experimental surface wave 

data is a non-linear, non-unique, and a strongly mixed-determined process (Foti et al., 2017). 

Model parameters constrain the inversion through a priori information. Model parameters such 

as layer densities, thickness, Vp, and Vs is used. Dispersion curves can also be jointly inverted 

with MHVSRs to constrain the model further to reduce non-uniqueness. Local and global search 

methods are used to search for a suitable solution. Local search methods use an initial model 

which is iteratively updated with many possible models to solve for the misfit between the 

experimental and theoretical curves. The theoretical model is iteratively modified until the misfit 

becomes acceptably small. Global search methods are also used where many possible models 

defined in the parameter space to search for models with a small misfit.  For the purpose of this 

thesis, two global-search methods are used and are described further in Chapter 2.5. 
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1.6  Site effects and characterization at rock sites  

Chapter 2 and 3 of this thesis is the application of non-invasive techniques for the purpose of site 

characterization and classification at rock sites. Passive methods specifically have often been 

considered questionable at high velocity sites (Pileggi et al., 2011). This is due to the mechanics 

in surface wave generation where it is assumed that a sufficiently large velocity contrast is 

needed in order to develop surface waves with a detectable amplitude to be seen in the 

microtremor wavefield (Poggi et al., 2017). Active methods have had much more success in 

characterizing rock sites but common challenges still occur such as lateral variability and the 

generation of detectable surface waves.  

Seismic hazard assessment involves the prediction of ground motions which rely on ground 

motion models (GMM). Ground motions are predicted via GMMs based on earthquake 

magnitude, source-to-site distance and site conditions, i.e., Vs30, but more frequently also f0 

(Hassani and Atkinson, 2018; Hassani and Atkinson, 2016). The largest uncertainties in ground 

motion prediction are typically due to site conditions. Measurement of Vs30 at the site of interest 

is then accomplished to reduce uncertainty in the predicted ground motions, i.e., site-specific 

seismic hazard assessment. High-consequence facilities (e.g., nuclear power plants, hydro-

electric dams) are typically located on rock and designed for long (10,000 year) return periods. 

The sole site classification measure for rock sites is Vs30 (Table 1.1) whereas other methods such 

as undrained shear strength or standard penetration testing blowcounts can be used to classify 

soil sites. Hence, reduction in ground motion uncertainty for these high-consequence facilities 

relies significantly on Vs30. Another important seismic parameter for characterization of rock 

sites is seismic kappa (κ) which describes how spectral amplitudes decay as frequency increases 

(Atkinson, 1996; Anderson and Hough, 1984). Seismic κ is the measure of the slope of the 

amplitude decay at higher frequencies in the spectral domain (Palmer and Atkinson, 2018). 

Rock sites have been explored scarcely for the purpose of site characterization due to the 

complexities they impose. Hard rock sites should exhibit no earthquake ground motion 

amplification but in reality, some amplification occurs at higher frequencies due to fractured and 

weathered layers near the surface (Tucker et al., 1984; Steidl et al., 1996; Boore and Joyner, 

1997). With weathering and fracturing in the near surface, lateral variability is expected at rock 

sites. The presence of lateral variation complicates site characterization collected at seismic 
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stations as measurement locations are typically away from the station and may not be fully 

representative of the station’s site conditions. Additional steps need to be taken to calibrate 

measurements to be representative of those taken at the station. With high velocity rock 

measurements being taken, slight variation in the wavenumber can lead to fluctuation in the 

measured velocity (Garofalo et al., 2016a). A variety of measures have been used to characterize 

rock sites including surficial geology, topography/morphology, Vs30, seismic κ, and f0 (SERA, 

2019). 

Earthquake recording sites (seismograph stations) provide opportunity to validate site 

characterization methods compared to the observed site response. There is a growing effort in 

performing site characterization for seismic networks worldwide (e.g. SERA strong motion site 

characterization project). There have been notable attempts at evaluating site characterization 

methodologies at rock sites of the French (Hollender et al., 2018) and Swiss (Poggi et al., 2017) 

seismic networks. Surface wave methods to characterize hard-rock sites have had mixed success 

where some authors have been unsuccessful (e.g. Michel et al., 2014) but others have shown 

success (e.g. Garafalo et al., 2016b; Poggi et al., 2017; Hollender et al., 2018). Poggi et al. 

(2017) used both Love and Rayleigh wave AVA dispersion estimates in a joint inversion with 

their MHVSRs to determine Vs profiles. Other authors have had less success in the use of 

passive methods (e.g. Pileggi et al., 2011). Hollender et al. (2018) successfully used both 

Rayleigh-wave MASW (MASRW) and Love-wave MASW (MASLW) as well as AVA using 

both wave types to generate Rayleigh and Love dispersion curves which were jointly inverted 

with MHVSRs taken at the station. Overall, these studies have reinforced the use of a multi-

method approach incorporating body waves (e.g. refraction) and taking into account Love waves 

(e.g. MASLW) to best characterize rock sites (Martin et al., 2017).  

Rock velocities in Eastern Canada have been compiled as part of Vs30 studies for urban seismic 

microzonation (e.g. Motazedian et al., 2011; Rosset et al., 2014; Molnar et al., 2020). 

Microzonation studies typically rely on a dense grid of geotechnical and geophysical 

measurements to outline hazardous areas prone to amplification. In Eastern Canada, Nastev et al. 

(2016) compiled geophysical and geotechnical data of the St. Lawrence Lowlands to develop a 

3-D geologic model. Data collected consisted of seismic reflection and refraction surveys, 

downhole surveys, and Minivib high resolution seismic reflection profiling. Paleozoic and 
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Precambrian rock units were defined and measured at the base of 3-D modelling in the area. 

Regional differences in rock velocity between Ottawa and Montreal are related to variability in 

regional rock formations and by uneven weathering. The rock in Montreal (161 samples) has a 

mean Vs of 3059 m/s with a standard deviation of 745 m/s, whereas Ottawa rock (505 samples) 

has a mean Vs of 2700 m/s with a standard deviation of 680 m/s. This shows the variability of 

rock between the two areas and the changing rock velocities within the same city by the high 

standard deviation. Nastev et al. (2016) also compiled Vs30 based on the different rock ages in 

the St. Lawrence Lowlands and concluded that the Vs of Paleozoic rock is 1500 ± 500 m/s and 

Precambrian rock is 2500 ± 700 m/s (~700 samples).  

Site characterization at rock sites has been accomplished at particular seismograph stations in 

Canada by researchers for various studies. Beresnev and Atkinson (1997) performed Vs 

refraction at 11 seismograph stations in Eastern Canada to compute the theoretical site response. 

4 out of 11 stations were situated on rock and Vs profiles could be successfully built for all 11 

stations. Rock Vs ranged from 1700-3100 m/s with an average of 2600 m/s for all 11 stations. 

One rock station in Alberta was analyzed by Farrugia et al. (2017) and Farrugia et al. (2018) 

using an in situ MHVSR and an EHVSR to build an amplification model and concluded that 

there is some amplification (~2) at higher frequencies but the average amplification is ~1. 

Siddiqqi and Atkinson (2002) looked at site amplification for a variety of “hard rock” stations in 

Eastern and Western Canada using EHVSRs and concluded that the average EHVSR for rock 

sites in Canada is 1.1 at 1 Hz and 1.2 at 10 Hz (0.1 standard deviation) with instances of regional 

variability. Braganza et al. (2016) also examined site amplification for 15 seismograph stations 

residing on rock in Eastern Canada using EHVSRs. It was concluded similar to Farrugia et al. 

(2018) that lower amplification was observed at lower frequencies and amplification increased at 

higher frequencies with some stations having amplification over 2 at frequencies above 10 Hz 

but the average amplification being less than 2. Atkinson and Cassidy (2000) looked at EHVSRs 

at 5 Tertiary bedrock stations and 3 “harder” batholithic stations (predating Tertiary bedrock) in 

Western Canada and created amplification estimates for different ground conditions. The rock 

had a similar response to studies done in Eastern Canada mentioned above with some stations 

exhibiting amplification greater than 2 at frequencies greater than 10 Hz.  
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Canadian National Seismograph Network (CNSN) stations are operated by the Geologic Survey 

Canada with over 100 high-gain instruments which are used to record small or large earthquakes 

at a variety of distances (Earthquakes Canada, 2019). CNSN stations are typically placed on 

outcropping rock in Eastern Canada for the purpose of earthquake location because: (1) recorded 

waveforms provide distinct first wave arrivals, and (2) all stations correspond to the same 

velocity model. It is generally assumed that seismograph stations placed on outcropping rock in 

Eastern Canada are located on “hard rock” meaning a Vs30 ≥ 1500 m/s (e.g. Siddiqi, 2000); in 

situ field measurements are not performed prior to installation. Clusters of seismograph stations 

are placed in areas susceptible to earthquakes (e.g. Charlevoix, Québec) which are used to locate 

earthquakes. Earthquake recordings at these stations can be used to assess site response (e.g., 

EHVSRs) and high frequency ground motion attenuation (seismic κ). Site characterization has 

traditionally not been accomplished by NRCAN when installing CNSN or strong-motion 

stations. In contrast, in France the ‘Réseau Accélérométrique Pemanent’ (RAP) network consists 

of 150 stations where previous studies performed have proposed soil classes or Vs30 for some or 

all of the RAP stations (Hollender et al., 2018). Switzerland has also characterized many sites on 

their Swiss strong motion network (Michel et al., 2014) and their national cooperative for the 

disposal of radioactive waste network (Poggi et al., 2017). The Japanese KiK-net has their 

network fully characterized with available shear wave velocity profiles (e.g. Foti et al., 2011). 

Characterizing these stations and sites in general is important for damage mitigation and the 

generation of accurate GMM’s appropriate to the ground conditions that stations are placed on. 

1.7  Site effects and characterization at stiff ground sites 

Chapter 4 of this thesis is the application of site characterization at stiff ground/rock sites in 

Vancouver, British Columbia. Stiff sites have been explored in site characterization studies 

globally and in Canada. There have been multiple examples worldwide but only a few examples 

are discussed in this section from Christchurch, New Zealand (Teague et al., 2018), Grenoble, 

France (Garofalo et al., 2016a), and in Chile (Molnar et al., 2015; Molnar et al., 2017).  

Stiff gravel sites mixed with softer sediments have been investigated in Christchurch, New 

Zealand. AVA testing was applied using 10 sensors in large circular arrays (60, 200, and 400 m). 

Active MASW was also applied with both sledgehammer and vibroseis seismic sources with 2 

and 10 m geophone spacing. 48 vertical geophones were used with the sledgehammer source and 
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15-24 geophones with the vibroseis. With the use of varied sources and geophone spacing, well-

constrained Vs profiles were developed successfully for 14 sites in comparison to downhole Vs 

measurements. Velocity reversals were identified at some of these sites, identified by dispersion 

data plateaus or increases in phase velocity at higher frequencies. Teague et al. (2018) also 

attributes the increase in phase velocity at a higher frequency due to dispersion data transitioning 

from a higher Rayleigh wave mode back down to a lower mode. The transition of modes in 

dispersion data is attributed to an effective or superposed mode. The higher mode data results 

from the interbedding of stiff gravel with softer formations. 

A stiff soil site in Grenoble, France was also investigated within the Interpacific project 

(Garofalo et al., 2016a). Active and passive surface wave methods were applied with multiple 

arrays and spacing. Active MASW was applied with 48 geophones for both 1 and 1.5 m spacing. 

AVA was also applied at 5-405 m circular spacing. Triangle and L-shape AVAs were performed 

with 18-300 m and 5-150 m spacing, respectively. 14 teams independently analyzed the survey 

datasets to determine Vs profiles. All 14 teams were able to develop a similar velocity profile of 

the top 100 m, with a low (< 0.04) coefficient of variation in the Vs30 values. This site 

specifically had very similar results between all teams highlighting the success of non-invasive 

methods at stiff soil sites.  

In central and southern Chile 11 strong motion stations were characterized following the 2010 M 

8.8 Maule earthquake using passive AVA. 3 Tromino sensors were placed in a triangle 

configuration equidistantly at 5 and 15 m. Dispersion estimates were obtained and inverted into 

Vs profiles for all 11 stations. 5 stations on stiff sediment were successfully classified as site 

class B or C with remaining 6 stations being on softer sediment. The subsurface beneath the stiff 

sediment stations was comprised of variable soils mixed with sand and gravel with soft 

sedimentary rock or volcanic tuff underlying. In Northern Chile, 17 stations were characterized 

using passive and active surface wave array testing. AVA was applied in a circular array with 6 

sensors spaced between 5, 10, and 15 m. MASW was applied in Northern Chile with 12 sensors 

and spacing varying between 2 and 7 m. At 9 out of 17 stations, dispersion estimates could not 

be picked due to stations situated on rock and having flat MHVSRs.  
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In Canada, few published studies document site characterization on stiff soil. A few examples of 

site characterization performed in Vancouver are discussed here but a few more studies have 

been done in Canada (e.g., Molnar et al. 2012, Jackson 2017, and Assaf et al. 2018). Assaf et al. 

(2018) characterized stiff ground sites and stations in Vancouver as part of microzonation 

mapping in the region. Assaf et al. (2018) shows the successful classification of two stiff soil 

strong-motion stations in Vancouver where passive AVA was applied using a circular array of 7 

sensors spaced from 5-30 m. MASW was also applied using a 24 geophone line with sensor 

spacing varying between 0.5-3 m. Vs profiles and therefore Vs30 was able to be acquired 

successfully in the characterization of these strong-motion stations. Jackson (2017) looked at 13 

sites across southwest British Columbia. AVA was performed using 9 instruments in a circular-

shaped array where sensor spacing varied from 5 to 25 m. Dispersion estimates were acquired at 

all sites and Vs30 could be calculated. In this study, site classes are updated from the current 

microzonation map (Taylor et al. 2006). The compiled mean Vs30 of stiff glaciated sites across 

southwestern British Columbia is 475 m/s (± 78 m/s) (Monahan and Levson 2001). Similarly, the 

compiled mean Vs30 of stiff glaciated sites in the St. Lawrence Lowlands is 385 m/s (± 152 m/s) 

(Nastev et al. 2016) and Ottawa 580 (± 152 m/s) (Motazedian et al., 2011).  

Through global and local studies, it is identified that non-invasive Vs profiling techniques 

applied at stiff ground sites do not poise as much of a challenge as at rock sites but are more 

complex than performing non-invasive testing at soft soil sites. Complexities can be imposed as 

seen in the Northern Chile study where lateral variability can still play a factor as well as having 

rock outcrops nearby these sites. Velocity reversals in the subsurface complicate dispersion 

mode interpretation, whether the fundamental mode is identified correctly or if multiple modes 

are mixing causing an “effective” mode. In the above studies, Vs profiles could be generated for 

all stiff ground sites past 30 m, therefore Vs30 could be calculated. Vs30 could be calculated for 

AVA surveys with spacing up to 15 m as well as active methods with multiple spacing to 

constrain the near surface. Larger arrays up to 30 m were performed to ensure that the 30 m 

resolution depth is acquired. Stiff soil sites have been characterized successfully and robustly 

through both active and passive surface wave methods, where a multi-method approach is also 

encouraged. 
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1.8 Thesis motivation  

I aim to advance the use of non-invasive active- and passive-source seismic techniques at rock 

and stiff ground sites as few studies have demonstrated their effectiveness for site 

characterization of stiff-to-hard ground sites. I examine whether non-invasive methods provide 

robust Vs and site amplification estimates at hard rock sites at Eastern Canada seismograph 

stations and stiff ground sites in Metro Vancouver.  

I aim to improve the site characterization of CNSN seismograph stations placed on rock in 

Eastern Canada in using a multi-method site characterization approach. Having in situ rock Vs 

measurements is crucial in generating accurate GMM’s and for the safety of high consequence 

infrastructure (e.g. hydro-electric dams). I attempt to determine a Vs profile and Vs30 site class, 

site amplification function (MHVSRs and EHVSRs), and rock Vp through lab sample 

experiments and seismic refraction. A parallel study is also being performed in studying seismic 

kappa at the same CNSN seismograph stations (Palmer and Atkinson, 2020). Demonstrating the 

effectiveness of non-invasive seismic techniques for site characterization at stiff ground and rock 

sites is important to regional seismic microzonation mapping. I perform site characterization and 

classification at 10 stiff ground sites to summarize stiff ground in Vancouver and to add to the 

database of Vs measurements in the region and thereby improve future amplification or shake 

map products.  

1.9 Organization of work 

This thesis includes five chapters regarding non-invasive Vs profiling methods in attempts to 

classify supposed “hard rock” seismograph stations in Eastern Canada and stiff soil and rock 

sites in Vancouver. 

The second chapter entails the multi-method approach in characterizing seismic stations in 

Eastern Canada to achieve Vs30 site classification at 25 CNSN stations assumed to be situated on 

“hard rock”. Several non-invasive seismic techniques are applied including AVA, MASW, Vp 

refraction, Vp rock sample lab measurements, and MHVSR/EHVSR calculations. Not all 

methods were used at each station due to spatial and logistical constraints. Measurements were 

taken nearby the station in order for equipment to be placed in the ground. Dispersion estimates 
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were made at stations where methods were successful through MASW and AVA. Surface wave 

inversions are done through a Bayesian and a modified neighborhood algorithm. The Bayesian 

inversion approach was used in order to evaluate data error and model parameterization to 

produce the most probable velocity profile with quantitative uncertainty estimates in the final 

model. The modified neighborhood algorithm Vs profile is classified as the lowest misfit model 

in fitting the forward model best with also falling into the range of Vs profiles that the Bayesian 

inversion provides. Rock velocities are analyzed and presented in this chapter.  

Chapter three applies measurements in chapter two in performing site classification at visited 

stations in Eastern Canada. Measurements were performed at a distance from the station where 

site conditions had to be calibrated to that of the conditions to which the seismograph station is 

residing on. A multi-method approach is applied in this chapter to give an assessment of the site 

conditions the station is placed on. Vs30 calculations are given in this section for both inversion 

methods. One Vs30 indicating the best fitting model’s site class through the modified 

neighborhood algorithm and another Vs30 showing a range of possible Vs30 through the Bayesian 

inversion software. Vs30 extrapolation is also performed at stations where the resolution depth 

does not exceed 30 m from analyzing dispersion estimates. 

The fourth chapter is compilation of additional work completed in improving the present 

microzonation map of Vancouver (e.g. Molnar et al., 2020) where stiff glaciated sediment sites 

are evaluated. These sites are looked at in addition to building a database of Vs measurements in 

a site classification map which will be used in the project. They are compared with the site 

classification from Taylor et al. (2006). These are included as additional work and velocity 

profiles that others can use for their respective purposes. Methods for Vs profiling include non-

invasive active and passive surface wave methods (MASW and AVA) which are jointly inverted 

with MHVSRs to best-represent the site conditions. This is a small portion of work put towards 

the bigger project in a site amplification map of the region. 

Chapter five presents and summarizes overall findings and conclusions in this thesis. Rock 

velocities found throughout Eastern Canada are summarized and compared with previous 

studies. Additional methods are suggested to add to the multi-method approach to improve site 
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characterization at both stiff soil and rock sites.  The importance of having a dense grid of Vs 

measurements for microzonation projects is summarized, specifically for Vancouver. 
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Chapter 2 Multi-Method Non-Invasive Testing at “Hard Rock” 

Stations in Eastern Canada 

 

2.1 Introduction 

Seismograph stations in Eastern Canada are typically placed on outcropping rock in areas where 

earthquakes occur or around high consequence infrastructure (e.g. nuclear power plants and 

hydro-electric dams). Seismographs on rock provide clean first arrivals for earthquake detection 

and location purposes. Seismograph stations in Eastern Canada are assumed to be placed on 

“hard rock” (Vs30 > 1500 m/s) within site class A in accordance with the NBCC. In situ site 

characterization measurements are typically not accomplished prior to installation which 

highlights the importance in knowing the ground conditions the instruments are placed on. 

Knowing the ground conditions that stations are placed on is crucial for developing GMM’s and 

understanding site response in the case of an earthquake. Rock sites pose a challenge in acquiring 

the proper site characterization in that drilling through rock with invasive methods is not ideal; a 

30 m deep hole would cost approximately $6,000 ($200 per meter). Non-invasive methods are a 

less-expensive alternative but have their own challenges from needing sufficient space away 

from the station and in the measurement of velocities directly on the rock outcrop. 25 

seismograph stations were visited in summer and fall 2017 (Figure 2.1) to perform in situ non-

invasive site characterization measurements at these stations; a parallel study is determining 

seismic kappa (Palmer and Atkinson, 2020; Atkinson, 1996) at the same stations.  
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Figure 2.1: Locations of the 25 investigated seismograph stations in Eastern Canada are shown by 

stars, labels are the station code (Ladak et al., 2019). 

A multi-method approach was used to characterize each station, including determining a Vs 

profile and additional site properties such as compression wave velocity (Vp) and Poisson’s 

ratio. Surface wave array methods used include active-source multi-channel analysis of surface 

waves (MASW) and passive-source ambient vibration array (AVA). Surface wave dispersion 

data was inverted to develop a 1D Vs profile and provide estimates of the rock Vs. Vp refraction 

was used to acquire rock Vp to constrain dispersion inversions and to calculate the rock 

Poisson’s ratio. Microtremor measurements were taken at each station and the microtremor 

horizontal to vertical spectral ratio (MHVSR) is then calculated. At three stations, rock samples 

were collected and brought back to perform laboratory Vp measurements for comparison. 

Earthquake data was acquired from the AutoDRM service from Natural Resources Canada to 

calculate earthquake HVSRs (EHVSR) by Samantha Palmer to compare with MHVSRs.  

The list of stations and their bedrock and surficial geology from available maps is provided in 

Table 2.1. The rock age is identified for each station to compare with rock velocities from Nastev 

et al. (2016) as well as to anticipate the ground conditions around each station.  
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Table 2.1: Visited stations with their associated coordinates and elevation. Bedrock geology from 

Natural Resources Canada (2013). Surficial geology data is obtained from Fulton (1995). 

Station, 

coordinates and 

elevation 

Bedrock Geology map Surficial Geology 

map 

Station 

Installation 

A11 

Lat: 47.2431 0N, 

Long: 70.1969 0W 

Elevation: 55 m  

Paleozoic (Cambrian) offshelf 

miogeoclinal sedimentary 

rocks 

Glaciomarine littoral 

and nearshore 

sediments 

Concrete, insulated 

vault 

A16 

Lat: 47.4680 0N, 

Long: 70.0096 0W 

Elevation: 13 m 

Paleozoic (Cambrian) offshelf 

miogeoclinal sedimentary 

rocks 

Glaciomarine offshore 

sediments 

Concrete, insulated 

vault 

A21 

Lat: 47.7045 0N, 

Long: 69.6892 0W 

Elevation: 47 m 

Paleozoic (Ordovician) 

sedimentary rocks 

Glaciomarine offshore 

sediments 

Concrete, insulated 

vault 

A54 

Lat: 47.4568 0N, 

Long: 70.4134 0W 

Elevation: 377 m 

Paleozoic (Ordivician) 

Sedimentary rocks 

Glacial sediments - 

Blanket 

Concrete, insulated 

vault 

A61 

Lat: 47.6936 0N, 

Long: 70.0914 0W 

Elevation: 380 m 

Precambrian 

(Mesoproterozoic) gneiss and 

metamorphic rocks 

Glaciomarine offshore 

sediments 

Concrete, insulated 

vault 

A64 

Lat: 47.8274 0N, 

Long: 69.8914 0W 

Elevation: 132 m 

Paleozoic (Ordovician) 

sedimentary rocks 

Glacial Sediments - 

Blanket 

Concrete, insulated 

vault 

BATG 

Lat: 47.2767 0N, 

Long: 66.0599 0W 

Elevation: 336 m 

Paleozoic (Ordovician) 

bimodal volcanic rocks 

Glacial Sediments - 

Blanket 

Rock outcrop 

BCLQ 

Lat: 46.9264 0N, 

Long: 71.1727 0W 

Elevation: 147 m 

Paleozoic (Ordovician) 

sedimentary rocks 

Glaciomarine offshore 

sediments 

Rock outcrop 

CNQ 

Lat: 49.3020 0N, 

Long: 68.0746 0W 

Elevation: 200 m 

Precambrian 

(Mesoproterozoic) paragneiss 

and other metamorphic rocks 

Glacial sediments - 

Veneer 

Re-inforced concrete 

on bedrock 

DAQ 

Lat: 47.9627 0N, 

Long: 71.2437 0W 

Elevation: 939 m 

Precambrian 

(Mesoproterozoic) intrusive 

igneous rocks (e.g. 

charnockite) 

Glacial sediments - 

Veneer 

Re-inforced concrete 

on bedrock 

DPQ 

Lat: 46.6803 0N, 

Long: 72.7771 0W 

Elevation: 179 m 

Precambrian 

(Mesoproterozoic) gneiss 

Glacial sediments - 

Veneer 

Re-inforced concrete 

on bedrock 
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GAC 

Lat: 45.7032 0N, 

Long: 75.4776 0W 

Elevation: 167 m 

Precambrian 

(Mesoproterozoic) intrusive 

granitoid rocks 

Glaciomarine offshore 

sediments 

Underground vault 

GBN 

Lat: 45.4079 0N, 

Long: 61.5128 0W 

Elevation: 47 m 

Paleozoic (Cambrian – 

Devonian) sedimentary rocks 

Glacial Sediments - 

Blanket 

Rock outcrop 

GSQ 

Lat: 48.9142 0N, 

Long: 67.1106 0W 

Elevation: 398 m 

Paleozoic (Cambrian-

Ordovician) offshelf 

miogeoclinal sedimentary 

rocks 

Bedrock Re-inforced concrete 

on bedrock 

ICQ 

Lat: 49.5223 0N, 

Long: 67.2715 0W 

Elevation: 58 m 

Precambrian 

(Mesoproterozoic) gneiss and 

other metamorphic rocks 

Glaciomarine littoral 

and nearshore 

sediments 

Rock outcrop 

KGNO 

Lat: 44.2272 0N, 

Long: 76.4934 0W 

Elevation: 89 m 

Paleozoic (Ordivician) 

sedimentary rocks 

Glacial Sediments - 

Blanket 

Basement of building 

LMQ  

Lat: 47.5485 0N, 

Long: 70.3258 0W 

Elevation: 455 m 

Paleozoic (Ordovician) 

sedimentary rocks 

Glacial Sediments - 

Blanket 

Underground 

insulated vault 

MCNB 

Lat: 45.5958 0N, 

Long: 67.3198 0W 

Elevation: 167 m 

Paleozoic (Silurian) 

sedimentary rocks 

Glaciofluvial ice 

contact sediments 

Underground 

insulated vault, on 

concrete 

MOQ 

Lat: 45.3115 0N, 

Long: 72.2409 0W 

Elevation: 845 m 

Paleozoic (Cambrian – 

Ordivician) mafic volcanic 

rocks 

Glacial sediments - 

Veneer 

Re-inforced concrete 

on bedrock 

NATG 

Lat: 50.2872 0N, 

Long: 62.8102 0W 

Elevation: -2 m 

Precambrian 

(Mesoproterozoic) 

sedimentary rocks 

Bedrock Rock outcrop 

ORIO 

Lat: 45.4515 0N, 

Long: 75.5110 0W 

Elevation: 74 m 

Paleozoic (Ordivician) 

sedimentary rocks 

Glaciomarine offshore 

sediments 

Rock outcrop 

OTT 

Lat: 45.3942 0N, 

Long: 75.7167 0W 

Elevation: 77 m 

Paleozoic (Ordivician) 

sedimentary rocks 

Glacial Sediments - 

Blanket 

Underground 

insulated vault, on 

concrete 

QCQ 

Lat: 46.7792 0N, 

Long: 71.2756 0W 

Elevation: 90 m 

Paleozoic (Cambrian) 

Offshelf miogeoclinal 

sedimentary rocks 

Glaciomarine offshore 

sediments 

Basement of building 
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SMQ 

Lat: 50.2225 0N, 

Long: 66.7025 0W 

Elevation: 344 m 

Precambrian 

(Mesoproterozoic) gneiss and 

other metamorphic rocks 

Glacial sediments - 

Veneer 

Re-inforced concrete 

on bedrock 

VABQ 

Lat: 45.9047 0N, 

Long: 75.6079 0W 

Elevation: 210 m 

Precambrian 

(Mesopreterozoic) 

Metamorphic rocks 

containing paragneiss 

Glacial sediments - 

Veneer 

Rock outcrop 

 

2.2 Non-invasive seismic testing 

Over the duration of summer and fall 2017, active and passive non-invasive seismic data was 

collected at 25 CNSN stations in Eastern Canada. The stations were located across multiple 

provinces in Eastern Canada including Ontario, Quebec, Nova Scotia, and New Brunswick with 

a focus on stations in Ottawa and the Charlevoix Seismic Zone. These stations were selected 

based on their suitability in determining seismic kappa (Palmer and Atkinson, 2018) which is 

being determined in a parallel study (Palmer and Atkinson, 2020). The stations were selected in 

having at least 10 M > 1.5 earthquakes within 50 km of the station.  

Our aim was to acquire reliable velocity measurements of the shallow rock beneath the station 

using multiple non-invasive active and passive seismic techniques. Most seismographs are 

installed on outcropping rock; some are installed on the rock surface in the basement of buildings 

or seismic vaults (Table 2.1). Seismic arrays for dispersion and refraction measurements require 

some space or an open area for testing. Hence, in most cases our survey locations could not 

coincide with the installed seismograph and were located 10’s of meters away (100’s of meters 

in few cases) in an open area representative of the rock below the seismograph. Only MHVSR 

measurements were suitable immediately at, on the same concrete pad, or beside the 

seismograph. Table 2.2 lists the tested site conditions and the largest achievable array spacing at 

each station; see Appendix A for location testing maps for each station. Site characterization 

information (velocity profiles, etc.) determined from each method and their applied success at 

rock sites in Eastern Canada is presented here in Chapter 2. Chapter 3 focuses on earthquake site 

characterization and classification of each station.  
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Table 2.2: List of seismograph stations and details of in situ non-invasive testing accomplished at 

each station. Notations are as follows: SS = single station MHVSR measurements, P = passive AVA, 

A = active MASW and Vp refraction measurements, and ATromino indicates MASW testing 

performed with Trominos.  

Station 
Measurements performed: 

Ground Conditions 
Sensor Spacing 

Distance 

from Station 

(m) 
A11 SS: Rock  N/A 0 

A16  SS: Thin soil over rock 

P: Soil/gravel  

A: Soil cover 

N/A 

3, 6, 9, and 12 m  

0.5 m 

0 

80 

15 

A21 SS: Soil/rock mix N/A 0 

A54  SS: Soil cover 

P: Soil cover  

A: Soil cover 

N/A 

3,6, and 9 m  

0.5 m 

0 

10 

10 

A61  SS: Soil cover 

P: Gravel  

A: Soil/Gravel  

N/A 

5, 10, and 15 m  

1 and 3 m 

0 

45 

5 

A64  SS: Concrete pad  

P: Rock  

A: Thin soil layer over rock 

N/A 

3, 6, 9, and 12 m   

0.5 m 

0 

160 

25 

BATG  SS: Soil cover 

P: Gravel/soil mix 

A: Gravel 

N/A 

3, 6, 9, 12, and 15 m  

1 and 2 m 

0 

30 

85 

BCLQ 

 

SS: Rock  

P: Soil  

A: Soil 

N/A 

3, 6, 9, and 12 m  

1 m 

0 

35 

55 

CNQ  SS: Concrete  

P: Soil over rock 

A: Soil over rock 

N/A 

3, 6, 9, and 12 m  

0.5 m 

0 

125 

10 

DAQ  SS: Rock  

P: Rock  

P: Soil  

A: Soil 

N/A 

2, 4, and 6 m 

4, 8, and 12 m  

1 m 

0 

5 

30 

20 

DPQ  SS: Rock  

P: Thin soil over rock  

A: Soil 

N/A 

3, 6, and 9 m  

0.5 and 1 m 

0 

30 

5 

GAC 

 

SS: Soil cover 

ATromino: Soil 

N/A 

1 and 3 m 

0 

25 

GBN 

 

SS: Rock  

P: Stiff soil  

A: Mix of soil/gravel/sand 

N/A 

3, 6, 9, and 12 m  

0.5 and 1 m 

0 

20 

16 

GSQ 

 

SS: Soil/gravel cover 

P: Soil/gravel  

A: Soil 

N/A 

3, 6, 9, and 12 m  

1 m 

0 

210 

10 

ICQ 

 

SS: Rock  

P: Rock  

P: Soil  

ATromino: Sand/soil 

N/A 

2 and 4 m,  

5, 10, and 15 m  

1, 3, and 5 m 

0 

50 

60 

60 



 

42 

 

KGNO 

 

P: Grass/soil  

A: Soil 

3, 6, and 12 m  

1 m 

170 

170 

LMQ  SS: Concrete  

P: Gravel  

A: Mix of soil, and gravel 

N/A 

3, 6, 9, and 12 m  

1 and 2 m 

0 

20 

20 

MCNB  P: Soil 

 A: Soil  

5, 10, and 15 m  

1 and 1.5 m 

20 

5 

MOQ  SS: Concrete  

P: Gravel  

A: Soil 

N/A 

3, 6, and 9 m  

1 m 

0 

30 

20 

NATG  SS: Rock  

P: Rock  

A: Soil 

N/A 

5, 10, and 15 m  

0.5 and 1 m 

0 

300 

45 

ORIO 

 

SS: Soil cover 

P: Soil 

A: Soil 

N/A 

3, 6, 9, and 12 m  

1 m 

0 

5 

45 

OTT 

 

SS: Concrete pad 

P: Soil 

A: Soil 

N/A 

5, 10, and 15 m  

1 and 3 m 

0 

185 

210 

QCQ 

 

SS: Concrete pad 

P: Soil 

 A: Soil 

N/A 

10, 15, and 20 m  

1 and 3 m 

0 

90 

140 

SMQ 

 

SS: Concrete pad 

P: Rock  

ATromino: Gravel 

N/A 

3, 6, and 9 m  

1 and 3 m 

0 

10 

45 

VABQ 

 

SS: Concrete pad 

P: Soil 

A: Soil  

N/A 

5, 10, and 15 m  

1 m 

0 

10 

60 

AVA data was collected using 5 tri-axial MoHo Trominos. The sensors measure velocity in 

three orthogonal directions over frequencies from 0.1 to 1028 Hz at a 128 Hz sampling rate. An 

internal or external GPS is used for accurate timing via satellite. Four sensors were located at the 

apex of a cross-shape geometry with a fifth central sensor. AVA spacing varied from a minimum 

of 2 m, up to 30 m maximum, depending on the space available at each station. The array radius 

is varied to measure dispersion at many frequencies or wavelengths; larger array spacing 

measure longer wavelengths which penetrate deeper into the subsurface. Microtremors were 

recorded for approximately 30 minutes for each array setup.  

MASW and Vp refraction surveys were performed with the same equipment and survey design. 

A Geode seismograph at 500 Hz sampling was used with a linear array of 24 vertical 4.5-Hz 

geophones. For MASW testing, recordings were acquired continuously, whereas for Vp 

refraction testing, a 2 s recording is acquired via seismic triggering. An 8 lb sledgehammer was 

used as the seismic source which was struck vertically on an aluminum plate at each end. Source 
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offsets of 5 and 15 m on both ends of the geophone line were used. Geophone spacing varied 

from 0.5 up to 3 m depending on available space near the station. The spacing between 

geophones were increased to sample lower frequency bandwidths. MASW was also performed 

with 5 tri-axial Trominos at stations where geophones could not be inserted into the ground 

(noted as ATromino in Table 2.2). Tromino spacing varied from 1, 3, and 5 m with the same source 

offset distances of 5 and 15 m at each end. Using Trominos for MASW measurements provided 

a higher sampling frequency of 1028 Hz to capture shallow rock velocities at some stations. 

Figure 2.2 shows an example of the array configuration and spacing for active MASW and 

passive AVA testing. 

a) 

 

b) 

 
c) 

  

d) 

  

Figure 2.2: Example array configuration and spacing for a) active MASW and refraction testing 

(inverted triangles denote geophone locations, stars show shot locations), and b) passive AVA 

testing for 5, 10, and 15 m array radii (symbols denote Tromino locations and colours designate 

each array). Sample field photos of c) active MASW and refraction testing at station BCLQ and d) 

AVA measurements at station DPQ. 

MHVSR measurements (noted as “SS” in Table 2.2) were accomplished in situ using a single 

Tromino sensor placed primarily on the residing rock beside the CNSN seismograph or on its 
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concrete pad (Figure 2.3). At a few stations (MCNB and KGNO), the CNSN seismograph was 

not accessed and MHVSR measurements were performed on rock or soil as nearby as possible. 

For comparison, EHVSRs were also calculated using the earthquake recordings of the CNSN 

seismograph. Array average MHVSRs were calculated from AVA measurements accomplished 

nearby the station as AVA measurements could not be taken directly on the rock outcrop.  

a) 

 

b) 

 
Figure 2.3: MHVSR measurements taken on the a) residing rock beside station DPQ and b) 

concrete pad at station CNQ. 

A time-averaged MHVSR from each Tromino recording was calculated using 30 second time 

windows overlapped by 50% and smoothed using the Konno and Ohmachi (1995) filter. Bad 

time windows caused by man-made noise or other anomalous activity noted during the field 

notes were removed. If the Tromino recordings are from AVA testing, then a site average 

MHVSR was calculated using the edited time-averaged MHVSRs from each of the five sensors 

for all array apertures at a station. Figure 2.4 shows the differing conditions from the station and 

the measurement location through their generated MHVSRs where the estimated site response 

differs for example stations A64 and BCLQ. Examples in figure 2.4 show differing MHVSRs at 

the measurement and station locations; where at station A64 the ground conditions are similar in 

both station and array measurements containing a low amplification response with rock near the 

surface and station BCLQ where the ground conditions differ clearly with more sediment cover 

at the measurement location than at the station resulted in the sharp high frequency peak 

(remaining stations are in Appendix B). 
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a) 

 

b) 

 
Figure 2.4: In situ single station MHVSR calculated for the station (blue) and the site average 

MHVSR at 160 and 35 m distance from the station (purple) for stations a) A64 and b) BCLQ, 

respectively. 

AVA recordings were prepared for dispersion analysis by synchronizing using GPS timing 

(accomplished automatically by the Tromino’s proprietary software Grilla) and converted to 

ASCII. AVA and MASW array recordings are converted to applicable file formats and imported 

to Geopsy (version 20170109; Wathelet, 2008), an online open-source software for time-series 

processing and dispersion analyses. MASW data recorded by the Geode system in SEGY format 

was converted to miniseed format using a Python routine. Once imported to Geopsy, shot gathers 

are created by cutting time windows of 1 or 2 seconds around each shot from the continuous 

recordings. Similarly, MASW data collected with Trominos were imported as ASCII files into 

Geopsy and pre-processed into 1 or 2 seconds shot gathers. 

At three stations, representative surface outcrop rock samples were selected and brought back to 

Western University. These intact rock samples were cut and underwent laboratory Vp 

measurements to estimate the station’s rock Vp and to compare with the in situ refraction Vp 

measurements. Rock sample Vp measurements were performed by myself and Samantha Palmer 

in the department’s Experimental Petrology Sample Preparation Laboratory (Figure 2.5). 

Samples were first cut into 1-cm cylindrical shape samples. The sample is clamped and an 

ultrasonic pulse (P-wave) is generated into one end of the sample, travels through the sample, 

and is measured by a detector pad at the other end. The arrival time of the pulse is picked in the 
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source and receiver waveforms. This measured travel time provides the sample’s Vp given the 

known sample length.  

a) 

 

b) 

 

Figure 2.5: Photos of laboratory rock sample Vp measurements showing a) the whole apparatus 

and b) a clamped 1-cm cylindrical sample from station A16. 

2.3  Station MHVSR and EHVSR comparison 

The station MHVSR was calculated using in situ microtremor recordings accomplished at the 

CNSN seismograph, either on the same concrete pad or on the residing rock (Figure 2.3). The 

MHSVR method allows us to estimate site amplification in direct comparison to conditions to 

which the CNSN seismometer is installed. Table 2.3 summarizes MHVSR results for the Eastern 

Canada seismograph stations; the last column reports reliable dispersion bandwidths at the 

station and is discussed in section 2.4. Site amplification for rock sites is generally flat (as 

expected) and may display a peak frequency (fpeak). At stations KGNO and MCNB there was no 

direct access to the CNSN seismograph. MHVSRs for stations A11 and A21 were not 

representative of the site, contaminated due to external effects (e.g., wind) and are removed from 

the MHVSR database. In addition, MHVSRs for stations QCQ, LMQ, MOQ, and OTT are also 

removed due to contamination from human-made noise present at their station, e.g., fans or other 
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sustained noise is observed throughout their recordings and the vertical spectrum amplitude is 

increased.  

Table 2.3: Summary of MHVSR and EHVSR results for the visited Eastern Canada seismograph 

stations. The frequency bandwidth from which reliable dispersion estimates are obtained by active 

MASW (labelled A) and passive AVA (labelled P) array testing is also provided. Amp = 

amplification. 

Station MHVSR EHVSR Reliable Dispersion Bandwidth (Hz) 

A11 
N/A – Wind effects; 

station on a hill 
Flat, low Amp Not Measured 

A16 Flat, low Amp Flat, low Amp A: 22-48  

A21 
N/A – Wind effects; 

station on a hill 
Flat, low Amp Not Measured 

A54 Flat, low Amp Flat, low Amp A: 20-120  

A61 
fpeak at 25 Hz, high 

Amp across all f 
Flat, high Amp A: 25-70 

A64 Flat, low Amp fpeak at 25 Hz P: 25-35, A: 89-135 

BATG Amp at 0.7 and 25 Hz Not provided A: 15-100 

BCLQ 
Amp at 1.5 Hz and 45 

Hz 
Not provided  A: 30-75 

CNQ fpeak at 5 Hz Not provided Unsuccessful 

DAQ Flat, high Amp Not provided A: 12-80 

DPQ Flat, low Amp Not provided A: 15-85 

GAC Amp at 20-40 Hz Not provided A:170-480 

GBN fpeak at 50 Hz Not provided A: 20-125 

GSQ Flat, low Amp Not provided A: 10-115 

ICQ fpeak at 5 Hz Not provided P: 15-25, A: 60-215 

KGNO N/A – No Access Not provided P: 21-35, A: 50-100 

LMQ N/A – external noise 
N/A – external 

noise 
A: 10-90  

MCNB N/A – No access Not provided A: 45-125  

MOQ N/A – external noise Not provided Unsuccessful 

NATG fpeak at 7 Hz Flat, low Amp Unsuccessful 

ORIO fpeak at 55 Hz Not provided P: 10-30, A: 30-215 

OTT N/A – external noise 
N/A - external 

noise 
P: 5-20, A: 20-120 

QCQ N/A – external noise Not provided P: 10-25, A: 30-170 

SMQ fpeak at 5 Hz Not provided Unsuccessful 

VABQ Flat, low Amp Not provided Unsuccessful 

Figure 2.6 shows the average MHVSR for each station. Figure 2.6a displays expected flat 

MHVSRs (amplification < 2) which indicate competent or hard rock conditions, i.e., low to no 

amplification. In Figure 2.6b, MHVSRs with amplification > 2 are shown. These MHVSRs are 

amplified at low frequencies, over nearly all frequencies (broadband amplification), or over a 

narrow range at high frequencies (resonant amplification). Softer rock towards surface from 

weathering, jointing, etc., would lead to broadband amplification (e.g. CNQ). The presence of 
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thin soil over stiff to hard rock would lead to high amplification (resonance) at high frequency 

(e.g. ORIO). Topographic (outcropping rock) effects would lead to amplification at the 

frequencies related to the topography’s shape and height.  

a) 

 

b) 

 
Figure 2.6: MHVSR measurements at seismograph stations with a) flat response and b) broadband 

or resonant amplification. 

EHVSRs were generated by Samantha Palmer for 10 stations using earthquake recordings from 

M > 3.5 events within 150 km of the station. The station’s average EHVSR is compared with the 

measured station’s average MHVSR in Figure 2.7. Station LMQ and NATG only had one 

earthquake recording which fit the criteria therefore, the EHVSR standard deviation could not be 

calculated. For stations A11 and A21, the MHVSR is not available and only the EHVSR is 

shown. Overall, low amplification is observed and there is general agreement between the 

average EHVSR and MHVSR at each station. There is agreement in the station’s MHVSR and 

EHVSR even when they deviate from the typical low amplification demonstrating consistent site 

effects. Station A61 has amplification occurring at multiple frequencies in both the EHVSR and 

MHVSR indicating potentially softer rock; the high amplification at low frequencies in the 

EHVSR is likely due to wind effects. Disagreement between the EHVSR and MHVSR is 

observed at station LMQ. The CNSN seismograph is located ~3 m below ground surface on the 

concrete floor of a seismic vault. The MHVSR measurement is at the ground surface. Stations 

LMQ and OTT had suspected man-made noise in their calculated MHVSRs which is also seen 

similarly in their EHVSR. 
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Figure 2.7: Average EHVSR (solid blue line) with standard deviation (dotted blue lines) compared 

to co-located average MHVSR (solid black line) with standard deviation (dotted black line) for 

select Eastern Canada seismograph stations. 

 

2.4  Dispersion curves 

Surface wave propagation in vertically heterogeneous media is controlled by geometric 

dispersion where waves of different frequency (and wavelength) travel at different phase 

velocities depending on the elastic properties of the subsurface (Foti et al., 2017). The 

distribution of phase velocities with frequency is defined as a dispersion curve. Surface wave 

propagation is a multimodal phenomenon where at different frequencies different modes of 
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vibration exist. The stations visited are in rocky conditions where lateral variability can play a 

role in the measurement conditions. Typically, the measurements were made at spacious areas of 

soil or gravel (to insert geophone spikes) overlaying rock near the station. For 23 of 25 stations, 

active- and/or passive-source array methods were performed to obtain dispersion estimates. 

Dispersion histograms of phase velocities estimated at each frequency are generated by the f-k 

method for active MASW shot gathers and by MSPAC processing for passive AVA recordings 

(these methods were described in section 1.5). A summary on the success of the surface wave 

array testing is presented in this section; dispersion histogram results for all stations are provided 

in Appendix B. For 16 of 23 stations, the fundamental mode dispersion curve could be identified 

and picked for these stations from either active and/or passive methods. Table 2.3 summarizes 

the frequency bandwidth over which reliable dispersion estimates were obtained from active 

and/or passive array methods at each station. 

2.4.1 Passive AVA dispersion estimates 

The applicability of passive seismic methods has been questioned for rock sites (e.g. Pileggi et 

al., 2011) due to the lack of a strong impedance contrast which eases surface wave generation at 

an undetectable amplitude (Poggi et al., 2017). AVA testing provides lower frequency dispersion 

estimates and is more likely to provide direct measurement of phase velocities in rock at depth, 

i.e., the rock velocity “top” of the dispersion curve, compared to the soil velocity “tail” from 

active MASW methods. When successful, the AVA method provides the most important and 

useful information in rock site characterization which is the Vs of the rock. At 7 out of the 22 

stations, we were able to measure the “top” of the dispersion curve providing a direct measure of 

phase velocity at depth, assumed rock. Examples of the variation in AVA dispersion estimates is 

shown in Figure 2.8 with the method at times giving estimates solely of rock, the transition or 

dispersion curve into the shallower layers. For the majority of stations, no AVA dispersion 

estimates were obtained. For stations where AVA data acquisition was successful, the essential 

information of the rock velocity beneath the station was acquired. The dispersion estimates of the 

low frequency AVA data were then combined with the active high frequency MASW data set to 

build a dispersion curve. 
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a) 

 

b) 

 

c) 

 

d) 

 
Figure 2.8: Examples of “top” rock velocity AVA dispersion estimates for stations a) QCQ, and b) 

ICQ. c) Mid-frequency dispersion estimates for station OTT and d) no AVA dispersion estimates 

for station MOQ. 

2.4.2 Active MASW dispersion estimates 

MASW data has been widely obtained in previous studies for rock site characterization. MASW 

has been successful at rock sites due to near surface impedance boundaries which are sensitive to 

high frequencies input into the ground. Rock velocity can be measured if enough energy is put 

into the subsurface and if dispersion can physically occur in the rock. MASW data was processed 

using f-k processing to get high frequency dispersion estimates. MASW methods were more 

successful than AVA in that velocities could be measured at all 23 stations. Variation was seen at 

the stations from measuring the rock velocity, getting the transition from soil to rock and 

measuring only shallow sediments (Figure 2.9). Enough dispersion information could be 
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resolved at 16 of 23 stations for inversion of a Vs profile. When combined with AVA dispersion 

estimates, a full dispersion curve could be built for 7 stations for inversion of a Vs profile. Nine 

stations produced MASW dispersion estimates for inversion. Some stations also had significant 

energy at lower frequencies indicating potential rock velocity measurements.  

a) 

 

b) 
  

 
 

c) 

 

d) 

 
Figure 2.9: Example MASW dispersion estimates for stations a) ORIO, b) MCNB, and c) DAQ.  d) 

Example of no MASW dispersion estimates for station MOQ. 

2.5 Inversion methodology and results 

Surface wave inversion requires a description of the ground model linked by physical and 

mechanical parameters connected to the experimental data. Rayleigh wave ellipticity and 

dispersion curves are influenced by Vs structure, they can both be used to solve for Vs through 

inversion independently or jointly. Surface wave inversions require knowledge of the layered 
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earth model where each layer is comprised of four elastic parameters: Vp, Vs, thickness, and 

density. Numerical computation of dispersion curves is applied using the Haskell-Thompson 

approach (Thompson 1950; Haskell 1953). The surface wave inverse problem is non-linear, 

mathematically ill-posed, and non-unique (Foti et al., 2014; Foti et al., 2017). Non-uniqueness is 

due to having more parameters than observations meaning an infinite number of solutions 

(Tarantola, 1987). Model parameterization to acquire a Vs profile is often unknown a priori. Too 

few parameters usually lead to underfitting the data and underestimating parameter uncertainties. 

Adopting too many parameters can over-fit the data leading to under determined parameters. 

Creating a more complex model adds more parameters and lowers the misfit but can lead to 

unrealistic models and should be avoided (e.g. Di Giulio et al., 2012).  

Probabilistic Shear Wave Velocity Profiling (PSWP) and Geopsy’s Dinver were two programs 

used to invert Rayleigh wave dispersion data to acquire Vs profiles for each station. Dinver was 

used to determine the optimal (best fitting) model while PSWP was used to analyze model 

parameter uncertainties. Dispersion data is first inverted using Dinver using one to two uniform 

velocity layers over a halfspace. PSWP was then initiated with two model parameterization 

options: two uniform velocity layers over a half space (a single layer over a halfspace is not 

available) and a powerlaw velocity gradient over a halfspace. The most appropriate 

parameterization is determined by the Bayesian Information Criterion (BIC) where it also applies 

a penalty for the number of parameters. When PSWP determined two uniform layers over a 

halfspace as the most appropriate model parameterization, the same multi-layer model was 

selected using Dinver. When PSWP determined a powerlaw velocity gradient over a halfspace as 

the most appropriate model parameterization, the selected Dinver model was a single uniform 

velocity layer over a halfspace. In this latter case, a sharp change in curvature of the dispersion 

data occurs and is best fit by each inversion routine given the model parameterization options. 

Since a single layer over a halfspace cannot be solved using PSWP, we re-run Dinver using the 

same powerlaw velocity gradient over a halfspace parameterization for comparison. 

2.5.1 Modified Neighborhood Algorithm 

Dinver uses a modified neighborhood algorithm, first developed by Sambridge (1999) and 

modified by Wathelet (2008). The Dinver inversion software is relatively quick and easy to use 

and was used to readily determine the lowest misfit model and the optimal rock velocity 
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estimate. The Dinver software is flexible in the number of layers used during the inversion 

compared to PSWP discussed in section 2.5.2.  

Dinver is a stochastic direct search method to optimize the misfit function in a multi-parameter 

dimension space. Previously generated samples guide the search for improved models through 

the direct search method to optimize the misfit. Areas of the parameter space which are more 

promising are searched more than other areas. The neighborhood algorithm makes use of 

Voronoi cells to model the misfit function (Wathelet, 2005) across the parameter space. The 

misfit function for dispersion inversions is  

 

𝑚𝑖𝑠𝑓𝑖𝑡𝑑𝑖𝑠 = √
∑ (𝑥𝑑𝑖 − 𝑥𝑐𝑖)2
𝑛𝐹
𝑖=1

𝜎𝑖𝑛𝐹
, 

(14) 

where nF is the number of frequency samples, xdi is the measured phase velocity at frequency fi. 

xci is the theoretical phase velocity at fi, and σi is the standard deviation of the frequency samples. 

If no uncertainty is provided, it is replaced by xdi in the equation. If additional dispersion modes 

are included in the inversion, the summation found in the numerator in Equation 14 is used. Joint 

inversion (including both dispersion and MHVSR curves) is performed in Chapter 4 where the 

misfit of the ellipticity function is calculated by  

 
𝑚𝑖𝑠𝑓𝑖𝑡𝑒𝑙𝑙 =

(𝑓𝑝𝑒𝑎𝑘)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − (𝑓𝑝𝑒𝑎𝑘) 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

(𝑑𝑓𝑝𝑒𝑎𝑘)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
, 

(15) 

where fpeak is the peak frequency and dfpeak is the standard deviation of the experimental peak. In 

the case of a joint inversion, the two misfits are combined as a global misfit:  

 𝑚𝑖𝑠𝑓𝑖𝑡𝑔𝑙𝑜𝑏𝑎𝑙 = (1 − 𝛼)𝑚𝑖𝑠𝑓𝑖𝑡𝑑𝑖𝑠 + (𝛼) 𝑚𝑖𝑠𝑓𝑖𝑡𝑒𝑙𝑙. (16) 

This study used a weighting (α) of 50% to each of the two contributions to the joint inversion.  

The forward models in Dinver solve for theoretical Rayleigh wave fundamental mode dispersion 

curves or Rayleigh wave ellipticity functions. The modified neighborhood algorithm is initiated 

by generating a pseudo-random seed number that samples a set of model parameters within the 

specified model parameter bounds (ns0) to generate the first iteration of 50 forward models. The 

misfit for the 50 models is calculated using Voronoi cells (Figure 2.10). The number of cells with 

the lowest misfit (nr) are selected within the total number of new models generated at each 

iteration (ns) by using a Gibbs Sampler (or random walk) using a uniform probability density 
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function inside each cell. A random walk is a sequence of perturbations to the model along all 

axes where the modified model is statistically independent of the original model. An average of 

ns/nr new samples are generated with a uniform probability in each selected lowest misfit cell. 

More samples are generated within the selected space where the misfit function is calculated 

again for recently generated models. This is done with each run of the inversion algorithm. The 

neighborhood algorithm like all other Monte Carlo techniques relies on a pseudo-random 

generator. A random seed initializes a random generator with a uniform probability. In this study 

3 independent inversion processes were initiated with different seeds to test the robustness of 

final models. Ns0 and nr were set to 50 as well with ns being set to 2500 which resulted in 2550 

models generated for each iteration. Iterations were increased in the case where the misfit 

continually decreased per iteration. Once convergent and the lowest misfit was achieved, the 

inversion process was halted where the best fitting model was extracted and analyzed. 

 
Figure 2.10: The parameter space is split into Voronoi cells where the misfit model is calculated 

(from Mathworks, 2006). 

Model parameterizations consisted of one and two uniform velocity layer models overlaying a 

halfspace, and for a few stations a power law gradient layer over a halfspace was used. Uniform 

model parameter limits are set relatively wide. For example, Dinver’s default 0.2-0.5 parameter 

range for Poisson’s ratio was used and the default thickness of 100 m is used or reduced to 30 m 

for input dispersion data with high frequencies. Density is fixed to 2000 kg/m3 for all layers. If 

available, refraction Vp of the rock was used to constrain the dispersion curve inversion. Several 

starting seeds were used to test the robustness of the final lowest misfit model. These tests 
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include different seeds but direct towards a similar model to counter non-uniqueness. Figure 2.11 

shows the stations lowest misfit forward dispersion model and velocity profile in red. 

2.5.2 Probabilistic Shear Wave Velocity Profiling (PSWP)  

The second inversion software used is a Bayesian inversion software named PSWP (Probablistic 

Shear-Wave Velocity Profiling) developed by Molnar et al. (2010) and used for many 

applications in British Columbia (e.g. Molnar et al., 2012).  The important points about this 

Bayesian inversion scheme is described fully in Molnar et al. (2010) and summarized here for 

the reader. Bayesian inversion evaluates data errors and model parameterization to produce the 

most-probable shear wave velocity profile together with quantitative uncertainty estimates from 

Rayleigh wave dispersion data. The Bayesian inversion approach draws models proportional to 

their probability but also provides rigorous estimation of data error statistics and an appropriate 

model parameterization. This software only inverts dispersion estimates (phase velocity vs 

frequency) where Rayleigh wave ellipticity cannot be independently or jointly inverted. For 

Eastern Canada rock sites, MHVSRs at the stations are flat and/or don’t have distinct peaks and 

are therefore not useful for inversion (i.e., rock is rock and we cannot determine how much 

harder it may be from a flat MHVSR).  

Bayesian inversion methods describe the inverse problem in terms of the posterior probability 

density (PPD) of a defined model’s parameterization (Tarantola, 1987; Dosso, 2002). The PPD is 

defined for a given parameterization as the likelihood multiplied by prior knowledge divided by 

the evidence. They are considered random variables constrained by data and a priori 

information. Markov-chain Monte Carlo (MCMC) methods are used with an implementation of 

Metropolis-Hastings sampling to provide an unbiased sample from the PPD to compute 

parameter uncertainties and inter-relationships. The solution is quantified in terms of properties 

of the PPD that represent optimal parameter estimates (e.g. mean model) and parameter 

uncertainties and errors (variances). Computing these properties requires optimizing and 

integrating the PPD. Parameter uncertainties are calculated using MCMC methods unbiased from 

the PPD. Implementation of Metropolis-Hastings sampling is applied which draws parameter 

perturbations to the PPD. 
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Model parameterizations consisted of two uniform velocity layers overlaying a halfspace and a 

power law gradient layer over a halfspace. Uniform model parameter limits are set relatively 

wide and similar to the limits used for Dinver inversions. Poisson’s ratio is constrained using a 

physical limit (Vs ≤ Vp/√2). In a first stage, PSWP performs optimized inversion using an 

adaptive simplex simulated annealing (ASSA) algorithm. The most appropriate model 

parameterization is determined by calculating the BIC from each parameterization’s optimal 

model. The optimal model with the lowest BIC is used as the starting model for the second stage 

Metropolis-Hastings sampling routine. 

Figure 2.11 presents the optimal Vs model determined by Dinver with 66% and 95% credibility 

intervals determined from PSWP. The optimal (lowest misfit) Dinver model is plotted to 

compare with the models found through PSWP and falls into the range of the 95% credibility 

interval, as expected. Table 2.4 describes the velocities interpreted as rock measured using each 

inversion algorithm, including standard deviation from PSWP. Stations A54, A64, GAC, GBN, 

and LMQ had two rock velocities estimated from dispersion estimates as listed in Table 2.4. 
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a) A16

 

b) A54

 

c) A61

 

d) A64

 

e) BATG

 

f) BCLQ

 

Figure 2.11: Left panels show dispersion estimates (black circles) plotted with the lowest misfit 

forward model in red. Velocity profiles derived from PSWP with stations a) A16, b) A54, c) A61, d) 

A64, e) BATG, f) BCLQ, g) DPQ, h) GAC, i) GBN, j) ICQ, k) KGNO, l) LMQ, m) MCNB, n) 

ORIO, o) OTT, and p) QCQ. The 66% and 95% credibility intervals are shown in blue and cyan 

respectively. The optimal Dinver model is shown in red.  
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g) DPQ

 

h) GAC   

 
i) GBN 

 

j) ICQ 

 

k) KGNO

 

l) LMQ

 

Figure 2.11: Continued 
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m) MCNB 

 

n) ORIO

 
o) OTT 

 

p) QCQ

 

Figure 2.11: Continued 

Table 2.4: Rock velocities determined under each station from inversion algorithms using Dinver 

and PSWP. Sites shaded in grey indicate that the rock velocity was measured by dispersion. 

Station Optimal rock velocity from 

Dinver (m/s) 

Mean rock velocity (one standard deviation) from 

PSWP (m/s) 

A16 1352 1336 (220) 

A54 872 overlaying 1224 850 (38) overlaying 1357 (95) 

A61 1915 2424 (557) 

A64 1108 overlaying 2408 1020 (104) overlaying 2553 (686) 

BATG 1379 1441 (227) 

BCLQ 1339 1612 (300) 

DPQ 1570 1574 (260) 

GAC 1348 overlaying 3300 1080 (310) overlaying 2780 (685) 

GBN 1164 overlaying 1936 1237 (133) overlaying 1976 (265) 

ICQ 1954 1959 (260) 

KGNO 1860 1553 (700) 

LMQ 847 overlaying 3027  889 (174) overlaying 2717 (434) 

MCNB 1870 2409 (600) 

ORIO 1570 1708 (170) 

OTT 1539 1612 (165) 

QCQ 1523 1503 (60) 
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2.6 Vp Seismic refraction estimates 

Vp refraction data was collected with the same equipment and array setup as MASW except a 

trigger switch and the stacking of five generated seismic signals was used. Measurements were 

performed where the Geode system could be deployed. For each shot gather, the first P wave 

arrivals were picked. Travel time analysis was performed in calculating layer velocities and 

thicknesses when possible. Seismic refraction was the most successful method to consistently 

obtain rock velocities with Vp > 1000 m/s (19 out of 20 stations). For 11 stations, velocity of the 

near surface material was also obtained and a Vp profile is obtained. The only station where 

reliable travel time picks could not be made was station CNQ. A sample of travel time picks 

made from a raw shot gather data set is shown in Figure 2.12. Velocities of rock and sediment 

were then compiled from forward and backward shots where the mean and standard deviation of 

each layer’s velocity are calculated from Figure 2.13. If sufficient sampling in the surficial and 

rock layer was identified, a profile could be built (Figure 2.14) outlining the mean velocities and 

their standard deviation. Depth was calculated dependent upon the layering system interpreted 

from the data (i.e. dipping or flat interfaces) as shown in Figure 2.14 (briefly summarized in 

Chapter 1.5). Dipping interfaces were interpreted from variation in velocity and number of layers 

from picked arrival times of both forward and backward shots. Table 2.5 summarizes refraction 

Vp estimates outlining flat and dipping rock interfaces and indicates if a Vp profile could be built 

for the station. At some stations, we found two rock velocities from varying array spacing and is 

noted as upper and lower rock velocities. Upper rock velocity is the shallower rock interface 

(tighter array; shorter wavelength) while the lower rock velocity is the deeper rock. The average 

refraction Vp of the upper rock unit across all stations measured in Eastern Canada is 2684 m/s 

(800 m/s standard deviation) which does show a wide range in the units across a very large area. 
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Figure 2.12: Sample of velocities determined for station A54 from 0.5 m array spacing. Orange and 

blue line indicate the direct wave and refracted wave arrivals, respectively. 

 
Figure 2.13: Sample of velocities (labelled on plot) determined for station QCQ from 3 m array 

spacing. File names beginning with 5 indicate 5 m source offsets whereas, names beginning with 15 

indicate 15 m source offsets. End digits including 02, 03, or 04 indicate stacked file indicators. 
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a) 

 

b) 

 
c) 

 
 Figure 2.14: Sample mean Vp profiles (solid line) with one standard deviation (dashed lines) 

determined from refraction travel-times for stations (a) QCQ, and (b) MOQ. For station A54, two 

Vp profiles for the (c) downdip and (d) up-dip direction are determined. 
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Table 2.5: Summary of Vp refraction measurements in rock at stations in Eastern Canada. 

Station Upper Rock 

Velocity (m/s) 

Lower Rock 

Velocity (m/s) 

Vp profile Rock interface 

A16 2486 ± 112 Not measured Rock Velocity only Dipping 

A54 3161 ± 135 Not measured Profile Dipping 

A61 2500 ± 215 7000 ± 860 Profile Flat 

A64 4467 ± 401 Not measured Rock Velocity only Flat 

BATG 1797 ± 350 3510 ± 345 Profile Flat 

BCLQ 1650 ± 225 2800 ± 850 Profile Dipping 

CNQ Not successful Not successful Not successful Not successful 

DAQ 1945 ± 315 Not measured Profile Flat 

DPQ 2610 ± 655 Not measured Profile Flat 

GBN 2836 ± 481 Not measured Rock Velocity only Dipping 

GSQ 1466 ± 466 Not measured Rock Velocity only Dipping 

KGNO 3386 ± 930 Not measured Rock Velocity only  Dipping 

LMQ  2200 ± 240 Not measured Profile Flat 

MCNB 3151 ± 387 Not measured Rock Velocity only Dipping 

MOQ 2509 ± 175 Not measured Profile Flat 

NATG 1711 ± 275 Not measured Profile Flat 

ORIO 3750 ± 900 Not measured Profile Flat 

OTT 2800 ± 900 4462 ± 581 Profile Dipping 

QCQ 3500 ± 142 Not measured Profile Flat 

VABQ 3085 ± 444 Not measured Rock Velocity only Dipping 

 

2.7 Poisson’s ratio 

Poisson’s ratio is a fundamental metric to compare the performance of any material when 

strained elastically (Greaves et al., 2011). Poisson’s ratio is defined as the shortening in the 

transverse direction to the elongation direction of applied force (Gercek, 2007). It is physically 

the ratio between transverse and longitudinal strain in an elastic material subjected to a uniaxial 

stress. The tendency of a material to expand or contract in a direction perpendicular to the 

compressive or tensile force direction is known as the “Poisson effect.” Materials with different 

Poisson’s ratios behave differently when under strain. The ratio defines properties of materials to 

range from rubbery to dilatational (anti-rubbery) where between the extremes are materials that 

are stiff (i.e. metals and minerals) and compliant (i.e. sponge). In measuring both Vp and Vs, 

Poisson’s ratio (υ) is determined by  
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𝜐 =

1

2
(𝑉𝑝

2−2𝑉𝑠
2)

𝑉𝑝
2−𝑉𝑠

2 . 
(17) 

Poisson’s ratio was calculated using Equation 17 at stations where both reliable rock Vp and Vs 

were measured. Poisson’s ratio is reported in Table 2.6. Calculations were made using the rock 

Vs of the lowest misfit model from the Dinver inversion and the refraction Vp used to constrain 

the inversion. No standard deviation is calculated for stations where there is a high variability in 

the Vp measurements which makes the Vp close the Vs values. Those stations are indicated with 

a N/A in their standard deviation. The average Poisson’s ratio (and standard error) calculated for 

stations in Eastern Canada is 0.36 (0.080).  

Table 2.6: Calculated Poisson’s ratio for Eastern Canada stations. N/A refers to stations 

without a standard deviation due to a single Vp refraction measurement. 

Site Average Poisson’s Ratio Standard Deviation 

A16 0.29 0.04 

A54 0.42 0.01 

A61 0.46 0.01 

A64 0.47 0.01 

BATG 0.41 0.03 

BCLQ 0.39 0.14 

DPQ 0.22 N/A 

GBN 0.40 0.06 

KGNO 0.28 0.07 

LMQ 0.41 0.01 

MCNB 0.23 0.16 

ORIO 0.37 0.11 

OTT 0.32 0.26 

QCQ 0.39 0.01 

The NGA East project (Hashash et al., 2014) found the average Poisson’s ratio in the region to 

be 0.28 ± 0.025 with values ranging from 0.24 to 0.33 for reference rock velocities in Eastern 

North America. Their Poisson’s ratio values were calculated for reference rock site conditions 

which are assumed to be of Paleozoic age or older. Their mean Vs was 2951 ± 831 m/s likely 

due to sampling much older, stiffer rock compared to our mean Vs of all rock types of 1736 ± 

602 m/s. Our average Poisson ratio value is slightly higher than those found by Hashash et al. 

(2014). There is a large range in the velocities at Eastern Canada stations, which directly relates 

to Poisson’s ratio having variability as well. Hashash et al. (2014) determines a higher average 

observed rock Vs than ours which indicate their rock measurements likely being done on older 

rock compared to ours which is mainly Paleozoic. Variability amongst measurements is also a 
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factor especially with the majority of their measurements performed at more southern stations in 

the United States where ours are across a large range (distance) of stations in Eastern Canada.  

2.8 Laboratory Vp measurements of rock samples 

Laboratory ultrasonic wave transmission measurements were performed to determine the Vp of 

rock samples obtained at stations VABQ (near Ottawa), NATG (in the upper St. Lawrence), and 

A16 (in Charlevoix). Care was taken to obtain appropriate rock samples at the stations, 

representative of the rock composition the station resides on. Multiple small core samples were 

cut from the rock sample. The rock samples are assumed to be isotropic as only one direction 

could be measured. The core samples were cut and measured in the direction the grains were 

aligned, if evident. 

Each core sample is put into a securing apparatus where an ultrasonic compressional wave pulse 

was transmitted through the sample to measure the travel time using a digital oscilloscope. The 

instrument was first calibrated without any sample in the apparatus and then an aluminum 

sample to measure the instrumental drift by measuring before and after the experiment. A gel is 

applied to both ends of the cut sample to couple well with the transmitter and receiver (detector 

pad) where it is clamped. An ultrasonic pulse is then applied through the sample and the first 

arrival time at the receiver is then picked from the recorded waveform. The true travel time is 

calculated by subtracting the travel time calculated with the sample by the travel time with no 

sample in the apparatus. We divide the true travel time by the length of the sample in order to 

then calculate Vp of the sample. This procedure is accomplished with multiple core samples 

extracted from the same rock sample taken from the field. The average Vp from these multiple 

core samples is then taken. A sample plot of a wave arrival is shown in Figure 2.15. A similar 

method of choosing travel times was performed for arrivals with and without rock samples. 
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Figure 2.15: Example in the methodology in choosing first arrival travel times from waveforms 

(blue line) from Vp laboratory experiments. The dotted red line shows an example of how times 

were chosen as soon as the signal arrives. 

Measurements are summarized in Table 2.7 with the average lab sample Vp and its standard 

deviation. A sample from station QCQ was obtained but crumbled when cut which caused the 

waveform to be incoherent and only one measurement was taken (no standard deviation 

obtained). This sample has similar velocities with both the refraction and laboratory Vp methods 

although unreliable. Station QCQ’s refraction and lab measurement is likely similar in that the 

fractured core sample may replicate the conditions in the subsurface. 75% of our laboratory Vp 

values are much higher than those determined by the Vp refraction method. Figure 2.15 

summarizes the in situ Vp refraction and laboratory Vp measurements. The laboratory Vp is 

approximately two times higher than our in situ Vp refraction measurements.  

Due to the short length of the core samples, errors in choosing accurate first arrival microseconds 

apart can affect the measurement. For our study, coherent waveforms were only used to pick 

arrival times but nonetheless, can be a source of error. Brant et al. (2012) used the resonant 

frequency method with impulse excitation to calculate the velocity of 100 specimens of various 

rock types near New York City. That study also compares the laboratory results with low-strain 

in situ field seismic measurements. They concluded that laboratory specimens typically have a 

higher Vs than in situ measurements due to discontinuities present (joints and shears) in the in 

situ rock mass which are absent from laboratory specimens which are intact. Brant et al. (2012) 
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also found that laboratory Vp or Vs of rock samples to be almost two times the Vp or Vs in situ 

measurement for many rock types similar to our results.  

Table 2.7: Summary of Vp lab measurements compared with Vp refraction results.  

Station: Average Rock 

Lab Sample Vp 

(m/s) 

Standard 

Deviation 

(m/s) 

Vp 

Refraction 

(m/s)  

Standard 

Deviation 

(m/s) 

Factor difference of Lab 

Sample with Refraction 

Vp 

A16 5411 85 2486 112 2.17 (in situ is 46% of 

sample) 

NATG 4950 481 1711 275 2.89 (in situ is 34% of 

sample) 

VABQ 5427 319 3085 444 1.76 (in situ is 57% of 

sample) 

QCQ 3526* N/A 3500 142 1.00 (in situ is 99% of 

sample) 

*Vp is estimated from incoherent measure of travel time.  

 
Figure 2.16: Comparison between refraction Vp and laboratory Vp measurements.  

2.9 Discussion and Conclusions 

This study incorporated a multi-method approach to characterize 25 seismograph stations 

situated on supposed hard rock in Eastern Canada. Multiple methods were used in attempts to 

acquire Vp and Vs of the station’s rock using active and passive surface wave methods and 

active body wave methods. Surface wave methods used include active MASW and passive 
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AVA. Both active and passive surface wave methods were used to build a dispersion curve to be 

inverted for a Vs profile. Two inversion approaches were used including the modified 

neighborhood algorithm (Dinver) and a Bayesian inversion (PSWP). Dinver was used to provide 

the best fitting model and PSWP was used to analyze data errors and standard deviations to give 

a possible range of rock Vs, Vs profiles, Vs30, and site class. Body wave Vp refraction was used 

to acquire Vp of the rock where Vp depth profiles were generated if the surficial layer was 

sampled sufficiently. Refraction Vp of rock was also used to constrain the parameterization of 

surface wave inversions. Poisson’s ratio for the station rock was calculated from the inverted Vs 

and refraction Vp. Laboratory Vp measurements were performed using rock samples taken from 

the station with attempts to correlate it with the Vp calculated from seismic refraction. 

Dispersion estimates from AVA testing could be made at 7 out of 23 stations and the rock Vs 

could be measured at 6 stations. Dispersion estimates were obtained at all 23 stations using 

MASW, where only surficial soil and sediment was only measured at 7 of those stations. 16 out 

of 23 stations had reliable dispersion estimates where a transition from sediment to rock was 

observed in dispersion histograms and were inverted. Vp refraction was successful in providing 

rock Vp at 19 out of 20 stations. Active MASW and Vp refraction had the highest success rate in 

acquiring estimates of the rock velocity. Passive methods were less successful but included the 

important low frequency portion of the dispersion curve which typically provides the station’s 

rock phase velocity.  

Rayleigh wave dispersion curves could solely be built in having the most success with MASW 

and only having vertical component geophones. Other authors have had more success in 

obtaining rock Vs from jointly inverting Rayleigh wave dispersion curves with Love wave 

dispersion curves (Poggi et al., 2017; Martin et al., 2017). Love wave dispersion estimates can be 

reliably made through Love wave MASW (MASLW) to be jointly inverted (with Rayleigh wave 

dispersion data and/or ellipticity) or independently inverted for a Vs profile. Vs refraction is also 

a successful method used for site characterization at rock sites (e.g. Beresnev and Atkinson, 

1997). From success seen in this study with Vp refraction, Vs refraction attempted at all sites 

would likely give reliable rock Vs for site characterization purposes. Due to not having 

horizontal geophones and a horizontal source, Vs refraction and MASLW could not be performed 

during this field campaign. 
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The use of different seismic sources has also been successful in measuring rock Vs instead of 

using a single source (e.g. Catchings et al., 2019). Catchings et al. (2019) used vertical sources 

such as an accelerated weight drop (AWD), 10 lb and 3 lb hammers, and seisguns to create 2-D 

models of the rocklike subsurface dams located in British Columbia. Shear sources for direct Vs 

measurements also were used and varied where an angled AWD, and a shear source were struck 

by 10 lb and 3 lb hammers to generate different energy levels. A sledgehammer may not be able 

to generate large enough wave amplitude to be detected by large offset geophones. The use of 

AWD would solve this site-specific issue where more energy is needed.  

Comparing the Paleozoic and Precambrian rock velocities found from this study with those from 

Nastev et al. (2016) indicates similarities between both studies. The lowest misfit model is used 

in calculating the average Paleozoic rock to be 1671 ± 178 m/s (n=5) and the Precambrian rock 

to be 1935 ± 28 m/s (n=2). These compare with Nastev et al. (2016) with their Paleozoic rock 

velocity to be 1500 ± 500 m/s and Precambrian rock varying from 2500 ± 700 m/s. This study’s 

measurements fall within the velocity ranges of both geologic Eons seen in Nastev et al. (2016) 

however sampling considerably less. Figure 2.17 shows our measured Vs compared to Nastev et 

al. (2016). Our average measured values do fall within the standard deviation range from Nastev 

et al. (2016) indicating similar measured rock velocities. 
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Figure 2.17: Comparison of Paleozoic and Precambrian rock Vs in Eastern Canada. Orange bars 

indicate stations where rock was measured through dispersion estimates. Blue bars indicate stations 

where rock was measured and estimated. 

A Vs30 map has been created for the city of Ottawa (Motazedian et al., 2011) which also 

summarizes rock velocities found in the Ottawa area. Four stations near Ottawa are looked at in 

this study (e.g. OTT, ORIO, VABQ, and GAC) with OTT being in its municipality. From 

stations OTT and ORIO, the average rock Vs from our lowest misfit models are 1551 m/s which 

is lower than the majority of Paleozoic rock measurements found in Motazedian et al. (2011) 

with rock Vs being typically > 2000 m/s.  Their study used downhole Vs, seismic reflection-

refraction profiling, and high-resolution Vs reflection “landstreamer” profiling to measure Vs. 

Seismic Vs refraction at station OTT (Beresnev and Atkinson 1997) determined 30 m thick soft 

sedimentary rock with Vs of 1670 m/s overlays stiffer intrusive rock with Vs of 2700 m/s. We 

determine a dipping rock interface with our refraction data set at station OTT, where lateral 

heterogeneity can affect the accuracy of the sediment thickness. Our measured rock velocity of 

1539 m/s with our lowest misfit model is comparable to their results. The other 10 stations 

investigated by Beresnev and Atkinson (1997) do not coincide with our stations but highlight the 

success of the Vs refraction technique in observing rock Vs.  
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Geological, geophysical, and geotechnical studies have been performed in Quebec City for the 

purpose of locating bedrock (e.g. Pugin et al., 2013) and for microzonation studies (e.g. Chagnon 

and Gilbert, 1990 and Perret and Lamarche, 2013). Vs of different subsurface materials are 

compiled and summarized in Nastev et al. (2016) where the average rock Vs in Quebec City is 

much lower (~ 980 m/s) compared to Ottawa and Montreal. Vs profiles are shown in Nastev et 

al. (2016) where the bottom-most rock has a Vs of ~1400 m/s. GPR (2005) conducted two 

downhole seismic surveys in Levis (south of Quebec City) where the rock Vs was measured. 

Rock Vs measurements as large as 1200 m/s were made in the area. Station QCQ is located at 

Laval University in Quebec City where the measured rock velocity of 1523 m/s matches well 

with Paleozoic rock Vs measurements seen in the Quebec City velocity profiles in Nastev et al. 

(2016). All studies including ours show similar, low rock Vs measured where Paleozoic rock is 

consistently measured near Quebec City. 

No publicly available data is available for other Eastern Canada seismograph stations to compare 

our rock velocities with. Montreal has had extensive work done with boreholes drilled for 

geotechnical and microzonation studies, but we cannot compare as our closest station (MOQ) 

does not have successful Vs measurements. Similarly, for stations in Nova Scotia, New 

Brunswick, Charlevoix and the Upper St. Lawrence, no public data is available for comparison.  
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Chapter 3 Site Classification at “Hard Rock” Stations in Eastern 

Canada 

3.1 Introduction 

Characterizing seismograph stations is important in developing GMM’s and estimating the site 

response in the event of an earthquake. The NBCC prioritizes the use of Vs30 as a site 

classification parameter for rock sites compared to other geotechnical parameters as part of the 

seismic guidelines in Canada. Chapter 2 introduced our multi-method seismic testing approach to 

obtain velocity depth profiles at selected seismograph stations across Eastern Canada. This 

Chapter focuses on performing earthquake site classification (Vs30, site period, site 

amplification) first for the tested sites, then specific to the seismograph station itself. The 

velocity profiles start at the ground or rock surface; the seismograph is installed on the rock 

surface. The appropriate site classification of the seismograph location itself is determined in 

section 3.3.1 by removing low velocities of surficial soils (not present below the seismograph) 

and using the station’s rock velocity to calculate the appropriate Vs30. MHVSR and EHVSR 

have become a popular technique in estimating site amplification, and authors have developed a 

site period classification scheme instead of Vs30 (Zhao et al. 2006; Di Alessandro et al. 2012). 

MHVSRs are also used here to determine site period classification of the selected seismograph 

stations. This Chapter concludes with combining site classification approaches (Vs30, site period) 

with our multi-method seismic testing to document earthquake site characterization of the 

selected Eastern Canada seismograph stations.  

3.2 Preliminary Vs30 site classification from dispersion estimates  

A preliminary Vs30 site classification is performed using Rayleigh wave phase velocity 

(dispersion) estimates. The relation of Martin and Diehl (2004) is  

 𝑉𝑠30 = 1.045 ∗ 𝑉𝑅40,  (18) 

where Vs30 is calculated based on the measured Rayleigh phase velocity with a 40-m wavelength 

(VR40). Figure 3.1 shows all the dispersion estimates for measurement locations near the 

seismograph stations. Using the measured VR40 at each station, Vs30 is solved via Equation 18 

and reported in Table 3.1. Stations that achieve at least a 40 m wavelength are assigned a site 

class; stations below 40 m have an estimated site class from their trend. Figure 3.1 shows that the 
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Vs30 of most stations corresponds to site class B (soft rock, 760-1500 m/s) with Vs30 of two 

stations related to site class C (dense soil, 360-760 m/s) and three stations related to hard rock 

class A (> 1500 m/s). This method is used as a quick and preliminary estimate of Vs30 site class 

with no inversion required of the dispersion curve. These dispersion measurements were taken at 

a distance from the station with soil at the surface, which is later looked at again to calibrate the 

measurements to those of the station in section 3.3.1. We compare these preliminary Vs30 

estimates with ‘robust’ Vs30 estimates determined from inverted Vs profiles in section 3.3. 

Table 3.1: Preliminary Vs30 of Eastern Canada seismograph stations. 

Station VR40 (m/s) Vs30 (m/s) Site Class 

A16 No Data No Data B* 

A54 1026 1072 B 

A61 1297 1355 B 

A64 1218 1273 B 

BATG 844 882 B 

BCLQ No data No data B* 

DPQ No data No data C* 

GAC No data No data A* 

GBN 1123 1174 B 

ICQ 1182 1235 B 

KGNO 1657 1732 A 

LMQ 766 800 B 

MCNB No Data No Data A* 

ORIO 1127 1178 B 

OTT 683 714 C 

QCQ 1267 1324 B 

*station measurements did not achieve a 40 m wavelength and are estimated. 
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Figure 3.1: Preliminary Vs30 site classification based on Rayleigh phase velocities (symbols) 

measured at each station. The Rayleigh wave velocity with a 40-m wavelength is shown by the black 

line (“VR40 line”) and corresponding VR40 limits of Vs30 classes (horizontal lines) are labelled. 

3.3 Robust Vs30 site classification from Vs profiles  

In the previous section, active and passive surface wave methods were used to build a full 

dispersion curve and are assigned a preliminary Vs30 site class from the dispersion estimates. 

Inverted Vs profiles from Chapter 2 (section 2.5) are applied and converted to ‘robust’ Vs30 

values here. Dispersion curves were inverted using two algorithms to acquire Vs profiles. Vs30 is 

calculated using the lowest misfit model from the Dinver inversion (Table 3.2). For the PSWP 

inversion, a subset of 10,000 models are drawn from the posterior probability density (PPD) to 

calculate Vs30. The mean Vs30 and one standard deviation is reported in Table 3.2. PSWP also 

calculates the probability of each site class from this sample of Vs30 values. The preliminary site 

classes concluded from the VR40 estimate correspond to the same robust Vs30 site classes 

estimated from inverted Vs profiles except for two stations. It is important to note these inverted 

Vs profiles and Vs30 values correspond to the seismic testing location (on ground or rock 

surface), which are some distance away from the seismograph and/or located on different ground 
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conditions (surficial soils) compared to the seismograph. They are appropriate to the 

seismograph ‘site’.  

Table 3.2: Robust Vs30 determined from inverted Vs profiles.  

Station Optimal 

Vs30 (m/s) 

Mean Vs30 with 

one std. dev. (m/s) 

Site class probability  

A16 890 799 ± 111 65 % Class B, 35 % Class C 

A54 922 984 ± 100 99 % Class B 

A61 1226 1507 ± 207 57 % Class B, 43 % Class A 

A64 1352 1464 ± 360 65 % Class B, 34 % Class A 

BATG 835 894 ±72 99 % Class B 

BCLQ 989 423 ± 66 92% Class C 

DPQ 607 600 ± 31 99 % Class C 

GAC 2936 2418 ± 512 98 % Class A, 2% Class B 

GBN 1071 1094 ± 91 99 % Class B 

ICQ 1075 1172 ± 93 100 % Class B 

KGNO 1504 956 ± 450 77 % Class B, 10 % Class A 

LMQ  751 792 ± 125 50 % Class B, 50 % Class C 

MCNB 1380 1459 ± 205 56 % Class B, 44 % Class A 

ORIO 1007 1052 ± 68 100 % Class B 

OTT 752 828 ± 63 87 % Class B, 13 % Class C 

QCQ 1197 1150 ± 55 100 % Class B 

3.3.1 Station appropriate Vs30 site classification 

The Vs30 estimates in the previous two sections are calculated from seismic array measurements 

performed at a distance from the station with soil and other sediment overburden present. These 

Vs30 estimates may not be accurate to the seismograph site conditions, installed on rock. 

Additional steps are performed in this section to determine Vs profiles representative of the 

outcropping rock the seismograph stations are placed on and shown in Figure 3.2. At stations 

where our surface wave methods penetrated 30 m or more into rock, Vs30 is calculated from the 

measured rock velocity from the station’s (inverted) Vs profile. At stations where our surface 

wave methods penetrated rock less than 30 m, two approaches are used to estimate Vs30 which 

provide minimum and maximum Vs30 bounds. The first is to simply extend the inverted rock 

velocity down to 30 m depth and assume it is accurate of the station’s Vs30. Extending the same 

constant rock Vs at shallower depth to 30 m is a conservative (lower Vs30 and site class) 

approach because velocity generally increases with depth in the earth. A less conservative 

approach is to extrapolate the measured average velocity at the maximum measured depth further 

to 30 m depth. Ahdi et al. (2017) summarizes various Vs30 extrapolation models from authors 

who have applied non-invasive and invasive seismic data to create correlations between Vs30 and 
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time-averaged Vs measurements at a depth z (Vsz). The first extrapolation model was made by 

Boore (2004) where 135 geophysical borehole measurements from California were used to 

develop a linear correlation between logarithmic Vs30 and depth. Other authors have developed 

correlations depending on the region such as in Japan (Boore et al., 2011; Midorikawa and Nogi, 

2015) and California and Turkey (Dai et al., 2013). Boore et al. (2011) is the most suitable 

correlation to be used in our study due to Japanese KiK net stations having a tendency to be on 

stiff soil or rock similar to our stations in Eastern Canada situated on rock.  

 
Figure 3.2: Extended Vs profiles representative beneath each station including measured rock (Vs 

of surficial sediment and overburden are removed, not shown). Optimal Dinver Vs profile is shown 

by solid blue lines and mean PSWP Vs profile in solid orange with the standard deviation shown by 

dashed lines Stars indicate extrapolated Vs30 values.  

For the purpose of this study, velocities corresponding to material the station is not residing on 

(e.g. surficial soil/gravel layers) is removed from the velocity profiles determined in section 2.5 

to determine station appropriate Vs profiles shown in Figure 3.2. This decreases the depth 

resolution of our Vs profiling at some stations, but we are able to extrapolate to 30 m depth using 

correlations between Vs30 and Vsz.  
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Boore et al. (2011) built a Vs30 extrapolation model using 635 velocity models from Japan (KiK-

Net) stations placed on rock and stiff soil. A second order-polynomial was developed to correlate 

Vsz with Vs30 at 1 m depth intervals starting at 5 to 29 m,  

 𝑙𝑜𝑔𝑉𝑠30 = 𝑐0 + 𝑐1𝑙𝑜𝑔𝑉𝑠𝑧 + 𝑐2(log𝑉𝑠𝑧)
2. (19) 

This logarithmic second-order polynomial relation requires measures of Vsz. Coefficients (c0, c1, 

and c2) were developed from the Kik-Net station Vs data (Table 3.3). The standard deviation of 

residuals is shown in the last column of Table 3.3 and exemplifies that when deeper Vs is 

measured, the lower the uncertainty in Vs30. 

Table 3.3: Depth (z) of maximum Vsz and respective coefficients used in Equation 19 (Boore et al. 

2011) to extrapolate to Vs30
.  

z (m) c0 c1 c2 Standard Deviation 

of Residuals 

5 0.205 1.318 -0.117 0.119 

6 -0.061 1.482 -0.142 0.111 

7 -0.274 1.607 -0.160 0.103 

8 -0.372 1.649 -0.163 0.097 

9 -0.494 1.707 -0.169 0.090 

10 -0.544 1.715 -0.167 0.084 

11 -0.601 1.727 -0.165 0.078 

12 -0.608 1.707 -0.158 0.072 

13 -0.632 1.698 -0.152 0.067 

14 -0.612 1.659 -0.142 0.062 

15 -0.578 1.611 -0.130 0.056 

16 -0.543 1.565 -0.119 0.052 

17 -0.528 1.535 -0.112 0.047 

18 -0.496 1.494 -0.102 0.043 

19 -0.455 1.447 0.092 0.038 

20 -0.406 1.396 -0.081 0.035 

21 -0.383 1.365 -0.073 0.030 

22 -0.353 1.331 -0.066 0.027 

23 -0.316 1.291 -0.058 0.023 

24 -0.274 1.250 -0.049 0.019 

25 -0.223 1.202 -0.039 0.016 

26 -0.177 1.159 -0.031 0.013 

27 -0.135 1.120 -0.023 0.009 

28 -0.090 1.080 -0.015 0.006 

29 -0.046 1.040 -0.008 0.003 

The maximum resolution depth (zmax) of surface wave dispersion methods is based on an 

assumption many authors (e.g. Park et al., 1999) use where zmax ≈ λmax/2 where λmax is the 

maximum achieved wavelength from the AVA or MASW survey. For all stations, λmax is 

calculated from dispersion curve VR at the lowest frequency (λmax = VR/f) and halved to 
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determine zmax (Table 3.4). Sediment thickness (if present) is subtracted from zmax to calculate 

the penetration depth into rock, i.e., z of Vsz. The average rock velocity is known from the 

inverted velocity profiles in Chapter 2 (Table 2.4).  

Table 3.4 summarizes zmax, depth to rock and penetration depth into rock at the survey location 

for each station. If the stations rock penetration depth is less than 30 m, Equation 19 is used to 

extrapolate Vsz given the known penetration depth z to estimate Vs30. The resolution depth at 

stations DAQ and GSQ indicate that dispersion estimates could be made but only soft sediment 

was measured.  

Table 3.4: Determination of penetration depth (z) into rock. Rows shaded grey indicate measured 

rock velocity. Red font indicates that dispersion estimates were made but depth to rock was not 

determined. 

Station zmax (m)  Sediment thickness 

from lowest misfit 

model (m) 

Penetration depth 

into rock (m) 

A16 17.40 1.30 16.10 

A54 22.25 1.27 20.98 

A61 45.67 15.78 29.89 

A64 34.44 0 34.44 

BATG 34.27 10.87 23.40 

BCLQ 16.03 0.37 15.66 

DAQ 15.58 Not measured Not measured 

DPQ 19.94 10.90 9.04 

GAC 7.57 0 7.57 

GBN 30.51 1.3 29.21 

GSQ 26.04 Not measured Not measured 

ICQ 60.03 21.60 38.43 

KGNO 37.05 0.70 36.35 

LMQ 48.56 2.67 45.89 

MCNB 19.69 1.01 18.68  

ORIO 52.43 9.00 43.43 

OTT 70.61 8.10 62.51 

QCQ 55.11 2.24 52.87 

Vs30 is determined using Vs profiles from both Dinver and PSWP inversion. The Dinver optimal 

rock Vs profile is used to calculate the representative Vs30 for the seismograph station. The mean 

Vs30 and its standard deviation is calculated from the PSWP subset of 10,000 Vs profiles. For 

stations with Vs profiles to 30 m depth or more, the measured Vs profile is used to calculate 

Vs30. When the station’s Vs profile is less than 30 m, Vs30 is calculated in two ways, by 

extending the base rock Vs to 30 m (provides a minimum Vs30 bound) or by extrapolation using 

the relation of Boore et al. (2011) given penetration depth into rock, i.e., Vsz reported in Table 
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3.4 for each station (provides a maximum Vs30 bound). The station appropriate calculated Vs30 

value(s) is reported in Table 3.5. In Table 3.5 some stations are noted to be A/B (or B/A) which 

indicates that their mean value is within A (or B) and their standard deviation goes into site class 

B (or A).  

Table 3.5: Station appropriate Vs30 estimates. Grey shading indicates stations where rock Vs was 

directly measured by dispersion estimates. 

Station 

Optimal 

Vs30 

(m/s), 

Site Class 

Extended 

optimal 

Vs30 

(m/s), 

Site Class 

Extrap. 

optimal 

Vs30 

(m/s), 

Site Class 

Mean Vs30  

(1 std. dev.) 

(m/s), 

Site Class 

Extended mean 

Vs30 (1 std. 

dev.) (m/s), 

Site Class 

Extrapolated 

mean Vs30 (1 

std. dev.) (m/s), 

Site Class  

A16  1352, B 1530, A  1336 (220) B/A 1532 (280), A/B 

A54  1091, B 1232, B  1174 (95), B 1316 (115), B 

A61 1915, A   2424 (557), A   

A64 1352, B   1464 (340), B/A   

BATG  1379, B 1480, B  1441 (226), B/A 1543 (317), A/B 

BCLQ  1339, B 1530, A  1612 (300), A/B 1747 (309), A/B 

DPQ  1570, A 1711, A  1574 (260), A/B 1670 (224), A/B 

GAC  2936, A 2405, A  2418 (512), A 2170 (355), A 

GBN  1350, B 1364, B  1573 (265), A/B 1587 (221), A/B 

ICQ 1954, A   1959 (260), A   

KGNO 1860, A   1553 (700), A/B   

LMQ  887, B   940 (485), B/C   

MCNB  1870, A 1991, A  2409 (600), A 2461 (720), A 

ORIO 1570, A   1708 (170), A   

OTT 1539, A   1612 (165), A/B   

QCQ 1523, A   1503 (60), A/B   

Figure 3.3 summarizes calculated Vs30 from both inversion methods and by extension or 

extrapolation, if applied. Eleven of the 16 stations (69%) correspond to site class A whereas, the 

remaining 5 stations fall under site class B based on the optimal Vs30. The mean PSWP Vs30 at 

12 out of 16 stations (75%) corresponds to class A but the standard deviation indicates that some 

stations span across to class B. It is interesting to note that when we have not measured or 

estimated station-appropriate Vs to 30 m depth, and need to either extend or extrapolate the base 

Vs to 30 m, there is consistency in the determined site class. The exception is for stations BATG 

and BCLQ where the Vs30 estimates are close to the A-B class boundary.   

For the 16 Eastern Canada seismograph stations in Table 3.5 and Figure 3.3, we recommend that 

the end-user report or use the optimal Vs30 value for the station. Vs30 should always be rounded 

to the nearest 5 m/s. If applicable, it is recommended to report or use the extended Vs30 value 
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rather than the extrapolated Vs30 value as it is more conservative. In addition, the end-user shall 

report or use the determined standard deviation in Vs30 for the station with the optimal Vs30. If 

applicable, the larger standard deviation from either extending or extrapolating the Vs profiles 

shall be used.  

 
Figure 3.3: Station appropriate Vs30 estimates.  

3.4  Alternative site period site classification from amplification 

functions 

Chapter 2 compared the station MHVSRs and EHVSRs and generally portrayed that both 

methodologies agree with each other and the EHVSRs at some stations being higher in amplitude 

than MHVSRs. A site-period-based site classification scheme could assist in identifying potential 

sturdy rock (i.e., no amplification or site period) from softer rock (e.g., broadband amplification) 

as well as potential site effects (e.g., short site period due to thin soils present). An alternative 

site period classification scheme is applied here for all stations, but is particularly useful where 

Vs profiles and calculated Vs30 could not be determined because array measurements were not 
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performed (no applicable testing location). This situation is typical of stations on outcropping 

rock.  

The site period classification scheme (Table 1.2) of Di Alessandro et al. (2012) is applied to 

visited CNSN stations. Class (CL)-I indicates a site period greater than 0.2 s. Classes higher than 

IV are not based on a distinct site period. CL-V indicates a flat amplification response and CL-

VI indicates broadband amplification. CL-VII describes multiple peaks occurring over the 

frequency bandwidth. Site period is determined from both MHVSRs and EHVSRs and the 

corresponding site classification is reported in Table 3.6. Stations where microtremor 

measurements were performed on soil and other terrain are not accurate of the stations 

conditions. A correction is applied to stations where it is observed that the site response is not 

indicative of rock due to the measurement not being able to be performed on that interface. For 

example, station ORIO is placed on outcropping rock in a field, the measurement was done near 

the station but on soil where a high frequency peak is shown which is related to the thin soil 

layer; that peak is ignored when determining the classification as it is not indicative of the station 

conditions.  

Site period classifications are similar using either the MHVSR or EHVSR. 8 out of 23 stations 

were classified as CL-V or no amplification (flat), as expected for rock sites. The flat or CL-V 

stations re-affirm that the stations are located on a sturdy rock surface. 5 out of 23 stations 

exhibit broadband amplification (CL-VI) indicative of fractured rock at the surface with the 

shortening of shear wavelengths. 8 out of the 25 stations had no access or results not indicative 

of the geology at the station and need to be revisited in order to get an accurate site response 

measurement. Stations A61 and DAQ exhibited high amplification across majority of its 

frequency bandwidth (CL-VII) in their MHVSR and A61’s EHVSR that can be indicative of 

softer or weathered rock in the amplified response. Station GBN had its measurement performed 

on rock yet a high frequency ~ 50 Hz peak (CL-I) was present which can be indicative of 

weathered rock at the surface.  Some stations located on hills (e.g. A11 and A21) had clear wind 

effects during the microtremor measurement and site period cannot be determined. High 

frequency noise at ~ 10 and 20 Hz was observed at station OTT in both microtremor and 

earthquake recordings and should be looked at further to mitigate this noise affecting the 

seismograph recordings. Site period also could not be determined for QCQ, LMQ, and MOQ due 
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to potential noise exciting the vertical component of the instrument. It should be looked at further 

at those stations if the noise was only during the visit or is prolonging.  

Table 3.6: Site-period-based site classification using MHVSR and EHVSRs. Grey shading indicates 

that a correction was applied due to being on a surface not representative of what the station is 

placed on. 

Station MHVSR Classification MHVSR Appropriate 

Classification 

EHVSR Classification 

A11 N/A – Wind effects N/A – Wind effects CL-V  

A16 CL-V  CL-V  CL-V  

A21 N/A – Wind effects N/A – Wind effects CL-V  

A54 CL-V  CL-V  CL-V  

A61 CL-VII CL-VII  CL-VII  

A64 CL-V  CL-V CL-I  

BATG CL-VII CL-VI  Not provided 

BCLQ CL-VII  CL-VII  Not provided 

CNQ CL-VI  CL-VI Not provided 

DAQ CL-VII  CL-VII  Not provided 

DPQ CL-V  CL-V  Not provided 

GAC CL-I CL-V  Not provided 

GBN CL-I CL-I Not provided 

GSQ CL-V  CL-V  Not provided 

ICQ CL-VI  CL-VI  Not provided 

KGNO N/A – no access N/A – no access Not provided 

LMQ N/A – noise at the station N/A – noise at the station CL-I 

MCNB N/A – no access N/A – no access Not provided 

MOQ N/A – noise at the station N/A – noise at the station Not provided 

NATG CL-VI  CL-VI  CL-V  

ORIO CL-I CL-V  Not provided 

OTT N/A - noise at the station N/A - noise at the station N/A - noise at the station 

QCQ N/A - noise at the station N/A - noise at the station Not provided 

SMQ CL-VI  CL-VI  Not provided 

VABQ CL-V  CL-V  CL-VI  

 

3.5 Multi-method site characterization of Eastern Canada 

seismograph stations 

Maps of the MHVSR response, rock Vp, and Vs30 are generated (Figures 3.4 to 3.6, respectively) 

to examine trends among stations regionally. Figure 3.4 summarizes the station site period 

classifications. Stations along the upper St. Lawrence exhibit a common trend in broadband 

amplified response. The Ottawa area exhibits consistent flat MHVSRs. For the Charlevoix 

region, all stations have a flat response, except station A61. Figure 3.5 displays the average 

(forward and reverse surveying) rock Vp measured at each station where refraction was able to 
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be performed. At north-east-most stations (BATG, GSQ, and NATG), rock Vp is < 2000 m/s. 

The Ottawa and Charlevoix regions (“central” Eastern Canada) exhibits moderate rock Vp values 

(> 2300 m/s) except for station LMQ where lower Vp is identified. There also appears to be a 

trend in the highest rock Vp values at the southern-most stations (KGNO, MCNB, GBN) which 

are not geographically close to each other. Figure 3.6 shows the station appropriate Vs30 of the 

lowest misfit model (columns 1 and 3 of Table 3.5). Similar Vs30 values are observed in the 

Ottawa area (Vs30 1500-1700 m/s). The Charlevoix region shows a variety of Vs30 values in a 

small area, Vs was directly measured from dispersion estimates at only A61.  

 
Figure 3.4: MHVSR site period classification map of Eastern Canada stations. 
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Figure 3.5: Rock Vp map of Eastern Canada seismograph stations. 

 



 

88 

 

 
Figure 3.6: Vs30 map of Eastern Canada seismograph stations. 

A multi-method (MM) site characterization metric is introduced in this section to utilize all 

performed methods in earthquake site characterization of the stations. The MM site metric is 

calculated by combining (summing) results from all methods performed at each station. The 

components of the metric are exemplified in Table 3.7 where each method’s outcomes are 

assigned a value between 0 and 1 corresponding to harder and softer rock conditions, 

respectively. Hence the lower the summed MM site metric, the harder the rock conditions 

indicated from the multi-method testing. The maximum value of the MM site metric is 4.5. More 

emphasis is placed on parameters controlling the Vs beneath the station in having two 

parameters: Vs30 and rock Vs. All assigned values of the MM outcomes representative of the 

station are summed together to calculate the MM site characterization metric. The MM site 
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characterization metric for the visited stations in Eastern Canada is reported in Table 3.8. Some 

stations have less information than others; the metric is normalized to be used at a comparison 

level where stations with limited information (e.g. A11) can be compared with stations with 

more information (e.g. LMQ). Through normalization, a metric value below 0.5 is indicative of 

sturdy or hard rock conditions whereas values above 0.5 relate to softer rock conditions. Figure 

3.7 displays the normalized MM site metric calculated for each station. A total of 17 stations 

(68%) portray harder rock site conditions with a MM site metric less than 0.5. Five stations 

portray softer rock conditions with a MM site metric above 0.5. Three stations are indeterminate 

or correspond to intermediate rock conditions with a MM metric close to 0.5. Figure 3.8 shows a 

map of the MM site metric applied to stations to determine if there is a spatial trend in softer and 

harder rock regionally. The upper St. Lawrence has two stations with a MM site metric less than 

0.5. Station LMQ in Charlevoix, GBN in New Brunswick, and MOQ near Montreal all have a 

MM site metric less than 0.5. The MM site metric conveys that these five stations deviate the 

most from the assumed default assumption of hard rock conditions.  

Table 3.7: Values between zero and one (in brackets) assigned to each method’s site 

characterization outcome which are summed to calculate the MM site characterization metric. 

Vs30 site class 

(value) 

Site period class 

(value) 

Rock Vs (m/s) 

(value) 

Rock Vp (m/s) 

(value) 

Rock age (value) 

Class A (0) CL-V flat (0) > 2000 (0) > 3000 (0) Precambrian (0) 

Class A/B (0.2) CL-VII multiple 

peaks (0.25) 

1500-2000 (0.25) 2000-3000 (0.5) Paleozoic (0.5) 

Class B/A (0.4) CL-VI broadband 

(0.75) 

1000-1500 (0.75) < 2000 (1)  

Class B (0.6) CL-I high 

frequency peak 

(1) 

< 1000 (1)   

Class B/C or C/B 

(0.8) 

    

Class C (1)     
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Table 3.8: MM site characterization metric for each Eastern Canada station. 

Station 
MM site 

metric 
# methods 

MM site metric 

normalized 

A11 0.50 3 0.33 

A16 1.95 5 0.43 

A21 0.50 5 0.33 

A54 1.85 4 0.41 

A61 0.50 2 0.11 

A64 1.65 5 0.37 

BATG 2.20 4 0.49 

BCLQ 1.95 5 0.43 

CNQ 0.75 2 0.50 

DAQ 1.00 2 0.40 

DPQ 1.20 5 0.27 

GAC 0.00 3 0.00 

GBN 2.45 5 0.54 

GSQ 1.00 3 0.50 

ICQ 1.00 2 0.29 

KGNO 0.95 5 0.27 

LMQ 3.05 2 0.68 

MCNB 0.50 5 0.14 

MOQ 1.00 4 0.67 

NATG 1.38 4 0.55 

ORIO 0.95 5 0.21 

OTT 1.45 4 0.41 

QCQ 1.20 4 0.34 

SMQ 1.25 3 0.83 

VABQ 0.38 5 0.09 

 

 
Figure 3.7: Normalized MM site metric for Eastern Canada stations. Red dashed line indicates 

transition between harder (left) and softer rock (right) conditions stations. 
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Figure 3.8: Map of normalized MM site metric applied to Eastern Canada seismograph stations. 

3.5.1 Ottawa-Kingston region  

The Ottawa and Kingston, Ontario area contains a cluster of seismic stations to monitor seismic 

activity in the area. Table 3.9 summarizes the rock velocities and site amplification obtained for 

these stations. In general, velocities are measured at stations on Paleozoic rocks compared to 

stations on Precambrian rocks. In contrast, interpretable site amplification (MHVSR or EHVSR) 

is accomplished at stations on Precambrian rocks compared to stations on Paleozoic rock. Our 

methods were most successful in this area in acquiring reliable rock Vs by measuring the “top” 

of the dispersion curve. Reliable rock velocity estimates corresponding to site class A are 

determined at stations KGNO, ORIO, and OTT on Paleozoic rocks in Kingston and Ottawa 

similar to previous studies (e.g. Beresnev and Atkinson, 1997). The average Vs30 (with one 

standard deviation) found for these three stations using the Dinver lowest misfit models is 1656 

(177) m/s. At station VABQ, only low Vs sediments were measured using surface wave methods 

(no station appropriate Vs30) whereas refraction Vp of rock was measured. The average rock Vp 

(with one standard deviation) of Precambrian rock is 3085 (444) m/s. The average rock Vp and 
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Vs (with one standard deviation) of Paleozoic rock is 3312 (525) m/s and 1617 (246) m/s. The 

average rock Vp of these two rock age categories overlaps within their standard deviations, 

hence there is no significant difference in the measured rock velocities by rock age. Overall Vs30 

based site class is not well constrained but is consistently class A at stations in the Kingston and 

Ottawa region. At station OTT, evident high frequency noise (~10 and 25 Hz) likely caused by 

the station installed in a building was observed in both MHVSR and EHVSR measurements, and 

operators should be aware of this effect. 

High Rayleigh phase velocities (> 1000 m/s) are determined for station GAC and combined with 

a flat MHVSR indicates rock site conditions. Having the lowest MM site metric (0) is strong 

evidence that GAC is placed on hard rock. Station VABQ also did not have rock Vs information 

but it had rock Vp measurements and both had a calculated MHVSR and EHVSR. Its EHVSR 

that have low frequency peaks (0.55 and 2.5 Hz) from multiple earthquakes indicating potential 

site effects present at the station but a flat MHVSR. Through its MM site metric being low (close 

to 0) from Vp and site period classes station VABQ is placed on hard rock. Stations KGNO and 

OTT do not have MHVSR or EHVSR data but have high rock Vs (and Vp) and class A Vs30 site 

class that indicates hard rock site conditions with a MM site metric less than 0.5. Station ORIO 

has rock Vs and Vp and site period information indicating sturdy rock conditions. The MM site 

metric for station ORIO is low indicating sturdy rock conditions. 

Table 3.9: Summarized site characterization for stations in the Ottawa and Kingston area. Grey 

shading indicates dispersion estimates did provide rock velocity measurements. 

Station MHVSR EHVSR Rock Vs 

(m/s) 

Vs30 (m/s) 

(Site Class) 

Rock Vp 

(m/s) 

Rock type MM site 

metric 

norm. 

GAC CL-V  No Data 1080 ± 310 

overlaying 

2780 ± 685 

2170 ± 355, 

A 

No data Precambrian 0 

KGNO No data No Data 1553 ± 700 1553 ± 990 

(A/B) 

3386 ± 930 Paleozoic 0.27 

ORIO CL- V  No Data 1708 ± 170 1708 ± 240 

(A/B) 

3750 ± 900 Paleozoic 0.21 

OTT N/A - 

noise 

No Data 1612 ± 165 1612 ± 233 

(A/B) 

2800 ± 900 Paleozoic 0.41 

VABQ CL-V  CL-VI  No Data No Data 3085 ± 444 Precambrian 0.09 
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3.5.2 Montreal - Quebec City region  

Eastwards towards Montreal and Quebec City, 5 stations were visited to acquire a proper site 

classification (Table 3.10). The average rock Vs30 using the Dinver lowest misfit models is 1588 

± 107 m/s in the region. All stations where dispersion curves were built and inverted provides a 

calculated Vs30 corresponding to site class A. Rock Vs was not measured directly by dispersion 

estimates in this region with the exception of Station QCQ at Laval University. The average rock 

Vp (with one standard deviation) of Precambrian rock is 2277 (363) m/s. The average rock Vp 

and Vs (with one standard deviation) of Paleozoic rock is 2936 (293) m/s and 1557 (305) m/s, 

respectively.  

No rock Vs data was acquired at station DAQ but its low rock Vp and moderate (~4) broadband 

amplification indicate site effects present. Its moderate MM site metric (0.4) indicates 

intermediate rock conditions compared to mapped Precambrian rock. Similarly, at station MOQ, 

rock Vs was not acquired but intermediate rock Vp was acquired. A higher MM site metric 

(0.67) indicates this station is on softer rock from its rock Vp and Paleozoic rock age. Station 

BCLQ had low (~2) broadband amplification at multiple frequencies for its MHVSR. Its Vs30 

occurs between site classes A and B. Hence its moderate MM site metric indicates intermediate 

rock conditions underneath the station. Stations DPQ and QCQ have similar stiff rock Vp and Vs 

but differ in their mapped rock age. Station DPQ has a flat MHVSR which reaffirms the 

placement of the station on rock. Both DPQ and QCQ have lower MM site metrics indicating 

harder rock site conditions. 

Table 3.10: Multi-method site characterization for stations in the Montreal and Quebec City area. 

Grey shading indicates dispersion estimates did provide rock velocity measurements. 

Station MHVSR EHVSR Rock Vs 

(m/s) 

Vs30 

(m/s) 

(Site 

Class) 

Rock Vp 

(m/s) 

Rock type MM site 

metric 

norm. 

BCLQ CL-VII  No Data 1612 ± 

300 

1747 ± 

309 

(A/B) 

2800 ± 850 Paleozoic 0.43 

DAQ CL-VII  No Data No Data No Data 1945 ± 315 Precambrian 0.4 

DPQ CL-V  No Data 1574 ± 

260 

1670 ± 

224 

(A/B) 

2610 ± 655 Precambrian 0.27 

MOQ N/A - noise No Data No Data No Data 2509 ± 175 Paleozoic 0.67 

QCQ N/A - noise No Data 1503 ± 

60 

1503 ± 

85 (A/B) 

3500 ± 142 Paleozoic 0.34 
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3.5.3 Charlevoix region  

Northeast of Montreal and Quebec City is the Charlevoix region of Quebec, the most seismically 

active region in Eastern Canada. 7 stations are monitoring the seismicity in the region on both 

west and east sides of the St. Lawrence River. Table 3.11 summarizes the rock velocities and site 

amplification obtained for these stations. The average rock Vs30 from the optimal Dinver model 

is 1347 m/s and varies between site class A and B amongst the stations (370 m/s standard 

deviation). Stations on Paleozoic rocks tend to have lower Vs30 values than station A61 on 

Precambrian rock. The average rock Vs is higher for stations on Precambrian rock (2564 m/s) 

compared to Paleozoic rock (1408 m/s). A factor affecting the average rock Vs is the differing 

geology west and east of the St. Lawrence River. East of the St. Lawrence River typically has 

sedimentary rock compared to the west which typically contains metamorphic or igneous rock. 

The average Paleozoic rock Vp (with one standard deviation) also varies greatly in the region 

similar to Paleozoic rock Vs with an average of 3078 (500) m/s. With the exception of stations 

A61 and LMQ, MHVSRs and EHVSRs in Charlevoix are generally flat in the region portraying 

that the stations are placed on harder rock.  

Stations A11 and A21 are both located on high topography outcropping rock where in situ array 

measurements could not be performed. The only information available from these stations is the 

EHVSR which is flat for both stations, confirming harder rock conditions. Station A16 is placed 

on stiff rock determined by site period and its rock Vs leading to its low MM site metric, 

although relatively low rock Vp from refraction demonstrates variability in measured rock 

velocities. Station A61 has moderate (> 2) amplification seen in its MHVSR and EHVSR across 

multiple frequencies but with a high measured rock Vs and Vp determines a low MM site metric 

to indicate harder rock conditions. Station A54 exhibits no (flat) site amplification and a high 

rock Vp, but with an intermediate rock Vs and Vs30 a moderate MM site metric is determined. 

Station A64 also has an intermediate MM site metric due to variability in site amplification and 

rock velocities. The station on softest rock conditions is station LMQ with a MM site metric of 

0.68. Short period site amplification combined with lower rock velocities on Paleozoic rocks 

leads to this high MM site metric. 
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Table 3.11: Multi-method site characterization of stations located in Charlevoix, Quebec. Grey 

shading indicates dispersion estimates did provide rock velocity measurements. 

Station MHVSR EHVSR Rock Vs 

(m/s) 

Vs30 (m/s) 

(Site 

Class) 

Rock Vp 

(m/s) 

Rock type MM site 

metric 

norm. 

A11 N/A - 

noise 

CL-V  No Data No Data No data Paleozoic 0.33 

A16 CL-V  CL-V  1336 ± 

220 

1532 ± 

280 (A/B) 

2486 ± 112 Paleozoic 0.43 

A21 N/A - 

noise 

CL-V  No Data No Data No data Paleozoic 0.33 

A54 CL-V  CL-V  850 ± 38 

overlaying 

1357 ± 95 

1316 ± 

115 (B) 

3161 ± 135 Paleozoic 0.41 

A61 CL-VII  CL-VII  2424 ± 

557 

2424 ± 

363 (A) 

2500 ± 215 Precambrian 0.11 

A64 CL-V  CL-I  1020 ± 

104 

overlaying 

2553 ± 

686 

1464 ± 

340 (B/A) 

4467 ± 401 Paleozoic 0.37 

LMQ N/A CL-I 889 ± 174 

overlaying 

2717 ± 

434 

940 ± 174 

(B) 

2200 ± 240 Paleozoic 0.68 

 

3.5.4 Upper St. Lawrence region  

North of Charlevoix are 5 seismograph stations of the Upper St. Lawrence and their rock 

velocities and site amplification are summarized in Table 3.12. Similar to Charlevoix, our 

methods were not very successful in this area. Only surficial Vs was measured at stations CNQ, 

GSQ, NATG, and SMQ with no measured velocities of underlying rock. Broadband site 

amplification is observed at all stations except GSQ, indicative of weathered or softer rock 

conditions consistent with lower measured rock Vp. The Paleozoic and Precambrian rock Vp 

average (with one standard deviation) in the region is 1466 (466) m/s and 1700 (275) m/s, 

respectively. The average rock Vp does not differ significantly from Paleozoic to Precambrian 

rock but is found to be lower in this region than others. Overall most stations correspond to a 

high MM site metric (0.5 or greater) due to broadband site amplification occurring at majority of 

the stations and low rock Vp. Site characterization at station ICQ is the most constrained with 

high rock Vs and Vs30 confidently measured. The low MM site metric indicates the station is 
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placed on harder rock but still broadband amplification at the station suggests potential 

weathered rock.  

Table 3.12: Multi-method site classification of stations located in the Upper St. Lawrence River in 

Quebec. Grey shading indicates dispersion estimates did provide rock velocity measurements. 

Station MHVSR EHVSR Rock Vs 

(m/s) 

Vs30 

(m/s) 

(Site 

Class) 

Rock Vp (m/s) Rock type MM site 

metric 

norm. 

CNQ CL-VI  No Data No Data No Data No Data Precambrian 0.5 

GSQ CL-V  No Data No Data No Data 1466 ± 466 Paleozoic 0.5 

ICQ CL-VI  No Data 1959 ± 

260 

1959 ± 

368 (A) 

No data Precambrian 0.29 

NATG CL-VI  CL-V  No Data No Data 1700 ± 275 Precambrian 0.55 

SMQ No Data No Data No Data No Data No data Precambrian 0.83 

 

3.5.5 New Brunswick - Nova Scotia region  

The most eastern stations visited are located in New Brunswick and Nova Scotia. These three 

stations (Table 3.13) are a considerable distance apart monitoring seismicity for the national 

network. All stations have a Vs30 > 1500 m/s (class A) and are mapped on Paleozoic rock. The 

average Vs30 of the region using the Dinver optimal model (with one standard deviation) is 1611 

(333) m/s. The average rock Vp and Vs (with one standard deviation) of Paleozoic rock is 3165 

(235) m/s and 1695 (218) m/s. Consistent Paleozoic Vs and Vp rock velocities were measured 

with little variance.  

Station BATG’s MM site metric is moderate from the combination of a relatively low mean rock 

Vs and broadband amplification compared to high rock Vp and Vs30 site class A. Station GBN is 

very similar with high frequency amplification observed in its MHVSR. Station MCNB had 

direct rock velocity measurements with high rock Vs, Vs30, and Vp which consistently indicate 

harder rock conditions with a low MM site metric. 
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Table 3.13: Multi-method site classification of stations located in the New Brunswick and Nova 

Scotia. Grey shading indicates dispersion estimates did provide rock velocity measurements. 

Station MHVSR EHVSR Rock Vs 

(m/s) 

Vs30 (m/s) 

(Site 

Class) 

Rock Vp 

(m/s) 

Rock type MM site 

metric 

norm. 

BATG CL-VI No Data 1441 ± 

227 

1543 ± 

317 (A/B) 

3510 ± 345 Paleozoic 0.49 

GBN CL-I No Data 1237 ± 

133 

overlaying 

1976 ± 

265 

1587 ± 

221 (A/B) 

2836 ± 481 Paleozoic 0.54 

MCNB No data No Data 2409 ± 

600 

2461 ± 

720 (A) 

 

3151 ± 387 Paleozoic 0.14 

 

3.6 Discussion and Conclusions 

This Chapter focused on performing earthquake site classification (Vs30, site period, site 

amplification) of Eastern Canada seismograph stations. Based on Vs profiles and calculated Vs30, 

16 of 23 stations (70%) were classified, 7 stations (30%) were classified confidently by 

measuring rock velocity directly from dispersion estimates and 9 stations (40%) classified less 

confidently where only the transition to rock (dispersion curve) was measured. Nine stations out 

of 25 (36%) were unable to be classified with Vs30 but other site information was acquired such 

as rock Vp and/or an estimate of the site amplification from spectral ratios. Figure 3.9 shows the 

calculated upper and lower range in Vs30 values from inverted PSWP Vs profiles. For 

comparison, the USGS Vs30 values from topographic slope (USGS, 2019 

https://earthquake.usgs.gov/data/Vs30/ ) are also shown for each station. These topographic slope 

Vs30 values are essentially proxy measures of Vs30 and can be regarded as a priori Vs30 

estimates, prior to our in situ Vs30 estimation. The difference between our in situ Vs30 values and 

the proxy-based Vs30 values is significant. Overall the Vs30 values based on topographic slope 

are too low and capped at 900 m/s. The USGS maximum 900 m/s Vs30 also does not correspond 

to our highest in situ Vs30 estimates (no correlation). The USGS global mapping of Vs30 based on 

topographic slope is therefore inappropriate for rock classification in Eastern North America. It 

is best advised for in situ velocity and site amplification measurements to be performed for 

station classification at rock sites than using proxy-based remote-sensing type methods. 

https://earthquake.usgs.gov/data/vs30/
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Figure 3.9: Summary of Vs30 site classification showing average and standard deviation. Proxy Vs30 

values based on topographic slope are shown for comparison. 

Figure 3.10 summarizes Vs30 site classes observed for the two ages of rock at each station 

determined from the bedrock map of Canada. Precambrian rocks are typically highly 

metamorphosed igneous and metamorphic rocks of the Canadian shield and most likely to have 

been heavily deformed (very stiff). In comparison, Paleozoic rocks are typically sedimentary 

with low-to-moderate metamorphism, and we interpret to be less heavily deformed (more 

variable range in stiffness but lower stiffness than Precambrian rocks). Stations placed on 

Precambrian rocks typically have a Vs30 > 1500 m/s indicating site class A conditions, as 

assumed. Stations on Precambrian rock may correspond to site class B, but on the ‘high end’ of 

class B, i.e., class A/B. Stations on Paleozoic rocks can correspond to class A or class B, but 

dominantly have Vs30 at the class A-B boundary of 1500 m/s (class A/B or B/A). Figure 3.10 

shows there is much more variability in the rock velocity of Paleozoic rocks, as expected. There 

is greater variation in Paleozoic rock types and their velocity which may be more easily 

weathered than Precambrian rock.  
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Figure 3.10: Summary of Vs30 site class by rock age. 

Figure 3.11 shows site-period-based site classifications compared to Vs30. There is no clear trend 

or correlation between site period and Vs30 site classifications. We would expect CL-I (peak 

amplification at short period) and CL-VI (broadband amplification) to correspond to lower Vs30; 

this is true of the one CL-I station. In contrast, we would expect CL-V (no amplification, flat) 

and CL-VII (multi-peak) to correspond to more “rocky” conditions and higher Vs30. Many 

stations where reliable velocity measurements were made had external noise during their 

microtremor recording (N/A category) and the two site classifications cannot be compared 

directly. Peak frequency was also compared with Vs30, but no trend was identified. Hassani and 

Atkinson (2016) demonstrated increasing fpeak correspond to higher velocities at Eastern North 

American stations.  
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Figure 3.11: Site period site classes from MHVSRs compared to Vs30. 

A multi-method non-invasive seismic methodology was applied to acquire rock velocity and site 

amplification measurements to provide site characterization of Eastern Canada seismograph 

stations. Other authors previously found success in using Vs refraction to directly obtain rock Vs 

estimates and generating Love wave dispersion curves from MASLW to include in the inversion 

with Rayleigh wave dispersion estimates (e.g. Hollender et al., 2018; Poggi et al., 2017). 

Generating both Love and Rayleigh wave dispersion curves and including higher modes to be 

jointly inverted constrains the inversion procedure and reduces the non-uniqueness of surface 

wave inversions. Due to not having a shear-wave source and horizontal component geophones, 

those methods could not be performed but they have had abundant success in Vs based site 

classification at rock sites with the other methods we have presented (e.g. Martin et al., 2017). 

Using a multi-method approach was also applied in Catchings et al. (2019) in using MASLW, 

MASRW, Love and Rayleigh wave AVA, and Vs and Vp refraction. The use of different seismic 

sources has also been successful (e.g. Catchings et al., 2019). Varying energy sources and 

angling of source energy are known to improve dispersion estimates. A higher sampling rate is 

also encouraged to capture higher modes for inversion as well as for sites with a very thin layer 
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of sediment over rock; Catchings et al. (2019) found a 250 Hz sampling rate to be too sparse. For 

example, a 1024 Hz sampling rate was used with fewer Tromino sensors (smaller array) at 

station GAC, resulting in dispersion estimates being observed and made at higher frequencies.  

It is recommended to revisit the stations to perform refraction Vs and MASLW measurements to 

acquire the rock Vs and further constrain Vs30. Varying the source’s energy is also encouraged to 

access different frequency bandwidths with a multi-method approach. Table 3.14 lists the 

stations and the recommended measurements to be (re)performed at each station. MHVSRs 

should reperformed at stations where noise was detected previously. Vs measurements need to be 

performed at most stations with refraction Vs and/or MASLW or at a different location to 

measure the rock velocity successfully. Vp measurements also need to be (re)performed at 

stations where measurements were not successful or could not be performed.  

Table 3.14: Summary of previous testing and recommended future testing at Eastern Canada 

stations. Gray shading indicates the measurement does not need to be performed and white 

indicates an initial or more accurate measurement needs to be performed. 

Station MHVSR Vs Measurement Vp Measurement 

A11    
A16     

A21    
A54      

A61     
A64      

BATG      

BCLQ     
CNQ     
DAQ     

DPQ     

GAC     
GBN      

GSQ      

ICQ      
KGNO      

LMQ      

MCNB      

MOQ     

NATG      

ORIO       

OTT      

QCQ      

SMQ     
VABQ      
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The NGA East project (Goulet et al., 2018) highlighted that only 84 of 1,379 (6%) seismograph 

stations in Central and Eastern North America have a directly measured Vs30. Many stations 

have an ‘assigned’ Vs30 of 2000 m/s. Our study highlights the importance and difficulty of in situ 

Vs measurements at rock sites to acquire a constrained Vs30 value and associated site 

classification. An increased and concerted effort is required to properly characterize rock sites in 

Eastern Canada and confirm the general assumption that they are of “hard rock” site class A. We 

demonstrate that the majority of our stations correspond to site class A but some stations also 

have a probability of site class B (A/B or B/A). We conclude the default “hard” rock class A 

assumption is biased slightly too high. The use of a multi-method approach is encouraged to 

acquire proper site characterization of rock sites.  
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Chapter 4 Site Characterization at Stiff Ground Sites in Vancouver  

4.1 Introduction  

A multi-year seismic microzonation mapping project for Metro Vancouver is underway. A 

portion of work for this project is presented here to characterize sites (including some strong 

motion stations) that are geologically complex, including stiff ground conditions. Simplified 

geology of Metro Vancouver is shown in Figure 4.1. Majority of Vancouver is overlain by 

glacial Pleistocene sediments with softer Holocene sediments present in south-most Richmond 

and Tertiary and Pre-Tertiary bedrock present in northern Vancouver. Ten ‘complex geology’ 

sites are examined here (Table 4.1) and are compared with the current microzonation map to 

update Vs30 and amplification hazard ratings. These 10 sites are located across the city of 

Vancouver, which is predominantly an upland area comprised of a sequence of glacial and 

interglacial sediments from several glaciation periods. These sites are in addition to initial AVA 

and MASW testing at schools in southwestern British Columbia (Jackson 2017) and are part of 

the Metro Vancouver seismic microzonation project (Assaf et al. 2019; Molnar et al. 2020).  

 
Figure 4.1: Map of examined sites and surficial geology (updated from Molnar et al. 2020). 
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Table 4.1: List of Vancouver sites investigated with multi-method seismic testing. 

Site Name Latitude (°N) Longitude (°E) 

VA014 49.25142 -123.16140 

VA017 49.22087 -123.12656 

VA018 49.22924 -123.18784 

VA019 49.26417 -123.10865 

VA054 49.22758 -123.05726 

VA056 49.23662 -123.05098 

VA059 49.21511 -123.12825 

VA060 49.22218 -123.09655 

VA061 49.21522 -123.08605 

VNC14A4 49.20996 -123.13575 

4.2 Non-invasive seismic testing 

A similar multi-method seismic testing campaign is performed at 10 sites across Vancouver as at 

Eastern Canada seismograph stations (presented in Chapter 2). Both passive AVA and active 

MASW surface wave array testing was performed. MASW data was collected with 0.5, 1, and 3 

m spacing at all sites. Seismic waves were generated by striking an aluminum plate vertically 

with a 10 lb. sledgehammer at 5 m offset from each end of the MASW survey line. For the 

longest array (geophones with 3 m spacing), seismic waves were also generated at the array mid-

point (Figure 4.2a). Passive AVA recordings were typically acquired using 7 Trominos® 

arranged in a circular array with 5, 10, 15, and 30 m radial spacing (Figure 4.2b). The array 

aperture is adjusted several times to measure over various wavelengths (wide frequency 

bandwidth). Active MASW and passive AVA recordings were pre-conditioned and processed as 

described in Chapter 2. Active MASW was processed using HRFK while passive AVA was 

processed using MSPAC to generate Rayleigh wave phase velocity estimates with frequency 

(histogram plots). The details for each processing method are outlined in Section 1.5. Array 

average MHVSRs were also calculated for each array site. 



 

106 

 

a)  

 

b) 

 
Figure 4.2: Example array spacing and shot locations for a) active MASW and b) passive AVA 

testing at Vancouver sites. In a) 3 m spacing of geophones (triangles) is shown and shot locations 

are shown with red stars. In b) the circular arrays of 7 sensors are shown for 5 m (squares), 10 m 

(diamond), 15 m (hexagon), and 30 m (stars) radial spacing. 

 

4.3 Active and passive dispersion curves 

Figure 4.3 shows dispersion histograms generated through HRFK and MSPAC processing for 

active MASW and passive AVA, respectively. Both active and passive surface wave techniques 

were used to build a dispersion curve from multiple spacing with each method. AVA estimates 

were not obtained at sites VA056 and VA061; MASW was the only successful method at these 

sites.  

AVA histogram plots from MSPAC processing are shown in the left-most column of Figure 4.3 

with histograms from each array spacing stacked together. Time synchronization between the 

sensors was an issue and was fixed for 9 out of 10 sites. VA056 and VA061 were the only sites 

where reliable AVA dispersion picks could not be made. At some sites (VA017, 054, 059 and 

VNC14A4), a mid-frequency plateau or ‘hump’ in the dispersion estimates occurs. This is 

selected as the fundamental mode (Molnar et al. 2020), indicative of a low velocity zone (or 

velocity reversal with depth) within the glaciated upland Pleistocene sediment package which is 

geologically feasible since the sequence includes several glaciations (advances and retreats) and 

likely reversals in sediment stiffness. An alternative interpretation is the mixing of modes 

resulting in an apparent or effective mode (e.g. Martin et al., 2017 and Asten and Hayashi, 2018). 

For the majority of sites (7 of 10; 70%), low site amplification is observed and phase velocities at 

the lowest frequencies (longest wavelengths) span 400-1000 m/s indicating firm to stiff ground 
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conditions. Four sites (VA 014, 018, 056, 060) display moderate peak amplification above 1 Hz 

with relatively low phase velocity estimates indicating a significant seismic impedance contrast 

with lower velocity sediments present.  

 

 

 
Figure 4.3: Summary of AVA (left) and MASW (middle) dispersion estimates with applicable 

picked dispersion estimates in open red circles. Darker shading indicates higher histogram counts. 

Array averaged MHVSRs with one standard deviation are shown in the right-most panel. 
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Figure 4.3 Continued 
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Figure 4.3 Continued 

 

4.3.1 Preliminary Vs30 site classification from dispersion estimates  

Dispersion curves for all sites are plotted together in Figure 4.4 and preliminary Vs30 estimates 

are determined from VR40 (Equation 18; Martin and Diehl, 2004). From preliminary analysis of 

dispersion estimates, 8 of the sites correspond to site class C (Vs30 360-760 m/s) as expected 

with 2 sites correspond to softer site class D (Vs30 180-360 m/s). Dispersion measurements at 

VA056 and VA061 did not reach the 40 m wavelength to calculate a preliminary Vs30 but likely 

correspond to class C. Table 4.2 reports resolution depth limits of the measured dispersion 

estimates at each site based on the λmax/2 criterion from Section 3.3.1. Sites with less than 30 m 

resolution depth are sites where AVA was not successful in providing dispersion estimates and 

only active MASW was successful.  
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Figure 4.4: Compiled dispersion curves from active and passive surface wave methods are plotted 

and compared to the VR40 line to assign a preliminary site class. 

Table 4.2: Calculated maximum wavelength and resolution depth of dispersion estimates. 

Site Maximum wavelength (m) Resolution depth (m) 

VA014 150 75 

VA017 647 323.5 

VA018 75 37.5 

VA019 300 150 

VA054 351 175.5 

VA056 19 9.5 

VA059 391 195.5 

VA060 75 37.5 

VA061 18 9 

VNC14A4 187 93.5 

 

4.4 Joint inversion of dispersion curves and MHVSRs 

Robust Vs profiles from inversion of dispersion and/or MHVSRs are sought for Vs30 calculation 

and site classification. Joint inversions were performed using the Dinver software routine 

(Wathelet, 2008) with dispersion and MHVSR estimates. Sites VA019 and VNC14A4 had 

MHVSRs that were flat and/or no amplification was observed so only dispersion estimates were 

inverted. 
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Surface wave inversion is an ill-posed, non-linear, mixed determined, and non-unique problem. 

A priori information (e.g. geotechnical boreholes or well logs) is typically used to constrain 

inversion parameters (i.e. layering) but was not available at the Vancouver sites. A ‘layering 

ratios’ method has been proposed by Cox and Teague (2016) to systematically vary inversion 

parameterizations to identify feasible layered earth models for a site based on the measured 

dispersion data. The layering ratio method applies constraints of the minimum and maximum 

potential depth for each layer. The minimum and maximum depth of each layer i is determined 

by one-third and one-half of the resolved wavelength respectively (i.e. λmax/3 and λmax/2) from 

the measured dispersion data. Equations 20 and 21 for the minimum (dmin) and maximum (dmax) 

depth are  

 

𝑑𝑚𝑖𝑛,𝑖 ≈  {

𝜆𝑚𝑖𝑛
3

                                                          𝑓𝑜𝑟 𝑖 = 1

𝑑𝑚𝑎𝑥,𝑖−1                                                   𝑓𝑜𝑟 𝑖 > 1
 

𝑑𝑚𝑎𝑥,𝑖 ≈ 

{
 
 

 
 
𝜆𝑚𝑖𝑛
2

                                                         𝑓𝑜𝑟 𝑖 = 1

𝑑𝑚𝑖𝑛,𝑖 +  Ξ (
λmin
2
)                                𝑓𝑜𝑟 𝑖 = 2

𝑑𝑚𝑖𝑛,𝑖 + Ξ(𝑑𝑚𝑎𝑥,𝑖−1 − 𝑑𝑚𝑖𝑛,𝑖−1)     𝑓𝑜𝑟 𝑖 > 2

 

(20) 

 

 

(21) 

In this way, the depth (thickness) range of each layer is based on the depth range of the layer 

directly above it; thinner layers will be determined near surface and thicker layers with depth. 

The layering ratio, Ξ, varies depending on the number of layers the user selects. Layers are added 

until the maximum resolution is reached of the specified site (λmax/2). For the Vancouver sites, a 

layering ratio of 7 or 9 is typically used, generating 4 layer models. Using the layering ratio 

method to determine layer depth limits for the appropriate model parameterization, dispersion 

curves are jointly inverted with MHVSRs to acquire Vs profiles. Relatively wide model 

parameter limits are used and density is fixed at 2000 kg/m3, as described in section 2.5.1. 

Velocities were fixed to increase with depth. Hence for sites with potential velocity reversals 

(VA017, 054, 059, VNC14A4), observed as mid-frequency dispersion ‘hump’ or plateau, we 

seek to fit these estimates as a plateau (cannot decrease).  

Figure 4.5 shows joint inversion results of the 1,000 lowest misfit models for the 8 sites with full 

dispersion curves. Theoretical dispersion curves fit dispersion estimates appropriately. The top of 

the dispersion curve is typically not measured leading to increased Vs variability at depth. 
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MHVSR peak frequency estimates used in the joint inversion were also fit appropriately. Some 

MHVSRs are not included in the inversion as they are either flat (e.g. VA019) or likely do not 

represent subsurface conditions (e.g. VA017 and VNC14A4). For these three sites only 

dispersion curve inversion is performed. Figure 4.6 compares the resulting optimal Vs profile for 

the 8 sites. The average Vs (with one standard deviation) of sediment layers (< 800 m/s) is 438 

(135) m/s. This coincides with stiff glaciated sediment found in Monahan and Levson (2001) 

with the average value (with one standard deviation) of 475 m/s (78 m/s). The average maximum 

depth (with one standard deviation) of the sediment layers is 98 (54) m. The spatial locations of 

these sites are presented in the next section. The most northern site, VA019, determines rock (≥ 

1000 m/s) closest to surface (~20 m). The south central sites (e.g. VA017, VA059, and 

VNC14A4) contain the thickest sediments (average of 134 ± 19 m), with rock deepest from the 

surface.  

Site Dispersion Ellipticity  Vs profile 

VA014 

  

 

VA017 

 

 

 

Figure 4.5: Joint inversion of dispersion and MHVSR data (open circles) for 10 Vancouver sites. 

Theoretical dispersion and ellipticity functions and Vs profiles of the optimal (black line) and 1,000 

lowest misfit models (grey lines) are shown. The observed MHVSR is shown with blue lines. 
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VA018 

 

  

VA019 

 

 

 

VA054 

 

 

 

VA059 

 

  

Figure 4.5 Continued 
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VA060 

 

  

VNC14A4 

 

 

 

Figure 4.5 Continued 

 
Figure 4.6: Lowest misfit Vs profiles from Vancouver sites. 

 

4.4.1 Robust Vs30 site classification from Vs profiles 

Vs30 calculations are performed using the optimal Vs profile and reported in Table 4.3. Most 

sites (8) correspond to site class C (360 < Vs30 < 760 m/s), as expected for stiff glaciated ground. 
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The site classes from our preliminary VR40 site classification provides the same site class as the 

inverted Vs profile. Overall our inverted Vs profiles determine similar site classification as the 

current amplification hazard map of Taylor et al. (2006); for the three “softer” site class (D-E) 

sites of Taylor et al. (2006) we also determine softer site classification for two of these sites. 

There are deviations between the current site class map and our calculated Vs30 for a few sites 

(VA018, VA054, VA060). There is no consistent trend in “under” or “over” prediction in site 

classification relative to the current classification (our site classes are higher for two sites and 

lower for one site). The classification ratings of Taylor et al. (2006) are determined from Vs 

measurements for the same geologic unit within the region (may or may not have been measured 

at that exact location). Hence, we have greater confidence in our site-specific in situ determined 

Vs30 compared to the current classification map.  

Table 4.3: Summary of Vs30 site classification for investigated Vancouver sites.   

Site Prelim. Site 

Class from VR40 

Vs30 (m/s), Site Class 

(This Study) 

Site Class (Taylor 

et al. 2006) 

VA014 C/D 358, D D 

VA017 C 395, C C 

VA018 D 216, D E 

VA019 C 676, C C 

VA054 C 407, C E 

VA056 Likely C No Data C 

VA059 C 458, C C 

VA060 D 332, D C 

VA061 No Data No Data C 

VNC14A4 C 421, C C 

Figure 4.7 shows a map of the sites and their corresponding Vs30 site classification. The northern 

most site VA019 is the stiffest ground with the highest Vs30 estimate (seismic bedrock at 20 m). 

Five sites correspond to the lower range of site class C and the remaining three sites correspond 

to the upper bound of site class D. 
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Figure 4.7: Map of investigated Vancouver sites with Vs30 site class determined in this study. At two 

sites, Vs30 was not determined as dispersion estimates did not meet the required 30 m resolution 

depth (Table 4.2). 

4.5  Discussion and Conclusions  

There has been an effort to improve the current seismic microzonation map and to perform in-

depth site characterization across Greater Vancouver (e.g. Jackson, 2017; Assaf et al., 2019) due 

to the high seismic risk poised in the region. The current amplification hazard map of Greater 

Vancouver is based on surficial geology and limited geotechnical (Vs) information (Taylor et al., 

2006). Part of improving the current map is to obtain in situ Vs measurements in areas where 

information is limited, including the glaciated upland area of Vancouver. A multi-method 

seismic testing campaign is performed at 10 sites across Vancouver including MHVSR site 

amplification and active MASW and passive AVA dispersion estimates. Overall the seismic 

testing was successful - MASW and AVA dispersion estimates are obtained at all 10 and 8 sites, 

respectively. Low-to-moderate site amplification is observed but we only have confidence in the 

MHVSR estimates at 5 sites (50%). Difficulty in interpreting dispersion estimates (mid-
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frequency plateau or ‘hump’) and MHVSRs highlights the geologic complexity of these 

Vancouver sites.  

Joint inversion of dispersion and peak amplification estimates generally provided constrained Vs 

profiles to significant depth (≥ 100 m). From the 10 sites investigated, we determine an average 

Vs of 438 m/s for the glaciated sediments beneath Vancouver which vary in thickness from 20 m 

to over 100 m from north to south. The predominant Vs30 site class is C, as expected and in 

agreement with current site classification mapping. We also determine variability in Vs30 

amongst these site class C sites; the northernmost site has the highest Vs30 related to shallower 

depth to rock. Few sites correspond to lower Vs30 site class D, related to softer sediments near 

surface which are also currently mapped as softer than class C.  

The Vs profiling and site classification for 10 sites in Vancouver is a good first step, but the 

region with the highest seismic risk in Canada requires a finer grid of in situ Vs measurements 

for urban site class mapping. This study highlights the importance in determining the appropriate 

site classification for sites in the region to develop a detailed map of the hazard posed from 

earthquakes. The Vs profiles and Vs30 site classification obtained will be combined with other 

non-invasive seismic testing results within the project’s geodatabase. Geotechnical and 

geophysical data is compiled from several organizations per annum. The supplement of 

geotechnical data in the region will assist in constraining future inversions. 
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Chapter 5 Conclusions 

Accurate (in situ) site characterization is important in developing GMM’s, particularly at 

seismograph stations, and in both regional and site-specific seismic hazard assessment. The 

objective of this thesis was two-fold in characterizing seismograph stations in Eastern Canada 

using a multi-method approach and applying similar multi-method techniques to characterize 

stiff ground sites as part of the Metro Vancouver seismic microzonation mapping project. The 

importance of having in situ velocity and site amplification measurements to characterize sites 

that are rocky and more geologically complex than simple normally-consolidated sediment 

deposition is presented here to advance cost-effective and non-destructive non-invasive seismic 

site characterization methods. 

In Chapter 2, we introduce the various methods performed within our multi-method approach for 

characterizing seismograph stations in Eastern Canada. We performed Vp refraction, Vp 

measurements of laboratory rock samples, active MASW and passive AVA dispersion analysis, 

and calculated site amplification as HVSRs using both microtremor and earthquake recordings. 

Each method provided value to site characterization of various rock types amongst the stations 

visited across Eastern Canada. Poisson’s ratio, a useful metric in measuring the ratio between 

transverse and longitudinal strain, was calculated for rock beneath particular stations when both 

Vp and Vs was measured. Rayleigh wave dispersion curves were generated from surface wave 

methods and were inverted to obtain Vs profiles. Two inversion programs were used. Dinver was 

used to determine the lowest misfit velocity profile and obtain the rock velocity which best fits 

the dispersion data. PSWP was used to determine an appropriate model parameterization prior to 

performing Bayesian inversion to obtain a range of probable Vs profiles. We compare the 

measured rock velocities in sub-regions across Eastern Canada and by rock age (Paleozoic or 

Precambrian rock). Our measured average Paleozoic rock was found to be 1671 ± 178 m/s (n = 

5) and the Precambrian rock to be 1935 ± 28 m/s (n = 2) which falls within the Vs ranges 

determined by Nastev et al. (2016) for these same rock ages. The rock velocities determined in 

Chapter 2 are applied in Chapter 3 to obtain a station appropriate Vs profiles for site 

classification.  



 

120 

 

Site classification is performed in Chapter 3 using Vs30 and site period based approaches. Vs30 

values are calibrated to that of the station by removing lower velocities related to surficial 

sediments not present at the station. Extension and extrapolation of the base Vs is applied at 

stations where the resolution depth into the rock is less than 30 m to predict Vs30. We track both 

the optimal Vs30 as well as its probability distribution. We determine Vs30 site classification at 

16 out of 23 stations (70%). One station was confidently classified as site class B while five 

stations were classified as site class A. The standard deviation of the site classes between stations 

varied (i.e. having A/B, B/A, and B/C) with 8 stations are site class A/B, one station is each site 

class B/A, and 1 B/C. A multi-method site characterization metric was developed to combine the 

outcomes of all methods and obtain a single quantitative measure to compare stations. 17 of the 

25 stations (68%) have a MM site metric less than 0.5 indicating harder rock conditions, as 

expected. Five out of 25 stations (20%) were above 0.5 of the normalized MM site metric 

indicating softer rock, and 3 stations have an intermediate MM site metric and does not 

distinguish between softer or harder rock conditions. Vs30 is the classification scheme used by 

the NBCC, but other metrics are also useful in understanding the site conditions. Combining 

them all works effectively in understanding the station’s subsurface ground conditions. 

Chapter 2 and 3’s methods for characterizing and classifying Eastern Canada seismograph 

stations had a mixed success rate where rock velocity was not measured at all stations. Some 

stations had rock velocity measured from their dispersion estimates. A multi-method approach 

was successful in gathering various data at the stations though some methods and stations were 

more successful than others. Instead, more methods with different equipment, if available, is 

encouraged in gathering multiple types of information at the station and to constrain the rock 

velocities with greater confidence. Other authors have had success in generating Love wave 

dispersion curves through MASLW testing which requires horizontal geophones and a shear 

source (Martin et al., 2017; Poggi et al., 2017). Love wave dispersion curves can be jointly 

inverted with Rayleigh wave dispersion curves to have a constrained model. Vs refraction is a 

successful method used by other researchers calculating the rock Vs directly where similar 

equipment is used as MASLW. Varying the source energy is also a method in other studies to 

penetrate surface and shear waves into the subsurface deeper to ensure 30 m is reached (e.g. 

Catchings et al., 2019).  
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Chapter 4 presents contributions made to the Metro Vancouver microzonation project where sites 

are glaciated and relatively stiff ground conditions. A multi-method site characterization 

approach is applied to classify 10 sites. The layering ratio method was used to have a robust way 

to invert sites by multiple operators to avoid user biases when performing dispersion curve 

inversions. The multi-method testing and Vs profiling procedure is successful at 8 sites (80%) 

and is effective at characterizing sites in Vancouver. The two sites that did not have successful 

AVA measurements did not meet the required 30 m depth resolution to calculate Vs30 and 

determine site class. These two sites need to be revisited or have measurements accomplished at 

a nearby location. To meet the resolution depth, a greater energy source (compared to a 

sledgehammer) can be used to penetrate deeper into the subsurface by generating longer 

wavelength surface waves. Increased receiver spacing also assists in penetrating deeper into the 

subsurface if enough space is feasible at the measurement site. 

5.1 Future Work 

It is recommended to revisit 17 of the 25 (68%) Eastern Canada seismograph stations with 

horizontal geophones and a seismic shear source with varying source energies to acquire a 

robust, more constrained Vs profile to characterize the sites more confidently. Visiting sites 

again where microtremor measurements were saturated with noise and/or not accessible to have 

an estimate of the site amplification would be beneficial. Stations A11 and A21 on higher 

elevation outcropping rock may never be adequately characterized by seismic array methods that 

require an area upon which to perform the surveys. Drilling a borehole(s) and performing 

downhole or crosshole Vs measurements is more appropriate to these space-limited station sites 

but is not feasible due to cost. Taking an abundance of rock samples from the stations would also 

be helpful in performing Vs and Vp lab measurements to compare with in situ velocities. Lastly, 

using more frequent smaller magnitude earthquakes (< M 3.5) in the calculated EHVSRs would 

be beneficial to compare the site response from microtremors and from different magnitude 

earthquakes.  

A multi-method seismic testing approach at glaciated sites across Vancouver, British Columbia, 

was also largely successful to obtain Vs30 site classification. Interpretation of the dispersion and 

MHVSR measurements is relatively challenging for these stiffer ground condition sites. 

Redundancy in data collection is recommended, e.g., overlapping array radii and/or a minimum 
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of three MHVSR measurements. A growing geodatabase for the region will also help with 

interpretation amongst all sites. Adding seismic refraction (ideally Vs but also Vp) testing would 

help increase velocity measurements and aid in constraining inversion model limits. The use of 

stronger energy sources (weight drop) is also recommended to penetrate or excite these stiffer 

ground conditions. Implementation of these recommendations will help gather more velocity 

data at sites that have been unsuccessful and provides redundancy if one methodology fails. 

Having a much more detailed site amplification map in the region with the highest earthquake 

risk in Canada is important especially for emergency planners. Insurance companies also use this 

information for calculating risk in a region where a major earthquake can occur and cause 

significant loss.  
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Appendices 

Appendix A 

Maps depicting locations of seismic surveys performed at each seismograph station (station code 

in upper left). Station locations are shown by a yellow pin and blue pin indicate coordinates 

provided by NRCAN. Red lines indicate passive AVA testing, green lines indicate active 

MASW and Vp refraction testing. MASW surveys with Tromino sensors are outlined with a blue 

line. Images were generated by Samantha Palmer. 
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Appendix B 

Supplementary histogram plots and velocity profiles for measurements made nearby each station 

(not the surface the stations reside on) in Chapters 2 and 3. MASW histogram plots with darker 

shades indicate high count and lighter with low count. Passive AVA measurements are shown 

similarly with darker and lighter shades to indicate high and low counts, respectively. Station and 

measurement location site conditions are compared in looking at both locations’ MHVSR. 

a) 

 

b) 

 

Figure A1: Station A16’s a) MASW dispersion histogram with picks in red open circles and b) 

lowest misfit forward model plotted (orange) with data points (blue). 
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a) 
 

 

b) 

 

c) 

 
Figure A2: Station A54’s : a) MASW dispersion histogram with picks in red open circles and b) 

lowest misfit forward model plotted (orange) with data points (blue), and c) the average dipping 

refraction velocity model (solid black line) with the standard deviation (dashed black lines). A 

dipping interface was identified at the measurement location and is shown in the updip and 

downdip measurements. 
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a) 

 
 

b) 

 

c) 

 
Figure A3: Station A61’s : a) MASW dispersion histogram with picks in red open circles and b) 

lowest misfit forward model plotted (orange) with data points (blue), and c) Station A61’s average 

dipping refraction velocity model (solid black line) with the standard deviation (dashed black lines). 
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a) 

 

b) 

 

c) 

 
Figure A4 Station A64’s  a) AVA dispersion histogram with dispersion estimates made in open red 

circles and b) MASW dispersion histogram with picks in red open circles and b) lowest misfit 

forward model plotted (orange) with data points (blue) c) Lowest misfit forward model plotted 

(orange) with data points (blue). 
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a) 

 

b)

  

c) 

 
Figure A5: Station BATG’s  a) MASW dispersion histogram with dispersion estimates made in 

open red circles and b) lowest misfit forward model plotted (orange) with dispersion estimates 

(blue), and d) the average refraction velocity model (solid black line) with the standard deviation 

(dashed black lines). 
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a) 

 

b)

 

c) 

  

Figure A6: Station BCLQ’s  a) MASW dispersion histogram with dispersion estimates made in 

open red circles and b) lowest misfit forward model plotted (orange) with dispersion estimates 

(blue), and c) the average refraction velocity model (solid black line) with the standard deviation 

(dashed black lines). 
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a)  

 

b) 

 

Figure A7: Station DAQ’s  a) MASW dispersion histogram with dispersion estimates made in open 

red circles indicating only surficial sediments measured b) the average refraction velocity model 

(solid black line) with the standard deviation (dashed black lines). 
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a) 

 

b)

 

c) 

 

Figure A8: Station DPQ’s  a) MASW dispersion histogram with dispersion estimates made in open 

red circles and b) lowest misfit forward model plotted (orange) with dispersion estimates (blue), 

and c) the average refraction velocity model (solid black line) with the standard deviation (dashed 

black lines). 

 



 

136 

 

a)

 

b)

 

Figure A9: Station GAC's MASW dispersion histogram with dispersion estimates made in open red 

circles and b) lowest misfit forward model plotted (orange) with data points (blue). 

 

a) 

 

b)

 

Figure A10 :Station GBN’s: a) MASW dispersion histogram with picks in red open circles and b) 

lowest misfit forward model plotted (orange) with data points (blue). 
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Figure A11: Station GSQ's MASW dispersion histogram with dispersion estimates made in open 

red circles. 
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a) 

 

b) 

 
 

c) 

 

Figure A12: Station ICQ’s  a) AVA dispersion histogram with dispersion estimates made in open 

red circles, b) MASW dispersion histogram with dispersion estimates made in open red circles, and 

c) lowest misfit forward model plotted (orange) with dispersion estimates (blue) 
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a) 

 

b) 

 

c) 

 

Figure A13: Station KGNO’s  a) AVA dispersion histogram with dispersion estimates made in open 

red circles, b) MASW dispersion histogram with dispersion estimates made in open red circles, and 

c) lowest misfit forward model plotted (orange) with dispersion estimates (blue). 
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a) 

 

b)

 

c) 

 

Figure A14: Station LMQ’s  a) MASW dispersion histogram with dispersion estimates made in 

open red circles and b) lowest misfit forward model plotted (orange) with dispersion estimates 

(blue), and c) the average refraction velocity model (solid black line) with the standard deviation 

(dashed black lines). 
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a)  

 

b)

 

Figure A15: Station MCNB’s : a) MASW dispersion histogram with picks in red open circles and b) 

lowest misfit forward model plotted (orange) with data points (blue). 

a) 

 

b)  

 
Figure A16: the average refraction velocity model (solid black line) with the standard deviation 

(dashed black lines) for stations a) MOQ and b) NATG. 

 

 

 

 

a) b) 
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c) 

 

d)

 
Figure A17: Station ORIO’s  a) AVA dispersion histogram with dispersion estimates made in open 

red circles, b) MASW dispersion histogram with dispersion estimates made in open red circles, c) 

lowest misfit forward model plotted (orange) with dispersion estimates (blue), and d) the average 

refraction velocity model (solid black line) with the standard deviation (dashed black lines). 
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a) 

 
 

b) 

 

c) 

 

d) 

 
Figure A18: Station OTT’s  a) AVA dispersion histogram with dispersion estimates made in open 

red circles, b) MASW dispersion histogram with dispersion estimates made in open red circles, c) 

lowest misfit forward model plotted (orange) with dispersion estimates (blue),  and d) the average 

dipping refraction velocity model (solid black line) with the standard deviation (dashed black lines). 

A dipping interface was identified at the measurement location and is shown in the updip and 

downdip measurements. 

 

 

 

 

a) b) 
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c) 

 

d) 

 

Figure A19 :Station QCQ’s  a) AVA dispersion histogram with dispersion estimates made in open 

red circles, b) MASW dispersion histogram with dispersion estimates made in open red circles, c) 

lowest misfit forward model plotted (orange) with dispersion estimates (blue), and d) the average 

refraction velocity model (solid black line) with the standard deviation (dashed black lines). 
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Figure A20: Comparison of single station and array-average MHVSR for each station. 
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a)

 

b)

 
Figure A21: Single station and array-average MHVSRs on soil and rock surfaces compared 

for station a) DAQ and b) ICQ. 
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