
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

4-21-2020 1:00 PM 

Evaluating quantitative methods for intercategorical-Evaluating quantitative methods for intercategorical-

intersectionality research: a simulation study intersectionality research: a simulation study 

Mayuri Mahendran, The University of Western Ontario 

Supervisor: Bauer, Greta R, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Epidemiology and Biostatistics 

© Mayuri Mahendran 2020 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Epidemiology Commons 

Recommended Citation Recommended Citation 
Mahendran, Mayuri, "Evaluating quantitative methods for intercategorical-intersectionality research: a 
simulation study" (2020). Electronic Thesis and Dissertation Repository. 6913. 
https://ir.lib.uwo.ca/etd/6913 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6913&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/740?utm_source=ir.lib.uwo.ca%2Fetd%2F6913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6913?utm_source=ir.lib.uwo.ca%2Fetd%2F6913&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 

   
ii 

Abstract 
 

This study evaluated eight quantitative methods for their predictive accuracy for 

intersectionally-defined subgroups, via a simulation study. The methods included two 

forms of single-level regression with interaction terms, cross-classification, multilevel 

analysis of individual heterogeneity and discriminatory accuracy (MAIHDA), and four 

decision tree methods: classification and regression trees (CART), conditional inference 

trees, chi-square automatic interaction detector, and random forest. The simulated 

datasets varied by outcome variable type, input variable types, sample size, and size and 

direction of the effects. Predictive accuracy improved with increasing sample size for all 

methods except CART. At small sample sizes, random forest and MAIHDA generally 

created the most precise predictions. While performing well for prediction, variable 

selection by random forest and confidence interval coverage and power of MAIHDA 

main effects coefficients were suboptimal. We have identified differences in methods 

ideal for intersectional prediction versus variable identification, highlighting that different 

objectives and data scenarios require different methods. 

Key words 

Intersectionality, prediction, quantitative methods, multilevel analysis, health inequalities, 

decision trees 
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Summary for Lay Audience 

Intersectionality acknowledges that an individual’s multiple social positions or identities 

(e.g. gender, ethnicity) can interact to affect health-related outcomes in unique ways. 

Calculating health outcomes for intersectional groups (defined by a combination of 

positions), rather than by each position separately, can create more accurate outcome 

estimates. Since it is unclear which methods do this best, this study evaluated eight 

methods in terms of their predictive performance for intersectional groupings, using 

simulated data with known true values. The methods included single-level and multilevel 

regression, cross-classification, and four machine learning methods (classification and 

regression trees (CART), conditional inference trees, chi-square automatic interaction 

detector, and random forest). The accuracy of predictions created by all methods 

generally improved with increasing sample size, except for the CART method. Generally, 

random forest and the multilevel method created the most precise predictions compared 

to the other methods, especially for small sample sizes. However, they did not always 

correctly identify variables which were significantly associated with outcome. Random 

forest sometimes incorrectly suggested that a variable that had no true effect on the 

outcome was important, and MAIHDA created estimates for the effects of individual 

variables that were not reflective of the expected values. This shows that while some 

methods are reliable to predict the outcome for intersectionally defined groups, they are 

not ideal to identify the effects or importance of individual variables that make up those 

groups (e.g. the specific effect of being in a high income group, or being male). Results 

from this work will improve the application of quantitative methods for accurately 

estimating outcomes for population subgroups. Correctly estimating outcomes for these 

groups is an important step in understanding existing health inequities. The goal of this 

work is to produce a guide for researchers who are interested in the applications of 

quantitative intersectionality approaches. 
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Chapter 1 

1 Introduction and objectives 
 
1.1   Health equity and heterogeneity of effects   

Health equity research aims to identify and reduce the modifiable differences in health 

between groups defined by social, economic, or geographic means. [1] Link and Phelan 

[2] argued that social conditions, such as socioeconomic status or race and ethnicity, are 

“fundamental causes” of diseases. Similarly, Geoffrey Rose [3] stated that, ‘‘The primary 

determinants of disease are mainly economic and social, and therefore its remedies must 

also be economic and social’’. These fundamental causes are connected to disease 

because they determine resource accessibility and availability, and likelihood of exposure 

to risk factors for and protective factors against disease. Along with acknowledging the 

existence of social determinants, it is also important to consider heterogeneity of effects. 

From a public health perspective, interaction and effect measure modification among 

social determinants should be recognized as a possibility when performing subgroup 

identification for targeted interventions. [4] As stated by Greenland [4] “In the absence of 

bias, departures from risk additivity imply that some subgroups would obtain a greater 

absolute risk reduction from the intervention than others would.”. Departures from the 

additive scale can occur if the excess risk is beyond the additive (“super additivity”), or if 

the outcome occurs only when certain factors coincide (“synergism”). The identification 

of “super additivity” can indicate that groups may benefit from intervention more than 

expected, and synergism is seen as an indicator that only one factor need be addressed by 

interventions to affect the outcome. Research in health equity should incorporate the 

possibility of heterogeneity, and intersectionality theory can function as a research 

framework to address that fundamental causes or social determinants of health may have 

heterogeneous effects.  
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1.2  Intersectionality theory 
 
Intersectionality theory acknowledges that an individual occupies multiple social 

categories or identities such as gender, race, and class, which overlap and can interact to 

create unique positions of systemic privilege and oppression. [5, 6] The term 

intersectionality first came to use by Black feminist legal scholar Kimberlé Crenshaw, to 

describe the position of Black women and their exclusion from both racial and gender 

discourse. This theory has since been extended to social positions and identities beyond 

gender and race, such as income, age, sexuality, and disability status, and to disciplines 

such as sociology [7], psychology [8], and education [9]. 

Intersectionality has applications to public and population health research [10, 11]. 

Bowleg [10] suggests that intersectionality can contribute to public health research not as 

a testable theory to be proven or disproven, but rather as a guiding perspective or 

framework, that acknowledges that individuals occupy multiple social identities and 

positions that can interact together and with the surrounding socio-structural factors (e.g. 

racism, sexism) to affect health outcomes. Intersectionality encourages research to make 

space for individuals who occupy multiple disadvantaged positions, as well as those who 

occupy a mix of advantaged and disadvantaged positions. [11] No one position or identity 

has presumed importance over the other. [12] This framework encourages the study of 

health the way it is actually experienced in society, as a result of complex interactions. 

Multiple micro- and macro-level factors can be incorporated, which aligns with 

addressing “fundamental causes” for inequalities (e.g. discrimination and poverty). An 

intersectional approach encourages targeted health promotion and policy, rather than 

assuming homogeneity across single factors, which can result in policies that are 

ineffective or harmful for oppressed or marginalized groups. [10]  

 

McCall [13] describes three approaches to how intersectionality is incorporated into 

research. The first is the anticategorical approach which acknowledges that categories are 

not set truths, because they over-simplify the complexity of actual experiences, which are 

fluid and dynamic. The second is the intracategorical approach, which focusses on 

experiences within a particular group or intersection, which usually experience some 
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level of marginalization. This approach requires some stability in the definition of 

belonging to these groups, but allows the researcher to delve into the complexity and 

variety of the experiences of different group members. The third is the intercategorical 

approach, which uses multiple defined categories to compare outcomes between 

intersectionally defined groups. This final approach is most readily applied by 

quantitative research. [14] Hancock [12] describes how intersectionality is distinguished 

from the “multiple approach”. The multiple approach allows for several positions (e.g. 

gender and race) to be relevant to an outcome, but views them as separate effects that do 

not overlap. The underlying assumption is that these separate effects can be added 

together to predict the outcome. This is analogous to fitting regression models with main 

effects for gender and sex without interaction terms. The intersectional approach 

acknowledges that these positions cannot be simply added together, they exist in ways 

that cannot be separated. To move beyond the additive model, intercategorical 

intersectionality research is commonly applied by the inclusion of interaction terms or 

cross-classified groups. To clarify, the “multiple approach” as referenced by Hancock is 

what other studies mentioned below reference as the “additive model”, because it 

assumes effects are additive. The term “multiplicative model” is sometimes used for what 

Hancock references as the “intersectional approach”.  Additionally, the language around 

additive and multiplicative models in intersectionality theory is not related to the 

statistical terminology for additive and multiplicative scales. [11] For example, the 

multiplicative approach can be applied on the additive scale by using a linear regression 

with interaction terms, or on the multiplicative scale by using a logistic regression with 

interaction terms.  Similarly, the additive model can be applied on either the additive or 

multiplicative scale, depending on the type of regression, by the inclusion of only main 

effects. 

 

1.3  Intersectionality theory for health equity stratification: 
application and issues 
 

The current discussion is limited to descriptive intercategorical intersectionality and 

health equity stratification, which does not aim to prove causality, but rather describes the 
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differences and inequities between groups. This is a steppingstone for further qualitative 

or quantitative analytic intersectionality research.  

 

When observing inequalities in self-rated health by race, sex, class, and sexual orientation 

in Canada using data from the Canadian Community Health Survey, Veenstra [15] 

demonstrated that the multiplicative model leads to different outcome predictions than 

the purely additive model (with no interaction terms). This was done by comparing a 

logistic regression model with no interaction terms with one including all two- and three-

way interaction terms. Use of the multiplicative model also changed the interpretation of 

the inequities. For example, from the additive model Asian respondents in the lowest 

income group had a 32.6% probability of reporting fair or poor health, compared to 

28.3% of white respondents in the lowest income group. However, when using an 

intersectional model with interaction terms, Asian respondents in the lowest income 

group actually fared better than their white counterparts, with a 17.4% probability of 

reporting fair or poor health, compared to 30.2%. These results show that assuming that 

social determinants function completely independently can affect conclusions regarding 

which groups face greater inequities. The authors note that not all intersections 

experienced “multiple jeopardy”, where those at the most marginalized groups were 

expected to experience the worst outcomes. This is similar to what Greenland [4] referred 

to as “super additivity”. But as conceptualized by Bright et. al. [16] “switch 

intersectionality” is a possibility that researchers should be mindful of, where the effects 

of a variable can actually be in the opposite direction than expected or completely unique 

to a particular intersection, because a causal process is only activated when individuals 

occupy certain intersectional positions. This is similar to the “synergism” mentioned by 

Greenland (4) when discussing heterogeneity of effects.  

Other authors have attempted to further break down the meaning of differences between 

intersectionally defined groups. Jackson et. al. [17] looked at the intersection of race 

(non-Hispanic Black versus non-Hispanic white) and early life socioeconomic status 

(SES - low versus high), for differences in unemployment, wages, and incarceration. 

They separated the total difference between groups (joint disparity), as the sum of the 

referent and excess intersectional disparity. The joint disparity for example could be the 
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difference in the outcomes between a low SES Black male respondent, and a high SES 

white male respondent. The referent disparity can be seen as the “additive effects”: the 

effects of being Black compared to white among those who are high SES, and the effects 

of being low compared to high SES among white males. The intersectional disparity is 

the remaining joint disparity that remains unaccounted for by the referent disparity, 

indicating a departure from solely additive effects. They found in some cases that the 

intersectional disparity was significant. Importantly, the authors remarked that in cases 

where the intersectional disparity is not significant, the joint disparity for multiply 

marginalized groups can still be quite large, and they still may experience the greatest 

inequities. Intersectional groups that don’t have statistically significant intersectional 

effects may still be the most important targets for intervention or policy. These comments 

outline the importance of not focussing on intersectionality as a “testable explanation” 

[18], but rather as a research framework.  

Quantitatively applying descriptive intersectionality into population health research faces 

challenges that have been outlined by several authors. Some specific issues include that 

although regression is a common analytic method, the use of regression often requires 

underlying assumptions regarding the relationship between variables, such as the linearity 

of main effects and interactions, which may not hold and generally go against the 

expectations of intersectionality. [10] Low sample sizes make it difficult to study every 

intersection, or to include the number of intersectional positions that would be of interest. 

For example, to use regression methods to study a larger number of intersectional groups 

necessitates the inclusion of multiple higher-order interaction terms, which require large 

sample sizes for sufficient statistical power. [4] Therefore, often only certain 

intersections, usually the most marginalized groups, are prioritized for study. [11] 

However, positions with a mix of both privilege and marginalization should also be 

considered in research, given that unknown intersectional effects could exist in these 

groups. Especially with the availability of larger datasets, “intersectional mapping” or 

“socio-demographic mapping” can be a way to describe outcomes across a large number 

of intersectional groups and identify intersections for further study. [11]  
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1.4  Review of quantitative intersectionality methods 
 

A recent unpublished systematic review [19] assessed the state of the published 

quantitative intersectionality research through mid-2017, identifying quantitative 

intersectionality papers across multiple disciplines including epidemiology, psychology, 

political sciences, social sciences, and education. The result was a total of 319 studies 

published between 1989, when the term was first coined by Kimberlé Crenshaw, to May 

2017. Of the 303 applied intersectionality studies identified by this review, 34.3% had a 

health-related outcome. The review found that the most applied methods were regression 

models, including Ordinary Least Squares (OLS), logistic, Poisson, and negative 

binomial. This includes regression models with main effects and either cross-

classification or stratification (27.4%), or interaction terms (24.8%). Additionally, 6.6% 

of papers used main effects regression models as the only form of “intersectional” 

analysis. 18.5% of studies only used univariate or bivariate measures. Other applied 

methods included: multilevel modelling, MANOVA, structural equation modelling/path 

analysis, growth curve analysis, cluster analysis, multi-group segregation indices, latent 

class analysis, meta-regression, classification and regression trees (CART), intersectional 

decomposition, canonical correspondence analysis, Chi-square Automatic Interaction 

Detector (CHAID), and factor analysis. An example of the typical application of an 

intersectional regression model is a study by Cummings et. al. [20] looking at self-rated 

health along the intersection of gender, race, and SES. The regression included cross-

classified variables by having separate dummy variables for white women, Black women 

and Black males. Interaction terms were also included to represent the intersection of all 

three positions, by including a separate interaction term between each of the three cross-

classified variables and family income. Applications of regression may also be stratified 

by having separate regression analyses for each category of a social position (e.g. 

stratifying by gender by having separate regression models for male and female). [21] An 

example application of purely descriptive analysis is also found in the study by 

Cummings et. al. [20] where average self-rated health was tabulated by twelve categories 

created by the combination of gender (male and female), race (white and Black) and SES 

(low, middle, and high income). This simple descriptive method is described as cross-

classification for the duration of this thesis. 
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According to the systematic review, [19] the social positions or identities most commonly 

included in intersectional research were sex/gender and race/ethnicity, in 76% and 73% 

of studies respectively. Other common intersectional positions were: SES (22%), sexual 

orientation (18%), immigration/nativity (13%), education (13%), age (10%), income 

(8%), and geography (6%). Figure 2.1 presents the number of intersectional positions and 

identities included in each study. Most studies included only 2 to 3 intersectional 

variables, reflective of the limitations of the most commonly used methods, regression 

and uni-/bi-variate analysis.  

 

 

 
 

Figure 1.1: Number of intersectional variables included in analyses of 

intersectional studies. Data used with permission from Churchill SM.  

 

Overall, the methods identified by the systematic review were applied to only a small 

number of intersections. The study did identify a few novel methods of interest, 

especially for the purposes of intersectional mapping: CART, CHAID, and the multi-

level method MAIHDA (Multilevel analysis of individual heterogeneity and 

discriminatory accuracy). 
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1.5  Thesis objectives 
 

It is currently unclear how to best incorporate the intercategorical intersectional 

perspective into descriptive health research, specifically for the purposes of intersectional 

mapping. This thesis will address gaps in the literature regarding which methodologies 

researchers may use, primarily when studying a larger number of intersecting positions. 

We compared the conventional intersectionality methods of regression and univariate 

cross-classification, the novel methods CART, CHAID, and MAIHDA, identified by the 

literature review detailed in section 1.4, as well as two additional methods identified by 

further review of the current literature (see Chapter 2), random forest and conditional 

inference trees (CTree).  

 

The primary objective was to formally evaluate the predictive performance of eight 

methods, via a simulation study. This was achieved by answering: 

 

1) Which methods have the lowest predictive error, when predicting outcomes for 

intersectionally-defined population-level subgroups?  

 

The secondary objectives were to evaluate performance measures specific to the different 

methodologies. These were achieved by answering:  

 

1) Regression:  

a. How well do regression methods identify significant main effects and 

interactions?  

b. What is the validity of the estimates for main effects and interaction 

terms?  

 

2) MAIHDA: 

a. How well does MAIHDA identify which variables are significant to the 

outcome? 

b. What is the validity of the main effect estimates? 
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3) Decision Trees: The decision tree methods included in this study were CHAID, 

CART, random forest, and CTree. 

a. How well does each decision tree method identify variables relevant to the 

outcome? 

b. How many unique subgroups does each method identify? 

 

Differences in each method’s performance was assessed across a number of dataset 

parameters: sample size, variable input types, and outcome type. These parameters were 

selected with particular focus on dataset qualities and outcomes typical of and relevant 

for intersectional research and the social determinants of health, and were informed by 

the systematic review referenced in section 1.4 and the literature review detailed in 

Chapter 2.  
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Chapter 2 

2  Literature Review 
 

Based on the existing intersectionality literature, it is fairly well understood how 

regression with interaction terms and cross-classification are applied to intersectionality 

research and correspond to intersectionality theory. Simple descriptive studies use cross-

classification by summarizing outcomes averages or prevalences across intersections, 

without any further statistical adjustment. Studies using regression most often include 

main effects and interaction terms, and interaction terms are interpreted as intersectional 

effects. However, it is unclear how novel methods for quantitative intersectionality 

research are being applied and interpreted. Therefore, a literature search was conducted 

of intersectionality studies using decision tree methods and intersectionality studies using 

MAIHDA. The following chapter explores what kinds of data scenarios are used with 

these methods, how the analyses are conducted, and how the results from these analyses 

are interpreted in relation to intersectionality theory. Given the limited variety of decision 

trees used in intersectionality research, further applications and discussions of decision 

trees in epidemiology were also explored. For both MAIHDA and decision trees, the 

current state of the literature regarding quantitative assessment of these methods was 

considered.  

 

2.1  Decision Trees 
  

2.1.1  What are decision trees  
 

Decision trees fall under the category of supervised machine learning techniques, where 

an algorithm is given a set of potential input variables and a defined outcome variable. 

[22] In decision trees, data is partitioned according to a set of decision rules, resulting in 

groups defined based on a set of predictors or input variables. [23] The final end nodes 

are called “leaves”, or “terminal nodes” and are the final subgroupings identified by the 

tree. Decision trees can perform either classification analyses (for categorical outcomes) 

or regression analyses (for continuous outcomes). The terminal nodes or “leaves” of a 

classification tree depict what percentage of respondents from each node report the 
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outcome. The leaves of regression trees report the mean of the outcome. Often decision 

trees can be visualized as a tree diagram or flowchart, where the path from the initial 

“root” to final “leaf” is the set of decision rules. The general algorithm of a decision tree 

begins with the initial parent node, a group containing all data points, which is 

subsequently split into child nodes (or subgroups), using one of the given input variables 

(e.g. gender, or age). The criteria to identify a splitting variable can vary but the overall 

goal is to create groups based on covariates, that are similar to one another in regard to 

the outcome. Child nodes are then split repeatedly until a stopping criterion is reached. 

This is thus called recursive partitioning. Decision trees have been generally cited as 

beneficial for their ability to create accurate prediction models, consider a large number 

of variables, and as a non-parametric method can easily incorporate interactions and 

effects that are linear and non-linear. [24] Some of the negatives are that it can be prone 

to over-fitting the data [23], continuous variables with a true linear effect on the outcome 

require a great deal of splits to create predictions, and methods such as CART have been 

found to be biased to split on continuous variables over categorical [25].  

 

Figure 2.1 is a figure published in a study looking at self-reported past year pap-tests 

among sexual minority women, and shows a visual example of a CART decision tree.  

[26] While 25 potential covariates were used as input variables, only 6 were actually 

identified as relevant and used in the tree building process. The final tree had 7 terminal 

nodes (those presented in colour for Figure 2.1), which are described by their decision 

rules in Table 2.1. Here we can see for example that certain variables like health 

insurance only have an effect on the outcome after a certain cut-off for age. Because 

decision trees are non-parametric, they are not required to consider effects as linear, and 

therefore are inherently able to account for effects such as this without further 

specification by the user.  
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Figure 2.1: CART model from Greene et al. [26] © 

(https://doi.org/10.1016/j.pmedr.2018.11.007). Figure re-used under the Creative 

Commons Noncommercial-No Derivatives license 

(https://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

 

Table 2.1: Subgroups characteristics from Greene et. al. [26] decision tree, predicting past 

year pap-tests 

Leaves Past 

year 

pap-test 

Characteristics 

1 25% Age ≥ 62 

2 30% Age < 62, Drinking age < 14, Has health insurance, Internalized 

Homonegativity scale < 1.4, No childhood physical abuse, 

Lifetime sex partners < 28 

3 33% Age < 62, Drinking age < 14, No health insurance 

4 62% Age < 62, Drinking age ≥ 14 

5 68% Age < 62, Drinking age < 14, Has health insurance, Internalized 

Homonegativity scale < 1.4, Childhood physical abuse 

https://doi.org/10.1016/j.pmedr.2018.11.007
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6 70% Age < 62, Drinking age < 14, Has health insurance, Internalized 

Homonegativity scale < 1.4, No childhood physical abuse, 

Lifetime sex partners ≥ 28 

7 73% Age < 62, Drinking age < 14, Has health insurance, Internalized 

Homonegativity scale ≥ 1.4 

 

 

 

2.1.2  Literature search - use of decision trees in intersectionality 
 

The application of decision trees has expanded into intersectionality research, where the 

resulting “leaves” represent intersectional groupings. Notably, a decision tree may not 

identify all intersectional groups possible from a theoretical perspective, but rather from a 

data-driven perspective will use given input variables to create enough intersectional 

groups to predict the outcome. A literature search was conducted of intersectionality 

studies using decision tree methods, and studies which reference intersectionality are 

presented in Table 2.2. The search yielded seven studies using two decision tree methods, 

CART and CHAID. Both these methods function by building single decision trees, and 

they are distinguished by their splitting criteria used to build the trees. CART is able to 

incorporate both continuous and categorical data as potential splitting variables and 

outcomes, whereas CHAID can only use categorical variables. Another distinction 

between the two is that CHAID allows for multiway splits (a parent node can split into 

more than two child nodes), while CART only performs binary splits.  

 

Table 2.2: Intersectionality studies using decision trees 

Study Year 

published 

Outcome type 

(prevalence for binary 

outcomes) 

Decision 

tree 

method 

Sample 

size 

Shaw et. al. [27] 2012 Binary (common: 12%) CHAID 211,736 

Cairney et. al. [28]  2014 Binary (common: 24%) CART 1,213 

Zufferey [29] 2016 Binary (rare: 0.25%) CART 775,000 

Dey et. al. [30] 2018 Binary (common: 

86%, 45%, 69%) 

CART 5,565 

Sridharan et. al. [31] 2018 Binary (common: 51%)  CART 5,666 

Villanti et. al. [32] 2018 Binary (common: 27%) CART 9,110 

6,338 

Greene et. al. [26] 2019 Binary (common: 57%) CART 691 
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The earliest work used exhaustive CHAID analysis to identify combinations at the 

intersection of gender, race, age, and disability type, that best predict reporting 

harassment as a form of discrimination. [27] The authors describe this as a data mining 

approach, that can account for interactions between variables and create the best 

predictions. The sample size was 211,736, and 34 subgroups were identified, varying in 

sample size from 285 to 26,840. The authors display the risk of the outcome as a 

percentage, for groups 1 to 34. They describe in detail what characteristics make up the 5 

highest and lowest risk groups, described by CHAID as “end groups”. They describe 

these end groups as potential targets for further qualitative work, to identify further 

details on experiences and processes. To assess the model created, the authors state the 

percent risk of false classification (12%) and risk for cross-classification (12%), and they 

use this to suggest that results may be replicable in other samples.  

 

Another study used CART analysis to assess the social determinants of accessing mental 

health service among those with mood or anxiety disorders, using linked Canadian 

Community Health Survey data. [28] This study used eight input variables, and with a 

sample size of 1213 participants, 6 terminal nodes were identified. The authors 

interpreted the model by walking through the splitting criteria. They report overall fit of 

the model by its sensitivity and specificity. The authors pair their CART analysis with a 

main effects logistic regression, including non-linear variables for age. The CART 

analysis identified complex interactions that were not visible from their regression 

analysis. The authors state their perceived benefits for using CART specifically for 

intersectionality research include that it doesn’t make any assumptions about the 

distributions of variables or their relationships (e.g., not all interactions are linear), and 

can identify “complex or unsuspected interactions”. They describe CART as a tool of 

interest for policy and care providers, to identify groups that are most at risk or under-

served. They also acknowledge that there are some limitations, primarily the selection of 

cut points for continuous variables, which may or may not be relevant to actual policy or 

practice. Additionally, they state that it is more of an exploratory technique, because it is 

not capable of hypothesis testing.  
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Another study used Swiss National Cohort data, with approximately 775,000 lines of 

data, to assess mortality among migrant populations. [29] They conducted an analysis 

with CART, and then a “confirmatory analysis” using regression models with some 

interaction terms. They describe this as an inductive method and found that the 

confirmatory analysis supported the results found by CART. Fifteen categorical variables 

were inputted into the model, and the resulting tree presented 47 terminal nodes. They 

highlight intersectional effects, where splits create unique groupings. Similar to other 

studies, they state that the advantage of CART is the detection of interactions specific to 

particular groups. Furthermore, they clarify that this method is an exploratory analysis 

that requires further statistical analysis, such as regression modelling, to confirm the 

identified patterns.   

 

A recent study used CART to understand the interaction of social determinants for 

maternal healthcare utilization, within a rural area of India. [30] With a sample size of 

5,565, they created 3 different CART models using different binary outcomes (pregnancy 

registration, antenatal care in third trimester, and institutional delivery), and six different 

input variables. The three models produced four to six terminal nodes. For interpretation, 

the authors walked through the tree structure, and identified interactions visually. They 

identify the strength of CART as the ability to identify at-risk subgroups in the 

population, and the identification of specific interactions that can be used to guide policy 

and address inequities. As well, CART will consider multiple memberships or 

“inequities” at the same time. Their stated limitation is that there aren’t estimates of the 

strength of the determinants or interactions. As well, a large enough sample size is 

needed to identify sub-groups. They warn that if no stopping criterion is used, CART 

may continue splitting groups until they are too small and not relevant. They also identify 

that because they predetermined the categories for certain variables (e.g. creating a binary 

variable from a continuous measure), this adds an “analytic bias”, and if categories had 

been created differently, this may have affected splitting. A similar study using the same 

data set was conducted for solely the binary outcome for if the women had received any 

antenatal care. [31] A key difference in this article was that the CART regression was 

then paired with a multilevel model, of individual and district-level effects. Based on the 
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results of the CART model, cross-level interaction terms were included in a second set of 

models. The authors once again state that the tree method is exploratory, and not for 

causal inference.  

 

Similar to the stratified regression analyses that have been used in other intersectional 

works (for example separate regression analyses for male and female), a study looking at 

cigarette and menthol cigarette smoking in American young adults conducted separate 

CART analyses for two different age groups (18 to 24 years and 25 to 34 years). [32] The 

authors viewed this as incorporating intersectionality by allowing potential predictors to 

differ between the age groups. This was paired with stratified main effects logistic 

regression analyses including the same predictors. When comparing results between the 

logistic regression models and corresponding decision trees, the CART models would 

create splits only on variables that were identified as significant by the regression, but did 

not always use all the significant variables. For example, for menthol cigarette smoking 

in the younger age group, all variables identified as significant from the regression (sex, 

race, education, and region) were used in the tree, while for the older age group only two 

variables (race and education) were used to build the tree, but sex and region were still 

significant in the adjusted logistic regression model. While the effect of sex was smaller 

in the older age group than the younger age group (OR of 1.56 versus OR of 1.69), the 

effect of region was actually greater (OR’s of 0.69, 0.73, and 0.44 versus OR’s of 0.81, 

0.91, and 0.60), therefore splitting variables that were significant in the main effects 

logistic regression but not included the CART models weren’t necessarily excluded 

simply because of a required main effect size threshold. The authors made no comment 

on the difference in results between the two types of methods, but stated that the CART 

analysis is a good way to identify “risk profiles” that can be used to guide policy. 

 

Finally, the previously mentioned study from Figure 2.1 looking at the probability of 

cervical cancer screening among sexual minority women used CART analysis. [26] The 

authors used intersectionality theory to select the variables to be inputted into the model, 

including race/ethnicity, income, employment status, and experiences of discrimination. 

The authors interpreted the fit of the model by reporting accuracy of the model and 
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comparing it to the root node error. They found that the accuracy was 64.8%, which was 

an improvement over the root node accuracy of 56.7%. They interpreted this as a 

moderate accuracy and concluded that their included variables do not completely account 

for differences in cervical cancer screening between groups. The sensitivity, specificity, 

positive predictive value, and negative predictive value were also reported. They state 

that CART can be applied to see how multiple factors intersect to affect risk, but that 

once again the method does not admit causal interpretation, and can rather be used for 

hypothesis generation. 

 

2.1.3  Use of decision trees in epidemiology  
 

Because other works may have similar goals to intersectionality within health research, it 

is also important to look at the use of decision trees in works surrounding health and 

interacting social determinants of health. Firstly identified was Conditional inference 

trees (CTree) as a method of interest that has not yet been explicitly applied to an 

intersectionality study, but could be a potential methodological option. Conditional 

inference trees are similar to CART in that they can handle both continuous and 

categorical variables, however are distinguished by incorporating statistical hypothesis 

testing into building decision trees, and splits are given p-values. [33] Wolfson and 

Venkatasubramaniam [24] suggest that “the simplicity and inferential focus of 

conditional inference tress make them an appealing option for epidemiologists”. 

Compared to other decision tree methods, the inclusion of statistical inference has been 

suggested as a way to possibly minimize the issue of over-fitting. As well, the selection 

bias of CART to split on continuous variables is potentially minimized for CTree by a 

two-stage splitting process, which separates the identification of variables significant to 

the outcome from identification of the splitting point for each variable. This minimizes 

the bias created when continuous variables have more opportunities to provide splits than 

categorical variables. [33] One example study looked at the risk of intimate partner 

violence amongst 268 men and 299 women, by constructing two separate conditional 

inference trees. [34] The authors’ stated advantages over regression models included no 

assumption of linearity of effects, and less potential overfitting. The authors used only 



 

   

18 

one predictor variable, baseline physical aggression, to predict physical aggression at 

follow up. This allowed for the establishment of cut-points in the baseline measure to 

define risk groups. They found that among women, three terminal nodes were identified 

using the predictor, which they labelled as low, moderate, and high risk. Among men, 

two terminal nodes were identified (low and high risk). The decision tree was assessed 

using sensitivity, specificity, negative predictive value and positive predictive value. This 

was explained as a way to assess the relevance of cut-offs identified from a data-driven 

approach, to clinical practice. The authors found that their results could suggest 

clinically-significant cut-offs to use in clinical practice. 

 

A second popular decision tree method in epidemiology that has yet to be applied to 

intersectionality research is random forests. Random forest models are created by fitting 

multiple decision trees from bootstrapped subsamples of the data and combining results 

from multiple trees together. [35] This method aims to address issues of over- or under-

fitting in other decision tree methods. Because multiple trees are combined together to 

create a random forest model, unlike CART, CHAID or CTree, there is no single tree that 

can be observed and used to identify splitting variables or final subgroups. Instead, to 

identify if a variable is relevant to the outcome, the “variable importance measure” 

assesses the average performance of a variable across the multiple trees. There is more 

than one way to calculate variable importance, but the basic construct is that variables 

with high variable importance improve the fit of the decision tree, for example by 

contributing to the accuracy of the model. This measure is interpreted usually without 

statistical testing and compared as a relative measure between variables. One example 

study used this method to assess biological, behavioral, and social determinants 

associated with self-related health, citing decision tree analysis as an opportunity to use 

the social-ecological model of health, because these different determinants are 

acknowledged as possibly interacting with one another. [36] The random forest results 

were described by the variable importance measure for each variable. For example, they 

found that physical activity, income and education were the most important variables for 

predicting the outcome. One of the drawbacks of the random forest method is that 

because it is created by multiple trees, there is no one tree that can be visualized. Because 
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subgroup identification can be an important goal of using decision trees, the authors 

paired the analysis with a single classification tree. The single tree analysis resulted in 15 

terminal nodes. The characteristics that made up these resulting subgroups, such as 

family income, physical activity, and education, were described. The authors’ comparison 

between their single classification tree and random forest analysis was that the resulting 

cross-validated error from the single classification tree  was 31% versus an out-of-bag 

error from the random forest model (average error when assessing model prediction 

against data not included in each bootstrapped sample) of 26%, giving random forest a 

slight advantage in terms of prediction accuracy.  

 

2.1.4  Current literature assessing decision tree methods in 
epidemiological contexts 
 

The benefit of using decision tree methods in intersectionality is that they can 

concurrently explore many positions or identities. This methodology can identify 

complex interactions and does not require assumptions about the variable distributions or 

relationships. From a health equity standpoint, it has been suggested as relevant to policy 

to identify groups that are most disadvantaged. Limitations of these methods include that 

there is no estimate of relative strength of variables or interaction effects, sufficiently 

large sample sizes are required for subgroup identification, trees may over-split and lose 

their relevance to policy, trees must choose cut offs for continuous variables even if the 

true effect is linear, and there is limited hypothesis testing. There are concerns around 

single decision tree methods being unstable in comparison to ensemble methods such as 

random forest, due to single decision tree models being more prone to drastically change 

with small changes in the sample data. [37, 38] Because of these limitations, decision tree 

methods for intersectionality research have been framed by some as a more “exploratory 

approach”, and some studies have supplemented the inclusion of decision trees with 

traditional regression with interaction terms. Given these strengths and limitations, the 

next section reviews the current literature assessing the quantitative performance of 

decision tree methods, compared to traditional epidemiological regression.  

 

To assess how well random forests may work for epidemiology compared to traditional 
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regression methods, random forest analysis has been compared against logistic regression 

using study data with a binary outcome. [39] The outcome was being overweight, defined 

by body mass index (BMI), and 14 sociodemographic and behavioral factors were 

included as input variables. No interaction terms were included, but separate analyses 

were conducted for men and women, for both the logistic regression and random forest 

analyses. Random forest was similar to logistic regression in terms of ability to classify 

members in the study sample as overweight or not overweight, when comparing true- and 

false- negatives and positives, and sensitivity and specificity. The two methods identified 

similar variables as important or significant. The authors stated that these results may be 

because the variables they chose have a more linear relationship to the outcome, or don’t 

involve interactions. They state the benefit of random forest being that highly correlated 

variables (such as multiple nutrition factors) can be included in a random forest, but not 

in a logistic regression. As well, there is no need to pre-specify interaction terms, and 

creating a single decision tree can be useful for identifying subgroups that can be 

targetable from a public health perspective. They suggest that the use of random forest 

may be more beneficial than logistic regression for situations with a greater number of 

input variables.  

 

Another study compared OLS regression with four machine learning algorithms: repeated 

linear regression, penalized linear regression, random forest, and neural networks. [40] 

Random forest was the decision tree method that they chose to incorporate, based on the 

fact that it has been widely used in the medical literature. They used each method to 

create predictive models for four continuous variables: systolic blood pressure, BMI, 

waist circumference and telomere length. Methods were compared via root-mean-square 

error and R-squared values. They created two regression models, one that was minimal 

and one that was theory based. Random forest did perform better for prediction than both 

regression models. Notably, a separate article had commented that the use of R-squared 

values to compare regression against machine learning methods has limitations. [41] 

 

Finally, CTree, CART, and partially mis-specified regression have been evaluated for 

prediction of a continuous outcome, using a simulation study. [42] Data were generated 
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using three different scenarios: a linear regression with no interaction terms, a decision-

tree-based outcome (where the outcome is created based off of decision rules), and a 

hybrid model, which included interactions for specific subgroups of the data. Both 

decision tree methods were compared to linear regression with no interaction terms, for 

these three data generation scenarios. Methods were assessed using mean squared error 

(MSE), calculated from independent test data sets. Using MSE to report prediction 

accuracy, they found that the decision tree methods performed better than the regression 

methods, under the decision-tree-based data generation scenario. For the regression-based 

data generation, the regression method was a better predictor. For the hybrid data 

generation, the three methods were found to have similar MSE’s. Additionally, between 

CART and CTree, they found that the predictive accuracy of CTree improved with 

increasing sample sizes from n=30 to n=5000, compared to CART, where improvements 

plateaued by n=3000. The number of terminal nodes created by CTree increased over 

increasing sample sizes, to over 200 terminal nodes by n=5000, while the number of 

terminal nodes resulting from the CART models remained as less than 25 at n=5000. 

Results from this simulation study demonstrate that there are definite differences in 

prediction between decision tree methods, and that when compared to regression 

methods, decision trees were better predictors under circumstances with non-linear 

interactions.  

 

2.1.5 Summary of decision trees and intersectionality, application to 
current study 
 

Specifically reviewing the utility of decision trees in epidemiology, Wolfson and 

Venkatasubramaniam [24] outline three uses for decision trees in epidemiology. The first 

is for “explanatory modelling”, where decision trees can be used as a “variable selector”. 

Here, variables used in the splitting process are acknowledged as those important to the 

outcome. Decision trees can also be read to understand how a variable may affect the 

outcome (although this would not be true for random forest, which does not produce a 

visual tree diagram), especially in the presence of non-linear effects. The second use is 

for outcome prediction. They note that the limitation here is that sometimes predictions 

for decision trees can be subject to change with small changes in the data. Methods like 
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random forest can counteract this by creating multiple trees to prevent overfitting, but 

lose the interpretability of single decision tree methods. Another limitation is that if the 

relationship between the explanatory variable and outcome is truly linear, then a 

regression model will perform better for predictions, because for a tree to make an 

equivalent prediction, it would have to split many times. The third use is for subgroup 

identification, which in the context of public health or health equity, can help identify 

subgroups to be targeted for prevention efforts or treatment.  

 

Resultantly, the evaluation of the decision tree methods in the current thesis addresses the 

three potential uses for decision trees outlined by Wolfson and Venkatasubramaniam: 

prediction, explanatory modelling, and subgroup identification. The main outcome, 

prediction accuracy, addresses how well the decision tree methods perform prediction. 

For “explanatory modelling”, the percent of iterations that variables are correctly 

identified as important to the outcome is assessed. Finally, to understand subgroup 

identification, the number of terminal nodes or “leaves” is recorded.  

 

2.2  MAIHDA 
 

2.2.1  What is MAIHDA 

MAIHDA (Multilevel analysis of individual heterogeneity and discriminatory accuracy) 

has recently been proposed as an alternative to traditional regression, to describe 

outcomes for many intersectional groupings. Specifically, it aims to address the following 

issues with traditional regression approaches: “scalability, model parsimony, reduced 

sample size in some intersectional strata, and occasionally, issues of interpretability.” 

[43] The original approach by Evans et. al. [43] uses multilevel models with random 

intercepts, with individual-level characteristics as fixed effects, no fixed-effect interaction 

terms, and strata or clusters defined as each intersection. Combinations of the fixed 

effects form the intersections, therefore membership in the fixed effects fully determines 

which stratum or intersection an individual belongs to. The fixed effects are interpreted as 

the main “additive” effects, and the intersection residuals represent intersectional effects, 

or departures from additivity, and significant residuals can be easily identified as 
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significant intersectional effects. The variables inputted to create intersections must be 

categorical or binary, to allow for creation of distinct intersectional groups for the 

clusters. Models are fitted using Bayesian estimation techniques, with null priors.  

Compared to traditional regression models, MAIHDA is suggested as a more 

parsimonious way to include many intersections, because rather than the number of 

interaction terms required increasing geometrically with every added social position, for 

MAIHDA the number of fixed effects increases linearly, with only one extra fixed-effect 

term required for each additional social position. [43] MAIHDA addresses issues of low 

sample size in certain intersections by adjusting residual estimates according to sample 

size of the intersection. The intersection residuals are shrunk towards the population 

mean with a weighting according to sample size, where a smaller intersection will be 

weighted more towards the mean. This is seen as preventing the residuals estimated for 

smaller intersections from being erroneously identified as larger than expected, due to 

extreme outliers. [43] 

2.2.2 Review of MAIHDA studies 
 
A review of current published studies using the MAIHDA methodology was conducted. 

Table 2.3 outlines the studies and their outcome types, sample sizes, and the number of 

intersectional positions and final groupings created. There are variable applications with 

both continuous and binary outcomes and a large range in the total number of 

intersections, but overall the number of intersectional variables included is notably 

greater than those in the typical intersectionality literature applying regression or uni- or 

bi-variate analyses.  

 

Table 2.3: Studies using MAIHDA 

Study Year 

published 

Outcome type  

(Prevalence for 

binary outcomes) 

N Number of 

intersections 

Evans et. al. [43] 2018 Continuous  32,788 2*3*4*4*4=384 

Fisk et. al. [44] 2018 Binary (rare: 0.22%) 2,445,501 2*2*3*2*2*2 = 

96 
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Hernandez-

Yumar et. al. 

[45] 

2018 Continuous 14,190 2*3*3*3*2 = 108  

Evans and 

Erickson [46] 

2019 Continuous  15,388 2*7*2 = 28 

Persmark et. al. 

[47] 

2019 Binary (prevalence 

not provided) 

6,846,106 2*3*3*2*2 = 72  

Persmark et. al. 

[48]  

2019 Binary (prevalence 

not provided) 

43,409 2*4*3*3 = 72 

Kiadaliri and 

Englund [49] 

2019 Binary (rare: 3.5%, 

0.5%, 0.2%, and 

0.2% ) 

342,542 2*2*3*3*2*2 

=144 

Wemrell et. al. 

[50] 

2019 Binary (rare: 5.6%) 4,334,030 2*5*2*3*2 = 120 

 

The primary article looked at the continuous outcome of BMI, to identify differences 

across intersectional strata, defined by five variables: gender, race/ethnicity, income, 

education, and age. [43] This resulted in 384 unique intersectional groups, for which each 

was considered a stratum for the random effects. Table 2.4 is an example table published 

in this article. Here the “Null Model” includes only the random intercepts, and no fixed 

effects, and the full “Main Effects Model” includes all fixed effects, as well as the 

random intercepts for each intersection. As can be seen from these results, the inclusion 

of the main effects explains some of the stratum-level effects, as it reduces from 1.823 to 

0.643. The remaining between-strata variation is displayed as a percentage, where 

35.27% of the between-strata variation was unexplained by main effects. Groups with 

significant residuals are interpreted as having greater or lesser outcomes than expected 

from additive effects alone, also known as interaction or intersectional effects.  
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Table 2.4: Results from Evans et. al. [43] MAIHDA analysis for BMI (kg/m2) 

 
Reprinted from Social Science & Medicine, 203, Clare R. Evans, David R. Williams, 

Jukka-Pekka Onnela, S.V. Subramanian, A multilevel approach to modeling health 

inequalities at the intersection of multiple social identities, 70, Copyright (2018), with 

permission from Elsevier. © 

The original Evans et. al. [43] paper did not explicitly report on the number of significant 

interactions, instead focusing on general patterns. But subsequent papers have used 

MAIHDA to identify which intersections have the overall best and worst outcomes, and 

which intersections report the highest and lowest intersectional effects. The authors Fisk 

et. al. [44] reported from their analysis that three strata had significant interactions 
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according to the residual estimates, which they state is what would be expected to be 

significant (out of 96 strata) due to chance. Hernandez-Yumar et. al. [45] found that 9 out 

of 108 intersections were significant, Kiadaliri and Englund [49] found 6 out of 144 were 

significant, while Evans and Erikson [46] and Persmark et. al. [48] reported that none of 

the residuals were significant (0 out of 28 and 0 out of 72).  

 

MAIHDA has been expanded for use with binary outcomes. [44, 47-50] By using a 

logistic regression, this creates issues for interpreting any interaction effects, which 

would be on the multiplicative scale for odds ratios. To use the additive scale, the authors 

Fisk et. al. [44] used the predicted log-odds to create the predicted probabilities (or 

incidence) in each stratum, and compared the expected and predicted probabilities. Figure 

2.2 presents the identification of significant interaction effects by Fisk et. al. [44], where 

the significant interactions are calculated by significant differences in the predicted 

outcome for an intersection between main effects alone, and main effects plus the 

residual estimate. Persmark et. al. [47, 48] and Kiadaliri and Englund [49] similarly used 

the logistic model to calculate absolute risk.  

 

Figure 2.2: Results from Fisk et. al. [44] © 

(https://doi.org/10.1016/j.ssmph.2018.03.005), presenting significant intersectional 

effects in bold. Figure re-used under the Creative Commons Noncommercial-No 

Derivatives license. (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

https://doi.org/10.1016/j.ssmph.2018.03.005
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Another analysis by Evans and Erickson [46] applied MAIHDA to a longitudinal study, 

by assessing changes in depression scores over two different waves of a longitudinal 

dataset. The three outcomes were wave 1 scores, wave 4 scores, and the difference 

between wave 1 and 4. The authors also incorporated a continuous variable into the 

analysis by controlling for age, centred at zero.  

2.2.3  Measures of discriminatory accuracy 

Discriminatory accuracy aims to understand how well the chosen social positions or 

identities are actually able to predict and account for variation in the outcome. [51] Evans 

et. al. in the original article [43] does not directly reference discriminatory accuracy, but 

it has become a focus of subsequent studies applying MAIHDA. Articles include 

calculations of the intra-class correlation coefficient (ICC), where the ICC is calculated 

for both the null model (random intercepts and no main effects), and the model which 

includes main effects. [44-49] The ICC of the null model is seen as representative of the 

total explanatory power of the intersections for explaining variation in the outcome, and 

this explanatory power can include additive effects and intersectional effects. The ICC of 

the model fitted with fixed effects is seen as the remaining variation explained by 

intersectional, or interaction effects. [44] To interpret the ICC values, the authors Fisk et. 

al. [44] acknowledge that there is no set scale for these values, and suggest using the 

same scale used for psychometric tests (where ICC is expressed as a percentage): “non- 

existent (0–1), poor (>1 to ≤ 5), fair (>5 to ≤ 10), good (>10 to ≤ 20), very good (> 20 to 

≤ 30), excellent (> 30)”. Accordingly, a poor ICC is seen as indicative that the chosen 

positions or identities used to form the intersectional stratum should not be acted on at a 

public health or policy level, because they contain too much individual heterogeneity to 

be effective targets. [44]  

2.2.4  MAIHDA main effects 

 
The interpretation of the main effects or “additive effects” estimated by MAIHDA is 

important, because it is based off of these effects that an intersection is evaluated as 

experiencing significant interactions. Interpretations of the meaning of MAIHDA 
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additive effects has varied. From the original article by Evans et. al. [43], these are 

simply described as “main effects” representative of the additive model. Other 

interpretations have been ambiguous on the meaning of main effects [44, 48, 49], or have 

simply made no interpretation of the main effects at all [47]. The third study to apply 

MAIHDA interpreted the coefficients from the MAIHDA model as one would for a 

traditional regression model, that assumes no missing interaction terms or model 

misspecification. [45] For example, they interpret the intercept as “The intercept, β0 

measures the predicted BMI of the stratum defined when all the dummy variables equal 

zero (i.e., the reference individuals: 18 to 35-year-old males, with high income and high 

education and who cohabit).”. [45] An example interpretation of the main effect 

coefficient for gender is, “The results show women had an average BMI 1.16 units lower 

than that of men, having controlled for the other variables.”. [45] This interpretation may 

be the typical interpretation of “additive effects” for traditional regression models and 

intersectionality research, but further publications have clarified this interpretation does 

not apply to MAIHDA. In further articles, Evans has clarified that the interpretation of 

the main effects is not as holding all other variables constant, but is rather an average 

effect of each variable. For example, they state that for MAIHDA, “the parameter for 

“black” represents the average difference between black and white respondents, inclusive 

of all genders. In a model [traditional regression model] inclusive of interaction 

parameters, as in Table 3, the parameter for “black” represents something else entirely—

the average difference between black males and white males.”. [52] Here, the effect of a 

variable according to MAIHDA is the average effect in the overall population, inclusive 

of potential interaction effects, and is distinguished from the typical interpretation of 

additive effects in regression models including interaction terms. 

In a commentary by Lizotte, Mahendran, Churchill, and Bauer [53], a short simulation 

was used to demonstrate that the provided definition of MAIHDA main effects is not a 

sufficient explanation. Our commentary demonstrated that rather than being the 

population average effects [52], MAIHDA main effects fall under a different definition; 

main effects represent the average effects created from a pseudo-population, where 

clusters or intersections are equally weighted. In this commentary, we argued that this is 
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the true definition of the MAIHDA main effects, and that this definition falls outside of 

what is typically interpreted in intersectionality research as “additive effects”, which are 

usually described as effects without the existence of interaction. An example of the 

difference between traditional additive effects, population average effects, and average 

effects across equally weighted clusters is given below.  

The following is a data generating scenario where x1, x2, and x3 are binary variables, 

resulting in 8 possible intersections: 

y = x1 + x2 + x3 + x1*x2 

where P(x1=1) is 0.7, P(x2=1) is 0.7, and P(x3=1) is 0.5. Assume that the true effect of 

each variable (x1, x2, and x3) and the interaction term (x1*x2) is 1. The working model 

that will be fitted for MAIHDA is:  

yij = β0 + β1x1j+ β2x2j + β3x3j + μj + eij 

where for each stratum j, μj represents the effect of the random intercept, and eij is the 

individual error term. As explained previously, the MAIHDA working model includes no 

interaction terms.  

 

The expected effect of x1 according to MAIHDA will be 1.5, because for half of the 

possible intersections where x1=1, the effect of x1 is 1 (when x2=0). For the other half of 

the intersections where x1=1 (when x2=1), the effect of x1 is 2 (because of the 

interaction of x1*x2). Therefore (0.5*1)+(0.5*2)=1.5. This is different from the 

population-level average effects, where the expected effect of x1 would be 1.7. This is 

because for 70% of those for who x1=1, x2=1 and the effect of x1 is 2. For 30% of those 

for who x1=1, x2=0, and the effect of x1 is just 1. Therefore (0.7*2) + (0.3*1) = 1.7. 

Finally, if MAIHDA main effects were only representative of the additive effects (an 

effect where no interaction is present), then the effect of x1 would simply be equal to 1. 

There calculations demonstrate that differences in the definition of main effects can lead 

to different interpretations of the results. Understanding the true interpretation of the 

main effects is relevant because these main effects form the baseline for determining 

which intersections experience significant interactions. 
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2.2.5  Current literature assessing MAIHDA 
 

Comparison between MAIHDA and traditional regression has been conducted using 

secondary data analysis to assess differences in how the two methods identify 

significant interactions, for both continuous and binary variables. [52] Traditional 

regression models were fitted with main effects and all possible interactions. Each of 

the outcomes had a sample size of approximately 14,000. For each outcome, a varying 

number of possible intersectional strata were considered, from 6 (created by gender and 

race) to 91 (created by gender, race, immigrant status, parental education, income, and 

sexual identity). Generally, MAIHDA identified fewer significant intersections than the 

corresponding traditional regression model would identify significant interactions. For 

example, for the binary outcome of fair/poor health, 6 interaction terms were significant 

from the fixed regression model, but 0 intersections were significant from the 

MAIHDA model. Evans provides several explanations for why MAIHDA performs 

more conservatively when identifying significant intersections when compared to 

traditional regression, including 1) differences in the estimation techniques (frequentist 

versus Bayesian), 2) MAIHDA adjusts estimates for each intersection towards the 

grand mean based on intersection sample size, resulting in more conservative 

intersection estimates for small intersections, and 3) that MAIHDA and conventional 

methods make “fundamentally different comparisons” when calculating main effects, as 

explained in the previous section, resulting in intersections requiring to be detected as 

significant interactions “particularly intense effects in the expected direction or by 

breaking with general patterns all together”.  

 

2.2.6  Summary of MAIHDA and application to current study 
 

MAIHDA has been suggested as the “gold-standard” for studying health disparities [54], 

that leads to “improved mapping of the risk heterogeneity of and socioeconomic 

inequalities” in different health outcomes [47]. With its ability to assess a large number 

of intersections and combinations of social positions with mixes of marginalization and 

privilege, it has thus been rapidly adopted as a methodology. No existing studies using 

MAIHDA have compared its predictive performance to traditional regression for the 
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accuracy of outcome predictions for each intersectional group. Given that one of the 

stated benefits of MAIHDA is the adjustment of estimates based on the sample size of 

intersections, which can supposedly lead to improved predictions, prediction accuracy 

compared to traditional regression or cross-classification should be evaluated. The 

current thesis uses simulated data to evaluate MAIHDA predictions at the intersection-

level. Given the varying interpretations of the meaning of the main effect estimates 

created by MAIHDA, and their potential impact on the identification of significant 

intersectional effects [52], secondary outcomes of this thesis include assessing if effect 

estimates reflect the traditional definition of additive effects (the lower order effects in an 

interaction model), or if they fall under the definition proposed by Lizotte et. al. [53]. As 

well, this is an opportunity to further test the calculations suggested in the commentary, 

as these calculations were performed for only three simulated examples, and only on a 

continuous outcome.  

2.3  Review of the literature and limitations 
 

Applications beyond traditional regression and uni- or bi-variate approaches have been 

touted to have many benefits for studying interaction and accommodating a larger 

number of intersections, which is of interest given the wider availability of population-

level datasets for intersectional research. CART, CTree, random forest and MAIHDA 

have been separately studied in comparison to traditional regression. However, it is not 

clear which methods perform best for intersection-level predictions, or for variable 

identification. Most studies assessing prediction, with the exception of 

Venkatasubramaniam et. al. [42], compare methods using secondary data analysis, 

where the true underlying answer is not always known, unlike in simulations. Without 

known simulated variable effect sizes and outcomes, the validity of different methods 

cannot be established, as it is unclear which method approaches the actual “truth”. 

Methods that perform similarly in secondary data analysis may just be similarly over- 

or under-fitting to the sample data. The current thesis will improve upon the existing 

literature by using simulated data with known true outcome estimates and known true 

variable effects, to assess how well the conventional methods (regression and cross-



 

   

32 

classification) and novel methods (decision trees and MAIHDA) perform for 

intersection-level prediction, as well as variable identification.  

 

The authors Kreatsoulas and Subramanian [41] in their review of how social 

epidemiology stands to benefit from the incorporation of machine learning, reference the 

concept of “no free lunch” [55], which in this context refers to there not being any one 

methodology or algorithm that is best suited for prediction in every data scenario. This is 

why this simulation study explored a multitude of scenarios, varying by sample size, 

input types, and outcome types, with parameters selected based on the dataset qualities 

and outcomes relevant to intersectional research. The existing literature has not yet 

addressed this wider range of data analysis scenarios, which is necessary to understand 

which quantitative intersectionality methods may work best for different data scenarios.  
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Chapter 3 

3  Methods  
 

This chapter presents the methodology behind this simulation study. Firstly, the primary 

and secondary study objectives and outcomes are presented in Section 3.1. Section 3.2 

outlines the eight quantitative intersectionality methods that were evaluated in this study. 

The combinations of parameters used to create the simulated data are described in 

Section 3.3, and procedures to create the simulated data are explained in Section 3.4. All 

analyses were run on R version 3.6.1. [56] 

3.1  Study Objectives 

 
The primary objective of this study was to evaluate the accuracy of population-level 

predictions created by descriptive quantitative intersectionality methods. Ten data 

generation models, varying by outcome and input type, were used to evaluate eight 

methods. The five outcome types were continuous, binary with a rare prevalence, binary 

with a common prevalence, negative binomial, and multinomial. The two types of inputs 

were either all categorical, or a mix of categorical and continuous. The ten data 

generation models were simulated for 4 sample sizes (2,000, 5,000, 50,000, and 200,000), 

for 1,000 iterations each, resulting in 10*4*1,000=40,000 total simulations. Results from 

these 40,000 iterations were summarized over each sample size and data generation 

model. The secondary objectives were to estimate the confidence interval coverage of the 

single-level regression methods and MAIHDA, the power of the single-level regression 

methods and MAIHDA, the ability of the decision tree methods to correctly identify 

important splitting variables, and the ability of the decision tree methods to estimate the 

number of distinct intersections. The data generation process included five variables (X1 

to X5) with true effects on the outcome, one variable (X6) with no true effect, and 

interaction terms, resulting in 192 intersectional groups, of which 64 were truly different 

from one another in regard to the outcome Y.  
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The methods that were assessed are as follows:  

1. Regression – best fitted: only the necessary/true interaction terms are included.  

2. Regression – over-specified: all possible interaction terms are included in the 

model.  

3. Cross-classification 

4. MAIHDA (Multilevel analysis of individual heterogeneity and discriminatory 

accuracy) 

5. CART (Classification and Regression Trees) 

6. CTree (Conditional Inference Trees) 

7. CHAID (Chi-square Automatic Interaction Detector) 

• only for models with all categorical inputs and outcome 

8. Random Forest 

Further descriptions of these methods can be found in Section 3.2.  

The ten data-generation models used to assess the methods are as described in Table 3.1.  

 

Table 3.1: Description of the ten data generation processes 

 Outcome Input variables 

Model 1 Continuous Categorical only 

Model 2 Continuous Mixed (Categorical and continuous) 

Model 3 Binary – Common prevalence Categorical only 

Model 4 Binary – Common prevalence Mixed (Categorical and continuous) 

Model 5 Binary – Rare prevalence Categorical only 

Model 6 Binary – Rare prevalence Mixed (Categorical and continuous) 

Model 7 Multinomial Categorical only 

Model 8 Multinomial Mixed (Categorical and continuous) 

Model 9 Negative binomial Categorical only 

Model 10 Negative binomial  Mixed (Categorical and continuous) 

 

Further description of the creation of these models can be found in section 3.4.  

 

3.1.1 Primary outcome 

 
The primary outcome was the accuracy of each method’s intersection-level predictions, 

evaluated by mean squared error (MSE) and mean absolute percentage error (MAPE). 

Intersection-level predictions were defined as the prevalence or mean of outcomes in 

each of the 192 intersections. Note that accuracy was calculated at the intersection-level 

(for each of the 192 intersections), rather than by comparing individual-level predictions. 
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While predicting outcome prevalences or means at the intersection level may not be the 

only outcome of interest for descriptive quantitative intersectionality, it was chosen as the 

primary outcome for this study because it can be calculated across all the included 

methods. Secondary outcomes address the outcomes specific to certain methods.  

For the continuous and negative binomial outcomes, the MSE for each method was 

calculated using the difference between the true population mean for each intersection, 

and the estimated population mean. Mean squared error was calculated as follows: 

𝑴𝑺𝑬 =  
𝟏

𝒏
∑( �̂�𝒊− 𝒀𝒊)

𝟐

𝒏

𝒊=𝟏

 

 

where n is 192 (reflecting the 192 intersections), �̂�𝒊 is the estimated mean for intersection 

i, and 𝒀𝒊 is the true population mean for intersection i. The true mean for the continuous 

outcome was known by using the same outcome generating formula (see section 3.4) as 

for the model dataset, without including a random error term. The true mean for the 

negative binomial outcome was known by using the same outcome generating formula, 

and not running it through the negative binomial sampling function.  

 

For the binary and categorical outcome, accuracy was assessed using MAPE. The MAPE 

for each method was calculated using the difference between the true population 

prevalence for each intersection and the estimated population prevalence, divided by the 

true population prevalence.  

𝑴𝑨𝑷𝑬 =  
𝟏

𝒏
∑

 |�̂�𝒊− 𝑷𝒊|

|𝑷𝒊|

𝒏

𝒊=𝟏

 

For the binary outcomes (rare and common), the MAPE was calculated such that �̂�𝒊 is the 

estimated prevalence of the outcome Y=1 for intersection i, and 𝑷𝒊 is the true prevalence 

of the outcome Y=1 for intersection i. The true prevalence of the outcome was known by 

using the same outcome generating formula, but not running it through the binary 

sampling function. For the multinomial outcome, three MAPE’s were calculated for each 

method, one for each of the three possible outcomes. Therefore, MAPE was calculated 

for outcomes Y=1, Y=2, and Y=3.  
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For each of the 10 models and across the four sample sizes, the estimated MSE or MAPE 

for each iteration is presented in boxplots.  

 

3.1.2 Secondary outcomes 

 
The secondary outcomes were used to examine other outcomes of interest for quantitative 

descriptive intersectionality.  

 

The regression methods (both over-specified and best-fitted) were assessed for 

confidence interval coverage, coefficient significance, and convergence. Confidence 

interval coverage was defined by the percent of iterations for which the confidence 

interval contained the true estimate for each variable. Coefficient significance was 

defined by the percent of iterations that the coefficient estimate was significant at an 

alpha of 0.05. While this is referred to as “power” over the course of this thesis, we 

acknowledge that the regression analyses were often under-powered to detect all relevant 

variables. For the over-specified model, results were only calculated for the variables that 

appear in the best-fitted model. 

 

MAIHDA was assessed for confidence interval coverage and coefficient significance of 

the main effects. Because main effects in MAIHDA are defined as “additive effects” 

differently than in the intuitive definition in regular single-level regression, confidence 

interval coverage was calculated according to two definitions of main effects: the 

traditional definition in intersectionality, and the MAIHDA definition, as described by 

Lizotte et. al. [53]. Further description of these definitions can be found in section 3.2.3.  

 

For the decision tree methods, CART, CTree, and CHAID were assessed for the average 

number of leaves in the final tree, and the average number of splitting variables used in 

the final tree, with 2.5th and 97.5th percentiles. The percent of iterations where each 

variable was used as a splitting variable was also reported. The random forest results 

were summarized by the average number of leaves in the random forest models. Because 

there is no set splitting pattern for random forest models, the average variable importance 

measure for each variable was reported, with 2.5th and 97.5th percentiles.  
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3.2 Description of eight quantitative intersectionality 

methods 
 

3.2.1 Regression – best-fitted and over-specified 

 
Best-fitted regression was shown as an analytic method to demonstrate a best-case 

example of a regression model, where only the necessary interaction terms are included. 

In reality, this would likely not occur because one does not know all relevant interaction 

terms a priori. In this study, these models included only the interaction terms X1*X2, 

and X3*X4*X5. In contrast, the over-specified regression method was purposely over-

specified, and included all possible interaction terms. While the best-fitted regression 

represented a best-case scenario, the over-specified regression represented a more 

realistic scenario in intersectionality studies, where the underlying data structure is 

unknown, and therefore all possible interaction terms are specified.  For the mixed input 

models this results in 64 estimated coefficients, and for the categorical input models, 192 

estimated coefficients. The included interaction terms assumed linear interaction effects. 

The type of regression was as follows, depending on the outcome: 

 

A. Continuous (normal) outcome: The continuous outcome was analyzed using a linear 

regression model via the R-core function “lm” which applies ordinary least squares.  

 

B. Binary rare prevalence and binary common prevalence outcomes: The modified 

Poisson regression was used to analyze binary outcomes. [57] It is widely 

acknowledged that risk ratios have greater interpretability than odds ratios as a 

measure of association. [58] Therefore, while intersectionality studies applying 

regression to binary outcomes will often use logistic regression to produce odds 

ratios, an alternative option was chosen in this study. The modified Poisson 

regression is an application of Poisson regression that can be used for binary outcome 

data with rare or common outcomes, and produce coefficient estimates that are risk 

ratios, rather than odds ratios. Robust error variance is used to counteract the variance 

overestimation that occurs from applying a Poisson regression to binary outcome 

data. The binary outcomes were analyzed using the R-core function “glm” for 
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generalized linear models. Packages “lmtest” [59] and “sandwich” [60] were used to 

allow the sandwich estimator to correct the variances. 

 

C. Categorical outcome: Multinomial logistic regression was conducted using the R 

package “nnet” [61], which uses neural nets to fit the multinomial log-linear models. 

This package was chosen over the alternative “mlogit” [62], which estimates 

multinomial logit models using maximum likelihood, due to the mlogit package often 

failing to converge the over-specified regressions.  

 

D. Negative binomial outcome: Negative binomial regression is used for count data, 

especially when over-dispersed. The negative binomial outcome was analyzed using 

the “glm.nb” function from the R package “MASS” [61].  

 

3.2.2 Cross-classification  

 
Cross-classification was the univariate approach of taking either the prevalence or mean 

of the outcome for each of the unique intersections, with no further statistical 

adjustments. If there was a cell-size of zero for any of the intersections, this intersection 

was omitted from the MSE or MAPE calculations for cross-classification. The average 

number of omitted intersections is reported in the results section, as a reminder that not 

all intersections were included in the estimate of MSE or MAPE for cross-classification. 

 

3.2.3 MAIHDA 
 

MAIHDA (Multilevel analysis of individual heterogeneity and discriminatory accuracy) 

is a novel application of multilevel analysis for intersectionality, first introduced by 

Evans et. al. [43]. Here, intersections are defined at the group level with random 

intercepts, and for the fixed-effects (or main effects), each of the predictors used to create 

the intersections is included. No interaction terms are included amongst the fixed effects. 

The MAIHDA model can be represented as 

yij = βγj + μ0j + e0ij 
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Level 2[μ0j] ∼ N (0,σ 2strata) 

Level 1[e0ij] ∼ N (0,σ 2e0) 

where i is each individual in intersection j, γj represents a vector of the intercept and main 

effect predictors, and β is a vector of the parameter values. The random effects are 

intercepts for each intersectional group (μ0j). The additional term (e0ij) is for individual-

level error. Membership in the fixed-level effects therefore determines which 

intersectional group (level 2) a respondent belongs to. The interpretation is that the fixed 

effects represent additive effects, and the random intercepts will represent any additional 

“intersectional effects”.  

 

Similar to cross-classification, if there was a cell-size of zero for any of the intersections, 

this intersection was omitted from the MSE or MAPE calculations, and the average 

number of omitted intersections is reported with the primary outcome. 

 

The original application of MAIHDA uses Bayesian models with null priors. However, 

due to computational power and time restraints, the analysis for this simulation was 

conducted using frequentist analysis. Appendix A demonstrates results from a short 

simulation comparing the estimation of main effects between frequentist and Bayesian 

models with null priors, for a continuous outcome model with five binary predictors. 

Results from this analysis validated the choice to use the frequentist model, given that the 

main effects estimates were extremely similar between the two approaches.    

 

The types of multi-level regression were as follows, depending on the outcome: 

 

A. Linear outcome: The continuous outcome was analyzed using linear multilevel 

regression, using the function lmer from the R package “lme4” [63].  

 

B. Binary outcomes: The binary outcome was analyzed using multilevel Poisson 

regression, using the function glmer from the R package “lme4” [63]. The Poisson 

regression method was chosen instead of logistic, to be consistent with the use of the 

modified Poisson regression for the single-level regression methods (best- and over-
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specified). A limitation of this choice is that the current packages in R do not allow 

for the use of the sandwich estimator to alter variances from glmer objects. Therefore, 

while intersection-level predictions for the primary outcome should be unaffected, the 

interpretation of confidence interval coverage and coefficient significance should 

consider that the variance estimates are likely highly conservative.  

 

C. Categorical outcome: The following functions were attempted but could not run a 

multinomial multi-level regression with random intercepts only: multinom from 

package “nnet” [61], mlogit from the package “mlogit” [62], mblogit from the 

package “mclogit” [64], and clmm2 from the package “ordinal” [65]. Therefore, this 

was taken as a practical restraint and MAIHDA was not used to analyze the two 

multinomial outcome models. Alternatively, if users did want to run such an analysis 

on R, the likely solution would be to run a Bayesian multilevel model using the 

package “brms” [66].  

 

D. Negative binomial: Negative binomial multilevel regression was run using glmer.nb 

from the “lme4” [63] package.  

 

When considering confidence interval coverage of the main effects, two definitions were 

used to define the possible main effects estimands. Definition 1 is additive effects in the 

traditional intersectionality definition, which is when effects of each social position are 

not impacted by other positions (the effect of the variable in the presence of no 

interactions). Definition 2 is the average effect of the variable across equally-weighted 

clusters (or intersections). Presented in Table 3.2 is an example of the calculations for 

estimands using both definitions, according to the following formula used to generate the 

continuous outcome with categorical inputs: 

 

Y = bintercept + b1.1 (if X1=1) + b1.2 (if X1 = 2) + b1.3 (if X1 = 3) + b2X2 + b3X3 + b4X4 + b5X5 

+ b6(if X1=2 & X2=1) + b7(if X1= 3 & X2=1) + b8X3X4X5 + e . 
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Table 3.2: MAIHDA estimand definitions 

Estimand Definition 1 Definition 2 

intercept bintercept The expected intercept from MAIHDA is a result of 

the other main effects. The calculation for the 

estimand is currently unknown.  

x1.1 b1.1 b1.1 

x1.2 b1.2 (b1.2 + (b1.2 + b6))/2 

x1.3 b1.3 (b1.3 + (b1.3 + b7))/2 

x2 b2 (b2 + b2 + (b2+b6) + (b2+b7))/4 

x3 b3 ((b3 + b8) + b3 + b3 + b3)/4   

x4 b4 ((b4 + b8) + b4 + b4 + b4)/4 

x5 b5 ((b5 + b8) + b5 + b5 + b5)/4 

 

Because MAIHDA has so far only been applied when intersections are defined by 

categorical variables, definition 2 was only calculated for models with categorical inputs. 

For all other models, confidence interval coverage was only calculated using definition 1.  

 

3.2.4 Classification and Regression Trees (CART) 
 

CART analysis was conducted using the function “rpart” from the package “rpart” [67]. 

CART is a binary decision trees method that can handle both continuous and categorical 

data. [25] To build a CART model, each variable is assessed for its ability to best split the 

data into two groups based on the outcome, as defined by a pre-determined splitting 

criterion (e.g. the Gini index). The variable that performs best according to this criterion 

is then used to split the data into two groups. The same process of searching for the next 

best splitting variable is repeated, performed independently for the two groups. This 

process is continued for each resulting subgroup, until a pre-determined stopping 

criterion. Stopping criteria can be based on a minimum sample size within a leaf (e.g. a 

final leaf can have no less than five respondents), or on an improvement criterion. [68] 

To avoid over-fitting the CART model to the data, cross-validation can then be used to 

trim the tree.  
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In this study, the CART splitting criterion for classification trees is based on the Gini 

rule. The node impurity (or heterogeneity of the outcome within the node) for node A is 

calculated as,  

𝐼(𝐴) =  ∑ 𝑓(𝑝𝑖𝐴)

𝐶

𝑖=1

 

where piA is the proportion respondents in node A whose outcome is “i”. [68] The Gini 

index is the function “f” to measure of node impurity, calculated by f(p)=p(1-p). This is 

then used to determine the best splitting variable for a node, by calculating the splitting 

variable that results in the “maximal impurity reduction”:  

∆I = p(A)I(A) − p(AL)I(AL) − p(AR)I(AR) 

where AL is the resulting left node, and AR is the resulting right node. The stopping 

criterion is based on when no further improvements in impurity reduction can be made.  

The splitting criterion for regression trees by CART is defined using sum of squares (SS), 

where 𝑆𝑆𝑇 = ∑(𝑦𝑖 − �̅�)2  is the sum of squares for the parent node. The splitting 

criterion is SST − (SSL + SSR), where SSR and SSL are for the left and right resulting child 

node. A better split will have a larger difference between the sum of squares of the parent 

node and the child nodes. 

 

10-fold cross-validation was performed (k=10 is the default for rpart). Pruning was used 

to select the complexity parameter with minimal cross-validation error. The complexity 

parameter is the improvement required by a split to be continued. The default value is 

0.01. The minimum size of a node for it to be considered for splitting was 20, which is 

the default for rpart. Because the simulated datasets are assumed to be representative of 

the population probability of the outcome, no prior probabilities were specified.  

 

3.2.5 Conditional Inference Trees (CTree)  

 

Conditional inference trees were created using the ctree function from the R-package 

“partykit” [33]. Like CART, CTree is a binary recursive partitioning method. Unlike 

CART, CTree works in two stages, first to identify if variables are significant to the 

outcome, and then secondly, to find a splitting point for the selected splitting variable. 
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Whether or not variables are significant to the outcome is assessed using univariate 

regression models. If the global null hypothesis (that none of the available variables are 

significantly related to the outcome) is rejected, the variable with the greatest association 

to the outcome is selected as the splitting variable. [33] The global null hypothesis is 

assessed using p-values with Bonferroni correction for multiple testing, and the p-value is 

a parameter which can be altered. This study used an alpha of 0.05. The process is then 

repeated for the subsequent child nodes, until no further splits can be made. Other 

stopping criteria, like minimum node size, can also be implemented. Minimum node size 

was kept at the default value of 20.  

 

3.2.6 Chi-square Automatic Interaction Detector (CHAID) 

 

CHAID trees were created using the chaid function from the R-package “CHAID” [69]. 

CHAID is a non-parametric method that utilizes the significance values from chi-squared 

analysis as splitting criteria. [70] The best way to partition for each variable is selected, 

and then each of the best partitions for each variable is compared against one another, and 

the best of these partitions is used to divide the data into groups. Each of the resulting 

groups is then separately partitioned again. This method can only be applied for models 

with all categorical inputs and a categorical outcome (three out of the ten models assessed 

in this study).  

 

3.2.7 Random Forest 

 
Random forest trees were created using the tuneMtryFast function from the R-package 

“tuneRanger” [71], which calls from the package “Ranger” [72]. The random forest 

method for constructing decision trees combines decision trees with bootstrapping 

methods, with the goal of reducing over-fitting to the data. [73] To create a random forest 

model, trees are built from bootstrapped subsamples of the data, that are the same size as 

the original dataset. The parameter “mtry” in this package determines how many 

variables of the available input variables are assessed to determine the best splitting 

variable. At each node, the number of variables as specified by “mtry” are randomly 
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selected and assessed to find the next splitting variable, until the tree is fully grown at the 

pre-determined stopping criterion. The random forest model is therefore a collection of 

multiple trees. To combine this collection of trees to predict outcomes for a new dataset, 

each response is applied to each of the trees. For classification problems, the outcome 

predicted by the random forest is whichever outcome occurred most of the time (the 

mode) from the total trees. For example, if out of 500 trees, Respondent 1 is classified in 

a binary classification problem as A in 150 trees and B in 350 trees, the predicted 

outcome for Respondent 1 will be B. Regression problems utilize the mean value.  

 

The random forest models were tuned using the tuning parameter mtry. Tuning allows for 

optimization of the model by adjusting parameters to improve model fit. The standard 

default for mtry is the square root of the number of input variables. For example if nine 

input variables are fed into the random forest model, the resulting mtry value is three. By 

tuning by a step factor of 1, the mtry is increased or decreased by this value, and then the 

out-of-bag error (average error when assessing model prediction against data not included 

in each bootstrapped sample) is assessed. If the improvement to out-of-bag error passes a 

threshold value (0.05), then the mtry value is again increased or decreased by the step 

factor. This iterative process is continued until improvement to the out-of-bag error does 

not pass the threshold value. The threshold value for improvement of 0.05 is based on the 

defaults for tuneRanger, but the step factor of 1 was selected, rather than the default of 2, 

given that there were a small number of input variables in the simulated datasets. 

Random forests were fitted with 500 trees, the default for the package, but this parameter 

could be altered or used for tuning in other applications.  

 

The splitting criterion for the ranger package is similar to CART, where splits that results 

in the greatest decrease in node impurity are selected. [72] As with CART, node impurity 

is defined by the Gini index for classification problems, and response variance for 

regression problems. Because there are multiple different trees created by the random 

forest procedure, there is no one observable splitting pattern that can be assessed to 

definitively say if a variable is important to the outcome or not. Instead, the variable 

importance measure is used to represent this concept, where higher values are considered 



 

   

45 

more important. There is no limit to the range of possible values, but typically values are 

greater than zero. Variable importance for our analysis was determine by how much a 

variable contributes to decreases in node impurity. No minimum node size was set, the 

default values from the ranger package being 1 for classification and 5 for regression.  

3.3 Description of simulation parameters and combinations 

 
Table 3.3 describes the combination of parameters used to create the simulated datasets. 

By the combination of five outcome types and two input types, a total of ten different 

data generation scenarios exist. Each of these models was repeated for four different 

sample sizes. These 40 different types of models were each created with 1000 iterations, 

and iterations varied by effect sizes of the main and interaction effects. The following 

section describes the selection of these parameters.  

 

Table 3.3: Parameter combinations for the creation of datasets 

Number of 

options  

Parameter Description  

5 Outcome 

types 

1. Continuous  

2. Binary variable:  Rare prevalence  

3. Binary variable: Common prevalence  

4. Multinomial  

5. Negative binomial  

2  Combinations 

of input 

variables  

1. Four binary and two categorical (categorical 

inputs only) 

2. Four binary and two continuous (mixed inputs) 

4  Sample sizes  1. 2,000 

2. 5,000 

3. 50,000 

4. 200,000  

1000 iterations Effect sizes 1,000 iterations vary by effect size of main and 

interaction effects 

 

3.3.1 Outcome types 

 
Selected outcomes were based on common outcomes of interest in intersectional 

research, according to consensus by the thesis committee.  
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1. Continuous outcome: The continuous outcome was simulated to have a normal 

distribution.  

 

2. Rare binary outcome:  A rare binary outcome was simulated with the aim for the 

prevalence to be less than 5%. The simulated data for this outcome had an average 

prevalence of 3%.  

 

3. Common binary outcome: A common binary outcome was simulated with the aim for 

the prevalence to be greater than 10%. The average prevalence was 15%.  

 

4. Multinomial outcome: The multinomial outcome was simulated with three categorical 

responses, which were treated as nominal data. The three groups were created to have 

unequal prevalence’s, with the average prevalence of groups Y=1, Y=2, and Y=3 

being 17%, 33%, and 50%, respectively.  

 

5. Negative binomial: The negative binomial distribution represents a count outcome, 

with a large number of zeros. This was chosen to evaluate the methods with a more 

extreme but still common form of data. The dispersion parameter of the outcome 

distribution was varied slightly using the value theta, where the outcome variance is 

defined by mu + mu2/theta, and mu is the outcome mean. Theta was sampled from 

uniform distribution between 0.8 and 1.2.  

 

3.3.2 Input types 
 

Two combinations of input variables were selected: a set of only categorical variables, 

and a mixed set of categorical and continuous variables. This was chosen to reflect the 

possibility that different methods may perform better with different sets of predictors. For 

example, the bias towards continuous variables in decision trees can be better evaluated 

by using two different types of input variable sets.  
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Based on the systematic review [19], most published papers included intersections 

defined by very few social identity/position variables (two to three), likely because of the 

lack of methods that address the large number of intersectional groupings created from 

multiple variables. The literature search into MAIHDA and intersectional applications of 

decision trees however finds that these methods push towards including more 

intersectional variables in analyses. Therefore, six input variables were selected to create 

a total number of intersections that is more than the usual, but within the existing limits 

of the applications of decision trees and MAIHDA. 

 

The mix of binary and categorical or continuous variables were selected based on the 

most common variables used in quantitative intersectionality research, according to the 

systematic review of the literature. [19] The simulated combination of input variables can 

be considered as analogous to the following variables: X1 as income, X2 as ethnicity, X3 

as sex, X4 as post-secondary education, X5 as immigrant status, and X6 as age. Table 3.4 

presents the prevalences of the simulated binary variables, compared to the Canadian 

Community Health Survey 2015/2016 [74] prevalences of their real-life counterparts in 

the Canadian national population data. X1 and X6, or income and age, were treated as 

continuous variables in the mixed input models, and as quartiles or tertiles in categorical 

input models.  

 

Table 3.4: Simulated variables drawn from Canadian Community Health Survey (CCHS) 

prevalences 

Variable CCHS 2015/16 

prevalence 

Simulated  Variable Simulated 

Prevalence 

Ethnicity (white vs. 

non-white) 

22.5% X2 20% 

Sex  (Female) 50% X3 50% 

Education (Post-

secondary) 

60%  X4 55% 

Immigrant status 25% X5 25% 

 

Tables 3.5 and 3.6 present the two combinations of input variables, categorical inputs and 

mixed inputs. Inclusion of a mediation relationship between X3 and X4 reflects the 

reality that social positions are often correlated and can affect the likelihood of belonging 

to other social positions. For example, being male and high income could each have 
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individual effects on a health outcome, and the effect of being male could be partially 

mediated by income, if being male increases the probability of earning a higher income. 

The total number of intersections was 4*2*2*2*2*3 = 192. Because variable X6 had no 

true effect on the outcome, the total number of intersections that were distinct from one 

another regarding the outcome were 4*2*2*2*2 = 64. The resulting intersection sizes are 

such that there are some missing cells at n=2,000, but all cells are filled with greater 

sample sizes. 

 

Table 3.5: Predictor combination of 

categorical inputs 

  Table 3.6: Predictor combination of mixed 

inputs 

 X1   Categorical   P(X1=0) = 0.25  

 P(X1=1) = 0.25 

 P(X1=2) = 0.25 

 P(X1=3) = 0.25 

   X1  Continuous  

(split in quartiles 

to create 

intersections for 

prediction)  

 mean=0, variance=1 

 X2   Binary   P(X2=1) = 0.2    X2  Binary   P(X2=1) = 0.2 

 X3   Binary   P(X3=1) = 0.5 

  

   X3  Binary   P(X3=1) = 0.5 

  

 X4   Binary  Mediation:   

P(X4=1 | X3 = 0) = 

0.4   

P(X4=1 | X3=1) = 

0.7  

   X4  Binary Mediation:   

P(X4=1 | X3=0) = 

0.4   

P(X4=1 | X3=1) = 

0.7  

 X5   Binary   P(X5=1) = 0.25    X5  Binary   P(X5=1) = 0.25 

 X6  Categorical   P(X6=0) = 0.33 

 P(X6=1) = 0.33 

 P(X6=2) = 0.33  

   X6   Continuous  

(split in tertiles to 

create 

intersections for 

prediction) 

 mean=0, variance=1  

 

 

3.3.3 Sample sizes 

 
Four sample sizes were selected for the simulations: 2,000, 5,000, 50,000 and 200,000. 

The largest sample size is reflective of the availability of large population data sets like 

the Canadian Community Health Survey. The smaller sample sizes are reflective of the 

reality that many intersectionality papers, including those used for decision tree methods 

found in the literature review, use smaller datasets.  
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3.3.4 Effect sizes 

 
The true effects of the variables were varied in magnitude and direction, to include a 

diverse set of possible scenarios, where effects can be both positive or negative, and 

interactions may have greater or smaller effect sizes than their main effects. A minimum 

effect size was selected based on power calculations, which are described in more detail 

below.  

 

3.3.4.1 Power calculation for beta coefficients 

 
Power calculations were performed to determine the minimum effect size for the beta 

coefficients. Separate power calculations were conducted for each of the five outcome 

types. The input variables for the power calculation were X1 to X6, where all variables 

were either binary or categorical, based on the predictor combination shown in Table 3.5.  

Two changes were made to the categorical inputs model that differed from what is shown 

in Table 3.5, that were justified based on the aim to remain relevant to intersectionality 

research. Firstly, the models for the power calculations were created and evaluated with 

main effects only, even though the models in the actual simulations include interaction 

terms. Presumably if an effect size is significant for an “additive effects” model (additive 

effects by the intersectionality definition, meaning no interaction), then it is still an 

important enough size for the detection of interaction terms. Elsewise, much larger effect 

sizes are required to detect interaction terms for Poisson and logistic models. Secondly, 

the input variables did not have the same distribution as in the actual simulation models. 

In the power calculation models, variables X1 to X3, and X5 and X6 were split in equally 

sized categories. Only X4 was not equally distributed, due to the mediation relationship 

between X3 and X4. The justification is that in ideal circumstances, calculating outcomes 

for each intersectional group would not be affected by intersection size, especially when 

those experiencing marginalization may belong to groups with smaller cell sizes.  

Eighty percent power was defined as when in at least 80% of the models, all coefficients 

for X1 to X5 were significant at p<0.05. Power calculations were conducted at n=25,000, 

an intermediate value between the four sample sizes used in the simulation models 
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(n=2,000, 5,000, 50,000, 200,000). 100 iterations of each model were used to determine 

80% power.  

 

Table 3.7 presents the calculated minimum effect sizes and coefficient distributions for 

the five outcome types. For the linear outcome, the regression coefficients were on a 

scale with a possible range of negative to positive infinity, with a null value at zero. The 

sampling of positive and negative beta coefficients was centred around 1 and -1. Positive 

coefficients were selected from a truncated normal distribution with a minimum of 

“minimum effect size” and a maximum of (2 – minimum effect size). The negative 

coefficients were selected from a truncated normal distribution with a minimum of (-2 + 

minimum effect size) and a maximum of (-1*minimum effect size). For the binary, 

multinomial, and negative binomial outcomes, the coefficients were sampled by selecting 

a true RR, OR, or IRR respectively, and these values were then log-transformed to be 

applied to the outcome-generation process. The coefficients were therefore limited to a 

possible range of zero to positive infinity, with a null value at 1. The positive coefficients 

were selected from a truncated normal distribution, with a minimum of “minimum effect 

size”, and a maximum of 1.8. Similarly, the negative coefficients were selected from a 

truncated normal distribution, with a minimum of 0.2, and a maximum of (1 – minimum 

effect size). The distributions had a standard deviation of 0.3.  

 

Table 3.7: Coefficient sampling distributions  

Outcome 
Coefficient 

scale 

Minimum 

effect size 

Positive 

coefficient 

distribution  

(min, max) 

Negative 

coefficient 

distribution  

(min, max) 

Distribution 

standard 

deviation 

Linear Linear 0.06 (0.06, 1.94) (- 1.94, -0.06) 1 

Binary 

(rare) 
RR 1.24 (1.24, 1.8) (0.2, 0.76) 0.30 

Binary 

(common) 
RR 1.11 (1.11, 1.80) (0.20, 0.89) 0.30 

Categorical OR 1.24 (1.24, 1.8) (0.2, 0.76) 0.30 

Negative 

binomial  
IRR 1.09 (1.09, 1.8) (0.2, 0.91) 0.30 
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3.4  Simulation procedures  

 

3.4.1  Independent variable and effect size selection 

 

The simulations for each of the 10 models were run as follows.  

 

The random seed was set at the beginning of each iteration. The independent variables 

X1 to X6 were generated according to the distributions and probabilities shown in Table 

3.5 or 3.6. The effect sizes for the beta-coefficients were then randomly selected from the 

distributions described in Table 3.7. For the categorical inputs, the beta-coefficients 

required are shown in Table 3.8, and for the mixed inputs, in Table 3.9.  

 

Two interactions were included in all data-generation scenarios. One interaction was 

between variables X3, X4, and X5, creating a three-way interaction between binary 

variables. The second interaction differed depending on if the inputs variables were 

mixed or all categorical. For the mixed scenario, X1 (continuous) and X2 (binary) 

interacted when X1 was greater than 1 and X2 was equal to 1. This was a non-linear 

interaction based on a cut-off value, to maintain realistic expectations that interactions do 

not have to function linearly, although this is often assumed in regression models when 

fitting interaction terms. For the categorical-inputs-only scenario, X1 and X2 interacted if 

X1 was equal to 2 and X2 was equal to 1, or if X1 was equal to 3 and X2 was equal to 2.  

 

Table 3.8: Categorical inputs coefficients 
Variable Coefficient Coefficient distribution type 
X1 = 1 β1.1 Positive 
X1 = 2 β1.2 Positive 
X1 = 3 β1.3 Positive 
X2 = 1 β2 Positive 
X3 = 1 β3 Negative 
X4 = 1  β4 Negative 
X5 = 1  β5 Negative 
Interaction: if X1= 2 & X2=1 β6 Negative 
Interaction: if X1= 3 & X2=1 β7 Negative 
Interaction: if X3=1 and X4=1 and 

X5=1 
β8 Positive 

X6 = (0, 1, 2) 0 No true effect 
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Table 3.9: Mixed inputs coefficients 
Variable Coefficient Coefficient distribution type 
X1  β1 Positive 
X2 = 1 β2 Positive 
X3 = 1 β3 Negative 
X4 = 1  β4 Negative 
X5 = 1  β5 Negative 
Interaction: if X1> 1 & X2=1 β6 Negative 
Interaction: if X3=1 and X4=1 and 

X5=1 
β7 Positive 

X6 0 No true effect 

 

For the binary, categorical, and negative binomial outcome, the beta coefficients selected 

were transformed to the natural log-scale before inclusion in the outcome generation 

formulas presented in the next section.  

 

3.4.2  Outcome variable generation 

Two formulas provided the underlying process of outcome generation for the five 

different outcome types, with variations to allow for transformation to each outcome. 

Table 3.10 outlines the formulas used in the outcome generation process, which included 

variables X1 to X5, and two- and three-way interactions. Described below is how the 

outcome variable “Y” was generated using either the categorical or mixed inputs formula. 

 

Table 3.10: Outcome generation formulas for each type of outcome 

Outcome Inputs Formula 

Continuous 

Categorical 

Y = intercepta + β1.1 (if X1=1) + β1.2 (if X1 = 2) + β1.3 (if 

X1 = 3) + β2X2 + β3X3 + β4X4 + β5X5 + β6(if X1=2 & 

X2=1) + β7(if X1= 3 & X2=1) + β8X3*X4*X5  + e 

 

Mixed 

Y = intercepta  + β1 X1 + β2X2 + β3X3 + β4X4 + β5X5 + 

β6 X1*X2 (if X1> 1 & X2=1) + β7X3*X4*X5  + e 

 

Binary 

(rare or 

common 

prevalence) 

and 

negative 

binomial 

Categorical 

z = intercepta + β1.1 (if X1=1) + β1.2 (if X1 = 2) + β1.3 (if 

X1 = 3) + β2X2 + β3X3 + β4X4 + β5X5 + β6(if X1= 2 & 

X2=1) + β7(if X1= 3 & X2=1) + β8X3*X4*X5   

 

Mixed 
z = intercepta + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6 

X1*X2 (if X1> 1 & X2=1) + β7X3*X4*X5   
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Multinomial 

Categorical 

mu1 = 1.6 + β1.1 (if X1=1) + β1.2 (if X1 = 2) + β1.3 (if X1 

= 3) + β2X2 + β3X3 + β4X4 + β5X5 + β6(if X1= 2 & 

X2=1) + β7(if X1= 3 & X2=1) + β8X3*X4*X5   

 

mu2 = 2 + β1.1.2 (if X1=1) + β1.2.2 (if X1 = 2) + β1.3.2 (if X1 

= 3) + β2.2X2 + β3.2X3 + β4.2X4 + β5.2X5 + β6.2(if X1= 2 

& X2=1) + β7.2(if X1= 3 & X2=1) + β8.2 X3*X4*X5 

 

Mixed 

mu1 = 1.6 + β1 X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6 

X1*X2 (if X1> 1 & X2=1) + β7X3*X4*X5   

 

mu2 = 2 + β1.2 X1 + β2.2X2 + β3.2X3 + β4.2X4 + β5.2X5 + 

β6.2 X1*X2 (if X1> 1 & X2=1) + β7.2 X3*X4*X5   

“e”:  individual error 

a Where intercept = -3 for the rare binary outcome, -1.5 for the common binary outcome, 

and 0 for the continuous and negative binomial outcomes 

 

A. Continuous outcome: The data generation formula for the continuous outcome 

directly generates the outcome Y. The individual error “e” was created with a mean 

of 0 and standard deviation of 1.  

 

B. Binary outcomes (rare and common): The value “z” from Table 3.10 was 

converted into probabilities, where P(Y=1) = exp (z). The outcome Y was then 

sampled from this probability. This process creates known RR’s for each variable, 

which are the beta-coefficients (βx) exponentiated. [75] Therefore, analysis with the 

modified Poisson method should create comparable beta-coefficient estimates. 

Because the probability cannot exceed 1, any “z” that resulted in a probability greater 

than 1 had all coefficients resampled until the probability was less than or equal to 1.  

 

C. Multinomial outcome: The values “mu1” and “mu2” from Table 3.10 were used  

to create the probabilities of outcomes Y=1, Y=2, and Y=3. A total score from the 

three possible outcomes was calculated as Denominator=1+exp(mu1)+exp(mu2), and 

the probability of each of the outcomes was calculated as follows: 

P(Y=1) = 1/Denominator 

P(Y=2) = exp(mu1)/Denominator 

P(Y=3) = exp(mu2)/Denominator 

These probabilities were used to sample for outcome Y. This process created known 
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OR’s for each variable, which are the beta-coefficients (βx) exponentiated. Therefore 

analysis by multinomial logistic regression should create comparable beta-coefficient 

estimates. 

 

D. Negative binomial outcome 

The value “z” from Table 3.10 was converted to the mean of count outcome Y, via 

mu = exp(z). The outcome Y was then selected via the rnegbin function from the R-

package “MASS” [63], using parameters mu and the distribution theta, which was 

randomly sampled between 0.8 to 1.2 under a uniform distribution.   

 

3.4.3 Simulation feasibility testing 

To assess feasibility, run times were recorded for each analysis method, using single 

iterations of each outcome type, created with categorical input variables. For single-level 

regression analyses, a single analysis included fitting the regression model, and obtaining 

standard errors and confidence intervals for each coefficient. For decision tree methods, a 

single analysis included fitting the decision tree and pruning or tuning when applicable. 

For MAIHDA, a single analysis included model fitting and estimation of main and 

random effects, as well as confidence interval construction for main and random effects. 

A single iteration of cross-classification was calculation of the average value of the 

outcome for each intersection. These trials were performed using a typical office 

computer with an Intel Core i5-3470 and 8 GB of RAM, running the 64-bit version of 

Windows 10.  
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Chapter 4 

4 Results 

 

This chapter will report the performance of the eight analytic methods when applied to 10 

different simulated data scenarios, representing descriptive data with intersectional 

variables, across four sample sizes. First, section 4.1 presents the primary result, 

prediction accuracy for intersectional groups, for each method across the ten data 

generation scenarios and four sample sizes. Section 4.2 presents a summary of percent 

significance of coefficients and confidence interval coverage from best-fitted and over-

specified regression analyses. Section 4.3 similarly presents a summary of percent 

significance of coefficients and confidence interval coverage from select MAIHDA 

analyses. Section 4.4 presents secondary outcomes for the decision tree models, including 

the average number of leaves and splitting variables, and probability of splitting on each 

variable for CART, CHAID, and CTree, and the average number of leaves and variable 

importance measures for random forest. Results are presented for all ten data generation 

scenarios and four sample sizes. Finally, section 4.5 presents run times for single 

iterations of each analysis. 

 

4.1 Primary results 

 
The primary outcome (MSE for continuous or negative binomial outcome models, MAPE 

for binary or categorical outcome models) is presented for each data generation scenario 

in Figures 4.1 to 4.10, via boxplots presenting the distribution of the primary outcome 

across the 1000 iterations.  

 

For all ten scenarios, the accuracy for each method improved with increasing sample size, 

except for CART. For prediction at the largest sample size (n=200,000), CART 

performed the poorest with the highest prediction error. At the larger sample sizes, other 

methods performed relatively the same and approached an MSE or MAPE of zero. One 
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exception is that the single-level regression methods performed worse than the other 

methods, but better than CART, for the continuous outcome model with mixed inputs.  

The following results summarize the worst and best predictors at the smallest sample 

sizes (n=2000, n=5000), where there were the greatest differences in accuracy between 

methods. At the smaller sample sizes, the least accurate predictors (highest values of 

MSE or MAPE) overall were CART, over-specified regression, and cross-classification. 

For the continuous outcomes overall, the best performers at the smaller sample sizes were 

MAIHDA, best-fitted regression, and random forest. For the binary outcome models, 

MAIHDA, best-fitted regression, and CTree (and CHAID when applicable) performed 

better at smaller sample sizes. For the multinomial outcomes, best-fitted regression 

performed best, followed by CTree, CHAID, and random forest. For the negative 

binomial outcome, best-fitted regression and MAIHDA performed well, with the decision 

tree’s close behind and performing similarly to one another. CHAID and CTree 

performed similarly to one another across sample sizes for all three models that CHAID 

was applied to.  

 

There are issues of model convergence and missing values to consider when interpreting 

the primary results. The over-specified regression, especially at smaller sample sizes, 

resulted in iterations which did not converge, presented in Table 4.1. Therefore, for the 

models shown in Table 4.1, primary and secondary results from the over-specified 

regression are not from all 1000 iterations, but rather only from models that converged. 

Boxplots do not include outliers due to the over-specified regression presenting extreme 

outliers for some models. Additionally, at the smaller sample sizes, not all 192 

intersections were filled with every iteration. Measures of accuracy were calculated with 

equal weight given to each intersection, regardless of intersection size. Table 4.2 presents 

the mean number of intersections that remained unfilled for the two input types: mixed 

and categorical. Therefore, for the smaller sample sizes, calculations of MSE or MAPE 

did not always include all intersections for MAIHDA and cross-classification, because 

these methods require a minimum cell size of one to produce predictions. The other 

methods still produce estimates for intersections with a cell size of zero, and therefore 

always calculated the MSE or MAPE using predictions from all 192 intersections.  
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Table 4.1: Number of converged over-specified regression models over 1000 iterations 

by sample size for select models 

 N=2000 N=5000 N=50000 N=200000 

Model 3: Common binary 

outcome, categorical inputs 167 830 1000 1000 

Model 4: Common binary 

outcome, mixed inputs 998 1000 1000 1000 

Model 5: Rare binary outcome, 

categorical inputs 480 855 1000 1000 

Model 6: Rare binary outcome, 

mixed inputs 
989 998 1000 1000 

Model 9: Negative binomial 

outcome, categorical inputs 
225 878 1000 1000 

 

 

Table 4.2: Mean and 2.5th percentile and 97.5th percentile of number intersections with 

cells size zero by the two input data generation models   
N=2000 N=5000 N=50000 N=200000 

Categorical inputs 7.788 0.734 0 0 

(3, 13) (0, 3) (0, 0) (0, 0) 

Mixed inputs 7.816 0.737 0 0 

(3, 13) (0, 3) (0, 0) (0, 0) 
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Figure 4.1: Boxplots of intersection prediction MSE for Model 1 (continuous outcome, 

categorical inputs) across four sample sizes (graph excludes outliers) 

Figure 4.2: Boxplots of intersection prediction MSE for Model 2 (continuous outcome, 

mixed inputs) across four sample sizes (graph excludes outliers) 
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Figure 4.3: Boxplots of intersection prediction MAPE for Model 3 (common binary 

outcome, categorical inputs) across four sample sizes (graph excludes outliers)  

 

Figure 4.4: Boxplots of intersection prediction MAPE for Model 4 (common binary 

outcome, mixed inputs) across four sample sizes (graph excludes outliers) 
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Figure 4.5: Boxplots of intersection prediction MAPE for Model 5 (rare binary outcome, 

categorical inputs) across four sample sizes (graph excludes outliers) 
 

Figure 4.6: Boxplots of intersection prediction MAPE for Model 6 (rare binary outcome, 

mixed inputs) across four sample sizes (graph excludes outliers) 
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Figure 4.7: Boxplots of intersection prediction MAPE for Model 7 (multinomial 

outcome, categorical inputs) when y=1, across four sample sizes (graph excludes outliers) 

 
Figure 4.8: Boxplots of intersection prediction MAPE for Model 8 (multinomial 

outcome, mixed inputs) when y=1, across four sample sizes (graphs excludes outliers) 
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Figure 4.9: Boxplots of intersection prediction MSE for Model 9 (negative binomial 

outcome, categorical inputs), across four sample sizes (graph excludes outliers) 

 

 
Figure 4.10: Boxplots of intersection prediction MSE for Model 10 (negative binomial 

outcome, mixed inputs), across four sample sizes (graph excludes outliers) 
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4.2 Regression secondary results 

 

Results from the over-specified and best-fitted regression analyses are presented by the 

percentage of completed iterations that important coefficients (the intercept, X1 to X6, 

X1*X2 and X3*X4*X5) are detected as significant, and the confidence interval coverage 

for these coefficients. Generally, the over-specified regression required larger sample 

sizes for coefficient significance and confidence interval coverage to resemble that of the 

best-fitted regressions. Full results for all ten models are presented in Appendix B. Select 

results are discussed below. 

For models with categorical inputs, confidence interval coverage was approximately 95% 

for all important coefficients. Results differed for the mixed input models. Table 4.3 

presents the confidence interval coverage of over- and best-fitted regression analysis for 

Model 2 (continuous outcome, mixed inputs). The confidence interval coverage was 

approximately 95% for most main effects from the categorical input models, across all 

sample sizes. However, because the simulated outcome was formed with a non-linear 

interaction between X1 and X2 (where the interaction between continuous variable X1 

and binary variable X2 only begins when X1 is greater than 1), the confidence interval 

coverage for X2 and X1*X2 was poor and decreased with increasing sample size. Similar 

results are seen for the other mixed input models, where confidence interval coverage 

was poorest for X2 and X1*X2. 

 

Table 4.3: Model 2 (continuous outcome, mixed inputs) regression coefficient 

confidence interval coverage (% of iterations) 

 
  Intercept x1 x2 x3 x4 x5 x1:x2 

x3:x4: 

x5 

O
v
er

-

sp
ec

if
ie

d
 N = 2000 96 95.7 53.8 96 96 95 17.3 95 

N = 5000 95.7 96.3 28.7 95.7 96.4 95.3 9.1 95 

N = 50000 95.7 97.1 6.1 95.5 94.5 96.2 1.1 95.8 

N = 200000 96 95.9 1.4 95.7 94.9 95.7 0.1 95.8 

B
es

t-
fi

tt
ed

 

N = 2000 96.7 95.8 21.1 96 95.8 94.9 6.2 96.1 

N = 5000 95.1 95.9 8.9 94.3 95.5 95.3 2.8 94.4 

N = 50000 95.2 96 1.2 94.6 95.1 96.2 0 95.2 

N = 200000 95.3 95.2 0 96.4 94.9 95.3 0 95.1 
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Table 4.4 presents the coefficient significance of best- and over-specified regression for 

Model 2 (continuous outcome, mixed inputs). As expected, with increasing sample size 

coefficient significance approached 100% for variables relevant to the outcome (X1 to 

X5, X1*X2, and X3*X4*X5), and not for the intercept and X6, which had true values of 

zero and were expected to only be significant in approximately 5% of models. There 

were however surprising results concerning coefficient significance of the three-way 

interaction term for models aside from Model 2. Table 4.5 and 4.6 show the coefficient 

percent significance for the three-way interaction term X3*X4*X5, for the over-specified 

regression and best-fitted regression respectively. When using an over-specified 

regression model on binary outcomes with either categorical or mixed inputs, and 

multinomial outcomes with categorical inputs, significance of the three-way interaction 

did not consistently increase, but rather fluctuated or decreased with increasing sample 

size. The same result was also observed for models with a rare binary outcome fitted with 

a best-fitted regression. These results demonstrate that increasing sample size does not 

always result in better identification of significant interactions, even in a best-fitted 

regression model.  

 

 

Table 4.5: Over-specified regression % significance for 3-way interaction (x3*x4*x5)  
N=2000 N=5000 N=50000 N=200000 

Model 1: Continuous outcome, 

categorical inputs 
22.7 48.1 86.9 94.4 

Table 4.4: Model 2 (continuous outcome, mixed inputs) regression coefficient 

significance (% of iterations)  

    Intercept x1 x2 x3 x4 x5 x6 x1:x2 
x3:x4: 

x5 

Expected 5 100 100 100 100 100 5 100 100 

O
v
er

-

sp
ec

if
ie

d
 N = 2000 4 97.5 80 93.9 96.2 92.2 4.7 69.5 79.9 

N = 5000 4.3 99 87.4 96.4 98.7 96.6 3.5 84.4 89.3 

N = 50000 4.3 100 96.8 100 100 99.9 3.8 97.2 98.2 

N = 200000 4 100 97.7 100 100 100 5.6 99.7 99.7 

B
es

t-
fi

tt
ed

 

N = 2000 3.3 99.5 88.5 94.2 96.3 93.2 4.4 90.3 83.7 

N = 5000 4.9 100 94.6 96.7 99 97.2 4.5 95.2 91.8 

N = 50000 4.8 100 98.8 100 100 99.8 4.9 99.5 98.4 

N = 200000 4.7 100 99.2 100 100 100 4.9 100 99.8 
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Model 2: Continuous outcome, mixed 

inputs 
79.9 89.3 98.2 99.7 

Model 3: Common binary outcome, 

categorical inputs  
65.8 56.7 9.6 24.5 

Model 4: Common binary outcome, 

mixed inputs  
24.4 13.9 50.0 84.8 

Model 5: Rare binary outcome, 

categorical inputs  
40.2 62.4 40.4 10.3 

Model 6: Rare binary outcome, mixed 

inputs  
68.0 44.4 20.0 47.4 

Model 7: Multinomial outcome, 

categorical inputs (Y=2)  
76.3 21.2 13.6 36.2 

Model 8: Multinomial outcome, mixed 

inputs (Y=2) 
10.3 15.7 74.6 98.5 

Model 9: Negative binomial outcome, 

categorical inputs 
1.8 4.2 19.2 49.1 

Model 10: Negative binomial outcome, 

mixed inputs 
15.9 23.6 79.6 95.5 

 

 

Table 4.6: Best-fitted regression % significance for 3-way interaction (x3*x4*x5)  
N=2000 N=5000 N=50000 N=200000 

Model 1: Continuous outcome, 

categorical inputs 
82.0 90.2 98.5 99.8 

Model 2: Continuous outcome, mixed 

inputs 
83.7 91.8 98.4 99.8 

Model 3: Common binary outcome, 

categorical inputs 
9.3 14.7 68.4 92.8 

Model 4: Common binary outcome, 

mixed inputs 
11.3 14.1 57.7 88.9 

Model 5: Rare binary outcome, 

categorical inputs 
48.7 21.0 26.6 64.8 

Model 6: Rare binary outcome, mixed 

inputs 
50.7 25.3 23.5 61.2 

Model 7: Multinomial outcome, 

categorical inputs (Y=2) 
9.6 17.3 79.2 98.9 

Model 8: Multinomial outcome, mixed 

inputs (Y=2) 
10.4 17.2 80.2 99.2 

Model 9: Negative binomial outcome, 

categorical inputs 
15.3 29.8 86.8 98.6 

Model 10: Negative binomial outcome, 

mixed inputs 
16.7 27.4 85.5 97.3 
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4.3 MAIHDA  
 

Results from MAIHDA are presented by the coefficient percent significance and 

confidence interval coverage of the main effects (X1 to X6). MAIHDA estimates for 

main effects differ from the typical definition of main effects. There were two possible 

definitions of main effects to use when determining confidence interval coverage: 1) 

main effects capture the additive effects only, and 2) main effects as the average effects 

of the variable across equally weighted clusters. The calculations for definition 2 of 

MAIHDA main effects are only possible for models with only categorical inputs. 

Therefore, coefficient significance and confidence interval coverage results are presented 

below for the four models that both MAIHDA estimands can be calculated for (Model 1, 

3, 5, and 9). For models with mixed inputs (Model 2, 4, 6, and 10), confidence interval 

coverage could only be assessed using definition 1.  Significance of coefficients and 

confidence interval coverage using definition 1 is presented for these mixed input models 

in Appendix C.  

 

Tables 4.7 to 4.10 present the coefficient significance of main effects for the continuous, 

common binary, rare binary, and negative binomial outcome models with categorical 

inputs. Compared to the single-level regression methods, the coefficient significances of 

main effects from MAIHDA were farther away from the expected values. Coefficients 

for variables X1.2, X1.3, and X2 consistently had lower percent significance than other 

variables. Across all models, MAIHDA did not consistently identify variables included in 

the data generating process as significant.  

 

Table 4.7: Model 1 (Continuous outcome, categorical inputs) MAIHDA coefficient 

significance (% of iterations) 

  Intercept x1.1 x1.2 x1.3 x2 x3 x4 x5 x6.1 x6.2 

Expected 0 100 100 100 100 100 100 100 0 0 

N = 2000 12.9 94.3 83.8 78.8 84.3 88.3 90.1 84.8 0.8 0.9 

N = 5000 19.0 94.4 83.4 80.2 86.5 89.4 89.7 87.6 0.3 0.3 

N = 50000 32.0 96.6 83.4 83.5 88.1 88.4 89.7 89.4 0.0 0.2 

N = 200000 33.9 95.9 84.2 83.2 85.7 90.5 91.4 89.4 0.0 0.0 
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Table 4.8: Model 3 (Common binary outcome, categorical inputs) MAIHDA 

coefficient significance (% of iterations) 

  Intercept x1.1 x1.2 x1.3 x2 x3 x4 x5 x6.1 x6.2 

Expected 100 100 100 100 100 100 100 100 0 0 

N = 2000 100.0 62.2 36.6 33.6 22.9 86.5 88.4 77.1 3.0 1.8 

N = 5000 100.0 82.5 56.8 54.3 38.6 96.1 96.4 87.8 2.0 2.4 

N = 50000 100.0 98.2 66.6 66.2 70.0 97.8 98.3 95.8 0.4 0.2 

N = 200000 100.0 99.0 70.1 65.4 73.9 97.6 97.3 96.1 0.2 0.0 

 

 

Table 4.9: Model 5 (Rare binary outcome, categorical inputs) MAIHDA coefficient 

significance (% of iterations) 

  Intercept x1.1 x1.2 x1.3 x2 x3 x4 x5 x6.1 x6.2 

Expected 100 100 100 100 100 100 100 100 0 0 

N = 2000 100.0 20.6 9.2 9.7 7.9 69.1 72.1 49.3 4.4 3.5 

N = 5000 100.0 46.1 20.9 23.4 12.8 88.3 90.4 78.6 3.1 4.3 

N = 50000 100.0 98.4 64.3 67.9 43.8 100 99.9 99.4 3.1 2.8 

N = 200000 100.0 99.8 63.3 62 58.5 100 100 99.9 0.7 0.3 

 

 

Table 4.10: Model 9 (Negative binomial outcome, categorical inputs) MAIHDA 

coefficient significance (% of iterations) 

  Intercept x1.1 x1.2 x1.3 x2 x3 x4 x5 x6.1 x6.2 

Expected 0 100 100 100 100 100 100 100 0 0 

N = 2000 5.3 81.3 56.2 52.9 37.6 91.6 93.2 84.8 3.8 3.6 

N = 5000 7.2 90.0 64.4 64.7 53.2 96.0 94.7 88.7 3.2 2.4 

N = 50000 17.5 98.9 70.2 68.5 72.8 95.6 95.7 94.3 0.1 0.2 

N = 200000 27.5 99.4 71.3 69.4 76.9 95.9 95.5 95.0 0.1 0.1 

 

 

Tables 4.11 to 4.14 present the confidence interval coverage according to definitions 1 

and 2 for the continuous, common binary, rare binary, and negative binomial outcome 

with categorical inputs. The confidence interval coverage did not approach 95% for 

definition 1, indicating that the traditional definition of additive effects (definition 1) does 

not apply to MAIHDA. This is true for models presented in the Appendix as well. 

Confidence interval coverage was sufficient only for variable X1.1 by definition 1, 

because this variable was not involved in any interactions, therefore the average effect of 

this variable across equally weighted clusters was the same as the additive effect. When 
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observing Table 4.11 for the continuous and Table 4.14 for the negative binomial 

outcome, the confidence interval coverage for definition 2 was almost or approached 

100%, demonstrating that definition 2 is more aligned with the true MAIHDA estimand. 

As previously mentioned in the Methods section, the estimand for the intercept according 

to definition 2 is unknown, and therefore confidence interval coverage was not calculated 

for the intercept. Notably, the confidence interval coverage in Table 4.11 is extremely 

conservative, by exceeding 95%. This is in alignment with previous results from Lizotte 

et. al. (2019), that MAIHDA results in very large SE’s.  

 

Regarding Tables 4.12 and 4.13 for common binary and rare binary outcomes, while 

definition 1 did not hold, the confidence interval coverage for definition 2 was also not 

near 95%. Overall, results show that the typical interpretation of additive effects under 

intersectionality theory (definition 1) does not apply to MAIHDA, regardless of outcome 

type. While MAIHDA main effects can be interpreted by definition 2 for the continuous 

and negative binomial outcome, it is unclear what the defined main effects for binary 

outcomes would be. 

 

Table 4.11: Model 1 (Continuous outcome, categorical inputs) MAIHDA confidence 

interval coverage by definition 1 (typical additive effects) and definition 2 (MAIHDA 

additive effects) (% of iterations) 

    Intercept x1.1 x1.2 x1.3 x2 x3 x4 x5 

D
ef

in
it

io
n
 1

 

N = 2000 87.1 99.3 28.8 27.9 3.8 33.3 38.8 18.3 

N = 5000 81.0 99.9 18.4 19.4 1.6 21.9 23.6 15.8 

N = 50000 68.0 100.0 9.5 10.2 0.7 13.4 14.4 12.7 

N = 200000 66.1 100.0 11.2 8.4 0.4 14.4 15.2 15.0 

D
ef

in
it

io
n
 2

 

N = 2000 - 99.3 62.1 63.2 98.2 95.6 90.1 94.2 

N = 5000 - 99.9 82.7 81.8 99.4 98.8 97.6 98.7 

N = 50000 - 100.0 99.4 99.7 100.0 100.0 100.0 99.9 

N = 200000 - 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Table 4.12: Model 3 (Common binary outcome, categorical inputs) MAIHDA 

confidence interval coverage by definition 1 (typical additive effects) and definition 2 

(MAIHDA additive effects) (% of iterations) 

    Intercept x1.1 x1.2 x1.3 x2 x3 x4 x5 

D
ef

in
it

io
n
 1

 

N = 2000 94.6 98.1 89.9 88.5 46.8 96.9 96.8 91.4 

N = 5000 94.9 97.4 75.0 74.7 17.4 94.8 96.5 88.4 

N = 50000 86.6 99.6 16.8 16.0 0.2 73.4 80.4 49.4 

N = 200000 78.1 100.0 6.6 5.9 0.0 43.5 46.2 27.7 

D
ef

in
it

io
n
 2

 

N = 2000 - 98.1 74.1 74.1 94.6 95.1 93.4 96.0 

N = 5000 - 97.4 54.8 57.3 91.6 90.0 87.1 95.5 

N = 50000 - 99.6 41.6 42.2 91.1 81.1 76.0 96.0 

N = 200000 -  100.0 76.2 72.7 99.5 92.7 88.3 98.7 

 

 

Table 4.13: Model 5 (Rare binary outcome, categorical inputs) MAIHDA confidence 

interval coverage by definition 1 (typical additive effects) and definition 2 (MAIHDA 

additive effects) (% of iterations) 

    Intercept x1.1 x1.2 x1.3 x2 x3 x4 x5 

D
ef

in
it

io
n
 1

 

N = 2000 96.0 96.1 94.1 93.5 84.0 95.4 95.7 93.4 

N = 5000 95.1 95.7 90.7 90.2 56.6 94.8 95.5 93.2 

N = 50000 88.8 97.4 43.2 45.0 1.2 90.7 94.3 79.1 

N = 200000 85.2 99.6 9.6 9.6 0.0 79.1 82.7 55.4 

D
ef

in
it

io
n
 2

 

N = 2000 - 96.1 91.6 91.5 94.9 94.9 94.2 95.4 

N = 5000 - 95.7 80.5 80.8 93.9 93.7 93.9 94.7 

N = 50000 - 97.4 38.2 40.6 85.2 81.1 75.3 92.9 

N = 200000 -  99.6 43.0 41.1 93.8 80.8 79.3 96.0 

  
Table 4.14: Model 9 (Negative binomial outcome, categorical inputs) MAIHDA 

confidence interval coverage by definition 1 (typical additive effects) and definition 2 

(MAIHDA additive effects) (% of iterations) 

    Intercept x1.1 x1.2 x1.3 x2 x3 x4 x5 

D
ef

in
it

io
n
 1

 

N = 2000 94.7 96.6 78.1 77.5 20.3 90.3 93.3 80.1 

N = 5000 92.8 96.6 52.6 54.3 7.0 87.4 91.5 66.9 

N = 50000 82.5 99.8 10.8 13.2 0.1 50.7 51.5 31.8 

N = 200000 72.5 100.0 6.2 6.6 0.0 27.8 30.0 22.8 

D
ef

in
it

io
n
 2

 

N = 2000 - 96.6 59.2 58.5 89.6 90.9 87.8 94.3 

N = 5000 - 96.6 42.7 44.6 90.0 86.3 82.7 94.5 

N = 50000 - 99.8 64.6 68.9 99.2 92.7 92.1 99.0 

N = 200000 -  100.0 95.7 96.5 99.9 98.6 97.5 99.8 
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4.4 Decision tree outcomes 
 

Decision tree methods were evaluated using the following criteria. For CART, CTree, 

and CHAID, the ideal method will split on variables X1 to X5 for 100% of iterations, but 

not on X6, which has no true effect on the outcome. For random forest, the variable 

importance measure should be higher for variables X1 to X5 than for X6. For all 

methods, the number of leaves can be seen as the number of unique “intersectional 

groups” identified by the decision tree. For the categorical input models, there are 192 

possible intersections, 64 of which are actually distinct from one another. For models 

with mixed inputs there is no defined number of leaves that we would expect to see. 

Results for CART, CTree, and CHAID are presented for all ten models in Tables 4.15 to 

4.24. Results for random forest for all ten models are presented in Tables 4.25 to 4.34. 

 

4.4.1 CART  
 

For the continuous outcome models, CART split on variables X1 to X5, and did not split 

on the null variable X6. Splitting was not near 100% of iterations for variables X2 to X5, 

and did not improve with increasing sample size. Resultantly, the number of leaves was 

much lower than 64. For the binary outcomes, both of common and rare prevalence, there 

was almost no splitting at all. Therefore, for many of the iterations, predictions were only 

based on the population prevalence, and were equal across all intersections. For the 

multinomial outcome, there was some splitting on variables X3, X4, and X5 for 20 to 

35% of iterations and even less splitting on X1 and X2. No variables approached a 100% 

split rate. X6 was very rarely used as a splitting variable. For the negative binomial 

outcome, X1 to X5 were used as splitting variables, and there was no splitting on X6, but 

the splitting rate was not near 100% for variables X1 to X5. Overall, amongst those 

outcomes where there was a sizable amount of splitting (continuous, multinomial, and 

negative binomial) a noticeable pattern was that X2 was split on less often, which may be 

a result of the interaction between X2 (a binary variable) and X1 (a continuous or 

categorical variable). Generally, CART would correctly avoid splitting on the null 
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variable X6, but was not guaranteed to split on all relevant variables for continuous, 

categorical, or negative binomial models, and mostly did not split at all for the binary 

outcomes.  

 

4.4.2 CTree 

 

For the continuous outcome, CTree split on variables X1 to X5 at an almost 100% rate, 

even at the lowest sample size (n=2,000). Splitting on variable X6 approached 100% with 

increasing sample size, and occurred even at the lowest sample size, for both when X6 

was categorical (categorical input models) and when it was continuous (mixed input 

models). For the binary, multinomial, and negative binomial outcomes, splitting on X1 to 

X5 increased with increasing sample size, and reached a 100% splitting rate by the larger 

sample sizes. The X6 splitting rate was lower than for variables X1 to X5, but also 

increased with increasing sample size. The number of leaves for the categorical input 

models appears to be too low given the number of splitting variables used. For example, 

the analysis of continuous outcomes with categorical inputs at n=200,000 resulted in 

approximately 62 leaves, even though variables X1 to X6 were used in splitting, which 

would result in a total possible 192 intersections. Therefore, not all possible splits were 

performed using the given split variables. When comparing between categorical input 

models at the n=200,000, the resulting number of leaves was greatest for the continuous 

outcome, and lowest for the rare binary outcome. Similar to CART, the variable X2 was 

not split on as often as variables X1 and X3 to X5.  

 

4.4.3 CHAID 

 
CHAID results were very similar to results from CTree. A notable difference was that the 

splitting rates for all variables X1 to X6 was slightly higher for CHAID across all three 

models (Models 3, 5, and 7), when starting at n=2,000.  

 

4.4.4 Random forest 
 

Random forest uses the variable importance measure to illustrate which variables are 

more important to the outcome. This value is compared between variables, rather than 
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statistically analysed. For the continuous outcome model with categorical inputs, the 

variable importance was lowest for X6 across all sample sizes. For the models with 

categorical inputs that had common binary, rare binary, and multinomial outcomes, X6 

was only the least important at the larger sample sizes (50,000, 200,000, and 50,000 

respectively). For the binary, multinomial, and negative binomial models where X6 is 

continuous (mixed inputs), X6 was the second most important variable, after X1 (the 

other continuous variable), even at the largest sample size. For categorical input models, 

the average number of leaves produced by the random forest model was always between 

90 and 100 by n=200,000. Compared to CTree, random forest produced more leaves for 

both mixed and categorical input models. From these results it appears that one could 

only reliably infer that X6 is the variable with no true effect for continuous outcome 

models with categorical inputs. For categorical input models with binary, multinomial, or 

negative binomial outcomes, large sample sizes are required to correctly identify the least 

important variable. For mixed input models, the variable importance measure prescribes 

continuous variables with greater importance even if they have no true effect, and does 

not reliably identify variables relevant to the outcome.  
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Table 4.15: Model 1 (continuous outcome, categorical inputs) CART and CTree 

outcomes 

 
N Leavesa 

Total 

splitting 

variablesa 

Iterations that split on each variable (%) 

  
x1 x2 x3 x4 x5 x6 

C
A

R
T

 

2000 
8.843 3.914 

96.3 55.4 79.5 81.9 78.3 0.0 
(5, 13) (3, 5) 

5000 
8.762 3.865 

96.2 53.5 79.2 79.7 77.9 0.0 
(5,13) (2,5) 

50000 
8.454 3.743 

96.7 51.1 76.3 77.0 73.2 0.0 
(4,12) (2,5) 

200000 
8.597 3.768 

96.7 50.3 77.5 78.1 74.2 0.0 
(5,13) (2,5) 

C
T

re
e
 

2000 
23.915 5.385 

100.0 98.6 99.3 99.4 99.4 41.8 
(12, 36) (5,6) 

5000 
33.829 5.64 

100.0 100.0 100.0 99.9 100.0 64.1 
(19, 49) (5,6) 

50000 
55.63 5.91 

100.0 100.0 100.0 100.0 100.0 91.0 
(39,68) (5,6) 

200000 
61.945 5.945 

100.0 100.0 100.0 100.0 100.0 94.5 
(50,70) (5,6) 

a Means presented with 2.5th and 97.5th percentiles 
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Table 4.16: Model 2 (continuous outcome, mixed inputs) CART and CTree outcomes 

a Means presented with 2.5th and 97.5th percentiles 

 

  

 
N Leavesa 

Total 

splitting 

variablesa 

Iterations that split on each variable (%) 

  
x1 x2 x3 x4 x5 x6 

C
A

R
T

 

2000 
9.846 3.399 

93.0 56.0 66.5 67.5 56.9 0.0 
(5, 14) (2, 5) 

5000 
9.701 3.412 

92.5 54.0 67.7 69.8 57.2 0.0 
(5,14) (2,5) 

50000 
9.441 3.234 

91.3 49.7 63.5 64.3 54.6 0.0 
(5,14) (2,5) 

200000 
9.56 3.255 

92.3 52.8 64.4 62.7 53.3 0.0 
(5,14) (2,5) 

C
T

re
e
 

2000 
33.819 5.251 

99.6 98.2 96.4 98.3 98.0 34.6 
(12, 59) (4, 6) 

5000 
56.349 5.538 

99.9 99.7 99.7 99.6 99.9 55.0 
(19, 95) (5, 6) 

50000 

162.499 5.925 

100.0 100.0 100.0 100.0 100.0 92.5 (47, 

276) 
(5, 6) 

200000 

278.53 5.988 

100.0 100.0 100.0 100.0 100.0 98.8 (88, 

449) 
(6, 6) 
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Table 4.17: Model 3 (Common binary outcome, categorical inputs) CART, CTree, and 

CHAID outcomes 

 
N Leavesa 

Total 

splitting 

variablesa 

Iterations that split on each variable (%) 

  
x1 x2 x3 x4 x5 x6 

C
A

R
T

 

2000 
1.027 0.027 

0.7 0.7 0.5 0.6 0.2 0.0 
(1, 1) (0, 0) 

5000 
1.014 0.014 

0.4 0.4 0.2 0.2 0.2 0.0 
(1,1) (0,0) 

50000 
1 0 

0.0 0.0 0.0 0.0 0.0 0.0 
(1,1) (0,0) 

200000 
1 0 

0.0 0.0 0.0 0.0 0.0 0.0 
(1,1) (0,0) 

C
T

re
e
 

2000 
4.838 3.231 

50.6 23.9 83.3 85.6 72.8 6.9 
(2, 8) (1, 5) 

5000 
7.476 4.253 

84.3 52.4 94.7 93.7 88.4 11.8 
(4,12) (2,6) 

50000 
22.564 5.472 

100.0 98.4 100.0 100.0 99.9 48.9 
(13,34) (5,6) 

200000 
37.243 5.767 

100.0 100.0 100.0 100.0 100.0 76.7 
(23,51) (5,6) 

C
H

A
ID

 

2000 
6.592 4.076 

64.8 50.0 91.5 93.0 85.2 23.1 
(3, 11) (2, 6) 

5000 
10.071 4.908 

89.9 76.3 98.1 97.4 94.6 34.5 
(5,16) (3,6) 

50000 
28.6 5.674 

100.0 99.7 100.0 100.0 100.0 67.7 
(17,42) (5,6) 

200000 
43.204 5.844 

100.0 100.0 100.0 100.0 100.0 84.4 
(28,58) (5,6) 

a Means presented with 2.5th and 97.5th percentiles 
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Table 4.18: Model 4 (Common binary outcome, mixed inputs) CART and CTree 

outcomes 

 
N Leavesa 

Total 

splitting 

variablesa 

Iterations that split on each variable (%) 

  
x1 x2 x3 x4 x5 x6 

C
A

R
T

 

2000 
1.087 0.059 

2.4 0.5 0.6 1.3 0.4 0.7 
(1, 1) (0, 0) 

5000 
1.011 0.009 

0.4 0.1 0.1 0.2 0.1 0.0 
(1, 1) (0, 0) 

50000 
1 0 

0.0 0.0 0.0 0.0 0.0 0.0 
(1, 1) (0, 0) 

200000 
1 0 

0.0 0.0 0.0 0.0 0.0 0.0 
(1, 1) (0, 0) 

C
T

re
e
 

2000 
5.681 3.445 

82.5 38.2 76.4 79.8 61.8 5.8 
(3, 10) (1, 5) 

5000 
8.824 4.351 

93.6 64.2 90.2 90.7 83.7 12.7 
(4,14) (3,6) 

50000 
26.52 5.404 

100.0 99.0 99.9 100.0 99.8 41.7 
(13,42) (5,6) 

200000 
48.417 5.644 

100.0 100.0 100.0 100.0 100.0 64.4 
(25,74) (5,6) 

a Means presented with 2.5th and 97.5th percentiles 
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Table 4.19: Model 5 (rare binary outcome, categorical inputs) CART, CTree, and 

CHAID outcomes 

 
N Leavesa 

Total 

splitting 

variablesa 

Iterations that split on each variable (%) 

  
x1 x2 x3 x4 x5 x6 

C
A

R
T

 

2000 
1 0 

0.0 0.0 0.0 0.0 0.0 0.0 
(1, 1) (0, 0) 

5000 
1 0 

0.0 0.0 0.0 0.0 0.0 0.0 
(1,1) (0,0) 

50000 
1 0 

0.0 0.0 0.0 0.0 0.0 0.0 
(1,1) (0,0) 

200000 
1 0 

0.0 0.0 0.0 0.0 0.0 0.0 
(1,1) (0,0) 

C
T

re
e
 

2000 
2.621 1.612 

7.9 5.0 56.3 62.6 27.4 2.0 
(1, 4) (0, 3) 

5000 
3.833 2.624 

21.6 11.0 77.6 82.7 65.1 4.4 
(2, 6) (1,5) 

50000 
10.871 4.896 

98.6 71.7 100.0 100.0 99.5 19.8 
(6, 17) (4,6) 

200000 
20.962 5.438 

100.0 98.5 100.0 100.0 100.0 45.3 
(12, 32) (5,6) 

C
H

A
ID

 

2000 
3.687 2.524 

18.5 20.5 72.9 76.2 52.6 11.7 
(2, 7) (1, 5) 

5000 
5.23 3.483 

36.8 32.1 89.5 92.1 80.0 17.8 
(3, 9) (2,6) 

50000 
14.557 5.366 

99.2 90.4 100.0 100.0 99.8 47.2 
(8, 22) (4,6) 

200000 
26.577 5.667 

100.0 99.9 100.0 100.0 100.0 66.8 
(15,39) (5,6) 

a Means presented with 2.5th and 97.5th percentiles 
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Table 4.20: Model 6 (rare binary outcome, mixed inputs) CART and CTree outcomes 

 
N Leavesa 

Total 

splitting 

variablesa 

Iterations that split on each variable (%) 

  
x1 x2 x3 x4 x5 x6 

C
A

R
T

 

2000 
1.005 0.004 

0.1 0.0 0.1 0.1 0.0 0.1 
(1, 1) (0, 0) 

5000 
1 0 

0.0 0.0 0.0 0.0 0.0 0.0 
(1,1) (0,0) 

50000 
1 0 

0.0 0.0 0.0 0.0 0.0 0.0 
(1,1) (0,0) 

200000 
1 0 

0.0 0.0 0.0 0.0 0.0 0.0 
(1,1) (0,0) 

C
T

re
e
 

2000 
2.91 1.834 

49.6 10.3 48.8 52.2 19.3 3.2 
(1, 5) (0, 4) 

5000 
4.588 3.008 

78.8 21.9 73.3 75.0 47.3 4.5 
(2,8) (1,5) 

50000 
16.029 5.137 

100.0 93.7 99.6 99.6 98.0 22.8 
(9,24) (4,6) 

200000 
33.658 5.502 

100.0 99.9 100.0 100.0 100.0 50.3 
(19,49) (5,6) 

a Means presented with 2.5th and 97.5th percentiles 
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Table 4.21: Model 7 (multinomial outcome, categorical inputs) CART, CTree, and 

CHAID outcomes 

a Means presented with 2.5th and 97.5th percentiles 

 

 

 

 

 

 

 

 

 

 
N Leavesa 

Total 

splitting 

variablesa 

Iterations that split on each variable (%) 

  x1 x2 x3 x4 x5 x6 

C
A

R
T

 

2000 
1.896 0.863 

5.8 3.0 27.3 27.8 21.8 0.6 
(1, 5) (0, 3) 

5000 
1.806 0.772 

3.3 1.4 25.3 25.7 21.4 0.1 
(1,5) (0,3) 

50000 
1.849 0.82 

1.8 1.8 28.0 26.9 23.5 0.0 
(1,4) (0,3) 

200000 
1.769 0.752 

0.6 0.8 26.1 24.6 23.1 0.0 
(1,4) (0,3) 

C
T

re
e
 

2000 
5.54 3.277 

36.2 22.2 89.1 88.6 84.1 7.5 
(3, 9) (2, 5) 

5000 
8.722 4.286 

77.8 47.4 97.6 96.4 95.2 14.2 
(5,14) (3,6) 

50000 
32.039 5.654 

100.0 100.0 100.0 100.0 100.0 65.4 
(19,45) (5,6) 

200000 
53.035 5.891 

100.0 100.0 100.0 100.0 100.0 89.1 
(40,65) (5,6) 

C
H

A
ID

 

2000 
7.589 4.193 

57.2 49.2 94.8 96.2 94.3 27.6 
(4, 13) (2,6) 

5000 
11.454 5.012 

87.9 74.9 99.3 98.9 98.7 41.5 
(6, 19) (3,6) 

50000 
38.557 5.821 

100.0 100.0 100.0 100.0 100.0 82.1 
(25, 52) (5,6) 

200000 
57.345 5.911 

100.0 100.0 100.0 100.0 100.0 91.1 
(46,66) (5,6) 
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Table 4.22: Model 8 (multinomial outcome, mixed inputs) CART, CTree outcomes 

 
N Leavesa 

Total 

splitting 

variablesa 

Iterations that split on each variable (%) 

  
x1 x2 x3 x4 x5 x6 

C
A

R
T

 

2000 
2.452 1.311 

31.2 2.3 34.2 33.9 25.8 3.7 
(1, 6) (0, 4) 

5000 
2.247 1.172 

23.6 0.4 34.4 33.1 25.5 0.2 
(1,5) (0, 4) 

50000 
2.091 1.05 

16.3 0.3 32.6 33.8 22.0 0.0 
(1,5) (0, 4) 

200000 
2.114 1.08 

16.5 0.2 34.8 31.8 24.7 0.0 
(1,5) (0, 4) 

C
T

re
e
 

2000 
7.49 3.919 

95.1 27.9 89.9 88.7 82.1 8.2 
(4, 12) (2, 6) 

5000 
12.344 4.683 

99.5 60.2 97.9 97.9 93.5 19.3 
(7,19) (3,6) 

50000 
44.828 5.617 

100.0 100.0 100.0 100.0 100.0 61.7 
(28,60) (5,6) 

200000 
86.055 5.853 

100.0 100.0 100.0 100.0 100.0 85.3 
(60, 107) (5,6) 

a Means presented with 2.5th and 97.5th percentiles 
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Table 4.23: Model 9 (negative binomial outcome, categorical inputs) 

CART and CTree outcomes   

  N Leavesa 

Total 

splitting 

variablesa 

Iterations that split on each variable (%) 

  x1 x2 x3 x4 x5 x6 

C
A

R
T

 

2000 
3.438 2.419 

33.2 9.1 69.8 72.3 55.5 2.0 
(2, 6) (1, 5) 

5000 
3.450 2.447 

30.0 6.3 73.2 73.7 61.4 0.1 
(2,5) (1, 4) 

50000 
3.275 2.275 

23.2 2.9 70.6 72.2 58.6 0.0 
(2,5) (1, 4) 

200000 
3.279 2.278 

23.1 1.2 68.6 75.4 59.5 0.0 
(2,5) (1,4) 

C
T

re
e
 

2000 
6.303 3.707 

69.4 37.0 86.9 89.1 80.1 8.2 
(3, 10) (2, 5) 

5000 
10.077 4.649 

94.0 70.3 95.8 95.0 93.9 15.9 
(5, 16) (3,6) 

50000 
30.498 5.635 

100.0 99.8 100.0 100.0 100.0 63.7 
(18, 44) (5,6) 

200000 
46.187 5.838 

100.0 100.0 100.0 100.0 100.0 83.8 
(29, 61) (5, 6) 

a Means presented with 2.5th and 97.5th percentiles
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Table 4.24: Model 10 (negative binomial outcome, mixed inputs) CART, CTree 

outcomes 

a Means presented with 2.5th and 97.5th percentiles 

 

 N Leavesa 

Total 

splitting 

variablesa 

Iterations that split on each variable (%) 

  x1 x2 x3 x4 x5 x6 

C
A

R
T

 

2000 
4.056 2.52 

71.9 10.9 59.2 61.4 38.1 10.5 
(2, 9) (1, 5) 

5000 
4.129 2.705 

75.5 10.5 64.5 68.2 48.7 3.1 
(2,7) (1, 5) 

50000 
3.894 2.644 

74.7 5.7 64.8 67.2 52.0 0.0 
(2,6) (1, 4) 

200000 
3.801 2.614 

76.4 5.2 64.6 66.2 49.0 0.0 
(2,6) (1,4) 

C
T

re
e
 

2000 
8.401 3.989 

91.9 57.0 83.2 83.8 71.6 11.4 
(4, 14) (2, 6) 

5000 
13.947 4.772 

97.7 82.5 92.8 94.5 91.1 18.6 
(6,23) (3,6) 

50000 
47.354 5.581 

100.0 99.9 100.0 99.9 100.0 58.3 
(21,74) (5,6) 

200000 

88.641 5.855 

100.0 100.0 100.0 100.0 100.0 85.5 (39, 

130) 
(5, 6) 
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Table 4.25: Model 1 (continuous outcome, categorical inputs) random forest outcomes 

N Leavesa 
Variable importancea 

x1  x2  x3  x4  x5  x6  

2000 
90 616 231 651 698 339 72 

(82, 96) (190, 1159) (57, 679) (66, 1820) (66, 1849) (54, 983) (60, 85) 

5000 
96 1465 545 1607 1685 868 81 

(88, 102) (380, 2797) (94, 1734) (124, 4698) (121, 4638) (90, 2544) (68, 95) 

50000 
96 14316 4851 15146 15588 7948 85 

(89, 101 ) (3340, 27892) (518, 16613) (832, 45276) (803, 46735) (428, 24138) (72, 100) 

200000 
95 57416 19919 65800 64650 31567 85 

(88, 100) (13203, 110020) 
(1926, 

63578) 

(2822, 

181636) 

(3346, 

180842) 

(1592, 

98846) 
(71, 99) 

a Means presented with 2.5th and 97.5th percentiles 
 

Table 4.26: Model 2 (continuous outcome, mixed inputs) random forest outcomes 

N Leavesa 
Variable importancea 

x1  x2  x3  x4  x5  x6  

2000 
367 2731 308 642 635 325 552 

(228, 474) (484, 6882) (60, 881) (76, 1778) (78, 1791) (66, 940) (379, 691) 

5000 
669 6429 761 1671 1632 819 1062 

(376, 935) (937, 17104) (126, 2164) (166, 4598) (168, 4530) (137, 2307) (667, 1386) 

50000 

2475 60562 7597 16163 16464 8416 4524 

(1151, 3995) (4298, 161504) (710, 21520) (892, 47476) (941, 46274) (708, 25399) (2319, 6766) 

200000 

4865 239953 31906 63981 63664 32870 9558 

(2151, 8009) 
(12550, 

629907) 
(2139, 90952) (3170, 185378) (3426, 186800) (2005, 97326) (4586, 14714) 

a Means presented with 2.5th and 97.5th percentiles 
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Table 4.27: Model 3 (Common binary outcome, categorical inputs) random forest outcomes 

N Leavesa 
Variable importancea 

x1  x2  x3  x4  x5  x6  

2000 
74 18 8 16 17 11 12 

(61, 85) (11, 28) (5, 13) (7, 37) (7, 38) (6, 22) (8, 17) 

5000 
88 26 12 35 38 21 14 

(74, 98) (15, 44) (7, 21) (10, 82) (10, 86) (8, 50) (9, 21) 

50000 
96 124 51 308 338 166 17 

(89, 101 ) (47, 255) (15, 126) (42, 822) (44, 862) (21, 486) (10, 26) 

200000 
95 442 170 1294 1361 645 17 

(89, 100) (151, 963) (34, 449) (157, 3504) (170, 3360) (58, 1889) (10, 26) 
a Means presented with 2.5th and 97.5th percentiles 
 

Table 4.28: Model 4 (Common binary outcome, mixed inputs) random forest outcomes 

N Leavesa 
Variable importancea 

x1  x2  x3  x4  x5  x6  

2000 
136 112 8 12 13 9 101 

(94, 182) (71, 166) (4, 12) (6, 25) (6, 27) (5, 15) (67, 144) 

5000 
257 226 14 26 27 17 204 

(172, 373) (135, 353) (8, 23) (11, 58) (12, 61) (9, 32) (129, 309) 

50000 
875 938 61 211 223 124 782 

(501, 1452) (497, 1672) (26, 126) (48, 525) (52, 567) (34, 302) (434, 1353) 

200000 
1472 1902 184 822 879 435 1392 

(804, 2547) (943, 3607) (56, 449) (124, 2087) (146, 2234) (72, 1131) (755, 2512) 
a Means presented with 2.5th and 97.5th percentiles 
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Table 4.29: Model 5 (rare binary outcome, categorical inputs) random forest outcomes 

N Leavesa 
Variable importancea 

x1  x2  x3  x4  x5  x6  

2000 
48 4 2 2 2 2 3 

(36, 61) (2, 6) (1, 3) (1, 3) (1, 3) (1, 2) (2, 4) 

5000 
66 4 2 3 3 2 3 

(52, 80) (3, 7) (1, 3) (2, 5) (2, 5) (1, 3) (2, 5) 

50000 
92 9 4 19 21 10 4 

(84, 99) (5, 15) (2, 7) (5, 43) (6, 45) (3, 24) (2, 6) 

200000 
95 25 10 77 82 39 4 

(90, 99) (12, 45) (4, 19) (21, 169) (22, 177) (9, 89) (3, 6) 
a Means presented with 2.5th and 97.5th percentiles 
 

Table 4.30: Model 6 (rare binary outcome, mixed inputs) random forest outcomes 

N Leavesa 
Variable importancea 

x1  x2  x3  x4  x5  x6  

2000 
58 33 1 1 1 1 32 

(41, 79) (22, 47) (1, 2) (1, 2) (1, 2) (1, 2) (21, 45) 

5000 
121 74 3 3 3 2 70 

(84, 167) (50, 103) (1, 4) (1, 4) (2, 4) (1, 3) (48, 97) 

50000 
535 376 10 15 16 11 352 

(332, 838) (227, 594) (5, 16) (7, 28) (8, 31) (6, 17) (217, 549) 

200000 
1025 793 21 54 58 32 712 

(662, 1608) (465, 1248) (10, 37) (19, 112) (21, 118) (13, 65) (429, 1121) 
a Means presented with 2.5th and 97.5th percentiles 
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Table 4.31: Model 7 (multinomial outcome, categorical inputs) random forest outcomes 

N Leavesa 
Variable importancea 

x1  x2  x3  x4  x5  x6  

2000 
84 38 18 23 24 20 29 

(80. 89) (31, 45) (14, 22) (13, 53) (13, 53) (13, 38) (24, 33) 

5000 
94 49 24 45 46 35 35 

(89, 100) (39, 61) (19, 32) (17, 114) (17, 125) (17, 89) (29, 40) 

50000 
94 147 73 403 400 264 41 

(88, 100) (82, 262) (34, 171) (46, 1181) (46, 1193) (33, 849) (34, 48) 

200000 
93 471 220 1577 1548 1030 42 

(87, 99) (213, 914) (66, 623) (173, 4557) (156, 4819) (73, 3295) (34, 49) 
a Means presented with 2.5th and 97.5th percentiles 
 

Table 4.32: Model 8 (multinomial outcome, mixed inputs) random forest outcomes 

N Leavesa 
Variable importancea 

x1  x2  x3  x4  x5  x6  

2000 
225 243 22 27 27 24 227 

(191, 255) (209, 275) (18, 26) (17, 55) (17, 55) (18, 40) (194, 253) 

5000 
420 489 40 59 56 46 450 

(336, 513) (394, 581) (32, 47) (29, 139) (29, 128) (30, 86) (368, 539) 

50000 
1376 2044 135 473 468 299 1672 

(1015, 1910) (1495, 2714) (100, 194) (117, 1296) (109, 1232) (104, 900) (1264, 2238) 

200000 
2323 4438 334 1886 1770 1143 3002 

(1700, 3271) (2921, 6156) (199, 594) (289, 5162) (268, 4986) (214, 3559) (2248, 4130) 
a Means presented with 2.5th and 97.5th percentiles 
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Table 4.33: Model 9 (negative binomial outcome, categorical inputs) random forest outcomes 

N Leavesa 
Variable importancea 

x1  x2  x3  x4  x5  x6  

2000 
88 129 58 138 156 86 79 

(80, 95) (63, 243) (29, 115) (45, 328) (45, 381) (34, 200) (42, 143) 

5000 
95 197 87 330 351 184 89 

(87, 102) (87, 381) (37, 187) (70, 831) (70, 864) (50, 489) (45, 155) 

50000 
95 1190 483 2950 3271 1628 103 

(89, 101) (391, 2495) (120, 1272) (341, 8151) (378, 8718) (135, 4906) (53, 189) 

200000 
94 4429 1702 12409 13415 6264 102 

(88, 99) (1355, 9862) (298, 4556) (1326, 35011) (1405, 34690) (468, 19009) (53, 182) 
a Means presented with 2.5th and 97.5th percentiles 

 
 

Table 4.34: Model 10 (negative binomial outcome, mixed inputs) random forest outcomes 

N Leavesa 
Variable importancea 

x1  x2  x3  x4  x5  x6  

2000 
278 840 62 108 115 69 675 

(193, 171) (396, 1614) (28, 119) (45, 254) (46, 258) (33, 140) (367, 1180) 

5000 
506 1698 119 254 268 151 1336 

(329, 730) (752, 3401) (51, 232) (82, 634) (88, 624) (65, 344) (696, 2487) 

50000 
1754 9022 671 2245 2370 1288 5743 

(895, 2942) (2901, 21228) (204, 1575) (398, 5826) (430, 6085) (264, 3387) (2334, 12256) 

200000 
3146 24544 2428 8783 9571 4798 11732 

(1561, 5339) (6258, 62111) (470, 6204) (1257, 23036) (1307, 24395) (617, 13137) (4425, 26733) 
a Means presented with 2.5th and 97.5th percentiles
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4.5 Run time assessment  
 

To assess feasibility, run times for single analyses of categorical input models with four 

different outcomes were analysed. Results are presented in Table 4.35. Most analyses 

were fairly quick, with run times around 5 minutes or less, and the majority running in 

less than one second. Notably, regression methods for the negative binomial outcome 

took much longer with increasing sample size, with the over-specified regression method 

requiring over 8 hours to be completed.  



 

   

89 

 
 

Table 4.35: Run time (HH:MM:SS) for a single iteration with categorical inputs 

 Method N=2000 N=5000 N=50000 N=200000 
C

o
n
ti
n
u
o
u
s 

CART < 1 sec < 1 sec < 1 sec 00:00:02 

CTree < 1 sec < 1 sec < 1 sec 00:00:01 

Random forest < 1 sec < 1 sec 00:00:04 00:00:29 

Best-fitted regression < 1 sec < 1 sec < 1 sec < 1 sec 

Over-specified 

regression 
< 1 sec < 1 sec 00:00:02 00:00:07 

Cross-classification < 1 sec < 1 sec < 1 sec < 1 sec 

MAIHDA 00:00:03 00:00:05 00:00:42 00:03:32 

B
in

ar
y
 -

 c
o
m

m
o
n
 p

re
v
al

en
ce

 

CART < 1 sec < 1 sec < 1 sec < 1 sec 

CTree < 1 sec < 1 sec < 1 sec < 1 sec 

Random forest < 1 sec < 1 sec 00:00:03 00:00:23 

CHAID < 1 sec < 1 sec 00:00:06 00:00:23 

Best-fitted regression < 1 sec < 1 sec < 1 sec 00:00:02 

Over-specified 
regression 

00:00:01 00:00:02 00:00:22 00:00:48 

Cross-classification < 1 sec < 1 sec < 1 sec < 1 sec 

MAIHDA 00:00:01 00:00:02 00:00:25 00:02:18 

M
u
lt
in

o
m

ia
l 

CART < 1 sec < 1 sec < 1 sec < 1 sec 

CTree < 1 sec < 1 sec < 1 sec 00:00:02 

Random forest < 1 sec < 1 sec 00:00:03 00:00:23  

CHAID < 1 sec < 1 sec 00:00:06 00:00:33 

Best-fitted regression < 1 sec < 1 sec 00:00:07 00:00:29 

Over-specified 

regression 
00:00:13 00:00:34 00:04:45 00:22:04 

Cross-classification < 1 sec < 1 sec < 1 sec < 1 sec 

MAIHDA - - - - 

N
eg

at
iv

e 
b
in

o
m

ia
l 

CART < 1 sec < 1 sec < 1 sec 00:00:02 

CTree < 1 sec < 1 sec < 1 sec 00:00:01 

Random forest < 1 sec < 1 sec 00:00:03 00:00:28 

Best-fitted regression 00:00:02 00:00:03 00:00:25 00:01:45 

Over-specified 

regression 
00:01:19 00:06:21 01:52:22 08:28:12 

Cross-classification < 1 sec < 1 sec < 1 sec < 1 sec 

MAIHDA 00:00:37 00:01:25 00:14:25 00:52:55 
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Chapter 5 

5 Discussion 
 

This section will summarize the capabilities of each method, including ability to create 

accurate predictions for intersectional groupings, and variable identification. 

Recommendations are provided for the application of each method and the context for 

using these methods in descriptive intersectionality is further discussed. Study strengths, 

limitations, and further points for future work are also considered.  

 

5.1 Primary outcome recommendations of methods 

 
Results from this thesis indicate that there are many options for quantitative 

intercategorical-intersectional analyses, and choices may vary based on the dataset being 

analyzed. To begin the discussion of the results, Table 5.1 summarizes what each method  

produces, as initially outlined in the introduction. This can be contrasted with Table 5.2, 

which summarizes results from this study regarding performance for prediction, effect 

size estimation, variable identification, and type 1 error. Variable identification occurs in 

different manners for the different methods: observing results of significance testing for 

single-level regression and MAIHDA, by identifying splitting variables for CART, 

CTree, and CHAID, and by comparing the variable importance measure for random 

forest.  Further description on performance for prediction is described below, while 

further detailed in Section 5.2 are the circumstances under which methods are and are not 

suitable for the other applications described in Table 5.2.  
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Table 5.1 Summary of method characteristics  

  

Regression 

with 
interaction 

terms 

Cross-
classification 

MAIHDA CART CTree CHAID 
Random 

forest 

Create intersection 

predictions 
X X X X X X X 

Hypothesis testing X  X  X X  

Effect size estimates  X  X     

Not cumbersome to 
include high number 

of intersections 

  X X X X X 

Use continuous 
variables without 
categorization 

X   X X  X 

Visual subgroup 

identification 
   X X X  
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Table 5.2 Summary of key study results 

  

Regression 
using 

interaction 
terms 

Cross-

classification 
MAIHDA CART CTree CHAID 

Random 

forest 

Prediction at small 
sample size (n=2,000) N N Y N Y Y Y 

Prediction at  

large sample size 
(n=200,000) 

Y Y Y N Y Y Y 

Validity of estimates- 
1st level effects (and 
interactions)  

M NA M NA NA NA NA 

Variable identification 
(detect variables 

significant or 
important to outcome 

with increasing 
sample size)  

M NA N N Y Y M 

Low type 1 error  Y NA Y Y N N M 

Y – Yes: Generally suitable     N – No: Not recommended     M – Maybe: Okay under certain circumstances  
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With increasing sample size, all methods improved their performance for creating 

accurate predictions, with the exception of CART. At the smaller sample sizes, it appears 

more critical to select appropriate methods for accurate predictions. Table 5.3 highlights 

the top performers for creating accurate intersectional predictions, by outcome type and 

input type as well as sample size. This table includes best-fitted regression only for 

theoretical reasons rather than for practical recommendation, given that researchers 

cannot know that they are specifying this model. Generally, random forest and MAIHDA 

created the most accurate predictions at small sample sizes. Results from this project 

reveal that the most common quantitative intersectional analysis methods, regression with 

interaction terms and cross-classification, are not reliable methods to create accurate 

intersectional estimates when sample size is small, and the number of intersections is 

large. Additionally, over-specified regression is not a viable option at smaller sample 

sizes for binary or negative binomial outcomes, given the convergence issues when 

estimating a large number of coefficients. While Table 5.3 presents recommendations at 

two extreme sample sizes, for most outcomes prediction accuracy of the methods was 

similar between sample sizes 50,000 and 200,000, except for the rare binomial outcome. 

Somewhere between n=5,000 and 50,000 many methods equalize in prediction, although 

that specific point in this instance was not determined.    

 

Table 5.3 Methods that performed well for prediction 

 Categorical 
inputs 

(n=2,000) 

Mixed inputs 
(n=2,000) 

Categorical 
inputs 

(n=200,000) 

Mixed inputs 
(n=200,000) 

Continuous 

outcome 

Best-fitted 

regression 
 

Random forest 
 
MAIHDA 

Random forest CTree 

 
Random forest 

 
Best-fitted 
regression 

 
Over-specified 

regression 
 
Cross-

classification 

CTree 

 
Random 

forest  
 
Cross-

classification 
 

MAIHDA 
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MAIHDA 

Binary 
outcome 

(common) 

Best-fitted 
regression 

 
MAIHDA  
 

Best-fitted 
regression 

 
MAIHDA  

CTree 
 

Random forest 
 
Best-fitted 

regression 
 

Over-specified 
regression 
 

Cross-
classification 

 
MAIHDA 

CTree 
 

Random 
forest 
 

Best-fitted 
regression 

 
Over-
specified 

regression 
 

Cross-
classification 
 

MAIHDA 

Binary 
outcome 
(rare) 

MAIHDA MAIHDA CHAID 
 
CTree 

 
Random forest 

 
Best-fitted 
regression 

 
MAIHDA 

CTree 
 
Random 

forest 
 

Best-fitted 
regression 
 

Over-
specified 

regression 
 
Cross-

classification 
 

MAIHDA 
Multinomial CTree 

 
CHAID 

 
Random forest 
 

Best-fitted 
regression 

CTree  

 
Random forest 

 
Best-fitted 
regression 

CHAID 

 
CTree 

 
Random forest 
 

Best-fitted 
regression 

 
Over-specified 
regression 

 

CTree 

 
Random 

forest 
 
Best-fitted 

regression 
 

Over-
specified 
regression 
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Cross-

classification 

Cross-

classification 

Negative 
binomial 

MAIHDA 
 

Best-fitted 
regression 

MAIHDA CTree 
 

Random forest 
 
Best-fitted 

regression 
 

Over-specified 
regression 
 

Cross-
classification 

 
MAIHDA 

CTree 
 

Random 
forest 
 

Best-fitted 
regression 

 
Over-
specified 

regression 
 

Cross-
classification 
 

MAIHDA 

 

The conclusion that random forest is superior for prediction compared to regression and 

single classification tree methods is in agreement with the existing decision tree 

literature. When conducting secondary data analysis for continuous outcomes, random 

forest has been shown to be superior to linear regression when comparing R-squared and 

root mean squared error. [40] For binary outcomes, while one study found random forest 

and logistic regression to perform similarly for classification [39], other studies have 

found that random forest creates more accurate predictions compared to CART [22, 36, 

79], CHAID [76], and logistic regression [22, 79]. The poor predictive performance of 

CART is a striking result considering the use of CART as the primary decision tree 

method in the current intersectionality literature, and is discussed further in section 5.2.4. 

Results are however in agreement with those found by Venkatasubramaniam et. al. [42] 

where a simulation study found that CART did not improve in accuracy (measured by 

MSE), with increasing sample size beyond n=3,000, unlike CTree.   

 

5.2 Summary and recommendations for each method 
 

5.2.1 Regression (Over-specified) 
 

Over-specified regression models require a cumbersome number of interaction terms 
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when interested in the potential for multiple social positions to experience unique 

intersectional effects, given that researchers cannot know a priori which interactions to 

include and exclude. This study evaluated a variety of over-specified regression models: 

OLS, modified Poisson, multinomial logistic, and negative binomial. Results from this 

study found that across sample sizes, the validity of estimates for main and interaction 

effects estimations were sufficient for models with only categorical input variables. 

Because the mixed input models were created with a non-linear interaction term which 

was not specified in the fitted regression models, prediction of the main effects and 

interactions involved in these interactions were suboptimal. The power to detect variables 

and interaction terms significant to the outcome was also low at small sample sizes, 

which is not surprising given the number of coefficients (64 or 192) being estimated. For 

the interaction terms, sometimes the probability of being detected as significant would 

decrease with increasing sample size, contrary to the expectation that power should 

increase with increasing sample size. A possible explanation is that with increasing 

sample size, the main effects became more likely to be detected, and resultantly lowering 

the probability of the interaction terms to be detected as significant. Hypothetically, we 

might expect that with even greater sample sizes the detection of the higher-level 

interaction terms would also approach 100%. Type 1 error was not an issue at the large 

sample sizes, but at smaller sample sizes the variable X6 could sometimes be detected 

more than 5% of the time. For example, for the multinomial outcome with categorial 

inputs at n=2,000, variable X6 was the detected as significant around 22% of the time 

(see Appendix B). This shows that fitting an over-specified regression does not protect 

results from Type 1 error at smaller sample sizes.  

 

5.2.1.1 Recommendations for application 

 

Overall, over-specified regression is not suggested as a viable option for prediction or 

variable selection, at least at smaller sample sizes when estimating high-dimensional 

intersections, formed with more than 2 or 3 intersectional variables. There are a few 

lessons however to take away from these results. The issues of non-linear effects and 

interactions can be accounted for in regression models, for example using generalized 
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additive models. [77] This can lead to better estimation of non-linear interaction effects, 

and better estimation of the main effects involved in these interactions as well. This is an 

important consideration for intersectionality research, because there is no reason to 

assume that interaction effects will always be linear. Secondly, the issues of poor power 

to detect interactions, and general lack of convergence for these over-specified models, 

could be addressed by applying stepwise regression or backwards selection, to remove 

insignificant coefficients, improve convergence issues, and reduce over-fitting. For 

example via backwards elimination, insignificant variables are removed one by one until 

all remaining variables are significant to the outcome. [78] However, it is cautioned that 

this data-driven approach can result in the selection of variables that have spurious 

associations, or the removal of variables or interaction terms that are actually significant 

to the outcome. [79] This methodology should be applied with caution as it can result in 

overfitting to the sample and make prediction for populations outside of the sample less 

accurate. [79]   

 

5.2.2 Cross-classification 
 

Cross-classification has the advantage of being a simple, easy to understand descriptive 

method for predicting outcomes for intersectional groupings, by simply calculating the 

average value of the outcome in each intersection, with no further adjustment. But when 

looking at multiple intersecting positions, cell sizes run the risk of becoming too small to 

create accurate predictions. With no mechanism to account for the random error that is 

likely with small sample sizes, cross-classification is prone to outliers for continuous and 

count outcomes, or does not have enough events to approximate the true proportions for 

binary and categorical outcomes.  

 

5.2.2.1 Recommendations for application 

Use of cross-classification is best when there are a small number of intersectional 

groupings being created, or a relatively large sample size to reduce the likelihood of 

inaccurate or misleading estimates, especially for small intersections. A viable alternative 

to cross-classification, if the goal is to simply describe each intersectional group, could be 
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a MAIHDA analysis where only the intersection predictions are interpreted.  Both create 

predictions for each intersectional grouping based on the observed sample, but the 

shrinkage of residuals in MAIHDA results in much greater prediction accuracy.  

 

5.2.3 MAIHDA 
 

This study was the first to evaluate MAIHDA for its effectiveness for prediction, and it is 

evident that predictions with shrinkage are effective for improving prediction accuracy, 

even for datasets with small sample sizes.  Regarding validity of the main effect 

estimates, this study verified that the estimates do not follow those of a traditional single-

level regression model with interaction terms, and the stratum-average effects 

interpretation as proposed by Lizotte et. al. [53] is only true for continuous and negative 

binomial regression models. It is unknown what the expected main effect estimate would 

be for binary outcomes. Regarding the power to detect significant main effects, because 

the estimates do not follow the traditional definition, they also were not always 

significant when expected. The type 1 error was however reliably low.   

 

5.2.3.1 Recommendations for application:  
 

Given the good performance for prediction but not for variable effect estimation or 

power, the suggested approach would be to use MAIHDA for prediction and outcome 

mapping, but to not interpret the main effects. For continuous or negative binomial 

outcomes, main effects could technically be interpreted as outlined by Lizotte et. al., but 

even so there is no established definition of what the intercept effect would be. Given that 

the intersectional residuals are to represent any intersectional effects beyond the additive 

model, it is also not recommended to interpret the intersection residuals on their own, 

given that it is unclear what the baseline additive effects mean.  

 

While the main effects are not for interpretation, they should still be included in the 

MAIHDA model, as opposed to a null model being fitted with only the random 

intercepts. This is because of the impact of the main effects on residual shrinkage. Bell et. 

al. [80] have noted that the residuals break the assumption of being independent and 
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identically distributed, and instead may be related to one another since they are 

determined by the main effects. Therefore, the authors assessed if shrinkage is truly able 

to account for multiple testing, by focusing on the significance of residuals. The 

shrinkage formula for the residuals is  

𝑢𝑗 =  𝑟𝑗  × 
𝜎𝑢

2

𝜎𝑢
2 + (

𝜎𝑒
2

𝑛𝑗
)
 

where for intersection j, uj is the shrunken residual, rj is the raw (unshrunken) residual, nj 

is the cell size of the intersection, 𝜎𝑢
2 is the level 2 between-intersection variation, and 𝜎𝑒

2 

is the level one within-intersection variance. Bell et. al. [80] conclude via a simulation 

study that shrinkage is better able to reduce the spurious detection of significant residuals 

if the fitted model includes main effects, because inclusion of the main effects reduces 

the level 2 variance.  They note however that if there are true interaction effects between 

variables, (e.g. a two-way interaction), this variance will not be included in the level 2. 

They suggest that to have optimal shrinkage, interaction effects should be added to the 

model fixed effects (first two-way, three-way, etc.), until level 2 variance reaches zero. If 

through this process all interactions are included until the highest level (e.g. four way), 

and level 2 variance is still greater than zero, then there is an intersectional effect 

occurring between all positions. One problem here is that issues with multiple testing are 

re-introduced when adding more interactions to the fixed effects, but the authors think it 

unlikely that the number of included interactions will reach a point where this is a major 

concern. In comparison to the current study, Bell et. al. [80] focus on significance of 

residuals rather than prediction, but since shrinkage applies to prediction accuracy, it is 

possible that prediction of MAIHDA could also be improved by the systematic inclusion 

of interaction terms. However, prediction without the inclusion of interaction terms 

seemed sufficient for creating accurate predictions for the simulations conducted in this 

study. Regardless, it is at least important to include the main effects in MAIHDA models 

for prediction to maintain shrinkage of the residuals. This is a point worth making 

because other applications of MAIHDA have presented intersection pred ictions from the 

null model, rather than the model including all main effects. [45, 48] 
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One limitation of MAIHDA is that continuous variables must be categorized to be 

included in the formation of the intersectional groups. For example, MAIHDA studies 

have typically split a continuous income variable into tertiles or quartiles. [44] However, 

continuous variables can be kept as continuous, if simply being used to adjust the models 

and resulting predictions, rather than used in the formation of stratum. [46] This assumes 

that the effect of a certain variable remains consistent between all intersections. 

 

Applications of MAIHDA have also extended beyond the original model proposed by 

Evans et. al. [43]. Evans [81] has suggested an update to the MAIHDA method, where 

the intersectional strata are also created with contextual factors, using group-level 

variables. For example, a combination of gender, race, parental education, along with 

neighbourhood- and school-level poverty can be used to create MAIHDA intersectional 

groupings. [81] Another study has used MAIHDA where the second-level effects 

represent the more traditional application of multi-level modelling, by using country as 

the random intercept for multi-country data. [82] Intersections in this case were not 

determined by the first-level effects, but the authors still considered this an application of 

MAIHDA because they calculated the model’s discriminatory accuracy. Our discussion 

of MAIHDA is limited to only when the random intercepts are fully determined by the 

first-level effects, and include no other contextual variables. 

  

5.2.4 CART 

While CART has been the dominant application of decision trees in the intersectionality 

literature thus far, this study found that CART usually performed poorly for both creating 

accurate intersection predictions and variable selection. CART models often d id not split 

at all for binary classification problems, regardless of if outcomes were of a rare or 

common prevalence. These results were surprising given the use of CART in the 

intersectionality literature, to successfully create binary classification models. For 

example, one study with a sample size of less than 10,000 presented a resulting tree with 

eight splitting variables and 13 terminal nodes. [32] Additionally, given that for example 

the previously mentioned study [32] used the same R package and pruning criteria to 
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create CART models as in this study, it is unlikely that the CART model-building criteria 

is the reason for the lack of splitting results in this study. An alternative explanation is 

that results from the literature review differ from those found in this study due to the 

simulation data generation process. The range of effect sizes allowed in the binary 

outcome simulations may not have been enough to trigger splitting for the CART 

algorithm, given that power calculations were centered around what was detectable for a 

regression model, not a CART model. For example, when looking at a study which 

included both a CART and regression model, the main effects split on by the CART 

model often had a higher ratio of effect size to standard error. [31] Further exploration of 

the simulations after the completion of this study have suggested that increasing the 

simulated effect sizes does lead to an increase in splitting, but this remains to be further 

explored. One advantage was that CART did have the lowest type 1 error compared to 

CTree and CHAID. Given the overall poor variable selection, especially for binary 

outcomes but also for other outcome types, CART was effective neither for prediction (at 

small or large sample sizes), or subgroup identification. Potentially, CART may be 

effective if effect sizes are of a larger magnitude, but this threshold would be higher than 

for other decision tree methods or single-level regressions. 

 

5.2.4.1 Recommendations for application 
 

Overall, results from this study do not suggest using CART for prediction of individual 

intersection outcomes. If the primary interest of a user is to look at splitting patterns or 

subgroup identification, using CART models for a single decision tree analysis will likely 

provide a more conservative splitting pattern and fewer subgroups compared to the other 

single decision tree methods, or may result in no splitting at all. If type 1 error is a large 

concern, CART may be the safest decision tree option, however we would still suggest 

contrasting results from CART to other decision tree algorithms or pairing it with another 

type of analysis, such as regression, to obtain a more representative picture of variables 

influencing the outcome. As well, the type 1 error of CART when modelling binary 

outcomes should be further explored when simulated effect sizes are larger 
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5.2.5 CTree and CHAID 

Overall, prediction accuracy for CTree and CHAID was as good as random forest and 

MAIHDA at larger sample sizes (at least n=50,000), and was sufficient, but not as 

accurate, at smaller sample sizes. Splitting patterns were highly similar between CHAID 

and CTree. Splitting by CTree and CHAID was more sensitive than CART, resulting in 

better identification of relevant variables. For subgroup identification, one issue is that 

these methods were likely not correctly identifying all subgroups, given that the number 

of final nodes was lower than expected. For example, while all variables could be used in 

splitting, this does not mean that each variable was split on one another to create every 

unique intersection. While it has been suggested that CTree, under the conditional 

inference framework, would result in less over-fitting and reduce the selection bias of 

splitting on continuous variables [33], both CTree and CHAID resulted in a high type 1 

error, especially with increasing sample size.  This was true for variables with no true 

effect that were continuous or three categories. 

 

5.2.5.1 Recommendations for application 
 

While both methods perform well for prediction and subgroup exploration, especially 

when compared to CART, users should be wary that not all variables included in the tree 

are necessarily relevant to the outcome. For CTree, the issue of high type 1 error may be 

mitigated if with larger sample sizes, a lower p-value is used for the selection process 

(e.g. p<0.01 or p<0.001). Across all outcome types, between n=50,000 and 200,000 there 

was minimal improvement in the selection of variables important to the outcome, but the 

type-1 error continued to increase. Lowering the p-value threshold at least for n=50,000 

and beyond may still allow for sufficient splitting on significant effects, but limit the 

increases in Type 1 error. For CHAID, tuning was not performed in this study, because it 

is not readily available within the R package. However, tuning can be performed using 

the “caret” package [83], and similarly may result in lower type 1 error if thresholds are 

adjusted. However, both these options would have to be further explored.  
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5.2.6 Random forest  
 

Random forest performed very well for creating accurate intersection predictions and was 

a reliable decision tree method for this application. Variable identification using the 

variable importance measure worked well across sample sizes for the continuous 

outcome model with categorical inputs, or binary, multinomial, and negative binomial 

outcomes with categorical inputs at larger sample sizes.  However, the variable 

importance measure appears to fall under a similar bias as has been reported for CART, 

where continuous variables are favoured during splitting. [84] Strobl et. al. [84] found 

that the variable importance measure for the R package “randomforest”, arguably the 

most popular random forest package in R, is biased towards splitting on variables with 

more splitting options, which could be continuous or categorical variables with many 

categories. While this study did not use the package randomforest, the package “ranger” 

does similarly rely on the Gini Index for splitting criteria, which the authors of this paper 

identify as the potential issue.  

 

5.2.6.1 Recommendation for application 

 

While the application of random forest models in the current study functioned well for 

creating predictions, there are a few alternatives to consider if researchers are concerned 

regarding the capacity for variable identification. Strobl et. al. [84] suggest creating 

random forest models using the package “cforest”, which is based on the conditional 

inference framework, and show that the variable importance measure for this algorithm is 

less biased, if also combined with subsampling replacement when creating each 

bootstrapped sample. Alternatively, Altmann et. al. [85] provides a method for correcting 

the variable importance measure bias, without requiring trees be built under the 

conditional inference framework. The adjustment by Altmann et. al. [85] also provides a 

p-value to each variable importance, to improve interpretability when trying to identify 

significant variables.  
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5.2.7 General comments on the application of decision trees  
 

While decision trees do not isolate the effects of any one variable, the visualization 

created by single decision trees such as CART, CTree, and CHAID can accompany 

regression models as seen in the examples in the introduction. [29, 31, 32] Random forest 

also does not create one single decision tree, so visualization would require 

accompaniment by a single decision tree method. The pairing of decision trees with 

regression models may help visualize subgroups, inform interaction terms to be included 

in the model, or also in the case of random forest, inform on which variables to include in 

the regression model. If researchers are interested in centering the analysis around 

differences between certain groups (like male and female), separate decision trees can be 

created for each subsample. [32] One issue with the application of decision trees is that 

splitting on a continuous variable can create hundreds of final nodes, as seen in the CTree 

and random forest results in this study, when dealing with a combination of categorical 

and continuous input variables. This is more categories than can be feasibly visualized or 

are informative for subgroup identification. There is however the possibility to “adjust for 

covariates” by making the outcome the residuals from an adjusted regression model. [42] 

This is a way to include continuous variables and reduce the number of nodes required to 

create an accurate prediction, but only under the assumption that effects of the variable 

are strictly linear with no interaction between any other variables. Finally, it should be 

acknowledged that the application of decision trees in this study was limited to only six 

input variables, differing from the more typical applications of decision trees which use a 

much longer list of input variables. The application of decision trees to intersectionality 

assumes a level of theory-based decision making regarding which variables to input into 

the model, while decision trees in reality are usually given a long list of input variables to 

be narrowed down from a data-driven perspective. Researchers should keep mind the 

balance between theory- and data-driven variable selection when using decision tree 

methods.  
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5.3 Considerations for applying methods to intersectionality 
research 
 

While the previous sections discussed how each method can be individually applied, this 

next section will discuss general considerations in the application of descriptive 

intercategorical-intersectionality. The primary outcome of this study focused on the 

accuracy of predicting outcomes for each intersectional grouping, which can be used to 

understand the extent of a problem in different intersectional groups, and to identify 

groups for further study or further intervention. But before considering these groups 

intervenable from a policy or public health perspective, other considerations need to be 

taken into account.  

 

The first consideration is that variables (e.g. gender, ethnicity) from an intersectional 

perspective are meant to represent structural-level effects, rather than individual effects. 

This is in alignment with the goals of ecosocial theory, to consider the contextual and 

structural factors that each individual interacts with in their environment. [86] 

Exploration of outcomes for marginalized groups can lead to further stigmatization if 

social positions or identities are seen as individual-level variables, by placing the 

responsibility for the outcome on the individual. MAIHDA explicitly frames the second-

level effects as representations of the intersectional or contextual effects for the social 

positions. [47] This thought process can still be applied when looking at variables 

inputted in a decision tree or regression model, by being mindful that they represent a 

greater contextual effect.  

 

The second consideration is the interpretability or relevance of identified subgroups. 

Subgroups created by decision trees to identify risk profiles may not be fully interpretable 

or applicable to actual policy intervention, and may not represent targetable groups that 

relate to identity or community. Either a method may create too many subgroups by 

splitting many times on a continuous outcome (e.g. from the mixed input models, 

creating hundreds of final nodes), or the splitting points for continuous variables are too 

specific to act on. For example, the study by Sridharan et. al. [31] looking at antenatal 
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care usage presented a CART model involving two nodes where the splitting criteria was 

a household wealth index being less than or equal to 4.839 or greater than 4.839. This 

resulted in nodes with outcome proportions of 58.3% and 82.4%. The splitting on 4.839 

is somewhat arbitrary, and although the difference in outcome between the two groups is 

quite large, it is not necessarily a cut-off informative for use in clinical practice or in 

designing public health interventions. The values of these cut-offs may change due to the 

instability of single decision trees, and decision rules could change with small changes in 

the sample data used to build the model. [38] Subgroups created from decision trees 

should not be seen as definitive, and an important step to ensuring validity outside of the 

sample data is to assess if the final decision tree model is still sufficient when applied to a 

different dataset. [41]  

 

The third consideration is to consider not only the average effects in each intersection, 

but also the size of the variation within each one. Merlo et. al. [87] refers to this as the 

“tyranny of averages”, where focus on mean outcomes within a group can potentially be 

harmful or further stigmatizing if the within group variation is disregarded. For example, 

specific interventions for “high risk” groups may be inappropriate if the within group 

variation is large, and a large portion of the members of this subgroup are not at greater 

risk than the general population. To look at the heterogeneity in subgroups created by 

decision trees, terminal nodes can for example be represented by boxplots to visualize the 

outcome distribution in each node. Venkatasubramaniam et. al. [42] created a 

visualization tool to look at the subgroups created by a decision tree, to better understand 

the outcome spread as well as the variables that make up the nodes. While not addressed 

in this study, assessment of discriminatory accuracy is a key component of MAIHDA 

papers, evaluating the heterogeneity within versus between intersections. [44] MAIHDA 

authors have suggested that intersections that are calculated to have a low discriminatory 

accuracy should not be regarded as intervenable targets, because these categories are not 

good at predicting the outcome for all individuals in an intersection, due to a large level 

of heterogeneity. [44]  

 

There is also an important distinction to be made between prediction and causality. The 
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authors Kreatsoulas and Subramanian [41] touch on the challenges faced when 

incorporating machine learning into social epidemiology, and discuss how the goals of 

the analysis should be compatible with the “the underlying mathematical skeleton of the 

optimization theory”. For methods like random forest which are more complex to 

understand mathematically, it may be difficult to directly understand the impact of 

variables on the outcome, so it should not be used with this goal in mind. While machine 

learning methods perform well for creating predictions, they are not designed to 

understand causal relationships, and results of analyses should be interpreted with this in 

mind. Additionally, descriptive studies often work with cross-sectional data that lack 

temporality, and certain variables representing identities or social positions, such as 

gender, or race/ethnicity, are non-intervenable. While the current study assessed methods 

for their ability to create predictions, these predictions were ultimately descriptive.  When 

identifying intervenable factors, such as discrimination, methods such as intersectional 

mediation analysis can be applied to conduct analytic intersectionality research, and 

assess causality. [88] 

 

Finally, researchers should be aware that biases in the data can perpetuate existing 

disadvantage. [41, 91] For example, if the data are not representative of the population 

due to selection or reporting biases, those biases will be maintained in the predictive 

models. Additionally for machine learning methods, there are limitations to how well 

cross-validation can explain model performance and generalizability. Because cross-

validation usually occurs using a validation set that is a random selection from the same 

dataset used to create the model, any biases or underrepresentations in the data will 

remain undetected. One of the solutions for this, as previously mentioned, is to validate 

the completed model against a different dataset. [41] Additionally, a marker of fairness 

when applying machine learning for the purposes of health equity is equal performance. 

[89] Equal performance means that outcomes are estimated with equal accuracy for 

advantaged and disadvantaged groups. The implications of a low sensitivity, specificity, 

or positive predictive value may be harmful and further marginalize already 

disadvantaged groups, by either over- or under-stating the outcome. This can apply not 

only to machine learning methodologies, but to the other methods used in this study for 
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prediction. We attempted to consider equal performance by equally weighting the 

performance of each intersection when calculating accuracy, to avoid prioritizing 

accuracy for larger intersections. 

 

5.4 Survey of method feasibility 

 

This project also served as a survey of the current capabilities of analyses in R. We 

identified a lack of R packages for frequentist multilevel multinomial regression analysis 

for random-intercept only models. Although not used in this study due to the practical 

time constraints of conducting thousands of Bayesian analyses, applications of MAIHDA 

for a multinomial outcome could still be conducted using R using Bayesian analysis 

under the package “brms” [66].  Additionally, application of a modified Poisson multi-

level regression in R is also limited, given the lack of packages allowing for the 

appropriate adjustment of standard errors. Regarding the feasibility of running these 

analyses, none of the analyses required a prohibitive amount of computing resources if 

running a single iteration. When assessing run times for a single analysis, the longest was 

for the over-specified negative binomial regression, but even this at a sample size of 

200,000 could be conducted overnight on a standard PC. The major reason for the 

extensive run time of this analysis was the creation of confidence intervals for all the 

coefficients. Computationally, there is little limitation for researchers to consider these 

alternative methods.  

 

5.5 Strengths and limitations 
 

This study had notable strengths and limitations worthy of discussion. A major strength 

of this study was the use of simulated data to assess the different quantitative methods. 

With simulated data, the true outcomes for each intersection and effect size are known, 

and we are able to assess both the validity and accuracy of estimates. There are many 

studies in the literature which compare methods using secondary data analysis, where the 

true outcomes are unknown. [39, 40, 52] In these cases, it is unknown which method is 

actually approaching the true population estimates, because two methods may hold the 
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same biases or under-/over-fitting issues. As well, each simulated data scenario and 

sample size were iterated 1,000 times with varying effect sizes, and this allows for greater 

confidence that the observed results and patterns are consistent. 

 

This is the first study of its kind to look across the intersectionality literature and assess 

these different methods of varying complexities. While decision tree methods have been 

compared against one another [36, 42], and decision trees and MAIHDA have been 

separately compared to regression analysis [39, 40, 52], no comparison has yet been 

drawn between cross-classification, regression, MAIHDA, and decision trees. We 

focused not only on accuracy of predictions, but also on variable identification and effect 

size estimation, to reflect how these studies are applied and interpreted in the literature. 

This allowed for improved understanding of when and how to apply certain 

methodologies, because methods performed differently for different objectives. For 

example, while this study identified that MAIHDA performs well for the prediction of 

binary outcomes, it was also further identified that the interpretation of the main effects 

of MAIHDA is still unknown for binary outcomes, and do not fall under any previously 

proposed definitions.  

 

An extensive variety of dataset qualities were considered in this analysis, to reflect the 

variety of datasets used in intersectional and population health research. The existing 

simulation studies in this study’s literature review, while varying by sample size and data 

generation processes, were limited to continuous outcomes. [42, 82] This study focused 

on looking across different sample sizes, outcome types and input types, because these 

are all dataset qualities that a researcher will know a priori. We were able to see that 

there is no singular method best-suited for all data scenarios, and provide a more 

comprehensive guide for researchers based on particular dataset qualities and research 

objectives.  

 

There are also certain limitations that should be discussed.  Regarding the process of 

creating the simulations, only five variables had any true effect on the outcome, and all 

five of these variables were included in the fitting of the regression, MAIHDA, cross-
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classification and decision tree models. This differs from the reality of intersectionality 

research, where the selected social identities or positions are likely not the sole 

explanatory variables for an outcome. It is typically expected that there are other 

individual- and structural-level effects not accounted for in the analysis. We did 

incorporate some unknown elements, like correlation between variables X3 and X4 via 

mediation, and non-linear interaction effects, but all variables with an effect on the 

outcome were included when fitting the analysis models, which is an unrealistic 

expectation. Therefore, the accuracy of the intersection-level predictions in the results of 

this study should not be expected to be the true accuracy of the individual-level 

predictions, if conducting analysis on an actual dataset. This simulation represents the 

best-case scenario, and a real-world analysis would have unaccounted for predictors 

increasing the variation between individuals within an intersection.  An additional 

concern regarding the data simulations is that for the simulation of the binary outcome, 

resampling of the variable effect sizes was required if the probability of the outcome 

exceed 100%. Because this was required for approximately half of the 1,000 iterations 

when simulating the common binary outcome with mixed inputs, the random sampling of 

effect size estimates for this data scenario were possibly not as random as for the other 

scenarios. Finally, there are some concerns when using MAPE for the assessment of 

accuracy for the binary and multinomial outcomes. Because the difference between the 

predicted and actual prevalence is standardized over the actual prevalence, MAPE can 

create excessively large errors when predicting outcomes with a very low true 

prevalence, such as the rare binary outcome in this simulation. Therefore, the measure 

may be biased towards favouring methods that perform particularly well for predicting 

outcomes for intersections with smaller outcome prevalences, because the impact of a 

poor prediction for a rare outcome is larger than that for a common outcome.  

 

Regarding the application of the decision tree methods, the way the analyses were 

performed in this simulation are not meant to be definitive or seen as the best possible 

approach. In the building of decision trees, it would be typical to have a fitting process 

involving a training and test dataset, where model fit can be assessed and adjusted using 

different tuning parameters. Due to the size of the study and the requirement for many 
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iterations, our tuning process was limited to only one parameter for CART and random 

forest analysis. The use of different R packages, tuning parameters, and building 

parameters (like stopping rules) may yield different results. Finally, regarding the 

application of MAIHDA in this study, one notable limitation was the use of frequentist 

analysis rather than a Bayesian model with null priors, due to time and computational 

restraints. Although results from a short simulation presented in Appendix A indicate that 

main effect coefficient estimates are similar between the two approaches, it cannot be 

definitively said that the results found in this study regarding the accuracy of predictions 

will be the same under a Bayesian approach. Additionally, this study applied MAIHDA 

for a binary outcome using a multilevel Poisson regression, to mirror the use of the 

modified Poisson for the single-level regression. However, MAIHDA analyses for binary 

outcomes have typically used multilevel logistic regression. It is unclear whether 

differences in these methods would impact the predictive performance of MAIHDA for 

binary outcomes.  

 

5.6 Directions for future work  
 

While the use of simulated data is beneficial for understanding the accuracy and validity 

of estimates, results from this thesis would benefit from a demonstration of each of the 

methods under a real-life dataset, comparing the significant intersections identified by 

MAIHDA, the significant interactions identified by regression models, and the subgroups 

identified by CART, CTree, and CHAID. There were certain issues identified by this 

thesis that could also be further explored in future research. Given the concern when 

creating high-dimensional intersections that smaller intersections will suffer in terms of 

accuracy, further exploration of the predictions can specifically look at which methods 

perform well for predictions for smaller intersections, and if there are any clear patterns 

regarding if outcomes for small intersections are typically over- or under-estimated. This 

studied also identified that the binary effects produced by MAIHDA do not fall under the 

definitions of main effects that have been proposed by either Evans et. al. [52] or Lizotte 

et. al. [53]. Given the quick adaptation of MAIHDA in the intersectionality literature, and 
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the regular analysis of binary outcomes, the interpretation of these main effects should 

undergo further investigation. 

  

In this thesis, the assessment of methods for quantitative intersectionality was strictly 

quantitative. However, as suggested in the discussion, interpretability of the methods also 

plays an important role for researchers choosing to do quantitative intersectional health 

research, given that the end goal of this work is to inform decisions in public health. 

Therefore, future work will include a qualitative analysis, assessing interpretability and 

usefulness of methods. Points to consider under qualitative analysis include how well the 

method is in agreement with intersectionality theory and the goals of intercategorical-

intersectionality, how visible effects are for each intersection (is each intersection equally 

prioritized), and how well a large number of intersections can be incorporated into the 

method. While methods like decision trees may be helpful for visualization, these data-

driven approaches may also provide subgroups that are not useful for further study. There 

are also alternative ways to conduct some of the methods that should be further explored, 

both for their predictive performance and impact on the interpretability of the results. For 

example, alternative methods for random forest analysis that produce less biased variable 

importance measures [86, 87] and provide p-values for the interpretation of the variable 

importance measure [85], may make the random forest method more user-friendly. The 

inclusion of interaction terms in the fixed-effect for MAIHDA as suggested by Bell et. al. 

[80], or the use of Generalized Additive Models for regression [77], may improve 

prediction, but may also contribute to a loss of interpretability. The tradeoff between 

accuracy and interpretability remains to be further explored.  

 

5.7 Conclusion 
 

This study aimed to understand how to best incorporate an intercategorical-intersectional 

perspective into quantitative health research, with a particular focus on methods able to 

assess a large number of high-dimensional intersections at the same time. Methods were 

assessed using simulated data scenarios varying by outcome type, input type, and sample 

size. Assessment of methods included prediction accuracy, identification of variables 
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important or significant to the outcome, and type 1 error. Different methods outperformed 

others, depending on both the data scenario and the objective. All methods improved in 

prediction accuracy with increasing sample size with the exception of CART, which 

often performed poorly at both large and small sample sizes. Random forest and 

MAIHDA generally created the most precise predictions at small sample sizes. CTree 

and CHAID were also generally suitable for creating predictions at small sample sizes, 

but typically less accurate.  

 

CART did not perform well for variable selection for all outcome types, and especially 

for binary outcomes. These results were surprising given the use of CART for binary 

classification problems in the existing intersectionality literature. One explanation for this 

observed difference is that our simulations may not have had large enough effect sizes to 

pass CART’s threshold for splitting. Variable selection was better for CHAID and CTree, 

but consistently faced a high type 1 error. Variable selection by random forest, according 

to the variable importance measure, worked well if input variables were all categorical, 

but if presented with continuous variables would result in a high type 1 error, due to bias 

towards selecting continuous variables. While MAIHDA performed well for prediction, 

MAIHDA coefficients had worse confidence interval coverage and lower power than 

traditional regression models with interaction terms. We identified that the definition of 

main effects for MAIHDA models with binary outcomes is unknown, and requires 

further investigation. 

 

From this study emerge recommendations for researchers looking to use these 

methodologies for quantitative intersectionality research. We recommend that MAIHDA 

can be used for outcome mapping, but researchers should refrain from interpreting the 

main effects, or residual estimates. Random forest is also a viable option to create 

intersectional predictions, but the variable importance measure is biased if looking to 

identify variables significant to the outcome. Alternative random forest methods using 

either the conditional inference framework or corrections to the variable importance 

measure may be of interest to researchers. CTree and CHAID are more likely to identify 

relevant subgroups than CART, but given their high type 1 error, it may be of use to pair 
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these methods with a regression analysis. Finally, while regressions with interaction 

terms and cross-classification are the most common methodologies in the current 

intersectionality literature, they are not recommended for calculating outcomes for a large 

number of intersections, unless sample size is sufficiently large.   

 

The goal of this work is to ultimately create a guide for quantitative intersectionality 

research. Accordingly, future research should combine this quantitative evaluation with a 

qualitative evaluation of the interpretability and usefulness of these different methods, to 

encourage the use of methods that are both statistically sound and in line with the 

theoretical basis of intersectionality research.  
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Appendices 
 

Appendix A. Comparison of MAIHDA by Bayesian versus 
frequentist analysis 
 

100 simulations were conducted for each of the three scenarios below. Sample sizes of 

10,000 were used for each model. The Bayesian multilevel models were calculated using 

the R brms package [66]. Bayesian (B) multilevel models were performed each with 1000 

burn ins, 2000 total. Frequentist (F) multilevel models were created with package lme4, 

using R version 3.5.3. Presented below are 0.025 and 0.975 percentiles of estimates from 

the 100 simulations.  Results are compared against OLS regressions with and without the 

necessary interaction terms, and MAIHDA analyses (Bayesian and frequentist) with and 

without the necessary interaction terms.  

Scenario 1: y = x1 + x2 + x3 + x4 + x5 + x1*x2 

P(x1=1) = 50%; P(x2=1) = 50%; P(x3=1) = 50%; P(x4=1) = 50%; P(x5=1) = 50%; 

Appendix A Table 1. 0.025 and 0.975 percentiles of Scenario 1 from 100 simulations 

 OLS 

OLS with 

interactio
n 

MAIHDA 
(B) 

MAIHDA 
(F) 

MAIHDA 

(B) with 
interactio

n 

MAIHDA 

(F) with 
interactio

n 

Intercept 
(-0.298 , -

0.197) 
(-0.056 , 
0.052) 

(-0.299 , -
0.201) 

(-0.297, -
0.200) 

(-0.056 , 
0.052) 

(-0.056, 
0.052) 

x1 
(1.466 , 

1.538) 

(0.936 , 

1.056) 

(1.459 , 

1.534) 

(1.463, 

1.532) 

(0.936 , 

1.056) 

(0.935, 

1.056) 

x2 
(1.454 , 
1.540) 

(0.948 , 
1.062) 

(1.458 , 
1.539) 

(1.456, 
1.538) 

(0.948 , 
1.062) 

(0.948, 
1.062) 

x3 
(0.970 , 
1.037) 

(0.970 , 
1.040) 

(0.969 , 
1.039) 

(0.969, 
1.041) 

(0.970 , 
1.041) 

(0.970, 
1.041) 
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x4 
(0.966 , 

1.038) 

(0.968 , 

1.036) 

(0.969 , 

1.036) 

(0.969, 

1.036) 

(0.968 , 

1.036) 

(0.968, 

1.036) 

x5 
(0.959 , 

1.042) 

(0.961 , 

1.038) 

(0.960 , 

1.039) 

(0.961, 

1.039) 

(0.961 , 

1.039) 

(0.961, 

1.038) 

x1:x2 - 
(0.924 , 
1.071) 

- - 
(0.923 , 
1.072) 

(0.924, 
1.071) 

 

Scenario 2: y = x1 + x2 + x3 + x4 + x5 + x1*x2 

P(x1=1) = 70%; P(x2=1) = 70%; P(x3=1) = 50%; P(x4=1) = 50%; P(x5=1) = 50%; 

Appendix A Table 2. 0.025 and 0.975 percentiles of Scenario 2 from 100 simulations 

  OLS 

OLS with 

interactio
n 

MAIHDA 

(B) 

MAIHDA 

(F) 

MAIHDA 
(B) with 

interactio
n 

MAIHDA 
(F) with 

interactio
n 

Intercept 
(-0.552 , -

0.441) 
(-0.078 , 
0.064) 

(-0.322 , -
0.208) 

(-0.326, -
0.211) 

(-0.078 , 
0.063) 

(-0.077, 
0.064) 

x1 
(1.663 , 

1.736) 

(0.925 , 

1.082) 

(1.465 , 

1.555) 

(1.461, 

1.554) 

(0.925 , 

1.082) 

(0.925, 

1.081) 

x2 
(1.648 , 
1.749) 

(0.927 , 
1.084) 

(1.461 , 
1.558) 

(1.461, 
1.559) 

(0.927 , 
1.083) 

(0.927, 
1.084) 

x3 
(0.968 , 
1.041) 

(0.97 , 
1.04) 

(0.963 , 
1.039) 

(0.963, 
1.042) 

(0.969 , 
1.039) 

(0.969, 
1.039) 

x4 
(0.967 , 

1.037) 

(0.968 , 

1.036) 

(0.959 , 

1.044) 

(0.961, 

1.042) 

(0.969 , 

1.037) 

(0.967, 

1.036) 

x5 
(0.962 , 
1.045) 

(0.961 , 
1.039) 

(0.96 , 
1.044) 

(0.957, 
1.045) 

(0.959 , 
1.039) 

(0.958, 
1.040) 

x1:x2 - 
(0.889 , 

1.097) 
- - 

(0.889 , 

1.097) 

(0.889, 

1.097) 
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Scenario 3: y = x1 + x2 + x3 + x4 + x5 – 2( x1*x2) 

P(x1=1) = 20%; P(x2=1) = 20%; P(x3=1) = 50%; P(x4=1) = 50%; P(x5=1) = 50%; 

Appendix A Table 3. 0.025 and 0.975 percentiles of Scenario 3 from 100 simulations 

  OLS 
OLS with 
interaction 

MAIHDA 
(B) 

MAIHDA 
(F) 

MAIHDA 

(B) with 
interaction 

MAIHDA 

(F) with 
interaction 

Intercept 
(0.040 , 
0.118) 

(-0.039 , 
0.033) 

(0.432 , 
0.537) 

(0.432, 
0.535) 

(-0.039 , 
0.033) 

(-0.038, 
0.033) 

x1 
(0.546 , 

0.653) 

(0.949 , 

1.053) 

(-0.048 , 

0.077) 

(-0.045, 

0.078) 

(0.949 , 

1.054) 

(0.949, 

1.053) 

x2 
(0.544 , 
0.657) 

(0.949 , 
1.056) 

(-0.051 , 
0.081) 

(-0.051, 
0.085) 

(0.950 , 
1.056) 

(0.949, 
1.056) 

x3 
(0.964 , 

1.040) 

(0.970 , 

1.040) 

(0.947 , 

1.060) 

(0.946, 

1.060) 

(0.967 , 

1.039) 

(0.966, 

1.040) 

x4 
(0.968 , 
1.038) 

(0.968 , 
1.036) 

(0.935 , 
1.057) 

(0.936, 
1.057) 

(0.968 , 
1.037) 

(0.968, 
1.037) 

x5 
(0.957 , 
1.036) 

(0.961 , 
1.038) 

(0.941 , 
1.062) 

(0.943, 
1.058) 

(0.958 , 
1.039) 

(0.959, 
1.038) 

x1:x2 - 
(-2.123 , -

1.889) 
- - 

(-2.122 , -

1.888) 

(-2.123, -

1.889) 
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Appendix B. Over-specified and best-fitted regression results 
 
Appendix B Table 1. Model 1 (continuous outcome, categorical inputs) regression coefficient significance (% of iterations) 

   Over-specified Best-fitted 

   N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept  5.0 4.5 3.6 4.9 5.0 5.1 5.5 5.8 

x1.1  81.7 87.1 98.0 99.8 96.5 97.7 100.0 100.0 

x1.2  80.6 85.8 98.6 99.6 96.4 98.1 100.0 100.0 

x1.3  76.2 87.2 98.5 99.9 96.1 98.2 100.0 100.0 

x2  61.2 76.6 94.7 98.5 93.3 97.0 99.8 100.0 

x3  70.0 84.9 95.6 99.7 96.3 98.2 100.0 100.0 

x4  76.0 86.0 97.6 99.8 97.5 98.6 100.0 100.0 

x5  66.6 81.5 96.4 99.2 95.6 97.6 100.0 100.0 

x6.1  3.9 5.8 4.5 5.2 4.5 6.2 5.0 4.5 

x6.2  5.1 4.1 3.9 4.3 5.7 6.2 4.5 4.7 

x1.1:x2  4.4 4.6 4.7 5.0 6.7 4.2 5.3 5.4 

x1.1:x2  42.1 62.5 92.6 97.6 87.7 93.6 99.4 100.0 

x1.3:x2  42.7 63.8 92.7 98.0 87.2 94.2 99.3 100.0 

x3:x4  5.8 5.7 5.3 5.4 5.4 5.9 4.3 4.0 

x3:x5  5.9 6.3 4.9 5.0 5.9 3.9 4.6 5.6 

x4:x5  4.8 6.1 4.7 5.5 5.0 5.1 4.4 5.1 

x3:x4:x5  22.7 48.1 86.9 94.4 82.0 90.2 98.5 99.8 
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Appendix B Table 2. Model 1 (continuous outcome, categorical inputs) regression coefficient confidence interval coverage (% of 
iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 95.0 95.5 96.4 95.1 95.0 94.9 94.5 94.2 

x1.1 94.3 93.7 97.0 96.0 95.3 94.6 95.1 95.2 

x1.2 95.2 94.4 94.0 96.2 95.1 96.5 95.1 95.6 

x1.3 95.9 94.8 95.6 95.8 94.4 94.5 94.8 95.2 

x2 94.8 95.2 95.4 95.5 94.8 94.3 94.9 96.2 

x3 94.0 94.8 95.6 93.9 94.2 94.9 95.4 95.2 

x4 95.6 94.3 95.4 95.2 94.8 94.2 95.9 96.6 

x5 94.9 94.3 94.9 94.6 95.7 94.9 95.1 94.5 

x1.1:x2 94.9 95.4 95.6 95.5 95.5 94.8 94.1 94.4 

x1.3:x2 94.8 95.1 95.2 95.1 93.9 95.4 95.5 95.3 

x3:x4:x5 94.5 93.4 95.1 94.8 95.2 94.5 95.4 95.1 
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Appendix B Table 3. Model 2 (continuous outcome, mixed inputs) regression coefficient significance (% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 4.0 4.3 4.3 4.0 3.3 4.9 4.8 4.7 

x1 97.5 99.0 100.0 100.0 99.5 100.0 100.0 100.0 

x2 80.0 87.4 96.8 97.7 88.5 94.6 98.8 99.2 

x3 93.9 96.4 100.0 100.0 94.2 96.7 100.0 100.0 

x4 96.2 98.7 100.0 100.0 96.3 99.0 100.0 100.0 

x5 92.2 96.6 99.9 100.0 93.2 97.2 99.8 100.0 

x6 4.7 3.5 3.8 5.6 4.4 4.5 4.9 4.9 

x1:x2 69.5 84.4 97.2 99.7 90.3 95.2 99.5 100.0 

x3:x4 5.0 4.3 4.4 4.3 5.4 5.0 4.6 3.7 

x3:x5 4.3 4.2 4.3 4.8 4.6 4.5 5.1 5.3 

x4:x5 5.2 4.2 4.0 4.6 4.8 4.4 4.3 4.5 

x3:x4:x5 79.9 89.3 98.2 99.7 83.7 91.8 98.4 99.8 

 
Appendix B Table 4. Model 2 (continuous outcome, mixed inputs) regression coefficient confidence interval coverage (% of 

iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 96.0 95.7 95.7 96.0 96.7 95.1 95.2 95.3 

x1 95.7 96.3 97.1 95.9 95.8 95.9 96.0 95.2 

x2 53.8 28.7 6.1 1.4 21.1 8.9 1.2 0.0 

x3 96.0 95.7 95.5 95.7 96.0 94.3 94.6 96.4 

x4 96.0 96.4 94.5 94.9 95.8 95.5 95.1 94.9 

x5 95.0 95.3 96.2 95.7 94.9 95.3 96.2 95.3 

x1:x2 17.3 9.1 1.1 0.1 6.2 2.8 0.0 0.0 

x3:x4:x5 95.0 95.0 95.8 95.8 96.1 94.4 95.2 95.1 
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Appendix B Table 5. Model 3 (common binomial outcome, categorical inputs) regression coefficient significance (% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 97.2 99.6 100.0 100.0 100.0 100.0 100.0 100.0 

x1.1 12.0 29.2 90.4 98.8 59.2 80.6 99.4 100.0 

x1.2 7.5 30.1 88.8 98.0 60.2 81.3 99.6 100.0 

x1.3 18.3 25.8 88.4 98.4 57.6 80.5 99.7 100.0 

x2 17.2 22.3 73.4 93.7 34.8 61.9 97.1 99.7 

x3 15.2 19.3 83.0 98.1 84.1 95.3 100.0 100.0 

x4 10.7 26.5 86.8 98.7 86.8 95.0 100.0 100.0 

x5 30.0 8.8 77.8 95.7 76.2 91.2 100.0 100.0 

x6.1 2.3 5.4 5.1 5.1 5.7 4.5 5.2 6.0 

x6.2 5.2 5.0 3.9 5.9 5.1 5.6 5.6 5.1 

x1.1:x2 10.1 4.5 4.2 4.1 4.3 4.6 5.3 4.0 

x1.1:x2 12.8 22.0 78.0 93.7 41.6 67.1 97.6 99.9 

x1.3:x2 18.6 17.9 78.2 95.1 40.2 65.9 97.3 100.0 

x3:x4 36.0 6.8 5.7 5.7 5.2 5.4 4.4 4.4 

x3:x5 45.2 39.9 5.4 5.3 5.1 4.7 5.2 4.4 

x4:x5 50.5 35.3 4.5 5.6 4.0 5.4 5.7 6.6 

x3:x4:x5 65.8 56.7 9.6 24.5 9.3 14.7 68.4 92.8 
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Appendix B Table 6. Model 3 (common binomial outcome, categorical inputs) regression coefficient confidence interval coverage 
(% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 93.8 95.1 94.4 94.9 94.7 96.0 94.4 94.8 

x1.1 94.9 95.5 94.8 95.5 96.1 95.7 94.4 96.0 

x1.2 96.5 94.6 95.6 95.1 95.3 94.1 94.0 95.4 

x1.3 95.4 95.7 96.3 94.8 94.2 94.6 93.9 95.6 

x2 92.3 95.7 95.0 95.4 95.1 94.9 94.3 95.8 

x3 81.1 94.1 95.0 96.0 95.7 94.5 95.8 94.4 

x4 84.9 96.2 94.6 93.7 94.7 96.2 94.8 94.0 

x5 64.0 92.2 95.2 94.2 94.6 95.5 95.1 95.2 

x1.1:x2 88.5 94.5 94.1 95.3 96.0 94.9 94.9 95.5 

x1.3:x2 82.6 94.1 95.9 94.5 94.8 94.7 95.1 95.2 

x3:x4:x5 34.2 42.9 94.4 94.2 93.6 94.1 96.0 95.2 
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Appendix B Table 7. Model 4 (common binomial outcome, mixed inputs) regression coefficient significance (% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

x1 81.2 94.3 100.0 100.0 93.8 98.7 100.0 100.0 

x2 30.0 51.1 84.9 93.0 47.8 67.7 89.7 96.0 

x3 67.0 87.1 99.9 100.0 76.6 93.1 100.0 100.0 

x4 74.1 88.9 100.0 100.0 81.4 91.7 100.0 100.0 

x5 61.6 83.6 99.4 100.0 70.6 87.1 99.6 100.0 

x6 6.0 6.3 5.0 4.0 4.8 4.5 4.8 4.0 

x1:x2 28.9 52.0 95.1 99.8 47.8 73.8 98.3 99.9 

x3:x4 5.7 4.5 5.3 5.0 4.2 4.4 5.2 4.4 

x3:x5 15.3 8.3 5.6 3.7 6.8 5.3 5.8 4.9 

x4:x5 12.1 5.7 4.4 6.1 5.7 4.0 4.6 5.6 

x3:x4:x5 24.4 13.9 50.0 84.8 11.3 14.1 57.7 88.9 

 
Appendix B Table 8. Model 4 (common binomial outcome, mixed inputs) regression coefficient confidence interval coverage (% of 

iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 95.9 94.4 94.7 95.1 95.2 93.8 93.8 95.7 

x1 95.7 95.0 94.3 95.3 95.6 95.9 93.1 94.5 

x2 90.2 83.3 26.9 7.6 84.6 69.3 14.5 2.6 

x3 94.5 95.9 93.6 95.1 93.1 95.4 95.1 94.8 

x4 95.4 95.4 94.4 95.3 95.3 94.8 94.4 95.0 

x5 93.9 94.8 94.7 94.3 95.2 95.7 95.1 93.5 

x1:x2 47.3 28.2 3.9 0.1 31.6 15.9 1.0 0.0 

x3:x4:x5 78.2 92.6 94.6 94.2 91.1 94.2 93.5 94.4 
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Appendix B Table 9. Model 5 (rare binomial outcome, categorical inputs) regression coefficient significance (% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 96.4 99.6 100.0 100.0 100.0 100.0 100.0 100.0 

x1.1 13.4 4.7 53.9 93.3 16.3 37.8 97.5 100.0 

x1.2 11.4 4.7 51.5 91.5 14.5 35.6 97.1 100.0 

x1.3 12.3 4.3 51.2 92.6 14.0 37.0 97.1 100.0 

x2 31.5 23.4 29.7 69.8 14.2 20.8 84.5 99.1 

x3 36.0 25.1 52.2 90.9 52.2 78.2 99.9 100.0 

x4 32.1 18.3 60.9 94.3 60.4 85.5 100.0 100.0 

x5 54.5 41.3 41.2 85.4 33.0 72.3 99.8 100.0 

x6.1 17.8 2.1 3.9 5.6 4.7 3.6 5.4 4.5 

x6.2 19.1 3.1 3.0 5.8 4.1 5.1 4.9 4.8 

x1.1:x2 38.5 26.4 5.3 3.7 6.4 4.1 5.3 5.0 

x1.1:x2 48.7 40.8 41.7 79.2 17.8 28.4 88.4 99.8 

x1.3:x2 42.7 37.0 39.4 81.9 18.3 28.3 89.0 99.1 

x3:x4 42.3 45.9 3.7 5.1 5.2 5.4 4.4 3.6 

x3:x5 41.8 50.5 29.5 6.4 36.1 13.1 5.1 5.5 

x4:x5 44.8 52.5 20.6 4.3 27.0 10.0 5.1 4.8 

x3:x4:x5 40.2 62.4 40.4 10.3 48.7 21.0 26.6 64.8 
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Appendix B Table 10. Model 5 (rare binomial outcome, categorical inputs) regression coefficient confidence interval coverage (% 
of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 86.7 96.5 95.3 95.4 96.0 95.8 94.8 94.8 

x1.1 87.3 96.9 95.4 96.2 96.1 95.2 94.8 96.1 

x1.2 88.8 97.3 95.7 95.5 95.7 94.6 94.7 94.8 

x1.3 87.9 98.0 95.0 95.9 96.1 95.7 94.2 94.2 

x2 69.5 82.6 95.8 95.3 94.5 95.5 95.1 94.2 

x3 63.7 73.2 97.1 95.3 96.0 94.6 94.4 96.1 

x4 66.9 80.0 95.5 94.0 95.1 95.8 94.4 94.8 

x5 43.3 55.6 95.3 96.0 94.2 95.5 94.0 94.5 

x1.1:x2 50.6 59.6 96.4 96.5 85.8 94.4 96.1 94.8 

x1.3:x2 56.9 63.6 94.6 95.2 85.7 96.0 94.9 94.0 

x3:x4:x5 59.8 37.6 58.9 92.8 50.7 79.7 95.4 94.6 
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Appendix B Table 11. Model 6 (rare binomial outcome, mixed inputs) regression coefficient significance (% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

x1 55.1 79.6 100.0 100.0 75.3 93.7 100.0 100.0 

x2 10.5 15.5 71.0 91.1 16.9 31.5 86.4 96.7 

x3 32.5 64.5 99.1 100.0 40.4 75.1 99.7 100.0 

x4 37.5 69.4 99.7 100.0 48.1 79.9 100.0 100.0 

x5 32.0 50.0 98.6 100.0 25.9 62.1 99.5 100.0 

x6 8.5 6.4 5.3 5.2 5.0 5.1 4.5 4.5 

x1:x2 21.2 24.6 86.5 99.7 24.5 39.5 96.8 100.0 

x3:x4 17.1 6.9 5.1 5.6 6.4 5.5 5.0 4.2 

x3:x5 59.9 31.4 5.8 4.6 44.5 16.8 5.4 5.2 

x4:x5 51.2 23.8 5.1 5.7 32.9 11.5 4.5 5.6 

x3:x4:x5 68.0 44.4 20.0 47.4 50.7 25.3 23.5 61.2 

 
Appendix B Table 12. Model 6 (rare binomial outcome, mixed inputs) regression coefficient confidence interval coverage (% of 

iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 95.2 95.1 95.2 95.1 94.5 95.3 95.8 95.9 

x1 91.8 95.4 95.2 95.5 92.9 94.3 95.5 95.1 

x2 92.8 91.7 68.1 25.1 94.0 89.1 49.5 11.0 

x3 90.2 93.6 95.5 94.7 95.6 95.7 94.7 94.9 

x4 90.4 93.1 95.4 94.5 94.9 94.2 94.3 96.1 

x5 81.6 93.0 95.1 94.5 92.7 95.3 96.2 94.9 

x1:x2 65.3 49.2 9.5 0.6 57.4 36.0 2.3 0.0 

x3:x4:x5 32.4 57.2 93.9 94.2 49.1 75.6 95.3 93.9 
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Appendix B Table 13. Model 7 (multinomial outcome y=2, categorical inputs) regression coefficient significance (% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 63.8 97.9 100.0 100.0 100.0 100.0 100.0 100.0 

x1.1 30.0 7.3 47.7 90.5 49.0 78.7 99.9 100.0 

x1.2 32.3 5.8 46.2 90.1 47.7 77.4 100.0 100.0 

x1.3 30.6 6.7 46.9 90.1 46.8 78.8 100.0 100.0 

x2 74.0 33.6 15.3 60.0 20.4 44.7 99.5 100.0 

x3 29.5 23.6 79.0 98.1 63.8 83.5 100.0 100.0 

x4 24.0 23.9 82.4 98.8 69.1 87.9 100.0 100.0 

x5 39.3 23.6 73.5 95.7 56.4 78.3 99.8 100.0 

x6.1 21.7 3.3 5.4 3.8 5.8 4.2 4.9 5.2 

x6.2 22.3 3.2 4.1 5.5 6.3 4.5 4.8 5.3 

x1.1:x2 88.9 60.1 4.2 4.1 4.7 4.3 5.9 5.0 

x1.1:x2 85.5 48.6 36.9 72.6 36.6 59.3 99.1 100.0 

x1.3:x2 85.3 48.3 36.1 73.3 35.8 63.8 98.3 100.0 

x3:x4 29.9 6.3 4.3 4.6 4.9 4.6 5.3 4.8 

x3:x5 66.6 16.8 4.8 4.0 4.7 4.9 4.6 5.6 

x4:x5 58.2 10.6 4.8 4.1 5.2 4.6 5.5 5.3 

x3:x4:x5 76.3 21.2 13.6 36.2 9.6 17.3 79.2 98.9 
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Appendix B Table 14. Model 7 (multinomial outcome y=2, categorical inputs) regression coefficient confidence interval coverage 
(% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 84.3 96.8 95.7 95.3 94.2 95.5 95.0 93.4 

x1.1 70.5 94.6 94.9 96.5 95.3 94.1 95.9 93.7 

x1.2 67.5 95.6 95.5 95.1 95.6 95.3 94.9 94.1 

x1.3 69.3 95.1 94.3 95.8 93.8 94.3 95.1 95.3 

x2 25.7 64.1 96.3 96.5 96.0 95.4 95.9 95.1 

x3 75.6 94.8 95.4 95.9 94.2 94.5 94.3 93.4 

x4 80.9 95.4 95.6 95.5 96.0 93.6 95.2 95.2 

x5 63.8 93.7 95.2 95.6 95.3 95.1 94.1 94.6 

x1.1:x2 14.2 51.7 95.6 96.0 94.6 94.9 95.3 95.6 

x1.3:x2 14.9 51.1 95.8 95.8 95.3 94.7 94.8 95.6 

x3:x4:x5 23.8 78.7 95.8 95.4 95.3 95.3 95.1 94.6 
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Appendix B Table 15. Model 7 (multinomial outcome y=3, categorical inputs) regression coefficient significance (% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 93.4 99.9 100.0 100.0 100.0 100.0 100.0 100.0 

x1.1 29.3 6.5 46.4 90.3 51.5 81.5 100.0 100.0 

x1.2 32.1 5.9 49.4 90.0 48.2 79.6 100.0 100.0 

x1.3 30.8 8.2 46.5 91.2 49.7 82.0 100.0 100.0 

x2 73.2 33.9 16.2 63.5 21.3 47.3 98.8 100.0 

x3 29.7 25.3 78.2 97.3 62.8 83.1 100.0 100.0 

x4 23.9 25.3 83.3 99.0 70.4 85.5 100.0 100.0 

x5 37.7 24.7 75.1 97.0 58.8 78.3 99.9 100.0 

x6.1 21.6 3.7 5.6 3.9 5.3 5.3 5.4 6.3 

x6.2 22.0 3.4 4.5 5.7 6.9 6.1 5.0 6.4 

x1.1:x2 87.9 60.3 4.9 4.8 4.5 4.4 5.5 3.8 

x1.1:x2 86.1 48.7 35.8 73.4 37.8 65.2 98.6 100.0 

x1.3:x2 84.4 48.5 37.0 71.9 41.8 68.3 98.9 100.0 

x3:x4 27.6 5.7 4.7 6.0 6.5 5.4 4.8 5.9 

x3:x5 60.7 11.5 3.9 4.0 5.3 4.7 4.4 3.9 

x4:x5 51.5 9.6 4.7 3.5 5.1 5.2 3.7 5.6 

x3:x4:x5 70.6 15.5 14.4 42.8 11.1 19.5 83.8 99.6 
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Appendix B Table 16. Model 7 (multinomial outcome y=3, categorical inputs) regression coefficient confidence interval coverage 
(% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 84.6 97.5 94.4 95.7 93.5 95.4 94.7 93.6 

x1.1 70.7 95.6 94.8 95.0 94.6 92.9 95.7 95.4 

x1.2 68.1 96.5 94.9 94.8 94.9 94.9 95.0 94.4 

x1.3 69.6 95.5 94.7 95.0 94.5 95.5 97.3 95.0 

x2 26.3 64.2 96.5 96.9 95.9 94.5 95.4 96.0 

x3 77.0 95.9 94.6 95.7 94.2 94.7 95.1 93.1 

x4 81.2 96.7 95.5 95.2 92.9 94.5 95.6 95.3 

x5 66.6 94.0 94.9 95.6 95.0 95.3 95.6 94.2 

x1.1:x2 13.5 51.9 96.0 96.1 94.8 94.8 95.0 96.1 

x1.3:x2 16.0 51.8 95.7 96.1 95.2 95.2 96.1 95.7 

x3:x4:x5 29.6 84.8 96.1 95.0 94.6 95.0 95.0 95.5 
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Appendix B Table 17. Model 8 (multinomial outcome y=2, mixed inputs) regression coefficient significance (% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

x1 48.5 81.4 100.0 100.0 98.7 99.9 100.0 100.0 

x2 3.3 13.5 49.7 77.2 26.6 47.0 86.7 92.8 

x3 58.3 84.3 100.0 100.0 68.1 88.6 100.0 100.0 

x4 63.5 85.4 100.0 100.0 71.8 88.9 100.0 100.0 

x5 48.7 74.7 99.6 100.0 57.9 82.4 100.0 100.0 

x6 4.9 4.3 5.1 5.2 5.1 4.7 4.8 4.9 

x1:x2 11.7 20.7 67.3 89.0 38.5 66.2 96.8 99.8 

x3:x4 5.5 4.8 5.1 6.0 4.9 5.2 4.9 6.0 

x3:x5 5.8 5.3 4.7 6.1 4.8 5.3 4.2 5.6 

x4:x5 5.6 4.2 4.3 4.8 5.0 5.3 5.3 6.0 

x3:x4:x5 10.3 15.7 74.6 98.5 10.4 17.2 80.2 99.2 

 
Appendix B Table 18. Model 8 (multinomial outcome y=2, mixed inputs) regression coefficient confidence interval coverage (% of 

iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 95.4 94.9 94.1 94.0 95.1 95.9 95.1 93.3 

x1 95.5 95.9 95.3 95.0 95.6 93.9 94.7 94.8 

x2 94.2 89.2 48.7 14.3 75.7 50.7 4.8 0.0 

x3 94.7 94.8 93.8 94.3 95.2 95.1 94.9 94.0 

x4 94.6 94.8 95.0 94.3 96.7 95.4 95.1 94.9 

x5 95.2 94.6 94.4 95.1 95.4 94.2 94.8 93.9 

x1:x2 84.0 63.7 9.9 0.0 37.1 13.6 0.0 0.0 

x3:x4:x5 93.9 95.3 93.4 94.1 94.3 94.8 94.4 93.4 
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Appendix B Table 19. Model 8 (multinomial outcome y=3, mixed inputs) regression coefficient significance (% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

x1 50.6 81.3 100.0 100.0 98.2 100.0 100.0 100.0 

x2 2.9 13.2 53.1 75.6 31.2 51.2 85.7 91.9 

x3 58.7 83.5 100.0 100.0 69.6 89.1 100.0 100.0 

x4 67.8 86.7 100.0 100.0 74.0 90.2 100.0 100.0 

x5 52.0 75.8 100.0 100.0 65.1 83.3 100.0 100.0 

x6 4.2 4.6 5.4 5.5 4.2 4.2 5.8 6.5 

x1:x2 11.9 23.3 68.4 89.4 45.7 72.3 97.6 100.0 

x3:x4 4.7 5.1 4.7 6.8 5.5 5.5 5.2 5.9 

x3:x5 4.9 6.1 4.6 5.0 5.2 5.5 4.8 4.2 

x4:x5 5.0 5.8 5.1 4.2 4.6 6.1 4.3 5.1 

x3:x4:x5 10.4 16.8 79.3 99.5 10.5 21.9 86.3 99.9 

 
Appendix B Table 20. Model 8 (multinomial outcome y=3, mixed inputs) regression coefficient confidence interval coverage (% of 

iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 95.2 94.9 93.6 95.5 95.7 95.0 94.9 93.8 

x1 95.4 94.6 95.5 95.3 94.5 94.9 93.9 94.5 

x2 94.0 89.1 46.6 15.3 72.6 48.7 4.2 0.0 

x3 94.3 95.3 94.2 93.9 94.5 94.7 94.7 94.1 

x4 94.2 94.9 94.3 95.2 94.8 94.3 95.0 94.4 

x5 94.9 95.8 95.4 94.3 95.7 95.4 95.3 94.7 

x1:x2 86.0 64.3 9.5 0.2 31.4 10.1 0.0 0.0 

x3:x4:x5 93.9 94.1 95.2 96.0 94.2 94.4 95.7 95.1 
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Appendix B Table 21. Model 9 (negative binomial outcome, categorical inputs) regression coefficient significance (% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 5.7 6.1 5.3 4.9 4.5 5.1 4.1 5.2 

x1.1 25.6 40.5 92.8 99.4 78.6 90.0 100.0 100.0 

x1.2 24.7 41.3 91.5 99.6 78.6 90.3 99.9 100.0 

x1.3 18.9 41.1 91.6 99.6 75.3 89.8 100.0 100.0 

x2 15.4 21.4 77.6 95.6 51.3 76.1 99.0 100.0 

x3 20.3 51.0 91.0 98.8 88.4 96.4 100.0 100.0 

x4 28.2 55.2 92.3 99.1 90.8 95.3 100.0 100.0 

x5 12.3 39.0 88.9 97.6 84.0 92.9 100.0 100.0 

x6.1 4.4 6.3 5.1 4.8 4.1 5.2 6.1 5.4 

x6.2 7.0 6.0 4.2 5.4 4.6 4.4 5.6 4.8 

x1.1:x2 10.1 6.4 5.0 6.2 6.2 4.2 3.3 6.4 

x1.1:x2 18.5 30.0 80.5 94.6 56.7 77.8 98.1 100.0 

x1.3:x2 11.5 29.4 79.2 93.2 58.4 76.2 97.7 100.0 

x3:x4 5.3 3.4 4.7 5.8 4.5 4.0 5.5 5.1 

x3:x5 2.2 3.4 4.8 4.4 5.4 6.1 4.9 4.8 

x4:x5 2.2 3.3 5.2 5.1 4.4 4.7 5.0 4.7 

x3:x4:x5 1.8 4.2 19.2 49.1 15.3 29.8 86.8 98.6 
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Appendix B Table 22. Model 9 (negative binomial outcome, categorical inputs) regression coefficient confidence interval coverage 
(% of iterations) a  

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept -  100.0 94.7 95.1 95.6 94.8 95.7 94.8 

x1.1 - 100.0 95.3 95.6 95.6 96.3 96.0 95.6 

x1.2 - 100.0 95.0 95.7 95.2 96.2 96.3 96.6 

x1.3 - 100.0 95.5 96.0 94.3 94.9 96.1 95.6 

x2 - 100.0 96.0 95.9 94.2 95.7 96.0 96.1 

x3 - 100.0 94.6 93.8 95.9 94.2 95.8 95.5 

x4 - 100.0 94.1 95.8 95.9 96.0 95.8 94.5 

x5 - 100.0 94.7 94.8 95.5 94.9 95.4 96.0 

x1.1:x2 - 100.0 94.1 95.6 94.8 96.2 94.5 94.1 

x1.3:x2 - 100.0 95.2 95.4 94.5 95.0 94.1 94.4 

x3:x4:x5 - 100.0 94.3 93.3 94.3 94.7 96.0 95.9 

 
a at N=2000, confidence interval formation failed 
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Appendix B Table 23. Model 10 (negative binomial outcome, mixed inputs) regression coefficient significance (% of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 5.6 4.8 5.0 5.3 4.5 5.5 5.2 4.7 

x1 90.4 97.4 100.0 100.0 98.1 99.7 100.0 100.0 

x2 35.6 58.5 87.8 95.1 61.4 77.8 92.9 97.0 

x3 81.8 91.8 100.0 100.0 85.7 94.0 100.0 100.0 

x4 84.6 93.5 100.0 100.0 88.2 95.1 100.0 100.0 

x5 75.5 90.9 99.8 100.0 79.2 92.9 99.9 100.0 

x6 5.7 5.5 4.6 4.5 5.7 4.1 4.9 4.9 

x1:x2 31.7 57.0 95.0 99.6 60.5 82.7 99.1 100.0 

x3:x4 5.7 6.6 4.3 5.0 4.7 6.3 4.2 5.2 

x3:x5 4.9 6.0 5.8 4.5 5.9 5.6 4.6 5.6 

x4:x5 5.7 5.3 4.7 4.6 4.4 5.4 3.9 5.5 

x3:x4:x5 15.9 23.6 79.6 95.5 16.7 27.4 85.5 97.3 

 
Appendix B Table 24. Model 10 (negative binomial outcome, mixed inputs) regression coefficient confidence interval coverage (% 

of iterations) 

  Over-specified Best-fitted 

  N = 2000 N = 5000 N = 50000 N = 200000 N = 2000 N = 5000 N = 50000 N = 200000 

Intercept 94.4 95.2 95.0 94.7 95.5 94.5 94.7 95.3 

x1 94.8 95.2 95.3 95.7 95.5 95.7 96.2 94.6 

x2 87.1 74.0 22.3 6.0 75.0 53.4 7.6 1.1 

x3 93.6 94.6 93.6 95.4 95.2 94.7 94.2 95.2 

x4 94.4 95.9 94.5 95.2 95.3 95.6 95.0 93.8 

x5 93.7 94.8 95.1 95.3 94.0 95.5 95.6 95.8 

x1:x2 46.4 24.5 2.1 0.0 26.6 9.9 0.5 0.0 

x3:x4:x5 92.0 94.0 94.3 94.3 94.2 94.2 94.9 94.3 
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Appendix C. MAIHDA results for models with mixed inputs 
 
Appendix C Table 1. Model 2 (Continuous outcome, mixed inputs) MAIHDA 
coefficient significance 

  Intercept x1 x2 x3 x4 x5 x6 

Expected 0 100 100 100 100 100 0 

N = 2000 71.1 95.9 85.8 89.5 89.1 86.3 2.1 
N = 5000 80.2 96 89.4 89.4 90.4 89.6 1.8 

N = 50000 85.4 98.5 92.1 90.5 89.4 90 4.4 
N = 200000 88.2 98.9 91.8 89.6 90 90.3 5.5 

       

 

Appendix C Table 2. Model 2 (Continuous outcome, mixed inputs) MAIHDA 
confidence interval coverage by definition 1 (typical additive effects) 

  Intercept x1 x2 x3 x4 x5 

N = 2000 28.9 26.5 30 29.9 36.7 14.7 
N = 5000 19.8 13 21.3 18.4 22.6 11.6 
N = 50000 14.6 3.6 11.7 12.8 14 11.3 

N = 200000 11.8 1.2 12.5 9.9 10 9.2 
       

 
Appendix C Table 3. Model 4 (Common binary outcome, mixed inputs) MAIHDA 

coefficient significance 

  Intercept x1 x2 x3 x4 x5 x6 

Expected 100 100 100 100 100 100 0 

N = 2000 100.0 88.5 36.5 82.7 84.7 71.9 2.5 

N = 5000 100.0 95.1 57.1 93.8 92.5 86.4 2.6 
N = 50000 100.0 99.1 85.1 99.1 99.2 96.5 1.3 
N = 200000 100.0 97.8 89.6 98.1 99.1 97.0 1.5 

       

 
Appendix C Table 4. Model 4 (Common binary outcome, mixed inputs) MAIHDA 
confidence interval coverage by definition 1 (typical additive effects) 

  Intercept x1 x2 x3 x4 x5 

N = 2000 96.9 90.2 79.7 94.8 96.0 93.0 
N = 5000 97.0 70.8 61.4 95.9 94.7 89.4 

N = 50000 88.6 11.6 10.1 78.8 80.9 49.7 
N = 200000 53.8 0.6 2.4 43.9 48.8 24.1 
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Appendix C Table 5. Model 6 (Rare binary outcome, mixed inputs) MAIHDA 
coefficient significance 

  Intercept x1 x2 x3 x4 x5 x6 

Expected 100 100 100 100 100 100 0 

N = 2000 100.0 69.1 11.1 61.7 61.7 42.5 3.6 
N = 5000 100.0 90.0 22.6 86.0 87.3 72.5 4.4 

N = 50000 100.0 100.0 70.0 100.0 100.0 99.7 3.6 
N = 200000 100.0 100.0 86.7 100.0 100.0 100.0 1.9 

       

 

Appendix C Table 6. Model 6 (Rare binary outcome, mixed inputs) MAIHDA 
confidence interval coverage by definition 1 (typical additive effects) 

  Intercept x1 x2 x3 x4 x5 

N = 2000 94.3 93.9 92.1 95.7 94.7 95.1 
N = 5000 96.9 89.3 83.5 95.7 95.6 93.0 
N = 50000 96.8 31.4 20.6 91.8 94.1 84.6 

N = 200000 93.3 1.6 1.8 80.1 85.1 53.2 

 

 
Appendix C Table 7. Model 10 (Negative binomial outcome, mixed inputs) MAIHDA 
coefficient significance 

  Intercept x1 x2 x3 x4 x5 x6 

Expected 0 100 100 100 100 100 0 

N = 2000 6.4 95.6 56.4 88.9 90.6 80.6 4.8 
N = 5000 9.7 97.5 73.3 94.9 95.6 90.1 3.9 

N = 50000 47.1 98.7 87.1 96.5 97.9 94.4 2.0 
N = 200000 72.7 98.8 89.6 96.2 97.2 95.5 2.0 

       

 

Appendix C Table 8. Model 10 (Negative binomial outcome, mixed inputs) MAIHDA 
confidence interval coverage by definition 1 (typical additive effects) 

  Intercept x1 x2 x3 x4 x5 

N = 2000 93.6 78.7 69.3 92.6 94.3 83.9 
N = 5000 90.3 55.6 45.1 91.1 90.8 71.1 
N = 50000 52.9 5.1 6.0 45.4 52.0 24.3 

N = 200000 27.3 1.0 3.7 19.9 21.4 13.9 
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Software knowledge:  • Advanced: SAS, STATA, and R     • Intermediate: Visual Basic  
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Teaching and Leadership Experience:  

 

Teaching Assistant (Introduction to Epidemiology 2200)              2019, 2020 
o Taught one-hour weekly tutorials to undergraduate students, marked assessments and 

responded to student inquiries regarding course content 

 

Western Epidemiology and Biostatistics Student Council                           2017-2020 
o Co-Chair (Sept. 2019 – Apr. 2020): Oversee operations of council, responsible for 

overall coordination of events and liaising between staff and faculty, advocated for 

student body at faculty meetings 

o Special Events Coordinator (Sept. 2018 – August 2019): Organized and facilitated 

four-day workshop series, coordinating between presenters and attendees 

 
Research Mentor                 2018-2019 

(Western U: Canadian Coalition for Global Health Research) 
o Mentored 6 undergraduate students to conduct a health research project and present 

at the Western Student Research Conference (Title: An exploratory study of the 

relationship between lack of access to healthcare and the prevalence of COPD, 

cardiovascular disease, and hypertension in Canada) 

 

Publications and Presentations:         

 
Publications 

Bauer GR, Mahendran M, Braimoh J, Alam S, Churchill S. Identifying Visible 
Minorities or Racialized Persons on Surveys: Can We Just Ask?. Submitted to Canadian 
Journal of Public Health. Under revisions.  

 
Lizotte D, Mahendran M, Churchill SM, Bauer GR. Math versus meaning in 

MAIHDA: A commentary on multilevel statistical models for quantitative 
intersectionality. Social Science & Medicine. 2019 Aug 24:112500. 
 

Mahendran M, Speechley K, Widjaja E. Systematic review of unmet healthcare needs 
in patients with epilepsy. Epilepsy & Behavior 2017; Oct (75):102-109.  

 
Poster presentations 
Mahendran M, Bauer G, Lizotte D. Evaluating quantitative methods for 

intersectionality research: a simulation study. Poster presented at: 2019 Canadian 
Society of Epidemiology and Biostatistics Biennial Conference; 2019 May 13-15; 

Ottawa, ON. (poster presented by Mayuri Mahendran) 
 

Mahendran M, Sarma S. Trends in socioeconomic inequality of fruits and vegetables 

consumption in Canada. Poster presented at: Canadian Research Data Centre Network 
2018 National Conference; 2018 Oct 18-19; Hamilton, ON. (poster presented by Mayuri 

Mahendran) 
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Awards: 
 

CIHR Canadian Graduate Scholarship ($17500) – offered but declined                 2019 
Ontario Graduate Scholarship ($15000)          2019  

Western Graduate Research Scholarship ($3000 annually)                                 2018-2020 
Western Gold Medal recipient for Epidemiology and Biostatistics       2018 

o For highest standing in graduating class  

Dr. Karen Campbell Undergraduate Award ($500)                               2018 
o Departmental award for honours thesis project          

Four Year Continuing Admission Scholarship ($10000)        2013 – 2015, 2017 

Canadian League Against Epilepsy Undergraduate Summer Studentship ($5000)      2016 
Scinapse Undergraduate Science Case Competition: Bronze Recipient                 2015 
Western's 125th Anniversary Alumni Award ($1500)                    2014 

Laurene Paterson Estate Scholarship ($1600)                         2014 
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