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Abstract 

Multimodal brain imaging allows the study of structure-function relationships of the brain at 

the individual level, a key subject in basic neuroscience with important applications in 

neurosurgery.  The current thesis aims to better understand these relationships by (1) 

examining how cortical morphology metrics influence measures of brain function, (2) their 

visualization in augmented reality (AR), and (3) their application in neurosurgical planning. 

To achieve these objectives, we made use of multimodal magnetic resonance imaging (MRI) 

data: diffusion weighted imaging, resting-state functional MRI (rs-fMRI), task-based fMRI, 

and T1-weighted images. Various metrics were calculated: cortical thickness (CT), blood 

oxygen level dependent signal variability (BOLDSD), structural connectivity (SC), functional 

connectivity (FC), etc.. We found that BOLDSD measures are confounded by CT, developed 

an application to visualize SC and FC in AR, and used rs-fMRI to map language for epilepsy 

surgery. Overall, these studies provided a better understanding of structure-function 

relationships in the brain.  

Keywords 

fMRI, neurosurgical planning, neuroimaging, multimodal, brain mapping, resting-state fMRI, 

augmented reality 
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Summary for Lay Audience 

The human brain is one of the most complex and important organs. Its anatomical structure 

and its function are inextricably tied to each other in a reciprocal relationship in which 

structure can shape function and the vice versa. Considering that each person has a unique 

anatomy, physiology and life experience, it should not come as a surprise that this structure-

function relationship is best understood at the individual level. Despite recent advancements 

in neuroscience, researchers still struggle to understand this relationship and its implications 

in a clinical setting.  

The current thesis aims to explore structure-function relationships of the brain in the setting 

of basic research and neurosurgery planning. We used multiple distinct but complementary 

magnetic resonance imaging (MRI) techniques to study these relationships. In the first study, 

we investigated how cortical morphology metrics (i.e. brain structure measurements) 

influence a specific measure of brain function called blood oxygen level dependent signal 

variability (BOLDSD) in older adults. BOLDSD has been previously associated with cognitive 

health in aging. We found that cortical thickness is a confound to BOLDSD measurements and 

should be considered in the design of studies. In the second study, we examined structure-

function relationships by developing an augmented reality application which allows the 

person using it to explore brain anatomy in the context of brain connectivity (i.e. structural 

and functional connections between regions in the brain). This application can be further 

developed to be used as an education tool for novice surgeons. In the third study, we 

examined the brain scans of children with epilepsy and used structural and functional MRI 

methods to preoperatively localize language. This can help the surgeon guide their approach 

to surgery by avoiding brain regions that may be involved in language.  

Overall, this thesis adds to the current knowledge of the relationship between the structure 

and function of brain in the context of basic neuroscience and neurosurgery applications. 
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Chapter 1  

1 Introduction 

1.1 Background and Clinical Motivation 

Function within the brain has traditionally been represented in terms of fixed anatomical 

location. For example, the most popular approach to localizing expressive language 

within the brain has been to focus on identifying Broca’s area (i.e. left inferior frontal 

cortex) because damage to this area results in specific expressive language deficit or 

aphasia1. With time, it became recognized that representation of language is best 

understood in terms of networks distributed over various brain regions rather than 

specific focality2. In the 1970’s, Whitaker and Selnes3 discussed the ideas that (1) 

individual differences in anatomic variations must be considered when localizing 

function, and that (2) function is not fixed but rather can become reorganized in various 

conditions (e.g. right hemisphere can take over some speech functions in case of injury to 

the left hemisphere)2,3. These ideas were particularly evident for language because it is a 

higher order cognitive ability and presents with higher inter-individual variability than 

motor or sensory functions. With advancements in imaging techniques (i.e. magnetic 

resonance imaging, MRI), it became increasingly recognized that relationships between 

the brain structure (i.e. cortical morphology) and function change across lifespan, and the 

degree of these changes vary by brain regions and from one individual to another4. This 

suggests aging as an interesting setting to better understand structure-function 

relationships in the brain. 

A significant amount of the early knowledge on brain structure-function relationships 

at the individual level came from lesions and neurosurgical interventions (i.e. resections 

or stimulation). Cortical stimulation to map eloquent cortex (i.e. areas of the brain that if 

damaged will lead to severe deficits), described by Penfield in the early 1950’s, allowed 

for investigation of function by linking intra-operative stimulation of neural activity with 

direct behavioral changes (i.e. speech arrest)5.  Cortical stimulation remains the gold 

standard for localizing function in the setting of neurosurgical interventions for 

conditions such as intractable epilepsy, which require brain mapping of eloquent cortex 



2 

 

surrounding the epileptogenic zone to be resected in order to minimize post-operative 

deficit. Language mapping in pediatric epilepsy is particularly important because young 

children are more likely to reorganize function at the intra- and inter-hemispherical level 

than adults with epilepsy or healthy children6. Therefore, in this setting, structure-

function relationships can be atypical, and localization of function based on anatomical 

landmarks alone is usually unreliable. For precise localization, in most cases, stimulation 

is done at the bedside using subdural or depth electrodes in the setting of staged surgery 

rather than intraoperatively. However, stimulation studies remain technically challenging 

in children due to limited compliance and their unique developmental neurophysiology 

(i.e. cortical immaturity), and so complementary functional MRI (fMRI) based mapping 

is also obtained when possible 6,7. Pediatric epilepsy provides an interesting framework to 

examine structure-function relationships of the brain.  

1.2 Fundamentals of Neuroimaging 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging tool that utilizes non-

ionizing radiation from hydrogen protons in the human body to visualize the brain and 

any other part of the body. It relies on a very strong main magnetic field, rapidly 

changing magnetic fields, radio frequency pulses, and a computer to produce cross-

sectional images8. Cross-sectional imaging allows viewing of images in the form of a 

plane (e.g. axial) through the body with the structure of interest cut across. Individual 

images, referred to as slices, are parallel to one of three imaging planes (axial, sagittal, 

and coronal, Figure 1-1). Images have depth due to slice thickness. Two-dimensional 

(2D) slices can be stacked (i.e. 2D multi-slice volumes) to create a three-dimensional 

(3D) representation.  

MRI is often divided into structural and fMRI; with structural MRI usually representing 

static anatomical information and fMRI indicating metabolic fluctuations in function 

captured over the time of the scan.  
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1.2.1 Structural MRI 

Neuroimaging using structural MRI based on T1-weighted images refers to volumetric, 

high resolution images of brain structures with high contrast between white (WM) and 

grey matter (GM) (Figure 1-1). 

 

Figure 1-1. T1-weighted structural imaging. Different views are presented: 1) sagittal, 2) 

coronal, 3) axial. WM is bright, GM is darker. 

By using T1-weighted images as input to brain imaging processing and analysis tools (i.e. 

FreesSurfer1), various measurements and representations of the human cortex can be 

produced. These can vary depending on the software tools used but the pre-processing, 

processing, and analysis steps are relatively similar across the software packages (see 

Figure 1-2 for example of use of software tool). 

 

1
 https://surfer.nmr.mgh.harvard.edu/ 



4 

 

 

Figure 1-2. T1-weighted image with WM surface model. Software used is FreeSurfer. 

 In the methodology section of each study included in the thesis there is a description of 

the software tools used. In brief, some of the first steps in the preprocessing/analysis 

pipeline are to register the images to a standard coordinate space or template (i.e. 

Montreal Neurological Institute, MNI space9,10) using linear and/or non-linear matrix 

transformations, “spatial normalization”, and to remove non-brain tissues, “skull 

stripping”. This allows findings from different imaging modalities to be combined and 

compared. Another common step is to segment the brain into WM , GM and cerebral 

spinal fluid (CSF): subcortical segmentation and cortical segmentation. Using various 

algorithms and taking into account the differing intensity of the voxels in these tissues, 

cortical surface models of the boundaries between cortical GM, WM, and pial surface are 

produced. These allow automatic estimation of cortical thickness (CT),  cortical volume, 

cortical area, gyrification, curvature, etc.. (described in detail in 11,12). An atlas is a 

volumetric or surface based brain map, where each voxel is labelled as being part of 

specific brain region depending on the map used (also referred to as “parcellation 

scheme”, see review 13 ). By using an atlas to parcellate the cortex, region specific 

measurements of cortical morphology can be determined.   
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Clinically, T1-weighted images  can be used to detect various tissue deformations (i.e. 

cortical dysplasia), tumors, and to register other imaging modalities with lower resolution 

or contrast.  

1.2.2 Diffusion- weighted MRI 

 Diffusion-weighted imaging, is an MRI technique based on tissue water diffusion 

rate (i.e. thermal Brownian motion of water molecules). It can offer information about 

brain WM architecture and WM integrity in the context of basic neuroscience or clinical 

applications in neurosurgery (see extensive review14). Clinical applications include its use 

in presurgical planning as it can map major WM tracts.  

Basic pre-processing steps are applied to correct for motion, and for image 

distortions caused by currents generated by rapidly changing gradient magnetic fields 

(i.e. eddy currents). In brief, at the preprocessing stage the diffusion tensor model (i.e. 

using a tensor ellipsoid giving the name diffusion tension imaging, DTI) is utilized to 

indirectly measure the differing degrees of anisotropy of water molecules in WM, GM 

and CSF. Anisotropy can be thought of as directional diffusivity. Measurements of 

anisotropy and isotropy can be used to estimate the structural characteristics of the cortex. 

Of the different brain tissues, diffusion in WM tends to be the most anisotropic (restricted 

along the axonal fascicles direction), less in GM, and least in CSF (unrestricted in all 

directions, or isotropic). Anisotropy in WM is thought to be influenced by cellular 

structures (e.g. axon diameter, myelination, organization and density of WM fibers) 

delimiting molecular motion.  

A mathematical process called diffusion tractography estimates the direction of 

white matter bundles based on tensor orientation. White matter axonal bundles between 

cell bodies of neurons are commonly called fascicles; multiple grouped fascicles are 

called tracts. Tractography computationally represents fascicles and tracts as streamlines 

matching the diffusion orientation. All the streamlines estimated by tractography come 

together in a complex 3D model. This visual representation facilitates the understanding 

of the structural organization of human brain15.   
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By applying a parcellation scheme to tractography, WM connections between 

different regions across the brain can be determined. This allows the calculation of 

structural brain connectivity (SC) metrics (e.g. further described in Chapter 3). 

1.2.3 Functional MRI 

During the 1990’s, fMRI was established as a signal contrast mechanism based on T2*-

weighted images, using blood oxygen level dependent (BOLD) contrast to examine brain 

activity by MRI scans16,17. Its use in basic neuroscience and clinical research has since 

increased significantly, owing in large part to its ability to non-invasively measure and 

map brain function over time18.  

It takes advantage of the differential magnetic susceptibility of oxyhemoglobin 

(diamagnetic) compared to deoxyhemoglobin (paramagnetic). When neurons increase 

their metabolic activity they first consume oxygen leading to deoxyhemoglobin increase, 

and then recruit more cerebral oxygenated blood leading to increased oxyhemoglobin 

presence in those regions (see for a review19). The ratio of oxyhemoglobin to 

deoxyhemoglobin allows measurements of the BOLD signal. Specifically, brain regions 

that show a low concentration of deoxyhaemoglobin give rise to a high BOLD signal. 

The magnitude of the BOLD signal, generated as a result of a task (i.e. task-fMRI) or by 

the brain at rest (i.e. resting-state fMRI), is considered to largely reflect neuronal activity 

or “brain activation”. The BOLD signal measurement may also depend on pulsatility of 

arteries and veins, cerebral blood flow and volume, cortical morphology20.  

During task-fMRI acquisition the subject is asked to perform a task in the scanner. 

This allows the investigation of which brain regions present increased neuronal activity, 

presumably evoked by the task. This “brain activation” is captured by the correlation of 

changes in BOLD signal fluctuations with performance of the task compared to rest (i.e. 

baseline) across the fMRI acquisition session 21. For example, a patient may be asked to 

perform a word generation task (or multiple similar tasks and/or trials) to map the brain 

regions involved in language generation (i.e. block-design). Since neuronal activity is not 

directly captured, a hemodynamic response function is used to model task-based changes 

in BOLD signal22.  
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As opposed to task-based fMRI, resting-state fMRI evaluates the endogenous, 

spontaneous BOLD signal low-frequency fluctuations (< 0.1 Hz) in metabolic activity of 

the brain, while the subject is in a state of quiet wakefulness or watching a movie23. 

Resting-state fMRI functional connectivity (rs-FC) refers to the propensity of certain 

brain regions to behave similarly to each other over time. The assumption is that these 

regions serve related functions. This method uses linear temporal correlation between 

low-frequency fluctuations of BOLD signal at rest to determine the connection between 

two or more brain regions and/or brain networks24.  

Temporally correlated BOLD signal fluctuations have been shown to organize 

into canonical  brain networks such as: salience network, auditory network, basal ganglia 

network, higher visual network, visuospatial network, default mode network, language 

network, executive network, precuneus network, primary visual network, and sensory 

motor network25. Importantly, these networks have been shown to correspond to 

functional maps derived from task-based fMRI where patients do sensory, motor or 

cognitive tasks26. Moreover, these networks are considered to reflect the intrinsic 

functional organization of the brain since they persist even under state of reduced 

consciousness (i.e. sleep, sedation, anesthesia) and/or pharmacological treatment.  

In patients with epilepsy, rs-FC analysis allows identification and visualization of 

eloquent cortex and critical networks assisting the neurosurgeon in choosing the 

trajectory of resection with the least damage. For example, it is increasingly used for 

mapping language in epilepsy cases27. Since this technique does not require the patient to 

do a task, it is particularly useful in pediatric population, patients that are unconscious, 

and patients that cannot comply and/or follow the instructions for performing a task in the 

scanner. Moreover, as compared to task-based, resting-state fMRI takes less scanning 

time, does not need specialized personnel to assess the patient’s neurocognitive status, 

and requires less complicated post-acquisition processing 22,23,25. 

1.3 Thesis Outline 

This thesis examines the relationships between the structure and function of the brain at 

the individual level in the context of aging and epilepsy. Generally, the anatomy of an 
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organ provides information about its behavior and function. This notion is limited when it 

comes to brain, despite the fact that most neurological conditions have an anatomical 

correlate. The unique inter- and intra-individual variability of the brain highlights the 

need for subject level, multimodal approaches in understanding brain functionality in 

health and disease. Gaining a better understanding of structure-function relationships 

through their fused visualization in Chapter 3, can help inform design and interpretation 

of basic neuroscience investigations in Chapter 2 and the advancement of clinical 

neurosurgical applications in Chapter 4.  

1.3.1 Moderating Effect of Cortical Thickness on BOLD Signal 
Variability Age Related Changes 

Dynamic changes in neuroanatomical structural and functional measures across the 

lifespan are commonly reported in association with aging. It is well established that 

normative aging is associated with structural changes in brain regions, and that these 

predict functional decline in various cognitive domains. However, the contribution of 

cortical morphology metrics such as cortical thickness (CT), cortical area (CA), and grey 

matter (GM) volume to age-related changes in brain function remain poorly understood.  

Blood oxygen-level dependent signal variability, estimated using the standard 

deviation of the functional magnetic resonance imaging (fMRI) signal, or “BOLDSD,” is 

an emerging metric of variability in neural processing, and has been shown to be 

positively correlated with cognitive flexibility. Generally, BOLDSD is reported to 

decrease with aging, and is thought to reflect age-related cognitive decline. Nevertheless, 

the interaction between alterations in cortical morphology and BOLDSD changes has not 

been modeled quantitatively. 

In this Chapter, we investigated the influence of cortical morphology metrics (i.e. 

CT, GM, CA) on age-related BOLDSD changes by treating these metrics as possible 

physiological confounds using linear mixed models. Specifically, we examined global 

and regional differences in BOLDSD in a group of older adults scanned twice at an 

interval of approximately 2.5 years, and regressed the effect of cortical morphology by 

introducing CT, CA and GM as covariates. 
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Results show that in our sample BOLDSD is confounded by CT. Respectively, 

changes in CT but not GM volume nor CA, show a significant interaction with BOLDSD 

alterations. Our study highlights that CT changes should be considered when evaluating 

BOLDSD alterations in the lifespan, providing insight into structure-function relationships 

in aging. 

1.3.2 Visualization of Multimodal Brain Connectivity for Neurosurgical 
Planning using Augmented Reality 

In neurosurgical procedures, precise preoperative planning requires extensive knowledge 

of the patient’s anatomy as well as critical structures for brain function. An important 

consideration is weighing the risk of operating with that of post-surgical deficits. 

Recently, there has been an increase in the use of minimally invasive approaches, owing 

in part to advancements in multimodal medical imaging techniques such as structural 

(SC), and functional-based brain mapping (FC), which have been shown to be useful 

metrics for surgical trajectory planning. The main challenge associated with their use is 

the lack of intuitive structure-function visualization methods available to surgeons and 

trainees. Augmented reality (AR) represents a pivotal opportunity to overcome this 

limitation, by incorporating patient-specific structure-function brain data onto the user’s 

vision of the real world.  

In this study, we introduced a new mobile device AR application based on data 

derived from advanced image processing of multi-modal neuroimaging data. Advanced 

image processing was performed on multimodal neuroimaging data (T1- weighted image, 

DWI, rs-fMRI) to characterize the SC and FC of the brain. The AR application was 

designed to take these as inputs and allow the user to visualize and interact with the 

neuroanatomy in the context of its associated SC and FC. The performances of 10 users 

on 24 targets were evaluated using an extension of Fitts’ methodology28. The users were 

able to use an interactive tool to select and visualize brain regions and their associated 

fibers. Results indicated that task difficulty increased as the volume of the fibers 

decreased, while movement time increased as task difficulty increased. Evaluation of the 

3D pointing tasks showed consistency in user performance indicating its utility. 
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1.3.3 Presurgical brain mapping of the language network in pediatric 
patients with epilepsy using resting-state fMRI 

Brain function is commonly represented in terms anatomical context. Epilepsy affects 

neural processing and often causes reorganization of brain function, causing localization 

of critical functions such as language based on anatomical landmark (i.e. Broca) alone 

difficult. Intra- and inter-hemispheric reorganization is more pronounced in children, due 

to their increased cortical plasticity. Surgery for intractable epilepsy (i.e. not controlled 

by medication) has the goal of achieving seizure freedom or reduction in seizure 

frequency while minimizing post-operative deficit in language abilities. Pediatric patients 

are often poor candidates for conventional brain mapping techniques (i.e. awake surgery, 

task functional magnetic resonance imaging, task-fMRI) as it is harder to get them to 

comply to the task. Rs-fMRI is an emerging presurgical brain mapping based on the 

intrinsic neural activity of the brain at rest with the potential to overcome the limitations 

of conventional mapping 

In this study, we extracted language networks from rs-fMRI data in a cohort of 

young pediatric patients with epilepsy presenting for preoperative mapping by 

performing a similarity analysis with language network templates via a template-

matching procedure. Rs-fMRI data was analyzed using independent component analysis, 

a data-driven method. Task-fMRI language mapping with verb generation and object 

naming was also performed. Language lateralization results from these two techniques 

were compared and good concordance was obtained in most cases. Ultimately, our results 

indicate that rs-fMRI can be a complementary method to obtain information for 

presurgical planning. 

1.3.4 Conclusion 

The structure and function of the brain are complementary and entwined aspects. Each 

can be investigated using equally entwined neuroimaging techniques and experimental 

paradigms. To this end, structure-function relationships in the brain were explored in the 

setting of basic neuroscience research on aging (Chapter 2) and epilepsy (Chapter 4) 

using multiple imaging methods, and visualization techniques such as AR (Chapter 3). 

Clinical relevance of the study of structure-function relationships in the brain, specifically 



11 

 

as it pertains to preoperative neurosurgery planning was discussed in Chapter 3 and 

Chapter 4. 
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Chapter 2  

2 Moderating Effect of Cortical Thickness on BOLD 
Signal Variability Age Related Changes 

This Chapter is mainly adapted from: 

D. R. Pur, R. A. Eagleson, A. de Ribaupierre, N. Mella, S. de Ribaupierre (2019): 

“Moderating Effect of Cortical Thickness on BOLD Signal Variability Age Related 

Changes” in Frontiers of Aging Neuroscience, 11. DOI:10.3389/fnagi.2019.00046 

2.1 Introduction and relevant works 

Normal aging is associated with marked functional and structural neuroanatomical 

alterations in cortical thickness (CT), gyrification, cortical surface area (CA), grey (GM) 

and white matter volume (WM)29–31. Therefore aging provides an interesting and 

dynamic framework to examine structure-function relationships of the brain.  

Importantly, magnetic resonance imaging studies (MRI) show that the magnitude 

and rate of change of these cortical morphometry metrics is not constant across the cortex 

but rather it varies with age and brain region4,32. In fact, the relationship between cortical 

morphology metrics in aging is dynamic, with GM volume changes are reported to be 

largely accounted by changes in CT rather than CA, highlighting the importance of 

tracking changes in CT4. In fact, studies show that CT and CA are genetically 

independent33. Their neurodevelopment in the lifespan is largely independent of each 

other suggesting that they should be considered as separate metrics with different 

contributions to cortical volume34. Change in cortical morphology is reported to 

accelerate with increasing age. For example, a longitudinal study of alterations in cortical 

morphometry in older adults found accelerated changes with increasing age in temporal 

and occipital cortices4. Furthermore, other studies report that the temporal lobes are most 

vulnerable to age-related morphometric changes, and that these changes reflect age-

related cognitive impairment35,36. There is considerable evidence that neuroanatomical 

alterations reflect underlying functional alterations, especially in cognition37–39. In fact, 
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functional magnetic resonance imaging (fMRI) studies, which rely on the blood oxygen 

level-dependent (BOLD) signal as a correlate of neuronal activity, report that changes in 

cortical morphology across adult lifespan impact the hemodynamic properties of the 

brain. For example, there are cortical laminar differences in BOLD signal40, thicker 

cortical regions were reported to have a lower relative oxygen extraction fraction41. 

Therefore, since aging is associated with significant neuroanatomical alterations, these 

should be considered when assessing function (i.e. cognitive ability) using the BOLD 

signal.  

The Standard Deviation of the BOLD signal can be used to estimate variability 

(hereafter, “BOLDSD”), and is believed to reflect the brain’s dynamic ability to undergo 

fast moment-to-moment switching through network reconfigurations42,43. It is an 

emerging index of cognitive health in aging, with higher regional BOLDSD being 

associated with enhanced performance on certain cognitive tasks (i.e. task switching) but 

not on others (i.e. distractor inhibition)44. Generally, increased BOLDSD is associated 

with younger age, faster and more consistent performance on cognitive tasks, and 

cognitive flexibility44,45.   

Nevertheless, the structural substrate and physiological mechanisms underlying 

BOLDSD remain largely unknown. For instance, decreased dopaminergic transmission is 

proposed to be associated with decreased BOLDSD in subcortical areas in older adults 

compared to younger ones46. However, there are few studies investigating the interaction 

between age-related alterations in cortical morphology and BOLDSD. One study reported 

that increased microstructural integrity of WM pathways (measured as increased 

fractional anisotropy, FA) is associated with greater BOLDSD
47. FA, as measured by 

diffusion imaging is thought to reflect fiber density, fiber organization, axonal diameter, 

and myelination. 

Given that neuroanatomical alterations associated with normative aging are 

known to influence cognitive performance, and that they influence the BOLD signal, 

their impact as physiological confounds to BOLDSD should be investigated. This is 

particularly relevant because there is a considerable degree of inconsistency of methods 

used and results across studies investigating BOLDSD. In fact, some studies report greater 
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regional BOLDSD in older adults42,48, individuals with stroke49, Alzheimer disease50 and 

other neurological disorders51.  

In this Chapter, we examined structure-function relationships of the brain by 

determining the contribution of cortical morphology metrics (i.e. CT, CA, GM volume) 

to brain function, represented by BOLDSD change, in a sample of older adults. A 

longitudinal framework, consisting of two scan points, should help reduce some of the 

inter-individual variance in neuroanatomy by accounting for external factors such as 

lifestyle, and various socio-economic and demographic factors.  

We hypothesized that cortical morphology metrics show an interaction with 

BOLDSD. We predict that age-related neuroanatomical alterations in CT, CA, GM are 

physiological confounds to BOLDSD measures, and that consequently adjusting for these 

metrics may help “unmask” the functional relevance of BOLDSD.  

2.2 Materials and Methods 

2.2.1 Participants and MRI acquisition 

All data obtained for the present study was obtained from the longitudinal Geneva Aging 

Study, after approval by the ethics committee of the Faculty of Psychology and 

Educational Sciences of the University of Geneva and the Swiss Ethic committee. Older 

subjects were initially recruited either from the University of the Third Age of Geneva or 

through newspaper and association advertisements for pensioners, as part of a larger 

longitudinal study. All participants gave written informed consent and older adults 

received a small amount of money as a compensation for their transportation fees.  

Our initial sample consisted of 31 older adults scanned twice (mean age at first 

scan = 71.65 ± 6.03 years, mean age at second scan = 74.06 ± 5.99 years; 9 males). These 

subjects were chosen, within our pool, because they were the only ones that had 

undergone two T1 structural images and task fMRI scans, as well as other cognitive tests. 

Participants were screened for health problems with a questionnaire. The structural MRIs 

were inspected to rule out severe abnormalities (white matter changes, ventricular 

enlargement, tumours etc.). Three of the participants showed signs of Parkinson or lesion 
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on their anatomical MRI, so they were excluded from the final sample (n = 28). All 

models and results in this current paper thus reflect 28 older adults (mean age at first scan 

= 71.61 ± 6.21 years, mean age at second scan = 74.07 ± 6.15 years; 7 males). The scans 

were 2.46 ± 0.69 years apart.  

Participants were scanned in a Siemens Trio 3T magnet. A BOLD fMRI task-rest 

sequence was administered using a reaction time paradigm, where the participant had to 

indicate on which side a cross was changing into a square, as fast as possible. The task 

consisted of eight experimental blocks, interspersed with eight resting/fixation blocks 

(respectively, 52 seconds – 20 seconds). The BOLD activity was obtained using an echo 

planar imaging acquisition (echo time, TE = 30 ms, time repetition, TR = 2100 ms, flip 

angle = 80°, field of view, FOV = 205 mm). Then, a structural T1-weighted MRI was 

acquired (TE = 2.27 ms, TR = 1900 ms, FOV = 256 mm, voxel size 1.0x1.0x1.0 mm).  

2.2.2 MRI preprocessing and analysis 

Structural T1-weighted MR images were analyzed using Freesurfer version 6.0, a widely 

used and freely available automated processing pipeline2, which allows surface-based 

three dimensional reconstruction and quantification of cortical morphology. The standard 

steps for analysis were implemented (using “recon-all” pipeline with the default set of 

parameters). Regional measures of GM volume, CT and CA for each hemisphere were 

obtained using the automated anatomic parcellation procedure. Technical details are 

found in prior publications52–54. In brief, T1-weighted images underwent preprocessing 

steps including motion correction, brain extraction, intensity normalization, and Talairach 

transformation55,56. GM and WM surface boundaries were reconstructed to estimate the 

distance between them across the cortex52. The generated cortical models were inflated 

into spheres to be registered to a spherical atlas and parcellated into regions of interest 

using Destrieux atlas52,57. Change in cortical morphology between the two scanning 

sessions was determined as cortical morphology metrics GM (delta.volume), CT 

(delta.thickness), CA (delta.area) at timepoint 2–at timepoint 1. 

 

2
 http://surfer.nmr.mgh.harvard.edu/ 

http://surfer.nmr.mgh.harvard.edu/
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Processing of the functional data were performed using FSL version 5.0 (Analysis 

Group, FMRIB, Oxford, United Kingdom) 58. Standard preprocessing were followed 

using FSL’s FEAT  and FSL’s Melodic for functional data59. Briefly, for each participant 

preprocessing steps included motion correction, slice timing, spatial normalization, 

highpass temporal filtering (100 sec), smoothing (kernel 5 mm FWHM), and linear affine 

registration (12 degrees of freedom: 3 translations, 3 rotations, 3 shears and 3 zooms) of 

the functional data to the high-resolution T1 structural image, and from T1 to 1 mm 

standard space (MNI 152). Additionally, FSL’s Melodic was used to regress signal from 

WM and CSF. 

As part of the Geneva Dataset, the subjects were performing different cognitive 

tasks, and for the current study, only the fixation/rest blocks from the block design task 

fMRI were selected to calculate BOLDSD, using a methodology previously described42. 

BOLDSD analysis was restricted to the GM using participant specific GM mask obtained 

from FSL’s FAST. First, fixation blocks were normalized so that the overall four-

dimensional mean (x*y*z*time) across brain and block was 100.  Next, for each voxel, 

the block mean was subtracted to remove block-wise drift, followed by concatenation of 

all blocks. The standard deviation of the normalized mean of the concatenated fixation 

blocks was used to obtain BOLDSD values for each brain region (n = 148) of each subject, 

as defined by the Destrieux Atlas57 using in-house MATLAB code. Change 

(delta.variability) in variability between the two scanning sessions was calculated as 

variability at timepoint 2 –  variability at timepoint 1. BOLDSD encompassing both 

timepoints was introduced as “variability” (see Regional Model). 

2.2.3 Statistical Analysis 

Linear mixed effects models (LMMs) were used to investigate the potential 

confounding effect of cortical morphology, GM, CT, CA on BOLDSD
60,61

. The LMMs 

allow estimation of the effects of explanatory variables (“fixed effects”) and their 

interactions on the dependent variable (i.e. BOLDSD), while statistically controlling for 

the effects of randomly selected participants (“random effects”) on the dependent 

variable (BOLDSD). Multiple models were run and the likelihood-ratio test was used to 1) 

investigate if introducing subjects as random effects improves the fit of the model 2) to 
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select the optimal combination of fixed effects fitted with maximum likelihood, while 

keeping the random effects structure the same. Therefore, the likelihood-ratio test via 

ANOVA was used to compare the goodness of fit of different models. R statistical 

software package (R Core Team, 2013 ) was used for all statistical analyses. Correlation 

between cortical morphology measures were computed using “cor” function in R. All 

models were fitted using the “lmer” or “lm” function in R. “lmerTest” R package was 

used to obtain summary table and p-values for linear mixed models via Satterthwaite's 

degrees of freedom method62. A spatio-temporal approach to LMMs allowed 

characterization of regionally specific variation across the brain63. This approach was 

implemented to investigate if there is a significant change in BOLD variability across 

time in all cortical regions, and if the change is region specific. Random effect structure 

with subjects varying in their “baseline” BOLD variability was retained (random 

intercept, 1|ID). Additionally, to model a different rate of change in the expected 

response levels, time varying predictors were introduced by random slopes (i.e. thickness, 

time)  (“Regional Model”). To reduce spatial correlation issues an LMM model with the 

described structure was applied at each spatial location (i.e. region of interest) 

independently. Each model produced a parameter which quantifies the mean change in 

BOLD variability (delta.variability) for that region. P-values were corrected for multiple 

comparisons using false discovery rate (FDR) at q = 0.0564.  

Models 

Model 1 = delta.variability ~ region 

Model 2 =  delta.variability ~  region+ (1 | ID) 

Model 3 = delta.variability ~ delta.thickness + region+(1 | ID) 

Model 4 = delta.variability ~ delta.area + region + (1 | ID) 

Model 5 = delta.variability ~ delta.thickness + delta.area + region+(1 | ID) 

Model 6 = delta.variability ~ delta.volume + region + (1 | ID) 

Final Model  = delta.variability ~ delta.thickness + region+ (1 | ID) 

Regional Model = variability ~ time + thickness + (1+thickness + time | ID) 
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2.3 Results 

2.3.1 Relations between cortical thickness and BOLD signal 
variability age-related changes 

The functional and structural data of 28 participants was assessed. As expected, our study 

showed that CA and GM volume are highly correlated r = 0.904, p < 0.001 (95% Cl 

0.901 – 0.908) and consequently collinearity was suspected. Multiple LMMs were 

utilized to assess the effect of neuroanatomical metrics CT, CA and GM on BOLDSD age-

related changes. Results from the linear mixed effect models run with likelihood-ratio test 

via ANOVA, are presented in Table 2-1. A) indicates that subject intercept should be 

introduced as a random effect, while B) C) D) E) show the steps that have led to the final 

model. Specifically, Table 2-1. B) and C) indicate that introducing CT or CA as 

covariates, separately, each significantly improve the fit of the model p < 0.0001, p < 

0.05, respectively. However, from D) it is apparent that adding CA to a model that 

already has CT as a covariate does not improve the fit of the model, meaning that CT 

only should be included in the final model (see “Final Model”). E) indicates that 

introducing GM as a covariate does not improve the fit of the model. Neither CT, GM nor 

CA mean changes were significant as tested with LMMs. Regional Model LMM 

indicated that neither overall nor regionally specific mean BOLDSD change was 

significant after FDR correction. 

Abbreviations: Df, degrees of freedom; AIC, Akaike information criterion; BIC, 

Bayesian information criterion; logLik, log-likelihood; Chisq Chi, Chi-Square test 

statistic; Pr > Chisq. P < 0.05. ID represents subject identification number. 

Table 2-1 Results from likelihood-ratio test via ANOVA for model comparison.  

(A) Determine if random effects for subject intercept should be introduced: 

Model 1 delta.variability ~ region 

Model 2 delta.variability ~ region + (1|ID) 

 Df AIC BIC logLik deviance Chisq Chi Df. Pr > Chisq 

Model 1 149 -2771.9 -1828.8 1534.9 -3069.9    

Model 2 150 -3744.8 -3744.8 2022.4 -4044.8 974.97 1 < 2.2e-16  
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(B) Determine if introducing thickness as a covariate improves the goodness-of-fit: 

Model 2 delta.variability ~ region + (1|ID) 

Model 3 delta.variability ~ delta.thickness + region + (1 | ID) 

 Df AIC BIC logLik deviance Chisq Chi Df. Pr > Chisq 

Model 2 150 -3744.8 -2795.4 2022.4 -4044.8    

Model 3 151 -3765.5 -2809.8 2033.8 -4067.5 22.691 1 1.903e-06 

         

(C) Determine if introducing area as a covariate improves the goodness-of-fit: 

Model 2 delta.variability ~ region + (1 | ID) 

Model 4 delta.variability ~ delta.area + region + (1 | ID) 

 Df AIC BIC logLik deviance Chisq Chi Df Pr > Chisq 

Model 2 150 -3744.8 -2795.4 2022.4 -4044.8    

Model 4 151 -3749.0 -2793.3 2025.5 -4051.0 6.2025 1 0.01276 

         

(D) Determine if introducing both area and thickness as covariates as compared to just 

       one improves the goodness-of-fit 

Model 3 delta.variability ~ delta.thickness + region + (1 | ID) 

Model 5 delta.variability ~ delta.thickness + delta.area + region + (1 | ID) 

 Df AIC BIC logLik deviance Chisq Chi Df. Pr > Chisq 

Model 3 151 -3765.5 -2809.8 2033.8 -4067.5    

Model 5 152 -3766.7 -2804.7 2035.4 -4070.7 3.2151 1 0.07296 

 

(E) Determine if introducing GM volume as covariate improves the goodness-of-fit: 

Model 2 delta.variability ~ region + (1 | ID) 

Model 6 delta.variability ~ delta.volume + region + (1 | ID) 

 Df AIC BIC logLik deviance Chisq Chi Df. Pr > Chisq 

Model 2 150 -3744.8 -2795.4 2022.4 -4044.8    

Model 6 151 -3743.1 -2787.3 2022.5 -4045.1 0.2245 1 0.6357 

2.4 Discussion 

2.4.1 Cortical Thickness and its Association with BOLDSD 

In this study we aimed at determining the contribution of cortical morphology to 

BOLDSD in order to better understand structure-function relationships in the brain. 

BOLDSD changes across the lifespan have been shown to be robust to certain vascular 

factor such as cerebral blood flow, BOLD cerebrovascular reactivity, maximal BOLD 
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signal change65, as well as GM volume changes48. However, using LMMs, we found that 

functional alterations in aging as captured by BOLDSD are confounded by the structural 

metric CT. This is not surprising, considering that it is well known that BOLD signal 

change/activation is dependent on the laminar organization of the cortex, and 

consequently is influenced by its depth or thickness40,66,67. In fact, neurovascular coupling 

is reported to vary by cortical depth and layer68.  

In a longitudinal study investigating CT, GM volume, CA across the lifespan, 

Storsve et al. (2014) reported cortical morphology metric specific and region specific 

rates of mean annual percentage change (APC) in healthy adults aged 23-87 years. In 

most regions, GM volume has a mean APC of – 0.51%,  CT of -0.35%, CA of -0.19%. 

Other longitudinal studies in older adults, report similar reductions: in GM volume, mean 

APC ranging from - 0.5%  to - 2.1% ± 1.6%35,69 in CT, mean APC –0.3%70. In our 

sample, the change in cortical morphology from scan 1 to scan 2 (2.5 years apart) was not 

statistically significant. However, the findings reported by these longitudinal studies 

suggest that while the neuroanatomical alterations may be too subtle to reach statistically 

significance in the investigated timespan of 2.5 years, they may still contribute to 

BOLDSD age-related findings. Particularly, accounting for CT age-related changes may 

help “unmask” the functional value of BOLDSD. 

The hemodynamic properties of each brain region are highly correlated with its 

cortical structure20,41. Thicker regions show decreased neuronal density, and higher 

concentration of glial cells and synapses relative to neurons. Thicker areas tend to extract 

less oxygen from the blood, as measured by oxygen extraction ratios (i.e. expressed as 

local-to-global ratio). These findings indicate that laminar differences in cellular content 

impact neurovascular coupling mechanisms, which in turn may compromise the power of 

BOLDSD measurements to detect “real” changes in neuronal variability processing. 

Although, laminar differences in BOLDSD remain rather elusive, our study suggests the 

that CT should be considered in BOLD variability studies. 
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2.4.2 Age-related changes in BOLDSD  

In our study we did not find a significant change in BOLDSD, likely due to the low 

timespan between scans (2.5 years), and relatively low sample (n = 28). Overall, most 

studies reporting a decrease in BOLDSD suggest that this finding may indicate structural 

reductions in synaptic complexity and integrity, as well as functional decline in neural 

optimization and flexibility42. Burzynska et al, (2015) reported a positive correlation 

between increased microstructural integrity of WM and BOLDSD in healthy adults, 

consequently warranting the consideration of structural alterations in variability studies. 

Two seminal studies investigated BOLDSD differences in aging alone42 and in 

relation to performance on cognitive tasks71 between a young group of participants (20-

30 years) and an older one (56-85 years) and found both increases and decreases in 

regional variability with younger age alone, and younger age and better performance 

making it rather difficult to isolate specific key contributing regions. Most regions in 

these two studies showed the same trend but there were some inconsistencies. For 

example, superior frontal gyrus was reported show greater variability with younger age 

and better performance in one study, while another one reported that its variability 

increases with age. CT was not considered in any of these studies. 

The relationship between cognitive performance and/or flexibility and BOLDSD is 

definitely complex and task dependent. Behavioral studies indicate age-related 

differences in intra-individual variability on cognitive performance tests involving 

reaction time, and working memory. Older adults showing higher intra-individual 

variability on reaction time tests than younger adults, while the opposite is observed on 

working memory tests72. 

2.4.3 Possible confounds in BOLDSD studies 

Most studies investigating BOLD variability utilized a cross-sectional design while we 

used a within-subject design. This design is a highlight of our study because it allows for 

the investigation of normative age-related differences, specifically intra-individual effects 

of the processing of aging on cortical morphology and BOLDSD, rather than simply age 

differences across groups.  Importantly, the within-subject design helps account for 
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numerous sources of individual differences that may affect BOLD variability such as 

differences in dopaminergic neurotransmission46 and even differences in tendency for 

financial risk taking73. Given that in our study the participants were scanned at an interval 

of approximately 2.5 years, we were able to at least partially account for such factors. 

Furthermore, it is clear from the literature that there are numerous lifestyle factors (i.e. 

socioeconomic status, education) that may contribute to individual neuroanatomical 

alterations, which in turn may confound BOLD variability studies74. This further supports 

the findings of our study, specifically that CT is a neuroanatomical metric that should be 

accounted for. 

 Lastly, there may be inconsistency in results between studies due to: 1) using 

task-fMRI and resting-state fMRI, 2) calculation of BOLD signal variability using 

standard deviation vs mean-square successive difference) (for review, Garrett et al., 

2013), 3) type of statistical analysis performed (e.g. partial least squares method, LMM, 

general linear model) 4) not accounting for contribution of CT and the other mentioned 

sources of individual differences. 

2.4.4 Limitations 

The main limitation, as discussed above and further addressed by Garrett et al. (2013), 

Scarapicchia et al. (2018), are the lack of standardization in acquiring and analyzing the 

fMRI data. Additionally, the sample used in our study consists of a relatively small 

sample of older adults and rather short scan-rescan time, consequently this limits our 

ability to make strong generalization to other age groups or longer time spans, 

respectively. Nevertheless, since studies show that the brain undergoes extensive annual 

structural alterations across the lifespan at different rates, our finding that CT contributes 

to BOLDSD alterations, remains an important consideration.  

2.5 Conclusion 

In conclusion, this Chapter indicated that structure-function relationships in the brain are 

an important consideration in the design and interpretation of neuroscience studies. 

Contrary to a view that BOLD variability is just “noise”, we consider it to be emerging as 

an important metric of normal aging. Keeping in mind that across the lifespan there are 
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considerable cortical morphometry alterations and that cortical depth affects the BOLD 

signal, we reported that cortical thickness contributes to BOLDSD changes, in an older 

sample of health adults.  
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Chapter 3  

3 Visualization of Multimodal Brain Connectivity for 
Neurosurgical Planning using Augmented Reality 

 

This Chapter is adapted from:  

D. R. Pur, D. Kikinov, S. de Ribaupierre, R. A. Eagleson (2019): “Visualization of 

Mutimodal Brain Connectivity for Neurosurgical Planning using Handheld Device 

Augmented Reality” in Proceedings of the 5th World Congress on Electrical Engineering 

and Computer Systems and Sciences (EECSS’19), 126. DOI: 10.11159/icbes19.126 

3.1 Introduction 

Visualization of multimodal brain connectivity in the form of functional (FC) and 

structural connectivity (SC) allows the investigation of structure-function relationships in 

the brain in an intuitive way. One major application beside studies basic neuroscience is 

in preoperative planning for neurosurgery.  

Numerous neurosurgical procedures require extensive multimodal preoperative 

brain mapping for identification of a precise surgical trajectory that will spare eloquent 

cortex (i.e. cortex that if damaged will lead to severe neurological deficits). The 

introduction of minimally invasive surgeries, which require a small “keyhole” entry point 

into the skull, further emphasizes the need for the surgeon to be able to preoperatively 

visualize and interact with relevant brain structures to safely plan the neurosurgical 

trajectory. In this setting, understanding and visualizing structure-function relationships is 

crucial. 

Conventionally, surgeons are required to do cognitively demanding mental 

transformations to coordinate between preoperative two-dimensional (2D) patient-

specific magnetic resonance images (MRI) and patient reference frames (i.e. three-

dimensional, 3D, anatomy) 75. Additionally, they need to adeptly manipulate instruments 

in the surgical field while looking at a 2D display of preoperative images76. This is 
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particularly challenging in the case of junior trainees who may have limited previous 

surgical experience and less developed spatial and perceptual intuition. Ultimately, this 

leads to longer surgeries and increases the chance of error associated with reduced 

performance due to cognitive overload75. 

Augmented reality (AR) incorporates patient-specific virtual preoperative data 

onto the user’s vision of the real world76,77. Medical applications of AR are on the rise in 

various fields of medicine both surgical (e.g. trajectory planning, training) and non-

surgical (educational, psychiatric or psychological treatments). These have been 

extensively reviewed previously. 78–81. AR use in neurosurgery includes AR systems for 

surgical planning, surgical navigation, or surgical training. These feature various 

methodologies and implementations (e.g. head-mounted display, augmented monitors, 

augmented optics) 82,76. Related work to NeuroAR, includes AR presurgical planning 

simulators aimed at facilitating training and planning of surgeries prior to the actual 

procedure, such as ImmersiveTouch83,84, a wearable Hololens device85, mobile device AR 

applications 86,87 (for review see82,88). However, the majority of existing neurosurgery AR 

systems are devoted to intraoperative use for tumor resection, open neurovascular 

surgery, ventriculostomy, or spinal surgery76. Additionally, in contrast to NeuroAR, none 

of the surveyed systems made use of advanced image processing techniques to derive and 

display FC and SC information. The benefit of using multimodal brain connectivity 

measures in brain mapping is well established 89. Therefore, FC and SC image fusion 

display in AR is of particular interest because it not only adds visuospatial context but it 

also has the potential to provide information about the importance of different brain areas 

based on preoperative scans (i.e. eloquence scores)90,91.  

In this Chapter, we introduce a mobile device AR system, NeuroAR, designed and 

evaluated with human factors in mind, which allows real-time, intuitive, 3D visualization 

and interaction with brain structures and multimodal brain connectivity to facilitate 

training for neurosurgical procedures. Specifically, the individualized identification of 

eloquent cortex is facilitated by our system which displays both patient specific brain 

structural connectivity (SC) and functional connectivity (FC), as well as anatomical 

landmarks derived from MRIs. To evaluate the performance of the AR application, we 
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extended Fitts’ methodology and applied to a 3D pointing task guided by a 3D 

environment, presented on a mobile device screen (i.e.  2D display).  

3.2 Materials and Methods 

3.2.1 MRI acquisition and preprocessing 

A functional resting-state fMRI (rs-fMRI) (TE = 27 ms, TR = 2100 ms, flip angle = 80°, 

FOV = 200 mm), structural T1-weighted image (time echo [TE] = 2.27 ms, time 

repetition [TR] = 1900 ms, field of view [FOV] = 256 mm, voxel size 1.0x 1.0 x1.0 mm) 

and diffusion weighted image, DWI (TR = 8400 ms, TE = 88 ms, b value = 1000 s/mm2, 

and voxel size 2.0 × 2.0 × 2.0 mm) were acquired from a healthy participant (30 years 

old, female). All the scans were acquired using a Siemens Trio 3T magnet.  

The MRI data were processed and then used as inputs in the AR application.  The 

T1-weighted image was analyzed using Freesurfer (v5.3) automated processing pipeline3 

to obtain the topological representation of the GM (i.e. cortical brain regions) in the form 

of a mesh brain surface. The standard steps for processing were implemented: motion 

correction56, brain extraction using a watershed/surface deformation procedure 92, affine 

transformation (12 degrees of freedom) to the Talairach image space, non-uniform 

intensity normalization55. The brain was segmented into white matter (WM), GM, and 

cerebrospinal fluid (CSF). Next, surface deformation following voxel intensity gradients 

to optimally place the grey/white and gray/CSF borders at the location where the greatest 

shift in intensity defines the transition to the other tissue class are performed to create a 

3D surface model of the brain 12,52,93 (Figure 3-1). Freesurfer’s Desikan-Killiany Atlas 

was used to characterize the brain regions used in this study94.  

 

3
 http://surfer.nmr.mgh.harvard.edu/ 
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Figure 3-1 3D model of the brain obtained from FreeSurfer. Different views are 

presented: (a) sagittal, (b) coronal 

Next, 3D Slicer (v4.9)4 module Model Maker was used to create individual 3D 

surface model of each brain region using each region’s boundaries via a marching cube 

algorithm. The DWI was processed with FSL “topup” and eddy current correction to 

reduce artefacts (FSL version 5.0; Analysis Group, FMRIB, Oxford, United Kingdom). 

3D Slicer modules DWI to DTI Estimation and Tractography Label Map seeding were 

used to generate fiber tracts of the WM (i.e. tractography) as VTK5 files using the DWI 

image (Figure 3.2). The algorithm matching brain regions to their WM fibers is based on 

MultiXplore6, a scriptable module which can be added to 3D Slicer, previously discussed 

by Bakhshmand et al., (2017)91. First, to generate the SC matrix using MultiXplore, the 

number of WM fibers (i.e. modelled as streamlines) was calculated for each pair of 

cortical brain regions. The WM fibers were clustered based on their intersection with 

cortical brain regions. The brain regions were nodes and the number of streamlines were 

edges in the SC matrix.   

 

4
 http://slicer.org 

5
 https://www.vtk.org 

6
 http://www.nitrc.org/projects/multixplore/ 
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Figure 3-2 Tractography obtained with 3D Slicer, with (a) sagittal, and (b) coronal view. 

The average of fMRI signals in each brain region, as indicated by the Desikan-

Killiany atlas, was extracted from the pre-processed rs-fMRI using a pipeline consisting 

of tools from FSL and Niftireg7. FSL was used for standard pre-processing steps: motion 

correction, slice timing, spatial normalization, high pass filtering (100 sec), smoothing 

(kernel 5 mm FWHM), regression of signal from WM and cerebral spinal fluid. NiftiReg6 

was used to register the Desikan-Killiany parcellation of the T1-weighted image 

previously obtained to the functional data. 

The average fMRI signals of each brain region were used to derive the FC matrix 

using a MATLAB script described in Bakhshmand et al., (2017) based on dynamic FC 

method (time window = 30 scans). 

3.2.2 Augmented Reality Processing 

For the 3D rendering of augmented reality, Unity8 was used with Vuforia Engine 

(Unity: v2018.1.0, Vuforia: 7.2.24), any Android device running Android 7.0 or higher; 

tested on Samsung Galaxy S8+, and Samsung Galaxy Tab S2. Given the VTK file 

format, a Unity-compatible model had to be generated. This was done manually, by using 

 

7
 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg 

8
 http://unity3d.com 
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Paraview9 to change each VTK file into a .x3d file and then through Blender10 by 

importing the .x3d files and exporting them as .obj files. To ensure WM fiber visibility, 

in Blender, the bevel attribute of the shape’s geometry was adjusted (between 0.01 to 

0.1). Each model was individually brought into Unity and grouped together. For each 

fiber tract a button was created and connected to a brain region based on determined SC. 

These buttons were then added the functions to show or hide the associated fiber and 

connected regions. The FC matrix was also imported into Unity where it was parsed and 

saved during runtime. Using the parsed matrix data, the buttons for each fiber bundle 

were then coloured based on the correlation/connectivity strength of the two regions in 

the matrix, with dark red being at 1, green at 0, dark blue at -1, with in-between values 

being coloured along a gradient. A new Unity material with a custom vertex normals 

shader was created for use on the fibers. For each vertex, their normal was calculated and 

then translated into a colour: an RGB value between 0 and 1. This gives the fibers a 

distinct colour based on their three-dimensional direction. 

3.3 Uses 

The user has many options on screen to choose from a) show, hide all the WM fiber tracts 

with their associated brain regions, b) individually show, hide WM fiber tracts, c) 

visualize the tractography (all WM fiber bundles) within the brain surface mesh or by 

itself, d) show, hide transparent brain surface mesh of the left and right hemispheres 

(Figure 3-3). The background of the buttons on the menu are coloured based on FC. With 

these options the user is able to visualize as much of the tractography as they want, with 

or without the associated brain regions, and isolate certain clusters of brain regions of 

interest in the participant’s brain. There is also an option for the user to see which 

features are connected via interaction, where they can use an interactive tool to select 

different brain regions or the WM fibers between them. 

 

9
 https://www.paraview.org 

10
 https://www.blender.org 
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Specifically, the user can use an interaction tool to touch the augmented model. If the tool 

comes into contact, via Unity’s built-in collision detection system, with any WM fiber 

bundles it will highlight the contacted fibers as well as their source brain regions in 

yellow. This allows the user to physically test surgical paths and view which areas would 

be affected. The user can only interact with shown tractographies (Figure 3-3). 

 

Figure 3-3 The user's view through the mobile screen of the AR application. The user can 

explore the neuroanatomy and structural connectivity of the brain using the tool.  A) 

Axial view of the cortical surface mesh model of cortical grey matter. B)  Sagittal view of 

the cortical surface mesh model of cortical grey matter. C) Depiction of user selecting a 

brain region on the cortical surface mesh model using the interactive tool. Region 

selected is yellow. D) View of the user exploring the structural connectivity between 

various regions (listed on the left side of the figure). The full model is hidden and only 

the brain regions selected are shown. 



31 

 

 

Figure 3-4 The user's view through the mobile screen of the AR application including the 

menu. The user can explore the neuroanatomy and both the structural and functional 

connectivity of the brain using the tool. Background of the buttons indicate the strength 

of the functional connectivity between the regions -1 strong negative, +1 strong positive. 

The user can explore these functionalities using the scroll bar. 

3.4 Experiment  

All procedures performed in the study involving human participants were in accordance 

with the ethical standards of the ethics committee of the Faculty of Psychology and 

Educational Sciences of the University of Geneva and the Swiss Ethics committee, and 

with the 1964 Helsinki declaration and its later amendments. Informed consent was 

obtained from all individual participants included in the study. 

Ten subjects participated in the experiment. The participants were university 

graduate students or undergraduate students. They all had normal or corrected-to-normal 

vision. All participants were novices in using AR devices and had minimal to no 

neuroanatomical knowledge. Therefore, 1 training trial was performed before engaging in 

the test tasks.  

A study consisting of a pointing task was used to evaluate the performance 

achieved by the AR application. Studies indicate that Fitt’s law28, a mathematical model 

used to describe the relationship between target size, distance, and movement time is a 

validated method for evaluating graphical interfaces and pointing tasks. First, an index of 
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difficulty (ID) was calculate for each fiber tested, to evaluate the difficulty of the pointing 

task. Index of performance (IP) was used to calculate movement time based on ID to 

indicate human performance. Human performance is defined as a trade-off between 

accuracy and speed.  

 

𝐼𝐷 = log2(2𝐴/𝑊)                                                                                    

(1) 
 

Where A is the distance between the center of the start cube and the center of the fiber, 

and W is the volume of the fiber. 

𝐼𝑃 =
𝐼𝐷

𝑀𝑇
                                                                                                     

(2) 

 

Where ID is the index of difficulty and MT is the movement time for the task.  

Unity with Vuforia were used for augmented reality rendering (Unity: v2018.1.0, 

Vuforia: 7.2.24), testing was done on Samsung Galaxy S8+ (Figure 3.5). Basic 

instructions about navigating the AR environment were given to the users. The users had 

a trial run to get comfortable using AR tool. Once the users were comfortable with 

interaction between the tool and the fibers, the testing began.  

Briefly, the users had to push a button “Perf Test”, use the tool to collide with an 

AR cube, use the tool to touch the fiber, and finally touch any point on the screen when 

they were confident with their interaction. Upon clicking the button, the menu was 

hidden from the user, a WM fiber bundle was isolated along with the brain regions it 

connects and the start cube was generated. Besides touching the WM fiber and the cube 

nothing else can be done, limiting random mistakes from users. Once the user touches the 

cube, it disappears giving the user the visual cue that the test has begun, where they are 

expected to touch the fiber; at this point data collection begins. When the user was certain 

they touched the fiber, they had to tap the phone screen with their finger, ending the data 

collection and the test for that fiber. This screen tap can only be done after the start cube 

has been touched, meaning that the user could not accidentally end the test before it 

began. The user repeated the process for 24 WM fibers which were all logged. Once all 
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the data had been saved, the original menu reappears signalling to the user that they have 

completed the task. 

Each frame, the position (3D, x, y, z in units used by Unity) and orientation 

(quaternion, w, x, y, z) of the needle relative to the fiber was logged, along with the time 

stamp. This resulted in position and orientation data being recorded about 60 times per 

second. Once the user completed the task by tapping the screen, the positional and 

orientation data was saved as a CSV file with the associated task’s number.  Upon 

completion a second CSV file was generated which had the name of the fiber in the task, 

the calculated distance of the fiber from the start cube, the volume of the fiber and the 

total task time (time recorded at the end, subtracted by the start time). The volume of the 

fiber was calculated using the triangles and vertices of the fiber’s mesh, resulting in 

larger fibers having larger volumes.  

The test duration was approximately 15 minutes. 

3.5 Results  

When using the AR application, anatomical detail (brain regions/structures) from the  

segmented T1-weighted image was able to be fused with a) the SC obtained from the 

processed DWI scan in the form of WM fiber bundles, b) the FC obtained from the 

processed rs-fMRI in the form of color-coded buttons in the scroll menu. The buttons link 

Figure 1. The user’s view during the pointing task through the mobile screen of the augmented reality application. Show LH, show left hemisphere; Show RH, show right hemisphere, Hide All, hide all brain regions, Show All, show all brain regions. 
Menu takes the user to the functional connectivity buttons. 

Figure 3-5 The user’s view during the pointing task through the mobile screen of the 

augmented reality  application. Show LH, show left hemisphere; Show RH, 

show right hemisphere; Hide All, hide all brain regions; Show All, show all 

brain regions; Menu takes the user to the functional connectivity buttons. 
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two cortical brain regions. Table 3-1 presents the results of the pilot user performance 

experiment (see Appendix A. for results at all targets).  

Table 3-1 Results of users at the first 5 targets. For each pointing task/fiber target, the 

average and standard deviation of the performance of all subjects at that task was 

calculated. The volume and index of difficulty were constant across subjects and varied 

per task. MT, movement time; IP, index of performance; Volume, volume of the fibers; 

ID, index of difficulty. 

 

  Avg SD Avg SD     

Task no. MT (seconds) IP (bits/seconds) Volume (u3) ID (bits) 

1 3.397 ± 1.302 1.698 ± 0.521 0.009224 5.198 

2 7.787 ± 3.745 1.653 ± 1.257 0.000541 9.301 

3 5.233 ± 5.047 3.155 ± 1.524 0.000199 10.777 

4 3.318 ± 1.601 3.316 ± 1.247 0.000501 9.448 

5 9.451 ± 8.205 2.324 ± 2.120 0.000128 11.403 
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Figure 3-6. Relationships between indices calculated according to Fitts’ Law. The 

values plotted represent the average response of the participants at each of the 24 

targets. A) Plot indicates average user movement time as it relates to index of 

difficulty for each target attempted. Pearson’s correlation coefficient was 

calculated as r = 0.22. X-axis represents index of difficulty (bits), Y-axis 

represents movement time (seconds). B) Plot represents the relationship between 

task difficulty and volume of targets. Pearson’s correlation coefficient was 

calculated as r = -0.82. X-axis represents volume (u3), Y-axis represents index of 

difficulty (bits). 

 

B) 
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Overall, our data showed that there was relatively good consistency in the responses of 

the users. As task difficulty increased so did MT, depicted in Figure 3-6 A). Pearson’s 

correlation indicated a low positive correlation between MT and ID, r = 0.22. As the 

volume of the WM fibers increased task difficulty decreased, depicted in Figure 3-6 B). 

As expected, Pearson’s correlation indicated a strong negative correlation between 

volume of target WM fibers and ID, r = -0.82. 

Based on the results of the performance test, the users found the application useable. 

Performance was better and more consistent at some targets (e.g. 7, 1, 9 ) than others (5, 

20, 16) (see Figure 3-7). 

Figure 3-7. Average index of performance across the 10 users per pointing task/fiber 

target (n = 24). Targets were sorted on the X-axis in ascending order based on the value 

of the index of performance. Error bars represent the standard deviation of the average 

index of performance  
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3.6 Discussion 

Our mobile AR implementation allows user friendly visualization and exploration of 

multimodal brain connectivity in the context of anatomical landmarks. Intuitive 

incorporation of brain connectivity in the form of SC and FC in the preoperative plan can 

help the surgeon choose a surgical trajectory that minimizes the risk of post-operative 

deficit. Furthermore, visualization of brain connectivity in AR facilitates the study 

structure-function relationships at the level of the individual. 

We implemented a pointing task experiment to evaluate the performance and 

usability of the AR application. There was a weak positive linear relationship between the 

difficulty of the task (i.e. ID) and MT required to complete it (r = 0.22), depicted in 

Figure 3-6., A). The assumption is that as the difficulty of pointing to the WM fiber 

targets increases so does the time to mentally choose a trajectory and to execute the 

movement. There are several factors that may have contributed to a relatively low 

correlation. Notably, there were differences in the way users approached the targets. For 

example, some choose a trajectory and stuck to it while others changed their mind as they 

approached the target. Moreover, MT may have also been affected by sporadic issues 

with tracking of the tool. There was a strong negative correlation between task difficulty 

and volume of the WM fiber target (r = -0.82), depicted in Figure 3-6., B). Very small 

targets were the most difficult to touch. As their volume increased the difficulty 

decreased, likely because they were more easily identified on the display of the mobile 

device. The overall trends presents in Figure 3-7. shows the average performance of the 

users as it relates to target number. User performance was similar across the different 

targets, confirming the usability of the application. Unexpected peaks in performance can 

be attributed to user error, as some users accidentally ended the task without touching the 

fiber or lost tracking of the tool, which led to higher standard deviation (most notable at 

task 2, 5, 10, 20). 

3.7 Conclusion 

In this Chapter, we examined brain structure-function relations through visualization of 

multimodal brain connectivity using augmented reality. In terms of clinical applications, 
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AR visualization and interaction with preoperative multimodal brain connectivity allows 

the surgeon to safely explore the patient anatomy and identify eloquent cortex based on 

advanced image processing, as well as try different neurosurgical approaches prior to 

surgery. Furthermore, our tool can also be used as a potential educational model for 

neurosurgical residents and medical students for neurosurgical planning. When tested 

amongst a pilot group of students, the users found the application useable and were able 

to interact with both small and large fibers without any issues. As expected, when 

targeting fibers with higher indices of difficulty, the movement time of the users 

increased, which is consistent to the extended Fitts’ methodology 
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Chapter 4  

4 Presurgical brain mapping of the language network in 
pediatric patients with epilepsy 

4.1 Introduction 

Epilepsy affects neural processing and often causes reorganization of language networks 

through multifactorial age-dependent cortical plasticity7. Surgery in select cases of 

children with pharmaco-resistant focal epilepsies can significantly improve their quality 

of life and cognitive outcomes by providing them with seizure freedom or a period of 

reduced seizure frequency during critical periods of childhood development95,6,96.  

Preoperative assessment of language localization is necessary to evaluate and 

minimize the risk of post-operative deficit. Brain mapping to determine the brain regions 

involved in language functioning is critical in children with epilepsy because they often 

present with an atypical pattern for language. Both inter-hemispheric and intra-

hemispheric language network reorganization are common in the setting of pediatric 

epilepsy 97,98,99. 

The clinical gold standard procedures for mapping eloquent cortex, direct cortical 

stimulation (DCS), either from subdural grids and electrodes or 

stereoelectroencephalography (SEEG) during an invasive monitoring at the bedside, or in 

the operating room with a stimulator, require staged surgery with mapping done at the 

bedside or awake surgery. These invasive techniques have the benefit of being highly 

specific (i.e. show only areas critical for language)7 but are technically challenging (e.g. 

require large area to interrogate) and carry non-trivial risks for complications associated 

with electrode placements100,101.  It is more difficult to obtain results in children than 

adults during stimulation because of their inability to comply due to age or cognitive 

delay and their neurophysiology – higher stimulating thresholds6,102.  

Functional magnetic resonance imaging (fMRI), indirectly measures neuronal 

activity by analyzing fluctuations in the blood oxygen level dependent (BOLD) signal in 
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response to a task (task-fMRI) or at rest (resting-state fMRI), and is increasingly used as 

a non-invasive language mapping alternative with relatively good concordance with 

conventional methods7,103,104.  Task-fMRI requires the performance of several language 

tests (e.g. verb generation, picture naming) each aimed at capturing distinct aspects of 

expressive and receptive language. The quality of the output depends on adequate 

performance on multiple demanding tasks making it relatively impractical in younger 

children and/or children with language deficits/delays caused by the epilepsy, even 

though mapping is critical in these very patients. Therefore, task-fMRI shares same of the 

same limitations as stimulation techniques. 

  Recently, resting-state fMRI (rs-fMRI), a non-invasive, “task-free” technique 

based on low-frequency temporal correlations of BOLD signal at rest24, has shown 

potential to overcome these limitations. The language network is one of the resting-state 

networks (RSN) that can be obtained by applying functional connectivity analyses to rs-

fMRI data. Interestingly, there is evidence that RSNs and task-fMRI activation maps 

show similar topologies with high correspondence, suggesting that task activation is 

already contained in the more comprehensive rs-fMRI data105. 

Several studies have investigated its use in presurgical planning in adults with 

epilepsy or brain tumors, with favorable concordance with conventional methods106,107. 

Even though there are limited reports of rs-fMRI brain mapping in pediatric epilepsy 

cases, the results are promising and warrant further investigation. Comparable 

localization was reported when comparing rs-fMRI maps with stimulation sites for 

sensorimotor mapping108, and rs-fMRI maps with task-fMRI maps for language109. Past 

studies investigated its applicability through case series of children with various 

pathologies including epilepsy110111 , while others have assessed its potential to be 

integrated in the clinical flow112,23.Three studies suggested that it is possible to identify 

language areas from rs-fMRI at the individual subject level using a template-matching 

procedure. One of these studies was performed in healthy children113, and the other two 

in adults with brain lesions, tumours or cavernous angiomas114,115. Despite advances in 

using rs-fMRI to map language networks more studies are necessary to establish its 
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reliability in the setting of pediatric epilepsy, especially in young children since their 

distinct neurophysiology requires special considerations. 

In this Chapter, we extracted language networks from rs-fMRI data in a cohort of 

young pediatric patients with epilepsy presenting for preoperative mapping. Rs-fMRI 

data was acquired while the patients were watching an animated movie. This was done 

retain their attention and reduce the chance for movement. Language networks were 

identified at the individual level by performing a spatial similarity analysis with language 

network templates via a template-matching procedure. Additionally, we examined 

lateralization concordance of these rs-fMRI-derived language networks with task-fMRI 

derived ones. We hypothesized that language networks can be identified from rs-fMRI by 

applying functional connectivity analyses, and explored methods for their visual and 

semi-automatic identification at the individual level.  

4.2 Materials and Methods 

Data was acquired clinically and analyzed retrospectively with approval from The 

University of Western Ontario Research Ethic Board. Children were scanned from March 

2019 to December 2019, after having a short introduction on what would happen in the 

scanner, and the tasks they had to do. All imaging was acquired in one session. All 

children who underwent conventional structural imaging (T1-weighted), task- and rs-

fMRI (T2-w) as part of their clinical preoperative epilepsy protocol were included.  

4.2.1 MRI acquisition and experimental paradigm 

Imaging was acquired on a GE 1.5 Tesla MRI scanner. Standard anatomical imaging 

included T1-weighted Fast Acquisition with Multiphase (FAME) in 1 x 1 x 1 mm voxels 

with the following parameters: slice thickness = 2 mm; repetition time (TR) = 9.2 ms; 

echo time (TE) = 4.2 ms; matrix size = 200 × 200; field-of-view (FOV) = 160 mm × 160 

mm; acquisition time 4 min, 45 sec. For the task- and rest-based fMRI session a T2∗ 

weighted echo planar imaging (EPI) sequence in 3 x 3 x 3 mm voxels was used with the 

following parameters: TR = 2.0 sec; TE = 40 ms; matrix size = 48 x 48; FOV = 200 x 

200 mm; flip angle 60◦; slice thickness 3.5 mm. 
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Task-fMRI were all block designed tasks and included 3 tasks: one motor (i.e. 

hand open/close fist) and two language (verb generation, object naming). The language 

tasks consisted of verb generation and picture naming presented in a block-design scheme 

(rest, stimulus, rest, etc.): 5 blocks, 25 sec rest, 42 sec stimulus, ~5:50 min. For some 

cases, when the children showed signs of reduced tolerance to being in the scanner, a 

shorter version was used (3 blocks). Each patient received one-on-one pre-scan 

instructions and a trial run. The verb generation task consisted of an image of an animal 

or child engaged in an action followed by “is” (i.e. “The cat is …”). Auditory description 

was provided, as some children had not yet learned how to read or had language delays. 

The patient was asked to say out loud what they thought the animal/child was doing.  As 

part of the picture naming task, the patients saw an image of an object or animal, and 

were asked to think about what they it was. During the rest blocks, “rest” was shown on 

the screen.  

For the resting-state acquisition the children watched a stop-motion animated 

television series (~5 min). This was done to retain their attention and to reduce 

movement. Overall, the entire scanning session duration was approximately 1 hour.  

4.2.2 MRI preprocessing and analysis 

Resting-state time-series were preprocessed and analyzed using tools from the 

FMIRB FSL Software Library11. Briefly, standard preprocessing steps were performed: 

motion correction, skull stripping (i.e. remove non-brain tissue), spatial smoothing using 

Gaussian 5mm full-width at half maximum kernel, intensity normalization, high-pass 

100sec. Next, we used Independent Component Analysis (ICA) through Model-Free 

FMRI Analysis (Multivariate Exploratory Linear Optimized Decomposition into 

Independent Components or MELODIC) to extract language networks from the resting-

state data. This is a data-driven approach that decomposed the resting-state data into 

statistically independent components, each component represented by a spatial map and 

time-course. One or more component may represent a functional network. To bring all 

 

11
 www.fmrib.ox.ac.uk/fsl 
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data in a common space, the resting-state and task spatial maps were linearly registered to 

the structural image and then non-linearly to a pediatric template in Montreal 

Neurological Institute116. Due to the variability in statistical thresholding of subject-level 

analyses, and lack of standardization of optimal ICA methodology, the resting-state 

analysis was performed at multiple thresholds from z = 2 to z = 6 in steps of 0.5, and ICA 

maps were generated for 20 (ICA_20), 30 (ICA_30), and 40 (ICA_40) target components 

and by automatic dimensionality estimation (ICA_auto). This allowed investigation of 

the effect of statistical thresholding and ICA order on the template-matching procedure. 

To identify resting-state fMRI-derived language networks we performed a 

template-matching procedure. It was performed at the individual level by calculating the 

overlap between each multi-thresholded resting state ICA spatial maps and the functional 

language templates (previously described in detail117). The language templates included 

the following areas: in the left hemisphere: the angular gyrus, the superior frontal gyrus, 

the medial frontal gyrus, the inferior frontal gyrus, the inferior frontal gyrus pars orbitalis, 

the middle posterior temporal, posterior temporal, middle anterior temporal and anterior 

temporal regions; and in the right hemisphere: the middle anterior temporal and middle 

posterior temporal regions. These were combined into 6 language templates: bilateral, 

bilateral frontal, left, right, left frontal, right frontal, aimed at being comprehensive 

enough to capture various aspects of language presentation including language 

reorganization specific to different epilepsies. A similar template-matching was 

previously described in healthy children113 and adults with brain lesions114. The DICE 

coefficient was calculated to objectively measure the voxel overlap between potential 

resting-state language components (r) vs the language templates (t). It varies between 0 

and 1, with higher values indicating more similarity: 

D =
2 (t ∩ r)

t + r
 

For each of the 4 ICA groups and at the 9 thresholds, DICE coefficients were calculated 

to generate 36 matrices of rs-fMRI target components x language templates overlap. This 

visual summarization of data also allowed investigation of the effect of z-threshold and 

ICA order on the template-matching process. 
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To identify language networks, for each individual subject, rs-fMRI target 

components were ranked according to the highest DICE coefficient, and those with the 

highest overall overlap with language templates, across all thresholds and all four ICA 

order groups map were selected. From these, the best 3 rs-fMRI ICA components across 

all thresholds were further inspected as candidates for the language network. Next, 

percent specificity and sensitivity were calculated for each participant at the identified 

language components. In the listed equations, r is resting-state language components, and 

t is language templates. 

Specificity =
t ∩ r

r
 x 100 

Sensitivity =
t ∩ r

t
 x 100 

Task-fMRI data was preprocessed using the same preprocessing steps as the rs-fMRI 

data. The block-design (rest, stimulus) was analyzed using standard general linear model 

methods: z-threshold > 2.1 and a Gaussian Field Theory corrected cluster p threshold of 

0.05 as implemented in FSL’s FEAT (FMRI Expert Analysis Tool).  The activation maps 

obtained were used to confirm that the selected resting-state ICA components are related 

to the language network. Specifically, we used FSL’s utility “fslcc” to calculate the 

spatial correlation, quantified as Pearson’s r for each pairwise inter-voxel cross-

correlation (r > .207), of the task-fMRI maps and resting-state ICA maps within the 

language templates. By doing this we explored if the language components identified 

using the template-matching procedure correspond with task-fMRI maps, thereby 

confirming them as part of the language network. 

4.2.3 Lateralization 

Lateralization was calculated using the laterality index (LI) formula: 

LI =
𝐿 − 𝑅

𝐿 + 𝑅
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where L is is activated voxels in the left hemisphere within the left language mask, and R 

is activated voxels in the right hemisphere with the right language mask. LI ranged from -

1 (completely right lateralized) to +1 (completely left lateralized). In concordance with 

prior studies bilateral language representation was defined in the -0.2 to 0.2 range118.  

4.3 Results 

Thirteen children underwent a clinical fMRI during that period. Demographic and 

baseline clinical variables for the 13 patients included in the study were collected by chart 

review, shown in Table 4-1. 

Table 4-1 Summary of demographic and clinical data for 13 cases. 

Case 

no. 

Age at 

fMRI 

(yrs), sex 

Age at 

seizure 

onset 

(yrs) 

Epileptogenic zone Etiology 

1 7, M 4 
Left front or 

generalized 
N/A 

2 7, F 3 Left occipital N/A 

3 12, F 2 Left temporal Cortical dysplasia 

4 14, F 13 
Left temporal-

hippocampal 

Left temporal 

ganglioglioma 

5 8, M 3.5 Left frontal N/A 

6 7, F N/A 
Left occipital and 

temporal 
Sturge Weber 

7 7, F 5 
Left frontal-parietal-

temporal 

Focal cortical 

dysplasia 

8 13, F 10 Right frontal Polymicrogyria 

9 6, M 
10 

months 
Temporal N/A 

10 17, F 7 Temporal 
Hippocampal 

sclerosis 

11 12, M 9 Left temporal N/A 

12 12, M 10 Left fronto-temporal 
Focal cortical 

dysplasia 

13 15, F 7.5 
Fronto-temporal-

parietal 
Glioneuronal tumour  

Average age was 10.54 ± 3.69 years (range =  6 – 17; mode = 7), and 8 of the participants 

were female (62%). Most common epileptogenic zone was temporal cortex. Findings of 

rs-fMRI-derived language networks identification presented in Table 4-2, and the maps 
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are illustrated in Figure 4-1 . Some of the FOV of the MRI were restricted as the imaging 

were acquired clinically and did not always have the same protocol. 

Table 4-2. Results of rs-fMRI language network selection. Comparison with language 

templates and with task-fMRI. LI, laterality index; hemi, hemisphere; verbgen, verb 

generation task, picname, pic naming task. 

 

 
Rs-fMRI overlap with language 

templates 
  

Task 

Lateraliza

-tion 

Age Overlap 
Sensitivity 

(%) 

Specificity 

(%) 

LI 

(ratio) 
LI (hemi) 

 verbgen; 

picname 

7 0.36 64.45 29.88 0.19 bilateral right, right 

7 0.28 44.50 30.11 0.21 left right, right 

12 0.40 36.96 45.66 -0.95 right 
bilateral, 

right 

14 0.38 51.15 51.26 -0.88 right right 

8 0.33 29.91 37.33 0.96 left left 

7 0.26 19.50 41.17 -0.84 right right 

7 0.39 47.57 34.22 0.04 bilateral bilateral 

13 0.35 48.34 37.57 0.90 left N/A 

6 0.40 47.30 35.69 -0.01 bilateral right 

17 0.27 45.27 31.44 0.06 bilateral right 

12 0.36 54.22 32.38 -0.31 right left, left 

12 0.34 34.77 45.51 0.25 left 
bilateral, 

right 

15 0.31 54.21 25.05 -0.34 right right, right 

Group 
0.34 ± 

0.05 

44.47 ± 

11.74 

36.71 ± 

7.47 
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Figure 4-1 Resting-state fMRI language network maps. Cases 1 to 13; L, left. R, right. 

Activation maps are represented on MNI Template 3 x 3 x 3 mm. 

For each subject, the language components with the highest overlap with language 

templates, across all thresholds and ICA groups were identified. Optimal z-threshold and 

ICA order (ICA_auto to ICA_40) varied substantially at the individual level. At the group 

level, for 92% (12/13) of subjects the ICA order at which the highest overlap was 
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achieved included at least 30 target components. Optimal statistical z-thresholding varied 

substantially with highest overlap at z = 4 or 5 for 38% of patients (5/13), see Appendix 

B. 

Next, for each subject Maximum DICE Coefficient matrices (resting-state 

components that best match language templates), were generated, example seen in Figure 

4-2. In some cases, the language network was fragment across several components: 7 

cases had language across two components, and 1 case across 3 components 

 

Figure 4-2. Representative subject-specific Maximum Dice Coefficient Matrix at ICA 

with 40 components z = 2.5. X-axis indicates the ICA component number used in the 

calculation. Y-axis denotes the masks used for template-matching. Colormap 

illustrates Dice coefficient values: yellow represents high spatial overlap, and dark 

blue low spatial overlap of template and ICA components. Case number 7. 
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Concordance between the resting-state language components and language 

templates was on average 0.34 ± 0.05 (range 0.26 - 0.40), with average sensitivity 44.47 

± 11.74 (range 19.50 - 64.45), and average specificity 36.71 ± 7.47 (range 25.05 - 51.26). 

Specificity increased while sensitivity decreased at higher z-thresholds. Verb generation 

task was successful in 92% of cases, while object naming in 54% of cases. Rs-fMRI was 

considered usable in each case. 

In terms of lateralization, verb generation task-fMRI language indicated language 

on the left for 2 cases (17%), right for 7 cases (58%), bilateral for 3 cases (25%). In two 

cases, verb generation task indicated bilateral language while object naming indicated it 

on the right (see Table 4-2).  The identified resting-state language components yielded a 

significant inter-voxel spatial cross-correlation with the verb generation task-fMRI spatial 

maps (Pearson’s r > .207), thereby confirming good overlap between task-related 

activation and resting-state language networks within the language templates.  

 According to rs-fMRI, language was on the left for 4 cases (31%), right for 5 

cases (38%), bilateral for 4 cases (31%). In 3 cases, rs-fMRI showed bilateral language 

while task-fMRI showed right lateralization. Some cases had partial agreement: case 3, 

verb generation resulted in bilateral language and picture naming in right language, while 

rs-fMRI showed right language; case 12, verb generation resulted in bilateral language 

and picture naming in right language, while rs-fMRI showed left language. In case 2, 

both tasks indicated right language while rs-fMRI indicated left language. Overlap 

between rs-fMRI language networks and task-fMRI language networks illustrated for two 

cases at Figure 4-3. 
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Figure 4-3. Rs-fMRI and task-fMRI language network maps for Case 4 (first row) and 

Case 3 (second row). Activation maps are represented on MNI Template 3 x 3 x 3 mm. L, 

left; R, right. 

4.4 Discussion 

Our study supports the growing literature that language networks can be extracted 

from rs-fMRI. In our sample of relatively homogenous cases of epilepsy, language 

networks were identified at the subject-level using a templated matching method. There 

was moderate to good concordance to task-fMRI.  

4.4.1 Language network selection 

Optimal variables for resting-state preprocessing varied significantly for each 

case, which was expected considering the inherent inter-individual variability 

characteristic of subject-level analyses. ICA dimensionality impacts the spatial topology 

of the resultant components, with low model order (~20) risking omission of networks 

and high model order (<70) leading to network fragmentation. We found that language 

network was best captured when ICA was performed with 30 to 50 target components. In 

most cases (92%) language was represented across 1 or 2 components, most commonly 2. 

Past studies report an increase in concordance with task-fMRI at increasing order of 

components119. 
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As opposed to task-fMRI for which statistical thresholding is known to be 

relatively arbitrary and impact lateralization, data-driven ICA rs-fMRI may be more 

robust as it can, to some extent independently isolate sources of noise120. At low 

statistical thresholds there may be artificial overlap due to noise. We found best overlap 

at z = 4 or z = 5, higher than the commonly used z = 2.3 for task-fMRI. 

Average concordance of rs-fMRI language components with language templates 

was DICE = 0.34 ± 0.05, slightly higher than another study using a similar template-

matching procedure, DICE = 0.30 ± 0.16113. Average specificity 36.7 ± 7.5% and 

sensitivity 44.5 ± 11.7% were in agreement with previous reports 113,114. Two earlier 

studies using a similar template-matching procedure reported a specificity of 36 ± 5%114, 

and 32.2 ± 8.9%113 when comparing rs-fMRI data with language templates, higher than 

task-fMRI data with language templates, 21 ± 5%114, and 30.9 ± 12.9%113. The authors 

used a different method than the one used in this study to calculate sensitivity (number of 

activated voxels within the language templates). The calculated metrics, DICE, 

specificity, sensitivity, are used to classify the rs-fMRI ICA components as potentially 

being part of the language network. Visual inspection is still required, but the template-

matching procedure allows, firstly, the visual and numeric comparison of the overlap of 

all components with the language templates (e.g. Figure 4-2, MaxDICE matrix), and next 

identification of potential language components from a reduced number of options. 

There have been several attempts to categorize ICA components objectively, but 

there is no standardization, and visual inspection remains the most common121,122. We 

objectively selected language components by using a template-matching procedure based 

on well-validated language templates, similar to previous studies113–115. The brain regions 

included in the language template were chosen because they have been shown to reliably 

and extensively activate during multiple language tasks across healthy participants, while 

accounting for individual differences in anatomical variations 117. Therefore, this method 

should be flexible enough to capture variable language reorganization. However, to our 

knowledge this is the first report of its use in a pediatric cohort with epilepsy. 
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Other methods for analyzing rs-fMRI for presurgical planning have been 

previously reviewed in detail, and include seed-based connectivity analysis, multilayer 

perceptron (i.e. artificial neural network), graph theory 123,124. Comparing these methods 

with ICA is beyond the scope of this study but a significant advantage of ICA 

methodology is that it does not require a priori knowledge about seed placement nor a 

training phase for the machine learning algorithm. This is a significant consideration 

when assessing the developing brain.  

4.4.2 Special considerations in pediatric population 

Age at seizure onset and age are known factors impacting language lateralization 

in the setting of epilepsy. We found that rs-fMRI mapping indicated atypical language in 

69% of the cases examined (range 6-17, average 10.5 years of age). This is in 

agreement with previous studies that reported 67.7% in a cohort of epilepsy 

patients using task-fMRI (range 8-18, average 13 years of age)98. Other studies in older 

children (range 13.2 – 17, average 16.3) report less atypical representation (10 – 

24%)109. These results are not completely surprising considering that there is a known 

increase in lateralization of language functions to the left hemisphere with age in healthy 

children. In the setting of epilepsy, the increase in lateralization of language functions to 

the left hemisphere with age is complicated by the neural plasticity induced by 

epilepsy (e.g. location of the epileptogenic focus, age at seizure onset) and that 

characteristic of normal language development. Another factor to consider is that our 

relatively young and small cohort (n = 13) is not a general representation of 

the entire pediatric epilepsy population.  

Past studies have shown that early seizure onset, before 5 years of age, is 

associated a higher likelihood of language reorganization and atypical lateralization (non-

left)125. In our sample, 46% (6/13)of cases presented with age at seizure onset ≤ 5 (Table 

1). Accordingly, language presentation in 5 of these cases (case 1, 2, 3, 7, 9) was either 

bilateral or right lateralized, suggesting that there may be language reorganization. 

Our pediatric cohort had an average age of 10.5 ± 3.7, with 46% of children under 

10 years of age. Both stimulation and task-fMRI based language mapping in very young 
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children are technically challenging. Although cortical stimulation allows the most 

precise mapping, it is less reliable in children younger than 10 years than in adults. Some 

of the factors that are recognized to contribute to unpredictable results are cortical 

immaturity (e.g. reduced myelination and greater production of small fibers), cortical 

malformations that can in turn affect afterdischarge thresholds, need for increased charge 

density to reach threshold for clinical response, etc. Sheovon et al (2007) reviewed the 

results of subdural electrode mapping in 30 younger children (4.7 – 14.9 years) and 

adults, and reported that children younger than 10.2 years (median 7.8 years) had 

significantly more negative mapping sites than older children (median 13.3) and adults.  

Moreover, the limitations of task-fMRI extend beyond the requirement for 

compliance and task performance. Several studies suggest that the degree of language 

lateralization may dependent on the type of language task, with expressive tasks showing 

better results than receptive tasks. Verb generation is reported to lateralize language 

better than picture naming, and have higher concordance with stimulation techniques126. 

In our study, children seemed to prefer the verb generation task. Object naming was 

unsuccessful in half the cases resulting in only occipital activation. It is possible the verb 

generation was more engaging since it also had an auditory component. This brings into 

question the reliability of task-fMRI studies in young children with epilepsy. Recently, 

Desai et al. (2008) reported 93% correlation in lateralization when comparing task-fMRI 

with rs-fMRI language mapping in pediatric epilepsy (>10 years old). In our study, we 

had only one case (no. 2), in which task and resting-state were in complete disagreement. 

Rs-fMRI indicated left lateralization with a LI of 0.21, which is very close to bilateral 

(i.e. 0.2), while the tasks showed right lateralization. It is worth nothing that that case 2 is 

a 7 year old child with seizure onset at 4 years of age, and so bilateral representation 

would not be unusual.  

Importantly, task-fMRI and rs-fMRI inherently measure different aspects of brain 

function. In case 1, 9, 10, rs-fMRI showed bilateral language while task-fMRI showed 

right lateralization. The reason for this may be that rs-fMRI covers a larger portion of the 

language network than that revealed by focal activation of the verb generation task. 
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From a neurosurgical perspective, a more comprehensive language representation 

can focus electrode placement and increase the yield of stimulation studies. Task-fMRI is 

limited in that it only indicates brain areas involved in the specific task tested. It is 

important to note that rs-fMRI mapping will likely indicate areas that although may be 

involved in language processing to varying degrees, may not be necessarily critical to 

function, and so may still be considered for resection. For example, rs-fMRI derived 

language maps may include areas related to higher cognitive aspects of language in 

addition to those critical for speech production. In contrast, positive stimulation sites 

indicates areas that produce speech arrest but miss the ones measurable only by 

comprehensive neurocognitive testing.  

In our opinion, stimulation studies, when feasible, remain clinically necessary. 

Rs-fMRI can be a complementary method to obtain information for presurgical planning 

in situations when other clinically validated methods are not available or are unreliable. 

Its integration in clinical flow can broaden the patient population that can be 

preoperatively mapping to include young pediatric cases. Further studies should confirm 

rs-fMRI results with stimulation mapping and postoperative clinical outcomes in large 

pediatric cohorts with varying ages. 

4.5 Conclusion 

Rs-fMRI-derived language networks data were identified at the subject-level 

using a templated matching method. There was substantial inter-individual variability in 

optimal rs-fMRI processing variables. More than half of the cases in our study presented 

atypical language, emphasizing the need for mapping. There was good concordance with 

task-fMRI. Overall, these data suggest that this technique may be used to preoperatively 

identify language networks in pediatric cases. Our approach can be particularly useful in 

cases where the children are too young to undergo task-fMRI. While further studies are 

required to establish rs-fMRI language mapping, it may be used to optimize presurgical 

planning of electrode placement and thereby guide the surgeon’s approach to the 

epileptogenic zone. 
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Chapter 5 

5 Conclusions and future directions 

The function and structure of the human brain develop and change across the lifespan in 

accordance with genetic, environmental factors and experience. They are inextricably 

linked to each other and to behavior. The current thesis, had as objectives to examine 

brain structure and function characteristics at the individual level through 1) the lens of 

healthy aging, 2) their visualization in a pilot augmented reality application for 

neurosurgical procedures, 3) and in the setting of brain mapping for pediatric epilepsy. In 

this current Chapter, I will provide a general discussion and conclusions of each objective 

and the overall thesis. Finally, I will suggest potential directions for future work.  

5.1 Summary and future directions 

Multimodal brain imaging is a promising approach to integrate information from distinct 

but complementary indicators of brain function  (i.e. BOLDSD, mean BOLD, rs-FC 

networks) and structure (e.g. CT, tractography) to better understand the complexity of the 

brain and its intra- and inter-individual variability.  

5.1.1 Moderating Effect of Cortical Thickness on BOLD Signal 
Variability Age Related Changes 

In the second Chapter of  the thesis we studied structure-function relationships in the 

setting of aging. Specifically, we examined the impact of alternations in neuroanatomical 

metrics (i.e. CT, GM, CA) on age-related functional BOLDSD changes in a group of older 

adults. We modelled the interaction between these structural metrics and BOLDSD by 

treating these as physiological confounds using linear mixed models. Results show that 

BOLDSD change is confounded by change in CT. Our study highlights that CT changes 

should be considered when evaluating BOLDSD alterations in aging, and provides some 

insight about the potential structural substrate and physiological mechanisms underlying 

BOLDSD.. One of the main strengths of our design is that it is a within-subject design 

rather than cross-sectional and so allows for the investigation of age-related differences 

(i.e. intra-individual effects of the process of aging on cortical morphology and BOLDSD) 
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rather than simply age differences across groups, while also controlling for inter-

individual lifestyle differences.  We suggested that accounting for CT age-related 

changes may help “unmask” the functional value of BOLDSD, and explain some of the 

inconsistency reported in the literature. Overall, this supports the thesis objective and 

indicates that brain structure-function relationships are an important consideration in the 

design and interpretation of neuroscience studies. Future studies could consider regional 

BOLDSD changes in the context of functional networks. Pursing this direction while 

accounting for CT and other possible confounding factors such as dopaminergic 

neurotransmission, socioeconomic background etc., should reveal new insights into the 

mechanisms behind age-related neural processes. 

5.1.2 Visualization of Multimodal Brain connectivity for Neurosurgical 
Planning using Augmented Reality  

In the third Chapter, we examined structure-function relationships at the individual level 

by 1) modelling brain structures, 2) calculating SC and FC connectivity, 3) visualizing 

them in AR in an intuitive and interactive way. Many neurosurgical procedures require 

preoperative identification of eloquent cortex to minimize post-operative deficit. 

Therefore, it is be helpful to preoperatively visualize and understand structure-function 

interactions when planning a surgical trajectory. Our application can allow the user to 

explore the patient anatomy and try different surgical approaches in a low-stakes 

environment. We conducted a pilot user testing experiment that indicated the application 

is easy and intuitive to use. With further development it could also be used a s a potential 

educational model for surgical trainees. Therefore, future directions include: optimizing 

the processing pipeline from the MRI scans to the models in AR, modelling the brain of a 

person with a brain tumour, and testing it on trainees and experienced surgeons. In this 

Chapter we demonstrated a clinical use for multimodal brain connectivity data 

visualization, highlighting the utility of studying structure-function relationships.  

5.1.3 Presurgical brain mapping of the language network in pediatric 
epilepsy using resting-state fMRI 

In the fourth Chapter, we studied structure-function relationships through a clinical lens. 

Preoperative language localization is necessary to minimize the risk of post-operative 
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deficits. Epilepsy is associated with significant language network reorganization, 

especially in the case of children, since their brains are more plastic. Therefore, structure-

function relationships are more unexpected and variable. For example, often localizing 

language through anatomical landmarks is unreliable. We mapped language from rs-

fMRI data (collected preoperatively) using a template-matching procedure. Specifically, 

using a data-driven analysis method (i.e. independent component analysis), we obtained 

multiple functional networks and classified these based on language templates. Then, we 

compared the identified language networks with findings from language task-fMRI. 

Results indicated moderate overlap, with significant inter-individual variability in 

language network representation. Overall, these data indicate that this approach may be 

used to map language in pediatric cases, especially when the children are too young to 

undergo task-fMRI. Future studies with larger samples and results from cortical 

stimulation are required to validate our rs-fMRI language mapping procedure. 

5.2 Concluding remarks 

The investigation brain structure-function relationships in health and illness through 

multimodal imaging remains a key question in neuroscience, with evolving applications 

in neurosurgery. Our study on CT and BOLDSD contributes to the growing body of 

knowledge on BOLDSD, and can help inform the design of basic neuroscience studies. It 

emphasized the point that structure-function relationships vary across brain regions both 

at the individual level and between individuals. The intuitive and interactive visualization 

of brain connectivity measures such as SC  and FC in AR can provide an educational 

platform for surgical trainees to learn the patient anatomy in its functional context and 

plan surgeries by testing different surgical trajectories. It illustrates and allows for visual 

exploration of whole-brain structure-function relationships. The third study on pediatric 

epilepsy, a disorder associated with significant cortical plasticity and functional 

reorganization, underscores that structure can shape function and vice versa. The novelty 

of this study consists of the use of an emerging rs-fMRI template-matching procedure to 

map language.  
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Appendices  

Appendix A:  Results of subjects' trials on pointing task. For each pointing task/fiber 

target, the average and standard deviation of the performance of all subjects (n =10) at 

that task was calculated. The volume and index of difficulty were constant across 

subjects. 

  Avg SD Avg SD     

Task no. MT (seconds) IP (u2bits/seconds) Volume (u3) ID (u2bits) 

1 3.397 ± 1.302 1.698 ± 0.521 0.009224 5.198 

2 7.787 ± 3.745 1.653 ± 1.257 0.000541 9.301 

3 5.233 ± 5.047 3.155 ± 1.524 0.000199 10.777 

4 3.318 ± 1.601 3.316 ± 1.247 0.000501 9.448 

5 9.451 ± 8.205 2.324 ± 2.120 0.000128 11.403 

6 11.321 ± 9.220 1.301 ± 0.876 0.000694 8.970 

7 5.258 ± 2.799 1.492 ± 0.679 0.004168 6.310 

8 5.340 ± 3.336 2.629 ± 1.862 0.000541 9.256 

9 3.013 ± 1.606 2.131 ± 0.971 0.010089 5.103 

10 6.522 ± 10.968 3.438 ± 2.720 0.00391 6.489 

11 4.940 ± 4.423 1.995 ± 1.484 0.009264 5.233 

12 7.970 ± 6.953 1.921 ± 1.606 0.00114 8.249 

13 5.455 ± 3.395 2.609 ± 1.341 0.000201 10.703 

14 11.360 ± 9.287 1.705 ± 1.151 5.77E-05 12.494 

15 6.649 ± 9.244 3.920 ± 2.637 6.06E-05 12.464 
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16 4.333 ± 3.582 5.022 ± 2.855 2.45E-05 13.827 

17 2.230 ± 1.386 5.145 ± 1.992 0.000547 9.306 

18 4.302 ± 2.223 2.666 ± 1.904 0.000968 8.519 

19 4.503 ± 4.692 2.730 ± 1.496 0.002858 6.965 

20 4.771 ± 3.030 4.500 ± 3.099 2.04E-05 14.081 

21 4.108 ± 2.273 4.048 ± 1.787 3.45E-05 13.298 

22 7.562 ± 5.814 1.984 ± 1.208 0.000425 9.620 

23 5.322 ± 3.536 3.008 ± 1.710 0.0001 11.723 

24 6.234 ± 4.895 3.070 ± 1.988 0.000117 11.457 

 

 

Appendix B Optimal variables for resting-state analysis 

Case no. ICA order Z-thresh. 

1 Auto 43 2.5 

2 Auto 53 4 

3 30 5 

4 30 4 

5 30 3.5 

6 20 3 

7 40 2.5 

8 Auto 44 3 

9 Auto 45 4 

10 40 4 

11 30 2 

12 Auto 72 2 

13 30 2 
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