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Abstract
The fundamental importance of beliefs about future outcomes in decision-making suggests

that an accurate characterization of these beliefs is important for understanding individuals’
behavior and for evaluating the counterfactuals typically needed for policy analysis. Tradition-
ally, many researchers have been using some form of Rational Expectations (RE) assumptions
to characterize these beliefs. However, empirical evidence suggests that the RE assumption
might not hold in many contexts, and that incorrectly imposing the RE assumption can lead
to biased policy predictions. Motivated by these findings, I explore alternative approaches to
conducting economic analysis without imposing the RE assumption.

Chapters 2 and 3 of my thesis, which are co-authored with Todd and Ralph Stinebrickner,
utilize unique survey expectations data from the Berea Panel Study (BPS) to characterize col-
lege students’ beliefs about various future outcomes. Specifically, in Chapter 2, we characterize
how much uncertainty about post-college income is present for students at college entrance and
how quickly this uncertainty is resolved. Measuring an individual’s income uncertainty by the
variance of the distribution describing her beliefs about earnings at age 28, we find that, on
average, students resolve roughly one-third of the income uncertainty present at the time of
entrance during college. Consistent with the finding that the majority of initial income uncer-
tainty remains at the end of college, We find that uncertainty about college GPA and field of
study, which are the two primary income-influencing factors that are realized in college, can
only account for about 19% to 27% of students’ initial income uncertainty.

Chapter 3 provides a concrete example that illustrates the importance of quantifying the
resolution of students’ (income) uncertainty during college. By entering college, students have
the option to decide whether to remain in college after receiving relevant new information. We
show that the value of this option of receiving new information is determined by a student’s
dropout probability and how much uncertainty is resolved before the decision is made. Taking
advantage of longitudinal expectations data from the BPS, we find that students have accu-
rate perceptions about the amount of income uncertainty that is resolved during college but
vastly underestimate the probability of dropping out of school. Consequently, on average, they
underestimate this option value by 65%.

Chapter 4 proposes an alternative, model-based approach to jointly nonparametrically iden-
tify individuals’ beliefs and the decision rule, which is a function that maps beliefs to decisions.
My method can be applied to signal-based learning models, where individuals use signals to
update their beliefs about an unknown permanent factor and repeatedly make decisions based
on these beliefs. The econometrician observes individuals’ decisions and the signals they re-
ceive at each period. Using data from the BPS, I apply my method to estimate the relationship
between college students’ study time and their beliefs about academic productivity as measured
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by the ratio of semester GPA to study time. I find that expectations about own academic pro-
ductivity have a negative effect on study time. The RE assumption is rejected at a 10% level for
a subgroup of students. Incorrectly imposing the RE assumption would lead to a substantially
larger estimate of the effect of expectations about academic productivity on college study time.

Keywords: Rational Expectations assumption, expectations data, learning models, college
education, income uncertainty, uncertainty resolution, option value

iii



Summary for Lay Audience

People’s decisions often depend on their beliefs about various future outcomes. For ex-
ample, high school graduates make college attendance decisions partly based on their beliefs
about the return to college education. Consequently, accurate characterization of these beliefs
is of fundamental importance for understanding how decisions are made. The most commonly
used approach is to impose the Rational Expectations (RE) assumption. However, empirical
evidence suggests that the RE assumption might not hold in many contexts. Motivated by these
findings, my thesis explores alternative approaches to conducting economic analysis without
imposing the RE assumption.

Chapters 2 and 3 (co-authored with Todd Stinebrickner and Ralph Stinebrickner) utilize
unique survey expectations data from the Berea Panel Study (BPS) to characterize college stu-
dents’ beliefs about various future outcomes. In Chapter 2, we find that students are quite
uncertain about post-college income at the time of entrance. The majority of this initial income
uncertainty remains unresolved by the end of college. A large fraction of the amount of un-
certainty that is resolved during college can be attributed to learning about academic outcomes
such as final GPA and final major.

Chapter 3 provides a concrete example that illustrates the importance of quantifying the
resolution of students’ (income) uncertainty during college. By entering college, students have
the option to decide whether to remain in college after receiving relevant new information. We
show that the value of this option is determined by a student’s dropout probability and how
much uncertainty is resolved before the decision is made. Taking advantage of longitudinal
expectations data from the BPS, we find, on average, students underestimate this option value
by 65%.

Recognizing the rarity of expectations data, Chapter 4 proposes an alternative, model-based
approach to characterizing beliefs and investigating how these beliefs influence decisions. My
method can be applied to environments where people repeatedly make decisions based on their
beliefs about an unknown factor and update their beliefs using signals. Such environments are
commonly studied in the existing literature. In the college education example, students learn
about their return to college education from realized grade performance and repeatedly make
dropout decisions.
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Chapter 1

Introduction

From a conceptual point of view, when an individual is making decisions, she often knows
that the utility or value she will receive from each decision will depend on some factors that
she does not have perfect information about at the time of decision-making. Consequently, her
decisions depend on her beliefs about these factors. For example, the value of attending college
largely depends on a student’s potential income after obtaining a degree. Hence, a high school
graduate’s schooling decisions will tend to be influenced by her beliefs about future income in
the scenario where she graduates from college.

The fundamental importance of beliefs about future outcomes in decision-making suggests
that an accurate characterization of these beliefs is important for understanding individuals’
behavior and for evaluating the counterfactuals typically needed for policy analysis. However,
as is well known, it is difficult to separately identify individuals’ beliefs and the decision rule,
i.e., the function that maps beliefs to decisions (Manski, 2004). A common solution is to
assume individuals have Rational Expectations (RE) so that their beliefs can be constructed
from data on the realizations of future outcomes. However, empirical evidence suggests that
the RE assumption might not hold in many contexts (see e.g., Pesaran and Weale, 2006, for a
survey of tests for the RE assumption). Perhaps more importantly, a few recent articles find
that, if the RE assumption is incorrectly imposed in the estimation of a structural model, the
estimated structural parameters and policy predictions made based on the estimated model can
be substantially biased (e.g., Gan et al., 2015, de Bresser, 2019). Motivated by these findings,
I explore alternative approaches to conducting economic analysis without imposing the RE
assumption. Specifically, I adopt both data-based and model-based approaches and focus on
applications of these approaches in the context of higher education.

The data-based approach is built on the notion that maybe beliefs are best described as data
that can be elicited using carefully worded survey expectations questions. This approach has
become increasingly widely used in the literature (see Zafar, 2011, 2013, Wiswall and Zafar,
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2015, 2016, Arcidiacono, Hotz, Maurel and Romano, 2019, Stinebrickner and Stinebrickner,
2014a/b for recent examples). Chapters 2 and 3 of my thesis, which are co-authored with Todd
Stinebrickner and Ralph Stinebrickner, adopt this data-based approach. We utilize unique sur-
vey expectations data from the Berea Panel Study (BPS) to (1) characterize college students’
beliefs about future outcomes, such as college completion and post-college income; (2) exam-
ine the relationship between these beliefs; and (3) investigate how these beliefs are related to
various decisions made during college, such as whether to remain in college after receiving
new information relevant for the return to college education.

Specifically, in Chapter 2, we characterize how much uncertainty about post-college in-
come is present for students at college entrance and how quickly this uncertainty is resolved.1

Measuring an individual’s income uncertainty by the variance of the distribution describing
her beliefs about earnings at age 28, we find that, on average, students resolve roughly one-
third of the income uncertainty present at the time of entrance during college. Consistent with
the finding that the majority of initial income uncertainty remains at the end of college, We
find that uncertainty about college GPA and field of study, which are the two primary income-
influencing factors that are realized in college, can only account for about 19% to 27% of
students’ initial income uncertainty. In addition, we find evidence that transitory factors, such
as search frictions, are likely to play an important role in creating the income uncertainty re-
mained at the end of college.

Chapter 3 of my thesis provides a concrete example that illustrates the importance of quan-
tifying the resolution of students’ (income) uncertainty during college. By entering college,
students have the option to decide whether to remain in college after receiving relevant new
information. We show that the value of this option of receiving new information is determined
by a student’s dropout probability and how much uncertainty is resolved before the decision is
made. Taking advantage of unique longitudinal expectations data characterizing beliefs about
dropout and future income, we find that students have accurate perceptions about the amount
of income uncertainty that is resolved during college but vastly underestimate the probability
of dropping out of school. Consequently, on average, they underestimate this option value
by 65%. However, the fact that students underestimate the dropout probability despite having
accurate perceptions about uncertainty resolution suggests that, at the time of entrance, they
overestimate the value of college completion relative to the dropout alternative. We find that,
considering the implications of our findings for college entrance decisions, the underappreci-
ation of the value of new information is more than offset by over-optimism about the ex ante
returns to college completion. Thus, once one takes into account both components of the over-

1A version of this chapter has been published in Quantitative Economics (Gong, Stinebrickner, and Stinebrick-
ner, 2019).



1.1. Berea Panel Study 3

all value of college, concerns that too few students enter college because of misperceptions
tend to dissipate.

While the data-based approach is appealing in many contexts, expectations data are costly
to collect, hence are not available in many large-scale datasets. Moreover, as found in Chapters
2 and 3, responses to survey expectations questions might contain measurement error that can
potentially bias the results. Recognizing the rarity of survey expectations data and the mea-
surement error issue, Chapter 4 of my thesis proposes an alternative, model-based approach to
jointly nonparametrically identify individuals’ beliefs and decision rules in signal-based learn-
ing models, where individuals use signals to update their beliefs about an unknown permanent
factor and repeatedly make decisions based on these beliefs. The econometrician observes in-
dividuals’ decisions and the signals they receive at each period. Identification builds on an as-
sumption that is both intuitively appealing and standard in the literature: The posterior mean of
the distribution describing beliefs is the same as the prior mean whenever the signal equals the
prior mean. If an individual’s decision only depends on the subjective mean in a time-invariant
fashion, this assumption implies that the prior mean for an individual who does not change de-
cisions in two consecutive periods equals the signal she receives between periods. My method
can be applied to many models that are of interest to economists and policy-makers, including
a firm’s input choice problem under productivity/price uncertainty, and a student’s dropout de-
cision under uncertainty about the return to education. Using data from the Berea Panel Study,
I demonstrate the empirical importance of relaxing the RE assumption by applying my method
to estimate the relationship between college students’ study time (analogous to a firm’s input)
and their beliefs about academic productivity (analogous to a firm’s productivity) as measured
by the ratio of semester GPA to study time. I find that high expectations about own academic
productivity have a negative effect on students’ study time. The RE assumption is rejected at
a 10% level for students who spent less than 2 hours per day studying in high school. These
students over-estimate their academic productivity in college. Incorrectly imposing the RE
assumption would lead to a much more negative estimate of the effect of expectations about
academic productivity on college study time, suggesting the importance of relaxing the RE
assumption in this context.

1.1 Berea Panel Study

The empirical investigations conducted in Chapters 2-4 are based on the Berea Panel Study
(BPS). While I will leave the detail of how to take advantage of this dataset for later chapters,
here I briefly describe this survey project and discuss its importance for our empirical analysis.

Designed and administered by Todd Stinebrickner and Ralph Stinebrickner, the BPS is a
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multipurpose longitudinal survey project that followed two cohorts of students at the Berea
College from their entrance in 2000 and 2001, until 2014. It collected detailed information
of relevance for understanding a wide variety of issues in higher education, including those
related to dropout, college major, time-use, social networks, peer effects, and transitions to the
labor market.

Located in central Kentucky, Berea College has some unique features that have been docu-
mented in previous work. For example, it operates under the objective of providing educational
opportunities to “students of great promise, but limited economics resources,” and, as part of
this objective, provides a full tuition subsidy to all students. Thus, as always, it is necessary
to be appropriately cautious about the exact extent to which results from one school would
generalize to other institutions. However, important for the notion that the basic lessons from
this thesis are likely to be useful for thinking about what takes place elsewhere, Berea operates
under a standard liberal arts curriculum and students at Berea are similar in academic qual-
ity, for example, to students at the University of Kentucky (Stinebrickner and Stinebrickner,
2008). Further, academic decisions and outcomes at Berea are similar to those found else-
where (Stinebrickner and Stinebrickner, 2014a). For example, dropout rates are similar to the
dropout rates at other schools (for students from similar backgrounds) and patterns of major
choice and major-switching are similar to those found in the NLS by Arcidiacono (2004).

Most relevant for Chapters 2 and 3, the BPS had a specific focus on the collection of
students’ beliefs about various academic and labor market outcomes. Baseline surveys were
administered to the first cohort (the 2000 cohort) immediately before it began its freshman
year in the fall of 2000 and baseline surveys were administered to the second cohort (the 2001
cohort) immediately before it began its freshman year in the fall of 2001. An important as-
pect of the BPS in our context is that substantial follow-up surveys, which were administered
at the beginning and end of each subsequent semester, documented how beliefs change over
time.2 Baseline surveys were completed in the presence of Todd Stinebrickner and/or Ralph
Stinebrickner after students received classroom training. Subsequent in-school surveys were
distributed through the campus mail system. Students returned completed surveys to Ralph
Stinebrickner, who, after ensuring that surveys were completed in a conscientious manner, im-
mediately provided compensation. This survey approach led to, not only high response rates,
but also to, for example, virtually no item non-response.3

Much of the existing work using the BPS contributed to an early expectations literature
that was interested in the quality of answers to expectations questions. As one example, Stine-

2The BPS is unique in its frequency of contact; each student was surveyed approximately 12 times each year
while in school.

3BPS response rates were very high. Approximately 90% of all students who entered Berea College in 2001
responded to the baseline survey, and response rates were around 85% for subsequent in-school surveys.
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brickner and Stinebrickner (2012) find that a simple theoretical implication related to college
dropout - that the dropout decision should depend on both a student’s cumulative GPA and be-
liefs about future GPA - is satisfied when beliefs are directly elicited through survey questions,
but is not satisfied when beliefs are constructed under a version of Rational Expectations. As
a second example, in Chapter 2, we propose and implement a method for characterizing the
amount of measurement error in responses to expectations questions, which takes advantage of
the fact that the BPS data often allow the unconditional subjective distribution of a particular
outcome to be characterized using two different sets of expectations questions.

Of particular importance for Chapter 4, the BPS contains multiple 24-hour time diaries each
semester, which allows me to construct a reasonably accurate measure of average daily study
time for each semester. The BPS is linked with administrative data so I can observe semester
GPA, and construct a measure of realized academic productivity for each student.
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Chapter 2

Uncertainty about Future Income: Initial
Beliefs and Resolution During College

2.1 Introduction

From a conceptual standpoint, it is clear that the decision to enter or not enter college, as well
as other college decisions, will depend on the amount of uncertainty about future income that is
present at the time of college entrance.1 However, college decisions will also be influenced by
how quickly this initial uncertainty about future income is resolved. As one example, the option
value of entering college will typically be higher when initial uncertainty is resolved more
quickly. Further, the speed at which uncertainty is resolved is closely related to the important
question of whether initial uncertainty is due to, for example, academic ability, college major,
labor market frictions, future aggregate labor market conditions, or other factors.

A natural first step towards understanding how income uncertainty influences college deci-
sions involves characterizing how much income uncertainty is present for students at the time
of college entrance and how quickly (and why) this uncertainty is resolved.2 Unfortunately,
taking this first step has proven to be difficult (Cunha, Heckman, Navarro, 2005). This chap-
ter takes advantage of unique expectations data from the Berea Panel Study (BPS), which is
described in Section 2.2, to provide new evidence.3 From the standpoint of characterizing
uncertainty, the general benefit of the expectations approach is that survey questions can be de-

1More generally, Friedman(1953) suggests the importance of understanding the relative role of labor market
uncertainty in determining distributions of wealth.

2Throughout the chapter our focus is on labor market income, and we use the terms earnings and income
interchangeably.

3This approach is motivated by a recognition that individual beliefs about earnings (and other outcomes) are
perhaps best viewed as data that can potentially be elicited using carefully worded survey questions (Manski,
1993, 2004, Dominitz and Manski, 1997a/b).

8
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signed to elicit the entire distribution describing a student’s beliefs about future income, which,
for convenience, we often refer to as the student’s subjective income distribution. Given our
need to characterize income uncertainty throughout a student’s entire time in college, a particu-
lar virtue of the BPS is that earnings expectations were collected longitudinally during college,
with the first survey collection taking place at an ideal time – immediately before students be-
gan their first year courses. Our analysis also takes advantage of other unique expectations data
available in the BPS. For example, information characterizing a student’s beliefs about college
grade performance and college major helps us understand why uncertainty is resolved.

In Section 2.3, we use beliefs elicited at the time of college entrance to characterize each
student’s initial amount of uncertainty about future earnings. The appeal of our direct, expectations-
elicitation approach is in its simplicity. In contrast, traditional investigations require that an
individual’s beliefs about future earnings be ascertained from an observed distribution of real-
ized earnings. This involves the challenge of decomposing the total amount of dispersion in
realized earnings across workers into the portion due to individual-level uncertainty and the
portion due to heterogeneity in ability and other income-influencing factors that are known
by individuals. One tempting possibility might be to equate individual-level uncertainty with
the amount of dispersion in earnings present within groups that are homogeneous in terms of
observable earnings-influencing characteristics. However, when unobserved heterogeneity is
prevalent (i.e., when many earnings-influencing characteristics are known to individuals but
are not observed by the econometrician), this approach will tend to substantially overstate the
amount of income variation that should be attributed to uncertainty.

In the schooling context, Carneiro, Hansen, and Heckman (2003) and Cunha, Heckman,
and Navarro (2004, 2005) develop methods for separating uncertainty from heterogeneity that
do not require the econometrician to observe all relevant characteristics that influence earning
capabilities.4 Specifically, they take advantage of situations where economic theory implies
that the realization of uncertainty was unanticipated at the moment of decision making, and,
therefore, was independent of the choices that economic agents made.5 The general conclusion
from these papers is that a substantial part of the variability in the ex post returns to schooling
is predictable and acted on by agents. That is, “variability cannot be equated with uncertainty
and this has important empirical consequences” (Cunha, Heckman, and Navarro, 2005).

Our results in Section 2.3 strongly reinforce this general message. At entrance, our measure
of uncertainty, the standard deviation of the distribution describing a student’s beliefs about her
earnings at age 28, ranges from an average of $9, 600 a year to an average of $13, 900 a year,

4Cunha and Heckman (2007) provides a survey on this series of articles. See also Browning and Carro (2007)
for a further discussion of the difficulties of separating uncertainty from heterogeneity.

5See also Blundell and Preston (1998) for early work using similar methods in a somewhat different substantive
context.
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across the different computational approaches that we take to ensure robustness. To charac-
terize the relative importance of uncertainty and heterogeneity, we compute an expectations
analog to the realized earnings distribution used in other papers by aggregating individual be-
liefs across the sample. The percentage of the total variation in this analog that should be
attributed to (observed and unobserved) heterogeneity is always above 50% and is as high as
77%, depending on which computational approach is employed. We find that results do not
change substantially when we correct for classical measurement error that might arise in the
responses to the survey questions. This measurement error correction is made possible by the
fact that there are two different sets of survey questions in the BPS that can be used to construct
beliefs about future earnings.

In Section 2.4, we turn to examining issues related to the resolution of income uncertainty,
with a particular focus on what happens during college. Given that empirical work has not
typically examined these issues, it is an open question whether individuals believe that un-
certainty will be resolved quickly after college entrance.6 This issue is directly linked to the
question of why uncertainty exists. For example, one particularly prominent potential source
of uncertainty is college grade point average (GPA), which is widely viewed as the best avail-
able proxy for human capital at the time of college graduation. By definition, all uncertainty
about final college GPA will be resolved by the end of college. Thus, if uncertainty about GPA
is an important contributor to the initial uncertainty about earnings, then students will expect
much of the uncertainty about earnings to be resolved at some point during college and that this
resolution will take place early in college if learning about academic ability tends to happen
quickly.7 We are able to provide evidence about the importance of grade uncertainty in de-
termining initial earnings uncertainty by taking advantage of survey questions eliciting beliefs
about grade performance and survey questions eliciting beliefs about future earnings condi-
tional on grade performance. We find that, on average, between 16% and 19% of the variance
representing (age 28) earnings uncertainty at the time of college entrance can be attributed to
uncertainty about grade performance at the time of college entrance. A related analysis finds
that between 11% and 17% of the earnings uncertainty at the time of college entrance can be
attributed to uncertainty about college major at the time of college entrance. Moreover, when
combined, uncertainty about these two factors together can account for about 19% to 27% of
overall initial uncertainty about future income.

6An exception is Navarro and Zhou (2017) who develop a model that identifies the path of uncertainty resolu-
tion over multiple periods. With each period having a length of six years, their first period (age 18-24) corresponds
to the time that our sample spends in college and the first two years in the workforce.

7See Stinebrickner and Stinebrickner (2012, 2014b) and Zafar (2011) for research that uses expectations data
to examine updating of beliefs about grade performance. See Altonji (1993) for early work recognizing the role
that grade updating may play in schooling decisions.
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The finding that students expect much uncertainty about earnings to remain even after re-
solving uncertainty about grade performance and college major raises the possibility that much
uncertainty about earnings remains even at the end of college. The longitudinal nature of our
expectations data allow us to examine this issue. We find that, on average, about 65% of a
student’s initial uncertainty about future earnings remains at the end of college. Further, this
result, combined with the results in the end of the previous paragraph, suggests that the portion
of uncertainty that is resolved during school can be largely attributed to what one learns about
her academic ability and her college major during school.

It is worth considering why much of the initial uncertainty about earnings at age 28 is
unresolved during college. We consider two broad explanations that may have different policy
implications. The first explanation is that individuals might be unsure about what kinds of job
offers they will receive at age 28 because of, for example, the existence of search frictions. The
second explanation is that individuals might know the kinds of job offers they would receive at
age 28, but might be unsure about which kinds of available job offers they will prefer/choose
at this age.

2.2 Data

Our primary sample consists of the 650 students who answered the baseline surveys of the
Berea Panel Study, which were collected immediately after students entering college.8 While
observable characteristics are not the primary focus of this chapter, we note that approximately
41% of the students in the sample are male, 15% of the students in the sample are black,
and the average American College Test (ACT) score in the sample is approximately 25. In
addition to collecting detailed background information, the baseline surveys were designed
to take advantage of recent advances in survey methodology to collect beliefs (expectations)
about future outcomes. An important aspect of the BPS in our context is that substantial follow-
up surveys, which were administered at the beginning and end of each subsequent semester,
documented how beliefs change over time.9

Our primary survey questions eliciting beliefs about future earnings are of the form of base-
line Survey Question 1A, which is shown in Appendix A.10 Specifically, Survey Question 1A
elicited the minimum, the maximum, and the three quartiles of the subjective income distribu-

8Approximately 85% of all students who entered Berea in the fall of 2000 and the fall of 2001 completed the
baseline surveys and, in part because surveys were reviewed before students left the survey site, the amount of
item non-response was trivial.

9The BPS is unique in its frequency of contact; each student was surveyed approximately 12 times each year
while in school.

10For another example of research that uses an expectations-based approach to elicit information about the
entire distribution of future income, see Attanasio and Kaufmann (2014).
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tion at three different ages (first year after graduation, age 28, and age 38), under a scenario
in which the student graduates from college. Students received detailed classroom instruction
related specifically to these questions, with the spirit of the discussion being similar to written
instructions that were included with the survey (see Appendix A for these instructions). An
almost identical set of questions (not shown) was used to elicit beliefs under the scenario in
which the student does not graduate from college. A baseline survey question also elicited be-
liefs about earnings conditional on graduating with three particular levels of GPA (2.00, 3.00,
3.75). Question 1B in Appendix A shows the portion of this question related to graduating with
a 2.00 GPA.

Table 2.1 shows descriptive statistics related to Question 1. The entries in the first row
show the median (the second quartile) of the subjective income distribution, averaged over the
sample, for several different age and academic performance scenarios. The first three columns
show that, on average, the median increases with age. The second three columns show that,
on average, the median increases with final grade point average. To provide some descriptive
evidence about uncertainty, the entries in the second row show the interquartile range (the
difference between the third quartile and the first quartile) of the subjective income distribution,
averaged over the sample, for the same age and academic performance scenarios. The first
three rows show that, on average, the interquartile range increases with age. The second three
columns show that, on average, the interquartile range increases with final grade point average.

Table 2.1: Descriptive Statistics of Earnings Beliefs at Entrance

1 Year Out Age 28 Age 38
Age 28 Age 28 Age 28

GPA = 2.00 GPA = 3.00 GPA = 3.75

Median
39.5480 49.1923 60.5161 41.8088 48.1623 54.7238

(18.3900) (21.9922) (36.7525) (21.7551) (23.7830) (26.3292)

Interquartile Range
12.6773 15.3221 19.2754 12.3756 13.8969 15.9806

(10.3599) (12.8526) (30.7070) (10.6551) (12.1135) (13.6923)

Note: The unit of measurement for all entries is one thousand dollars. A particular entry in the table
shows the sample mean and the sample standard deviation of the corresponding variable. For example,
row 1, column 1 shows a sample mean of $39548.00 and a sample standard deviation of $18390.00 for
the median of the distribution describing a student’s beliefs about income in the first year out of
college. Similarly, row 1, column 4 shows a sample mean of $41808.80 and a sample standard
deviation of $21755.10 for the median of the distribution describing a student’s beliefs about income at
age 28 given that her final GPA is equal to 2.00.

Baseline Survey Question 2, which characterizes beliefs about future grade performance
by eliciting the probabilities that a student’s future semester grade point average will fall in
the intervals [3.5, 4.00], [3.0, 3.49], [2.5, 2.99], [2.0, 2.49], [1.0, 1.99] and [0.0, .99], is also
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shown in Appendix A. In terms of other baseline information, this chapter takes advantage
of survey questions eliciting each student’s subjective probability of completing a degree in
different possible major groups (Question 5, Appendix A), and each student’s belief about how
much noise exists in the grade process (Question 3, Appendix A).

2.3 Uncertainty about Future Income at College Entrance

This section examines uncertainty about future income at the time of college entrance. In
Section 2.3.1, we characterize the amount of uncertainty that exists at college entrance. In
Section 2.3.2, we construct an expectations analog to the realized earnings distribution and
examine the relative importance of uncertainty and heterogeneity in determining the variance
of this distribution.

2.3.1 Characterizing Uncertainty at Time of College Entrance

When measuring earnings uncertainty, we focus on earnings under the scenario in which a
student graduates from college and, unless otherwise noted, examine beliefs about earnings
at the age of 28.11 The general object of interest is the distribution describing a student’s
subjective beliefs about her future income, which, as noted earlier, we often refer to as the
student’s subjective income distribution. While this entire section focuses on beliefs at the
time of entrance, which we often refer to as “initial” beliefs, we include a time subscript in our
notation for use in subsequent sections. We let wi denote the earnings of person i at age 28,
Wit denote the random variable describing student i’s subjective beliefs at time t about wi, and
fWit(wit) denote the density of Wit. Then, the standard deviation and variance of Wit are natural
measures of a student’s uncertainty about wi at time t. Our objectives related to the issue of
uncertainty motivate a focus on measures of dispersion, although it is necessary for parts of our
analysis to also characterize measures of central tendency (e.g., the mean of Wit), which have
received substantial attention in other previous work.

Our data allow us to take two different approaches for computing the standard deviation
(and mean) of Wit from survey information. The first approach takes advantage of Survey
Question 1A (Appendix A), which directly elicited the minimum, maximum, and three quar-
tiles of the subjective income distribution. The standard deviation can be computed directly
from this information given a distributional assumption for Wit. The second approach takes
advantage of Survey Question 1B (Appendix A), which elicited the minimum, maximum, and

11We focus on the graduation scenario because this is the outcome that students overwhelmingly believe is most
likely. Specifically, at the time of entrance, students believe, on average, that the probability of dropping out is
only 0.14 (Question 4, Appendix A).
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three quartiles of the subjective income distribution conditional on various levels of grade per-
formance, and Survey Questions 2 and 3 (Appendix A), which provide information about a
student’s subjective grade distribution. While the second approach has the appeal of explic-
itly taking into account one particularly prominent source of income uncertainty – uncertainty
about grade performance – it also requires additional survey questions and additional assump-
tions. Given the trade-offs between the two approaches, examining whether they yield similar
results is valuable as a robustness check. In addition, the comparison is valuable because each
of these approaches is utilized in other parts of our analysis.

Approach 1 for characterizing the standard deviation of Wit

Our first approach for characterizing income uncertainty takes advantage of information that
was elicited by Question 1A about the unconditional distribution of Wit. We denote the elicited
minimum, first quartile, second quartile, third quartile, and maximum of the distribution of Wit

as C1
it,C

2
it,C

3
it,C

4
it and C5

it, respectively. Characterizing the mean and standard deviation of Wit

from this information requires a distributional assumption for Wit. We examine the robustness
of our results to three different distributional assumptions.

a. Log-normal. We first consider the use of a log-normal distribution, following the suggestions
in Manski (2004). The mean and standard deviation for the log-normal distribution are given
by E(Wit) = C3eσ

2/2 and std(Wit) = E(Wit)
√

eσ2
− 1, where σ = log(C4

it
C2

it
)/2Φ−1(0.75) and Φ is

the standard normal cumulative distribution function.

b. Normal. The log-normal distribution imposes an asymmetry that may or may not be present
in the data. While the log-normal does have the appealing feature of ruling out negative income,
the probability of negative income will tend to be small for the normal distribution when, as we
find in our data, the mean is relatively large compared to the standard deviation. As described in
Appendix B.1, we find that the fit of the two distributions is quite similar with, if anything, the
normal having a slightly better fit. Then, given that these two distributions can potentially have
quite different implications for characterizing the mean and variance, it seems worthwhile for
robustness reasons to consider each of them. The mean and standard deviation of the normal
distribution are given by E(Wit) = C3

it and std(Wit) = (C4
it −C2

it)/2Φ−1(0.75).

c. Stepwise Uniform. The log-normal and normal distributions do not utilize information about
the minimum, C1

it, or the maximum, C5
it, because the supports of the distributions are R++ and

R, respectively. To allow for a specification that uses these values along with the quartiles, we
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assume that Wit has the stepwise uniform pdf given by:

fWit(wit) =
0.25

Cn+1
it −Cn

it

, if wit ∈ [Cn
it,C

n+1
it ], for n ∈ {1, 2, 3, 4}. (2.1)

The mean and standard deviation are given by E(Wit) =
∑4

n=1
Cn+1

it +Cn
it

8 and std(Wit) =√∑4
n=1

(Cn+1
it )2+Cn+1

it Cn
it+(Cn

it)
2

12 − (E(Wit))2.

We examine the magnitude of earnings uncertainty at the time of college entrance (t = 0)
for our sample of 650 students. The first three rows of Table 2.2 summarize the results for
Approach 1. Depending on which distributional assumption is made (log-normal, normal,
stepwise uniform), the average standard deviation of Wi0 for the sample varies between $9,653
and $13,064 per year and the average standard deviation to mean ratio in the sample varies
between 18.95% and 24.17% per year.12 Thus, the results are generally quite similar across the
three distributional assumptions. The numbers in parentheses in the standard deviation column
of Table 2.2 indicate that there is substantial heterogeneity in uncertainty across students.

Approach 2 for characterizing the standard deviation of Wit

Letting gi denote the final (cumulative) college GPA of person i and letting Git denote the
random variable describing student i’s subjective beliefs at time t about gi, our second approach
for characterizing income uncertainty takes advantage of information that was elicited about
the distribution of Git and about the distribution of Wit conditional on Git. The relationship
between these distributions and the unconditional income distribution is given by:

fWit(wit) =

∫
fWit |Git=git(wit)dFGit(git), (2.2)

where git is a realization of Git and where FGit(git) and fWit |Git=git(wit) denote the cdf of Git and
the pdf of Wit|Git = git, respectively.

The analysis in this chapter mostly utilizes the mean, E(Wit), and the standard deviation,
std(Wit), of Wit. We first consider E(Wit), which can be written as the expected value of

12Using log-normal distributions leads to the largest mean and standard deviation approximations and using
stepwise uniform distributions leads to the smallest. Note that the distributions constructed using each of these
two distributional assumptions share the same median. Hence, loosely speaking, log-normal distributions tend to
have larger expectations because they are more left-skewed than the stepwise uniform distributions. While log-
normal density functions have wider supports than stepwise uniform density functions, they also have different
shapes which, all else equal, can lead to smaller standard deviations. Hence, the relative size of the standard
deviations implied by the two distributions is theoretically ambiguous. In our case, the wider-support effect
dominates the other effect.
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Table 2.2: Earnings Beliefs at Entrance
# of Observations: 650 E(Wi0) std(Wi0) std(Wi0)

E(Wi0)

Approach 1, Log-normal
51.1742 13.0641 0.2417

(23.2062) (15.5580) (0.2055)

Approach 1, Normal
49.1524 11.3152 0.2295

(21.9879) (9.4768) (0.1617)

Approach 1, Stepwise Uniform
49.7633 9.6529 0.1895

(22.1799) (8.0391) (0.1165)

Approach 2, Log-normal
52.8264 13.9455 0.2557

(25.4735) (14.4897) (0.1736)

Approach 2, Normal
50.9118 12.2488 0.2427

(24.3631) (9.7170) (0.1435)

Approach 2, Stepwise Uniform
51.3497 10.6537 0.2061

(24.3550) (8.1362) (0.1142)

Note: The unit of measurement for Wi0 is one thousand dollars. A particular entry in the
table shows the sample mean and the sample standard deviation of the corresponding
variable. For example, row 1, column 1 shows a sample mean of $51,174.20 and a sample
standard deviation of $23,206.20 for E(Wi0). Similarly, row 1, column 2 shows a sample mean
of $13,064.10 and a sample standard deviation of $15,558.00 for std(Wi0).

E(Wit|Git) with respect to Git. In cases like this, where an expresssion of interest involves iter-
ated expectations (or variances), it is often useful for reasons of clarity to be explicit about the
random variable on which the outer expectation (or variance) operates. Using this notational
device,

E(Wit) = EGit(E(Wit|Git)).13 (2.3)

We use a standard simulation-based method to approximate this integral, which requires
repeatedly drawing from the distribution of Git and evaluating E(Wit|Git) at each of these draws.
The complication that arises, in practice, is that E(Wit|Git) and FGit(git) are not fully observed.

With respect to E(Wit|Git), the complication arises because, as discussed in Section 2.2, a
student reports information about her subjective conditional income distribution for only three
different realizations of Git: 3.75, 3.00, and 2.00. For these three git values, E(Wit|Git) can be
computed by assuming one of the three distributions. As described in detail in Appendix B.2.1,
we interpolate the value of E(Wit|Git) conditional on other realizations of Git using an approach
adopted in Stinebrickner and Stinebrickner (2014b).

With respect to FGit(git), the complication arises because the BPS did not directly elicit
Git, a student’s beliefs at time t about final cumulative GPA, Gi. Given that a student’s grades

13EGit (E(Wit |Git)) =
∫

E(Wit |Git = git)dFGit (git), with E(Wit |Git = git) =
∫

wit fWit |Git=git (wit)dwit.
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before time t are observed in administrative data, the challenge in determining Git comes from
the need to characterize the student’s beliefs at t about the average GPA (i.e., the cumulative
GPA) she will receive over all remaining (future) semesters in school. The primary source of
information used to construct these beliefs is Survey Question 2 (Appendix A), which elicits
beliefs about semester GPA. However, even making the natural assumption that Question 2
represents a student’s beliefs about semester GPA in each future semester, Question 2 alone
is not enough to determine how uncertain a student is about the average GPA she will receive
over all remaining semesters. This is the case because one’s uncertainty about average GPA
over multiple semesters will depend on beliefs about the correlation in semester GPA across
semesters. For example, if uncertainty about semester GPA arises because of uncertainty about
a factor such as ability that is permanent in nature, and, therefore, will tend to influence grades
in each semester, then the uncertainty about semester GPA expressed in Question 2 will tend
to be a good indicator of the student’s uncertainty about average GPA over multiple semesters.
On the other hand, if uncertainty about semester GPA arises because of semester-specific ran-
domness in grades which is transitory in nature, and, therefore, will tend to average out to some
extent over multiple semesters, then the uncertainty about semester GPA expressed in Ques-
tion 2 might substantially overstate the student’s uncertainty about average GPA over multiple
semesters.14 Our approach for characterizing a student’s subjective beliefs about the cumula-
tive GPA she will receive over all remaining semesters differentiates between these two types
of possibilities by taking advantage of a novel survey question (Question 3 in Appendix A),
which elicited beliefs about the importance of the semester-specific randomness. Appendix
B.2.2 describes this approach in detail, focusing, for illustrative purposes, on the case of t = 0,
which is of relevance in this section.

We now turn our attention to the measure of dispersion, std(Wit), which is given by:

std(Wit) =
√

varGit(E(Wit|Git)) + EGit(var(Wit|Git)).15 (2.4)

The value of std(Wit) can be approximated in a manner very similar to that described in the
previous paragraphs for the approximation of E(Wit). Equation (2.4) shows that, in addition to
using an interpolation approach to deal with the issue that E(Wit|Git) and FGit(git) are not fully
observed, it is also necessary to interpolate the value of var(Wit|Git) at realizations of Git other
than 2.00, 3.00 or 3.75. The details of our interpolation approach are described in Appendix
B.2.1.

14This randomness might be due to, for example, bad matches with instructors, sicknesses at inopportune times,
or temporary personal problems.

15VarGit (E(Wit |Git)) =
∫

(E(Wit |Git = git)) − EGit (E(Wit |Git = git))2dFGit (git) and EGit (Var(Wit |Git)) =∫
Var(Wit |Git = git)dFGit (git), with Var(Wit |Git = git) =

∫
(wit − E(Wit |Git = git))2 fWit |Git=git (wit)dwit.
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Using Approach 2, we examine the magnitude of earnings uncertainty for the same sample
of 650 students. Results are summarized in the last three rows of Table 2.2. Depending on
which distributional assumption is made, the average standard deviation of Wi0 for the sample
varies between $10,654 and $13,946 per year and the average standard deviation to mean ratio
in the sample varies between 20.61% and 25.57% per year. Thus, we find that the results
are reasonably robust to two computation approaches. In fact, results change more due to the
choice of distribution than to the choice of computational approach.

Demographic Variables

It is worth examining whether the amount of uncertainty that is present at the time of en-
trance varies systematically with demographic information. To examine this issue, we regress
std(Wi0) on Black, Male and ACT score for each of the six different distribution-approach
combinations in Table 2.2. We find a seemingly important role for race. While full regression
results are not shown, taking the average of estimated coefficients over the six different com-
binations, we find that black students have a standard deviation that is approximately $1,536
higher than non-blacks. Further, the Black coefficient has a t-statistic greater than 1.5 in four
of the six distribution-approach combinations, with the maximum t-statistic having a value of
2.6. Comparing these findings to those for our other binary variable, Male, we find that the
coefficient for Male also has a t-statistic greater than 1.5 for four of the six combinations, but
that the average coefficient for Male over the six distribution-approach combinations is only
approximately 62% of the average coefficient for Black.

We stress that understanding the exact interpretation of these results is beyond the scope
of this chapter. Among other things, interpretation is complicated by the fact that uncertainty
could be caused by a lack of information, but it could also be caused by potential access to a
wide range of job opportunities. The possibility that these two effects may sometimes push in
opposite directions may explain, for example, why we do not find evidence of a relationship
between ACT score and uncertainty.

2.3.2 Heterogeneity vs. Uncertainty

Traditionally, estimating the amount of uncertainty about earnings that is present at college
entrance requires separating the importance of this uncertainty from the importance of hetero-
geneity - differences in ability and other income-influencing factors known by individuals - in
determining a realized distribution of income. Thus, while characterizing the amount of uncer-
tainty that is present at the time of college entrance is reasonably viewed as the primary goal,
past work has found it natural to also report the percentage of the total variation in earnings
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that is due to this uncertainty. In Section 2.3.2 we compute an expectations analog to this per-
centage. We also examine the robustness of our results to a measurement error correction and
describe how our expectations analog relates to the approach surveyed in Cunha and Heckman
(2007). Given this discussion, we conclude that our results reinforce their findings.

Decomposition of heterogeneity and uncertainty

Suppose that a person’s earnings in a future year (e.g., age 28) are determined by a vector of
finitely many random variables Xi.16 Further decompose Xi into factors that are observed by
the students at t, Xt−

i , and those that are not, Xt+
i , and define Xi ≡ (Xt−

i , X
t+
i ). Then, we can write

the future income of student i, Wi, as:

Wi ≡ W(Xt−
i , X

t+
i ). (2.5)

Although, a priori, individuals have identical distributions of Xt−
i and Xt+

i , realizations of
these random variables vary across people. It is differences in these realizations that produce
variation in the empirical earnings distribution. At the time t when individuals answer the
survey, they have already observed Xt−

i . Heterogeneity in Xt−
i produces differences in the beliefs

we observe as given by the distribution of Wit. To construct the expectations analog to the
empirical earnings distribution, we take advantage of the fact that var(Wi) can be written as a
function of the conditional distributions that we observe:

var(Wi) = EXt−
i

(var(Wi|Xt−
i )) + varXt−

i
(E(Wi|Xt−

i )). (2.6)

Under the assumption that Xi is independently distributed across students, taking an ex-
pectation with respect to Xt−

i is, in essence, averaging across individuals (whose beliefs about
income at time t differ only through Xt−

i ).17 The first term on the right hand side of equation
(2.6) shows, on average, how uncertain individuals are about earnings. Thus, this term repre-
sents the contribution of uncertainty to total variation. Using either of the two approaches in
Section 2.3.1, we are able to compute the sample analog of this term as the sample mean of
var(Wit). Similarly, taking a variance with respect to Xt−

i is, in essence, measuring dispersion
across individuals. The second term on the right hand side shows how much dispersion exists
in expected earnings across individuals, arising from the heterogeneity term Xt−

i . Therefore,
this second term represents the contribution of heterogeneity to total variation. Using either of

16Note that these random variables represent both factors related to the worker and factors related to the labor
market.

17In Section 2.3.2, we discuss scenarios under which the independence assumption would tend to be violated
and the implications of these scenarios.
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the two approaches in Section 2.3.1, we are able to compute the sample analog of this term as
the sample variance of E(Wit).

Note that if beliefs are correct, i.e., if Wit ≡ Wi|Xt−
i , the sum of the two terms will correspond

to the variance of the realized income distribution. If beliefs are not correct, the sum of the
terms corresponds to what individuals believe about the the variance of the realized income
distribution.

For each of our six approach-distribution combinations, the first column of Table 2.3 shows
the first (uncertainty) term from equation (2.6), the second column shows the second (hetero-
geneity) term from equation (2.6), the third column shows the sum of the first two columns
(the total variation), and the final column shows the ratio of the second column (heterogeneity)
to the third column (total variation).

Table 2.3: Heterogeneity and Uncertainty

# of Observations: 650
Uncertainty: Sample Heterogeneity: Sample

Total
Heterogeneity

Mean of var(Wi0) Variance of E(Wi0) Ratio
Approach 1, Stepwise Uniform 157.7 491.9 649.7 75.72%
Approach 1, Log-normal 412.4 538.5 950.9 56.63%
Approach 1, Normal 217.7 483.5 701.2 68.95%
Approach 2, Stepwise Uniform 179.6 593.2 772.8 76.76%
Approach 2, Log-normal 404.1 648.9 1,053.0 61.62%
Approach 2, Normal 244.3 593.6 837.9 70.84%

Note: The unit of measurement for Wi0 is one thousand dollars. The third column (Total) is the sum of
the first two columns. The fourth column (Heterogeneity Ratio) is the ratio of column 2 (Heterogeneity)
to column 3 (Total).

Consistent with what we found earlier, Approach 1 and Approach 2 deliver results that are
quite similar. While larger differences in results are generated by the distributional assumption
than by the choice of computational approach (Approach 1 and Approach 2 in Section 2.3.1, all
three of the distributional assumptions suggest a large role for heterogeneity. For the stepwise
uniform distribution, heterogeneity accounts for over 75% of overall variation. This percentage
is approximately 60% and 70% for the log-normal distribution and the normal distribution,
respectively.

Allowing for measurement error

While the conceptual virtues of expectations data are well-recognized, it is generally difficult
to know the extent to which the benefits of this approach are mitigated by, for example, mea-
surement error in responses to expectations questions. In our context, classical measurement



2.3. Uncertainty about Future Income at College Entrance 21

error in the income expectations responses would tend to lead to an overstatement of the im-
portance of heterogeneity relative to the importance of uncertainty. This is the case because,
as can be seen in equation (2.6), the measured contribution of heterogeneity (the second term)
is represented by a sample variance (which will tend to increase with the amount of classical
measurement error), while the measured contribution of uncertainty (the first term) is repre-
sented by a sample mean (which will tend to be consistent even in the presence of classical
measurement error). To provide some evidence about the quantitative importance of measure-
ment error, we take advantage of the fact that our two computational approaches in Section
2.3.1 allow us to compute E(Wit) in two separate ways. We refer to the computed values from
Approach 1 and Approach 2 as Ẽ1(Wit) and Ẽ2(Wit), respectively. The intuition underlying the
measurement error correction is that, in an environment with no interpolation, the two com-
puted values will be identical if the responses to the survey questions used to compute these
values are not affected by measurement error. However, when the two computed values are
different, the importance of measurement error can be ascertained if one specifies the manner
in which measurement error affects the responses to the survey questions.

Starting with Approach 1, the computed value Ẽ1(Wit) comes directly from Question 1A
(which elicits the unconditional subjective income distribution). We assume that measurement
error enters the computed value Ẽ1(Wit) in a classical manner;

Ẽ1(Wit) = E(Wit) + ςi, (2.7)

where ςi is the classical measurement error attached to the true value E(Wit). Dispersion in
the computed value, Ẽ1(Wit), across students originates from both dispersion in the true value,
E(Wit), across students and randomness caused by measurement error, ςi. This can be seen by
taking the variance of both sides of equation (2.7):

var(Ẽ1(Wit)) = var(E(Wit)) + var(ςi). (2.8)

Equation (2.8) reveals that the true contribution of heterogeneity, var(E(Wit)), can be obtained
by subtracting the variance of the measurement error, ςi, from the measured contribution of
heterogeneity, var(Ẽ1(Wit)). Thus, the remainder of this section focuses on estimating the
variance of ςi.

Turning to Approach 2, the value Ẽ2(Wit) is computed from the responses to questions elic-
iting beliefs about income conditional on the three particular realizations of final GPA (ques-
tions such as 1B) as well as questions eliciting beliefs about grade performance (Questions 2
and 3). Similar to the assumption made in equation (2.7), we assume that measurement error
influences the responses to questions such as 1B in a classical manner, that is,
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Ẽ(Wit|Git = git) = E(Wit|Git = git) + ς
git
i git = 2.00, 3.00 or 3.75, (2.9)

where Ẽ(Wit|Git = git) is the measured value of the true value E(Wit|Git = git) and ςgit
i , git =

2.00, 3.00 or 3.75, are the corresponding classical measurement errors.

As discussed in Section 2.3.1, the computation of Ẽ2(Wit) requires information on Ẽ(Wit|Git)
at all realizations of Git and the distribution of Git. However, because we only observe the mea-
sured value Ẽ(Wit|Git) for three specific realizations of Git, we need to interpolate the value of
Ẽ(Wit|Git) at other realizations. Under the interpolation approach that we adopted in Section
2.3.1, Ẽ2(Wit) can be written as a weighted sum of Ẽ(Wit|Git = 2.0), Ẽ(Wit|Git = 3.0), and
Ẽ(Wit|Git = 3.75):

Ẽ2(Wit) =
∑
git

λ
git
i Ẽ(Wit|Git = git) git = 2.00, 3.00 or 3.75, (2.10)

where, as shown in Appendix B.3, the weights λ2.0
i , λ3.0

i , and λ3.75
i are integrals that depend

on the distribution of Git. Here, we assume that no errors are introduced by the interpolation
approach. However, in Appendix F we discuss why our conclusion about the importance of
heterogeneity in this section will tend to be conservative if this type of interpolation error exists
or if error is introduced during the computation of Git.

Combining equation (2.9) and equation (2.10), we obtain the following equation:

Ẽ2(Wit) =
∑
git

λ
git
i E(Wit|Git = git) +

∑
git

λ
git
i ς

git
i

= E(Wit) +
∑
git

λ
git
i ς

git
i . (2.11)

Taking the difference between the mean computed using Approach 1 and the mean com-
puted using Approach 2, we obtain:

Ẽ1(Wit) − Ẽ2(Wit) = ςi −
∑
git

λ
git
i ς

git
i . (2.12)

Using equation (2.12) to estimate var(ςi) requires assumptions about the joint distribution
of ςi, ς2.0, ς3.0 and ς3.75. The prior assumption that ςi and ςgit

i s represent classical measurement
error implies that they have mean zero and are independent of other factors. In addition, we
assume that the four measurement error terms are independent and identically distributed.

Under these assumptions, as shown in Appendix B.4,
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var(ςi) =
var(Ẽ1(Wit) − Ẽ2(Wit))

1 +
∑

git
E((λgit

i )2)
. (2.13)

Note that we can compute the sample analogs of var(Ẽ1(Wit)− Ẽ2(Wit)) and E((λgit
i )2) from

data available to us.18 Hence, var(ςi) can be estimated. The first column of Table 2.4 reports
the estimates of var(ςi). Subtracting the measurement error component from measured het-
erogeneity (column 2 in Table 2.4 for the three rows associated with Approach 1) yields the
magnitude of true heterogeneity var(E(Wit)), which is reported in the second column. In the
third column, we report the adjusted heterogeneity ratio, which is defined as the ratio of true
heterogeneity (column 2 in Table 2.4) to the sum of true heterogeneity (column 2 in Table 2.4)
and uncertainty (column 1 in Table 2.3).

We find that the magnitude of measurement error is relatively small compared to measured
heterogeneity across all specifications so that the true contribution of heterogeneity to overall
earnings dispersion remains large.

Table 2.4: Heterogeneity and Uncertainty (Measurement Error Adjusted)

# of Observations: 650
Measurement Error

Adjusted Heterogeneity
Adjusted Heterogeneity

var(ςi) Ratio
Stepwise Uniform 83.6 408.3 72.14%
Log-normal 110.6 428.0 50.93%
Normal 93.6 390.0 64.17%

Note: The second column (Adjusted Heterogeneity) is found by subtracting column 1, Table
2.4 from column 2, Table 2.3. The third column (Adjusted Heterogeneity Ratio) is the ratio of
column 2, Table 2.4, to the sum of column 2, Table 2.4 and column 1, Table 2.3.

Discussion

There are reasons that our results are not directly comparable to the results surveyed in Cunha
and Heckman (2007), which are obtained using a realized income distribution. One particu-
larly notable difference is that our analysis is based on a sample of relatively homogeneous
students from one college. A second difference is that our survey questions (Question 1A/B)
are able to take into account individual-level uncertainty due to a potentially important factor,
the aggregate state of the economy in the future, which does not generate variation in the re-
alized income distribution in a particular year. However, if we were to broaden our sample

18For example, the sample analog of var(Ẽ1(Wit) − Ẽ2(Wit)) involves finding the difference between the mean
computed by Approach 1 and the mean computed by Approach 2 for each individual and then computing the
variance of this difference across all individuals in the sample.
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to include students who are likely to have systematically different views about future earnings
(e.g., students who do not attend college) or if we were to remove any uncertainty that exists
due to business cycles, then we would tend to find an even more prominent role for hetero-
geneity relative to uncertainty.19 Thus, it is reasonable to conclude that our findings reinforce
the strong message in Cunha and Heckman (2007) that taking into account heterogeneity is
essential for characterizing the amount of uncertainty that exists about future earnings at the
time of college entrance.

2.4 Uncertainty Resolution

In this section, we turn to examining when and why initial uncertainty about income is resolved.
In Section 2.4.1, we examine one particularly prominent potential source of uncertainty, one’s
college grade point average. By definition, all uncertainty about final college GPA will be
resolved by the end of college. Thus, if uncertainty about GPA is an important contributor to
overall earnings uncertainty, then students will expect much earnings uncertainty to be resolved
at some point during college, and much resolution may be expected to take place early in school
if students tend to learn quickly about their academic ability (Stinebrickner and Stinebrickner,
2012, 2014b). In Section 2.4.2, we perform a related analysis to examine how much earnings
uncertainty at the time of entrance can be attributed to uncertainty about college major. The
findings in Section 2.4.1 and Section 2.4.2 raise the possibility that much uncertainty about
earnings may remain unresolved at the end of college. Section 2.4.3 takes advantage of the
longitudinal expectations data in the BPS to show that this is the case, and, finally, Section
2.4.4 explores the factors that could contribute to this finding.

2.4.1 How Much Does Grade Uncertainty Contribute to Earnings Uncer-
tainty?

In addition to being useful for examining robustness and correcting for measurement error, our
second computational approach (Section 2.3.1) provides a natural way to quantify the impor-
tance of uncertainty about final GPA in determining overall uncertainty about future income.
Equation (2.4) yields a natural decomposition of income uncertainty. The first term in the

19The former is true if, e.g., the amount of uncertainty in other groups tends to be roughly similar to that of
students in our sample. The latter statement holds if aggregate and individual income-influencing factors are
multiplicatively separable. The proof is available upon request.

Another difference is that, unlike articles surveyed in Cunha and Heckman (2007), we do not control for ob-
served characteristics before computing the relative importance of uncertainty and heterogeneity. However, this
difference is unlikely to be important: we find that observable characteristics explain relatively little of the total
variation in E(Wit).
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square root shows the degree to which a student believes that the mean of Wit varies across
different final GPA realizations. Thus, it measures the contribution of uncertainty about grade
performance to income uncertainty. The second term is an average (across GPA realizations)
of how much uncertainty is present conditional on a particular realization of final GPA. Thus,
it measures the contribution of other factors to income uncertainty, including, for example,
uncertainty about major choice, labor market frictions, and future labor market conditions.20

Formally, we define the contribution of grade uncertainty to income uncertainty as the
fraction of overall uncertainty that can be attributed to the first term:

RG
it =

varGit(E(Wit|Git))
var(Wit)

(2.14)

=
varGit(E(Wit|Git))

varGit(E(Wit|Git)) + EGit(var(Wit|Git))
.

Table 2.5: Contribution of RG
i0: Mean and Quartiles

# of Observations: 650 Mean 25% 50% 75%
Stepwise Uniform 0.1879 0.0118 0.0850 0.2813
Log-normal 0.1609 0.0102 0.0648 0.2360
Normal 0.1655 0.0112 0.0687 0.2545

Note: The first column shows the mean of the sample distribution of RG
i0. The final three

columns show the three quartiles of the sample distribution of RG
i0.

Table 2.5 summarizes the results for the time of entrance. The first column shows that, on
average, 19% of income uncertainty is due to uncertainty about final GPA when we use the
stepwise uniform assumption and that, on average, 16% of income uncertainty is due to un-
certainty about final GPA when we use the log-normal or normal distributions. The final three
columns show the three quartiles for the three distributional assumptions. For the log-normal
and normal distributions, only roughly 25% of students believe that more than roughly 25%
of overall income uncertainty is due to uncertainty about final GPA. For the stepwise uniform
case, only 25% of students believe that more than 28% of income uncertainty is due to uncer-
tainty about final GPA. Hence, we conclude that, while uncertainty about grade performance
has a non-trivial effect on overall earnings uncertainty, the large majority of uncertainty exists
for other reasons.

20Of course, it is desirable to directly investigate the importance of each of the “other” factors as thoroughly
as possible. In Section 2.4.2 we do examine the contribution of major choice to overall earnings uncertainty,
and in Section 2.4.4 we do investigate the relative importance of labor market frictions and future labor market
conditions in determining the substantial uncertainty that is found to remain at the end of college.
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We can also provide evidence about the determinants of the heterogeneity in the Table 2.5
fractions. While individuals with higher fractions do tend to have slightly less income uncer-
tainty because of factors other than GPA, they have much more income uncertainty because of
GPA. For example, splitting the sample based on the median in the second (Log-normal) row
of Table 2.5, the first term in the denominator of equation (2.14) is 11 times larger for students
above the median and the second term in the denominator is 32% smaller for students above
the median. Differences in the amount of income uncertainty that is due to GPA could arise,
not only because of differences in uncertainty about GPA, but also because of differences in
beliefs about how GPA translates to income. We find evidence that, in practice, both of these
sources of heterogeneity matter.21

2.4.2 How Much Does Major Uncertainty Contribute to Earnings Uncer-
tainty?

Another important determinant of income that is fully realized during college is college major
(Altonji, Blom, and Meghir, 2012, Stinebrickner and Stinebrickner, 2014a, Altonji, Arcidia-
cono, and Maurel, 2016). A decomposition relevant for investigating the role that uncertainty
about major plays in determining total income uncertainty can be obtained in a way similar to
the decomposition for GPA in equation (2.4):

var(Wit) = varMit(E(Wit|Mit)) + EMit(var(Wit|Mit)), (2.15)

where Mit is a discrete random variable describing student i’s beliefs about final major at time
t, which takes on one of seven possible majors j with probability Pi jt.22 The first term on the
right side of equation (2.15) shows how the mean of Wit varies across different majors. Thus, it
measures the contribution of uncertainty about major to income uncertainty. The second term
is an average (across major realizations) of how much uncertainty is present conditional on
a particular realization of final major. Thus, it measures the contribution of other factors to

21Evidence about the importance of the first source of heterogeneity can be seen by computing the sample
interquartile range of varGi0 (E(Wi0|Gi0)) assuming that, conditional on a given realization of GPA, all students
have identical beliefs about the mean of the subjective conditional income distribution. In practice, we set these
means equal to their sample averages. Evidence about the importance of the second source of heterogeneity can be
seen by computing the sample interquartile range of varGi0 (E(Wi0|Gi0)) assuming that all students have identical
beliefs about final GPA. In practice, we set the parameters of the subjective GPA distribution equal to their sample
averages. We find that, depending on which of the three distributional assumptions is used, the interquartile range
for the first source of heterogneity is roughly 35% to 40% as large as the interquartile range for the second source
of heterogeneity.

22The numbers 1, ..., 7 correspond to the following eight major groups: 1. Agricultural and Physical Education;
2. Business; 3. Elementary Education; 4. Humanities; 5. Natural Sciences/Math; 6. Professional Programs; 7.
Social Sciences, where Economics is included in Social Sciences and where, for convenience, we have grouped
Agriculture and Physical Education together because of their small sizes.
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income uncertainty. Then, analogous to our GPA analysis, the goal is to estimate the fraction
of total income uncertainty that is due to major uncertainty using the following formula:

RM
it =

varMit(E(Wit|Mit))
varMit(E(Wit|Mit)) + EMit(var(Wit|Mit))

. (2.16)

Unfortunately, unlike what was the case for our GPA analysis in Section 2.4.1, the data
do not include all of the information that would allow us to directly compute the two terms,
varMit(E(Wit|Mit)) and EMit(var(Wit|Mit)), that enter this fraction. Specifically, while our analy-
sis in Section 2.4.1 took advantage of the fact that var(Wit|Git) is available in the data, var(Wit|Mit)
is not available. However, given information that is observed about E(Wit), var(Wit) and the
probabilities Pi jt, j = 1, ..., 7, we are able to estimate the two terms if we make additional as-
sumptions about how the mean and variance of the subjective income distribution conditional
on a major varies across students.

Estimation

The objective of this section is to examine the fraction of income uncertainty that is due to
uncertainty about major at the time of entrance (t = 0). With Pi j0 observed from Survey
Question 5 in Appendix A for j = 1, ..., 7, Equation (2.15) shows that estimating the two terms
requires knowledge of E(Wi0|Mi0) and var(Wi0|Mi0). We estimate these conditional means
and conditional variances under the assumption that they are homogeneous across students
conditional on observable characteristics, Xi, that are known to the student at time t = 0,

E(Wi0|Mi0 = j) = αw + Xiβ + δ j (2.17)

var(Wi0|Mi0 = j) = αv + Xiγ + θ j,

where δ j, j = 1, ..., 7 and θ j, j = 1, .., 7 represent differences in the conditional means and the
conditional variances, respectively, across majors.23

The unconditional mean E(Wi0) can be written as EMi0(E(Wi0|Mi0)), and, therefore, is a
function of E(Wi0|Mi0) and the random variable Mi0. Similarly, the unconditional variance
var(Wi0) can be written as varMi0(E(Wi0|Mi0)) + EMi0(var(Wi0|Mi0)), and, therefore is a function
of E(Wi0|Mi0), var(Wi0|Mi0), and the random variable Mi0. Then, following the same assump-

23While the linear specification does not restrict the conditional means and variances in equation (2.17) to be
positive, in practice we find that these objects are typically estimated to be positive. Nonetheless, we also esti-
mated a specification in which we assumed that the conditional means and variances were exponential functions.
This specification, in which the means and variances are restricted to be positive, produces results that are quite
similar to those obtained for the linear case.
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tion as in Section 2.3.2, the unconditional mean that is computed from Survey Question 1A
using Approach 1, Ẽ1(Wi0), is determined by adding classical measurement error, ςi, to the true
unconditional mean, E(Wi0). Similarly, the unconditional variance, Ṽar(Wi0), that is computed
from Survey Question 1A using Approach 1 is determined by adding classical measurement
error, ui, to the true unconditional variance, var(Wi0). This implies that

Ẽ1(Wi0) = EMi0(E(Wi0|Mi0)) + ςi =

7∑
j=1

Pi j0E(Wi0|Mi0 = j) + ςi (2.18)

= αw + Xiβ +

7∑
j=1

Pi j0δ j + ςi

ṽar(Wi0) = varMi0(E(Wi0|Mi0)) + EMi0(var(Wi0|Mi0)) + ui (2.19)

= varMi0(δ j) + αv + Xiγ +

7∑
j=1

Pi j0θ j + ui

Normalizing the Social Science coefficients δ7 and θ7 to zero, we estimate the remaining
parameters, αw, β, δ j, j = 1, ..., 6, αv, γ, and θ j, j = 1, ..., 6, which are needed to estimate
E(Wi0|Mi0 = j), j = 1, ..., 7 and var(Wi0|Mi0 = j), j = 1, ..., 7 (equation 2.17), and, therefore,
the two terms that appear in the fraction RM

i0 (equation 2.16). We obtain estimates by:

1. Regressing Ẽ1(Wi0) on Xi and Pi j0, j = 1, ..., 7 to obtain estimates of αw, β and δ j, j =

1, ..., 6.

2. Using the estimates δ̂ j, j = 1, ..., 6 and the normalized value δ7 = 0 to compute an
estimate of varMi0(δ j), j = 1, ..., 7 for each person i.

3. Regressing ṽar(Wi0) − v̂arMi0(δ j) on Xi and Pi j0, j = 1, ..., 7 to obtain estimates of αv, γ
and θ j, j = 1, ..., 6.

Results

Including Black, Male, and ACT score in Xi, Table 2.6 shows the results. The first column
shows that, on average, 17% of income uncertainty is due to uncertainty about final major
when we use the stepwise uniform assumption, on average, 12% of income uncertainty is due
to uncertainty about final major when we use the log-normal assumption, and, on average,
11% of income uncertainty is due to uncertainty about final major when we use the normal
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assumption. Thus, the conclusions for major are fairly similar to the conclusions for GPA -
while students believe that uncertainty about major plays non-trivial role in creating the overall
uncertainty about income, much of the uncertainty about income is present for other reasons.

Table 2.6: Contribution of RM
i0 : Mean and Quartiles

# of Observations: 682 Mean 25% 50% 75%
Stepwise Uniform 0.1669 0.0419 0.1458 0.2508
Log-normal 0.1152 0.0333 0.0932 0.1645
Normal 0.1125 0.0407 0.0957 0.1672

Note: The first column shows the mean of the sample distribution of RM
i0 . The final three

columns show the three quartiles of the sample distribution of RM
i0 .

Table 2.7: Estimates for δ j and θ j

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

δ j

Stepwise Uniform
-1.3487 8.8563 -11.3784 -3.7377 -3.8968 -2.6666 0
(0.7612) (0.0380) (0.0176) (0.3542) (0.2932) (0.5168) N.A.

[3] [1] [7] [5] [6] [4] [2]

Log-normal
-2.6844 8.0725 -13.2090 -6.0781 -2.4133 -3.5936 0
(0.5554) (0.0720) (0.0098) (0.1498) (0.5350) (0.3994) N.A.

[4] [1] [7] [6] [3] [5] [2]

Normal
-2.8511 7.2972 -11.4803 -6.7927 -1.9434 -3.2801 0
(0.5080) (0.0780) (0.0156) (0.0926) (0.5954) (0.4164) N.A.

[4] [1] [7] [6] [3] [5] [2]

θ j

Stepwise Uniform
32.6860 12.2821 -86.5519 16.8320 -11.6128 -30.0232 0
(0.3368) (0.7798) (0.0676) (0.6150) (0.6676) (0.3176) N.A.

[1] [3] [7] [2] [5] [6] [4]

Log-normal
68.7708 24.4051 -139.0690 47.7077 18.9153 -41.2298 0
(0.2612) (0.7140) (0.0696) (0.4082) (0.7582) (0.4746) N.A.

[1] [3] [7] [2] [4] [6] [5]

Normal
50.8042 8.6432 -93.4664 1.4545 8.4128 -40.2733 0
(0.2824) (0.8916) (0.1060) (0.9932) (0.8628) (0.3514) N.A.

[1] [2] [7] [4] [3] [6] [5]

List of majors: 1. Agricultural and Physical Education; 2. Business; 3. Elementary Education; 4.
Humanities; 5. Natural Sciences/Math; 6. Professional Programs; 7. Social Sciences.
Note: Equal-tail bootstrap P-values are in the parenthesis. Ranks are in the brackets.

Table 2.7 reports the estimates for δ j and θ j. The first three rows indicate that students
believe there are substantial differences in mean earnings across majors. For example, the
Business major ( j = 2) has a significantly higher mean than the Social Science major ( j = 7),
while the Education major ( j = 3) has a significantly lower mean than the Social Science
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major. The last three rows indicate that there are also differences in uncertainty about income
across majors. Most notably, consistent with the rigid pay scale that exists in public schools,
the variance is estimated to be the smallest for Elementary Education.

2.4.3 Total Uncertainty Resolution

The findings in Section 2.4.1 and Section 2.4.2 raise the possibility that much uncertainty about
earnings may remain unresolved at the end of college. However, while grade performance (aca-
demic ability) and college major are prominent income-influencing factors that a student could
learn about during college, they are not the only possible factors of relevance. In this section,
we examine the actual evolution of income uncertainty over time during school, by taking ad-
vantage of the fact that the BPS elicited information about subjective income distributions in
each year of school (using questions such as Question 1A in Appendix A). We again focus on
subjective beliefs about income at age 28 under the scenario in which a student graduates from
college.

Table 2.8: Uncertainty Resolution
# of Observations: 246 Beginning Year 1 Year 2 Year 3 End
Sample Stepwise Uniform 10.1310 9.1084 8.3859 8.2887 8.2874
Average Log-normal 13.4582 11.8160 11.0484 11.0632 10.7536
of std(Wit) Normal 11.7686 10.7123 10.0112 9.6912 9.6384
Percentage of Stepwise Uniform N.A. 0.1917 0.3148 0.3306 0.3308
Uncertainty Log-normal N.A. 0.2291 0.3261 0.3242 0.3615
Resolved Normal N.A. 0.1714 0.2764 0.3219 0.3292

Note: The unit of measurement for Wit is one thousand dollar. The percentage of initial
uncertainty resolved by Year t (row 4-6) is obtained in the manner described in the text.

The first three rows of Table 2.8 report the average standard deviation of the subjective
earnings distribution at five different points in college - the beginning of college, the end of
the first year, the end of the second year, the end of the third year, and the time of graduation
(End) - for each of our three distributional assumptions, using Approach 1.24 We restrict our
sample to students who answered income expectations questions at all five points. Looking
across columns, as would be expected, students become increasingly certain about their future
income as they progress through college.25

24For t greater than zero, computing std(Wit) using Approach 2 requires using a student’s cumulative GPA
at time t to construct the distribution describing subjective beliefs about final grades at time t. We avoid this
complication by computing std(Wit) using only Approach 1.

25The only exception is a slight increase of sample average of std(Wit) from the end of Year 2 to the end of Year
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In order to facilitate a comparison between total uncertainty resolution and the findings in
Section 2.4.1 and 2.4.2, we define the percentage of uncertainty resolution as the percentage
decrease in the variance of the subjective income distribution. Since the variance is simply
the square of the standard deviation, we compute these percentages using entries in the first
three rows of Table 2.8. As an example, the second column in the fourth row shows that
1 − 9.10842

10.13102 = 19.17% of total income uncertainty was resolved during the first year of college,
when we use the stepwise uniform distribution.

The last three rows of Table 2.8 show the percentage of uncertainty that is resolved as of
the five different points. The results indicate that, depending on the distributional assumption
that is made, between 33% and 36% of uncertainty is resolved by the end of college. Thus,
the evidence indicates that much uncertainty does remain unresolved during college. Further,
comparing the last three columns, we find that the majority of uncertainty resolution took
place in the first two years of college, with little uncertainty resolved after the end of the
third year. This finding suggests that learning about future income happens relatively quickly
in college. Given evidence that uncertainty about grade performance and major is resolved
relatively quickly, the finding is consistent with an environment where learning about grade
performance (ability) and major contribute heavily to the total resolution of income uncertainty.

Further, comparing the sum of the contribution of GPA uncertainty (Table 2.5) and major
uncertainty (Table 2.6) to the results in the last three rows of Table 2.8 provides some direct
evidence about whether this is the case. However, this sum would give a biased view of the joint
contribution of GPA and major if these two factors tend to be correlated. The joint contribution
of GPA and major is determined by an equation analogous to Equation (2.4) and Equation
(2.15):

var(Wit) = varGit ,Mit(E(Wit|Git,Mit)) + EGit ,Mit(var(Wit|Git,Mit)). (2.20)

The first term on the right side of Equation (2.20), which is the variance of E(Wit|Git,Mit) over
the joint distribution of Git and Mit, represents the joint contribution of uncertainty about final
GPA and major to total income uncertainty. The second term on the right side of Equation
(2.20), which is the mean of var(Wit|Git,Mit) over the joint distribution of Git and Mit, repre-
sents the contribution of other factors to total initial income uncertainty. Analogous to Equation
(2.14) and Equation (2.16), we define the contribution of final GPA and major to total income
uncertainty, RGM

it , as the ratio of the first term to the sum of the two terms.

We compute RGM
it for the time of entrance (t = 0) using a method described in Appendix

B.6. Table 2.9 summarizes the results. The first column shows that, on average, 27% of initial

3 when using log-normal distribution. This increase, however, is quite small and can be reasonably attributed to
measurement error.
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income uncertainty is due to uncertainty about final GPA and major when we use the stepwise
uniform assumption, on average, 19% of initial income uncertainty is due to uncertainty about
final GPA and major when we use the log-normal assumption, and, on average, 23% of initial
income uncertainty is due to uncertainty about final GPA and major when we use the normal
assumption. Thus, the results in Table 2.9 along with the results in the last three rows of Table
2.8 do indicate a very substantial role for final GPA and major in the resolution of uncertainty.

Table 2.9: Contribution of RGM
i0 : Mean and Quartiles

# of Observations: 588 Mean 25% 50% 75%
Stepwise Uniform 0.2685 0.1549 0.2377 0.3604
Log-normal 0.1926 0.0952 0.1446 0.2298
Normal 0.2262 0.1254 0.1792 0.2757

Note: The first column shows the mean of the sample distribution of RGM
i0 . The final three

columns show the three quartiles of the sample distribution of RGM
i0 .

Selection

In order to keep the sample constant across columns in Table 2.8, the sample used includes
only students who graduated. A natural question is how the results in Table 2.8 would change
if no selection issues were present, that is, if we could compute these numbers for the full
sample of all students who entered college - both those who graduated and those who dropped
out. Thinking about how the full sample might differ from the sample of graduates, it is not
clear from a conceptual standpoint whether individuals who drop out of school would tend to
resolve more uncertainty or less uncertainty than individuals who remain in school. This is the
case because students who drop out could tend to be those that resolve a substantial amount
of uncertainty or could be students who were very close to the margin of indifference at the
time of entrance, and, therefore, could be induced to leave school even without resolving much
uncertainty. As such, whether the amount of uncertainty that would be resolved for the full
sample would tend to be higher or lower than the amount of uncertainty that is resolved for
the sample of graduates is an empirical question. We are able to provide some evidence about
this question by taking advantage of the fact that income expectations were elicited twice dur-
ing the first year, before much dropout occurs. We find that, depending on the distributional
assumption we use, individuals in the full sample resolve between 7% and 9% of initial un-
certainty during this period, while individuals who graduate resolve between 15% and 17% of
uncertainty during the first year. Thus, the amount of uncertainty that is resolved for students in
the full sample seems to be, if anything, lower than the amount of uncertainty that is resolved
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for students who graduated. This suggests that our conclusion from Table 2.8 - that much un-
certainty remains unresolved at the time of graduation - would be strengthened further if we
were able to examine the resolution of earnings for our full sample of students who answered
the baseline survey.

It is worth considering whether it seems generally plausible that much uncertainty may
remain unresolved at the end of college. Of central relevance, it seems reasonable to believe
that, during college, a student may be able to resolve uncertainty about her own ability or other
permanent factors, but it may be, by definition, difficult to resolve uncertainty about transitory
shocks that could occur in the labor market. Then, the notion that substantial uncertainty
remains at the end of college may not be entirely surprising given that a broad literature finds
that transitory components play an important role in the earnings process (Blundell and Preston,
1998, Meghir and Pistaferri, 2004). Consistent with these findings, using our post-college
data to estimate a random effects model of earnings, we find that the transitory component
has a standard deviation of approximately $9,000.26 While a variety of concerns could arise
from comparing this standard deviation from the realized earnings data to standard deviations
elicited using expectations questions, it does seem generally relevant that $9,000 is non-trivial
when viewed next to the standard deviations in Table 2.8.

Demographic Variables

In Section 2.3.1 we found that black students are particularly uncertain about income at the
time of entrance. A natural question is whether these students resolve more uncertainty early
in college, so that they ultimately end up with similar amounts of uncertainty as other students.
Given that Table 2.8 found that the majority of resolution during college takes place during
the first two years, we regress std(Wi2) on Black, Male and ACT score for the three different
distributional assumptions associated with Approach 1. We find that black students are no
longer more uncertain at the end of the second year; the estimated coefficient on Black in all
three regressions is slightly negative.

The previous paragraph suggests that black students are resolving more uncertainty than
other students. To provide more direct evidence, we regress the change in uncertainty, as
measured by std(Wi2) − std(Wi0), on Black, as well as Male and ACT score for the three dis-
tributional assumptions associated with Approach 1. As expected, we find that the coefficient
on Black is significant at a .1 level in all three regressions, with the largest t-statistic having a

26We estimate a random effects model with annual income as the dependent variable and Black, Male, ACT
score, cohort dummy and year dummy as regressors. We use data during 2009-2012 for estimation because most
students in our sample turn 28 around year 2010 or 2011.
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value of 2.31. Averaging the coefficient for Black across the three regressions, we find that the
decrease in uncertainty is $3088 larger for blacks than for non-blacks.

2.4.4 What Factors Account for End-of-College Income Uncertainty?

With the goal of providing a more concrete understanding of why a substantial amount of
uncertainty about income at age 28 remains unresolved at the end of college, we consider two
broad explanations. The first explanation is that individuals might be unsure about what kinds
of job offers they will receive at age 28. The second explanation is that individuals might
know the kinds of job offers they will receive, but might be unsure about what kinds of jobs
they will prefer to hold/choose in the future. These two explanations may have different policy
implications for a variety of reasons, including the fact that the latter represents variation in
future income that is at least partially under the control of individuals.

We begin by considering the second explanation. Traditionally, especially for women,
uncertainty about hours of work would have represented a particularly salient reason for this
explanation, with uncertainty about hours of work having an obvious, direct link to uncertainty
about income. However, Stinebrickner, Stinebrickner, and Sullivan (2018) find that this reason
is unlikely to be of particular importance for our recent cohort of college graduates; the large
majority of both men and women work full-time throughout their first decade in the labor force,
with even departures for children tending to be short.

A second possible reason for the second explanation is that individuals may be uncertain
about what types of work they will prefer to perform in the future, with uncertainty about types
of work having a link to uncertainty about income because income varies substantially across
different types of work (Gibbons and Katz, 1992, Heckman and Sedlacek, 1985, Acemoglu and
Autor, 2011, Autor and Handel, 2013). We use Survey Question 7 to look for evidence of this
type of uncertainty. Because it is not possible to elicit preferences about all types of work, the
question stratifies the set of possible jobs into three broad categories: jobs that do not require
a college degree (No-Degree-Needed), jobs that require a college degree in a student’s specific
area of study (Degree-My-Area), and jobs that do not require a college degree in a student’s
specific area of study (Degree-Any-Area).

Uncertainty about preferences towards the three categories in Question 7 would be particu-
larly relevant for creating income uncertainty if individuals tend to be uncertain about whether
they will wish to work in No-Degree-Needed jobs, because these jobs tend to pay substantially
less than jobs that require a college degree. However, Survey Question 7 suggests that this is
unlikely. Only between 2-3% of all students prefer No-Degree-Needed jobs to jobs that require
a college degree and the preference for the types of work in college jobs is very strong, with
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the average respondent requiring an income premium of over 50% ($45, 500 v.s. $30, 000) to
change from her preferred college job to a No-Degree-Needed job. Further, there seems to be
relatively little uncertainty about what types of jobs students prefer even when we take a further
step and differentiate between Degree-Any-Area jobs and Degree-My-Area jobs. More than
80% of students prefer Degree-My-Area jobs, and, on average, these individuals would have
to be paid a roughly 47% income premium to accept Degree-Any-Area jobs instead.27 Thus,
Question 7 does not provide evidence that the second explanation is important. However, we
can not rule out that the second explanation is important because it is possible that workers
are uncertain about their preferences towards the different types of jobs that are present within
each of the broad categories in Question 7.

We consider several possible reasons for the first explanation. The first reason we consider
is that uncertainty may exist about the state of the economy at age 28. To examine this reason,
we take advantage of the fact that, as students approached the end of college, the BPS elicited
beliefs about not only earnings at the age of 28, but also about earnings in the first year out of
college. As shown in the first column of Table 2.10, at the end of college (t = 4), the average
standard deviation of the subjective distribution of earnings in the first post-college year is
between six thousand and nine thousand dollars, depending on the distributional assumption
that is employed. This standard deviation tends to be approximately 75% of the standard
deviation associated with age 28 (second column) and approximately 60% of the standard
deviation associated with age 38 (third column). The fact that much uncertainty exists for the
first year out of school suggest that, at the very least, factors other than the state of the economy
are influencing income uncertainty.

Roughly speaking, we could group the remaining reasons for the first explanation under
the heading of frictions. One possibility is that information frictions are present. For example,
students may begin school with uncertainty about the type of job opportunities that tend to
be available for college graduates, and this uncertainty may not be entirely resolved even by
the end of college (Betts, 1996). It is somewhat difficult to provide direct evidence about the
importance of this type of friction. However, we are able to provide some evidence about a
second potential type of frictions - labor market/search frictions. The first piece of evidence
comes from Survey Question 6. Although we found that more than 80% of students prefer
a Degree-My-Area job, Question 6 indicates that, on average, students believe there is only a
50% chance of ending up in such a job in the first year. Further, while almost no students prefer
a No-Degree-Needed job, on average, students believe there is almost a 20% chance of being
forced to accept this type of job. The second piece of evidence comes from Survey Question

27In addition, the 16% of students who prefer a Degree-Any-Area job also seem to be quite certain about their
preferences. On average, these students would have to be paid around 44% more to accept Degree-My-Area jobs.
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Table 2.10: Earnings Beliefs at the End of College

# of Observations: 359
std(Wa,1

i4 )
a = 1 Year Out a = 28 a = 38

Stepwise Uniform
6.3281 8.6233 10.9518

(4.9854) (6.9139) (9.3353)

Log-normal
9.0638 11.4029 14.1175

(13.0912) (11.7530) (14.5838)

Normal
7.2301 9.9188 12.5319

(5.6186) (7.9017) (10.3720)

Note: For different ages a, the table shows the standard deviation of the subjective income
distribution at the end of college (t = 4) for the graduation scenario (s = 1). The unit of
measurement for Wa,1

i4 is one thousand dollars. A particular entry in the table shows the
sample mean and standard deviation of std(Wa,1

i4 ) for a particular age a. For example, row 1,
column 1 shows a sample mean of $6,328.10 and a sample standard deviation of $4,985.40
for std(Wa,1

i4 ) for the age a corresponding to the first post-college year.

8. On average, students believe that there is a 22% probability that it will take five or more
months of search to find a job. Further, on average, students believe that there is only a 20%
chance of obtaining a job with less than one month of search.28 While we stress that it is not
possible to determine the relative importance of the different reasons for the first explanation,
the results suggest that search frictions are likely to be relevant.

2.5 Conclusion

Whether large amounts of uncertainty about future earnings tend to be resolved during college
has been an open question. Large amounts would tend to be resolved if: 1) the substantial
dispersion found in realized earnings is indicative of substantial amounts of uncertainty at the
time of college entrance, and 2) much of this initial uncertainty is resolved during college as
students learn about earnings-influencing factors.

Prior evidence about 1) is provided by research such as Cunha, Heckman, and Navarro
(2005). They conclude that only a relatively small portion of the variation in realized earn-
ings should be attributed to uncertainty, leaving a large role for heterogeneity. We find direct
evidence in support of their conclusion when, taking advantage of expectations data collected
at the time of college entrance, we decompose an expectations analog to the realized wage

28The survey question elicits beliefs about search frictions during school. The assumption in this discussion
is that these beliefs are related to beliefs about search frictions in the post-schooling period. This assumption is
consistent with the assumptions made, out of necessity, in a broader search literature.
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distribution into the portion due to uncertainty and the portion due to heterogeneity.
Very little evidence about 2) is present in the literature. Taking advantage of the longitudinal

nature of our expectations data, we find that much of the income uncertainty that is present at
the time of entrance remains unresolved at the time of graduation. Further, taking advantage
of a variety of unique data features, we provide evidence about the amount of initial income
uncertainty that is and is not resolved. Our findings suggest that the portion of uncertainty
that is resolved during school can be largely attributed to what one learns about her academic
ability and her college major during school. As for why some uncertainty remains unresolved,
we find evidence that transitory factors, such as search frictions, are likely to play an important
role in creating initial uncertainty.
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Chapter 3

Perceived and Actual Option Values of
College Enrollment

3.1 Introduction

An important feature of post-secondary schooling is the experimentation that accompanies
sequential decision-making.1 Specifically, by entering college, a student gains the option to
decide at a future time (t = t∗) whether it is optimal to remain in college (s = 1) or to drop
out (s = 0), after resolving uncertainty that existed at entrance (t = t0) about academic ability
or other factors that affect her return to college. This chapter uses data from the Berea Panel
Study to contribute to a literature that has recognized the importance of quantifying the value
of this option (Heckman, Lochner, and Todd, 2006, Heckman and Navarro, 2007, and Stange,
2012). The unique nature of the data allows an examination of whether students’ perceptions
about option values tend to be accurate by allowing, for the first time, a distinction to be made
between “actual” option values and “perceived” option values.

For the purpose of illustration, consider a scenario where all that occurs between t0 and
t∗ is that students resolve uncertainty that existed at entrance.2 In this case, in the absence
of the option to make decisions after receiving new information, the decision of whether to
enter college after high school is equivalent to a decision of whether to commit to staying in
school until college graduation. The value of the option quantifies how beneficial it is to be

1This notion that education can be considered as a sequential choice that is made under uncertainty has been
widely accepted in the literature since the seminal work in Manski (1989) and Altonji (1993).

2If there are also direct net benefits/costs associated with staying in school between t0 and t∗ (e.g., tuition,
utility or dis-utility of schooling, foregone earnings), students’ entrance decisions would also depend on such
direct benefits/costs, which could complicate the illustrative discussion in the introduction. However, we note
that our formal approach for quantifying the option value does not rely on the assumption that there are no direct
benefits/costs between t0 and t∗.
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able to delay the graduation decision until after some uncertainty is resolved during the early
portion of college. For a student who would not enter college in the absence of the option,
the expected lifetime utility at t = 0 of graduating, which we denote Et=t0V

s=1
i , is lower than

the expected utility at t = 0 of not graduating, which we denote Et=t0V
s=0
i . Roughly speaking,

the option value for this student tends to be substantial when, given the magnitude of the
(negative) difference between these two expected utilities at t0, the information she will obtain
after entering college will often push her across the margin of indifference to a situation where
the expected utility at t∗ of graduating (Et=t∗V s=1

i ) is non-trivially higher than the expected
utility at t∗ of not graduating (Et=t∗V s=0

i ). Similarly, for a student who would enter college in
the absence of the option, the expected utility at t0 of graduating is higher than the expected
utility at t0 of not graduating. Roughly speaking, the option value for this student tends to be
substantial when, given the size of the (positive) difference between these two expected utilities
at t0, the information she will obtain after entering college will often push her across the margin
of indifference to a situation where the expected utility at t∗ of graduating is non-trivially lower
than the expected utility at t∗ of not graduating.

The importance of quantifying the option value comes from its fundamental importance
for understanding/interpreting college attendance and college dropout decisions; while policy
discussion often suggests that college attendance rates are too low or college dropout rates are
too high, it is difficult to reach an informed view of these rates without understanding the option
value’s importance.3 In terms of college entrance, as implied by the discussion in the previous
paragraph, the number of high school graduates who should find it optimal to enter will depend
directly on the option value; when option values are close to zero, students will tend to enter
college only if the expected utility at t0 of graduating is greater than the expected utility at t0 of
not graduating, while substantially higher option values can induce entrance even for students
for which the difference between these expected utilities (hereafter denoted Et=t0(V

s=1
i − V s=0

i )
and referred to as the “initial expectations gap” at t = 0) is substantially negative. Further, this
effect on who attends college also leads to a very direct link between option values and dropout
rates. Indeed, inconsistent with policy discussion that tends to view dropout as inherently bad,
if high option values imply that students with substantial negative initial expectations gap find
it useful to enter college, then a non-trivial amount of dropout would be a natural part of a
healthy environment in which schools are providing useful information to students.

The well-recognized difficulty of characterizing option values can be viewed as arising, to
a large extent, because of data issues. We illustrate these issues using a stylized model that cap-

3As one of many examples, a recent article in the Forbes (June 6, 2018) suggests that “The sad reality is that
far too many students invest scarce time and money pursuing a degree they never finish, frequently winding up
worse off than if they’d never set foot on campus in the first place”.
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tures the key components of learning in the college environment of interest. Consistent with the
discussion in the second paragraph, we show that the option value is determined by the initial
expectations gap Et=t0(V

s=1
i − V s=0

it∗ ) and the amount of uncertainty about the expected gap that
will be resolved before making the dropout decision at t=1, which we denote σi. Then, because
Et=t0(V

s=1
i − V s=0

i ) and σi completely determine the dropout probability, which we denote Ps=0
i ,

what is needed to characterize the option value is any two of: Ps=0
i , Et=t0(V

s=1
i − V s=0

i ), and
σi. Unfortunately, while administrative data sources can provide direct evidence about Ps=0

i ,
they are not well-suited for providing direct evidence about the other two objects.4 As such,
research characterizing option values typically has turned to fully specified models (often dy-
namic discrete choice models) to estimate the option value.5 In contrast, the BPS data allow the
option value to be computed in a more direct way; in addition to containing information about
dropout, evidence about uncertainty resolution, which arises in our baseline model because of
learning about pecuniary factors under the scenario in which a student graduates from college,
comes from the fact that the distribution describing beliefs about future earnings is collected at
multiple times during school.

A feature of the models traditionally used to estimate option values is that Rational Ex-
pectations (RE) assumptions are employed to link actual outcomes to choices that depend on
students’ subjective expectations. Consequently, these approaches do not make a distinction
between students’ perceptions about option values (hereafter referred to as “perceived” option
values) and their values implied by rational expectations (hereafter referred to as “actual” op-
tion values); roughly speaking, the option values computed using these models are a mix of
perceived and actual option values. Generally, the potential importance of this distinction is
highlighted by a recent expectations literature, which has found that perceptions about objects
of relevance for educational decisions are often inaccurate.6 In the particular context of interest
here, it seems quite possible that students may not entirely appreciate the benefits of experi-

4It is hard to provide information about the initial expectations gap because this gap includes not only the
financial return to schooling but also non-pecuniary benefits of schooling. These benefits are inherently difficult
to observe directly. Instead, many researchers have treated them as the “residual” in the contemporaneous utility
function and have identified/estimated their values from the component of schooling attendance decisions that
is not explained by pecuniary factors (e.g., Keane and Wolpin, 1997, Cunha, Heckman, and Navarro, 2005,
Heckman, Lochner, and Todd, 2006, and Abbott, et al., forthcoming).

5Estimation of σi typically requires researchers to either impose or estimate the structure of agent information
sets at college entrance and the end of college. As one example of the former, Stange (2012) assumes that students
update their beliefs about the benefit of college mainly through observing grades as signals. As one example of
the latter, Heckman and Navarro (2007) estimate students’ information sets using a method developed by Cunha,
Heckman, and Navarro (2005).

6The importance of whether perceptions tend to be accurate can be seen in recent research emphasizing the
value of supplementing expectations data with data on actual outcomes (e.g., Arcidiacono, Hotz, Maurel and
Romano, 2019, Stinebrickner and Stinebrickner, 2014a, Wiswall and Zafar, 2016, D’Haultfoeuille, Gaillac, and
Maurel, 2018, and Giustinelli and Shapiro, 2019).
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mentation. Indeed, the importance of learning models was not even widely recognized in the
economics of education literature until quite recently, and policy discussion does not tend to
extol the virtues of experimentation.7 Our ability to differentiate between perceived and actual
option values comes from the fact that 1) in addition to observing actual dropout rates, the BPS
collected information about perceived dropout rates and 2) in addition to being able to char-
acterize students’ actual uncertainty resolution from longitudinal earnings expectations data,
students’ perceptions about how much uncertainty will be resolved can be estimated using a
simple model describing the relationship between the perceived dropout probability, the initial
expectations gap, and the perceived amount of uncertainty resolution.

We find that, on average, students’ perceptions about the value of the option understate the
actual value of the option substantially: The average perceived option value is $8,670, roughly
65% smaller than the average actual option value, $25,040. Importantly, our approach allows
us to examine why this overstatement occurs. We find that it is not driven by an understate-
ment of the amount of earnings uncertainty that is resolved in college - both the actual and the
perceived fraction of initial earnings uncertainty that is resolved in college are 0.51. Instead,
we find that students’ perceptions tend to substantially overstate the initial expectations gap
Et=t0(V

s=1
i −V s=0

i ). This result follows from our finding that perceptions about uncertainty reso-
lution are accurate along with a finding that individuals are too optimistic about the probability
of graduating (perceived probability 0.853, actual probability 0.647), since, as we show using
a stylized model, the initial expectations gap is decreasing in the dropout probability hold-
ing constant uncertainty resolution.8 As a robustness check, we examine the implications of
allowing students to learn about non-pecuniary factors and also about their non-college option.

Our findings about the reason for misperceptions about the option value are important be-
cause, while it may seem at a first glance that an understatement of the option value would
necessarily lead to too few students entering college, in reality whether this is true depends
critically on why misperceptions exist.9 This is the case because the overall value of college,
which is the relevant object for the college entrance decision, is strongly related but not iden-
tical to the option value. Under the illustrative scenario in the second paragraph - where all
that occurs between t0 and t∗ is that students resolve uncertainty that existed at entrance - the

7The Berea Panel Study was designed (in 1998) with the specific objective of understanding the importance
of learning in educational decisions. At the time, Altonji (1993) and Manski (1989) represented perhaps the only
research specifically focusing on the importance of learning models for understanding dropout.

8Our finding that, on average, students overstate the initial expectations gap implies that there must be some
unexpected systematic downward changes in students’ beliefs between t0 and t∗. This is the case because, if
they were anticipated, they should be incorporated into perceived initial expectations gaps, which would then be
correct, on average. Therefore, we interpret these changes as unexpected corrections of systematic overoptimism.

9The relevance of this concern is apparent in related research which, for example, examines whether higher-
education decisions are influenced by misperceptions about college costs (Bleemer and Zafar, 2018) or by mis-
perceptions about available opportunities (Hoxby and Turner, 2013).
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overall value of college is equal to the sum of the option value and the initial expectations gap
under the most likely scenario where the initial expectations gap is positive. We find that the
understatement of the option value is more than offset by the optimism about the initial expec-
tations gap. Thus, once one takes into account both components of the overall value of college,
concerns that too few students enter college tend to dissipate.

.

3.2 Data

In the context here, of particular importance are survey questions eliciting students’ perceptions
about the probability of dropping out and perceptions about future earnings under a scenario
in which the student graduates (s = 1) and under a scenario in which the student drops out
(s = 0). We focus on the 2001 cohort of the Berea Panel Study because the 2000 cohort did
not answer the key survey question about perceived dropout probability in the baseline survey.
Unless otherwise noted, the analyses in this chapter involves the 337 students (from the 2001
cohort) who provided complete answers to these questions on the baseline survey. Providing
evidence in support of the notion that the elicited dropout probabilities contain useful content,
we find that the null hypothesis that perceived dropout probabilities are unrelated to actual
dropout outcomes is rejected at a .10 level of significance.10

3.3 Defining the Option Value in a Stylized Learning Model

In this section, we define the option value in the context of a stylized model that captures the
key features of learning in the college environment of interest. When entering college at t0,
a student knows that she will have the option to choose between college completion (s = 1)
and dropping out (s = 0) at a future time t∗, after resolving a certain fraction of her initial
uncertainty (i.e., uncertainty at t = t0) about the value of each alternative. We denote the value
of the two alternatives as V s=1

i and V s=0
i , respectively, and denote student i’s expectations about

the two values at t = t∗ as V s=1
it∗ ≡ Et=t∗V s=1

i and V s=0
it∗ ≡ Et=t∗V s=0

i , respectively.

Formally, the option value can be defined as:

OVi ≡ Et=t0 max(V s=1
it∗ ,V

s=0
it∗ ) −max(Et=t0(V

s=1
it∗ ), Et=t0(V

s=0
it∗ )). (3.1)

10Of course, from a conceptual standpoint, a strong relationship between perceptions about an object of in-
terest and the actual outcomes of that object are not necessary for expectations data to be useful. Indeed, much
of the motivation for the direct elicitation of expectations comes from the possibility that beliefs may be incor-
rect. Nonetheless, given the difficulty of providing evidence in support of the quality of expectations data, much
previous research has examined whether a relationship exists between perceptions and actual outcomes.
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Let ∆i = (V s=1
it∗ − V s=0

it∗ ) − Et=t0(V
s=1
it∗ − V s=0

it∗ ) represent the new information received between t0

and t∗. We assume that ∆i is normally distributed.11 It has a mean of zero by construction, and
we denote its variance as σ2

i .

At time t∗, student i chooses to drop out if and only if V s=0
it∗ > V s=1

it∗ . Given the normality
assumed for ∆i, her dropout probability Ps=0

i is given by:

Ps=0
i = Φ(

Et=t0(V
s=0
it∗ − V s=1

it∗ )
σi

), (3.2)

where Φ(·) is the cdf of the standard normal distribution.

In Equation (3.1), Et=t0 max(V s=1
it∗ ,V

s=0
it∗ ), which can be referred to as the continuation value

of college enrollment, is given by:

Et=t0 max(V s=1
it∗ ,V

s=0
it∗ ) = Ps=1

i Et=t0(V s=1
it∗ ) + Ps=0

i Et=t0(V s=0
it∗ ) + σiφ(

Et=t0(V s=1
it∗ − V s=0

it∗ )
σi

), (3.3)

where Ps=1
i ≡ 1 − Ps=0

i = Φ(
Et=t0 (V s=1

it∗ −V s=0
it∗ )

σi
) is the probability of completing college, and φ(·) is

the pdf of the standard normal distribution.12

Equation (3.3) allows us to express the option value (OV) as a function of σi and Ps=0
i :

OVi ≡ Et=t0 max(V s=1
it∗ ,V

s=0
it∗ ) −max(Et=t0(V

s=1
it∗ ), Et=t0(V

s=0
it∗ ))

=

 Ps=0
i Et=t0(V

s=0
it∗ − V s=1

it∗ ) + σiφ(
Et=t0 (V s=0

it∗ −V s=1
it∗ )

σi
) if Et=t0(V

s=1
it∗ ) > Et=t0(V

s=0
it∗ )

Ps=1
i Et=t0(V

s=1
it∗ − V s=0

it∗ ) + σiφ(
Et=t0 (V s=1

it∗ −V s=0
it∗ )

σi
) if Et=t0(V

s=1
it∗ ) ≤ Et=t0(V

s=0
it∗ )

=

 Ps=0
i σiΦ

−1(Ps=0
i ) + σiφ(Φ−1(Ps=0

i )) if Ps=0
i < 0.5

Ps=1
i σiΦ

−1(Ps=1
i ) + σiφ(Φ−1(Ps=1

i )) if Ps=0
i ≥ 0.5

≡

 σiG(Ps=0
i ) if Ps=0

i < 0.5
σiG(Ps=1

i ) if Ps=0
i ≥ 0.5

,

≡

 σiG(Ps=0
i ) if Ps=0

i < 0.5
σiG(1 − Ps=0

i ) if Ps=0
i ≥ 0.5

, (3.4)

where G(P) ≡ PΦ−1(P) + φ(Φ−1(P)) is a known function of P, which has the easily verifiable
property:

11Later in Section 3.4.2, to obtain baseline results, we impose an assumption that uncertainty resolution in
school is through learning about future earnings. In this case, the normality assumption for ∆i can be motivated
by the finding in Gong, Stinebrickner, and Stinebrickner (2019) that a normal distribution fits students’ responses
to earnings expectations question better than a log-normal distribution.

12Equation (3.3) is equivalent to a well-known alternative formulation: Et=t0 max(V s=1
it∗ ,V

s=0
it∗ ) =

Et=t0 (V s=1
it∗ |V

s=1
it∗ ≥ V s=0

it∗ )Ps=1
i + Et=t0 (V s=0

it∗ |V
s=0
it∗ > V s=1

it∗ )Ps=0
i . A comparison between the two formulations re-

veals that the last term in Equation (3.3) captures the difference between the conditional and unconditional means
of V s=1

it∗ and V s=0
it∗ .
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Lemma 3.3.1 G(P) is monotonically increasing in P for P ∈ (0, 1).

Lemma 3.3.1 implies the following propositions.

Proposition 3.3.2 The option value, OVi, has the following properties with respect to the

amount of uncertainty resolved before t∗, σi, and the probability of dropping out, Ps=0
i .

1. The OVi is uniquely determined by σi and Ps=0
i ;

2. The OVi is multiplicatively separable in σi and Ps=0
i ;

3. The OVi is linearly increasing in σi;

4. The OVi is monotonically increasing in Ps=0
i for Ps=0

i ∈ (0, 0.5) and monotonically de-

creasing in Ps=0
i for Ps=0

i ∈ [0.5, 1).

Proposition 3.3.2.1 shows that data on the dropout probability, Ps=0
i , and the amount of

uncertainty resolved during college, σi, are sufficient for determining the OV, with Equation
(3.2) detailing how the initial expectations gap is uniquely characterized by these two terms.
Important for our analysis in Section 3.4, Proposition 3.3.2.2 shows that σi and Ps=0

i enter the
expression of OVi in a multiplicatively separable fashion. Proposition 3.3.2.3 and Proposition
3.3.2.4 qualitatively describe how σi and Ps=0

i affect the value of OVi.

3.4 Characterizing the Option Value

Proposition 3.3.2 showed that the OV is uniquely determined by the dropout probability, Ps=0
i ,

and the amount of uncertainty that is resolved during college, σi. In Section 3.4.1, we describe
the direct information available in the BPS about both actual and perceived values of Ps=0

i .
In Section 3.4.2, we impose more structure on the general model described in Section 3.3 in
order to estimate the actual and perceived values of σi. In Section 3.4.3, combining informa-
tion about Ps=0

i and σi, we compute both actual and perceived option values for each student.
Comparing actual option values (obtained using actual Ps=0

i and actual σi) to perceived option
values (obtained using perceived Ps=0

i and perceived σi) provides evidence about the accuracy
of beliefs about option values at the time of entrance. Finally, in Section 3.4.4, we discuss the
policy implications of potential misperceptions.
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3.4.1 Actual and Perceived Dropout Probabilities

Both actual dropout outcomes and perceived dropout probabilities can be obtained directly
from the BPS data. 218 out of the 337 students in the sample eventually graduated from Berea
College, which implies a dropout rate, or equivalently an average actual dropout probability, of
0.353. Question 4 in Appendix A elicits a student’s perceived probability of graduating from
Berea College. Subtracting this number from 1 yields the perceived dropout probability, Ps=0

i .
We find that the average perceived dropout probability of students in our sample is 0.147, 58%
smaller than the average actual dropout probability.

Proposition 3.3.2 is useful for examining how the underestimation of Ps=0
i influences the

size of the perceived OV relative to the size of the actual OV. Suppose students have rational
expectations about σi. Since the OV is multiplicatively separable in Ps=0

i and σi, without loss
of generality, we set σi = 1. As implied by proposition 3.3.2.4, Figure 3.1 shows that the OV is
increasing in the dropout probability over the range (0, 0.5). Evaluating the OV at the average
actual dropout probability leads to an actual OV of 0.238. Evaluating the OV at the average
perceived dropout probability leads to a perceived OV of 0.076. Then, for a “representative”
student, the perceived value of OV is 68% lower than the actual value of OV.

Of course, in reality there is no reason that individuals would necessarily have Rational Ex-
pectations about σi. Proposition 3.3.2.1 indicates that obtaining point estimates for the actual
and perceived values of the OV requires knowledge of actual and perceived values of σi. In the
next section, we discuss our approach for taking advantage of additional unique data to obtain
these objects. Nonetheless, the evidence presented in the previous paragraph strongly suggests
that we are likely to find that students at Berea College tend to underestimate the option value
at the time of entrance. Indeed, using Proposition 3.3.2.3, we see that the representative student
would need to overestimate σi by at least 214% in order to not underestimate the OV.

Before we turn to the characterization of σi, we note that, in order to compute the option
value for each student, individual-specific measures of actual and perceived dropout proba-
bilities are required. As mentioned earlier, individual-specific perceived dropout probabilities
can be directly obtained from students’ responses to Question 4 in Appendix A. The sample
standard deviation of perceived dropout probabilities is 0.180. In contrast, individual-specific
measures of actual dropout probabilities are not directly available. We allow for individual
heterogeneity by assuming that a student’s actual dropout probability is equal to the predicted
probability from a probit regression of a dropout dummy on observables.13

13The observables in the probit regression include gender, race, high school GPA, ACT score, and a student’s
perceived dropout probability.
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Figure 3.1: Option Value and Dropout Probability
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3.4.2 Actual and Perceived Earnings Uncertainty Resolution

In this section, we describe the construction of the actual and perceived values of σi. We first
show that, under the assumption that the learning of relevance during college is about future
earnings associated with college completion, σi can be computed by combining: 1) data char-
acterizing student i’s uncertainty at the time of entrance (i.e., initial uncertainty) about future
earnings under the scenario in which she graduates from college and 2) a parameter ρ capturing
the fraction of this initial uncertainty that is resolved between t0 and t∗. We then describe how
we can construct measures of initial earnings uncertainty from survey questions eliciting sub-
jective beliefs about future earnings. The actual fraction of uncertainty resolution, which we
denote ρA, and therefore the actual σi, can be consistently estimated by taking advantage of the
longitudinal feature of our expectations data. The perceived fraction of uncertainty resolution,
which we denote ρP, and, therefore the perceived σi, can be consistently estimated by taking
advantage of data on students’ perceived dropout probabilities and students’ initial subjective
beliefs about future earnings.

Defining σi in a Fully Specified Model

We consider a model in which the value of alternative s, V s
it∗ , is equal to the expectation, at time

t∗, of the sum of the discounted lifetime earnings associated with this alternative, Y s
i , and an

additional term γs
i summarizing student i’s overall non-pecuniary benefit from s:

V s
it∗ = Et=t∗(Y s

i + γs
i ). (3.5)

We start by specifying the discounted lifetime earnings, Y s
i , for each alternative. If a student

chooses s = 1, the student stays in college until time t̄, then starts to work. For ease of notation,
we index time t by a student’s age a. Y s=1

i is then given by Y s=1
i =

∑Ā
a=t̄ β

a−t∗wa,s=1
i , where wa,s

i

represents the earnings that student i receives at age a given her choice of s, β is the discount
factor and Ā is the age of retirement. Similarly, if the student chooses s = 0, she leaves
college and starts working immediately. The discounted lifetime earnings associated with this
alternative, Y s=0

i , is given by Y s=0
i =

∑Ā
a=t∗ β

a−t∗wa,s=0
i .

Turning to the non-pecuniary benefit/utility associated with the choice of s, the immediate
exit from school that accompanies a choice of s = 0 implies that γs=0

i will tend to capture
a person’s preferences about working in jobs that do not require a college degree. On the
other hand, γs=1

i will capture not only preferences for working in the types of jobs that are
obtained with a college degree, but also a person’s utility gain/loss from staying in college
until graduation.

For our primary results, we make the simplifying assumption that the only updating that
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occurs during college is about the future earnings that would be received under the gradua-
tion scenario. That is, students learn only about Y s=1

i while in college. Abstracting away from
learning about earnings under the dropout scenario, Y s=0

i , allows for a more transparent discus-
sion of identification, but is also consistent with the intuitively appealing notion that college is
best suited for providing information about one’s ability to perform high skilled jobs. Further,
when relaxing this assumption as a robustness check in Appendix C.2, we find strong evidence
in support of this notion; 1) Students resolve less substantially uncertainty about earnings un-
der the dropout scenario than under the graduation scenario, and 2) our main results remain
quantitatively similar when we relax this assumption.

Abstracting away from learning about the non-pecuniary benefits, γs
i , while obviously not

literally correct, would tend to not be particularly problematic if students tend to have a good
sense of how much they like school by the end of high school or if the overall non-pecuniary
benefit of the graduation alternative (s = 1) arises largely because a college degree affects the
non-wage aspects of one’s work over her lifetime - since individuals presumably learn the most
about these non-wage aspects when they actually hold these jobs after graduation.14 Nonethe-
less, in Appendix C.3, we discuss how relaxing this assumption would affect our results. In
particular, we show that, if, as in Stinebrickner and Stinebrickner (2012), a common set of
signals (e.g., grades) influences what a student learns about both pecuniary and non-pecuniary
benefits, our estimates of actual option values tend to be downward biased while our estimates
of perceived option values remain consistent.

The assumptions in the previous paragraph imply that Et=t0(γ
s
i ) = Et=t∗(γs

i ) for s = 0, 1, and
Et=t0(Y

s=0
i ) = Et=t∗(Y s=0

i ). Then, the relevant new information ∆i ∼ N(0, σ2
i ) is given by:

∆i = (V s=1
it∗ − V s=0

it∗ ) − Et=t0(V
s=1
it∗ − V s=0

it∗ )

= Et=t∗[(Y s=1
i + γs=1

i ) − (Y s=0
i + γs=0

i )] − Et=t0[(Y
s=1
i + γs=1

i ) − (Y s=0
i + γs=0

i )]

= Et=t∗(
Ā∑

a=t̄

βa−t∗wa,s=1
i ) − Et=t0(

Ā∑
a=t̄

βa−t∗wa,s=1
i )

=

Ā∑
a=t̄

βa−t∗[Et=t∗(wa,s=1
i ) − Et=t0(w

a,s=1
i )]. (3.6)

With σi representing the standard deviation of ∆i, Equation (3.6) reveals that σi is deter-
mined by how much a student updates her expectations about earnings under the graduation

14While students do likely learn something about how much they like school after entrance, this learning only
affects utility for the short period of time between t∗ and t̄. In contrast, the non-wage aspects of one’s future work
would have a lifelong impact on her utility.
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scenario, or equivalently, by how much initial earnings uncertainty is resolved between t0 and
t∗. We begin the process of characterizing this updating by writing wa,s=1

i , without loss of gen-
erality, as the sum of three independently distributed factors, εa,s=1

iτ1
, εa,s=1

iτ2
, and εa,s=1

iτ3
, that are

observed by the student in the period before t0 (denoted τ1), in the period between t0 and t∗

(denoted τ2), and in the period after t∗ (denoted τ3), respectively:

wa,s=1
i = εa,s=1

iτ1
+ εa,s=1

iτ2
+ εa,s=1

iτ3
. (3.7)

At the time of entrance, there exists no uncertainty about εa,s=1
iτ1

because, by definition, students
have observed its realization. On the other hand, uncertainty does exist about εa,s=1

iτ2
and εa,s=1

iτ3
.

We assume that εa,s=1
iτ2

and εa,s=1
iτ3

are each normally distributed. We normalize each of their
means to be zero and denote their standard deviations as σa,s=1

iτ2
and σa,s=1

iτ3
, respectively.

Denote w̃a,s
it , s = 0, 1, as the random variable describing student i’s beliefs, at time t, about

wa,s
i . With εa,s=1

iτ1
observed before t0, w̃a,s=1

it0
∼ N(εa,s=1

iτ1
, (σa,s=1

iτ2
)2 +(σa,s=1

iτ3
)2). Similarly, with εa,s=1

iτ2

observed between t0 and t∗, w̃a,s=1
it∗ ∼ N(εa,s=1

iτ1
+ εa,s=1

iτ2
, (σa,s=1

iτ3
)2). Then, Equation (3.6) becomes:

∆i =

Ā∑
a=t̄

βa−t∗[Et=t∗(wa,s=1
i ) − Et=t0(w

a,s=1
i )]

=

Ā∑
a=t̄

βa−t∗(εa,s=1
iτ2

). (3.8)

Motivated by the notion that, during college, learning about future earnings is mostly
through permanent factors such as innate ability, we assume that the εa,s=1

iτ2
are perfectly corre-

lated across all future ages a. Under this assumption, computing the standard deviation of ∆i

from Equation (3.8) implies that σi is given by:

σi =

Ā∑
a=t̄

βa−t∗(σa,s=1
iτ2

). (3.9)

Motivated by the obvious difficulties of writing survey questions that could directly elicit
information about uncertainty resolution, which implies that σa,s=1

iτ2
is not directly available in

the data, we proceed under the assumption that all students resolve the same fraction of their
initial earnings uncertainty before t∗. Denoting this fraction ρ and recalling that the initial
uncertainty about earnings at age a is given by

√
(σa,s=1

iτ2
)2 + (σa,s=1

iτ3
)2, Equation (3.9) becomes:

σi = ρ

Ā∑
a=t̄

βa−t∗(
√

(σa,s=1
iτ2

)2 + (σa,s=1
iτ3

)2). (3.10)
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The computation of the components of Equation (3.10) is discussed in the remainder of
Section 3.4.2.

Computing
∑Ā

a=t̄ β
a−t∗(
√

(σa,s=1
iτ2

)2 + (σa,s=1
iτ3

)2) from Survey Data

In this section, we describe the computation of
∑Ā

a=t̄ β
a−t∗(
√

(σa,s=1
iτ2

)2 + (σa,s=1
iτ3

)2). This term
corresponds to the standard deviation of the random variable describing student i’s beliefs about
the discounted lifetime earnings associated with the graduation alternative, Y s=1

i . As a result,

we denote this term σ̃Y,s=1
it0

. Similarly, because the term
√

(σa,s=1
iτ2

)2 + (σa,s=1
iτ3

)2 corresponds to
the standard deviation of w̃a,s=1

it0
, we denote it σ̃a,s=1

it0
. With this notation, Equation (3.10) can be

written as:

σi = ρσ̃Y,s=1
it0

= ρ

Ā∑
a=t̄

βa−t∗σ̃a,s=1
it0

. (3.11)

Our approach for computing σ̃a,s=1
it0

, and therefore σ̃Y,s=1
it0

, takes advantage of a sequence
of survey questions that elicits information about w̃a,s=1

it0
. Specifically, following the format

of Question 1 in Appendix A, a respondent reports, at a particular time t, the three quartiles,
Qk,a,s

it , k = 1, 2, 3, of the distribution describing her beliefs about what her earnings will be at
a particular future age a under choice s. Maintaining the assumption that this distribution is
normal, the standard deviation (σ̃a,s=1

it ) of the distribution is given by:

σ̃a,s
it = (Q3,a,s

it − Q1,a,s
it )/ [Φ(0.75) − Φ(0.25)] , (3.12)

where Φ(·) is the standard normal cdf.

Equation (3.11) shows that the computation of σ̃Y,s=1
it0

requires taking into account a student’s
uncertainty about earnings, σ̃a,s=1

it , for all future ages a. As can be seen in Question 1, the
earnings expectations questions in the BPS were asked for three specific ages a: the first year
after graduation (age 23), age 28, and age 38. Following Stinebrickner and Stinebrickner
(2014b), we assume that σ̃a,s=1

it grows linearly between the first post-college year and age 28,
grows linearly between ages 28 and 38, and does not change after age 38 (until the age of
retirement, Ā = 65). We operationalize our stylized model by assuming that a student enters
college at age 19 (t0 = 19), decides whether to drop out at the end of the third year (t∗ = t0 + 3),
and graduates at age 23 (t̄ = 23) if she chooses to remain in school.15 Focusing on the case

15Our choice of t∗ = t0 + 3 was informed by Gong, Stinebrickner and Stinebrickner (2019) who found that
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where t = t0 and s = 1, Equation (3.12), together with the interpolation and timing assumptions
above, allows the computation of σ̃Y,s=1

it0
.16 We report all values in 2001 dollars. The first column

of Table 3.1 shows that the average value of σ̃Y,s=1
it0

is $226,000 for our primary sample.17

Table 3.1: Descriptive Statistics
# of Observations: 337 σ̃Y,s=1

it0
σ̃Y,s=0

it0
µ̃Y,s=1

it0
µ̃Y,s=0

it0
Sample Mean 226 163 954 680
Sample Std 201 145 436 333

Note: The unit of measurement is one thousand dollars.

Actual Uncertainty Resolution

In this section, we describe the estimation of the actual fraction of initial earnings uncertainty
that is resolved before t∗, ρA. Our approach takes advantage of the fact that the longitudinal
nature of the BPS expectations data provides direct evidence about the extent to which uncer-
tainty decreases over time.

Earlier we have shown that σ̃Y,s=1
it0

can be constructed from the expectations data reported at
the time of entrance. Using the same method, the expectations data collected at t∗ allows us to
also construct σ̃Y,s=1

it∗ , the standard deviation of student i’s beliefs about Y s=1
i at t∗. Of interest

here is the relationship between these values. Recall that:

σ̃Y,s=1
it0

=

Ā∑
a=t̄

βa−t∗(
√

(σa,s=1
iτ2

)2 + (σa,s=1
iτ3

)2). (3.13)

Taking into account that the factor εa,s=1
iτ2

is realized by t∗, so that no uncertainty about this

the vast majority of uncertainty resolution during college takes place before the end of the third year. However,
perhaps more importantly, we find that, because uncertainty resolution tends to take place rather quickly, our
results change little if we assume that dropout takes place at the end of the second year, i.e., t∗ = t0 + 2.

16We assume that the discount factor β is equal to 0.95.
17Using the same method, we can also compute σ̃Y,s=0

it0
≡
∑Ā

a=t∗ β
a−t∗ (σ̃a,s=0

it0
), the standard deviation of the

random variable describing student i’s beliefs about the discounted lifetime earnings associated with the dropout
alternative. As reported in the second column of Table 3.1, the sample average of σ̃Y,s=0

it0
is $163,000, implying

that students on average are more uncertain about earnings associated with the graduation alternative.
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factor remains at t∗,

σ̃Y,s=1
it∗ =

Ā∑
a=t̄

βa−t∗(σa,s=1
iτ3

)

=

Ā∑
a=t̄

βa−t∗(
√

(σa,s=1
iτ2

)2 + (σa,s=1
iτ3

)2 − (σa,s=1
iτ2

)2)

=

√
1 − ρ2

A

Ā∑
a=t̄

βa−t∗(
√

(σa,s=1
iτ2

)2 + (σa,s=1
iτ3

)2), (3.14)

where the last line in Equation (3.14) follows from the assumption that all students resolve the
same fraction of initial earnings uncertainty: σa,s=1

iτ2
= ρA

√
(σa,s=1

iτ2
)2 + (σa,s=1

iτ3
)2 for all i.

Equation (3.13) and (3.14) together show that
√

1 − ρ2
A can be computed using the ratio

of the average of σ̃Y,s=1
it∗ to the average of σ̃Y,s=1

it0
for the same sample of students.18 Using the

sample of students who were still in school at t∗ = 3, the estimated value of
√

1 − ρ2
A is 0.86.19

Hence, the estimated value of ρA is 0.51.20 Then, Equation (3.11) can be used to compute the
actual value of σi for each student in our sample.

Perceived Uncertainty Resolution

In this section, we describe how the perceived fraction of initial earnings uncertainty that is
resolved before t∗, ρP, can be esimated using a simple model of dropout.

At the time of entrance (t0), a student reports her perceived dropout probability, PP,s=0
i .

18We choose to use the ratio of the average of σ̃Y,s=1
it∗ to the average of σ̃Y,s=1

it0
rather than, for example, the

average of the ratio of σ̃Y,s=1
it∗ to σ̃Y,s=1

it0
, because the former tends to be a consistent estimator of

√
1 − ρ2

A even
when individual uncertainty measures might potentially contain measurement error.

19In practice, some students dropped out of college before t∗ = 3, and, therefore, were not included in the
estimation of ρA. One might be concerned that those who dropped out before t∗ might have resolved systematically
different fractions of their initial uncertainty under the counterfactual in which they stayed until t∗ than those who
actually remained in our sample until t∗. As a robustness check, it would be desirable to add students who dropped
out before t∗ to our estimation sample. We do this by using a student’s last observed earnings uncertainty as a
proxy for what her earnings uncertainty would have been at t∗. Given that students who dropped out before t∗

would have resolved additional uncertainty between the time of dropout and t∗ if they had remained in school,
the resulting estimator should produce a lower bound for ρA. We find that this lower bound is 0.41 and that the
corresponding lower bound for the average actual option value is $19,990. As we show later in Section 3.4.3, this
lower bound is still substantially higher than the estimated average perceived option value, suggesting that our
main conclusion that students vastly underestimate the option value is robust to the selection issue.

20Our results about actual earnings uncertainty resolution are comparable in magnitude to what was found in
Gong, Stinebrickner, and Stinebrickner (2019), which also take advantage of the BPS dataset. Using data for
both the 2000 and the 2001 cohorts, they find that the sample average of the standard deviation of the distribution
describing students’ beliefs about w28,s=1

i at the end of the third year (t = t∗) is roughly 82% of the sample average
of the standard deviation of the distribution describing students’ beliefs about w28,s=1

i at the beginning of college
(t = t0).
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Equation (3.2) shows that this perceived probability depends on a student’s beliefs about the
distance from the margin of indifference at t0, Et=t0(V

s=1
it∗ − V s=0

it∗ ), and her perceptions about σi.
With the expression for V s

it∗ coming from Equation (3.5) and the expression for the perceived
value of σi coming from Equation (3.11) with ρ replaced by ρP, we obtain:

PP,s=0
i = Φ(

Et=t0[(Y
s=0
i + γs=0

i ) − (Y s=1
i + γs=1

i )]

ρPσ̃
Y,s=1
it0

)

= Φ(
Et=t0(Y

s=0
i ) − Et=t0(Y

s=1
i ) + Et=t0(γ

s=0
i − γs=1

i )

ρPσ̃
Y,s=1
it0

)

= Φ(
µ̃Y,s=0

it0
− µ̃Y,s=1

it0
+ Et=t0(γ

s=0
i − γs=1

i )

ρPσ̃
Y,s=1
it0

), (3.15)

where µ̃Y,s
it0
≡ Et=t0(Y

s
i ) represents the mean of student i’s beliefs about Y s

i at t0 and γ̃i ≡

Et=t0(γ
s=0
i − γs=1

i ) represents student i’s expectation about the difference in the non-pecuniary
benefits associated with the two alternatives.

The intuition underlying the role of ρP in Equation (3.15) is clear. The numerator in the
probability expression is the difference between the expected utility of s = 0 and the expected
utility of s = 1, at t0. Thus, for example, a negative numerator represents the distance that a
student is “above” the margin of dropping out at the time of entrance. A larger denominator
implies that a student resolves more uncertainty about earnings between t0 and t∗, thereby
increasing the probability that the new information she receives will push her across the margin
into a dropout decision; all else equal, in the seemingly most likely scenario in which the
numerator is negative, the dropout probability will tend to be increasing in the denominator.21

Roughly speaking, identification of ρP comes from the fact that the relationship between the
amount of uncertainty at the time of entrance, σ̃Y,s=1

it0
, and the perceived dropout probability,

PP,s=0
i , will tend to be stronger when ρP is high (than when ρP is low) because ρP maps the

amount of initial uncertainty into the amount of uncertainty that the students believes will be
resolved.

As described in previous sections, PP,s=0
i and σ̃Y,s=1

it0
can be obtained using students’ re-

sponses to survey Questions 4 and 1, respectively. Appendix C.1 shows that µ̃Y,s
it0

can also
be computed using survey Question 1, in a manner similar to that used for the computation
of σ̃Y,s=1

it0
. As reported in the last two columns of Table 3.1, at t0, the sample average of ex-

pected lifetime earnings associated with the graduation scenario (µ̃Y,s=1
it0

) and the dropout sce-
nario (µ̃Y,s=0

it0
) are approximately $954,000 and $680,000, respectively.

21Of course, from a theoretical standpoint, when experimentation plays a role in the decision to enter school, a
student might enter even if she has a positive numerator.
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The only components in Equation (3.15) that are yet known to us are a common parameter
ρP and individual-specific net non-pecuniary benefits γ̃i. To estimate the value of ρP (and the
distribution of γ̃i), we rewrite Equation (3.15) as follows:

Φ−1(PP,s=0
i )σ̃Y,s=1

it0
=

γ̄

ρP
+ [µ̃Y,s=0

it0
− µ̃Y,s=1

it0
]

1
ρP

+
γ̃i − γ̄

ρP
, (3.16)

where γ̄ = E(γ̃i).

If all the expectations variables (PP,s=0
i , µ̃Y,s=1

it0
, µ̃Y,s=0

it0
, and σ̃Y,s=1

it0
) are measured perfectly,

then γ̄

ρP
and 1

ρP
can be estimated via an easy-to-implement OLS regression of Φ−1(PP,s=0

i )σ̃Y,s=1
it0

on [µ̃Y,s=0
it0
− µ̃Y,s=1

it0
]. However, it is worthwhile to address the concern that responses to survey

questions eliciting expectations may contain a non-trivial amount of measurement error (e.g.,
Manski and Molinari, 2010, Ameriks et al., 2019, Giustinelli, Manski, and Molinari, 2019, and
Gong, Stinebrickner, and Stinebrickner, 2019), which can lead to well-known attenuation bias
in the estimation of linear models such as Equation (3.16). We first modify Equation (3.16) to
accommodate measurement error:

Φ−1(PP,s=0
i )σ̃Y,s=1

it0
+ ∆yi =

γ̄

ρP
+ [µ̃Y,s=0

it0
− µ̃Y,s=1

it0
+ ∆µY

i ]
1
ρP

+
γ̃i − γ̄

ρP
. (3.17)

In this specification, the observed measure of the pecuniary component of the initial ex-
pectations gap, µ̃Y,s=0

it0
− µ̃Y,s=1

it0
, contains classical measurement error ∆µY

i . In addition, we also
allow the computed value of Φ−1(PP,s=0

i )σ̃Y,s=1
it0

to contain classical measurement error ∆yi.22 In
Appendix C.4.2, we show that, under these assumptions, the attenuation bias in the estimation
of γ̄

ρP
and 1

ρP
can be corrected if the variance of ∆µY

i is known.23 In Appendix C.4.1, we de-
scribe how to utilize the method developed in Gong, Stinebrickner and Stinebrickner (2019) to
estimate var(∆µY

i ).24 We find that, after correcting for the attenuation bias, the estimate of ρP

is 0.51, which is almost identical to the second decimal to the actual value of ρ.

22∆yi may be relevant because either answers to survey questions eliciting perceived dropout probabilities or
answers to survey questions eliciting earnings expectations (specifically, initial uncertainty) may be measured
with error.

23The presence of classical measurement error in dependent variable (∆yi) does not affect the consistency of
the OLS estimator.

24The BPS contains two sets of survey questions that can be used to compute a student’s unconditional ex-
pectation about earnings at age 28, µ̃28,s=1

it0
. Intuitively, differences in the unconditional expectations computed

using these two sets of expectations questions are informative about the amount of measurement error, ∆µ28,s=1
i ,

present in the observed measure of µ̃28,s=1
it0

. Gong, Stinebrickner and Stinebrickner (2019) formalize this intuition
and develop a method to estimate var(∆µ28,s=1

i ) under the assumption that the measurement error is classical. In
Appendix C.4.1,, we adopt the same method to estimate var(∆µ28,s=1

i ) using our sample (the 2001 cohort) and
detail the assumptions that are required to compute var(∆µY

i ) using var(∆µ28,s=1
i )
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3.4.3 Actual and Perceived Option Values

Given individual-specific actual and perceived values for σi and Ps=0
i , we are able to compute

the actual and perceived option value for each student using Equation (3.4). The solid line
in Figure 3.2 shows the cdf for the estimated actual option values. The sample average and
standard deviation of the actual option values are $25,040 and $28,440, respectively. Our
finding about the average actual option value is generally similar to what has been found in the
literature using very different methods. For example, estimating a schooling decision model
under Rational Expectations assumptions, Stange (2012) finds that the OV is roughly $19,000
(in 2001 dollars) for an average high school graduate in the United States.

Figure 3.2: The CDF of the Option Value

The “+” line in Figure 3.2 shows the cdf for estimated perceived options values. The sam-
ple average and standard deviation of the perceived option values are $8,670 and $16,400, re-
spectively. Consistent with what was suggested by a comparison between actual and perceived
dropout probabilities in Section 3.4.1, students at Berea College do indeed vastly underestimate
the option value of college enrollment.
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Perhaps the most tenuous parameter to estimate is the perceived fraction of initial uncer-
tainty that is resolved between t0 and t∗, ρP, which in turn determines the perceived value of
σi. However, the finding that students underestimate the option value is robust to the estimate
of the perceived value of σi. An upper bound on the perceived value of σi can be obtained
from Equation (3.11) by assuming that students believe they will fully resolve their initial un-
certainty about lifetime earnings (ρP = 1). Combining this upper bound of σi and data on
the perceived dropout probability, we can compute an upper bound for the perceived option
value. As shown in Figure 3.3, the upper bound for the average perceived OV would still be
roughly $8,000 lower than the average actual OV, due to the considerable underestimation of
the dropout probability.

Figure 3.3: Perceived Option Value and ρP

Our results about actual and perceived option values are obtained under a simplifying as-
sumption that ρA and ρP are homogeneous across students. Motivated by Stinebrickner and
Stinebrickner (2012), who show that the amount of learning during college tends to be differ-
ent between males and females, we also redo our analysis separately for males and females.
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We find that, while male students understate the amount of earnings uncertainty resolution
(ρA = 0.64, ρP = 0.40), female students overstate the amount of earnings uncertainty resolu-
tion somewhat (ρA = 0.40, ρP = 0.56). We combine these gender-specific estimates of ρA and
ρP with information on dropout probabilities and initial earnings uncertainty to compute actual
and perceived option values. Our main result that students underestimate the option value holds
for both males and females. However, we do find some gender differences; while, on average,
perceptions about the option value are similar for males and females ($8,440 for males, $7,660
for females), there exists a substantial gender gap in the average actual option value ($39,690
for males, $15,200 for females). 25

3.4.4 Policy Implications

Our finding that students’ perceptions understate the actual option value of college enrollment
raises a question fundamental to the general policy concern that informational problems may
cause too few students to enter college: what would happen if misperceptions about the option
value were corrected? Importantly, our approach allows us to examine not only whether mis-
perceptions about the option value exist, but also why they exist. As highlighted by the simple
conceptual model in the second paragraph of the introduction, the understatement of the option
value could be caused by either an understatement of how much uncertainty is resolved during
college or an overly optimistic view about the size of the initial expectations gap. Then, our
finding that perceptions about uncertainty resolution are accurate implies that individuals over-
state the size of the initial expectations gap. Correcting misperceptions about the option value
would involve providing information about, for example, the returns to college.

These findings about the reason for misperceptions about the option value are important
because, while it may seem at a first glance that an understatement of the option value would
necessarily lead to too few students entering college, in reality whether this is true depends crit-
ically on why misperceptions exist. This is the case because the overall value of college, which
is the relevant object for the college entrance decision, is strongly related but not identical to
the option value. Under the illustrative scenario in the second paragraph of the introduction -
where all that occurs between t0 and t∗ is that students resolve uncertainty that existed at en-
trance - the overall value of college is given by the net continuation value (Heckman, Lochner,

25We also conducted a similar analysis to examine whether ρA and ρP depend on other observed characteristics.
For example, dividing students in our sample into two equal-sized subgroups based on their high school GPA
(HSGPA), we find that, while students with high HSGPA expect to resolve a slightly larger fraction of initial
earnings uncertainty (ρP = 0.60) than students with low HSGPA (ρP = 0.46), the actual fraction ρA is very similar
for these two groups of students (ρA = 0.51 for high HSGPA, ρA = 0.52 for low HSGPA). For each group, we
again find that, on average, perceptions about the option value ($9,680 for high HSGPA, $8,310 for low HSGPA)
understate the actual option value ($14,500 for high HSGPA, $37,420 for low HSGPA).
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and Todd, 2006, Heckman and Navarro, 2007, and Heckman and Urzua, 2008).26 Defined as
Et=t0[max(V s=1

it∗ ,V
s=0
it∗ )] − Et=t0(V

s=0
it∗ ), the net continuation value (NCV) captures the expected

continuation value of college enrollment net of the value of the outside option (dropout). In the
scenario where the initial expectations gap, Et=t0(V

s=1
it∗ − V s=0

it∗ ), is negative, the net continuation
value and the option value are identical. However, in the more likely case where the initial
expectations gap is positive, the net continuation value is equal to the sum of the option value
and the initial expectations gap. Therefore, with the option value computed using methods
described in previous sections and Et=t0(V

s=1
it∗ − V s=0

it∗ ) uniquely determined by data on σi and
Ps=0

i , we can compute the actual and perceived NCV for each student.27

We start by computing the perceived and actual value of Et=t0(V
s=1
it∗ −V s=0

it∗ ) for each student.
Equation (3.2) implies that Et=t0(V

s=1
it∗ − V s=0

it∗ ) is given by:

Et=t0(V
s=1
it∗ − V s=0

it∗ ) = −Φ−1(Ps=0
i )σi. (3.18)

Using the actual dropout probability, Ps=0
i , and the actual amount of uncertainty resolution, σi,

we find that, on average, the actual value of Et=t0(V
s=1
it∗ − V s=0

it∗ ) is $45,120. Similarly, using
perceived values of Ps=0

i and σi, we find that the average perceived value of Et=t0(V
s=1
it∗ − V s=0

it∗ )
is $160,930. Thus, at the time of entrance, students overestimated the expected net benefit of
college completion (i.e., the initial expectations gap) by more than $115,000. This implies that
misperceptions about the option value and misperceptions about the initial expectations gap
work in an offsetting manner when computing the NCV. Taking both into account, we find that
perceptions about the NCV somewhat overstate its actual value; the actual and perceived NCV
are $76,130 and $173,110, respectively. Thus, while students underestimate the option value,
once one considers the NCV, concerns that there might be too few students attending college
tend to dissipate.

3.5 Conclusion

From a student’s perspective, the return to college education is likely to be uncertain when
she makes the college attendance decision. Having the option to decide whether to remain in
college or to drop out after receiving relevant new information can potentially help students
insure against this uncertainty. Complementing administrative data on college completion with
data describing students’ beliefs, at the time of entrance, about the probability of dropping out

26In the more general case, the overall value of college continues to take into account the NCV, but also takes
into account the direct utility differences between the two options over the period t0 to t∗.

27Alternatively, similar to what we did for the option value, we can directly express the net continuation value
as a function of σi and Ps=0

i . We can show that the NCV is increasing in σi and decreasing in Ps=0
i .
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and data describing students’ beliefs, at multiple points in college, about future earnings allows
us to pay careful attention to the distinction between perceived and actual option values.

We find strong evidence that students substantially underestimate the experimentation ben-
efits of enrolling in college. However, importantly, we find that this underestimate is caused
by an overly optimistic view about the size of the initial expectations gap, rather than an un-
derstatement of the amount of uncertainty that is resolved during college. This has important
implications for whether inaccurate perceptions create a situation where too few students are
entering college. In the calculation of the overall value of college, the underappreciation of the
experimental benefit is more than offset by overoptimism about the initial expectations gap.
Once one considers the overall value of college, concerns that there might be too few students
attending college tend to dissipate.

As in our other work using the BPS, we feel it is important to be appropriately cautious
when thinking about exactly how the results from our study would generalize to other insti-
tutions. Our results are perhaps most relevant for thinking about students from low income
backgrounds, who are a primary focus of the educational mission at Berea College. This group
is of particular policy interest, in part because they may be more likely to be affected by in-
formational problems. In addition, from a methodological standpoint, we feel that this chapter
provides a concrete example of how unique expectations data can be useful for characterizing
difficult-to-identify objects of direct policy relevance.
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Chapter 4

Identification of Signal-based Learning
Models without the Rational Expectations
Assumption

4.1 Introduction

Motivated by the potential limitations of the data-based approach adopted in Chapter 2 and
Chapter 3, in this chapter I provide constructive proofs for the nonparametric identification of
individuals’ beliefs and the decision rule, i.e., the function that maps beliefs to decisions, in
signal-based learning models. Specifically, I consider a multi-period environment where indi-
viduals use signals to update their beliefs about an unknown permanent factor and repeatedly
make decisions based on these beliefs. The econometrician observes individuals’ decisions
and signals as well as factors that determine individuals’ initial beliefs. This environment nests
many models that are of interest to researchers. In the context of higher education, college
students use their semester GPA to update their beliefs about own academic ability, which
influence their college attendance/dropout decisions (Stange, 2012; Stinebrickner and Stine-
brickner, 2014a). Conley and Udry (2010) model the adoption of a new production technology
as a learning process: Workers use realized output/profit as signals to update their beliefs about
the production function and choose the level of input based on these beliefs.

This chapter focuses on the identification of the mean of the distribution describing indi-
viduals’ beliefs, which, hereafter, I refer to as the subjective mean. The identification result
leverages an assumption on the process governing the updating of an individual’s subjective
mean that is both intuitively appealing and standard in the literature: The posterior mean is
(1) strictly increasing in the signal and (2) the same as the prior mean whenever the signal
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is equal to the prior mean.1 The main identification results, presented in Section 4.3, are for
the case where, conditional on other observables that affect their decisions, the average deci-
sion of individuals with identical subjective means is a time-invariant and strictly monotonic
function of this subjective mean and does not depend on other moments of their subjective
beliefs. Intuitively, in this environment, part (2) of the assumption on updating rules implies
that, if a group of individuals with identical prior means receive a signal that is equal to this
prior mean, then their average decision before receiving the signal is identical to their average
decision after receiving the signal. The monotonicity assumptions guarantee that the converse
of this statement is also true: The prior mean for this group of individuals is equal to the sig-
nal that induces identical average decisions in the two periods. Now consider the case where
there are sufficiently many such groups. The prior mean and the average decision for each of
these groups can be identified following the strategy above, which allows the decision rule to
be pinned down.

I choose this environment as the benchmark primarily for three reasons. First, this envi-
ronment nests many canonical models. For example, the input decision of a profit-maximizing
firm with a linear production function and a convex cost function is an increasing function of
the firm’s subjective mean of the price for its output (or the subjective mean of its productiv-
ity), and does not depend on other moments of its subjective beliefs (Baron, 1970; Sandmo,
1971; Leland, 1972; Holthausen, 1976). Second, this environment can be considered as a
limiting case of a fairly general class of models. For example, while the decision rules in a fi-
nite horizon dynamic model generally vary over time even when individuals’ per-period utility
functions and constraints are time-invariant, the decision rules in the first two periods may be-
come arbitrarily close as the time horizon becomes sufficiently long. Third, this parsimonious
environment highlights the most fundamental elements of my identification strategy. More-
over, as shown in Section 4.6.1, the identification strategy in this environment can be extended
to more complicated, nonstationary environments such as dynamic discrete choice models.

As shown in Section 4.3, no additional parametric assumptions on either the decision rule
or the updating rule are required for identification. Hence, in theory, individuals’ prior means
and the decision rule can be nonparametrically identified. However, as is well known, non-
parametric estimators often suffer from the curse of dimensionality in practice. Motivated by
this concern, in Section 4.4, I propose a feasible semiparametric estimator that is free of the
curse of dimensionality and examine its performance through simulation exercises. Impor-
tantly, I impose parametric assumptions on the decision rule but still allow updating rules to
be nonparametric and heterogeneous across individuals. The crucial assumption that facili-

1If an individual updates her beliefs in a Bayesian fashion, then the second part of this assumption is satisfied if
both the prior distribution and the distribution of errors in the signal are symmetric (Chambers and Healy, 2012).
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tates this semiparametric estimator is that an individual’s misperception, as measured by the
difference between her prior mean and the subjective mean that is implied by the RE assump-
tion, is a function of a finite type variable that is observed by the econometrician. With the
RE-consistent subjective means estimated from realized signals, this assumption reduces the
estimation of prior means to the estimation of finitely many possible misperceptions.

It is established in the literature that students’ study time is an important determinant of
their academic achievements (Stinebrickner and Stinebrickner, 2008; De Fraja, Oliveira, and
Zanchi, 2010). However, not much is known about how study time is determined.2 In Section
4.5, I apply my method to provide evidence on how students’ expectations about academic
productivity affect their study time. Analogous to productivity in a linear production function,
I define a student’s academic productivity in each semester as the ratio of her semester GPA
to her average daily study time. Hence, if students are solving a utility maximization problem
that is similar to the canonical profit-maximizing problem mentioned above, expectations about
academic productivity should have a positive effect on study time. Alternatively, if students’
primary goal is to achieve certain grades, then students with high expectations would believe
that they do not need to spend much time studying. In this case, the effect of expectations about
academic productivity on study time should be negative.

The empirical investigation takes advantage of the Berea Panel Study, which contains de-
tailed information about students’ study time and GPA for multiple semesters. I estimate a
negative effect of expectations about own academic productivity on study time for students in
Berea College, suggesting that a student’s study effort is likely to be induced by a desire to
achieve a fixed grade. A particular focus of this empirical investigation is to test whether col-
lege students’ prior means of their academic productivity deviate from RE-consistent subjective
means. I find that this is the case for students who spent less than 2 hours per day studying in
high school: On average, these students overestimate their academic productivity in college by
over 15%, and the RE assumption is rejected at a 10% level for them. If I incorrectly impose
the RE assumption, the estimated effect of expectations about own academic productivity on
study time remains negative. However, the magnitude of this estimate is more than 75% larger
than the estimate obtained without the RE assumption.

4.2 Literature Review

This chapter belongs to a relatively recent literature on the joint identification of beliefs and
decision rules/preferences without the RE assumption. This identification issue is most exten-

2Adopting a field-experimental approach, Ersoy (2019) provides a recent investigation of the relationship
between students’ study effort and their beliefs about own academic productivity.
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sively studied in macroeconomic models. Different from the setting in this chapter, macroe-
conomists are mostly interested in identifying economic agents’ beliefs about aggregate equi-
librium objects, such as inflation rates and equilibrium prices. Woodford (2013) provides a
recent survey of a variety of approaches to specify and identify agents’ beliefs in macroe-
conomic models. Also interested in identifying non-rational expectations about equilibrium
objects, Aguirregabiria and Magesan (forthcoming) consider a game-theoretic setting and al-
low players’ beliefs about the distribution of other players’ actions to be biased. Other recent
papers on the joint identification of beliefs and preferences in settings different from the one in
this chapter include Caplin, Leahy, and Matejka (2016) and Olivi (2019).

Learning about individual-specific permanent factors through private signals is more com-
monly seen in dynamic discrete choice models where individuals learn about their choice-
specific permanent factors through experimenting with different choices. Examples include
students learning about (major-specific) academic ability (Arcidiacono, 2004; Stange, 2012;
Stinebrickner and Stinebrickner, 2014a; Arcidiacono, Aucejo, et al., 2016) and consumers
learning about product-specific taste (Erdem and Keane, 1996; Ackerberg, 2003; Crawford
and Shum, 2005; Osborne, 2011). The majority of these papers assume that individuals’ initial
beliefs are rational conditional on their information set, hence they rule out the possibility
of systematically biased initial beliefs. One exception is Ackerberg (2003), which identi-
fies the systematic bias in consumers’ initial beliefs about their taste by comparing the pre-
experimentation distribution and the post-experimentation distribution of consumers’ purchase
behavior. Ackerberg (2003) does not assume the econometrician has access to direct signals
of consumers’ tastes but requires that each consumer’s expectation about her taste eventually
converges to its true value. In contrast, my method relies on the econometrician observing the
signals but does not require an individual to ever fully recover the true value of the unknown
permanent factor from the signals.

The empirical application in Section 4.5 contributes to the understanding of the determina-
tion of students’ study effort. Based on an information experiment with a widely used online
learning platform, Ersoy (2019) exogenously manipulates students’ beliefs about the effort-
performance relationship and finds that students change their study effort in the same direction
with the shifts in their beliefs about returns to effort. The difference between my findings in
Section 4.5 and the results in Ersoy (2019) suggests that the direction of the effect of expecta-
tions about academic productivity on study effort might be context-specific. Indeed, students
who voluntarily choose to take classes on online learning platforms are more likely to be active
learners whose study effort is chosen to balance the trade-off between the benefits and costs of
studying.

The main identification results outlined above require the econometrician to find a group
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of individuals with identical prior mean. This implies that there is no unobserved (by the
econometrician) heterogeneity in individuals’ prior means. I show how to extend my method
to allow for unobserved heterogeneity in prior means in Section 4.6.2. This extension is related
to and motivated by a strand of literature interested in identifying unobserved heterogeneity
in prior beliefs under the RE assumption (Carneiro, Hansen, and Heckman, 2003; Cunha,
Heckman, and Navarro, 2004, 2005).

4.3 Identification in a Benchmark Environment

In this section, I provide constructive proofs for the identification of individuals’ beliefs and the
decision rule in a benchmark environment where an individual’s decision as a function of her
subjective mean of a permanent factor is time-invariant. I start by specifying the environment
and notation in Section 4.3.1. The identification results are presented in Section 4.3.2. Finally,
I discuss the empirical relevance of this benchmark environment in Section 4.3.3.

4.3.1 Environment and Notation

Throughout this chapter, I use capital letters and lowercase letters to represent random vari-
ables and their realizations, respectively. Let µit denote the mean of the distribution describing
individual i’s beliefs about an unknown factor Ai at the beginning of period t, and refer to it as
the subjective mean of Ai.

Consider an environment where, at each period t, individual i makes decision dit based on
observed (by the econometrician) factors xit, unobserved (by the econometrician) factors εit,
and the subjective mean µit, according to a time-invariant decision rule. This decision rule is
given by:

dit = D(xit, εit, µit). (4.1)

Since factors εit are not observed by the econometrician, the identification of D(xit, εit, µit)
is theoretically impossible. Hence, I focus on the expectation of D(xit, εit, µit) with respect to εit

instead:
D̄t(xit, µit) ≡ Eεit |xit ,µit D(xit, εit, µit) (4.2)

Throughout this section, I impose the following assumption unless otherwise specified:

Assumption 4.3.1 εit is independent from any other factors and is identically distributed over

time.
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Assumption 4.3.1 guarantees that the average decision function D̄t(xit, µit) is also time-
invariant.3 I therefore remove the time subscript from this function and define D̄(x, µ) ≡
D̄t(x, µ). Moreover, the independence part of this assumption also allows me to use D̄(xit, µit)
to conduct counterfactuals or characterize the causal effect of xit and µit on the expectation of
dit.

I focus on the case in which the econometrician observes individuals’ decisions dit and
decision-influencing factors xit in two consecutive periods, t = 0, 1. Individuals’ prior (t = 0)
and posterior (t = 1) beliefs about Ai are not observed. But the econometrician knows that the
prior mean µi0 is fully determined by factors zi that are also observed by the econometrician:

µi0 = B(zi). (4.3)

Between the two periods, each individual receives a noisy signal about Ai, which I denote
as si0. Upon receiving the signal, individual i updates µit according to the following updating
rule:

µi1 − µi0 ≡ Γi0(si0 − µi0) = Γ0(si0 − µi0; zi, ξi). (4.4)

The function Γ0(s) maps the net signal si0 − µi0 to the difference between the posterior and
prior means. I allow Γ0(s) to depend on beliefs-influencing factors zi. This is motivated by the
observation that, in a standard Bayesian updating setting, the difference between the posterior
and prior means depends not only on the net signal, but also on, for example, how uncertain
about Ai the individual was before receiving the signal.4 I also allow Γ0(s) to depend on an
unobserved independently distributed shock ξi. One interpretation of ξi is that it represents the
error that individual i makes in the updating process. I assume that both the beliefs-influencing
factors zi and the signal si0 are observed by the econometrician.

The primary objects of interest are the average decision function D̄(xit, µit) and the prior
mean function B(zi). In the next section, I discuss the additional assumptions that are sufficient
for nonparametric identification of these two objects. I then provide constructive proofs for the
nonparametric identification results.

3The requirement that εit is identically distributed over time is sufficient but not necessary for the time-
invariance of D̄t(xit, µit). For example, if εit enters D(xit, εit, µit) in an additively separable fashion, then the
assumption that Eεi0 = Eεi1 is sufficient. Such assumption is frequently used. For example, regression mod-
els commonly assume that εit is additively separable and has mean zero.

4The assumption that Γ0(s) depends on zi but not other observables is not crucial for the identification results,
but simplifies the presentation of proofs.
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4.3.2 Nonparametric Identification Results

At period t = 0, the econometrician observes each individual’s decision di0, decision-influencing
factors xi0, and beliefs-influencing factors zi. At period t = 1, for each individual, the econo-
metrician observes di1, xi1, zi, and a signal si0. I do not assume the econometrician can observe
the same individuals in both periods. Hence, the identification of D̄(xit, µit) and B(zi) builds on
the relationship between di0 and (xi0, zi), and the relationship between di1 and (xi1, zi, si0).

Let D̃0(xi0, zi) ≡ Eεi0 |xi0,zi D(xi0, εi0, B(zi)) denote the expectation of di0 conditional on xi0

and zi, and let D̃1(xi1, zi, si0) ≡ E(εi1,ξi)|xi1,zi,si0 D(xi1, εi1, B(zi) + Γ0(si0 − B(zi); zi, ξi)) denote the
expectation of di1 conditional on xi1, zi, and si0. D̃0(x, z) is defined on the support of the joint
distribution of Xi0 and Zi and D̃1(x, z, s) is defined on the support of the joint distribution of
Xi1, Zi, and S i0. In this section, I first consider a hypothetical scenario where the true value of
conditional mean functions D̃0(x, z) and D̃1(x, z, s) are known. I then discuss the complications
that arise because D̃0(x, z) and D̃1(x, z, s) are not available and need to be estimated.

Identification with Known Conditional Mean Functions

I show that the average decision function D̄(xit, µit) and the prior mean function B(zi) can be
identified from conditional mean functions D̃0(xi0, zi) and D̃1(xi1, zi, si0) if the following as-
sumptions are satisfied.

Assumption 4.3.2 For any (z, ξ), (i) Γ0(0; z, ξ) = 0 and (ii) Γ0(s; z, ξ) is strictly monotonic in

s.

Assumption 4.3.3 For any x, D̄(x, µ) is strictly monotonic in µ.

Assumption 4.3.4 For any (xi1, zi), B(zi) ∈ supp(S i0|(xi1, zi)).

Assumption 4.3.2(i) is most crucial for the identification results in this chapter. It requires
that an individual who observes a signal that is equal to her prior mean will not update her sub-
jective mean. This assumption is intuitively appealing and consistent with Bayesian learning
about a permanent factor under fairly general conditions. Chambers and Healy (2012) show
that if both the prior distribution and the distribution of errors in the signal are symmetric, then
the Bayesian updating rule has this property.

My method requires the econometrician to observe the same group of individuals (i.e.,
individuals with the same value of observables x and z) in both periods. I stress the point that,
given that decision-influencing factors xit might be time-varying, the members of a certain
group may change over time as well. For example, a student’s study effort might directly
depend on her expectations about own academic productivity (as will be discussed in Section
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4.5) and her current health condition (healthy or unhealthy), which is time-varying. Hence, to
parcel out the effect of time-varying health condition on study effort, my method is based on a
comparison between decisions made by students who are healthy (unhealthy) in period 0 and
decisions made by students who are healthy (unhealthy) in period 1 after they receive signals
si0, despite that these might not be the same students.

Roughly speaking, Assumption 4.3.2(i) implies that, if this group of individuals receive a
signal that is equal to their prior mean, then their average decision at t = 1 is the same as
their average decision at t = 0. In other words, the value of the conditional mean function
at t = 1, D̃1(x, z, s), is equal to the average decision made by this group of individuals at
t = 0, D̃0(x, z), when the signal s is equal to the prior mean B(z) for this group. The strict
monotonicity of D̄(x, µ) (Assumption 4.3.3) and Γ0(s; z, ξ) (Assumption 4.3.2(ii)) imply that
D̃1(x, z, s) is also strictly monotonic, hence there is at most one signal s that can induce identical
average decisions in two periods. This guarantees that the converse of the previous statement
is also true. Finally, Assumption 4.3.4 guarantees the existence of such a signal. Formally, the
following theorem holds.

Theorem 4.3.1 For any (x, z) ∈ supp((Xi0,Zi)) ∩ supp((Xi1,Zi)), if Assumption 4.3.1-4.3.4 are

satisfied, then:

1. the average decision D̄(x, B(z)) = D̃0(x, z);

2. D̃1(x, z, s) is invertible in s and the prior mean B(z) = D̃−1
1 (x, z, D̃0(x, z)).

Proof Fix (x, z) ∈ supp((Xi0,Zi))∩supp((Xi1,Zi)). By construction, D̃0(x, z) is a known constant
and D̃1(x, z, s) is a known function defined on supp(S i0|(x, z)). The value of D̃0(x, z) is given
by:

D̃0(x, z) = Eεi0 |x,zD(x, εi0, B(z))

= Eεi0 D(x, εi0, B(z))

= D̄(x, B(z)), (4.5)

where the second line follows from the independence of εi0. This proves the first part of the
theorem.

Fix s ∈ supp(S i0|(x, z)), similarly, the value of D̃1(x, z, s) is given by:

D̃1(x, z, s) = E(εi1,ξi)|x,z,sD(x, εi1, B(z) + Γ0(s − B(z); z, ξi))

= Eξi Eεi1 D(x, εi1, B(z) + Γ0(s − B(z); z, ξi))

= Eξi D̄(x, B(z) + Γ0(s − B(z); z, ξi)), (4.6)
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where the second line follows from the independence of εi1 and ξi.

Assumption 4.3.2 and 4.3.3 imply that, for any (x, z, ξi), D̄(x, B(z) + Γ0(s − B(z); z, ξi)) is
strictly monotonic in s. I first consider the case where it is strictly increasing in s. Now fix
s1 > s2. Then:

D̃1(x, z, s1)− D̃1(x, z, s2) = Eξi(D̄(x, B(z) + Γ0(s1 − B(z); z, ξi))− D̄(x, B(z) + Γ0(s2 − B(z); z, ξi)).
(4.7)

The right-hand-side of Equation (4.7) is the integral of a strictly positive function over a set
that has probability measure 1. Hence, it is strictly positive which implies that D̃1(x, z, s1) >
D̃1(x, z, s2). Therefore, for any x, z, D̃1(x, z, s) is strictly increasing, hence invertible, in s. In the
case where D̄(x, B(z) + Γ0(s − B(z); z, ξi)) is strictly decreasing in s, I can show that D̃1(x, z, s)
is strictly decreasing, hence invertible, in s, following the same steps.

Given the invertibility of D̃1(x, z, s), to prove B(z) = D̃−1
1 (x, z, D̃0(x, z)), I need to show

(1) D̃1(x, z, B(z)) = D̃0(x, z) and (2) (x, z, B(z)) is in the domain of D̃1(x, z, s). Assumption
4.3.2(i) implies that, when s = B(z), Γ0(s − B(z); z, ξi)) = 0 for all ξi. Hence, D̃1(x, z, B(z)) =

D̄(x, B(z)) = D̃0(x, z). Assumption 4.3.4 guarantees that (x, z, B(z)) is in the domain of D̃1(x, z, s).

Remark The validity of Theorem 4.3.1 does not require any specific assumptions on the joint
distribution of xit and zi. For example, they can each be binary, discrete, or continuous. They
can be completely separate or completely overlapping sets of variables. However, in order to
apply Theorem 4.3.1 to empirically conduct counterfactual analysis with respect to the prior
mean µi0, some features of this joint distribution are desirable.

For a particular individual i with decision-influencing factors xi0 and prior mean µi0 =

B(zi), this counterfactual analysis typically involves evaluating the identified average decision
function D̄(x, µ) at x = xi0 and µ , B(zi). Doing this requires that Zi and Xi0 are not perfectly
dependent, i.e., Zi is not a deterministic function of Xi0. Conceptually, this is the case because,
analogous to the issue of perfect multicollinearity in a linear regression model, if Zi and Xi0 are
perfectly dependent, then it is not possible to separate the effect of µi0 = B(zi) on di0 from the
effect of xi0 on di0.5

Intuitively, this implies that, in order to perform any meaningful counterfactual analysis,
there must exist at least one observed (by the econometrician) factor that determines the prior
mean µi0, but does not have a direct effect on the decision di0. Moreover, from an empirical
standpoint, it would be helpful if this additional beliefs-influencing factor has a wide support.

5Note that Theorem 4.3.1 only allows for identification of the average decision D̄(x, B(z)) if (x, z) ∈
supp((Xi0,Zi)) ∩ supp((Xi1,Zi)). If Zi and Xi0 are perfectly dependent, then given Xi0 = xi0, supp((Xi0,Zi)) ∩
supp((Xi1,Zi)) is either a singleton with (xi0, zi) as the only element or the empty set. Therefore, for any x = xi0
and µ , B(zi), D̄(x, µ) cannot be identified using Theorem 4.3.1.



4.3. Identification in a Benchmark Environment 75

Then, by changing the value of this factor, we are able to identify the value of D̄(x, µ) for a
wide range of subjective mean µi0 = B(zi).

Identification with Consistently Estimated Conditional Mean Functions

Theorem 4.3.1 provides a strategy to identify the average decision function D̄(x, µ) and the
prior mean function B(z) from known conditional mean functions D̃0(x, z) and D̃1(x, z, s). In
practice, however, the econometrician needs to estimate these two conditional mean functions
using data on dit, xit, zi, and si0. I denote D̂0(x, z) and D̂1(x, z, s) as generic consistent estimators
of the two functions and denote D̂−1

1 (x, z, d) as a generic consistent estimator of the inverse of
D̃1(x, z, s).

A natural question is whether Theorem 4.3.1 holds if the conditional mean functions are
replaced with their consistent estimators and equality is replaced with convergence in proba-
bility. The answer is “yes” to the first statement and “no” to the second statement in Theo-
rem 4.3.1. Roughly speaking, this is because, under Assumption 4.3.1-4.3.4, D̃−1

1 (x, z, d) is a
generic strictly monotonic function of d, hence does not necessarily preserve limits. To validate
the second statement, additional continuity assumptions are required.

Assumption 4.3.5 For any (z, ξ), Γ0(s; z, ξ) is continuous in s and is bounded on any finite

interval in IR.

Assumption 4.3.6 For any x, D̄(x, µ) is continuous in µ and is bounded on any finite interval

in IR.

Assumption 4.3.7 For any (x, z) ∈ supp((Xi1,Zi)), supp(S i0|(x, z)) is a finite interval.6

Assumption 4.3.5-4.3.7 help guarantee that D̃−1
1 (x, z, d) is continuous in d.

Lemma 4.3.2 For any (x, z) ∈ supp((Xi0,Zi)) ∩ supp((Xi1,Zi)), if Assumption 4.3.1-4.3.7 are

satisfied, then D̃1(x, z, s) is continuous and invertible in s and D̃−1
1 (x, z, d) is continuous in d.

Proof See Appendix D.1.

Under the continuity assumptions listed above, the average decision function D̄(x, µ) and
the prior mean function B(z) can be consistently estimated using consistent estimators of
D̃0(x, z) and D̃1(x, z, s) (D̃−1

1 (x, z, d)).

6This assumption is primarily required to ensure the continuity of the conditional mean function at t = 1,
D̂1(x, z, d), in the presence of unobserved heterogeneity in updating rules. Technically it assumes aways many
canonical signal distributions considered in the literature, such as normal and log-normal distributions. However,
in many applications, the support of signals are bounded empirically. For example, a person’s semester grade is
typically bounded by 0 and 4; realized annual income is also bounded above since it would be impossible for
someone to earn more than the world can physically produce in a year.
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Assumption 4.3.8 For any (x, z) ∈ supp((Xi0,Zi)) ∩ supp((Xi1,Zi)),

1. D̂0(x, z) −→
p

D̃0(x, z);

2. supd∈D̃1(x,z,supp(S i0 |(x,z))) |D̂
−1
1 (x, z, d)−D̃−1

1 (x, z, d)| −→
p

0, i.e., D̂−1
1 (x, z, d) uniformly converges

in probability to D̃−1
1 (x, z, d).

Theorem 4.3.3 For any (x, z) ∈ supp((Xi0,Zi)) ∩ supp((Xi1,Zi)), if Assumption 4.3.1-4.3.8 are

satisfied, then:

1. D̂0(x, z) −→
p

D̄(x, B(z));

2. D̂−1
1 (x, z, D̂0(x, z)) −→

p
B(z).

Proof The first statement in Theorem 4.3.3 is trivially implied by the first statement in Theo-
rem 4.3.1 and the first part of Assumption 4.3.8.

To prove the second statement in Theorem 4.3.3, first rewrite D̂−1
1 (x, z, D̂0(x, z)) as the sum

of several terms:

D̂−1
1 (x, z, D̂0(x, z)) = D̃−1

1 (x, z, D̃0(x, z)) + (D̃−1
1 (x, z, D̂0(x, z)) − D̃−1

1 (x, z, D̃0(x, z)))

+ (D̂−1
1 (x, z, D̂0(x, z)) − D̃−1

1 (x, z, D̂0(x, z))). (4.8)

By Lemma 4.3.2, D̃−1
1 (x, z, d) is continuous in d. Since D̂0(x, z) −→

p
D̃0(x, z), the continu-

ous mapping theorem states that D̃−1
1 (x, z, D̂0(x, z)) −→

p
D̃−1

1 (x, z, D̃0(x, z)). The second part of

Assumption 4.3.8 implies that D̂−1
1 (x, z, D̂0(x, z))− D̃−1

1 (x, z, D̂0(x, z)) −→
p

0. Therefore, the right-

hand-side of Equation (4.8) converges in probability to D̃−1
1 (x, z, D̃0(x, z)), which is equal to

B(z) by Theorem 4.3.1.

4.3.3 Discussion

This environment has two defining features. First, an individual repeatedly makes decisions
based on her subjective mean of a permanent unknown factor. Second, the average decision
as a function of the subjective mean is time-invariant, strictly monotonic, and continuous. I
choose this environment as the benchmark primarily for three reasons.

First, this environment nests many models that are of interest to researchers, including the
canonical model of input choices under price/demand/productivity uncertainty (e.g., Baron,
1970; Sandmo, 1971; Leland, 1972; Holthausen, 1976). In Appendix D.2.1, I provide a con-
crete example of this model. Note that the continuity assumption in Theorem 4.3.3 is imposed
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on the average decision function, not the decision rule. Therefore, even in models where the
decision dit is discrete, I may still be able to apply Theorem 4.3.3. In Appendix D.2.2, I show
this using a model of an individual’s rural-urban migration decisions as an example.

Second, this benchmark environment also provides a good approximation to many com-
monly used models that might not fit the description of the benchmark environment exactly.
For example, in most finite horizon dynamic models, an individual’s decision rules are typi-
cally not time-invariant even when preferences and constraints in each period remain the same.
However, under fairly general conditions, the contraction mapping theorem implies that if the
time-horizon is sufficiently long, then individuals’ decision rules in the first two periods can be
arbitrarily close. In the extreme case, the model becomes an infinite horizon problem with sta-
tionary per-period environment and has a time-invariant decision rule. Similarly, if the length
of a period is sufficiently short (e.g., weekly quizzes followed by dropout decisions), an indi-
vidual’s decision rules in two consecutive periods can be approximately identical as well. If
an individual receives a signal immediately after making a decision and is asked to make deci-
sions again, it would be natural to expect that her new decision rule should be very similar to
her decision rule before receiving the signal.7

Third, the identification strategy highlighted in this parsimonious environment can be nat-
urally extended to achieve identification in more complicated, nonstationary environments that
cannot be well approximated by the benchmark environment. In Section 4.6.1, I show this
using a simple dynamic discrete choice model that captures the key elements of the dropout
model in Stange (2012) as an example.

4.4 Feasible Semiparametric Estimator

In Section 4.3, I showed that the average decision function D̄(x, µ) and the prior mean function
B(z) can be jointly nonparametrically estimated if consistent nonparametric estimators of con-
ditional mean functions D̃0(x, z) and D̃1(x, z, s) are available. In practice, their nonparametric
estimation suffers from the standard curse of dimensionality. This issue might be particularly
severe in my context because, given the conditional homogeneity assumption on individuals’
prior means, it is desirable to include a large number of observables in the vector of beliefs-
influencing factors, zi.

7Another type of deviation from the benchmark environment is to allow an individual’s decision to depend on
not only her subjective mean of Ai, but also higher moments of her subjective distribution. Since the assumptions
on the updating rules do not impose any restrictions on how individuals update higher moments of their subjective
distributions, these higher moments are generally unidentified. However, if the magnitude of learning is small
such that individuals’ subjective distributions of Ai do not change much over the two periods, an individual’s
decision rule as a function of the subjective mean may be approximately time-invariant as well.
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Note that, as long as no parametric and/or homogeneity assumptions are imposed on the
updating rules, D̃1(x, z, s) is a nonparametric function of x, z, and s, even if both D̄(x, µ) and
B(z) are fully parametric. In other words, parametric assumptions on the average decision
function and the prior mean function alone do not help alleviate the curse of dimensionality in
the estimation of D̃1(x, z, s). Additional assumptions are required.

In this section, I show that, if individual i’s misperception, as measured by the difference
between her prior mean µi0 = B(zi) and the subjective mean that is implied by the Rational
Expectations assumption, E(Ai|zi), is determined by a finite type variable ki, then parametric
functions D̄(x, µ) and B(z) can be consistently estimated using a curse-of-dimensionality-free
approach even if no parametric and homogeneity assumptions are imposed on the updating
rules. I then examine the performance of this feasible semiparametric estimator through a sim-
ulation exercise. In particular, I compare its performance to a fully parametric estimator, where,
as is often the case in the empirical literature on Bayesian learning, linearity and homogeneity
assumptions are imposed on the updating rule.

4.4.1 Method

I keep the general environment in Section 4.3 but impose parametric assumptions on the de-
cision rule D(xit, εit, µit), the prior mean function B(zi), and the true conditional expectation
A(zi) = E(Ai|zi). I still allow the updating rule to be nonparametric and heterogeneous across
individuals. For the purpose of illustration, I consider below the case where both D(xit, εit, µit)
and A(zi) are linear. As shown in Appendix D.3, the method can be applied to cases where
D(xit, εit, µit) and A(zi) are arbitrary parametric functions.8

Most importantly, I also make the additional assumption that B(zi) − A(zi) = π̃B(ki), where
ki only takes finitely many values and is known to both the individual and the econometrician.9

π̃B(ki) measures individual i’s misperception about Ai at period t = 0. Within each group ki,
individuals may have different prior means B(zi), but their misperceptions π̃B(ki) are identical.
This restricts the amount of heterogeneity in prior means that need to be estimated nonpara-
metrically.

Individual i’s decision dit, prior mean µi0, and signal si0 are given by:

dit = D(xit, εit, µit) = x′i0α + βµit + εit, (4.9)

µi0 = A(zi) + π̃B(ki) = z′iπR + π̃B(ki), (4.10)

si0 = Ai + vi0 = A(zi) + (Ai − A(zi)) + vi0 ≡ z′iπR + ηi + vi0, (4.11)

8D(xit, εit, µit) needs to satisfy Assumption 4.3.3 and 4.3.6.
9Since ki is also a beliefs-influencing factor, by construction, it is perfectly determined by zi.
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where εit is a mean zero independent shock in decision dit, vi0 is the independent noise term in
signal si0 and ηi ≡ A−A(zi) summarizes the beliefs-influencing factors that are not in individual
i’s information set at t = 0. ηi is orthogonal to A(zi) by construction. Here I impose a stronger
assumption that it is independent of zi.

Equation (4.11) shows that a consistent estimator of A(zi) = z′iπR can be obtained through a
linear regression of si0 on zi. I denote this consistent estimator as Â(zi).

Combining Equation (4.9) and (4.10), I obtain the following equations for individual i’s
decisions at period t = 0 and t = 1:

di0 = x′i0α + z′i(πRβ) + βπ̃B(ki) + εi0 ≡ D̃0(xi0, (zi, ki)) + εi0, (4.12)

di1 = D̃0(xi1, (zi, ki)) + βΓi0(si0 − z′iπR − π̃B(ki)) + εi1. (4.13)

Since ki only takes finitely many values, π̃B(ki) can be written as a linear function of a
series of dummy variables. Hence, D̃0(xi0, (zi, ki)) can be consistently estimated through a
linear regression of di0 on xi0, zi, and these dummy variables. I denote this consistent estimator
as D̂0(xi0, (zi, ki)).

Let d̃i1 ≡ di1 − D̂0(xi1, (zi, ki)) and s̃i0 ≡ si0 − Â(zi). Then,

d̃i1 = βΓi0(s̃i0 − π̃B(ki)) + εi1 + δi, (4.14)

where δi represents the estimation error and converges in probability to zero as the number of
observations goes to infinity.10

Since ki is a finite type variable, it is feasible to stratify individuals by ki. For each type
ki, π̃B(ki) is a constant and d̃i1 only depends on one “observable” s̃i0 (and the unobserved error
term εi1 + δi).

In the case where no parametric and/or homogeneity assumptions are imposed on the up-
dating rules Γi0(s), the probability limit of E(d̃i1|s̃i0, ki) is a continuous and strictly monotonic
function of s̃i0 and equals zero when s̃i0 = π̃B(ki) given Assumption 4.3.2 and 4.3.5. Hence, for
each ki, π̃B(ki) can be consistently estimated following a two-step procedure:

1. Nonparametrically estimate E(d̃i1|s̃i0, ki) as a continuous and strictly monotonic function
of s̃i0 using the isotonic regression (Barlow et al., 1972);11

10Formally, δi is given by δi ≡ D̃0(xi0, (zi, ki)) − D̂0(xi0, (zi, ki)) + β[Γi0(si0 − A(zi) − π̃B(ki)) − Γi0(s̃i0 − π̃B(ki))].
11The out-of-the-box isotonic regression typically yields a weakly monotonic function. Hence, in theory, the

root of the estimator of E(d̃i1|s̃i0, ki) may not be unique. In practice, I introduce a tie-breaking rule to ensure the
uniqueness of the root.

There are also many other existing methods for monotonic nonparametric estimation of conditional mean func-
tions. Examples include spline regression with shape constraints (e.g., Ramsay, 1988) and kernel regression with
shape constraints (e.g., Hall and Huang, 2001).
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2. Solve for the unique root of this function which consistently estimates π̃B(ki).

Hereafter I refer to this estimator as the feasible semiparametric estimator.

Alternatively, if the updating rule Γi0(s) is linear in s and homogeneous across i, i.e.,
Γi0(s) = θs, Equation (4.14) becomes:

d̃i1 = −βθπ̃B(ki) + βθ s̃i0 + εi1 + δi. (4.15)

For each type variable ki, consistent estimators of −βθπ̃B(ki) and βθ can be obtained by a
linear regression of d̃i1 on s̃i0. The negative of the ratio of the former to the latter consistently
estimates π̃B(ki). Hereafter I refer to this estimator as the linear homogeneous updating rule
(LHU) estimator.

After obtaining consistent estimators of A(zi) and π̃B(ki) for each ki, I can consistently
estimate the the prior mean µi0 = A(zi) + π̃B(ki) for each individual, which I denote µ̂i0. If
zi|xi0 is not degenerate, then the structural parameters in the decision rule, α and β, can be
consistently estimated through a linear regression of di0 on decision-influencing factors xi0 and
the generated prior mean µ̂i0.

4.4.2 Simulation Exercise

I use a numerical example to examine the performance of this feasible semiparametric estima-
tor and compare it to the LHU estimator. Consider the linear model in Section 4.4.1 where xi0

contains a constant, zi contains a constant and a dummy variable qi that takes value 1 with 50%
probability, and ki is the same as qi:

dit = α + βµit + εit,

si0 = πR,0 + πR,1qi + ηi + vi0,

µi0 = πR,0 + πR,1qi + π̃B(qi). (4.16)

In the numerical exercise, I set α = 0, β = 1, πR,0 = 2, πR,1 = 2, π̃B(0) = −1, and π̃B(1) = 1.
Type qi = 0 individuals’ prior mean of Ai is 1 while their Rational-Expectations-consistent
subjective mean is 2. Type qi = 1 individuals’ prior mean of Ai is 5 while their Rational-
Expectations-consistent subjective mean is 4.

To close the model, I also need to specify the updating rule Γi0(s) for each individual. To
facilitate comparisons between the LHU estimator and the semiparametric estimator, it would
be desirable if Γi0(s) has a form that is generally nonlinear in s and heterogeneous across
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individuals, but also has the linear homogeneous updating rule as a special case. The following
class of updating rules has this feature:

Γi0(s) = sgn(s)θi|s|ρ, (4.17)

where θi = eξi
1+eξi and ξi ∼ N(0, σ2

ξ).
When σ2

ξ > 0, Γi0(s) is heterogeneous across individuals. When ρ , 1, Γi0(s) is nonlinear in
s. In the special case where ρ = 1 and σ2

ξ = 0, the updating rule is linear in s and homogeneous
across individuals: Γi0(s) = 0.5s.

Table 4.1: Comparison of Two Estimators
α = 0 β = 1 µi0 = 1 (Qi = 0) µi0 = 5 (Qi = 1)

N = 200
Semiparametric

-0.170 1.064 1.083 4.873
(0.355) (0.101) (0.261) (0.249)

Linear
0.017 0.994 0.977 5.024

(0.277) (0.077) (0.250) (0.246)

N = 2, 000
Semiparametric

-0.003 1.003 0.993 4.994
(0.199) (0.055) (0.162) (0.159)

Linear
0.002 1.000 0.997 5.001

(0.084) (0.023) (0.072) (0.072)

N = 20, 000
Semiparametric

0.013 1.002 0.984 4.978
(0.091) (0.026) (0.073) (0.076)

Linear
-0.000 1.000 1.000 4.998
(0.027) (0.007) (0.023) (0.022)

Notes: Numbers without parentheses are the averages of the estimates for 1,000 random samples.
Numbers in parentheses are the standard deviations of the estimates for 1,000 random samples.

I first consider the case where Γi0(s) = 0.5s. In this case, both the feasible semiparametric
estimator and the LHU estimator are consistent. However, they might have different small-
sample properties and different convergence rates. To make comparisons, I generate 1,000
random samples using the above data generating process and estimate prior means (µi0) and
model parameters (α and β) using both the feasible semiparametric estimator and the LHU
estimator.

Table 4.1 reports the mean and standard deviation of both estimators. The first panel
(N = 200) shows that, overall the LHU estimator exhibits smaller small-sample bias than
the semiparametric estimator. For example, the average semiparametric estimate of the slope
parameter β is 0.064 higher than the true value β = 1 while the average LHU estimate is only
0.006 lower than the true value. Similar comparisons are found for the intercept parameter α
and prior means µi0 as well. Additionally, the LHU estimator also converges faster than the
semiparametric estimator. Again consider the slope parameter β as an example. Comparing
the second column of the first and the last panels, I find that increasing the sample size from
200 to 20,000 leads to a roughly 94% reduction in the standard deviation of the LHU estimator
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(0.077 to 0.007) and a roughly 74% reduction in the standard deviation of the semiparamet-
ric estimator (0.101 to 0.026). These results suggest that when the updating rule is correctly
specified, the LHU estimator has better properties than the semiparametric estimator.

Figure 4.1: Comparison of Two Estimators for ρ , 1: Priors

Next I examine how nonlinearity of the updating rule influences the performance of the two
estimators. I keep the assumption that θi is homogeneous across individuals (θi = 0.5) but allow
ρ to be an arbitrary positive number. For each ρ, I generate 1,000 random samples and estimate
µi0, α, and β using both estimators. Each random sample consists of 2,000 observations.

Figure 4.1 and 4.2 depict the median and 95% interval of these estimators for ρ ∈ (0, 3).
An immediate observation is that, unlike the feasible semiparametric estimator, the LHU es-
timators are not consistent when ρ , 1. For any ρ ∈ (0, 3), the 95% interval of the feasible
semiparametric estimators of µi0, α, and β always contain their true values. On the contrary,
only when ρ is close to zero does the 95% interval of the LHU estimator contain the true value
of the object of interest. For example, the right panel of Figure 4.2 shows that the true value of
the slope parameter β = 1 is in the 95% interval of its LHU estimator when ρ ∈ [0.9, 1.1], and
falls outside of the 95% interval of its LHU estimator for any other value of ρ.

Interestingly, the feasible semiparametric estimator is not always more volatile than the
LHU estimator: When ρ is very small, the 95% intervals of feasible semiparametric estimators
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Figure 4.2: Comparison of Two Estimators for ρ , 1: Parameters

are narrower than the 95% intervals of LHU estimators. Intuitively, this is because the accu-
racy of the feasible semiparametric estimator is determined by how responsive individual i’s
decision di1 is to the signal si0 when the signal is close to her prior mean µi0. If ρ < 1, as si0

converges to µi0, the derivative of posterior mean µi1 with respect to signal si0 diverges to in-
finity. In this case, a small change in si0 around si0 = µi0 can lead to a substantial change in the
posterior mean µi1 and the expected value of di1. Therefore, the impact of sampling variations
in the estimated average decision functions on the estimates of µi0 should be small.

Lastly, I examine the performance of the two estimators when the updating rules are het-
erogeneous across individuals. I assume that the updating rule is linear for each individual
(ρ = 1) , but the parameters θi differ across people, i.e., σ2

ξ > 0. Similar as before, for each σ2
ξ ,

I generate 1,000 random samples, each of which contains 2,000 observations, and estimate µi0,
α, and β using both estimators.

Figure 4.3 and 4.4 plot the median and 95% interval of these estimators against the sample
interquartile range of θi. The main finding is similar as above: When there is heterogeneity in
updating rules, the LHU estimator “precisely” produces inconsistent estimates. Consequently,
it rarely produces estimates that are close to the true value, especially when the heterogeneity
in updating rules is substantial. As shown in the right panel of Figure 4.4, the true value of the
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Figure 4.3: Comparison of Two Estimators for iqr(θ) > 0: Priors

slope parameter β = 1 is in the 95% interval of its LHU estimator when the interqualtile range
of θi is smaller than 0.2, and falls outside of the 95% interval of its LHU estimator otherwise. As
a comparison, the 95% interval of the feasible semiparametric estimator contains the true value
β = 1 regardless of how much heterogeneity there is in updating rules. Moreover, when the
magnitude of heterogeneity is large, the 95% intervals of the LHU estimator and the feasible
semiparametric estimator do not overlap, suggesting that despite being volatile, the feasible
semiparametric estimator is much less likely to produce estimates that are too far away from
the true value. Similar results can be found for α and µi0 as well.

4.5 Empirical Application

Students’ study effort might be affected by their expectations about how good they are at “pro-
ducing” grades. Analogous to the productivity of a firm, I measure the academic productivity
of a student in a given semester by the ratio of her semester GPA to average daily study time.
In this section, I use data from the Berea Panel Study to empirically estimate college students’
expectations about their academic productivity and estimate the effect of these expectations
on students’ study time. I first estimate these objects under the Rational Expectations (RE)
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Figure 4.4: Comparison of Two Estimators for iqr(θ) > 0: Parameters

assumption, then use both the LHU estimator and the feasible semiparametric estimator to
estimate these objects without the RE assumption. A particular focus of this section is to ex-
amine whether these students have rational expectations about own academic productivity and
whether relaxing the RE assumption leads to different estimates of the effect of expectations
about academic productivity on study time.

4.5.1 Empirical Model

Consider the first two semesters in college (t = 0, 1). In each semester t, student i chooses
average daily study time dit based on factors xit and the subjective mean of her academic pro-
ductivity, sit. The decision rule is given by:

dit = x′itα + βEb(sit) + εit, (4.18)

where student i’s academic productivity in semester t is defined as the ratio of her GPA git, to
her study time dit, i.e., sit ≡

git
dit

.

Academic productivity sit is the sum of a permanent factor Ai and a mean zero, indepen-
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dently distributed shock vit, i.e., sit = Ai + vit.12 Let µit denote student i’s subjective mean of Ai

in semester t. Then Eb(sit) = Eb
t (Ai) = µit. Equation (4.18) can be rewritten as:

dit = x′itα + βµit + εit. (4.19)

The objects of primary interest are students’ prior means µi0, and the parameter β, which
represents the effect of students’ subjective mean µit on study time dit. Conceptually, it is not
clear whether β is positive or negative. For example, if students are solving a utility maximiza-
tion problem that is similar to the canonical input choice problem faced by profit-maximizing
firms, expectations about academic productivity would have a positive effect on study time
because of the complementarity between academic productivity and study time in producing
grades. Alternatively, if students’ primary goal is to achieve certain grades, then students with
high expectations about own academic productivity would believe that they do not need to
spend much time studying. In this case, the effect of expectations about academic productivity
on study time would be negative.

Under the RE assumption, student i’s prior mean µi0 is given by µi0 = E(Ai|zi) = E(si0|zi),
where zi are the beliefs-influencing factors observed by individual i before the first semester.
Provided that I observe both si0 ≡

gi0
di0

and zi, I can consistently estimate E(si0|zi). In this
application, I assume that E(si0|zi) ≡ A(zi) = z′iπR and estimate πR through linearly regressing
si0 on zi. This provides consistent estimates of µi0 = E(si0|zi) = z′iπR for each student.

Without the RE assumption, however, student i’s prior mean µi0 is generally different from
z′iπR. Following Section 4.4.1, I assume that student i’s misperception about Ai in the first
semester, µi0 − z′iπR, is determined by a finite type variable ki. At the end of the first semester,
student i observes her semester GPA gi0 and uses si0 ≡

gi0
di0

to update her subjective mean µit.
Under this setting, I can use the LHU estimator and the feasible semiparamatric estimator
developed in Section 4.4.1 to consistently estimate µi0 for each student.

Finally, if beliefs-influencing factors Zi and decision influencing factors Xi0 are linearly
independent, then Xi0 and the estimated value of µi0 are also linearly independent. Hence,
consistent estimators of β can be obtained by linearly regressing di0 on xi0 and the estimated
value of µi0.

12To facilitate identification, I assume away the possibility that Ai can change between period t = 0 and t = 1.
While I consider this to be a reasonable approximation because of the short time span, it is certainly possible that
Ai is time-varying and may depend on past investments and achievements within a longer time frame (Cunha,
Heckman, Lochner, et al., 2006; Cunha and Heckman, 2007, 2008; Cunha, Heckman, and Schennach, 2010).
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4.5.2 Data

The empirical analysis is based on the Berea Panel Study. Of particular importance here, the
BPS contains multiple 24-hour time diaries each semester, which allows me to construct a
reasonably accurate measure of average daily study time dit for t = 0, 1. The BPS is linked
with administrative data so I observe semester GPA, gi0, for each student.

The BPS also contains data on various decision-influencing factors xit and beliefs-influencing
factors zi. In this empirical investigation, I let xit include a constant, gender, and race. Beliefs-
influencing factors zi need to contain at least one variable that is not in xit. I assume that in
addition to all the variables in xit, student i’s prior mean is also determined by her high school
study time. Conceptually, since a student’s study time depends on her subjective mean of
academic productivity, the student’s high school study time should be informative about her
subjective mean of academic productivity shortly before she enters college.

Lastly, I specify the type variable ki that determines student i’s misperception about Ai.
Motivated by the link between a student’s high school study time and prior mean, I assume that
ki = 0 (ki = 1) if student i’s study time in high school is (no) less than 2 hours per day.

Table 4.2: Descriptive Statistics
Male Black HSTU di0 di1 gi0 si0

Full Sample: N = 475
0.398 0.181 1.607 2.969 3.014 2.964 1.272

(0.490) (0.386) (1.234) (1.350) (1.440) (0.733) (0.983)

ki = 1: N = 151
0.411 0.245 3.120 3.612 3.518 2.983 0.962

(0.494) (0.432) (0.851) (1.397) (1.502) (0.778) (0.536)

ki = 0: N = 324
0.392 0.151 0.902 2.669 2.779 2.955 1.416

(0.489) (0.359) (0.575) (1.218) (1.350) (0.712) (1.104)
Notes: Standard deviations are in the parentheses.

I restrict the sample to the 475 students for whom I have complete information about dit, gi0,
xit, zi, and ki. Around two-thirds of these 475 students spend less than 2 hours per day studying
in high school (ki = 0). Table 4.2 summarizes the descriptive statistics for this sample. The first
row shows that, approximately 40% of the students are male, 18% of the students are black,
and the average high school daily study time is approximately 1.6 hours. On average, students
in the sample spend around 3 hours per day studying in both the first and the second semester.
The average semester GPA and academic productivity for this sample are 2.96 (on a scale from
0-4) and 1.27 per hour, respectively.

Rows 2 and 3 report descriptive statistics for type ki = 1 students and type ki = 0 students,
respectively. As shown in the “HSTU” column, by construction, type ki = 1 students spend
much more time studying in high school compared to type ki = 0 students (3.12 hours v.s. 0.90
hours). The “dit” columns show that type ki = 1 students spend more time studying in college
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as well. Interestingly, these two types of students do not obtain systematically different GPAs
in the first semester as shown in the “gi0” column. Consequently, the average actual academic
productivity si0 is much higher for type ki = 0 students (1.42 per hour) than for type ki = 1
students (0.96 per hour).

Results in Table 4.2 provide suggestive evidence about the signs of β and the misperception
π̃B(ki). A comparison of the “di0” column and the “si0” column shows that a group of students
who have higher academic productivity spend less time studying in college on average. This
suggests that if the students’ expectations about academic productivity are rational, then the
parameter β, which represents the effect of these expectations on study time, should be negative.

Comparing the “di0” column and the “di1” column, I find that, while the average study
time for the full sample does not change much between the first two semesters, the change in
average study time is more substantial for each of the two sub-samples. From the first semester
to the second semester, on average, type ki = 1 students adjust downward their daily study
time by 0.1 hour while type ki = 0 students adjust upward their daily study time by 0.11
hour. This provides suggestive evidence that, at the time of college entrance, both types of
students might have non-rational expectations about their academic productivity. Moreover,
the misperceptions for the two types of students should have opposite signs.

4.5.3 Estimation Results

Table 4.3 reports the estimates of β and π̃B(ki) using three different estimation methods. The
first row reports the estimates under the RE assumption. In this case, the misperception π̃B(ki)
is equal to zero, by construction. Consistent with the pattern found in Table 4.2, the estimate
of β is negative and significant at the 1% level: one unit increase in students’ expectation about
academic productivity leads to 2.28 hours reduction in average daily study time.

Table 4.3: Estimation Results
N = 475 β π̃B(ki = 0) π̃B(ki = 1)

RE Assumption
-2.276 0 0
(0.00) N.A. N.A.

LHU
-1.293 0.216 -0.167
(0.00) (0.09) (0.39)

Semiparametric
-1.548 0.143 -0.103
(0.00) (0.26) (0.88)

Notes: Two-sided bootstrap p-values are in parentheses

The second and third row report the LHU and feasible semiparametric estimates, respec-
tively. In both cases, the point estimates of π̃B(ki = 0) are positive while the point estimates of
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π̃B(ki = 1) are negative, suggesting that students with low/high high school study time overesti-
mate/underestimate their academic productivity. Due to the small sample size, these estimates
are somewhat imprecise. Nonetheless, I can still reject the null hypothesis that type ki = 0
students have rational expectations about their academic productivity at the 10% level under
the assumption that the updating rule for µit is linear and homogeneous across students.

Since students with low/high high school study time are the ones who have high/low aca-
demic productivity, the previous results about π̃B(ki = 0) imply that the difference in expec-
tations about academic productivity between these two types of students is larger than the
difference in average actual academic productivity between these two types of students. Con-
sequently, as shown in the first column of Table 4.3, while the LHU and feasible semiparametric
estimates of β are also negative, they are much smaller in magnitude compared to the estimate
of β obtained under the RE assumption.

4.6 Alternative Environments

4.6.1 A Simple Dynamic Discrete Choice Model

There are many finite horizon dynamic models with signal-based learning that are of interest
to economists. For example, in the context of higher education, many researchers have mod-
elled students’ dropout decisions and major choices as results of students learning about their
(major-specific) innate ability (Arcidiacono, 2004; Stange, 2012; Stinebrickner and Stinebrick-
ner, 2014a; Arcidiacono, Aucejo, et al., 2016). However, since the environment specified in
Section 4.3 requires the decision rule to be a time-invariant function of the subjective mean
of the unknown factor, Theorem 4.3.3 cannot be directly applied to identify prior means and
decision rules in most finite horizon dynamic models. Nonetheless, combined with additional
assumptions on higher moments of the distribution describing an individual’s beliefs about the
unknown factor, the intuition underlying Theorem 4.3.3 can be extended to achieve identifica-
tion in finite horizon dynamic models with a stationary per-period environment. In this section,
I show this using a simple dynamic discrete choice model that captures the key elements in
Stange (2012).

Environment and Notation

Consider a standard dynamic discrete choice model (DDCM) with signal-based learning. Time
is discrete and indexed by t. At each period t, each individual i maximizes the present value of
her total expected per-period utility over the rest of her lifecycle (from t to t = T ) by choosing
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an action dit from a non-empty discrete choice set Cit ⊆ {0, 1}. For the purpose of illustration,
here I consider the case where T = 1 and assume Ci0 = {0, 1}.

The choice set at period t = 1, Ci1, depends on the action di0 at period t = 0. In this section,
I consider a special case where action 0 is an absorbing state. This allows me to highlight the
most salient difficulty in the identification of DDCM while keeping the presentation of theo-
rems and proofs succinct. The existence of an absorbing state is commonly assumed in models
of schooling decisions. For example, when studying college dropout decisions, researchers
often assume that once a student chooses to drop out of college, she cannot choose to go back
to college later (e.g., Stange, 2012; Stinebrickner and Stinebrickner, 2014a). Formally, Ci1 is
given by:

Ci1 =

 {0} if di0 = 0,
{0, 1} if di0 = 1.

(4.20)

Individual i’s per-period utility from choosing action j is determined by a set of state vari-
ables, including observed (by the econometrician) factors xi jt, unobserved (by the econometri-
cian) factors εi jt, and the subjective mean µit of an unknown permanent factor Ai.

The per-period utility function is separable in (xi jt, µit) and εi jt, and is linear in µit given xi jt:

ui jt = f αj (xi jt) + f βj (xi jt)µit + εi jt. (4.21)

I normalize f αj (xi0t) = f βj (xi0t) = 0 for all xi0t following the majority of the DDCM literature.

Similar to the setting in Section 4.3, individual i’s prior mean of Ai is given by B(zi). Be-
tween the two periods, if individual i chooses di0 = 1 at period t = 0, she receives a signal
si0 = Ai + vi0 and updates her beliefs about Ai. The updating rule for the subjective mean is
given by:

µi1 − µi0 = Γ0(si0 − µi0; zi). (4.22)

I do not specify and restrict how individuals update higher moments of their beliefs about Ai.

The econometrician observes decisions dit, signals si0, utility-influencing factors xi jt and
beliefs-influencing factors zi. The objects of interest are utility functions f αj (xi jt) and f βj (xi jt),
and prior mean function B(zi).

Identification Results

Analogous to Section 4.3.2, in this section, I assume that the (joint) distributions of the ob-
servables are known by the econometrician and abstract away from complications that arise in
estimation. I leave these complications for future research.

Most of the assumptions required to identify the model are identical or similar to those in
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Section 4.3. Furthermore, these assumptions are also consistent with the ones made in Stange
(2012). Specifically, I impose the following assumptions.

Assumption 4.6.1 εi jt is independent from any other factors and is identically distributed over

time for all j.

Assumption 4.6.2 εi0t − εi1t has a known strictly monotonic CDF F∆ε(ε) and its support is IR.

As will be clearer later, the strict monotonicity of F∆ε(ε) helps guarantee that the probability
of choosing dit = 1 (analogous to the average decision in Section 4.3) is strictly monotonic
in the subjective mean µit. The assumption that F∆ε(ε) is known is a standard normalization
assumption. The second part of this assumption ensures that the probability of choosing either
of the two actions is strictly positive. It guarantees that there are always individuals who receive
a signal between the two periods and are allowed to choose between the two actions at period
t = 1.

Assumption 4.6.3 For any z, Γ0(0; z) = 0 and Γ0(s; z) is strictly monotonic in s.

The assumptions on the updating rules are essentially the same as those in Section 4.3.2. The
only difference is that now I do not allow the updating rule to depend on the unobserved factor
ξi. This restriction allows me to recover each individual’s subjective distribution of S i0 from
the joint distribution of Zi and S i0.

Assumption 4.6.4 Conditional on any set of other observables, the support of the error term

in signals, vit, is IR.

Assumption 4.6.5 At period t = 0, individual i has rational expectations about the distribu-

tions of Xi j1 and εi j1.

I abstract away from non-rational expectations about other factors because my method requires
one signal for each factor about which individuals might have non-rational expectations.

Assumption 4.6.6 Let S b
i0 describe individual i’s beliefs about S i0. Then S b

i0 = S i0 + (B(zi) −
E(S i0|zi)).

Since individuals have biased initial beliefs about the mean of Ai, their beliefs about the mean
of signal si0 have to be biased by the same amount as well. For identification, I assume that they
have correct beliefs about higher moments of the distribution of S i0. Note that this does not
necessarily imply that individuals have correct beliefs about higher moments of the distribution
of Ai. For example, they may be over-confident about how precise their perceptions about Ai

are and (incorrectly) think the majority of the variations in the signal are due to the shock term
vi0.
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Theorem 4.6.1 Under Assumption 4.6.1-4.6.6, for any (x, z), f α1 (x) + f β1 (x)B(z), and B(z) are

identified if

1. f β1 (x) , 0;

2. (x, x, z) ∈ supp((Xi10, Xi11,Zi)|di0 = 1).

Proof For ease of presentation, I prove Theorem 4.6.1 for the case where xi1t and zi are con-
stant. Allowing xi1t and zi to be more flexible will not change the structure of the proof. In this
case, f α1 (xi1t), f β1 (xi1t), B(zi), and E(S i0|zi) are all constant as well, which I denote α1, β1, µ̄, and
s̄, respectively. The objects of interest are α1 + β1µ̄ and µ̄.

At period t = 1, consider an individual i who chose di0 = 1 at period t = 0. She chooses
di1 = 1 if and only if her subjective expectation of ui11 is higher than her subjective expectation
of ui01, i.e., Eb

1(ui11) > Eb
1(ui01). Hence, the probability of choosing di1 = 1, which is also the

expectation of di1, is given by:

D̃1(s) ≡ Prob(di1 = 1) = Prob(Eb
1(ui11) > Eb

1(ui01))

= Prob(α1 + β1µi1 + εi11 > εi01)

= F∆ε(α1 + β1µi1)

= F∆ε(α1 + β1(µ̄ + Γ0(s − µ̄)). (4.23)

Since F∆ε(u) is strictly monotonic (Assumption 4.6.2), I can invert this function to obtain:

h(s) ≡ F−1
∆ε (D̃1(s)) = α1 + β1µ̄ + βΓ0(s − µ̄). (4.24)

Equation (4.24) shows that h(s) is equal to α1 + β1µ̄ when s = µ̄. Under Assumption
4.6.2 and 4.6.3, h(s) and D̃1(s) are strictly monotonic. Specifically, h(s) is strictly increasing
(decreasing) in s when D̃1(s) is strictly increasing (decreasing) in s. Hence, µ̄ is identified if
α1 + β1µ̄ can be identified from individuals’ decisions at period t = 0. However, complications
arise because their decisions at t = 0 depend on not only the per-period utility α1 +β1µ̄, but also
the expected future value of choosing each of the two actions. Hence, roughly speaking, the
identification strategy involves computing, then eliminating the expected future values from
the overall value of the two actions at t = 0.

In Appendix D.4, I show that individual i’s (subjective) expectation of the future value
of choosing action 1 is a known function of individual i’s prior mean µ̄.13 Furthermore, it is

13The computation of this expected future value involves converting conditional choice probabilities to future
values. See Hotz and Miller (1993) for a seminal work on this technique.
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strictly increasing (decreasing) in µ̄ if D̃1(s) is strictly increasing (decreasing) in s. Let V̄1(µ̄)
denote this expected future value.

Consider individual i’s utility maximization problem at period t = 0. Let δ denote the
discount factor. Following the majority of the literature, I assume that δ is set outside of the
model. The subjective expected value of choosing di0 = j at period t = 0, Vi j0, is given by:

Vi10 = α1 + β1µ̄ + εi10 + δV̄1(µ̄),

Vi00 = εi00 + 0 = εi00. (4.25)

Individual i chooses di0 = 1 if and only if Vi10 > Vi00. Hence, the probability of choosing
di0 = 1, which is also the expectation of di0, is given by:

D̃0 ≡ Prob(di0 = 1) = Prob(Vi10 > Vi00)

= Prob(α1 + β1µ̄ + εi10 + δV̄1(µ̄) > εi00)

= F∆ε(α1 + β1µ̄ + δV̄1(µ̄)). (4.26)

Inverting F∆ε(µ), I obtain:
F−1

∆ε (D̃0) = α1 + β1µ̄ + δV̄1(µ̄). (4.27)

Define g(s) ≡ F−1
∆ε (D̃0) − δV̄1(s). Since F−1

∆X(d), D̃0, δ, and V̄1(s) are all known to the
econometrician, g(s) is a known function of s. Equation (4.27) shows that g(s) = α1 +β1µ̄when
s = µ̄. The strict monotonicity of V̄1(s) implies that if D̃1(s) is strictly increasing (decreasing)
in s, then g(s) is strictly decreasing (increasing) in µ̄.

Combining the properties of h(s) and g(s), I can show that µ̄ is equal to the unique root
of h(s) − g(s). I first show that µ̄ solves h(s) − g(s) = 0. This is the case because h(µ̄) =

g(µ̄) = α1 + β1µ̄. To prove it is the only solution, I need to show that h(s) − g(s) is strictly
monotonic. Consider the case where D̃1(s) is strictly increasing in s. It implies that h(s) is
strictly increasing in s and g(s) is strictly decreasing in s. Therefore, h(s) − g(s) is strictly
increasing in s. Similarly, in the alternative case where D̃1(s) is strictly decreasing in s, h(s) −
g(s) is strictly decreasing in s as well.

Finally, with µ̄ identified following the steps above, α1 + β1µ̄ can be obtained using h(µ̄) =

g(µ̄) = α1 + β1µ̄.

4.6.2 Unobserved Heterogeneity in Prior Means

All non/semi-parametric identification results in this chapter (Section 4.3 and Section 4.6.1)
rely on the assumption that there is no unobserved heterogeneity in prior means, i.e., beliefs-
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influencing factors zi are fully observed by the econometrician. This assumption is necessary
primarily for two reasons. First, when the decision rule or the updating rule is nonlinear, it is
generally the case that the average decision of a group of individuals with heterogeneous prior
means will change when they receive a signal that is equal to the average of their prior means.
Hence, without additional parametric restrictions, it is not even possible to identify the average
prior mean for a group of ex ante heterogeneous individuals. Second, if there is an unobserved
(by the econometrician) factor that determines Ai, conceptually it should influence both prior
mean µi0 and signal si0, which generates a correlation between the unobserved components in
µi0 and si0. This is problematic because it leads to an omitted variable bias when estimating
decisions at period t = 1 as a function of signals.

Motivated by a literature interested in identifying unobserved heterogeneity in prior be-
liefs under the RE assumption (Carneiro, Hansen, and Heckman, 2003; Cunha, Heckman, and
Navarro, 2004, 2005), I investigate this identification problem without the RE assumption in
this section. Naturally, to allow for unobserved heterogeneity in prior means, these two issues
have to be addressed. In this section, I show that with linearity assumptions on the decision
rule, updating rule, and prior mean function, and one more period of information on signal
sit, I can identify both the decision rule and the average prior mean for each observed group
(indexed by zi) of individuals in the presence of unobserved heterogeneity in prior means. The
linearity assumptions allow me to solve the first issue. With two observations on sit for each
individual, I can difference out the permanent unobserved component in sit and construct an
instrumental variable for signal si0.

Environment

Consider the case where the econometrician does not observe some factors that are in individ-
uals’ information set at t = 0. Denote the actual and perceived effects of these factors on Ai as
vR

i and vB
i , respectively. I maintain the same linearity assumptions as in Section 4.4.1. The full

model is given by:

dit = x′i0α + βµit + εit,

µi0 = z′iπB + vB
i ,

µi1 = µi0 + θ(si0 − µi0),

sit = z′iπR + vR
i + ηi + vit. (4.28)
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I rewrite this linear model to eliminate unobserved subjective means µit:

di0 = x′i0α + z′i(πBβ) + βvB
i + εi0, (4.29)

di1 = x′i1α + z′i[πBβ(1 − θ)] + βθsi0 + β(1 − θ)vB
i + εi1, (4.30)

sit = z′iπR + vR
i + ηi + vit. (4.31)

The parameters of primary interest are β and πB.

Identification Results

For illustration purpose, here I consider a special case where none of the random variables
contained in Zi is a linear combination of Xit. In Appendix D.5, I show that the method proposed
in this section is valid as long as Xit and Zi are linearly independent.

Uncorrelated Unobserved Components

Equation (4.29) shows that α and πBβ can be estimated by regressing di0 on xi0 and zi.
Similarly, if vR

i and vB
i are uncorrelated, OLS regression of di1 on xi1, zi, and si0 gives estimators

of α, πBβ(1 − θ), and βθ. Hence, θ can be consistently estimated by 1 −
̂πBβ(1−θ)
π̂Bβ

, β can be

consistently estimated by β̂θ

θ̂
, and πB can be consistently estimated by π̂Bβ

β̂
.

Intuitively, the effect of beliefs-influencing factor zi on decision dit is the product of the
effect of zi on the subjective mean µit and the effect of µit on dit. Given the linear updating rule,
the effect of zi on µit diminishes at the rate of 1 − θ. Since the effect of µit on dit is a constant
(β), the effect of zi on dit also diminishes at the rate of 1 − θ. This allows for the identification
of θ.14

Similarly, the effect of the signal si0 on the decision di1 is the product of the effect of si0 on
the subjective mean µi1 (θ) and the effect of µi1 on di1 (β). Hence, with θ identified as above,
β can be identified as well. Finally, πB, which represents the effect of zi on the prior mean µi0,
can be estimated by the ratio of the effect of zi on the first period decision di0 to β.

Correlated Unobserved Components

Conceptually, however, it is natural to expect vR
i and vB

i to be correlated since they originate
from the same factors. In this case, the OLS estimator of Equation (4.30) is biased because
si0 is correlated with βθvB

i . To deal with this endogeneity issue, I construct an instrumental
variable for si0 by taking the difference between individual i’s first two signals. This IV is

14The idea that a linear homogeneous updating rule can be estimated from the speed at which the effect of
beliefs-influencing factors on decisions diminishes over time is also used in the employer learning literature (Far-
ber and Gibbons, 1996, Altonji and Pierret, 2001, Lange, 2007) to estimate the speed of learning.
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given by:
∆si0 = si0 − si1 = vi0 − vi1. (4.32)

∆si0 is a valid instrument for si0 because (1) both vi0 and vi1 are error components in the
signals, hence are independent of the unobserved heterogeneity in prior means; and (2) ∆si0

is correlated with si0 since they share a common component vi0. Using ∆si0 as an IV, I can
consistently estimate α, πBβ(1 − θ), βθ based on Equation (4.30) and consistently estimate β
and πB following the steps above.

4.7 Conclusion

In this chapter, I have developed a novel method to jointly identify and estimate individuals’
prior means and decision rules without the Rational Expectations assumption in a multi-period
environment where individuals use signals to update their beliefs about an individual-specific
unknown permanent factor and repeatedly make decisions based on such beliefs. My method
requires the econometrician to observe individuals’ decisions and signals as well as factors
that determine individuals’ initial beliefs. The identification follows a two-step procedure.
First, building on a crucial assumption on how individuals update their subjective means, I
identify the prior mean for each group of individuals who have identical beliefs-influencing
factors based on how their average decision changes after receiving a signal. Second, when the
support of beliefs-influencing factors is sufficiently large, I can identify the prior mean and the
average decision for each of these groups and effectively pin down the decision rule.

Using data from the Berea Panel Study, I apply my method to estimate the relationship
between college students’ study time and their expectations about academic productivity. This
empirical exercise contributes to a recent literature interested in understanding the determinants
of students’ study effort. I find that high expectations about own academic productivity have a
negative effect on students’ study time. A particular focus of this application is to demonstrate
the empirical importance of relaxing the RE assumption. I find that students who spent less than
2 hours per day studying in high school over-estimate their academic productivity in college.
The RE assumption is rejected at the 10% level for these students. Incorrectly imposing the RE
assumption leads to a much more negative estimate of the effect of expectations about academic
productivity on college study time.

I would like to propose several potential avenues for future research. First, the identifi-
cation results, presented in Section 4.6.1, suggest that my method can be applied to estimate
college attendance/dropout models without the RE assumption using large-scale datasets such
as the NLSY97. This can be considered as a cost-effective alternative to the direct elicita-
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tion of students’ expectations, for investigating students’ misperceptions about the return to
college education and the impact of these misperceptions on their schooling decisions. Sec-
ond, my method only imposes restrictions on how an individual updates her subjective mean,
which is a specific moment of the distribution describing her beliefs about a permanent fac-
tor. Consequently, other moments (e.g., the variance) of the distribution cannot be identified
using my method. It would be interesting to investigate whether stronger/alternative assump-
tions on updating rules can help identify these moments. For example, the standard assumption
of Bayesian learning imposes restrictions on how an individual updates the entire distribution
describing her beliefs upon receiving a signal. Finally, the feasible semiparametric estimator
developed in Section 4.4.1 requires the econometrician to know how to group individuals by
their misperceptions. A natural and desirable way to relax this requirement is to assume the
econometrician knows how many types of misperceptions there are, but does not know each
individual’s type ex ante and has to infer their types from observables. In this case, one might
be able to develop a feasible semiparametric estimator based on results from the literature on
nonparametric clustering algorithms.
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[20] Tülin Erdem and Michael Keane. Decision-making under uncertainty: Capturing dy-
namic brand choice processes in turbulent consumer goods markets. Marketing Science,
15(1):1–20, 1996.

[21] Fulya Ersoy. Effects of perceived productivity on study effort: Evidence from a field
experiment. mimeo, 2019.

[22] Henry Farber and Robert Gibbons. Learning and wage dynamics. The Quarterly Journal

of Economics, 111(4):1007–1047, 1996.

[23] Peter Hall and Li-Shan Huang. Nonparametric kernel regression subject to monotonicity
constraints. The Annals of Statistics, 29(3):624–647, 2001.

[24] Duncan Holthausen. Input choices and uncertain demand. The American Economic Re-

view, 66(1):94–103, 1976.



BIBLIOGRAPHY 100

[25] V Joseph Hotz and Robert A Miller. Conditional choice probabilities and the estimation
of dynamic models. The Review of Economic Studies, 60(3):497–529, 1993.

[26] Fabian Lange. The speed of employer learning. Journal of Labor Economics, 25(1):1–35,
2007.

[27] Hayne Leland. Theory of the firm facing uncertain demand. The American Economic

Review, 62(3):278–291, 1972.

[28] Alan Olivi. Revealed preferences and beliefs from consumption-savings decisions.
mimeo, 2019.

[29] Matthew Osborne. Consumer learning, switching costs, and heterogeneity: A structural
examination. Quantitative Marketing and Economics, 9(1):25–70, 2011.

[30] James Ramsay. Monotone regression splines in action. Statistical science, 3(4):425–441,
1988.

[31] Agnar Sandmo. On the theory of the competitive firm under price uncertainty. The

American Economic Review, 61(1):65–73, 1971.

[32] Kevin Stange. An empirical investigation of the option value of college enrollment. Amer-

ican Economic Journal: Applied Economics, 4(1):49–84, 2012.

[33] Ralph Stinebrickner and Todd Stinebrickner. Academic performance and college dropout:
Using longitudinal expectations data to estimate a learning model. Journal of Labor

Economics, 32(3):601–644, 2014.

[34] Todd Stinebrickner and Ralph Stinebrickner. The causal effect of studying on academic
performance. The BE Journal of Economic Analysis & Policy, 8(1), 2008.

[35] Michael Woodford. Macroeconomic analysis without the rational expectations hypothe-
sis. Annu. Rev. Econ., 5(1):303–346, 2013.



Appendix A

Survey Questions

Question 1. The following questions will ask you about the income you might earn in the
future at different ages under several hypothetical scenarios. We realize that you will not know
exactly how much money you would make at a particular point in time. However, you may
believe that some amounts of money are quite likely while others are quite unlikely. We would
like to know what you think. We first ask you to indicate the lowest possible amount of money
you might make and the highest amount of money you might make. We then ask you to divide
the values between the lowest and the highest into four intervals. Please mark the intervals so
that there is a 25% chance that your income will be in each of the intervals. When reporting
incomes, take into account the possibility that you will work full-time, the possibility that
you will work part-time, the possibility that you will not be working, and (for the hypothetical
scenarios which involve graduation) the possibility that you will attend graduate or professional
school. When reporting income you should ignore the effects of price inflation. (NOTE TO
READER: Before answering Question 1, students received classroom training related to these
specific questions. The written instructions/example shown in this appendix after Question 1
are strongly related to the classroom training.)

Question 1A. For ALL of question 1A, assume that you graduate from Berea. Think about
the kinds of jobs that will be available for you and those that you would accept. Please write the
FIVE NUMBERS that describe the income which you would expect to earn at the following
ages or times under this hypothetical scenario.

I. Your income during the first full year after you leave school
| |

lowest highest

II. Your income at age 28 (note: if you are 20 years of age or older, give your income 10 years
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from now)

| |

lowest highest

III. Your income at age 38 (note: if you are 20 years of age or older, give your income 20 years
from now)

| |

lowest highest

Question 1B. For ALL of question 1B, assume that you graduate from Berea. Question 1A did
not make any assumptions about your final grade average. For this question, assume that you
graduate with a grade point average of 2.0 (a C average). Please describe the income which
you would expect to earn at the following ages or times under this hypothetical scenario.

I. Your income during the first full year after you leave school

| |

lowest highest

II. Your income at age 28

| |

lowest highest

III. Your income at age 38

| |

lowest highest

NOTE TO READER: In the paper, we also use close variants of Question 1, in which
students were asked to consider scenarios in which they leave Berea after three years of study
or graduate with other grade point averages (GPA) (3.00 and 3.75).

INSTRUCTIONS AND EXAMPLE To illustrate what we are asking you to do, consider the
following example. A student is asked to describe what she thinks about how well she will
do on an exam before taking it. Before the exam the person will not know exactly what grade
she will receive. However, she will have some idea of what grade she will receive. Suppose
that the person believes that the lowest possible grade she will receive is a 14 and the highest
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possible grade is 100 (so she believes that there is no chance that she will receive less than a
14 and some chance she will earn as high as 100).

1) The above person would begin by indicating the lowest and highest value on the line. (We
will provide the lines for you whenever they are needed.)

14 100
| |

lowest highest

2) The person would then divide the values between 14 and 100 into four intervals so that she
thinks that there is a 25% chance that her grade will be in each interval. For example, suppose
that the person marked three points between 14 and 100 and labeled them 52, 80 and 92.

14 54 80 92 100
| | | | |

lowest highest

This would mean that the person thinks there is a 25% chance she will get a grade between
14 and 52. Similarly, the person thinks there is a 25% chance she will get a grade between 52
and 80, a 25% chance she will get a grade between 80 and 92, and there is a 25% chance she
will get a grade between 92 and 100. (This also means that the person thinks that there is a
50% chance she will get a grade less than 80 and a 50% chance that she will get a grade higher
than 80.)

NOTE that the intervals o not have to have the same widths. For example, the interval between
14 and 52 is wider than the other intervals. This suggests that the student believes that she has
a smaller chance of receiving a particular grade in this interval than a particular grade in the
higher intervals. For example, the person may think that she is less likely to receive a 30 than
82.

A different person taking the exam might have very different views about how he might do
on the exam. For example, a student might fill in the line to look like

0 32 51 63 90
| | | | |

lowest highest

This student thinks that the smallest possible grade is 0 and the highest possible grade he will
receive is 90. When compared to the other student, this student thinks he is more likely to get a
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lower grade. For example, he thinks that there is a 25% chance he will get a grade less than 32.
There is a 25% chance he will get a grade between 32 and 51. The chance that he gets a grade
higher than 63 is only 25%. This person thinks there is a 50% chance he will get less than 51
and a 50% chance he will get more than 51.

We will be asking you questions about income instead of grades. However, the process will
be the same as above. For each question, please do the following:

1) Write the lowest and highest possible incomes above the words lowest and highest on
the line. Give the salary in thousands of dollars. If you write 15, you will mean $15,000. If
you write 120, you will mean $120,000.

2) Mark three points on the line between the lowest and highest values and write an
income above each point. These income values should divide the line into four intervals. As
in the previous example, the numbers should be chosen so that there is a 25% chance that your
income will be in each interval. The middle value you write should be the number such that
there is a 50% chance that you will make more money and a 50% chance you will make less
money.

Note: For each line you should enter five numbers.

The following questions will ask you about the income you would expect to earn under
several hypothetical scenarios. Each of the questions will have the same format. In particular,
each question will be divided into three parts. Each part will ask you the income that you will
earn at a particular time in your life. The questions will differ in their assumptions about how
far you go in school an how well you do in classes. In the first three questions, we will ask
you about your income under several scenarios in which you do not graduate. In the last four
questions, we ask you about your income under several scenarios in which you graduate with
different grade point averages.

Question 2. We realize that you do not know exactly how well you will do in classes. However,
we would like to have you describe your beliefs about the grade point average that you expect
to receive in the first semester. Given the amount of study-time you indicated, please tell us the
percent chance that your grade point average will be in each of the following intervals. That
is, for each interval, write the number of chances out of 100 that your final grade point average
will be in that interval.

Note: The numbers on the six lines must add up to 100.

Interval Percent Chance(number of chances out of 100)

[3.5,4.00]
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[3.0,3.49]

[2.5,2.99]

[2.0,2.49]

[1.0,1.99]

[0.0,0.99]

Note: A=4.0, B=3.0, C=2.0, D=1.0, F=0.0

Question 3. Your grades are influenced by your academic ability/preparation and how much
you decide to study. However, your grades may also be influenced to some extent by good
or bad luck which may vary from term to term and may be out of your control. Examples of
“luck” may include 1) The quality of the teachers you happen to get and how hard or easy
they grade; 2) Whether you happened to get sick (or didn’t get sick) before important exams;
3) Whether a noisy dorm kept you from sleeping before an important exam; 4) Whether you
happened to study the wrong material for exams; 5) Whether unexpected personal problems or
problems with your friends and family made it hard to concentrate on classes.

We would like to know how important you think “luck” is in determining your grades in
a particular semester. We’ll have you make comparisons relative to a semester in which you
have “average” luck. Average luck means that a usual number of things go right and wrong
during the semester. Assume you took classes at Berea for many semesters.

BAD LUCK IN A TERM MEANS THAT YOU HAVE WORSE THAN AVERAGE LUCK
IN THAT TERM

Assume for this section that you are in a semester in which you have bad luck

In what percentage of semesters that you have bad luck would bad luck lower your grade point
average (GPA) by between 0.00 points and 0.25 points?

(If you are taking four courses, bad luck would lower your GPA by 0.25 points if bad luck led
to a full letter grade reduction in one of your courses.)

In what percentage of semesters that you have bad luck would bad luck lower your grade point
average (GPA) by between 0.26 points and 0.50 points?

(If you are taking four courses, bad luck would lower your GPA by 0.50 points if bad luck led
to a full letter grade reduction in two of your courses or a two letter grade reduction in one of
your courses.)

In what percentage of semesters that you have bad luck would bad luck lower your grade point
average (GPA) by 0.51 or more points?
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(For a student taking four courses, this would mean that bad luck would lead to a full letter
grade reduction in three or more courses.)

The numbers in the three spaces above should add up to 100(because if you are in a
semester where you have bad luck, bad luck must lower your grades by between 0 and 0.25
points, or by between 0.25 and 0.5 points, or by more than 0.5 points).

GOOD LUCK IN A TERM MEANS THAT YOU HAVE BETTER THAN AVERAGE
LUCK IN THAT TERM

Assume for this section that you are in a semester in which you have good luck

In what percentage of semesters that you have good luck would good luck raise your grade
point average (GPA) by between 0.00 points and 0.25 points compared to a semester in which
you received “average” luck?
(If you are taking four courses, good luck would raise your GPA by 0.25 points if good luck
led to a full letter grade increase in one of your courses.)

In what percentage of semesters that you have good luck would good luck raise your grade
point average (GPA) by between 0.26 points and 0.50 points compared to a semester in which
you received “average” luck?
(If you are taking four courses, good luck would raise your GPA by 0.50 points if good luck
led to a full letter grade increase in two of your courses or a two letter grade increase in one of
your courses.)

In what percentage of semesters that you have good luck would good luck raise your grade
point average (GPA) by 0.51 or more points compared to a semester in which you received
“average” luck?
(For a student taking four courses, this would mean that good luck would lead to a full letter
grade increase in three or more courses.)

The numbers in the three spaces above in the good luck section should add up to 100(because
if you are in a semester where you have good luck, good luck must increase your grades by
between 0 and 0.25 points, or by between 0.25 and 0.5 points, or by more than 0.5 points).

Question 4. What is the percent chance that you will eventually graduate from Berea College?
Note: Number should be between 0 and 100 (could be 0 or 100).
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Question 5. We realize that you may not be sure exactly what area of study you will eventually
choose. In this first column below are listed possible areas of study. In the second column write
down the percent chance that you will have this area of study (note: the percent chance of each
particular area of study should be between 0 and 100 and the numbers in the percent chance
column should add ip to 100). In the third column, please write down the grade point average
(GPA) you would expect ot receive in a typical semester in the future if you had each of these
areas of study.

Humanities include Art, English, Foreign Languages, History, Music, Philosophy, Religion,
and Theatre.

Natural Science and Math includes Biology, Chemistry, Computer Science, Physics and
Mathematics.

Professional Programs include Industrial Arts, Industrial Technology, Child Development,
Dietetics, Home Economics, Nutrition, and Nursing.

Social Sciences include Economics, Political Science, Psychology and Sociology.

Area of Study Percent Chance Expected GPA

1. Agricultural (and Natural Resources)

2. Business

3. Elementary Education

4. Humanities

5. Natural Science & Math

6. Physical Education

7. Professional Programs

8. Social Sciences

Question 6. After graduating there are different types of jobs that you may hold. For Ques-
tion 6 and 7, NO-DEGREE-NEEDED means all jobs that do not require a college degree.
DEGREE-ANYAREA means all jobs that require a college degree of any type. DEGREE-
MYAREA means all jobs that require a college degree specifically in your area of study. Please
tell us the percent chance that your first job after graduating will be in each of these types of
jobs.

Job-Type Percent Chance

NO-DEGREE-NEEDED

DEGREE-ANYAREA

DEGREE-MYAREA

Note: The numbers should add up to 100 and all numbers should be between 0 and 100. Write



108

0 if there is no chance that you will have a particular type of job. Write 100 if you know for
sure that you will have a particular type of job.

Question 7. It is possible that how happy you will be in your job will depend on what type of
job you have since different types of jobs require different types of work. Suppose you were
offered the same pay to work in a NO-DEGREE-NEEDED job, a DEGREE-ANYAREA job,
and a DEGREE-MYAREA job. Which would you choose? Circle one.

NO-DEGREE-NEEDED DEGREE-ANYAREA DEGREE-MYAREA

If NO-DEGREE-NEEDED, skip to 7.1. If DEGREE-ANYAREA, skip to 7.2. If DEGREE-
MYAREA, skip to 7.3.

7.1 IF you circled NO-DEGREE-NEEDED
You have indicated that you would enjoy working in a NO-DEGREE-NEEDED job more than
in either a DEGREE-ANYAREA job or a DEGREE-MYAREA job if all the jobs had the same
pay. Therefore, in order to be convinced to choose a DEGREE-ANYAREA job or a DEGREE-
MYAREA job, you would have to receive a job offer which paid more money than the job offer
in your NO-DEGREE-NEEDED job.

If the NO-DEGREE-NEEDED job paid $30,000, how much would you have to be paid by the
DEGREE-ANYAREA job to convince you to choose the DEGREE-ANYAREA job instead?

Note: should be more than $30,000.

If the NO-DEGREE-NEEDED job paid $30,000, how much would you have to be paid by the
DEGREE-MYAREA job to convince you to choose the DEGREE-MYAREA job instead?

Note: should be more than $30,000.

7.2 IF you circled DEGREE-ANYAREA
You have indicated that you would enjoy working in a DEGREE-ANYAREA job more than
in either a NO-DEGREE-NEEDED job or a DEGREE-MYAREA job if all the jobs had the
same pay. Therefore, in order to be convinced to choose a NO-DEGREE-NEEDED job or a
DEGREE-MYAREA job, you would have to receive a job offer which paid more money than
the job offer in your DEGREE-ANYAREA job.

If the DEGREE-ANYAREA job paid $30,000, how much would you have to be paid by the
NO-DEGREE-NEEDED job to convince you to choose the NO-DEGREE-NEEDED job in-
stead?

Note: should be more than $30,000.

If the DEGREE-ANYAREA job paid $30,000, how much would you have to be paid by the
DEGREE-MYAREA job to convince you to choose the DEGREE-MYAREA job instead?
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Note: should be more than $30,000.

7.3 IF you circled DEGREE-MYAREA
You have indicated that you would enjoy working in a DEGREE-MYAREA job more than
in either a NO-DEGREE-NEEDED job or a DEGREE-ANYAREA job if all the jobs had the
same pay. Therefore, in order to be convinced to choose a NO-DEGREE-NEEDED job or a
DEGREE-ANYAREA job, you would have to receive a job offer which paid more money than
the job offer in your DEGREE-MYAREA job.

If the DEGREE-MYAREA job paid $30,000, how much would you have to be paid by the NO-
DEGREE-NEEDED job to convince you to choose the NO-DEGREE-NEEDED job instead?

Note: should be more than $30,000.

If the DEGREE-MYAREA job paid $30,000, how much would you have to be paid by the
DEGREE-ANYAREA job to convince you to choose the DEGREE-ANYAREA job instead?

Note: should be more than $30,000.

Question 8. Suppose during this school year that you searched seriously for a job. You may
not know exactly how long it would take to find a job. What is the percent chance that it would
take the following amounts of time to receive a job offer from the time you start searching
seriously?
Note: A serious job search is one that involves actively looking for a job by participating in
activities such as on-campus interviewing, reading and responding to want-ads, or contacting
potential employees even if they have not posted want ads.

Amount of time to find a job-Interval Percent Chance
[0,1) months
[1,2) months
[2,3) months
[3,5) months
[5,6) months
6 months or more



Appendix B

Appendices for Chapter 2

B.1 Approximation Error: Normal Versus Log-normal

When computing subjective income distributions using either normal or log-normal distribu-
tions, we have only used data on the median (C3

it) and the difference between first and third
quartiles (C4

it − C2
it or C4

it/C
2
it). Hence, for either the normal and log-normal distributions, the

three quartiles reported in the data (C2
it, C3

it, C4
it) will not partition the support of the subjective

income distribution into four segments that each have a probability of .25, unless the dis-
tributional assumption is exactly correct. Therefore, we evaluate the validity of a particular
distributional assumption using the loss function:

AE(D) =
1
N

N∑
i=1

[(F(C3
it; D) − F(C2

it; D) − 0.25)2 + (F(C4
it; D) − F(C3

it; D) − 0.25)2], (B.1)

where F(w; D) is the cdf of the distribution computed using distributional assumption D.

Using the same sample as in Section 2.3, we compute the value of AE(D) for D = normal
and D = log-normal. We find that AE(normal) = 0.0101 and AE(log-normal) = 0.0103.
Hence, we conclude that the fit of the two distributions is quite similar with, if anything, the
normal having a slightly better fit.
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B.2 Approach 2: Computation Details

B.2.1 Construction of E(Wit|Git = git) and std(Wit|Git = git) (or, equiva-
lently, var(Wit|Git = git)) at Realizations of Git Other than 2.00, 3.00
or 3.75

Survey questions eliciting subjective income distributions conditional on final GPA are in
the same form as the survey questions eliciting unconditional subjective income distributions
shown in Question 1 of Appendix A. Hence, assuming either a log-normal, normal, or step-
wise uniform distribution, Approach 1 can be used to compute E(Wit|Git = git) (henceforth,
E(Wit|git), for the ease of notation) and std(Wit|Git = git) (henceforth, std(Wit|git)) for git =

2.00, 3.00, or 3.75. However, we need to approximate E(Wit|git) and std(Wit|git) for all other
possible values of git. Following a straightforward interpolation approach adopted in Stine-
brickner and Stinebrickner (2014b), we assume that both E(Wit|git) and std(Wit|git) are linear
between git = 2.00 and git = 3.00. We also assume that E(Wit|git) and std(Wit|git) are linear
between git = 3.00 and git = 4.00, with the slope being identified by the observed values at
git = 3.00 and git = 3.75 (i.e., we extrapolate values of E(Wit|git) and std(Wit|git) between
git = 3.75 and git = 4.00).

B.2.2 Construction of the subjective final GPA distribution, FGit(git)

In this subsection we discuss how we construct the subjective distribution Gi0 describing be-
liefs, at the time of college entrance, about final cumulative GPA. A student’s final GPA, Gi,
is the average of the student’s semester GPA over her eight semesters, k=1,...,8, subject to the
constraint that the student obtains the 2.0 average that is needed to graduate. Thus, Gi0 is given
by:

Gi0 =

8∑
k=1

Gk
i0/8, if

8∑
k=1

Gk
i0/8 ≥ 2, (B.2)

where Gk
i0 is the subjective distribution describing beliefs, at time t = 0, about semester GPA

in semester k.

We view Question 2 in Appendix A as eliciting a student’s subjective distribution about
GPA in a typical future semester. That is, it elicits the marginal distributions of Gk

i0, k = 1, ..., 8.
The fact that Gi0 is the average of the Gk

i0’s implies that the mean of Gi0 is given by the mean
of the distribution elicited by Question 2. However, computing the variance of Gi0 requires
additional information describing beliefs about how the Gk

i0’s are correlated across semesters.
For example, if students believe that grades are independent across time, then the variance of
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Gi0 would be found by dividing the variance elicited by Question 2 by the number of semesters
(eight). On the other hand, this type of “averaging out” would not occur and the variance of
Gi0 would tend to be considerably larger if a student believes that grade performance is highly
(positively) correlated across time. To formalize this notion, we denote a latent grade belief
variable:

G̃k
i0 = ai0 + ξk

i0, where Gk
i0 = 0 if G̃k

i0 < 0, Gk
i0 = 4 if G̃k

i0 > 4, and Gk
i0 = G̃k

i0, otherwise. (B.3)

ai0 represents student i’s (t = 0) beliefs about permanent (academic) ability and ξk
i0 de-

scribes i’s (t = 0) beliefs about the mean-zero transitory shock component of grades which is
independent across semesters k. Thus, the Gk

i0’s will tend to be highly correlated if uncertainty
in Survey Question 2 reflects uncertainty about ability and will have a smaller correlation if
uncertainty in Survey Question 2 reflects a belief that there exists substantial transitory varia-
tion. Survey Question 2 alone provides only information about the total amount of uncertainty
about grade performance. To differentiate between the two sources of uncertainty, we take
advantage of Survey Question 3, which quantifies the importance of uncertainty due to the
transitory shock component by asking students to report the probability that their grades in a
semester would turn out to be 0.25 points and 0.5 points higher than expected due to good luck
(and also bad luck).

In terms of implementation, we assume that ai0 and ξk
i0 are normally distributed: ai0 ∼

N(µa
i0, σ

a
i0) and ξk

i0 ∼ N(0, σξ
i0). For each student, we numerically search for the set of param-

eters {µa
i0, σ

a
i0, σ

ξ
i0} that minimizes a weighted sum of the discrepancies between observed and

model implied probabilities. We weight each category by its associating probability to account
for the fact that errors in categories with lower probability have less impact on the computation
of unconditional moments of subjective income distribution.1 Formally, we have:

{µ̂a
i0, σ̂

a
i0, σ̂

ξ
i0} = argmin

∑
catgj∈CAT g

Prmodel(Gk
i0 ∈ catg

j )(Probs(Gk
i0 ∈ catg

j ) − Prmodel(Gk
i0 ∈ catg

j ))
2

+
∑

catεj∈CAT ξ

Prmodel(ξk
i0 ∈ catξj)(Probs(ξk

i0 ∈ catξj) − Prmodel(ξk
i0 ∈ catξj))

2, (B.4)

where CAT g = {[3.5, 4.00], [3.0, 3.49], [2.5, 2.99], [2.0, 2.49], [1.0, 1.99], [0.0, .99]} and CAT ξ =

{(−∞,−0.5], (−0.5,−0.25], (−0.25, 0], (0, 0.25], (0.25, 0.5], (0.5,∞)}.

Once parameters {µa
i0, σ

a
i0, σ

ξ
i0} are estimated, we can approximate the distribution of Gi0 by

simulation using equation (B.2) and (B.3).

1We have also estimated a non-weighted version. The results are similar.
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B.3 Expressing E(Wit) as a weighted sum of E(Wit|Git = 2.00),
E(Wit|Git = 3.00), and E(Wit|Git = 3.75)

We show that E(Wit) can be expressed as a weighted sum of E(Wit|Git = 2.00), E(Wit|Git =

3.00), and E(Wit|Git = 3.75). For the ease of notation, we write E(Wit|Git = git) as E(Wit|git).
Hence,

E(Wit) = EGit(E(Wit|Git)) =

∫ 4

2
E(Wit|git)dFGit(git)

=

∫ 3

2
[E(Wit|2.00) +

E(Wit|3.00) − E(Wit|2.00)
3.00 − 2.00

(git − 2)]dFGit(git)

+

∫ 4

3
[E(Wit|3.00) +

E(Wit|3.75) − E(Wit|3.00)
3.75 − 3.00

(git − 3)]dFGit(git)

=

∫ 3

2
[E(Wit|2.00)(1 −

git − 2
3.00 − 2.00

) + E(Wit|3.00)
git − 2

3.00 − 2.00
]dFGit(git)

+

∫ 4

3
[E(Wit|3.00)(1 −

git − 3
3.75 − 3.00

) + E(Wit|3.75)
git − 3

3.75 − 3.00
]dFGit(git)

=
∑

G

λG
it E(Wit|G) G = 2.00, 3.00 or 3.75, (B.5)

where λ2.00
i =

∫ 3

2
(3 − git)dFGit(git), λ3.00

i =
∫ 3

2
(git − 2)dFGit(git) +

∫ 4

3
(1 − git−3

0.75 )dFGit(git) and
λ3.75

i =
∫ 4

3
git−3
0.75 dFGit(git).

B.4 Magnitude of the Measurement Error

In this section, we show that equation (2.12), along with additional assumptions, implies equa-
tion (2.13). Recall that equation (2.12) states:

Ẽ1(Wit) − Ẽ2(Wit) = ςi −
∑
git

λ
git
i ς

git
i . (2.12 revisited)

Taking the variance of both sides, we have:
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var(Ẽ1(Wit) − Ẽ2(Wit)) = var(ςi −
∑
git

λ
git
i ς

git
i )

= var(ςi) +
∑
git

var(λgit
i ς

git
i ) (independence of MEs)

= var(ςi) +
∑
git

E((λgit
i )2)E((ςgit

i )2) − (E(λgit
i )E(ςgit

i ))2 (λgit
i |= ς

git
i )

= var(ςi) +
∑
git

E((λgit
i )2)var(ςgit

i ) (E(ςi) = 0 and E(ςgit
i ) = 0)

= var(ςi)[1 +
∑
git

E((λgit
i )2)]. (var(ςi) = var(ςgit

i ))

Therefore,

var(ςi) =
var(Ẽ1(Wit) − Ẽ2(Wit))

1 +
∑

git
E((λgit

i )2)
. (2.13 revisited)

B.5 Taking into Account Interpolation Errors

In Section 2.3.2, we note that interpolation error could be introduced into our computations
because it is necessary to interpolate the means of subjective income distributions conditional
on values of GPA other than 2.00, 3.00 or 3.75. In addition, errors can be introduced because
it is necessary to compute distributions of final GPA from data. In this appendix, we show
that taking into account these errors would lead to a smaller value of var(ςi), implying a larger
estimate of our measure of true heterogeneity.

We start by describing how we incorporate both types of errors into our analysis. With
respect to the potential error introduced during the computation of the distribution of final GPA,
we denote FGit(git) and F̃Git(git) as the true CDF and the computed CDF of Git, respectively.
We allow the CDFs to potentially differ from each other and denote the difference as F∆

Git
(git) =

F̃Git(git) − FGit(git).

For ease of notation, we denote a vector that includes (E(Wit|Git = 2.00), E(Wit|Git =

3.00), E(Wit|Git = 3.75)) as EW
Git

, and a vector that includes (Ẽ(Wit|Git = 2.00), Ẽ(Wit|Git =

3.00), Ẽ(Wit|Git = 3.75)) as ẼW
Git

. The interpolation approach that we use to compute the mean
of subjective income distributions conditional on values of GPA other than 2.00, 3.00, or 3.75
is essentially a mapping from ẼW

Git
to Ẽ(Wit|Git = git), git , 2.00, 3.00, 3.75. We denote this

mapping as ẼW(git; ẼW
Git

). Note that the difference between the computed value of the condi-
tional mean, ẼW(git; ẼW

Git
), and the true value of conditional mean, E(Wit|Git = git), is a result
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of both the measurement error, ẼW
Git
− EW

Git
= (ς2.00

i , ς3.00
i , ς3.75

i ), and the interpolation error,
ẼW(git; EW

Git
) − E(Wit|Git = git).

The mean of subjective income distribution computed using Approach 2, Ẽ2(Wit), is then
given by,

Ẽ2(Wit) =

∫ 4

2
Ẽ(Wit|Git = git)dF̃Git(git) =

∫ 4

2
ẼW(git; ẼW

Git
)dF̃Git(git)

=

∫ 4

2
E(Wit|Git = git)dF̃Git(git) +

∫ 4

2
(ẼW(git; ẼW

Git
) − E(Wit|Git = git))dF̃Git(git)

=

∫ 4

2
E(Wit|Git = git)dFGit(git) +

∫ 4

2
E(Wit|Git = git)dF∆

Git
(git)

+

∫ 4

2
(ẼW(git; ẼW

Git
) − E(Wit|Git = git))dF̃Git(git)

= E(Wit) +

∫ 4

2
E(Wit|Git = git)dF∆

Git
(git) +

∫ 4

2
(ẼW(git; ẼW

Git
) − ẼW(git; EW

Git
))dF̃Git(git)

+

∫ 4

2
(ẼW(git; EW

Git
) − E(Wit|Git = git))dF̃Git(git) (B.6)

Following steps similar to those in Section B.3, we can show that:∫ 4

2
(ẼW(git; ẼW

Git
)− ẼW(git; EW

Git
))dF̃Git(git) =

∑
git

λ̃
git
i ς

git
i , git = 2.00, 3.00 or 3.75, (B.7)

where λ̃2.00
i =

∫ 3

2
(3 − git)dF̃Git(git), λ̃3.00

i =
∫ 3

2
(git − 2)dF̃Git(git) +

∫ 4

3
(1 − git−3

0.75 )dF̃Git(git) and
λ̃3.75

i =
∫ 4

3
git−3
0.75 dF̃Git(git).

Denoting ∆it ≡
∫ 4

2
E(Wit|Git = git)dF∆

Git
(git) +

∫ 4

2
(ẼW(git; EW

Git
) − E(Wit|Git = git))dF̃Git(git),

equation (B.6) can be written as:

Ẽ2(Wit) = E(Wit) +
∑
git

λ̃
git
i ς

git
i + ∆it git = 2.00, 3.00 or 3.75. (B.8)

Taking the difference between the mean computed using Approach 1 and the mean computed
using Approach 2, we obtain:

Ẽ1(Wit) − Ẽ2(Wit) = ςi −
∑
git

λ̃
git
i ς

git
i − ∆it git = 2.00, 3.00 or 3.75. (B.9)

Recall that ςi and ςgit
i , git = 2.00, 3.00 or 3.75, are, by assumption, independent of other factors.

Hence, they are independent of ∆it since none of them show up in the expression of ∆it. Taking
the variance of both sides of equation (B.9), we find:
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var(Ẽ1(Wit) − Ẽ2(Wit)) = var(ςi −
∑
git

λ̃
git
i ς

git
i ) + var(∆it)

= var(ςi)[1 +
∑
git

E((̃λgit
i )2)] + var(∆it)

≥ var(ςi)[1 +
∑
git

E((̃λgit
i )2)]. (B.10)

Therefore,

var(ςi) ≤
var(Ẽ1(Wit) − Ẽ2(Wit))

1 +
∑

git
E((̃λgit

i )2)
. (B.11)

Since both λ̃git
i in this section and λgit

i in Section 2.3.2 are computed using the same distri-
bution of Git (we assume that there is no error in the distribution of Git in Section 2.3.2), they
are numerically identical. Thus, the right side of equation (B.11) is numerically identical to the
right side of equation (2.13). As a result, equation (B.11) shows that our estimates of var(ςi)
reported in Table 2.4 should be considered as upper bounds for the true value of var(ςi).

B.6 Joint Decomposition

In Section 2.4.1 and Section 2.4.2, we estimated the fraction of total initial uncertainty that is
explained by uncertainty about GPA and major, respectively. In this appendix we explain how
to examine how much of total initial income uncertainty is due to uncertainty about both of the
two factors combined.

We start by decomposing total income uncertainty into the contribution of uncertainty about
both final GPA and major and the contribution of uncertainty about other factors, following an
equation similar to Equation (2.4) and Equation (2.15):

var(Wit) = varGit ,Mit (E(Wit |Git,Mit)) + EGit ,Mit (var(Wit |Git,Mit))

= {varGit [EMit |Git (E(Wit |Git,Mit))] + EGit [varMit |Git (E(Wit |Git,Mit))]} + EGit ,Mit (var(Wit |Git,Mit))

= {varGit (E(Wit |Git)) + EGit [varMit |Git (E(Wit |Git,Mit))]} + EGit [EMit |Git (var(Wit |Git,Mit))]. (B.12)

The sum of the two terms in the fancy bracket corresponds to the contribution of uncertainty
about both final GPA and major to total initial income uncertainty, while the last term corre-
sponds to the contribution of uncertainty about all other factors. Analogous to Equation (2.14)
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and Equation (2.16), we define the contribution of final GPA and major to total income uncer-
tainty as follows:

RGM
it =

varGit (E(Wit|Git)) + EGit [varMit |Git (E(Wit|Git,Mit))]
{varGit (E(Wit|Git)) + EGit [varMit |Git (E(Wit|Git,Mit))]} + EGit [EMit |Git (var(Wit|Git,Mit))]

. (B.13)

B.6.1 Estimation

We focus on the time of entrance (t = 0). In order to compute the joint contribution of final
GPA and major, we need to compute all three terms on the RHS of Equation (B.12). The first
term can be computed using exactly the same method as in Section 2.3.1. We now explain how
to estimate the second and third term on the RHS.

Note that we can compute E(Wi0|Gi0) and var(Wi0|Gi0) for Gi0 = 2.00, 3.00, 3.75. Hence, if
we have data on the distribution of Mi0|Gi0, we can apply the method detailed in Section 2.4.2 to
estimate E(Wi0|Gi0,Mi0) and var(Wi0|Gi0,Mi0) for all Mi0 and Gi0 = 2.00, 3.00, 3.75 and com-
pute varMi0 |Gi0(E(Wi0|Gi0,Mi0)) and EMi0 |Gi0(var(Wi0|Gi0,Mi0)) for Gi0 = 2.00, 3.00, 3.75. Then,
we can interpolate their values at other realizations of Gi0 (Gi0 , 2.00, 3.00, 3.75) and compute
EGi0[varMi0 |Gi0(E(Wi0|Gi0,Mi0))] and EGi0[EMi0 |Gi0(var(Wi0|Gi0,Mi0))] using a simulation-based
method.

Unfortunately, the distribution of Mi0|Gi0 is not directly available in the data. To deal with
this issue, we propose a method to estimate it using data on the unconditional distribution of
Mi0, Pi j0, the distribution of Gi0, FGi0(gi0) and the expectation of Gi0|Mi0, E(Gi0|Mi0).2

Denote the conditional probability of major, Prob(Mi0 = j|Gi0 = gi0), as PC
i j0(gi0). Further-

more, we assume that PC
i j0(gi0) has the following form:

PC
i j0(gi0; ρ0

i10, ρ
1
i10, ...) =

exp(ρ0
i j0 + ρ1

i j0gi0)∑
j′ exp(ρ0

i j′0 + ρ1
i j′0gi0)

, (B.14)

where ρ0
i70 and ρ1

i70 are normalized to 0. This leaves us 2× (7− 1) = 12 parameters to estimate.
Note that this specification actually corresponds to the case where final major is determined by
a multinomial logistic model with final GPA as the regressor.

We start by writing E(Gi0|Mi0) as a function of Pi j0, FGi0(gi0) and PC
i j0(gi0).

2More precisely, what we observe in the data (Question 5 in Appendix A) is the conditional expectation of
semester GPA, E(Gk

i0|Mi0), instead of the conditional expectation of final GPA, E(Gi0|Mi0). The two would be
identical if there does not exist a GPA minimum requirement for graduation. In practice, because most students
believe that receiving grades less than the minimum is highly unlikely (and do not think they will drop out), in
this section we simply approximate E(Gi0|Mi0) by E(Gk

i0|Mi0).
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E(Gi0|Mi0) =

∫
gi0dFGi0 |Mi0(gi0)

=

∫ PC
i j0(gi0)

Pi j0
gi0dFGi0(gi0), (B.15)

where the second line follows from the Bayes rule.
We can rearrange the terms in Equation (B.15) to derive an expression for Pi j0:

Pi j0 =
1

E(Gi0|Mi0)

∫
PC

i j0(gi0)gi0dFGi0(gi0)

=
1

E(Gi0|Mi0)

∫ exp(ρ0
i j0 + ρ1

i j0gi0)∑
j′ exp(ρ0

i j′0 + ρ1
i j′0gi0)

gi0dFGi0(gi0). (B.16)

Note that, by definition, Pi j0 also satisfies the following equation:

Pi j0 =

∫
PC

i j0(gi0)dFGi0(gi0)

=

∫ exp(ρ0
i j0 + ρ1

i j0gi0)∑
j′ exp(ρ0

i j′0 + ρ1
i j′0gi0)

dFGi0(gi0). (B.17)

Equation (B.16) and (B.17) allow us to express Pi j0 as two different functions of (ρ0
i j0, ρ

1
i j0),

j = 1, 2, 3, ..., 7. We label them as P̃1
i j0(·) and P̃2

i j0(·), respectively. We then define the estimator
of (ρ0

i j0, ρ
1
i j0), j = 1, 2, 3, ..., 7 to be the minimizer of the sum of squared differences between

Pi j0 and P̃1
i j0(ρ0

i10, ρ
1
i10, ...) and between Pi j0 and P̃2

i j0(ρ0
i10, ρ

1
i10, ...). Formally, we have:

{̂ρ0
i10, ρ̂

1
i10, ...} ≡ argmin

2∑
q=1

7∑
j=1

[P̃q
i j0(ρ0

i10, ρ
1
i10, ...) − Pi j0]2. (B.18)

Once {̂ρ0
i10, ρ̂

1
i10, ...} are estimated, we can use Equation (B.14) to compute the distribution

of Mi0|Gi0 for any realization of Gi0 and compute the three terms in Equation (B.12) in the way
described in the second paragraph of this subsection.



Appendix C

Appendices for Chapter 3

C.1 Computation of µ̃Y,s
it0

In this appendix we show how µ̃Y,s
it0

can be computed using students’ responses to Question 1.
Recall that Y s=1

i =
∑Ā

a=t̄ β
a−t∗wa,s=1

i and Y s=0
i =

∑Ā
a=t∗ β

a−t∗wa,s=0
i . Denoting the mean of w̃a,s

it0
, the

random variable describing student i’s beliefs about wa,s
i at t0, as µ̃a,s

it0
, we have:

µ̃Y,s=1
it0

=

Ā∑
a=t̄

βa−t∗ µ̃a,s=1
it0

, µ̃Y,s=0
it0

=

Ā∑
a=t∗

βa−t∗ µ̃a,s=0
it0

. (C.1)

Similar to σ̃a,s
it0

, we can obtain µ̃a,s
it0

using students’ reported quartiles of the distribution of
w̃a,s

it0
. Specifically, the normality assumption that we imposed on w̃a,s

it0
implies that µ̃a,s

it0
is equal to

Q2,a,s
it0

, the second quartile (median) of w̃a,s
it0

. Hence, adopting the same interpolation and timing
assumptions as in Section 3.4.2, Equation (C.1) allows us to compute µ̃Y,s

it0
for s = 0, 1.

C.2 Robustness: Allowing for Learning about Y s=0
i

Our analysis in Section 3.4.2-3.4.4 assumed that students learn only about the future earnings
associated with the graduation alternative, Y s=1

i . The simplifying assumption that students do
not learn about the future earnings associated with the dropout alternative, Y s=0

i , has the virtue
of allowing for a more transparent discussion of identification and the virtue of allowing results
to be discussed in a straightforward manner. It is also consistent with the intuitively appealing
notion that college is best suited for providing information about one’s ability to perform high
skilled jobs. Nonetheless, this section recognizes the benefit of providing some evidence that
this is a reasonable assumption. We find that this is the case. Both the actual and perceived
amounts of uncertainty resolved about Y s=0

i are much smaller than the corresponding amounts

119
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resolved about Y s=1
i . Further, in part because of this result and in part because what a student

learns about earnings under the graduation scenario is informative about earnings under the
dropout alternative, allowing students to also resolve uncertainty about Y s=0

i does not change
our substantive conclusion in Section 3.4.3 and Section 3.4.4 - that students underestimate the
option value and overestimate the net continuation value.

C.2.1 Defining σi in a Correlated Learning Environment

Allowing students to learn about the future earnings associated with the dropout alternative
leads to a modification of Equation (3.8). The relevant new information, ∆i, is now given by:

∆i =

Ā∑
a=t̄

βa−t∗[Et=t∗(wa,s=1
i ) − Et=t0(w

a,s=1
i )] −

Ā∑
a=t∗

βa−t∗[Et=t∗(wa,s=0
i ) − Et=t0(w

a,s=0
i )]

=

Ā∑
a=t̄

βa−t∗(εa,s=1
iτ2

) −
Ā∑

a=t∗
βa−t∗(εa,s=0

iτ2
), (C.2)

where, analogous to εa,s=1
iτ2

, εa,s=0
iτ2

is the component of wa,s=0
i that is observed by student i between

t0 and t∗. Similarly, we assume that the εa,s=0
iτ2

are normally distributed with standard deviation
σa,s=0

iτ2
and are perfectly correlated across all a.

Motivated by recent work suggesting the importance of correlated learning (Arcidiacono
et al., 2016), we allow εa,s=1

iτ2
and εa′,s=0

iτ2
to have correlation κ for all a, a′ pairs. Under these

assumptions, Equation (C.2) implies that the standard deviation of ∆i, σi, is given by:

σi =

√√√√ Ā∑
a=t̄

βa−t∗(σa,s=1
iτ2

)


2

+

 Ā∑
a=t∗

βa−t∗(σa,s=0
iτ2

)


2

− 2κ

 Ā∑
a=t̄

βa−t∗(σa,s=1
iτ2

)


 Ā∑

a=t∗
βa−t∗(σa,s=0

iτ2
)

.
(C.3)

As shown in Section 3.4.2,
∑Ā

a=t̄ β
a−t∗(σa,s=1

iτ2
) can be written as a fraction ρ of σ̃Y,s=1

it0
, student

i’s initial uncertainty about lifetime earnings associated with alternative s = 1. Similarly, we
can write

∑Ā
a=t̄ β

a−t∗(σa,s=1
iτ2

) as a fraction ρ0 of σ̃Y,s=0
it0

≡
∑Ā

a=t∗ β
a−t∗(σ̃a,s=0

it0
), student i’s initial

uncertainty about lifetime earnings associated with alternative s = 0. Equation (C.3) becomes:

σi =

√
(ρσ̃Y,s=0

it1
)2 + (ρ0σ̃Y,s=0

it0
)2 − 2κρρ0σ̃Y,s=1

it0
σ̃Y,s=0

it0
. (C.4)

In Section 3.4.2, we showed how to obtain σ̃Y,s=1
it0

from students’ responses to earnings
expectations questions in the BPS. Since students report their beliefs about future earnings
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under both alternatives (s = 0 and s = 1), σ̃Y,s=0
it0

can be obtained using the same method.
The second column of Table 3.1 shows that the sample average of σ̃Y,s=0

it0
is $163,000, roughly

30% smaller than the sample average of σ̃Y,s=1
it1

, implying that, at t0, on average there is more
uncertainty about earnings under the graduation scenario than there is about earnings under the
dropout scenario.

With data on σ̃Y,s
it0

for s = 0, 1, computation of σi, and therefore option values, requires
information on ρ, ρ0, and κ. In the next two subsections we discuss how to estimate the actual
and perceived values of these objects.

C.2.2 Actual Option Values

Allowing for learning about the value of the dropout alternative has no bearing on our esti-
mation of ρA; the estimate of ρA remains 0.51. The value of ρ0

A can be estimated in the same
manner. We find an estimate of 0.28 for ρ0

A, suggesting that students resolve a smaller fraction
of their initial uncertainty about Y s=0

i than about Y s=1
i . Since students were less uncertain about

Y s=0
i than about Y s=1

i to begin with, we conclude that the actual uncertainty resolution about
Y s=0

i is much smaller than that about Y s=1
i .

The correlation κ can be estimated from the evolution of individual earnings beliefs. Recall
that student i’s expectation about Y s

i at the beginning of college and at the end of the third year
are denoted as µ̃Y,s

it0
and µ̃Y,s

it∗ , respectively. Equation (3.7) along with our timing assumptions
imply that:

µ̃Y,s=1
it∗ − µ̃Y,s=1

it0
=

Ā∑
a=t̄

βa−t∗εa,s=1
iτ2

,

µ̃Y,s=0
it∗ − µ̃Y,s=0

it0
=

Ā∑
a=t∗

βa−t∗εa,s=0
iτ2

. (C.5)

Under our assumptions that 1) εa,s=1
iτ2

and εa′,s=0
iτ2

have a correlation of κ for any pair (a, a′), and
2) εa,s

iτ2
are perfectly correlated across a (for a given s), we can show that the correlation of∑Ā

a=t̄ β
a−t∗εa,s=1

iτ2
and
∑Ā

a=t∗ β
a−t∗εa,s=0

iτ2
is also κ. Hence, for a random sample of students, κ can be

consistently estimated by the correlation of µ̃Y,s=1
it∗ − µ̃Y,s=1

it0
and µ̃Y,s=0

it∗ − µ̃Y,s=0
it0

.

However, in practice, a complication exists because the sample of students who remained
at the end of third year is, by construction, not random. Indeed, in the context of our model,
students choose to remain in school precisely because the realization of

∑Ā
a=t̄ β

a−t∗εa,s=1
iτ2

−∑Ā
a=t∗ β

a−t∗εa,s=0
iτ2

is sufficiently high. To deal with this selection issue, we take advantage of
the fact that selection should not be problematic when estimating the correlation between
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µ̃Y,s=1
i(t0+1) − µ̃

Y,s=1
it0

and µ̃Y,s=0
i(t0+1) − µ̃

Y,s=0
it0

since very few students drop out before the end of the first
year (i.e., we have a random sample for the first year). Data on µ̃Y,s

it0
and µ̃Y,s

i(t0+1) are collected at
the beginning and end of the first year, respectively. We compute this correlation to be 0.63.
In the end of this subsection (Section C.2.2), we show that, with additional assumptions on
how uncertainty about future earnings is resolved over time between t0 and t∗, this correlation
represents a consistent estimator of κA.

With ρA, ρ0
A, and κA estimated using the methods described above, we compute the actual

value of σi for each student. The average actual value of σi is $96,780. This is smaller than the
value of $115,430 obtained using the values of ρA and σ̃Y,s=1

it0
from Section 3.4.2 under the previ-

ous assumption that students only resolve uncertainty about Y s=1
i . Hence, allowing students to

also resolve uncertainty about Y s=0
i leads students to learn less about the gap between the value

of the two alternatives. This is primarily because students learn about the two alternatives in
a positively correlated fashion: a positive information shock to the graduation alternative is
likely to be accompanied with a positive information shock to the dropout alternative. Conse-
quently, the actual option values computed under this correlated learning environment are also
somewhat smaller than their counterparts in the baseline scenario. The average actual OV and
NCV are now $21,020 and $63,720, respectively (versus $25,040 and $76,130, respectively, in
Section 3.4.3 and Section 3.4.4).

κ1 = κ: Assumptions and Proof
We show that, with additional assumptions on how uncertainty about future earnings are

resolved between t0 and t∗, we can consistently estimate κA using the correlation between
µ̄s=1

i(t0+1) − µ̄
s=1
it0

and µ̄s=0
i(t0+1) − µ̄

s=0
it0

. We start by further decomposing εa,s
iτ2

into independently dis-
tributed factors that are realized in Year 1, Year 2 and Year 3, respectively;

εa,s
iτ2

=

3∑
j=1

εa,s
iτ j

2

, (C.6)

where εa,s
iτ j

2

normally distributed with standard deviation σa,s
iτ j

2

. It follows that:

µ̃Y,s=1
i(t0+1) − µ̃

Y,s=1
it0

=

Ā∑
a=t̄

βa−t∗εa,s=1
iτ1

2
,

µ̃Y,s=0
i(t0+1) − µ̃

Y,s=0
it0

=

Ā∑
a=t∗

βa−t∗εa,s=0
iτ1

2
. (C.7)

We assume that the correlation between εa,s=1
iτ j

2

and εa′,s=0
iτ j

2

, given any a, a′ pair, is κ j. This
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implies that the correlation between µ̃Y,s=1
i(t0+1) − µ̃

Y,s=1
it0

and µ̃Y,s=0
i(t0+1) − µ̃

Y,s=0
it0

is also κ j. Under the

assumption that both the correlation κ j and the ratio of signal strength
σa,s=1

iτ j
2

σa,s=0

iτ j
2

are constant over

j, it can be shown that κ = κ1.

Proof We first show that
σa,s=1

iτ2

σa,s=0
iτ2

=
σa,s=1

iτ1
2

σa,s=0
iτ1

2

;

σa,s=1
iτ2

σa,s=0
iτ2

=

√∑3
j=1(σa,s=1

iτ j
2

)2√∑3
j=1(σa,s=0

iτ j
2

)2

=

√√√√√√√√√√√√∑3
j=1(σa,s=0

iτ j
2

)2(
σa,s=1

iτ j
2

σa,s=0

iτ j
2

)2

∑3
j=1(σa,s=0

iτ j
2

)2

=

√√√√√√√√√√√∑3
j=1(σa,s=0

iτ j
2

)2(
σa,s=1

iτ1
2

σa,s=0
iτ1

2

)2

∑3
j=1(σa,s=0

iτ j
2

)2

=

σa,s=1
iτ1

2

σa,s=0
iτ1

2

. (C.8)

Then, we can show that:

κ = corr(εa,s=1
iτ2

, εa,s=0
iτ2

) =
cov(εa,s=1

iτ2
, εa,s=0

iτ2
)√

var(εa,s=1
iτ2

)var(εa,s=0
iτ2

)

=

∑3
j=1 cov(εa,s=1

iτ j
2

, εa,s=0
iτ j

2

)

σa,s=1
iτ2

σa,s=0
iτ2

=

∑3
j=1 κ jσ

a,s=1
iτ j

2

σa,s=0
iτ j

2

σa,s=1
iτ2

σa,s=0
iτ2

= κ1

∑3
j=1(σa,s=1

iτ j
2

/σa,s=0
iτ j

2

)(σa,s=0
iτ j

2

)2

(σa,s=1
iτ2

/σa,s=0
iτ2

)(σa,s=0
iτ2

)2

= κ1

(σa,s=1
iτ1

2
/σa,s=0

iτ1
2

)
∑3

j=1(σa,s=0
iτ j

2

)2

(σa,s=1
iτ2

/σa,s=0
iτ2

)(σa,s=0
iτ2

)2

= κ1 (C.9)
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C.2.3 Perceived Option Values

Analogous to Equation (3.15), substituting the expressions for V s
it∗ (shown in Equation 3.5) and

σP
i (shown in Equation C.4 with ρ, ρ0, and κ replaced by ρP, ρ0

P, and κP, respectively) into
Equation (3.2), we obtain:

PP,s=0
i = Φ(

µ̃Y,s=0
it0
− µ̃Y,s=1

it0
+ γ̃i√

(ρPσ̃
Y,s=1
it0

)2 + (ρ0
Pσ̃

Y,s=0
it0

)2 − 2κPρPρ
0
Pσ̃

Y,s=1
it0

σ̃Y,s=0
it0

). (C.10)

Parallel to Section 3.4.2, here we rewrite Equation (C.10) as a linear equation and explicitly
allow for measurement error in expectations variables.

Φ−1(PP,s=0
i )σ̃Y

it0 =
γ̄

ρP
+ [µ̃Y,s=0

it0
− µ̃Y,s=1

it0
]

1
ρP

+
γ̃i − γ̄

ρP
−

∆µY
i

ρP
+ ∆yi, (C.11)

where σ̃Y
it0 ≡

√
(σ̃Y,s=1

it0
)2 + (θPσ̃

Y,s=0
it0

)2 − 2κPθPσ̃
Y,s=1
it0

σ̃Y,s=0
it0

, and θP ≡
ρ0

P
ρP

. Similarly, we assume
that the observed measure of µ̃Y,s=0

it0
− µ̃Y,s=1

it0
contains classical measurement error ∆µY

i and that
the computed value of Φ−1(PP,s=0

i )σ̃Y,
it0

contains classical measurement error ∆yi.

To apply the measurement-error-robust approach detailed in Section 3.4.2 and Appendix
C.4, we need to compute σ̃Y

it0 for each student. Note that σ̃Y,s=0
it0

and σ̃Y,s=1
it0

can be directly
computed from the data. We impose the assumption that the perceived values of the ratio of
signal strength θP and the correlation κ are equal to their actual counterparts, which have been
estimated in Section C.2.2 (θA ≡

ρ0
A
ρA

= 0.55 and κA = 0.63).

With µ̃Y,s=0
it0

and µ̃Y,s=1
it0

directly constructed from the data and Φ−1(PP,s=0
i )σ̃Y

it0 computed as
above, we consistently estimate γ̄

ρP
and 1

ρP
using the approach described in Section 3.4.2. The

estimates of ρP and ρ0
P are 0.55 and 0.29, respectively. Comparing ρP = 0.55 and ρ0

P = 0.29
to ρA = 0.51 and ρ0

A = 0.28 (Section C.2.2), we continue to find, as in Section 3.4, that stu-
dents have quite accurate perceptions about the magnitude of uncertainty resolution. Then, as
expected, the perceived value of σi is equal to $103,140, which is very close to its actual coun-
terpart ($96,780). The resulting average perceived OV and average perceived NCV are $7,680
and $155,590, respectively, which are almost identical to the average values computed in Sec-
tion 3.4. Comparing these numbers to the actual analogs found in Section C.2.2, ($21,020 and
$63,720), our main conclusion that students underestimate the option value and overestimate
the net continuation value remains appropriate in this slightly modified learning environment.



C.3. Robustness: Allowing for Learning about γs=1
i 125

C.3 Robustness: Allowing for Learning about γs=1
i

In this appendix, we examine the implications of allowing students to also obtain relevant
information about the non-pecuniary benefits associated with the graduation scenario, γs=1

i .
In particular, we show that, under assumptions that are broadly consistent with the setting in
Stinebrickner and Stinebrickner (2012, 2014b), our estimates of actual option values in Section
3.4.3 tend to be downward biased while our estimates of perceived option values in Section
3.4.3 remain consistent.

Recall that Section 3.3 shows that the option value is multiplicatively separable in the
dropout probability Ps=0

i and the amount of uncertainty resolved in college σi. Since both
actual and perceived values of Ps=0

i are obtained from the data in somewhat direct ways, we
only need to examine whether our estimates of the actual and perceived σi tend to be consis-
tent when students are also learning about γs=1

i . For the purpose of clarity, here we denote
the estimates of actual and perceived ρ computed in Section 3.4.2 as ρ

A
and ρ

P
, respectively,

and denote the estimates of actual and perceived σi computed in Section 3.4.2 as σA
i and σP

i ,
respectively.

The relevant new information ∆i ∼ N(0, σ2
i ) is given by:

∆i = (V s=1
it∗ − V s=0

it∗ ) − Et=t0(V
s=1
it∗ − V s=0

it∗ )

= [Et=t∗(Y s=1
i ) − Et=t0(Y

s=1
i )] + [Et=t∗(γs=1

i ) − Et=t0(γ
s=1
i )]

≡ ∆Y s=1
i + ∆γs=1

i , (C.12)

where std(∆Y s=1
i ) = ρσ̃Y,s=1

it0
(Equation 3.11).

Motivated by Stinebrickner and Stinebrickner (2012, 2014b), we consider a case where,
between t0 and t∗, students resolve uncertainty about Y s=1

i and γs=1
i through a common signal

si. For example, in their setting, grade performance is a signal that is found to influence both
beliefs about earnings and the non-pecuniary benefits of school. In this case, both ∆Y s=1

i and
∆γs=1

i are functions of si. Under a linearity assumption for the two functions, we have that
∆γs=1

i is proportional to ∆Y s=1
i , i.e. ∆γs=1

i = α(∆Y s=1
i ).1 It implies that:

∆i = (1 + α)∆Y s=1
i and σi = (1 + α)ρσ̃Y,s=1

it0
. (C.13)

We first examine the consistency of our estimates of actual option values in Section 3.4.3.
Recall from Section 3.4.2 that the actual fraction ρA is estimated using observed data on σ̃Y,s=1

it0

and σ̃Y,s=1
it∗ . Therefore, our estimates of ρA and ρAσ̃

Y,s=1
it0

are consistent regardless of whether

1Both ∆Y s=1
i and ∆γs=1

i have a mean of zero, by construction.
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students are also resolving uncertainty about non-pecuniary benefits γs=1
i , i.e. σA

i consistently
estimates ρσ̃Y,s=1

it0
. In the likely case where α > 0, the actual value of σi would be greater than

ρAσ̃
Y,s=1
it0

.2 Thus, σA
i underestimates the actual value of σi, which implies that, for each student,

our estimate of actual option value reported in Section 3.4.3 underestimates its true value.

We then examine the consistency of our estimates of perceived option values in Section
3.4.3. Allowing students to learn about non-pecuniary benefits associated with the graduation
scenario leads to a modification of Equation (3.15).

PP,s=0
i = Φ(

Et=t0[(Y
s=0
i + γs=0

i ) − (Y s=1
i + γs=1

i )]

(1 + α)ρPσ̃
Y,s=1
it0

)

= Φ(
Et=t0(Y

s=0
i ) − Et=t0(Y

s=1
i ) + Et=t0(γ

s=0
i − γs=1

i )

(1 + α)ρPσ̃
Y,s=1
it0

)

≡ Φ(
µ̃Y,s=0

it0
− µ̃Y,s=1

it0
+ γ̃i

(1 + α)ρPσ̃
Y,s=1
it0

). (C.14)

Consequently, the main estimation equation (Equation 3.17) can be modified as follows:

Φ−1(PP,s=0
i )σ̃Y,s=1

it0
+ ∆yi =

γ̄

(1 + α)ρP
+ [µ̃Y,s=0

it0
− µ̃Y,s=1

it0
+ ∆µY

i ]
1

(1 + α)ρP
+

γ̃i − γ̄

(1 + α)ρP
. (C.15)

The only difference between Equation (3.17) and Equation (C.15) is that (1+α)ρP shows up
in Equation (C.15) at places where ρP shows up in Equation (3.17). Therefore, ρ

P
consistently

estimates (1 + α)ρP, which implies that σP
i consistently estimates σi as well. Hence, for each

student, the estimate of perceived option value reported in Section 3.4.3 consistently estimates
its true value.

C.4 Measurement Error Correction

C.4.1 Estimating the Variance of ∆µY
i

Appendix C.1 describes how to obtain measures of µ̃Y,s=1
it0

and µ̃Y,s=0
it0

using our measures of
µ̃a,s=1

it0
and µ̃a,s=0

it0
. Let ∆µa,s

i denote the measurement error that is present in our measure of µ̃a,s
it0

.
Equation (C.1) implies that var(∆µY

i ) is given by:

var(∆µY
i ) = var(

Ā∑
a=t̄

βa−t∗∆µa,s=1
i −

Ā∑
a=t∗

βa−t∗∆µa,s=0
i ). (C.16)

2This is consistent with a scenario where the common factor is grade performance; Having a high realized
grade would tend to positively influence a student’s perceptions about both the pecuniary and non-pecuniary
benefits associated with the graduation scenario.
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Recall that the unconditional earnings expectations questions in the BPS were asked for
three specific ages a: the first year after graduation (age 23), age 28, and age 38, and for
both schooling scenarios: graduation (s = 1) and dropout (s = 0). The linear interpolation
assumption we employed to impute µ̃a,s

it0
for other ages implies that ∆µa,s

i is a linear combination
of a subset of {∆µ23,s

i ,∆µ28,s
i ,∆µ38,s

i } for all a.

We further assume that (1) the distribution of measurement error is the same for each of
the six unconditional earnings expectations questions; (2) measurement errors are uncorrelated
across schooling scenarios s, but are perfectly correlated within schooling scenarios.3 Under
these assumptions, we have:

var(∆µY
i ) = var(

Ā∑
a=t̄

βa−t∗∆µa,s=1
i −

Ā∑
a=t∗

βa−t∗∆µa,s=0
i )

= var(
Ā∑

a=t̄

βa−t∗∆µ28,s=1
i ) + var(

Ā∑
a=t∗

βa−t∗∆µ28,s=0
i )

= var(∆µ28,s=1
i )[(

Ā∑
a=t̄

βa−t∗)2 + (
Ā∑

a=t∗
βa−t∗)2]. (C.17)

Following the method developed in Gong, Stinebrickner and Stinebrickner (2019), we es-
timate the variance of the measurement error contained in students’ reported value of µ̃28,s=1

it0
≡

Et=t0(w
28,s=1
i ) for the 2001 cohort, ∆µ28,s=1

i . The approach takes advantage of the fact that the
BPS includes two separate sets of expectations questions that can be used to compute µ̃28,s=1

it0
.

The difference between the two computed values of µ̃28,s=1
it0

provides evidence about the mag-
nitude of measurement error. The estimate of var(∆µ28,s=1

i ) is 109.54 (earnings measured in
$1,000 units). Using Equation (C.17), we estimate that var(∆µY

i ) is 67236 (earnings measured
in $1,000 units).

C.4.2 ME Correction Formula

Let vector zi denote the independent variables that are accurately measured and xi denote the
independent variable that is measured with classical measurement error ηi. We allow the vari-
ance of ηi to depend on observable gi and denote this variance σ2

ME(gi). Let x̃i = xi + ηi denote
the measured value of xi. Then, the dependent variable yi is given by:

3Assumption (2) captures the notion that factors that affect students’ beliefs about earnings under the college
alternative (s = 1) are likely different from those affecting students’ beliefs about earnings under the non-college
alternative (s = 0).
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yi = z′i a + bxi + ε

= z′i a + bx̃i + (ε − bηi). (C.18)

By construction, x̃ and ε−bηi are correlated. Hence, the OLS estimator is biased. To correct
for this bias, we notice that:

E

(yi − (z′i a + bx̃i))

 zi

x̃i

 +

 0
bσ2

ME(gi)

 = E

(ε − bηi)

 zi

x̃i

 +

 0
bσ2

ME(gi)

 = 0.

(C.19)

Equation system (C.19) has the same number of equations and parameters which are equal
to the number of observables. Hence, it can be estimated using the Method of Moments, i.e.,

the estimator of

 a
b

 is the solution to the sample analog of the moment conditions defined by

Equation (C.19). It is easy to show that this estimator has an easy-to-implement matrix-form

expression. Letting c denote

 a
b

 and qi denote

 zi

x̃i

, we have:

ĉ =

Q′Q −  0 0
0
∑

i σ
2
ME(gi)

−1

Q′Y, (C.20)

where and Y and Q are the matrices of yi and qi, respectively.



Appendix D

Appendices for Chapter 4

D.1 Proof of Lemma 4.3.2

Lemma 4.3.2 For any (x, z) ∈ supp((Xi0,Zi)) ∩ supp((Xi1,Zi)), if Assumption 4.3.1-4.3.7 are

satisfied, then D̃1(x, z, s) is continuous and invertible in s and D̃−1
1 (x, z, d) is continuous in d.

Proof Fix (x, z) ∈ supp((Xi0,Zi)) ∩ supp((Xi1,Zi)). Following Equation (4.6), the conditional
mean function D̃1(x, z, s) is given by:

D̃1(x, z, s) = Eξi D̄(x, B(z) + Γ0(s − B(z); z, ξi)). (D.1)

Assumption 4.3.5-4.3.7 imply that, for any ξi, D̄(x, B(z) + Γ0(s− B(z); z, ξi)) is a continuous
function of s and is bounded on supp(S i0|(x, z)). Then, by the theorem of Continuity under
Integral Sign, D̃1(x, z, s) = Eξi D̄(x, B(z) + Γ0(s − B(z); z, ξi)) is also a continuous function of s

defined on supp(S i0|(x, z)).
As shown in the proof of Theorem 4.3.1, D̃1(x, z, s) is invertible in s, under Assumption

4.3.2 and 4.3.3. Using the well known result that the inverse of a continuous function that
maps an interval to the real line is also continuous, the continuity of D̃1(x, z, s) implies the
continuity of D̃−1

1 (x, z, d), under Assumption 4.3.7.

D.2 Examples

D.2.1 Effort Choice and Beliefs about Productivity

Example Consider a worker who is working for piece rate w for each unit of output yit. Her
production function is given by:

yit = sitdit, (D.2)

129
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where sit and dit are worker i’s productivity and effort choice at period t, respectively.

Assume that productivity sit is the sum of a permanent factor Ai and a mean zero, inde-
pendently distributed shock vit. Let µit denote worker i’s subjective mean of Ai at period t.
Between each two consecutive periods, worker i observes the realization of sit =

yit
dit

and update
subjective mean µit.

Worker i’s utility is given by the difference between her income wditsit and her (psycholog-
ical) cost C(dit) = α1dit + α2d2

it. At each period t, given piece rate w and subjective expectation
µit = Eb

t Ai = Ebsit, worker i optimally chooses effort level dit to maximize her expected utility.
Formally, the maximization problem for worker i is given by:

max
dit

wdiµit − α1di − α2d2
i . (D.3)

I assume that when solving the policy function of maximization problem (D.3), worker i makes
a mean zero optimization error εit which is independent from any other factors. This implies
that:1

dit = −
α1

2α2
+

w
2α2

µit + εit. (D.4)

It is easy to verify that the average decision E(dit) = − α1
2α2

+ w
2α2
µit is a time-invariant, strictly

monotonic and continuous function in µit, and is bounded on any finite interval in IR.

D.2.2 Rural-urban Migration and Beliefs about Earnings

Example At the beginning of each period t, individual i who lives in the rural area needs to
decide whether to work in the urban area for that period. Let εi jt and wi jt denote individual i’s
cost and earnings from working in area j ∈ {R,U}. I assume that wiUt is a linear function of
factors xiUt, shocks viUt, and individual i’s skill type Ai, while wiRt only depends on factors xiRt

and shocks viRt:

wiUt = x′iUtαU + Ai + viUt,

wiRt = x′iRtαR + viRt, (D.5)

where viUt and viRt have mean zero and are independently distributed.

Individual i observes εi jt and xi jt, but is uncertain about Ai and vi jt. Let µit denote customer
i’s subjective mean of Ai at period t. At the end of each period t, an individual who chose to

1For the purpose of illustration, I assume interior solutions.
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work in the urban area observes her earnings wiUt and uses the effective signal sit = wiUt −

x′iUtαU to update her subjective mean µit. Note that although sit is not directly observed by the
econometrician, it can be consistently estimated using data on sit and wiUt.

I assume that individuals are myopic and maximize the difference between their expected
current period earnings and cost when choosing where to work. The probability of working in
the urban area is given by:

Prob(dit = U) = Prob(x′iUtαU + µit − εiUt > x′iRtαR − εiRt)

= 1 − FεiRt−εiUt(x′iUtαU − x′iRtαR + µit), (D.6)

where FεiRt−εiUt(x) is the CDF of εiRt − εiUt.

Under the assumption that FεiRt−εiUt(x) is time-invariant, strictly increasing, and continuous,
Prob(dit = U) is a time-invariant, strictly increasing, and continuous function in µit and is
bounded on any finite interval in IR.

D.3 The Case Where D(xit, εit, µit) and A(zi) are Arbitrary
Parametric Functions

In this appendix, I show that the feasible semiparametric estimator developed in Section 4.4.1
can be applied to the case where D(xit, εit, µit) and A(zi) are arbitrary parametric functions. I
also impose parametric assumptions on the distribution of εit.

Let D̃(xi0, (zi, ki)) denote Eεi0 D(xi0, εi0, µi0) = Eεi0 D(xi0, εi0, A(zi)+π̃B(ki)). Since D(xit, εit, µit),
A(zi), and the distribution of εi0 are fully parametric, D̃(xi0, (zi, ki)) is also a parametric function
of xi0, zi, and ki, hence can be estimated parametrically. Let D̂(xi0, (zi, ki)) denote a consistent
estimator of D̃(xi0, (zi, ki)).

I maintain the assumption on si0 that si0 = A(zi) + ηi + vi0, where ηi and vi0 are indepen-
dent from other factors. A(zi) can be estimated parametrically. Let Â(zi) denote a consistent
estimator of A(zi).

Let d̃i1 ≡ di1 − D̂0(xi1, (zi, ki)) and s̃i0 ≡ si0 − Â(zi). Then,
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d̃i1 = D(xi1, εi1, µi1) − D̃0(xi1, (zi, ki)) + [D̃0(xi1, (zi, ki)) − D̂0(xi1, (zi, ki))]

= D(xi1, εi1, A(zi) + π̃B(ki) + Γi0(si0 − A(zi) − π̃B(ki))) − D̃0(xi1, (zi, ki)) + op(1)

= D(xi1, εi1, A(zi) + π̃B(ki) + Γi0(s̃i0 − π̃B(ki))) − D̃0(xi1, (zi, ki)) + op(1)

+ [D(xi1, εi1, A(zi) + π̃B(ki) + Γi0(si0 − A(zi) − π̃B(ki))) − D(xi1, εi1, A(zi) + π̃B(ki) + Γi0(s̃i0 − π̃B(ki)))]

= D(xi1, εi1, A(zi) + π̃B(ki) + Γi0(s̃i0 − π̃B(ki))) − D̃0(xi1, (zi, ki)) + op(1), (D.7)

where the op(1) term represents the estimation error in D̂(xi0, (zi, ki)) and Â(zi), which converges
in probability to zero as the number of observations goes to infinity.

Since ki is a finite type variable, it is feasible to stratify individuals by ki. For each type ki,
π̃B(ki) is a constant and d̃i1 only depends on one “observable” s̃i0 (and the unobserved factor
εi1).

To establish the consistency of the feasible semiparametric estimator proposed in Section
4.4.1, it suffices to show that, for each ki, the probability limit of E(d̃i1|s̃i0, ki) is a continuous
and strictly monotonic function of s̃i0 and equals zero when s̃i0 = π̃B(ki).

Recall that Γi0(s) = Γ0(s; zi, ξi). Let D̃1(xi1, (zi, ki), s̃i0) ≡ E(εi1,ξi)|xi1,zi,si0 D(xi1, εi1, A(zi) +

π̃B(ki)+Γ0(s̃i0−π̃B(ki); zi, ξi)). Under Assumption 4.3.1-4.3.7, I can show that D̃1(xi1, (zi, ki), s̃i0)−
D̃0(xi1, (zi, ki)) is a continuous and strictly monotonic function of s̃i0 and equals zero when
s̃i0 = π̃B(ki), following the same arguments as in Section 4.3.2.

Equation (D.7) implies that:

E(d̃i1|xi1, (zi, ki), s̃i0) = D̃1(xi1, (zi, ki), s̃i0) − D̃0(xi1, (zi, ki)) + op(1)

≡ ∆D̃1(xi1, (zi, ki), s̃i0) + op(1). (D.8)

For each ki, E(d̃i1|s̃i0, ki) can be obtained through integrating the function E(d̃i1|xi1, (zi, ki), s̃i0)
over the distribution of (Xi1,Zi). The probability limit of E(d̃i1|s̃i0, ki) is given by:

plimE(d̃i1|s̃i0, ki) = plim(E(Xi1,Zi)∆D̃1(xi1, (zi, ki), s̃i0) + op(1))

= E(Xi1,Zi)∆D̃1(xi1, (zi, ki), s̃i0). (D.9)

Since ∆D̃1(xi1, (zi, ki), π̃B(ki)) = 0 for all (xi1, zi), E(Xi1,Zi)∆D̃1(xi1, (zi, ki), π̃B(ki)) = 0 as well.
The strict monotonicity of ∆D̃1(xi1, (zi, ki), s̃i0) is preserved by integration. By the theorem
of Continuity under Integral Sign, the continuity of ∆D̃1(xi1, (zi, ki), s̃i0) is preserved if this
function is bounded on supp(Xi1,Zi) for all s̃i0. Hence, under this boundedness assumption,



D.4. Theorem 4.6.1: Proof 133

plimE(d̃i1|s̃i0, ki) is a continuous and strictly monotonic function of s̃i0, and equals zero when
s̃i0 = π̃B(ki).

D.4 Theorem 4.6.1: Proof

Let V1(si0) denote individual i’s expectation about max j∈{0,1}(ui j1) before observing the realiza-
tions of εi11 and εi01. It is given by:

V1(si0) = Eεi11,εi01 max
j∈{0,1}

(ui j1)

= Eεi11,εi01 max(α1 + β1(µ̄ + Γ0(si0 − µ̄) + εi11, εi01)

= Eεi11−εi01 max(α1 + β1(µ̄ + Γ0(si0 − µ̄) + εi11 − εi01, 0)

= Eεi11−εi01 max(F−1
∆ε (D̃1(si0)) + εi11 − εi01, 0). (D.10)

Note that F−1
∆ε (d), D̃1(s), and the distribution of εi11 − εi01 are all known by the econo-

metrician. Hence, V1(s) is a known function as well. Now consider individual i’s (subjec-
tive) expectation about V1(si0) before receiving the signal si0, which is given by ES b

i0
V1(si0) =

ES i0+µ̄−s̄V1(si0) (Assumption 4.6.6). Both V1(s) and the distribution of S i0 are known by the
econometrician. Hence, ES i0+µ̄−s̄V1(si0) is a known function of the individual’s prior mean µ̄. I
denote this function as V̄1(µ̄). Below I show that if D̃1(s) is strictly increasing (decreasing) in
s, then V̄1(µ̄) is strictly increasing (decreasing) in µ̄.

Without loss of generality, consider the case where D̃1(s) is strictly increasing in s. I first
show V1(s) is strictly increasing in s. Fix s1 > s2. Since both F−1

∆ε (d) and D̃1(s) are strictly
increasing, max(F−1

∆ε (D̃1(s1)) + εi11 − εi01, 0) ≥ max(F−1
∆ε (D̃1(s2)) + εi11 − εi01, 0) with the in-

equality being strict when εi11− εi01 > −F−1
∆ε (D̃1(s2)). Assumption 4.6.2 implies that εi11− εi01 >

−F−1
∆ε (D̃1(s2)) takes place with positive probability. Therefore, V1(s1) ≡ Eεi11−εi01 max(F−1

∆ε (D̃1(s1))+
εi11 − εi01, 0) > Eεi11−εi01 max(F−1

∆ε (D̃1(s2)) + εi11 − εi01, 0) ≡ V1(s2).

Fix µ̄1 > µ̄2. Assumption 4.6.4 implies that S i0 has a full support. Hence S i0 + µ̄1 − s̄

is different from and first order stochastically dominates S i0 + µ̄2 − s̄. Since V1(s) is strictly
increasing in s, using the well-known property of first order stochastic dominance, I obtain
V̄1(µ̄1) ≡ ES i0+µ̄1−s̄V1(si0) > ES i0+µ̄2−s̄V1(si0) ≡ V̄1(µ̄2).
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D.5 Partially Dependent Xit and Zi

In this appendix, I show that the method proposed in Section 4.6.2 is valid whenever Xit and
Zi are linearly independent. Since Xit and Zi are linearly independent, there are some random
variables contained in Zi that are not linear combinations of Xit. Let ZN

i denote these random
variables and ZY

i denote the rest of the random variables contained in Zi. The full model is
given by:

dit = x′i0α + βµit + εit,

µi0 = (zY
i )′πY

B + (zN
i )′πN

B + vB
i ,

µi1 = µi0 + θ(si0 − µi0),

sit = (zY
i )′πY

R + (zN
i )′πN

R + vR
i + ηi + vit. (D.11)

I rewrite this linear model to eliminate unobserved subjective means µit:

di0 = x′i0α + (zY
i )′(πY

Bβ) + (zN
i )′(πN

Bβ) + βvB
i + εi0, (D.12)

di1 = x′i1α + (zY
i )′[πY

Bβ(1 − θ)] + (zN
i )′[πN

Bβ(1 − θ)] + βθsi0 + β(1 − θ)vB
i + εi1, (D.13)

sit = (zY
i )′πY

R + (zN
i )′πN

R + vR
i + ηi + vit. (D.14)

The objects of primary interest are EvB
i
(µi0) = (zY

i )′πY
B + (zN

i )′πN
B and β.

Note that (zY
i ) is a linear combination of xi0. Hence, there exist α0 and α1 such that x′i0α0 =

x′i0α + (zY
i )′(πY

Bβ) and x′i1α1 = x′i1α + (zY
i )′[πY

Bβ(1 − θ)]. Equation (D.12) and (D.13) can be
rewritten as:

di0 = x′i0α0 + (zN
i )′(πN

Bβ) + βvB
i + εi0, (D.15)

di1 = x′i1α1 + (zN
i )′[πN

Bβ(1 − θ)] + βθsi0 + β(1 − θ)vB
i + εi1, (D.16)

Uncorrelated Unobserved Components
Equation (D.15) shows that α0 and πN

Bβ can be estimated by regressing di0 on xi0 and zN
i .

Similarly, if vR
i and vB

i are uncorrelated, OLS regression of di1 on xi1, zN
i , and si0 gives estimators

of α1, πN
Bβ(1 − θ), and βθ. Hence, θ can be consistently estimated by 1 −

̂πN
Bβ(1−θ)

π̂N
Bβ

, β can be

consistently estimated by β̂θ

θ̂
, and πN

B can be consistently estimated by π̂N
Bβ

β̂
.

Note that x′i0α0 − x′i0α1 = x′i0α + (zY
i )′(πY

Bβ) − x′i0α − (zY
i )′[πY

Bβ(1 − θ)] = (zY
i )′(πY

Bβθ). Hence,
(zY

i )′πY
B can be consistently estimated by x′i0

(α̂0−α̂1)
β̂θ

.

Correlated Unobserved Components
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If vR
i and vB

i are correlated, I can use ∆si0 = si0 − si1 as an IV to consistently estimate α1,
πN

Bβ(1 − θ), and βθ based on Equation (D.16) and consistently estimate EvB
i
(µi0) = (zY

i )′πY
B +

(zN
i )′πN

B and β following the steps above.
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