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ABSTRACT

In this thesis, Gibbs point process (GPP) models are constructed to study the

spatial distribution of objects in the star formation complexes of the M33 galaxy.

The GPP models circumvent the limitations of the two-point correlation function

employed in the current astronomy literature by naturally accounting for the inho-

mogeneous distribution of these objects. The spatial distribution of these objects

serves as a sensitive probe in understanding the star formation process, which is cru-

cial in understanding the formation of galaxies and the Universe. The objects under

study include the CO filament structure, giant molecular clouds (GMCs) and young

stellar cluster candidates (YSCCs). A hierarchical model is adopted to account for

the natural formation hierarchy among these objects. The effect of the properties

of GMCs on their spatial correlation with YSCCs is also investigated. A Bayesian

paradigm is employed for model inference. Potential physical implications are ob-

tained and addressed through model criticism.

KEY WORDS: Spatial statistics, Gibbs point processes, Statistical modelling,

Bayesian inference, Markov chain Monte Carlo, Star formation, Galaxies: individual:

M33
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SUMMARY FOR LAY AUDIENCE

The star formation process is crucial in understanding the formation of galaxies

and the Universe. Stars are understood to form in an aggregated manner from their

stellar nurseries — giant molecular clouds, leading to the formation of compact groups

of stars called star clusters. Since the time scale of star formation surpasses human

lifetime by orders of magnitude, studying the spatial distribution of giant molecular

clouds, stars, and star clusters then serves as an indirect but sensitive probe for un-

derstanding the formation of these objects. While the spatial distribution of stars

is relatively well-understood, this is not the case for giant molecular clouds or star

clusters. In the current astronomy literature, the two-point correlation function is

used for studying the spatial distribution of star clusters. However, it poses severe

limitations and drawbacks when applied to studying the highly complex distribution

of giant molecular clouds and star clusters. To address this issue, I adopt the frame-

work of Gibbs point process models from spatial statistics and study its performance

when applied to the point patterns of giant molecular clouds and young star clus-

ters in the nearby M33 galaxy. Potential physical implications for the star formation

process obtained from the models are also addressed.
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All models are wrong, but some are useful.

George E.P. Box
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Chapter 1

Introduction

1.1 Background: Star Clusters and Giant Molecular Clouds

The night sky has bewildered human beings since the dawn of our civilizations with

galaxies being one of the most mysterious and majestic. A galaxy is a gravitationally

bound system consisting of stars, gas and dust as well as dark matter. We reside

in one of the many trillions of galaxies in the Universe–the Milky Way (MW)–an

average barred spiral galaxy spanning approximately 150-200 thousand light years.

However, the notion of galaxies was only conceived in the last century by Edwin

Hubble, and there are still important questions about them that are directly linked

to the formation of the Universe and our origin. Understanding the formation of

galaxies and their constituents plays an important role in our understanding of the

Universe.

As we sit inside of a galaxy, much information about our own galaxy is hidden from

us. Studying nearby galaxies is then crucial to gaining insights on the formation of our

own galaxy and the Universe. As the most luminous constituents of any galaxy are

1



2 1.1. Background: Star Clusters and Giant Molecular Clouds

stars, it is then natural to understand their formation processes. Current observations

on star formation show that stars are formed in an aggregated manner (Lada and

Lada, 2003; Portegies Zwart, McMillan, and Gieles, 2010), i.e., multiple stars are

formed simultaneously in a relatively small and compact region that consequently

forms a star cluster (SC). In general, SCs are mainly divided into two types, globular

clusters (GCs) and open clusters (OCs). GCs are usually made up of around ten

thousands to millions of old stars grouped into a roughly spherical region. OCs

generally consist of only several hundred newly formed young stars that are not

confined in a regular shape. Figure 1.1 below shows a super OC HD 97950 in the

nebula NGC 3603 situated in the Carina spiral arm and NGC 6388, a GC in the

constellation Scorpius.

(a) HD 97950 in NGC 3603 (b) NGC 6388

Figure 1.1: Two types of star clusters observed in the Milky Way: (a) Open Cluster;
(b) Globular Cluster.
Credits: (a) NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration; (b)

NASA, ESA, F. Ferraro (University of Bologna)

SCs are found in every galaxy where we are able to observe and understanding

their structure, distribution and evolution is a fundamental step to understand star

formation as well as the formation and evolution of galaxies.

One key piece of current understanding of star formation is that stars form in
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an aggregated manner due to their birth in giant molecular clouds (GMCs) (Lada

and Lada, 2003; Portegies Zwart, McMillan, and Gieles, 2010). GMCs are massive

collections of dense molecular gas with mass from 103 to 107 solar masses 1 in a

tight region consisting of large amounts of raw material for star formation, mostly

molecular hydrogen H2. Figure 1.2 shows famous images taken by the Hubble Space

Telescope (HST) of molecular clouds, the Pillars of Creation in the Eagle Nebula in

the Milky Way Galaxy. Though emitting in the visible light spectrum, the stars are

obscured by the gas and dust; observations in infrared reveal a significant amount of

stars formed inside the gas towers.

(a) Visible Spectrum (b) Infrared Spectrum

Figure 1.2: The “Pillars of Creation” (a dense clump of gas and dust with star
formation activity) in the Eagle Nebula: (a) in the visible spectrum, the gas and dust
of the cloud is seen; (b) in the infrared spectrum, stars obscured by gas and dust can
be observed.

Credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA)

The distribution of star formation is understood to result from GMC fragmen-

tation (Carlberg and Pudritz, 1990; McLaughlin and Pudritz, 1996), under the in-

fluence of gas collapsing under gravitational effects (Vega, Sánchez, and Combes,

1996; Kuznetsova, Hartmann, and Ballesteros-Paredes, 2018), turbulence in the local

1solar mass: M� = 1.989× 1030 kg.



4 1.1. Background: Star Clusters and Giant Molecular Clouds

environment (Elmegreen and Scalo, 2004; Federrath, Klessen, and Schmidt, 2009;

Girichidis et al., 2012; Hopkins, Narayanan, and Murray, 2013; Guszejnov, Hop-

kins, and Krumholz, 2017) or feedback processes that suppress the star formation

(Krumholz, 2014). Investigating the spatial distribution of SCs provides a sensitive

and direct observational signature of the star formation process. However, it is not

well understood to what extent the galactic environment, locally and globally, influ-

ences the evolution of SCs (Grasha et al., 2019). Understanding the spatial distribu-

tion and making quantitative measurements of it is then a crucial task. One current

method used in understanding this distribution is called the two-point correlation

function (2PCF) in astronomical literature (Peebles, 1980) or the pair correlation

function (PCF) in spatial statistics literature. This tool was originally developed to

measure how the distribution of galaxies behaves in order to investigate the large

scale structure of the Universe. It measures the excess probability of finding two ob-

jects at a certain distance away to that of a completely random Poisson distribution

of objects. Recently, it was used to investigate the distribution of SCs in multiple

galaxies (Grasha et al., 2015; Grasha et al., 2017; Grasha et al., 2019). There are

also studies (Grasha et al., 2019; Corbelli et al., 2017) done investigating the spatial

relationship between SCs and giant molecular clouds (GMCs).

In this research, I propose a novel method through point process modelling to

quantitatively measure multiple aspects of the spatial distribution properties of GMCs

and SCs in the galaxy M33, such as inhomogeneity of GMCs and SCs as well as the

correlation structure between GMCs and SCs. Since high resolution observations of

GMCs in nearby galaxies are still relatively few, M33 became the sole target being

investigated in this research due to the fact that it is the second closest (approximately

2.7 million light years away) spiral galaxy to us which is well-studied and for which

high quality observational data are available. Figure 1.3 is the newest image of the

M33 galaxy captured by the Hubble Space Telescope in the visible spectrum.
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Figure 1.3: The largest mosaic image ever of the M33 (Triangulum) galaxy
Credits: NASA, ESA, and M. Durbin, J. Dalcanton, and B.F. Williams (University of Washington)

In the next section, I will address some of the current methodological issues when

analyzing the spatial distribution of stellar objects in nearby galaxies. Subsequently,

I will provide the motivation for point process modelling approach. I will also conduct

a general review of point process modelling methodologies and issues regarding their

existence, construction and inference procedures.

1.2 Literature Review

1.2.1 2-Point Correlation Function in Stellar Population Studies

The two-point correlation function (2PCF) was first derived by Peebles (1980) for

trying to understand the large scale structure of the Universe. However, in spatial

statistics literature, it took up the name pair correlation function (PCF) due to its

origin in statistical mechanics for studying the distributional structure of molecules

in complex systems. Nevertheless, they are exactly the same thing except that they
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are sometimes normalized in different ways in astronomy and spatial statistics. In

this research, I will use the terms interchangeably depending on the context.

2PCF is a simple yet powerful quantitative measure that tells us how certain point

patterns behave compared to a Poisson (completely random) process at different

scales. In spatial statistics, PCF is defined to be a non-negative function of the

pairwise distance of two typical points in a point pattern. At any distance r, it

measures the ratio of the probability that we observe a point at a distance r away

from another point to that of a completely random distribution of points. Note that

this ratio is in the sense of expectations as considering a single pair of points does

not make any practical sense. Given necessary conditions, a PCF with value 1 at a

certain distance r indicates that the point pattern analyzed has the same behavior as

what is expected from a Poisson process at r. In astronomy, 2PCF is normalized by

subtracting 1 from the PCF so that complete spatial randomness is denoted by 0.

Following Peebles (1980) and Peebles (2001), the 2PCF is defined as follows:

let n denote the number density, i.e., average number of points per unit region,

of a stationary point process (see Definition 2.2.3), then the probability of a point

occurring in a typical volume element dV is given by

dP = ndV,

and the 2PCF is then related to the probability that there is a point occurring in each

of the typical volume elements dV1 and dV2 with separation r12 through the following

equation:

dP = n2dV1dV2[1 + ξ(r12)],

where ξ(r12) is then the 2PCF. We can see that if a point process is Poisson, then

ξ(r12) ≡ 0 since the probability of observing a point occurring in each volume element

is exactly dP = n2dV1dV2 for a Poisson process. In fact, 2PCF can be considered
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as the spatial counterpart of the autocorrelation function for time series, i.e., the

time lag in the autocorrelation function for time series is now substituted by distance

separation. 2PCF is important as it directly gives us the power spectrum of a point

process (Peebles, 1980; Peebles, 2001) through the following Fourier transform:

P (k) =

∫
d3rξ(r)ei

~k·~r

where k is the frequency. Note that the power spectrum here characterizes the density

contrast of matter as a function of scale. The direct relations between 2PCF and

power spectrum is highly useful as the power spectrum is highly sensitive in detecting

small fluctuations in the distribution of points (Blackman and Tukey, 1958).

However, as noted in both the spatial statistics literature (Baddeley, Rubak, and

Turner, 2015; Møller and Waagepetersen, 2003) and astronomy literature (Peebles,

1980; Peebles, 2001), a crucial assumption on the validity of 2PCF is that the point

pattern has to be stationary. This includes homogeneous and second-order station-

ary. Homogeneous in this case means that the number density n of a point process

is constant everywhere. This can also be regarded as first-order stationary. This is

apparent from the previous derivations that n is not a function of location or other en-

vironmental covariates. Second-order stationary means that the relationship between

any two points does not depend on the absolute positions of the points but their rel-

ative positions or distance. If we make the further assumption that the point pattern

is second-order stationary, the 2PCF then only depends on the distance between two

points.

In a usual data analysis or modelling context, inhomogeneity has to be accounted

for while second-order stationarity is generally assumed; methodology for analyzing

point patterns with non-stationary second-order property is scarce as it has always

been difficult to account for. In fact, this is an ongoing research topic in spatial
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statistics (Risser, 2016).

For analyzing the large scale structure of the Universe, there has been accumulat-

ing evidence supporting the claim of stationarity (Peebles, 1993; Davis, Miller, and

White, 1997; Peebles, 2001) of galaxy distributions on the scales of 10 ∼ 200 Mpc2.

Therefore, the application of 2PCF in this context is justified and generally gives us

accurate information about the spatial structure of galaxies.

Recently, 2PCF has been applied to analyze the spatial distribution of SCs by

(Grasha et al., 2015; Grasha et al., 2017; Grasha et al., 2019; Corbelli et al., 2017)

where the conclusion obtained from 2PCF suggests a power law clustering behavior

between SCs. However, the use of 2PCF in these studies seem to have not met the

crucial assumption of stationarity due to the apparent inhomogeneity in the number

density of SCs across galaxy disk. In the case where it was considered, the inho-

mogeneity was not accounted for sufficiently. Indeed, it is quite obvious that the

distribution of SCs in any galaxy would not be homogeneous due to the highly varied

mass distribution in the galactic disk. Furthermore, local environmental effects such

as the presence of GMCs will also produce inhomogeneity at local scales.

I will here provide reasons for the importance of accounting for inhomogeneity

in the point pattern before directly using 2PCF/PCF. It is noteworthy that in the

context of stellar population studies, the aim of 2PCF is to measure the interpoint

interaction effect, i.e., whether the occurrence of a point is likely to be accompanied

by another point at certain distance compared to a random distribution. This means

that the violation of homogeneity can lead to drastically different conclusions from the

fitted 2PCF. The reason is as follows: imagine that we have a point pattern where

we know there are environmental effects exerting influence on the number density

of the points in different regions. Then it is likely that a region with high number

21 pc (parsec) ≈ 3.26 light-year(3.086 × 1016 m). Solar system is on the scale of � 1 pc; star
formation complex is on the scale of ∼ 100 pc; galaxies are on the scale of 1∼100 kpc in diameter
and generally on the scale of 1∼10 Mpc apart from each other.
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density will appear to be more clustered than a Poisson process. Consequently, fitting

a 2PCF directly to the point pattern will always lead to the conclusion that the

point pattern is clustered compared to a Poisson process. As noted, the clustering

conclusion obtained from 2PCF here is a form of second order clustering resulting

from the interpoint interaction. However, it is completely possible that there exists

no interpoint interaction between points due to inhomogeneity of the number density.

Below is a simple demonstration of how inhomogeneity can completely derail the

conclusion of a directly fitted PCF.

We simulate an inhomogeneous Poisson process by mimicking the distribution of

SCs in a galaxy where we assume the number density n is the strongest at the origin,

and falls off according to some exponential power law as we move away from the

origin. Figure 1.4(a) shows one simulation of said inhomogeneous Poisson process

and Figure 1.4(b) shows its corresponding empirical PCF, where r is the pairwise

distance between two points. The PCF indicates that the point pattern is clustered

at all scales since the PCF is greater than 1 at all scales. However, the process is in

fact a Poisson process and the actual PCF should be approximately 1 at all scales.

The reason for the drastic difference is precisely the inhomogeneity and this example

perfectly demonstrates how far away from the truth our conclusions will be when

fitting a PCF without properly accounting for inhomogeneity.

From the previous arguments, therefore, it is important to differentiate the sub-

tle difference between the effects from inhomogeneity and the interpoint interaction.

Inhomogeneity exerts its influence on the occurrence of a point (the number density)

independently of another point. We can think of this as a “fertility” effect, i.e., how

much resource there is in a certain region to produce one point. The interpoint in-

teraction, however, is the influence exerted from the occurrence of a point to another

point, i.e., there exists a notion of dependence structure. We can think of this as com-

petition for resources in the case of repulsion and triggering of occurrences of multiple
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Figure 1.4: Simulated Inhomogeneous Poisson process with its corresponding directly
fitted PCF

points in the case of clustering. Subsequently, when analyzing the distribution of SCs,

we need to distinguish between these two effects, and the conclusions from these two

effects consequently answer different questions. Studying the inhomogeneity of the

SCs answers questions such as “how do SCs distribute around GMCs?” while the

2PCF answers questions such as “how do SCs distribute among themselves?” while

all other factors are assumed to be accounted for. It is straightforward to see that

if the conclusion is SCs are more likely to occur closer to GMCs compared to a ran-

dom Poisson distribution, this does not imply that the occurrence of a SC is likely to

trigger the occurrence of another SC compared to a random distribution. However,

there is a pitfall in separating the inhomogeneity effect and interpoint interaction in

that if there is only one realization of some random point process, it is impossible

to tell whether a clustering/repulsive feature is due to inhomogeneity of the point

process or interpoint interaction. Therefore, separating these two effects should be

dictated by theories and necessary assumptions. Nevertheless, excluding the effect of
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inhomogeneity can lead to drastic differences in conclusions from a fitted 2PCF.

Grasha et al. (2015), Grasha et al. (2019), and Grasha et al. (2017) concluded

that the 2PCF follows a power law as a function of distance between SCs and shows

a clustering feature at short distances compared to a random distribution of points.

It is likely that the 2PCF indeed follows a power law and exhibits clustering features

at certain distances. However, the fitted parameters are not likely reflecting the true

degree of the relationship for the reasons mentioned above.

It is certainly tempting to find a way to account for the inhomogeneity and then

fit a 2PCF. But there is a big problem if 2PCF is the only tool we have. For almost

all point patterns, there is no numerical measurement of inhomogeneous effects so

that we can eliminate them and refit the 2PCF. For example, there is no way for

us to know the accurate numerical measurement on the effects of galactic structure

on the distribution of SCs without other additional tools. This is one of the most

fundamental limitation of 2PCF since for a vast amount of real world point pattern

data, there is always some degree of inhomogeneity.

Even though there are attempts (Grasha et al., 2019; Corbelli et al., 2017) made

to address the issue coming from galactic structure, the method used is rather ad-

hoc and prone to information loss. Corbelli et al. (2017) accounted for the large

scale galactic structure effect in their study of the relationship between GMCs and

young SCs (YSCs) in M33. However, due to the limitations of 2PCF, they choose to

separate the galactic plane into three radial regions encompassing the galactic center

so that the large scale galactic structure effect could be regarded as homogeneous

in each region. Similarly, Grasha et al. (2019) divided the galactic plane of M51

into two regions encompassing the galactic center and conducted 2PCF analysis for

SCs. Though this method could potentially eliminate the galactic structure effect,

it still cannot account for local effects. These can be due to local inhomogeneity

of interstellar medium such as gas and dust that fuel the star formation process.
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Since uneven distribution of the raw materials for star formation will lead to the

inhomogeneous distribution of stars, especially for the younger generation of stars.

Furthermore, the determination of region boundaries is arbitrarily defined by users

and how changes of the boundaries would affect the resulting 2PCF is not exactly

clear. Grouping the data also introduces information loss since information on a

continuous space is cut into several non-communicating subspaces.

Another limitation of 2PCF is its restriction on investigating how the properties

of SCs and GMCs affect their spatial relationships. Grasha et al. (2015), Grasha

et al. (2019), and Grasha et al. (2017) investigated the effect of age on the clustering

strength of SCs. The data has to be grouped by age to provide an analysis from

the 2PCF. This grouping of data loses a significant amount of information since a

continuous variable is reduced to a categorical variable.

It is imperative to ask for a new method to address the issues of current methodolo-

gies of using 2PCF. An immediate candidate is parametric modelling where a point

process model with physically meaningful parameters is constructed. In the next

subsection, I will present a review on the state of the art of point process modelling

methodologies and their related issues.

1.2.2 Spatial Point Process Modelling

Spatial point process modelling takes up a significant part of spatial statistical re-

search. It concerns the study of the locations of the occurrence of random objects

or events. The most important question of interest in understanding spatial point

processes is the behavior of point patterns compared to a Poisson process. There

are two types of characteristics of interest that can subsequently provide informa-

tion on related scientific questions — repulsive (regular/inhibitive) and clustering

(attraction/aggregated) behaviors. Two types of point process modelling paradigms

are widely considered — Cox point processes (Cox, 1955) and Gibbs/Markov point
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processes (GPP) (Ripley and Kelly, 1977; Lieshout, 2000).

Cox point processes are generally employed for studying clustering point patterns.

Cox point processes are also termed doubly stochastic Poisson processes. The idea is

that there exists a latent high-level Poisson process where its realization gives rise to

the observed low-level point process. It is then assumed that the observed process is

a realization of Poisson process centered around the high-level points. The construc-

tion of Cox point processes naturally lends them the ability to model clustering point

patterns where the point pattern is essentially treated as a realization of an inho-

mogeneous Poisson process. For example, Cox processes were used to simulate spike

train data (Krumin and Shoham, 2009) as well as in financial mathematics where

credit risk is a significant factors when pricing financial instruments (Lando, 1998).

Much more recently, an extension based on Cox processes was proposed by Møller

(Møller, Syversveen, and Waagepetersen, 1998), called log-Gaussian Cox processes

(LGCP). LGCP have provided a wide range of applicability in modelling real world

clustering spatial/spatio-temporal data, and have been used in vastly different fields

including ecology (Brix and Moller, 2001; Serra et al., 2014; Waagepetersen et al.,

2016), pattern recognition (Nguyen, Fablet, and Boucher, 2011), epidemiology (Li et

al., 2012), criminology (Rodrigues and Diggle, 2012; Shirota and Gelfand, 2017), neu-

roscience (Samartsidis et al., 2019), etc. The difference between LGCP and standard

Cox processes is that instead of assuming the inhomogeneity is a result of realization

of a latent Poisson process, LGCP assumes that the latent process is a Gaussian

random field (GRF) which can be a function of location and observed or unobserved

covariates. The realization of the exponentiated GRF then produces a continuous in-

tensity (number density) surface which gives rise to the observed point pattern. The

observed point pattern is assumed to be a realization of an inhomogeneous Poisson

process with inhomogeneity specified by the previous intensity surface. The main

focuses of modelling of LGCP are the covariate effects and the covariance structure
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of the latent GRF as these two aspects govern the behavior of the low level inhomo-

geneous Poisson process.

Currently, the main research focus on LGCP is inference computation. Due to its

inherent hierarchical structure, it is naturally modelled through a Bayesian hierarchi-

cal framework. However, the computational bottleneck manifests from the inference

for the continuous latent GRF. For any continuous GRF, the inference computation

requires the following: (i) Construct a fine lattice grid over the observation window

(ii) Count the number of points in each region to approximate the number density in

each region (iii) Fit the GRF based on the approximation. Needless to say, the finer

the lattice grid, the better the approximation and more accurate the result. However,

increasing the number of grid points causes a computational bottleneck since fitting

the GRF requires inverting a dense covariance matrix with its dimension equal to

the number of grid points. The most widely employed method for dealing with this

is to model the latent GRF as a conditional autoregressive model which renders fast

computation possible (Rue and Held, 2005). However, it is suggested that compu-

tation on a fine lattice is highly wasteful since the lattice method cannot be locally

refined (Simpson et al., 2016). Recent attempts by (Lindgren, Rue, and Lindström,

2011) suggested a link between stochastic partial differential equations (SPDE) and

a continuous random field. This leads to the result that a continuous random field

can be effectively approximated by a Gaussian Markov random field where existing

methods such as the integrated nested Laplace approximation (INLA) can be used for

fast Bayesian computation. However, the modelling techniques and computational

structure of the SPDE approach are still in the early stages of development. There-

fore, for problems of highly complex structure such as ones in this research, the SPDE

approach is not yet suitable.

The main reason preventing me from using LGCP in this research is problem spe-

cific: in terms of modelling the distribution of stellar populations, it is better to use
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models more suitable for modelling physical objects. Furthermore, it is physically

more reasonable to impose the notion of interpoint interaction in the model as there

exist direct physical counterparts of the notion of interaction between stellar objects,

e.g., gravitational interaction, competition for the fuel of star formation, feedback

process suppression and so forth. LGCP does not seem suitable as it assumes the

observed pattern to be a realization of an inhomogeneous Poisson process which nec-

essarily strips away the concept of influence between points. Instead, the dependence

structure is fully captured by the covariance structure of the latent GRF. However,

how to interpret the physical implication of the fitted covariance structure is unclear

since there does not yet exist an immediate physical counterpart of the latent GRF

which supposedly gives rise to the physical processes governing star formation. Inter-

estingly, there does exist physical manifestation of GRF in cosmology — the cosmic

microwave background (CMB) (Wandelt, 2013). However, CMB is a continuous field

of remnant electromagnetic radiation shortly after the Big Bang rather than a point

pattern. Nevertheless, treating the generation process of stellar populations as a GRF

can potentially open interesting ideas for future research in astrophysics. However, as

the focus of this research is not geared towards astrophysical theory, I do not pursue

the LGCP approach here.

On the other hand, the GPP model is a class of point processes emphasizing

interaction between the points. It can be used to model interaction of clustering,

repulsive, or both types of interaction. Compared to the Cox process, the GPP

model is a much better route to go in the context of this research. The statistical

structure of interpoint interaction is already established in astronomy through the

development and application of 2PCF. GPP also has a very close tie to the 2PCF.

Furthermore, it is very easy to incorporate physically interpretable parameters in a

GPP model and it is generally suited for modelling point patterns of physical objects.

GPP are ubiquitous for modelling repulsive point patterns due to the model’s
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emphasis on the notion of interaction between points. This is in general not possible

for the Cox processes. Models of clustering patterns using GPP are also available.

Originating from statistical physics, these models were first employed to study the

behavior of physical systems with complex dependent structure. One of the first

models of this type is the famous Boltzmann distribution (Gibbs distribution) (Gibbs,

1902) where the aim of modelling is the probability of observing a system being in a

certain state as a function of the energy and temperature of the system. Subsequently,

there was the Ising model (Ising, 1925) for studying the magnetic dipole moments of

atomic spins.

GPP were only much later introduced to the spatial statistics community by Rip-

ley and Kelly (1977), sparking application for point process modelling under the name

of Markov point processes. Because of the ease of construction and the ability to in-

corporate physically meaningful parameters, there is a countless number of possible

model constructions that can be tailored for different problems. For modelling re-

pulsive patterns, there exists hard-core process, Strauss process, soft-core process,

etc. For modelling clustering process, one can employ Geyer’s saturation process and

triplet process as well as area-interaction process. There also exist models that can

account for spatially varying behavior, e.g., repulsion-attraction processes where point

pattern exhibits a repulsive pattern at short range and a clustering pattern at mid

to long range. Due to its high flexibility, GPP has seen wide applications in forestry

(Goulard, Särkkä, and Grabarnik, 1996; Picard et al., 2009), ecology (Isham, 1984;

Högmander and Särkkä, 1999; Rajala, Murrell, and Olhede, 2018), and neuroscience

(Johnson, 1996), as well as cosmology (Tempel et al., 2016).

With the ability to parametrically model the spatial distribution of SCs, we can

model the inhomogeneous effects with a flexible structure based on empirical obser-

vations and existing physical theory. Furthermore, it gives us the ability to simulta-

neously model the adjusted 2PCF as well as the effect of the properties of SCs and
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GMCs on their distributions.

In this research, I propose two novel GPP models tailored for modelling stellar

populations specifically for GMCs and SCs. The models are constructed in order to

capture the empirical distributional structure exhibited by GMCs and SCs. I will

also attempt to derive new physical insights from the inferred model parameters.

Although GPP have highly appealing properties in terms of interpretability and

model flexibility, similar to LGCP, they too pose challenges when it comes to model

inference. This is due to the fact that the likelihood function of GPP models are

partially intractable, in that there exists an intractable normalizing constant which is

a function of the model parameters. Due to this complication, a significant amount of

literature has focused on developing inference algorithms in the maximum likelihood

paradigm for the sake of computational speed. Two main inference methods are

the maximum pseudo-likelihood estimation (Baddeley and Turner, 2000, MPLE) and

Monte Carlo maximum likelihood estimation (Geyer and Møller, 1994, MCMCMLE).

However, these methods can be limited and restrictive.

MPLE uses a local Markov-type approximation of the true likelihood to carry out

MLE inference (Baddeley and Turner, 2000), hence the name pseudo-likelihood. Due

to the fact that it only employs local information, MPLE usually underestimates the

strength of interaction. This means that if a point pattern exhibits strong interpoint

interaction, results obtained from MPLE will tend to be highly biased. Moreover,

it requires the model to be in log-linear form Baddeley and Turner (2000). This is

restrictive since model parameters with physical meaning, such as the typical scale

of the interaction range, cannot be inferred through this approach as they are not of

log-linear form with sufficient statistics. Parameters that are in log-linear form with

the sufficient statistics are usually difficult to derive physical interpretation from since

for various existing models, e.g., the Strauss process, the function characterizing the

interpoint interaction is not a continuous function of the distance. In a physical
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context, discontinuity in functions is generally not desired.

MCMCMLE has the restriction that the derivative of the log-likelihood with re-

spect to model parameters must have analytical gradients which might not be possible

for certain models, e.g., Goldstein et al. (2014). Furthermore, for models with complex

likelihood functions, the computation of gradients of the log-likelihood can be costly

and sometimes the complexity of the analytical gradient can be such that it causes

computational overflow/underflow. Furthermore, in the context of this research, it

is more suitable that the model parameters follow certain probability distributions

rather than being a fixed value. This then naturally leads to the Bayesian inference

paradigm.

For Bayesian inference of GPP, unlike the MLE methods mentioned above, there

is no restriction on the form of the likelihood, hence it is much more suitable for

modelling physical systems. Furthermore, a Bayesian paradigm is a natural approach

for problems in astronomy since new observational data will become available with

the employment of more powerful telescopes. Bayesian inference is also much easier to

implement compared to both MPLE and MCMCMLE. However, just like the problem

faced by MLE approaches, it is also hindered by the intractable normalizing function

as mentioned before. This renders the posterior distribution to be doubly-intractable

(since there is an intractable normalizing term in the likelihood and an intractable

term for the posterior distribution) and standard Markov chain Monte Carlo (MCMC)

algorithms cannot be used for Bayesian inference.

Methods to facilitate MCMC algorithms for GPP only appeared recently due to

the explosive increase in computational power in recent years. The first attempt

at dealing with this issue is the ingenious auxiliary variable/exchange algorithm by

Møller et al. (2006) and Murray, Ghahramani, and MacKay (2006) where they pro-

posed to work around the intractable normalizing constant by simulating an auxiliary

variable at each Metropolis-Hasting iteration. This auxiliary variable will then causes
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the unknown ratio of the normalizing constants to be canceled and standard MCMC

can proceed. However, the method is highly restrictive since it requires one to per-

fectly simulate the auxiliary variable which is usually not possible except for some

toy examples. A much more practical algorithm was later proposed by Liang (2010),

called the double Metropolis-Hasting algorithm (DMH). DMH relaxes the require-

ment of perfect simulation of the auxiliary variable by replacing it with simulation

from a standard MCMC run. This made Bayesian inference much more practical for

real world complex GPP. The DMH algorithm will be employed for inference purposes

in this research.

Next, I formalize the scientific problems of interest and necessary assumptions

which will dictate the construction of the models.

1.3 Problems and Assumptions

• How to model the highly inhomogeneous distribution of stellar pop-

ulations?

To model the inhomogeneity of stellar distributions, I assume the following:

The inhomogeneity of GMCs are attributed to the CO filament. Numerous ob-

servations indicate that CO molecules generally forms in filamentary structure,

with GMCs born and gradually separated from the filament and eventually dis-

persed. These observations suggest that GMCs positions are strongly affected

by CO filament. Since GMCs generally disperse in a very short time frame

(∼ 60 million yrs), there is hardly enough time for them to diffuse away from

CO filament and appear uncorrelated with the filament structure. Hence the

assumption is reasonable.

For the inhomogeneity of SCs, I assume two forms of inhomogeneity, a global
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trend and a local effect. I assume that the global trend is attributed to the

general mass distribution within a galaxy, i.e., the mass density is higher in the

inner region and lower in the outer region. This mass density profile is usually

modelled as some form of power law as a function of the distance to the galactic

center. For the local effect, I assume that it results from the presence of GMCs,

as it is mentioned that GMCs are the widely accepted “stellar nurseries”. I will

also assume that the effect of each GMCs on the “fertility” of SCs has a finite

effective range, i.e., after a certain typical range, the effect of GMCs on SCs

will become negligible.

• What is the correlation between GMCs and SCs? The correlation struc-

ture between GMCs and SCs is modeled as an asymmetrical hierarchical rela-

tionship since there exists different levels of hierarchy between the underlying

processes that generate GMCs and SCs. I will assume that the process gen-

erating GMCs takes the higher level of hierarchy than the process for SCs.

This is because GMCs are considered as the birthplace of SCs as mentioned.

Therefore, a natural formation hierarchy exists between GMCs and SCs and

the model needs to take this formation structure into account. The correlation

among GMCs and SCs will then arise from this hierarchical structure.

• How do the properties of GMCs affect the distribution of SCs around

them? To infer the effect of properties of GMCs on the distribution of SCs, I

will assume that the effect of GMCs on SCs is of some generic functional form.

A simple example is to model the effect as a linear combination of the properties

of GMCs. I will discuss this in detail in Chapter 5.

• What is the second order behavior of SCs’ spatial distribution after

accounting for inhomogeneous intensity?

The second order behavior is rather difficult to infer from summary statistics.
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I will assume that there exists short range repulsion between SCs as it com-

plies with physical reality since SCs have physical sizes. Several other physical

observations/evidence suggesting short range repulsion behavior between SCs.

For mid to long range interaction, I will assume a Poisson structure. If any

deviance exists, it could be detected through model criticism and it can provide

us with important physical implications.

This thesis is organized in the following way. Chapter 2 introduces the neces-

sary definitions and theories on point processes. Chapter 3 introduces the formalism

regarding the meaningful construction of GPP models as well as the details of sim-

ulation and Bayesian inference algorithms for GPP models. Chapter 4 provides the

details on how I construct the models. Chapter 5 consists of data analysis on stellar

objects in M33 using the proposed models as well as physical implications derived

from models. Chapter 6 provides conclusions.
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Spatial Point Process

Spatial point process models are important tools employed by various scientific dis-

ciplines, such as ecology, epidemiology, criminology, seismology, etc., to study how

the locations of a collection of random events or random objects distribute in space.

For example, ecologists may be interested how certain species of trees distribute on

a forest floor so they may get insights on forest management. Criminologists would

like to know where burglary might occur in Toronto and provide knowledge to the

police for more efficient theft prevention.

In astronomy, spatial point processes are essentially everywhere. Looking up at the

night sky and there is an extremely complex and beautiful point pattern that consists

of something that eluded humans for centuries — the stars. However, spatial point

process modelling hasn’t found its way in astronomy most likely due to the in depth

knowledge and training required in theoretical statistics which most astronomers are

not well-acquainted. Furthermore, literature on spatial statistics can be terse and

dull towards non-practitioners.

This chapter is then dedicated as a basic introduction of point process and provides

22
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some technical details on the modelling tools that will be used for our problems. Since

this thesis is not pivoted towards the theory and methodology of point process, which

requires extensive measure theory probability, I gear the approaches toward more

applied lenses.

2.1 Point Process

Before defining a point process, a space S is required for the points to live in. Usually,

S ⊂ Rd and typically a d-dimensional box or sphere in Rd. For our problems, since

M33 is extremely far away, only a two dimensional projection of the spatial positions of

the objects is available. Therefore, I will focus on S ⊂ R2 and model the distribution

of objects in M33 as a planar process. In most cases, however, the points observed

will be bounded by an observation window W , e.g., one can only observe the patch

of sky that can be captured by the field of the camera of a telescope.

Now a point process X, with realization or configuration x, is defined as a finite

and countable process. Note that we use x, y, ... to denote a set of points which is a

realization/configuration of X and use x, y, ξ, η, ... to denote a singleton.

Below, I present several important definitions and theorems regarding point pro-

cess that will provide us with basic groundwork for constructing our model. Note that

for all definitions and theorems in this chapter, I follow the discussion from Møller

and Waagepetersen (2003) and Baddeley, Rubak, and Turner (2015).

Definition 2.1.1. (Møller and Waagepetersen, 2003, pp. 7)Let n(x) be the cardinality

of a subset x ⊂ S. Let xA = x∩A for A ⊂ S. X is called locally finite if n(xA) <∞

for all bounded A.

This means that for any realization x of X, there are only a finite number of points
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in any bounded region. This provides us the support of X. We denote this as

Nlf = {x ⊂ S : n(xA) <∞, ∀A ⊆ S and |A| <∞}

Here Nlf denotes the set of all locally-finite point realization. Note that X is not a

random variable since it does not take any numeric values. Rather, the “value” that

X can take is any point pattern realization x that satisfies definition 2.1.1 or simply

x ∈ Nlf and a point process model specifies a probability density function that gives

us the likelihood of observing the realization x of X given a certain specification of

the model structure.

The precise definition of a point process requires an extensive amount of measure

theory. Since this research should also be easily accessible for astronomers, I will

avoid giving a mathematically precise definition of point process. Assume S has a

defined metric (usually the Euclidean distance), it is sufficient to know that once a

point process is defined on S, it is equipped with a probability distribution

PX(F ) = P (X ∈ F ).

Here F ⊂ Nlf is a collection of different point pattern realizations. This distribution

gives us the probability of X producing a realization x ∈ F . An analogy from random

variable is that the probability distribution function PX of a random variable X gives

us the probability P (X ∈ B) where B is well-defined and B ⊂ R.

Definition 2.1.2. A point process on S is simple if no two points from its realizations

are at the same location.

Point process modelling does not address point patterns with coincidental points

and most real world point processes, such as the ones we are addressing in this

research, are simple.
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2.2 Poisson Point Process

2.2.1 Definition and Basic Properties

The simplest point process model is the Poisson point process. It represents the idea

of complete spatial randomness (CSR). Another way to look at it is that the location

of points are completely independent from each other, i.e., there is no interaction

between any point in a Poisson point process. This does not sound very interesting

since CSR almost never exists in real life point pattern data. However, Poisson point

process serves as an anchor point and a reference model for point pattern analysis

and it is the most fundamental building block of more sophisticated point process

models.

To define any point process model, we need the concept of an intensity function

and intensity measure. An intensity function satisfies λ(≥ 0) : S → [0,∞) and∫
A
λ(ξ)dξ <∞ for all bounded A ⊂ S. As the name suggests, this function specifies

the rate of point occurrence at location ξ ∈ A, i.e., it gives us the expected number

of points in an infinitesimal neighborhood of ξ. An intensity measure on A of a point

process with intensity function λ is defined as µ(A) =
∫
A
λ(ξ)dξ.

Before going into Poisson process, we have to introduce another point process that

is closely related to Poisson process.

Definition 2.2.1. (Møller and Waagepetersen, 2003, pp. 14)Let f be a probability

density function on a set A ⊂ S, and let n ∈ N+. A point process X consisting of

n i.i.d. points with density f is called a binomial point process of n points in A with

density f . We denote X ∼ binomial(A, n, f).

This definition gives us the following important property of a binomial point
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process. For any B ⊂ A, let pB =
∫
B
f(ξ)dξ ∈ [0, 1].

P (n(XB) = k) =

(
n

k

)
pkB(1− pB)n−k. (2.1)

This means the number of points n(XB) in any sub-region B of A is a binomial

random variable with parameter n and pB hence the name binomial point process.

Furthermore, the occurrence of one point has no effect on the occurrence of another

point which is crucially linked to the Poisson point process. One important special

case of binomial point process would be the uniform point process on B, Uniform(B),

conditioned on there being n i.i.d. points. This is the case where f(ξ) = 1/|A|.

Definition 2.2.2. (Møller and Waagepetersen, 2003, pp. 14)A point process X on S

is a Poisson point process with intensity function λ if :

(a) for any A ⊂ S and 0 < µ(A) <∞, n(XA) ∼ Poisson(µ(A)) ;

(b) for any n ∈ N+ and A ⊂ S with 0 < µ(A) < ∞, conditional on n(XA) = n,

XA ∼ binomial (A, n, f) with f(ξ) = λ(ξ)/µ(A).

We write X ∼ Poisson(S, λ).

Following Definition 2.2.2, if λ is constant, then Poisson(S, λ) is called a homo-

geneous Poisson process on S with rate or intensity λ; otherwise, it is called an

inhomogeneous Poisson process on S. If λ(ξ) ≡ 1, then the process is called a unit

rate Poisson process.

Definition 2.2.3. (Møller and Waagepetersen, 2003, pp. 14)A point process X on

R2 is stationary if its distribution is translation-invariant, i.e., PX = PX+s for any

s ∈ R2. It is isotropic if its distribution is rotation-invariant about the origin, i.e.,

PX = PRX for any rotation R around the origin.

Stationarity is an important consideration as it is crucial to the formulation of

vast number of point process models.
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2.2.2 Distribution Function for Poisson Process

Proposition 2.2.1. (Møller and Waagepetersen, 2003, pp. 15)X ∼ Poisson(S, λ)

iff for all A ⊂ S with µ(A) =
∫
A
λ(ξ)dξ and all F ⊂ Nlf ,

P (XA ∈ F ) =
∞∑
n=0

exp(−µ(A))

n!

∫
A

· · ·
∫
A

1[{x1, . . . , xn} ∈ F ]
n∏
i=1

λ(xi)dx1 . . . dxn

(2.2)

where the integral for n = 0 is read as 1[∅ ∈ F ].

To see that X ∼ Poisson(S, λ) implies equation 2.2, we have

P (XA ∈ F ) =
∞∑
n=0

P (n(XA) = n)P (XA ∈ F | n(XA) = n)

=
∞∑
n=0

P (n(XA) = n)

∫
A

· · ·
∫
A

P ({x1, . . . , xn} ∈ F | XA = {x1, . . . , xn})×

f(XA = {x1, . . . , xn} | n(XA) = n)dx1 . . . dxn

=
∞∑
n=0

exp(−µ(A))

n!

∫
A

· · ·
∫
A

1[{x1, . . . , xn} ∈ F ]
n∏
i=1

λ(xi)dx1 . . . dxn.

(2.3)

This gives us the distribution function of X ∼ Poisson(S, λ).

Even though a Poisson process has a distribution function, it does not have a

well-defined density on its own. However, a density with respect to another Poisson

process exists. Usually, this is the unit rate Poisson point process.

2.2.3 Densities for Poisson Process

To introduce a density for a Poisson process, we need the idea of absolutely continuous

(Møller and Waagepetersen, 2003, pp. 25) between point processes. If X and Y are

two point processes defined on S, then X is absolutely continuous with respect to Y

iff P (Y ∈ F ) = 0 implies P (X ∈ F ) = 0 for any F ⊂ Nlf . Furthermore, there exists
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a function f : Nlf → [0,∞] such that

P (X ∈ F ) = E[1[Y ∈ F ]f(Y)], ∀F ⊂ Nlf . (2.4)

Here f is defined as the density for X w.r.t. Y.

Proposition 2.2.2. (Møller and Waagepetersen, 2003, pp. 25) Suppose two Poisson

point processes, X and Y, have intensity λX, λY : S → [0,∞) so that µX(S), µY(S) <

∞, and that λY(ξ) > 0 implies λX(ξ) > 0. Then X is absolutely continuous w.r.t.

Y, with density

f(x) = exp(µY(S)− µX(S))
∏
ξ∈x

λX(ξ)/λY(ξ). (2.5)

for any finite point realizations x ⊂ S.

Note that if X ∼ Poisson(S, λ) and Y a unit rate homogeneous Poisson process,

we then have the density of X as

f(x) = exp

(
|S| −

∫
S

λ(ξ)dξ

) n(x)∏
i=1

λ(xi). (2.6)

Furthermore, if X is homogeneous, then

f(x) = exp((1− λ)|S|)λn(x). (2.7)

We will see later, in terms of Gibbs point process models, a Poisson process is the

only model with a probability density that can be expressed fully with a tractable

normalizing constant given that the intensity λ is specified.
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2.3 Intensity Measures

Up to this point, we have a formal understanding of point processes. Just like ordinary

random variables, there are crucial intensity measures that resembles the moments of

a random variable. These are fundamental in helping us understand the structure in

point pattern data. In this section, I provide some theoretical basis for the intensity

measures of spatial point patterns.

2.3.1 First Order Intensity Measure

The first order intensity measure for a point process is analogous to the expectation

for a random variable. It is given by

µ(A) = E[n(XA)], A ⊂ R2, (2.8)

i.e., it measures the expected number of points in a certain region, A, for a point

process X. As in the previous section, the intensity function λ is defined as a function

from S to [0,∞) such that

µ(A) =

∫
A

λ(ξ)dξ, A ⊂ R2. (2.9)

Heuristically, λ(ξ)dξ is the probability for the point process X to have a point occur-

ring in an infinitesimally small ball centered at ξ with volume dξ. If X is homogeneous,

then λ is constant, and it represents the expected number of points per unit volume.

In a modelling context, we will usually model the intensity function λ to account for

potential inhomogeneity.
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2.3.2 Second Order Intensity Measure

For a second order intensity measure, it measures the behavior of pair of points. We

first consider the second order factorial moment measure α(2) on R2 × R2:

α(2)(B) = E

[ ∑
ξ,η∈X,ξ 6=η

1[(ξ, η) ∈ B]

]
, B ⊂ R2 × R2. (2.10)

This gives us the expected number of distinctive pairs of points in any given bivariate

product space B. This is analogous to the second moment of a random variable. In

fact, it gives us the second moment of the random variable n(XA):

E[n(XA)2] = α(2)(A) + µ(A), A ⊂ R2. (2.11)

since

α(2)(A) = E[n(XA)2 − n(XA)]

which is immediate from equation 2.10. In terms of variance of n(XA), we have

Var[n(XA)] = α(2)(A) + µ(A)− µ(A)2. (2.12)

. More generally, for any B,C ⊂ S, we have

COV[n(XB), n(XC)] = α(2)(B × C) + µ(B ∩ C)− µ(B)µ(C). (2.13)

Now if α(2) can be written as

α(2)(B) =

∫ ∫
1[(ξ, η) ∈ B]λ(2)(ξ, η)dξdη, B ⊂ R2 × R2, (2.14)

with λ(2) : R2 × R2 → [0,∞), then λ(2) is called the second order product density or

second order intensity measure.
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Heuristically, λ(2)(ξ, η)dξdη is the probability of observing a pair of points oc-

curring in each of two infinitesimally small ball centered at ξ, η with volume dξ, dη

respectively. The second order intensity measure is a measure of the correlation be-

tween two points in a point pattern. However, it has to be with respect to a Poisson

process, i.e., how strong is the correlation compared to CSR. Hence, we usually ana-

lyze the normalized second order intensity measure λ(2)(ξ, η) by dividing λ(ξ)λ(η).

Definition 2.3.1. (Møller and Waagepetersen, 2003, pp. 31)If both λ, λ(2) are well-

defined, the pair-correlation function (PCF) is defined by

g(ξ, η) =
λ(2)(ξ, η)

λ(ξ)λ(η)
. (2.15)

This is widely used in astronomy and astrophysics and it is termed the two-point

correlation function (2PCF) in the astronomical literature. PCF measures the ratio

of the probability that the point process of interest having two points at ξ and η to

that of a Poisson process. If g(ξ, η) = 1, then it means the point process has the same

probability of observing two points each at ξ, η compared to a Poisson point process.

If g(ξ, η) > 1, then it has a greater probability than a Poisson process and vice versa.

To truly facilitate the usage of PCF, we need to have the assumption of station-

arity. If we also assume isotropy, the PCF reduces to the following form:

g(ξ, η) = ρ(||ξ − η||), (2.16)

where || · || is the usual Euclidean distance and ρ(·) is function taking non-negative

values. This means the PCF is only a function of the distance between any pair

of points. For the rest of the chapter, I assume we are dealing with stationary and

isotropic point processes.

However, for almost all real-life data, stationarity is not satisfied, mainly due to

the inhomogeneity present in the first-order intensity and it has to be accounted for.
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After addressing the inhomogeneity in the first-order intensity, it is generally assumed

that the point process is second-order stationary. This is also referred to as the second

order intensity reweighted stationary (Møller and Waagepetersen, 2007), i.e., the point

process is second order stationary after accounting for potential inhomogeneity in the

first order intensity.

It is important to note that when estimating an empirical PCF, the first order

intensity λ(·) is usually not available and assumed to be constant. This means that

obtaining an empirical PCF for an inhomogeneous point pattern is a direct violation of

the assumption required for empirical PCF to provide correct second-order property

of a point pattern.

There is, however, attempt to construct empirical second order intensity reweighted

PCF (Baddeley, Rubak, and Turner, 2015), but a major issue is that the numerical

measurement of first order intensity is rarely known. Certain model assumption is

usually required. However, even if these model assumption are made, the estimates

are usually highly biased. Therefore, we do not pursue this approach here.

2.4 Empirical Summary Statistics

I will now introduce some of the summary statistics and methods for empirically

analyzing the behavior of the second order property.

For estimating the empirical PCF, a naive estimator is constructed by constructing

a series of concentric annuli encompassing each point in the point pattern and count

the number of points in each annuli. Subsequently, an empirical PCF is obtained by

averaging the count for each point and plotted against the pairwise distance, after

adjusting for the first order intensity of the point pattern. However, this method is

highly prone to bias, and the width of the annuli is rather difficult to choose.

A much better estimator is given by the following (Baddeley, Rubak, and Turner,
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2015, pp. 228):

ρ̂(r) =
|W |

2πrn(n− 1)

n∑
i 6=j

κ(r − dij)eij(r) (2.17)

where κ(·) is a smoothing kernel centered at dij with a specified kernel bandwidth h

which is usually selected by cross-validation. This estimator ensures the estimated

empirical PCF is smooth and less prone to bias. Note that dij here is the observed

pairwise distance and eij is a correction term for edge effects. Edge effects here

mean that due to the bounded of the observation window, there may be unobserved

points outside of the observation window such that their existence may introduce bias.

However, this is not necessary to consider in our data since the intensity of GMCs

and SCs decreases drastically towards the boundary of the observation window and

it is highly unlikely that there are any unobserved objects outside the observation

window.

One thing to note for the estimator given in equation 2.17 is that it will always

explode to infinity as r → 0. This is not necessarily the case for many point process.

Therefore, a modified version of the estimator is given by the following:

ρ̂(r) =
|W |
2π

n∑
i 6=j

κ(r − dij)eij(r)/dij. (2.18)

As mentioned before, if the empirical PCF is compared to 1 at various distances.

Clustering pattern exists if the value is greater than 1, repulsive if less 1, and Poisson

if equal to 1.

The above summary statistics are defined through correlation structure among

points. Another type of summary statistics to characterize the behavior of point

pattern is through the empty space function or distance function.

One most used summary statistics in this regard is the nearest neighbor distance
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function (Baddeley, Rubak, and Turner, 2015, pp. 262):

G(r) = P[d(ξ,X \ {ξ}) ≤ r | there is a point at ξ in X], (2.19)

where d(ξ,X\{ξ}) is the minimum distance from a point in X to ξ, excluding ξ itself.

Equation 2.19 also assumes the first order intensity is homogeneous. Similar to the

PCF, if the nearest neighbor distance function is greater than that of the Poisson

process, it can be used to suggest clustering behavior, so on and so forth.

Note that equation 2.19 is in fact the cumulative distribution function of the near-

est neighbor distance (NND). Therefore, estimating the G-function is quite straight-

forward. Only a cumulative distribution function is estimated based on the nearest

neighbor distance of all points.

For a homogeneous Poisson process with intensity λ, the theoretical G-function is

G(r) = 1− exp(−λπr2). (2.20)

The interpretation of empirical G-function is then the following: if the estimated Ĝ(r)

is less than the theoretical G(r) given in equation 2.20, then this indicates that on

average the nearest-neighbor distances in the data are greater than that in a Poisson

process with the same average intensity (Baddeley, Rubak, and Turner, 2015, pp.

267). This is indicative of a repulsive pattern and vice versa.

Note that exploratory tools such as PCF and G-function are only sensitive towards

certain aspects of the point pattern structure due to their focus on different features

of a point pattern. Using only one type of statistics can potentially have blind spots,

and as suggested in Baddeley, Rubak, and Turner (2015), certain non-Poisson point

pattern can have exactly the same theoretical PCF as a Poisson process. Analyzing

point pattern should then in general consider the different features of its structure.

It has been stressed that the comparison using summary statistics, whether through
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correlation or spacing, requires the assumption of homogeneity in first order inten-

sity. However, this is predicated on the assumption that the underlying reference

point pattern is the homogeneous Poisson process. Directly using empirical PCF or

G-function on inhomogeneous point patterns is applicable if the purpose is to compare

the fit of a model and the real data, since the reference process is the one specified

by the fitted model. However, care needs to be taken to ensure that the model in

general captures the intensity variations of the data.



Chapter 3

Gibbs Point Process

In this chapter, I introduce the fundamental theory governing the meaningful con-

struction of Gibbs point process (GPP) models and basic methods for conducting

model criticism. Simulation of GPP models and Bayesian inference algorithms are

also illustrated.

GPP is a highly flexible way of modelling the physical structure of point processes

as the model itself is constructed by empirically modeling the distributional pattern

of points. It originated from statistical mechanics under the name Gibbs distribution.

It attempts to study an equilibrium system consisting of a vast amount of interacting

particles exhibiting complex dependence structure such that directly describing the

behavior of each individual particle is impossible. Instead, a probability distribution

is constructed by connecting the system’s equilibrium physical structure with the

energy of the system. One of the first of such model is the infamous Boltzmann

distribution. The idea is that for any physical system in equilibrium, its potential

energy is most likely to be the lowest. This relates the likelihood of a certain physical

structure of the system to the system’s energy which in turn is used to determine

36
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the probability measure. This probability measure is termed the Gibbs probability

measure and it has close ties to the exponential family distribution.

GPP models, introduced to the statistical literature by Ripley and Kelly (1977)

under the name of Markov point process models, borrow the idea of the Gibbs dis-

tribution in that they are constructed by physically describing the point pattern

structure. If a GPP model is reasonably capturing the physical structure of the pro-

cess from which the point pattern arises, the likelihood computed from the model

is high which corresponds to a low “potential energy” of the system. However, one

thing to note is that in point pattern modelling context, the model is not necessarily

trying to capture the equilibrium state of the system. It is a merely an attempt to

empirically capture the structure present in the point pattern.

Below I provide the basic mathematical theories and methodologies required to

construct a well-defined GPP model. I will also introduce several widely used GPP

models and their applications. To offer a less demanding and rigorous introduc-

tion on GPP models, I will follow Baddeley et al. (2007) and partially Møller and

Waagepetersen (2003) as well as Baddeley, Rubak, and Turner (2015). For highly

technical and rigorous definition and construction of GPP models, see for example

Daley and Vere-Jones (2008).

3.1 Finite Point Process with a Density

To define a GPP, we need certain condition on its support. Suppose a point process

X on S satisfies N (X) < ∞ where N (X) is the random variable counting the total

number of points on S. X is then a finite point process (Baddeley et al., 2007, pp.

61) and it belongs to the space

N f = {x ⊂ S : N (x) <∞}.
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As noted in Chapter 2, a point process density only exists with respect to another

point process, usually a Poisson process. We then let πµ be the distribution of a

Poisson process with intensity measure µ.

Definition 3.1.1. (Baddeley et al., 2007, pp. 62) Suppose f : N f → R+ is a

measurable function satisfying
∫
N f f(x)πµ(dx) = 1. Let

P(A) =

∫
A

f(x)πµ(dx) (3.1)

for any A ∈ N . P is then a point process distribution with respect to the Poisson

process with intensity µ and f is called the probability density function of the point

process.

Now for a point process X with probability density f ,

P(X ∈ A) =
∞∑
n=0

e−µ(S)

n!

∫
S

· · ·
∫
S

1 [{x1, . . . , xn} ∈ A] f ({x1, . . . , xn})µ(dx1) . . . µ(dx2).

(3.2)

Now if we let λ > 0, and set

f(x) = αλn(x)

where α is chosen so that f(·) is a density function, then this immediately gives us

the probability density function of a homogeneous Poisson process with intensity λ.

This also corresponds to the result in Proposition 2.2.1.

Take a closer look at the form of the density function of the homogeneous Poisson

process, we see that the information about the point process is completely encoded by

how many points, n(x), there are in the observation window. The only free parameter

λ in turn controls the expected count of the process. The higher the value of λ, the

more points there tend to be in the observation window. Now if the Poisson process is
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inhomogeneous, then λ can now be considered as a function of location or covariate,

i.e., the λ = λ(s) where s denotes location.

An interesting question arises in that how does a GPP model capture interpoint

interaction since Poisson process, either homogeneous or inhomogeneous, does not

encode anything about dependence structure between points due to the fact it only

concerns the occurrence of individual points. This leads to the Gibbs representation

of the general form of GPP models.

Gibbs Representation

Definition 3.1.2. (Baddeley et al., 2007, pp. 66)A finite Gibbs process is a finite

point process X with probability density f(·)

f(x) = exp

V0 +
∑
x∈x

V1(x) +
∑
{x,y}⊂x

V2(x, y) +
∑

{x,y,z}⊂x

V3(x, y, z) + . . .

 (3.3)

where Vk is called the k-th order potential or potential of order k.

We can now immediately see that for a homogeneous Poisson process,

α = exp(V0),

λ = exp(V1(x)), x ∈ x,

Vk = 0, ∀k ≥ 2.

This means that for a Poisson process, any potential of order greater than or equal

to 2 vanishes. It is easy to see now that the interpoint interaction is in fact captured

by the potential of order greater than or equal to 2. For a Poisson process, this pre-

cisely conveys the notion of independence between points, i.e., there is no interpoint

interaction. In statistical mechanics, the negative of the second order potential, −V2,
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is simply called the potential energy. It characterizes the amount of energy the sys-

tem has to overcome to place two points at x and y respectively. In a probabilistic

context, it also represents the contribution to the likelihood that two points occur at

x and y. Note that the quantitative relation between the potential and the likelihood

is reversed in that if it takes an infinite amount of energy to place two points at x

and y, it then means there is 0 probability for the process to produce two points at

x and y, which makes physical and intuitive sense.

Papangelou Conditional Intensity

Constructing GPP models through the full probability density can be complicated.

With sufficient conditions, however, we can fully specify a GPP model through its

Papangelou conditional intensity which is much simpler and easier to interpret.

Definition 3.1.3. (Baddeley et al., 2007, pp. 67)Let f be the probability density

function of a finite point process X in some bounded observation window W ⊂ R2. If

f(x) > 0 =⇒ f(y) > 0, ∀y ⊂ x,

then f is called hereditary with respect to X or simply hereditary and f can be ex-

pressed in the Gibbs form given by equation (3.3).

Definition 3.1.4. (Baddeley et al., 2007, pp. 65)Let f be the probability density

function of a finite point process X in some bounded observation window W ⊂ R2. If f

is hereditary, then the Papangelou conditional intensity (or simply conditional

intensity) of X exists almost everywhere and is given by

λ(ξ,x) =
f(x ∪ ξ)
f(x)

(3.4)

Conditional intensity is highly useful in that it has a one to one relationship with
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the corresponding full density function as long as f is hereditary which is a quite

simple condition to meet. Moreover, it does not involve the normalizing constant

in the full density function, exp(V0), which is unknown for most models. Lastly,

it characterizes the contribution to the likelihood while a point ξ is added to the

existing point pattern. This is very useful in understanding the structure of the point

process arises from the model and as we will see later, it is a crucial component for

the meaningful construction of GPP models as well as simulation of GPP models.

Repulsive and Clustering

With the definition of conditional intensity, we can subsequently precisely define

repulsion and clustering for a point process.

Definition 3.1.5. (Møller and Waagepetersen, 2003, pp. 83)Let X be a finite point

process and f its corresponding probability density function while λ is the conditional

intensity, then X is repulsive if

λ(ξ,x) ≥ λ(ξ,y), if x ⊂ y,

X is clustered if

λ(ξ,x) ≤ λ(ξ,y), if x ⊂ y.

It is intuitive here that if the conditional intensity increases when there are more

points in a given region, then the point process is clustered and vice versa.

3.2 Pairwise Interaction Process

After introducing the basic theorems and definitions of GPP models, we are ready

to consider some of the widely-used GPP models. One important class of model is

the pairwise interaction process (Møller and Waagepetersen, 2003, pp. 84). This
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class of model is obtained by setting Vk = 0,∀k > 2 where Vk is given in equation

(3.3). This means pairwise interaction model assumes the interpoint interaction only

comes from pairs of points. In this case, the probability density function of a point

process X can be expressed as

f(x) = α

n(x)∏
i=1

λ(xi)
∏
i 6=j

h(xi, xj), xi, xj ∈ x. (3.5)

Note that this is in fact a reparametrization of the Gibbs representation given by

equation 3.3. One thing to note is that if λ(·) is constant, i.e., the point process

is first order homogeneous, then h(·, ·) can serve as a parametric characterization

of the PCF of X (Goldstein et al., 2014). Although this does not equate to saying

that the pairwise-interaction is equal to the theoretical PCF. This is because pairwise-

interaction model assumes the internal interaction among points is only due to second

order interaction, while the interaction exhibited by PCF can be potentially affected

by higher order interaction indirectly. Nevertheless, the pairwise-interaction term

does indeed have a very tight relationship with one another. In a more general

setting, where λ is not homogeneous, h(·, ·) will significantly deviate from the PCF

and it can no longer be used as a parametric representation of the PCF.

It is noteworthy that the expected value of n(X) in a pairwise interaction model

is usually not available analytically due to the presence of interpoint interaction and

the final intensity of the point process is in fact a combined effect from the first and

second order potential. We can consider the first order potential as the “fertility” rate

of the point process or in chemistry, it is termed the chemical activity rate/function.

In the context of this research, it represents the amount “resource” there is to produce

a SC. The second order potential here will have different interpretation depends on

the form of h(·, ·). If h is constructed to model a process with second order clustering,

it represents the amount of triggering or chain reaction of the occurrence of points. If
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h is to model a repulsive process, it then conveys the idea of competition, e.g., species

competing for limited resources or the fact that there is only a limited amount of

resource available to produce SCs in any given region.

It is noteworthy that the pairwise interaction models are hereditary. Therefore,

one can construct model by specifying its conditional intensity, i.e., one only needs

to specify the following

λ(ξ,x) = λ(ξ)

n(x)∏
i=j

h(ξ, xi).

Below are several pairwise interaction model that are widely used.

Definition 3.2.1. (Møller and Waagepetersen, 2003, pp. 85)A finite point process X

in an observation window W ⊂ R2 is called a Strauss process with interacting range

r if its conditional intensity is given as

λ(ξ,x) = λγ
∑n(x)

i=1 1[d(ξ,xi)≤r].

λ is the exponentiated first order potential, and d(·, ·) is the standard Euclidean

distance. What makes Strauss process interesting is that the statistics considered for

the second order potential is the number of pairs of points lie within distance r from

each other. We can see that for the second order potential

V2(x, y) = log(γ)1[d(x, y) ≤ r].

It is then natural to see that γ here controls the second order behavior. If γ ∈ (0, 1),

then Strauss process is a repulsive process in the range [0, r]. If γ = 1, it then reduces

to a homogeneous Poisson process. Naturally, one would think that γ > 1 will result

in a clustered process. However, for a Strauss process, the probability density function

is undefined when γ > 1 since the normalizing constant α does not exist. To see this,

consider a scenario where all the points in x are within r distance from each other,
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then from equation (3.2),

1

α
≥

∞∑
n=0

e−µ(S)

n!

∫
S

· · ·
∫
S

λnγn(n−1)/2µ(dx1) . . . µ(dx2)

=
∞∑
n=0

e−µ(S)

n!
λnγn(n−1)/2µ(S)n

and this infinite sum goes to infinity which can be shown through the Stirling’s

approximation. Therefore,

1

α
≥ ∞,

hence, the probability density function is undefined when γ > 1. If one tries to

simulate a Strauss point process with γ > 1, the resulting simulation will produce

point patterns with super-clustering behavior, i.e., majority of the points will clump

together in several small regions.

Now for a Strauss process, if γ → 0, it then becomes a so-called hard-core process.

Definition 3.2.2. (Møller and Waagepetersen, 2003, pp. 85-86)A finite point process

X in an observation window W ⊂ R2 is called a hard-core process with interacting

range r if its conditional intensity is given as

λ(ξ,x) = λ1[d(ξ, xi) > r, xi ∈ x]. (3.6)

This means that in a hard-core process, no pair of points can be less than r

distance from each other. We can think of the points as the center of physical objects

such as marbles with radius r/2. This lends the hard-core process the ability to model

various point patterns consisting of physical objects such as cells or stars.

As noted before, if the first order potential is homogeneous, the pairwise interac-

tion term is a parametric representation of the PCF if it is a function of the pairwise

distance. However, we have seen that all pairwise interaction models presented above

have interaction term as a piecewise function of the pairwise distance and all have
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discontinuous jumps at the interaction range r. The main reason for choosing such a

form is due to the difficulty in inference methodologies. GPP models are tradition-

ally fitted using MLE-based approach and MLE approaches work the best when the

model is in log-linear form. This restriction forces many pairwise interaction term

to be a piecewise function of the pairwise distance. In many applications of GPP

models, such as in ecology, a piecewise form of the interaction function is usually

acceptable. However, in the context of this research, model the interaction function

as a continuous function of the pairwise distance is better suited to obtain physical

insights. Below we present several GPP models that possess continuous interaction

term.

Definition 3.2.3. (Baddeley, Rubak, and Turner, 2015, pp. 515)A finite point pro-

cess X in an observation window W ⊂ R2 is called a soft-core process with scale σ

and shape κ if its conditional intensity is given as

λ(ξ,x) = λ exp

− n(x)∑
i=1

(
σ

d(ξ, xi)

)2/κ
 . (3.7)

Definition 3.2.4. (Møller and Waagepetersen, 2003, pp. 88)A finite point process

X in an observation window W ⊂ R2 is called a very soft-core process with scale σ if

its conditional intensity is given as

λ(ξ,x) = λ

n(x)∏
i=1

(
1− exp

(
−d(ξ, xi)

2

σ2

))
. (3.8)

Definition 3.2.5. (Møller and Waagepetersen, 2003, pp. 88)A finite point process

X in an observation window W ⊂ R2 is called a Lennard-Jones process with charac-

teristic diameter σ and well depth ε if its conditional intensity is given as

λ(ξ,x) = λ exp

−4ε

n(x)∑
i=1

(
σ

d(ξ, xi)

)12

−
(

σ

d(ξ, xi)

)6
 . (3.9)
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The processes presented above are all considered infinite range interaction models

in that the interaction potential is not equal to 0 and it only approaches 0 as pairwise

distance goes to infinity. It is important to note that the soft-core and very soft-core

process are both repulsive processes while Lennard-Jones process is neither repulsive

nor clustering since it exhibit strong repulsion at very short distance and clustering

at medium distance. These processes have been quite successful in understanding

numerous physical phenomena such as the distribution of molecules using Lennard-

Jones process. However, as noted before, all the above processes are not in log-linear

form and inference using MLE approach can be quite difficult. Furthermore, models

such as soft-core and Lennard-Jones process are highly prone to numerical instability

since the pairwise distance occur in the denominator.

As we have seen, there can be countless ways to construct a pairwise interaction

model. However, meaningful construction of a new pairwise interaction model is not

arbitrary and one still needs to adhere to certain ground rules. First, the interaction

term has to be non-negative to ensure the probability density is non-negative. Second,

the second order potential has to eventually approaches 0 as pairwise distance goes to

infinity since for any two points at distance far away from each other, there should be

negligible or no interaction between them. Most importantly, sensible construction

of any GPP models have to adhere to a certain stability criteria so that simulation

and inference is possible.

Proposition 3.2.1. (Ruelle, 1969; Møller and Waagepetersen, 2003) Let φ : S → R+

be some function s.t.
∫
S
φ(ξ)µ(dξ) < ∞. Let λ(·, ·) be the conditional intensity of a

finite point process X with probability density f . X (or f) is called locally stable if

λ(ξ,x) ≤ φ(ξ).
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X (or f) is called Ruelle stable if ∀x ∈ N f , ∃c > 0,

f(x) ≤ c
∏
x∈x

φ(x).

Proposition 3.2.1 provides the theoretical groundwork for ensuring that a GPP

model is defined. Locally stable implies Ruelle stable. A finite point process is Ruelle

stable means that the measure of the process is dominated by a Poisson process and

therefore, the point process exists with respect to a Poisson process. Local stability,

on the other hand, is a stronger criteria and it ensures the successful simulation of

point patterns from given GPP models. We now can see a much general reason why

a Strauss process is undefined when γ > 1 since it is not Ruelle stable.

3.3 Multivariate Point Processes

If the point patterns considered consist of multiple types of points, such GMCs and

YSCCs studied in this research, and interest is on how they interact/correlate with

each other, then a bivariate point process should be considered. Here I give a brief

outline for the bivariate point process under the framework of GPP. For simplicity,

I only discuss the definition of multivariate point process under the framework of

pairwise-interaction. Furthermore, only point patterns of two types are considered.

Models for point patterns consist of more than two types of points can be easily

extended.

Suppose two point processes, XA and XB, form a bivariate Gibbs point process

(Isham, 1984), defined on the same observation window W ⊂ R2, then it has the

following joint probability density function

f(xA,xB) = α

n(xA)∏
i=1

λA(xi)

n(xB)∏
j=1

λB(xj)φA(xA)φB(xB)φAB(xA,xB). (3.10)
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Similar to the univariate point process, λA, λB control the first-order potential, φA(xA),

φB(xB) characterise the intra-type interaction in xA,xB respectively. The extra

term φAB(xA,xB) denotes the inter-type interaction/correlation between the points

of xA,xB. It is noteworthy that similar to the relationship between the empirical

2PCF/PCF and the intra-type interaction term, φAB(xA,xB) also has an empirical

counterpart in that it represents the cross-type 2PCF/PCF (Baddeley, Rubak, and

Turner, 2015) between xA and xB. Certainly, the assumption that both types of point

processes are first order homogeneous is required. The cross-type PCF is a generali-

sation of the PCF in that it looks at the ratio of the probability of observing a point

in type A at r distance away from a point in the type B to that of a case where the

two are uncorrelated, assuming stationarity between the two types of points.

3.3.1 Motivation for Hierarchical Interaction

If further information is available that there exists a form of hierarchy between two

types of points, i.e., one type takes precedence before another, then it is more appro-

priate to consider a hierarchical structure between the two processes through condi-

tional probability density.

The model in equation 3.10 was first formally studied by Isham (1984) after Hark-

ness and Isham (1983) studied the distribution of nests of two types of ants. However,

Högmander and Särkkä, 1999 noticed the fact that one species of ants Cataglyphis

sets up nests closer to other species of ants, while one of the other species, Messor,

chooses to live close to food sources but does not compete with Messor. In this sce-

nario where there is a natural order or asymmetry between types of points, it is no

longer appropriate to formulate the model through bivariate point process defined by

equation 3.10.

Högmander and Särkkä (1999) then introduced a hierarchical model through con-

ditional probability arguments. They separate the joint probability density of two
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point processes through conditioning where a notion of high and low-level processes

is installed. They regarded the high-level point process (Messor) as a univariate pro-

cess that takes precedent before the low-level point process (Cataglyphis) and first fit

a model for the high-level process only. Conditioning on the realization of the high-

level process, they then fit a model for the low-level process including an interaction

term to model the influence from the high process to the low process.

This form of hierarchy is very similar to a phenomena of asymmetric interaction

mentioned by Rajala, Murrell, and Olhede (2018) where they analyzed the interaction

between around 300 types of species. They found that a certain type of species

interacts significantly with only one species when the other species are randomized

in a MC test, but it interacts significantly with 22 species when itself is the one

randomized in the test. This asymmetric effect is present possibly due to factors such

as ecological dominance. However, the spatial correlation emerging from any form of

asymmetric interaction should still be symmetric (Rajala, Murrell, and Olhede, 2018).

Hence, even if asymmetric hierarchical structure exists, the cross-type interaction

should still be symmetric and any probability model constructed for the processes

should take that into account.

It is noteworthy that hierarchical structure does not mean that the low level

process does not affect the high level process. It only means that the high-level

process takes precedence before the low-level process and the dependence of high-

level process on the low-level process is not explicitly specified (Baddeley, Rubak,

and Turner, 2015, pp. 623).

The reason for considering hierarchy structure in this research is that there is a

natural formation hierarchy from CO filament to GMCs and GMCs to SCs. Therefore,

the process generating the CO filament takes precedence before GMCs and GMCs

before SCs. It is then natural to incorporate a hierarchical structure to model this

formation hierarchy.
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Next, we specify the hierarchical GPP model. Consider first the high-level process

XA, which is the process for GMCs. It has a probability density

f(xA; θA) = αA

n(xA)∏
i=1

λA(xi)φA(xA) (3.11)

where θA is the vector of model parameters. In this setting, we treat the point pattern

of xA as random and it is object of concern.

For the lower level process, we now treat the realization of xA as given, and xB

has probability density

fxA
(xB; θB) = αB(xA)

n(xB)∏
i=1

λB(xi)φB(xB)φAB(xA,xB). (3.12)

Note that now the normalizing constant in the density of xB depends on the realization

of xA.

Notice that the joint probability density for xA and xB is now

f(xA,xB) = αAαB(xA)

n(xA)∏
i=1

λA(xi)

n(xB)∏
j=1

λB(xj)φA(xA)φB(xB)φAB(xA,xB) (3.13)

which seems very similar to equation 3.10 but the model is inherently asymmetric

and fundamentally different from the symmetric model.

The detailed model construction will be deferred to Chapter 4. Next, I will provide

the basic methodology for carrying out simulation and Bayesian inference for GPP

models.

3.4 Simulation and Inference for Gibbs Point Process Models

This section introduces the basics for simulating point patterns based on a given GPP

model as well as the inference algorithms for obtaining the model parameters. For
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simulation of a GPP model, it is done through the spatial birth and death Metropolis-

Hasting algorithm by Geyer and Møller (1994). For inference on the model parame-

ters, there are usually two approaches, one being the frequentist approach by using

maximum likelihood estimation, the other being Bayesian inference through MCMC

sampling.

However, for a GPP model and many other complex statistical and probabilistic

model, conducting inference is problematic. This is because GPP models and many

other complex models belong to a family of partially-intractable distributions since

the likelihood is specified up to an intractable normalizing constant.

Baddeley and Turner (2000) proposed a maximum pseudo-likelihood estimator

(MPLE) for Markov type point process model where a pseudo-likelihood is con-

structed to approximate the true likelihood. However, this model has a restriction

in that the unnormalized likelihood must be of log-linear form. This is problematic

for models with irregular parameters, i.e., parameters that are not of log-linear form

with sufficient statistics. Although methods such as profile likelihood can be used to

estimate irregular parameters, it does not provide the ability to construct confidence

intervals for them. Geyer (1991) proposed MCMC-MLE to approximate the unknown

normalizing constant using an importance sampling scheme with a series of MCMC

simulations. However, this performs poorly when the likelihood function is complex

and not of log-linear form, as MCMC-MLE requires a good approximation of the gra-

dient of the unnormalized likelihood. For complex and non log-linear model such as

the one constructed in this research, the gradient estimate can be highly prone to nu-

merical instability and even unavailable. Furthermore, initialization of the algorithm

is troublesome as it requires a grid search over the parameter space.

Bayesian inference through MCMC sampling, however, does not have the restric-

tion on the model being of any form. It is also much easier to implement compared to

the aforementioned MLE approaches. Furthermore, it naturally fits into the nature of
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scientific process of astronomy where new data and information will usher in with the

construction and implementation of more and more powerful telescopes. This form

of updating in information and knowledge fits very well with the Bayesian paradigm.

However, the issue of unnormalized likelihood is still present and the intractable like-

lihood results in a“doubly-intractable” (Murray, Ghahramani, and MacKay, 2006)

posterior distribution when Bayesian inference is applied. Several methods based on

the standard MCMC algorithm, such as Murray, Ghahramani, and MacKay (2006),

Møller et al. (2006), and Liang (2010), have been proposed to deal with this issue. I

will illustrate the basics of the algorithms in later sections.

Next, I will provide an introduction to the construction of a simulation algorithm

for point process with a specified GPP models as well as Bayesian inference algorithms

for GPP models.

3.4.1 Simulation of Gibbs Point Process

Simulation of point patterns is crucial for inference and model criticism, and to en-

sure the model constructed can indeed capture the spatial distribution of GMCs

and YSCCs to a reasonable extent, we need to be able to simulate the point pat-

terns based on the model. In this section, therefore, we introduce the birth-death

Metropolis-Hasting algorithm (BDMH) (Geyer and Møller, 1994) and specify how to

adjust it to suit our simulation purpose.

The BDMH algorithm is a variant of the famous Metropolis-Hasting (MH) al-

gorithm developed to simulate spatial point patterns with a specified unnormalized

probability density h(x). The state of the Markov chain at each time step is a point

pattern, and we denote the state of the chain at time t by Xt. At each t, a point

is either being added (“born”) to the point pattern with probability pb or removed

(“dead”) from the point pattern with probability pd = 1−pb. If a point is to be born,

it is selected according to some probability density b(Xt; ξ) over the observation win-
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dow where ξ is the newly added point; if a point is to be removed, it is selected with

another probability density d(Xt; ξ) where ξ is the point to be removed. Lastly, we

calculate the acceptance probability for the proposed move and determine whether

the proposal is accepted or not.

To formalize the algorithm, let

X+ = Xt ∪ {ξ}

be the point pattern formed when adding ξ into Xt and

X− = Xt \ {ξ}

be the point pattern formed when removing ξ from Xt. A pseudo-code of the BDMH

algorithm is then given in Algorithm 1:

Algorithm 1: Metropolis-Hasting Birth and Death Algorithm

Input: Initial point pattern X0, number of iterations T , birth probability pb,
death probability pd, birth density b(·; ·), death density d(·; ·);

for t = 1,...,T do
Draw U ∼ unif(0, 1);
if U < pb, then

Generate ξ ∼ b(Xt; ξ);

Calculate rb =
h(X+)d(X+; ξ)pd
h(Xt)b(Xt; ξ)pb

;

Accept X+ with probability ab = min(1, rb);
else

Select ξ ∼ d(Xt; ξ) from Xt;

Calculate rd =
h(X−)b(X−; ξ)pb
h(Xt)d(Xt; ξ)pd

;

Accept X− with probability ad = min(1, rd);
end

end
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For a normal planar GPP, such as the Strauss process, we usually set

pb = pd =
1

2
; b(Xt; ξ) =

1

|Ds|
, d(Xt; ξ) =

1

n(Xt)
,

where |Ds| is the area of the observation window S. In this case, a point is selected

uniformly from the observation window when it is to be added and uniformly selected

from the existing pattern when it is to be removed. However, this form of specification

performs extremely poorly for simulating the point pattern resembling the distribu-

tion of GMCs and YSCCs. This is because the majority of GMCs are extremely close

to the CO filament, randomly choosing a point in the observation window for the

birth proposal is highly unlikely to fall close enough to the CO filament. This results

in almost all birth proposal being rejected and the algorithm will take extremely long

time to converge or may not converge at all. The same happens for simulating YSCCs

as YSCCs lie extremely close to GMCs as well.

To avoid this problem, I choose to adopt the birth density as

b(Xt; ξ) ∝
(

1 +
d2(ξ, y)

h2

)−1

(3.14)

where d(ξ, y) is the distance from ξ to the closest point y on the CO filament and h is

some parameter to be chosen depends on how correlated the points are with the CO

filament. To obtain a birth proposal from the above birth density, I employ a simple

rejection sampling procedure. Firstly, obtain a large amount of sample points that

follow the above birth density through rejection sampling, then randomly choose a

point from this sample each time a birth proposal is selected. A same birth density is

chosen for simulating YSCCs where y is replaced by a point in GMCs. I will provide

the detailed numerical choice for these hyperparameters in Chapter 5.
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3.4.2 Bayesian Inference for Gibbs Point Process Models

In this section, I introduce the basic Bayesian inference algorithm including Markov

chain Monte Carlo (MCMC) algorithm and its adaptation for GPP models. Bayesian

inference is a natural and systematic method to infer properties of model parameters

in the context of this research since astronomical observation data can be constantly

updated through the construction and employment of more and more powerful tele-

scopes. In many cases, it also possess a numerical advantage over the traditional

MLE approach where gradient computation in MLE can potentially break down due

to the complexity of the model. However, the standard method for Bayesian inference

such as Metropolis-Hasting (MH) algorithm is not feasible for our model since our

likelihood function itself contains an unnormalized constant which is a function of the

parameters. I will, therefore, illustrate the basic MCMC algorithm and methods for

implementing MCMC algorithm for GPP models.

Markov Chain Monte Carlo

For a usual statistical model with probability density

f(x;θ),

with p(θ) as the prior distribution, the posterior distribution for the parameters is

then

π(θ|x) ∝ f(x;θ)p(θ). (3.15)

In general, the posterior distribution involves an intractable integral which is a func-

tion of the data x. To facilitate posterior sampling, an arbitrary proposal distribution

q(θ′|θ) is chosen to facilitate a diffusion process to explore the posterior state space.

The standard procedure of MCMC sampling is then the MH algorithm given in Al-
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gorithm 2.

Algorithm 2: Metropolis-Hasting Algorithm

Input: Initial θ, number of iterations T ;
for t = 1, ..., T do

Propose θ′ ∼ q(θ′|θ);

Calculate r =
f(x|θ′)p(θ′)q(θ|θ′)
f(x|θ)p(θ)q(θ′|θ)

;

Accept θ′ with probability a = min(1, r);
end

However, Algorithm 2 works under the assumption that the probability density

f(·|·) is tractable for all possible θ. This is not the case for the probability density of

a GPP model. In general, a GPP model can be written as

f(x;θ) =
h(x|θ)

Z(θ)
, (3.16)

where h(x|θ) is the part that we can define and Z(θ) is an intractable normalizing

constant which is a function of the parameters θ. f in this case is called a doubly-

intractable distribution (Murray, Ghahramani, and MacKay, 2006).

For a doubly-intractable distribution, the problem arises when we calculate the

MH ratio

r =
f(x|θ′)p(θ′)q(θ|θ′)
f(x|θ)p(θ)q(θ′|θ)

=
h(x|θ′)p(θ′)q(θ|θ′)Z(θ)

h(x|θ)p(θ)q(θ′|θ)Z(θ′)
(3.17)

where the ratio

Z(θ)

Z(θ′)

is unknown. This makes the acceptance ratio in a MH-update unavailable to us and

normal MCMC sampling cannot proceed.

The first method proposed to tackle the issue is called the single auxiliary vari-

able method (SAVM) by Møller et al. (2006). Instead of sampling from the original

posterior distribution, Møller et al. (2006) proposed to extend the state space of the
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posterior distribution with an auxiliary variable y living in the same space as the

data x, and it has conditional density g(y|θ,x). In a GPP context, this means that

y is another point pattern. Now the augmented posterior distribution becomes

π(θ,y|x) ∝ g(y|θ,x)h(x|θ)p(θ)/Z(θ). (3.18)

Marginalization of the augmented posterior distribution over y will then return it

back to the original posterior distribution π(θ|x).

Now with the new posterior distribution, a change in the proposal distribution is

also needed. However, the proposal distribution is still arbitrary as in the case for

MH algorithm. In this case, the proposal for θ′ can stay as q(θ′|θ). The ingenious

part of the SAVM algorithm is the choice for the proposal of y′ where Møller et al.

(2006) set it as

q(y′|θ′,θ,y) = f(y′|θ′) =
h(y′|θ′)
Z(θ′)

. (3.19)

This means that if one is able to simulate y′ perfectly, then the SAVM algorithm

is a valid MCMC algorithm that will produce a Markov chain with stationary dis-

tribution equal to the augmented posterior distribution. Then the original posterior

distribution we desire can be obtained through simple marginalization.

Now if we compute the MH ratio, it is then

rSAVM =
g(y′|θ′,x)h(x|θ′)h(y|θ)p(θ′)q(θ|θ′)
g(y|θ,x)h(x|θ)h(y′|θ′)p(θ)q(θ′|θ)

. (3.20)

We can see that now the unknown ratio between the normalizing constants cancel

and every term in the MH ratio can be computed. The only term left to be specified

is the conditional density of g(y|θ,x) of y. Møller et al. (2006) suggests that it is

best to mimic the distribution of the original probability model, i.e.,

g(y|θ,x) = f(y|θ̃),
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i.e., choose a fixed parameter θ̃ that is approximately the mode of the posterior

distribution. However, this is rather difficult to do since finding the posterior mode

is in a sense what the MCMC algorithm tries to do. This is one of the main issue

of SAVM algorithm since choosing g(y|θ,x) is essential in ensuring a reasonable

performance of the algorithm (Park and Haran, 2018).

On the other hand, the SAVM algorithm is in fact using a two-sample importance

sampling scheme to approximate the unknown ratio through y and y′:

Z(θ)

Z(θ′)
≈ g(y′|θ′,x)h(y|θ)

g(y|θ,x)h(y′|θ′)
. (3.21)

Murray, Ghahramani, and MacKay (2006) later suggested that the importance sam-

pling scheme can be much simpler through a one-sample importance sampling esti-

mate:

Z(θ)

Z(θ′)
≈ h(y|θ)

h(y|θ′)
(3.22)

where y ∼ f(·|θ′), and they proposed a new MCMC algorithm called the exchange

algorithm by slightly altering the augmented posterior distribution as follow:

π(θ,θ′,y|x) ∝ p(θ)
h(x|θ)

Z(θ)
q(θ′|θ)

h(y|θ′)
Z(θ′)

. (3.23)

Now the augmented posterior distribution is added with two new variables, {θ′,y},

with y ∼ f(·|θ′). Again, marginalizing over {θ′,y} will return it back to the original

posterior distribution. Now at each MH step, the algorithm assumes that x ∼ f(·|θ).

The chain is then updated through a swapping proposal

qs({θ′∗,θ∗}|{θ′,θ}) = δ(θ′∗ − θ)δ(θ∗ − θ′), (3.24)

where δ(·) is the Dirac delta function. Note that this proposal is inherently symmetric,

therefore, the MH ratio is simply computed as the ratio of the augmented posterior
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distribution between the swapped settings:

r =

hhhhhhhhhhh
qs({θ′,θ}|{θ′∗,θ∗})h(x|θ′)h(y|θ)p(θ′)q(θ|θ′)
hhhhhhhhhhh
qs({θ′∗,θ∗}|{θ′,θ})h(x|θ)h(y|θ′)p(θ)q(θ′|θ)

. (3.25)

A pseudo-code for the exchange algorithm is given in Algorithm 3.

Algorithm 3: Exchange Algorithm

Input: Initial θ, number of iterations T ;
for t = 1, ..., T do

Propose θ′ ∼ q(θ′|θ);
Generate auxiliary variable y ∼ h(·|θ′)/Z(θ′);

Calculate r =
h(x|θ′)h(y|θ)p(θ′)q(θ|θ′)
h(x|θ)h(y|θ′)p(θ)q(θ′|θ)

;

Accept θ′ with probability a = min(1, r);
end

The exchange algorithm is also a valid MCMC algorithm but it is much simpler

and easier to implement than the SAVM algorithm. A more heuristic understanding

of the algorithm is that it is comparing the preference of the parameters θ and θ′

towards the real data x and the auxiliary variable y (Murray, Ghahramani, and

MacKay, 2006; Park and Haran, 2018). At each update, the chain would propose

to the current state θ a new θ′ to give up the data x and move to the proposal. If

h(x|θ′)/h(x|θ) > 1, then this indicates that the proposal θ′ fits the data x better

than θ. We also need to consider the other side of the story and see which of θ and

θ′ fits the auxiliary variable y better. Hence, the ratio h(y|θ)/h(y|θ′) represents this

preference.

Despite the simplicity, the exchange algorithm still poses a serious implementation

problem in that the generation of y requires exact/perfect sampling to ensure the

algorithm is asymptotically exact. Now this requirement is highly restrictive since

it is extremely difficult or almost impossible to generate data that perfectly follows

f(·|θ′), especially if f(·|θ′) defines a sophisticated model (Liang, 2010; Park and

Haran, 2018).



60 3.4. simulation and inference

Liang (2010) proposed a double Metropolis-Hasting (DMH) algorithm based on

the exchange algorithm by simulating the auxiliary variable through a standard

MCMC algorithm to relax the perfect sampling restriction so that the computation

becomes feasible. Algorithm 4 provides the pseudo-code for DMH algorithm.

Algorithm 4: Double Metropolis-Hasting (DMH) Algorithm

Input: Initial θ, number of iterations T , number of iterations M of BDMH
algorithm for the auxiliary variable;

for t = 1, ..., T do
Propose θ′ ∼ q(θ′|θ);
Generate auxiliary variable y ∼ h(·|θ′)/Z(θ′) through M -step BDMH
algorithm;

Calculate r =
h(x|θ′)h(y|θ)p(θ′)q(θ|θ′)
h(x|θ)h(y|θ′)p(θ)q(θ′|θ)

;

Accept θ′ with probability a = min(1, r);
end

Since there is a standard MH run for the auxiliary variable in each MH update for

the parameters, the algorithm is called the double Metropolis-Hasting (DMH) algo-

rithm. This algorithm is the easiest to construct and computationally one of the most

feasible among all existing algorithms that deal with doubly intractable distributions

(Park and Haran, 2018). However, there is a trade-off as DMH is an asymptotically

inexact algorithm due to the imperfect sampling of the auxiliary variable obtained

by a MH run and the resulting posterior estimates may be biased. This problem

can be mitigated by running the Markov chain for the auxiliary variable long enough

at a cost of computational expense. It is recommended to run the Markov chain

for 10m ∼ 20m steps where m is the number of points in the pattern. However,

for complex models with a high number of points in the pattern, this is still rela-

tively computationally costly. Nonetheless, modern day high performance computing

super-cluster such as Shared Hierarchical Academic Research Computing Network

(SHARCNET) can easily carry out threaded parallel computing with thousands of

cores, hence, the computation for model inference is feasible.



Chapter 3. Gibbs Point Process 61

Adaptive MCMC

To facilitate speedy convergence of MCMC algorithms, a standard and fixed normal

proposal distribution is rarely sufficient. For posterior distributions that are rela-

tively high dimensional and exhibit high correlation between components, standard

independent proposal from a normal distribution will perform extremely poorly.

A simple and powerful solution to speed up the convergence is the adaptive MCMC

scheme (Haario, Saksman, and Tamminen, 2001; Roberts and Rosenthal, 2009; Rosen-

thal, 2011). The idea is to let the MCMC algorithm self-learn the covariance structure

of the posterior distribution and repeatedly update the proposal distribution using

the past samples in the chain. Experiments indicates that the Markov chain can

indeed learn the structure of the posterior distribution and its performance is much

more superior than the standard independent normal proposal distribution (Rosen-

thal, 2011).

Assuming the proposal distribution comes from the normal distribution family,

the simplest construction of adaptive MCMC proceeds as follow: for the first m

iteration, to ensure that the chain has a defined covariance matrix, we use a fixed

proposal distribution:

θ′|θ ∼ N (θ,D)

where D is a user-defined covariance matrix. Usually, D is a diagonal matrix with

small diagonal components. After the initial m iteration, we let the proposal distri-

bution to be the following:

θ′|θ ∼ N (θ,Σn + D)

where Σn is the covariance matrix of the first n (n ≥ m) samples in the chain. the

extra component of D is to ensure the covariance matrix is invertible. There are

various scaling mechanisms to optimize the choice of Σn and D, but as it is not the

main purpose of this research, I will leave them out and readers can refer to Roberts



62 3.5. Model Criticism

and Rosenthal (2009) and Rosenthal (2011) for details.

One important thing to note, however, is that the sampler in adaptive MCMC is

no longer a Markov chain since the chain employs information from all previous states

of the chain. This may causes the chain to not have the posterior distribution as its

stationary distribution. However, as noted in Roberts and Rosenthal (2007), as long

as the chain satisfies the Diminishing Adaptation condition and Bounded Conver-

gence condition, the chain will still have the posterior distribution as the stationary

distribution.

Bounded convergence condition is a technical condition satisfied by almost all

reasonable adaptive schemes (Rosenthal, 2011), which includes the adaptive scheme

where the estimated covariance is employed. The diminishing adaptation condition

is a little bit more tricky in that it requires the information change in the adaptation

goes to 0 as n→∞ (Rosenthal, 2011). Fortunately, this is satisfied by the adaptive

scheme using the covariance matrix of all past samples as the information change in

the this scheme is O(1/n) since it is an empirical average of the past samples and it

goes to 0 as n→∞ (Rosenthal, 2011).

3.5 Model Criticism

In this section, I introduce the methodology used for model criticism of GPP models.

As mentioned in Chapter 2, the most basic validation tools include the empirical PCF

if the correlation summary is used, while NND distribution is generally employed if

the spacing summary is concerned. However, difficulties arise when the point pattern

exhibits heterogeneous trend and interpoint interactions which are essentially what

GPP models try to capture simultaneously. One naive strategy would be comparing

the summary statistics, such as PCF, of real data to that of the simulated data after

obtaining the fitted model parameters. However, these only serve as a second order

summary statistics of the model and it does not provide information on model fit in
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terms of general intensity of the model.

To provide a well-rounded tool set of model criticism for GPP models, I introduce

the methodologies developed by Baddeley et al. (2005) which enables systematic

diagnostic of intensity for GPP models fitted by arbitrary inference algorithms. It

concerns the residuals analysis for spatial point processes which I will define below.

3.5.1 GNZ Formula

A very important characterization of GPP models which is useful for model diagnos-

tic is given by the Georgii-Nguyen-Zessin (GNZ) formula (Georgii, 1976; Xanh and

Zessin, 1979; Baddeley et al., 2005). It is a crucial equation that characterizes the

integral properties of the GPP models which is highly useful for various purposes as

we will see in the next section.

Theorem 3.5.1. (GNZ formula) Suppose a GPP X is finite and hereditary defined

on a compact set S. Let λ(·, ·) denote its conditional intensity with respect to a unit

rate Poisson process. Then for any function g : S×N f → R+, the following equation

holds:

E

[∑
x∈X

g(x,X \ {x})

]
=

∫
S

E[g(ξ,X)λ(ξ,X)]dξ. (3.26)

An important identity we can obtain from equation (3.5) is the following: let

g(x,X \ {x}) = 1[x ∈ A] for some A ⊂ S, we have

E[n(X ∩ A)] =

∫
A

E[λ(ξ,X)]dξ. (3.27)

Equation 3.27 provides important theoretical groundwork for conducting model di-

agnostic for GPP models since the equation holds for arbitrary subset A of S. This

means this equation can be used for checking the fit of intensity of the model. This

is because the left hand side of the equation can be thought of as the intensity of the

data in A while the right hand side is the intensity in A obtained from the model.
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Significant difference between these two terms will then indicate there is a lack of fit

on the model. I will discuss the details on model diagnostic in the next section.

3.5.2 Residuals of Point Processes

Suppose we employ a parametric model for a spatial point process X defined by a

probability distribution fθ where θ is the parameter vector. Further assume that

fθ satisfies the hereditary condition. Then the innovation process (Baddeley et al.,

2005) of fθ is defined as

Iθ(A) = n(X ∩ A)−
∫
A

λθ(ξ,X)dξ (3.28)

for any A ⊂ W . λθ(ξ,X) is the Papangelou conditional intensity defined in the

previous section. Furthermore, we assume that

λθ(ξ,X) =
fθ(X ∪ {ξ})

fθ(X)

if ξ /∈X while

λθ(ξ,X) = λθ(ξ,X \ {ξ})

if ξ ∈ X. Innovation process is essentially the discrepancy between the intensity of

X and that of the model. If the model is “correct”, then the innovation process will

be a spatial white noise process and it is analogous to errors in simple linear models

(Baddeley et al., 2005). The estimator for the innovation process is the raw residual

process (Baddeley et al., 2005). It is obtained by using a plug-in estimator of the

conditional intensity, i.e.,

λ̂θ(ξ,x) = λθ̂(ξ,x)
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where θ̂ is the estimated model parameters. The raw residual process is then given

as

Rθ̂(A) = n(x ∩ A)−
∫
A

λθ̂(ξ,x)dξ. (3.29)

Raw residual process is then analogous to residuals in a linear model, and it can

serve as a diagnostic for analyzing the fit of spatial trend of the model. Any deviance

from white noise will then indicate a lack of fit in the intensity. (Baddeley et al.,

2005) also considered various scaled residuals such as inverse residuals and Pearson

residuals. They did this by employing the GNZ formula through different functional

forms of g(·, ·) in equation 3.26. However, the models constructed in this research

is not suitable for the employment of scaled residuals mentioned above due to hard-

core component in the interaction term. Furthermore, due to the Bayesian paradigm

adopted in this research, it is not clear how a scaled residuals should be computed

through the posterior predictive simulation. Therefore, we only consider using the

raw residuals.

3.5.3 Computation of Residuals

To compute the residuals, a naive approach suggested by Baddeley et al. (2005) is

to divide the observation window W into m rectangular regions, A1, . . . , Am and

calculate Rθ̂(Ak, h, λ) for each k = 1, . . . ,m. A better approach is to compute a

smoothed version of residuals using a kernel k(·) to obtain a smoothed residual field

(Baddeley et al., 2005). The smoothed residual field at location ξ is then

s(ξ) = e(ξ)

[∑
xi∈x

k(ξ − xi)hθ̂(xi,x \ {xi})−
∫
W

k(ξ − η)hθ̂(η,x)λθ̂(ξ,x)dη

]
(3.30)

where e(ξ) is used for edge correction where e(ξ)−1 =
∫
W
k(ξ − η)dη. Simply eye-

balling the behavior of the obtained smoothed residual fields will provide information

on the fit of the model intensity, i.e., negative residuals indicate underestimation in
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the intensity and vice versa.

3.5.4 Residual Computation under the Bayesian Paradigm

The above residual analysis techniques is proposed under the MLE paradigm, and

there exists slight differences in the implementation of the residual analysis under the

Bayesian paradigm.

As noted in Leininger and Gelfand (2017), the Bayesian residual analysis of point

patterns should consider the posterior predictive simulation of the point pattern rather

than directly compute the conditional intensity using the fitted model parameters as

in the MLE approach.

To assess the residuals in region Ak, one needs to consider the following as an

estimator for the residuals:

N(Ak)−Nsim(Ak) (3.31)

where N(Ak) is the number of points in Ak in data and Nsim(Ak) is the number of

points in Ak through posterior predictive simulation.

To obtain a smoothed residual field, one would first draw n samples from the

posterior distribution, and simulate point pattern X1,X2, ...,Xn by using the selected

posterior sample θ1,θ2, ...,θn. Then we need to compute the smoothed residual field

using certain kernel density for each i = 1, ..., n and consider their average. The

resulted average then serves as an estimated Bayesian residual field.
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Gibbs Point Process Models for Objects in

the Star Formation Complexes of M33

In this chapter, I will focus on the construction of GPP models for objects in the star

formation complexes of M33. The objects concerned are the carbon monoxide (CO)

filament structure, giant molecular clouds (GMCs), and young star cluster candidates

(YSCCs).

4.1 Preliminary

It is important to note that CO is not the main ingredient for star formation. Rather

it is molecular hydrogen, H2, which serves as the main source for star formation.

However, detecting H2 from GMCs in extragalactic environments is not possible as

H2 is too cold (10 ∼ 20 K) for detection. But CO is easily excited and can be used as

a tracer for H2. A general assumption is made that the X-factor (which is the ratio,

H2/CO) is constant and CO can hence be used as a proxy for H2. Furthermore, CO

traced H2 generally forms in filamentary structures. Due to the uneven distribution

67
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of gas and dust in these filament structures, clumps of gas and dust start to coalesce

and once the clump reaches enough mass, it becomes a GMC and star formation will

then commence. For a detailed review of formation, structure, detection, and its role

played in star formation, see McKee and Ostriker (2007).

I choose M33 for our analysis since it is one of the few low-inclination galaxies with

a relatively complete catalog of GMCs. Three sets of data are used in the analysis,

on the CO filament structure, the GMCs, and the YSCCs. The CO filament data

and GMCs data are obtained from IRAM 30-m observations of CO(2-1) emission

published in Druard et al. (2014). The CO filamentary structure is extracted from

the CO emission map1 using the method described in Koch and Rosolowsky (2015).

The GMCs are also identified by Corbelli et al. (2017) using the IRAM 30-m obser-

vations of CO(2-1) emission by Druard et al. (2014) and the YSCCs are identified

using the Spitzer 24-µm data, published by Sharma et al. (2011) and Corbelli et al.

(2017). The data consist of the positions, galactocentric distance, effective radius,

velocity dispersion, gas mass, and virial mass of 566 identified GMCs and the posi-

tions, size, and incomplete estimates of age and mass of 630 identified YSCCs. Both

confirmed and candidate young stellar clusters (YSCs) are considered since there are

only around 400 confirmed YSCs (with estimation of mass and age). Furthermore,

the 630 candidate YSCs are what was analysed in Corbelli et al. (2017) and it is

appropriate to also use the candidates catalog for drawing comparison.

Figure 4.1 and 4.2 show the overlay plots of GMCs on the CO filament structures

and YSCCs on GMCs. Note that the coordinates of the objects are transformed from

astronomical right ascension and declination (α, δ: longitude and latitude equivalent)

to two-dimensional projected M33-centric Cartesian coordinates, accounting for the

inclination of M33 with respect to the line of sight. The inclination is set as i =

53
◦

(Magrini, Stanghellini, and Villaver, 2009), the distance to M33 is set as D =

1With permission from Eric Koch and Erik Rosolowsky
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840 kpc (Bonanos et al., 2006; Magrini, Stanghellini, and Villaver, 2009) and the

position angle (PA) of the major axis is θ = 22◦ (Magrini, Stanghellini, and Villaver,

2009). Assuming the equatorial coordinates of a source is (α, δ), the procedure for

transformation is then (Cioni, 2009):

• convert (α, δ) to angular coordinates (x, y);

• rotate the coordinate through

x1 = x sin(θ)− y cos(θ) (4.1)

y1 = y sin(θ) + x cos(θ) (4.2)

• deproject:

y2 = y1/ cos(i) (4.3)

• calculate angular distance and convert into kpc through

dang =
√
x2

1 + y2
2 (4.4)

dkpc = D tan(dang) (4.5)

• obtain the 2D projected coordinate as

x∗ = dkpc
x1

dang

(4.6)

y∗ = dkpc
y2

dang

(4.7)

From Figure 4.1 and 4.2, it is astonishing how the CO filament structure, GMCs

and YSCCs are strongly correlated with each other. However, a sensitive quantitative

investigation is needed to describe the spatial distribution for deriving further physical
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Figure 4.1: Overlay plot of the CO filament structure and GMCs. Green network is
the CO filament structure. Purple dots are GMCs. It is striking how the distribution
of GMCs follows the network of CO filament structure.
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Figure 4.2: Overlay plot of GMCs and YSCCs. Red stars are YSCCs while purple
dots are GMCs. It is clear that there is a significant positive correlation between
GMCs and YSCCs.
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implications.

4.2 Model for CO Filaments and GMCs

In this section, I introduce the GPP model that models the distribution of GMCs in

M33 (CO-GMC model). From a modelling standpoint, the CO-GMC model is the

high-level process in a hierarchical framework between GMC and YSCCs. On another

note, it can also be regarded as a “low-level” process in that it is the lower-level process

in a hierarchical framework between the CO filament structure and GMCs. However,

the CO filament structure is not the modelling focus here.

Since the CO filament structure can also be regarded as a high-level process for the

GMCs, an interpretation for the CO filament structure can be that it is an underlying

spatial covariate for the GMCs. From a physical point of view, it has the foundation

that GMCs are generally believed to have formed from these filament structures, i.e.,

interstellar medium (ISM) rich with gas and dust to fuel star formation. This means

the first order intensity of the CO-GMC model is dependent on the CO filament

structure.

Note that for simplicity, only the CO filament structure is considered to contribute

to the first order intensity of GMCs. There may be other underlying variables that

affect the first order intensity, such as the large scale intensity variation of matter

in the galaxy. However, from Figure 4.1, the association of GMCs and CO filament

structure is striking, with only a few GMCs scattered around the filament structure.

It is, therefore, reasonable to assume a first order intensity dependent only on the

CO filament structure.

Denote the pattern of the CO filament structure by L and denote the pattern of
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GMCs as xG. Then the likelihood function of the CO-GMC model is given as

`(θG|xG;L) = f(xG|θG,L) ∝
n(xG)∏
i=1

λL(xi,G)φG(xG), (4.8)

where λL(xi,G) is the first order intensity at the location of the i-th GMC, which

also depends on the CO filament structure. φG(xG) is the pairwise interaction term

among GMCs.

To specify a model for the first order intensity of GMCs that depends on the CO

filament structure, a natural procedure is to consider the distance from a GMC to its

closest point on the CO filament structure, i.e., the nearest neighbor distance (NND).

Figure 4.3 shows the histograms of the NND from GMCs to the CO filament in both

the normal scale (Figure 4.3 (a)) and the log-scale (Figure 4.3 (b)). It seems that

the NND distribution follows a simple power law from Figure 4.3 (a). However, after

transformation to the log-scale as shown in Figure 4.3 (b), the NND distribution in

fact has two sub-populations, with a major population being extremely close to the

filament structure and a minor population being relatively far away. Modelling the

first order intensity through a simple power law structure with respect to the NND

is not able to capture the sub-population features.

To capture the multi-modal form of intensity variation, for simplicity I choose the

following formulation for the first order intensity:

λL(xi,G) = λ(di) =


θ

(
1 +

di
σ0

)−α
, 0 < di ≤ Rc,

β

(
1 +

(di −Rc)
2

σ2

)−1

, di > Rc.

(4.9)

Note that in this model, θ > 0, α > 0, and σ0, σ > 0. di is the NND from the

i-th GMC to the CO filament. θ controls the strength of the first order intensity,

σ0 controls the characteristic scale at which the major sub-populations of GMCs
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Figure 4.3: Histogram of nearest neighbor distance (NND) from GMC to the CO fil-
ament: (a) histogram with unscaled NND; (b) histogram with log-transformed NND.
It is not so obvious in (a) that the NND distribution has two sub-populations but it
becomes apparent in (b) when NND is shown in log-scale.

distribute around the CO filament structure. α is the power law coefficient governing

the distribution of the major sub-population of GMCs. β is chosen so that λ(·)

is continuous at Rc > 0. Rc is the cutoff boundary for the two populations. For

simplicity, Rc is determined by visually inspecting the NND histogram and found

to be approximately 84 pc. Furthermore, directly fitting this parameter can lead to

potential numerical issues due to the piecewise structure of the intensity function. σ

is the characteristic scale controlling the distribution of the minor sub-population of

GMCs.

The effects of the parameters are visually demonstrated in Figure 4.4. I set θ =

exp(5.5), α = 5, Rc = 2σ0 = 0.08, and σ = 0.5 as the reference parameters and see

how λ(·) is affected by the change in these parameters. For better visualization, I

transform the function value to log-scale. From Figure 4.4(a), θ governs the general

magnitude of the strength of intensity as across all values of NND. In a sense, it

controls, on average, how many GMCs there are in the span of the galaxy. Figure

4.4(b) shows that α controls the rate at which the intensity of GMCs decays in the

close vicinity of the CO filament structure. Figure 4.4(c) shows that σ determines the
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asymptotic behavior of λ(d) or the rate of intensity decay for the minor sub-population

of GMCs.
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Figure 4.4: Parameter effects on λ(d): (a) θ controls the overall intensity of GMCs
across galaxy disk; (b) α controls the intensity decrease of the major population as a
function of distance; (c) σ controls the asymptotic behavior of intensity.

For the pairwise interaction term among GMCs, I employ a simple modified very

soft-core process specified as below

φG(xi, xj) =


0, 0 < dij ≤ RG,

1− exp

(
−(dij −RG)2

δ2

)
, dij > RG.

(4.10)

dij is the distance between the i-th and j-th GMCs. RG is the smallest distance be-
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Table 4.1: Model parameters for CO-GMC model

Parameters Meaning Domain

θ Overall intensity of GMCs across galaxy disk (0,∞)
α Power law governing the decay of GMC intensity in CO vicinity (0,∞)
σ0 Characteristic scale of GMC distribution near CO (0,∞)
σ Scale parameter controlling asymptotic intensity of GMCs (0,∞)
δ Scale parameter controlling repulsive scale of second order interaction of GMCs (0,∞)

tween any two GMCs. Adding this modification to the very soft-core process prevents

over-clustering near the CO filament structure. Furthermore, GMCs generally have

physical sizes which are denoted by RG. The use of RG also embodies the physical

reality that two GMCs tend to separate from each other due to gravitational col-

lapse. Chevance et al. (2019) also found that in nine nearby spiral galaxies, the mean

separation distance between star formation complexes, i.e., GMCs with star forma-

tion activities, is approximately 100–300 pc. This justifies the short range repulsive

structure among GMCs. δ > 0 determines the range of the repulsive scale. Now

at greater pairwise distance, this interaction term essentially behaves like a Poisson

process. Although this might not be the true spatial distribution of GMCs, we can

obtain information on the behavior of GMCs through model criticism.

Table 4.1 provides a summary of the model parameters for reference.

4.3 Model for GMCs and YSCCs

In this section, I introduce a new model to probe the distribution of YSCCs assuming

a hierarchical structure from GMCs to YSCCs, while simultaneously accounting for

the large scale variation of the intensity of YSCCs across the galaxy disk as well as

the effect of properties of GMCs on the distribution of YSCCs.

Under the hierarchical GPP model framework, the point pattern of GMCs is

treated as given. Denoting the point pattern of GMCs as xG and the point pattern of

YSCCs as xS, the general form of the likelihood function then follows from Chapter
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3:

`(θS|xS; xG) = fxG
(xS; θS) = αS(xG)

n(xS)∏
j=1

λS(xj,S)φS(xS)

n(xG)∏
i=1

n(xS)∏
j=1

φGS(xi,G, xj,S).

(4.11)

As in Chapter 3, θS is the vector of model parameters. λS(xj,S) is the first order

intensity at the location of the j-th YSCC, φS(xS) is the pairwise-interaction term

for YSCCs, and φGS(xi,G, xj,S) is the correlation term between the i-th GMC and the

j-th YSC. αS(xG) is the unknown normalising constant dependent on the parameters

and xG. We now give the parametric structure for each term.

Since the general large scale distributions of GMCs and YSCCs are both approxi-

mately normal centred around the galaxy centre as shown in the histograms in Figure

4.5, the overlapping large-scale distribution of GMCs and YSCCs will be a lurking

variable that can undermine the investigation of the actual relationship GMCs and

YSCCs. Therefore, this will be accounted for in the first-order potential term as a

large-scale spatial trend:

λS(xj,S) = exp (P2(xj,S;p)) , (4.12)

where P2(xj,S;p) is a second-order polynomial in terms of the distance from the jth

YSCC to the galactic centre. To make the model as simple as possible, we assume

the following form for P2(·; ·):

P2(xS; ρ,Rs,c) = −
(
rs,c
Rs,c

)2

+ ρ, (4.13)

where rs,c is the distance from YSCC xS, to the galaxy centre. Rs,c is the characteristic

scale of the distribution of YSCCs in the galaxy disc, and ρ is an offset parameter

controlling the large scale intensity. For the correlation between the GMCs and



78 4.3. Model for GMCs and YSCCs

0.00

0.05

0.10

0.15

0.20

-4 0 4

x (kpc)

d
e
n
s
it

y

GMCs

YSCCs

(a) x-coordinate

0.00

0.05

0.10

0.15

-4 0 4

y (kpc)

d
e
n
s
it

y

GMCs

YSCCs

(b) y-coordinate

Figure 4.5: (a) Histogram of the x-coordinates of GMCs and YSCCs; (b) Histogram of
the y-coordinates of GMCs and YSCCs. Purple solid lines are histograms for GMCs
while red solid lines are histograms for YSCCs. Purple dashed lines are fitted Gaussian
density for GMCs and red dashed lines are fitted Gaussian density for YSCCs. We
can see that both GMCs and YSCCs are generally Gaussian distributed with centers
at the galaxy center and both distributions overlap significantly.
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YSCCs, we choose the following parametric form:

φGS(xi,G, xj,S) = exp

[
ψi

(
1 +

r2
ij

σ2
GS

)− 5
2

]
. (4.14)

In this model, ψi controls the correlation strength between the i-th GMC and all

YSCCs. The greater the value of ψi, the greater the correlation between GMCs

and YSCCs. rij is the distance between the ith GMC and the jth YSC. σGS is a

characteristic scale parameter controlling the correlation scale between GMCs and

YSCCs. The notion of correlation here is in terms of both distance and number since

it is a smoothly decaying function with respect to the inter-type distance rij. Notice

that if ψi = 0, it then suggests that there is no correlation between GMCs and YSCCs.

I assume the distribution of YSCCs around each YSCC follows a Plummer (5,2) power

law (Plummer, 1911; Dejonghe, 1987) for simplicity. Moreover, a preliminary analysis

on the cross-type 2PCF/PCF between GMCs to YSCCs shows a similar power law

shape as indicated in Figure 4.6. Note that the scale of the cross-type PCF is in log-

scale for better visualization. The computation of cross-type PCF is carried out in the

same fashion as in Corbelli et al., 2017 by dividing the the galaxy disc into three zones

based on the galactocentric distance (zone 1: D < 1.5 kpc; zone 2: 1.5 kpc ≤ D < 4

kpc; zone 3: D ≥ 4 kpc). We can see that the correlation scale is generally the same

in all zones with zone 3 slightly greater than zone 1 and zone 2. The correlation

strength, however, is drastically different, indicating there is a relationship between

correlation strength and galactocentric distance. I will incorporate this information

in the model later as a mark information on the GMCs. It is also noteworthy that for

zone 3, the cross-type PCF is always above unity when distance increases. However,

zone 1 and zone 2 approaches unity at approximately the same speed. This indicates

that there is indeed first-order inhomogeneity in zone 3 that is not accounted for. A

visual investigation of the YSCCs distribution in zone 3 reveals that the first-order
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Figure 4.6: Cross-type PCF between GMCs and YSCCs; zone 1: D < 1.5 kpc; zone
2: 1.5 kpc ≤ D < 4 kpc; zone 3: D ≥ 4 kpc where D is the galactocentric distance. d
is the distance between GMCs and YSCCs. The strong positive correlation between
GMCs and YSCCs is certain as observed and it increases with respect to D. However,
the cross-type PCF for zone 3 consistently being above 1 and showing no sign of
decreasing means there exists strong overlap of inhomogeneity in the intensity of
GMCs and YSCCs.

intensity is much higher closer to the galaxy center while it drops off drastically as

galactocentric distance increases. Therefore, assuming a homogeneous intensity of

YSCCs in zone 3 is inappropriate, further justifying the necessity of our approach.

On another note, since we are considering all possible pairings between GMCs

and YSCCs, choosing such a formulation circumvents the problems in rudimentary

analysis where YSCCs are assigned an associated GMC by nearest neighbour dis-

tance. This eliminates the potential bias introduced by wrongful nearest neighbour

assignment.

There are certainly various forms of parameterization of the cross-type PCF one

can choose beside the Plummer model. One example is the simple power law structure

log(φ(r)) = θ
(rc
r

)α
, (4.15)
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which is the one proposed by Peebles (1980) and used by Grasha et al. (2015), Grasha

et al. (2017), and Grasha et al. (2019). In this model, θ controls the strength/amplitude

of the correlation, rc is the characteristic scale of the correlation, and α is the gov-

erning power law coefficient. Looking at the cross-type PCF in Figure 4.6, the simple

power law model seems to fit better than the Plummer model. However, the issue

with this model under the GPP framework is that it is highly numerically unstable.

Since this model is fitted directly to the empirical PCF in the work of Peebles (1980)

and Grasha et al. (2015), Grasha et al. (2017), and Grasha et al. (2019), it does not

necessarily pose a computational issue as that work is essentially fitting a regression

model. However, under a GPP framework where simulation is required, the distance

r in the denominator can severely undermine the computation. In fact, this model is

not even bounded, directly violating the GPP model assumption.

The Plummer model was originally conceived to model the distribution of stars in

globular clusters. Although YSCCs do not clump around a GMC as stars do around

the globular cluster center, we can imagine that the Plummer model is capturing the

ensemble distribution of YSCCs around GMCs. The power of the Plummer model

can in fact vary. I set it to the simplest (5,2) configuration to reduce computational

complexity. Furthermore, a crude estimate based on the empirical cross-type PCF in

Figure 4.6 suggests that the (5,2) configuration is reasonable.

For the pairwise-interaction term, assuming stationarity, we employ the following

model:

φS(dij) =



0, 0 < dij ≤ RS,

4

3

(
dij −RS

σS

)2
(

1−
(
dij −RS√

3σS

)2
)
, RS < dij ≤ RP ,

1, dij > RP ,

(4.16)

where RP =
√

3/2σS + RS. dij is the distance between the i-th YSCC and the j-
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Figure 4.7: Plot of φS(d) with different σS values. Increasing value of σS increases
the repulsive range of second order behavior.

th YSCC. σS is a characteristic scale that determines the range of repulsive effect

between two YSCCs. However, Rp here is the actual parameter representing the

repulsive scale. Figure 4.7 shows the shape φS(d) with different choices of σS.

We choose this model since the empirical PCF can no longer be used to determine

the actual second-order property for the YSCCs due to the obvious inhomogeneity

of the YSCC distribution. The justifications for the choice of this form of pairwise-

interaction term are the following: (a) it is easy to implement and has guaranteed

numerical stability. Furthermore, the second-order potential is smooth and differen-

tiable at all scales; (b) YSCCs all have physical sizes denoted by RS. If two YSCCs are

at the same location, they will eventually be identified as one YSCC, and as noted, we

do not consider cases where there exist coincidental points. Therefore, I incorporate

a hard-core component in the pairwise-interaction term; (c) at very short scales, the

distribution of YSCCs should be repulsive since there exists competition for the star

formation fuel. Furthermore, the stellar feedback can blow away surrounding gas in

the molecular clouds and regulate star formation rate (Grasha et al., 2019; Chevance

et al., 2019). This is also demonstrated in the simulation by Rogers and Pittard
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(2013). The stellar feedback and blowouts by SCs of their surrounding molecular gas

in fact corresponds to a form of “competition” for star forming resources. Grasha

et al. (2019) also suggests that the formation of SCs from GMCs is sequential, rather

than a simultaneous clustering formation. This means that in a small and compact

region, it is unlikely for two YSCCs to exist. Although it might happen that two

YSCCs can become gravitationally bound with each other and proceed towards a

merger, the probability of it happening and being observed should be very small.

One important thing to note is that, for pairwise distance within RP , it does not

mean there cannot be more than one YSCC. It only means that the chance of finding

two YSCCs within this distance is less than that of a Poisson process and the chance

of this happening goes to zero as the pairwise-distance approaches the hard-core scale

RS. Now at larger scales, the distribution of YSCCs might not be Poisson-like, but

we can infer their behaviour at larger scales from model criticism. Any discrepancy

between the data and model can be easily interpreted since the model, as a reference,

is a Poisson process at the greater range.

4.3.1 Interaction as a Function of Marks

The correlation strength parameter ψ in equation 4.14 is indexed by i to emphasize

the dependence on the i-th GMC. It is interesting to see how the properties/marks

of GMCs affect their interaction/correlation with YSCCs. The most difficult part in

the modelling procedure is to parameterize the interaction as a function of continuous

marks as we do not know the shape of the function; we only know its domain and

range. Picard et al. (2009) proposed to model the second-order interaction parameter

in an area interaction process (Baddeley and Lieshout, 1995) as a sigmoid function

of the mark:

γ(m) = γ0 + γ1 tanh

(
m− s
δ

)
. (4.17)
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γ0 and γ1 are to be estimated where s and δ are determined by users through summary

statistics. The sigmoid function is chosen since it is bounded and for the GPP to be

defined, the second-order statistics have to be bounded.

For this study, instead of modelling the second-order interaction parameter, I shift

the focus to the cross-type correlation function between GMCs and YSCCs and relate

the correlation strength parameters as a function of marks of GMCs. For simplicity,

I only assume that the correlation strength parameter, ψi, is a function of the marks

of GMCs. I do not consider the marks of the YSCCs since various marks of YSCCs

are unavailable and in the cases where the marks are available, the estimation is

poor. Therefore, conclusions obtained from these estimated marks may not have

representative power. It is noteworthy since we are employing a hierarchical point

process between GMCs and YSCs, the marks of GMCs are no longer considered marks

as they are treated as given. We here abuse the terminology of marks for the sake of

simplicity.

Since the functional relationships between the parameters and the marks are gen-

erally unknown, I employ a simple linear relationship between the correlation strength

parameter and the marks:

ψi = θ0 +
M∑
j=1

mi,jθj, i = 1, ..., n(xG), (4.18)

where M is the number of marks of GMCs. mi,j denotes the j-th mark value of the

i-th GMC. Note that, similarly to a simple linear model, θ0 represents the baseline

value of the correlation strength. θj denotes the effect of the j-th mark of a GMC.

If θj = 0, then the corresponding mark has no effect on the correlation strength. If

θj < 0, then the j-th mark will have a negative effect on the correlation strength

between GMCs and YSCCs and vice versa.

The marks being considered here include (1) the galactocentric distance of GMC,
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Table 4.2: Model parameters for GMC-SC model

Parameters Meaning Domain

Rs,c (kpc) Characteristic scale of the large scale variation of YSCCs across the galaxy disc (0,∞)
ρ Log-intensity of YSCCs at the centre of the galaxy R
θ0 Baseline correlation strength between GMCs and YSCCs R
θD Effect of galactocentric distance of GMCs on correlation strength between GMCs and YSCCs R
θM Effect of mass of GMCs on correlation strength between GMCs and YSCCs R
θgc Effect of distance from GMCs to CO filament on correlation strength between GMCs and YSCCs R
σGS (pc) Characteristic scale of correlation between GMCs and YSCCs (0,∞)
σS (pc) Characteristic scale of repulsive structure among YSCCs (0,∞)

D, which is already shown in Figure 4.6 to have an effect on the correlation; (2) the

log-mass of a GMC, log10(M/M�); (3) the log-NN distance from a GMC to the CO

filament, log10(dgc). The correlation strength parameter is then the following:

ψi = θ0 + θDDi + θM log10(Mi/M�) + θgc log10(di,gc). (4.19)

Note that when conducting model fitting, the marks are standardized for better com-

parison between the effects of different properties on the correlation strength. In this

case, the baseline θ0 also represents the average correlation strength of a randomly

chosen GMC with YSCCs.

Note that we do not need to ensure the functional forms of the marks are bounded

in our case since (a) the marks themselves are bounded. No marks can reach a value

of infinity; (b) the hierarchical assumption will treat the GMCs as fixed, therefore,

the correlation strength can be any finite real value and the model would still be well-

defined. To summarize, Table 4.2 gives a summary of the parameters of the GMC-SC

model for reference.

4.4 Analysis of Simulated Data

Before conducting data analysis on the real data, we need to confirm that the DMH

algorithm can indeed recover the information from the data through the constructed

model. This is done through conducting inference on simulated data. I consider ten
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Table 4.3: Chosen parameters for CO-GMC model simulation

Sets log(θ) α σ (pc) δ (pc)

1 5 4.5 300 100
2 6 4 200 150
3 6.5 5 250 200

Table 4.4: Chosen parameters for GMC-SC model simulation

Sets Rs,c (kpc) ρ θ0 θD θM θgc σGS (pc) σS (pc)

1 4.65 0.5 4 0.5 0.5 0 89 54
2 4.65 1 4 1 0 −0.5 146 89
3 4.65 0.7 4.5 0 1 0.5 54 89

sets of simulated data from the birth-death MH algorithm for both the CO-GMC

and GMC-SC models. Three sets of parameters are chosen for each model and given

in Table 4.3 and Table 4.4. For the CO-GMC model, the parameter σ0 is set as

σ0 = Rc/2 = 42 pc for simplicity. The prior distribution for the CO-GMC model

is set as N (0, 1002I) where I is the identity matrix. Note that the parameters are

reparameterized into log-scale to ensure that all parameters have positive support. For

the GMC-SC model, the same prior distribution is chosen with all positive parameters

reparameterized to log-scale.

Figure 4.8, 4.9, and 4.10 show the results of the three parameter sets for the CO-

GMC model, respectively. Figures 4.11, 4.12, and 4.13 are the results for the GMC-SC

model, respectively. The thick red line segments denotes the 50% credible intervals of

bias against the true parameters obtained through the posterior distributions while

the thin red lines are the 95% credible intervals. The red circles are the estimated

posterior mean biases. The light red triangles and the horizontal black solid lines

are the reference baseline of zero bias. The dotted black lines are the average bias

obtained from all posterior samples.

For the CO-GMC model, all of Figures 4.8, 4.9, and 4.10 show similar results.
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Almost all of the 95% posterior distributions cover the true parameters. However,

few of the posterior distributions produce means that are close to the true values.

There are several potential reasons for this to occur. First, this could be due to ran-

dom discrepancies from the simulation of point patterns from the BDMH algorithm.

The BDMH algorithm can only approximately simulate a point pattern that follows

the specified GPP models. The simulation error introduced from BDMH algorithm

will inevitably cause discrepancies between the true parameter values and the values

corresponding to the simulated pattern. Secondly, simulating one point pattern is

similar to generating one value from a standard normal random variable. Generating

one value from a standard normal distribution will not necessarily give us a value

that is close to the mean 0. It may happen that the generated value is, say, 2.1, and

validating the inference algorithm using this value has no representative statistical

power. Lastly, the prior distribution may have some effect on the resulting poste-

rior distribution. Since several parameters are strictly positive, the posterior mean

can be heavily affected by the choice of prior distributions. Therefore, an ensemble

assessment of the DMH algorithm is to consider the average of all posterior mean

represented by the dotted black lines in the Figures. We can see that the average of

all 10 posterior means are very close to the true parameters, which indicates a correct

implementation of the DMH algorithm.

In terms of the length of the credible intervals, they are generally similar for each

parameters across all simulations. However, the lengths of the intervals differ a lot

for different parameter sets. For example, the average credible interval lengths for

σ for parameter set 1 is approximately 150 pc but only 80 pc for parameter set 2.

This is mostly likely due to the effect from other parameters. Since for parameter

set 1, log(θ) is lower than that of parameter set 2. Furthermore, α for parameter

set 1 is higher than that of parameter set 2. This means that the general first-order

intensity of point process under parameter set 1 is lower than set 2. This means that
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the average number of points far away from the CO filament structure is much lower

for parameter set 1 than that of parameter set 2. This will result in a smaller sample

available for estimating σ for parameter set 1 and a wider credible interval.

For the GMC-SC model, results from Figures 4.11, 4.12, and 4.13 paint a similar

picture as the CO-GMC model. Almost all 95% credible intervals cover the true

parameter and the average of posterior means across simulations are all very close to

the true parameters. The reasons for posterior mean bias and fluctuation in estimation

are essentially the same as that for CO-GMC model and I will not repeat it here.

From the above analysis on simulated data, we can confirm a reasonably good

performance of the DMH algorithm in retrieving information in the data through the

constructed model. We can now proceed to conduct data analysis on the real data

using the constructed model and the DMH algorithm.
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Figure 4.8: Plot of bias-adjusted posterior samples inferred from 10 simulated data
sets for CO-GMC model under parameter set 1 (log(θ) = 5, α = 4.5, σ = 300,
δ = 100). The thick red line segments denotes the 50% credible intervals of bias while
the thin red lines are the 95% credible intervals. The red circles are the estimated
posterior mean biases. The horizontal black solid lines are the reference baseline of
zero bias. The dotted black lines are the average bias obtained from all posterior
samples.
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Figure 4.9: Plot of bias-adjusted posterior samples inferred from 10 simulated data
sets for CO-GMC model under parameter set 2 (log(θ) = 6, α = 4, σ = 200, δ = 150).
The thick red line segments denotes the 50% credible intervals of bias while the thin
red lines are the 95% credible intervals. The red circles are the estimated posterior
mean biases. The horizontal black solid lines are the reference baseline of zero bias.
The dotted black lines are the average bias obtained from all posterior samples.
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Figure 4.10: Plot of bias-adjusted posterior samples inferred from 10 simulated data
sets for CO-GMC model under parameter set 3 (log(θ) = 6.5, α = 5, σ = 250,
δ = 200). The thick red line segments denotes the 50% credible intervals of bias while
the thin red lines are the 95% credible intervals. The red circles are the estimated
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are the reference baseline of zero bias. The dotted black lines are the average bias
obtained from all posterior samples.
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Figure 4.11: Plot of bias-adjusted posterior samples inferred from 10 simulated data sets for GMC-SC model under parameter
set 1 (Rs,c = 4.65, ρ = 0.5, θ0 = 4, θD = 0.5, θM = 0.5, θgc = 0, σGS = 89, σS = 54). The thick red line segments denotes the
50% credible intervals of bias while the thin red lines are the 95% credible intervals. The red circles are the estimated posterior
mean biases. The horizontal black solid lines are the reference baseline of zero bias. The dotted black lines are the average bias
obtained from all posterior samples.
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Figure 4.12: Plot of bias-adjusted posterior samples inferred from 10 simulated data sets for GMC-SC model under parameter
set 2 (Rs,c = 4.65, ρ = 1, θ0 = 4, θD = 1, θM = 0, θgc = −0.5, σGS = 146, σS = 89). The thick red line segments denotes the
50% credible intervals of bias while the thin red lines are the 95% credible intervals. The red circles are the estimated posterior
mean biases. The horizontal black solid lines are the reference baseline of zero bias. The dotted black lines are the average bias
obtained from all posterior samples.
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Figure 4.13: Plot of bias-adjusted posterior samples inferred from 10 simulated data sets for GMC-SC model under parameter
set 3 (Rs,c = 4.65, ρ = 0.7, θ0 = 4.5, θD = 0, θM = 1, θgc = 0.5, σGS = 54, σS = 89). The thick red line segments denotes the
50% credible intervals of bias while the thin red lines are the 95% credible intervals. The red circles are the estimated posterior
mean biases. The horizontal black solid lines are the reference baseline of zero bias. The dotted black lines are the average bias
obtained from all posterior samples.



Chapter 5

Data Analysis for Objects in M33

In this chapter, I will provide the results for the inferred model parameters as well as

the model diagnostics. From these, I will illustrate the potential physical implications

and insights on the star formation process in M33.

5.1 CO-GMC Model

5.1.1 Results

In this section, I present the fitted results for the high-level CO-GMC model. Note

that the purpose in this research of the CO-GMC model is to serve as a preliminary

demonstration of the performance of the GPP model. I will focus on how to interpret

the fitted results and most importantly how to obtain critical information from model

diagnostics. Since previous work on the distribution of GMCs is scarce due to the

difficulty in obtaining high-resolution observation of GMCs, it is difficult to draw

comparisons and obtain potential physical implications. I will instead put more focus

on physical implications on the GMC-SC models as previous studies on distribution

95
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of SCs are more numerous.

Table 5.1: Estimated posterior mean, MCMC standard error, and 95% highest pos-
terior density (HPD) intervals for parameters in the CO-GMC model. 95% HPD
intervals are calculated using coda package in R.

Parameters Posterior Mean (PM) MCMC s.e. of PM 95% HPD Intervals

log(θ) 6.1946 0.0072 (5.832, 6.556)
α 5.1340 0.0057 (4.797, 5.455)
σ (pc) 310.4500 1.6000 (237.98, 384.49)
δ (pc) 129.8700 0.3213 (113.40, 144.76)

Figure 5.1: Traceplot of each parameter in the CO-GMC model obtained from ten
MCMC runs for 30k iterations. The plot only shows the last 20k iterations for im-
proved visualization.

There are a total of ten independent MCMC runs with 30,000 iterations. Since

all parameters are strictly positive, the inference is carried out in the log-space. The

prior distribution for each parameter is set to N (0, 1002I) where I is the identity

matrix. Note that, similar to the simulation study, the parameters σ0 and Rc are set

to Rc = 2σ0 = 84 pc. The reason for choosing Rc = 84 pc is provided in Chapter

4. Setting σ0 = Rc/2 is to reduce computational complexity. Furthermore, due to
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the close distances (< Rc = 84 pc) from the major population of GMCs to the CO

filament structure, setting the characteristic scale to a fixed small value will not affect

the resulting fitted model by much. The size of GMCs is set to a fixed value of 10 pc

obtained from the median value of the GMC sizes.

For the hyperparameters of BDMH algorithm for simulating point patterns, they

are specified as follow:

pb = pd =
1

2
,

b(Xt; ξ) = c0.01

(
1 +

d2(ξ, y)

0.012

)−1

,

d(Xt; ξ) =
1

n(Xt)
.

Note that for the parameter h in the birth density b(Xt; ξ), a value of 0.01 produces a

result of rejection samples that reasonably resembles the intensity variation of GMCs

in the data. c0.01 is obtained through a simple numerical integration over a fine grid

on the observation window by

c−1
0.01 =

∫
W

(
1 +

d2(ξ, y)

0.012

)−1

dξ.

The summary of the posterior distribution is given in Table 5.1. The MCMC

convergence diagnostics are shown in Figure 5.1 which give the traceplots of the last

20,000 iterations of each chain. The plots clearly indicate convergence. A quantitative

convergence test is conducted using the Gelman-Rubin statistic (Gelman and Rubin,

1992; Brooks and Gelman, 1998) on the ten independent chains. If the test statistic

is close to 1, it indicates the convergence of the Markov chain. The resulting test

statistic from the ten chains is 1 with the upper bound of the 99% confidence interval

at 1. This strongly indicates the successful convergence of the DMH algorithm.

From Table 5.1, the fitted log-intensity parameter log(θ) due to the CO filament

structure is ∼ 6.2, indicating that the CO filament structure has an extremely strong
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Figure 5.2: (a) Raw residuals obtained from kernel density estimations of the intensity
of data and the intensity of 200 posterior simulation. (b) 95% pointwise credible
intervals coverage; dark red shows the regions where the 95% credible intervals of
raw residuals are below 0, i.e., model overestimates the intensity; dark blue shows
the regions where the 95% credible intervals of raw residuals are above 0, i.e., model
underestimates the intensity; white shows the regions where the 95% credible intervals
of raw residuals cover 0.

effect on the distribution of GMCs. Numerically, this means that the presence of the

CO filament structure will on average increase the intensity of GMCs by exp(6.2) =

492 times compared to a unit rate Poisson process. This is in line with the general

understanding that GMCs form from these filament structures. The posterior mean of

the power law parameter α is∼ 5.13. This shows that the intensity of GMCs decreases

drastically as one moves away from the CO filament structure. Combining the fitted

results of θ and α, we can conclude that the GMC distribution is predominantly

determined by the CO filament structure.

Now for the minor population of GMCs that are relatively far away from the CO

filament structure, the posterior mean of the characteristic scale σ is approximately

310 pc. This shows that for the minor population of GMCs, the intensity decreases

much more slowly as one moves away from the CO filament structure. A numerical

conclusion we can obtain from the fitted results is that at 1 kpc away from the CO
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filament structure, the average intensity of GMCs is less than 20 percent of a unit

rate Poisson process. The scale parameter δ for the repulsive structure among GMCs

is approximately 130 pc, indicating a rather strong repulsive structure among the

GMCs.

5.1.2 Model Criticism

Figure 5.2 show the continuous posterior mean residual field between the data and

model, obtained from 200 posterior predictive simulations. The continuous map of

residuals are computed using a 400×400 grid using the package spatstat in R. A

radial basis function is used as the smoothing kernel and the bandwidth is chosen to

be 510 pc, which is selected through cross-validation using the built-in function from

spatstat. Figure 5.2 (a) shows the posterior mean residual field. We can see that

in general, the residual field is very close to a 2D white noise across the observation

window, indicating a good fit of model to the data. Figure 5.2 (b) shows the 95%

pointwise credible intervals coverage. This is done by considering the residual values

from all 200 posterior predictive simulations for each grid point and constructing

the 95% credible intervals from these residuals. Then it is determined whether zero

falls below, above, or within each credible interval. We can see from Figure 5.2(b)

that there are regions with consistent overestimation and underestimation, this may

suggest that there may exist certain levels of misfit of the model. To pinpoint the

cause, we will have to look at the fit of the model in terms of the fit of the covariance

effect and the second-order structure.

For the fit of the covariance effect, Figure 5.3 shows the comparison between

the cumulative distribution functions for log-NND from GMCs to the CO filament

for the data and the model. The black line is the distribution function for data

and the red line is the posterior mean distribution from 200 posterior predictive

simulations. The light and dark red bands are the pointwise 50% and 95% credible



100 5.1. CO-GMC Model

0.00

0.25

0.50

0.75

1.00

1 10 102 103

(pc)

Figure 5.3: Distribution function of log-NND from GMCs to the CO filament structure
for data and model: dark red line is the posterior mean distribution from 200 posterior
predictive simulations; black line is the empirical distribution of data; dark red band is
the pointwise 50% credible intervals while light red band is the 95% credible intervals.

intervals respectively. We can see that the model fits the data almost perfectly; this

means that the covariance effect is sufficiently accounted for.

For the second order characteristics, Figure 5.4 and Figure 5.5 show the compar-

ison of PCF and G-function between the data and model respectively. Similar to

Figure 5.3, the black line is the statistics of the data while the red line is the esti-

mated posterior mean statistics from 200 posterior predictive simulations. The dark

and light red bands are pointwise 50% and 95% credible intervals respectively.

From Figure 5.4, we see that the empirical PCF from the data is generally within

the 95% credible intervals. however, it is well beyond the 50% credible intervals and

above the the posterior mean PCF. On the other hand, Figure 5.5 indicates that the

model fits the data very well in terms of the G-function.

The analysis of Figure 5.3, 5.4, and 5.5 seems to suggest that the discrepancy

between the model and data is due to an underestimation in the second-order intensity

observed in Figure 5.4. However, an interesting observation of Figure 5.4 provides

a clue that it might be due to another less obvious reason. As we can see from
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Figure 5.4: PCF comparison between data and CO-GMC model: black line is the
PCF obtained from data; dark red line is the estimated mean PCF under the model
obtained through 200 posterior simulation; dark red band is the grey band is the
pointwise 50% credible intervals of the PCF at each d under the model while light
red band is the 95% credible intervals.
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Figure 5.5: G-function for GMCs: dark red line is the estimated mean G-function
from 200 posterior simulations; black line is the G-function estimated from data; dark
red band is the estimated pointwise 50% credible intervals of the G-function for the
model while light red band is the 95% credible intervals.
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Figure 5.6: Mass of GMCs vs NND from GMCs to the CO filament structure in
log-scale.

Figure 5.4, the empirical PCF of the data is always above the posterior mean PCF of

the model from 180 pc all the way to 1500 pc. This usually happens not because of

underestimation of second order clustering but rather due to a misfit in the first-order

intensity, as it is very unlikely for second order clustering behavior to persists over

such a wide range of scale. Realistically, it does not make physical sense for there

to exist second-order clustering between two GMCs at over 1 kpc scale. However,

as we have seen in Figure 4.3, the first order intensity exhibits an almost perfect fit

between model and the data. So what could be the issue here? The culprit here is

most likely the non-stationarity of the contribution to the first order intensity from

the CO filament structure. In the model, it is assumed that the intensity parameter

θ is the same at any point on the CO filament structure. However, this is unlikely to

be the case since in reality there exists inhomogeneity of the CO intensity at different

points on the CO filament structure. This will likely lead to a varying first-order

intensity for GMCs depending on the position of a point relative to the filament

structure.



Chapter 5. Data Analysis for Objects in M33 103

Furthermore, there might exist other formation mechanism of GMCs in that they

do not necessarily all form from the CO filament structure and then separate from

their natal environment. Besides the CO filament structure, there could be interstellar

medium permeating other regions of space. Although the abundance of ISM can be

much lower compared to the CO filament structure, it can still potentially form GMCs

due to accumulation (Corbelli, Braine, and Giovanardi, 2019). The distribution of

ISM in these regions is highly unlikely to be homogeneous, which can lead to the

misfit of the model to data shown in Figure 5.2(b).

The evidence for the above claim that certain portion of GMCs might not originate

from the CO filament is two fold. First, from Figure 4.3(b), we have observed two

sub-populations of GMCs based on the distance from GMCs to the CO filament

structure. If all GMCs form from the CO filament and then drift away from their natal

environment, the distribution of the distance from GMCs to the CO filament structure

should not exhibit the clear bimodal distribution observed in Figure 4.3(b). Second,

Figure 5.6 shows the scatter plot of the log-mass of GMCs and the log-NND from

GMCs to the CO filament structure. We can clearly see there is a negative relationship

between the two variables with an estimated slope of the linear regression line at

−0.24. Furthermore, the major population of GMCs are 3 times more massive than

the minor population on average. This suggests that the GMCs farther away from

the CO filament structure might form out of the field of ISM with an intensity much

lower than the filament structure. The less ISM rich environment also corresponds

to the fact that the number of GMCs is much fewer in the less massive population.
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5.2 GMC-SC Model

5.2.1 Results

In this section, I present the results of the model for the distribution of GMCs and

YSCCs. For the hyperparmeters of BDMH algorithm, they are the same as the ones

used for the CO-GMC model. There are a total of ten independent MCMC runs and

100k iterations are carried out for each run. Again, the parameters whose domain

is strictly positive are transformed into log-scales. The prior distribution for each

parameter is set to N (θ̃, 1002I) where θ̃ is a crude estimate based on the MPLE

approach and I is the identity matrix. Irregular parameters that cannot be inferred

by the MPLE approach, such as σGS, are estimated based on summary statistics: Rs,c

is based on the histograms in Figure 4.5; σGS is estimated using the median nearest

neighbor distance between YSCCs and GMCs; σS is set to the generally accepted

scale for star formation complexes (Chevance et al., 2019). For parameters governing

the relationship between marks of GMCs and the correlation strength of GMCs and

YSCCs, I set them to 0 as it is not clear how to obtain a crude estimate. Table 5.2

shows the crude estimate θ̃.

The MCMC convergence diagnostics are shown in Figure 5.7. For better visu-

alization, only the last 20k iterations of each chain are shown in Figure 5.7. The

plots clearly indicate the convergence of the chains. The resulting Gelman-Rubin

test statistic from the ten chains is 1 with the upper bound of the 99% confidence

interval at 1, indicating convergence of the chain.

Table 5.3 lists the summary of the posterior sample of the model parameters. I

discard the first 50k iteration of the chains as burn-in and choose the chain with the

highest effective sample size as the representative sample of the posterior distribution.
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Table 5.2: Crude estimate of GMC-SC model parameters

log(R̃s,c) (kpc) ρ̃ θ̃0 θ̃D θ̃M θ̃gc log(σ̃GS) (pc) log(σ̃S) (pc)

log(5) 0.8 4 0 0 0 log(76) log(100)

Table 5.3: Estimated posterior mean, MCMC standard error, and 95% highest pos-
terior density (HPD) intervals for parameters in the GMC-SC model. 95% HPD
intervals are calculated using the coda package in R.

Parameters Posterior Mean (PM) MCMC s.e. of PM 95% HPD Intervals

Rs,c (kpc) 4.7992 0.0067 (4.478, 5.137)
ρ 0.6876 0.0035 (0.509, 0.855)
θ0 4.4915 0.0048 (4.239, 4.744)
θD 0.8513 0.0034 (0.641, 1.073)
θM 0.6635 0.0039 (0.442, 0.873)
θgc −0.0456 0.0048 (-0.267, 0.185)
σGS (pc) 84.6900 0.1231 (78.40, 90.78)
σS (pc) 79.6200 0.2075 (69.03, 89.53)
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Figure 5.7: Traceplot of each parameter in GMC-SC model obtained from ten MCMC runs for 100k iterations. The plot only
shows the last 20k iterations for improved visualization.
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We see that the characteristic scale of the YSCs in the galactic plane, represented

by Rs,c, is ∼ 4.8 kpc from the center of the galaxy. This coincides well with the

mean of the prior distribution for Rs,c at 5 kpc. The central intensity, ρ, controlling

the galaxy-wide first-order log-intensity of the distribution of the YSCs is only about

0.68. This means at the center of the galaxy, the first-order intensity contributed

by the large-scale intensity is approximately exp(0.68) = 1.97 kpc−2. This can be

explained as approximately 2 YSCCs per kpc2 at the galaxy center being not due to

the presence of GMCs, rather the general intensity variation across the galaxy disc.

This number will then drop as one moves away from the galaxy center. Now at the

immediate surroundings of a GMC, the baseline correlation strength parameter θ0,

or the first-order log-intensity contributed by an average GMC is around 4.5. This

means that at the same galactocentric distance, the increase in the intensity from a

region with no GMC to the center of an average GMC is a walloping exp(4.5) = 90

times. This indicates that the GMCs have a huge impact on the distribution of the

YSCs and serves as ample evidence to the claim that GMCs are the birthplace of

YSCs.

Note that, however, ρ = 0.68 does not equate to saying the overall intensity

contributed by the large scale first-order intensity is 2 YSCCs per kpc2 at the galaxy

center. Rather, we do not know the overall intensity as it is also governed by the

second-order intensity as well. However, the increase in the overall intensity from

regions with no GMC to the vicinity of an average GMC is indeed 90 times.

The value of θdist, θmass, θgc indicate interesting effects from the properties of the

GMCs on the correlation strength between GMCs and YSCCs. The effect of distance

from the galactic center to GMC, represented by θdist, indicates that if the distance

increases by 1 standard scale, the correlation strength between GMCs and YSCCs

increases by 85%, while 1 standard log-scale increase in the mass of the GMC leads to

a correlation strength increase by about 66%. The effect from the distance between
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GMCs and the CO filament structure, however, does not seem to have a significant

effect on the correlation strength.

The characteristic scale, σGS, of the distribution of YSCs around GMCs is ∼85

pc, which means that the effect of GMCs on the intensity of YSCs only has a very

limited range.

For the second-order intensity, the characteristic scale σS is ∼ 79 pc. According

to the model, this means that, on average, the interpoint interaction between two

YSCs disappears, i.e., the point pattern becomes (inhomogeneous) Poisson, once the

distance is greater than ∼ 105 pc.

I will defer the detailed interpretation of these parameters to later sections.

5.2.2 Model Criticism

Now for model criticism, Figure 5.8 shows the intensity residuals obtained by com-

paring the data and simulation from the fitted model using 200 posterior samples.

The intensity residuals are obtained through the methods described in Chapter 3.

The continuous residual map is given in Figure 5.8. The procedure is similar

to that for constructing Figure 5.2. The kernel bandwidth is chosen to be 420 pc

determined by cross-validation. Figure 5.8 (a) shows the posterior mean residual field.

We can see that in general, the residual field is close to 2D white noise across the

observation window, although there seems to exist certain structure that traces out

the spiral structure of the galaxy. Nevertheless, it does indicate an overall reasonably

good fit of the model to data. To further pinpoint the fit of the model, Figure 5.8

(b) shows the 95% pointwise credible intervals coverage. Note that the consistent

overestimation in the corner regions of the observation window should be ignored

since it poses no meaningful physical implications. This is due to the fact that the

large scale intensity of the model has a positive probability of point occurrence in

these regions while in the real data, there is no point observation. This eventually
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(a) Mean posterior raw residuals of GMC-SC model
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Figure 5.8: (a) Raw residuals obtained from kernel density estimations of the intensity
of data and the intensity of 200 posterior simulation. (b) 95% pointwise credible
intervals coverage; dark red shows the regions where the 95% credible intervals of raw
residuals are below 0, i.e., the model overestimates the intensity; dark blue shows
the regions where the 95% credible intervals of raw residuals are above 0, i.e., the
model underestimates the intensity; white shows the regions where the 95% credible
intervals of raw residuals cover 0.

leads to the perceived overestimation of the intensity. In fact, if we look at Figure

5.8(a), the posterior mean residuals in these regions are very close to zero, therefore,

the overestimation of intensity in these regions is not of concern. However, we do see

from Figure 5.8 (b) an interesting result in that the intensity in the outer region is

getting consistently underestimated, denoted by the large blue blocks in the plot. This

can potentially have multiple explanations and we will need other model diagnostics

to pinpoint the possible cause.

To further our diagnostics, Figure 5.9 shows the comparison of the empirical PCF

obtained from data and that of the model. The black line in the plot shows the

empirical PCF inferred from real data and the red line is the posterior mean PCF

obtained using the 200 posterior predictive simulations. The dark and light red bands

are the pointwise 50% and 95% credible interval respectively, obtained through the 200

simulations. From the plot we can see that the empirical PCF is within the credible
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Figure 5.9: PCF comparison between data and GMC-SC model: black line is the PCF
obtained from data; red line is the estimated mean PCF under the model obtained
through 200 posterior simulation; grey band is the pointwise 95% credible intervals
of the PCF at each r under the model.

band at almost all distance. However, we do see that the empirical PCF from data

has a large deviation from the model mean at r = 125 pc and it mostly remains above

the model mean all the way to around 500 pc. This deviation may correspond to the

underestimation of the intensity in the outer region of the galaxy disc as shown in

Figure 5.8. However, it seems to contradicts the fact that the empirical PCF from

data is within the credible bands for almost all distance. As mentioned in Chapter 2,

the PCF itself is not sufficient to fully characterize a point pattern as it has potential

blind spots. To have a well-rounded view of the second-order characteristics, the

G-function (NND distribution) is also plotted in Figure 5.10.

Figure 5.10 (a) shows the G-function between the real data (black line) and the

posterior mean (red line) from the same 200 posterior simulated data used for Figure

5.9. Figure 5.10 (b) shows the difference between the G-functions of data and model.

We see that in the short range (r < 100 pc), the G-functions of data and model match

reasonably well. However, starting from approximately 150 pc, the point pattern from

the data becomes more clustered than the model, peaking at around 250 pc with a

difference of 0.1, i.e., on average, a YSC from the data has an excess of 10 percent
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Figure 5.10: (a) G-function for YSCCs: red line is the estimated mean G-function
from 200 posterior simulations; black line is the G-function estimated from data;
grey band is the estimated pointwise 95% credible intervals of the G-function for the
model. (b) Differences in the G-functions between data and model: red line is the
mean difference; grey band is the pointwise 95% credible interval.

chance to that of the model of finding another YSC as its neighbor within 250 pc.

This discrepancy of clustering behavior declines but persists all the way to over 600

pc. We see that this significant discrepancy is not reflected by simply comparing the

PCF of data and model. This is most likely due to the fact that PCF is an averaged

statistic where all pairwise distances are taken into account while the G-function

is only considering nearest neighbor distance. In the sense of local structure, the

G-function can be much more sensitive than the PCF.

It is important to note that since the inferred repulsive range RP ≈ 105 pc,

the clustering feature is indeed with respect to a Poisson process. Combining the

findings from Figure 5.8 (b), we can conclude that this discrepancy originates from

the underestimated blocks in the outer region of the galaxy. However, there are three

potential causes for this underestimation: (1) the underestimation of the large-scale

inhomogeneity in the outer region; (2) the underestimation of the effect from GMCs;

(3) second-order clustering not accounted for by the model. To determine the cause,

we carry out two other analyses.

To see the general estimates of the large scale effect, Figure 5.11 shows a count
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Figure 5.11: Count of points that are at least distance d away from the galactic
center with d increasing from 0.5 kpc to 5.5 kpc; red line and dots are the mean
count obtained from simulated data using 200 posterior samples; dark red vertical
lines are 95% credible intervals of the count at each distance of d where the count is
calculated; black line is the true count at each d where the count is calculated.

comparison between the data and the model with respect to the distance from the

center of the galaxy to its outer rim. We do this by counting the number of points

in the region that is distance r away from the galaxy center, where r ranges from 0.5

kpc to 5.5 kpc, in 0.5 kpc increments. We compare the statistics from the data to

what is obtained from simulation of 500 posterior samples. Figure 5.11 shows that

the data and the model are generally in good accordance with each other, meaning

that the large scale inhomogeneity is indeed properly accounted for.

Figure 5.13 shows an overlay of GMCs and YSCCs on top of the residuals from

Figure 5.8(a). Figure 5.13 shows that in the outer rim, the regions where the inten-

sity is consistently underestimated in fact have no or disproportionately few GMCs

in their vicinity. Note that we determine the vicinity by referencing the estimated

characteristic scale σGS between GMCs and YSCCs which is only about 85 pc. We

also marked the regions with no or few GMCs in their surroundings with ellipses for

better visualization. It is easily seen that these ellipses corresponds to the regions

where intensity is consistently underestimated in Figure 5.8(b).

Furthermore, using the same simulated data obtained for Figure 5.11, I plotted the
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Figure 5.12: 50% credible intervals of nearest neighbor distances (NND) of YSCCs
grouped by distance to the galaxy center. Red band denotes the central 50% confi-
dence intervals of NND for each annuli obtained from data; red dots are the median
NND from data; blue band denotes the central 50% credible intervals of NND for
each annuli obtained from 200 posterior simulations; blue triangles are the median
NND from the 200 posterior simulations;

comparison of the NND distribution of YSCCs in each annulus encircling the galaxy

center. The result is shown in Figure 5.12. As shown in Figure 5.12, the discrepancy

between the NND distribution in each annulus is reasonable until the annuli start to

reach the outer region of the galaxy, at r > 4.5 kpc. Furthermore, the median NND

distance of YSCCs in the outer region is generally close to 250 pc, which corresponds

exactly to the distance at which the peak of discrepancy is reached in the G-function

in Figure 5.10. This proves that the discrepancy between the data and the model

indeed comes from the underestimation of intensity in the outer region, i.e., the blue

blocks shown in Figure 5.8(b). However, this also shows that the underestimation is

not due to the misfit of the large-scale intensity in the outer region.

To determine whether this discrepancy is due to the underestimation of effect from

GMCs, I present the following figures.

For a more quantitative inspection, we also plot the bivariate density between the

distance from a GMC to its nearest neighbor in YSCCs (Rgs) against the distance

from that YSC to its nearest neighbor in YSCCs (Rss). This is shown in Figure 5.14.

We see here that there is a huge discrepancy between the data and the model when
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Figure 5.13: GMCs and YSCCs overlaid on raw residuals between data and model.
Ellipses in the plot show the regions where the intensity is underestimated by the
model and there are no or disproportionately few GMCs in the vicinity of YSCCs.

Rgs > 100 pc, however, there is not much discrepancy at Rgs < 100 pc. The blue-

dashed lines in the plots are the fitted least-squares lines between Rgs and Rss. The

slope of the real data is ∼ 0.06 while the slope of simulated data is ∼ 0.25. The purple

lines are fitted least-squares lines given Rgs > 100 pc. The slope for the real data is

∼ 0.42 and the slope for simulated data is ∼ 0.56. From this, we can determine that

the point pattern in the data is in fact more clustered than the simulated data from

the model when the YSCCs considered are far away from the GMCs. Furthermore,

given that this discrepancy occur at range Rgs > 100 pc and peaks at 250 pc range, we

can conclude that this discrepancy is not caused by underestimation of the correlation

with GMCs. Simply from a physical sense and from the inferred value of σGS, the

influence of GMCs on YSCCs should not extend to over 250 pc.
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Figure 5.14: Density contours of distance from YSCs to nearest neighbor in GMCs
(Rgs) against the nearest neighbor distance between YSCs (Rss); (a) Plot obtained
from real data; (b) Plot obtained from 200 posterior simulations; dashed blue lines
are the fitted least squares lines between the two distances; solid purple lines are the
fitted least squares lines between the two distances for Rgs > 100 pc. The plots are
in log-log scale.

Therefore, combining all the results from the previous analysis, we see that there

are indeed second-order clustering patterns unaccounted for by the model at 150–

600 pc scales in the outskirts of the galaxy.

5.2.3 Comparison to Previous Studies & Physical Implications

First-Order Potential and Correlation Structure

The parameters governing the first-order potential provide some very interesting in-

sights on the star formation process in M33. As mentioned, the central log-intensity

for the large scale spatial trend of YSCCs is ρ ≈ 0.68 compared to the baseline ef-

fect/correlation strength θ0 ≈ 4.5 from an average GMC. This confirms that there

indeed is a strong correlation between GMCs and YSCCs as suggested by Corbelli

et al. (2017) and it provides rigorous proof that this correlation between GMCs and

YSCCs is not simply due to the general overlapping distribution among them across

the galaxy disc. This also provides sufficient indirect evidence that GMCs are indeed
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birth places of YSCCs since for a correlation structure to be this strong, random

alignments of GMCs and YSCCs are highly unlikely to be the cause.

On the other hand, the characteristic scale σGS of the correlation between GMCs

and YSCs is about 85 pc; this matches well with the median distance of 76 pc from a

GMC to its nearest neighbour in YSCCs. A slightly greater estimated value is largely

due to the fact that we considered all possible assignments of a YSCC to a GMC. It

is also similar to the general size of cloud-scale (. 100 pc) star formation complexes

(Chevance et al., 2019). However, compared to the correlation scale of 17 pc obtained

by Corbelli et al. (2017), the difference is rather drastic. We suspect the difference

might be due to (a) the fact that those authors did not adjust for the inclination

of M33 in their analysis; (b) vastly different approaches in modelling framework; (c)

those authors scaled the distance among GMCs and YSCCs to account for their large

scale density variation when they fitted their model for the “positional correlation

function” to describe the relationship between GMCs and YSCCs. However, they

did not seem to account for the scaling when fitting the correlation length parameter.

This seems rather unjustified and might have led to the drastic difference between

our estimate and theirs. Nevertheless, a characteristic scale of 85 pc still shows a

strong positive correlation between GMCs and YSCCs. Furthermore, it also means

that the correlation strength between GMCs and YSCCs diminishes drastically as

the separation distance increases.

For the slope parameters governing the effect of GMC properties on the correlation

strength with YSCCs, we found that θD = 0.85, θM = 0.66, and θgc = −0.03. For

θD, the results show that the correlation strength increases by exp(0.85) = 2.3 if the

galactocentric distance of GMCs increases by 1 standard scale, which is about 1.55

kpc. This generally corresponds to the preliminary analysis on the cross-type PCF

between GMCs and YSCCs obtained in Figure 4.6. To better compare our results to

what Corbelli et al. (2017) obtained, we follow the procedure described by Corbelli
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et al. (2017) and analyse the ratio between the “positional correlation function” of

GMCs and YSCCs in the three zones constructed by Corbelli et al. (2017). We

found that the maximum increase in the ratio is around 3 when moving from zone

1 (D < 1.5 kpc) to zone 2 (1.5 kpc ≤ D < 4 kpc) and about 2 from zone 2 to

zone 3 (D ≥ 4 kpc). This is generally in line with what we have obtained, although

differences in estimates diverge as the galactocentric distance increases. Again, this

is likely due to the completely different approach in modelling since for simplicity, we

considered the effect of galactocentric distance on the correlation strength as linear.

This could be unrealistic across the galaxy disc. We will consider other forms of

non-linear relationships in future work.

However, caution is needed in interpreting the physical meaning of θD since the

GMCs and YSCCs also clump on the spiral arms and this might be a potential lurking

variable that can influence the actual correlation between GMCs and YSCCs as noted

by Corbelli et al. (2017). Nevertheless, the characteristic scale of the correlation at

85 pc still indicates strong evidence for the relationship between GMCs and YSCCs.

We do not pursue the modelling of spiral arm structure since that can drive up model

complexity and the model considered here already has eight parameters.

On another note, the strong positive effect of galactocentric distance on the corre-

lation strength between GMCs and YSCCs leads us to make an important observation.

As we have already seen in Figure 5.13, the outer region of the galaxy disc has a num-

ber of YSCC groups. Although we have pointed out that these groups do not have

GMCs in their immediate surroundings (< 100 pc), a partial contribution to the high

value of θD could come from the fact that these YSCCs groups all appear to be within

250–500 pc from GMCs. We note that this should not be caused by the crowding

between GMCs and YSCCs in the spiral arms since (a) the scale at 250–500 pc is still

relatively local for spiral arms to have any significant effect on the density variations

of both GMCs and YSCCS; (b) YSCCs in the end need to have a birthplace and
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they cannot show up out of nowhere simply because of the presence of spiral arms.

The point of this observation is that these YSCCs groups not having GMCs in their

surrounding at a distance similar on the order of σGS may have important physical

implications for the formation and evolution of YSCCs. I will defer the discussion to

section 5.2.3.

For θM , we see that the mass of GMCs also has a strong positive effect on the

correlation strength between GMCs and YSCCs. Similar to the effect of the galacto-

centric distance, 1 standard scale (2.1 × log10(M�)) increase in the mass of a GMC

can lead to a exp(0.66) = 1.9 times increase in the correlation strength. This also

corresponds to the finding by Corbelli et al. (2017) where they noted that 69% of

the high-mass GMCs (> 2 × 105M�) have a YSCC within 50 pc while only 44% of

low-mass GMCs have an associated YSCC.

The distance from GMC to the CO filament structure may not seem to have any

significant effect on the correlation strength between GMCs and YSCCs. However,

the approximate posterior distribution of θM shows that 65% of the posterior samples

are below 0. This, together with the estimated posterior mean at −0.045, shows

that as GMCs break away from the CO filament structure, their correlation with the

YSCCs tend to slightly decrease. This may indicate that the star formation activity

is more fervent while GMCs are still part of the CO filament structure, although the

effect might be minuscule.

Second-Order Potential

Based on the second-order potential and the results from model criticism, we confirm

that there indeed exists repulsive behaviour between YSCs at short distances, as

indicated by the matching of the NND distribution at short distances in Figure 5.10.

The most important results we found are on the YSCC clustering behaviour in the

outer region of the galaxy disc. As mentioned before, these groups of YSCCs are not
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associated to any GMCs, but they are still generally within 200–500 pc from GMCs.

This can involve several potential explanations that may shed light on the evolution of

GMCs and YSCCs. Below I list three potential hypotheses that potentially explains

the grouping behavior:

• There are undetected GMCs in the outer region of the galaxy

• YSCCs in the outer regions destroyed their natal GMCs

• YSCCs moved away from their natal GMCs

First, the grouping behavior of YSCCs in the outer region of the galaxy can serve

as evidence for the hypothesis proposed by Corbelli et al. (2017). In their conclusion,

they attributed the non-negligible disparity in the numbers of GMCs and YSCCs in

the outer region to the presence of GMCs that are below detection limits, with some of

the excess YSCCs born from these undetected GMCs. The detection of the grouping

behaviour of YSCCs in the outer region in our analysis can support this hypothesis.

If we assume similar levels of correlation between the undetected GMCs and YSCCs

and some of these YSCCs are still associated with undetected GMCs, then these

GMCs will strongly affect the position of the “unclaimed” YSCCs and these YSCCs

will likely group around the undetected GMCs. However, due to the detection limit,

these GMCs are not considered in the data, hence the model cannot account for their

effect on the YSCCs, which is reflected by the grouping behaviour demonstrated in

our analysis. Furthermore, the results from Figure 5.10 also seem to point in the

direction of the undetected GMCs hypothesis. The recent study by Chevance et

al. (2019) analysed the cloud-scale star formation complexes (including GMCs and

associated SCs) in nine spiral galaxies. They found that the general mean separation

distance between individual star formation complexes is roughly ∼ 100−300 pc. This

corresponds to the scale of 250 pc at which the peak of discrepancy occurs between

NND distributions of the data and our model as shown in Figure 5.10. If these YSCCs
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are indeed associated with undetected GMCs that are separated by 250 pc on average,

then it explains the discrepancy in Figure 5.10.

To assess the plausibility of the hypothesis of undetected GMCs, we turn to the

original paper of Druard et al. (2014) where the GMC observations are reported. As

the GMCs are detected through the CO(2-1) emission line, a useful piece of informa-

tion is the noise map of CO(2-1) observations presented in Figure 6 of Druard et al.

(2014). Although there is noise variation across the galaxy disc, it is almost negligible

and the noise map is in general quite homogeneous. If we compare the region with

the highest noise level with the region with underestimated intensity in Figure 5.8,

the high noise region does not have significant overlap with the blue blocks in Figure

5.8. Furthermore, the high noise region in fact has detected GMCs. If we assume

that the CO intensity from GMCs is on a similar level in the outer region, the above

comparison does not seem to support the hypothesis of undetected GMCs.

Another potential cause for the undetected GMCs is the variation of the “X-

factor” between H2 and CO mentioned in Chapter 4. In reality, this factor might not

be constant and could vary with the galactocentric distance. In general, the X-factor

is supposedly inversely proportional to the metallicity (abundance of elements heavier

than hydrogen and helium), i.e., as metallicity increases, X-factor increases and we

would infer the existence of more H2 for the same level of CO intensity. This implies

that GMCs in the outer region should in fact be more detectable, not less, than in

the inner region, since it is generally accepted that there is a negative relationship

between metallicity and the galactocentric distance. This again does not seem to

support the hypothesis that there are undetected GMCs in the outer regions of the

galaxy.

To eventually test the hypothesis of undetected GMCs, targeted high sensitivity

observations of CO(2-1) emission line in the outskirts of M33 are needed. The resid-

ual field in Figure 5.13 in fact gives a map which can narrow down the region for the
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pointed observations: they can simply be made at the regions with the most under-

estimation in the intensity of YSCCs. This is another demonstration of the power of

GPP modelling.

As demonstrated in the previous arguments, the hypothesis of undetected GMCs

does not seem to hold fast. In the case that the targeted observation for undetected

GMCs turn out to be unsuccessful, other explanations are needed to explain the

grouping behavior of YSCCs. I will provide the details of two hypotheses alternative

to that of undetected GMCs.

Firstly, the grouping behavior of YSCCs can be caused by them destroying their

natal clouds. Corbelli et al. (2017) concluded that GMCs in M33 tend to have a very

short lifetime, around 14.2 Myr. Chevance et al. (2019) also estimated the lifetime

of GMCs in nine nearby galaxies and found that they average ∼ 10− 30 Myr. They

found that, in general, GMCs in these galaxies spent most of their lifetime (∼75-90%)

dormant but quickly disperse in ∼ 1− 5 Myr once the stars are formed, likely due to

stellar winds. The study by Kruijssen et al. (2019) in NGC 300 found evidence of a

rapid evolutionary cycle among GMCs and star formation, with GMCs destruction

in less than 1.5 Myr by efficient stellar feedback.

A simple deduction can be made that if GMCs are of low mass, their destruction

should be even more rapid. Corbelli, Braine, and Giovanardi (2019) analyzed the

variation of mass of GMCs versus galactocentric distance and found that the mass of

GMCs drops as galactocentric distance increases. They concluded that the presence

of high mass GMCs in the inner disc of M33 (D < 3.9 kpc) is likely due to the

supersonic rotation of the disc in the inner region where the gas is collected by the

spiral arms and forms more massive clouds. However, this is not the case beyond

the co-rotation region (D > 4.7 kpc) where the much slower rotation results in low

mass GMCs. The co-rotation distance of 4.7 kpc corresponds to our observation of

grouping of YSCCs beyond 4.5 kpc, and if we assume that GMCs in the outer region
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belong to the low mass class (. 105M�), then a possible explanation for the absence

of GMCs might be the formation of YSCCs and their efficient stellar feedback leading

to the destruction of their low mass natal clouds.

Hollyhead et al. (2015) shows that young massive clusters in M83 generally break

out of their natal clouds around 4 Myr. Corbelli et al. (2017) also analyzed the

association between GMCs and another catalog of optically visible SCs by Fan and

Grijs (2014) in M33 with a wider range of age estimates, ranging from 5 Myr to

10 Gyr. Although the correlations between these SCs and GMCs are much weaker

than the ones found in this study, the correlations are still stronger than that of a

Poisson process. This means that the time scale for SCs to disperse into a Poisson-

like structure is much longer than the cloud life-time as suggested in previous studies.

This indicates that the grouping behaviour of YSCCs in the outer region is potentially

a result of YSCCs destroying their natal clouds before they have had time to disperse

and appear Poisson-like. To test this hypothesis, we would need data on the age of

these YSCCs. Age estimates are only available for 402 out of the 630 YSCCs with

a mean estimate at ∼5 Myr. If using the results for GMC dispersal time (1 ∼ 5

Myr) after star formation from previous studies (Chevance et al., 2019; Kruijssen

et al., 2019), many GMCs might have just been destroyed by the newly formed SCs

through stellar winds. This is even more probable if the destruction of low mass

GMCs is more rapid than ∼ 1−5 Myr. However, the age estimates of the YSCCs are

rather imprecise and should not be used in general to draw any definitive conclusion.

Another potential process involved in the appearance of the clustering might be

that numerous YSCCs are in fact generated by the same GMC. As these YSCCs break

out and lose their association with their original GMCs, they might have similar

velocity due to their common birthplace. Since they are all in the early stage of

their evolution, they tend to move in the same direction before starting to disperse

independently. Furthermore, analysis by Grasha et al. (2019) suggests that on average
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SCs in the M51 galaxy that are not associated with any GMCs are much older (∼ 50

Myr) compared to those that are associated with a GMC (∼ 4 Myr). Assuming the

star formation process is generally universal, this observation can be indirect evidence

to support the hypothesis that the YSCCs in the outskirts are moving away from their

natal clouds. This hypothesis also tends to explain the fact that most GMCs in the

outer region of M33 tend to have low mass and the disparity in number between

GMCs and YSCCs in the outer region, a potential indication that they may have

produced enough YSCCs and are almost at the end of their life-cycle. However, to

test this hypothesis, we would need more accurate estimates of the age of YSCCs to

analyze the correlation between GMCs and YSCCs as a function of the age of YSCCs.

If the association weakens, this would serve as evidence in support of the hypothesis.

In conclusion, the formation of SCs may be a combination of the processes men-

tioned above and further detailed study needs to be done to paint a clear picture.

Nevertheless, the results we have obtained here clearly showcase the power of GPP

modelling in its effectiveness and sensitivity on numerically identifying detailed struc-

ture and behavior exhibited by highly inhomogeneous point patterns. The identifica-

tion of groups of YSCCs in the outer region would not be possible using the previous

exploratory statistical tools of 2PCF/PCF and its variants, and has led to evidence

for suggesting previous hypothesis and providing new possible hypotheses on the evo-

lution of stellar populations.
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Conclusions and Future Work

6.1 Conclusions

In this thesis, Gibbs point process models are constructed to provide a novel method-

ology for probing the spatial distributions of and relationships between objects, in-

cluding the CO filament structure, GMCs, and YSCCs, in the star formation com-

plexes of the M33 galaxy. These models provide a sensitive and rigorous approach to

understand the highly inhomogeneous distribution of stellar populations. They also

enable the investigation of multiple scientific questions in an integrated manner.

To investigate the spatial distribution and relationship among the CO filament

structure, GMCs and YSCCs, a hierarchical Gibbs point process model structure is

employed. The GMCs are assumed to be the high-level process in the hierarchy where

YSCCs are considered the low-level process. This hierarchical structure instantiates

the natural formation hierarchy among GMCs and YSCCs. Two univariate models

stem from the hierarchical model where the CO-GMC model corresponds to the high-

level process of GMCs and GMC-SC model for the low-level process of YSCCs.

124
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For the CO-GMC model, we reached the following conclusions regarding the dis-

tribution of GMCs in M33:

• There is an approximately 492 times increase of intensity of GMCs in the pres-

ence of the CO filament structure compared to a unit-rate Poisson process (on

average 1 GMC/kpc2). This provides ample evidence on the formation origin

of GMCs.

• There exist two sub-populations of GMCs with respect to the distance from

GMC to the CO filament, with the main sub-population being tightly correlated

with the CO filament structure and the minor sub-population being much less

so.

• The second-order characteristic of the distribution of GMCs indicates that the

typical separation between a pair of GMCs is approximately 130 pc, indicating

a repulsive structure at the local scale. This also corresponds to the typical star

formation complex separation distance found in spiral galaxies.

• From the model diagnostics, we conclude that the CO filament structure exerts

an inhomogeneous effect on the intensity of GMCs. This inhomogeneous effect

is two-fold. First, it can be due to the inhomogeneous CO intensity at different

points on the CO filament and this eventually leads to an inhomogeneous distri-

bution of GMCs. Second, it potentially reveals another formation mechanism

for GMCs where the field of the interstellar medium away from the CO filament

is fueling the formation of GMCs. This also tends to explain the significantly

less massive GMCs in the minor sub-population that are much less correlated

with the CO filament.

For the GMC-SC model, the following results and conclusions are obtained:

• GMCs have a significant impact on the distribution of YSCCs, where the pres-

ence of GMC will increase the intensity of YSCCs by 90 times on average.
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However, the impact is rather limited as the characteristic correlation scale be-

tween GMCs and YSCCs is relatively local, with an estimate of 85 pc. This

also corresponds to the typical cloud scale of . 100 pc.

• The intrinsic properties of GMCs also have strong effects on the distribution

of YSCCs. We found that every 1.5 kpc increase in the galactocentric distance

of GMCs leads to a 2.3 times of increase in the correlation strength between

GMCs and YSCCs. Every 2.1×log10(M�) increase in the GMC mass leads to

a 1.9 times increase in the correlation strength. The distance from a GMC to

the CO filament structure, however, does not have a significant impact on the

correlation strength.

• The second-order behaviour of YSCCs shows that they are also repulsive at

the local scale, with an estimated repulsive scale of approximately 80 pc. This

corresponds to the stellar feedback from SCs that generally suppresses and

regulates the star formation in their immediate surroundings.

• Model diagnostics provide interesting and crucial information on the formation

process of YSCCs. We found that there exists second-order clustering of GMCs

in the outer region of the galaxy disc (D ≥ 4.5 kpc) that cannot be explained by

the inhomogeneity in the first-order intensity. This can be attributed to three

potential causes:

1. There exist undetected GMCs that give rise to the unexplained second-

order clustering behaviour. However, evidence suggests that this is less

likely to be the case.

2. The YSCCs destroyed their natal GMCs. However, due to their recent

birth, YSCCs did not have enough time to diffuse and appear Poisson

distributed.
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3. Groups of YSCCs formed in the same clouds but started moving away

from their natal clouds. Due to the same origin, they tend to have similar

velocity and did not have enough time to disperse and appear Poisson-like.

The above three hypotheses can be confirmed by more resolved observations of

GMCs and better data regarding the age and velocity of YSCCs.

In general, we can see the immense power demonstrated by Gibbs point process

modelling which provides a rigorous method to obtain accurate numerical measure-

ments on the distribution of investigated objects. This subsequently leads us to

discover structures and propose new hypotheses that are otherwise impossible.

6.2 Future Work

Due to the limitation on available data, this study only considered an individual

galaxy. For future work, we would like to consider applying the model and exploring

its applicability to other galaxies.

Although Gibbs point process modelling is a highly flexible and extremely inter-

pretable model for investigating spatial data, it is not without its own faults. As

we have seen in this study, Gibbs point process modelling usually does not provide

analytical solutions to the expected value of intensity of a point process, which can

be restricting in many scenarios. Furthermore, if the parameter space becomes high-

dimensional (d > 10), inference procedure can be extremely challenging. To curb

the above issues, it would be interesting to see the applicability of log-Gaussian Cox

process mentioned in Chapter 1. Certainly, this will bring corresponding challenges

of interpretation. Another direction is to invent new inference algorithms that can

enable efficient Bayesian computation for high-dimensional Gibbs point process. Last

but not least, there can potentially be second-order non-stationarity in the point pat-
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tern investigated. A direction for improvement is to explore a modelling approach

which can account for second-order non-stationary processes.
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