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Abstract

This study evaluated eight quantitative methods for their predictive accuracy for
intersectionally-defined subgroups, via a simulation study. The methods included two
forms of single-level regression with interaction terms, cross-classification, multilevel
analysis of individual heterogeneity and discriminatory accuracy (MAIHDA), and four
decision tree methods: classification and regression trees (CART), conditional inference
trees, chi-square automatic interaction detector, and random forest. The simulated
datasets varied by outcome variable type, input variable types, sample size, and size and
direction of the effects. Predictive accuracy improved with increasing sample size for all
methods except CART. At small sample sizes, random forest and MAIHDA generally
created the most precise predictions. While performing well for prediction, variable
selection by random forest and confidence interval coverage and power of MAIHDA
main effects coefficients were suboptimal. We have identified differences in methods
ideal for intersectional prediction versus variable identification, highlighting that different

objectives and data scenarios require different methods.
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Summary for Lay Audience

Intersectionality acknowledges that an individual’s multiple social positions or identities
(e.g. gender, ethnicity) can interact to affect health-related outcomes in unique ways.
Calculating health outcomes for intersectional groups (defined by a combination of
positions), rather than by each position separately, can create more accurate outcome
estimates. Since it is unclear which methods do this best, this study evaluated eight
methods in terms of their predictive performance for intersectional groupings, using
simulated data with known true values. The methods included single-level and multilevel
regression, cross-classification, and four machine learning methods (classification and
regression trees (CART), conditional inference trees, chi-square automatic interaction
detector, and random forest). The accuracy of predictions created by all methods
generally improved with increasing sample size, except for the CART method. Generally,
random forest and the multilevel method created the most precise predictions compared
to the other methods, especially for small sample sizes. However, they did not always
correctly identify variables which were significantly associated with outcome. Random
forest sometimes incorrectly suggested that a variable that had no true effect on the
outcome was important, and MAIHDA created estimates for the effects of individual
variables that were not reflective of the expected values. This shows that while some
methods are reliable to predict the outcome for intersectionally defined groups, they are
not ideal to identify the effects or importance of individual variables that make up those
groups (e.g. the specific effect of being in a high income group, or being male). Results
from this work will improve the application of quantitative methods for accurately
estimating outcomes for population subgroups. Correctly estimating outcomes for these
groups is an important step in understanding existing health inequities. The goal of this
work is to produce a guide for researchers who are interested in the applications of

guantitative intersectionality approaches.
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Chapter 1

1 Introduction and objectives
1.1 Health equity and heterogeneity of effects

Health equity research aims to identify and reduce the modifiable differences in health
between groups defined by social, economic, or geographic means. [1] Link and Phelan
[2] argued that social conditions, such as socioeconomic status or race and ethnicity, are
“fundamental causes” of diseases. Similarly, Geoffrey Rose [3] stated that, ‘‘The primary
determinants of disease are mainly economic and social, and therefore its remedies must
also be economic and social’’. These fundamental causes are connected to disease
because they determine resource accessibility and availability, and likelihood of exposure
to risk factors for and protective factors against disease. Along with acknowledging the
existence of social determinants, it is also important to consider heterogeneity of effects.
From a public health perspective, interaction and effect measure modification among
social determinants should be recognized as a possibility when performing subgroup
identification for targeted interventions. [4] As stated by Greenland [4] “In the absence of
bias, departures from risk additivity imply that some subgroups would obtain a greater
absolute risk reduction from the intervention than others would.”. Departures from the
additive scale can occur if the excess risk is beyond the additive (“super additivity”), or if
the outcome occurs only when certain factors coincide (“synergism”). The identification
of “super additivity” can indicate that groups may benefit from intervention more than
expected, and synergism is seen as an indicator that only one factor need be addressed by
interventions to affect the outcome. Research in health equity should incorporate the
possibility of heterogeneity, and intersectionality theory can function as a research
framework to address that fundamental causes or social determinants of health may have

heterogeneous effects.



1.2 Intersectionality theory

Intersectionality theory acknowledges that an individual occupies multiple social
categories or identities such as gender, race, and class, which overlap and can interact to
create unique positions of systemic privilege and oppression. [5, 6] The term
intersectionality first came to use by Black feminist legal scholar Kimberlé Crenshaw, to
describe the position of Black women and their exclusion from both racial and gender
discourse. This theory has since been extended to social positions and identities beyond
gender and race, such as income, age, sexuality, and disability status, and to disciplines

such as sociology [7], psychology [8], and education [9].

Intersectionality has applications to public and population health research [10, 11].
Bowleg [10] suggests that intersectionality can contribute to public health research not as
a testable theory to be proven or disproven, but rather as a guiding perspective or
framework, that acknowledges that individuals occupy multiple social identities and
positions that can interact together and with the surrounding socio-structural factors (e.g.
racism, sexism) to affect health outcomes. Intersectionality encourages research to make
space for individuals who occupy multiple disadvantaged positions, as well as those who
occupy a mix of advantaged and disadvantaged positions. [11] No one position or identity
has presumed importance over the other. [12] This framework encourages the study of
health the way it is actually experienced in society, as a result of complex interactions.
Multiple micro- and macro-level factors can be incorporated, which aligns with
addressing “fundamental causes” for inequalities (e.g. discrimination and poverty). An
intersectional approach encourages targeted health promotion and policy, rather than
assuming homogeneity across single factors, which can result in policies that are
ineffective or harmful for oppressed or marginalized groups. [10]

McCall [13] describes three approaches to how intersectionality is incorporated into
research. The first is the anticategorical approach which acknowledges that categories are
not set truths, because they over-simplify the complexity of actual experiences, which are
fluid and dynamic. The second is the intracategorical approach, which focusses on

experiences within a particular group or intersection, which usually experience some



level of marginalization. This approach requires some stability in the definition of
belonging to these groups, but allows the researcher to delve into the complexity and
variety of the experiences of different group members. The third is the intercategorical
approach, which uses multiple defined categories to compare outcomes between
intersectionally defined groups. This final approach is most readily applied by
quantitative research. [14] Hancock [12] describes how intersectionality is distinguished
from the “multiple approach”. The multiple approach allows for several positions (e.g.
gender and race) to be relevant to an outcome, but views them as separate effects that do
not overlap. The underlying assumption is that these separate effects can be added
together to predict the outcome. This is analogous to fitting regression models with main
effects for gender and sex without interaction terms. The intersectional approach
acknowledges that these positions cannot be simply added together, they exist in ways
that cannot be separated. To move beyond the additive model, intercategorical
intersectionality research is commonly applied by the inclusion of interaction terms or
cross-classified groups. To clarify, the “multiple approach” as referenced by Hancock is
what other studies mentioned below reference as the “additive model”, because it
assumes effects are additive. The term “multiplicative model” is sometimes used for what
Hancock references as the “intersectional approach”. Additionally, the language around
additive and multiplicative models in intersectionality theory is not related to the
statistical terminology for additive and multiplicative scales. [11] For example, the
multiplicative approach can be applied on the additive scale by using a linear regression
with interaction terms, or on the multiplicative scale by using a logistic regression with
interaction terms. Similarly, the additive model can be applied on either the additive or
multiplicative scale, depending on the type of regression, by the inclusion of only main

effects.

1.3 Intersectionality theory for health equity stratification:
application and issues

The current discussion is limited to descriptive intercategorical intersectionality and
health equity stratification, which does not aim to prove causality, but rather describes the



differences and inequities between groups. This is a steppingstone for further qualitative

or quantitative analytic intersectionality research.

When observing inequalities in self-rated health by race, sex, class, and sexual orientation
in Canada using data from the Canadian Community Health Survey, Veenstra [15]
demonstrated that the multiplicative model leads to different outcome predictions than
the purely additive model (with no interaction terms). This was done by comparing a
logistic regression model with no interaction terms with one including all two- and three-
way interaction terms. Use of the multiplicative model also changed the interpretation of
the inequities. For example, from the additive model Asian respondents in the lowest
income group had a 32.6% probability of reporting fair or poor health, compared to
28.3% of white respondents in the lowest income group. However, when using an
intersectional model with interaction terms, Asian respondents in the lowest income
group actually fared better than their white counterparts, with a 17.4% probability of
reporting fair or poor health, compared to 30.2%. These results show that assuming that
social determinants function completely independently can affect conclusions regarding
which groups face greater inequities. The authors note that not all intersections
experienced “multiple jeopardy”, where those at the most marginalized groups were
expected to experience the worst outcomes. This is similar to what Greenland [4] referred
to as “super additivity”. But as conceptualized by Bright et. al. [16] “switch
intersectionality” is a possibility that researchers should be mindful of, where the effects
of a variable can actually be in the opposite direction than expected or completely unique
to a particular intersection, because a causal process is only activated when individuals
occupy certain intersectional positions. This is similar to the “synergism” mentioned by

Greenland (4) when discussing heterogeneity of effects.

Other authors have attempted to further break down the meaning of differences between
intersectionally defined groups. Jackson et. al. [17] looked at the intersection of race
(non-Hispanic Black versus non-Hispanic white) and early life socioeconomic status
(SES - low versus high), for differences in unemployment, wages, and incarceration.
They separated the total difference between groups (joint disparity), as the sum of the

referent and excess intersectional disparity. The joint disparity for example could be the



difference in the outcomes between a low SES Black male respondent, and a high SES
white male respondent. The referent disparity can be seen as the “additive effects”: the
effects of being Black compared to white among those who are high SES, and the effects
of being low compared to high SES among white males. The intersectional disparity is
the remaining joint disparity that remains unaccounted for by the referent disparity,
indicating a departure from solely additive effects. They found in some cases that the
intersectional disparity was significant. Importantly, the authors remarked that in cases
where the intersectional disparity is not significant, the joint disparity for multiply
marginalized groups can still be quite large, and they still may experience the greatest
inequities. Intersectional groups that don’t have statistically significant intersectional
effects may still be the most important targets for intervention or policy. These comments
outline the importance of not focussing on intersectionality as a “testable explanation”

[18], but rather as a research framework.

Quantitatively applying descriptive intersectionality into population health research faces
challenges that have been outlined by several authors. Some specific issues include that
although regression is a common analytic method, the use of regression often requires
underlying assumptions regarding the relationship between variables, such as the linearity
of main effects and interactions, which may not hold and generally go against the
expectations of intersectionality. [10] Low sample sizes make it difficult to study every
intersection, or to include the number of intersectional positions that would be of interest.
For example, to use regression methods to study a larger number of intersectional groups
necessitates the inclusion of multiple higher-order interaction terms, which require large
sample sizes for sufficient statistical power. [4] Therefore, often only certain
intersections, usually the most marginalized groups, are prioritized for study. [11]
However, positions with a mix of both privilege and marginalization should also be
considered in research, given that unknown intersectional effects could exist in these
groups. Especially with the availability of larger datasets, “intersectional mapping” or
“socio-demographic mapping” can be a way to describe outcomes across a large number

of intersectional groups and identify intersections for further study. [11]



1.4 Review of quantitative intersectionality methods

A recent unpublished systematic review [19] assessed the state of the published
quantitative intersectionality research through mid-2017, identifying quantitative
intersectionality papers across multiple disciplines including epidemiology, psychology,
political sciences, social sciences, and education. The result was a total of 319 studies
published between 1989, when the term was first coined by Kimberlé Crenshaw, to May
2017. Of the 303 applied intersectionality studies identified by this review, 34.3% had a
health-related outcome. The review found that the most applied methods were regression
models, including Ordinary Least Squares (OLS), logistic, Poisson, and negative
binomial. This includes regression models with main effects and either cross-
classification or stratification (27.4%), or interaction terms (24.8%). Additionally, 6.6%
of papers used main effects regression models as the only form of “intersectional”
analysis. 18.5% of studies only used univariate or bivariate measures. Other applied
methods included: multilevel modelling, MANOVA, structural equation modelling/path
analysis, growth curve analysis, cluster analysis, multi-group segregation indices, latent
class analysis, meta-regression, classification and regression trees (CART), intersectional
decomposition, canonical correspondence analysis, Chi-square Automatic Interaction
Detector (CHAID), and factor analysis. An example of the typical application of an
intersectional regression model is a study by Cummings et. al. [20] looking at self-rated
health along the intersection of gender, race, and SES. The regression included cross-
classified variables by having separate dummy variables for white women, Black women
and Black males. Interaction terms were also included to represent the intersection of all
three positions, by including a separate interaction term between each of the three cross-
classified variables and family income. Applications of regression may also be stratified
by having separate regression analyses for each category of a social position (e.g.
stratifying by gender by having separate regression models for male and female). [21] An
example application of purely descriptive analysis is also found in the study by
Cummings et. al. [20] where average self-rated health was tabulated by twelve categories
created by the combination of gender (male and female), race (white and Black) and SES
(low, middle, and high income). This simple descriptive method is described as cross-

classification for the duration of this thesis.



According to the systematic review, [19] the social positions or identities most commonly
included in intersectional research were sex/gender and race/ethnicity, in 76% and 73%
of studies respectively. Other common intersectional positions were: SES (22%), sexual
orientation (18%), immigration/nativity (13%), education (13%), age (10%), income
(8%), and geography (6%). Figure 2.1 presents the number of intersectional positions and
identities included in each study. Most studies included only 2 to 3 intersectional
variables, reflective of the limitations of the most commonly used methods, regression

and uni-/bi-variate analysis.
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Figure 1.1: Number of intersectional variables included in analyses of
intersectional studies. Data used with permission from Churchill SM.
Overall, the methods identified by the systematic review were applied to only a small
number of intersections. The study did identify a few novel methods of interest,
especially for the purposes of intersectional mapping: CART, CHAID, and the multi-
level method MAIHDA (Multilevel analysis of individual heterogeneity and

discriminatory accuracy).



1.5 Thesis objectives

It is currently unclear how to best incorporate the intercategorical intersectional
perspective into descriptive health research, specifically for the purposes of intersectional
mapping. This thesis will address gaps in the literature regarding which methodologies
researchers may use, primarily when studying a larger number of intersecting positions.
We compared the conventional intersectionality methods of regression and univariate
cross-classification, the novel methods CART, CHAID, and MAIHDA, identified by the
literature review detailed in section 1.4, as well as two additional methods identified by
further review of the current literature (see Chapter 2), random forest and conditional

inference trees (CTree).

The primary objective was to formally evaluate the predictive performance of eight

methods, via a simulation study. This was achieved by answering:

1) Which methods have the lowest predictive error, when predicting outcomes for

intersectionally-defined population-level subgroups?

The secondary objectives were to evaluate performance measures specific to the different

methodologies. These were achieved by answering:

1) Regression:
a. How well do regression methods identify significant main effects and
interactions?
b. What is the validity of the estimates for main effects and interaction

terms?

2) MAIHDA:
a. How well does MAIHDA identify which variables are significant to the
outcome?

b. What is the validity of the main effect estimates?



3) Decision Trees: The decision tree methods included in this study were CHAID,

CART, random forest, and CTree.
a. How well does each decision tree method identify variables relevant to the

outcome?
b. How many unique subgroups does each method identify?

Differences in each method’s performance was assessed across a number of dataset
parameters: sample size, variable input types, and outcome type. These parameters were
selected with particular focus on dataset qualities and outcomes typical of and relevant
for intersectional research and the social determinants of health, and were informed by

the systematic review referenced in section 1.4 and the literature review detailed in

Chapter 2.
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Chapter 2

2 Literature Review

Based on the existing intersectionality literature, it is fairly well understood how
regression with interaction terms and cross-classification are applied to intersectionality
research and correspond to intersectionality theory. Simple descriptive studies use cross-
classification by summarizing outcomes averages or prevalences across intersections,
without any further statistical adjustment. Studies using regression most often include
main effects and interaction terms, and interaction terms are interpreted as intersectional
effects. However, it is unclear how novel methods for quantitative intersectionality
research are being applied and interpreted. Therefore, a literature search was conducted
of intersectionality studies using decision tree methods and intersectionality studies using
MAIHDA. The following chapter explores what kinds of data scenarios are used with
these methods, how the analyses are conducted, and how the results from these analyses
are interpreted in relation to intersectionality theory. Given the limited variety of decision
trees used in intersectionality research, further applications and discussions of decision
trees in epidemiology were also explored. For both MAIHDA and decision trees, the
current state of the literature regarding quantitative assessment of these methods was

considered.

2.1 Decision Trees

2.1.1 What are decision trees

Decision trees fall under the category of supervised machine learning techniques, where
an algorithm is given a set of potential input variables and a defined outcome variable.
[22] In decision trees, data is partitioned according to a set of decision rules, resulting in
groups defined based on a set of predictors or input variables. [23] The final end nodes
are called “leaves”, or “terminal nodes” and are the final subgroupings identified by the
tree. Decision trees can perform either classification analyses (for categorical outcomes)
or regression analyses (for continuous outcomes). The terminal nodes or “leaves” of a

classification tree depict what percentage of respondents from each node report the
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outcome. The leaves of regression trees report the mean of the outcome. Often decision
trees can be visualized as a tree diagram or flowchart, where the path from the initial
“root” to final “leaf” is the set of decision rules. The general algorithm of a decision tree
begins with the initial parent node, a group containing all data points, which is
subsequently split into child nodes (or subgroups), using one of the given input variables
(e.g. gender, or age). The criteria to identify a splitting variable can vary but the overall
goal is to create groups based on covariates, that are similar to one another in regard to
the outcome. Child nodes are then split repeatedly until a stopping criterion is reached.
This is thus called recursive partitioning. Decision trees have been generally cited as
beneficial for their ability to create accurate prediction models, consider a large number
of variables, and as a non-parametric method can easily incorporate interactions and
effects that are linear and non-linear. [24] Some of the negatives are that it can be prone
to over-fitting the data [23], continuous variables with a true linear effect on the outcome
require a great deal of splits to create predictions, and methods such as CART have been

found to be biased to split on continuous variables over categorical [25].

Figure 2.1 is a figure published in a study looking at self-reported past year pap-tests
among sexual minority women, and shows a visual example of a CART decision tree.
[26] While 25 potential covariates were used as input variables, only 6 were actually
identified as relevant and used in the tree building process. The final tree had 7 terminal
nodes (those presented in colour for Figure 2.1), which are described by their decision
rules in Table 2.1. Here we can see for example that certain variables like health
insurance only have an effect on the outcome after a certain cut-off for age. Because
decision trees are non-parametric, they are not required to consider effects as linear, and
therefore are inherently able to account for effects such as this without further

specification by the user.
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Figure 2.1: CART model from Greene et al. [26] ©
(https://doi.org/10.1016/j.pmedr.2018.11.007). Figure re-used under the Creative

Commons Noncommercial-No Derivatives license
(https://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 2.1: Subgroups characteristics from Greene et. al. [26] decision tree, predicting past
ear pap-tests

Leaves | Past Characteristics
year
pap-test
1 25% Age > 62
2 30% Age < 62, Drinking age < 14, Has health insurance, Internalized
Homonegativity scale < 1.4, No childhood physical abuse,
Lifetime sex partners < 28
3 33% Age < 62, Drinking age < 14, No health insurance
4 62% Age < 62, Drinking age > 14
5 68% Age < 62, Drinking age < 14, Has health insurance, Internalized
Homonegativity scale < 1.4, Childhood physical abuse
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6 70% Age < 62, Drinking age < 14, Has health insurance, Internalized
Homonegativity scale < 1.4, No childhood physical abuse,
Lifetime sex partners > 28

7 73% Age < 62, Drinking age < 14, Has health insurance, Internalized
Homonegativity scale > 1.4

2.1.2 Literature search - use of decision trees in intersectionality

The application of decision trees has expanded into intersectionality research, where the
resulting “leaves” represent intersectional groupings. Notably, a decision tree may not
identify all intersectional groups possible from a theoretical perspective, but rather from a
data-driven perspective will use given input variables to create enough intersectional
groups to predict the outcome. A literature search was conducted of intersectionality
studies using decision tree methods, and studies which reference intersectionality are
presented in Table 2.2. The search yielded seven studies using two decision tree methods,
CART and CHAID. Both these methods function by building single decision trees, and
they are distinguished by their splitting criteria used to build the trees. CART is able to
incorporate both continuous and categorical data as potential splitting variables and
outcomes, whereas CHAID can only use categorical variables. Another distinction
between the two is that CHAID allows for multiway splits (a parent node can split into

more than two child nodes), while CART only performs binary splits.

Table 2.2: Intersectionality studies using decision trees

Study Year Outcome type Decision | Sample
published | (prevalence for binary tree size

outcomes) method

Shaw et. al. [27] 2012 Binary (common: 12%) CHAID 211,736

Cairney et. al. [28] 2014 Binary (common: 24%) CART 1,213

Zufferey [29] 2016 Binary (rare: 0.25%) CART 775,000

Dey et. al. [30] 2018 Binary (common: CART 5,565
86%, 45%, 69%)

Sridharan et. al. [31] | 2018 Binary (common: 51%) CART 5,666

Villanti et. al. [32] 2018 Binary (common: 27%) CART 9,110

6,338
Greene et. al. [26] 2019 Binary (common: 57%) CART 691
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The earliest work used exhaustive CHAID analysis to identify combinations at the
intersection of gender, race, age, and disability type, that best predict reporting
harassment as a form of discrimination. [27] The authors describe this as a data mining
approach, that can account for interactions between variables and create the best
predictions. The sample size was 211,736, and 34 subgroups were identified, varying in
sample size from 285 to 26,840. The authors display the risk of the outcome as a
percentage, for groups 1 to 34. They describe in detail what characteristics make up the 5
highest and lowest risk groups, described by CHAID as “end groups”. They describe
these end groups as potential targets for further qualitative work, to identify further
details on experiences and processes. To assess the model created, the authors state the
percent risk of false classification (12%) and risk for cross-classification (12%), and they

use this to suggest that results may be replicable in other samples.

Another study used CART analysis to assess the social determinants of accessing mental
health service among those with mood or anxiety disorders, using linked Canadian
Community Health Survey data. [28] This study used eight input variables, and with a
sample size of 1213 participants, 6 terminal nodes were identified. The authors
interpreted the model by walking through the splitting criteria. They report overall fit of
the model by its sensitivity and specificity. The authors pair their CART analysis with a
main effects logistic regression, including non-linear variables for age. The CART
analysis identified complex interactions that were not visible from their regression
analysis. The authors state their perceived benefits for using CART specifically for
intersectionality research include that it doesn’t make any assumptions about the
distributions of variables or their relationships (e.g., not all interactions are linear), and
can identify “complex or unsuspected interactions”. They describe CART as a tool of
interest for policy and care providers, to identify groups that are most at risk or under-
served. They also acknowledge that there are some limitations, primarily the selection of
cut points for continuous variables, which may or may not be relevant to actual policy or
practice. Additionally, they state that it is more of an exploratory technique, because it is

not capable of hypothesis testing.
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Another study used Swiss National Cohort data, with approximately 775,000 lines of
data, to assess mortality among migrant populations. [29] They conducted an analysis
with CART, and then a “confirmatory analysis” using regression models with some
interaction terms. They describe this as an inductive method and found that the
confirmatory analysis supported the results found by CART. Fifteen categorical variables
were inputted into the model, and the resulting tree presented 47 terminal nodes. They
highlight intersectional effects, where splits create unique groupings. Similar to other
studies, they state that the advantage of CART is the detection of interactions specific to
particular groups. Furthermore, they clarify that this method is an exploratory analysis
that requires further statistical analysis, such as regression modelling, to confirm the

identified patterns.

A recent study used CART to understand the interaction of social determinants for
maternal healthcare utilization, within a rural area of India. [30] With a sample size of
5,565, they created 3 different CART models using different binary outcomes (pregnancy
registration, antenatal care in third trimester, and institutional delivery), and six different
input variables. The three models produced four to six terminal nodes. For interpretation,
the authors walked through the tree structure, and identified interactions visually. They
identify the strength of CART as the ability to identify at-risk subgroups in the
population, and the identification of specific interactions that can be used to guide policy
and address inequities. As well, CART will consider multiple memberships or
“inequities” at the same time. Their stated limitation is that there aren’t estimates of the
strength of the determinants or interactions. As well, a large enough sample size is
needed to identify sub-groups. They warn that if no stopping criterion is used, CART
may continue splitting groups until they are too small and not relevant. They also identify
that because they predetermined the categories for certain variables (e.g. creating a binary
variable from a continuous measure), this adds an “analytic bias”, and if categories had
been created differently, this may have affected splitting. A similar study using the same
data set was conducted for solely the binary outcome for if the women had received any
antenatal care. [31] A key difference in this article was that the CART regression was

then paired with a multilevel model, of individual and district-level effects. Based on the
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results of the CART model, cross-level interaction terms were included in a second set of
models. The authors once again state that the tree method is exploratory, and not for

causal inference.

Similar to the stratified regression analyses that have been used in other intersectional
works (for example separate regression analyses for male and female), a study looking at
cigarette and menthol cigarette smoking in American young adults conducted separate
CART analyses for two different age groups (18 to 24 years and 25 to 34 years). [32] The
authors viewed this as incorporating intersectionality by allowing potential predictors to
differ between the age groups. This was paired with stratified main effects logistic
regression analyses including the same predictors. When comparing results between the
logistic regression models and corresponding decision trees, the CART models would
create splits only on variables that were identified as significant by the regression, but did
not always use all the significant variables. For example, for menthol cigarette smoking
in the younger age group, all variables identified as significant from the regression (sex,
race, education, and region) were used in the tree, while for the older age group only two
variables (race and education) were used to build the tree, but sex and region were still
significant in the adjusted logistic regression model. While the effect of sex was smaller
in the older age group than the younger age group (OR of 1.56 versus OR of 1.69), the
effect of region was actually greater (OR’s of 0.69, 0.73, and 0.44 versus OR’s of 0.81,
0.91, and 0.60), therefore splitting variables that were significant in the main effects
logistic regression but not included the CART models weren’t necessarily excluded
simply because of a required main effect size threshold. The authors made no comment
on the difference in results between the two types of methods, but stated that the CART

analysis is a good way to identify “risk profiles” that can be used to guide policy.

Finally, the previously mentioned study from Figure 2.1 looking at the probability of

cervical cancer screening among sexual minority women used CART analysis. [26] The
authors used intersectionality theory to select the variables to be inputted into the model,
including race/ethnicity, income, employment status, and experiences of discrimination.

The authors interpreted the fit of the model by reporting accuracy of the model and
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comparing it to the root node error. They found that the accuracy was 64.8%, which was
an improvement over the root node accuracy of 56.7%. They interpreted this as a
moderate accuracy and concluded that their included variables do not completely account
for differences in cervical cancer screening between groups. The sensitivity, specificity,
positive predictive value, and negative predictive value were also reported. They state
that CART can be applied to see how multiple factors intersect to affect risk, but that
once again the method does not admit causal interpretation, and can rather be used for
hypothesis generation.

2.1.3 Use of decision trees in epidemiology

Because other works may have similar goals to intersectionality within health research, it
is also important to look at the use of decision trees in works surrounding health and
interacting social determinants of health. Firstly identified was Conditional inference
trees (CTree) as a method of interest that has not yet been explicitly applied to an
intersectionality study, but could be a potential methodological option. Conditional
inference trees are similar to CART in that they can handle both continuous and
categorical variables, however are distinguished by incorporating statistical hypothesis
testing into building decision trees, and splits are given p-values. [33] Wolfson and
Venkatasubramaniam [24] suggest that “the simplicity and inferential focus of
conditional inference tress make them an appealing option for epidemiologists”.
Compared to other decision tree methods, the inclusion of statistical inference has been
suggested as a way to possibly minimize the issue of over-fitting. As well, the selection
bias of CART to split on continuous variables is potentially minimized for CTree by a
two-stage splitting process, which separates the identification of variables significant to
the outcome from identification of the splitting point for each variable. This minimizes
the bias created when continuous variables have more opportunities to provide splits than
categorical variables. [33] One example study looked at the risk of intimate partner
violence amongst 268 men and 299 women, by constructing two separate conditional
inference trees. [34] The authors’ stated advantages over regression models included no

assumption of linearity of effects, and less potential overfitting. The authors used only
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one predictor variable, baseline physical aggression, to predict physical aggression at
follow up. This allowed for the establishment of cut-points in the baseline measure to
define risk groups. They found that among women, three terminal nodes were identified
using the predictor, which they labelled as low, moderate, and high risk. Among men,
two terminal nodes were identified (low and high risk). The decision tree was assessed
using sensitivity, specificity, negative predictive value and positive predictive value. This
was explained as a way to assess the relevance of cut-offs identified from a data-driven
approach, to clinical practice. The authors found that their results could suggest

clinically-significant cut-offs to use in clinical practice.

A second popular decision tree method in epidemiology that has yet to be applied to
intersectionality research is random forests. Random forest models are created by fitting
multiple decision trees from bootstrapped subsamples of the data and combining results
from multiple trees together. [35] This method aims to address issues of over- or under-
fitting in other decision tree methods. Because multiple trees are combined together to
create a random forest model, unlike CART, CHAID or CTree, there is no single tree that
can be observed and used to identify splitting variables or final subgroups. Instead, to
identify if a variable is relevant to the outcome, the “variable importance measure”
assesses the average performance of a variable across the multiple trees. There is more
than one way to calculate variable importance, but the basic construct is that variables
with high variable importance improve the fit of the decision tree, for example by
contributing to the accuracy of the model. This measure is interpreted usually without
statistical testing and compared as a relative measure between variables. One example
study used this method to assess biological, behavioral, and social determinants
associated with self-related health, citing decision tree analysis as an opportunity to use
the social-ecological model of health, because these different determinants are
acknowledged as possibly interacting with one another. [36] The random forest results
were described by the variable importance measure for each variable. For example, they
found that physical activity, income and education were the most important variables for
predicting the outcome. One of the drawbacks of the random forest method is that

because it is created by multiple trees, there is no one tree that can be visualized. Because
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subgroup identification can be an important goal of using decision trees, the authors
paired the analysis with a single classification tree. The single tree analysis resulted in 15
terminal nodes. The characteristics that made up these resulting subgroups, such as
family income, physical activity, and education, were described. The authors’ comparison
between their single classification tree and random forest analysis was that the resulting
cross-validated error from the single classification tree was 31% versus an out-of-bag
error from the random forest model (average error when assessing model prediction
against data not included in each bootstrapped sample) of 26%, giving random forest a

slight advantage in terms of prediction accuracy.

2.1.4 Current literature assessing decision tree methods in
epidemiological contexts

The benefit of using decision tree methods in intersectionality is that they can
concurrently explore many positions or identities. This methodology can identify
complex interactions and does not require assumptions about the variable distributions or
relationships. From a health equity standpoint, it has been suggested as relevant to policy
to identify groups that are most disadvantaged. Limitations of these methods include that
there is no estimate of relative strength of variables or interaction effects, sufficiently
large sample sizes are required for subgroup identification, trees may over-split and lose
their relevance to policy, trees must choose cut offs for continuous variables even if the
true effect is linear, and there is limited hypothesis testing. There are concerns around
single decision tree methods being unstable in comparison to ensemble methods such as
random forest, due to single decision tree models being more prone to drastically change
with small changes in the sample data. [37, 38] Because of these limitations, decision tree
methods for intersectionality research have been framed by some as a more “exploratory
approach”, and some studies have supplemented the inclusion of decision trees with
traditional regression with interaction terms. Given these strengths and limitations, the
next section reviews the current literature assessing the quantitative performance of

decision tree methods, compared to traditional epidemiological regression.

To assess how well random forests may work for epidemiology compared to traditional
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regression methods, random forest analysis has been compared against logistic regression
using study data with a binary outcome. [39] The outcome was being overweight, defined
by body mass index (BMI), and 14 sociodemographic and behavioral factors were
included as input variables. No interaction terms were included, but separate analyses
were conducted for men and women, for both the logistic regression and random forest
analyses. Random forest was similar to logistic regression in terms of ability to classify
members in the study sample as overweight or not overweight, when comparing true- and
false- negatives and positives, and sensitivity and specificity. The two methods identified
similar variables as important or significant. The authors stated that these results may be
because the variables they chose have a more linear relationship to the outcome, or don’t
involve interactions. They state the benefit of random forest being that highly correlated
variables (such as multiple nutrition factors) can be included in a random forest, but not
in a logistic regression. As well, there is no need to pre-specify interaction terms, and
creating a single decision tree can be useful for identifying subgroups that can be
targetable from a public health perspective. They suggest that the use of random forest
may be more beneficial than logistic regression for situations with a greater number of

input variables.

Another study compared OLS regression with four machine learning algorithms: repeated
linear regression, penalized linear regression, random forest, and neural networks. [40]
Random forest was the decision tree method that they chose to incorporate, based on the
fact that it has been widely used in the medical literature. They used each method to
create predictive models for four continuous variables: systolic blood pressure, BMI,
waist circumference and telomere length. Methods were compared via root-mean-square
error and R-squared values. They created two regression models, one that was minimal
and one that was theory based. Random forest did perform better for prediction than both
regression models. Notably, a separate article had commented that the use of R-squared

values to compare regression against machine learning methods has limitations. [41]

Finally, CTree, CART, and partially mis-specified regression have been evaluated for

prediction of a continuous outcome, using a simulation study. [42] Data were generated
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using three different scenarios: a linear regression with no interaction terms, a decision-
tree-based outcome (where the outcome is created based off of decision rules), and a
hybrid model, which included interactions for specific subgroups of the data. Both
decision tree methods were compared to linear regression with no interaction terms, for
these three data generation scenarios. Methods were assessed using mean squared error
(MSE), calculated from independent test data sets. Using MSE to report prediction
accuracy, they found that the decision tree methods performed better than the regression
methods, under the decision-tree-based data generation scenario. For the regression-based
data generation, the regression method was a better predictor. For the hybrid data
generation, the three methods were found to have similar MSE’s. Additionally, between
CART and CTree, they found that the predictive accuracy of CTree improved with
increasing sample sizes from n=30 to n=5000, compared to CART, where improvements
plateaued by n=3000. The number of terminal nodes created by CTree increased over
increasing sample sizes, to over 200 terminal nodes by n=5000, while the number of
terminal nodes resulting from the CART models remained as less than 25 at n=5000.
Results from this simulation study demonstrate that there are definite differences in
prediction between decision tree methods, and that when compared to regression
methods, decision trees were better predictors under circumstances with non-linear

interactions.

2.1.5 Summary of decision trees and intersectionality, application to
current study

Specifically reviewing the utility of decision trees in epidemiology, Wolfson and
Venkatasubramaniam [24] outline three uses for decision trees in epidemiology. The first
is for “explanatory modelling”, where decision trees can be used as a “variable selector”.
Here, variables used in the splitting process are acknowledged as those important to the
outcome. Decision trees can also be read to understand how a variable may affect the
outcome (although this would not be true for random forest, which does not produce a
visual tree diagram), especially in the presence of non-linear effects. The second use is
for outcome prediction. They note that the limitation here is that sometimes predictions

for decision trees can be subject to change with small changes in the data. Methods like
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random forest can counteract this by creating multiple trees to prevent overfitting, but
lose the interpretability of single decision tree methods. Another limitation is that if the
relationship between the explanatory variable and outcome is truly linear, then a
regression model will perform better for predictions, because for a tree to make an
equivalent prediction, it would have to split many times. The third use is for subgroup
identification, which in the context of public health or health equity, can help identify

subgroups to be targeted for prevention efforts or treatment.

Resultantly, the evaluation of the decision tree methods in the current thesis addresses the
three potential uses for decision trees outlined by Wolfson and Venkatasubramaniam:
prediction, explanatory modelling, and subgroup identification. The main outcome,
prediction accuracy, addresses how well the decision tree methods perform prediction.
For “explanatory modelling”, the percent of iterations that variables are correctly
identified as important to the outcome is assessed. Finally, to understand subgroup

identification, the number of terminal nodes or “leaves” is recorded.

2.2 MAIHDA

2.2.1 What is MAIHDA

MAIHDA (Multilevel analysis of individual heterogeneity and discriminatory accuracy)
has recently been proposed as an alternative to traditional regression, to describe
outcomes for many intersectional groupings. Specifically, it aims to address the following
issues with traditional regression approaches: “scalability, model parsimony, reduced
sample size in some intersectional strata, and occasionally, issues of interpretability.”
[43] The original approach by Evans et. al. [43] uses multilevel models with random
intercepts, with individual-level characteristics as fixed effects, no fixed-effect interaction
terms, and strata or clusters defined as each intersection. Combinations of the fixed
effects form the intersections, therefore membership in the fixed effects fully determines
which stratum or intersection an individual belongs to. The fixed effects are interpreted as
the main “additive” effects, and the intersection residuals represent intersectional effects,

or departures from additivity, and significant residuals can be easily identified as
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significant intersectional effects. The variables inputted to create intersections must be
categorical or binary, to allow for creation of distinct intersectional groups for the

clusters. Models are fitted using Bayesian estimation techniques, with null priors.

Compared to traditional regression models, MAIHDA is suggested as a more
parsimonious way to include many intersections, because rather than the number of
interaction terms required increasing geometrically with every added social position, for
MAIHDA the number of fixed effects increases linearly, with only one extra fixed-effect
term required for each additional social position. [43] MAIHDA addresses issues of low
sample size in certain intersections by adjusting residual estimates according to sample
size of the intersection. The intersection residuals are shrunk towards the population
mean with a weighting according to sample size, where a smaller intersection will be
weighted more towards the mean. This is seen as preventing the residuals estimated for
smaller intersections from being erroneously identified as larger than expected, due to

extreme outliers. [43]

2.2.2 Review of MAIHDA studies

A review of current published studies using the MAIHDA methodology was conducted.
Table 2.3 outlines the studies and their outcome types, sample sizes, and the number of
intersectional positions and final groupings created. There are variable applications with
both continuous and binary outcomes and a large range in the total number of
intersections, but overall the number of intersectional variables included is notably
greater than those in the typical intersectionality literature applying regression or uni- or

bi-variate analyses.

Table 2.3: Studies using MAIHDA

Study Year Outcome type N Number of
published | (Prevalence for intersections
binary outcomes)
Evans et. al. [43] | 2018 Continuous 32,788 | 2*3*4*4*4=384
Fisk et. al. [44] 2018 Binary (rare: 0.22%) | 2,445,501 | 2*2*3*2*2*2 =
96
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Hernandez- 2018 Continuous 14,190 | 2*3*3*3*2 =108
Yumar et. al.
[45]
Evans and 2019 Continuous 15,388 | 2*7*2 =28
Erickson [46]
Persmark et. al. | 2019 Binary (prevalence 6,846,106 | 2*3*3*2*2 =72
[47] not provided)
Persmark et. al. | 2019 Binary (prevalence 43,409 | 2*4*3*3 =72
[48] not provided)
Kiadaliri and 2019 Binary (rare: 3.5%, 342,542 | 2*2*3*3*2*2
Englund [49] 0.5%, 0.2%, and =144

0.2%)
Wemrell et. al. 2019 Binary (rare: 5.6%) 4,334,030 | 2*5*2*3*2 =120
[50]

The primary article looked at the continuous outcome of BMI, to identify differences
across intersectional strata, defined by five variables: gender, race/ethnicity, income,
education, and age. [43] This resulted in 384 unique intersectional groups, for which each
was considered a stratum for the random effects. Table 2.4 is an example table published
in this article. Here the “Null Model” includes only the random intercepts, and no fixed
effects, and the full “Main Effects Model” includes all fixed effects, as well as the
random intercepts for each intersection. As can be seen from these results, the inclusion
of the main effects explains some of the stratum-level effects, as it reduces from 1.823 to
0.643. The remaining between-strata variation is displayed as a percentage, where
35.27% of the between-strata variation was unexplained by main effects. Groups with
significant residuals are interpreted as having greater or lesser outcomes than expected

from additive effects alone, also known as interaction or intersectional effects.
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Table 2.4: Results from Evans et. al. [43] MAIHDA analysis for BMI (kg/m?)

Null Model
Estimate (95% CI)

Main Effects Model
Estimate (95% CI)

Fixed Effects
Intercept 28.126 (27.965,
28.293)
Gender
Male (reference)
Female
Race/Ethnicity
White Non-Hispanic
(reference)
Black Non-Hispanic
Hispanic/Latino
Education
Less than high school
(reference)
Completed high school
Some college no degree

College degree or more

Income (% Poverty Threshold in 2000)

Low income (Below 100%)
(reference)

Low-middle income
(100%-199%)

High-middle income
(200%-399%)

High income (400% or more)

Age
18-29 years (reference)
3044 years
45-59 years
60 + years
Random Effects
Strata 1.823 (1.503,
2.196)
Individual 34.506 (33.984,
35.035)
Percent of Between-Strata Variation Unexplained by
Main Effects

26.858 (26.433, 27.288)

0.081 (—0.149, 0.316)

1.791 (1.511, 2.066)
0.659 (0.383, 0.941)

0.087 (—0.255, 0.433)
—0.240 (—0.591,
0.123)

—0.813 (- 1.167,
—0.460)

—0.066 (—0.370,
0.245)

—0.258 (—0.574,
0.060)

—0.584 (—0.953,
—-0.210)

1.282 (0.944, 1.624)
1.814 (1.477, 2.152)
0.523 (0.184, 0.862)
0.643 (0.488, 0.826)
34.511 (33.977, 35.047)

35.272%

Note: 95% Credible Intervals in parentheses. P-values are associated with frequentist

approaches and are not available for Bayesian estimations.

Reprinted from Social Science & Medicine, 203, Clare R. Evans, David R. Williams,
Jukka-Pekka Onnela, S.V. Subramanian, A multilevel approach to modeling health
inequalities at the intersection of multiple social identities, 70, Copyright (2018), with

permission from Elsevier. ©

The original Evans et. al. [43] paper did not explicitly report on the number of significant

interactions, instead focusing on general patterns. But subsequent papers have used

MAIHDA to identify which intersections have the overall best and worst outcomes, and

which intersections report the highest and lowest intersectional effects. The authors Fisk

et. al. [44] reported from their analysis that three strata had significant interactions
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according to the residual estimates, which they state is what would be expected to be
significant (out of 96 strata) due to chance. Hernandez-Yumar et. al. [45] found that 9 out
of 108 intersections were significant, Kiadaliri and Englund [49] found 6 out of 144 were
significant, while Evans and Erikson [46] and Persmark et. al. [48] reported that none of

the residuals were significant (0 out of 28 and 0 out of 72).

MAIHDA has been expanded for use with binary outcomes. [44, 47-50] By using a
logistic regression, this creates issues for interpreting any interaction effects, which
would be on the multiplicative scale for odds ratios. To use the additive scale, the authors
Fisk et. al. [44] used the predicted log-odds to create the predicted probabilities (or
incidence) in each stratum, and compared the expected and predicted probabilities. Figure
2.2 presents the identification of significant interaction effects by Fisk et. al. [44], where
the significant interactions are calculated by significant differences in the predicted
outcome for an intersection between main effects alone, and main effects plus the
residual estimate. Persmark et. al. [47, 48] and Kiadaliri and Englund [49] similarly used

the logistic model to calculate absolute risk.

Incidence of Chronic Obstructive Pulmonary Disease during 2011 for people aged 45-65 residing in Sweden on Dec 31st 2010, by intersectional strata.
Predicted incidences and their 95% Cls based on the total effect (intersectional effects and main effects) and main effects only, in model 3. Interaction
effects calculated as total effect minus main effect. Intersectional strata were calculated by categories of age, gender, income based on tertiles in the
whole population aged 45-65 years, education, living alone and immigration status. In this table only the five strata with the most negative (protective)
and the most positive (hazardous) interaction effects are shown. Intersectional strata are ordered according to their interaction effects with the lowest
first and increased interaction effects in descending rows. Strata with 95% ClIs excluding 0 are bold. For a full table showing data for all 96 intersectional

strata, see Table A2 in Appendix and Figs. 3 and 4.
. Livi
Age | Gender Income Education all‘;lgs Immigrant Model 3
3 3 % _E 45 é g g £ g o 2 a ° Total Malr'n effects Total - njaf'n effects
LA 2R | T |2 T | = == Incidence  95% Cl Incidence  95% Ci Interaction  85% CI

The five intersectional strata with the most negative (protective) interaction effect

v 0.92 0.77-1.07 1.06 092-1.23 -0.15 0.35-0.06
v - 0.58 0.46-0.75 0.72 0.61-0.84 -0.13 -0.28-0.04
v | 045 0.36-0.55 0.57 0.49 - 0.65 011 0.23-0.00
v h I . 0.23 0.17-0.31 0.29 0.25-0.34 -0.06 0.12-0.02
v Il B B o 0.25-0.33 0.34 0.29 - 0.40 -0.05 012-0.01
The five |ntersect|0ﬂa| slrata with the most positive (hazardous) interaction effect
¥ v 0.23 0.18-0.28 0.17 0.15-0.20 0.06 0.01-0.11
I v - | 0.51 037-0.72 0.45 0.38-0.53 0.06 -0.08-0.25

v [ ] 039 0.29-0.50 0.32 0.27-037 0.07 0.02-0.18
v | o029 025-035 021 0.18-025  0.08 0.03-0.13
v | o039 033-045 026 0.22-0.30 0.13 0.07-0.20

Figure 2.2: Results from Fisk et. al. [44] ©
(https://doi.org/10.1016/j.ssmph.2018.03.005), presenting significant intersectional
effects in bold. Figure re-used under the Creative Commons Noncommercial-No
Derivatives license. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
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Another analysis by Evans and Erickson [46] applied MAIHDA to a longitudinal study,
by assessing changes in depression scores over two different waves of a longitudinal
dataset. The three outcomes were wave 1 scores, wave 4 scores, and the difference
between wave 1 and 4. The authors also incorporated a continuous variable into the

analysis by controlling for age, centred at zero.

2.2.3 Measures of discriminatory accuracy

Discriminatory accuracy aims to understand how well the chosen social positions or
identities are actually able to predict and account for variation in the outcome. [51] Evans
et. al. in the original article [43] does not directly reference discriminatory accuracy, but
it has become a focus of subsequent studies applying MAIHDA. Articles include
calculations of the intra-class correlation coefficient (ICC), where the ICC is calculated
for both the null model (random intercepts and no main effects), and the model which
includes main effects. [44-49] The ICC of the null model is seen as representative of the
total explanatory power of the intersections for explaining variation in the outcome, and
this explanatory power can include additive effects and intersectional effects. The ICC of
the model fitted with fixed effects is seen as the remaining variation explained by
intersectional, or interaction effects. [44] To interpret the ICC values, the authors Fisk et.
al. [44] acknowledge that there is no set scale for these values, and suggest using the
same scale used for psychometric tests (where ICC is expressed as a percentage): “non-
existent (0—1), poor (>1 to < 5), fair (>5 to < 10), good (>10 to < 20), very good (> 20 to
< 30), excellent (> 30)”. Accordingly, a poor ICC is seen as indicative that the chosen
positions or identities used to form the intersectional stratum should not be acted on at a
public health or policy level, because they contain too much individual heterogeneity to
be effective targets. [44]

2.2.4 MAIHDA main effects

The interpretation of the main effects or “additive effects” estimated by MAIHDA is
important, because it is based off of these effects that an intersection is evaluated as

experiencing significant interactions. Interpretations of the meaning of MAIHDA
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additive effects has varied. From the original article by Evans et. al. [43], these are
simply described as “main effects” representative of the additive model. Other
interpretations have been ambiguous on the meaning of main effects [44, 48, 49], or have
simply made no interpretation of the main effects at all [47]. The third study to apply
MAIHDA interpreted the coefficients from the MAIHDA model as one would for a
traditional regression model, that assumes no missing interaction terms or model
misspecification. [45] For example, they interpret the intercept as “The intercept, 0
measures the predicted BMI of the stratum defined when all the dummy variables equal
zero (i.e., the reference individuals: 18 to 35-year-old males, with high income and high
education and who cohabit).”. [45] An example interpretation of the main effect
coefficient for gender is, “The results show women had an average BMI 1.16 units lower
than that of men, having controlled for the other variables.”. [45] This interpretation may
be the typical interpretation of “additive effects” for traditional regression models and
intersectionality research, but further publications have clarified this interpretation does
not apply to MAIHDA. In further articles, Evans has clarified that the interpretation of
the main effects is not as holding all other variables constant, but is rather an average
effect of each variable. For example, they state that for MAIHDA, “the parameter for
“black” represents the average difference between black and white respondents, inclusive
of all genders. In a model [traditional regression model] inclusive of interaction
parameters, as in Table 3, the parameter for “black” represents something else entirely—
the average difference between black males and white males.”. [52] Here, the effect of a
variable according to MAIHDA is the average effect in the overall population, inclusive
of potential interaction effects, and is distinguished from the typical interpretation of

additive effects in regression models including interaction terms.

In a commentary by Lizotte, Mahendran, Churchill, and Bauer [53], a short simulation
was used to demonstrate that the provided definition of MAIHDA main effects is not a
sufficient explanation. Our commentary demonstrated that rather than being the
population average effects [52], MAIHDA main effects fall under a different definition;
main effects represent the average effects created from a pseudo-population, where

clusters or intersections are equally weighted. In this commentary, we argued that this is
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the true definition of the MAIHDA main effects, and that this definition falls outside of
what is typically interpreted in intersectionality research as “additive effects”, which are
usually described as effects without the existence of interaction. An example of the
difference between traditional additive effects, population average effects, and average

effects across equally weighted clusters is given below.

The following is a data generating scenario where x1, x2, and x3 are binary variables,
resulting in 8 possible intersections:
y = X1+ X2 + x3 + x1*x2

where P(x1=1) is 0.7, P(x2=1) is 0.7, and P(x3=1) is 0.5. Assume that the true effect of
each variable (x1, x2, and x3) and the interaction term (x1*x2) is 1. The working model
that will be fitted for MAIHDA is:

Yii = fo + frxajt faxaj + faXsi + pj + €ij
where for each stratum j, x; represents the effect of the random intercept, and ejj is the
individual error term. As explained previously, the MAIHDA working model includes no

interaction terms.

The expected effect of x1 according to MAIHDA will be 1.5, because for half of the
possible intersections where x1=1, the effect of x1 is 1 (when x2=0). For the other half of
the intersections where x1=1 (when x2=1), the effect of x1 is 2 (because of the
interaction of x1*x2). Therefore (0.5*1)+(0.5*2)=1.5. This is different from the
population-level average effects, where the expected effect of x1 would be 1.7. This is
because for 70% of those for who x1=1, x2=1 and the effect of x1 is 2. For 30% of those
for who x1=1, x2=0, and the effect of x1 is just 1. Therefore (0.7*2) + (0.3*1) = 1.7.
Finally, if MAIHDA main effects were only representative of the additive effects (an
effect where no interaction is present), then the effect of x1 would simply be equal to 1.
There calculations demonstrate that differences in the definition of main effects can lead
to different interpretations of the results. Understanding the true interpretation of the
main effects is relevant because these main effects form the baseline for determining

which intersections experience significant interactions.
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2.2.5 Current literature assessing MAIHDA

Comparison between MAIHDA and traditional regression has been conducted using
secondary data analysis to assess differences in how the two methods identify
significant interactions, for both continuous and binary variables. [52] Traditional
regression models were fitted with main effects and all possible interactions. Each of
the outcomes had a sample size of approximately 14,000. For each outcome, a varying
number of possible intersectional strata were considered, from 6 (created by gender and
race) to 91 (created by gender, race, immigrant status, parental education, income, and
sexual identity). Generally, MAIHDA identified fewer significant intersections than the
corresponding traditional regression model would identify significant interactions. For
example, for the binary outcome of fair/poor health, 6 interaction terms were significant
from the fixed regression model, but 0 intersections were significant from the
MAIHDA model. Evans provides several explanations for why MAIHDA performs
more conservatively when identifying significant intersections when compared to
traditional regression, including 1) differences in the estimation techniques (frequentist
versus Bayesian), 2) MAIHDA adjusts estimates for each intersection towards the
grand mean based on intersection sample size, resulting in more conservative
intersection estimates for small intersections, and 3) that MAIHDA and conventional
methods make “fundamentally different comparisons” when calculating main effects, as
explained in the previous section, resulting in intersections requiring to be detected as
significant interactions “particularly intense effects in the expected direction or by

breaking with general patterns all together”.

2.2.6 Summary of MAIHDA and application to current study

MAIHDA has been suggested as the “gold-standard” for studying health disparities [54],
that leads to “improved mapping of the risk heterogeneity of and socioeconomic
inequalities” in different health outcomes [47]. With its ability to assess a large number
of intersections and combinations of social positions with mixes of marginalization and
privilege, it has thus been rapidly adopted as a methodology. No existing studies using

MAIHDA have compared its predictive performance to traditional regression for the
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accuracy of outcome predictions for each intersectional group. Given that one of the
stated benefits of MAIHDA is the adjustment of estimates based on the sample size of
intersections, which can supposedly lead to improved predictions, prediction accuracy
compared to traditional regression or cross-classification should be evaluated. The
current thesis uses simulated data to evaluate MAIHDA predictions at the intersection-
level. Given the varying interpretations of the meaning of the main effect estimates
created by MAIHDA, and their potential impact on the identification of significant
intersectional effects [52], secondary outcomes of this thesis include assessing if effect
estimates reflect the traditional definition of additive effects (the lower order effects in an
interaction model), or if they fall under the definition proposed by Lizotte et. al. [53]. As
well, this is an opportunity to further test the calculations suggested in the commentary,
as these calculations were performed for only three simulated examples, and only on a

continuous outcome.

2.3 Review of the literature and limitations

Applications beyond traditional regression and uni- or bi-variate approaches have been
touted to have many benefits for studying interaction and accommodating a larger
number of intersections, which is of interest given the wider availability of population-
level datasets for intersectional research. CART, CTree, random forest and MAIHDA
have been separately studied in comparison to traditional regression. However, it is not
clear which methods perform best for intersection-level predictions, or for variable
identification. Most studies assessing prediction, with the exception of
Venkatasubramaniam et. al. [42], compare methods using secondary data analysis,
where the true underlying answer is not always known, unlike in simulations. Without
known simulated variable effect sizes and outcomes, the validity of different methods
cannot be established, as it is unclear which method approaches the actual “truth”.
Methods that perform similarly in secondary data analysis may just be similarly over-
or under-fitting to the sample data. The current thesis will improve upon the existing
literature by using simulated data with known true outcome estimates and known true

variable effects, to assess how well the conventional methods (regression and cross-
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classification) and novel methods (decision trees and MAIHDA) perform for

intersection-level prediction, as well as variable identification.

The authors Kreatsoulas and Subramanian [41] in their review of how social
epidemiology stands to benefit from the incorporation of machine learning, reference the
concept of “no free lunch” [55], which in this context refers to there not being any one
methodology or algorithm that is best suited for prediction in every data scenario. This is
why this simulation study explored a multitude of scenarios, varying by sample size,
input types, and outcome types, with parameters selected based on the dataset qualities
and outcomes relevant to intersectional research. The existing literature has not yet
addressed this wider range of data analysis scenarios, which is necessary to understand
which quantitative intersectionality methods may work best for different data scenarios.
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Chapter 3
3  Methods

This chapter presents the methodology behind this simulation study. Firstly, the primary
and secondary study objectives and outcomes are presented in Section 3.1. Section 3.2
outlines the eight quantitative intersectionality methods that were evaluated in this study.
The combinations of parameters used to create the simulated data are described in
Section 3.3, and procedures to create the simulated data are explained in Section 3.4. All
analyses were run on R version 3.6.1. [56]

3.1 Study Objectives

The primary objective of this study was to evaluate the accuracy of population-level
predictions created by descriptive quantitative intersectionality methods. Ten data
generation models, varying by outcome and input type, were used to evaluate eight
methods. The five outcome types were continuous, binary with a rare prevalence, binary
with a common prevalence, negative binomial, and multinomial. The two types of inputs
were either all categorical, or a mix of categorical and continuous. The ten data
generation models were simulated for 4 sample sizes (2,000, 5,000, 50,000, and 200,000),
for 1,000 iterations each, resulting in 10*4*1,000=40,000 total simulations. Results from
these 40,000 iterations were summarized over each sample size and data generation
model. The secondary objectives were to estimate the confidence interval coverage of the
single-level regression methods and MAIHDA, the power of the single-level regression
methods and MAIHDA, the ability of the decision tree methods to correctly identify
important splitting variables, and the ability of the decision tree methods to estimate the
number of distinct intersections. The data generation process included five variables (X1
to X5) with true effects on the outcome, one variable (X6) with no true effect, and
interaction terms, resulting in 192 intersectional groups, of which 64 were truly different

from one another in regard to the outcome Y.
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The methods that were assessed are as follows:
1. Regression — best fitted: only the necessary/true interaction terms are included.
2. Regression — over-specified: all possible interaction terms are included in the
model.
3. Cross-classification
4. MAIHDA (Multilevel analysis of individual heterogeneity and discriminatory
accuracy)
5. CART (Classification and Regression Trees)
6. CTree (Conditional Inference Trees)
7. CHAID (Chi-square Automatic Interaction Detector)
e only for models with all categorical inputs and outcome
8. Random Forest
Further descriptions of these methods can be found in Section 3.2.

The ten data-generation models used to assess the methods are as described in Table 3.1.

Table 3.1: Description of the ten data generation processes

Outcome Input variables
Model 1 Continuous Categorical only
Model 2 Continuous Mixed (Categorical and continuous)
Model 3 Binary — Common prevalence  Categorical only
Model 4 Binary — Common prevalence  Mixed (Categorical and continuous)
Model 5 Binary — Rare prevalence Categorical only
Model 6 Binary — Rare prevalence Mixed (Categorical and continuous)
Model 7 Multinomial Categorical only
Model 8 Multinomial Mixed (Categorical and continuous)
Model 9 Negative binomial Categorical only
Model 10 Negative binomial Mixed (Categorical and continuous)

Further description of the creation of these models can be found in section 3.4.

3.1.1 Primary outcome

The primary outcome was the accuracy of each method’s intersection-level predictions,
evaluated by mean squared error (MSE) and mean absolute percentage error (MAPE).
Intersection-level predictions were defined as the prevalence or mean of outcomes in
each of the 192 intersections. Note that accuracy was calculated at the intersection-level
(for each of the 192 intersections), rather than by comparing individual-level predictions.
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While predicting outcome prevalences or means at the intersection level may not be the
only outcome of interest for descriptive quantitative intersectionality, it was chosen as the
primary outcome for this study because it can be calculated across all the included
methods. Secondary outcomes address the outcomes specific to certain methods.

For the continuous and negative binomial outcomes, the MSE for each method was
calculated using the difference between the true population mean for each intersection,

and the estimated population mean. Mean squared error was calculated as follows:
n
1 v 2
i=1

where n is 192 (reflecting the 192 intersections), ¥; is the estimated mean for intersection
I, and Y; is the true population mean for intersection i. The true mean for the continuous
outcome was known by using the same outcome generating formula (see section 3.4) as
for the model dataset, without including a random error term. The true mean for the
negative binomial outcome was known by using the same outcome generating formula,

and not running it through the negative binomial sampling function.

For the binary and categorical outcome, accuracy was assessed using MAPE. The MAPE
for each method was calculated using the difference between the true population
prevalence for each intersection and the estimated population prevalence, divided by the
true population prevalence.

|Pi— P
MAPE = —Z
|Pil

For the binary outcomes (rare and common), the MAPE was calculated such that P; is the
estimated prevalence of the outcome Y=1 for intersection i, and P; is the true prevalence
of the outcome Y=1 for intersection i. The true prevalence of the outcome was known by
using the same outcome generating formula, but not running it through the binary
sampling function. For the multinomial outcome, three MAPE’s were calculated for each
method, one for each of the three possible outcomes. Therefore, MAPE was calculated
for outcomes Y=1, Y=2, and Y=3.
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For each of the 10 models and across the four sample sizes, the estimated MSE or MAPE

for each iteration is presented in boxplots.

3.1.2 Secondary outcomes

The secondary outcomes were used to examine other outcomes of interest for quantitative

descriptive intersectionality.

The regression methods (both over-specified and best-fitted) were assessed for
confidence interval coverage, coefficient significance, and convergence. Confidence
interval coverage was defined by the percent of iterations for which the confidence
interval contained the true estimate for each variable. Coefficient significance was
defined by the percent of iterations that the coefficient estimate was significant at an
alpha of 0.05. While this is referred to as “power” over the course of this thesis, we
acknowledge that the regression analyses were often under-powered to detect all relevant
variables. For the over-specified model, results were only calculated for the variables that

appear in the best-fitted model.

MAIHDA was assessed for confidence interval coverage and coefficient significance of
the main effects. Because main effects in MAIHDA are defined as “additive effects”
differently than in the intuitive definition in regular single-level regression, confidence
interval coverage was calculated according to two definitions of main effects: the
traditional definition in intersectionality, and the MAIHDA definition, as described by
Lizotte et. al. [53]. Further description of these definitions can be found in section 3.2.3.

For the decision tree methods, CART, CTree, and CHAID were assessed for the average
number of leaves in the final tree, and the average number of splitting variables used in
the final tree, with 2.5 and 97.5" percentiles. The percent of iterations where each
variable was used as a splitting variable was also reported. The random forest results
were summarized by the average number of leaves in the random forest models. Because
there is no set splitting pattern for random forest models, the average variable importance

measure for each variable was reported, with 2.5 and 97.5"" percentiles.
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3.2 Description of eight quantitative intersectionality
methods

3.2.1 Regression — best-fitted and over-specified

Best-fitted regression was shown as an analytic method to demonstrate a best-case
example of a regression model, where only the necessary interaction terms are included.
In reality, this would likely not occur because one does not know all relevant interaction
terms a priori. In this study, these models included only the interaction terms X1*X2,
and X3*X4*X5. In contrast, the over-specified regression method was purposely over-
specified, and included all possible interaction terms. While the best-fitted regression
represented a best-case scenario, the over-specified regression represented a more
realistic scenario in intersectionality studies, where the underlying data structure is
unknown, and therefore all possible interaction terms are specified. For the mixed input
models this results in 64 estimated coefficients, and for the categorical input models, 192
estimated coefficients. The included interaction terms assumed linear interaction effects.

The type of regression was as follows, depending on the outcome:

A. Continuous (normal) outcome: The continuous outcome was analyzed using a linear

regression model via the R-core function “Im” which applies ordinary least squares.

B. Binary rare prevalence and binary common prevalence outcomes: The modified
Poisson regression was used to analyze binary outcomes. [57] It is widely
acknowledged that risk ratios have greater interpretability than odds ratios as a
measure of association. [58] Therefore, while intersectionality studies applying
regression to binary outcomes will often use logistic regression to produce odds
ratios, an alternative option was chosen in this study. The modified Poisson
regression is an application of Poisson regression that can be used for binary outcome
data with rare or common outcomes, and produce coefficient estimates that are risk
ratios, rather than odds ratios. Robust error variance is used to counteract the variance
overestimation that occurs from applying a Poisson regression to binary outcome

data. The binary outcomes were analyzed using the R-core function “glm” for
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generalized linear models. Packages “Imtest” [59] and “sandwich” [60] were used to

allow the sandwich estimator to correct the variances.

C. Categorical outcome: Multinomial logistic regression was conducted using the R
package “nnet” [61], which uses neural nets to fit the multinomial log-linear models.
This package was chosen over the alternative “mlogit” [62], which estimates
multinomial logit models using maximum likelihood, due to the mlogit package often

failing to converge the over-specified regressions.

D. Negative binomial outcome: Negative binomial regression is used for count data,
especially when over-dispersed. The negative binomial outcome was analyzed using
the “glm.nb” function from the R package “MASS” [61].

3.2.2 Cross-classification

Cross-classification was the univariate approach of taking either the prevalence or mean
of the outcome for each of the unique intersections, with no further statistical
adjustments. If there was a cell-size of zero for any of the intersections, this intersection
was omitted from the MSE or MAPE calculations for cross-classification. The average
number of omitted intersections is reported in the results section, as a reminder that not

all intersections were included in the estimate of MSE or MAPE for cross-classification.

3.2.3 MAIHDA

MAIHDA (Multilevel analysis of individual heterogeneity and discriminatory accuracy)
is a novel application of multilevel analysis for intersectionality, first introduced by
Evans et. al. [43]. Here, intersections are defined at the group level with random
intercepts, and for the fixed-effects (or main effects), each of the predictors used to create
the intersections is included. No interaction terms are included amongst the fixed effects.
The MAIHDA model can be represented as

Yij = i + uoj + €ojj
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Level 2[uj] ~ N (0,0 %strata)
Level 1[eoij] ~ N (0,0 %)

where i is each individual in intersection j, y; represents a vector of the intercept and main
effect predictors, and £ is a vector of the parameter values. The random effects are
intercepts for each intersectional group (uoj). The additional term (eojj) is for individual-
level error. Membership in the fixed-level effects therefore determines which
intersectional group (level 2) a respondent belongs to. The interpretation is that the fixed
effects represent additive effects, and the random intercepts will represent any additional

“intersectional effects”.

Similar to cross-classification, if there was a cell-size of zero for any of the intersections,
this intersection was omitted from the MSE or MAPE calculations, and the average

number of omitted intersections is reported with the primary outcome.

The original application of MAIHDA uses Bayesian models with null priors. However,
due to computational power and time restraints, the analysis for this simulation was
conducted using frequentist analysis. Appendix A demonstrates results from a short
simulation comparing the estimation of main effects between frequentist and Bayesian
models with null priors, for a continuous outcome model with five binary predictors.
Results from this analysis validated the choice to use the frequentist model, given that the

main effects estimates were extremely similar between the two approaches.

The types of multi-level regression were as follows, depending on the outcome:

A. Linear outcome: The continuous outcome was analyzed using linear multilevel

regression, using the function Imer from the R package “lme4” [63].

B. Binary outcomes: The binary outcome was analyzed using multilevel Poisson
regression, using the function glmer from the R package “Ime4” [63]. The Poisson
regression method was chosen instead of logistic, to be consistent with the use of the

modified Poisson regression for the single-level regression methods (best- and over-
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specified). A limitation of this choice is that the current packages in R do not allow
for the use of the sandwich estimator to alter variances from glmer objects. Therefore,
while intersection-level predictions for the primary outcome should be unaffected, the
interpretation of confidence interval coverage and coefficient significance should

consider that the variance estimates are likely highly conservative.

C. Categorical outcome: The following functions were attempted but could not run a
multinomial multi-level regression with random intercepts only: multinom from
package “nnet” [61], mlogit from the package “mlogit” [62], mblogit from the
package “mclogit” [64], and clmm?2 from the package “ordinal” [65]. Therefore, this
was taken as a practical restraint and MAIHDA was not used to analyze the two
multinomial outcome models. Alternatively, if users did want to run such an analysis
on R, the likely solution would be to run a Bayesian multilevel model using the

package “brms” [66].

D. Negative binomial: Negative binomial multilevel regression was run using glmer.nb

from the “lme4” [63] package.

When considering confidence interval coverage of the main effects, two definitions were
used to define the possible main effects estimands. Definition 1 is additive effects in the
traditional intersectionality definition, which is when effects of each social position are
not impacted by other positions (the effect of the variable in the presence of no
interactions). Definition 2 is the average effect of the variable across equally-weighted
clusters (or intersections). Presented in Table 3.2 is an example of the calculations for
estimands using both definitions, according to the following formula used to generate the

continuous outcome with categorical inputs:

Y = bintercept + br.1 (if X1=1) + byo (if X1=2) + bya (if X1=3) + b2Xz + baX3z + baXs + bsXs
+ bs(if X1=2 & Xo=1) + b7(if X1= 3 & X2=1) + bgX3XsXs+ €.
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Table 3.2: MAIHDA estimand definitions

Estimand Definition 1 Definition 2

intercept Dintercept The expected intercept from MAIHDA is a result of
the other main effects. The calculation for the
estimand is currently unknown.

x1.1 D11 P11

x1.2 b1 (b12+ (b12+ be))/2

x1.3 b13 (br3+ (br3+ b7))/2

X2 b2 (b2 + bz + (batbg) + (b2+b7))/4
X3 b3 ((b3 + bg) + b3 + b3 + b3)/4

x4 bs ((bg + bg) + bs + bs + ba)/4

X5 bs ((bs + bg) + bs + bs + bs)/4

Because MAIHDA has so far only been applied when intersections are defined by
categorical variables, definition 2 was only calculated for models with categorical inputs.
For all other models, confidence interval coverage was only calculated using definition 1.

3.2.4 Classification and Regression Trees (CART)

CART analysis was conducted using the function “rpart” from the package “rpart” [67].
CART is a binary decision trees method that can handle both continuous and categorical
data. [25] To build a CART model, each variable is assessed for its ability to best split the
data into two groups based on the outcome, as defined by a pre-determined splitting
criterion (e.g. the Gini index). The variable that performs best according to this criterion
is then used to split the data into two groups. The same process of searching for the next
best splitting variable is repeated, performed independently for the two groups. This
process is continued for each resulting subgroup, until a pre-determined stopping
criterion. Stopping criteria can be based on a minimum sample size within a leaf (e.g. a
final leaf can have no less than five respondents), or on an improvement criterion. [68]
To avoid over-fitting the CART model to the data, cross-validation can then be used to

trim the tree.
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In this study, the CART splitting criterion for classification trees is based on the Gini
rule. The node impurity (or heterogeneity of the outcome within the node) for node A is

calculated as,

(o
1A= ) f(u)

where pia is the proportion respondents in node A whose outcome is “i”. [68] The Gini
index is the function “f” to measure of node impurity, calculated by f(p)=p(1-p). This is
then used to determine the best splitting variable for a node, by calculating the splitting
variable that results in the “maximal impurity reduction”:

AL =p(A)I(A) — p(AL)I(AL) — p(AR)I(AR)
where AL is the resulting left node, and AR is the resulting right node. The stopping
criterion is based on when no further improvements in impurity reduction can be made.
The splitting criterion for regression trees by CART is defined using sum of squares (SS),
where SS; = Y.(y; — ¥)? is the sum of squares for the parent node. The splitting
criterion is SSt — (SSL + SSr), where SSg and SS._ are for the left and right resulting child
node. A better split will have a larger difference between the sum of squares of the parent
node and the child nodes.

10-fold cross-validation was performed (k=10 is the default for rpart). Pruning was used
to select the complexity parameter with minimal cross-validation error. The complexity
parameter is the improvement required by a split to be continued. The default value is
0.01. The minimum size of a node for it to be considered for splitting was 20, which is
the default for rpart. Because the simulated datasets are assumed to be representative of

the population probability of the outcome, no prior probabilities were specified.

3.2.5 Conditional Inference Trees (CTree)

Conditional inference trees were created using the ctree function from the R-package
“partykit” [33]. Like CART, CTree is a binary recursive partitioning method. Unlike
CART, CTree works in two stages, first to identify if variables are significant to the

outcome, and then secondly, to find a splitting point for the selected splitting variable.
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Whether or not variables are significant to the outcome is assessed using univariate
regression models. If the global null hypothesis (that none of the available variables are
significantly related to the outcome) is rejected, the variable with the greatest association
to the outcome is selected as the splitting variable. [33] The global null hypothesis is
assessed using p-values with Bonferroni correction for multiple testing, and the p-value is
a parameter which can be altered. This study used an alpha of 0.05. The process is then
repeated for the subsequent child nodes, until no further splits can be made. Other
stopping criteria, like minimum node size, can also be implemented. Minimum node size

was kept at the default value of 20.

3.2.6 Chi-square Automatic Interaction Detector (CHAID)

CHAID trees were created using the chaid function from the R-package “CHAID” [69].
CHAID is a non-parametric method that utilizes the significance values from chi-squared
analysis as splitting criteria. [70] The best way to partition for each variable is selected,
and then each of the best partitions for each variable is compared against one another, and
the best of these partitions is used to divide the data into groups. Each of the resulting
groups is then separately partitioned again. This method can only be applied for models
with all categorical inputs and a categorical outcome (three out of the ten models assessed

in this study).

3.2.7 Random Forest

Random forest trees were created using the tuneMtryFast function from the R-package
“tuneRanger” [71], which calls from the package “Ranger” [72]. The random forest
method for constructing decision trees combines decision trees with bootstrapping
methods, with the goal of reducing over-fitting to the data. [73] To create a random forest
model, trees are built from bootstrapped subsamples of the data, that are the same size as
the original dataset. The parameter “mtry” in this package determines how many
variables of the available input variables are assessed to determine the best splitting

variable. At each node, the number of variables as specified by “mtry” are randomly



44

selected and assessed to find the next splitting variable, until the tree is fully grown at the
pre-determined stopping criterion. The random forest model is therefore a collection of
multiple trees. To combine this collection of trees to predict outcomes for a new dataset,
each response is applied to each of the trees. For classification problems, the outcome
predicted by the random forest is whichever outcome occurred most of the time (the
mode) from the total trees. For example, if out of 500 trees, Respondent 1 is classified in
a binary classification problem as A in 150 trees and B in 350 trees, the predicted
outcome for Respondent 1 will be B. Regression problems utilize the mean value.

The random forest models were tuned using the tuning parameter mtry. Tuning allows for
optimization of the model by adjusting parameters to improve model fit. The standard
default for mtry is the square root of the number of input variables. For example if nine
input variables are fed into the random forest model, the resulting mtry value is three. By
tuning by a step factor of 1, the mtry is increased or decreased by this value, and then the
out-of-bag error (average error when assessing model prediction against data not included
in each bootstrapped sample) is assessed. If the improvement to out-of-bag error passes a
threshold value (0.05), then the mtry value is again increased or decreased by the step
factor. This iterative process is continued until improvement to the out-of-bag error does
not pass the threshold value. The threshold value for improvement of 0.05 is based on the
defaults for tuneRanger, but the step factor of 1 was selected, rather than the default of 2,
given that there were a small number of input variables in the simulated datasets.

Random forests were fitted with 500 trees, the default for the package, but this parameter

could be altered or used for tuning in other applications.

The splitting criterion for the ranger package is similar to CART, where splits that results
in the greatest decrease in node impurity are selected. [72] As with CART, node impurity
is defined by the Gini index for classification problems, and response variance for
regression problems. Because there are multiple different trees created by the random
forest procedure, there is no one observable splitting pattern that can be assessed to
definitively say if a variable is important to the outcome or not. Instead, the variable

importance measure is used to represent this concept, where higher values are considered
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more important. There is no limit to the range of possible values, but typically values are
greater than zero. Variable importance for our analysis was determine by how much a
variable contributes to decreases in node impurity. No minimum node size was set, the

default values from the ranger package being 1 for classification and 5 for regression.
3.3 Description of simulation parameters and combinations

Table 3.3 describes the combination of parameters used to create the simulated datasets.
By the combination of five outcome types and two input types, a total of ten different
data generation scenarios exist. Each of these models was repeated for four different
sample sizes. These 40 different types of models were each created with 1000 iterations,
and iterations varied by effect sizes of the main and interaction effects. The following

section describes the selection of these parameters.

Table 3.3: Parameter combinations for the creation of datasets

Number of Parameter Description
options
5 Outcome 1. Continuous
types 2. Binary variable: Rare prevalence
3. Binary variable: Common prevalence
4. Multinomial
5. Negative binomial
2 Combinations 1. Four binary and two categorical (categorical
of input inputs only)
variables 2. Four binary and two continuous (mixed inputs)
4 Sample sizes 1. 2,000
2. 5,000
3. 50,000
4. 200,000
1000 iterations | Effect sizes 1,000 iterations vary by effect size of main and
interaction effects

3.3.1 Outcome types

Selected outcomes were based on common outcomes of interest in intersectional

research, according to consensus by the thesis committee.
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1. Continuous outcome: The continuous outcome was simulated to have a normal

distribution.

2. Rare binary outcome: A rare binary outcome was simulated with the aim for the
prevalence to be less than 5%. The simulated data for this outcome had an average

prevalence of 3%.

3. Common binary outcome: A common binary outcome was simulated with the aim for

the prevalence to be greater than 10%. The average prevalence was 15%.

4. Multinomial outcome: The multinomial outcome was simulated with three categorical
responses, which were treated as nominal data. The three groups were created to have
unequal prevalence’s, with the average prevalence of groups Y=1, Y=2, and Y=3
being 17%, 33%, and 50%, respectively.

5. Negative binomial: The negative binomial distribution represents a count outcome,
with a large number of zeros. This was chosen to evaluate the methods with a more
extreme but still common form of data. The dispersion parameter of the outcome
distribution was varied slightly using the value theta, where the outcome variance is
defined by mu + mu?/theta, and mu is the outcome mean. Theta was sampled from

uniform distribution between 0.8 and 1.2.

3.3.2 Input types

Two combinations of input variables were selected: a set of only categorical variables,
and a mixed set of categorical and continuous variables. This was chosen to reflect the
possibility that different methods may perform better with different sets of predictors. For
example, the bias towards continuous variables in decision trees can be better evaluated

by using two different types of input variable sets.
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Based on the systematic review [19], most published papers included intersections
defined by very few social identity/position variables (two to three), likely because of the
lack of methods that address the large number of intersectional groupings created from
multiple variables. The literature search into MAIHDA and intersectional applications of
decision trees however finds that these methods push towards including more
intersectional variables in analyses. Therefore, six input variables were selected to create
a total number of intersections that is more than the usual, but within the existing limits
of the applications of decision trees and MAIHDA.

The mix of binary and categorical or continuous variables were selected based on the
most common variables used in quantitative intersectionality research, according to the
systematic review of the literature. [19] The simulated combination of input variables can
be considered as analogous to the following variables: X1 as income, X2 as ethnicity, X3
as sex, X4 as post-secondary education, X5 as immigrant status, and X6 as age. Table 3.4
presents the prevalences of the simulated binary variables, compared to the Canadian
Community Health Survey 2015/2016 [74] prevalences of their real-life counterparts in
the Canadian national population data. X1 and X6, or income and age, were treated as
continuous variables in the mixed input models, and as quartiles or tertiles in categorical

input models.

Table 3.4: Simulated variables drawn from Canadian Community Health Survey (CCHS)
revalences

Variable CCHS 2015/16 Simulated Variable | Simulated
prevalence Prevalence

Ethnicity (white vs. | 22.5% X2 20%

non-white)

Sex (Female) 50% X3 50%

Education (Post- 60% X4 55%

secondary)

Immigrant status 25% X5 25%

Tables 3.5 and 3.6 present the two combinations of input variables, categorical inputs and
mixed inputs. Inclusion of a mediation relationship between X3 and X4 reflects the
reality that social positions are often correlated and can affect the likelihood of belonging
to other social positions. For example, being male and high income could each have
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individual effects on a health outcome, and the effect of being male could be partially

mediated by income, if being male increases the probability of earning a higher income.

The total number of intersections was 4*2*2*2*2*3 = 192. Because variable X6 had no

true effect on the outcome, the total number of intersections that were distinct from one

another regarding the outcome were 4*2*2*2*2 = 64. The resulting intersection sizes are

such that there are some missing cells at n=2,000, but all cells are filled with greater

sample sizes.

Table 3.5: Predictor combination of

Table 3.6: Predictor combination of mixed

categorical inputs inputs
X1 |Categorical [P(X1=0)=0.25 X1 | Continuous mean=0, variance=1
P(X1=1) =0.25 (split in quartiles
P(X1=2) =0.25 to create
P(X1=3) =0.25 intersections for
prediction)
X2 |Binary P(X2=1)=0.2 X2 | Binary P(X2=1)=0.2
X3 |Binary P(X3=1)=05 X3 | Binary P(X3=1)=05
X4 |Binary Mediation: X4 | Binary Mediation:
P(X4=1|X3=0) = P(X4=1| X3=0) =
0.4 0.4
P(X4=1|X3=1) = P(X4=1|X3=1) =
0.7 0.7
X5 | Binary P(X5=1) =0.25 X5 | Binary P(X5=1) = 0.25
X6 |Categorical [P(X6=0)=10.33 X6 | Continuous mean=0, variance=1
P(X6=1) =0.33 (split in tertiles to
P(X6=2) =0.33 create
intersections for
prediction)

3.3.3 Sample sizes

Four sample sizes were selected for the simulations: 2,000, 5,000, 50,000 and 200,000.

The largest sample size is reflective of the availability of large population data sets like

the Canadian Community Health Survey. The smaller sample sizes are reflective of the

reality that many intersectionality papers, including those used for decision tree methods

found in the literature review, use smaller datasets.
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3.3.4 Effect sizes

The true effects of the variables were varied in magnitude and direction, to include a
diverse set of possible scenarios, where effects can be both positive or negative, and
interactions may have greater or smaller effect sizes than their main effects. A minimum
effect size was selected based on power calculations, which are described in more detail

below.

3.3.4.1 Power calculation for beta coefficients

Power calculations were performed to determine the minimum effect size for the beta
coefficients. Separate power calculations were conducted for each of the five outcome
types. The input variables for the power calculation were X1 to X6, where all variables
were either binary or categorical, based on the predictor combination shown in Table 3.5.
Two changes were made to the categorical inputs model that differed from what is shown
in Table 3.5, that were justified based on the aim to remain relevant to intersectionality
research. Firstly, the models for the power calculations were created and evaluated with
main effects only, even though the models in the actual simulations include interaction
terms. Presumably if an effect size is significant for an “additive effects” model (additive
effects by the intersectionality definition, meaning no interaction), then it is still an
important enough size for the detection of interaction terms. Elsewise, much larger effect
sizes are required to detect interaction terms for Poisson and logistic models. Secondly,
the input variables did not have the same distribution as in the actual simulation models.
In the power calculation models, variables X1 to X3, and X5 and X6 were split in equally
sized categories. Only X4 was not equally distributed, due to the mediation relationship
between X3 and X4. The justification is that in ideal circumstances, calculating outcomes
for each intersectional group would not be affected by intersection size, especially when
those experiencing marginalization may belong to groups with smaller cell sizes.

Eighty percent power was defined as when in at least 80% of the models, all coefficients
for X1 to X5 were significant at p<0.05. Power calculations were conducted at n=25,000,

an intermediate value between the four sample sizes used in the simulation models
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(n=2,000, 5,000, 50,000, 200,000). 100 iterations of each model were used to determine
80% powver.

Table 3.7 presents the calculated minimum effect sizes and coefficient distributions for
the five outcome types. For the linear outcome, the regression coefficients were on a
scale with a possible range of negative to positive infinity, with a null value at zero. The
sampling of positive and negative beta coefficients was centred around 1 and -1. Positive
coefficients were selected from a truncated normal distribution with a minimum of
“minimum effect size” and a maximum of (2 — minimum effect size). The negative
coefficients were selected from a truncated normal distribution with a minimum of (-2 +
minimum effect size) and a maximum of (-1*minimum effect size). For the binary,
multinomial, and negative binomial outcomes, the coefficients were sampled by selecting
atrue RR, OR, or IRR respectively, and these values were then log-transformed to be
applied to the outcome-generation process. The coefficients were therefore limited to a
possible range of zero to positive infinity, with a null value at 1. The positive coefficients
were selected from a truncated normal distribution, with a minimum of “minimum effect
size”, and a maximum of 1.8. Similarly, the negative coefficients were selected from a
truncated normal distribution, with a minimum of 0.2, and a maximum of (1 — minimum

effect size). The distributions had a standard deviation of 0.3.

Table 3.7: Coefficient sampling distributions

Positive Negative Distribution
Coefficient | Minimum coefficient coefficient
Outcome . AR AR standard
scale effect size | distribution distribution deviation
(min, max) (min, max)
Linear Linear 0.06 (0.06,1.94) | (-1.94,-0.06) 1
Binary RR 1.24 (1.24, 1.8) (0.2, 0.76) 0.30
(rare)
Binary RR 1.11 (1.11,1.80) | (0.20, 0.89) 0.30
(common)
Categorical OR 1.24 (1.24, 1.8) (0.2, 0.76) 0.30
Negative IRR 1.09 (1.09, 1.8) (0.2,0.91) 0.30
binomial
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3.4 Simulation procedures

3.4.1 Independent variable and effect size selection
The simulations for each of the 10 models were run as follows.

The random seed was set at the beginning of each iteration. The independent variables
X1 to X6 were generated according to the distributions and probabilities shown in Table
3.5 or 3.6. The effect sizes for the beta-coefficients were then randomly selected from the
distributions described in Table 3.7. For the categorical inputs, the beta-coefficients

required are shown in Table 3.8, and for the mixed inputs, in Table 3.9.

Two interactions were included in all data-generation scenarios. One interaction was
between variables X3, X4, and X5, creating a three-way interaction between binary
variables. The second interaction differed depending on if the inputs variables were
mixed or all categorical. For the mixed scenario, X1 (continuous) and X2 (binary)
interacted when X1 was greater than 1 and X2 was equal to 1. This was a non-linear
interaction based on a cut-off value, to maintain realistic expectations that interactions do
not have to function linearly, although this is often assumed in regression models when
fitting interaction terms. For the categorical-inputs-only scenario, X1 and X2 interacted if
X1 was equal to 2 and X2 was equal to 1, or if X1 was equal to 3 and X2 was equal to 2.

Table 3.8: Categorical inputs coefficients

Variable Coefficient | Coefficient distribution type
X1l=1 Bi1 Positive
X1=2 B12 Positive
X1=3 Bis Positive
X2=1 B2 Positive
X3=1 Bs Negative
X4=1 Ba Negative
X5=1 Bs Negative
Interaction: if X1=2 & X2=1 Bs Negative
Interaction: if X1=3 & X2=1 B7 Negative
Interaction: if X3=1 and X4=1 and Bs Positive
X5=1

X6=(0,1,2) 0 No true effect
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Table 3.9: Mixed inputs coefficients

Variable Coefficient | Coefficient distribution type
X1 B1 Positive

X2=1 B2 Positive

X3=1 Bs Negative

X4=1 B4 Negative

X5=1 Bs Negative

Interaction: if X1>1 & X2=1 Bs Negative

Interaction: if X3=1 and X4=1 and B7 Positive

X5=1

X6 0 No true effect

For the binary, categorical, and negative binomial outcome, the beta coefficients selected

were transformed to the natural log-scale before inclusion in the outcome generation

formulas presented in the next section.

3.4.2 Outcome variable generation

Two formulas provided the underlying process of outcome generation for the five

different outcome types, with variations to allow for transformation to each outcome.

Table 3.10 outlines the formulas used in the outcome generation process, which included

variables X1 to X5, and two- and three-way interactions. Described below is how the

outcome variable “Y” was generated using either the categorical or mixed inputs formula.

Table 3.10: Outcome generation formulas for each type of outcome

binomial

Outcome Inputs Formula
Y =intercept® + 1.1 (if X1=1) + P12 (if X1=2) + Bos (if
. X1=3)+ B2X2 + Ba3X3 + PaX4 + BsX5 + Pe(if X1=2 &
Categorical | o 1)% Br(f X1= 3 & X2=1) + BsX3*XA*X5 + ¢
Continuous
Y =intercept® + B1 X1+ B2X2 + BaX3 + faX4 + PsX5 +
Mixed Be X1*X2 (if X1> 1 & X2=1) + P7X3*X4*X5 + e
Binary z = intercept?® + Br.1 if X1=1) + P12 (if X1 =2) + Brs (if
(rare or Categorical X1=3)+ P2X2 + B3X3 + PaX4 + BsX5 + Pe(if X1=2 &
common g X2=1) + Br(if X1= 3 & X2=1) + PeX3*X4*X5
prevalence)
and . .
negative Mixed z = intercept® + B1 X1+ B2X2 + BaX3 + PaX4 + PsX5 + P

X1*X2 (if X1> 1 & X2=1) + B7X3*X4*X5
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mul = 1.6 + P11 (if X1=1) + Br2 (if X1 =2) + B3 (if X1
=3) + B2X2 + B3X3 + BaX4 + BsX5 + Pe(if X1=2 &
X2=1) + B7(if X1=3 & X2=1) + fgX3*X4*X5

Categorical | 1o — 9 1 By (if Xi=1) + Broa (if X1=2) + raz (if X1
=3) + B22X2 + B3.2X3 + P4.2X4 + Bs2X5 + Be2(if X1=2
Multinomial & X2=1) + Br.2(if X1= 3 & X2=1) + g2 X3*X4*X5
mul = 1.6 + B1 X1+ B2X2 + B3X3 + BaX4 + BsXS5 + P
X1*X2 (if X1> 1 & X2=1) + BrX3*X4*X5
Mixed

mu2 = 2 + Br2 X1+ B22X2 + B3.2X3 + Ba2X4 + Ps2X5 +
Beo X1%X2 (if X1> 1 & X2=1) + P72 X3*X4*X5

“e””: individual error

4Where intercept = -3 for the rare binary outcome, -1.5 for the common binary outcome,

and 0 for the continuous and negative binomial outcomes

A. Continuous outcome: The data generation formula for the continuous outcome
directly generates the outcome Y. The individual error “e” was created with a mean

of 0 and standard deviation of 1.

B. Binary outcomes (rare and common): The value “z” from Table 3.10 was
converted into probabilities, where P(Y=1) = exp (z). The outcome Y was then
sampled from this probability. This process creates known RR’s for each variable,
which are the beta-coefficients (Bx) exponentiated. [75] Therefore, analysis with the
modified Poisson method should create comparable beta-coefficient estimates.
Because the probability cannot exceed 1, any “z” that resulted in a probability greater

than 1 had all coefficients resampled until the probability was less than or equal to 1.

C. Multinomial outcome: The values “mul” and “mu2” from Table 3.10 were used
to create the probabilities of outcomes Y=1, Y=2, and Y=3. A total score from the
three possible outcomes was calculated as Denominator=1+exp(mul)+exp(mu2), and
the probability of each of the outcomes was calculated as follows:
P(Y=1) = 1/Denominator
P(Y=2) = exp(mul)/Denominator
P(Y=3) = exp(mu2)/Denominator
These probabilities were used to sample for outcome Y. This process created known
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OR’s for each variable, which are the beta-coefficients (Bx) exponentiated. Therefore
analysis by multinomial logistic regression should create comparable beta-coefficient

estimates.

D. Negative binomial outcome
The value “z” from Table 3.10 was converted to the mean of count outcome Y, via
mu = exp(z). The outcome Y was then selected via the rnegbin function from the R-
package “MASS” [63], using parameters mu and the distribution theta, which was

randomly sampled between 0.8 to 1.2 under a uniform distribution.

3.4.3 Simulation feasibility testing

To assess feasibility, run times were recorded for each analysis method, using single
iterations of each outcome type, created with categorical input variables. For single-level
regression analyses, a single analysis included fitting the regression model, and obtaining
standard errors and confidence intervals for each coefficient. For decision tree methods, a
single analysis included fitting the decision tree and pruning or tuning when applicable.
For MAIHDA, a single analysis included model fitting and estimation of main and
random effects, as well as confidence interval construction for main and random effects.
A single iteration of cross-classification was calculation of the average value of the
outcome for each intersection. These trials were performed using a typical office
computer with an Intel Core i5-3470 and 8 GB of RAM, running the 64-bit version of
Windows 10.
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Chapter 4
4  Results

This chapter will report the performance of the eight analytic methods when applied to 10
different simulated data scenarios, representing descriptive data with intersectional
variables, across four sample sizes. First, section 4.1 presents the primary result,
prediction accuracy for intersectional groups, for each method across the ten data
generation scenarios and four sample sizes. Section 4.2 presents a summary of percent
significance of coefficients and confidence interval coverage from best-fitted and over-
specified regression analyses. Section 4.3 similarly presents a summary of percent
significance of coefficients and confidence interval coverage from select MAIHDA
analyses. Section 4.4 presents secondary outcomes for the decision tree models, including
the average number of leaves and splitting variables, and probability of splitting on each
variable for CART, CHAID, and CTree, and the average number of leaves and variable
importance measures for random forest. Results are presented for all ten data generation
scenarios and four sample sizes. Finally, section 4.5 presents run times for single

iterations of each analysis.

4.1 Primary results

The primary outcome (MSE for continuous or negative binomial outcome models, MAPE
for binary or categorical outcome models) is presented for each data generation scenario
in Figures 4.1 to 4.10, via boxplots presenting the distribution of the primary outcome

across the 1000 iterations.

For all ten scenarios, the accuracy for each method improved with increasing sample size,
except for CART. For prediction at the largest sample size (n=200,000), CART
performed the poorest with the highest prediction error. At the larger sample sizes, other

methods performed relatively the same and approached an MSE or MAPE of zero. One
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exception is that the single-level regression methods performed worse than the other
methods, but better than CART, for the continuous outcome model with mixed inputs.
The following results summarize the worst and best predictors at the smallest sample
sizes (n=2000, n=5000), where there were the greatest differences in accuracy between
methods. At the smaller sample sizes, the least accurate predictors (highest values of
MSE or MAPE) overall were CART, over-specified regression, and cross-classification.
For the continuous outcomes overall, the best performers at the smaller sample sizes were
MAIHDA, best-fitted regression, and random forest. For the binary outcome models,
MAIHDA, best-fitted regression, and CTree (and CHAID when applicable) performed
better at smaller sample sizes. For the multinomial outcomes, best-fitted regression
performed best, followed by CTree, CHAID, and random forest. For the negative
binomial outcome, best-fitted regression and MAIHDA performed well, with the decision
tree’s close behind and performing similarly to one another. CHAID and CTree
performed similarly to one another across sample sizes for all three models that CHAID

was applied to.

There are issues of model convergence and missing values to consider when interpreting
the primary results. The over-specified regression, especially at smaller sample sizes,
resulted in iterations which did not converge, presented in Table 4.1. Therefore, for the
models shown in Table 4.1, primary and secondary results from the over-specified
regression are not from all 1000 iterations, but rather only from models that converged.
Boxplots do not include outliers due to the over-specified regression presenting extreme
outliers for some models. Additionally, at the smaller sample sizes, not all 192
intersections were filled with every iteration. Measures of accuracy were calculated with
equal weight given to each intersection, regardless of intersection size. Table 4.2 presents
the mean number of intersections that remained unfilled for the two input types: mixed
and categorical. Therefore, for the smaller sample sizes, calculations of MSE or MAPE
did not always include all intersections for MAIHDA and cross-classification, because
these methods require a minimum cell size of one to produce predictions. The other
methods still produce estimates for intersections with a cell size of zero, and therefore

always calculated the MSE or MAPE using predictions from all 192 intersections.
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Table 4.1: Number of converged over-specified regression models over 1000 iterations
by sample size for select models

N=2000 N=5000 N=50000 N=200000
Model 3: Common binary
outcome, categorical inputs 167 830 1000 1000
Model 4. Common binary
outcome, mixed inputs 998 1000 1000 1000
Model 5: Rare binary outcome,
categorical inputs 480 855 1000 1000
M_odel 6 Rare binary outcome, 989 998 1000 1000
mixed inputs
Model 9: Negatlv_e blnomlal 295 878 1000 1000
outcome, categorical inputs

Table 4.2: Mean and 2.5" percentile and 97.5™ percentile of number intersections with
cells size zero by the two input data generation models

N=2000 N=5000 N=50000 N=200000
Categorical inputs 7.788 0.734 0 0

(3,13) (0, 3) (0, 0) (0,0)
Mixed inputs 7.816 0.737 0 0

(3,13) 0, 3) (0, 0) (0, 0)
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Figure 4.1: Boxplots of intersection prediction MSE for Model 1 (continuous outcome,
categorical inputs) across four sample sizes (graph excludes outliers)
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Figure 4.2: Boxplots of intersection prediction MSE for Model 2 (continuous outcome,
mixed inputs) across four sample sizes (graph excludes outliers)
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Figure 4.3: Boxplots of intersection prediction MAPE for Model 3 (common binary
outcome, categorical inputs) across four sample sizes (graph excludes outliers)
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Figure 4.4: Boxplots of intersection prediction MAPE for Model 4 (common binary
outcome, mixed inputs) across four sample sizes (graph excludes outliers)
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Figure 4.5: Boxplots of intersection prediction MAPE for Model 5 (rare binary outcome,
categorical inputs) across four sample sizes (graph excludes outliers)
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Figure 4.6: Boxplots of intersection prediction MAPE for Model 6 (rare binary outcome,
mixed inputs) across four sample sizes (graph excludes outliers)
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Figure 4.7: Boxplots of intersection prediction MAPE for Model 7 (multinomial
outcome, categorical inputs) when y=1, across four sample sizes (graph excludes outliers)
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Figure 4.8: Boxplots of intersection prediction MAPE for Model 8 (multinomial
outcome, mixed inputs) when y=1, across four sample sizes (graphs excludes outliers)
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Figure 4.9: Boxplots of intersection prediction MSE for Model 9 (negative binomial
outcome, categorical inputs), across four sample sizes (graph excludes outliers)
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Figure 4.10: Boxplots of intersection prediction MSE for Model 10 (negative binomial
outcome, mixed inputs), across four sample sizes (graph excludes outliers)
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4.2 Regression secondary results

Results from the over-specified and best-fitted regression analyses are presented by the
percentage of completed iterations that important coefficients (the intercept, X1 to X6,
X1*X2 and X3*X4*X5) are detected as significant, and the confidence interval coverage
for these coefficients. Generally, the over-specified regression required larger sample
sizes for coefficient significance and confidence interval coverage to resemble that of the
best-fitted regressions. Full results for all ten models are presented in Appendix B. Select

results are discussed below.

For models with categorical inputs, confidence interval coverage was approximately 95%
for all important coefficients. Results differed for the mixed input models. Table 4.3
presents the confidence interval coverage of over- and best-fitted regression analysis for
Model 2 (continuous outcome, mixed inputs). The confidence interval coverage was
approximately 95% for most main effects from the categorical input models, across all
sample sizes. However, because the simulated outcome was formed with a non-linear
interaction between X1 and X2 (where the interaction between continuous variable X1
and binary variable X2 only begins when X1 is greater than 1), the confidence interval
coverage for X2 and X1*X2 was poor and decreased with increasing sample size. Similar
results are seen for the other mixed input models, where confidence interval coverage
was poorest for X2 and X1*X2.

Table 4.3: Model 2 (continuous outcome, mixed inputs) regression coefficient
confidence interval coverage (% of iterations)

X3:x4:
x5

N = 2000 96 95.7 5338 96 96 95 173 95
N = 5000 95.7 96.3 28.7 957 964 953 091 95
N = 50000 95.7 971 6.1 955 945 962 11 95.8
N =200000 96 959 14 95.7 949 957 0.1 95.8
N =2000 96.7 958 211 96 958 949 6.2 96.1
N
N
N

Intercept  x1 X2 X3 x4 x5 x1:x2

Over-
specified

=5000 95.1 959 89 943 955 953 28 94.4
= 50000 95.2 96 1.2 946 951 96.2 0 95.2
= 200000 95.3 95.2 0 964 949 953 0 95.1

Best-fitted
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Table 4.4 presents the coefficient significance of best- and over-specified regression for
Model 2 (continuous outcome, mixed inputs). As expected, with increasing sample size
coefficient significance approached 100% for variables relevant to the outcome (X1 to
X5, X1*X2, and X3*X4*X5), and not for the intercept and X6, which had true values of
zero and were expected to only be significant in approximately 5% of models. There
were however surprising results concerning coefficient significance of the three-way
interaction term for models aside from Model 2. Table 4.5 and 4.6 show the coefficient
percent significance for the three-way interaction term X3*X4*X5, for the over-specified
regression and best-fitted regression respectively. When using an over-specified
regression model on binary outcomes with either categorical or mixed inputs, and
multinomial outcomes with categorical inputs, significance of the three-way interaction
did not consistently increase, but rather fluctuated or decreased with increasing sample
size. The same result was also observed for models with a rare binary outcome fitted with
a best-fitted regression. These results demonstrate that increasing sample size does not
always result in better identification of significant interactions, even in a best-fitted
regression model.

Table 4.4: Model 2 (continuous outcome, mixed inputs) regression coefficient
significance (% of iterations)

Intercept  x1 X2 x3 x4 x5 x6 x1:x2 X3;§4:
Expected 5 100 100 100 100 100 5 100 100
N = 2000 4 975 80 939 962 922 47 695 799
N = 5000 4.3 99 874 964 987 966 35 844 893

N = 50000 4.3 100 968 100 100 999 38 972 98.2
N = 200000 4 100 97.7 100 100 100 5.6 99.7 997

Over-
specified

N = 2000 33 995 885 942 963 932 44 903 837
N = 5000 4.9 100 946 967 99 972 45 952 918
N = 50000 4.8 100 988 100 100 998 49 995 984
N =200000 4.7 100 992 100 100 100 4.9 100 99.8

Best-fitted

Table 4.5: Over-specified regression % significance for 3-way interaction (x3*x4*x5)
N=2000 N=5000 N=50000 N=200000

22.7 48.1 86.9 94.4

Model 1: Continuous outcome,
categorical inputs
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Model 2: Continuous outcome, mixed
inputs

Model 3: Common binary outcome,
categorical inputs

Model 4: Common binary outcome,
mixed inputs

Model 5: Rare binary outcome,
categorical inputs

Model 6: Rare binary outcome, mixed
inputs

Model 7: Multinomial outcome,
categorical inputs (Y=2)

Model 8: Multinomial outcome, mixed
inputs (Y=2)

Model 9: Negative binomial outcome,
categorical inputs

Model 10: Negative binomial outcome,
mixed inputs

79.9

65.8

24.4

40.2

68.0

76.3

10.3

1.8

15.9

89.3

56.7

13.9

62.4

44.4

21.2

15.7

4.2

23.6

98.2

9.6

50.0

40.4

20.0

13.6

74.6

19.2

79.6

99.7

245

84.8

10.3

47.4

36.2

98.5

49.1

95.5

Table 4.6: Best-fitted regression % significance for 3-way interaction (x3*x4*x5)

N=2000 N=5000 N=50000 N=200000
Model 1 C(_)ntlnuous outcome, 820 90.2 98.5 99.8
categorical inputs
Model 2: Continuous outcome, mixed 83.7 918 98.4 99.8
inputs
Model 3 Cc_)mmon binary outcome, 9.3 14.7 68.4 928
categorical inputs
M_odel 4: Common binary outcome, 113 141 577 88.9
mixed inputs
Model 5 Rgre binary outcome, 487 21.0 26.6 64.8
categorical inputs
Model 6: Rare binary outcome, mixed 50.7 25 3 935 61.2
inputs
Model 7 M_ultlnomla_l outcome, 96 173 79.2 98.9
categorical inputs (Y=2)
Model 8:1\/Iu|t|n0m|al outcome, mixed 10.4 172 80.2 99.2
inputs (Y=2)
Model 9 Nggatlve binomial outcome, 15.3 9.8 86.8 98.6
categorical inputs
Model 10: Negative binomial outcome, 16.7 274 855 973

mixed inputs
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4.3 MAIHDA

Results from MAIHDA are presented by the coefficient percent significance and
confidence interval coverage of the main effects (X1 to X6). MAIHDA estimates for
main effects differ from the typical definition of main effects. There were two possible
definitions of main effects to use when determining confidence interval coverage: 1)
main effects capture the additive effects only, and 2) main effects as the average effects
of the variable across equally weighted clusters. The calculations for definition 2 of
MAIHDA main effects are only possible for models with only categorical inputs.
Therefore, coefficient significance and confidence interval coverage results are presented
below for the four models that both MAIHDA estimands can be calculated for (Model 1,
3, 5, and 9). For models with mixed inputs (Model 2, 4, 6, and 10), confidence interval
coverage could only be assessed using definition 1. Significance of coefficients and
confidence interval coverage using definition 1 is presented for these mixed input models

in Appendix C.

Tables 4.7 to 4.10 present the coefficient significance of main effects for the continuous,
common binary, rare binary, and negative binomial outcome models with categorical
inputs. Compared to the single-level regression methods, the coefficient significances of
main effects from MAIHDA were farther away from the expected values. Coefficients
for variables X1.2, X1.3, and X2 consistently had lower percent significance than other
variables. Across all models, MAIHDA did not consistently identify variables included in

the data generating process as significant.

Table 4.7: Model 1 (Continuous outcome, categorical inputs) MAIHDA coefficient
significance (% of iterations)

Intercept x1.1 x1.2 x1.3 x2 x3 x4 x5 x6.1 x6.2

Expected 0 100 100 100 100 100 100 100 O 0
N = 2000 12.9 943 838 788 843 883 901 848 08 09
N = 5000 19.0 944 834 802 865 894 89.7 876 03 03

N = 50000 32.0 96.6 834 835 881 884 89.7 894 00 0.2
N = 200000 33.9 959 842 832 857 905 914 894 00 00




Table 4.8: Model 3 (Common binary outcome, categorical inputs) MAIHDA

coefficient significance (% of iterations)
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Intercept x1.1 x1.2 x1.3 X2 X3 x4 X5 Xx6.1 x6.2
Expected 100 100 100 100 100 100 100 100 O 0
N = 2000 1000 622 36.6 336 229 865 884 771 30 138
N = 5000 100.0 825 56.8 543 386 961 964 878 20 24
N = 50000 1000 98.2 66.6 66.2 700 978 983 958 04 0.2
N = 200000 1000 990 70.1 654 739 976 973 961 02 0.0

Table 4.9: Model 5 (Rare binary outcome, categorical inputs) MAIHDA coefficient
significance (% of iterations)

Intercept x1.1 x1.2 x1.3 X2 x3 x4 X5 X6.1 Xx6.2
Expected 100 100 100 100 100 100 100 100 0 0
N = 2000 100.0 206 92 97 79 691 721 493 44 35
N = 5000 100.0 46.1 209 234 128 883 904 786 31 43
N = 50000 100.0 984 643 679 438 100 999 994 31 28
N = 200000 100.0 998 633 62 585 100 100 999 0.7 0.3

Table 4.10: Model 9 (Negative binomial outcome, categorical inputs) MAIHDA
coefficient significance (% of iterations)

Intercept x1.1 x1.2 x1.3 x2 X3 x4 X5 Xx6.1 Xx6.2
Expected 0 100 100 100 100 100 100 100 0 0
N = 2000 5.3 813 56.2 529 376 916 932 848 38 36
N = 5000 7.2 90.0 644 64.7 532 96.0 947 887 32 24
N = 50000 17.5 989 70.2 685 728 956 957 943 01 0.2
N = 200000 27.5 994 713 694 769 959 955 950 01 0.1

Tables 4.11 to 4.14 present the confidence interval coverage according to definitions 1

and 2 for the continuous, common binary, rare binary, and negative binomial outcome

with categorical inputs. The confidence interval coverage did not approach 95% for

definition 1, indicating that the traditional definition of additive effects (definition 1) does

not apply to MAIHDA. This is true for models presented in the Appendix as well.
Confidence interval coverage was sufficient only for variable X1.1 by definition 1,

because this variable was not involved in any interactions, therefore the average effect of

this variable across equally weighted clusters was the same as the additive effect. When
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observing Table 4.11 for the continuous and Table 4.14 for the negative binomial
outcome, the confidence interval coverage for definition 2 was almost or approached
100%, demonstrating that definition 2 is more aligned with the true MAIHDA estimand.
As previously mentioned in the Methods section, the estimand for the intercept according
to definition 2 is unknown, and therefore confidence interval coverage was not calculated
for the intercept. Notably, the confidence interval coverage in Table 4.11 is extremely
conservative, by exceeding 95%. This is in alignment with previous results from Lizotte
et. al. (2019), that MAIHDA results in very large SE’s.

Regarding Tables 4.12 and 4.13 for common binary and rare binary outcomes, while
definition 1 did not hold, the confidence interval coverage for definition 2 was also not
near 95%. Overall, results show that the typical interpretation of additive effects under
intersectionality theory (definition 1) does not apply to MAIHDA, regardless of outcome
type. While MAIHDA main effects can be interpreted by definition 2 for the continuous
and negative binomial outcome, it is unclear what the defined main effects for binary

outcomes would be.

Table 4.11: Model 1 (Continuous outcome, categorical inputs) MAIHDA confidence
interval coverage by definition 1 (typical additive effects) and definition 2 (MAIHDA
additive effects) (% of iterations)

Intercept x1.1  x1.2 x1.3 X2 X3 x4 X5

= N=2000 87.1 99.3 288 279 38 333 388 183
S N=5000 81.0 99.9 184 194 16 219 236 158
'S N =50000 68.0 1000 95 10.2 0.7 134 144 127
A N =200000 66.1 100.0 11.2 8.4 04 144 152 150
~ N =2000 - 993 621 632 982 956 90.1 942
S N=5000 - 999 827 818 994 988 976 987
£ N=50000 - 1000 99.4 997 100.0 100.0 100.0 99.9
[B)

(|

N = 200000 - 100.0 100.0 100.0 100.0 100.0 100.0 100.0




Table 4.12: Model 3 (Common binary outcome, categorical inputs) MAIHDA
confidence interval coverage by definition 1 (typical additive effects) and definition 2
(MAIHDA additive effects) (% of iterations)
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Intercept x1.1 x1.2 x1.3 X2 X3 x4 X5
= N=2000 94.6 981 899 885 468 969 968 0914
2 N=5000 94.9 974 750 747 174 948 965 884
:E N = 50000 86.6 99.6 168 16.0 02 734 804 494
O N =200000 78.1 100.0 6.6 5.9 0.0 435 46.2 27.7
N N =2000 - 981 741 741 946 951 934 96.0
2 N=5000 - 974 548 573 916 900 871 955
E N = 50000 - 996 416 422 911 811 76.0 096.0
A N =200000 - 1000 76.2 727 995 927 88.3 98.7

Table 4.13: Model 5 (Rare binary outcome, categorical inputs) MAIHDA confidence
interval coverage by definition 1 (typical additive effects) and definition 2 (MAIHDA
additive effects) (% of iterations)

Intercept x1.1 x1.2 x1.3 x2 X3 x4 X5
= N =2000 96.0 96.1 941 935 840 954 957 934
2 N =5000 95.1 957 90.7 90.2 56.6 948 955 932
E N = 50000 88.8 974 432 450 12 907 943 791
A N =200000 85.2 996 9.6 96 00 791 827 554
S N=2000 - 96.1 916 915 949 949 942 954
2 N =5000 - 957 805 808 939 937 939 947
E N = 50000 - 974 382 406 852 811 753 929
A N =200000 - 996 430 411 938 808 793 96.0

Table 4.14: Model 9 (Negative binomial outcome, categorical inputs) MAIHDA

confidence interval coverage by definition 1 (typical additive effects) and definition 2
(MAIHDA additive effects) (% of iterations)

Intercept x1.1 x1.2 x1.3 x2 X3 x4 X5
= N=2000 94.7 9.6 781 775 203 903 933 801
2 N =5000 92.8 966 526 543 70 874 915 66.9
E N = 50000 82.5 998 108 132 01 507 515 318
A N =200000 72.5 100.0 6.2 66 00 278 300 228
< N=2000 - 96.6 59.2 585 896 909 878 943
2 N =5000 - 96.6 42.7 446 90.0 86.3 827 945
E N = 50000 - 998 646 689 99.2 927 921 99.0
A N = 200000 - 100.0 957 965 999 986 975 998
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4.4 Decision tree outcomes

Decision tree methods were evaluated using the following criteria. For CART, CTree,
and CHAID, the ideal method will split on variables X1 to X5 for 100% of iterations, but
not on X6, which has no true effect on the outcome. For random forest, the variable
importance measure should be higher for variables X1 to X5 than for X6. For all
methods, the number of leaves can be seen as the number of unique “intersectional
groups” identified by the decision tree. For the categorical input models, there are 192
possible intersections, 64 of which are actually distinct from one another. For models
with mixed inputs there is no defined number of leaves that we would expect to see.
Results for CART, CTree, and CHAID are presented for all ten models in Tables 4.15 to

4.24. Results for random forest for all ten models are presented in Tables 4.25 to 4.34.

4.4.1 CART

For the continuous outcome models, CART split on variables X1 to X5, and did not split
on the null variable X6. Splitting was not near 100% of iterations for variables X2 to X5,
and did not improve with increasing sample size. Resultantly, the number of leaves was
much lower than 64. For the binary outcomes, both of common and rare prevalence, there
was almost no splitting at all. Therefore, for many of the iterations, predictions were only
based on the population prevalence, and were equal across all intersections. For the
multinomial outcome, there was some splitting on variables X3, X4, and X5 for 20 to
35% of iterations and even less splitting on X1 and X2. No variables approached a 100%
split rate. X6 was very rarely used as a splitting variable. For the negative binomial
outcome, X1 to X5 were used as splitting variables, and there was no splitting on X6, but
the splitting rate was not near 100% for variables X1 to X5. Overall, amongst those
outcomes where there was a sizable amount of splitting (continuous, multinomial, and
negative binomial) a noticeable pattern was that X2 was split on less often, which may be
a result of the interaction between X2 (a binary variable) and X1 (a continuous or

categorical variable). Generally, CART would correctly avoid splitting on the null



71

variable X6, but was not guaranteed to split on all relevant variables for continuous,
categorical, or negative binomial models, and mostly did not split at all for the binary

outcomes.

4472 CTree

For the continuous outcome, CTree split on variables X1 to X5 at an almost 100% rate,
even at the lowest sample size (n=2,000). Splitting on variable X6 approached 100% with
increasing sample size, and occurred even at the lowest sample size, for both when X6
was categorical (categorical input models) and when it was continuous (mixed input
models). For the binary, multinomial, and negative binomial outcomes, splitting on X1 to
X5 increased with increasing sample size, and reached a 100% splitting rate by the larger
sample sizes. The X6 splitting rate was lower than for variables X1 to X5, but also
increased with increasing sample size. The number of leaves for the categorical input
models appears to be too low given the number of splitting variables used. For example,
the analysis of continuous outcomes with categorical inputs at n=200,000 resulted in
approximately 62 leaves, even though variables X1 to X6 were used in splitting, which
would result in a total possible 192 intersections. Therefore, not all possible splits were
performed using the given split variables. When comparing between categorical input
models at the n=200,000, the resulting number of leaves was greatest for the continuous
outcome, and lowest for the rare binary outcome. Similar to CART, the variable X2 was

not split on as often as variables X1 and X3 to X5.

4.4.3 CHAID

CHAID results were very similar to results from CTree. A notable difference was that the
splitting rates for all variables X1 to X6 was slightly higher for CHAID across all three
models (Models 3, 5, and 7), when starting at n=2,000.

4.4.4 Random forest

Random forest uses the variable importance measure to illustrate which variables are

more important to the outcome. This value is compared between variables, rather than
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statistically analysed. For the continuous outcome model with categorical inputs, the
variable importance was lowest for X6 across all sample sizes. For the models with
categorical inputs that had common binary, rare binary, and multinomial outcomes, X6
was only the least important at the larger sample sizes (50,000, 200,000, and 50,000
respectively). For the binary, multinomial, and negative binomial models where X6 is
continuous (mixed inputs), X6 was the second most important variable, after X1 (the
other continuous variable), even at the largest sample size. For categorical input models,
the average number of leaves produced by the random forest model was always between
90 and 100 by n=200,000. Compared to CTree, random forest produced more leaves for
both mixed and categorical input models. From these results it appears that one could
only reliably infer that X6 is the variable with no true effect for continuous outcome
models with categorical inputs. For categorical input models with binary, multinomial, or
negative binomial outcomes, large sample sizes are required to correctly identify the least
important variable. For mixed input models, the variable importance measure prescribes
continuous variables with greater importance even if they have no true effect, and does
not reliably identify variables relevant to the outcome.



Table 4.15: Model 1 (continuous outcome, categorical inputs) CART and CTree
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outcomes
Total Iterations that split on each variable (%)
N Leaves? splitting
variables x1 X2 x3 x4 x5 X6
8.843 3.914
2000 (5, 13) (3. 5) 963 554 795 819 783 00
8.762 3.865
E 5000 (5.13) (2.5) 96.2 535 79.2 797 779 00
3 8.454 3.743
O . .
50000 (4.12) (2.5) 96.7 511 763 770 732 00
8.597 3.768
200000 (5.13) 2.5) 96.7 503 775 781 742 00
23.915 5.385
2000 (12, 36) (5.6) 100.0 986 993 994 994 4138
@ 5000 82‘823) (%66‘; 100.0 100.0 100.0 99.9 100.0 64.1
5 50000 2563 >.91 100.0 100.0 100.0 100.0 100.0 91.0
(39,68) (5,6) ' ' ' ' ' '
61.945 5.945
200000 (50,70) (5.6) 100.0 100.0 100.0 100.0 100.0 945

2 Means presented with 2.5" and 97.5" percentiles



Table 4.16: Model 2 (continuous outcome, mixed inputs) CART and CTree outcomes

Total Iterations that split on each variable (%)
N Leaves?®  splitting
variables? x1 X2 X3 x4 x5 X6
9.846 3.399
2000 (5. 14) 2.5) 93.0 56.0 665 675 56.9 0.0
9.701 3.412
E 5000 (5.14) (2.5) 925 540 677 698 572 0.0
< 9.441 3.234
o . .
50000 (5.14) 25) 91.3 49.7 635 643 546 0.0
9.56 3.255
200000 (5.14) (25) 923 528 644 627 533 0.0
33.819 5.251
2000 (12, 59) (4, 6) 99.6 982 964 983 980 34.6
56.349 5.538
) 5000 (19, 95) (5. 6) 99.9 99.7 99.7 996 99.9 55.0
o 162.499 5.925
5 50000 (47, 100.0 100.0 100.0 100.0 100.0 92.5
(5, 6)
276)
278.53 5.988
200000 (88, 100.0 100.0 100.0 100.0 100.0 98.8
449) (6, 6)

& Means presented with 2.5 and 97.5" percentiles



75

Table 4.17: Model 3 (Common binary outcome, categorical inputs) CART, CTree, and
CHAID outcomes

Total Iterations that split on each variable (%6)

N Leaves® V;prlii;glnegsa x1 X2 x3 x4 x5 X6
2000 %1021; ?00%; 07 07 05 06 0.2 0.0

E 5000 1(101;1 (200(1);1 0.4 0.4 0.2 0.2 0.2 0.0
6 50000 L 0 00 00 00 00 0.0 0.0

(1,2 (0,0)

200000 (1?1) (0?0) 00 00 00 00 0.0 0.0
2000 ?28::)3 :212:; 506 239 833 856 72.8 6.9

@ 5000 (74’4172% 1222;3 843 524 947 937 88.4 11.8
5 50000 (212;3% 5(54;)2 100.0 98.4 100.0 100.0 99.9 48.9
200000 ?273;,25413) 52572)7 100.0 100.0 100.0 100.0  100.0 76.7
2000 ((;.’5312) ‘("202? 648 50.0 915 93.0 85.2 23.1

<9E 5000 1(?%)1 139253 899 763 981 0974 94.6 34.5
6 50000 (127?'462) 5(562;' 100.0 99.7 100.0 100.0 100.0 67.7
200000 ?235,2508‘; 5(582;1 100.0 100.0 100.0 100.0  100.0 84.4

4 Means presented with 2.5" and 97.5" percentiles
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Table 4.18: Model 4 (Common binary outcome, mixed inputs) CART and CTree
outcomes

Total Iterations that split on each variable (%6)
. -~
N Leaves Vzprlilgglnegsa x1 X2 X3 x4 x5 X6
1.087 0.059
2000 1) (0, 0) 2.4 0.5 0.6 1.3 0.4 0.7
1.011 0.009
5000 0.4 0.1 0.1 0.2 0.1 0.0
> L) (00
6 50000 1 0 0.0 0.0 0.0 0.0 0.0 0.0
L, 1) (0,0) ' ' ' ' ' '
200000 L 0 0.0 0.0 0.0 0.0 0.0 0.0
L, 1) (0,0) ' ' ' ' ' '
5.681 3.445
2000 (3. 10) (1, 5) 82.5 382 764 798 618 538
8.824 4.351
$ 5000 (4.14) (3.6) 93.6 642 90.2 90.7 837 127
|_
O 50000 26.52 5404 100.0 99.0 99.9 1000 998 417

(13,42) (5,6)

48.417 5.644
200000 (25.74) (5.6) 100.0 100.0 100.0 100.0 100.0 64.4

& Means presented with 2.5 and 97.5" percentiles



Table 4.19: Model 5 (rare binary outcome, categorical inputs) CART, CTree, and
CHAID outcomes
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Total Iterations that split on each variable (%0)
N Leaves? splitting
variables? x1 X2 x3 x4 x5 X6
1 0
2000 (1 1) (0, 0) 0.0 0.0 0.0 0.0 0.0 0.0
5000 1 0 0.0 0.0 0.0 0.0 0.0 0.0
> ) 00 | AR |
S 50000 L 0 0.0 0.0 0.0 0.0 0.0 0.0
(1,1) (0,0) ' ' ' ' ' '
1 0
200000 (1.1) 0.0) 0.0 0.0 0.0 0.0 0.0 0.0
2.621 1.612
2000 (1, 4) 0. 3) 7.9 5.0 56.3 62.6 27.4 2.0
3.833 2.624
§ 5000 (2, 6) (1.5) 216 110 776 827 651 4.4
|_
10.871 4.896
(@)
50000 (6, 17) (4.6) 98.6 71.7 100.0 100.0 995 198
20.962 5.438
200000 (12, 32) (5.6) 100.0 985 100.0 100.0 100.0 45.3
3.687 2.524
2000 2.7) (1. 5) 185 205 729 76.2 526 117
a 5000 523 3483 36.8 321 895 921 80.0 178
I 14.557 5.366
O 50000 (8. 22) (4.6) 99.2 904 100.0 100.0 99.8 47.2
26.577 5.667
200000 (15,39) (5.6) 100.0 99.9 100.0 100.0 100.0 66.8

& Means presented with 2.5 and 97.5" percentiles
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Table 4.20: Model 6 (rare binary outcome, mixed inputs) CART and CTree outcomes

Total Iterations that split on each variable (%)
N L a litti
eaves vzprila:)llr;%a x1 X2 X3 x4 x5 X6
1.005 0.004
2 1 . A1 1 . A1
000 (1 1) (0, 0) 0 00 O 0 0.0 0
1 0
5000 00 00 0.0 0.0 0.0 0.0
e (L,1) 0,0)
8 50000 L 0 00 00 00 0.0 0.0 0.0
11) 0.0) ) . . ) ) .
1 0
2 ) . . ) ) .
00000 (11) 0.0) 00 00 0.0 0.0 0.0 0.0
291 1.834
2000 (1.5) (0. 4) 496 10.3 48.8 522 193 3.2
4.588 3.008
§ 5000 2.8) (1.5) 788 219 733 75.0 473 4.5
T 16.029 5.137
o . .
50000 (9.24) (4.6) 100.0 93.7 996 996 98.0 2238
33.658 5.502
200000 (19,49) (5.6) 100.0 99.9 100.0 100.0 100.0 50.3

2 Means presented with 2.5 and 97.5" percentiles
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Table 4.21: Model 7 (multinomial outcome, categorical inputs) CART, CTree, and

CHAID outcomes

Total Iterations that split on each variable (%0)

N Leaves? splitting
variablest X1 X2 X3 x4 X5 X6
2000 21826)3 (()0821;) 5.8 30 273 278 218 0.6
E 5000 i(lzg): (%)078;2)2 3.3 14 253 257 214 01
O 50000 (i’4) (()"3) 1.8 18 280 269 235 0.0
200000 1(172? (2072)2 0.6 08 261 246 231 00
2000 (53"53) ?2275; 36.2 222 891 886 841 75
§ 5000 ?571242) ‘2322)6 778 474 976 964 952 142
5 50000 (3125’0435% 5(562;' 100.0 100.0 100.0 100.0 100.0 654
200000 556?6355) 5(582)1 100.0 100.0 100.0 100.0 100.0 89.1
2000 (1"5183?) Lzzlgf 572 492 948 962 943 276
<9E 5000 3159‘)1 5(302)2 879 749 993 989 987 415
5 50000 (?é85',55527) 5(582)1 100.0 100.0 100.0 100.0 100.0 82.1
200000 (5476?6465) 5(592)1 100.0 100.0 100.0 100.0 100.0 91.1

& Means presented with 2.5 and 97.5" percentiles
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Table 4.22: Model 8 (multinomial outcome, mixed inputs) CART, CTree outcomes

Total Iterations that split on each variable (%)

N Leaves® Vzprlii;glnegsa x1 X2 X3 x4 x5 X6
2000 ?14% %035 312 23 342 339 258 37

E 5000 i(lzg)z %51075 236 04 344 331 255 0.2
O 50000 ('1’5) (0" 2) 16,3 03 326 338 220 00
200000 2(11:_');1 (t"of) 165 02 348 318 247 00
2000 (Z"‘E) ?29%;)9 951 279 899 887 821 82

3 5000 1(5%1;1 1362)3 995 602 979 979 935 193
5 50000 ?243?6208) 5(56(13)7 100.0 100.0 100.0 100.0 100.0 61.7
200000 (gg(i%i) 525825’ 100.0 100.0 100.0 100.0 100.0 85.3

2 Means presented with 2.5" and 97.5" percentiles
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Table 4.23: Model 9 (negative binomial outcome, categorical inputs)
CART and CTree outcomes

Total Iterations that split on each variable (%)
N Leaves® splitting
variables® X2 x3 x4 x5 X6
2000 3.438 2.419 33.2 9.1 69.8 723 555 20
(2, 6) (1,5) ' ' ' ' ' '
5000 3450 2441 300 63 732 737 614 01
~ (2,9) (1,4) ' ' ' ' ' '
8 50000 3215 2:215 23.2 2.9 706 722 586 0.0
(2,9) (1,4) ' ' ' ' ' '
200000 3219 2218 231 12 686 754 595 0.0
(2,5) (14) ' ' ' ' ' '
6.303 3.707
2000 69.4 370 869 891 801 82
(3, 10) (2, 9)
10.077 4.649
+» 5000 940 703 958 950 939 159
$ (5,16)  (36)
5 30498  5.635
50000 100.0 99.8 100.0 100.0 100.0 63.7
(18, 44) (5,6)
46.187 5.838
200000 100.0 100.0 100.0 100.0 100.0 83.8

(29,61) (5, 6)

4 Means presented with 2.5 and 97.5" percentiles



Table 4.24: Model 10 (negative binomial outcome, mixed inputs) CART, CTree

outcomes
Total Iterations that split on each variable (%6)
N Leaves®  splitting
variablesa X1 X2 X3 X4 X5 X6
4.056 2.52
2000 719 109 592 614 381 105
(2,9 (1,5)
4.129 2.705
5000 755 105 645 682 487 3.1
E @7 (L5
.894 2.644
© 50000 389 0 4.7 5.7 648 672 520 0.0
(2,6) 1, 4)
200000 3801 2614 76.4 52 646 662 490 0.0
(2,6) (1.4) ' ' ' ' ' '
8.401 3.989
2000 (4, 14) (2, 6) 919 570 832 838 716 114
13.947 4772
@ 5000 (6.23) (3.6) 977 825 928 945 911 186
- 47.354 5581
O 50000 (21,72) (5.6) 100.0 999 100.0 99.9 100.0 58.3
88.641 5.855
200000 (39, 100.0 100.0 100.0 100.0 100.0 855
130) (5, 6)

& Means presented with 2.5 and 97.5" percentiles
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Table 4.25: Model 1 (continuous outcome, categorical inputs) random forest outcomes
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Variable importance?

N Leaves x1 X2 X3 x4 x5 X6
2000 90 616 231 651 698 339 7
(82, 96) (190, 1159) (57,679)  (66,1820)  (66,1849) (54, 983) (60, 85)
5000 9 1465 545 1607 1685 868 81
(88, 102) (380, 2797) (94,1734)  (124,4698)  (121,4638) (90, 2544) (68, 95)
96 14316 4851 15146 15588 7948 85
50000 (89, 101) (3340,27892) (518, 16613) (832, 45276) (803,46735) (428,24138) (72, 100)
95 57416 19919 65800 64650 31567 85
200000 (1926, (2822, (3346, (1592
(88, 100) (13203, 110020) 63578) 181636) 180842) 98846) (71, 99)
a Means presented with 2.51" and 97.5™ percentiles
Table 4.26: Model 2 (continuous outcome, mixed inputs) random forest outcomes
Variable importance?
a
N Leaves x1 X2 x3 x4 x5 X6
2000 367 2731 308 642 635 325 552
(228,474) (484, 6882) (60, 881) (76, 1778) (78, 1791) (66, 940) (379, 691)
£000 669 6429 761 1671 1632 819 1062
(376,935)  (937,17104)  (126,2164)  (166,4598)  (168,4530)  (137,2307) (667, 1386)
2475 60562 7597 16163 16464 8416 4524
S0000 1157 3005) (4298, 161504)  (710,21520) (892, ATATE) (941, 46274)  (708,25399) (2319, 6766)
4865 239953 31906 63981 63664 32870 9558
200000 5151 goog) é;é%%?} (2139, 90952) (3170, 185378) (3426, 186800) (2005, 97326) (4586, 14714)

a Means presented with 2.5" and 97.5 percentiles



Table 4.27: Model 3 (Common binary outcome, categorical inputs) random forest outcomes

Variable importance?

N Leaves?
x1 X2 x3 x4 x5 X6
2000 74 18 8 16 17 11 12
(61, 85) (11, 28) (5, 13) (7, 37) (7, 38) (6, 22) (8, 17)
5000 88 26 12 35 38 21 14
(74, 98) (15, 44) (7, 21) (10, 82) (10, 86) (8, 50) (9, 21)
50000 96 124 51 308 338 166 17
(89, 101) (47, 255) (15, 126) (42, 822) (44, 862) (21, 486) (10, 26)
00000 95 442 170 1294 1361 645 17
(89, 100) (151, 963) (34, 449) (157, 3504) (170, 3360) (58, 1889) (10, 26)
a Means presented with 2.5" and 97.5" percentiles
Table 4.28: Model 4 (Common binary outcome, mixed inputs) random forest outcomes
Variable importance?
N Leaves?
x1 X2 x3 x4 x5 X6
2000 136 112 8 12 13 9 101
(94, 182) (71, 166) (4,12) (6, 25) (6, 27) (5, 15) (67, 144)
5000 257 226 14 26 27 17 204
(172, 373) (135, 353) (8, 23) (11, 58) (12, 61) 9, 32) (129, 309)
50000 875 938 61 211 223 124 782
(501, 1452) (497, 1672) (26, 126) (48, 525) (52, 567) (34, 302) (434, 1353)
200000 1472 1902 184 822 879 435 1392
(804, 2547) (943, 3607) (56, 449) (124, 2087) (146, 2234) (72, 1131) (755, 2512)

a Means presented with 2.51 and 97.5™ percentiles
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Table 4.29: Model 5 (rare binary outcome, categorical inputs) random forest outcomes
Variable importance?
N Leaves?
x1 X2 X3 X4 X5 X6
2000 48 4 2 2 2 2 3
(36, 61) (2, 6) 1,3 (1, 3) 1,3) 1,2 2, 4)
5000 66 4 2 3 3 2 3
(52, 80) (3,7 1,3 (2,5) (2,5) 1,3) (2,5)
50000 92 9 4 19 21 10 4
(84, 99) (5, 15) 2,7 (5, 43) (6, 45) (3, 24) (2, 6)
95 25 10 77 82 39 4
200000
(90, 99) (12, 45) 4, 19) (21, 169) (22, 177) (9, 89) (3, 6)
a Means presented with 2.5" and 97.5" percentiles
Table 4.30: Model 6 (rare binary outcome, mixed inputs) random forest outcomes
Variable importance?
N Leaves?
x1 X2 X3 x4 X5 X6
2000 58 33 1 1 1 1 32
(41, 79) (22, 47) 1,2 1,2 1,2 1,2 (21, 45)
5000 121 74 3 3 3 2 70
(84, 167) (50, 103) 1,4 1,4 2, 4) 1,3) (48, 97)
50000 535 376 10 15 16 11 352
(332, 838) (227, 594) (5, 16) (7, 28) (8, 31) (6, 17) (217, 549)
200000 1025 793 21 54 58 32 712
(662, 1608) (465, 1248) (10, 37) (19, 112) (21, 118) (13, 65) (429, 1121)

a Means presented with 2.51 and 97.5™ percentiles
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Table 4.31: Model 7 (multinomial outcome, categorical inputs) random forest outcomes

Variable importance?

N Leaves?

x1 X2 X3 x4 x5 X6

2000 84 38 18 23 24 20 29
(80. 89) (31, 45) (14, 22) (13, 53) (13, 53) (13, 38) (24, 33)

5000 94 49 24 45 46 35 35
(89, 100) (39, 61) (19, 32) (17,114) (17, 125) (17, 89) (29, 40)

50000 94 147 73 403 400 264 41
(88, 100) (82, 262) (34,171) (46, 1181) (46, 1193) (33, 849) (34, 48)

200000 93 471 220 1577 1548 1030 42
(87, 99) (213, 914) (66, 623) (173, 4557) (156, 4819) (73, 3295) (34, 49)

a Means presented with 2.5" and 97.5" percentiles

Table 4.32: Model 8 (multinomial outcome, mixed inputs) random forest outcomes

Variable importance?

N Leaves?

x1 X2 X3 x4 x5 X6
2000 225 243 22 27 27 24 227
(191, 255) (209, 275) (18, 26) (17, 55) (17, 55) (18, 40) (194, 253)
5000 420 489 40 59 56 46 450
(336, 513) (394, 581) (32, 47) (29, 139) (29, 128) (30, 86) (368, 539)
50000 1376 2044 135 473 468 299 1672
(1015, 1910) (1495, 2714) (100, 194) (117, 1296) (109, 1232) (104, 900) (1264, 2238)
200000 2323 4438 334 1886 1770 1143 3002
(1700, 3271) (2921, 6156) (199, 594) (289, 5162) (268, 4986) (214, 3559) (2248, 4130)

a Means presented with 2.51 and 97.5™ percentiles
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Table 4.33: Model 9 (negative binomial outcome, categorical inputs) random forest outcomes
. Variable importance?
N Leaves x1 X2 X3 x4 X5 X6
2000 88 129 58 138 156 86 79
(80, 95) (63, 243) (29, 115) (45, 328) (45, 381) (34, 200) (42, 143)
5000 95 197 87 330 351 184 89
(87, 102) (87, 381) (37, 187) (70, 831) (70, 864) (50, 489) (45, 155)
50000 95 1190 483 2950 3271 1628 103
(89, 101) (391, 2495) (120, 1272) (341, 8151) (378, 8718) (135, 4906) (53, 189)
200000 94 4429 1702 12409 13415 6264 102
(88, 99) (1355, 9862) (298, 4556) (1326, 35011) (1405, 34690) (468, 19009) (53, 182)
a Means presented with 2.5" and 97.5" percentiles
Table 4.34: Model 10 (negative binomial outcome, mixed inputs) random forest outcomes
Variable importance?
N Leaves® x1 X2 X3 x4 x5 X6
2000 278 840 62 108 115 69 675
(193, 171) (396, 1614) (28, 119) (45, 254) (46, 258) (33, 140) (367, 1180)
5000 506 1698 119 254 268 151 1336
(329, 730) (752, 3401) (51, 232) (82, 634) (88, 624) (65, 344) (696, 2487)
50000 1754 9022 671 2245 2370 1288 5743
(895, 2942) (2901, 21228) (204, 1575) (398, 5826) (430, 6085) (264, 3387) (2334, 12256)
200000 3146 24544 2428 8783 9571 4798 11732

(1561,5339) (6258, 62111) (470, 6204)

(1257, 23036) (1307, 24395)

(617, 13137)

(4425, 26733)

a Means presented with 2,51 and 97.5™ percentiles
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4.5 Run time assessment

To assess feasibility, run times for single analyses of categorical input models with four
different outcomes were analysed. Results are presented in Table 4.35. Most analyses
were fairly quick, with run times around 5 minutes or less, and the majority running in
less than one second. Notably, regression methods for the negative binomial outcome
took much longer with increasing sample size, with the over-specified regression method

requiring over 8 hours to be completed.



Table 4.35: Run time (HH:MM.:SS) for a single iteration with categorical inputs
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Method N=2000 N=5000 N=50000 N=200000
CART <1sec <1sec <1sec 00:00:02
CTree <1sec <1sec <1sec 00:00:01
"8’ Random forest <1sec <1sec 00:00:04 00:00:29
2  Best-fitted regression <1sec <1sec <1sec <1sec
5 g‘éz;?;‘;'f'ed <lsec  <lsec  00:00:02  00:00:07
Cross-classification <1sec <1sec <1sec <1sec
MAIHDA 00:00:03 00:00:05 00:00:42 00:03:32
§ CART <1sec <1sec <1sec <1sec
= CTree <1lsec <1lsec <1lsec <1sec
g Random forest <1sec <1sec 00:00:03 00:00:23
S CHAID <1sec <1sec 00:00:06 00:00:23
E Best-fitted regression <1lsec <1lsec <1lsec 00:00:02
g  Over-specified 00:00:01  00:00:02  00:00:22  00:00:48
' regression
g Cross-classification <1sec <1sec <1sec <1lsec
m  MAIHDA 00:00:01 00:00:02 00:00:25 00:02:18
CART <1sec <1sec <1sec <1sec
CTree <1sec <1sec <1sec 00:00:02
— Randomforest < 1sec <1sec 00:00:03 00:00:23
g CHAID <1lsec <1sec 00:00:06 00:00:33
S Best-fitted regression <1lsec <1lsec 00:00:07 00:00:29
S  Overspecified 00:00:13  00:00:34  00:04:45  00:22:04
regression
Cross-classification <1sec <1sec <1sec <1sec
MAIHDA - - - -
CART <1lsec <1lsec <1sec 00:00:02
= CTree <1sec <1sec <1sec 00:00:01
g Random forest <1sec <1lsec 00:00:03 00:00:28
% Best-fitted regression 00:00:02 00:00:03 00:00:25 00:01:45
£ Over-specified 00:01:19  00:06:21  01:52:22  08:28:12
>  regression
< Cross-classification < 1sec <1sec <1sec <1lsec
MAIHDA 00:00:37 00:01:25 00:14:25 00:52:55
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Chapter 5

5 Discussion

This section will summarize the capabilities of each method, including ability to create
accurate predictions for intersectional groupings, and variable identification.
Recommendations are provided for the application of each method and the context for
using these methods in descriptive intersectionality is further discussed. Study strengths,

limitations, and further points for future work are also considered.

5.1 Primary outcome recommendations of methods

Results from this thesis indicate that there are many options for quantitative
intercategorical-intersectional analyses, and choices may vary based on the dataset being
analyzed. To begin the discussion of the results, Table 5.1 summarizes what each method
produces, as initially outlined in the introduction. This can be contrasted with Table 5.2,
which summarizes results from this study regarding performance for prediction, effect
size estimation, variable identification, and type 1 error. Variable identification occurs in
different manners for the different methods: observing results of significance testing for
single-level regression and MAIHDA, by identifying splitting variables for CART,
CTree, and CHAID, and by comparing the variable importance measure for random
forest. Further description on performance for prediction is described below, while
further detailed in Section 5.2 are the circumstances under which methods are and are not

suitable for the other applications described in Table 5.2.



Table 5.1 Summary of method characteristics
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identification

Regression
_ with Cross- |\ AIHDA CART CTree CHAID Random
interaction | classification forest
terms
Create intersection
predictions X X X X X X X
Hypothesis testing X X X
Effect size estimates X X
Not cumbersome to
include high number X X X X X
of intersections
Use continuous
variables without X X X X
categorization
Visual subgroup X X X




Table 5.2 Summary of key study results
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Regression
| using Cross- MAIHDA CART CTree CHAID Random
interaction | classification forest
terms
Prediction at small
sample size (n=2,000) N N Y N Y Y Y
Prediction at
large sample size Y Y Y N Y Y Y
(n=200,000)
Validity of estimates-
1stlevel effects (and
interactions)
Variable identification
(detect variables
significant or
important to outcome N N Y Y
with increasing
sample size)
Low type 1 error Y Y Y N N

Y —Yes: Generally suitable

N — No: Not recommended

— Maybe: Okay under certain circumstances
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With increasing sample size, all methods improved their performance for creating
accurate predictions, with the exception of CART. At the smaller sample sizes, it appears
more critical to select appropriate methods for accurate predictions. Table 5.3 highlights
the top performers for creating accurate intersectional predictions, by outcome type and
input type as well as sample size. This table includes best-fitted regression only for
theoretical reasons rather than for practical recommendation, given that researchers
cannot know that they are specifying this model. Generally, random forest and MAIHDA
created the most accurate predictions at small sample sizes. Results from this project
reveal that the most common quantitative intersectional analysis methods, regression with
interaction terms and cross-classification, are not reliable methods to create accurate
intersectional estimates when sample size is small, and the number of intersections is
large. Additionally, over-specified regression is not a viable option at smaller sample
sizes for binary or negative binomial outcomes, given the convergence issues when
estimating a large number of coefficients. While Table 5.3 presents recommendations at
two extreme sample sizes, for most outcomes prediction accuracy of the methods was
similar between sample sizes 50,000 and 200,000, except for the rare binomial outcome.
Somewhere between n=5,000 and 50,000 many methods equalize in prediction, although

that specific point in this instance was not determined.

Table 5.3 Methods that performed well for prediction

Over-specified
regression

Cross-
classification

Categorical Mixed inputs Categorical Mixed inputs
inputs (n=2,000) inputs (n=200,000)
(n=2,000) (n=200,000)
Continuous | Best-fitted Random forest CTree CTree
outcome regression
Random forest Random
Random forest forest
Best-fitted
MAIHDA regression Cross-

classification

MAIHDA
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MAIHDA
Binary Best-fitted Best-fitted CTree CTree
outcome regression regression
(common) Random forest Random
MAIHDA MAIHDA forest
Best-fitted
regression Best-fitted
regression
Over-specified
regression Over-
specified
Cross- regression
classification
Cross-
MAIHDA classification
MAIHDA
Binary MAIHDA MAIHDA CHAID CTree
outcome
(rare) CTree Random
forest
Random forest
Best-fitted
Best-fitted regression
regression
Over-
MAIHDA specified
regression
Cross-
classification
MAIHDA
Multinomial | CTree CTree CHAID CTree
CHAID Random forest CTree Random
forest
Random forest Best-fitted Random forest
regression Best-fitted
Best-fitted Best-fitted regression
regression regression
Over-
Over-specified specified
regression regression
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Cross-
classification

Cross-
classification

Negative
binomial

MAIHDA

Best-fitted
regression

MAIHDA

CTree
Random forest

Best-fitted
regression

Over-specified
regression

Cross-
classification

MAIHDA

CTree

Random
forest

Best-fitted
regression

Over-
specified
regression

Cross-
classification

MAIHDA

The conclusion that random forest is superior for prediction compared to regression and

single classification tree methods is in agreement with the existing decision tree

literature. When conducting secondary data analysis for continuous outcomes, random

forest has been shown to be superior to linear regression when comparing R-squared and

root mean squared error. [40] For binary outcomes, while one study found random forest

and logistic regression to perform similarly for classification [39], other studies have

found that random forest creates more accurate predictions compared to CART [22, 36,

79], CHAID [76], and logistic regression [22, 79]. The poor predictive performance of

CART is a striking result considering the use of CART as the primary decision tree

method in the current intersectionality literature, and is discussed further in section 5.2.4.

Results are however in agreement with those found by Venkatasubramaniam et. al. [42]

where a simulation study found that CART did not improve in accuracy (measured by

MSE), with increasing sample size beyond n=3,000, unlike CTree.

5.2 Summary and recommendations for each method

5.2.1 Regression (Over-specified)

Over-specified regression models require a cumbersome number of interaction terms
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when interested in the potential for multiple social positions to experience unique
intersectional effects, given that researchers cannot know a priori which interactions to
include and exclude. This study evaluated a variety of over-specified regression models:
OLS, modified Poisson, multinomial logistic, and negative binomial. Results from this
study found that across sample sizes, the validity of estimates for main and interaction
effects estimations were sufficient for models with only categorical input variables.
Because the mixed input models were created with a non-linear interaction term which
was not specified in the fitted regression models, prediction of the main effects and
interactions involved in these interactions were suboptimal. The power to detect variables
and interaction terms significant to the outcome was also low at small sample sizes,
which is not surprising given the number of coefficients (64 or 192) being estimated. For
the interaction terms, sometimes the probability of being detected as significant would
decrease with increasing sample size, contrary to the expectation that power should
increase with increasing sample size. A possible explanation is that with increasing
sample size, the main effects became more likely to be detected, and resultantly lowering
the probability of the interaction terms to be detected as significant. Hypothetically, we
might expect that with even greater sample sizes the detection of the higher-level
interaction terms would also approach 100%. Type 1 error was not an issue at the large
sample sizes, but at smaller sample sizes the variable X6 could sometimes be detected
more than 5% of the time. For example, for the multinomial outcome with categorial
inputs at n=2,000, variable X6 was the detected as significant around 22% of the time
(see Appendix B). This shows that fitting an over-specified regression does not protect

results from Type 1 error at smaller sample sizes.

52.11 Recommendations for application

Overall, over-specified regression is not suggested as a viable option for prediction or
variable selection, at least at smaller sample sizes when estimating high-dimensional
intersections, formed with more than 2 or 3 intersectional variables. There are a few
lessons however to take away from these results. The issues of non-linear effectsand

interactions can be accounted for in regression models, for example using generalized
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additive models. [77] This can lead to better estimation of non-linear interaction effects,
and better estimation of the main effects involved in these interactions as well. This is an
important consideration for intersectionality research, because there is no reason to
assume that interaction effects will always be linear. Secondly, the issues of poor power
to detect interactions, and general lack of convergence for these over-specified models,
could be addressed by applying stepwise regression or backwards selection, to remove
insignificant coefficients, improve convergence issues, and reduce over-fitting. For
example via backwards elimination, insignificant variables are removed one by one until
all remaining variables are significant to the outcome. [78] However, it is cautioned that
this data-driven approach can result in the selection of variables that have spurious
associations, or the removal of variables or interaction terms that are actually significant
to the outcome. [79] This methodology should be applied with caution as it can result in
overfitting to the sample and make prediction for populations outside of the sample less

accurate. [79]

5.2.2 Cross-classification

Cross-classification has the advantage of being a simple, easy to understand descriptive
method for predicting outcomes for intersectional groupings, by simply calculating the
average value of the outcome in each intersection, with no further adjustment. But when
looking at multiple intersecting positions, cell sizes run the risk of becoming too small to
create accurate predictions. With no mechanism to account for the random error that is
likely with small sample sizes, cross-classification is prone to outliers for continuous and
count outcomes, or does not have enough events to approximate the true proportions for

binary and categorical outcomes.

5.2.2.1 Recommendations forapplication

Use of cross-classification is best when there are a small number of intersectional
groupings being created, or a relatively large sample size to reduce the likelihood of
inaccurate or misleading estimates, especially for small intersections. A viable alternative

to cross-classification, if the goal is to simply describe each intersectional group, could be
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a MAIHDA analysis where only the intersection predictions are interpreted. Both create
predictions for each intersectional grouping based on the observed sample, but the

shrinkage of residuals in MAIHDA results in much greater prediction accuracy.

5.2.3 MAIHDA

This study was the first to evaluate MAIHDA for its effectiveness for prediction, and it is
evident that predictions with shrinkage are effective for improving prediction accuracy,
even for datasets with small sample sizes. Regarding validity of the main effect
estimates, this study verified that the estimates do not follow those of a traditional single-
level regression model with interaction terms, and the stratum-average effects
interpretation as proposed by Lizotte et. al. [53] is only true for continuous and negative
binomial regression models. It is unknown what the expected main effect estimate would
be for binary outcomes. Regarding the power to detect significant main effects, because
the estimates do not follow the traditional definition, they also were not always

significant when expected. The type 1 error was however reliably low.

5.2.3.1 Recommendations for application:

Given the good performance for prediction but not for variable effect estimation or
power, the suggested approach would be to use MAIHDA for prediction and outcome
mapping, but to not interpret the main effects. For continuous or negative binomial
outcomes, main effects could technically be interpreted as outlined by Lizotte et. al., but
even so there is no established definition of what the intercept effect would be. Given that
the intersectional residuals are to represent any intersectional effects beyond the additive
model, it is also not recommended to interpret the intersection residuals on their own,

given that it is unclear what the baseline additive effects mean.

While the main effects are not for interpretation, they should still be included in the
MAIHDA model, as opposed to a null model being fitted with only the random
intercepts. This is because of the impact of the main effects on residual shrinkage. Bell et.

al. [80] have noted that the residuals break the assumption of being independent and
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identically distributed, and instead may be related to one another since they are
determined by the main effects. Therefore, the authors assessed if shrinkage is truly able
to account for multiple testing, by focusing on the significance of residuals. The
shrinkage formula for the residuals is

2
Oy

RS

ny
where for intersection j, uj is the shrunken residual, rj is the raw (unshrunken) residual, n;
is the cell size of the intersection, o2 is the level 2 between-intersection variation, and o2
is the level one within-intersection variance. Bell et. al. [80] conclude via a simulation
study that shrinkage is better able to reduce the spurious detection of significant residuals
if the fitted model includes main effects, because inclusion of the main effects reduces
the level 2 variance. They note however that if there are true interaction effects between
variables, (e.g. a two-way interaction), this variance will not be included in the level 2.
They suggest that to have optimal shrinkage, interaction effects should be added to the
model fixed effects (first two-way, three-way, etc.), until level 2 variance reaches zero. If
through this process all interactions are included until the highest level (e.g. four way),
and level 2 variance is still greater than zero, then there is an intersectional effect
occurring between all positions. One problem here is that issues with multiple testing are
re-introduced when adding more interactions to the fixed effects, but the authors think it
unlikely that the number of included interactions will reach a point where this is a major
concern. In comparison to the current study, Bell et. al. [80] focus on significance of
residuals rather than prediction, but since shrinkage applies to prediction accuracy, it is
possible that prediction of MAIHDA could also be improved by the systematic inclusion
of interaction terms. However, prediction without the inclusion of interaction terms
seemed sufficient for creating accurate predictions for the simulations conducted in this
study. Regardless, it is at least important to include the main effects in MAITHDA models
for prediction to maintain shrinkage of the residuals. This is a point worth making
because other applications of MAIHDA have presented intersection predictions from the

null model, rather than the model including all main effects. [45, 48]
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One limitation of MAIHDA is that continuous variables must be categorized to be
included in the formation of the intersectional groups. For example, MAIHDA studies
have typically split a continuous income variable into tertiles or quartiles. [44] However,
continuous variables can be kept as continuous, if simply being used to adjust the models
and resulting predictions, rather than used in the formation of stratum. [46] This assumes

that the effect of a certain variable remains consistent between all intersections.

Applications of MAIHDA have also extended beyond the original model proposed by
Evans et. al. [43]. Evans [81] has suggested an update to the MAIHDA method, where
the intersectional strata are also created with contextual factors, using group-level
variables. For example, a combination of gender, race, parental education, along with
neighbourhood- and school-level poverty can be used to create MAIHDA intersectional
groupings. [81] Another study has used MAIHDA where the second-level effects
represent the more traditional application of multi-level modelling, by using country as
the random intercept for multi-country data. [82] Intersections in this case were not
determined by the first-level effects, but the authors still considered this an application of
MAIHDA because they calculated the model’s discriminatory accuracy. Our discussion
of MAIHDA is limited to only when the random intercepts are fully determined by the

first-level effects, and include no other contextual variables.

5.2.4 CART

While CART has been the dominant application of decision trees in the intersectionality
literature thus far, this study found that CART usually performed poorly for both creating
accurate intersection predictions and variable selection. CART models often did not split
at all for binary classification problems, regardless of if outcomes were of a rare or
common prevalence. These results were surprising given the use of CART in the
intersectionality literature, to successfully create binary classification models. For
example, one study with a sample size of less than 10,000 presented a resulting tree with
eight splitting variables and 13 terminal nodes. [32] Additionally, given that for example

the previously mentioned study [32] used the same R package and pruning criteria to
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create CART models as in this study, it is unlikely that the CART model-building criteria
is the reason for the lack of splitting results in this study. An alternative explanation is
that results from the literature review differ from those found in this study due to the
simulation data generation process. The range of effect sizes allowed in the binary
outcome simulations may not have been enough to trigger splitting for the CART
algorithm, given that power calculations were centered around what was detectable for a
regression model, nota CART model. For example, when looking at a study which
included both a CART and regression model, the main effects split on by the CART
model often had a higher ratio of effect size to standard error. [31] Further exploration of
the simulations after the completion of this study have suggested that increasing the
simulated effect sizes does lead to an increase in splitting, but this remains to be further
explored. One advantage was that CART did have the lowest type 1 error compared to
CTree and CHAID. Given the overall poor variable selection, especially for binary
outcomes but also for other outcome types, CART was effective neither for prediction (at
small or large sample sizes), or subgroup identification. Potentially, CART may be
effective if effect sizes are of a larger magnitude, but this threshold would be higher than

for other decision tree methods or single-level regressions.

5.2.4.1 Recommendations forapplication

Overall, results from this study do not suggest using CART for prediction of individual
intersection outcomes. If the primary interest of a user is to look at splitting patterns or
subgroup identification, using CART models fora single decision tree analysis will likely
provide a more conservative splitting pattern and fewer subgroups compared to the other
single decision tree methods, or may result in no splitting at all. If type 1 error is a large
concern, CART may be the safest decision tree option, however we would still suggest
contrasting results from CART to other decision tree algorithms or pairing it with another
type of analysis, such as regression, to obtain a more representative picture of variables
influencing the outcome. As well, the type 1 error of CART when modelling binary

outcomes should be further explored when simulated effect sizes are larger
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5.2.5 CTree and CHAID

Overall, prediction accuracy for CTree and CHAID was as good as random forest and
MAIHDA at larger sample sizes (at least n=50,000), and was sufficient, but not as
accurate, at smaller sample sizes. Splitting patterns were highly similar between CHAID
and CTree. Splitting by CTree and CHAID was more sensitive than CART, resulting in
better identification of relevant variables. For subgroup identification, one issue is that
these methods were likely not correctly identifying all subgroups, given that the number
of final nodes was lower than expected. For example, while all variables could be used in
splitting, this does not mean that each variable was split on one another to create every
unique intersection. While it has been suggested that CTree, under the conditional
inference framework, would result in less over-fitting and reduce the selection bias of
splitting on continuous variables [33], both CTree and CHAID resulted in a high type 1
error, especially with increasing sample size. This was true for variables with no true

effect that were continuous or three categories.

5251 Recommendations for application

While both methods perform well for prediction and subgroup exploration, especially
when compared to CART, users should be wary that not all variables included in the tree
are necessarily relevant to the outcome. For CTree, the issue of high type 1 error may be
mitigated if with larger sample sizes, a lower p-value is used for the selection process
(e.g. p<0.01 or p<0.001). Across all outcome types, between n=50,000 and 200,000 there
was minimal improvement in the selection of variables important to the outcome, but the
type-1 error continued to increase. Lowering the p-value threshold at least for n=50,000
and beyond may still allow for sufficient splitting on significant effects, but limit the
increases in Type 1 error. For CHAID, tuning was not performed in this study, because it
is not readily available within the R package. However, tuning can be performed using
the “caret” package [83], and similarly may result in lower type 1 error if thresholds are

adjusted. However, both these options would have to be further explored.
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5.2.6 Randomforest

Random forest performed very well for creating accurate intersection predictions and was
a reliable decision tree method for this application. Variable identification using the
variable importance measure worked well across sample sizes for the continuous
outcome model with categorical inputs, or binary, multinomial, and negative binomial
outcomes with categorical inputs at larger sample sizes. However, the variable
importance measure appears to fall under a similar bias as has been reported for CART,
where continuous variables are favoured during splitting. [84] Strobl et. al. [84] found
that the variable importance measure for the R package “randomforest”, arguably the
most popular random forest package in R, is biased towards splitting on variables with
more splitting options, which could be continuous or categorical variables with many
categories. While this study did not use the package randomforest, the package “ranger”
does similarly rely on the Gini Index for splitting criteria, which the authors of this paper

identify as the potential issue.

5.2.6.1 Recommendation for application

While the application of random forest models in the current study functioned well for
creating predictions, there are a few alternatives to consider if researchers are concerned
regarding the capacity for variable identification. Strobl et. al. [84] suggest creating
random forest models using the package “cforest”, which is based on the conditional
inference framework, and show that the variable importance measure for this algorithm is
less biased, if also combined with subsampling replacement when creating each
bootstrapped sample. Alternatively, Altmann et. al. [85] provides a method for correcting
the variable importance measure bias, without requiring trees be built under the
conditional inference framework. The adjustment by Altmann et. al. [85] also provides a
p-value to each variable importance, to improve interpretability when trying to identify

significant variables.
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5.2.7 Generalcomments on the application of decision trees

While decision trees do not isolate the effects of any one variable, the visualization
created by single decision trees such as CART, CTree, and CHAID can accompany
regression models as seen in the examples in the introduction. [29, 31, 32] Random forest
also does not create one single decision tree, so visualization would require
accompaniment by a single decision tree method. The pairing of decision trees with
regression models may help visualize subgroups, inform interaction terms to be included
in the model, or also in the case of random forest, inform on which variables to include in
the regression model. If researchers are interested in centering the analysis around
differences between certain groups (like male and female), separate decision trees can be
created for each subsample. [32] One issue with the application of decision trees is that
splitting on a continuous variable can create hundreds of final nodes, as seen in the CTree
and random forest results in this study, when dealing with a combination of categorical
and continuous input variables. This is more categories than can be feasibly visualized or
are informative for subgroup identification. There is however the possibility to “adjust for
covariates” by making the outcome the residuals from an adjusted regression model. [42]
This is a way to include continuous variables and reduce the number of nodes required to
create an accurate prediction, but only under the assumption that effects of the variable
are strictly linear with no interaction between any other variables. Finally, it should be
acknowledged that the application of decision trees in this study was limited to only six
input variables, differing from the more typical applications of decision trees which use a
much longer list of input variables. The application of decision trees to intersectionality
assumes a level of theory-based decision making regarding which variables to input into
the model, while decision trees in reality are usually given a long list of input variables to
be narrowed down from a data-driven perspective. Researchers should keep mind the
balance between theory- and data-driven variable selection when using decision tree

methods.
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5.3 Considerations for applying methods to intersectionality
research

While the previous sections discussed how each method can be individually applied, this
next section will discuss general considerations in the application of descriptive
intercategorical-intersectionality. The primary outcome of this study focused on the
accuracy of predicting outcomes for each intersectional grouping, which can be used to
understand the extent of a problem in different intersectional groups, and to identify
groups for further study or further intervention. But before considering these groups
intervenable from a policy or public health perspective, other considerations need to be

taken into account.

The first consideration is that variables (e.g. gender, ethnicity) from an intersectional
perspective are meant to represent structural-level effects, rather than individual effects.
This is in alignment with the goals of ecosocial theory, to consider the contextual and
structural factors that each individual interacts with in their environment. [86]
Exploration of outcomes for marginalized groups can lead to further stigmatization if
social positions or identities are seen as individual-level variables, by placing the
responsibility for the outcome on the individual. MAITHDA explicitly frames the second-
level effects as representations of the intersectional or contextual effects for the social
positions. [47] This thought process can still be applied when looking at variables
inputted in a decision tree or regression model, by being mindful that they represent a

greater contextual effect.

The second consideration is the interpretability or relevance of identified subgroups.
Subgroups created by decision trees to identify risk profiles may not be fully interpretable
or applicable to actual policy intervention, and may not represent targetable groups that
relate to identity or community. Either a method may create too many subgroups by
splitting many times on a continuous outcome (e.g. from the mixed input models,
creating hundreds of final nodes), or the splitting points for continuous variables are too

specific to act on. For example, the study by Sridharan et. al. [31] looking at antenatal
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care usage presented a CART model involving two nodes where the splitting criteria was
a household wealth index being less than or equal to 4.839 or greater than 4.839. This
resulted in nodes with outcome proportions of 58.3% and 82.4%. The splitting on 4.839
is somewhat arbitrary, and although the difference in outcome between the two groups is
quite large, it is not necessarily a cut-off informative for use in clinical practice or in
designing public health interventions. The values of these cut-offs may change due to the
instability of single decision trees, and decision rules could change with small changes in
the sample data used to build the model. [38] Subgroups created from decision trees
should not be seen as definitive, and an important step to ensuring validity outside of the
sample data s to assess if the final decision tree model is still sufficient when applied to a
different dataset. [41]

The third consideration is to consider not only the average effects in each intersection,
but also the size of the variation within each one. Merlo et. al. [87] refers to this as the
“tyranny of averages”, where focus on mean outcomes within a group can potentially be
harmful or further stigmatizing if the within group variation is disregarded. For example,
specific interventions for “high risk” groups may be inappropriate if the within group
variation is large, and a large portion of the members of this subgroup are not at greater
risk than the general population. To look at the heterogeneity in subgroups created by
decision trees, terminal nodes can for example be represented by boxplots to visualize the
outcome distribution in each node. Venkatasubramaniam et. al. [42] created a
visualization tool to look at the subgroups created by a decision tree, to better understand
the outcome spread as well as the variables that make up the nodes. While not addressed
in this study, assessment of discriminatory accuracy is a key component of MAIHDA
papers, evaluating the heterogeneity within versus between intersections. [44] MAIHDA
authors have suggested that intersections that are calculated to have a low discriminatory
accuracy should not be regarded as intervenable targets, because these categories are not
good at predicting the outcome for all individuals in an intersection, due to a large level

of heterogeneity. [44]

There is also an important distinction to be made between prediction and causality. The
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authors Kreatsoulas and Subramanian [41] touch on the challenges faced when
incorporating machine learning into social epidemiology, and discuss how the goals of
the analysis should be compatible with the “the underlying mathematical skeleton of the
optimization theory”. For methods like random forest which are more complex to
understand mathematically, it may be difficult to directly understand the impact of
variables on the outcome, so it should not be used with this goal in mind. While machine
learning methods perform well for creating predictions, they are not designed to
understand causal relationships, and results of analyses should be interpreted with this in
mind. Additionally, descriptive studies often work with cross-sectional datathat lack
temporality, and certain variables representing identities or social positions, such as
gender, or race/ethnicity, are non-intervenable. While the current study assessed methods
for their ability to create predictions, these predictions were ultimately descriptive. When
identifying intervenable factors, such as discrimination, methods such as intersectional
mediation analysis can be applied to conduct analytic intersectionality research, and

assess causality. [88]

Finally, researchers should be aware that biases in the data can perpetuate existing
disadvantage. [41, 91] For example, if the data are not representative of the population
due to selection or reporting biases, those biases will be maintained in the predictive
models. Additionally for machine learning methods, there are limitations to how well
cross-validation can explain model performance and generalizability. Because cross-
validation usually occurs using a validation set that is a random selection from the same
dataset used to create the model, any biases or underrepresentations in the data will
remain undetected. One of the solutions for this, as previously mentioned, is to validate
the completed model against a different dataset. [41] Additionally, a marker of fairness
when applying machine learning for the purposes of health equity is equal performance.
[89] Equal performance means that outcomes are estimated with equal accuracy for
advantaged and disadvantaged groups. The implications of a low sensitivity, specificity,
or positive predictive value may be harmful and further marginalize already
disadvantaged groups, by either over- or under-stating the outcome. This can apply not

only to machine learning methodologies, but to the other methods used in this study for
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prediction. We attempted to consider equal performance by equally weighting the
performance of each intersection when calculating accuracy, to avoid prioritizing

accuracy for larger intersections.

5.4 Survey of method feasibility

This project also served as a survey of the current capabilities of analyses in R. We
identified a lack of R packages for frequentist multilevel multinomial regression analysis
for random-intercept only models. Although not used in this study due to the practical
time constraints of conducting thousands of Bayesian analyses, applications of MAIHDA
for a multinomial outcome could still be conducted using R using Bayesian analysis
under the package “brms” [66]. Additionally, application of a modified Poisson multi-
level regression in R is also limited, given the lack of packages allowing for the
appropriate adjustment of standard errors. Regarding the feasibility of running these
analyses, none of the analyses required a prohibitive amount of computing resources if
running a single iteration. When assessing run times for a single analysis, the longest was
for the over-specified negative binomial regression, but even this at a sample size of
200,000 could be conducted overnight on a standard PC. The major reason for the
extensive run time of this analysis was the creation of confidence intervals for all the
coefficients. Computationally, there is little limitation for researchers to consider these

alternative methods.

5.5 Strengths and limitations

This study had notable strengths and limitations worthy of discussion. A major strength
of this study was the use of simulated datato assess the different quantitative methods.
With simulated data, the true outcomes for each intersection and effect size are known,
and we are able to assess both the validity and accuracy of estimates. There are many
studies in the literature which compare methods using secondary data analysis, where the
true outcomes are unknown. [39, 40, 52] In these cases, it is unknown which method is

actually approaching the true population estimates, because two methods may hold the
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same biases or under-/over-fitting issues. As well, each simulated data scenario and
sample size were iterated 1,000 times with varying effect sizes, and this allows for greater

confidence that the observed results and patterns are consistent.

This is the first study of its kind to look across the intersectionality literature and assess
these different methods of varying complexities. While decision tree methods have been
compared against one another [36, 42], and decision trees and MAIHDA have been
separately compared to regression analysis [39, 40, 52], no comparison has yet been
drawn between cross-classification, regression, MAIHDA, and decision trees. We
focused not only on accuracy of predictions, but also on variable identification and effect
size estimation, to reflect how these studies are applied and interpreted in the literature.
This allowed for improved understanding of when and how to apply certain
methodologies, because methods performed differently for different objectives. For
example, while this study identified that MAIHDA performs well for the prediction of
binary outcomes, it was also further identified that the interpretation of the main effects
of MAIHDA is still unknown for binary outcomes, and do not fall under any previously

proposed definitions.

An extensive variety of dataset qualities were considered in this analysis, to reflect the
variety of datasets used in intersectional and population health research. The existing
simulation studies in this study’s literature review, while varying by sample size and data
generation processes, were limited to continuous outcomes. [42, 82] This study focused
on looking across different sample sizes, outcome types and input types, because these
are all dataset qualities that a researcher will know a priori. We were able to see that
there is no singular method best-suited for all data scenarios, and provide a more
comprehensive guide for researchers based on particular dataset qualities and research

objectives.

There are also certain limitations that should be discussed. Regarding the process of
creating the simulations, only five variables had any true effect on the outcome, and all

five of these variables were included in the fitting of the regression, MAIHDA, cross-
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classification and decision tree models. This differs from the reality of intersectionality
research, where the selected social identities or positions are likely not the sole
explanatory variables for an outcome. It is typically expected that there are other
individual- and structural-level effects not accounted for in the analysis. We did
incorporate some unknown elements, like correlation between variables X3 and X4 via
mediation, and non-linear interaction effects, but all variables with an effect on the
outcome were included when fitting the analysis models, which is an unrealistic
expectation. Therefore, the accuracy of the intersection-level predictions in the results of
this study should not be expected to be the true accuracy of the individual-level
predictions, if conducting analysis on an actual dataset. This simulation represents the
best-case scenario, and a real-world analysis would have unaccounted for predictors
increasing the variation between individuals within an intersection. An additional
concern regarding the data simulations is that for the simulation of the binary outcome,
resampling of the variable effect sizes was required if the probability of the outcome
exceed 100%. Because this was required for approximately half of the 1,000 iterations
when simulating the common binary outcome with mixed inputs, the random sampling of
effect size estimates for this data scenario were possibly not as random as for the other
scenarios. Finally, there are some concerns when using MAPE for the assessment of
accuracy for the binary and multinomial outcomes. Because the difference between the
predicted and actual prevalence is standardized over the actual prevalence, MAPE can
create excessively large errors when predicting outcomes with a very low true
prevalence, such as the rare binary outcome in this simulation. Therefore, the measure
may be biased towards favouring methods that perform particularly well for predicting
outcomes for intersections with smaller outcome prevalences, because the impact of a

poor prediction for a rare outcome is larger than that fora common outcome.

Regarding the application of the decision tree methods, the way the analyses were
performed in this simulation are not meant to be definitive or seen as the best possible
approach. Inthe building of decision trees, it would be typical to have a fitting process
involving a training and test dataset, where model fit can be assessed and adjusted using

different tuning parameters. Due to the size of the study and the requirement for many
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iterations, our tuning process was limited to only one parameter for CART and random
forest analysis. The use of different R packages, tuning parameters, and building
parameters (like stopping rules) may yield different results. Finally, regarding the
application of MAIHDA in this study, one notable limitation was the use of frequentist
analysis rather than a Bayesian model with null priors, due to time and computational
restraints. Although results from a short simulation presented in Appendix A indicate that
main effect coefficient estimates are similar between the two approaches, it cannot be
definitively said that the results found in this study regarding the accuracy of predictions
will be the same under a Bayesian approach. Additionally, this study applied MAIHDA
for a binary outcome using a multilevel Poisson regression, to mirror the use of the
modified Poisson for the single-level regression. However, MAIHDA analyses for binary
outcomes have typically used multilevel logistic regression. It is unclear whether
differences in these methods would impact the predictive performance of MAIHDA for

binary outcomes.

5.6 Directions for future work

While the use of simulated data is beneficial for understanding the accuracy and validity
of estimates, results from this thesis would benefit from a demonstration of each of the
methods under a real-life dataset, comparing the significant intersections identified by
MAIHDA, the significant interactions identified by regression models, and the subgroups
identified by CART, CTree, and CHAID. There were certain issues identified by this
thesis that could also be further explored in future research. Given the concern when
creating high-dimensional intersections that smaller intersections will suffer in terms of
accuracy, further exploration of the predictions can specifically look at which methods
perform well for predictions for smaller intersections, and if there are any clear patterns
regarding if outcomes for small intersections are typically over- or under-estimated. This
studied also identified that the binary effects produced by MAIHDA do not fall under the
definitions of main effects that have been proposed by either Evans et. al. [52] or Lizotte

et. al. [53]. Given the quick adaptation of MAIHDA in the intersectionality literature, and
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the regular analysis of binary outcomes, the interpretation of these main effects should

undergo further investigation.

In this thesis, the assessment of methods for quantitative intersectionality was strictly
quantitative. However, as suggested in the discussion, interpretability of the methods also
plays an important role for researchers choosing to do quantitative intersectional health
research, given that the end goal of this work is to inform decisions in public health.
Therefore, future work will include a qualitative analysis, assessing interpretability and
usefulness of methods. Points to consider under qualitative analysis include how well the
method is in agreement with intersectionality theory and the goals of intercategorical -
intersectionality, how visible effects are for each intersection (is each intersection equally
prioritized), and how well a large number of intersections can be incorporated into the
method. While methods like decision trees may be helpful for visualization, these data-
driven approaches may also provide subgroups that are not useful for further study. There
are also alternative ways to conduct some of the methods that should be further explored,
both for their predictive performance and impact on the interpretability of the results. For
example, alternative methods for random forest analysis that produce less biased variable
importance measures [86, 87] and provide p-values for the interpretation of the variable
importance measure [85], may make the random forest method more user-friendly. The
inclusion of interaction terms in the fixed-effect for MAIHDA as suggested by Bell et. al.
[80], or the use of Generalized Additive Models for regression [77], may improve
prediction, but may also contribute to a loss of interpretability. The tradeoff between

accuracy and interpretability remains to be further explored.

5.7 Conclusion

This study aimed to understand how to best incorporate an intercategorical-intersectional
perspective into quantitative health research, with a particular focus on methods able to

assess a large number of high-dimensional intersections at the same time. Methods were
assessed using simulated data scenarios varying by outcome type, input type, and sample

size. Assessment of methods included prediction accuracy, identification of variables
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important or significant to the outcome, and type 1 error. Different methods outperformed
others, depending on both the data scenario and the objective. All methods improved in
prediction accuracy with increasing sample size with the exception of CART, which
often performed poorly at both large and small sample sizes. Random forest and
MAIHDA generally created the most precise predictions at small sample sizes. CTree
and CHAID were also generally suitable for creating predictions at small sample sizes,

but typically less accurate.

CART did not perform well for variable selection for all outcome types, and especially
for binary outcomes. These results were surprising given the use of CART for binary
classification problems in the existing intersectionality literature. One explanation for this
observed difference is that our simulations may not have had large enough effect sizes to
pass CART’s threshold for splitting. VVariable selection was better for CHAID and CTree,
but consistently faced a high type 1 error. Variable selection by random forest, according
to the variable importance measure, worked well if input variables were all categorical,
but if presented with continuous variables would result in a high type 1 error, due to bias
towards selecting continuous variables. While MAIHDA performed well for prediction,
MAIHDA coefficients had worse confidence interval coverage and lower power than
traditional regression models with interaction terms. We identified that the definition of
main effects for MAIHDA models with binary outcomes is unknown, and requires

further investigation.

From this study emerge recommendations for researchers looking to use these
methodologies for quantitative intersectionality research. We recommend that MAIHDA
can be used for outcome mapping, but researchers should refrain from interpreting the
main effects, or residual estimates. Random forest is also a viable option to create
intersectional predictions, but the variable importance measure is biased if looking to
identify variables significant to the outcome. Alternative random forest methods using
either the conditional inference framework or corrections to the variable importance
measure may be of interest to researchers. CTree and CHAID are more likely to identify

relevant subgroups than CART, but given their high type 1 error, it may be of use to pair
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these methods with a regression analysis. Finally, while regressions with interaction
terms and cross-classification are the most common methodologies in the current
intersectionality literature, they are not recommended for calculating outcomes for a large

number of intersections, unless sample size is sufficiently large.

The goal of this work is to ultimately create a guide for quantitative intersectionality
research. Accordingly, future research should combine this quantitative evaluation with a
qualitative evaluation of the interpretability and usefulness of these different methods, to
encourage the use of methods that are both statistically sound and in line with the

theoretical basis of intersectionality research.
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Appendices

Appendix A. Comparison of MAIHDA by Bayesian versus
frequentist analysis

100 simulations were conducted for each of the three scenarios below. Sample sizes of
10,000 were used for each model. The Bayesian multilevel models were calculated using
the R brms package [66]. Bayesian (B) multilevel models were performed each with 1000
burn ins, 2000 total. Frequentist (F) multilevel models were created with package Ime4,
using R version 3.5.3. Presented below are 0.025 and 0.975 percentiles of estimates from
the 100 simulations. Results are compared against OLS regressions with and without the
necessary interaction terms, and MAIHDA analyses (Bayesian and frequentist) with and

without the necessary interaction terms.

Scenario 1:y =x1 +x2 + x3 + x4 + x5 + x1*x2

P(x1=1) = 50%; P(x2=1) = 50%; P(x3=1) = 50%; P(x4=1) = 50%; P(x5=1) = 50%;

Appendix A Table 1. 0.025 and 0.975 percentiles of Scenario 1 from 100 simulations

OLS with MAIHDA | MAIHDA

OLS i toractio | MAIHDA | MAIHDA | (B)with | (F) with

0 (B) (F) interactio | interactio

n n

Intercent (-0.298 ,- | (-0.056, | (-0.299,- | (-0.297, - | (-0.056, (-0.056,
P 0.197) 0.052) 0.201) 0.200) 0.052) 0.052)
«1 (1.466 , (0.936, (1.459, (1.463, (0.936, (0.935,
1.538) 1.056) 1.534) 1.532) 1.056) 1.056)
2 (1.454 (0.948, (1.458, (1.456, (0.948 , (0.948,
1.540) 1.062) 1.539) 1.538) 1.062) 1.062)
%3 (0.970, (0.970, (0.969, (0.969, (0.970, (0.970,
1.037) 1.040) 1.039) 1.041) 1.041) 1.041)




x4

x5

x1:x2

(0.966 ,
1.038)

(0.959 ,
1.042)

(0.968 ,
1.036)

(0.961 ,
1.038)

(0.924,
1.071)

(0.969 ,
1.036)

(0.960 ,
1.039)

(0.969,
1.036)

(0.961,
1.039)

(0.968 ,
1.036)

(0.961
1.039)

(0.923 ,
1.072)
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(0.968,
1.036)

(0.961,
1.038)

(0.924,
1.071)

Scenario 2:y = x1 +x2 + x3 + x4 + x5 + x1*x2

P(x1=1) = 70%; P(x2=1) = 70%; P(x3=1) = 50%; P(x4=1) = 50%; P(x5=1) = 50%;

Appendix A Table 2. 0.025 and 0.975 percentiles of Scenario 2 from 100 simulations

OLS with MAIHDA | MAIHDA

. | MAIHDA | MAIHDA | (B)with | (F) with
OLS interactio . . . .

0 B) (F) interactio | interactio

n n

Intercent (-0.552,-| (-0.078, | (-0.322,-| (-0.326,- | (-0.078, (-0.077,
P 0.441) | 0.064) 0208) | 0211) | 0063) | 0.064)
«1 (1.663, (0.925, (1.465 , (1.461, (0.925, (0.925,
1.736) 1.082) 1.555) 1.554) 1.082) 1.081)
2 (1.648 , (0.927, (1.461 , (1.461, (0.927, (0.927,
1.749) 1.084) 1.558) 1.559) 1.083) 1.084)
%3 (0.968 , (0.97, (0.963 , (0.963, (0.969 , (0.969,
1.041) 1.04) 1.039) 1.042) 1.039) 1.039)
) (0.967, (0.968, (0.959, (0.961, (0.969, (0.967,
1.037) 1.036) 1.044) 1.042) 1.037) 1.036)
%5 (0.962 , (0.961 , (0.96, (0.957, (0.959, (0.958,
1.045) 1.039) 1.044) 1.045) 1.039) 1.040)
_ (0.889, (0.889, (0.889,
X1:x2 - 1.097) - - 1.097) | 1.097)




Scenario 3:y =x1 + x2 + x3 + x4 + x5 — 2( x1*x2)

P(x1=1) = 20%; P(x2=1) = 20%; P(x3=1) = 50%; P(x4=1) = 50%; P(x5=1) = 50%;

Appendix A Table 3. 0.025 and 0.975 percentiles of Scenario 3 from 100 simulations
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OLSwith | MAIHDA | MAIHDA | MAIHDA | MAIHDA
OLS interaction (B) (F) (Bywith | (F) with
Interaction Interaction
tercent (0.040, | (0039, | (0.432, 0432, | (0039, | (-0.038,
P 0.118) 0.033) 0.537) 0.535) 0.033) 0.033)
. 0546, | (0.949, | (0048, | (0045, | (0.949, (0.949,
0.653) 1.053) 0.077) 0.078) 1.054) 1.053)
. 0544, | (0949, | (0051, | (0.051, | (0.950, (0.949,
0.657) 1.056) 0.081) 0.085) 1.056) 1.056)
" 0964, | (0970, | (0.947, (0.946, (0.967 , (0.966,
1.040) 1.040) 1.060) 1.060) 1.039) 1.040)
y 0968, | (0968, | (0.935, (0.936, (0.968 , (0.968,
1.038) 1.036) 1.057) 1.057) 1.037) 1.037)
5 0957, | (0961, | (0.941, (0.943, (0.958 , (0.959,
1.036) 1.038) 1.062) 1.058) 1.039) 1.038)
_ _ (-2.123 , - _ _ (2122 ,- | (-2.123, -
xLx2 1.889) 1.888) 1.889)




Appendix B. Over-specified and best-fitted regression results

Appendix B Table 1. Model 1 (continuous outcome, categorical inputs) regression coefficient significance (% of iterations)
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Over-specified Best-fitted
N=2000 N=5000 N =50000 N =200000 | N=2000 N =5000 N = 50000 N = 200000
Intercept 5.0 45 3.6 4.9 5.0 51 55 5.8
x1.1 81.7 87.1 98.0 99.8 96.5 97.7 100.0 100.0
x1.2 80.6 85.8 98.6 99.6 96.4 98.1 100.0 100.0
x1.3 76.2 87.2 98.5 99.9 96.1 98.2 100.0 100.0
X2 61.2 76.6 94.7 98.5 93.3 97.0 99.8 100.0
X3 70.0 84.9 95.6 99.7 96.3 98.2 100.0 100.0
x4 76.0 86.0 97.6 99.8 97.5 98.6 100.0 100.0
X5 66.6 81.5 96.4 99.2 95.6 97.6 100.0 100.0
x6.1 3.9 5.8 4.5 5.2 4.5 6.2 5.0 4.5
X6.2 5.1 4.1 3.9 4.3 5.7 6.2 4.5 4.7
x1.1:x2 4.4 4.6 4.7 5.0 6.7 4.2 5.3 54
x1.1:x2 42.1 62.5 92.6 97.6 87.7 93.6 99.4 100.0
x1.3:x2 42.7 63.8 92.7 98.0 87.2 94.2 99.3 100.0
x3:x4 5.8 5.7 5.3 54 54 5.9 4.3 4.0
x3:x5 59 6.3 4.9 5.0 59 3.9 4.6 5.6
x4:x5 4.8 6.1 4.7 55 5.0 5.1 4.4 51
X3:X4:X5 22.7 48.1 86.9 94.4 82.0 90.2 98.5 99.8




127

Appendix B Table 2. Model 1 (continuous outcome, categorical inputs) regression coefficient confidence interval coverage (% of

iterations)
Over-specified Best-fitted
N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000
Intercept 95.0 95.5 96.4 95.1 95.0 94.9 94.5 94.2
x1.1 94.3 93.7 97.0 96.0 95.3 94.6 95.1 95.2
x1.2 95.2 94.4 94.0 96.2 95.1 96.5 95.1 95.6
x1.3 95.9 94.8 95.6 95.8 944 94.5 94.8 95.2
X2 94.8 95.2 95.4 95.5 94.8 94.3 94.9 96.2
X3 94.0 94.8 95.6 93.9 94.2 94.9 95.4 95.2
x4 95.6 94.3 95.4 95.2 94.8 94.2 95.9 96.6
x5 94.9 94.3 94.9 94.6 95.7 94.9 95.1 94.5
x1.1:x2 94.9 95.4 95.6 955 955 94.8 94.1 94.4
x1.3:x2 94.8 95.1 95.2 95.1 93.9 95.4 95.5 95.3
X3:x4:x5 945 934 95.1 94.8 95.2 94.5 95.4 95.1
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Appendix B Table 3. Model 2 (continuous outcome, mixed inputs) regression coefficient significance (% of iterations)

Over-specified Best-fitted
N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000
Intercept 4.0 4.3 4.3 4.0 3.3 4.9 4.8 4.7
x1 975 99.0 100.0 100.0 99.5 100.0 100.0 100.0
X2 80.0 87.4 96.8 97.7 88.5 94.6 98.8 99.2
X3 93.9 96.4 100.0 100.0 94.2 96.7 100.0 100.0
x4 96.2 98.7 100.0 100.0 96.3 99.0 100.0 100.0
x5 92.2 96.6 99.9 100.0 93.2 97.2 99.8 100.0
X6 4.7 3.5 3.8 5.6 4.4 45 4.9 4.9
x1:x2 69.5 84.4 97.2 99.7 90.3 95.2 99.5 100.0
x3:x4 5.0 4.3 4.4 4.3 5.4 5.0 4.6 3.7
x3:x5 4.3 4.2 4.3 4.8 4.6 4.5 5.1 5.3
x4:x5 5.2 4.2 4.0 4.6 4.8 4.4 4.3 4.5
X3:x4:x5 79.9 89.3 98.2 99.7 83.7 91.8 98.4 99.8

Appendix B Table 4. Model 2 (continuous outcome, mixed inputs) regression coefficient confidence interval coverage (% of

iterations)
Over-specified Best-fitted
N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000
Intercept 96.0 95.7 95.7 96.0 96.7 95.1 95.2 95.3
x1 95.7 96.3 97.1 95.9 95.8 95.9 96.0 95.2
X2 53.8 28.7 6.1 1.4 21.1 8.9 1.2 0.0
x3 96.0 95.7 95.5 95.7 96.0 94.3 94.6 96.4
x4 96.0 96.4 94.5 94.9 95.8 95.5 95.1 94.9
x5 95.0 95.3 96.2 95.7 94.9 95.3 96.2 95.3
x1:x2 17.3 9.1 1.1 0.1 6.2 2.8 0.0 0.0
X3:x4:x5 95.0 95.0 95.8 95.8 96.1 94.4 95.2 95.1
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Appendix B Table 5. Model 3 (common binomial outcome, categorical inputs) regression coefficient significance (% of iterations)

Over-specified Best-fitted
N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000
Intercept 97.2 99.6 100.0 100.0 100.0 100.0 100.0 100.0
x1.1 12.0 29.2 90.4 98.8 59.2 80.6 99.4 100.0
x1.2 7.5 30.1 88.8 98.0 60.2 81.3 99.6 100.0
x1.3 18.3 25.8 88.4 98.4 57.6 80.5 99.7 100.0
X2 17.2 22.3 73.4 93.7 34.8 61.9 97.1 99.7
X3 15.2 19.3 83.0 98.1 84.1 95.3 100.0 100.0
x4 10.7 26.5 86.8 98.7 86.8 95.0 100.0 100.0
x5 30.0 8.8 77.8 95.7 76.2 91.2 100.0 100.0
x6.1 2.3 54 51 5.1 5.7 4.5 52 6.0
X6.2 5.2 5.0 3.9 5.9 5.1 5.6 5.6 51
x1.1:x2 10.1 4.5 4.2 4.1 4.3 4.6 5.3 4.0
x1.1:x2 12.8 22.0 78.0 93.7 41.6 67.1 97.6 99.9
x1.3:x2 18.6 17.9 78.2 95.1 40.2 65.9 97.3 100.0
x3:x4 36.0 6.8 5.7 5.7 5.2 54 4.4 4.4
x3:x5 45.2 39.9 54 5.3 51 4.7 5.2 4.4
x4:x5 50.5 35.3 4.5 5.6 4.0 54 5.7 6.6
X3:x4:x5 65.8 56.7 9.6 24.5 9.3 14.7 68.4 92.8
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Appendix B Table 6. Model 3 (common binomial outcome, categorical inputs) regression coefficient confidence interval coverage
(% of iterations)

Over-specified Best-fitted
N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000
Intercept 93.8 95.1 94.4 94.9 94.7 96.0 94.4 94.8
x1.1 94.9 95.5 94.8 955 96.1 95.7 94.4 96.0
x1.2 96.5 94.6 95.6 95.1 95.3 94.1 94.0 95.4
x1.3 95.4 95.7 96.3 94.8 94.2 94.6 93.9 95.6
X2 92.3 95.7 95.0 95.4 95.1 94.9 94.3 95.8
X3 81.1 94.1 95.0 96.0 95.7 94.5 95.8 94.4
x4 84.9 96.2 94.6 93.7 94.7 96.2 94.8 94.0
x5 64.0 92.2 95.2 94.2 94.6 95.5 95.1 95.2
x1.1:x2 88.5 94.5 94.1 95.3 96.0 94.9 94.9 95.5
x1.3:x2 82.6 94.1 95.9 945 94.8 94.7 95.1 95.2
X3:X4:X5 34.2 42.9 94.4 94.2 93.6 94.1 96.0 95.2
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Appendix B Table 7. Model 4 (common binomial outcome, mixed inputs) regression coefficient significance (% of iterations)

Over-specified Best-fitted
N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000
Intercept 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
x1 81.2 94.3 100.0 100.0 93.8 98.7 100.0 100.0
X2 30.0 51.1 84.9 93.0 47.8 67.7 89.7 96.0
X3 67.0 87.1 99.9 100.0 76.6 93.1 100.0 100.0
x4 74.1 88.9 100.0 100.0 81.4 91.7 100.0 100.0
x5 61.6 83.6 99.4 100.0 70.6 87.1 99.6 100.0
X6 6.0 6.3 5.0 4.0 4.8 4.5 4.8 4.0
x1:x2 28.9 52.0 95.1 99.8 47.8 73.8 98.3 99.9
x3:x4 5.7 4.5 5.3 5.0 4.2 4.4 5.2 4.4
x3:x5 15.3 8.3 5.6 3.7 6.8 5.3 5.8 4.9
x4:x5 12.1 5.7 4.4 6.1 5.7 4.0 4.6 5.6
X3:X4:x5 24.4 13.9 50.0 84.8 11.3 14.1 57.7 88.9

Appendix B Table 8. Model 4 (common binomial outcome, mixed inputs) regression coefficient confidence interval coverage (% of

iterations)
Over-specified Best-fitted
N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000

Intercept 95.9 94.4 94.7 95.1 95.2 93.8 93.8 95.7
x1 95.7 95.0 94.3 95.3 95.6 95.9 93.1 94.5
X2 90.2 83.3 26.9 7.6 84.6 69.3 145 2.6
x3 94.5 95.9 93.6 95.1 93.1 95.4 95.1 94.8
x4 95.4 95.4 94.4 95.3 95.3 94.8 94.4 95.0
x5 93.9 94.8 94.7 94.3 95.2 95.7 95.1 935
x1:x2 47.3 28.2 3.9 0.1 31.6 15.9 1.0 0.0
X3:x4:x5 78.2 92.6 94.6 94.2 91.1 94.2 93.5 94.4
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Appendix B Table 9. Model 5 (rare binomial outcome, categorical inputs) regression coefficient significance (% of iterations)

Over-specified Best-fitted
N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000
Intercept 96.4 99.6 100.0 100.0 100.0 100.0 100.0 100.0
x1.1 13.4 4.7 53.9 93.3 16.3 37.8 97.5 100.0
x1.2 11.4 4.7 515 915 145 35.6 97.1 100.0
x1.3 12.3 4.3 51.2 92.6 14.0 37.0 97.1 100.0
X2 315 23.4 29.7 69.8 14.2 20.8 84.5 99.1
X3 36.0 25.1 52.2 90.9 52.2 78.2 99.9 100.0
x4 321 18.3 60.9 94.3 60.4 85.5 100.0 100.0
x5 54.5 41.3 41.2 85.4 33.0 72.3 99.8 100.0
x6.1 17.8 2.1 3.9 5.6 4.7 3.6 54 4.5
X6.2 19.1 3.1 3.0 5.8 4.1 51 4.9 4.8
x1.1:x2 38.5 26.4 5.3 3.7 6.4 4.1 5.3 5.0
x1.1:x2 48.7 40.8 41.7 79.2 17.8 28.4 88.4 99.8
x1.3:x2 42.7 37.0 39.4 81.9 18.3 28.3 89.0 99.1
x3:x4 42.3 45.9 3.7 5.1 5.2 54 4.4 3.6
x3:x5 41.8 50.5 29.5 6.4 36.1 13.1 5.1 55
x4:x5 44.8 525 20.6 4.3 27.0 10.0 51 4.8
X3:x4:x5 40.2 62.4 40.4 10.3 48.7 21.0 26.6 64.8
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Appendix B Table 10. Model 5 (rare binomial outcome, categorical inputs) regression coefficient confidence interval coverage (%

of iterations)

Over-specified Best-fitted
N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000
Intercept 86.7 96.5 95.3 95.4 96.0 95.8 94.8 94.8
x1.1 87.3 96.9 95.4 96.2 96.1 95.2 94.8 96.1
x1.2 88.8 97.3 95.7 95.5 95.7 94.6 94.7 94.8
x1.3 87.9 98.0 95.0 95.9 96.1 95.7 94.2 94.2
X2 69.5 82.6 95.8 95.3 945 95.5 95.1 94.2
X3 63.7 73.2 97.1 95.3 96.0 94.6 94.4 96.1
x4 66.9 80.0 95.5 94.0 95.1 95.8 94.4 94.8
x5 43.3 55.6 95.3 96.0 94.2 95.5 94.0 94.5
x1.1:x2 50.6 59.6 96.4 96.5 85.8 94.4 96.1 94.8
x1.3:x2 56.9 63.6 94.6 95.2 85.7 96.0 94.9 94.0
X3:x4:x5 59.8 37.6 58.9 92.8 50.7 79.7 95.4 94.6
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Appendix B Table 11. Model 6 (rare binomial outcome, mixed inputs) regression coefficient significance (% of iterations)

Over-specified Best-fitted
N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000
Intercept 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
x1 55.1 79.6 100.0 100.0 75.3 93.7 100.0 100.0
X2 10.5 15.5 71.0 91.1 16.9 315 86.4 96.7
X3 325 64.5 99.1 100.0 40.4 75.1 99.7 100.0
x4 37.5 69.4 99.7 100.0 48.1 79.9 100.0 100.0
x5 32.0 50.0 98.6 100.0 25.9 62.1 99.5 100.0
X6 8.5 6.4 5.3 5.2 5.0 5.1 45 4.5
x1:x2 21.2 24.6 86.5 99.7 245 395 96.8 100.0
x3:x4 17.1 6.9 51 5.6 6.4 55 5.0 4.2
x3:x5 59.9 31.4 5.8 4.6 44.5 16.8 5.4 5.2
x4:x5 51.2 23.8 51 5.7 32.9 11.5 4.5 5.6
x3:x4:x5 68.0 44.4 20.0 47 .4 50.7 25.3 23.5 61.2

Appendix B Table 12. Model 6 (rare binomial outcome, mixed inputs) regression coefficient confidence interval coverage (% of

iterations)
Over-specified Best-fitted
N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000
Intercept 95.2 95.1 95.2 95.1 94.5 95.3 95.8 95.9
x1 91.8 95.4 95.2 95.5 92.9 94.3 95.5 95.1
X2 92.8 91.7 68.1 25.1 94.0 89.1 49.5 11.0
x3 90.2 93.6 95.5 94.7 95.6 95.7 94.7 94.9
x4 90.4 93.1 95.4 94.5 94.9 94.2 94.3 96.1
x5 81.6 93.0 95.1 945 92.7 95.3 96.2 94.9
x1:x2 65.3 49.2 95 0.6 57.4 36.0 2.3 0.0
X3:x4:x5 324 57.2 93.9 94.2 49.1 75.6 95.3 93.9
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Appendix B Table 13. Model 7 (multinomial outcome y=2, categorical inputs) regression coefficient significance (% of iterations)

Over-specified Best-fitted
N=2000 N=5000 N =50000 N = 200000 N=2000 N=5000 N =50000 N = 200000
Intercept 63.8 97.9 100.0 100.0 100.0 100.0 100.0 100.0
x1.1 30.0 7.3 47.7 90.5 49.0 78.7 99.9 100.0
x1.2 32.3 5.8 46.2 90.1 47.7 77.4 100.0 100.0
x1.3 30.6 6.7 46.9 90.1 46.8 78.8 100.0 100.0
X2 74.0 33.6 15.3 60.0 20.4 44.7 99.5 100.0
X3 29.5 23.6 79.0 98.1 63.8 83.5 100.0 100.0
x4 24.0 23.9 82.4 98.8 69.1 87.9 100.0 100.0
x5 39.3 23.6 735 95.7 56.4 78.3 99.8 100.0
X6.1 21.7 3.3 5.4 3.8 5.8 4.2 4.9 5.2
X6.2 22.3 3.2 4.1 55 6.3 4.5 4.8 5.3
x1.1:x2 88.9 60.1 4.2 4.1 4.7 4.3 59 5.0
x1.1:x2 85.5 48.6 36.9 72.6 36.6 59.3 99.1 100.0
x1.3:x2 85.3 48.3 36.1 73.3 35.8 63.8 98.3 100.0
x3:x4 29.9 6.3 4.3 4.6 4.9 4.6 5.3 4.8
x3:x5 66.6 16.8 4.8 4.0 4.7 4.9 4.6 5.6
x4:x5 58.2 10.6 4.8 4.1 5.2 4.6 55 5.3
x3:x4:x5 76.3 21.2 13.6 36.2 9.6 17.3 79.2 98.9
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Appendix B Table 14. Model 7 (multinomial outcome y=2, categorical inputs) regression coefficient confidence interval coverage

(% of iterations)

Over-specified Best-fitted
N=2000 N=5000 N =50000 N = 200000 N=2000 N=5000 N =50000 N = 200000
Intercept 84.3 96.8 95.7 95.3 94.2 95.5 95.0 934
x1.1 70.5 94.6 94.9 96.5 95.3 94.1 95.9 93.7
x1.2 67.5 95.6 95.5 95.1 95.6 95.3 94.9 94.1
x1.3 69.3 95.1 94.3 95.8 93.8 94.3 95.1 95.3
X2 25.7 64.1 96.3 96.5 96.0 95.4 95.9 95.1
X3 75.6 94.8 954 95.9 94.2 94.5 94.3 93.4
x4 80.9 954 95.6 955 96.0 93.6 95.2 95.2
x5 63.8 93.7 95.2 95.6 95.3 95.1 94.1 94.6
x1.1:x2 14.2 51.7 95.6 96.0 94.6 94.9 95.3 95.6
x1.3:x2 14.9 51.1 95.8 95.8 95.3 94.7 94.8 95.6
X3:x4:x5 23.8 78.7 95.8 954 95.3 95.3 95.1 94.6
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Appendix B Table 15. Model 7 (multinomial outcome y=3, categorical inputs) regression coefficient significance (% of iterations)

Over-specified Best-fitted
N=2000 N=5000 N =50000 N = 200000 N=2000 N=5000 N =50000 N = 200000
Intercept 934 99.9 100.0 100.0 100.0 100.0 100.0 100.0
x1.1 29.3 6.5 46.4 90.3 51.5 81.5 100.0 100.0
x1.2 32.1 5.9 49.4 90.0 48.2 79.6 100.0 100.0
x1.3 30.8 8.2 46.5 91.2 49.7 82.0 100.0 100.0
X2 73.2 33.9 16.2 63.5 21.3 47.3 98.8 100.0
X3 29.7 25.3 78.2 97.3 62.8 83.1 100.0 100.0
x4 23.9 25.3 83.3 99.0 70.4 85.5 100.0 100.0
x5 37.7 24.7 75.1 97.0 58.8 78.3 99.9 100.0
X6.1 21.6 3.7 5.6 3.9 5.3 5.3 5.4 6.3
X6.2 22.0 3.4 4.5 5.7 6.9 6.1 5.0 6.4
x1.1:x2 87.9 60.3 4.9 4.8 4.5 4.4 55 3.8
x1.1:x2 86.1 48.7 35.8 73.4 37.8 65.2 98.6 100.0
x1.3:x2 84.4 48.5 37.0 71.9 41.8 68.3 98.9 100.0
x3:x4 27.6 5.7 4.7 6.0 6.5 5.4 4.8 5.9
x3:x5 60.7 115 3.9 4.0 5.3 4.7 4.4 3.9
x4:x5 515 9.6 4.7 35 5.1 5.2 3.7 5.6
X3:X4:x5 70.6 155 144 42.8 11.1 19.5 83.8 99.6
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Appendix B Table 16. Model 7 (multinomial outcome y=3, categorical inputs) regression coefficient confidence interval coverage

(% of iterations)

Over-specified Best-fitted
N=2000 N=5000 N =50000 N =200000 | N=2000 N =5000 N =50000 N = 200000
Intercept 84.6 97.5 94.4 95.7 93.5 95.4 94.7 93.6
x1.1 70.7 95.6 94.8 95.0 94.6 92.9 95.7 95.4
x1.2 68.1 96.5 94.9 94.8 94.9 94.9 95.0 94.4
x1.3 69.6 95.5 94.7 95.0 94.5 95.5 97.3 95.0
X2 26.3 64.2 96.5 96.9 95.9 945 95.4 96.0
x3 77.0 95.9 94.6 95.7 94.2 94.7 95.1 93.1
x4 81.2 96.7 955 95.2 92.9 945 95.6 95.3
x5 66.6 94.0 94.9 95.6 95.0 95.3 95.6 94.2
x1.1:x2 135 51.9 96.0 96.1 94.8 94.8 95.0 96.1
x1.3:x2 16.0 51.8 95.7 96.1 95.2 95.2 96.1 95.7
X3:X4:X5 29.6 84.8 96.1 95.0 94.6 95.0 95.0 955
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Over-specified Best-fitted
N =2000 N =5000 N = 50000 N = 200000 N=2000 N=5000 N =50000 N = 200000
Intercept 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
x1 48.5 81.4 100.0 100.0 98.7 99.9 100.0 100.0
X2 3.3 13.5 49.7 77.2 26.6 47.0 86.7 92.8
X3 58.3 84.3 100.0 100.0 68.1 88.6 100.0 100.0
x4 63.5 85.4 100.0 100.0 71.8 88.9 100.0 100.0
x5 48.7 74.7 99.6 100.0 57.9 82.4 100.0 100.0
X6 4.9 4.3 5.1 5.2 5.1 4.7 4.8 4.9
x1:x2 11.7 20.7 67.3 89.0 38,5 66.2 96.8 99.8
x3:x4 5.5 4.8 5.1 6.0 4.9 5.2 4.9 6.0
x3:x5 5.8 5.3 4.7 6.1 4.8 5.3 4.2 5.6
x4:x5 5.6 4.2 4.3 4.8 5.0 53 5.3 6.0
x3:x4:x5 10.3 15.7 74.6 98.5 10.4 17.2 80.2 99.2

Appendix B Table 18. Model 8 (multinomial outcome y=2, mixed inputs) regression coefficient confidence interval coverage (% of

iterations)
Over-specified Best-fitted
N =2000 N =5000 N = 50000 N = 200000 N=2000 N=5000 N =50000 N = 200000
Intercept 95.4 94.9 94.1 94.0 95.1 95.9 95.1 93.3
x1 95.5 95.9 95.3 95.0 95.6 93.9 94.7 94.8
X2 94.2 89.2 48.7 14.3 75.7 50.7 4.8 0.0
x3 94.7 94.8 93.8 94.3 95.2 95.1 94.9 94.0
x4 94.6 94.8 95.0 94.3 96.7 95.4 95.1 94.9
x5 95.2 94.6 94.4 95.1 95.4 94.2 94.8 93.9
x1:x2 84.0 63.7 9.9 0.0 37.1 13.6 0.0 0.0
X3:x4:x5 93.9 95.3 93.4 94.1 94.3 94.8 94.4 93.4
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Over-specified Best-fitted
N =2000 N =5000 N = 50000 N = 200000 N=2000 N=5000 N =50000 N = 200000
Intercept 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
x1 50.6 81.3 100.0 100.0 98.2 100.0 100.0 100.0
X2 2.9 13.2 53.1 75.6 31.2 51.2 85.7 91.9
X3 58.7 83.5 100.0 100.0 69.6 89.1 100.0 100.0
x4 67.8 86.7 100.0 100.0 74.0 90.2 100.0 100.0
x5 52.0 75.8 100.0 100.0 65.1 83.3 100.0 100.0
X6 4.2 4.6 54 55 4.2 4.2 5.8 6.5
x1:x2 11.9 23.3 68.4 89.4 45.7 72.3 97.6 100.0
x3:x4 4.7 5.1 4.7 6.8 55 55 5.2 5.9
x3:x5 4.9 6.1 4.6 5.0 5.2 55 4.8 4.2
x4:x5 5.0 5.8 5.1 4.2 4.6 6.1 4.3 5.1
x3:x4:x5 10.4 16.8 79.3 99.5 10.5 21.9 86.3 99.9

Appendix B Table 20. Model 8 (multinomial outcome y=3, mixed inputs) regression coefficient confidence interval coverage (% of

iterations)
Over-specified Best-fitted
N =2000 N =5000 N = 50000 N = 200000 N=2000 N=5000 N =50000 N = 200000
Intercept 95.2 94.9 93.6 95.5 95.7 95.0 94.9 93.8
x1 95.4 94.6 95.5 95.3 94.5 94.9 93.9 94.5
X2 94.0 89.1 46.6 15.3 72.6 48.7 4.2 0.0
x3 94.3 95.3 94.2 93.9 94.5 94.7 94.7 94.1
x4 94.2 94.9 94.3 95.2 94.8 94.3 95.0 94.4
x5 94.9 95.8 95.4 94.3 95.7 95.4 95.3 94.7
x1:x2 86.0 64.3 9.5 0.2 31.4 10.1 0.0 0.0
X3:x4:x5 93.9 94.1 95.2 96.0 94.2 94.4 95.7 95.1
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Appendix B Table 21. Model 9 (negative binomial outcome, categorical inputs) regression coefficient significance (% of iterations)

Over-specified Best-fitted
N=2000 N=5000 N =50000 N = 200000 N=2000 N=5000 N =50000 N = 200000
Intercept 5.7 6.1 5.3 4.9 4.5 51 4.1 5.2
x1.1 25.6 40.5 92.8 99.4 78.6 90.0 100.0 100.0
x1.2 24.7 41.3 915 99.6 78.6 90.3 99.9 100.0
x1.3 18.9 41.1 91.6 99.6 75.3 89.8 100.0 100.0
X2 15.4 214 77.6 95.6 51.3 76.1 99.0 100.0
X3 20.3 51.0 91.0 98.8 88.4 96.4 100.0 100.0
x4 28.2 55.2 92.3 99.1 90.8 95.3 100.0 100.0
x5 12.3 39.0 88.9 97.6 84.0 92.9 100.0 100.0
x6.1 4.4 6.3 51 4.8 4.1 5.2 6.1 54
X6.2 7.0 6.0 4.2 5.4 4.6 4.4 5.6 4.8
x1.1:x2 10.1 6.4 5.0 6.2 6.2 4.2 3.3 6.4
x1.1:x2 18.5 30.0 80.5 94.6 56.7 77.8 98.1 100.0
x1.3:x2 115 29.4 79.2 93.2 58.4 76.2 97.7 100.0
x3:x4 5.3 34 4.7 5.8 4.5 4.0 55 5.1
x3:x5 2.2 34 4.8 4.4 54 6.1 4.9 4.8
x4:x5 2.2 3.3 5.2 51 4.4 4.7 5.0 4.7
X3:x4:x5 1.8 4.2 19.2 49.1 15.3 29.8 86.8 98.6
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Model 9 (negative binomial outcome, categorical inputs) regression coefficient confidence interval coverage

Over-specified Best-fitted
N=2000 N=5000 N =50000 N = 200000 N=2000 N=5000 N =50000 N = 200000
Intercept - 100.0 94.7 95.1 95.6 94.8 95.7 94.8
x1.1 - 100.0 95.3 95.6 95.6 96.3 96.0 95.6
x1.2 - 100.0 95.0 95.7 95.2 96.2 96.3 96.6
x1.3 - 100.0 955 96.0 94.3 94.9 96.1 95.6
X2 - 100.0 96.0 95.9 94.2 95.7 96.0 96.1
x3 - 100.0 94.6 93.8 95.9 94.2 95.8 955
x4 - 100.0 94.1 95.8 95.9 96.0 95.8 945
x5 - 100.0 94.7 94.8 95.5 94.9 95.4 96.0
x1.1:x2 - 100.0 94.1 95.6 94.8 96.2 94.5 94.1
x1.3:x2 - 100.0 95.2 954 94.5 95.0 94.1 94.4
X3:X4:X5 - 100.0 943 93.3 94.3 94.7 96.0 95.9

a gt N=2000, confidence interval formation failed
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Appendix B Table 23. Model 10 (negative binomial outcome, mixed inputs) regression coefficient significance (% of iterations)

Over-specified Best-fitted
N =2000 N =5000 N = 50000 N = 200000 N=2000 N=5000 N =50000 N = 200000
Intercept 5.6 4.8 5.0 5.3 4.5 55 5.2 4.7
x1 90.4 97.4 100.0 100.0 98.1 99.7 100.0 100.0
X2 35.6 58.5 87.8 95.1 61.4 77.8 92.9 97.0
X3 81.8 91.8 100.0 100.0 85.7 94.0 100.0 100.0
x4 84.6 93.5 100.0 100.0 88.2 95.1 100.0 100.0
x5 75.5 90.9 99.8 100.0 79.2 92.9 99.9 100.0
X6 5.7 55 4.6 4.5 5.7 4.1 4.9 4.9
x1:x2 31.7 57.0 95.0 99.6 60.5 82.7 99.1 100.0
x3:x4 5.7 6.6 4.3 5.0 4.7 6.3 4.2 5.2
x3:x5 4.9 6.0 5.8 4.5 59 5.6 4.6 5.6
x4:x5 5.7 53 4.7 4.6 4.4 5.4 3.9 5.5
X3:X4:x5 15.9 23.6 79.6 95.5 16.7 27.4 85.5 97.3

Appendix B Table 24. Model 10 (negative binomial outcome, mixed inputs) regression coefficient confidence interval coverage (%

of iterations)

Over-specified Best-fitted
N =2000 N =5000 N = 50000 N = 200000 N=2000 N=5000 N =50000 N = 200000
Intercept 94.4 95.2 95.0 94.7 95.5 94.5 94.7 95.3
x1 94.8 95.2 95.3 95.7 95.5 95.7 96.2 94.6
X2 87.1 74.0 22.3 6.0 75.0 53.4 7.6 1.1
X3 93.6 94.6 93.6 95.4 95.2 94.7 94.2 95.2
x4 94.4 95.9 94.5 95.2 95.3 95.6 95.0 93.8
X5 93.7 94.8 95.1 95.3 94.0 95.5 95.6 95.8
x1:x2 46.4 24.5 2.1 0.0 26.6 9.9 0.5 0.0
X3:X4:x5 92.0 94.0 94.3 94.3 94.2 94.2 94.9 94.3
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Appendix C. MAIHDA results for models with mixed inputs

Appendix C Table 1. Model 2 (Continuous outcome, mixed inputs) MAIHDA
coefficient significance

Intercept x1 X2 x3 X4 X5 X6
Expected 0 100 100 100 100 100 0
N = 2000 71.1 95.9 85.8 89.5 89.1 86.3 2.1
N = 5000 80.2 96 89.4 89.4 90.4 89.6 1.8
N = 50000 85.4 98.5 92.1 90.5 89.4 90 4.4
N = 200000 88.2 98.9 91.8 89.6 90 90.3 5.5

Appendix C Table 2. Model 2 (Continuous outcome, mixed inputs) MAIHDA
confidence interval coverage by definition 1 (typical additive effects)

Intercept x1 X2 X3 x4 X5
N = 2000 28.9 26.5 30 29.9 36.7 14.7
N = 5000 19.8 13 21.3 18.4 22.6 11.6
N = 50000 14.6 3.6 11.7 12.8 14 11.3
N = 200000 11.8 1.2 12.5 9.9 10 9.2

Appendix C Table 3. Model 4 (Common binary outcome, mixed inputs) MAIHDA
coefficient significance

Intercept x1 X2 X3 x4 X5 X6
Expected 100 100 100 100 100 100 0
N = 2000 100.0 88.5 36.5 82.7 84.7 71.9 2.5
N = 5000 100.0 95.1 57.1 93.8 92.5 86.4 2.6
N = 50000 100.0 99.1 85.1 99.1 99.2 96.5 1.3
N = 200000 100.0 97.8 89.6 98.1 99.1 97.0 1.5

Appendix C Table 4. Model 4 (Common binary outcome, mixed inputs) MAIHDA
confidence interval coverage by definition 1 (typical additive effects)

Intercept x1 X2 X3 x4 X5
N = 2000 96.9 90.2 79.7 94.8 96.0 93.0
N = 5000 97.0 70.8 61.4 95.9 94.7 89.4
N = 50000 88.6 11.6 10.1 78.8 80.9 49.7

N = 200000 53.8 0.6 2.4 43.9 48.8 24.1
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Appendix C Table 5. Model 6 (Rare binary outcome, mixed inputs) MAIHDA
coefficient significance

Intercept x1 X2 X3 x4 X5 X6
Expected 100 100 100 100 100 100 0
N = 2000 100.0 69.1 11.1 61.7 61.7 42.5 3.6
N = 5000 100.0 90.0 22.6 86.0 87.3 72.5 4.4
N = 50000 100.0 100.0 70.0 100.0  100.0 99.7 3.6
N = 200000 100.0 100.0 86.7 100.0 100.0  100.0 1.9

Appendix C Table 6. Model 6 (Rare binary outcome, mixed inputs) MAIHDA
confidence interval coverage by definition 1 (typical additive effects)

Intercept x1 X2 X3 x4 X5
N = 2000 94.3 93.9 92.1 95.7 94.7 95.1
N = 5000 96.9 89.3 83.5 95.7 95.6 93.0
N = 50000 96.8 31.4 20.6 91.8 924.1 84.6
N = 200000 93.3 1.6 1.8 80.1 85.1 53.2

Appendix C Table 7. Model 10 (Negative binomial outcome, mixed inputs) MAIHDA
coefficient significance

Intercept x1 X2 X3 x4 X5 X6
Expected 0 100 100 100 100 100 0
N = 2000 6.4 95.6 56.4 88.9 90.6 80.6 4.8
N = 5000 9.7 97.5 73.3 94.9 95.6 90.1 3.9
N = 50000 47.1 98.7 87.1 96.5 97.9 94.4 2.0
N = 200000 72.7 98.8 89.6 96.2 97.2 95.5 2.0

Appendix C Table 8. Model 10 (Negative binomial outcome, mixed inputs) MAIHDA
confidence interval coverage by definition 1 (typical additive effects)

Intercept x1 X2 X3 x4 x5
N = 2000 93.6 78.7 69.3 92.6 94.3 83.9
N = 5000 90.3 55.6 45.1 91.1 90.8 71.1
N = 50000 52.9 5.1 6.0 454 52.0 24.3

N = 200000 27.3 1.0 3.7 19.9 21.4 13.9
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