
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

4-9-2020 10:30 AM 

A Requirements Measurement Program for Systems Engineering A Requirements Measurement Program for Systems Engineering 

Projects: Metrics, Indicators, Models, and Tools for Internal Projects: Metrics, Indicators, Models, and Tools for Internal 

Stakeholders Stakeholders 

Ibtehal Noorwali, The University of Western Ontario 

Supervisor: Nazim H. Madhavji, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Computer Science 

© Ibtehal Noorwali 2020 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Software Engineering Commons 

Recommended Citation Recommended Citation 
Noorwali, Ibtehal, "A Requirements Measurement Program for Systems Engineering Projects: Metrics, 
Indicators, Models, and Tools for Internal Stakeholders" (2020). Electronic Thesis and Dissertation 
Repository. 6998. 
https://ir.lib.uwo.ca/etd/6998 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F6998&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6998?utm_source=ir.lib.uwo.ca%2Fetd%2F6998&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract

Software engineering (SE) measurement has shown to lead to improved quality and pro-

ductivity in software and systems projects and, thus, has received significant attention in the

literature, particularly for the design and development stages. In requirements engineering

(RE), research and practice has recognized the importance of requirements measurement

(RM) for tracking progress, identifying gaps in downstream deliverables related to require-

ments, managing requirements-related risks, reducing requirements errors and defects, and

project management and decision making.

However, despite the recognized benefits of RM, research indicates that only 5% of the

literature on SE measurement addresses requirements. This small percentage is reflected

in the lack of well-defined and ready to use requirements metrics, approaches, tools, and

frameworks that would enable the effective implementation and management of a RM pro-

gram. Such a program would, in turn, provide the various internal stakeholders with var-

ious quantitative requirements-driven information (e.g., measures, indicators, and analyt-

ics, etc.) in order for them to better manage, control, and track their respective process

activities. This shortage makes the process of RM, at best, complicated and, at worst, non-

existent in most projects. The RM process is further complicated in large systems engineer-

ing projects due to large project sizes, numerous internal stakeholders, time pressure, large

numbers of requirements, other software artifacts, to name a few.

This integrated-article thesis aims to address the aforementioned problem through the

following main contributions that have been researched and validated within the context

of a large systems engineering project in the rail-automation domain: (i) an empirically

derived and validated structured requirements metric suite; (ii) an approach for deriving

and organizing requirements metrics and related information; (iii) a requirements-centric,

measurement-based health assessment framework; (iv) a meta-model for managing re-

quirements -driven information for internal stakeholders; (v) a prototype requirements dash-

board that builds upon and automates the concepts in i, ii, iii, and iv.

These contributions have implications for research on RM through extending the body

of work on RM and promulgating further research. For practice, the results of this thesis

are anticipated to facilitate the implementation and management of RM programs in real-

world projects.

Keywords: Software and systems engineering, requirements engineering, measurement

program, requirements metrics, empirical studies, internal stakeholders.
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Summary for Lay Audience

Software requirements are descriptions of the capabilities, functions, services and con-

straints of a software. Requirements indicate how the software will work and interact with

the user and what problems the software solves. The process of defining, documenting and

maintaining the requirements of a software or system is called the requirements engineer-

ing (RE) process and is considered the first phase of the software engineering (SE) process.

Requirements inform the subsequent software development phases and are used to design,

develop (i.e., code), and test the software.

Large software projects are complex and difficult to manage. Thus, since the early days

of SE, researchers and practitioners have attempted to measure software in order to bet-

ter plan, control, organize, and improve software and the SE process. The SE literature is

replete with metrics, measurement approaches and methods, metric thresholds, and mea-

surement tools, to name a few. A combination of these measurement components form

measurement programs that can be implemented in projects and organizations in order to

enable the software measurement process.

However, much of the work focuses on measurement for the design and development

phases of the SE process, in which the measured entity is architecture and code of a soft-

ware. The work on measurement in the RE phase, in which software requirements are the

measured entity, is limited despite evidence that shows that requirements measurement

(RM) has benefits for the entire SE process such as reducing software defects, easier tracking

of software development progress, better risk management, and improved project manage-

ment and decision making.

This integrated-article thesis addresses this gap by proposing a RM program that con-

sists of: i) a set of requirements metrics, ii) an approach for deriving and organizing re-

quirements metrics, iii) a health assessment framework that integrates requirements mea-

sures with project data in order to define requirements-centric project health indicators, iv)

a management aid for the RM process, and v) a requirements dashboard that automates the

previous concepts.

The contributions of this thesis have implications for research and practice. For re-

search, this thesis extends the limited body of knowledge on RM. In practice, organizations

and projects can use the concepts in this thesis to implement a RM program.
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Chapter 1

Introduction

Count what is countable. Measure what is measurable. And what is not mea-

surable, make measurable. –Galileo Galilei.

The SE community has taken this advice to heart as measurement in systems and soft-

ware engineering (SE) has received significant attention since the 1970s [Staron and Meding,

2018]. The significant effort dedicated to software measurement can be attributed to the

many benefits accrued from using system and software metrics, including but not limited

to: improved process productivity [Pfleeger, 1993], improved product quality [Fenton and

Bieman, 2015], reduced cycle times and costs [Daskalantonakis, 1992; Gopal et al., 2002],

and improved decision making [Johnson et al., 2005].

Measurement in SE is not confined to a simple process of defining and implement-

ing a set of metrics; it encompasses a set of metrics, indicators, methods, tools and roles

which are built to provide software development teams, project managers, product man-

agers and quality managers with accurate and efficient measures, tools and instruments.

This "socio-technical system where the technology interacts with stakeholders" in order to

support measurement is termed a measurement program [Staron and Meding, 2016, 2018].

However, implementing measurement programs is not a simple task. The success of

a measurement program for a specific process, project, or product is dependent on many

factors such as the availability of a set of well defined metrics [Pfleeger, 1993; Gopal et al.,

2002], automating the measurement process [Pfleeger, 1993; Johnson et al., 2005; Fenton

and Bieman, 2015; Staron and Meding, 2018], and having well-defined procedures in place

for managing the measurement process [Ebert and Dumke, 2007]. Thus, the efforts to facil-

itate the successful deployment and implementation of measurement programs have been

significant and constant including defining [Chidamber and Kemerer, 1994] and validat-

ing [Kitchenham, 1995; Briand et al., 1995] software metrics, defining metric derivation

1
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procedures [Basili et al., 1994], understanding stakeholders’ information needs [Buse and

Zimmermann, 2012], building measurement tool support [Sillitti et al., 2003; Ohira et al.,

2004; Johnson, 2007; Sharma and Kaulgud, 2012; López et al., 2018], and establishing metric

thresholds and benchmarks [Jones, 2000; Ferreira et al., 2011a], among others.

In requirements engineering (RE), requirements measurement (RM) is a means to facil-

itate the requirements management process and can be defined as the process of collect-

ing, analyzing, and reporting quantitative data relevant to the requirements through a set

of metrics that enable the tracking and control of requirements and providing quantitative

insight into the state of system development that would aid the different internal stake-

holders in accomplishing their process-related tasks [Costello and Liu, 1995; Wiegers, 2006;

IEEE, 2017].

RM has shown to have numerous benefits such as tracking development progress, iden-

tifying gaps in the downstream deliverables related to requirements [Kratschmer, 2013],

managing requirements volatility and risks that may be introduced due to late changes to

requirements [Costello and Liu, 1995; Kratschmer, 2013], reducing requirements errors and

defects through quality control [Davis et al., 1993; Costello and Liu, 1995], and aiding in

project management and decision making [IEEE, 2017]. Thus, without RM, projects risk un-

detected or unresolved requirements defects, lack of insight on progress, creeping project

and product scope, unchecked requirements volatility, and ad-hoc decision making, all of

which have negative impact on project cost, quality, time, and effort [Jones and Bonsignour,

2012; Ferreira et al., 2011b; Park et al., 2010; Damian and Chisan, 2006].

Despite the recognized benefits of RM by researchers and practitioners, we find that

the body of work on RM is limited and that the majority of SE measurement work revolves

around code-centric measurement [Kitchenham, 2010; Gómez et al., 2008]. A systematic

literature review on the state of the art on software measurement reveals that only 5% of

the literature addresses RM [Gómez et al., 2008] while design and development account for

42% and 27% of the measurement literature, respectively. A deeper analysis of the literature

on RM reveals that there is a lack of: clear and well-defined requirements metrics, mea-

surement approaches that deal with the specific challenges of RM, RM tool support, formal

definition of RM entities, processes, and tasks, to name a few. According to Tahir et al. [Tahir

et al., 2016], these factors hinder the successful implementation of measurement programs.

Our experience with industrial practitioners involved in large rail automation develop-

ment projects provided us with a real-world manifestation of the above problem. Simply

put, the RE team needs to provide, as part of the requirements management process, in-

sightful and up-to-date requirements-driven information to downstream (e.g., design and

testing) and side-stream processes (e.g., project management and quality management)
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that would help the internal stakeholders involved in these processes to manage, control,

and track their activities. For example, designers need to know requirements-design trace-

ability percentage in order to track their progress with regard to design. Similarly, project

managers need to know the number of allocated requirements to a specific release that will

allow them to manage time, costs, and budget accordingly. These examples underline the

variety of stakeholder concerns that the requirements data needs to address. The problem

lies in the lack of readily available metrics, analytical methods, and tools that would fa-

cilitate the requirements measurement process and provide the various stakeholders with

insightful measurements and indicators that would inform their processes. Large project

sizes, numerous stakeholders, large numbers of requirements and software artifacts, time

pressure, unclear stakeholder concerns, and others, further exacerbates the problem.

While RM is not a completely new practice [Costello and Liu, 1995; Davis et al., 1993;

Wiegers, 2006], the lack of an extensive body of work on requirements metrics, methods, and

tools hinders the implementation of a requirements measurement program, and thus, risks

losing the benefits of RM. This thesis addresses this problem, which we discuss in piecemeal

in the following section.

1.1 Research Problem

As discussed above, the central problem is the lack of requirements metrics, methods, and

tools that would facilitate the RM process. In this section, we detail the specific research

problems that this thesis deals with based on our analysis of the literature and our experi-

ence with RM in practice.

P1. A lack of a set of well-defined and validated requirements metrics that can be used to

address the different internal stakeholders’ concerns. The problem with the require-

ments metrics in the literature are twofold: (i) they are vague and not well-defined

(see below for example) and (ii) they mostly focus on requirements quality attributes

such as complexity, size of an individual requirement, understandability and so forth

[Génova et al., 2013; Antinyan and Staron, 2017].

M1: Requirements Completeness: Indicates completeness of all sections of a require-

ments specification, whether all allocated higher level requirements are addressed, and

the degree of decomposition and the degree of decomposition of allocated higher-level

requirements. [Costello and Liu, 1995]

M2: Size of requirements [Loconsole, 2001]

M3: Number of requirements traced or not traced [Kolde, 2004]
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P2. A lack of a metric derivation method that addresses the specific challenges of RM. De-

spite our utilization of the GQM approach [Basili et al., 1994], there remained other

challenges such as unorganized measures, incomplete metrics, and missing require-

ments meta-data items.

P3. A lack of understanding of how to incorporate requirements measures with other

project data (e.g., deadlines, team size, and costs) to provide internal stakeholders,

particularly managers, with a requirements-centric project health indicators.

P4. A lack of understanding of the web of interactions among all the entities (e.g., in-

ternal stakeholders, metrics, and processes) involved in the requirements measure-

ment process. In other words, questions such as "Which stakeholders need what

requirements-driven information?" and "What artifacts are the different measures de-

rived from?" are left anunswered.

P5. As discussed above, one of the main inhibitors to software measurement is a lack of

tool support. Current measurement tools focus on code-centric measures and re-

quirements management tools have limited RM functionality. Thus, RM tool support

is lacking in the literature and practice.

We note that the above problems are not by any means an exhaustive list of the prob-

lems faced in requirements measurement. However, due to the thesis scope and time lim-

itations, we chose these problems that we believe would facilitate the implementation of

requirements measurement programs within organizations.

1.2 Research Goal and Objectives

As motivated by the research problems discussed in Section 1.1, Figure 1.1 depicts the re-

search goal of the thesis and the research objectives (RO) to achieve the stated goal. Each

research objective addresses one of the research problems discussed in Section 1.1, respec-

tively.

1.3 Contributions

The cumulative contribution of this thesis is a combination of empirical findings, tech-

niques, models, and tools that, together, form a requirements measurement program for

systems engineering projects. The thesis contributions are as follows:
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Figure 1.1: Thesis research goal and objectives.

C1. Empirical derivation of a structured requirements metrics suite from a large systems

engineering project.

C2. Theoretical and empirical validation of the derived requirements metrics.

C3. Identification of the requirements attributes, levels, and meta-data that structure the

derived requirements metrics.

C4. Creation of an approach for defining, analyzing, and organizing requirements metrics

and related information.

C5. Creation of a health assessment framework that utilizes the derived requirements

metrics in conjunction with project data to derive high-level, requirement-centric
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project health indicators.

C6. Operationalization of the health assessment framework based on real-world data from

a systems engineering project.

C7. Identification of the entities (e.g., processes, internal stakeholders, metrics, indica-

tors, and internal stakeholder concerns) and relationships (e.g., manages, is-used-in,

and is-derived-from) involved in providing requirements-driven information to inter-

nal stakeholders.

C8. Construction and validation of a meta-model at three-levels of abstraction that com-

bines the identified entities and relationships.

C9. Construction of a web-based requirements dashboard prototype that automates the

metrics, health indicators, and meta-model concepts and that is to be deployed in a

systems engineering project.

1.4 Thesis Roadmap and Chapter Overview

This thesis is in an integrated-article format that consists of five core chapters (Chapters 3-

7). Each core chapter addresses one of the research objectives (RO) described in Section 1.2

and is a standalone article. Figure 1.2 depicts the the overall thesis roadmap. Particularly, it

shows each core chapter’s title, publication (if any), the research objective it addresses, the

chapter’s contributions as described in 1.3, and the relationships among the chapters. We

provide an overview of each chapter below.

Chapters 1 and 2: Chapters 1 and 2 set the scene for the core chapters of the thesis. Chap-

ter 1 describes the research problem (Section 1.1), associated research goal, and objectives

(Section 1.2). In order to better understand the work in this thesis, it is necessary to de-

scribe the context in which the studies took place and for which the solutions in this the-

sis have been proposed. Thus, Chapter 2 describes the industrial context upon which the

work in this thesis is based. Specifically, it includes the description of the company, stud-

ied projects, the RE process within those projects, the requirements management tool used,

and the internal stakeholders.

Chapter 3: This chapter constitutes the foundation of this thesis as it describes the action

research (AR) study [Santos and Travassos, 2011] that we conducted in the collaborating
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Figure 1.2: Thesis roadmap.
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organization. The goal of the AR study was to derive a requirements metric suite to: i) fa-

cilitate the requirements management process through enabling the tracking, monitoring,

and management of requirements and requirements related-information and ii) provide

internal stakeholders with requirements-related information that would address their con-

cerns and aid them in their respective process activities. The results of this study includes a

requirements metrics suite that consists of a set of 90 requirements metrics and 9 require-

ments meta-data items needed to apply the metrics. The metrics measure five requirements

attributes (size, growth, volatility, status, and coverage) at four requirement metric levels

(baseline, feature, release, and safety). The metrics are validated empirically through the AR

study and theoretically using a software metrics validation framework.

Chapter 4: The large systems engineering context in which we conducted the AR study

of Chapter 3 introduced unique challenges to requirements measurement: large sets of re-

quirements across many sub-projects, requirements existing in different categories (e.g.,

hardware, interface, and software, etc.), varying requirements meta-data items (e.g., ID,

requirement type, and priority, etc.), to name few. Consequently, the initial requirements

measurement process was an ad-hoc one that lead to incomplete metrics, unorganized

metrics and measurement reports, and incomplete and missing meta-data items that are

essential to applying the the metrics. Thus, in Chapter 4 we present a 7-step approach that

combines the use of GQM [Basili et al., 1994] and the identification and analysis of four

main RE measurement elements: attributes, levels, metrics, and meta-data items that aid

in the derivation, analysis, and organization of requirements metrics. We illustrate the use

of our approach by applying it to further projects from the rail automation systems domain.

We show how the approach led to a more comprehensive set of requirements metrics, im-

proved organization and reporting of metrics, and improved consistency and completeness

of requirements meta-data across projects.

Chapter 5: Upon defining the metrics described in Chapter 3, there was a need within

the studied project to assess project health based on a combination of the derived metrics

and project data (e.g., deadlines, schedule, and costs) and provide high-level health indica-

tors for each project. However, there is a lack of systematized and measurement-based ap-

proaches that explicitly factor requirements into their analyses. Thus, we address this gap in

Chapter 5 by proposing a requirements-centric project health assessment framework that

measures and analyzes critical requirements attributes, in conjunction with project data,

and identifies their health indicators, which are visualized using a RED-AMBER-GREEN

(RAG) indicators system. The implemented framework is applied to three real-life systems
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projects. The evaluation results demonstrate the feasibility of the framework and a level of

agreement with human assessors who have evaluated the projects’ health.

Chapter 6: Providing the requirements-driven information (e.g., requirements volatility

measures, requirements-design coverage information, and requirements growth rates, etc.)

identified in Chapters 3 and 5 falls within the realm of the requirements management pro-

cess. The requirements engineer must derive and present the appropriate requirements

information to the right internal stakeholders in the project. This process was made com-

plex due to project-related factors such as numerous types of internal stakeholders, vary-

ing stakeholder concerns with regard to requirements, project sizes, a plethora of software

artifacts, and many affected processes. There is little guidance in practice as to how these

factors come into play together in providing the described information to the internal stake-

holders. Thus, based on analyzed data from the AR study, Chapter 6 presents a meta-model

that consists of the main entities and relationships involved in providing requirements-

driven information to internal stakeholders within the context of a large systems project.

The meta-model consists of five main entities and nine relationships that are further de-

composed into three abstraction levels. We validated the meta-model in three phases by

researchers and practitioners.

Chapter 7: The findings and solutions from Chapters 3, 4, 5, and 6 would not be fully uti-

lized in industry without some level of automation. To this end, Chapter 7 presents R-Pulse,

a web-based requirements dashboard prototype that automates the concepts from the pre-

vious chapters. R-Pulse uses exports of the requirements documents and other software ar-

tifacts (e.g., design, test, and defects) to calculate the requirements metrics and health indi-

cators. Internal stakeholders are able to view the project’s health indicators and drill down to

the requirements measures. The dashboard provides various visualization and navigation

options so as to address each internal stakeholder’s need with regard to the requirements-

driven information.

Chapter 8 and 9: Chapters 8 and 9 wrap up the thesis. Particularly, Chapter 8 situates

the measurement program in terms of practice and literature, discusses a summary of the

validation of the findings and solutions presented in the core chapters, and evaluates the

robustness of the overall measurement program. Finally Chapter 9 concludes the thesis

and describes future work.
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Chapter 2

The Industrial Context

To provide context to the research problems discussed in Section 1.1 and the findings and

solutions to be presented in the following chapters, we describe the industrial context in

which this work was conducted. Particularly, we describe the company and the projects in

terms of size and domain, the projects’ requirements engineering process, the requirements

management tool used within the project, and the types of internal stakeholders.

2.1 Company and Projects

The collaborating company is a multinational company in the transportation industry spe-

cializing in railways, control systems and digital services with over 30,000 employees. This

study was conducted in a large-scale rail automation systems project in an American-based

branch. The overall project (i.e., program) consisted of multiple sub-projects, three of which

we were directly involved with. The program aims to provide products, solutions and ser-

vices to the North American freight and commuter market. Each sub-project consists of

a product for a specific client and has its own set of requirements, architecture design, test

cases, and engineering team. Table 2.1 shows the duration for each project and a breakdown

of their artifacts.1

Table 2.1: Descriptive statistics of projects.

Project Project Duration No. Req.
Baselines

No. Reqs. No. Safety
Reqs.

No. Design
Baselines

No. Design
Objects

No. Test
Cases

P1 73 months 54 1790 N/A 23 472 2111
P2 36 months 30 2285 N/A 4 380 N/A
P3 45 months 51 2389 923 28 827 2045

1 For improved readability and easier navigation of the thesis, this table will also appear in other chapters of
the thesis that refer to it.

13
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2.2 Requirements Engineering Process

The requirements engineering (RE) process is adapted from the ISO/IEC/IEEE 29148-2011

International Standard for Systems and Software Engineering – Life cycle processes – Re-

quirements engineering [IEEE, 2011] and an internal requirements engineering standard.

The RE process is embedded in other project processes. It has direct interfaces to up-

stream processes (e.g., contract/client management and change management), downstream

processes (e.g., design, verification and validation , subcontractor management, installa-

tion, site management, manufacturing, and development), and sidestream processes such

as training, project management, RAMSS (Reliability, Availability Maintainability, and Safety

Security), development, and quality.

The purpose of the RE process is twofold:

1. To develop and maintain a shared understanding among the project team of the sys-

tem to be implemented.

2. To establish and maintain traces from requirements to other project artifacts (i.e., de-

sign, development, and testing).

The RE process consists of the following activities: requirements elicitation, analysis,

validation and management. Figure 2.1 depicts the RE process in the project.

We see in Figure 2.1 that requirements metrics and indicators (depicted in red) are an

output of the requirements management activity. Given the focus of this thesis, we only de-

scribe the requirements management sub-process to understand how requirements mea-

surement factors into the process.

The purpose of the requirements management subprocess is to record and maintain

the evolving requirements and associated context and historical information from the re-

quirements engineering activities and to establish procedures for defining, controlling, and

publishing the baseline requirements for all levels of the system-of-interest. Requirements

management consists of the following activities:

• Setting project and module structure: Involves setting the directory, project, and

module structure in the requirements management tool according to project and prod-

uct hierarchy.

• Managing requirements meta-data: Requirements meta-data are descriptive prop-

erties associated with a requirement (e.g., ID, created by, created on, release num-

ber, safety, type, and status), which can be used to make the decision-making process
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Figure 2.1: The organization’s requirements engineering process.
Depicted in this figure are the activities/subprocesses of the organization’s RE process (rectangles)
and the input and outputs to the the activities. The RE process is adapted from the ISO/IEC/IEEE

29148-2011 Requirements Engineering standard [IEEE, 2011] and an internal requirements
engineering standard.

more objective. The meta-data items and their values must bet managed in the re-

quirements management tool. The values assigned to each meta-data item help to

organize, analyze, and prioritize the requirements in each project.

• Managing requirements workflow states: This is accomplished by managing the re-

quirement meta-data item that indicates where the requirements state at a particular

time is against the expectation of what “complete” means for the requirements pro-

cess. State transitions are set manually.

• Tracing: Ensures that requirements are traceable throughout all phases, documents,

and components of the product lifecycle. A requirements tracing model is used for

conducting impact analyses, tracking project development progress (metrics), prov-
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ing that all requirements have been satisfied by the design, and that test artifacts have

been developed and executed to satisfy all requirements.

• Baselining requirements: A requirements baseline is a set of requirements that stake-

holders have agreed to, often defining the contents of a specific planned release or

development iteration. In the requirements management tool, a baseline is a static

read-only version of a module, corresponding to a snapshot of the module at a spe-

cific time. Frozen versions (e.g., release versions) of requirements or objects in general

are created as baselines.

• Maintaining audit trails: The histories of each module and requirement are stored

in the requirements management tool. Creation date, module/requirement author,

modification dates, modification author, baseline dates, and deletion dates are stored

and can be accessed through the requirements management tool.

• Requirements measurement: Involves defining metrics, data collection methods,

data collection, data analysis, and data reporting in order to produce requirements

measures and indicators to track requirements progress, state of traceability, and re-

quirements change, to name a few.

• Requirements change management: Changes and exceptions to a baseline will be

handled by a Change Control Board (CCB). The CCB will evaluate the impact and cost

of the change or exception, assign resources to investigate and resolve, and establish

the effectiveness of the solution. The solutions will be implemented in accordance

with the normal engineering processes (e.g., document control and requirements en-

gineering).

2.3 Requirements Management Tool

The Rational Dynamic Object Oriented Requirements System (DOORS) [IBM, 1991] is used

to store and manage the requirements and design objects. DOORS is a requirements man-

agement tool that provides a set of features to capture, trace, analyze, and manage changes

to information. Rational DOORS facilitates internal stakeholders’ participation and con-

tribution to the requirements management process through managing changes to require-

ments and allowing collaboration through requirements discussions. It also provides func-

tionalities for linking requirements to design items, test plans, test cases, and other require-

ments for easy and powerful traceability.
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2.4 Internal Stakeholders

Each project consisted of the following roles: requirements engineers, requirements man-

ager, project managers, architects, safety managers, quality managers, verification and val-

idation managers, developers, testers, hardware manager, tool support engineers. Over-

seeing all the projects within the program is the program director. Table 2.2 lists some of

the projects’ internal stakeholders and describes their responsibilities with regard to the re-

quirements.

References

[IBM, 1991] IBM (1991). IBM engineering requirements management DOORS family. See:

https://www.ibm.com/ca-en/marketplace/requirements-management.

[IEEE, 2011] IEEE (2011). ISO/IEC/IEEE 29148 - Systems and software engineering — Life cycle pro-

cesses — Requirements engineering. Technical report, IEEE.
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Table 2.2: Projects’ internal stakeholders and responsibilities.

Internal
Stakeholder

Responsibilities

Systems
Engineer (re-
quirements
engineer)

– Develops and maintains the Requirements Management Plan
– Elicits requirements with customers and other stakeholders
– Develops and manages requirements
– Manages and maintains the requirements baselines, including the require-
ments database
– Defines and reports requirements metrics for project RE progress
– Defines and executes the requirements change management process

Program
Director

– Making decisions about requirements scope and contractual requirements for
the program
– Provides input on feature prioritization

Project Man-
ager

– Develops and monitors the schedule for the requirements elicitation phase
– Establishes allocation of requirements to development iterations
– Supports coordination of requirements elicitation and validation activities
among project stakeholders
– Ensures that contractual requirements are met

Architect – Ensures system design meets requirements
– Supports elicitation and analysis of requirements (especially non-functional re-
quirements and other architecturally significant requirements)
– Assesses requirements for feasibility
– Reviews and approves requirements
– Maintains traceability between requirements and design

Safety and
Security Man-
ager

– Assigns/reviews safety attributes of requirements
– Provides input on reliability, maintainability, availability and security require-
ments
– Reviews and approves requirements

Quality Man-
ager

– Reviews and approves the requirements documents
– Ensures that established requirements process is followed

Verification
& Validation
Manager

– Reviews and approves requirements
– Develops V&V methods and artifacts against requirements
– Maintains traceability between requirements/design and V&V artifacts

Software De-
velopment
Manager

– Implements the software requirements
– Reviews and approves requirements

Hardware
Manager

– Constructs products based on hardware requirements
– Supports definition of installation requirements
– Establishes manufacturing process

Tools Support
Engineer

– Customizes and supports the integrated tool set
– Implements requirements tooling requirements
– Develops integration script and supports configuration management efforts
– Manages tool licenses
– Coordinates tool training



Chapter 3

A Structured Metrics Suite for

Requirements in a Large Systems

Engineering Project: An Action Research

Study

3.1 Introduction

Requirements measurement (RM) is part of the requirements management process and we

define it as the process of collecting, analyzing, and reporting quantitative data relevant to

the requirements through a set of metrics [Costello and Liu, 1995; Wiegers, 2006; IEEE, 2011].

The metrics (e.g., # of requirements/baseline, % of requirements added per feature per base-

line, and # of requirements covered by design) enable the tracking and control of require-

ments and provide quantitative insight into the state of system development that would aid

the different internal stakeholders in accomplishing their process-related tasks. The ben-

efits of using requirements metrics includes, but not limited to: (1) tracking progress, (2)

identifying gaps in the downstream deliverables related to requirements [Kratschmer, 2013],

(3) managing risks that may be introduced due to requirements changes [Costello and Liu,

1995; Kratschmer, 2013], (4) reducing requirements errors and defects through quality con-

trol [Davis et al., 1993; Costello and Liu, 1995], and (5) aiding in project management and

decision making [IEEE, 2011].

Despite the numerous benefits of requirements measurement, requirements metrics

have received little attention in the literature. In a systematic literature review of software

engineering metrics, the authors found that only 5% of the papers discussed were in the

19
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analysis (i.e., requirements) phase and the majority were in the design (42%), development

(27%), maintenance (14%), and testing (12%) phases [Gómez et al., 2008]. Based on a sur-

vey of the literature (Section 3.2) and our experience with requirements metrics in industry

(Section 3.3), we identified four major problems with requirements metrics.

First, there is a lack of well-defined and validated requirements metrics in the literature

that can be readily applied in practice and that could be used by the various internal stake-

holders within a project to enable the tracking and control of requirements. In particular,

requirements metrics usually consist of vague descriptions of how to carry out the measure-

ments without any description of the formulas needed to calculate the measures [Costello

and Liu, 1995; Berenbach and Borotto, 2006; Wiegers, 2006].

Second, literature that discusses requirements metrics [Costello and Liu, 1995; Locon-

sole, 2001; Wiegers, 2006] does not discuss the data needed to apply the metrics. As a simple

example, the number of requirements that have been approve for implementation [Wiegers,

2006] would need at least two requirements meta-data items: a unique requirement ID

and a status. However, proposing metrics without specifying the meta-data needed for ap-

plying the metrics will inhibit the adoption of proposed metrics [Costello and Liu, 1995;

Kratschmer, 2013].

Third, there is a lack of understanding as to the measurable requirement attributes that

the metrics in the literature are measuring. This lack of understanding regarding the mea-

surable requirements attributes can lead to inaccurate metric definitions (i.e., defining met-

rics that are not measuring what they are purporting to measure) and a difficulty in validat-

ing the metrics because most validation frameworks rely on having an unambiguous un-

derstanding of the attributes being measured [Kitchenham, 1995; Briand et al., 1995, 1996].

Moreover, due to the dearth of research on measurable requirements attributes, we do not

know what measurable requirement attributes could yield useful metrics that would aid the

requirements management process in a large systems projects and provide useful require-

ments information to the various internal stakeholders. The literature has largely focused

on requirement quality (e.g., individual requirement size [Génova et al., 2013], complexity

[Antinyan and Staron, 2017], and consistency [Byun et al., 2014], etc.) and volatility metrics

[Loconsole and Börstler, 2005; Kulk and Verhoef, 2008; Ferreira et al., 2011].

Finally, requirements in a large-scale systems project are large in number, and, thus,

exist at different levels or categories [IEEE, 2011]. For example, a set of requirements may be

organized as a whole in requirement baselines (i.e., requirement document versions), which

are further organized within the baseline according to features and releases. Research shows

that different requirement levels may trigger different requirements-information needs for

internal stakeholders, which, in turn, demand different set of metrics [Gross and Doerr,
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2012a; Hess et al., 2017]. However, the literature is silent in this regard; we do not know what

requirements levels could yield useful requirements metrics.

Thus, the goal of this paper is to address the above issues through identifying an empir-

ically derived and validated requirements measurement suite that consists of requirements

attributes, metric-levels, and associated metrics and meta-data to: i) facilitate the require-

ments management process through enabling the tracking, monitoring, and management

of requirements and requirements related-information and ii) provide internal stakehold-

ers with requirements-related information that would address their concerns and aid them

in their respective process activities.

The contributions of this article are as follows: (1) We bring to light five measurable re-

quirement attributes (i.e., size, growth, status, volatility, and coverage) (Section 3.4.1) that

are important to measure in a systems engineering project and that have received varying

degrees of attention in the literature and practice, (2) we identify four requirement metric

levels (i.e., baseline, feature, release, and safety) (Section 3.4.2) that exist in large systems

projects, (3) we identify the meta-data items needed to apply the defined metrics (Section

3.4.3), (4) we present an empirically derived and validated set of 90 requirements metrics at

all attribute-level combinations (e.g., requirements size metrics at the baseline level) (Sec-

tion 3.4.4), and (5) we validate the metrics empirically through an action research study and

theoretically using an established measurement validation framework [Kitchenham, 1995]

(Section 3.5.1).

The research was conducted as an action research (AR) study in a large systems project

in the rail automation domain (Section 3.3). The project consists of three sub-projects each

of which consists of 1500+ requirements and has its own team. We defined the requirements

metrics in collaboration with the internal stakeholders at the organization and empirically

validated them through incorporating the metrics into requirements management process

in a semi-automated way. We show how the measures at the different levels can be used to

address different internal stakeholder concerns through example usage scenarios from the

projects.

In practice, our results show that the identified requirement metrics for the different

attributes and levels can be used within requirements management and in downstream

and side-stream processes to manage requirements, gain insight into system development

through requirements-driven information and to aid decision-making within the project

(Section 3.5.1). Theoretically, the results enhance our understanding of requirements as

measurable software entities and contribute to the limited body of literature on require-

ments metrics.

Moreover, the results are anticipated to have further implications for practice and re-
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search (Section 3.6) through improving requirements engineering documentation practice,

increasing requirements measurement breadth, forming a foundation for metric tools and

applications (e.g., requirements dashboards), and promulgating further research on mea-

surable requirements attributes, levels, and metrics.

3.2 Related Work

In this section, we discuss the related work surrounding the four elements of our research:

measurable requirements attributes (e.g., volatility) (Section 3.2.1), requirements levels (e.g.,

feature) (Section 3.2.2), requirements metrics (e.g., % of requirements added per feature per

baseline) (Section 3.2.3), and finally requirements meta-data (e.g., requirements type) (Sec-

tion 3.2.4) for requirements measurement. We then analyze and highlight the research gap

in Section 3.2.5.

3.2.1 Measurable Requirements Attributes

An attribute is a property of an entity [Fenton and Biemen, 2015]. For instance, a person

is an entity and height is one of the person’s attributes. Thus, a requirement attribute is a

property that a requirement or set of requirements (i.e., entity) possesses. Examples of such

requirement attributes include size [Wiegers, 2006; Loconsole and Borstler, 2007], growth

[Jones, 1996b], volatility [Zowghi and Nurmuliani, 2002], completeness [Costello and Liu,

1995], and consistency [Byun et al., 2014], etc. Attribute-based measurement has been

widely adopted in software engineering [Davis et al., 1993; Morasca and Briand, 1997; Fen-

ton and Biemen, 2015] and acquiring a clear and unambiguous understanding of the at-

tributes being measured is essential for accurate measurements [Chidamber and Kemerer,

1994; Briand et al., 1996]. Thus, identifying the attributes for the real-world entity (i.e., re-

quirements) that we wish to measure is the first step in the measurement process [Morasca

and Briand, 1997; Fenton and Biemen, 2015].

The software engineering literature is replete with studies on software “code-centric” at-

tributes such as coupling, cohesion, size, and complexity [Briand et al., 1996] and their as-

sociated metrics. In RE, there exists a plethora of studies on requirement quality attributes.

Davis et al. [Davis et al., 1993] make one of the first attempts to define requirements quality

attributes that can be measured. They identify 24 qualities such as unambiguous, complete,

correct, and concise (see Table 3.1 for complete list) and propose measures for 18 of the at-

tributes. Similarly and more recently, Genova et al. [Génova et al., 2013] discuss a set of

requirements quality attributes that consist of validability, verifiability, modifiability, com-



3.2. RELATED WORK 23

pleteness, traceability, among others (see Table 3.1 for complete list) and the requirements

indicators that can be used to measure the quality attributes (e.g., size, punctuation, con-

nective terms, and degree of nesting, etc.). While the previous studies focused on a group

of requirements quality attributes, other studies focus on one quality attribute as is the case

with [Byun et al., 2014] who study requirements consistency and propose metrics for mea-

suring it. Other studies have taken a code-centric approach to requirements metrics by

adopting studied code quality attributes (e.g., coupling, cohesion, and complexity, etc.) and

using said attributes as a basis for proposing requirements metrics [Antinyan and Staron,

2017]. Other requirements attributes that have been touched upon, but not explored in

depth, include defect density [Costello and Liu, 1995], status [Berenbach and Borotto, 2006;

Wiegers, 2006; Ebert and Dumke, 2007], and traceability [IEEE, 1989; Costello and Liu, 1995;

Goti, 1998; Nassar and Scandariato, 2017].

One of the most widely studied requirements attributes is requirements volatility. Work

on requirements volatility is multi-faceted and includes: metrics for requirements volatility

[Loconsole and Börstler, 2005]; the causes [McGee and Greer, 2012] and effects of require-

ments volatility on other elements such as project performance [Zowghi and Nurmuliani,

2002; Ferreira et al., 2009] and defects [Malaiya and Denton, 1999]; benchmarking require-

ments volatility rates [Jones, 2000; Kulk and Verhoef, 2008]; managing requirements volatil-

ity and associated risks [Thakurta and Ahlemann, 2010; Ferreira et al., 2011]; and predictors

of requirements volatility [Loconsole and Borstler, 2007].

Table 3.1: Summary of literature survey on requirements metrics.

Study Measurable Requirement

Attribute

Metric Defi-

nition

Metric

Levels

Meta-

Data

Validat-

ion

Domain

S1

[Costello

and Liu,

1995]

Volatility, coverage, com-

pleteness, defect density,

fault density, interface

consistency, problem re-

port/action item/issue,

integrated process

General de-

scriptions

of how to

measure the

attributes

Generic

levels:

product,

process,

progress,

resource,

system

and soft-

ware

N/A N/A Large

software-

intensive

systems

S2

[Wiegers,

2006]

Product size, quality, sta-

tus, requests for changes

(volatility), effort

General de-

scriptions

of how to

measure the

attributes

N/A Discussed

the status

meta-data

N/A N/A
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S3

[Antinyan

and

Staron,

2017]

Requirement quality (com-

plexity, coupling, size,

length, cohesion)

5 metrics N/A Require-

ment text

Empirical

(Expert

opinion,

regression

analysis,

corre-

lation

analyses)

Large

software

devel-

opment

organiza-

tion

S4

[Génova

et al.,

2013]

Requirement quality (val-

idability, verifiability,

modifiability, complete-

ness, consistency, under-

standability, unambiguity,

coverage, abstraction,

precision, atomicity)

General de-

scription of

how some

of the at-

tributes can

be measured

N/A N/A Empirical

(tool)

Tool used

in dif-

ferent

domains

S5

[Byun

et al.,

2014]

Requirements consistency

(quality)

5 metrics N/A N/A Sample

scenario

N/A

S6

[Beren-

bach

and

Borotto,

2006]

Progress, status, complete-

ness, quality

11 metrics N/A Brief men-

tion of

meta-data

needed for

2 metrics

N/A 2 large

systems

projects,

1 large

software

project

S7

[Kolde,

2004]

Not explicitly identified but

includes: Volatility, defects

rate, growth, status, cover-

age

General de-

scriptions of

11 metrics

N/A N/A N/A N/A

S8 [Kulk

and

Verhoef,

2008]

Growth 4 metrics

and math-

ematical

model

N/A Function

points

Empirical

(case

study)

Banc-

assurance

sector

S9 [Lo-

console,

2001]

Not explicitly identified but

includes volatility, size, de-

fect rate, quality

51 metrics N/A N/A N/A N/A
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S10 [Lo-

console,

2003]

Requirements specifica-

tion size, size of changes

per requirement, status

of requirements spec-

ifications, progress of

change requests in life

cycle, change classifica-

tion, rationale for changes,

duration, resource

9 metrics N/A Theoretical N/A N/A

S11 [Lo-

console

and

Börstler,

2005]

UCM size (quality), volatil-

ity

5 volatility

metrics, 4

UCM size

metrics

N/A Description

of one

meta-data

item for

one metric

Empirical

(case

study)

Small

project –

embedded

software

S12 [Lo-

console

and

Borstler,

2007]

Requirement size, volatility Definition

for require-

ments

volatil-

ity only.

General de-

scription

for other

metrics

N/A One meta-

data

briefly

discussed

Empirical Small

project –

embedded

software

S13

[Lam

et al.,

1999]

Dependency, change den-

sity, volatility, error rate, fix

cost, acceptance rate

General de-

scriptions

of 7 met-

rics for the

attributes

N/A N/A N/A N/A

S14

[Goti,

1998]

Size, goodness, traceability,

change

Descriptions

of how to

measure the

attributes

N/A Generic

descrip-

tions of

use cases,

events-

in-flow,

scenarios

N/A N/A

S15

[Chemu-

turi,

2013]

Requirements stability,

quality (defect injection

rate, delivered defect

density)

15 metrics N/A N/A N/A N/A
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S16

[Davis

et al.,

1993]

24 SRS quality attributes

(unambiguous, complete,

correct, understandable,

verifiable, internally &

externally consistent,

achievable, concise, design

independent, traceable,

modifiable, electronically

stored, executable, an-

notated by importance,

stability, and version, not

redundant, right level of

detail, precise, reusable,

traced, organized, cross-

referenced)

18 metrics N/A N/A N/A N/A

S17

[IEEE,

1989]

Traceability/Coverage,

Compliance

2 metrics N/A Brief de-

scriptions

of primi-

tives

N/A N/A

S18 [Pe-

terson

and

Wohlin,

2010]

Not explicitly identified but

includes: coverage, size

4 metrics N/A N/A Static vali-

dation

N/A

S19

[Nassar

and

Scan-

dariato,

2017]

Traceability/Coverage 2 metrics N/A N/A Empirical Automotive

industry

S20

[Ebert

and

Dumke,

2007]

Status, progress, quality General de-

scriptions

of 7 ways to

measure the

attributes

N/A Brief dis-

cussion

of ID, de-

scription,

effort,

value

N/A N/A

This

study

Size, growth, volatility, sta-

tus, coverage

90 metrics Baseline,

feature,

release,

safety

9 meta-

data items

Empirical

and theo-

retical

Large

systems

project in

the rail au-

tomation

domain
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3.2.2 Requirements Metric Levels

The categorization of entities for measurement purposes is a common practice in SE. One of

the most common software metric categorizations consists of product, process, resources

[Ebert and Dumke, 2007; Fenton and Biemen, 2015], and progress [Costello and Liu, 1995]

metrics. Others have categorized software engineering management metrics into project

management level and general management level metrics [Offen and Jeffery, 1997]. Sim-

ilarly, [Kerzner, 2017] identifies business and project levels for software metrics. Costello

and Liu [Costello and Liu, 1995] intersect the product, process resources, and progress met-

ric levels with system-level and software-level metrics. Such categorizations are different

than identifying an entity’s measurable attributes. For example, the size attribute on the

software-level requires different metrics than the size attribute at the system-level. While

the former may use LOC to measure the software size, the latter may use LOC in addition to

hardware components to measure system size. However, the study of requirements levels

for the purpose of measurement, to our knowledge, is nonexistent. Particularly, an explicit

identification of the requirement metric levels that would address the requirements-related

stakeholder concerns is nonexistent (see Table 3.1 for details) in the RE literature.

3.2.3 Requirements Metrics

In this subsection, we discuss the related work on requirements metrics and focus on two

issues: the definition and validation of the metrics that have been proposed to measure the

requirements attributes identified in our study (i.e., size, growth, volatility, status, and cov-

erage). The IEEE Standard 1061 defines a metric as a function whose inputs are software

data and whose output is a single numerical value that can be interpreted as the degree to

which software possess a given attribute [IEEE, 1992]. Thus, a well-defined metric entails a

well formulated function whose output is single numerical value. A poorly-defined metric

(i.e., vague descriptions of metrics) inhibits the adoption of proposed metrics [Costello and

Liu, 1995]. Ambiguous metric definitions may also lead to measuring attributes or entities

other than what is intended. For example, a volatility metric that is defined as the amount of

change that occurs in a requirement set is vague and may be open to several interpretations.

Questions such as what constitutes a change? and what constitutes a requirements set? will

significantly alter the resulting numerical value that is purported to measure requirements

volatility. Meanwhile, metric validation consists of theoretical validation (i.e., demonstrat-

ing that the metric is really measuring the attribute it is purporting to measure) and em-



28 CHAPTER 3. A STRUCTURED METRICS SUITE FOR REQUIREMENTS

pirical validation (i.e., demonstrating a metric’s usefulness in a given context) [Briand et al.,

1995]. Metrics that have not been validated theoretically and empirically are meaningless

[Costello and Liu, 1995; Briand et al., 1995; Antinyan et al., 2016; Kitchenham, 2010].

Table 3.1 lists 20 studies from the RE literature that propose requirements metrics in one

way or another. Requirements size metrics are metrics that attempt to measure the over-

all size of the requirements set and has been referred to as product size [Wiegers, 2006].

Five (S2, S9, S10, S12, S14) of the 20 studies have proposed requirements size metrics. S2

[Wiegers, 2006] stresses the importance of measuring product size to know the number of

requirements in a product, but no metric definition is given. Loconsole et al. propose sev-

eral requirements size metrics. In S9 [Loconsole, 2001], there is one undefined size metric

that is referred to as size of requirements and another metric defined as the total number

of requirements, which is not explicitly associated with size. The proposed metrics are not

validated. In S10 [Loconsole, 2003], Loconsole and Borstler define the requirements spec-

ification size as the total number of requirements, with no further details on how to count

the number of requirements. They also attempt to validate the metric theoretically and em-

pirically, but the empirical validation is inconclusive. In S12 [Loconsole and Borstler, 2007],

Loconsole and Borstler propose the number of words per file, number of lines per file, num-

ber of uses cases per file, and number of actors per use case as requirements size metrics. They

attempt to validate the metric empirically by conducting an analysis to test whether the size

metrics are good predictors of requirements volatility. S14 [Goti, 1998] proposes to measure

project size by counting number of features and number of use cases. However, no metric

definition or validation is provided in the paper.

Requirements growth or creep metrics measure the increase or decrease in the require-

ments overall size over time [Kulk and Verhoef, 2008]. S9 [Kulk and Verhoef, 2008] uses re-

quirements volatility to refer to requirements creep and scrap (i.e., growth). However, their

definition of volatility adheres to our definition of requirements growth and not volatility.

Thus, S9 defines 4 requirements growth metrics and provides empirical validation for the

metrics through a case study. In S7 [Kolde, 2004], no requirements growth metric defini-

tion is given, but it simply states that requirements growth over time metric "can help the

project manager determine whether adequate progress is being made gathering and specify-

ing the requirements. As the project progresses, unusual growth can be an indicator of scope

creep. It may also be an indicator that there are opportunities to improve the way in which

requirements are elicited and documented."

Requirements volatility metrics measure the change to requirements and have been

given different definitions. In S1, Costello and Liu [Costello and Liu, 1995] propose to mea-

sure requirements volatility by counting additions, deletions, and modifications over a du-
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ration of time and classified by reason for change. No definition or validation of the pro-

posed metrics are given. S2 [Wiegers, 2006] defines a requirements volatility metric as Num-

ber of added requirements + number of deleted requirements + number of modified require-

ments / initial number of requirements. No metric validation is provided. In S7 [Kolde, 2004],

Kolde proposes to measure the amount of change in a project through the frequency of

change in the total requirements set, rate of introduction of new requirements, and number

of requirements changes to a requirements baseline. No metric definition or validation is

provided in the paper. In the series of studies by Loconsole on requirements metrics, volatil-

ity metrics are addressed with varying degrees of detail. In S9 [Loconsole, 2001], volatility

is not explicitly mentioned but several metric proposals for requirements change are given

such as: the number of changes per requirement, the size of change per requirement, and

number of changes to requirements per unit of time. No further details or metric validation

is provided. In S10 [Loconsole, 2003], theoretical validation of ‘size of change per require-

ment’ is attempted. In S11 [Loconsole and Börstler, 2005], requirements volatility is mea-

sured by total number of changes to a use case model (UCM), number of minor changes,

number of moderate changes, number of major changes, and number of revisions. A case

study is conducted to validate the measures empirically. In S12 [Loconsole and Borstler,

2007], the volatility metric is defined as the the amount of changes to a requirements docu-

ment over time and measure it as the sum of the change densities of a requirements document.

Empirical validation is performed through an experiment. In S13 [Lam et al., 1999], the

number of requirements that have been added, modified or removed within a given reporting

period as a proportion of the total number of requirements is suggested to measure volatility.

In S14 [Goti, 1998], Goti proposes to track requirements change through how many fea-

tures were modified. No further definition or validation is provided in S13 and S14. Finally,

S15 [Chemuturi, 2013] proposes the following formula to calculate requirements stability:

(number of change requests / number of requirements) * 100.

Requirements status metrics aid in in tracking the status of requirements in a project

over time. S2 [Wiegers, 2006], S6 [Berenbach and Borotto, 2006], S7 [Kolde, 2004], S10 [Lo-

console, 2003], and S20 [Ebert and Dumke, 2007] propose to have a status attribute for each

requirement and then a count of each status to indicate the overall status of requirements.

However, the studies do not include metric definition nor validation. Moreover, there is

no agreement as to which statuses should be assigned (e.g., analyzed, agreed, tested, or re-

viewed).

Finally, requirements coverage, sometimes referred to as traceability, metrics attempt

to measure how much of the requirements have been covered by design, implementation,

and tests. Five studies (S4, S7, S17, S18, S19) out of the 20 studies in Table 3.1 discuss re-
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quirements coverage metrics whether implicitly or explicitly. S4 [Génova et al., 2013] sug-

gests counting the number of dependencies towards other requirements or other artifacts

to measure coverage. No metric definition or validation is provided. S7 [Kolde, 2004] simply

discusses the importance of tracking the number of requirements traced or not. S17 [IEEE,

1989] defines the coverage metric as (the number of requirements met by the architecture/

number of original requirements)*100. S18 [Peterson and Wohlin, 2010] simply states that

metrics at the requirements level should include the number of requirements in design, im-

plementation and test. Finally, S19 [Nassar and Scandariato, 2017] defines two metrics for

the number of traced requirements per component and traced components per require-

ments, which are validated empirically through an experiment that uses the coverage met-

rics to predict software defects.

3.2.4 Requirements Meta-Data

Good requirements engineering practice dictates that requirements must have a set of defin-

ing attributes or meta-data [IEEE, 2011]. Although there is no hard and fast rule as to what

meta-data must be maintained for requirements as different organizations have different

needs, it is common practice that each requirement should have a unique ID, has a clear

description (i.e., text), type, status, priority, and rationale [Kotonya and Sommerville, 1998;

Wiegers, 2006; IEEE, 2011]. However, a set of requirements metrics would require a spe-

cific set of requirement meta-data in order to be able to derive the metrics and calculate

the measurements. Out of the 20 sources we found on requirements metrics, S2, S3, S6,

S11, S12, S14, and S17 contain brief implicit descriptions of the meta-data that can be used

in the proposed metrics (e.g., requirements text, requirements status, and function points,

etc.). S20 [Ebert and Dumke, 2007] included an explicit, brief discussion of the meta-data

required for the requirements metrics they propose (i.e., ID, description, effort, and value).

3.2.5 Analysis and Research Gap

In the previous subsections, we examined the literature on requirements metrics from sev-

eral angles: measurable requirements attributes, requirement metric levels, requirement

metric definition and validation, and requirements meta-data. Table 3.1 summarizes the

surveyed sources and includes the measurable requirement attribute(s), how metric defini-

tion(s), metric levels, and meta-data are addressed, existence and type of validation of the

metrics, and the context from which the metrics were derived. We discuss the research gap

based on Table 3.1 and our discussions in the previous subsections.

First, the measurable requirements attributes that have received the most attention are
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requirements quality and volatility, with volatility having been studied from many angles

(see Section 3.2.1). However, other requirements attributes, and particularly those that need

to be measured within the context of large systems engineering projects, are understud-

ied. This article addresses this gap by bringing to light the requirements attributes that are

prevalent in large-sale systems engineering projects.

Second, our discussion in Section 3.2.2 and Table 3.1 show that work on requirements

metric levels is nearly nonexistent. This article, to our knowledge, is the first of its kind to

examine requirements metric levels.

Third, Section 3.2.3 demonstrates how the majority of metrics for RE lack the rigor that

metrics in SE in general have been subject to. In other words, the bulk of RE metrics are

vague descriptions and, in the case that a proper metric definition is provided, lacks the

necessary validation for it to be useful in practice. In a recent and extensive mapping study

of SE metric papers, Kitchenham [Kitchenham, 2010] shows that the most cited papers are

analysis and validation metric papers. However, the majority of the evaluation metric pa-

pers evaluate object-oriented metrics, while RE metrics are not discussed at all. This article

addresses this gap not by proposing novel metrics per se, but by bringing a higher level of

rigor to the metrics so as to ensure their usefulness and usability in practice.

Fourth, as discussed in Section 3.2.4, the gathering of meta-data for measurement is es-

sential to the measurement process. However, meta-data is seldom discussed in RE metric

papers (see Requirement Meta-Data column in Table 3.1). Our work identifies the necessary

requirements meta-data items for the proposed metrics. Finally, the last column in Table

3.1 shows that the context from which the majority of metrics were derived is unknown

or mostly software intensive projects (expect for S1 and S6), which casts doubt upon the

metrics’ applicability to a large systems project. Meanwhile, the results in this paper are

empirically derived from and validated within a large systems project.

3.3 Research Methodology

The research was initiated in a large-scale rail automation project in a multi-national com-

pany in the United States as an action research (AR) study. Action research (AR) is a process

involving researchers and practitioners acting together on a particular cycle of activities, in-

cluding problem diagnosis, action planning, intervention/action taking, evaluation, and re-

flection/ learning [Susman and Evered, 1978], where researchers identify problems through

close involvement with industrial projects, and create and evaluate solutions in an almost

indivisible research activity. Thus, AR provides practical value to the collaborating organi-

zation while simultaneously contributing to the acquisition of new and robust theoretical
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knowledge [Easterbrook et al., 2008]. Particularly, action research has shown to be effective

in deriving and validating SE metrics [Antinyan et al., 2016; Staron, 2019].

Our AR study followed the canonical approach [Davison et al., 2012]. To report the action

research study, we followed the guidelines by [Davison et al., 2012] and template provided

by [Santos and Travassos, 2011]. Figure 3.1 presents the AR cycle performed (adapted from

[Susman and Evered, 1978]). We discuss the project (context, participants, and data) and

the AR procedure in the following subsections.

Figure 3.1: The action research approach adopted in the study.

3.3.1 Descriptive Statistics: Project Context, Data, Participants

Project Context

The AR study began in February 2017 with the primary researcher being onsite full-time for

ten months and worked with the primary industrial partner and secondary industrial par-

ticipants (internal project stakeholders) in consultation with a senior researcher. The overall

project (i.e., program) consisted of three sub-projects, each sub-project consisted of a prod-

uct that had its own set of requirements, architecture design, test cases, and engineering

team. As mentioned earlier, the sub-projects are part of a large-scale rail automation project

in a multi-national company in the United States. The project adopted a waterfall software

development approach. The requirements engineering process generally consisted of re-

quirements elicitation, analysis, specification, and validation and management stages and

adhered to an internal requirements engineering standard.
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Project Data

Table 3.2 shows a breakdown of the software artifacts which consists of the number of re-

quirements baselines (i.e., document versions), requirements, design baselines, design ob-

jects, and test cases per product that the first author worked with. The Rational Dynamic

Object Oriented Requirements System (DOORS) was used to store and manage the require-

ments and design objects. IBM Engineering Test Management (formerly RQM) was used to

store and manage test cases. All the requirements and design baselines and test cases for all

products were exported to spreadsheets.

Table 3.2: Descriptive statistics of projects.

Project Project Duration No. Req.
Baselines

No. Reqs. No. Safety
Reqs.

No. Design
Baselines

No. Design
Objects

No. Test
Cases

P1 73 months 54 1790 N/A 23 472 2111
P2 36 months 30 2285 N/A 4 380 N/A
P3 45 months 51 2389 923 28 827 2045

Participants

The primary industrial partner is the systems manager who overlooks the requirements en-

gineering and management processes for all the projects under study. The other internal

project stakeholders included: R&D managers, test mangers, developers, architects, testers,

project managers, program managers, safety managers, quality mangers, financial man-

agers, and project operations managers, all with whom the researcher worked with during

the AR study.

3.3.2 Action Research Procedure

An AR study typically consists of five phases and each phase consists of a set of activities.

Table 3.3 summarizes our AR study and includes the theoretical AR activities that must

take place in each phase (second column), the corresponding real-world activities that took

place (third column), the participants involved (fourth column) in each phase, the methods

and tools used in each AR phase (fifth column), and the output of each phase (sixth column).

We describe each phase in detail in the following subsections. Given the nature of AR, the

questions are not predefined before the initiation of the study. Rather, the research ques-

tions emerge during the action planning phase as a result of the problem diagnosis phase

and in the reflection and learning phase as a result of identifying empirical and theoretical

findings [Santos and Travassos, 2011].
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Table 3.3: Overview of action research procedure.

AR Phase AR Activities

(theory)

Real-World

Activities (con-

duct)

Participants Tools and

Methods

Outputs

Phase 1:

Diagnosis

Identify problem Established col-

laboration with

organization,

worked onsite

as part of the RE

team

Researcher, pri-

mary industrial

participant, se-

nior researcher

Unstructured

interviews

Problem

statement

and scope

Phase 2:

Action

Planning

(incl. Re-

search

Questions)

Explore poten-

tial solutions,

select solution,

conduct liter-

ature survey,

define research

questions

Research ques-

tions defined in

this study

Researcher, pri-

mary industrial

participant, se-

nior researcher

Unstructured

interviews,

document

analysis, liter-

ature survey

Proposed

solution,

research

questions,

related work

Phase 3:

Interven-

tion/Action

Taking

Collect and ana-

lyze data, design

solution, insert

solution into

process, gather

feedback on so-

lution, update/

enhance solu-

tion based on

feedback

Identify meta-

data, define met-

rics, use metrics

in project, up-

date metrics

based on stake-

holder feedback

Researcher, pri-

mary industrial

participant, sec-

ondary indus-

trial participants

(internal project

stakeholders)

Document

analysis,

GQM, un-

structured

interviews,

focus groups,

observation

Requirements

metrics,

meta-data

Phase 4:

Evalu-

ation/

Analysis

Analyze inter-

vention effects

Validate metrics

empirically

Researcher, pri-

mary industrial

participant, sec-

ondary indus-

trial participants

(internal project

stakeholders)

Observation,

informal

discussions,

interview

Requirements

metrics,

meta-data

Phase 5:

Reflec-

tion and

Learning

Identify theoret-

ical and empiri-

cal findings and

lessons learned,

define further re-

search questions

Validate metrics

theoretically,

identify at-

tributes, identify

levels, identify

meta-data

Researcher, pri-

mary industrial

participant,

secondary in-

dustrial partic-

ipants (internal

project stake-

holders), senior

researcher

Content

analysis, Mea-

surement

validation

framework

Requirements,

metrics, at-

tributes,

levels, meta-

data
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Phase 1: Diagnosis

In the diagnosis phase the researcher and primary industrial participant (i.e., systems man-

ager) held unstructured interviews to understand the project context, requirements engi-

neering process, software development process, and the involved internal project stake-

holders. Unstructured interviews are those in which there is no specific set of predeter-

mined questions, but with certain topics in mind that need to be covered; they flow like an

everyday conversation and tend to be more informal and open-ended [Thorpe and Holt,

2008]. Through the unstructured interviews and briefing sessions, the researcher and pri-

mary industrial participant identified the general problem being faced in the requirements

management process: difficulty in tracking, monitoring, and managing requirement-related

information such as the number of requirements in a project, number of requirements per

software release, requirements growth and volatility rates, etc. and difficulty to access this

information by internal project stakeholders.

Phase 2: Action Planning

In this phase the researcher and primary industrial participant, through further unstruc-

tured interviews, selected a solution to the problem identified in the diagnosis phase that

is to be designed, implemented and incorporated into the requirements management pro-

cess: a set of requirement-centric metrics that will be made available to the internal project

stakeholders. The primary participant provided a brief description of what requirements-

related information need to be monitored: number of requirements over requirements base-

lines, number of modified requirements, number of safety critical requirements, and num-

ber of requirements per feature. Equipped with the understanding of available data and the

needs of the systems manager, the researcher conducted a literature survey to explore the

requirements metrics in the literature that can be used in the requirements management

process. However, as described in Section 3.2, the literature provided little guidance on re-

quirements metrics.

Thus, based on the participant’s information concerns, document analysis, and litera-

ture survey, the primary researcher defined the goal of the AR study: to identify an empir-

ically derived and validated set of requirements metrics that can be used by internal stake-

holders in a systems engineering project to gain insight into their respective process activities,

which, in turn, would aid the requirements management and other systems development

processes. The following research question was initially identified for the AR study:

RQ1: What requirements metrics are appropriate for use by various project in-

ternal stakeholders in a large systems engineering project, such that it provides
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them with insights satisfying their specific concerns?

The researcher and primary industrial participant held briefings to discuss the require-

ments meta-data available in the requirements repositories that can be possibly used to

apply the metrics. The researcher then conducted an initial document analysis of require-

ment specification documents, architectural design documents, and test documentation to

understand the available meta-data and the feasibility of deriving the above information.

Thus, the following research question was posed:

RQ2: What requirements meta-data in a large systems engineering project are

needed to enable the application of the requirements metrics identified in RQ1?

As discussed in Section 3.1, requirements metrics lacked theoretical validity as opposed

to other SE metrics [Kitchenham, 2010]. Thus, in order to demonstrate the theoretical va-

lidity of the metrics, we began investigating measurement validation frameworks [Kitchen-

ham, 1995; Schneidewind, 1992; Briand et al., 1995; Fenton and Biemen, 2015], all of which

required identifying the entities that are being measured (i.e., requirements in our case) and

their attributes (e.g., size, volatility, complexity, etc.). In consequence, we defined the fol-

lowing research question:

RQ3: What measurable requirements attributes are the metrics identified in

RQ1 measuring so as to facilitate the validation of the metrics?

Finally, there was a need for further structuring of the measures in order to: 1) provide

the internal stakeholders with the right requirements measures (i.e., which internal stake-

holders needed which requirements measures) and 2) structure the measure reports in a

uniform and readable format. Thus, it was necessary to organize the metrics into logical

categories or groups, which led to the fourth research question:

RQ4: At what metric levels do requirements the metrics derived in RQ1 exist in

a large systems engineering project?

Figure 3.2 depicts the hierarchy of the research questions and the relationships among

them.
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Figure 3.2: Action research study research questions.

Phase 3: Intervention/Action Taking

To begin the metric definition process (i.e., solution design), the researcher used GQM [Basili

et al., 1994] to create a list of high-level descriptions of the requirements metrics that are

to be then further defined in detail. Figure 3.3 shows examples of such high-level met-

ric descriptions. The list was then validated by the industrial participant. Based on the

initial metric definitions, the researcher conducted an in-depth document analysis of the

requirements, design, and test documents by exporting and gathering the data into spread-

sheets and ensuring the completeness and consistency of the meta-data. Table 3.2 includes

the number of requirement and design baselines (i.e., document versions), requirements,

design objects, and test cases for each product that was included in the analysis. The re-

searcher then used the gathered meta-data and high-level metric descriptions to define the

metrics and calculate the measures using spreadsheets. Equation 3.1 is an example of a met-

ric definition (all metric definitions are included and explained in detail in Section 3.4.4).

M1 : B asel i neSi ze =
n∑

j=1
I sCORE(Req I D) (3.1)

Given the full-time presence of the researcher at the project site, she continuously sought

feedback on the metric definitions from the primary industrial participant until an initial set

of metrics have been defined. Visualizations of the measures were created using excel.

To insert the designed solution (i.e., metrics) into the requirements management pro-
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Figure 3.3: An excerpt from the GQM template used in the AR study to derive the metrics.

cess and to gather feedback from internal stakeholders, two iterations of focus groups were

held. In the first iteration, the measurements of Product 3 (see Table 3.2) were presented to

a subset of the secondary industrial participants (i.e., internal stakeholders) which included

the systems manager, R&D product manager, test mangers, two developers, architects, and

the researcher. Feedback was gathered from the focus group and used to update the met-

rics. The feedback included suggestions for new metrics and enhancements to the visual-

izations. The second focus group included a larger group of secondary participants such

as: program manager, quality managers, safety managers, and financial managers. The sec-

ond focus group resulted in further feedback that was incorporated into the solution by the

researcher. A second round of focus groups (two focus groups) was conducted the follow-

ing month. The two rounds of focus groups familiarized the metrics to the internal project

stakeholders. After the two round of focus groups, the researcher provided the up-to-date

measurements to the stakeholders individually and upon request. Thus, the researcher re-
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ceived continuous feedback through direct engagement with the internal stakeholders and

observation of the stakeholders’ use of the measurements. Thus, the focus groups, observa-

tions and interactions with the internal stakeholder allowed for preliminary empirical vali-

dation of the metrics (see Section 3.5.1 for details on metric validation).

Phase 4: Evaluation/Analysis

The researcher conducted the evaluation and analysis of the intervention effects (i.e., in-

serting the derived metric into the requirements management and system development

processes) through informal discussions with the primary and secondary industrial par-

ticipants and observations of the processes. Issues such as improved requirement-design

coverage, improved planning of time and effort per release, easier accessibility to the re-

quirements information by internal stakeholders were noted (details on the empirical and

theoretical validation of the metrics are in Section 3.5.1).

Moreover, the discussions with the internal stakeholders and observations of the pro-

cesses led to further metric definition in order to address further internal stakeholders’ con-

cerns. For example, one coverage metrics is the number of requirements with ’in-links’ from

design per baseline. Upon discussions with the internal stakeholders, it became evident that

there is a need for the percentage of requirements with ’in-links’ from design per baseline and

the metric was accordingly incorporated into the overall set of requirements metrics and its

use validated by providing it to the internal stakeholders with the updated batch of mea-

surements.

Phase 5: Reflections and Learning

The reflections and learning phase of an AR study aims to identify findings and lessons

learned from the application of the proposed solution (i.e., metrics) and define further re-

search questions that may emerge from the analysis of applying the metrics [Santos and

Travassos, 2011]. In this phase, we began applying a measurement validation framework

[Kitchenham, 1995] and structuring the measures into logical categories. Thus, given the it-

erative nature of an AR study, the need for research questions 3 and 4 emerged in the reflec-

tion and learning phase, which were then added to research questions 1 and 2. The findings

from research questions 3 and 4 were then incorporated into the solution and evaluated as

will be discussed in detail in Section 3.5.
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3.4 Results

In this section, we describe the results from our AR study. The results are organized ac-

cording to their associated research questions: measurable requirements attributes (RQ3),

requirements metric levels (RQ4), requirements meta-data (RQ2), and requirements met-

rics (RQ1). Table 3.4 summarizes the AR results and maps them to their respective research

questions (see Section 3.3.2 for research questions). We note that we report the results

in a bottom-up approach; first we report the results of RQ3 (requirements attributes) and

RQ4 (requirements metric levels) before the results of RQ2 (meta-data) and RQ1 (require-

ments metrics) to allow us to formulate the requirements metric definitions in light of the

attributes and levels using the defined meta-data items. More specifically, in order for us to

describe, for example, the metrics for requirements size (i.e., attribute) on the baseline level

(i.e., metric level), one must have an understanding of requirements size and the baseline

level first. Thus, our choice to report the findings of RQ3 and RQ4 first.

Table 3.4: Summary of AR study results.

Research
Question

Result Topic Results

RQ3 Requirements attributes Size, growth, volatility, status, coverage

RQ4 Requirements metric levels Baseline, feature, level, safety

RQ2 Requirements meta-data Requirement ID, Requirement type,
Feature ID, Release, Requirement text,
Requirements status, safety require-
ment, Out-links, In-links.

RQ1 Requirements metrics 90 metrics

3.4.1 Measurable Requirements Attributes (RQ3)

The application of the measurement validation framework to the derived metrics in the re-

flection and learning phase of the AR study (see Section 3.3.2 for phase details) led to the

identification of five requirements attributes that the derived metrics were measuring: size,

growth, volatility, status, and coverage. We describe each attribute in detail in the following

subsections.

Size

Size is the overall size of requirements to be implemented, designed, and tested within a

given project or product. Wiegers [Wiegers, 2006] refers to it as product size and defines

it as the number of requirements in a body of work. For example, we can say project A is
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larger than project B in terms of requirements size because project A has a larger number of

requirements than project B. This is not to be confused with the size of individual require-

ments, a measure of requirement quality, which has received more attention than overall

requirements size [Trudel and Abran, 2008; Génova et al., 2013; Antinyan and Staron, 2017].

This may be due to the diversity of requirement formats; requirements can be defined in

terms of uses cases, functional requirements, business rules, etc. which can make it difficult

to measure the overall requirements size. However, bringing overall requirements size into

the limelight would encourage practitioners to set a definition within their projects as to

what constitutes a requirement (see Section 3.4.4 for details on requirements size metrics).

Moreover, measuring requirements size has implications for cost and effort estimation, ne-

gotiating contracts with the customers, and release planning.

Growth

Growth is the increase or decrease in requirements size between requirements baselines.

For example, we can say the requirements growth between Requirement Baseline A and Re-

quirement Baseline B is 50 requirements or 20%. We can also say the requirements growth

between Baseline B and Baseline C is -10 or -5% because the requirements size decreased

between baselines B and C (see Section 3.4.4 for details on requirements growth metrics).

The literature is muddled on the definition and use of the term ‘requirements growth’. For

one thing, requirements creep [Jones, 1996a; Kulk and Verhoef, 2008] and requirements

scrap [Kulk and Verhoef, 2008] are other terms that have been used to describe the increase

and decrease in overall requirements size. In addition, requirements growth is usually con-

sumed under requirements volatility or change [Ebert and Dumke, 2007; Kulk and Verhoef,

2008]. We choose to use requirements growth as it encapsulates requirements creep and

scrap but is distinct from volatility (see the following subsection for details on volatility).

Measuring requirements growth allows for monitoring unwanted requirements growth and

managing project resources in response to necessary requirements growth. For example,

the detection of unanticipated growth of a requirements baseline that has been scheduled

for release may trigger renegotiations of contracts, staffing, and pricing within the project

and with customers.

Volatility

Volatility is the tendency of requirements to change over time in response to the evolving needs

of customers, stakeholders, organization, and work environment [Nurmuliani et al., 2004].

More specifically, it is the number of additions, deletions and modifications made to a spe-
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cific set of requirements over time [Costello and Liu, 1995]. The number of added, deleted,

and modified requirements is determined in relation to another, usually older, set of re-

quirements. For example, requirements volatility of Baseline A in relation to Baseline B is

larger than requirements volatility of Baseline C in relation to Baseline D because the num-

ber of added, deleted and modified requirements between baseline A and B is greater than

the number of added, deleted, and modified requirements between baselines C and D.

Requirements volatility has been studied widely in the literature [Zowghi and Nurmu-

liani, 2002; Thakurta and Ahlemann, 2010] with many metrics proposed to measure it rang-

ing from simple [Wiegers, 2006] to more complex ones [Kulk and Verhoef, 2008]. It is also

important to note that requirements volatility is different than requirements growth. One

would argue that the number of added requirements would also indicate requirements growth.

However, on the one hand, added requirements are concerned with the requirements that

were not present in an older requirements baseline and then added in a later baseline and

therefore is always a positive value. On the other hand, growth indicates the change in

overall size, which takes into account both additions and deletions and may have a neg-

ative value. Measuring requirements volatility is important for managing development and

maintenance effort, negotiating project scope, and rescheduling project deadlines [Thakurta

and Ahlemann, 2010], among others.

Status

Status indicates the overall status of the project from requirements perspective, which is ac-

quired by setting requirements to a status from a set of predefined states such as proposed,

approved, implemented, and tested [Wiegers, 2006; Ebert and Dumke, 2007]. For example,

the status of Baseline A is 50% approved, 40% implemented, and 10% tested. It is good re-

quirements engineering practice to allocate a status to requirements and track the number

and evolution of requirement statuses over time [Wiegers, 2006; Ebert and Dumke, 2007].

Hence, measuring requirements status aids in avoiding the pervasive “90% done” problem

[Wiegers, 2006] by allowing internal stakeholders to provide more accurate measures of their

progress with regard to the requirements. However, the literature lacks in-depth investiga-

tions of requirements status as a measurable requirement attribute.

Coverage

Coverage is the degree to which a set of requirements are covered by other software artifacts

in the development lifecycle, particularly architecture, development, and testing artifacts.

In other words, it is the degree to which a set of requirements have identifiable links to other
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software artifacts. Therefore, we can say Baseline B has higher requirements-to-design cov-

erage (see Section 3.4.4 for details on requirements coverage metrics) than Baseline A be-

cause Baseline B has a larger number of requirements that have links to design artifacts

than Baseline A. Requirements coverage is closely linked to but different from the exten-

sively studied field of requirements traceability, although the literature sometimes refers to

requirements coverage as ‘traceability’ [Nassar et al., 2016]. While traceability is the ability

to describe and follow the life of a requirement in both a forwards and backwards direction

(i.e., from its origins, through its development and specification, to its subsequent deployment

and use, and through periods of ongoing refinement and iteration in any of these phases) [Go-

tel and Finkelstein, 1994], we use the term coverage to indicate the measurements derived

from traceability data (e.g., links to design, test cases, etc.). Therefore, in order to obtain

precise coverage measures for a set of requirement, good requirements traceability is nec-

essary. Moreover, coverage is usually used to refer to test coverage of the requirements,

which has received the bulk of research efforts. However, our experience with systems en-

gineering projects shows that requirements-design coverage is also an important aspect of

coverage. Measuring requirements coverage would aid in improving requirements trace-

ability and tracking project progress with respect to design, implementation, and testing.

3.4.2 Requirements Metric Levels (RQ4)

Upon identifying the requirements attributes measured by the derived metrics, we addressed

the issue of unstructured and unorganized metrics by grouping them into related clusters.

We discovered that the clusters, which we refer to as metric levels, are based on the different

ways that requirements were organized in our project. At the highest level, requirements

were organized into baselines. The requirements within the baselines can then be orga-

nized according to features, releases, and safety requirements. Thus, we say: baseline size

metrics, feature size metrics, release size metrics, safety requirements size metrics and so

on for the rest of the attributes (i.e., growth, volatility, status, and coverage). We describe

each requirement metric level in the following subsections.

Baseline Level

A requirements baseline consists of all the specified requirements for a given product until

that point in time. For example, we say we are measuring baseline size or requirements

size at the baseline level through a set of defined metrics (see Section 3.4.4 for baseline size

metric details). In Figure 3.4, the first figure at the top left shows that Baseline 3.1 consists

of n requirements. Thus, according to the defined baseline size metric, the size of baseline
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3.1 is n requirements. The same applies for growth, volatility, status and coverage.

Figure 3.4: Examples of requirements metric levels.

Feature Level

A feature is a unit of functionality of a software system that is represented by a set of require-

ments within a requirements baseline. The entire set of features for a product will constitute

the requirements baseline. In other words, the requirements baseline consists of require-

ments that are grouped into features. For example, we say we are measuring feature size or

requirements size at the feature level through a set of defined metrics (see Section 3.4.4 for

feature size metric details). In Figure 3.4, the second figure at the top row shows Baseline

3.1 organized into Feature 1, Feature 2, Feature n. Feature 1 consists of n requirements and

feature 2 consists of m requirements. Thus, according to the defined feature size metric, the

size of Feature 1 in Baseline 3.1 is n requirements and the size of Feature 2 in Baseline 3.1

is m requirements and so on until Feature n. The same applies for growth, volatility, status

and coverage
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Release Level

A software release consists of a set of requirements that the client has agreed upon to be

developed and delivered to them by a specific date. Requirements in a baseline are orga-

nized according to a number of predefined releases. For example, we say we are measuring

release size or requirements size at the release level through a set of defined metrics (see

Section 3.4.4 for release size metric details). In Figure 3.4, the third figure at the top row

shows Baseline 3.1 organized into Release 1, Release 2, Release n. Release 1 consists of n

requirements and Release 2 consists of m requirements. Thus, according to the defined

release size metric, the size of Release 1 in Baseline 3.1 is n requirements and the size of

Release 2 in Baseline 3.1 is m requirements and so on until Release n. The same applies for

growth, volatility, status and coverage.

Safety Level

Systems projects often consist of safety critical components. Thus, it comes as no surprise

that there was a need to define metrics for safety requirements and that when we organized

the defined metrics, safety requirements constituted a cluster of the defined metrics. Re-

quirements in a baseline can be organized according to their safety relevance. For example,

we say we are measuring safety requirements size or requirements size at the safety level

through a set of defined metrics (see Section 3.4.4 for safety requirements size metric de-

tails). In Figure 3.4, the first figure in the lower row shows Baseline 3.1 organized into Safety

Critical requirements and Safety Relevant requirements. Safety Critical requirements con-

sist of n requirements and Safety Critical requirements consist of m requirements. Thus,

according to the defined safety requirements size metric, the size of Safety Critical require-

ments in Baseline 3.1 is n requirements and the size of Safety Relevant requirements in Base-

line 3.1 is m requirements. The same applies for growth, volatility, status and coverage.

Interestingly, we can also combine levels and derive metrics for different level combi-

nations. For example, the second figure in the second row shows that requirements can be

organized into features and, within the features, requirements can be organized according

to release. Thus, we can measure the size of Release 1 for Feature 1 in Baseline 3.1 through a

set of defined metrics. The same applies to the last figure in the second row where require-

ments in a baseline are organized according to release and the requirements within a release

are organized according to safety relevancy. Thus, we would need metrics to measure the

size of safety critical requirements for Release 1 in Baseline 3.1. Such level combinations

allow for deriving further metrics at lower levels if the need for them arises.
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3.4.3 Requirements Meta-Data (RQ2)

In Phase 3 of the AR study (see Section 3.3.2) we gathered the requirements meta-data for

the products under study (see Table 3.2) in spreadsheets and, upon defining an initial set of

requirements metrics, the need for further meta-data items emerged to define the remain-

ing metrics. Thus, we re-exported the requirements baselines with the complete and correct

requirements meta-data. To avoid such unnecessary rework, a complete and consistent list

of meta-data is necessary for defining the metrics and applying the metrics in this paper. In

this subsection, we define the 9 requirements meta-data items that will be used in the met-

rics in Section 3.4.4 below. Table 3.5 includes the list of meta-data items, their short names

that will be used in the metric definitions below, and each meta-data item’s description. Fig-

ure 3.5 shows an excerpt from our project data with an example for each of the meta-data

items in Table 3.5.

The requirements meta-data items are not limited to items listed in Table 3.5. The projects

under study consisted of other meta-data items that we did not include in this paper such as

requirement author, last modification date, and requirement history, to name a few, which

served different purposes within the project. However, the identified list consists of the

meta-data items that are necessary for the metrics defined in this paper.

Figure 3.5: Examples of requirements meta-data.

On Meta-Data Values. Given the centrality of the identified meta-data items in the follow-

ing metric definitions, it is important to note that the accuracy of the resultant measures is

dependent on the quality of meta-data values. In other words, the metrics require sanitized

data as input in order to calculate accurate measures. For example, if we are to calculate

the number of requirements that have in-links from design (i.e., requirements-design cov-

erage), then the in-links meta-data values (see Figure 3.5) must be complete and correct for

all requirements in order to calculate an accurate requirements-design coverage measure.

Thus, if the internal stakeholder responsible for maintaining such links erred and did not

establish a link between artifacts or if a human incorrectly created a link, the metrics will

not be able to detect it.
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Table 3.5: Requirements meta-data required to apply the metrics.

Requirement
Meta-Data
Item

Meta-Data
Item Short
Name

Description

1 Requirement
ID

ReqID A unique identification number for each requirement in the
database automatically generated by DOORS. If the require-
ments is deleted, the ID number will not be reassigned to an-
other requirement.

2 Requirement
type

ReqType Each requirements baseline in the DOORS database consists of
large number of rows. The rows consist of diagrams, descriptive
texts, and requirements. Requirements that are to be designed,
implemented, tested and delivered need to be assigned a type.
We identify such requirements as CORE. Thus, the metrics ap-
ply only to the CORE requirements.

3 Requirement
feature ID

FeatureID Requirements are organized into features and sub-features and
each is assigned a feature ID. For example, external interface
requirements are a high-level feature (feature ID = 1) that is
further organized into communication interface requirements
(feature ID = 1.1), user interface requirements (feature ID = 1.2),
and maintenance interface requirements (feature ID = 1.3).

4 Requirement
text

ReqText Consists of the requirement text in natural language.

5 Requirement
release num-
ber

Release Each requirement is assigned a release number as agreed upon
by the internal stakeholder in charge of release management.

6 Requirement
status

ReqStatus Each requirement is assigned a status such as ‘approved’, ‘in
review’, ‘implemented’, and ‘tested’. The requirements states
should be agreed upon by the internal stakeholders and in-
corporated into the requirements management plan to ensure
consistency.

7 Safety re-
quirement
type

Safety Many systems projects are in a safety critical domain, such as
the rail-automation domain of our AR study. Thus, each re-
quirement is assigned a safety level. In the project under study,
the safety levels were: regular, safety relevant, and safety criti-
cal.

8 Out-links
from re-
quirements
to external
artifacts

OutLinks Contains outgoing links from requirements to external artifacts
such as tests and implementation.

9 In-Links to
requirements
from external
artifacts

InLinks Contains incoming links from external artifacts such as design
to requirements. We note that the links to and from require-
ments depend on the tracing model adopted by the particular
project.
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3.4.4 Requirements Metrics (RQ1)

In this subsection, we discuss the requirements size, growth, volatility, status, and coverage

metrics we defined. Specifically, we report the metrics for each measurable attribute on the

baseline, feature, release and safety levels. In other words, if A is the set of requirements

attributes such that: A = {Si ze,Gr ow th,V ol ati l i t y,St atus,Cover ag e}, and L the set of

requirements levels such that: L = {B asel i ne,Featur e,Release,Sa f et y}, then the metrics

are organized according to each pair in the A×L set:

A×L = {(Si ze,B asel i ne), (Si ze,Featur e), (Si ze,Release), (Si ze,Sa f et y),

(Gr ow th,B asel i ne), (Gr ow th,Featur e), (Gr ow th,Release), (Gr ow th,Sa f et y),

(V ol ati l i t y,B asel i ne), (V ol ati l i t y,Featur e), (V ol ati l i t y,Release), (V ol ati l i t y,Sa f et y),

(St atus,B asel i ne), (St atus,Featur e), (St atus,Release), (St atus,Sa f et y),

(Cover ag e,B asel i ne), (Cover ag e,Featur e), (Cover ag e,Release), (Cover ag e,Sa f et y)}

Table 3.6 provides a summary of the metrics for each A ×L pair. Then, in the following

subsections (denoted by At tr i bute ×Level ), we define the metrics and give examples of

the measures and their visualizations based on data from the three products in Table 3.2.

For simplicity, we refer to the product in the examples within this section as Product X.

Table 3.6: Summary of defined requirements metrics.

Requirement
Attribute

Requirement Metric
Level

Number of
Metrics

Metrics

Size

Baseline 1 M1
Feature 2 M2, M3
Release 2 M4, M5
Release X Feature 3 M6, M7, M8
Safety 2 M9

Growth

Baseline 2 M11, M12
Feature 2 M13, M14
Release 2 M15, M16
Safety 2 M17, M18

Volatility

Baseline 8 M19, M20, M21, M22, M23, M24, M25, M26
Feature 8 M27, M28, M29, M30, M31, M32, M33, M34
Release 8 M35, M36, M37, M38, M39, M40, M41, M42
Safety 8 M43, M44, M45, M46, M47, M48, M49, M50

Status

Baseline 2 M51, M52
Feature 2 M53, M54
Release 2 M55, M56
Safety 2 M57, M58

Coverage

Baseline 8 M59, M60, M61, M62, M63, M64, M65, M66
Feature 8 M67, M68, M69, M70, M71, M72, M73, M74
Release 8 M75, M76, M77, M78, M79, M80, M81, M82
Safety 8 M83, M84, M85, M86, M87, M88, M89, M90

Total: 90
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Size Metrics

We defined 10 metrics for requirements size on the baseline, feature, release, and safety

levels, which we describe below.

Size × Baseline Level On the baseline level, the size metric is a count of requirements in a

given baseline. As mentioned in Section 3.4.3, we are interested in the CORE requirements

only. Thus, Equation 3.2 tests whether a requirement is a CORE requirement. Equation 3.3

(M1) counts the number of CORE requirements in baseline i.

i sCORE(Req I D) =
1, ReqT y pe =CORE

0, ReqT y pe ,CORE
(3.2)

M1 : B asel i neSi zei =
n∑

j=1
I sCORE(Req I D j ) (3.3)

Where:

i is baseline number for which size is being calculated

j is the requirement count in the baseline

n is the number of requirements in the baseline

ReqID is requirement unique ID in baseline

Table 3.7 consists of baseline sizes for one of the products in Table 3.2 and Figure 3.6 depicts

the baseline size measures in a bar graph.

Baseline M1: BaselineSize
1.0 755
1.1 755
1.2 743
1.3 754
1.4 784
1.5 779
1.6 895
1.7 892
2.0 884

Table 3.7: Baselines sizes for Product X.

Figure 3.6: Baseline sizes for Product X.

Size × Feature Level Equation 3.4 tests whether a requirement is a CORE requirement and

whether its feature ID matches the given feature ID for which size is being calculated. Equa-
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tion 3.5 counts the number of CORE requirements in feature i. While Equation 3.5 (M2)

results in an absolute number, Equation 3.6 (M3) below calculates the feature size percent-

age in relation to the baseline size.

i sCORE andFeatur e(Req I D, i ) =
1, ReqT y pe =CORE ∧Featur eI D = i

0, other wi se
(3.4)

M2 : Featur eSi ze Ai =
n∑

j=1
I sCORE andFeatur e(Req I D j , i ) (3.5)

M3 : Featur eSi zePi = Featur eSi ze Ai

B asel i neSi ze
×100 (3.6)

Where:

i is feature ID for which size is being calculated

j is the requirement count in feature

n is the number of requirements in the feature

ReqID is requirement unique ID in baseline

Table 3.8 shows feature size (absolute (M2) and percentage (M3)) for features 4.1 – 4.10 (fea-

ture names have been omitted for privacy reasons) in baseline 4.4 for Product X. Figure 3.7

depicts the feature size measures in a bar graph. We can see that feature 4.8 constitutes al-

most 10% of overall baseline and consists of 72 CORE requirements, which indicates a big

feature. The measure can be visualized in different ways for different audiences. For exam-

ple, the complete list of feature within a baseline can be depicted in a pie chart to depict

their sizes in relation to feature and overall baseline size.

Table 3.8: Feature sizes in baseline 4.4 for Product X.

Feature M2:
FeatureSizeA

M3:
FeatureSizeP

4.1 9 1.19%
4.2 31 4.11%
4.3 54 7.15%
4.4 4 0.53%
4.5 2 0.26%
4.6 10 1.32%
4.7 23 3.05%
4.8 72 9.54%
4.9 47 6.23%
4.10 5 0.66%
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Figure 3.7: Feature size in baseline 4.4 for Product X.

Size × Release Level Equation 3.7 tests whether a requirement is a CORE requirement and

whether its release number matches the given release number for which size is being cal-

culated. Equation 3.8 (M4) counts the number of CORE requirements in release i. Equation

3.9 (M5) calculates the release size percentage in relation to the baseline size.

i sCORE andRelease(Req I D, i ) =
1, ReqT y pe =CORE ∧Release = i

0, other wi se
(3.7)

M4 : ReleaseSi ze Ai =
n∑

j=1
I sCORE andRel ease(Req I D j , i ) (3.8)

M5 : ReleaseSi zePi = ReleaseSi ze Ai

B asel i neSi ze
×100 (3.9)

Where:

i is release number for which size is being calculated

j is the requirement count in release

n is the number of requirements in the release

ReqID is requirement unique ID in baseline

Table 3.9 consists of release size measures (absolute (M4) and percentage (M5)) for releases

1-7 in baseline 4.4 for Product X. Figures 3.9 and 3.8 show alternative ways release size can

be visualized. We notice that release 7 is the largest in size constituting 28% of the overall

requirements (i.e., baseline) size and consisting of 675 requirements to be design, imple-

mented, tested, and delivered.
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Table 3.9: Release sizes in Baseline 4.4 for Product X.

Feature M4:
ReleaseSizeA

M5:
ReleaseSizeP

1 179 7.49%
2 470 19.67%
3 225 9.42%
4 252 10.55%
5 341 14.27%
6 240 10.05%
7 675 28.25%

Figure 3.8: Release sizes in Baseline 4.4 for Product X in bar graph visualization.

Figure 3.9: Release sizes in Baseline 4.4 for Product X in pie chart visualization.

Size×Release×Feature Level There was need to learn how many requirements are within

a given release and feature. In other words, one would ask: how many requirements for the

start up feature are allocated to release 7. To address this need, we derived three metrics: i)

the number of requirements per feature per release per baseline (M6) represented in Equa-
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tion 3.11, ii) the percentage of requirements per feature per release per baseline in relation

to feature size (M7) represented in Equation 3.12, and iii) the percentage of requirements

per feature per release per baseline in relation to release size (M8) represented in Equation

3.13.

M6 is an intersection of the requirements in feature i and release j for any given baseline,

which results in an absolute value. However, M7 and M8 warrant a more detailed explana-

tion. For M7, the number of requirements in feature i and release j in a given baseline is

divided by feature i size. This allows us to know the percentage of requirements for feature

i that have been allocated to release j. For example, we can say: 10% of the requirements of

feature i are allocated to release 7. On the other hand, in M8, the number of requirements in

feature i and release j in a given baseline is divided by release j size. This allows us to know

the percentage of release j requirements that are for feature i. For example, we can say: 10%

of release 1 is feature a, 30% of release 1 is of feature b, etc.

i sCORE andFeatur eandRelease(Req I D, i , j ) =1, ReqT y pe =CORE ∧Featur eI D = i ∧Release = j

0, other wi se

(3.10)

M6 : ReleaseFeatur eSi ze Ai =
n∑

w=1
I sCORE andFeatur eandRel ease(Req I Dw , i , j )

(3.11)

M7 : ReleaseFeatur eSi zeP1i j =
ReleaseFeatur eSi ze Ai j

Featur eSi zei
×100 (3.12)

M8 : ReleaseFeatur eSi zeP2i j =
ReleaseFeatur eSi ze Ai j

ReleaseSi ze j
×100 (3.13)

Where:

i is feature ID for which size is being calculated

j is release number for which size is being calculated

w is the requirement count in release and feature

n is the number of requirements in the release and feature

ReqID is requirement unique ID in baseline

To demonstrate the use of metrics M6, M7, and M8, we shall give two examples from our

project data. The first example shows Feature X Release sizes of ten features for release 3.
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That is, the number of requirements in features 4.1–4.10 that have been allocated to Release

3. The second example shows Feature X Release sizes of eight releases for feature 4.3. That

is, the number of requirements from Feature 4.3 allocated to releases 1–8.

Table 3.10 shows the sizes of features 4.1-4.10 for release 3. We see that the size of fea-

tures 4.1, 4.5, 4.7, 4.8, and 4.9 are zero in release 3 meaning that no requirements from these

features have been allocated to release 3. M7 in Table 3.10 shows that 100% of features 4.2,

4.4, 4.6 have been allocated to release 3 while 41.30% of feature 4.3 and 29.03% of feature

4.10 has been allocated to release 3. On the other hand, M8 in Table 3.10 shows that Release

3 is 19.11% feature 4.2, 16.89% feature 4.3, 5.33% feature 4.4, 1.33% feature 4.6, and 4% fea-

ture 4.10. Thus, M8 provides us with the constituents of release 3. Figure 3.10 shows the

constituents of release 3 in a pie chart.

Table 3.10: Feature sizes in Release 3 in Baseline 4.4 for Product X.

Feature M2:
FeatureSizeA

Release M4:
ReleaseSizeA

M6:
FeatureRelease
SizeA

M7:
FeatureSizeP1

M8:
FeatureSizeP2

4.1 6 3 225 0 0.00% 0.00%
4.2 43 3 225 43 100.0% 19.11%
4.3 92 3 225 38 41.30% 16.89%
4.4 12 3 225 12 100.00% 5.33%
4.5 2 3 225 0 0.00% 0.00%
4.6 3 3 225 3 100.00% 1.33%
4.7 195 3 225 0 0.00% 0.00%
4.8 212 3 225 0 0.00% 0.00%
4.9 188 3 225 0 0.00% 0.00%
4.10 31 3 225 9 29.03% 4.00%

Figure 3.10: Feature sizes in Release 3 in Baseline 4.4 for Product X.
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Table 3.11 shows the size of Feature 4.3 over releases 1–8. M7 shows that 41.30% of fea-

ture 4.3 is in release 3, 25% in release 4, 5.43% in release 5, 16.30% in release 6 and 11.96%

in release 7. Thus, M7 gives us an idea about a feature’s timeline. Figure 3.11 visualizes the

timeline of feature 4.3 over releases 1–8 in a bar graph. The red line indicates the size of

feature 4.3 (i.e., 92 requirements).

Table 3.11: Size of Feature 4.3 in relation to release in Baseline 4.4 for Product X.

Release M2:
ReleaseSizeA

Feature M4:
FeatureSizeA

M6:
ReleaseFeature
SizeA

M7:
ReleaseFeature
SizeP1

M8:
ReleaseFeature
SizeP2

1 179 4.3 92 0 0.00% 0.00%
2 470 4.3 92 0 100.0% 19.11%
3 225 4.3 92 38 41.30% 16.89%
4 252 4.3 92 23 25.00% 9.13%
5 341 4.3 92 5 5.43% 1.47%
6 240 4.3 92 15 16.30% 6.25%
7 675 4.3 92 11 11.96% 1.63%
8 7 4.3 92 0 0.00% 0.00%

Figure 3.11: Size of Feature 4.3 in relation to release in Baseline 4.4 for Product X.
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Size × Safety Level Equation 3.14 tests whether a requirement is a CORE requirement and

whether its safety level matches the safety level for which size is being calculated. M9 counts

the number of CORE requirements in safety level i. M10 calculates the safety level size per-

centage in relation to the baseline size. Table 3.12 shows an example of the use of M9 and

M10 on a sample of our data.

i sCORE andSa f et y(Req I D, i ) =
1, ReqT y pe =CORE ∧Sa f et y = i

0, other wi se
(3.14)

M9 : Sa f et ySi ze Ai =
n∑

j=1
I sCORE andSa f et y(Req I D j , i ) (3.15)

M10 : Sa f et ySi zePi = Sa f et ySi ze Ai

B asel i neSi ze
×100 (3.16)

Where:

i is safety level for which size is being calculated

j is the requirement count in safety level

n is the number of requirements in safety level

ReqID is requirement unique ID in baseline

Table 3.12: Safety level sizes for Product X.

Safety Level M9:
SafetySizeA

M10:
SafetySizeP

Regular safety 558 23.36%
Safety relevant 115 4.86%
Safety critical 487 20.30%

Growth Metrics

We defined 8 metrics on the baseline, feature, release, and safety levels.

Growth × Baseline Level Baseline growth metrics consist of two metrics: the difference

between two requirements baseline sizes (an absolute value) (M11) represented by Equa-

tion 3.17 and the percentage of the difference between two requirements baseline sizes

(M12) represented by Equation 3.18. Requirements growth measures can have either a neg-

ative or positive value. Figure 3.12 shows baseline growth for Product X for baselines 3.2 –

3.5.3. We see that there was large growth in baseline 3.5.1, which coincided with a major

product release.
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M11 : B asel i neGr ow th Ai = B asel i neSi ze Ai −B asel i neSi ze A j (3.17)

M12 : B asel i neGr ow thPi = B asel i neGr ow th Ai

B asel i neSi ze A j
×100 (3.18)

Where:

i is baseline number for which growth is being calculated

j is the baseline number for an older baseline

Figure 3.12: Baseline growth for Product X.

Growth × Feature Level We defined two feature growth metrics: the difference between

feature size in two baselines resulting in an absolute value (M13) represented by Equation

3.19 and the percentage of the difference between feature size in two baselines resulting in

a relative value (M14) represented by Equation 3.20. Figure 3.13 shows a sample graph of

Feature 4.8 growth over baselines 3.2–3.5.2.

M13 : Featur eGr ow th Aw i = Featur eSi ze Aw i −Featur eSi ze Aw j (3.19)

M14 : Featur eGr ow thPw i = Featur eGr ow th Aw i

Featur eSi ze Aw j
×100 (3.20)

Where:

w is feature number for which growth is being calculated

i is baseline number in which feature growth is being calculated

j is the baseline number for an older baseline
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Figure 3.13: Feature 4.8 growth for Product X.

Growth × Release Level We defined two release growth metrics: the difference between

feature size in two baselines (absolute value) (M15) represented by Equation 3.21 and the

percentage of the difference between feature size in two baselines (relative value) (M16)

represented by Equation 3.22.

M15 : ReleaseGr ow th Aw i = ReleaseSi ze Aw i −ReleaseSi ze Aw j (3.21)

M16 : ReleaseGr ow thPw i = ReleaseGr ow th Aw i

ReleaseSi ze Aw j
×100 (3.22)

Where:

w is release number for which growth is being calculated

i is baseline number in which release growth is being calculated

j is the baseline number for older baseline

Growth × Safety Level We defined two safety level growth metrics: the difference between

safety level size in two baselines (absolute value) (M17) represented by Equation 3.23 and

the percentage of the difference between safety level size in two baselines (relative value)

(M18) represented by Equation 3.24. Release and safety level growth can be depicted similar

to feature growth in Figure 3.13.

M17 : Sa f et yGr ow th Aw i = Sa f et ySi ze Aw i −Sa f et ySi ze Aw j (3.23)

M18 : Sa f et yGr ow thPw i = Sa f et yGr ow th Aw i

Sa f et ySi ze Aw j
×100 (3.24)
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Where:

w is safety level for which growth is being calculated

i is baseline number in which safety growth is being calculated

j is the baseline number for an older baseline

Volatility Metrics

We defined 32 volatility metrics on the baseline, feature, release, and safety levels.

Volatility × Baseline Level On the baseline level, we measure the number of additions,

modifications, deletions, and total churn for requirements in a baseline. The number of

additions is measured by counting the number of requirements that exist in the current

baseline (i) but not in an older baseline (j). Equation 3.25 tests the conditions then Equation

3.26 (M19) counts the number of added requirements per baseline resulting in an absolute

value. Equation 3.27 (M20) calculates the percentage of added requirements in relation to

baseline size.

i s Added(Req I D) =
1, ReqT y pe =CORE ∧Req I D ∈ B asel i nei ∧Req I D ∉ B asel i ne j

0, other wi se
(3.25)

M19 : B asel i ne Added Ai =
n∑

w=1
I s Added(Req I Dw ) (3.26)

M20 : B asel i ne AddedPi = B asel i ne Added Ai

B asel i neSi zei
×100 (3.27)

The number of deletions is measured by counting the number of requirements that are in

an older baseline (j) but not in the current baseline (i). Equation 3.28 tests these conditions

then Equation 3.29 (M21) counts the number of deleted requirements per baseline resulting

in an absolute value. Equation 3.30 calculates the percentage of deleted requirements in

relation to baseline size (M22).

i sDeleted(Req I D) =
1, ReqT y pe =CORE ∧Req I D ∉ B asel i nei ∧Req I D ∈ B asel i ne j

0, other wi se
(3.28)
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M21 : B asel i neDel eted Ai =
n∑

w=1
I sDel eted(Req I Dw ) (3.29)

M22 : B asel i neDel etedPi = B asel i neDel eted Ai

B asel i neSi zei
×100 (3.30)

The number of modifications is measured by counting the number of requirements that

are in an older baseline (j) and in the current baseline (i), but its text has been modified.

Equation 3.31 tests these conditions then Equation 3.32 (M23) counts the number of mod-

ified requirements per baseline resulting in an absolute value. Equation 3.33 calculates the

percentage of deleted requirements in relation to baseline size (M24).

i sModi f i ed(Req I D) =1, ReqT y pe =CORE ∧Req I D ∈ B asel i nei ∧Req I D ∈ B asel i ne j ∧ReqTexti ,ReqText j

0, other wi se

(3.31)

M23 : B asel i neModi f i ed Ai =
n∑

w=1
I sModi f i ed(Req I Dw ) (3.32)

M24 : B asel i neModi f i edPi = B asel i neModi f i ed Ai

B asel i neSi zei
×100 (3.33)

Finally, requirements churn on the baseline level is measured by adding the number of

added, deleted, and modified requirements, which can be achieved by using Equation 3.34

(M25) resulting in an absolute value. Equation 3.35 calculates the percentage of require-

ments churn in relation to baseline size (M26).

M25 : B asel i neC hur n Ai =
B asel i ne Added Ai +B asel i neDel eted Ai +B asel i neModi f i ed Ai

(3.34)

M26 : B asel i neC hur nPi = B asel i neC hur n Ai

B asel i neSi zei
×100 (3.35)
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Where:

i is baseline for which volatility is being calculated

j is an older baseline number

w is the requirement count in baseline

n is the number of requirements in baseline i

Table 3.13 shows sample baseline volatility measures for Product X from our data and Figure

3.14 visualizes the data. We excluded percentages (M20, M22, M24, M26) from the figure to

maintain readability of the graph.

Table 3.13: Baseline volatility for Product X.

Baseline M1:
Baseline_
SizeA

M19:
Baseline_
AddedA

M20:
Baseline_
AddedP

M21:
Baseline_
DeletedA

M22:
Baseline_
DeletedP

M23:
Baseline_
ModifiedA

M24:
Baseline_
ModifiedP

M25:
Baseline_
ChurnA

M26:
Baseline_
ChurnP

3.2 1243 8 0.64% 11 0.88% 17 1.37% 36 2.90%
3.2.1 1246 3 0.24% 0 0.00% 13 1.04% 16 1.28%
3.2.2 1314 78 5.94% 10 0.76% 102 7.76% 190 14.46%
3.2.3 1388 86 6.20% 12 0.86% 106 7.64% 204 14.46%
3.3.1 1387 1 0.07% 2 0.14% 38 2.74% 41 2.96%
3.4.1 1415 64 4.52% 36 2.54% 81 5.72% 181 12.79%
3.4.2 1571 163 10.38% 7 0.45% 66 4.20% 236 15.02%
3.5.1 1793 323 18.01% 101 5.63% 107 5.97% 531 29.62%
3.5.2 1920 138 7.19% 11 0.57% 54 2.81% 203 10.57%

Figure 3.14: Requirements baseline volatility for Product X.
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Volatility × Feature Level On the feature level, we measure the number of additions, mod-

ifications, deletions, and total churn for requirements in a feature in a specific baseline. The

number of additions is measured by counting the number of requirements that exist in a

given feature (w) in a specific baseline (i) but not in an older baseline (j). Equation 3.36

tests the conditions then Equation 3.37 (M27) counts the number of added requirements

per feature resulting in an absolute value. Equation 3.38 calculates the percentage of added

requirements in relation to feature size (M28).

i s AddedFeatur e(Req I D, w) =1, ReqT y pe =CORE ∧Featur eI D = w ∧Req I D ∈ B asel i nei ∧Req I D ∉ B asel i ne j

0, other wi se

(3.36)

M27 : Featur e Added Aw i =
n∑

k=1
I s AddedFeatur e(Req I Dk , w) (3.37)

M28 : Featur e AddedPw i = Featur e Added Aw i

Featur eSi zew i
×100 (3.38)

The number of deletions is measured by counting the number of requirements that exists in

a given feature (w) in an older baseline (j) but not in the current baseline (i). Equation 3.39

tests these conditions then Equation 3.40 (M29) counts the number of deleted requirements

per feature resulting in an absolute value. Equation 3.41 calculates the percentage of deleted

requirements in relation to baseline feature size (M30).

i sDeletedFeatur e(Req I D, w) =1, ReqT y pe =CORE ∧Featur eI D = w ∧Req I D ∉ B asel i nei ∧Req I D ∈ B asel i ne j

0, other wi se

(3.39)

M29 : Featur eDel eted Aw i =
n∑

k=1
I sDel etedFeatur e(Req I Dk , w) (3.40)

M30 : Featur eDel etedPw i = Featur eDel eted Aw i

Featur eSi zew i
×100 (3.41)

The number of modifications is measured by counting the number of requirements that are
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in a given feature (w) in an older baseline (j) and in the current baseline (i), but its text has

been modified. Equation 3.42 tests these conditions then Equation 3.43 (M31) counts the

number of modified requirements per feature resulting in an absolute value. Equation 3.44

calculates the percentage of deleted requirements in relation to feature size (M32).

i sModi f i edFeatur e(Req I D, w) =

1, ReqT y pe =CORE ∧Featur eI D = w

∧Req I D ∈ B asel i nei ∧Req I D ∈ B asel i ne j

∧ReqTexti ,ReqText j

0, other wi se

(3.42)

M31 : Featur eModi f i ed Aw i =
n∑

k=1
I sModi f i edFeatur e(Req I Dk , w) (3.43)

M32 : Featur eModi f i edPw i = Featur eModi f i ed Aw i

Featur eSi zew i
×100 (3.44)

Finally, requirements churn on the feature level is measured by adding the number of added,

deleted, and modified requirements, which can be achieved using Equation 3.45 (M33) re-

sulting in an absolute value. Equation 3.46 calculates the percentage of requirements churn

in relation to feature size (M34).

M33 : Featur eC hur n Ai =
Featur e Added Ai +Featur eDel eted Ai +Featur eModi f i ed Ai

(3.45)

M34 : Featur eC hur nPi = Featur eC hur n Ai

Featur eSi zei
×100 (3.46)

Where:

w is feature for which volatility is being calculated

i is the baseline that contains the feature for which volatility is being calculated

j is an older baseline number

k is the requirement count in baseline

n is the number of requirements in feature w
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Table 3.14 shows sample volatility measures for feature 4.3 for Product X from our data and

Figure 3.15 visualizes the data.

Table 3.14: Feature 4.3 volatility for Product X.

Baseline M2:
Feature_
SizeA

M27:
Feature_
AddedA

M28:
Feature_
AddedP

M29:
Feature_
DeletedA

M30:
Feature_
DeletedP

M31:
Feature_
ModifiedA

M32:
Feature_
ModifiedP

M33:
Feature_
ChurnA

M34:
Feature_
ChurnP

3.2 45 1 2.22% 0 0.00% 1 2.22% 2 4.44%
3.2.1 45 0 0.00% 0 0.00% 0 0.00% 0 0.00%
3.2.2 51 6 11.76% 0 0.00% 2 3.92% 8 15.69%
3.2.3 56 0 0.00% 0 0.00% 0 16.07% 9 16.07%
3.3.1 56 0 0.00% 0 0.00% 1 1.79% 1 1.79%
3.4.1 63 7 11.11% 0 0.00% 7 11.11% 14 22.22%
3.4.2 63 0 0.00% 0 0.00% 0 0.00% 0 0.00%
3.5.1 64 2 3.13% 1 1.56% 19 29.69% 22 34.38%
3.5.2 64 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Figure 3.15: Feature 4.3 volatility for Product X.

Volatility × Release Level On the release level, we measure the number of additions, mod-

ifications, deletions, and total churn for requirements in a release per baseline. The number

of additions is measured by counting the number of requirements that exist in a given re-

lease (w) in the current baseline (i) but not in an older baseline (j). Equation 3.47 tests the

conditions then Equation 3.48 (M35) counts the number of added requirements per release

resulting in an absolute value. Equation 3.49 calculates the percentage of added require-

ments in relation to release size (M36).
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i s AddedRelease(Req I D, w) =1, ReqT y pe =CORE ∧Release = w ∧Req I D ∈ B asel i nei ∧Req I D ∉ B asel i ne j

0, other wi se

(3.47)

M35 : Release Added Aw i =
n∑

k=1
I s AddedRel ease(Req I Dk , w) (3.48)

M36 : Release AddedPw i = Release Added Aw i

ReleaseSi zew i
×100 (3.49)

The number of deletions is measured by counting the number of requirements that exists

in a given release (w) in an older baseline (j) but not in the current baseline (i). Equation

3.50 tests these conditions then Equation 3.51 (M37) counts the number of deleted require-

ments per release resulting in an absolute value. 3.52 calculates the percentage of deleted

requirements in relation to baseline release size (M38).

i sDeletedRelease(Req I D, w) =1, ReqT y pe =CORE ∧Release = w ∧Req I D ∉ B asel i nei ∧Req I D ∈ B asel i ne j

0, other wi se

(3.50)

M37 : ReleaseDel eted Aw i =
n∑

k=1
I sDel etedRelease(Req I Dk , w) (3.51)

M38 : ReleaseDel etedPw i = ReleaseDel eted Aw i

ReleaseSi zew i
×100 (3.52)

The number of modifications is measured by counting the number of requirements that are

in a given release (w) in an older baseline (j) and in the current baseline (i), but its text has

been modified. Equation 3.53 tests these conditions then Equation 3.54 (M39) counts the

number of modified requirements per release resulting in an absolute value. Equation 3.55

calculates the percentage of deleted requirements in relation to feature size (M40).
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i sModi f i edRelease(Req I D, w) =

1, ReqT y pe =CORE ∧Release = w

∧Req I D ∈ B asel i nei ∧Req I D ∈ B asel i ne j

∧ReqTexti ,ReqText j

0, other wi se

(3.53)

M39 : ReleaseModi f i ed Aw i =
n∑

k=1
I sModi f i edRelease(Req I Dk , w) (3.54)

M40 : ReleaseModi f i edPw i = ReleaseModi f i ed Aw i

ReleaseSi zew i
×100 (3.55)

Finally, requirements churn on the release level is measured by adding the number of added,

deleted, and modified requirements, which can be achieved using Equation 3.56 (M41) re-

sulting in an absolute value. Equation 3.57 calculates the percentage of requirements churn

in relation to release size (M42).

M41 : ReleaseC hur n Ai =
Release Added Ai +ReleaseDel eted Ai +ReleaseModi f i ed Ai

(3.56)

M42 : ReleaseC hur nPi = ReleaseC hur n Ai

ReleaseSi zei
×100 (3.57)

Where:

w is the release number for which volatility is being calculated

i is the baseline that contains the release for which volatility is being calculated

j is an older baseline

k is the requirement count in baseline

n is the number of requirements in release w

Volatility × Safety Level On the safety level, we measure the number of additions, mod-

ifications, deletions, and total churn for requirements in a safety level per baseline. The

number of additions is measured by counting the number of requirements that exist in a

given safety level (w) in the current baseline (i) but not in an older baseline (j). Equation

3.58 tests the conditions then Equation 3.59 (M43) counts the number of added require-
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ments per safety level resulting in an absolute value. 3.60 calculates the percentage of added

requirements in relation to safety level size (M44).

i s AddedSa f et y(Req I D, w) =1, ReqT y pe =CORE ∧Sa f et y = w ∧Req I D ∈ B asel i nei ∧Req I D ∉ B asel i ne j

0, other wi se

(3.58)

M43 : Release Added Aw i =
n∑

k=1
I s AddedSa f et y(Req I Dk , w) (3.59)

M44 : Sa f et y AddedPw i = Sa f et y Added Aw i

Sa f et ySi zew i
×100 (3.60)

The number of deletions is measured by counting the number of requirements that exists

in a given safety level (w) in an older baseline (j) but not in the current baseline (i). Equa-

tion 3.61 tests these conditions then Equation 3.62 (M45) counts the number of deleted

requirements per safety level resulting in an absolute value. Equation 3.63 calculates the

percentage of deleted requirements in relation to baseline safety level size.

i sDeletedSa f et y(Req I D, w) =1, ReqT y pe =CORE ∧Sa f et y = w ∧Req I D ∉ B asel i nei ∧Req I D ∈ B asel i ne j

0, other wi se

(3.61)

M45 : Sa f et yDeleted Aw i =
n∑

k=1
I sDel etedSa f et y(Req I Dk , w) (3.62)

M46 : Sa f et yDeletedPw i = Sa f et yDeleted Aw i

Sa f et ySi zew i
×100 (3.63)

The number of modifications is measured by counting the number of requirements that

are in a given safety level (w) in an older baseline (j) and in the current baseline (i), but

its text has been modified. Equation 3.64 tests these conditions then Equation 3.65 (M47)

counts the number of modified requirements per safety level resulting in an absolute value.

Equation 3.66 calculates the percentage of deleted requirements in relation to safety level

size (M48).
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i sModi f i edSa f et y(Req I D, w) =

1, ReqT y pe =CORE ∧Sa f et y = w

∧Req I D ∈ B asel i nei ∧Req I D ∈ B asel i ne j

∧ReqTexti ,ReqText j

0, other wi se

(3.64)

M47 : Sa f et y Modi f i ed Aw i =
n∑

k=1
I sModi f i edSa f et y(Req I Dk , w) (3.65)

M48 : Sa f et y Modi f i edPw i = Sa f et y Modi f i ed Aw i

Sa f et ySi zew i
×100 (3.66)

Finally, requirements churn on the safety level is measured by adding the number of added,

deleted, and modified requirements, which can be achieved using Equation 3.67 (M49) re-

sulting in an absolute value. Equation 3.68 calculates the percentage of requirements churn

in relation to safety level size (M50).

M49 : Sa f et yC hur n Ai =
Sa f et y Added Ai +Sa f et yDeleted Ai +Sa f et y Modi f i ed Ai

(3.67)

M50 : Sa f et yC hur nPi = Sa f et yC hur n Ai

Sa f et ySi zei
×100 (3.68)

Where:

w is the safety level for which volatility is being calculated

i is the baseline that contains the safety level for which volatility is being calculated

j is an older baseline

k is the requirement count in safety level

n is the number of requirements in safety level w

Status Metrics

We define 8 requirements status metrics on the baseline, feature, release, and safety levels.

Status metrics use the ReqStatus meta-data item.
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Status × Baseline Level To measure baseline status, we count the number of CORE re-

quirements in a given status i. Equation 3.69 tests the conditions then Equation 3.70 (M51)

counts the number of requirements per status per baseline resulting in an absolute value.

Equation 3.69 calculates the percentage of requirement for a given status in relation to base-

line size (M52). Figure 3.16 shows status measures for baseline 4.4 for Product X. We in-

cluded three statuses for illustrative purposes (more statuses are used): in creation, in re-

view, and approved. We see that 49% of baseline 4.4 is approved and 42% are in review

while 9% of baseline requirements are in creation.

i sSt atus(Req I D, i ) =
1, ReqT y pe =CORE ∧ReqSt atus = i

0, other wi se
(3.69)

M51 : B asel i neSt atus Ak i =
n∑

j=1
I sSt atus(Req I D j , i ) (3.70)

M52 : B asel i neSt atusPk i = B asel i neSt atus Ak i

B asel i neSi zek i
×100 (3.71)

Where:

i is a requirements status

k is the baseline number for which status is being calculated

j is the requirement count in baseline

n is the number of requirements in the baseline

Figure 3.16: Baseline 4.4 status for Product X.
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Status × Feature Level To measure feature status, we count the number of CORE require-

ments in a given status per feature. Equation 3.72 tests the conditions then Equation 3.73

(M53) counts the number of requirements per status per feature resulting in an absolute

value. Equation 3.74 calculates the percentage of requirements for a given status in relation

to feature size (M54).

i sSt atusandFeatur e(Req I D, i , w) =1, ReqT y pe =CORE ∧ReqSt atus = i ∧Featur eI D = w

0, other wi se

(3.72)

M53 : Featur eSt atus Ak i w =
n∑

j=1
I sSt atusandFeatur e(Req I D j , i , w) (3.73)

M54 : Featur eSt atusPk i w = Featur eSt atus Ak i w

Featur eSi zek i w
×100 (3.74)

Where:

i is a requirements status

k is the baseline number

w is the feature ID for which status is being calculated

j is the requirement count in feature

n is the number of requirements in the feature

Status × Release Level To measure release status, we count the number of CORE require-

ments in a given status per release. Equation 3.75 tests the conditions then Equation 3.76

(M55) counts the number of requirements per status per release resulting in an absolute

value. Equation 3.77 calculates the percentage of requirements for a given status in relation

to release size.

i sSt atusandRelease(Req I D, i , w) =1, ReqT y pe =CORE ∧ReqSt atus = i ∧Release = w

0, other wi se

(3.75)

M55 : ReleaseSt atus Ak i w =
n∑

j=1
I sSt atusandRelease(Req I D j , i , w) (3.76)
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M56 : ReleaseSt atusPk i w = ReleaseSt atus Ak i w

ReleaseSi zek i w
×100 (3.77)

Where:

i is a requirements status

k is the baseline number

w is the release number for which status is being calculated

j is the requirement count in release

n is the number of requirements in the release

Status × Safety Level To measure safety level status, we count the number of CORE re-

quirements in a given status per safety level. Equation 3.78 tests the conditions then Equa-

tion 3.79 (M57) counts the number of requirements per status per safety level resulting in an

absolute value. Equation 3.80 calculates the percentage of requirements for a given status

in relation to safety level size (M58).

i sSt atusandSa f et y(Req I D, i , w) =1, ReqT y pe =CORE ∧ReqSt atus = i ∧Sa f et y = w

0, other wi se

(3.78)

M57 : Sa f et ySt atus Ak i w =
n∑

j=1
I sSt atusandSa f et y(Req I D j , i , w) (3.79)

M58 : Sa f et ySt atusPk i w = Sa f et ySt atus Ak i w

Sa f et ySi zek i w
×100 (3.80)

Where:

i is a requirements status

k is the baseline number

w is the safety level for which status is being calculated

j is the requirement count in safety level

n is the number of requirements in the safety level

Coverage Metrics

We defined 32 requirements coverage metrics on the baseline, feature, release, and safety

levels. Coverage metrics use the in-links and out-links meta-data items (see Table 3.5). In

our project, the in-links meta-data item contained realize links from the design document
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to the requirements. The out-links meta-data item contained verifies links from the require-

ments to the tests. Below we describe how realizes and verifies are used in the defined met-

rics to measure requirements coverage.

Coverage × Baseline Level To measure baseline design coverage, we first test whether a

requirement is of type CORE and that it contains a realizes link in its InLinks meta-data

item (Equation 3.81). Equation 3.82 (M59) calculates baseline design coverage by counting

the number of requirements that satisfy those conditions for a given baseline resulting in

an absolute value. Equation 3.83 (M60) calculates baseline design coverage percentage by

dividing the absolute value from Equation 3.82 by baseline size.

To calculate the degree that a baseline is NOT covered by design, we first test whether

a requirement is of type CORE and that its InLinks does not contain a ‘realizes’ link (Equa-

tion 3.84). We then count the number of requirements that satisfy those conditions using

Equation 3.85 (M61), which results in an absolute value (i.e., the number of requirements in

the baseline not covered by design). Equation 3.86 (M62) calculates the percentage of the

baseline that is not covered by design.

i sCover edDesi g n(Req I D) =
1, ReqT y pe =CORE ∧RE ALI Z ES ∈ InLi nks

0, other wi se
(3.81)

M59 : B asel i neDesi g nCover ag e Ak =
n∑

j=1
I sCover edDesi g n(Req I D j ) (3.82)

M60 : B asel i neDesi g nCover ag ePk = B asel i neDesi g nCover ag e Ak

B asel i neSi zek
×100 (3.83)

i sNotCover edDesi g n(Req I D) =
1, ReqT y pe =CORE ∧RE ALI Z ES ∉ InLi nks

0, other wi se
(3.84)

M61 : B asel i neDesi g nNoCover ag e Ak =
n∑

j=1
I sNotCover edDesi g n(Req I D j ) (3.85)
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M62 : B asel i neDesi g nNoCover ag ePk = B asel i neDesi g nNoCover ag e Ak

B asel i neSi zek
×100 (3.86)

Where:

k is the baseline number for which coverage is being calculated

j is the requirement count in baseline

n is the number of requirements in baseline

To measure baseline test coverage, we first test whether a requirement is of type CORE and it

contains a ‘verifies’ link in its OutLinks meta-data item using Equation 3.87. Equation 3.88

(M63) counts the number of requirements that satisfy those conditions for a given base-

line, which results in an absolute value (i.e., the number of requirements in a baseline that

are covered by tests). Equation 3.89 (M64) calculates baseline test coverage percentage by

dividing the absolute value from Equation 3.88 by baseline size.

Similar to the steps for calculating the degree that a baseline is NOT covered by design,

we use Equations 3.90–3.92 to measure the degree a baseline is not covered by tests. M65

results in an absolute value (i.e., the number of requirements in a baseline not covered by

test) while M66 results in a percentage.

i sCover edTest (Req I D) =
1, ReqT y pe =CORE ∧V ERI F I ES ∈ InLi nks

0, other wi se
(3.87)

M63 : B asel i neTestCover ag e Ak =
n∑

j=1
I sCover edTest (Req I D j ) (3.88)

M64 : B asel i neTestCover ag ePk = B asel i neTestCover ag e Ak

B asel i neSi zek
×100 (3.89)

i sNotCover edTest (Req I D) =
1, ReqT y pe =CORE ∧V ERI F I ES ∉ InLi nks

0, other wi se
(3.90)

M65 : B asel i neTest NoCover ag e Ak =
n∑

j=1
I sNotCover edTest (Req I D j ) (3.91)
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M66 : B asel i neTest NoCover ag ePk = B asel i neTest NoCover ag e Ak

B asel i neSi zek
×100 (3.92)

Where:

k is the baseline number for which coverage is being calculated

j is the requirement count in baseline

n is the number of requirements in baseline

Table 3.15 shows an example of baseline design coverage measures for requirements

baseline 4.2.3 for Product X and Table 3.16 shows the test coverage. Figures 3.17 and 3.18

depict the design and test coverage measures for Product X. We see that baseline 4.2.3 has

91% design coverage but only 19% test coverage.

Table 3.15: Baseline 4.2.3 design coverage for Product X.

Baseline M1:
Baseline_
SizeA

M59:
BaselineDesign_
CoverageA

M60:
BaselineDesign_
CoverageP

M61:
BaselineDesign_
NoCoverageA

M62:
BaselineDesign_
NoCoverageP

4.2.3 2090 1903 91.05% 187 8.95%

Table 3.16: Baseline 4.2.3 test coverage for Product X.

Baseline M1:
Baseline_
SizeA

M63:
BaselineTest_
CoverageA

M64:
BaselineTest_
CoverageP

M65:
BaselineTest_
NoCoverageA

M66:
BaselineTest_
NoCoverageP

4.2.3 2090 390 18.66% 1700 81.34%

Figure 3.17: Baseline 4.2.3 design coverage. Figure 3.18: Baseline 4.2.3 test coverage.
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Coverage × Feature Level To measure the degree a feature is covered by design, we first

test whether a requirement is of type CORE, that its feature ID matches the feature ID we

wish to measure, and that it contains a ‘realizes’ link in its InLinks (Equation 3.93). Equation

3.94 (M67) calculates feature design coverage by counting the number of requirements that

satisfy those conditions for a given feature resulting in an absolute value. Equation 3.95

(M68) calculates feature design coverage percentage by dividing the absolute value from

Equation 93 by feature size. Similarly, we use Equations 3.96–3.98 to measure the degree

a feature is not covered by design. M69 results in an absolute value while M70 results in a

percentage.

i sCover edDesi g nF (Req I D, i ) =1, ReqT y pe =CORE ∧RE ALI Z ES ∈ InLi nks ∧Featur eI D = i

0, other wi se

(3.93)

M67 : Featur eDesi g nCover ag e Ak i =
n∑

j=1
I sCover edDesi g nF (Req I D j , i ) (3.94)

M68 : Featur eDesi g nCover ag ePk = Featur eDesi g nCover ag e Ak i

Featur eSi zek i
×100 (3.95)

i sNotCover edDesi g nF (Req I D, i ) =1, ReqT y pe =CORE ∧RE ALI Z ES ∉ InLi nks ∧Featur eI D = i

0, other wi se

(3.96)

M69 : Featur eDesi g nNoCover ag e Ak i =
n∑

j=1
I sNotCover edDesi g nF (Req I D j , i ) (3.97)

M70 : Featur eDesi g nNoCover ag ePk i = Featur eDesi g nNoCover ag e Ak i

Featur eSi zek i
×100 (3.98)
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Where:

k is the baseline number

i is the feature ID for which coverage is being calculated

j is the requirement count in feature

n is the number of requirements in feature

To measure the degree a feature is covered by tests, we follow the same approach we used for

feature design coverage above with the only difference being that we are testing whether a

requirement’s OutLinks contains a ‘verifies’ link using Equation 3.99. Equations 3.100 (M71)

and 3.101 (M72) then calculate the feature test coverage in absolute and relative values. To

measure the degree a feature is not covered by test, we use Equations 3.102–3.104. M73

results in an absolute value while M74 results in a percentage.

i sCover edTestF (Req I D, i ) =1, ReqT y pe =CORE ∧RE ALI Z ES ∈ InLi nks ∧Featur eI D = i

0, other wi se

(3.99)

M71 : Featur eTestCover ag e Ak i =
n∑

j=1
I sCover edTestF (Req I D j , i ) (3.100)

M72 : Featur eTestCover ag ePk = Featur eTestCover ag e Ak i

Featur eSi zek i
×100 (3.101)

i sNotCover edTestF (Req I D, i ) =1, ReqT y pe =CORE ∧RE ALI Z ES ∉ InLi nks ∧Featur eI D = i

0, other wi se

(3.102)

M73 : Featur eTest NoCover ag e Ak i =
n∑

j=1
I sNotCover edTestF (Req I D j , i ) (3.103)

M74 : Featur eTest NoCover ag ePk i = Featur eTest NoCover ag e Ak i

Featur eSi zek i
×100 (3.104)
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Where:

k is the baseline number

i is the feature ID for which coverage is being calculated

j is the requirement count in feature

n is the number of requirements in feature

Table 3.17 shows an example of feature design coverage measures for features 4.18 – 4.23 in

Product X (feature names are omitted for privacy reasons). We see that, for example, 9 out

of feature 4.18’s 9 requirements are covered by design (i.e., 100% feature design coverage)

while zero requirements of feature 4.20 have been covered by design (i.e., 0% coverage).

Figure 3.19 shows a sample graph that can be generated from the data in Table 3.17. The

bar graphs represent the absolute values while the line graphs represent the percentages.

Similar measures and graphs can be generated from feature test coverage metrics.

Table 3.17: Feature-design coverage in Product X.

Feature M2:
Feature_
SizeA

M67:
FeatureDesign_
CoverageA

M68:
FeatureDesign_
CoverageP

M69:
FeatureDesign_
NoCoverageA

M70:
FeatureDesign_
NoCoverageP

4.18 9 9 100.00% 0 0.00%
4.19 9 7 77.78% 2 22.22%
4.20 20 9 0.00% 20 100.00%
4.21 32 10 31.25% 22 68.75%
4.22 8 4 50.00% 4 50.00%
4.23 27 10 37.04% 17 62.96%

Figure 3.19: Feature-design coverage in Product X.
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Coverage × Release Level Similar to the feature level design coverage metrics above, we

measure the degree a release is covered by design, by testing whether a requirement is of

type CORE, that its release number matches the release we wish to measure, and that it con-

tains a ‘realizes’ link in its InLinks (Equation 3.105). Equation 3.106 (M75) calculates release

design coverage by counting the number of requirements that satisfy those conditions for a

given release resulting in an absolute value. Equation 3.107 (M76) calculates feature design

coverage percentage by dividing the absolute value from Equation 105 by release size. Simi-

larly, we use Equations 3.108–3.110 to measure the degree a release is not covered by design.

M77 results in an absolute value while M78 results in a percentage.

i sCover edDesi g nR(Req I D, i ) =1, ReqT y pe =CORE ∧RE ALI Z ES ∈ InLi nks ∧Release = i

0, other wi se

(3.105)

M75 : ReleaseDesi g nCover ag e Ak i =
n∑

j=1
I sCover edDesi g nR(Req I D j , i ) (3.106)

M76 : ReleaseDesi g nCover ag ePk = ReleaseDesi g nCover ag e Ak i

ReleaseSi zek i
×100 (3.107)

i sNotCover edDesi g nR(Req I D, i ) =1, ReqT y pe =CORE ∧RE ALI Z ES ∉ InLi nks ∧Release = i

0, other wi se

(3.108)

M77 : ReleaseDesi g nNoCover ag e Ak i =
n∑

j=1
I sNotCover edDesi g nR(Req I D j , i )

(3.109)

M78 : ReleaseDesi g nNoCover ag ePk i = ReleaseDesi g nNoCover ag e Ak i

ReleaseSi zek i
×100 (3.110)
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Where:

k is the baseline number

i is the release number for which coverage is being calculated

j is the requirement count in release

n is the number of requirements in release

To measure the degree a release is covered by tests, we follow the same approach we used

for release design coverage above with the only difference being that we are testing whether

a requirement’s OutLinks contains a ‘verifies’ link using Equation 3.111. Equations 3.112

(M79) and 3.113 (M80) then calculate the release test coverage in absolute and relative val-

ues. To measure the degree a release is not covered by test, we use Equations 3.114–3.116.

M81 results in an absolute value while M82 results in a percentage.

i sCover edTestR(Req I D, i ) =1, ReqT y pe =CORE ∧RE ALI Z ES ∈ InLi nks ∧Release = i

0, other wi se

(3.111)

M79 : ReleaseTestCover ag e Ak i =
n∑

j=1
I sCover edTestR(Req I D j , i ) (3.112)

M80 : ReleaseTestCover ag ePk = ReleaseTestCover ag e Ak i

ReleaseSi zek i
×100 (3.113)

i sNotCover edTestR(Req I D, i ) =1, ReqT y pe =CORE ∧RE ALI Z ES ∉ InLi nks ∧Release = i

0, other wi se

(3.114)

M81 : ReleaseTest NoCover ag e Ak i =
n∑

j=1
I sNotCover edTestR(Req I D j , i ) (3.115)

M82 : ReleaseTest NoCover ag ePk i = ReleaseTest NoCover ag e Ak i

ReleaseSi zek i
×100 (3.116)
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Where:

k is the baseline number

i is the release for which coverage is being calculated

j is the requirement count in release

n is the number of requirements in release

Table 3.18 shows an example of release design coverage measures for releases 1-7 for Prod-

uct X. We see that release design coverage tells a different story than that by feature design

coverage. We have 100% release design coverage for releases 1, 2, 3, 5, and 6 and 94% de-

sign coverage for release 4. Release 7 is about 60% percent covered with 170 requirements

that are still not covered by design. Figure 3.20 shows a sample graph that can be generated

from the data in Table 3.18. Similar measures and graphs can be generated from release test

coverage metrics.

Table 3.18: Release-design coverage in Product X.

Release M4:
Release_
SizeA

M75:
ReleaseDesign_
CoverageA

M76:
ReleaseDesign_
CoverageP

M77:
ReleaseDesign_
NoCoverageA

M78:
ReleaseDesign_
NoCoverageP

1 174 174 100.00% 0 0.00%
2 474 474 100.00% 0 0.00%
3 219 219 100.00% 0 0.00%
4 234 220 94.02% 14 5.98%
5 334 334 100.00% 0 0.00%
6 228 228 100.00% 0 0.00%
7 424 254 59.91% 170 40.09%

Figure 3.20: Release-design coverage in Product X.
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Coverage × Safety Level Finally, on the safety level, we measure the degree a safety level is

covered by design by testing whether a requirement is of type CORE, that its safety level

matches the safety level we wish to measure, and that it contains a ‘realizes’ link in its

InLinks (Equation 3.117). Equation 3.118 (M83) calculates safety level design coverage by

counting the number of requirements that satisfy those conditions for a given safety level

resulting in an absolute value. Equation 3.119 (M84) calculates safety level design coverage

percentage by dividing the absolute value from Equation 3.118 by safety level size. Similarly,

we use Equations 3.120–3.122 to measure the degree a safety level is not covered by design.

M85 results in an absolute value while M86 results in a percentage.

i sCover edDesi g nS(Req I D, i ) =1, ReqT y pe =CORE ∧RE ALI Z ES ∈ InLi nks ∧Sa f et y = i

0, other wi se

(3.117)

M83 : Sa f et yDesi g nCover ag e Ak i =
n∑

j=1
I sCover edDesi g nS(Req I D j , i ) (3.118)

M84 : Sa f et yDesi g nCover ag ePk = Sa f et yDesi g nCover ag e Ak i

Sa f et ySi zek i
×100 (3.119)

i sNotCover edDesi g nS(Req I D, i ) =1, ReqT y pe =CORE ∧RE ALI Z ES ∉ InLi nks ∧Sa f et y = i

0, other wi se

(3.120)

M85 : Sa f et yDesi g nNoCover ag e Ak i =
n∑

j=1
I sNotCover edDesi g nS(Req I D j , i ) (3.121)

M86 : Sa f et yDesi g nNoCover ag ePk i = Sa f et yDesi g nNoCover ag e Ak i

Sa f et ySi zek i
×100 (3.122)
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Where:

k is the baseline number

i is the safety level for which coverage is being calculated

j is the requirement count in safety level

n is the number of requirements in safety level

To measure the degree a safety level is covered by tests, we follow the same approach we

used for safety level design coverage above with the only difference being that we are testing

whether a requirement’s OutLinks contains a ‘verifies’ link using Equation 3.123. Equations

3.124 (M87) and 3.125 (M88) then calculate the safety level test coverage in absolute and

relative values. To measure the degree a safety level is not covered by test, we use Equations

3.126–3.128. M89 results in an absolute value while M90 results in a percentage.

i sCover edTestS(Req I D, i ) =1, ReqT y pe =CORE ∧RE ALI Z ES ∈ InLi nks ∧Sa f et y = i

0, other wi se

(3.123)

M87 : Sa f et yTestCover ag e Ak i =
n∑

j=1
I sCover edTestS(Req I D j , i ) (3.124)

M88 : Sa f et yTestCover ag ePk = Sa f et yTestCover ag e Ak i

Sa f et ySi zek i
×100 (3.125)

i sNotCover edTestS(Req I D, i ) =1, ReqT y pe =CORE ∧RE ALI Z ES ∉ InLi nks ∧Sa f et y = i

0, other wi se

(3.126)

M89 : Sa f et yTest NoCover ag e Ak i =
n∑

j=1
I sNotCover edTestS(Req I D j , i ) (3.127)

M90 : Sa f et yTest NoCover ag ePk i = Sa f et yTest NoCover ag e Ak i

Sa f et ySi zek i
×100 (3.128)
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Where:

k is the baseline number

i is the safety level for which coverage is being calculated

j is the requirement count in safety level

n is the number of requirements in safety level

Table 3.19 shows an example of safety level design coverage measures for regular, safety

relevant, and safety critical safety levels in Product X. We see that the safety relevant and

safety critical levels are close to 95% covered by design while the regular safety level is close

to 90%. Figure 3.21 shows a sample graph that can be generated from the data in Table 3.19.

Similar measures and graphs can be generated from safety level test coverage metrics.

Table 3.19: Safety-design coverage in Product X.

Safety Level M9:
Safety_
SizeA

M83:
SafetyDesign_
CoverageA

M84:
SafetyDesign_
CoverageP

M85:
SafetyDesign_
NoCoverageA

M86:
SafetyDesign_
NoCoverageP

Regular Safety 558 500 89.61% 58 10.39%
Safety Relevant 115 109 94.78% 6 5.22%
Safety Critical 487 460 94.46% 27 5.54%

Figure 3.21: Safety-design coverage in Product X.
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3.5 Validation of Structured Metrics Suite

As discussed in the Research Method Section (Section 3.3.2), the nature of an AR study en-

tails the subsumption of the empirical validation of the AR findings within the AR study.

However, due to the variety of the study’s results (metrics, meta-data, attributes, metric

levels), different validation sub-processes were carried out for the results of each research

question. Particularly, through expert opinion [Yousuf, 2007; Helmer, 1967], content analy-

sis, and observing the use of the findings within the organization’s process. Table 3.20 shows

the empirical and theoretical validation processes for the findings of each research ques-

tion.

Table 3.20: Overview of validation of AR study results.

Research
Question

Result Empirical Validation Theoretical Validation

RQ1 Requirements
metrics

AR: usage scenarios of mea-
sure by internal stakeholders

Kitchenham’s theoreti-
cal validation framework
[Kitchenham, 1995]

RQ2 Requirements
meta-data

AR: content analysis Comparative analysis with
established literature

RQ3 Requirements
attributes

AR: expert opinion Comparative analysis with
established literature

RQ4 Requirements
metric levels

AR: expert opinion, integra-
tion into RM process and
documentation

—

3.5.1 Metrics Validation (RQ1)

Validation of software metrics consist of theoretical and empirical validation [Briand et al.,

1995]. Theoretical validation is “concerned with demonstrating that a measure is measur-

ing the concept it is purporting to measure” [Briand et al., 1995]. In other words, measure of

the claimed attribute is an appropriate numerical characterization by demonstrating that

the measure does not abuse any essential properties of the measurement elements [Srini-

vasan and Devi, 2014]. On the other hand, empirical validity is concerned with a metric’s

usefulness in practice, which is usually gauged by relating it to an external attribute (e.g.,

quality). In other words, for a metric to be empirically valid, it must have some predictive

power of an external attribute [Antinyan et al., 2016]. For example, a complexity measure

is always defined in relation to some external attribute such as error-proneness and effort

[Briand et al., 1995]. We describe the theoretical and empirical validation processes of our

metrics in the following two sections, respectively.
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Theoretical Validation of Metrics

Several software metric validation frameworks have been proposed [Schneidewind, 1992;

Briand et al., 1995; Kitchenham, 1995; Srinivasan and Devi, 2014] that focus on code met-

rics such as coupling, cohesion, and complexity. We use Kitchenham’s validation framework

[Kitchenham, 1995] due to it general applicability to attributes of different entities. First, el-

ements of the measurement process and their properties that underpin the notion of mea-

surement validity must be defined. Table 3.21 shows the main measurement elements, their

descriptions based on Kitchenham’s definition of validity [Kitchenham, 1995] and the ele-

ment’s values within the context of our defined metrics.

Table 3.21: Main measurement elements, descriptions, and values according to [Kitchen-
ham, 1995].

Measurement
Element

Description Element Values

Entity Objects we observe in the real world. One of
the goals of measurement is to capture their
characteristics and manipulate them in a for-
mal way. Software entities may be products,
processes, or resources of different types.

Requirements set

Attributes Attributes are the properties that an entity
possesses. An entity may possess many at-
tributes, while an attribute can qualify many
different entities.

Size, growth, volatility, status, coverage

Units A measurement unit determines how we mea-
sure an attribute. An attribute may be mea-
sured in one or more units and the same unit
may be used to measure more than one at-
tribute.

Requirements

Scale Types The most common scale types are: nominal,
ordinal, interval, and ratio.

Ratio

Properties of
Values

Valid measure are to be defined over a set of
permissible values. A set of permissible val-
ues may be finite or infinite, bounded or un-
bounded, discrete or continuous.

Discrete, non-negative integers;
Continuous, non-negative real num-
bers;
Discrete, positive and negative integers;
Continuous, positive and negative real
numbers
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Once the main measurement elements have been defined, according to Kitchenham

[Kitchenham, 1995], the following criteria must be satisfied in order to decide whether a

metric is valid:

1. “For an attribute to be measurable, it must allow different entities to be distinguished

from one another.” In other words, when measuring an attribute for two different en-

tities that possess said attribute in different degrees, then a valid metric must result in

different measures for the two entities.

2. “A valid measure must obey the Representation Condition. Meaning, it must preserve

our intuitive notions about the attribute and the way in which it distinguishes differ-

ent entities.”

3. “Each unit of an attribute contributing to a valid measure is equivalent.”

4. “Different entities can have the same attribute value (within the limits of measure-

ment error).”

To avoid redundancy, we demonstrate the theoretical validity of two metrics (M2, M68)

only. However, the process applies to all 90 metrics.

M2 (Featur eSi ze Ai =∑n
j=1 I sCORE andFeatur e(Req I D j , i )) conforms to Kitchenham’s

properties as follows:

Suppose that we have baseline X. Assume that we have two features in baseline X: F1 and

F2. Suppose that F1 has E1 entities (set of requirements), which are r 1,r 2, ...,rm and F2 has

E2 entities (set of requirements), which are r 1,r 2, ...,rn .

Property 1: When m , n then Featur eSi ze AF 1 , Featur eSi ze AF 2. Thus, M2 allows us

to distinguish between the attribute (i.e., size) of two entities (i.e., set of requirements in F1

and set of requirements in F2).

Property 2: When n > M then Featur eSi ze AF 2 > Featur eSi ze AF 1. Thus, M2 obeys the

representation condition by preserving our intuitive notions about the attribute (i.e., size).

In other words, M2 preserves our intuitive notion that if the size of feature F2 is bigger than

the size of F1 then the results of M2 for F2 will be larger than the results of M2 for F1.
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Property 3: When m = n and m + 1 = n + 1 then Featur eSi ze AF 1 = Featur eSi ze AF 2.

Thus, M2 ensures that each unit (i.e., requirement) of an attribute (i.e., size) contributing to

a valid measure is equivalent. In other words, if F1 and F2 are equal in size and we added

one requirement to F1 and one requirement to F2, then F1 and F2 will remain equivalent

because our unit (i.e., requirement) contributed equally to our measure of feature size.

Property 4: When m = n then Featur eSi ze AF 1 = Featur eSi ze AF 2. Thus, M2 allows dif-

ferent entities (i.e., set of requirements in F1 and set of requirements in F2) to have the same

attribute (i.e., size) value. Therefore, M2 is theoretically valid according to Kitchenham’s

metric validation framework.

Similarly, M68 (Featur eDesi g nCover ag ePk = Featur eDesi g nCover ag e Ak i
Featur eSi zek i

×100) conforms

to Kitchenham’s properties as follows:

Suppose that we have baseline X and that baseline X has E entities (i.e., set of requirements),

which consist of r 1,r 2, ...,ri . Assume that we have two features in baseline X: F1 and F2.

Suppose that F1 has E1 entities (set of requirements) that satisfy the condition ReqT y pe =
CORE ∧ RE ALI Z ES ∈ InLi nks ∧ Featur eI D = i , which are r 1,r 2, ...,rm and F2 has E2

entities (set of requirements) that satisfy the condition ReqT y pe = CORE ∧RE ALI Z ES ∈
InLi nks ∧Featur eI D = i , which are r 1,r 2, ...,rn .

Property 1: When m , n then

Featur eDesi g nCover ag ePF 1 , Featur eDesi g nCover ag ePF 2. Thus, M68 allows us to

distinguish between the attribute (i.e., coverage) of two entities (i.e., set of requirements in

F1 and set of requirements in F2).

Property 2: When n > m then

Featur eDesi g nCover ag ePF 2 > Featur eDesi g nCover ag ePF 1. Thus, M68 obeys the rep-

resentation condition by preserving our intuitive notions about the attribute (i.e., coverage).

In other words, M68 preserves our intuitive notion that if the coverage of feature F2 is bigger

than the coverage of F1 then the results of M68 for F2 will be larger than the results of M68

for F1.

Property 3: When m = n and m +1 = n +1 then

Featur eDesi g nCover ag ePF 1 = Featur eDesi g nCover ag ePF 2. Thus, M68 ensures that

each unit (i.e., requirement) of an attribute (i.e., coverage) contributing to a valid measure is

equivalent. In other words, if F1 and F2 are equal in coverage and we added one requirement
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that satisfies the above conditions to F1 and one requirement that also satisfies the above

condition to F2, then F1 and F2 will remain equivalent because our unit (i.e., requirement)

contributed equally to our measure of feature coverage.

Property 4: When m = n then

Featur eDesi g nCover ag ePF 1 = Featur eDesi g nCover ag ePF 2. Thus, M68 allows differ-

ent entities (i.e., set of requirements in F1 and set of requirements in F2) to have the same

attribute (i.e., coverage) value. Therefore, M68 is theoretically valid according to Kitchen-

ham’s metric validation framework.

Empirical Validation of Metrics

Empirical validation answers the following question: “Is the measure useful in a particular

development environment, considering a given purpose in defining the measure?” [Briand

et al., 1995]. To answer this question, the relation between an internal attribute measure

(e.g., size) and an external attribute measure (e.g., quality) has usually been studied using

statistical analysis and modeling techniques [Briand et al., 1995] that are chosen depend-

ing on the scale types. However, [Antinyan et al., 2016] argue that when it is not possible

to acquire accurate measures for external attributes and, in turn, the validation of internal

attributes cannot be conducted by the help of statistical models, then action research can

be successfully applied for empirical validation of metrics. Because action research relies

on the define-refine-redefine process with practitioners, it shapes the final definition of the

measure, which is either accepted or rejected for further application. This process relies

on the metric designer – reference group infrastructure. The metric designer is the person

assigned to define and validate the metrics (e.g., researcher, data analyst). The reference

group is a group of practitioners who are working closely with the measured artifacts (e.g.,

requirements engineers, architects, testers) and who provide qualitative feedback on the

metrics. In our case, the metric designer was the researcher (principal author) and the in-

ternal stakeholders were the reference group headed by the main requirements engineering

person in the company. Several recent studies have used AR studies to empirically validate

metrics (e.g., [Antinyan and Staron, 2017] and [Carvalho et al., 2018]).

In this subsection, we demonstrate the metrics’ empirical validity by narrating exam-

ple usage scenarios from the project to assess their usefulness within our context given the

objective of the defined metrics: Enable the tracking, monitoring, and management of re-

quirements and requirements related-information so as to provide internal stakeholders with

requirements-related information that would address their concerns and aid them in their

respective process activities. As discussed in Section 3.3, we identified the need for require-
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ments metrics and subsequently selected, defined, applied, and enhanced the metrics with

the internal stakeholders throughout the AR study. The metrics were initially presented in

two focus groups within the first two months then updated and generated every month and

disseminated through email and upon request to the internal stakeholders of three prod-

ucts (see Table 3.2). Thus, the metrics designer was able to acquire usage scenarios from the

internal stakeholders through discussions with the internal stakeholders about their con-

cerns, emails exchanges, and observe the use of metrics within the development process.

Moreover, the metrics designer conducted an interview with the systems manager to assess

the usability of the metrics.

Table 3.22 consists of example usage scenarios that show how specific metrics were used

by which internal stakeholder in the project. The Metric column contains the metric ID and

title per the metrics defined in Section 3.4.4. In the Usage Scenarios of Measure from Project

column, each usage scenario is identified with an S and the internal stakeholders involved

in the scenario are italicized.

We note that due to the large size of the projects, the numerous internal stakeholders,

large number of metrics, and the uncontrolled nature of an AR study, it was not possible

make an inventory of the uses of all metrics. Thus, it is likely that there are other usage sce-

narios that we did not capture. We then discuss some general observations of the metrics’

usage within the project.

Table 3.22: Example usage scenarios of metrics from projects.

Metric Usage Scenarios of Measure from Project

M1: Baseline Size

(absolute)

S1- M1 constituted the basis for all other measures. The systems manager started pre-

sentations with this measure in meetings to provide an estimate of the overall product

size for all involved internal stakeholders.

S2- The product manager used it for resource management and project scheduling;

larger product sizes require more staff, time, and effort.

M2: Feature Size (ab-

solute)

S3- Developer used feature size to guide his/her development-related tasks such as de-

ciding how many hours will be needed to develop feature X or how many requirements/

day must be developed to deliver feature X by the release deadline.

M4: Release Size (ab-

solute)

S4- Developers and designers used M4 to gauge the amount of time and effort required

to design and develop the requirements within a given release before it is scheduled for

delivery to the customer.

S5- Systems and product managers used M4 for release planning (i.e., allocating require-

ments to specific product releases).

M5: Release Size (per-

centage)

S6- Systems and product managers used it to communicate with the client and higher

management (e.g., program manager) and to make strategic decisions about project

schedule. In other words, it allowed them to communicate to the customer and higher

management the percentage of the product to be delivered for each product release.
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M9: Safety Level Size

(absolute)

S7- Given the safety criticality of the products, the safety manager used it for managing

safety requirements in general to answer questions such as: how many requirements of

product X are safety critical requirements?

M13: Feature Growth

(absolute)

S8- M13 was shown in the second focus group to identify the features with the most

growth so developers in charge of those features are aware of the new requirements and

it was incorporated in the monthly reports for the same purpose.

M26: Baseline Churn

(percentage)

In the interview with the systems manager, he indicated that volatility measures in gen-

eral are by far the most important measure for requirements management as they indi-

cate whether the project is stable in relation to its stage. High volatility rates, represented

by M26, for example, at later stages of the project indicate problems that need to be re-

solved. Thus, M26 was used by the systems manager to gain a general, big picture view

of the state of requirement changes.

M23: Modified req.

per Baseline (abso-

lute)

S10- While M25 and M26 were used to give a big picture of requirements changes in a

project, metrics like M23 were a catalyst for the systems and requirements engineer to

investigate deeper into the nature of the change. In one instance, one baseline had an

unnaturally large number of modified requirements, but upon further investigation, it

was found that the baseline was created before a major product release. Thus, the major-

ity of modifications were due to spelling and grammatical changes to the requirements

text as opposed to change in functionality.

M19: Added req. per

Feature (absolute)

M20: Deleted req. per

Feature (absolute)

S11- In one metric report, M19 indicated that there was a large number of added re-

quirements to one pf the product’s features. However, upon looking at M20, it was made

clear that the large number of requirements of added requirements were the same num-

ber deleted from another feature. Meaning, the requirements were simply moved from

one feature to another. Such insight would not have been possible to gain had we been

using M26 only (churn on the baseline level).

M31: Modified Req.

per Feature (abso-

lute)

S12- Developers used this measure to ensure that modifications in the feature require-

ments have also been changed in the code.

M51: Baseline Status

(absolute)

M52: Baseline Status

(percentage)

S13- While these measures has been requested by the systems manager (i.e., reference

group) and agreed upon with the metric designer from the start of the AR study, it was

not highly useful in practice because the status of such a large number of requirements

was not kept up to date on a regular basis. Thus, the measures did not reflect reality.

An automatic method must be implemented to update the requirements status to make

use of this metric.

M59: Baseline Req.-

Design Coverage (ab-

solute) M61: Baseline

Req.- Design No Cov-

erage (absolute)

S14- The architect used M59 and M61 to ensure that design and architect tasks are

aligned with the requirements. The objective was to increase requirement-design cov-

erage.

S15- The systems and product managers used this measure to track progress of the

project in terms of schedule and deliverables. A low requirements-design coverage

closer to a release deadline is symptomatic of an underlying problem that requires some

action.
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M67: Feature Req. -

Design Coverage (ab-

solute)

M69: Feature Req. -

Design No Coverage

(absolute)

S16- These measures were specifically requested by the architect who used them to

monitor requirements-design on a more granular level. More specifically, if there is a

specific feature that is due to be delivered within a given deadline, the architect used

this measure to ensure requirement-design coverage for that feature is 100 by the dead-

line.

M60: Baseline Req.

- Design Coverage

(percentage)

M68: Feature Req.

- Design Coverage

(percentage)

M76: Release Req.

- Design Coverage

(percentage)

S17- The architect requested these measures usually before a meeting with high-level

managers such as the regional R&D manager to demonstrate the progress of the project.

S18- The systems manager presented these measures to the internal stakeholders of a

project in meetings to provide them with a bigger picture of the project progress.

M63: Baseline Req. –

Test Coverage (abso-

lute)

M65: Baseline Req. –

Test No Coverage (ab-

solute)

S19- The testers and test managers used it to track requirements-test coverage and man-

age testing tasks accordingly. Lower requirements-test coverage closer to a delivery date

was a call to action.

S20- The quality manager used it for quality management purposes.

M79: Release Req. –

Test Coverage (abso-

lute)

M81: Release Req. –

Test No Coverage (ab-

solute)

S21- For each product release, the systems manager used these measures to communi-

cate with the clients the state of requirements-test case coverage, which was also used

by the tester on the client side. The measures were usually presented with the list of

requirements and test cases for that release and whether the tests passed or failed.

General Observations on Metric Usage

First, the sample of usage scenarios in Table 3.22 demonstrated that the objective of metrics

we stated above was addressed. In other words, the measures enabled internal stakeholders

to track, monitor, and manage requirements and requirements related-information so as to

provide them with the requirements-related information that addressed their concerns and

aided them in their respective process activities (i.e., architecting, testing, release planning,

safety management, quality management).

Second, we can see that the usage of the absolute and relative measures differed. Abso-

lute measures were mostly used by technical and mid-level managers (e.g., architects, de-

velopers, product managers) to aid their tasks (e.g., S3, S4, S14, S16) while relative measures
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were used to communicate to higher-level managers (e.g., regional R&D manager, program

manager) and clients to provide bigger pictures of progress, status, and possible problems

(e.g., S6, S17). We captured these interactions in a meta-model that we conducted in a sep-

arate post analysis of the AR study (Chapter 6 and published in [Noorwali et al., 2019]).

Third, some scenarios indicate a need for supplementing some of the metrics with fur-

ther, descriptive metrics. For example, M1 (baseline size) can be supplemented with other

measures that would provide in-depth information about the quality and complexity of in-

dividual requirements [Génova et al., 2013; Antinyan and Staron, 2017]. While M1 provides

a number of requirements. Similarly, S10 shows a need to supplement M23 (the number

of modified requirements per baseline) with a means to analyze the type of change that

occurred to the requirements as not all modifications are equal; a textual change does not

require action like a functionality change.

Fourth, we observed that while the reports were generated monthly by the metrics de-

signer, there were requests for requirement metric reports in between the monthly cycles.

Thus, the importance of automating them so that the internal stakeholders would have

access to the requirements on demand became evident (automation of the metrics is dis-

cussed in Chapter 7).

3.5.2 Meta-Data Validation (RQ2)

While a subset of the meta-data items were already in use (e.g., ReqID, ReqText, FeatureID)

in all of the projects, others were added to enable the application of the metrics (e.g., release

number). To acquire empirical evidence of the meta-data items’ use in practice, we first

conducted a content analysis of the three project’s requirements repositories and ensured

that the meta-data items were consistent across all three projects. Thus, the identified meta-

data items were applied to the three projects in Table 3.2. Moreover, we examined a fourth

project that is within the organization but not within the overall program we were involved

in and examined the applicability of the meta-data items to its requirements repository. We

found that the repository consisted of ReqID, ReqText, FeatureID, ReqStatus, ReqType, and

Safety. Thus, we can deduce that the meta-data items are applicable to projects outside the

projects under study.

In addition to the applicability of the meta-data items to various projects, we must also

assess whether they enabled the application of the metrics from RQ1 (see Section 3.3.2 and

Figure 3.2 for research questions and research question hierarchy). We can see that the

metrics reported in Section 3.4.4 utilized the meta-data items identified in Section 3.4.3.

The application of metrics within the projects resulted in numerous requirements measures
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reports. Table 3.23 shows the number of requirements measures reports generated, thus far,

for each of the three projects in Table 3.2 and a fourth project that was added to the overall

program after the AR study.

Table 3.23: Number of generated requirements measurement reports for projects.

Project Number of
Measurement Reports

P1 5
P2 7
P3 20
P4 3

Theoretically, we compared the meta-data items we identified with those found in the

literature. We found support for ReqID [Kotonya and Sommerville, 1998; Wiegers, 2006;

IEEE, 2011; Ebert and Dumke, 2007], ReqText [Kotonya and Sommerville, 1998; Wiegers,

2006; IEEE, 2011; Ebert and Dumke, 2007], ReqStatus [Kotonya and Sommerville, 1998], and

release [Wiegers, 2006].

3.5.3 Attributes Validation (RQ3)

Theoretical validation of the identified attributes was the main validation process for the

requirements attributes given their theoretical nature. The five requirements attributes we

identified are rooted in the literature. While we included a discussion of each of the at-

tributes in Section 3.4.1, we summarize the theoretical underpinnings of the identified at-

tributes in Table 3.24.

Table 3.24: Theoretical underpinnings of identified requirements attributes.

Requirement
Attribute

Theoretical Support

Size [Goti, 1998]; [Jones, 2000]; [Loconsole, 2001]; [Loconsole,
2003];[Wiegers, 2006]

Growth [Boehm, 1991]; [Jones, 1996b,a]; [Kulk and Verhoef, 2008]; [Park
et al., 2010]

Volatility [Nurmuliani et al., 2004]; [Costello and Liu, 1995]; [Thakurta
and Ahlemann, 2010]; [Wiegers, 2006]; [Ferreira, 2002; Ferreira
et al., 2009, 2011]

Status [Wiegers, 2006]; [Ebert and Dumke, 2007]
Coverage [Gotel and Finkelstein, 1994]; [Lormans and van Deursen, 2005;

Lormans and Van Deursen, 2006]; [Lago et al., 2009]

In addition to the theoretical validation, we sought expert opinion [Helmer, 1967; Yousuf,

2007] from the internal stakeholders within the projects to 1) ensure that our understanding
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of the requirements attributes is consistent with the internal stakeholders’ understanding

and 2) establish the use of the attributes within the RM process in the organization. The

main requirements person within the projects reviewed and approved the use of the re-

quirements attributes. In addition, upon identification of the attributes, the requirements

measures reports were structured according to the attributes as depicted in Figure 3.22.

Figure 3.22: Screenshot of a requirements measures report.

3.5.4 Metric Levels Validation (RQ4)

Given the novelty of the concept of requirement metric levels, we could not validate our

identified levels with the established literature. However, we validated our findings through

the internal stakeholders’ expert opinions [Helmer, 1967; Yousuf, 2007]. Similar to the re-

quirements attributes, the requirement metric levels were validated by a systems manager,

product R&D manager, and quality manager. Moreover, the levels have been incorporated

into the requirements measurement process by using them to structure the measures re-

ports as seen in Figure 3.22 and including their associated metrics’ definitions in the inter-

nal requirements management plan.

3.5.5 Threats to Validity

We discuss the study’s validity threats and how we mitigated them according to Runeson

and Host’s guidelines [Runeson and Höst, 2009].

Construct Validity

Construct validity concerns the operationalized constructs of the study in that whether

or not they accurately represent the real-world phenomena. It is possible that the study

constructs (i.e., requirements attributes, levels, meta-data, and metrics) might not have

been captured accurately by the researcher. The two constructs that are subject to the least

construct validity threat are requirements attributes and meta-data. The requirements at-

tributes derived from the AR study were validated against the scientific literature (see Sec-



3.5. VALIDATION OF STRUCTURED METRICS SUITE 95

tion 3.4.1) and we found support for all the identified attributes in the literature. The sec-

ond construct that is unlikely to have been inaccurately captured by the researcher is the

identified meta-data items as they were selected as-is from the project data. However, the

requirement levels and metrics are subject to a higher degree of construct validity threats.

There is a possibility that the metrics did not capture what we really intended to measure.

At the beginning of the metric definition process, we consulted the literature for available

requirements metrics (see Table 3.1 and Section 3.2.3). While the literature on requirements

metrics is scant, as shown in Section 3.2.3, the idea of the metrics were rooted in the scien-

tific literature. Moreover, we sought continuous feedback from the internal stakeholders of

the project during and after the metric definition process, which we used to continuously

enhance the metrics until they were accepted. Finally, the requirements levels we identified

are possibly the most subjective findings due to their novelty and a lack of literature on this

topic. Although we validated the identified levels with our industrial partner (Section 3.5.4)

and demonstrated their use in Section 3.5, we encourage further validation by others.

Internal Validity

Internal validity is concerned with the validity of causal relationships, typically in scientific

experiments. Given that our study objective does not include investigation of causal rela-

tionships, this threat is not relevant to our study.

External Validity

External validity is concerned with the generalizability of the results to other contexts. We

believe the biggest issue of this study concerns the generalizability of its results. The AR

study was conducted within the safety-critical, transportation domain and the data were

gathered from large-scale projects that consisted of thousands of requirements and em-

ployed extensive documentation. Moreover, the requirements engineering and manage-

ment processes are highly structured and mature in comparison to smaller companies where,

for example, agile processes are adopted. These factors affect the generalizability of the re-

sults in several ways. First, smaller projects that do not have the same number of require-

ments may not benefit from the metrics. Second, even larger projects that have large num-

ber of requirements may not have the requirements tools nor the documentation in our

project, thus it would be hard to define metrics and identify meta-data. Thus, readers must

interpret and reuse the results in other contexts with caution. Despite this limitation, the

results constitute an important data-point for making scientific progress. Further valida-

tion of the findings in different domains and project sizes is encouraged in order to improve
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their generalizability. However, we believe that requirements are ubiquitous regardless of

their form and the essence of our results can still be adapted to different contexts. For ex-

ample, smaller projects may need the metrics on the baseline level only. Moreover, while

the attributes levels, and metrics identified in this study are limited to our context, the idea

of identifying these items is universal. Thus, other projects in different contexts would need

to measure different requirements attributes at different levels and use different meta-data.

It would be interesting to compare between the values of the different domains.

Reliability

Reliability is concerned with the degree of repeatability of the study, which constitutes an-

other issue in our study. While the AR study followed AR principles for software engineering

[Susman and Evered, 1978; Santos and Travassos, 2011] to ensure rigor during the study, a

level of subjectivity is inevitable during an AR study. The researcher dealt with a plethora

of data, internal stakeholders, and was immersed in the specific context of the study, which

may make it impossible to achieve perfect repeatability. To deal with this threat, we kept

record of project data, project personnel, emails, interviews, meetings and observations.

We also retained historical data of the defined metrics from the first version of the metric

report to the current version, which shows the evolvement of the results.

Moreover, the analysis techniques of the data were highly dependent on the researcher

who had to sift through large amounts of data and identify requirements attributes, levels,

metrics, and meta-data items. While the process of identifying the metrics and meta-data

enjoys a higher level of repeatability due to their objectivity and dependency on tangible

data (i.e., requirements, meta-data items), the process of arriving at the requirements at-

tributes and levels was less objective. However, our use of extensive documentation helped

mitigate this threat as shown in Section 3.3. We showed how the application of a metrics

validation framework led to the identification of the requirements attributes. The organi-

zation and reorganization of the metrics into similar clusters led to the identification of the

requirements levels. Nevertheless, we concede that another researcher may possibly arrive

at different requirements levels.

3.6 Implications

In this section, we discuss the implications of our findings on practice and research.
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3.6.1 Implications for Practice

RE Documentation Practices. Data collection is a prerequisite for measurement [Costello

and Liu, 1995; Ebert and Dumke, 2007; Fenton and Biemen, 2015; Kerzner, 2017] and the

quality of any measurement process is dependent on careful data collection. For example,

percentage of requirements that have been modified per feature per baseline is a metric that

would require a requirement ID, feature ID, release number and requirement text. Thus,

since the early days of SE measurement, it has been recognized that “data should be col-

lected with a clear purpose in mind. Not only a clear purpose but also a clear idea as to the

precise way in which they will be analyzed so as to yield the desired information.” [Moroney,

1968]. Costello and Liu [Costello and Liu, 1995] argue that data gathering must be part of

the metric definition process and without it the metrics are useless. However, the overhead

associated with gathering the data required for measurement is large and has been recog-

nized as a significant barrier to adopting software metrics [Kerzner, 2017]. The problem is

further exacerbated in large-scale systems where data is large and distributed across numer-

ous projects and artifacts [Fenton and Biemen, 2015]. Thus, a first step towards facilitating

the data gathering procedure for measurement is to know what data to gather. Thus, our

identification of the requirements meta-data (see Section 3.4.3) that are required to apply

the presented metrics ensures that projects interested in applying the metrics maintain, at

the minimum, the identified meta-data items for their requirements.

Requirements Management and Measurement Processes. When discussing good require-

ments management practices, requirements measurement is usually recommended but

treated briefly [Wiegers, 2006; Chemuturi, 2013] without the detail and attention given to

other requirements management activities such as change management [Leffingwell and

Widrig, 2000; Jayatilleke and Lai, 2018] and traceability [Gotel and Finkelstein, 1994; Gotel

et al., 2012; Cleland-Huang et al., 2012]. The lack of detail hinders the integration of require-

ments measurement into the requirements management process. Thus, the comprehensive

requirements metrics suite presented in this paper provides practitioners with the ground-

work and details necessary to integrate requirements measurement into the requirements

management process.

Customization and Adaptability. One of the success factors of measurement programs is

its flexibility and adaptability to the specific context in which it is being implemented [Of-

fen and Jeffery, 1997]. Our delineation of the four elements of requirements measurement

allows for the customization of our results for different contexts. An organization need not

measure the five attributes we identified using our metrics at the four metric levels; they can
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be used as guidelines to identify other attributes and define suitable metrics that meet the

organization’s needs. For example, a project may use the identified attributes as guidelines

to define their own metrics or introduce other metric levels (e.g., individual requirement

level) that better address their information needs. Thus, the four elements of measurement

we identified can be used as a requirements measurement ‘schema’ that guides the pro-

cess of requirements measurement while allowing the project or organization to define its

details.

Stakeholder Information Needs. It is often difficult to define metrics that satisfy the needs

of all interested stakeholders (e.g., general management, project management, developers,

requirements engineers, architects, etc.). Thus, defining varying metric levels can aid in

addressing the different information needs for different stakeholders [Fenton and Biemen,

2015]. Especially in the context of a large systems-project that consists of numerous stake-

holders and processes, our experience indicates that the levels and attribute-level combi-

nations can yield metrics that address different internal stakeholder needs. Projects can

experiment within their specific contexts with the different attribute-level combinations to

identify which combinations are relevant to which stakeholder group.

Measurement Breadth and Coverage. Metric levels in general ensure breadth and com-

prehensive coverage of what is to be measured [Costello and Liu, 1995]. For example, if

we are interested in defining metrics for all aspects of a systems engineering project, then

we need to identify the levels of the systems engineering project that require different met-

rics such as product and process metrics or system-level metrics and software-level met-

rics. These levels can be further broken down into sub-levels to ensure further coverage

(e.g., product metrics can be categorized into requirements, design, code, and test met-

rics). Thus, the metric levels presented in this paper can aid practitioners in improving

the breadth of requirements measurement in their organizations. And in reference to the

customization and adaptability discussion above, further metric levels can be identified to

ensure measurement breadth and coverage.

RE Dashboards and Measurement Automation. In general, measurement should be fully

automated to fully exploit the potential of metrics, which is usually achieved through dash-

boards [Pauwels et al., 2009; Selby, 2009]. Dashboards reduce the overhead associated with

collecting data, applying the metrics, generating graphs and visualizations, and keeping the

measures up-to-date [Selby, 2007, 2009]. Moreover, dashboards allow wider sharing and

communication of data across an organization [Pauwels et al., 2009]. This becomes es-
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pecially crucial in large-scale systems projects. Dashboards have been widely adopted on

the project management side and on the development side [Johnson et al., 2005; Coman

et al., 2009]. However, dashboards for requirements have not been as popular. Accord-

ing to [Pauwels et al., 2009], different domains have different needs with regard to dash-

boards. Thus, establishing criteria and design guidelines that address the needs of require-

ments measurement is one step towards building effective requirements dashboards. The

attributes, levels, metrics, and meta-data in this study can serve as a guide for persons or or-

ganizations interested in implementing a requirements dashboard. Moreover, the require-

ments metrics in this paper can be used to complement and enhance current dashboards

that focus on code metrics and/or project management metrics.

3.6.2 Implications for Research

To our knowledge, our study is the first of its kind to address the four elements of require-

ments measurement that we addressed in our study. As demonstrated in Section 3.2.5, the

different elements have either been dealt with in piecemeal fashion, superficially or in un-

known contexts. Thus, the exposition of all the elements in this paper is a significant con-

tribution to the current literature on RE metrics and has several implications for research.

Research on Measurable Requirements Attributes. While our literature analysis reveals

that the focus has been on requirements quality [Davis et al., 1993] (e.g., individual require-

ment size [Génova et al., 2013], complexity [Antinyan and Staron, 2017], consistency [Byun

et al., 2014], etc.) and volatility [Zowghi and Nurmuliani, 2002; Loconsole and Börstler,

2005; Kulk and Verhoef, 2008; Ferreira et al., 2009; Thakurta and Ahlemann, 2010; Valerdi

and Pena, 2015], our results show that, in addition to quality and volatility, size, growth, sta-

tus and coverage are important attributes to measure in a systems project that aid in man-

aging requirements and providing information to internal stakeholders to carry out their

tasks (see Section 3.5.1). Thus, further research to better understand these attributes is

required because a thorough understanding of a measured entity’s attributes is essential

for the derivation of accurate metrics [Briand et al., 1995]. Studies would investigate the

requirement attributes in relation to other project variables (e.g., performance, cost, and

schedule) and other requirements attributes (e.g., the relationship between requirements

volatility and coverage) and define benchmarks, manage associated risks, and study their

predictors. The literature on requirements volatility sets a good example for the comprehen-

sive and holistic manner that other requirements attributes should be studied (see Section

3.2.1). In addition, further research is required to investigate other requirements attributes
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that need to be measured in order to facilitate the requirements management task and de-

velopment processes in projects of different types (e.g., systems and software).

Research on Requirement Metric Levels. Due to the size and complexity of requirements

in large systems projects, our results show that they exist at different levels, with each level

requiring a set of metrics. Such results are not surprising as SE metrics in general have been

defined to target different levels of software. However, we saw in Section 3.2.5 that such a

categorization for RE metrics is nonexistent (See Table 3.1) although the categorization of

requirements to enhance the documentation, understanding and management of require-

ments is recommended practice in general (e.g., functional and non-functional require-

ments) [Kotonya and Sommerville, 1998; IEEE, 2011]. In a series of empirical studies, Hess

et al. [Gross and Doerr, 2012a,b; Hess et al., 2017] investigate the information needs from

a software requirements specification (SRS) for different roles (e.g., architects and testers).

They found that architects and testers want to view different information from the SRS. For

example, architects wanted easy access to technical constraints and system interaction in-

formation while testers needed to view uses cases to carry out their test-related activities.

Although the studies focused on the presentation of qualitative requirements data from the

requirements specification (e.g., descriptions of non-functional requirements and descrip-

tions of technical constraints, etc.), the different information needs imply that the different

stakeholders would need different quantitative data (i.e., requirement measures) from the

SRS as well. Our results further support this notion and, thus, are anticipated to promulgate

further research that examines that different stakeholder needs with regard to quantitative

requirements information at the different metric levels.

Moreover, requirements attributes are usually studied standalone and requirements lev-

els are used merely to categorize and organize requirements. However, studying them to-

gether for the purpose of requirements measurement is unprecedented. Our results plant

the seeds to further investigate this intersection of attributes and levels with regard to met-

rics, internal stakeholder concerns and information needs, and applicability of the different

attribute-level combinations to different contexts.

Research on Requirement Metrics. The metrics presented in this paper have been de-

fined within the context of one project and, thus, addressing the needs of that particu-

lar project. Moreover, an attribute can be measured through various metrics [Fenton and

Biemen, 2015]. Thus, further research is needed to identify other requirements metrics that

would aid the requirements management and development processes in different contexts,

while maintaining a rigorous standard of metric definition and validation.
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In addition, given that the defined metrics presented in this study were informed by

internal stakeholder concerns at a certain point in time, they can be characterized as simple

requirements metrics consisting of basic counts and comparisons. However, the metrics

in this study lay the foundation for more complex requirements metrics that the internal

stakeholders may have not considered and that would potentially be beneficial to them. For

example, metrics that calculate the likelihood that a certain release, feature, or individual

requirement will change based on volatility measures can be calculated using the volatility

metrics presented here.

Finally, the validation processes we followed in this study are anticipated to set the scene

for further empirical validation of the presented metrics and RE metrics in general in order

for RE metrics to achieve the level of validation the SE metrics have achieved [Kitchenham,

2010].

3.7 Conclusions and Future Work

Metrics and measurement have been a focus of the SE community’s attention since its early

days and had proved effective in understanding, controlling and improving SE products

and processes [Fenton and Biemen, 2015]. In requirements engineering, while the litera-

ture and practitioners generally recommend the usage of requirements metrics and attest

to its many benefits (e.g., tracking progress, identifying gaps in the downstream deliver-

ables, and managing requirements-related risks, etc.) [Costello and Liu, 1995; IEEE, 2011;

Kratschmer, 2013], in reality RE metrics have been underused and underutilized despite

the fertile ground that requirements and requirements meta-data provide for measurement

[Gómez et al., 2008].

Applying requirements metrics becomes more pertinent in large-scale systems engi-

neering projects where the large number of requirements, numerous processes and internal

stakeholders (e.g., architects, developers, and product and safety managers) make it difficult

to track and manage requirements and to provide the relevant requirements-driven infor-

mation to the internal stakeholders who would use such information to carry out their re-

spective process-related tasks. Our experience in a large-scale systems engineering project

in the rail automation domain revealed that defining and applying requirements metrics is

difficult due to: i) the lack of well-defined and validated metrics in the literature that can

be readily used, and ii) the difficulty of defining requirements metrics due to lack of un-

derstanding of what to measure, at what metric levels, and the overhead associated with

gathering and maintaining the required meta-data needed to apply the metrics.

We, thus, aimed in this paper to provide an empirically derived and validated require-
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ments metric suite that would enable the tracking and control of requirements and re-

quirements driven information and provide the relevant requirements driven information

to internal stakeholders. We conducted an action research study in a large-scale project in

the rail-automation domain that consisted of three sub-projects in which we investigated

four research questions (Section 3.3.2) concerning the requirements metrics, measurable

requirements attributes, metric levels, and requirements meta-data in a systems engineer-

ing project. The AR study resulted in defining 90 requirements metrics (Section 3.4.4) that

measure five requirements attributes (Section 3.4.1) at four metric levels (Section 3.4.2) and

that used nine requirements meta-data items (Section 3.4.3). We discuss the findings of

each measurement element in this paper and validate the metrics theoretically and empir-

ically for usefulness by applying them in the requirements management and development

process of the project (Section 6.5).

Our validation results led us to several conclusions. First, that requirements and re-

quirements meta-data can be utilized to define and apply useful requirements metrics that

can be incorporated into the requirements management process and used throughout the

development processes. Second, the requirements metrics did, in fact, facilitate the require-

ments management process and provided internal stakeholders with requirements-driven

information that aided them in carrying out their development related tasks (Section 3.5.1).

Such tasks included ensuring requirements-design coverage by architects, release planning

by systems and products managers, safety requirements management by safety managers,

and communication to upper management and clients. These observed uses are in line

with those discussed in the literature [Davis et al., 1993; Costello and Liu, 1995; Wiegers,

2006; IEEE, 2011; Kratschmer, 2013]. Third, we found that different measures for the various

attribute-level combinations (e.g., size at the baseline level and size at the release level) are

used differently by internal stakeholders (Section 3.5.1). This finding echoes similar findings

in the literature that have investigated information needs for different internal stakehold-

ers. For example, testers and architects have different information needs with regard to the

requirements document [Gross and Doerr, 2012a,b; Hess et al., 2017] and developers and

managers need different code-centric information [Buse and Zimmermann, 2012].

Our next steps include automating the metric suite through a requirements dashboard

and deploying the dashboard in the studied projects. The dashboard will allow us to investi-

gate more closely the usage of the requirement metrics by the various internal stakeholders.

Thus, we plan to further validate the findings of this study via a more controlled and quan-

titative validation method to assess whether the initial validation results still hold and by

what degree.

Finally, our study was conducted in a large-scale project with a mature requirements
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engineering process that was receptive to the incorporation of metrics into its processes.

However, the applicability and usefulness of such metrics in other contexts, particularly an

agile one, is not yet known. Thus, we intend to validate the metrics in another contexts to

investigate whether having a ready requirements metrics suite will improve the likelihood

of adopting requirements metrics and whether the same uses and benefits are observed in

that context.
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Chapter 4

An Approach for Defining, Analyzing, and

Organizing Requirements Metrics and

Related Information 1

4.1 Introduction

Measurement is an essential yet difficult process in software engineering (SE). It generally

follows the establish-prepare-execute-evaluate measurement paradigm [IEEE, 2017; Ebert

and Dumke, 2007] that consists of many tasks and sub-tasks. The longest and most compli-

cated phase is the ‘prepare’ phase in which, among other tasks, the measurement strategy

is identified, information needs are identified and prioritized, measures are selected and

specified, and data collection, analysis, access and reporting procedures are defined [IEEE,

2017]. Many frameworks, tools and methods have been proposed to facilitate these tasks.

For example, CMMI [CMMI Product Team, 2006] may be used to define the organization’s

measurement strategy while the Goal-Question-Metric (GQM) approach [Basili et al., 1994]

aids in identifying and prioritizing information needs and selecting the measures that align

with those needs.

In large systems projects, deriving and organizing requirements metrics and related in-

formation (e.g., meta-data items, measures, and metric labels) can be complicated and la-

borious due to such factors as: large volume of requirements; inconsistent requirements

meta-data across sub-projects; and complexity in requirements baselines (that contain cat-

egories such as interface, hardware, software, each of which has its own set of metrics). In

addition, the derived requirements metrics are numerous, often unstructured and unorga-

1 A version of this paper was accepted for publication in the 15th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE’20). Publication to appear in May 2020.
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nized, and can be difficult to assess with respect to completeness.

Existing measurement methods are aimed at either selecting and specifying a set of met-

rics that address certain project goals (e.g., GQM [Basili et al., 1994] and V-GQM [Olsson

and Runeson, 2001]) or documenting metrics and measurement reports through templates

[Goethert and Siviy, 2004; Bonelli et al., 2017]. For example, GQM [Basili et al., 1994] aids in

documenting assessment or improvement goals and in deriving the questions and metrics

that address these goals, all hierarchically represented. Meanwhile, measurement templates

[Goethert and Siviy, 2004] help in recording data corresponding to the metrics.

However, once the hierarchy of goals-questions-metrics is identified and prior to gath-

ering measures in templates, we are left with at least the following questions: What require-

ments meta-data items (e.g., release number, status, and feature ID) do we need to apply the

metrics? Are any metrics missing that may affect the investigation? How do we organize and

structure these metrics for reporting?

These questions are important because they impact the time needed to define, apply,

and organize the measures for dissemination, quality of generated reports, completeness

and consistency of the metrics, and completeness and consistency of the meta-data. In

other words, these questions correspond to the structure that helps in organising and oper-

ationalizing the use of metrics in large, systems engineering projects. To our knowledge, the

scientific literature does not contain such a structure that bridges the gap between intention

(e.g., the GQM-like hierarchy) and use of metrics in actual projects.

In this paper, we show what the bridging structure is and how to use this structure

through a 7-step process to derive and organize requirements metrics (Section 4.3). Specifi-

cally, in this process, GQM is first used to identify measurement goals, questions, and an

initial set of corresponding metric descriptions. Requirements attributes (e.g., volatility,

coverage, and growth) and levels (e.g, feature, release, and safety) are then identified for the

initial set of metrics. We then identify all the possible attribute-level combinations (e.g., fea-

ture growth, and release volatility) and map the identified metrics onto the attribute-level

combinations. The metric gaps are then identified and their missing metrics are derived.

Finally, the meta-data (e.g., release number, feature ID, and safety relevancy) for each met-

ric is identified. By the end of this process, we should have a complete set of requirements

metrics at the identified attribute-level combinations with the meta-data items required to

apply them.

By applying our approach on data from an industrial-scale rail automation systems project

(Section 4.4.2), we discuss the observed benefits of its application (Section 4.4.3). The ben-

efits included reduction of requirements measurement time, improved organization and

structure of data, improved breadth of metrics, and improved completeness and consis-
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tency of meta-data across projects. We then discuss the implications of our work (Section

4.5.1) and its limitations (Section 4.5.2). Finally, we conclude the paper and discuss future

work (Section 4.6).

4.2 Background and Related Work

In this section, we first lay the background for our work, which consists of: (i) the terminol-

ogy used throughout this paper; namely, the four measurement components that our ap-

proach rests on: requirements attributes, levels, metrics, and meta-data (Section 4.2.1) and

(ii) the general measurement process as defined by the ISO/IEEE standard [IEEE, 2017] and

show where our approach fits within the process (Section 4.2.2). We then survey the related

literature and discuss measurement frameworks and approaches (Section 4.2.3). Finally, we

analyze the related work and highlight the research gap (Section 4.2.4).

4.2.1 Terminology

Requirement Attributes. An attribute is a property of an entity [Fenton and Biemen, 2015].

For instance, a person is an entity and height is one of the person’s attributes. Thus, a re-

quirement attribute is a property that a requirement or set of requirements (i.e., entity) pos-

sesses such as size, growth, volatility, quality, etc.

Requirement Levels. We use requirements levels to refer to the different, yet interrelated,

categories according to which a set of requirements can be organized. For example, a set

of requirements may be organized as a whole in requirement baselines (i.e., requirement

document versions), which are further organized within the baseline according to features.

Meaning, requirements exist at the baseline and feature levels.

Requirement Metrics. A “function whose inputs are software data and whose output is

a single numerical value that can be interpreted as the degree to which software possess a

given attribute” [IEEE, 1992]. A requirement metric, then, is a function whose inputs are

requirement data and whose output is a single numerical value that can be interpreted as

the degree to which requirements possess a given attribute. For example, percentage of the

number of additions, deletions, and modifications per baseline is a metric that can have a nu-

merical value (i.e., measure) of 30%, which indicates the degree the requirements baseline

possesses volatility.

Requirement Meta-data. The IEEE 29148 standard for RE [IEEE, 2011] recommends

that requirements have descriptive meta-data to help understand and manage the require-

ments. The meta-data are associated with requirements in a requirements repository and
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may include unique identification, dependency, risk, source, type, rationale, and difficulty

to name a few.

4.2.2 The General Measurement Process

Figure 4.1 shows an overview of the measurement process, which follows an establish, pre-

pare, perform, evaluate process [IEEE, 2017; Ebert and Dumke, 2007]. According to the

ISO/IEEE standard for systems and software engineering measurement [IEEE, 2017], the

establish phase involves accepting the requirements for measurement and assigning re-

sources to prepare, execute, and evaluate the measurement process. The prepare phase

consists of the largest number of tasks and, subsequently, requires the longest time and

the most effort. Figure 4.1 depicts the tasks within the prepare phase. The perform phase

involves integrating procedures for data collection, analysis, and reporting to the relevant

processes, collecting, storing, and verifying the data, analyzing and developing informa-

tion items, and recording the results and informing the measurement users of results. Fi-

nally, the evaluate phase consists of evaluating the information products (i.e., measures)

and measurement process and identifying potential improvements. Figure 4.1 shows where

our approach fits within the general measurement process in comparison with other frame-

works, approaches and templates, which we will review in the following subsection.

Figure 4.1: The measurement process according to [IEEE, 2017].
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4.2.3 Measurement Frameworks, Approaches, and Tools

A set of measurement frameworks, approaches, tools, and templates are required to carry

out the tasks delineated in the measurement process described above. In this subsection,

we discuss the relevant literature on such frameworks and approaches and situate them

within the measurement process. The bulk of our discussion is dedicated to the approaches

used for the prepare phase then more briefly the frameworks and approaches for the per-

form and evaluate phases. We do not discuss the establish phase because it mainly rests

upon managerial decisions rather than on measurement approaches and methods.

As mentioned, the prepare phase consists of the largest number of tasks and requires

the longest time and the most effort. Consequently, the literature is replete with meth-

ods, tools, and approaches that facilitate the tasks in this phase. Particularly, measurement

frameworks and approaches that aid in defining the measurement strategy and describing

organizational characteristics that are relevant to measurement (tasks 2.1 and 2.2 in Fig-

ure 4.1) have received a significant amount of attention. Such approaches and frameworks

usually answer the why and what of measurement and can be used on the organizational,

project, or process levels. For example, the Capability Maturity Model Integration (CMMI)

is a process level improvement training and appraisal program [CMMI Product Team, 2006]

that consists of a number of process areas, each process area is a cluster of related practices

in that area that need to be implemented collectively to satisfy the goals considered impor-

tant for making improvements in that area. Measurement and Analysis is one of the CMMI

process areas consisting of practices and guidelines that echo the phases and activities of

the ISO/IEEE standard: specifying measurement objectives, specifying measures, analysis

techniques, data collection and reporting techniques, implementing analysis techniques

and providing objective results.

The Model-Measure-Manage (M3p) paradigm [Offen and Jeffery, 1997] is another a mea-

surement paradigm that consists of eight stages: understanding the business strategy, iden-

tifying business goals, strategies, and risks, determining critical success factors, defining

specific software development goals, posing questions, identifying and defining measures,

setting up the measurement program, and regularly reviewing the program. ‘Application of

metrics in industry’ (AMI) [Rowe and Whitty, 1993] is yet another quantitative approach to

software project management that consists of an ‘assess-analyze-measure-improve’ cycle.

Similarly, Six Sigma [Tennant, 2001] is an approach that follows a ‘define, measure, analyze,

improve and control’ methodology and employs statistical tools within its phases.

These higher-level paradigms employ lower level tools, templates, and approaches that

aid in operationalizing lower-level tasks such as identifying users’ information needs (task

2.3 in Figure 4.1) and selecting and specifying metrics (task 2.4 in Figure 4.1). An exam-
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ple is the GQM framework [Basili et al., 1994], which is one of the most popular techniques

utilized within high-level measurement frameworks. For example, the M3P paradigm in-

corporates GQM as a measure selection technology and the AMI recommends using GQM

in its ‘analyze’ phase.

The GQM approach aims to measure software in a meaningful way. The first step is to

define a set of measurement goals tailored to the specific needs of the organization. The

goals are refined into a set of quantifiable questions, for which, in turn, a specific set of

metrics is specified. A more recent version of GQM, GQM+Strategies [Basili et al., 2014],

has been proposed for aligning goals and strategies of an organization across different units

through measurement. GQM+S consists of an ‘organizational planning’ part in which or-

ganizational goals and strategies are identified and a controlling part that utilizes the tra-

ditional GQM approach to achieve the organizational goals. Thus, GQM+S addresses tasks

2.2, 2.3, and 2.4 in the measurement process depicted in Figure 4.1.

Defining data collection, analysis, validation, documentation and reporting procedures

(task 2.5 in Figure 4.1) requires grass-root measurement methods, templates, and tools to

aid in executing these activities. Templates are usually used for data collection, documen-

tation and reporting. For example, the Indicator Template for Measurement and Analysis

[Goethert and Siviy, 2004] adds an intermediate step to GQM to assist in linking the ques-

tions to the measurement data that will be collected through a template that imposes the

definitions of inputs (data elements) needed for measurement, and the data collection and

reporting methods for each metric. Similarly, the ASM.br (Assistance for Software Measure-

ment Based on Relationships) [Bonelli et al., 2017] is a template that allows specifying met-

rics by using a one-page form in which textual and graphical information is recorded, and

the relationships between metrics and goals are explicitly presented. The template consists

of the following information items: indicator (metric), business goal, measurement goal,

information need, category, CMMI level and process area, measurement and analysis pro-

cedures, analysis procedure based on criteria, analysis procedure based on relationships,

and indicator graphical representation.

Defining procedures for data analysis entails choosing the methods and techniques to

be used for analyzing the gathered metrics. Such procedures could be as simple as using

spreadsheets or more complex ones like machine learning techniques [Zhong et al., 2004]

or statistical methods similar to the ones used in Six Sigma [Tennant, 2001].

For the perform measurement phase of the measurement process, using automated sys-

tems and tools is the most common approach to integrate the defined procedures for data

collection, analysis and reporting from the prepare for measurement phase into software

development the processes. Examples of such tools include Hackystat [Johnson, 2007],
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PRO Metrics (PROM) [Sillitti et al., 2003], and Empirical Project Monitor (EPM) [Ohira et al.,

2004]. While the reporting and visualization capabilities of such tools can be limited, cus-

tom [Selby, 2009] and commercial dashboards and visualization software (e.g., Tableau) are

used to visualize and communicate the resulting measures to the relevant stakeholders.

Finally, the measurement products and processes must be evaluated to identify poten-

tial problems and improvements (phase 4 of the measurement process in Figure 4.1). For

example, Mendonca and Basili [Mendonça and Basili, 2000] propose an approach for im-

proving exiting measurement frameworks that utilizes the GQM approach and an attribute

focusing technique. The approach aims to better understand the ongoing measurement

process within on organization or project and, in turn, explore the collected data in order to

identify improvement recommendations for the measurement processes in place.

4.2.4 Analysis and Research Gap

While the above surveyed approaches and templates can be utilized for measurement in RE,

they do not address the specific challenges we discussed in the introduction (i.e., unstruc-

tured and unorganized metrics, missing metrics, and missing meta-data). For example, let

us assume that we used GQM to derive the set of metrics in Table 4.1, which is part of a

larger set being used in the requirements management process. Upon derivation, the met-

rics lack a coherent structure as to which metrics belong with each other. Moreover, we have

no method to assess whether there are missing metrics. The above surveyed approaches aid

in either deriving the initial set of metrics or documenting the metrics in templates. To our

knowledge, an approach that addresses the specific challenges of unstructured and unorga-

nized metrics, missing metrics, and missing meta-data does not exist.

Table 4.1: Example requirements metrics derived using GQM.

Metric ID Metric Description

M1 No. of requirements per baseline

M2 No. of modified requirements per feature baseline

M3 No. of safety critical requirements per baseline

M4 No. of requirements per release per baseline

M5 No. of deleted requirements per feature baseline

In this respect, our approach would be considered an intermediary step or middleware

between metric derivation approaches such as GQM [Basili et al., 1994] and and using tem-

plates to document metrics [Goethert and Siviy, 2004; Bonelli et al., 2017]. Specifically, our

approach aids in the selection of RE metrics (through GQM) and the analysis and reason-
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ing about the metrics with respect to completeness, structure, and requirements meta-data

collection (see Section 4.3).

4.3 The Approach

As mentioned earlier in Section 4.1, the purpose of our approach is to facilitate the require-

ments measurement process through: 1) deriving requirements metrics, 2) analyzing the

metrics for completeness, 3) structuring and organizing the metrics, and 4) specifying the

meta-data needed for the metrics. The approach is depicted in Figure 4.2.

Figure 4.2: The proposed 7-step approach for deriving, analyzing, and organizing require-
ments metrics.

The first step is executed using GQM [Basili et al., 1994] to derive an initial set of require-

ments metrics that address the internal stakeholders’ goals and concerns. The second step

is performed to identify the requirements attributes (e.g., size, volatility, and coverage) that

the derived metrics are measuring while the third step identifies the requirements levels

(e.g., baseline, release, and feature) at which the metrics exist. In the fourth step, we create

all possible combinations of attributes and levels (e.g., baseline X size and release X volatil-

ity). In the fifth step, we map the derived metrics in Step 1 to the attribute-level combina-

tions and identify the combinations that do not have associated metrics. Step 6 is performed

to derive the metrics for the empty attribute-level combinations. Finally, in the seventh and

last step, the requirements meta-data items for the complete set of metrics are identified.

The approach combines the seven steps to tackle the following practical questions:

1. What requirements metrics will address the given internal stakeholders’ concerns?

2. What requirements attributes are the metrics measuring?

3. How do we categorize and organize the derived metrics for archiving and reporting?

4. Are there any metrics missing that we are not aware of?

5. What meta-data do we need to gather in order to apply the metrics?
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Step 1: Derive Initial Set of Metrics. The first step is to derive an initial set of metrics that

address the internal stakeholders’ concerns regarding the requirements. GQM is a suitable

method to use for this step that ensures that the derived metrics in fact address internal

stakeholder concerns and are not superfluous. The GQM approach consists of identify-

ing the goals that the internal stakeholders of a project would like to achieve through the

metrics. Following the goals, the operational questions that address those goals are subse-

quently identified and, finally, the metrics that answer the respective questions are derived.

Thus, the output of the Step 1 is an initial set of requirements metrics. Table 4.2 shows an

example of a goal and its respective questions and requirement metrics.

Table 4.2: An example of using GQM to derive requirements metrics for Step 1.

Goal Questions Metrics

Purpose: Monitor Q1. What is the overall
state of requirements-
design coverage?

M1. No. of require-
ments that are covered
by design objects per
baseline

Issue: the status of

Object:
requirements-
design links Q2. What is the state of

requirements-design
coverage for release X?

M2. No. of require-
ments in latest base-
line that are covered
by design and are as-
signed to release XViewpoint:

from the system’s
manager’s view-
point

Step 2: Identify Requirements Attributes. Depending on how the goals and questions

are formulated, the corresponding metrics can be derived without knowing the requirement

attribute we are measuring. For example, it is not clear what requirement attribute M1 and

M2 in Table 4.2 are measuring. Is it requirements status or requirements coverage? Thus,

after the initial set of requirement metrics have been derived using GQM, we perform a first

round of analysis of the metrics to answer the question: what requirement attribute is each

metric is measuring? This step aids in acquiring a clear and unambiguous understanding of

the requirements attributes being measured, which is essential for accurate measurements

[Briand et al., 1996] and for reasoning about the derived metrics. For example, when ap-

plying Step 2 we realize that all the derived metrics from Step 1 are measuring requirements

volatility, then we can begin reasoning whether we need other metrics that measure other

attributes such as coverage, size, and creep, etc. Thus, we begin addressing the issue of

missing metrics. In addition, this step begins giving the derived metrics a structure.

The output of Step 2 is a list of requirements attributes. The ‘Requirement Metric’ and
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‘Requirement Attribute’ columns in Table 4.3 show a sample of requirements metrics and

their corresponding attributes.

Table 4.3: Example requirements metrics, attributes, and levels.

Metric
ID

Requirement Metric Requirement
Attribute

Requirement
Level

M1 No. of requirements in latest baseline that are covered by
design

Coverage Baseline

M2 No. of requirements in latest baseline that are covered by
design and are assigned to release X

Coverage Release

M3 No. of requirements per feature per baseline Size Feature

M4 No. of added, deleted and modified requirements per
baseline

Volatility Baseline

Step 3: Identify Requirements Levels. Similar to the way requirements are organized,

whether implicitly or explicitly, according to different categories or levels (e.g., functional

and non-functional, features and releases), the derived requirements metrics will also ex-

ist at different requirements metric levels. Thus this step is concerned with answering the

question: what level of requirements is the derived metric concerned with? The identifica-

tion of requirements metric levels gives further structure to the derived metrics and allows

us to reason about the breadth of metrics.

One way to identify the metric levels if they cannot be readily identified from the require-

ments documents, is to phrase the metrics in the form of M3 and M4 in Table 4.3 where we

use ‘per’ followed by on object such as baseline and feature. Thus, the object of the first ‘per’

is a requirements level. In M3 and M4, it is easy to identify the levels (feature and baseline).

However, due to the different wording of M1 and M2, it is not clear what the levels are. Thus,

if we rephrase M1 to the following form: number of requirements that have in-links from de-

sign objects per latest baseline, we know that the requirement level is baseline. Similarly, M2

can be rephrased to the following form: Number of requirements that have in-links from de-

sign objects per release per baseline. Thus, the requirement level is release. Similarly, if we

had a metric that measured number of words per requirement as a measure of an individual

requirement’s size [Antinyan and Staron, 2017], then we can say that this metric is at the

individual requirement level.

Step 4: Create Attribute-Level Combinations. Once we identified the metrics’ attributes

and levels separately in steps 2 and 3, we create all possible combinations of the attributes

and levels. It is important that we create all possible attribute-level combinations regardless

of whether they have associated metrics. For example, we can create the following four com-

binations from the attributes and levels in Table 4.3 that have corresponding metrics: base-
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line coverage, release coverage, feature size, baseline volatility. However, Figure 4.3 shows

all the nine possible attribute-level combinations that can be derived from Table 4.3. This

step sets the scene for the next step in which we reason about missing metrics.

Figure 4.3: An example of attribute-level combinations.

Step 5: Map Metrics to Combinations and Identify Gaps. This step consists of mapping

the metrics derived in step 1 to the relevant attribute-level combinations identified in step

4. This step is unnecessary if the metrics, attributes and levels identified in steps 1, 2, and

3 have already been tabulated together since the beginning of the process. However, if they

are in separate files, then this step dictates creating a matrix consisting of all the attribute-

level combinations and mapping the metrics onto the combinations. The matrix should

also include the additional, empty combinations identified in Step 4, which would yield a

table similar to Table 4.4. Thus, the new matrix highlights the attribute-level combinations

that do not have corresponding metrics (i.e., metric gaps).

Table 4.4: Metrics mapped onto attribute-level combinations.

Metric
ID

Requirement Metric Requirement
Attribute

Requirement
Level

M1 No. of requirements in latest baseline that are covered by design Coverage Baseline
Coverage Feature

M2 No. of requirements in latest baseline that are covered by design
and are assigned to release X

Coverage Release

Size Baseline
M3 No. of requirements per feature per baseline Size Feature

Size Release
M4 No. of added, deleted and modified requirements per baseline Volatility Baseline

Volatility Feature
Volatility Release
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Step 6: Derive Missing Metrics. In this step, we define the metrics for the empty attribute-

level combinations. For example, for feature X volatility in Table 4.4, we can define M5: The

total number of added, deleted and modified requirements per feature per baseline.

Step 7: Identify Requirements Meta-Data. Once we have defined the complete set of

metrics, we identify the requirements meta-data items needed to apply the metrics. For

example, the meta-data items needed for M2 are unique requirement ID, release number,

in-links from design, requirement baseline number. Table 4.5 shows a an example of the

meta-data that would be maintained for each requirement in order to apply the metrics

identified in Step 6.

Table 4.5: Example requirements meta-data.

Baseline 3.1
Req.
ID

Req. Text Release In-Links Feature

001 ******* 3 ****/****/ object12 External Inter-
face

4.4 Applying the Approach in Practice

The most common and successful validation method for a software engineering approach

or procedure [Shaw, 2003] is validation through an example based on a real-life scenario.

Such validation can be accomplished in a variety of ways including case studies, experi-

ments, or action research [Easterbrook et al., 2008]. In this subsection, we report our ex-

perience in applying our approach on data from a real-life industrial setting. Particularly, a

large-scale rail automation systems project that consists of three sub-projects.

Initially, we conducted an action research (AR) study to derive and evaluate a set of re-

quirements metrics to be incorporated into the requirements management and software

development processes. However, we faced the challenges discussed in Section 4.1 during

the study. Thus, the approach emerged as a by-product of the AR study to address those

challenges. We then applied the proposed approach within the three sub-projects. We note

that while the complete results from the AR study (i.e., requirements metrics) are not re-

ported in this paper, we use a subset of the derived metrics to demonstrate the application

of our approach.

In the following subsections, we briefly describe the project context and the AR study

(Section 4.4.1), our experience with applying the approach (Section 4.4.2), and then discuss

the observed benefits (Section 4.4.3).
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4.4.1 The Projects and AR Study

The project in which we conducted the AR study is a large-scale rail automation project in a

multi-national company in the United States. The overall project (i.e., program) consisted of

many sub-projects, each sub-project consisted of a product that had its own set of require-

ments, architecture design, test cases, and engineering team. We were directly involved

with three of the sub-projects. Table 4.6 shows a breakdown of project duration, number

of requirements specification documents (baselines), number of requirements, and num-

ber of safety requirements per project. The organization used IBM Rational DOORS as their

requirements management tool. Thus, each project’s requirements were stored in its own

DOORS database and identified with its own set of meta-data.

Table 4.6: Descriptive statistics of the projects.

Project Project Duration No. Req.
Baselines

No. Reqs. No. Safety
Reqs.

No. Design
Baselines

No. Design
Objects

No. Test
Cases

P1 73 months 54 1790 N/A 23 472 2111
P2 36 months 30 2285 N/A 4 380 N/A
P3 45 months 51 2389 923 28 827 2045

The goal of the AR study was to derive a set of requirements metrics for each project. The

AR study followed an iterative process [Susman and Evered, 1978] in which the researcher,

in collaboration with the industrial partners, identified the internal stakeholder needs with

regard to the requirement metrics and the corresponding metric descriptions using GQM

[Basili et al., 1994]. We opted to use GQM and not GQM+S because we were not concerned

with organizational or project strategy.

4.4.2 Applying the Approach

In the following paragraphs, we describe in detail the application of our approach within

Project 3 from Table 4.6. We note, however, that the approach was similarly applied to three

other projects as well.

Step 1: Derive Initial Set of Metrics. Using GQM and in collaboration with the internal

stakeholders, we derived an initial set of 41 requirements metrics. Table 4.7 consists of the

goals, questions and titles of the associated metrics that we initially derived. Due to space

restrictions, we do not list all the metric definitions. However, Table 4.8 shows the metric

definitions for a subset of the metrics in Table 4.7.

Step 2: Identify Requirements Attributes. To execute this step, we identified the re-

quirement attribute each metric is measuring as shown in Table 4.8 in the Requirement At-
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Table 4.7: The initial set of requirements metrics using GQM.

Goal Question Metrics

G1. Monitor status of requirements-
design coverage, requirements-test cov-
erage.

Q1. What is the status of
requirements-design coverage?

M1, M2, M3, M4

Q2. What is the status of require-
ments–test coverage?

M5, M6, M7, M8

G2. Monitor growth and volatility of re-
quirements.

Q3. What is the growth of require-
ments over time?

M9, M10, M11

Q4. What is the volatility of re-
quirements over time?

M12, M13, M14, M15, M16,
M17, M18, M19, M20, M21,
M22, M23, M24, M25, M26,
M27

G3. Manage release planning of require-
ments.

Q5. What is the current state of
allocations of requirements to re-
leases?

M28, M29, M30, M31, M32,
M33

G4. Monitor distribution and growth of
safety requirements Q6. What is the current distribu-

tion of safety requirements in lat-
est baseline?

M34, M35, M36, M37, M38,
M39, M40, M41

tribute column. The subset of metrics shown in Table 4.8 is representative of the the re-

quirements attributes we initially identified: size, coverage, and volatility.

We note how the goals and questions do not necessarily lead to correct identification of

attributes. For example, Q3 in Table 4.7 is concerned with the growth of requirements over

time. However, the derived metrics (M9, M10) are in fact measuring size, but because when

deriving the metrics, we envisioned that the measures will be visualized in a way that depicts

requirements growth over time, the amount of growth in of itself is not being measured but

the size of requirements over time. This led to the identification of the correct metrics for

growth (M42, M43) in Table 4.8. Thus, at the end of this step we have added two metrics and

a requirement attribute (growth).

Step 3: Identify Requirements Levels. We identified each metric’s level according to

the procedure described in Section 4.3. At the end of this step, we had four requirement

metric levels: baseline, feature, release, and safety. Table 4.8 shows each metric’s level in the

Requirement Level column.

Step 4: Create Attribute-Level Combinations. From the identified attributes and levels

in Table 4.8, we created all the possible attribute-level combinations. Because we have four

attributes and four levels, we had 16 unique attribute-level combinations as identified in

Table 4.9 in the Attribute and Level columns.
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Table 4.8: A subset of the derived requirements metrics for project 3.

Metric ID Requirement Metric Requirement
Attribute

Requirement
Level

M1 No. of requirements that have in-links from design objects per baseline Coverage Baseline

M5 No. of requirements in latest baseline that have in-links from test cases Coverage Baseline

M9 No. of requirements per baseline Size Baseline

M10 No. of requirements per feature per baseline Size Feature

M12 No. of added requirements per baseline Volatility Baseline

M13 No. of deleted requirements per baseline Volatility Baseline

M14 No. of modified requirements per baseline Volatility Baseline

M15 No. of added, deleted and modified requirements per baseline Volatility Baseline

M16 No. of added requirements per feature per baseline Volatility Feature

M17 No. of deleted requirements per feature baseline Volatility Feature

M18 No. of modified requirements per feature baseline Volatility Feature

M19 No. of added, deleted and modified requirements per feature per baseline Volatility Feature

M29 No. of requirements per release per baseline Size Release

M30 Percentage of requirements per release per baseline Size Release

M34 No. of safety critical requirements per baseline Size Safety

M42 Difference between requirements size for baselines X and Y Growth Baseline

M43 Difference between requirements size for feature Z in baselines X and Y Growth Feature

Step 5: Map Metrics to Combinations and Identify Gaps. We map the metrics listed

in Table 4.7 to the identified attribute-level combinations as depicted in Table 4.9. We can

now identify the following metric gaps: coverage X feature, coverage X release, coverage X

safety, volatility X release, volatility X safety, growth X release, growth X safety. Moreover, it is

possible to detect missing metrics for the attribute-level combinations that have metrics by

comparing the number of metrics for each combination. For example, size metrics on the

release level (M29, M30) consist of an absolute and relative measure. However, size metrics

on the feature (M10) and safety (M34) levels consist of absolute measures only.

Step 6: Derive Missing Metrics. The result of this step was an identification of 46 addi-

tional metrics that were incorporated into the overall metric set. Due to space restrictions,

we do not include all the metrics that we derived upon identifying the metric gaps. However,

the metrics in red in Table 4.10 show the new metrics and we give some examples here:

• M52: No. of requirements with in-links from test cases per feature per baseline.

• M58: No. of requirements with in-links from test cases per safety requirement cate-

gory per baseline.

• M72: Percentage of modified requirements per release per baseline.

• M87: Difference between requirements size for release Z in baselines X and Y.
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Table 4.9: All possible attribute-level combinations and mapping of metrics.

Attribute Level Metrics
Coverage Baseline M1, M2, M3, M5, M6, M7, M8
Coverage Feature
Coverage Release
Coverage Safety
Size Baseline M9
Size Feature M10, M11
Size Release M28, M29
Size Safety M34, M35, M36, M37, M38, M39, M40, M41
Volatility Baseline M12, M13, M14, M15, M16, M17, M18, M19
Volatility Feature M20, M21, M22, M23, M24, M25, M26, M27
Volatility Release
Volatility Safety
Growth Baseline M42
Growth Feature M43
Growth Release
Growth Safety

Table 4.10: Identification of missing metrics from Step 6.

Note: We chose not merge Tables 4.9 and 4.10 in order to highlight the metrics gaps in Table 4.9.

Attribute Level Metrics

Coverage Baseline M1, M2, M3, M4, M5, M6, M7, M8

Coverage Feature M44, M45, M46, M47,M49, M50, M51, M52

Coverage Release M53, M54, M55, M56,M57, M58, M59, M60

Coverage Safety M61, M62, M63, M64,M65, M66, M67, M68

Size Baseline M9

Size Feature M10, M11

Size Release M28, M29

Size Safety M34, M35, M36, M37, M38, M39, M40, M41

Volatility Baseline M12, M13, M14, M15, M16, M17, M18, M19

Volatility Feature M20, M21, M22, M23, M24, M25, M26, M27

Volatility Release M69, M70, M71, M72,M73, M74, M75, M76

Volatility Safety M77, M78, M79, M80,M81, M82, M83, M84

Growth Baseline M42, M85

Growth Feature M43, M86

Growth Release M87, M88

Growth Safety M89, M90

Step 7: Identify Requirements Meta-Data. Based on the final set of metrics we identify

the meta-data needed to calculate each metric. The set of unique requirements meta-data

items we identified as a result of identifying the meta-data items for each of the 90 met-

rics were: Requirement ID, Requirement type, Requirement feature ID, Requirement text,
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Requirement release number, Safety requirement type, Out-links from requirements to ex-

ternal artifacts, In-Links to requirements. As an example, M1 from Table 4.8 would require

an out-links from requirements to external artifacts meta-data item which we call ReqOut-

links for illustration purposes. Thus, the formula for M1 would be: count if ReqOutlinks ,

NULL

The meta-data items were necessary for ensuring that all meta-data items were consis-

tent across projects and applying the metrics. This, in turn, facilitated the measurement

procedure.

4.4.3 Observed Benefits

After illustrating the application of the approach in one of the rail automation projects, we

discuss the overall benefits we observed from applying the approach to all the three projects

listed in Table 4.6.

Metric Breadth. While GQM allows the identification of an initial set of metrics accord-

ing to a project’s goals, which, in turn, address the stakeholders’ information needs, our

experience with large systems projects that involve many internal stakeholders has shown

further concerns with regard to the requirements metrics are identified upon having an ini-

tial set of metrics, which prompts further metric derivation. For example, as seen in Table

4.9, the initial set of metrics measured the design and test coverage of requirements for a re-

quirements baseline. Upon implementing the metrics, an architect requested measures of

requirements coverage per feature, for which we derived further metrics. However, our ap-

proach allowed us to derived the coverage metrics on the release and safety levels as well (see

Table 4.10), which were also used by different internal stakeholders. Thus, our approach im-

proves the breadth of the derived metrics by identifying the metric gaps and, subsequently,

deriving the associated metrics. Because the approach identifies the metric gaps by analyz-

ing the attributes and levels of the initial set of metrics that were derived using GQM and

which are based on the the project’s information needs, the missing metrics will likely also

address measurement needs that the internal stakeholders were not cognizant of.

Organization of Data. Prior to using the approach and upon deriving the initial set of

metrics in the AR study (see Section 4.4.1), the measures were documented in spreadsheets

in an unorganized manner where metrics lacked accurate labels and unrelated metrics were

grouped together. The identification of attributes and levels in our approach served as a

template, which allowed us to structure measures in an organized and consistent format

across projects. Figure 4.4 shows a snapshot from the requirements metric report for Project

P3 in Table 4.6 in which the measures are organized according to requirements attributes
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(size, growth, volatility, status, coverage) and levels (baseline, feature, release).

Figure 4.4: Requirements metric report organized according to attributes and levels.

Completeness and Consistency of Requirements Meta-Data. Initially, we adopted a te-

dious trial and error approach in which we analyzed each project’s requirement meta-data

to check whether the derived metrics can be applied to that particular project given the

available meta-data. The requirements meta-data were incomplete (e.g., missing release

meta-data) and inconsistent (i.e., different meta-data labels used such as in-links or design

links) across projects. However, identifying the requirements meta-data upfront aided in as-

sessing the completeness and consistency of the requirements meta-data in the databases

across projects early in the measurement process. Moreover, the list of identified require-

ments meta-data items was incorporated into the requirements management plan to be

enforced in future projects in order to facilitate the requirements measurement process.

Measurement Time and Effort. The application of the approach resulted in a reduction

of the time and effort expended on the requirements measurement process, which was en-

abled in two ways. First, our experience in deriving metrics in a large systems project with

numerous internal stakeholders showed that missing metrics are identified slowly and in-

crementally through feedback from the stakeholders as they elucidate their needs. The use

of our approach reduces the time required for this process by identifying the metrics gaps

and deriving the missing metrics through the upfront analysis and reasoning about the met-

rics. This enables the preemptive derivation of metrics that may be requested later on and

which, in turn, reduces the time spent on measurement.

Second, the reuse of the identified attributes, levels, metrics, and meta-data items aided

in reducing the time and effort needed to derive, analyze and organize a set of requirements

metrics for each project. Thus, when a fourth new project was added, we simply reused the

results of our approach from the previous three projects (Table 4.6). However, this reuse

does not prevent reexamining the needs of a project and, subsequently, reapplying the ap-

proach to derive further metrics that address the newly identified needs.
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4.5 Discussion

In this section, we first discuss the implications of our approach for RE management and

measurement, requirements management tools, RE dashboards, and studies on RE mea-

surement and then its limitations.

4.5.1 Implications

Requirements Management and Measurement Processes

The centrality of the four measurement elements (i.e., attributes, levels, metrics, and meta-

data) in our approach could encourage requirements personnel to consciously consider

the definition of the elements during the requirements management process. For instance,

given that defining requirements meta-data is already an integral part of the requirements

management process [Wiegers, 2006], requirements engineers can now define the require-

ments meta-data with requirements measurement in mind. For example, if the project in-

tends to measure requirements volatility and coverage at the baseline and feature levels,

then the requirements engineer would define the requirements meta-data that would facil-

itate the measurement of these attributes and levels later in the requirements engineering

process. This, in turn, allows for seamless and easier application of our approach later in

the requirements management process.

Existing Requirements Management Tools

While existing requirements management tools (e.g., Rational DOORS, Jama, and ReqSuite)

allow the identification of requirements meta-data and derivation of some measures in re-

lation to requirements (e.g., total no. of requirements, no. of requirements in progress),

they do not support functionality for advanced requirement metric derivation, reasoning

about metric completeness and consistency, and structuring metrics into related clusters.

Thus, the requirements measurement process is carried out as an external process, which

requires significant added time and effort [Costello and Liu, 1995]. The delineation of key

requirements measurement elements and the steps to utilize them in our approach open

up possibilities for advanced RE tool-features. For example, attribute-level combinations

(e.g., baseline X volatility, feature X coverage —see Section 4.4.2 for examples) can be au-

tomatically generated, thereby saving effort and ensuring quality. Further, the meta-data

items required for each metric can be selected from the list of defined meta-data in the re-

quirements database and, based on the selected meta-data items, queries could be created

to calculate measures.
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RE Dashboards

Dashboards that gather, analyze, calculate, and present measures are commonly used in

SE. Such dashboards have always targeted the project management [Kerzner, 2017] and de-

velopment [Johnson, 2007] phases. However, different domains have different needs with

regard to dashboards [Pauwels et al., 2009]. Whether on top of existing requirements man-

agement tools or as standalone dashboards, our approach may have practical implications

on requirements dashboards in at least two ways. First, our approach could provide guid-

ance to designing and developing requirements dashboards. For example, the concepts of

attributes and levels can inform the presentation of the measures in the dashboard. Specif-

ically, pages can be organized according to attributes (e.g., size, growth, and volatility, etc.)

and each page can organize the measures according to levels (e.g., baseline, feature,and

release, etc.) In addition, the dashboard can be designed to ensure that each metric is as-

sociated with an attribute and level to avoid ‘stray metrics’. Second, the approach could

be integrated as one of the dashboard’s functionalities to enable the derivation, analysis

and organization of metrics. For example, the dashboard could provide ‘intelligent’ recom-

mendations for metrics based on defined attributes and levels. Thus, the dashboard would

become more intelligent as more attributes, levels, and metrics are defined over time.

Further Studies on RE Measurement

While measurement approaches, such as GQM [Basili et al., 1994], have been widely adopted

and have proven to be extremely effective, the plethora of methods and approaches that ex-

tend and build upon GQM suggest that GQM overlooks the needs of certain domains, pro-

cesses, and/or stakeholders [Goethert and Siviy, 2004; Berander and Jönsson, 2006]. Our

approach also addresses the specific challenges that have emerged in deriving and organiz-

ing RE metrics in large systems projects, which we believe is a first of its kind. Because our

approach addresses specific challenges in the systems domain, it would be interesting to in-

vestigate other RE measurement methods that can be created in other domains. In addition,

the applicability of our approach to other contexts (e.g., agile) can be further explored.

4.5.2 Limitations

This investigation was conducted in a large systems engineering company with well-established

requirements management and documentation procedures and numerous internal stake-

holders. Thus, the use of our approach can be said to be limited to such an environment.

The applicability of our approach in other development environments (e.g., agile or planned

agile) in which requirement documentation is minimal may be limited.
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In addition, the approach assumes the existence of a large set of requirements in which

requirements are organized according to different levels (e.g., features, releases, and base-

lines) and, thus, metric levels can be identified. However, in other process paradigms (e.g.,

agile and iterative, etc.), equivalent notions need to be identified similar to those in our ap-

proach.

Finally, without tool support, the application of our approach becomes tedious when

the number of attributes, levels, metrics, and meta-data are large. Thus, incorporating the

approach and its elements into requirements management tools, as discussed in Section

4.5.1, would facilitate its application in contexts where the number of metrics, attributes,

levels, and meta-data become unmanageable manually.

4.6 Conclusions and Future Work

Requirements measurement in a systems engineering context is a complex task due to the

existence of multiple projects with large sets of requirements with various categories (e.g.,

baseline, features, and releases, etc.), various internal stakeholders and their information

needs, and inconsistent requirements meta-data across projects, to name a few. Thus, re-

quirements metrics end up being: large in number, replicated with unintended variations,

ill-structured and disorganized, and incomplete. Existing measurement approaches and

methods do not address such requirements measurement concerns (Section 4.2.3).

In this paper, we propose an approach that aims to bridge the gap between the use of

GQM to select and specify metrics that satisfy the needs of the stakeholders and the use of

templates to document and report the measures. Particularly, the method aims to derive

RE metrics, analyze them for completeness, structure and organize the metrics, and specify

the meta-data needed for the metrics. The approach utilizes the GQM approach and con-

sists of seven steps that rely on four measurement elements: requirements attributes, levels,

metrics, and meta-data (Section 4.3). The approach aids in improving metric breadth, or-

ganizing measures, improving completeness and consistency of requirements meta-data,

and reducing measurement time and effort (Section 4.4.3). We demonstrate the applica-

tion of the approach to a real-life systems project from the rail automation domain (Section

4.4.2) and discuss its observed benefits. The approach is anticipated to have implication for

requirements management measurement processes, requirements management tools, RE

dashboards, and studies on RE measurement (Section 4.5.1). Future work rests in applying

the approach in different contexts to strengthen its validity and providing tool support to

improve its usability.
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Chapter 5

A Health Assessment Framework for

Systems Projects: A Requirements

Perspective

5.1 Introduction

Significant effort has been made in the software engineering (SE) community to understand

the critical success factors (CSF) of software and system development projects, which in-

cludes, among others, organizational (e.g., management support, organizational culture,

and leadership), team-related (e.g., communication, expertise, and composition), and tech-

nical (e.g., software development methodology, supporting tools, and requirements volatil-

ity) factors that have significant impact on project success [Ahimbisibwe et al., 2015; Mohd

and Shamsul, 2011; Chow and Cao, 2008]. Particularly, evidence shows that requirements

attributes such as growth [Boehm, 1991; Jones, 2000], volatility [Zowghi and Nurmuliani,

2002; Ferreira et al., 2009], and requirements defects [Boehm and Basili, 2001; Jones and

Bonsignour, 2012] have a significant impact on project time, cost, and quality and, thus,

overall project success.

While project success is the final verdict on a project after completion that indicates

it was on time, within budget, and delivers value to the customer [Jones, 1996a], project

health indicates its likelihood of success during a project. Thus, project health assessment

is a complex task of understanding, assessing and monitoring numerous critical factors that

are likely to impact the project’s likelihood of success. Health checks can be performed

throughout a software or system project’s life cycle stages. The benefits of health checks

include: proactively identifying problems so as to allow sufficient time for taking corrective

134
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action, identifying which development activities or areas of the project that may require

additional resources, identifying present and future risks and the possible risk mitigation

strategies, and developing recommendations for a fix-it plan [Kerzner, 2017a,b].

However, there is a gap between the CSF literature and assessing project health in prac-

tice, which is usually limited to the monitoring of project factors (e.g., cost, quality, and

time) as indicators of project health [Kerzner, 2017a,b; Bittner, 2007]. Particularly, there are

no systemic, holistic health assessment approaches or frameworks that incorporate require-

ments with project data to provide a requirements-centric view of project health despite the

critical role that requirements play in determining a project’s likelihood of success.

Our experience with systems projects shows that the need for such frameworks becomes

even more critical within the context of large system projects that have numerous sub-

projects, each of which has it own large set of requirements and software artifacts (i.e., de-

sign objects, tests, and code), schedules, and deadlines, to name a few. Thus, assessing

and monitoring project health is of utmost importance in order to ensure that the project

is heading towards successful completion and delivery. Particularly, there is a need to track

project health from a requirements perspective in order to identify critical requirements-

related problems as they manifest and take action to resolve them to avoid project fail-

ure. However, to our knowledge, there are no frameworks to assist in this essential task

and health assessments are performed in an ad-hoc manner by a select few who have an

understanding of the many facets of the projects.

Thus, our research objective is to provide a measurement-based framework that enables

the identification of project health indicators based on a holistic assessment of require-

ments measures in conjunction with relevant project data (e.g., deadlines and resources)

to provide a high-level view of project health from a requirements perspective with the abil-

ity to drill down to specific, raw measures. The purpose is to aid manual and personal-based

assessments with a quantitative and systematic assessment of project health that can aid in

identifying critical requirements-related problems that may negatively impact the project’s

likelihood of success.

To achieve this objective, this paper presents four main contributions: 1) A conceptual

architecture of a measurement-based framework that incorporates established measure-

ment concepts with CSFs and project data to derive project health indicators (Section 5.4.1).

2) An operationalization of the framework within the context of system projects based on

empirical and literature-based understanding of requirements, measurement and project

health (Section 5.4.2). 3) Tool support of the operationalized framework, which is imple-

mented as a feature in a requirements dashboard (Section 5.5). 4) Preliminary evaluation of

the framework by implementing it on real data from three systems projects in the rail au-
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tomation domain and comparing the framework’s results with manual assessments of one

of the projects (Section 5.6).

5.2 Related Work

In this section, we discuss the related work on project health assessment from the project

management, software engineering (SE) and requirements engineering (RE) literature and

subsequently discuss the research gap.

The body of work in the project management literature on project health assessment

is larger than its counterpart in the SE literature and consists of approaches, tools, and

checklists that enable interested parties to gauge project health at specific points in time

during the project. At a high level of abstraction, Snider et al. [Snider et al., 2018] present

a framework, Engineering Project Health Management (EPHM), that adapts the integrated

vehicle health management (IVHM) framework from the aeronautic industry to the field

of engineering management. EPHM monitors engineering work (e.g., design, modeling,

and communication) through data-driven and computational analytics that, in turn, sup-

port the generation of higher level, context-specific knowledge. The framework is a high-

level abstraction of the general activities needed to elicit project health: data acquisition,

data manipulation, state detection, and presentation. The details of the activities and data

within each level is context dependent and, thus, not delineated in that paper, nor project

attributes that aid in assessing project health. However, the authors define three levels of

attributes (physical, content, and context) that can be measured for three types of assets in

an engineering environment: communication (e.g., emails and instant messaging), repre-

sentation (e.g., prototypes and analysis models), and project report/record (e.g., technical

reports and databases). They recommend the use of statistical means to compare current

project states with past states, historical cases, and trends with time and suggest using the

traffic lights system (red, amber, green) to visualize the data and provide quick understand-

ing of areas of interest.

On a more operational level, Jaafari’s [Jaafari, 2007] health assessment approach, re-

ferred to as the project health check (PH-Check), assesses the practices applied to manage a

set of project variables such as risk management, change management, internal efficiency,

quality assurance, and others. Each variable is assessed manually and given a percentage.

The assessment is based on a comparison between the current state of practice and a given,

five-level state of practice. Similarly, Philbin and Kennedy [Philbin and Kennedy, 2014]

present a health diagnostic framework that includes review criteria for the process, tech-

nology, resources, impact, and knowledge dimensions of a project. The assessment is to be
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done manually by using the review criteria. While not an approach per se, Bittner [Bittner,

2007] argues that different attributes must be measured at different points in the project

in order to assess project health. The project can be divided into four phases: inception,

elaboration, construction, and transition. He focuses on the inception phase and discusses

in depth the assessment of financial viability, technical viability, and project viability as the

core project attributes that must be measured to assess project health during the inception

phase. He briefly discusses other measures that can be used as indicators for project health:

customer satisfaction, morale, absolute progress, risk stability, and requirements stability.

The previous work focused on measuring project attributes as indicators of project health

in general. In SE, some work has been done on measuring software and system attributes

(e.g., defect density, and code churn) to assess project health, which have been shown to

be associated with project success and failure [Jones and Bonsignour, 2012]. For instance,

Piggot and Amrit [Piggot and Amrit, 2013] use machine learning decision trees to create a

model that determines the stage (i.e., planning, pre-alpha, alpha, mature) of an open source

software project through the use of eight metrics: number of bugs, number of downloads,

number of forum posts, number of developers, number of donors, number of commits,

number of service requests, and operating system type. Sharma and Kaulgud [Sharma and

Kaulgud, 2012] present PIVoT (Project Insights and Visualization Toolkit), a tool that pro-

vides project managers with a holistic picture of a project’s health and trajectory. PIVoT

collects and visualizes thirty software metrics related to code quality, quality of component

testing effort, development efficiency, code churn, and team analysis. The measures are

calculated and visualized in the tool through an assortment of graphs. Finally, the Q-Rapids

method and tool [Franch et al., 2018] is part of large project that gathers data from differ-

ent software and project repositories (e.g., Jira and SonarQube), analyzes the gathered data,

and presents it at three levels of abstraction: metrics (e.g., code bug density and availabil-

ity uptime), product/process factors (e.g., code quality and software usage), and strategic

indicators (e.g., customer satisfaction and product quality).

The above review of the literature demonstrates that the notion of using requirements

attributes as indicators of project health is, to our knowledge, non-existent in the litera-

ture. We commonly find that requirements attributes are studied in isolation. For exam-

ple, many studies have been conducted to understand the effect of requirements volatility

on project success and failure [Pena and Valerdi, 2014; Ferreira et al., 2011b; Malaiya and

Denton, 1999]. We also find studies that attempt to identify thresholds for such require-

ments measures (e.g., volatility [Jones, 1996a] and creep [Kulk and Verhoef, 2008; Jones,

1996b]). Moreover, the idea of measurement frameworks that measure certain require-

ments attributes to create ‘indices’ have largely focused on requirements quality attributes
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(e.g., size, complexity, and ambiguity). For example, Genova et al. [Génova et al., 2013] se-

lect a number of desirable requirement quality attributes (e.g., completeness, consistency,

and abstraction), define means to measure said attributes, and provide methods to create

indices that provides an overall idea of the quality of the textual requirements. Similarly,

Antinyan and Staron [Antinyan and Staron, 2017] define requirements size, complexity, and

coupling metrics, which are then used in a formula to extract a quality index. While the

high-level aim of Q-Rapids [Franch et al., 2018] echoes our aim in attempting to analyze

large amounts of data and providing indicators of a sort to the internal stakeholders, our

work differs and complements Q-Rapids by focusing on requirements metrics and elicit-

ing requirements-centric health indicators as opposed to development-level metrics and

indicators. To our knowledge, a holistic framework that assesses a combination of require-

ments attributes and analyzes their measures based on historical data and in conjunction

with project attributes to assess project health has not been studied. This study attempts to

fill this gap.

5.3 Context Description

As discussed in the introduction, the motivating factors that led to the creation of the frame-

work emerged from a large systems project. To better understand that context and, in the

following sections, connect the usage of the proposed framework to its originating environ-

ment, we briefly describe the organizational context here.

The overall program consisted of numerous projects in a large, safety critical, systems

engineering domain, three of which we were directly involved with. Each project consisted

of a product that had its own set of requirements, architecture design, test cases, contracts,

deadlines, and engineering team (e.g., requirements managers, architects, RD managers,

and quality and safety managers). Each project had of a large number of requirements,

design artifacts, and tests. Table 5.1 shows a breakdown of the software artifacts for three

projects, which consists of the approximate number of requirements baselines (i.e., docu-

ment versions), requirements, design baselines, design objects, and test cases per product

and that are continuously increasing over the lifetime of the project.

On the management level, a person is assigned to manage a subset of projects, particu-

larly with regard to the project’s requirements and their progress in relation to downstream

processes. The person is expected to gauge whether the project is doing well in terms of

progress and other factors (deadlines, quality, and coverage, etc.) and to identify problem-

atic areas that need to be addressed to avoid project failure [Jones, 1996a]. This is done

manually depending largely on a select few’s expertise who have knowledge of a wide range
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of project and software factors. There is no quantitative, systematized approach to assess

project health from a requirements perspective. Thus, project and program-level monitor-

ing of requirements and preemptive identification of potential problems becomes critical.

Table 5.1: Descriptive statistics of context.

Project Project
Duration

No. Req.
Baselines

No. Reqs. No. Safety
Reqs.

No. Design
Baselines

No. Design
Objects

No. Test
Cases

P1 73 months 54 1790 N/A 23 472 2111
P2 36 months 30 2285 N/A 4 380 N/A
P3 45 months 51 2389 923 28 827 2045

5.4 The Health Assessment Framework

In this section, we first describe the conceptual architecture of the framework that defines

the framework’s components and how they relate to each other. Then we discuss the op-

erationalization of the conceptual architecture based on data from the literature and three

systems projects in the rail-automation domain.

5.4.1 Conceptual Architecture of the Framework

With reference to Figure 5.1, the project health assessment framework is a measurement-

based framework that consists of a number of measurement-related components adapted

from [IEEE, 1992] and [Staron and Meding, 2018] and project health components from the

project health and CSF literature. At its essence, the framework relies on the selection of

measurable attributes (e.g., status, complexity, and volatility) of our software entity of inter-

est (i.e., requirements) that ultimately impact project health in a positive or negative way.

To make the connection between the measurable attribute and the more abstract notion of

project health, we added the concept of critical success factors (CSF) to the framework. CSFs

are issues that, if addressed appropriately, substantially increase the likelihood of project

success [Ahimbisibwe et al., 2015]. Thus, project health assessment depends on measur-

ing and monitoring attributes that are dimensions of related critical success factors. For

example, user/client participation is considered as one of the top three CSFs for agile and

traditional plan-based software projects [Ahimbisibwe et al., 2015]. Thus, a project health

assessment check may consist of measuring frequency of communication between client

and vendor and amount of user/client feedback, both of which are dimensional attributes

of the user/client participation CSF. The identification of requirements attributes that are

dimensional to CSFs allows for the explicit consideration of project health when measuring

requirements.
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Figure 5.1: The conceptual architecture of the framework.
Depicted in this figure are the main conceptual components of the health assessment framework.

The black boxes are measurement-related components based on established measurement
concepts. The red boxes are novel additions in comparison to existing measurement frameworks in
RE. The dotted boxes represent abstract concepts that relate to and inform the framework but are

not considered technical parts of it.

The selected attributes are then quantified using a metric, which is a "function whose

inputs are software data and whose output is a single numerical value that can be inter-

preted as the degree to which software possess a given attribute." [IEEE, 1992] While the

general understanding of an attribute is based on scientific evidence from the metrics lit-

erature (e,g., requirements volatility), the metric definitions (i.e., functions) are based on

the organization’s understanding of how a specific attribute should be quantified [Wagner

et al., 2012].The numerical value assigned to an attribute as the result of applying the met-

ric is called a measure. For instance, the LOC metric is “the number of lines of code in a

software” and the LOC measure for a software system is, say, 2000. The metrics and mea-

sures provide a quantitative basis for project health assessment as opposed to a manual,

assumption-based assessment.

While sole measures of requirements attributes related to project health is an improve-

ment over the complete absence of measures in assessing project health, sole requirements

measures do not provide a holistic assessment of project health. Measures must be assessed
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in relation to thresholds to determine what is an acceptable value for an attribute. More-

over, external (i.e., non-software) project factors (e.g., schedule, cost, and resources) play a

significant role in determining the criticality of certain measures [Kulk and Verhoef, 2008].

Thus, the explicit identification of project data and thresholds is, to our knowledge, new in

requirements measurement, as measures are usually assessed in isolation.

The measures, thresholds, and relevant project data are then analyzed using an analysis

model, which consists of a set of criteria and conditions that reflect an organization’s under-

standing of project health in relation to the inputs (i.e., measures, thresholds, and project

data). The result of the analysis model is an indicator for the measured attribute, which can

be represented in numerous forms; numeric, textual, or graphic, to name a few.

5.4.2 Operationalization of the Framework

In this subsection we discuss the operationalization of the above concepts, which was based

on: i) the empirical input of the practitioners’ expertise and experience in the collaborating

organization and ii) scientific support from the literature. We discuss the operationalized

CSFs, requirements attributes, metrics, thresholds, project data, analysis models, and indi-

cators in detail below.

CSFs, Requirements Attributes, and Metrics

Table 5.2 shows the requirements attributes that were selected for measurement, the CSF

they relate to, the metrics we defined to quantify the selected attributes, and the impact the

attribute has on project health. A negative impact means the higher the measure of a spe-

cific attribute the more negative impact it has on project health and a positive impact means

the higher the measure the more healthy the project. It is important to note, however, that

the selection of attributes is not by any means exhaustive; we were constrained by the avail-

ability of data (see below for a discussion of requirements attributes that were considered

but not used). We discuss each attribute in more detail in the following paragraphs.

Requirements Growth. Growth, also referred to as requirements creep, is the percent-

age of increase or decrease in requirements size between an older and newer requirements

baseline [Jones, 2000]. Empirical evidence suggests that unsuccessful projects have more

than a 30% growth/creep rate in user requirements while successful ones have less than 10%

requirements growth [Boehm, 1991]. Specifically, requirements creep over 5% in systems

software is considered a failure factor [Jones, 2000]. Other sources suggest a monthly 1.25%

monthly rate for applications of the size of 1000 functions points [Jones and Bonsignour,

2012]. Moreover, requirements changes or introducing new requirements increase the de-



142 CHAPTER 5. A HEALTH ASSESSMENT FRAMEWORK FOR SYSTEMS PROJECTS

Table 5.2: Operationalized CSFs, attributes, and metrics.

Related CSF Requirements
Attribute

Metric
ID

Metric Impact
on Project
Health

Requirements stability
[Jones, 2000; Ahimbisibwe
et al., 2015; Ferreira et al.,
2011b]

Growth RG (difference between the number of re-
quirements of the first baseline and the
latest baseline) / (number of the old
baseline)

Negative

Requirements stability
[Jones, 2000; Ahimbisibwe
et al., 2015; Ferreira et al.,
2011b]

Volatility RV (number of deleted, added, and modi-
fied requirements in the latest baseline
in relation to the preceding baseline) /
(number of requirements in the latest
baseline)

Negative

Up-to-date progress report-
ing and effective monitor-
ing and control [Mohd and
Shamsul, 2011]

Requirements-
Design Coverage

RDC (number of requirements with links to
design objects) / (number of require-
ments in the latest baseline)

Positive

Up-to-date progress report-
ing and effective monitoring
[Mohd and Shamsul, 2011]
and quality assurance [Niazi
et al., 2006]

Requirements-
Test Coverage

RTC (number of requirements with links to
tests) / (number of requirements in the
latest baseline)

Positive

Quality assurance [Niazi
et al., 2006]

Requirement
Defect Removal
Efficiency

DRE (number of closed requirements de-
fects) / (total number of requirements
defects)

Positive

fect rate to about 50% [Park et al., 2010]. It comes as no surprise, then, that requirements

stability is considered a CSF [Ahimbisibwe et al., 2015; Jones and Bonsignour, 2012; Ferreira

et al., 2011b]. Thus, requirements growth is a good indicator of project health. Specifically,

lower requirements growth rates indicate better project health and, thus, increased likeli-

hood of project success.

Requirements Volatility. Volatility is the extent to which requirements change in re-

sponse to factors such as the changing needs of customers, stakeholders, and organization,

innovation, market forces, regulations, and others [Ferreira et al., 2009]. This manifests as

additions, deletions and modifications to project requirements over time [Costello and Liu,

1995]. Evidence shows that an increase in requirements volatility decreases the probability

of a project to complete on time as well as on budget [Zowghi and Nurmuliani, 2002]. More

specifically, increases in the project job size and rework lead to increases in the amount

of effort required to complete the project. These increases in effort cause the cost of the

project to rise if additional resources need to be added to accommodate the extra workload.

If the schedule is not changed and/or no more resources are added to address the additional

workload, schedule pressure also rises [Ferreira et al., 2011b]. Thus, requirements volatil-

ity is a good indicator of project health and must be monitored and managed accordingly.

Specifically, lower requirements volatility means a healthier project.
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Requirements-Design Coverage. Requirements-design coverage is the degree to which a

set of requirements are covered by a software design. In other words, it is the percentage of

requirements that have identifiable links to software design. Studies show that requirements-

design coverage metrics can be used to monitor the status of the requirements during devel-

opment as they progress from planned to implemented and tested, assess the development

process, detect inconsistencies and incompletenesses, and assess defect and change rates

[Winkler and von Pilgrim, 2010]. Additionally, coverage information between requirements

and design was chosen as a core traceability link that needs to be reported to developers and

managers for release planning [Lago et al., 2009]. These factors directly impact project cost

and schedule. Thus, requirements-design coverage is indicative of project health; higher

requirements-design coverage rates mean further progress within the project and fewer in-

consistencies and incompletenesses between requirements and design, which, in turn leads

to lower defect and change rates.

Requirements-Test Coverage. Requirements-test coverage is the degree to which a set of

requirements have been covered by tests. Higher coverage between requirements and tests

leads to fewer defects [Damian and Chisan, 2006] (i.e., quality) and allows the identifica-

tion of “excessive or insufficient test cases, and incomplete linkage of tests to requirements”

[Rosenberg et al., 1998] (i.e., progress). Therefore, requirements-test coverage is a good in-

dicator of project health.

Requirements Defect Removal Efficiency. It is the percentage of requirements defects re-

solved in relation to the total number of requirements defects per requirements baseline.

Literature suggests that requirements-related defects are a very costly problem to fix [Park

et al., 2010]. While some studies suggest that the cost of fixing requirements defects may

rise by 20 to 50 times if the defects are fixed in the later stage of the development [Fairley,

1985], others put that number as high as 100 times [Boehm and Basili, 2001]. Moreover,

evidence suggests that requirements defects generate 20% of the total volume of software

defects [Jones and Bonsignour, 2012]and other raise that number up to 85% of software de-

fects [Hooks and Farry, 2001]. This means that the higher the requirements defects removal

efficiency indicates better quality assurance and, thus, better project health.

Attributes considered but not measured. We considered including requirements size or

product size (i.e., number of specified and implemented project requirements) as an indi-

cator of project health. However, by itself, requirements size does not give any insight into

project health; it must be assessed in relation with other project factors, such as project

duration and team size. For example, if the optimal team size and project duration for a

product with 2000 requirements is 50 team members and 36 months, respectively, then a
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product with 2000 requirements and 35 team members and a duration of 24 months may

indicate low project health. We did not include requirements size in our framework due to

lack of appropriate historical data for comparison purposes.

Requirements quality is another requirements attribute that could potentially enrich the

informational value provided by the health assessment framework. For instance, a require-

ments quality health indicator derived from requirement quality measures (e.g., complexity,

precision, and size) [Antinyan and Staron, 2017; Génova et al., 2013] and project data could

provide insight into project health from a requirements perspective. However, the quality

aspect is not included in the operationalized framework at this stage of research.

The Case of Quality Requirements. Given the focus on requirements in our framework,

we briefly discuss our treatment of requirements as a measurable entity within the context

of our proposed framework. As discussed in the previous section, the identified attributes

and associated metrics apply to the entire set of requirements for a given product. However,

depending on the application domain, certain quality attributes become relatively more

important. For example, in safety critical systems, safety requirements are clearly of utmost

importance and the project’s health from this perspective must be monitored as appropri-

ate. Thus, the above attributes and metrics apply to the entire set of requirements and the

subset of safety requirements. In other words, we would measure growth, volatility, design

coverage, test coverage, and defect efficiency removal for all project requirements and simi-

larly for safety requirements. The selection of quality requirements that need to be assessed

is context dependent.

Thresholds

A solitary measure does not tell us anything about the attribute it measures without a refer-

ence value. For example, a requirements volatility measure of 30% is valuable only in rela-

tion to established norms in practice and literature that indicate that requirements volatility

should not exceed a rate of 5% [Jones, 2000]. While the literature provides some bench-

mark rates for requirements growth [Kulk and Verhoef, 2008] and volatility [Jones, 2000],

acceptable rates of measures remain highly context dependent. Thus, we use two threshold

identification methods from the literature that allow the definition of thresholds based on

the used set of data. We use Ferreira’s et al. method [Ferreira et al., 2011a] for growth and

volatility thresholds and Genova’s et al. method [Génova et al., 2013] for design coverage,

test coverage, and defect removal efficiency thresholds.

Ferreira’s method [Ferreira et al., 2011a] consists of identifying three ranges for a mea-

sure: good, which refers to the most common values of the metric; regular, which is an
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intermediate range of values with low frequency, but not irrelevant; and bad, which refers

to values with rare occurrences. This entails the calculation of the frequency values for each

measure then identifying the three ranges based on those frequencies. For example, we may

find that requirements growth is less than 2% per baseline for 70% of the baselines (good

requirements growth), between 2% and 10% growth for 20% of the baselines (regular re-

quirements growth), and more than 10% growth for 10% of the baselines (bad requirements

growth). Thus, reasonable ranges for requirements growth would be (0-2, 2-10, 10+). These

thresholds do not necessarily denote the best practices in software engineering, but repre-

sent the levels of the specific project and what is it used to handling [Ferreira et al., 2011a].

The same method is used for requirements volatility. This method rests on the premise that

the values of the measures follow a power law [Ferreira et al., 2011a]. Meaning, that the

frequency of high values for the metrics is very low, while frequency of low values is high,

which is characteristic of requirements growth and volatility. This is tested by plotting the

data in a histogram and fitting the data to a probability distribution as depicted in Fig. 5.2.

Figure 5.2: Distribution and histogram of volatility measures.
This figure depicts the distribution of volatility measures for a given project over 51 requirements
baselines. We see that close to 80% of the measures are <0.2 and that the data fits a a 3-parameter

Weibull distribution, which does not have a representative mean value. Thus, we choose the good,
regular, and bad threshold ranges.

We use Genova’s et al. [Génova et al., 2013] threshold identification method for design

coverage, test coverage, and defect removal efficiency because—unlike volatility and growth

measures—coverage and defect removal efficiency values do not follow a power law but be-

gin at 0% and are expected to be 100% at the end of the project or by a specific deadline.

The method utilizes increasing step functions to identify coverage and defect removal effi-

ciency thresholds, which consists of classifying measures into a set of discrete levels where
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numbers start from 0 and larger. Table 5.3 shows the ranges identified for each requirement

attribute based on the above threshold methods.

Table 5.3: Threshold and project data operationalization for each requirement attribute.

Attribute Threshold Identifica-
tion Method

Threshold Ranges Project
Time
Ranges

Number
of Condi-
tions

Applicable
to Quality
Require-
ments?

Growth Ferreira’s method [Fer-
reira et al., 2011a]

Good, regular, bad Early, mid,
late

9 Yes

Volatility Ferreira’s method [Fer-
reira et al., 2011a]

Good, regular, bad Early, mid,
late

9 Yes

Design Coverage Genova’s method
[Génova et al., 2013]

Very low, low, low
medium, high
medium, high, full

Early, early
mid, late-
mid, late

24 Yes

Test Coverage Genova’s method
[Génova et al., 2013]

Very low, low, low
medium, high
medium, high, full

Early, early
mid, late-
mid, late

24 Yes

Defect Removal
Efficiency

Genova’s method
[Génova et al., 2013]

Very low, low, low
medium, high
medium, high

Early, early
mid, late-
mid, late

20 Yes

Project Factors

The proposed framework takes two external project factors into account when assessing

project health: project time and deadlines.

Project Time. There is considerable evidence that shows that growth and volatility rates

tend to be higher at the beginning of the project than at the end [Kulk and Verhoef, 2008].

Thus, a specific measure may be considered acceptable at the beginning of a project but

problematic at the end of the project. Similarly, requirements-design coverage, requirements-

test coverage, and defect removal efficiency naturally begin at 0 at the beginning of the

project and gradually increase over the life of a project. Therefore, while the identified

threshold ranges may deem a 5% requirement-design coverage as low, it is not logical to

raise alerts when the project is in its early phase. Thus, we identified project time ranges

(early, early mid, late mid, and late) that the measures, while taking their threshold range

into consideration, must be analyzed against. Table 5.3 shows the project time ranges iden-

tified for each requirement attribute.

Multiples Deadlines. The project time ranges assume that a project has a start date and

an end date, or, in other words, one deadline. However, in reality, large projects have mul-

tiple, interim deadlines within the entire duration of the project. If a project has multiple

deadlines, then project health assessment at a specific point in time must consider the clos-

est deadline to the current date, and identify the project health in relation to the project
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time range that the upcoming deadline falls into. For example, if the current time of the

project is in the early stages of the project but there is an upcoming deadline that falls in the

mid stage of a project. Thus, the requirements measures must be assessed in relation to the

upcoming deadline.

We note that project time and deadlines are not the only project factors that impact

the health of the requirements attributes taken into consideration in the framework. For

instance, project resources are another factor that may impact the health of the above at-

tributes. Abundant resources (e.g., man power and effective technologies) may allow for

more effective management and control of higher volatility rates for instance, which, in

turn, may indicate better project health. However, we restrict our selection to project time

and deadlines as they were the most accessible data to measure.

Analysis Model

As depicted in Figure 5.1, the analysis model of the framework analyzes the calculated re-

quirements measures, thresholds, and project data to derive the health indicators. Each

requirements attribute has its corresponding analysis model and consists of four general

phases that we describe below. Figure 5.3 depicts the flowchart for the requirements growth

analysis model, which we will use as an illustrative example.

1. Retrieve Relevant Data. The green steps depicted in Figure 5.3 retrieve current growth

measure, its threshold range, current project time, number of project deadlines, and project

time ranges to calculate the health indicator for each requirements attribute.

2. Analyze Project Data. The orange steps in Figure 5.3 depict the analysis of the project

data. In a nutshell, we first test whether the project has more than one deadline. If yes, the

analysis model goes into the next phase. If there’s more than one deadline, then depending

on which project range the upcoming deadline is in, we set the current project time accord-

ingly. For example, as depicted in Figure 5.3, if the current project time is in the early project

range and the upcoming deadline is in the mid project range, then the current growth mea-

sure should be treated as it is in the mid project range. Thus, we assign the current project

time to mid.

3. Analyze Requirement Measures and Project Data. The pink steps in Figure 5.3 show

the series of conditional statements that the analysis model tests. Based on current require-

ments measures, identified thresholds, and project data, a red, amber, or green indicator is

assigned to the attribute. We discuss the meaning of each color in Section 5.4.2 below. The

assignment of indicators to conditions were identified to reflect the organization’s develop-

ment culture and practices.

4. Reapply Steps for Quality Requirements. To identify the growth health indicator for
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Figure 5.3: Requirements growth analysis model.
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quality requirements, the previous steps are reapplied to the quality requirement of interest

(yellow steps in Figure 5.3). For example, current requirements growth measure for safety

requirements will be retrieved from the requirements measures database and the analysis

model steps are executed to identify its corresponding health indicator.

Each requirement attribute has a similar analysis model with variations in conditions.

Table 5.3 summarizes the operationalization of the thresholds ranges, project ranges and

the number of conditions in the analysis model for each requirement attribute.

Project Health Indicators

Figure 5.4 shows an example of the result of executing the analysis models for each require-

ments attribute. We use the red-amber-green (RAG) indicator system [Staron and Meding,

2018] to visualize the indicators. An indicator for each attribute for all project requirements

and another five health indicators for quality requirements considered in the framework as

depicted in Figure 5.4b.

A green indicator means no action is required; the requirement attribute is healthy and

no concerns are raised with regard to its measure, the current project time and any upcom-

ing deadlines. An amber indicator means some sort of action is recommended to avoid

severe problems. For example, bad volatility rates in the mid phase of the project requires

an investigation into the reason behind the high volatility rate and taking action to miti-

gate its consequences. A red indicator means immediate action is needed. For example, the

project is in its late phase with a very low level of defect resolution.

The individual indicators depict the health of each attribute separately. To get on overall

picture of project health, the five indicators are aggregated into one project health indicator

and displayed as a pie chart that shows the ratios of the colors as depicted in Figure 5.4a.

Currently, all attributes are weighted equally and, thus, each attribute equals twenty per-

cent. For example, a project indicator may show a project to be 60% green, 20% amber, and

20% red. Because the project health indicator is the first and highest-level indicator to be

displayed to the internal stakeholders, the stakeholder has the ability to drill down to inves-

tigate the constituents of each indicator (i.e., growth, volatility, and coverage, etc.) and then

further down to the raw measures for each attribute.
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Figure 5.4: Requirements-centric health indicators visualized using the RAG system.

5.5 Tool Support

We implemented and integrated the health assessment framework as part of a requirements

measurement dashboard that aims to provide internal stakeholders with a large number of

requirements measures (e.g., status, volatility, and growth) and associated visualizations.

While a detailed description of the dashboard is not included in this paper, we describe the

requirements health indicators feature of the dashboard that implements the framework.

Figure 5.5 depicts the dashboard which is composed of a 3-tier architecture and consists

of a database layer, application layer, and presentation layer. The application layer is im-

plemented in Java and consists of packages, each of which handles different features of the

dashboard. The health assessment framework is handled by the middleware.healthindicators

package and implements the analysis models described in Section 5.4.2. It retrieves the re-

quired data from the requirements measures database that contains projects, requirements

baselines, requirements attributes, associated metrics and measures, and users, among oth-

ers, through a MetricService class. The package also uses the R language to perform the

statistical analyses required for the thresholds as described in Section 5.4.2.
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Figure 5.5: Architecture of the requirements dashboard.
This figure depicts the 3-tier (database, application, and presentation) architecture of the
requirements dashboard that includes the health assessment feature, implemented in the

application layer through the middleware.healthindicators package and its results presented
through the presentation layer.
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5.6 Evaluation

The objective of the evaluation is twofold: 1) to assess the framework’s feasibility in a real-life

context and 2) to preliminarily assess whether the framework provides valid results (i.e., the

health indicators accurately assess the projects’ health from a requirements perspective).

To achieve the first objective we applied the framework to data from three projects in the

rail-automation domain (see Table 5.1). The inputs to the health assessment tool are: cur-

rent requirements measures, thresholds ranges, project time ranges, and number of dead-

lines. Table 5.4 shows the current growth (RG), volatility (RV), design coverage (RDC), test

coverage (RTC) and defect removal efficiency (DRE) measures for each project. The columns

with an S prefix denote the measures for safety requirements. We were only able to acquire

safety requirement measures for project 3. We note that the measures, threshold ranges,

and project time ranges are also calculated by the dashboard and stored in the requirement

measures database (see Figure 5.3). We used the threshold and project time ranges in Table

5.3. For simplicity, the number of project deadlines was set to one.

Table 5.4: Input measures to the health assessment tool.

Project RG RV RDC RTC DRE
1 0 0 0.96 1.00 1.00
2 0 0 0.25 N/A 0.09
3 0 0.009 0.91 0.83 0.004
Project S-RG S-RV S-RDC S-RTC S-DRE
1 N/A N/A N/A N/A N/A
2 N/A N/A N/A N/A N/A
3 0.53 0.57 0.95 0.55 N/A

Figure 5.6 shows a snapshot of the health assessment results for the three projects. We

see that Project 1 is in ideal shape and has a 100% green project health indicator. The health

indicator for Project 2 is 40% green, 40% red, and 20% is unmeasured because, as depicted

in Table 5.4, we did not have requirements-test coverage measures. The 40% red raises an

alert to the internal stakeholders. Finally, we can see that Project 3 is slightly healthier than

Project 2; its health indicator is 80% green and 20% red. The safety health indicators for

Project 2 raise concerns as 60% is red. The drill down below the first table in Figure 5.6

show that design coverage and defect removal efficiency for Project 2 is red. Drilling down

further to the measures and project data, we’ll find that design coverage is at 25% which falls

into the low threshold range and given that the project is in the late stages, it is a red alert.

Similarly, defect removal efficiency is at 9%, which falls into the very low threshold range

with a looming deadline. Finally, Project 3 reveals an interesting observation; while growth,

volatility, and test coverage health indicators are green for all project requirements, the same

attributes’ indicators for safety requirements are red. We see in Table 5.4 that growth and
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volatility for safety requirements are 53% and 57%, respectively (i.e., bad threshold range).

How do we explain the numbers? A closer look at the requirements documents revealed that

while no new requirements were added (i.e. 0% growth) to the overall set of requirements, a

large number of requirements that were initially identified as safety irrelevant have been, in

the newest baseline, identified as safety relevant or critical. Additionally, because we define

volatility as the sum of deletions, additions, and modifications to requirements, the number

of additions was high due to this change in the safety relevance status of requirements.

Thus, we can say that the application of the framework is feasible within the context of

a systems project and that it revealed interesting requirements-related observations.

To achieve the second evaluation objective, we asked a requirements expert on Project

3 to assess the health of the five requirements attributes based on his knowledge of and

experience in the project. We provided a template with a brief description of each attribute

and requested that he take into consideration other project factors that may impact their

assessment such as deadlines and current project phase. We did not provide any concrete

measure for the attributes because we wanted the assessment to be based on the premise

that no requirements measurement exists in the project. We then calculated the Percentage

Agreement (PA) between the framework’s results and the expert’s assessment results.

Table 5.5 shows the assessment results of the framework and the expert. The calculated

PA is 60%. We notice in Table 5.5 that the difference in assessment is for the design and

test coverage requirements attributes. The expert assigned them an amber state because

he had no concrete measures for design and test coverage, and, thus, gave it a conservative

assessment to be on the safe side. However, our measurement-based framework revealed

that design and test coverage are in the high threshold ranges and, thus, can be assigned a

green health indicator.

It can be said, then, that the second evaluation objective is satisfied; the preliminary

results of the health assessment framework exhibit a level of accuracy that can aid in iden-

tifying critical requirements-related problems (i.e., low requirements defect removal rates)

that are detrimental to project health.

We note, however, that one must exercise caution in interpreting these results because

it remains the case that the expert’s interpretation of health may not fully reflect the frame-

work’s conceptualization of project health. While the framework’s assessment relies strictly

on quantitative measures, the expert is gauging project health and using his/her gut feeling

and, thus, his/her assessment may be influenced by a plethora of non-quantitative factors.
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Figure 5.6: Results of running the health assessment tool on the three projects.
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Table 5.5: Framework’s and expert’s assessment results for project 3.

Requirements Attribute Framework
Assessment

Expert Assess-
ment

Growth Green Green
Volatility Green Green
Design Coverage Green Amber
Test Coverage Green Amber
Defect Removal Efficiency Red Red

5.7 Limitations and Future Work

The first limitation of the operationalized framework is that it did not take into account

a wider range of requirements attributes (e.g., requirements quality, size, and status) and

project factors (e.g., team size, compliance issues, and project resources) that would give a

more accurate assessment of project health. To address this shortcoming, we plan to ex-

tend the operationalized framework to take into account further requirements attributes

and project factors.

The second limitation of our work is concerned with generalizability. Because the frame-

work is heavily dependent on requirements measurement, which, in turn, depends on ex-

tensive and accurate documentation of requirements and requirements meta-data, the frame-

work can be best utilized in contexts with an established requirements engineering process

that uses extensive documentation for its requirements in databases and employs require-

ments metrics to manage requirements. Such a context applies to large, systems engineer-

ing projects. The framework’s applicability in other contexts such as agile projects is yet

unknown. Thus, we plan to evaluate the framework’s usability in different contexts (e.g., ag-

ile) and application domains and to extend it according to such contexts’ needs. We note,

however, the research community has accepted that the lessons from one project do not

necessarily fully apply to another project [Menzies and Zimmermann, 2013]. The work in

this paper is but a step towards incorporating requirements into project health assessment

and systematizing the process.

Finally, we are aware that the framework was evaluated in the same context that has

given rise to its need. Thus, we are currently performing further validation by requesting

experts from projects 1 and 2 to manually assess project health from a requirements per-

spective, which will strengthen our results. Moreover, we plan to further validate the frame-

work with more experts in different organizations and application domains to assess the

framework’s usefulness and the accuracy of its results.
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5.8 Conclusions

Practice and literature lack requirements-centric, systematized, measurement-based, and

holistic health assessment methods and tools that provide internal stakeholders with high-

level health indicators of a project’s likelihood of success. To address this problem, we

showed four contributions in this paper: 1) We presented a conceptual architecture of the

health assessment framework that is built on established measurement concepts [IEEE,

2017] and which we extended to account for concepts related to project health such as criti-

cal success factors, project data, and thresholds (Section 5.4.1). This conceptual basis would

allow different operationalizations of the framework in different contexts . 2) We used the

conceptual architecture to operationalize the framework based on real-life systems project

data from the rail-automation domain. The final output of the framework provides high-

level health indicators (red-amber-green) of critical requirements attributes based on an

analysis of requirements measures and project data (Section 5.4.2). The operationalized

framework serves as an extendable basis for other tailored forms of the framework in other

contexts. 3) We implemented the approach in a health assessment tool as part of a require-

ments measurement dashboard (Section 5.5). 4) We evaluated the framework’s applicability

in a real-life context and its ability to provide accurate health assessments that would aid

manual assessments with a quantitative and systematic assessment of project health. (Sec-

tion 5.6).

In summary, this work shows that there is a need for methods and tools that integrate

requirements into project health assessments. Our framework demonstrates that such an

endeavour is feasible and worthwhile as it supports manual and personal assessments with

a quantitative basis, which, in turn, would aid in managing and monitoring large systems

projects more effectively.
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Chapter 6

A Meta-Model for Requirements-Driven

Information for Internal Stakeholders1

6.1 Introduction

Context. The requirements engineering (RE) process and resultant requirements usually

inform and interact with downstream (e.g., design and testing), upstream (e.g., contract

management), and side-stream (e.g., project and quality management) processes in vari-

ous ways. Each of these processes involves numerous internal stakeholders (e.g., managers,

developers, and architects, etc.) who, in turn, have different concerns with regard to the im-

pact of requirements on their respective processes. In other words, the various stakeholders

need different types of requirements information in order for them to manage, control, and

track their respective process activities (e.g., requirements engineer: measures that track

and monitor requirements growth; architect: requirement-design coverage information;

systems manager: percentage of requirements dropped per release; etc.) [Buse and Zim-

mermann, 2012; Doerr et al., 2004; Gross and Doerr, 2012; Hess et al., 2017a]. The burden

of providing this information (hereon, “requirements-driven information”), generally falls

within the realm of the requirements management process [Berenbach et al., 2009; Wiegers,

2006].

Problem. To this end, we conducted an action research (AR) study in a large systems

project in the rail-automation domain to derive requirements-driven information that can

be used by the project’s internal stakeholders (IS) (see Section 6.3.1 for AR study details).

However, we found it difficult for requirements engineers to derive and provide the various

internal stakeholders with the correct requirement-driven information that addresses their

1 A version of this paper was published in [Noorwali et al., 2019].
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various concerns due to a lack of understanding of: i) the type of information that can be

generated from system requirements, ii) who the ISs are that would benefit from informa-

tion generated from system requirements, iii) the concerns of ISs which can be addressed by

providing requirement-driven information, iv) how the ISs use that information to address

their various concerns, and v) the type of artifacts needed to derive the requirements-driven

information. This problem is also mirrored in the scientific literature (discussed in more de-

tail in Section 6.2).

Principle Idea. To address the problem we experienced in industry we ask the following

research questions:

• RQ1. What are the types of entities involved in the process of providing requirements-

driven information to ISs in a large systems project?

• RQ2. What are the relationships that exist among the entities involved in the process

of providing requirements-driven information to ISs in a large systems project?

To answer the research questions, we performed a post-analysis on the data gathered from

the AR study we conducted in industry (see Section 6.3.2). The result of the post-analysis is a

meta-model that maps out the entities and relationships involved in providing requirements-

driven information to ISs. The anticipated benefits of using the meta-model include i) con-

trol and management of processes and resources involved in providing requirement-driven

information to ISs and ii) communication among ISs.

Contributions. The key contributions of this paper are:

1. Descriptions of the entities involved in providing requirements-driven information to

ISs.

2. Descriptions of the relationships among the identified entities.

3. An empirically derived meta-model that combines the identified entities and relation-

ships.

4. A discussion of the meta-model and its implications on industry and research.

Paper Structure. Section 6.2 describes related work; Section 6.3 describes the research

methods; Section 6.4 presents the meta-model with a detailed description; Section 6.5 dis-

cusses the validation procedures and threats to validity; Section 6.6 discusses implications

of the meta-model, and Section 6.7 concludes the paper and describes future work.
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6.2 Related Work

In this section, we first discuss modelling benefits and how modelling has been used in

RE. We then focus on three key issues in RE meta-models: (a) ISs and their concerns, (b)

requirements-driven information, and (c) relationships among the preceding two items.

Modelling can be defined as simplification of reality [Holt et al., 2015] and has been

long recognized as an important and contributory factor in the success of software projects

[Berenbach et al., 2009] since it can be an effective way to understand and manage a project’s

complexity [Cernosek and Naiburg, 2004]. In general, models can be used to represent prod-

ucts [Cernosek and Naiburg, 2004], processes [Humphrey and Kellner, 1989], and activities

[Humphrey and Kellner, 1989]. Modelling provides several benefits such as: (i) better un-

derstanding of an organization’s or project’s business needs [Humphrey and Kellner, 1989],

(ii) better understanding of the application domain, (iii) improved support for system de-

sign [Cernosek and Naiburg, 2004], and (iv) aids in defining specific processes, to name a

few.

In requirements engineering, modelling is used in numerous ways. One common use

of modelling in RE is to model the requirements (i.e., product modelling) and associated

concepts such as goals [Van Lamsweerde, 2001], stakeholders [Yu et al., 2011], and concerns

[Moreira et al., 2005]. Modelling has also been used to model the requirements engineering

[Berenbach et al., 2009] and associated processes such as requirements elicitation [Hickey

and Davis, 2004] and requirements analysis [Jaffe et al., 1991] (i.e., process modelling). Cus-

tom requirements engineering processes have been proposed to address the demands of

specific domains (e.g., safety-critical domains [Firesmith, 2004] and big data domains [Ar-

ruda and Madhavji, 2017]) and types of systems (e.g., embedded systems [Pereira et al.,

2016] and systems of systems [Holt et al., 2015]). Moreover, researchers and practitioners

have collaborated to propose models that aid the RE process in achieving certain goals such

as legal compliance [Nekvi et al., 2011].

Similarly, in requirements management, modelling has been used to model the require-

ments management process [Arpinen et al., 2011]. Other models support specific require-

ments management tasks such as tracing [Ramesh and Jarke, 2001] and change manage-

ment [Fernandes et al., 2012]. In addition, modelling RE artifacts (i.e., RE work products)

has been found to facilitate interdisciplinary communication and specification work [Geis-

berger et al., 2006].

With respect to ISs, the literature lacks a comprehensive understanding of the types

of ISs that can exist in large systems engineering projects and their concerns regarding

requirements-driven information. Though the term stakeholders is well-known in RE, in-
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depth research has focused on external stakeholders (i.e., client/customer and business)

and their concerns, which are usually translated into new requirements [Sarkar and Cybul-

ski, 2002], while the concerns of ISs (e.g., project managers, testers, and architects, etc.)

are rarely addressed [Hassan et al., 2013]. In the rare cases in which ISs are addressed, the

problem is two-fold: 1) they focus on developer concerns only (e.g., source code defect an-

alytics) [Hassan et al., 2013], or 2) the stakeholders are roughly divided into generic notions

of “developer” and “manager” [Buse and Zimmermann, 2012].

However, our observation is that ISs and their concerns exist at a finer granularity (e.g.,

different types of managers, technical stakeholders, and concerns). Such a granularity has

been recognized by some researchers. For example, there are studies that investigated ar-

chitects’ and testers’ information needs in relation to requirements and requirements spec-

ifications [Gross and Doerr, 2012; Hess et al., 2017b]. Consequently, the studies propose

view-based solutions that would allow testers and architects to view the requirements spec-

ification in a format that will provide them with the requirements-based information they

need. We take this work further by attempting to explicate the types of stakeholders in light

of their needs with regard to requirements-driven information.

When addressing requirements-driven information, we find that requirements-driven

information is usually limited to requirements quality metrics (e.g. use case completeness

metrics) [Costello and Liu, 1995] and basic progress metrics (e.g., number of ‘complete’ re-

quirements) [Berenbach and Borotto, 2006; Wiegers, 2006] that do not specifically address

the concerns of the spectrum of internal stakeholders within a project.

Finally, the relationships amongst: (i) internal stakeholders, (ii) stakeholder concerns,

and (iii) requirements-driven information have not yet received significant research atten-

tion. Thus, managing these elements to derive requirements-driven information from the

correct sources and providing it to the correct ISs becomes a tedious task in practice. For

example, in [Doerr et al., 2004], the authors acknowledge the complexity of information

in requirements engineering processes and, thus, present an information model that "cap-

tures the major information, their abstraction levels and audience in multi-project contexts.

In addition, it captures responsibilities of different stakeholder roles in terms of authorship,

review, approval, and change propagation" [Doerr et al., 2004]. However, the focus in this

work is on requirements documents.

To our knowledge, a model to support the requirements management task of measur-

ing requirements and reporting requirements relevant information to internal stakeholders

does not exist. Therefore, with our meta-model we contribute to the modelling literature,

particularly in requirements engineering and management.
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6.3 Research Method

The meta-model presented in this paper is a result of a post analysis performed on data

gathered from an AR study we conducted in industry. Figure 6.1 provides an overview of the

research methods and data used in this study. The following subsections discuss the data

gathering and data analysis stages in detail.

Figure 6.1: Overview of study research methods and data.

6.3.1 Data Gathering: Action Research Study

Action research (AR) is an iterative process involving researchers and practitioners acting

together on a particular cycle of activities, including problem diagnosis, action planning,

intervention/action taking, evaluation, and reflection/ learning [Susman and Evered, 1978],

where researchers identify problems through close involvement with industrial projects,

and create and evaluate solutions in an almost indivisible research activity. We note that,

because the goal of the AR study was to derive requirements-driven information (not re-

ported in this paper) to be used by the ISs, we limit our description of the AR procedure to

details relevant to the meta-model and its underlying constructs.

Our AR study, which followed the described approach [Susman and Evered, 1978], was

conducted in a large-scale rail automation project in a multi-national company in the United

States. The overall project (i.e., program) consisted of three sub-projects, each sub-project

consisted of a product that had its own set of requirements, architecture design, test cases,

and engineering team. Table 6.1 shows a breakdown of the software artifacts, number of

requirements, safety requirements, design objects, and test cases per project that the first

author worked with. Other official project documents that were analyzed included: require-

ments and change management plans and project personnel documentation that describe

the roles and responsibilities of the ISs involved in the projects. The project adopted a water-
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fall software development approach. The internal project stakeholders included: systems

manager, R&D managers, test mangers, developers, architects, testers, project managers,

program managers, safety managers, quality mangers, financial managers, and project op-

erations managers.

Table 6.1: Descriptive statistics of projects.

Project Project Duration No. Req.
Baselines

No. Reqs. No. Safety
Reqs.

No. Design
Baselines

No. Design
Objects

No. Test
Cases

P1 73 months 54 1790 N/A 23 472 2111
P2 36 months 30 2285 N/A 4 380 N/A
P3 45 months 51 2389 923 28 827 2045

The AR study began in February 2017. The primary researcher was on-site full-time for

ten months and worked with the primary industrial partner and secondary industrial par-

ticipants (internal project stakeholders) in consultation with a senior researcher.

In the diagnosis phase, the primary researcher, primary industrial partner and senior re-

searcher, through a series of unstructured interviews, found that a central problem in the

projects’ RE process is a difficulty in tracking, monitoring, and managing requirements-

driven information such as requirement growth (e.g., how many requirements so far), volatil-

ity (e.g., number of changed requirements over releases), and coverage (e.g., number of re-

quirements that have been covered by test and design) and a difficulty in accessing this

information by ISs. To solve this problem, the industrial partner and researcher conducted

several meetings, as part of the action planning phase, and decided to derive, define, and

validate a set of requirements metrics and analytics that can be provided to ISs and used

within the requirements management and software development processes. The requirements-

driven information would include: measures on requirements size, growth, coverage, volatil-

ity, and safety requirements distribution.

In the intervention phase, the primary researcher, with continuous feedback from the

primary industrial partner, conducted a document analysis on the requirements, design,

and test documents in which the meta-data were gathered in spreadsheets and the com-

pleteness and consistency of the data were ensured. The researcher then used the gathered

meta-data to define a set of metrics using GQM [Basili et al., 1994] (not reported in this pa-

per). The measures for the different products were calculated and organized in spreadsheets

and graphs. To familiarize the ISs with the derived information and to gather feedback from

them, three iterations of focus groups were held. IS feedback included suggestions for new

metrics and addition of descriptive information (e.g., dates) to the tables and graphs. After

the three rounds of focus groups, the researcher provided the updated requirements-driven

information to the ISs individually and upon request. Thus, the researcher received contin-
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uous feedback through direct engagement with the internal stakeholders and observation

of the stakeholders’ use of the information. Once the requirements metrics were inserted

into the requirements management process, the primary researcher and industrial partner

decided to add the requirements ‘analytics’ element by proposing a ‘traffic-light’ system that

would provide insight into the projects’ health. Such a system would utilize the derived re-

quirements metrics in conjunction with other project artifacts such as project schedules,

budget, and resources, etc. The researcher evaluated the intervention effects of the derived

metrics on the requirements management and system development processes through in-

formal discussions with the primary and secondary industrial participants and observations

of the processes. Issues such as improved requirement-design coverage and improved plan-

ning of time and effort per release, etc. were noted.

As part of the reflection and learning phase of the AR study, the primary researcher

took on the task of eliciting the challenges and lessons learned during the study, which

resulted in the identification of the problems in Section 6.1 (i.e., lack of under-standing

of: the types of requirements-driven information, the ISs and their concerns with regard

to the requirements-driven information, IS usage of the information, and the project arti-

facts needed to derive the information). This, in turn, led to the research questions posed

in Section 6.1. In an attempt to answer these questions, and given the availability of data

from the AR study, a post-analysis was conducted to construct the meta-model, which we

discuss in the following subsection.

6.3.2 Data Analysis: Meta-Model Building Procedure

To answer the research questions posed in Section 6.1, we adopted the model construction

process by Berenbach et al. [Berenbach et al., 2009] as we found it to be comprehensive.

Berenbach states that a holistic understanding of the domain of interest is a prerequisite

before commencing a model-construction process [Berenbach et al., 2009]. Our AR study

allowed us to gain first-hand and in-depth knowledge of the overall context of the RE and

software development processes in the project under study. Moreover, our continuous col-

laboration with our industrial partner allowed for live feedback throughout the AR study

and model-construction process, thus supporting incremental validation of the resultant

meta-model. The key steps of the model construction process are:

Identify Entities (RQ1)

The entities were incrementally identified and added to the meta-model by analyzing the

data gathered from the AR study. First, the primary researcher extracted the metrics and
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the IS concerns they addressed from the metric spreadsheets and GQM document that was

used to define the metrics during the AR study. The ISs were identified from the project’s

personnel documents and from meeting minutes that were gathered from the focus groups

that were conducted during the AR. The project processes were extracted from the project’s

requirements management and change plans. We note that, up until this point of the en-

tity identification process, the entities were concrete project data. We then began creating

abstractions of the identified entities. For example, stakeholder categories in light of their

requirements-related information needs (i.e., primary technical stakeholders, regular tech-

nical stake-holders, mid-level managers, and high-level managers) were identified through

analyzing the ISs’ feedback and the primary researcher’s correspondences with the ISs dur-

ing the AR study. Specifically, the level of detail of the requirements-driven information

requested by the ISs and the frequency with which they requested it were the main factors

in determining these categories.

Identify Relationships among Entities (RQ2)

We identified the relationships among the entities based on organizational rules such as

the relationships between software artifacts and processes and their constituents. Other

relationships were identified based on the metrics derived from the AR study such as the re-

lationship between requirements metrics and their types. Finally, some relationships were

identified based on our observations of the process and interactions between various ele-

ments in the project such as the relationship between ISs and their concerns.

Synthesize the Meta-Model

The identification of the entities and their relationships occurred iteratively and in paral-

lel. Therefore, meta-model synthesis was an ongoing process since the beginning of the

meta-model building procedure. For example, when we identified three main entities at the

beginning of the process (i.e., requirements metrics, ISs, and IS concerns), we added the

relationships between them and further entities and relationships were iteratively added as

we gained better understanding of the entities and relationships involved. Moreover, the

meta-model was incrementally updated in tandem with the feedback received from the re-

views by the industrial partner, senior researcher and junior researcher, which resulted in

the first version of the meta-model that did not include abstraction levels. After further eval-

uation and feedback at a workshop session [Noorwali and Madhavji, 2018] (see Section 6.5

for validation details), the abstraction levels were added, and the entities and relationships

were updated accordingly.
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We adopted Berenbach’s [Berenbach et al., 2009] notation, for familiarity by the spon-

sor’s organization, to depict the meta-model elements. An entity is represented by a rectan-

gular box with the name of the entity. A relationship is represented by a line connecting two

elements with a label to indicate the type of relationship between the elements.

6.4 A Meta-Model for Requirements-Driven Information for

Internal Stakeholders

The meta-model is intended to complement the organization’s requirements engineering

process, specifically, the requirements management process. The company’s requirements

engineering process consists of: requirements elicitation, analysis, validation and manage-

ment. The requirements management process includes a number of activities: tracing,

managing requirements workflow states, managing requirements change, deriving and re-

porting requirements measures and other relevant requirements-driven information; the

meta-model is intended to support this latter activity.

The current version of the meta-model for requirements-driven information for ISs con-

sists of entities and relationships organized across three abstraction levels as proposed by

[Monperrus et al., 2009]. In this section we will discuss the entities, relationships among the

entities, and abstraction levels. Figure 6.2 depicts the synthesized meta-model.

6.4.1 Entities

The meta-model consists of five main entities that are pertinent to the process of deriving

and providing requirements-driven information to ISs:

1. Requirements-driven information consists of information mainly derived from re-

quirements and requirements meta-data and that may be supported with other arti-

fact data.

2. Internal stakeholders who are involved in the system development and use the requirements-

driven information.

3. Concerns that the ISs have with regard to the requirements-driven information and

that are addressed by that information.

4. Artifacts from which the requirements-driven information is derived.

5. Processes in which the ISs are involved in.
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Figure 6.2: The meta-model for requirements-driven information for internal stakeholders.
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These entities are represented at abstraction Level 1, the highest level of abstraction in

the meta-model. Entities and relationships at Level 1 are abstract and generalizable enough

to be applicable to any context regardless of domain, software development process, or or-

ganizational structure.

The decomposed entities constitute abstraction Level 2 of the meta-model. Entities at

Level 2 are also intended to be generalizable to different contexts. However, its applicability

may differ from one context to another. For example, while in a large systems project, such

as ours, the distinctions between managerial and technical ISs are well defined, the differ-

ences may not be so evident in a smaller, more agile project. Thus, it is up to the project

stakeholders to decide which ISs fall into which entity type. Table 6.2 consists of the entity

descriptions at abstraction Level 2. Due to space limitations, we restrict our discussion to

entities that are not deemed self-explanatory.

The entities at abstraction Level 2 are further decomposed into entities at abstraction

Level 3. Level 3 is the project specific level in which the entities are tailored to represent the

environment of a given project in a specific domain and development process. For example,

requirement metrics in our study consisted of size, growth, volatility, coverage, and maturity

metrics. Another project’s requirements metrics may include only volatility metrics.

The same applies to other entities. Because entities at Level 3 are specific to our project,

we did not include a detailed description of them. However, they can be seen in Figure 6.2

and they illustrate how the meta-model can be applied within a large systems project.

6.4.2 Relationships

The following relationships are represented in the model:

1. is-used-by: represents the relationship when an inanimate entity (e.g., requirements

metrics) is used by an animate entity (e.g., IS) to aid in technical or managerial tasks.

2. is-used-in: represents the relationship between entities when an inanimate entity

(e.g., artifact) is used in another inanimate entity (e.g., process) to support the defi-

nition, execution, or management of the inanimate entity it is being used in.

3. addresses: represents the relationship between requirements-driven information and

IS concerns.

4. consists-of: this relationship is used when an entity (e.g., requirements-driven infor-

mation) is composed of one or more of the related entities (e.g., requirements metrics

and analytics).
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Table 6.2: Descriptions of meta-model entities at abstraction level 2.

Entity Description

Requirements Metric A measurement derived from requirements to provide a quan-
titative assessment of certain requirements attributes.

Requirement Analytics Analytics on requirements data in conjunction with other soft-
ware artifacts (e.g., design, code, budget and schedule docu-
ments, etc.) that aims to gain insight about the state of the
project from a requirements perspective.

High-level Managerial
IS

Managerial stakeholders who manage at the project level or
higher (i.e., program or regional levels) such as the program or
regional R&D manager, etc.

Mid-Level Managerial
IS

Managerial stakeholders who manage at the project level or
lower (i.e., product level) such as test manager, product qual-
ity manager, etc.

Regular Technical IS Technical ISs who use requirement-driven information regu-
larly such as architects and requirements engineers.

Irregular Technical IS Technical internal stakeholders who use requirement-driven
information less frequently such as developers and testers.

Managerial IS Concern Managerial issues that ISs care about in relation to the require-
ments such as estimating time and effort for a software release.

Technical IS Concern Technical issues that ISs care about in relation to the require-
ments such as increasing requirement-design coverage.

Downstream Process Activities involved in system development and initiated after
the requirements engineering process such as development,
design, testing, etc.

Upstream Process Activities that are involved in system development and are ini-
tiated before the RE process such as contract/client manage-
ment.

Side-stream Process Activities involved in system development and initiated and ex-
ecuted alongside the RE process such as quality and project
management, etc.

5. is-derived-from: indicates that one entity (e.g., requirements size metrics) can be de-

fined and specified from another entity (e.g., requirements specifications).

6. manages: indicates that an entity (e.g., ISs) can create, add, remove, modify the re-

lated entity (e.g., software artifacts).

7. involved-in: indicates that an entity (e.g., IS) actively participates in the related entity

(e.g., processes). The participation can be in the form of execution, management,

support etc.
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8. has: indicates that an entity (e.g., ISs) possesses one or more of the related entities

(e.g., IS concerns).

The number of relationships among the entities increase as we go lower in abstraction

level. This granularity provides a more detailed picture of how the decomposed entities re-

late to one another [Monperrus et al., 2009] in different ways. For example, at Level 1 there

is one addresses relationship between requirements-driven information and IS concerns.

The addresses relationships among the decomposed entities at Level 2 increase in number

and are more nuanced: requirements metrics addresses managerial and technical IS con-

cerns while requirement analytics addresses managerial IS concerns only. Figure 6.3 shows

the expansion of Level 2 relationships. Similarly, the number of relationships among the

decomposed entities at Level 3 increase in comparison to the relationships among the en-

tities at Level 2. The relationships at Level 3 are project specific and thus can be tailored to

project and organization rules. Due to space limitations and to preserve the readability of

the model, we did not include project-specific relationships at Level 3. Finally, the relation-

ships that cross over the abstraction boundaries are consist-of relationships that connect

the higher-level entities with their lower-level constituents.

Figure 6.3: A detailed overview of the relationships at abstraction level 2.
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6.4.3 Rationale

We believe that several entity and relationship choices in the meta-model warrant a dis-

cussion of their rationale. The identification of categories of ISs and IS concerns is based

on their needs regarding requirements-driven information and therefore a discussion is

warranted. The meta-model separates managerial and technical internal stakeholders be-

cause they have different concerns regarding requirements measures and information, and,

therefore, require different types of requirements-driven information. For example, an ar-

chitect is concerned with tracking and improving requirements-architecture coverage and,

thus, needs to know the number of requirements with and without links to architecture.

On the other hand, a R&D product manager is concerned with estimating time and effort

for a product release. Therefore, s/he needs the number of allocated requirements for a

specific release. However, our experience with a large–scale systems project revealed that

managerial ISs may also have technical concerns. Then, how does the separation between

managerial and technical ISs affect the generated requirements measures? We observed

that even in the case when a technical and managerial IS share the same technical concern,

the separation between managerial and technical ISs affected the level of detail of the rel-

evant requirements-driven information. For example, both architect and a R&D manager

may want to gain insight into the state of requirements-architecture coverage. However,

while the architect is interested in detailed measures (e.g., the number of requirements that

do not have links to architecture per feature, per release, and per requirements baseline),

the R&D manager is interested in more big-picture measures (e.g., the overall percentage of

requirements that have links to architecture per requirements baseline).

As for the separation between regular and irregular technical ISs, we observed that regu-

lar technical ISs need to be frequently updated with requirements-driven information while

irregular technical ISs require the relevant information less frequently. For example, the ar-

chitect requires a monthly report of requirement-architecture coverage measures and in de-

tail. On the other hand, a tester requires requirement-test cover-age measures only before

a product release. Similarly, the separation between high-level and mid-level managerial

ISs dictates both the frequency and level of detail of the relevant requirements information

they need. These categorizations can aid the requirements engineer in knowing: what mea-

sures and information to generate and report from the requirements, to whom they should

be reported, how to report it (i.e., level of detail), and when (i.e., how frequently), which,

in turn, will facilitate the requirements management task of generating and reporting re-

quirements relevant information. Finally, the rationale for separating the meta-model into

abstraction levels is to facilitate the tailoring of the meta-model to different contexts, and,

thus, improving its generalizability.
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Example Scenario. Figure 6.2 depicts an instantiation of the model based on our project

data. For example, the metric % of requirements with links to design for requirements base-

line 3.2 is derived from the project’s requirements specification and uses the attributes REQ

Type and In-links from design in the requirements data-base to calculate the measure. The

requirements measure is used in creating design objects that address the system requirements

that John (architect) is involved in and who wants to increase requirements-design coverage

by 10% for baseline 3.3. Knowing that John is a regular technical IS, the measure will be re-

ported to him in detail, which includes the percentage and absolute value of requirements-

design coverage for baseline 3.2. and a list of the requirements that do not have links to

design is also provided.

6.5 Meta-Model Validation

In [Shaw, 2003], Shaw states that the form of validation in software engineering must be

appropriate for the type of research result. For a qualitative model, validation through eval-

uation demonstrates that the study results (i.e., meta-model) describes the phenomena of

interest adequately [Shaw, 2003] and validation through experience shows evidence of its

usefulness. Thus, the objectives of our validation are to:

1. Ensure that the meta-model adheres to the scientific principles of model building.

2. Identify missing, superfluous, and/or incorrect entities and relationships.

3. Ensure that constructs (i.e., entities and relationships) represent their correct real-

world meaning.

4. Show preliminary evidence of its usefulness in practice.

To this end, the meta-model went through three phases of validation (see Table 6.3) by

nine validators (see Table 6.4). The validators’ areas of expertise include empirical software

engineering, requirements engineering, quality and architecture, testing, software ecosys-

tems, global and cross-organizational software development, agile methods, agent-oriented

analysis, modeling, simulation, and prototyping of complex sociotechnical systems.
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Table 6.3: Meta-model validation phases.

Validation
Phases

Type of
Validation

Involved Valida-
tors

Method Output

Phase 1 Evaluation V1, V2, V3 Expert opinion Version 1 of the meta-model (not
included in paper)

Phase 2 Evaluation V1, V4, V5, V6 Live study at
workshop

Version 2 of the meta-model (in-
cluded in paper)

Phase 3 Evaluation,
experience

V7, V8, V9 Expert opinion Evidence of meta-model useful-
ness

Table 6.4: Profiles of meta-model validators.

Validator Research Expe-
rience

Industry Experience Involved in Studied
Project?

V1 Researcher 40 years 33 years of industry
collaboration

No

V2 Practitioner 6 years 8 years Yes

V3 Researcher 5 years 4 years No

V4 Researcher 16 years 10 years of industry
collaboration

No

V5 Researcher 44 years 30 years of industry
collaboration

No

V6 Researcher 25 years 11 years No

V7 Practitioner 2 years 17 years Yes

V8 Practitioner 9 years 8 years Yes

V9 Practitioner 6 years 5 years No

6.5.1 Phase 1

V1 reviewed the meta-model for the soundness of its entities and relationships. He also

brought to our attention the notion of change in the meta-model. That is, who makes the

changes to requirements metrics, software artifacts and stakeholders? This is in line with

Berenbach’s approach in which he states that the following questions must be asked when

building a meta-model [Berenbach et al., 2009]: Who creates the entities? Who modifies

them? How do they become obsolete? This feedback from V1 resulted in the addition of the

manages relationship between: ISs and metrics, ISs and software artifacts, ISs and ISs (see

Section 6.4 and Figure 6.2).

V2 is the main requirements management figure in the project that we conducted our

AR study. He manages the RE processes for all the products in the rail-automation project.

He, therefore, is the most knowledgeable internal stakeholder on the RE processes. His val-

idation consisted of feedback on the soundness of the meta-model constructs (i.e., entities
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and relationships) and ensured that the entities and relationships represented the project

accurately. V3 also reviewed the technical aspects of the meta-model to ensure the correct-

ness of the meta-model. He also aided the first author in identifying proper relationship

labels and reviewing the semantics of the meta-model.

6.5.2 Phase 2

Phase 2 consisted of an exploratory, interactive study at EmpiRE’18 [Noorwali and Mad-

havji, 2018] in which the meta-model from Phase 1 was presented and explained to the au-

dience. The participants were given questions to validate the meta-model, and then asked

to write their answers on post-it notes that were pinned to their designated areas on the wall

(see Appendix A for study details). Twenty-seven answers were provided in total and were

used to enhance the meta-model. The main piece of feedback from the live study was the

suggestion to divide the meta-model into abstraction levels.

6.5.3 Phase 3

Phase 3 is ongoing and consists of validating the meta-model for its usefulness in practice.

To this end, we have sent out the meta-model to practitioners to gather their feedback on

its usefulness (see Appendix B for validation form). We have received feedback from three

practitioners (V7, V8, V9), who asserted that the meta-model would be useful in practice

with some modifications.

V7, who has managed the project’s quality management processes and is involved in the

system architecture, says the meta-model would be very useful in managing the requirement-

driven information that can be generated and disseminated among ISs. However, he sug-

gests:

"This information get captured in modeling tools and thus tied to the system

structure as opposed to chapters in a document for increased usability."

V8 is from an external organization and states:

“I think the key are stakeholders. So taking the perspective of “WHO does/needs/provides

WHAT?”, this model would be a great way to elaborate what the stakeholder de-

scriptions/roles are (for the internal stakeholders, and secondarily for the cus-

tomer / upper management). In that respect, this model is a mental model that

is used after having done stakeholder discovery (e.g., with the onion model) and

gives some tools while documenting the stakeholder roles (e.g., when determining

the importance influence).”
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V9 is also an external validator and states:

"I think the meta-model is useful for practice overall, as it helps taking the dif-

ferent types of stakeholders into account, not omitting important ones, it helps

thinking of the different processes impacted and various types of concerns and

artifacts, thus not missing out important things. However, I did not vote for

“Strongly agree”, as I think its success in practice strongly depends on its accep-

tance by all crucial stakeholders involved, which can be highly challenging in

organizations working under time pressure, very profit-driven, generally ad-hoc

and without too much focus on following given models, even if they believe they

could be useful."

"As mentioned above, I think the model can help in covering all important as-

pects and not missing what matters. It helps structuring reasoning, as well as

providing a clear, structured way for presenting input to all involved stakehold-

ers. Although rather project-specific, Abstraction Level 3 is also useful to give the

user an idea of what could fit on this level (e.g., different roles) and one can use

this as a starting point or inspiration when adapting the model to his/her spe-

cific context. I would use the model to show the different inter-relations to my

internal stakeholders, but I would probably adapt what I show depending on my

target audience: the high management (CxO) will not have the patience to look

into the details of a complex representation, but my RD teams would be happy to

dig deeper. So I’d probably build one thorough model for myself and then adapt

it to fit my meetings."

Thus, phase three provides preliminary evidence for the anticipated practical benefits

discussed in Section 6.1. V8 also suggested the replacement of the monochrome color

scheme with different colors to facilitate reading and comprehension of the meta-model.

6.5.4 Threats to Validity

We discuss the study validity threats and how we mitigated them according to Runeson and

Host’s guidelines [Runeson and Höst, 2009].

Internal Validity

Internal validity is concerned with the validity of causal relationships, typically in scientific

experiments. Given that our study objective does not include investigation of causal rela-

tionships, this threat is not relevant to our study.
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External Validity

External validity is concerned with the generalizability of the results to other contexts. The

meta-model is based on the AR study conducted within the safety-critical, transportation

domain, which may limit the meta-model’s generalizability. Thus, readers must interpret

and reuse the results in other contexts with caution. Despite this limitation, the results con-

stitute an important data-point for making scientific progress. Further validation of the

meta-model in different domains and project sizes is encouraged in order to improve its

generalizability.

Construct Validity

Construct Validity concerns the operationalized constructs of the study in that whether or

not they accurately represent the real-world phenomena. It is possible that some meta-

model entities (e.g., stakeholder concerns and metrics, etc.) might not have been captured

accurately by the researcher. In order to minimize this threat, we validated the model con-

structs with our industrial partner and analyzed them against official project documenta-

tion to ensure that the constructs accurately reflect their real-world counterparts. In ad-

dition, given that the meta-model was not the main goal of the AR study, there is a risk

that important data is missing from the meta-model. This risk was mitigated by obtaining

feedback from a variety of sources on the meta-model entities and relationships during the

workshop (see Appendix A for workshop details).

Reliability

Reliability is concerned with the degree of repeatability of the study. The AR study followed

AR principles for software engineering [Santos and Travassos, 2011] to ensure rigor during

the study. In addition, the AR and meta-model creation processes were documented to en-

sure traceability and analysis. Although a level of subjectivity is inevitable during the meta-

model development process, our continuous involvement with our industrial partners and

researchers inside and outside of the study helps to mitigate this threat.

6.6 Implications

6.6.1 Implications for Practice

The meta-model can aid in aligning internal stakeholder concerns with requirements-driven

information that can be generated within the project [Humphrey and Kellner, 1989]. It can
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also be an effective tool for enabling effective communication as well as controlling project

complexity [Humphrey and Kellner, 1989]. In our case, the complexity is the network of

numerous internal stakeholders, stakeholder concerns, requirement metrics and analyt-

ics, downstream, upstream and side-stream processes, and a web of interactions amongst

them. Therefore, mapping out the numerous elements and the relationships amongst them

will equip requirement engineers with the understanding needed to effectively control and

manage the requirements-driven information they are required to provide [Humphrey and

Kellner, 1989] and communicate to the right people (see Phase 3 of validation in Section 6.5).

The meta-model could also aid incoming personnel (e.g., new requirements engineers) in

understanding this complex web of interactions, which, in turn, will help them in their re-

quirements management tasks.

The meta-model can also serve as a stepping-stone toward operationalizing the entities

and relationships in the meta-model in the form of a tool (e.g., dashboard) that could aid

practitioners in the requirements management process by implementing features inspired

by the meta-model (see Phase 3 of validation in Section 6.5).

6.6.2 Implications for Research

The importance of requirements-driven information for internal stakeholders has been rec-

ognized by researchers [Gross and Doerr, 2012; Hassan et al., 2013]. As discussed earlier,

some research efforts have targeted architects’ and testers’ information needs in relation to

requirements and requirements specifications [Gross and Doerr, 2012; Hess et al., 2017b].

Our attempt to explicate the types of stakeholders in light of their needs with regard to

requirements-driven information can open further avenues for research. Specifically, fur-

ther research can be conducted to explore questions addressing IS information needs with

regard to requirements. Such questions could include: what are the types of ISs in an ag-

ile environment? What are their information needs with regard to requirements in an agile

environment? In addition to requirements metrics and analytics, what other types of infor-

mation can be generated from requirements and that can benefit internal stakeholders in

their processes?

6.7 Conclusions and Future Work

Requirements are an information-rich software artifact that has the potential to provide ISs

with information that can guide their respective processes. However, little is known about

the types of ISs in light of their requirements-information needs, the information that can
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be generated from requirements, and how this information is used by ISs, all of which com-

plicates the requirements management process. Based on empirical data that we gathered

and analyzed from an AR study conducted in a large-scale rail automation project (Section

6.3.1), we identified the main entities and relationships involved in providing requirement-

driven information, which we assembled into a meta-model (Section 6.3.2). The empiri-

cally derived meta-model depicts the internal stakeholders, internal stakeholder concerns,

requirements-driven information, artifacts, processes, and relationships among them at

three abstraction levels (Section 6.4).

Our preliminary validation shows that the meta-model aids in understanding the com-

plex network of entities and relationships involved in providing requirements-driven infor-

mation to internal stakeholders (Section 6.5). More specifically, the explicit identification

of the types of internal stakeholders and their needs in relation to requirement-driven in-

formation could facilitate: (i) communication among internal stakeholders and (ii) proper

identification and presentation of requirement-driven information for the correct internal

stakeholders.

For future work, we intend to extend the meta-model to include cardinalities, which will

provide a more accurate representation of a project’s rules and policies. For example, only

one IS (i.e., requirements engineer) manages the requirements-driven information. This

cardinality is a representation of the current project practices. Therefore, upon reading

the meta-model, one would know that one person is in charge of managing the various

requirements-driven information and so appropriate interpretation is facilitated. We also

plan to incorporate the meta-model into the organization’s requirements management plan

to validate it empirically for its practicality, usefulness, and benefits within the project.
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Chapter 7

R-Pulse: A Requirements Dashboard

Prototype

7.1 Introduction

Automated In-Process Software Engineering Measurement and Analysis (AISEMA) is the

non-invasive data collection and analysis of data in software engineering processes for the

purpose of measurement [Johnson, 2007; Coman et al., 2009]. Automating the measure-

ment process has been found to be a key requirement for the success of software pro-

grams [Daskalantonakis, 1992; Pfleeger, 1993; Hall and Fenton, 1997; Iversen and Mathi-

assen, 2000; Ebert and Dumke, 2007; Staron and Meding, 2018]. Automating data collec-

tion, analysis, visualization, and reporting mechanisms of measurement reduces the over-

head associated with data collection, makes analysis and dissemination of feedback easier

and more accurate, and reduces human error in data collection [Gopal et al., 2002]. In par-

ticular, measurement-driven dashboards provides the foundation for effective and efficient

management of organizations and projects that develop large-scale systems [Selby, 2009].

While many academic and commercial measurement tools and dashboards have been

proposed to support software processes [Sillitti et al., 2003; Johnson et al., 2003; Sharma and

Kaulgud, 2012; López et al., 2018], most focus on the development phases and are based on

code-centric metrics with little to no support for requirements and requirement measure-

ment. Moreover, current requirements management tools do not provide advanced mea-

surement functionalities and are limited to primitive counts of requirements and visualiza-

tions.

Thus, in an attempt to fill this gap and facilitate the use of the measurement concepts

presented in the previous chapters, we present R-Pulse, a requirements-focused dashboard

184
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that gathers, processes, analyzes, and visualizes requirements measures and indicators.

Particularly, R-Pulse has a three-tier architecture and provides the following features: data

gathering and management, data analysis, and data visualization and navigation. It is in-

tended to be used by internal stakeholders (e.g., requirements engineers, architects, and

product managers) of a systems project to aid their process-related tasks. The internal

stakeholders can choose from a selection of requirements metrics, requirements health in-

dicators and visualization techniques that best address their respective concerns.

In this paper, we first discuss the requirements measurement challenges faced in the

collaborating organization in the absence of tool support in Section 7.2. We then present

R-Pulse and discuss its main features and architecture in Sections 7.3.1 and 7.3.2, respec-

tively. Section 7.4 describes the dashboard development process followed by a survey and

comparison of related work in Section 7.5. We then discuss the dashboard’s limitations in

Section 7.6 and finally Section 7.7 concludes the paper and discusses future work.

7.2 Challenges to Requirements Measurement

While the concepts in Chapters 3, 5, and 6 lay the theoretical foundations for the require-

ments measurement process, most requirements management tools (e.g., DOORS) do not

include advanced requirements measurement features, which leads to a manual or semi-

manual measurement process. Thus, the measurement process becomes even more cum-

bersome in the context of large system projects that has large numbers of requirements,

many internal stakeholders, and large numbers of metrics to be implemented for projects,

to name a few. This added effort is a main barrier to the adoption of metrics in software

projects in general [Kerzner, 2017].

In this subsection, we describe the requirements measurement challenges that emerged

within the context of the collaborating company (see Chapter 2 for company details) upon

attempting to implement a requirements measurement program. Table 7.1 lists the main re-

quirements challenges we faced, the way they are dealt with in the absence of a dashboard,

and how R-Pulse addresses each challenge.
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Table 7.1: Requirements measurement challenges in the absence of tool support.

Challenge Status without R-Pulse Solution in R-Pulse
C1 Multiple projects, numerous

requirements baselines, and
metrics. Numerous require-
ments baseline were generated
regularly for each project. In
turn, each requirements base-
line entailed updating the re-
quirements measures to reflect
the newly generated baselines.

An individual is designated for ex-
porting the new requirements base-
lines for multiple projects and in-
tegrating them with the metrics’
spreadsheets to update the measures,
which became a tedious and time-
consuming task. Especially with
a growing number of metrics and
projects being added.

The dashboard reduces the
time and effort needed to
update the requirements
measures by automating the
computation process.

C2 Different requirements-driven
information for different in-
ternal stakeholders. Each
project had a large num-
ber of internal stakeholders
and each required different
requirements-driven informa-
tion to be provided to him/her.

When the metrics’ spreadsheets are
updated, disseminating the mea-
sures of interest to the correct inter-
nal stakeholders led to many muta-
tions of the measures’ report that was
tailored to each stakeholder’s needs.
This process required a significant
amount of added time and effort.

The dashboard allows each in-
ternal stakeholder to see the
measures and indicators they
are interested in through var-
ious filtering options (e.g., re-
quirements attributes, dates,
baseline numbers)

C3 Different visualizations for
different internal stakehold-
ers. While some internal stake-
holders were only interested in
high-level visualizations of the
requirements measures (e.g.,
program manager), others were
interested in the raw numbers.

The measurement reports were tai-
lored to meet the various demands of
the internal stakeholders across the
different projects. For example, bar
and pie charts were created for the
managers, while detailed measure-
ment reports were sent to the devel-
opers and architects.

Using the concepts in Chap-
ter 6, we developed the dash-
board to address the differ-
ent internal stakeholders’ visu-
alization needs. Thus, inter-
nal stakeholders could select
among the different visualiza-
tion options that address their
specific needs.

C4 Different reporting frequency.
Some internal stakeholders
(e.g., architect) required weekly
reports of the requirements
measures while monthly re-
ports sufficed for others (e.g.,
R&D manager)

Due to the tedious process of updat-
ing the metrics, updating the spread-
sheets was limited to once a month.
In the event an internal stakeholder
had an urgent need for an updated
report (i.e., before a product release)
before the monthly deadline, a report
was generated for him/her.

R-Pulse addresses this prob-
lem by providing constant, in-
dividual access to the updated
requirements-driven informa-
tion.

C5 Advanced analysis of mea-
sures and project data. There
was a need for advanced
analysis of the requirements
measures along with project
data (see Chapter 5).

Such complex analyses were impos-
sible without some form of automa-
tion.

R-Pulse automates the analysis
of the requirements measures
in conjunction with project
data and visualizes the result-
ing indicators for the internal
stakeholder.

7.3 The Requirements Dashboard Prototype: R-Pulse

R-Pulse builds upon the theoretical foundations in Chapters 3, 5, and 6. The purpose of the

dashboard is to automate the process of providing requirements-driven information to the

internal stakeholders. It particularly addresses the measurement challenges discussed in

Table 7.1. This automation, in turn, would reduce the time and effort needed for the mea-

surement process. In addition, the dashboard would provide easy and continuous access to
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requirements-driven information, which, in turn, would aid internal stakeholders in mak-

ing requirements-related decisions in their respective tasks (e.g., architecting, development,

and release planning). Below we discuss the dashboard’s main features and architecture.

7.3.1 Main Features

The dashboard’s main features are:

Data Gathering and Management The main data input to the current version of the dash-

board are spreadsheet exports of requirements-design, test, and defect baselines. The ex-

ports are uploaded through the dashboard’s graphical user interface (GUI) and stored in the

database. Figure 7.1 shows a screenshot of the upload spreadsheet page, which is then saved

into a database.

Figure 7.1: Upload spreadsheet page in R-Pulse.

In addition, the dashboard includes functionality to enter data for projects, artifacts (i.e.,

requirements, design, test, and defects), attributes, metrics, levels, and users. The manually

input data and the data in the spreadsheets are then stored in database. Figures 7.2 and 7.3

show screenshots of the pages for entering project and artifact data. A project consists of

artifacts (e.g., requirements documents, requirements defect documents, and design docu-

ments, etc.), team members, and start and end dates. An artifact (e.g., requirements spec-

ification document—SRS) consists of uploaded baseline, measurable attributes (e.g., size,

growth, and volatility), metric levels (e.g., feature, release, and safety).
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Figure 7.2: Edit project page in R-Pulse.
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Figure 7.3: Edit artifact page in R-Pulse.
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Data Analysis The data analysis functionality in the dashboard performs the following two

main functions: calculating the requirements measures according to the metrics defined in

Chapter 3 and calculating the health indicators according to the analysis models described

in Chapter 5 using the data that was entered and uploaded into the dashboard.

Data Visualization and Navigation The dashboard provides a range of data visualization

and navigation options to the internal stakeholders. For example, a program manager can

navigate between different project data as shown in Figure 7.4. Each project’s health in-

dicators are displayed according to concepts described in Chapter 5. While the back-end

code for the health indicators has been implemented as shown in Figure 7.5, the front end

is currently under development.

Figure 7.4: Navigate projects in R-Pulse.
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Figure 7.5: The back-end implementation of the requirements-centric health indicators.
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Internal stakeholders can view each artifact’s raw measures as shown in Figure 7.6. Fur-

ther navigation between an artifact’s attributes and levels is possible as shown in Figures 7.7

and 7.8. In addition to displaying the measures in tables, the measures are visualized in var-

ious graphs and charts that the internal stakeholder can choose from such as line graphs,

pie charts, and bar charts as seen in Figure 7.6.

We note that thus far we have been testing the dashboard with small portions of the

projects’ data. We have yet to test the dashboard fully on complete and correct project data.

Figure 7.6: Viewing each project’s requirements metrics.
The horizontal menu at the top indicates the project’s artifacts that consists of the SSDD (Subsystem
Design Document), and SSRS (Subsystem Requirements Specification), defects documents, and test

cases. The obfuscated artifacts are proprietary artifacts and have been obfuscated due to
confidentiality reasons.
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Figure 7.7: Filtering of metrics according to requirements attributes.

Figure 7.8: Filtering of metrics according to requirements levels.
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7.3.2 Architecture

Figure 7.9 depicts the dashboard’s three-tier architecture which consists of data, applica-

tion, and presentation layers. Such an architecture is recommended for measurement tools

as it allows for separating the different functionalities of the measurement process [Staron

and Meding, 2018].

Data Layer The data layer consists of the database in which the input data is stored. We

used Maria DB for building the dashboard’s database. As depicted in Figure 7.9, the col-

lected data is organized into the following tables in the database: project, attribute, level,

artifact, user, role, and a number of connector tables.

Application Layer The data analysis functionality of the dashboard takes place in the ap-

plication layer which is implemented in Java and uses an R package to run the statistical

analyses required for the health indicators. Specifically, the formulas for calculating the

measures are written in Java in formulas and metrics packages. The resulting measures are

then used as input into the healthindicator package.

Presentation Layer The presentation layer is a web application that consumes data from

the data layer. Bootstrap and Vue.js were used to implement the visualization and naviga-

tion features discussed above.
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Figure 7.9: Dashboard architecture.
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7.4 Dashboard Development Process

An iterative development approach [Larman and Basili, 2003] was be used to build the dash-

board prototype. Iterative design and development methodologies involve a cyclic process

of requirements planning, design and analysis, implementation, testing, and evaluation as

depicted in Figure 7.10, which we describe below.

Figure 7.10: Dashboard development process.

Requirements The requirements for the dashboard were elicited on-site during the AR

study (see Chapter 3 for AR study details) over a period of 10 months from February 2017

to December 2017. The requirements were then analyzed and refined after the AR study

in consultation with the stakeholders within the projects iteratively over the course of the

dashboard development process. The concepts underlying the dashboard (i.e., metrics, at-

tributes, levels, internal stakeholder categories, and health indicators) were communicated

and explained to the development team.

Analysis and Design The analysis and design stage took place between September 2018 to

August 2019 and consisted of the following activities:

1. Creating mock-ups of the dashboard’s graphical user interface using an online web-

tool (moqups.com). Figures 7.11 and 7.12 show samples of the dashboard mock ups.

2. Creating the dashboard’s class diagram.

3. Sketching the system’s architecture.

4. Choosing the tools to be used to build the dashboard such as back-end and front-end

programming languages, database, and so on.
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Figure 7.11: Dashboard mock-up for the Projects page.

Figure 7.12: Dashboard mock-up for the Requirements Size Metrics page.
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Implementation The implementation of the dashboard began in January 2019 and is still

ongoing. The implementation phase consisted of the database creation and back-end and

front-end development.

Testing We performed some testing during the development process of the dashboard

and further testing will be carried out after completing the dashboard development. The

following testing methods have been used or will be used as the development of R-Pulse

progresses:

1. Unit testing: A combination of manual and automated unit testing was performed

during the development process to test the dashboard’s functions and objects such as

data entering, data retrieval, and metric calculations. We performed unit testing as we

developed the dashboard using mostly mock data.

2. Integration testing: Integration testing was conducted between the dashboard’s dif-

ferent objects such as the metrics object and the health indicators object and commu-

nication between back-end and front-end of the dashboard. Both unit and integration

testing was performed by the developers.

3. System testing: We performed some system testing on the functional parts of the

dashboard. System testing was carried out by individuals separate from the devel-

opment team (e.g., external junior and senior researchers).

4. Acceptance testing: We intend to perform acceptance testing through the internal

stakeholders of the collaborating organization.

5. Usability testing: Usability testing will be performed upon deploying the dashboard

within the projects in the collaborating organization.

Evaluation The evaluation of the dashboard consists of evaluating it for usability and rel-

evance. To evaluate its usability, a form of usability testing will be performed as discussed in

the preceding paragraph. To evaluate its relevance to requirements management, measure-

ment, and process development in general, we intend to evaluate it through practitioners

outside of the collaborating organization and in other domains. Given that the dashboard

is thus far a working prototype, an extensive evaluation of its usability and relevance has yet

to be conducted. However, we acquired preliminary evidence of its usability through the

following methods.

First, the dashboard’s requirements have been elicited based on the organization’s inter-

nal stakeholder information needs and their requirements and development processes. The
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researcher was immersed onsite and actively involved in the projects as requirements engi-

neer for a period of 10 months (see Chapter 2). Thus, the dashboard requirements emerged

from the industrial setting (see Section 7.2).

Second, we designed R-Pulse, thus far, with continuous feedback from the internal stake-

holders at the collaborating organization. Specifically, we conducted several interviews with

the main requirements internal stakeholder in the organization to evaluate the the mock-up

designs and ensure that they met the internal stakeholder needs. The feedback we acquired

from the internal stakeholder was then incorporated into the dashboard design. The feed-

back concerned organization of pages and data and additional functionality.

Third, four external assessors, two researchers and two practitioners, are currently using

the dashboard prototype to provide feedback on its usability.

7.5 Related Work and Comparison

ISEMA is an approach to software measurement that has its roots since the late 1980s [Basili

and Rombach, 1988] and early 1990s [Selby et al., 1991]. Particularly, software measurement

dashboards began gaining prominence in the early 2000s and have continued to this day.

Among the early dashboards are the Software Process Dashboard [Tuma, 2000], Pro Metrics

(PROM) [Sillitti et al., 2003], Hackystat [Johnson et al., 2003; Johnson, 2007], and Empirical

Project Monitor (EPM) [Ohira et al., 2004]. More recently, dashboards and measurement

tools such as Project Insights and Visualization Toolkit (PIVot) [Sharma and Kaulgud, 2012],

and Quality-aware Rapid Software Development (Q-Rapids) tool [López et al., 2018] have

been proposed. We describe each of the dashboards below and compare it to R-Pulse.

The Software Process Dashboard is a tool that automates the techniques defined by the

Personal Software Process (PSP) [Humphrey, 1995] that adapts organizational-level soft-

ware measurement and analysis techniques to the individual developer. The dashboard

was originally developed in 1998 by the United States Air Force, and has continued to evolve

under the open-source model. The Process Dashboard supports data (e.g., time, code de-

fects, and code size) collection, planning (e.g., templates, forms, and summaries), tracking

(i.e., earned value support), data analysis (e.g., charts and reports), and data exporting into

Excel or text format for use with external tools.

PROM [Sillitti et al., 2003] is tool for automated data gathering and analysis that cal-

culates both code and process measures, including PSP metrics, procedural and and ob-

ject oriented metrics. PROM collects and analyzes data at different levels of granularity:

personal, team and enterprise. This distinction is intended to preserve developers’ privacy

while providing aggregated, anonymous data to managers.
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Hackystat [Johnson et al., 2003; Johnson, 2007] is one of the more popular software mea-

surement tools that automatically collects individual development data through sensors at-

tached to development tools and IDEs (e.g., Eclipse, EMACS, JBuilder, and Vim), testing

tools (e.g., JUnit and CppUnit), and static analysis tools (e.g., CheckStyle, FindBugs, and

PMD). The sensors communicate with a centralized server using SOAP protocols. Developer

behaviour and measures are then displayed on a web page for each individual developer.

EPM [Ohira et al., 2004] automatically collects and measures quantitative data from

three kinds of repositories: versioning histories from configuration management systems

(e.g. CVS), mail archives from mailing list managers (e.g. Mailman, Majordomo, and fml),

and issue tracking records from (bug) issue tracking systems (e.g. GNATS5 and Bugzilla).

EPM consists of four components: data collection, format translation, data store, and data

analysis/visualization. EPM visualizes the various measures (e.g., growth of lines of code

and relationship between check-in and checkout) and provides summaries of each reposi-

tory. Measures and visualizations can be accessed using common web browsers.

PIVoT [Sharma and Kaulgud, 2012] is a tool that provides project managers with a holis-

tic picture of a project’s health and trajectory. PIVoT collects and visualizes thirty software

metrics related to code quality, quality of component, testing effort, development efficiency,

code churn, and team analysis. The measures are calculated and visualized in the tool

through an assortment of graphs.

Finally, the Q-Rapids method and tool [López et al., 2018] is part of larger project that

gathers data from different software and project repositories (e.g., Jira and SonarQube),

analyzes the gathered data, and presents quality-related data to decision-makers using a

dashboard. The current release of Q-Rapids Tool provides four sets of functionality: (1)

data gathering from source tools (e.g. GitLab, Jira, SonarQube, and Jenkins), (2) aggrega-

tion of data into three levels of abstraction: metrics (e.g., code bug density, availability, and

uptime), product/process factors (e.g., code quality, and software usage), and strategic indi-

cators (e.g., customer satisfaction, and product quality), (3) visualization of the aggregated

data, (4) and navigation of the aggregated data.

On a more generic level, Tableau [Chabot et al., 2003] is a commercial tool that extracts

data from a variety of sources and provides users with data analysis options and the results

are visualized in dashboards. Tableau’s strength lies in its ability to connect from a large

number of platforms including spreadsheets, PDF files, relational databases, cloud-based

databases such as Amazon webs services, Microsoft Azure SQL database, and Google Cloud

SQL. Moreover, it allows for advanced data visualization and interaction features.

The above survey of software measurement dashboards shows that there is no one-size-

fits-all dashboard that supports all software development needs. The need for different
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dashboards for different industries, sub-industries, and processes has been recognized in

the research community [Pauwels et al., 2009]. Thus, R-Pulse adds to the work on software

measurement dashboards by treating requirements as the main measured entity. As we’ve

seen in the review above, the majority of software dashboards are based on code-centric

metrics with little to no consideration for requirements. Moreover, the dashboards are heav-

ily biased towards developers with the exception of PIVot and the Q-Rapids tool. The levels

of abstraction displayed in R-Pulse (i.e., health indicators, absolute measures, percentage,

and visualizations) cater to a wider range of users. While the Q-rapids tool comes clos-

est to our work, the measures remain code-centric, which are then aggregated into quality

attributes. Thus, we can consider the data and functionality in Q-Rapids and R-Pulse as

complementary; product quality measures and indicators from Q-Rapids can be used in

conjunction with requirement metrics to provide more accurate project health indicators

(see Chapter 5) while requirements measures from R-Pulse can be used with code measures

in Q-Rapids to better assess product quality.

Finally, while commercial software such as Tableau has the power to connect to any data

source, one would still require the concepts in R-pulse (i.e., metrics and health indicators)

to analyze the data retrieved from the data sources in Tableau to create custom dashboards.

Moreover, such commercial tools are expensive which is an added cost that not all compa-

nies and/or projects would be willing to pay.

7.6 Limitations

As with any solution, R-Pulse has its limitations which we discuss in this section.

The first limitation is the dashboard’s usability in a context different than the large sys-

tems engineering context it was built for. More specifically, R-Pulse was built for large sys-

tems engineering projects that have established RE processes, advanced requirements doc-

umentation procedures, and numerous internal stakeholders with diverse requirements-

related concerns. Thus, its usability in other contexts, such as agile processes, that have

limited support for requirements documentation and small teams may be limited as well.

The second limitation is the dashboard’s reliance on spreadsheets and not being directly

connected to the requirements database. This can cause several problems. For one thing,

the exporting of requirements and associated meta-data and uploading it to the dashboard

is error-prone and may introduce inconsistencies and incompletenesses in the imported

data. Moreover, the exporting of baselines from the requirements databases and importing

it into the dashboard is an added effort that the projects may not be willing to expend.

The third limitation is the minimal evaluation we conducted thus far of the dashboard’s
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usability and ease of use in practice as full deployment in the organization is still underway.

7.7 Conclusions and Future Work

Tool support is essential for the facilitation of measurement in systems and software pro-

cesses and is key for the success of a measurement program. Particularly, requirements

measurement presents its own set of challenges when done manually or semi-manually

(Section 7.2). Current measurement tools and dashboards focus largely on code-centric

measurement (Section 7.5) with little support for requirements measurement and require-

ments management tools also lack support for requirements measurement.

In this paper, we present R-Pulse, a web-based requirements measurement dashboard

that has the following main features: data gathering and management, data analysis, and

data visualization and navigation (Section 7.3). We built R-Pulse in collaboration with an

organization in the systems engineering domain and adopted a 3-tier architecture.

R-Pulse is still a prototype and much remains to be done with regard to its development

and evaluation. Thus, we delineate here several short-term and long-term action items. The

most imminent task at the current stage of development is carrying out the acceptance and

usability tests in order to evaluate its usability in a real-life setting. Specifically, we plan

to deploy the dashboard within the collaborating organization and evaluate its usability.

Next, we plan to evaluate the dashboard’s relevance and generalizability to other contexts

through deploying it in different organizations and gathering further feedback on its use

and relevance to practitioners.

The long-term action items include developing more advanced features for the dash-

board such as requirements-centric prediction of defects, cost, and effort and advanced

analytics that are based on requirement measurement. Moreover, the dashboard may ben-

efit from a micro-services architecture as it will allow easier extendability of the dashboard

functionality.
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Chapter 8

Discussion

Each of the previous chapters (3, 4, 5, 6, and 7) constituted a component of the requirements

measurement program that this thesis aims to construct (see Chapter 1 for research goal

and objectives). Figure 8.1 provides an overview of the measurement program components

(MPC) presented in this thesis.

This chapter has three objectives: 1) to situate each measurement program component

within established measurement process standards [IEEE, 2017] (i.e., research) and within

the collaborating organization’s requirements engineering process (i.e., practice) (Section

8.1), 2) to revisit and summarize the validation of each of the requirements measurement

program components (Section 8.2), and 3) to evaluate the overall robustness of the mea-

surement program according to established evaluation criteria [Staron and Meding, 2018]

(Section 8.3).

Figure 8.1: Requirements measurement program components presented in thesis.

205
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8.1 Situating the Requirements Measurement Program

Figure 8.2 depicts the general measurement process as established by [IEEE, 2017] and sit-

uates each of the measurement program components within that process. Particularly, Fig-

ure 8.2 shows which measurement task each measurement program component supports.

We can see that the various measurement program components mainly support the tasks

within the prepare for measurement and perform measurement phases of the measurement

process. Both phases are considered the cornerstone of the measurement process and re-

quire the most time, resources, and effort.

The entirety of the measurement process revolves around selecting and specifying met-

rics that satisfy the information needs of the project or organization (task 2.4 in Figure 8.2).

The structured requirements metrics suite (Chapter 3) supports this task within the context

of requirements engineering by providing a set of empirically derived, well-defined, and val-

idated set of requirements metrics that we have shown to address different internal stake-

holders’ needs.

However, every project or organization has different information needs with regard to

requirements measures. Moreover, the same project’s information needs may evolve over

time. Thus, the approach for deriving, analyzing, and organizing metrics and related infor-

mation (Chapter 4) also supports the task of selecting and specifying metrics by providing

projects and organizations with a means to derive further metrics that address their evolv-

ing needs. In addition, as described in Chapter 4, the approach also can aid in analyzing

metrics and organizing metrics and measurement reports. It, then, also aids in the task of

defining collection, analysis, and and reporting procedures (task 2.5 in Figure 8.2).

The requirements-centric health assessment framework (Chapter 5) supports the task of

defining analysis procedures in the prepare phase (task 2.5 in Figure 8.2) through the anal-

ysis models of the framework that analyzes requirements measures in conjunction with

project data. The result of the analysis models in the framework, which is in the form of

red-amber-green (RAG) health indicators, supports the task of developing the information

items to be disseminated to the internal stakeholders (task 3.3 in Figure 8.2).

The entities and relationships at abstraction levels 1 and 2 in the meta-model for requirements-

driven information for internal stakeholders (Chapter 6) can guide the definition of the re-

quirements measurement strategy (task 2.1 in Figure 8.2) within a project. In addition, the

meta-model entities at abstract levels 2 and 3 can aid in describing the organization char-

acteristics and entities relevant to the requirements measurement procedure (task 2.2).

Finally, the requirements dashboard (Chapter 7) assists the perform measurement phase

of the measurement process by automating all the measurement tasks in the phase.
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Figure 8.2: Measurement program components situated in the measurement process.
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In Chapter 2 we described the industrial context from which this work emerged. Par-

ticularly, we detailed their requirements engineering and management processes. While

requirements measurement is enlisted as one of the activities of the requirements man-

agement process in theory, no requirements metrics, approaches and tools were used or

defined before the commencement of this study. Figure 8.3 depicts the RE process in the

organization and situates the requirements measurement process within it, which utilizes

the measurement program components presented in this thesis.

Figure 8.3: Measurement program within the RE process in the collaborating organization.
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8.2 Summary of Validation of Requirements Measurement

Program Components

Before we evaluate the overall measurement program in the following section (Section 8.3),

we summarize the validation conducted for each component of the measurement program

in Table 8.1. The reader can refer to the measurement program components’ corresponding

chapters for details on the validation procedures and results.

Table 8.1: Summary of validation of requirements measurement program components.

Thesis
Chapter

Measurement Program
Component (MPC)

Theoretical Validation Empirical Validation

Chapter 3 MPC1. Structured require-
ments metrics suite

– Metric validation frame-
work [Kitchenham, 1995]
– Comparative analysis with
literature

– Action research [Susman
and Evered, 1978; Santos
and Travassos, 2011]
– Expert opinion [Helmer,
1967]

Chapter 4 MPC2. Approach for de-
riving, analyzing, and ora-
ganizing requirements met-
rics and related information

N/A – Example based on real-life
project data [Shaw, 2003]

Chapter 5 MPC3. Requirements-
centric health assessment
framework

– Framework built according
to theoretical measurement
concepts [IEEE, 2017; Staron
and Meding, 2018]

– Application on data from 3
real systems projects [Shaw,
2003]
– Expert opinion [Helmer,
1967]

Chapter 6 MPC4. Meta-model for
requirements-driven in-
formation for internal
stakeholders

– Evaluation by expert opin-
ion that the meta-model ad-
heres to scientific principles
of model building [Helmer,
1967; Berenbach et al., 2009]

– Live study at workshop
– Expert opinion [Helmer,
1967]

Chapter 7 MPC5. R-Pulse: Require-
ments dashboard prototype

N/A – Action research [Susman
and Evered, 1978; Santos
and Travassos, 2011]
– Expert opinion [Helmer,
1967]

8.3 Evaluating the Requirements Measurement Program

"For a measurement program to effectively support an organization’s goals, it should be

scalable, automated, standardized and flexible – i.e. robust" [Staron and Meding, 2016]. In

this subsection, we use Staron and Meding’s [Staron and Meding, 2016, 2018] measurement

program assessment method to assess the robustness of our measurement program. Their

method consists of checking the measurement program against criteria in seven categories
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[Staron and Meding, 2016, 2018] as listed in Table 8.2.

Table 8.2: Categories for assessment of measurement programs.

Category What to Assess
Metrics organization Assess how metrics collection, analysis and visualization

are done, and by whom.
Metrics infrastructure Assess how the measurement program is realized

technology-wise.
Metrics used Assess which measures are used in the company or orga-

nization.
Decision support Assess how measures are used in decision processes in the

company or organization.
Organizational metric
maturity

Assess how the organization, as a whole, works with mea-
sures.

Collaboration with
academia

Assess the status of research-oriented activities at the or-
ganization.

External collaboration Assess the state of collaboration with other companies.

Before we evaluate the program, we need to note that Staron and Meding’s definition

of a measurement program encompasses "socio-technical systems where the technology

interacts with stakeholders in order to support certain goals" [Staron and Meding, 2016].

Thus, their measurement program evaluation approach assumes the existence of a mature,

organization-wide measurement program, which usually requires long periods of time and

organizational support to implement and maintain. However, our work is restricted to the

requirements engineering process that did not have any form of measurement process or

program in place. Thus, our work lays the foundation for a mature measurement program.

Metrics organization. Refers to "the metrics team and covers all aspects, e.g. a formal

metrics team, a virtual metrics team, or employees working with measuring, independently

from each other, in the same company or organization" [Staron and Meding, 2018]. Because

the collaborating organization did not implement any form of requirements measurement

before the commencement of this work, the metrics team is comprised, thus far, of the au-

thor of this work. Thus, the assessment criteria assumes the author of this work as the met-

rics team along with the internal stakeholder who oversaw and supervised the measurement

program. Table 8.3 lists the metrics organization/team related criteria and our assessment.
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Table 8.3: Assessing the metrics team.

Question Yes/No/I don’t Know
Is there a metrics organization (e.g., team)? Yes
Does the organization have sufficient resources? Yes
Is there a metrics organization that maintain existing measures? Yes
Do measures support the organization with competence? I don’t know
Does the metrics organization give presentations, seminars, and/or
courses?

Yes

Does the metrics organization have good knowledge of the com-
pany’s or organization’s products?

Yes

Is it well defined and transparent, how the metrics organization pri-
oritizes its assignments?

No

Can the metrics organization handle emergencies? I don’t know
Does a strategy plan exist? Yes, using the meta-model (MPC4)
Does a metrics champion exist? Yes
Does a measurement sponsor exist? I don’t know
Does a measurement analyst exist? Yes
Does a measurement designer exist? Yes
Does a measurement librarian exist? Yes
Does a metrics team leader exist? Yes
Is there a document describing how the metrics organization works? Yes, using the meta-model (MPC4)
Is there a contingency plan? No
Does a statement of compliance towards ISO/IEC/IEE 15939 [IEEE,
2017] exist?

Yes

Does a statement of compliance towards ISO/IEC 12207 exist? [ISO
et al., 2015]

No

Does a statement of compliance towards IEE Std 1061 [IEEE, 1992]
exist?

Yes

Does a statement of compliance towards ISO/IEC 250xx family exist? No

Metrics Infrastructure. "The measurement infrastructure forms the technological aspect

of the measurement program providing the technical means for realizing the measurement

program...and includes the databases for collecting measurement results and execution and

dissemination environment." [Staron and Meding, 2016]. Table 8.4 lists the metrics infras-

tructure related criteria and our assessment of our measurement program in relation to that.

Table 8.4: Assessing the measurement infrastructure.

Question Yes/No/I don’t Know

Does a structure exist that contains all/the most impor-

tant measures?

Yes, using the structured matrics suite (MPC1) and

the dashboard (MPC5)

Is the infrastructure secure? Yes

Is the infrastructure built up, so that is supports automa-

tion?

Yes, through R-Pulse (MPC5)

Do all measurement systems include information quality? No

Does the infrastructure support/enable dissemination of

information products?

Yes, through R-Pulse (MPC5)

Do naming of rules for folders and files exist? Yes, using the structured metrics suite (MPC1)
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Metrics Used. Table 8.5 lists the criteria related to the metrics used in the organization.

While we cannot claim that the metrics defined in Chapter 3 (MPC1) address all the internal

stakeholder information needs, we can say that, because the metrics were derived based on

the internal stakeholders’ information needs (through action research and using GQM—

see Chapter 3 for details), they address a significant portion of their requirements related

information needs.

Table 8.5: Assessing the measures used.

Question Yes/No/I don’t Know
Are all deployed measures used? Yes
Are all measures updated with specified frequency? Yes, through R-Pulse (MPC5)
Can all deployed measures be easily accessed? Yes, through R-Pulse (MPC5)
Can all information needs be realized? I don’t know

Decision Support. Table 8.6 lists the criteria related to the extent that the measures and

indicators support decisions within the organization.

Table 8.6: Assessing the decision support.

Question Yes/No/I don’t Know
It is clear/transparent who is interested in the metrics data? Yes
Are meanings/interpretations of measures defined Yes
Are measures used for analyses of problems/root causes? Yes, using the metrics suite (MPC1) and

health assessment framework (MPC3)
Are measures and indicators used to formulate decisions? Yes, using the health assessment frame-

work (MPC3)
Are measures and indicators used to monitor implementation of de-
cisions?

No

Is it clear which measures and indicators, are used for technical and
managerial areas respectively?

To an extent using the meta-model
(MPC4)

Measurement Maturity. Table 8.7 lists the criteria related to the maturity of the measure-

ment process in the organization. As noted earlier, the requirements measurement program

presented in this thesis lays the foundations for a mature measurement program. Despite

the nascency of the measurement program, we can see from Table 8.7 that it exhibits a level

of maturity through the use of documents and repeatable algorithms, automatic data col-

lection, decision criteria for visualizations, and the measures availability in standard tools.
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Table 8.7: Assessing the organization’s measurement maturity.

Question Yes/No/I don’t Know

Is there a prioritized list of defects per product? N/A

Is there a list over the most complex software modules? N/A

Are measures and indicators collected/calculated using documents

and repeatable algorithms?

Yes, using the metrics suite (MPC1)

and the health assessment framework

(MPC3)

Are measures and indicators collected/calculated manually? Initially

Are measures and indicators collected/calculated automatically? Yes, using R-Pulse (MPC5)

Are measures and indicators visualized with decision criteria? Yes, using the RAG system and thresh-

olds in the health assessment frame-

work (MPC3)

Are measures and indicators accompanied with information qual-

ity/reliability evaluation?

No

Are measures and indicators available in standard tools (e.g. Eclipse,

MS Excel), used and understood in the organization?

Yes, excel and the dashboard (MPC5)

Collaborating with Academia. Table 8.8 lists the criteria related to assessing the collab-

oration with academia. The organization’s collaboration with academia for measurement

began with this project. Thus, this work has the potential to promulgate further academic

collaboration with the organization in the future.

Table 8.8: Assessing collaboration with academia.

Question Yes/No/I don’t Know
Does the metrics organization have collaboration with academia? Yes
Does the metrics organization execute measurement research
projects?

Yes

Does the metrics organization publish papers? Yes
Does the metrics organization have students on site? The author of this work and others
Does the metrics organization supervise bachelor/master theses? No

External Collaboration. Given the nascency of the requirements measurement program

in the organization, it has yet to collaborate with other companies for measurement pur-

poses.

The above assessment of the measurement program shows that the requirements mea-

surement program components presented in this thesis contribute to the implementation

of a robust measurement program in practice; the tables show how the various measure-

ment program components satisfy a large portion of the listed robustness criteria. However,

this work is but a a first step towards establishing a mature requirements measurement pro-

gram for the collaborating organization and other organizations.
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Chapter 9

Conclusions and Future Work

To conclude this thesis, we revisit the problem and our research goal from Chapter 1, sum-

marize our contributions in light of the research goal, and reflect on our contributions and

draw conclusions from them in Section 9.1. Finally, we discuss future work in Section 9.2.

9.1 Summary and Conclusions

Measurement in systems and software engineering began garnering serious attention in the

software engineering community since the 1970s [Staron and Meding, 2018]. Since then, it

has received significant attention due to the many benefits accrued from measuring soft-

ware and systems processes, products, and projects. The effort dedicated towards mea-

surement in software engineering takes the form of software metrics [Chidamber and Ke-

merer, 1994], metric validation [Kitchenham, 1995; Briand et al., 1995], metric derivation

approaches [Basili et al., 1994], and measurement tool support [Johnson, 2007; Sharma and

Kaulgud, 2012; López et al., 2018], to name a few.

Similarly, requirements measurement has shown to be beneficial in tracking develop-

ment progress, identifying gaps in the downstream deliverables related to requirements

[Kratschmer, 2013], managing risks that may be introduced due to late changes to require-

ments [Costello and Liu, 1995; Kratschmer, 2013], reducing requirements errors and defects

[Davis et al., 1993; Costello and Liu, 1995], and in aiding in project management and deci-

sion making [IEEE, 2017].

However, the bulk of the effort has been for code-centric measurement. Specifically,

only 5% of the literature on metrics addresses the requirements phase of a system or soft-

ware project. While the benefits of requirements measurement have been recognized by re-

searchers [Costello and Liu, 1995] and practitioners [Kolde, 2004; Wiegers, 2006; Kratschmer,

2013], there is a lack of effort regarding the metrics, methods, and tools needed to establish
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requirements measurement programs. Our experience with industry echoes this deficit; de-

spite the need within the company for requirements measurement, practice and literature

do not provide the tools necessary to implement requirements measurement.

Using the gap in the literature and our experience with industry as our motivation, our

aim in this thesis was to create a requirements measurement program that would begin

filling the gap in the literature and addressing the need in practice. Thus, in collaboration

with an organization in the rail automation domain, we created the following solutions for

requirements measurement, each reported in a standalone chapter:

1. A structured requirements metric suite that consists of: (i) a set of five measurable re-

quirements attributes, (ii) four novel metric levels, (iii) 90 requirements metrics mea-

suring each of the five attributes at the four metric levels, and (iv) 9 requirements

meta-data items to apply the metrics (Chapter 3).

The metrics suite provides practitioners with the foundational measurement elements

for applying requirements metrics and reporting measures in the software and sys-

tems development processes so as to provide internal stakeholders with the necessary

requirements-driven information.

Within the realm of research, the contributions of this chapter bring an unprece-

dented level of scientific rigor to requirements metrics that is currently lacking in the

literature, which is achieved by: providing formal definitions of the metrics and vali-

dating them theoretically and empirically, shedding light on the scientific properties

of measurable requirements attributes, introducing novel requirements metrics lev-

els, and pushing towards establishing a consensus on the required meta-data items

needed to facilitate the requirements measurement process.

The work in this chapter led to several conclusions. First, requirements and require-

ments meta-data provide fertile ground for defining and applying useful requirements

metrics that can be incorporated into the requirements management and develop-

ment processes. Second, requirements metrics do, in fact, facilitate the requirements

management process and provide internal stakeholders with requirements-driven in-

formation that aided them in carrying out their development related tasks. Such tasks

included ensuring requirements-design coverage by architects, release planning by

systems and products managers, safety requirements management by safety man-

agers, and communication to upper management and clients. Finally, different mea-

sures for the various attribute-level combinations are used differently by internal stake-

holders.
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2. An approach to derive and organize requirements metrics and related information

(Chapter 4). The approach consists of 7 steps and combines the use of GQM [Basili

et al., 1994] and the identification and analysis of four main RE measurement ele-

ments: attributes, levels, metrics, and meta-data items. The contributions of this

chapter provide a means to achieve the results in Chapter 3.

We applied the approach to real-life projects and showed how the approach led to a

more comprehensive set of requirements metrics, improved organization and report-

ing of metrics, and improved consistency, completeness of requirements meta-data

across projects, and reduction of requirements measurement time.

The approach and its application demonstrate that, despite the significant attention

given to software engineering measurement, there exists measurement challenges

specific to requirements, particularly in a large systems engineering context. Thus,

the approach is but a step towards addressing those challenges through further re-

search and investigation of requirements measurement approaches.

3. A requirements-centric project health assessment framework that measures and an-

alyzes critical requirements attributes, in conjunction with project data (e.g., dead-

lines and resources), and identifies their health indicators, which are visualized using

a RED-AMBER-GREEN (RAG) indicators system (Chapter 5). The resultant health in-

dicators provide a high-level view of project health from a requirements perspective

with the ability to drill down to specific, raw measures. The proposed framework in

this chapter builds upon the results (i.e., requirements attributes and metrics) identi-

fied in Chapter 3.

The framework aids manual and personal-based assessments with a quantitative and

systematic assessment of project health that can aid in identifying critical requirements-

related problems that may negatively impact the project’s likelihood of success.

The contributions of this chapter show that there is a need for methods and tools that

integrate requirements into project health assessments. Our framework demonstrates

that such an endeavour is feasible and worthwhile as it supports manual and personal

assessments with quantitative, requirements-centric information, which, in turn, aids

in managing and monitoring large systems projects more effectively.

4. A meta-model that seeks to make sense of web of interactions among measurement

entities in a project or organization in order to facilitate the management of the re-

quirements measurement process (Chapter 6). Specifically, the meta-model maps out

the entities and relationships involved in providing requirements-driven information
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to internal stakeholder within the context of a systems project. The meta-model con-

sists of three abstraction levels in which the first (highest) abstraction level consists

five entities and nine relationships. The entities and relationships are further decom-

posed in the lower abstraction levels.

The benefits of using the meta-model include i) control and management of pro-

cesses and resources involved in providing requirement-driven information to inter-

nal stakeholders, ii) communication among internal stakeholders, and iii) aligning

internal stakeholder concerns with requirements-driven information that can be gen-

erated within the project.

For research, the meta-model enhances our understanding of stakeholders’ informa-

tion needs through identifying the different types of stakeholders in relation to re-

quirements and requirements specifications.

5. A web-based requirements dashboard (R-Pulse) prototype that automates the con-

cepts from the previous chapters 7. R-Pulse uses exports of the requirements docu-

ments and other software artifacts (e.g., design, test, and defects) to calculate the re-

quirements metrics and health indicators. Internal stakeholders are able to view the

project’s health indicators and drill down to the requirements measures. The dash-

board provides various visualization and navigation options so as to address each in-

ternal stakeholder’s need with regard to the requirements-driven information.

The contributions were validated using various validation techniques such as action re-

search [Santos and Travassos, 2011], focus groups , expert opinion [Yousuf, 2007; Helmer,

1967], which we summarize in Chapter 8. Moreover, we use established measurement pro-

gram assessment criteria [Staron and Meding, 2018] to evaluate the robustness of the overall

requirements measurement program. Our assessment shows that our measurement pro-

gram satisfies the majority of the robustness criteria for measurement programs.

It remains the case that this research was conducted within a specific context, that is,

the context of a large systems engineering project in the rail-automation domain. Such a

domain is characterized by mature requirements engineering software development pro-

cesses, organization and management-level support for measurement, and sophisticated

requirements infrastructure, all of which contributed to making a conducive environment

for a requirements measurement program. The downside, however, is that generalizing the

findings and solutions of this thesis must be done with caution. On the other hand, this

work lays a solid foundation for further work and research on requirements measurement,

which we discuss in the following section.
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9.2 Future Work

Despite the progress made in this thesis towards developing the field of requirements mea-

surement, there remains ideas and areas worth exploring in the future. This section dis-

cusses some potential future paths.

As discussed earlier, the solutions presented in this thesis are rooted in industrial prac-

tice and were built to address real-world problems in a specific domain with waterfall-like

software development processes. Thus, an important area for future work consists of in-

vestigating the applicability of our solutions in other development environments (e.g., agile

processes) and domains (e.g., health, banking and web services) to improve its generaliz-

ability. Some questions that are worth asking include: Are the same set of requirements

metrics useful in other domains? What are the internal stakeholders’ information needs

with regard to requirements in an agile process? Does the meta-model capture the mea-

surement process in other software development processes?

It is expected, then, that the proposed solutions would require customization for differ-

ent domains and development processes. Thus, studying the customization options of the

proposed solutions in order for them to be useful and effective in different domains and

development life cycles is another important line of future work.

Another area of future research is integrating the concepts in this thesis (i.e., metrics,

health indicators, attribute-level combinations, internal stakeholder information needs, and

requirements dashboard) into current requirements tools such as DOORS, Modern Require-

ments, Jama Software, and ReqSuite, to name a few. This would allow for a seamless require-

ments measurement and management process and would reduce the overhead associated

with learning and adopting requirements measurement concepts and activities.

Finally, the requirements metrics, approach, model, and tool in this thesis are geared to-

wards addressing the needs of internal stakeholders such as requirement engineers, archi-

tects, R&D managers, developers, and so forth. However, external stakeholders and users

(e.g., contractors, regulatory bodies, and customers, etc.) have a vested interest in the sys-

tem and software requirements as well. Exploring the ways requirements measurement can

be utilized to address the needs of external stakeholders is another future endeavor worth

undertaking.
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Appendix A

Exploratory Interactive Study Details

The interactive study took place at the International Empirical Requirements Engineering

(EmpiRE’18) Workshop co-located with the International Requirements Engineering Con-

ference. A version of this appendix was published in [Noorwali and Madhavji, 2018].

Two major activities were carried out in the study: (i) gathering relevant data for model

enhancement, and (ii) preliminarily analysis of the data while involving the participants.

Below I describe the research questions posed to the participants and the study design.

A.1 Research Questions

With reference to the preliminary model,

• RQ1. Which additional elements do you think would enhance the model?

• RQ2. Which elements do you think can be removed from the model?

• RQ3. Which elements do you think can be modified from the model?

• RQ4. Which additional relationships among the elements do you think would en-

hance the model?

• RQ5. Which relationships among the elements do you think can be removed from the

model?

• RQ6. Are there any complimentary considerations that have not been treated by the

existing model (e.g., assumptions, rationales, etc.)?

• RQ7. Which relationships among the elements do you think can be modified from the

model (e.g., direction, cardinality, etc.)?
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A.2 Design of the Exploratory Interactive Study

The main idea of the study is to pose the research questions to the participants —displayed

in a large and accessible format—and allow them to provide answers in an interactive and

simultaneous manner by posting their answers onto clusters of common areas on a wall-of-

ideas (e.g., one cluster per research question). Details of the study procedure are as follows:

Introduction: 20-25 minutes:

• The researcher-moderator presented the current research, results, concepts, context,

and the preliminary domain model to the participants.

• The researcher-moderator gave a briefing on the domain model construction process.

• The researcher-moderator presented and explained the research questions (RQs) to

the participants and placed the RQs on a board with space for participant contribu-

tions.

• Post-it notes and pens were made available for participants to make their contribu-

tions.

Data gathering: 25-30 minutes

• The researcher-moderator then opened the floor to the participants to provide pos-

sible answers for the RQs. The answers to each RQ were posted in their designated

areas on the wall-of-ideas.

• There was also a fourth area for the participants to provide comments and feedback

outside the scope of the seven RQs.

• During data gathering, the researcher-moderator was standby for any needed assis-

tance.

Data analysis: 25-35 minutes

• Data analysis consisted mainly of qualitative data analysis. The researcher-moderator

lead the analysis of the participants’ answers (post-it notes) in a plenary manner and

discussed selected responses by:

– Selecting heavily loaded clusters of responses and discuss rationale behind these

post-it notes (source participants will be invited to make comments).
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– Selecting empty or lightly loaded clusters and discuss triggers for new elements

and relationships.

– Discussing generalizability of the overall model.

– Performing a comparative analysis of the ‘before’ and ‘after’ domain models.
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Questionnaire for the Evaluation of the

Meta-Model for Requirements-Driven

Information for Internal Stakeholders

B.1 Introduction and Instructions

• This document depicts a meta-model constructed based on the results of an action

research study conducted in a large systems project in the rail automation domain.

• The purpose of this document is to validate the meta-model regarding its usefulness

with perspectives from the field of practice.

• Below, please find a questionnaire which we kindly request your responses to. The

questionnaire is composed of six questions (three background questions and three

meta-model specific questions). We anticipate that it would take no more than 10

minutes to answer all the questions. All opinions are valid and will be gratefully re-

spected.

• This document is composed of two sections: Section 1 presents a brief description of

the meta-model, and Section 2 presents the validation questions.

B.2 Section 1: Brief Description of the Meta-Model

Providing requirements-driven information (e.g., requirements volatility measures, requirements-

design coverage information, and requirements growth rates, etc.) falls within the realm

of the requirements management process. The requirements engineer must derive and

225



226 Appendix B

present the appropriate requirements information to the right internal stakeholders in the

project. This process is made complex due to project-related factors such as numerous

types of internal stakeholders, varying stakeholder concerns with regard to requirements,

large project sizes, a plethora of software artifacts, and many affected processes. How-

ever, currently, there is little guidance in practice as to how these factors come into play

together in providing the described information to the internal stakeholders. Based on an-

alyzed data from an action research study we conducted in a large systems project in the

rail-automation domain, we propose a meta-model that consists of the main entities and

relationships involved in providing requirements-driven information to internal stakehold-

ers within the context of a large systems project. The meta-model consists of five main

entities and nine relationships that are further decomposed into three abstraction levels.

The meta-model is anticipated to facilitate: (i) control and management of process and re-

sources for providing requirement-driven information to stakeholders; (ii) communication

among internal stakeholders; and (iii) reuse of the meta-model across different projects.

The proposed meta-model is depicted in Figure B.1.

Figure B.1: Meta-model for requirements-driven information for internal stakeholders.
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With reference to Figure B.1, we then discuss the entities and relationships presented in

the model. Table B.1 provides a short description of the entities depicted in the proposed

model.

Table B.1: Descriptions of meta-model entities at abstraction level 2.

Entity Description

Requirements Metric A measurement derived from requirements to provide a quan-

titative assessment of certain requirements attributes

Requirement Analytics Analytics on requirements data in conjunction with other soft-

ware artifacts (e.g., design, code, budget and schedule docu-

ments, etc.) that aims to gain insight about the state of the

project from a requirements perspective

High-level Managerial

IS

Managerial stakeholders who manage at the project level or

higher (i.e., program or regional levels) such as the program or

regional R&D manager, etc.

Mid-Level Managerial

IS

Managerial stakeholders who manage at the project level or

lower (i.e., product level) such as test manager, product qual-

ity manager, etc.

Regular Technical IS Technical ISs who use requirement-driven information regu-

larly such as architects and requirements engineers

Irregular Technical IS Technical internal stakeholders who use requirement-driven

infor-mation less frequently such as developers and testers

Managerial IS Concern Managerial issues that ISs care about in relation to the require-

ments such as estimating time and effort for a software release

Technical IS Concern Technical issues that ISs care about in relation to the require-

ments such as increasing requirement-design coverage

Downstream Process Activities involved in system development and initiated after

the requirements engineering process such as development,

design, testing, etc.

Upstream Process Activities that are involved in system development and are initi-

ated before the RE process such as contract/client management

Side-stream Process Activities involved in system development and initiated and ex-

ecuted alongside the RE process such as quality and project

management, etc.
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There are three abstraction levels depicted in this model:

• Level 1: Entities and relationships at level 1 are abstract and generalizable enough to

be applicable to any context regardless of domain, software development process, or

organizational structure.

• Level 2: Entities at abstraction Level 2 are also intended to be generalizable to differ-

ent contexts. However, its applicability may differ from one context to another. The

entities at abstraction level 2 are further decomposed into entities at abstraction Level

3.

• Level 3: The project specific level in which the entities are tailored to represent the

environment of a given project in different domains and development processes. For

example, requirement metrics in our study consisted of size, growth, volatility, cover-

age, and maturity metrics. Another project’s requirements metrics may include only

volatility metrics. The same applies to other entities. Because entities at level 3 are

specific to our project, we did not include a detailed description of them. However,

they illustrate how the meta-model can be applied within a large systems project.

B.3 Section 2: Validation Questions

B.3.1 Background Questions

1. What is your job title?

2. How many years of experience do you have in industry? And how many years of your

experience in industry are in requirements engineering?

3. How many years of experience do you have with research? And how many years of expe-

rience in research are in requirements engineering?

B.3.2 Meta-Model Feedback Questions

4. To what extent do you agree that the meta-model is useful for practice?

1. Strongly disagree

2. Disagree
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3. Disagree

4. Neither agree or disagree

5. Agree

6. Strongly agree

Justify your opinion:

5. If you were to use this meta-model in your project, how will it be useful?

6. Any general comments (please kindly provide any other recommendations below for im-

proving of the meta-model)?
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