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Abstract 

Asthma has been understood to affect the airways in a spatially heterogeneous manner for over 

six decades.  Computational models of the asthmatic lung have suggested that airway 

abnormalities are diffusely and randomly distributed throughout the lung, however these 

mechanisms have been challenging to measure in vivo using current clinical tools.  Pulmonary 

structure and function are still clinically characterized by the forced expiratory volume in one-

second (FEV1) – a global measurement of airflow obstruction that is unable to capture the 

underlying regional heterogeneity that may be responsible for symptoms and disease 

worsening.  In contrast, pulmonary magnetic resonance imaging (MRI) provides a way to 

visualize and quantify regional heterogeneity in vivo, and preliminary MRI studies in patients 

suggest that airway abnormalities in asthma are spatially persistent and not random.  Despite 

these disruptive results, imaging has played a limited clinical role because the etiology of 

ventilation heterogeneity in asthma and its long-term pattern remain poorly understood.  

Accordingly, the objective of this thesis was to develop a deeper understanding of the 

pulmonary structure and function of asthma using functional MRI in conjunction with 

structural computed tomography (CT) and oscillometry, to provide a foundation for imaging 

to guide disease phenotyping, personalized treatment and prediction of disease worsening.  We 

first evaluated the biomechanics of ventilation heterogeneity and showed that MRI and 

oscillometry explained biomechanical differences between asthma and other forms of airways 

disease.  We then evaluated the long-term spatial and temporal nature of airway and ventilation 

abnormalities in patients with asthma.  In nonidentical twins, we observed a spatially-matched 

CT airway and MRI ventilation abnormality that persisted for seven-years; we estimated the 

probability of an identical defect occurring in time and space to be 1 in 130,000.  In unrelated 

asthmatics, ventilation defects were spatially-persistent over 6.5-years and uniquely predicted 

longitudinal bronchodilator reversibility.  Finally, we investigated the entire CT airway tree 

and showed that airways were truncated in severe asthma related to thickened airway walls and 

worse MRI ventilation heterogeneity.  Together, these results advance our understanding of 

asthma as a non-random disease and support the use of MRI ventilation to guide clinical 

phenotyping and treatment decisions.  
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Summary for Lay Audience 

Asthma is a chronic lung disease that causes the air a person breathes in to unevenly spread 

throughout their lungs.  The causes of this are still not well-known because the current tools to 

measure lung function cannot locate where inside the lungs the air does not go.  To better 

understand this, computer models have been created and showed that asthma lung 

abnormalities are randomly spread throughout the whole lungs, but magnetic resonance 

imaging (MRI) of the lung showed that abnormalities stay in the same lung locations over time 

and are not random.  Despite these new results, MRI of the lungs is not used often for asthma 

patients because the causes of MRI measurements and how they change over long periods of 

time are not known.  This thesis measured lung structure and function in asthma using 

functional MRI and structural computed tomography (CT) imaging to better understand how 

and why air unevenly spreads throughout the lungs in patients with asthma and create a new 

way to guide asthma treatments to help air spread more evenly.  First, we evaluated lung 

biomechanics and saw different biomechanical measurements in patients with asthma 

compared to different lung diseases and healthy people.  We then evaluated MRI and CT lung 

abnormalities twice over 6-7 years in two different groups of patients.  Twins with asthma had 

a lung abnormality in the exact same location that stayed the same after 7 years.  We calculated 

the chances of an identical abnormality like this occurring in two people to be 1-in-130,000, 

or less likely than the chances of someone being struck by lightning.  In a larger group of non-

related asthma patients, MRI and CT abnormalities remained in the same lung locations over 

6.5 years and MRI abnormalities predicted future asthma worsening.  Finally, we evaluated all 

airways we could see on CT images and saw that patients with severe asthma had less airways 

and this was related to thicker airway walls and worse lung function.  Together, these results 

provide a better understanding of lung structure-function in asthma that are not random and 

support the use of MRI to guide patient-specific treatment.  
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CHAPTER 1  

1 INTRODUCTION 

Asthma is a chronic airways disease; for over 2500 years, airway abnormalities in asthma 

have been understood to be distributed randomly throughout the lung.  There is now 

evidence to suggest that asthma is regionally heterogeneous and not random.  In this thesis, 

the structure and function of asthma are studied using pulmonary magnetic resonance 

imaging (MRI) and computed tomography (CT) to develop a deeper understanding of the 

asthmatic lung. 

1.1 Motivation and Overview 

Asthma is a chronic respiratory disease that affects approximately 300 million people in 

the world.1  Worldwide prevalence rates of asthma have been consistently increasing over 

the last 20 years and this estimate is expected to increase to 400 million by 2025.1  In 

Canada, asthma prevalence has increased 67% since 2000 and currently affects 3.8 million 

people (10.8%).2  As shown in Figure 1-1, asthma is the most common chronic respiratory 

disease in Canada, accounting for 78% of all cases.3  Asthma affects people of all ages, 

although prevalence rates are highest for those younger than 20 years old and prevalence 

rates drop until age 65 and older, after which the rates begin to increase.4 

 

Figure 1-1 Prevalence of asthma in Canada 

Left: Proportion of all respiratory diseases. Data from the Public Health Agency of Canada, 

Life and Breath: Respiratory Disease in Canada (2007).3  

Right: Asthma prevalence by age. Data from Public Health Agency of Canada, A Trend 

Analysis of the Health of Canadians from a Healthy Living and Chronic Disease 

Perspective (2016).4 
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Because of its high prevalence and chronicity, asthma poses a large burden on the economy 

and healthcare system.  The number of patients hospitalized annually for asthma is greater 

than that of heart failure and diabetes and approximately 16% of these patients will 

experience a repeat hospitalization within one year of initial admission (Figure 1-2).5  In 

contrast to other chronic diseases however, hospitalizations related to asthma are most 

common for patients younger than 20 years of age.5  In Ontario alone, asthma care cost 

approximately $1.8 billion in 2011 and is estimated to grow to $97 billion in the next 20 

years.6 

 

Figure 1-2 Hospitalizations for chronic diseases in Canada  

Left: Repeat hospitalizations after first admission. Right: Hospitalizations by age groups. 

Data from Canadian Institute for Health Information (CIHI) Health Indicators 2008.5 

Notably from Figure 1-1 and Figure 1-2, chronic obstructive pulmonary disease (COPD) 

is the second most common respiratory disease in Canada3 and accounts for the greatest 

total number of hospitalizations, especially for people aged 60 and older.5  COPD is even 

more costly than asthma, costing approximately $3.9 billion in Ontario in 2011.6  

Moreover, in the next 20 years, the economic burden of COPD is expected to rise to $311 

billion.6  Together, asthma and COPD affect over 5 million people in Canada2 and 500 

million people in the world,7 and contribute to the third leading cause of death worldwide.8  

Although often recognized as distinct chronic respiratory diseases, asthma and COPD have 

also been regarded by some as heterogeneous and overlapping conditions.  Despite the 

traditional idea that COPD is caused by tobacco smoke and largely preventable, asthma is 

also a risk factor for development of COPD independent of tobacco smoking.9,10  

Epidemiological studies suggest that 10% of patients with asthma will progressively 
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develop persistent airflow obstruction and COPD in their lifetime11,12 and these patients 

utilize more healthcare resources13 and experience more hospitalizations14 than those with 

COPD alone.  These alarming findings highlight the need for a deeper understanding of 

pathophysiology, treatment and management of chronic respiratory disease. 

Since its first description over 2500 years ago,15 asthma has been idealized as a diffuse 

airways disease with variable symptoms and airflow limitation.  Substantive research has 

generated new knowledge that has driven a paradigm shift in the understanding of these 

concepts.  The notion of ventilation heterogeneity in asthma was first introduced over 60 

years ago using inert gas washout16,17 and nuclear medicine imaging techniques.18,19  

Currently however, airflow limitation and its response to treatment or progression over 

time are monitored using the forced expiratory volume in one second (FEV1) – a simple 

and inexpensive spirometry measurement of airflow obstruction.  FEV1 provides only a 

global measurement of lung function that is unable to capture the regional heterogeneity of 

airway abnormalities that may be responsible for symptoms and disease worsening.  

Computational modeling studies have suggested that the regional heterogeneity in asthma 

can be described by randomly distributed airway abnormalities throughout the whole 

lung,20,21 however these mechanisms have been challenging to measure in vivo using 

current clinical tools.  As a result, asthma is still regarded as a random disease and 

treatments are geared towards all airways and not individualized.  Moreover, inhaled 

therapies are not effective in all patients with asthma for various reasons such as poor 

regional drug distribution or drug resistance, but spirometry is not able to identify the 

reasons that cause lack of treatment efficacy. 

Pulmonary functional magnetic resonance imaging (MRI) using inhaled noble gases 

provides a means to directly visualize and quantify regional gas distribution in vivo.  

Preliminary MRI findings in asthma demonstrate focal ventilation abnormalities that are 

spatially persistent over time.22,23  These disruptive results contradict in silico results and 

suggest that asthmatic airway abnormalities may not be random, yet pulmonary imaging 

has played a limited role in asthma research and clinical care because the etiology of 

ventilation heterogeneity and its long-term pattern remains poorly understood.  In contrast, 

imaging has played a large role in developing an understanding of the pulmonary structure-
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function relationships in COPD owing to multiple large cohort studies that have 

incorporated imaging using x-ray computed tomography (CT)24-27 and inhaled gas MRI.28  

Whereas COPD is characterized by persistent and progressive airflow limitation, overlap 

between asthma and COPD exists11,12,29 and there is something to be learned from the 

imaging results in COPD.  Pulmonary imaging has the potential to uncover the structural 

mechanisms and physiological relevance of regional ventilation heterogeneity in asthma 

and accordingly, this thesis focuses on the investigation of the pulmonary imaging 

structure-function relationships in asthma to develop a deeper understanding of the 

asthmatic lung.  Armed with such an understanding, we have the potential to guide 

treatment decisions and regional therapies, predict disease worsening, and improve patient 

outcomes.   

In this Chapter, the relevant background information is provided to motivate the original 

research presented in Chapters 2-5.  A general overview of typical pulmonary structure 

and function is first provided (1.2), followed by the pathophysiology of asthma and COPD 

(1.3) and a brief description of current knowledge of asthma-COPD overlap.  Clinical tools 

to measure pulmonary function are then described including the expected measurement 

deviations for asthma and COPD (1.4) as well as clinical assessments for characterizing 

each (1.5).  The current state of imaging techniques is subsequently described in the context 

of imaging biomarkers to measure and understand pulmonary structure and function in 

asthma and COPD (1.6).  Finally, the specific hypotheses and objectives of the work 

presented in this thesis are introduced (1.7). 
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1.2 Respiratory Structure and Function 

The primary function of the respiratory system is gas exchange.  The respiratory system 

comprises the nasal and oral cavities, pharynx, larynx, airways, lungs, chest wall and 

diaphragm; in this section, the structure and function of the airways and alveoli within the 

lungs are presented.  The airways serve as conduits for the movement of air to the alveoli 

where gas exchange occurs across the alveolar-capillary interface.  The overall function of 

the airways and alveoli is to deliver oxygen and remove carbon dioxide from the 

bloodstream by the process of ventilation.  

1.2.1 Airways: Conducting and Respiratory Zones 

Inhaled air first enters the respiratory system through the nasal or oral passages and then 

moves through the pharynx followed by the larynx, collectively known as the upper 

airways.  Below the larynx, and as shown in Figure 1-3, the lower airways are grouped 

into the conducting and respiratory zones based on their structural and functional 

characteristics.  The conducting zone acts as a conduit to carry air to the respiratory zone 

where gas exchange occurs.  In general, each airway starting from the trachea continuously 

bifurcates into two daughter branches until the alveolar sacs at generation 23.   

Conducting Zone 

The conducting zone comprises the first 16 airway generations from the trachea (generation 

0) to the terminal bronchioles (generation 16).30  The trachea is a long tube lined with 

cartilage and muscle that connects the upper airways directly to the lungs and 

asymmetrically bifurcates into the left and right main bronchi to supply each lung.  The 

main bronchi divide into the lobar bronchi that supply the five lung lobes – the upper, 

middle and lower lobes in the right lung and upper and lower lobes in the left lung.  Lobar 

bronchi subsequently divide into segmental bronchi, which supply air to the 19 

bronchopulmonary segments that are anatomically and functionally distinct.  Figure 1-3 

shows the anatomical labels for the airways from the trachea to the segmental level.  The 

airways are not individually named beyond the segmental bronchi.  From here, the airways 

become narrower, shorter and more numerous as they branch to supply all areas of the 

lungs.  The airways from the trachea up to the small bronchi at generation 11 are lined with 
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cartilage to maintain patency.  Smooth muscle is interleaved with cartilage beginning in 

the lobar and segmental bronchi and is typically circumferentially wrapped around the 

airway walls.  At the 12th generation, the airways become embedded in the lung 

parenchyma and are lined with smooth muscle only, relying on the elastic forces to tether 

the airways open.31  The conducting zone ends at the terminal bronchioles, where the 

number of airways has increased more rapidly than the calibre diminished such that the 

total cross-sectional area exponentially increases.  As the name suggests, the conducting 

zone conducts and humidifies air to the distal lung.  These airways do not participate in gas 

exchange and are thus known as the anatomic deadspace – approximately 150 mL of air 

remains in the conducting airways during each breath.30 

Respiratory Zone 

The respiratory zone begins at the respiratory bronchioles (generation 17) and includes the 

remaining distal airways up to the alveolar sacs (generation 23).  Compared with the 

conducting zone, the airways in the respiratory zone change little in diameter as they 

branch.  As shown in Figure 1-3, the respiratory bronchioles are the point where the 

airways begin to be lined with alveoli to facilitate gas exchange.  There are increasingly 

more alveoli in the airway walls as the respiratory bronchioles branch and increase in 

airway generation.  The alveolar ducts directly follow the respiratory bronchioles and have 

no airway walls but are completely lined with alveoli.  The respiratory zone and entire 

airway tree terminate at the alveolar sacs, which are completely surrounded by alveoli to 

maximize surface area available for gas exchange.  Although the distance from the first 

respiratory bronchiole to the most distal alveolus is only a few millimetres, the respiratory 

zone accounts for approximately 2.5-3.0 L of lung volume at rest30 because of its millions 

of airways. 
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Figure 1-3 Airway tree schematic and airway labels  

Top: The human airway tree consists of the conducting zone (generations 0-16) and 

respiratory zone (generations 17-23); corresponding airway generation, number, diameter 

and cross-sectional area are shown. Adapted from West & Luks, Respiratory Physiology: 

The Essentials, Tenth Edition30 and Weibel et al, Morphometry of the Human Lung.32 

Bottom: Segmental airway labels. Based on Boyden, Segmental Anatomy of the Lung33 

and adapted from Tschirren et al, IEEE Trans Med Imaging (2005).34 
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1.2.2 Alveoli: Site of Gas Exchange 

The alveoli are the direct site of gas exchange at the terminal ends of the airway tree on the 

respiratory bronchioles, alveolar ducts and alveolar sacs.  On average, there are 480 million 

alveoli in the human lung (range 274-790 million depending on height and lung volume of 

the individual),35 each with a diameter of approximately 200 m.30  Pulmonary capillaries 

wrap around each alveolus to create the blood-gas interface between the alveolar 

epithelium and capillary endothelium.  Oxygen and carbon dioxide are exchanged across 

the blood-gas interface by passive diffusion according to Fick’s law – the amount of gas 

that moves across the membrane is proportional to its area and inversely proportional to its 

thickness.30  The blood-gas interface is extremely thin (0.2-0.3 m)36 and, together with 

the large alveolar surface area (50-100 m2),30 this makes the lung well-suited for efficient 

exchange of oxygen and carbon dioxide. 

1.2.3 Ventilation 

The process by which air travels to and from the alveoli is known as ventilation.  Pressure 

gradients between the external environment and the alveoli drive airflow from the upper 

airways to the alveoli by bulk flow.30  Inspiration is actively initiated when the diaphragm 

and intercostal muscles contract, causing the alveolar pressure to decrease below that of 

the environment and air to flow into the lungs.  Expiration occurs passively when the 

muscles relax and alveolar pressure increases beyond that of the environment, driving the 

gas out of the lungs.  The lung and chest wall are elastic and will tend to return to their 

equilibrium positions via elastic recoil after being actively expanded during inspiration.  

Ventilation is expressed as the volume of air that is exchanged between the external 

environment and body as a function of time in Equation 1-1:  

Equation 1-1 Total ventilation [L/minute] = Breathing rate [/min] ∙VT [L]  

The total volume of air inhaled with each breath, known as tidal volume (VT), is 0.5 L on 

average.  The ventilation rate for healthy adults is 12-20 breaths/minute – assuming a rate 

of 15 breaths per minute, the total ventilation would be 7.5 L/min.  However, as described 

previously, not all inhaled gas reaches the alveoli and participates in gas exchange because 

of the 150 mL of deadspace (VD) in the conducting zone.  Thus, Equation 1-1 represents 
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total ventilation to the entire lung.  It is important to determine the amount of fresh air 

participating in gas exchange, known as the alveolar ventilation as in Equation 1-2: 

Equation 1-2 Alveolar ventilation [L/min] = Breathing rate [/min] ∙ (VT-VD) [L] 

In the same way as previously, assuming a breathing rate of 15 breaths per minute, the 

alveolar ventilation would be 5.25 L/min.  Although 7.5 L of air enters the lungs every 

minute, only 5.25 L reaches the alveoli.  

1.3 Pathophysiology of Asthma and COPD 

Asthma and COPD are both obstructive lung diseases characterized by expiratory airflow 

limitation.  Though once recognized as distinct disease entities, new understandings and 

definitions in the last 20 years acknowledge overlap of asthma and COPD and highlight 

similarities and differences between the two.  Importantly, the airway and parenchymal 

abnormalities within an individual patient are regionally heterogeneous in both asthma and 

COPD.  Here, the underlying pathophysiologies of the respiratory system in asthma and 

COPD are first presented as distinct entities, followed by a description of overlap between 

asthma and COPD. 

1.3.1 Asthma 

Asthma is characterized by variable airflow limitation that results in intermittent symptoms 

of shortness of breath, wheeze, cough and chest tightness.37  Pathophysiology of asthma is 

confined to the airways and derives from a complex interplay of structural and 

inflammatory changes that lead to airway wall thickening and edema, airway 

hyperresponsiveness, mucus hypersecretion and ultimately, luminal narrowing.  This 

phenomenon is shown in Figure 1-4 – compared with a healthy airway, the asthmatic 

airway wall is markedly thickened and encroaches on the airway lumen.38  Structural 

airway changes include goblet cell hyperplasia,39 subepithelial fibrosis,40 angiogenesis,41 

submucosal gland hyperplasia and hypersecretion,42 and smooth muscle hypertrophy and 

hyperplasia,43 collectively known as airway remodeling.  Airway remodeling and 

inflammation together lead to thickening of the airway wall and subsequent airflow 

obstruction via bronchoconstriction by smooth muscle and luminal obstruction by mucus 
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and debris.  Airway inflammation in asthma involves the interactions of many immune 

cells, however is predominantly eosinophilic.38  Eosinophil levels are increased in both the 

airway wall and lumen,44 and contribute to wall thickening and luminal plugging, trigger 

bronchoconstriction and mucus secretion, and may also play a role in driving the 

remodeling process.45  Bronchoconstriction occurs when the smooth muscle in the airway 

walls contracts and narrows the airway lumen; bronchoconstriction may be further 

exaggerated in airway hyperresponsiveness to various stimuli or irritants, such as allergens 

or exercise.  Ultimately, narrowed and obstructed airway lumens increase the resistance to 

airflow in asthmatic airways and restricts airflow into and out of the lung.  Although the 

lung parenchyma is spared in asthma, airway abnormalities affect the entire bronchial tree 

including large and small airways.46  It is important to note that asthma is a heterogeneous 

condition and the relative contributions of each underlying component may be different 

between patients. 

There is no one single cause of asthma, but rather a number of host and environmental 

factors are thought to contribute to its development.47  The causes of asthma are beyond 

the scope of this thesis, however briefly, host factors may include genetic variants,48 family 

history of asthma49 or sex,50 whereas environmental factors may include allergen 

sensitization,51 respiratory viruses52 and air pollution.53  Onset of asthma commonly begins 

in childhood, but may occur at any age.  Airflow obstruction in asthma is conventionally 

recognized as reversible with bronchodilator treatment, however may become persistent 

over time.29 

1.3.2 COPD 

In contrast to asthma, COPD is characterized by persistent airflow limitation and symptoms 

of shortness of breath, cough and sputum production.54  COPD arises from chronic 

inflammation that, as shown in Figure 1-4, affects both the airways and lung parenchyma.  

Notably, inflammation in COPD consists primarily of neutrophils and macrophages.55  The 

mechanisms of airflow obstruction in COPD are associated with airway remodeling which 

increases resistance to airflow,56,57 and parenchymal damage that reduces the lung’s elastic 

recoil force.58  Structural airway remodeling in COPD occurs primarily in the small 

conducting airways59 (generations 4-16 with diameter <2 mm) and causes bronchial wall 
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thickening by submucosal gland hypertrophy60 and connective tissue deposition.42  

Inflammatory infiltrates also trigger mucus hypersecretion, which can lead to luminal 

plugging as is seen in the COPD-afflicted airway in Figure 1-4. 

 

Figure 1-4 Airway and parenchymal pathophysiology in asthma and COPD  

Top: Compared with healthy airways where the wall is thin and lumen is patent, asthmatic 

airway shows thickened airway wall via increased smooth muscle mass, muscle 

constriction and inflammation.  In COPD, airway walls are inflamed and thickened with 

inflammatory exudate of mucus and cells partially occluding the lumen.  Healthy and 

COPD airway histology adapted from Hogg, Lancet (2004).59  Asthma airway histology 

adapted from Saetta & Turato, Eur Respir J (2001).38  

Bottom: Healthy lung parenchyma shows in-tact alveoli, whereas in COPD, alveolar walls 

are destroyed and airspaces are enlarged.  There is no parenchymal disease in asthma. 

Parenchymal histology adapted from Woods et al, Magn Reson Med (2006).61  

Permissions to reproduce all images are provided in Appendix A. 

Emphysema refers to destruction of the lung parenchyma within the respiratory zone.  This 

loss of tissue reduces the elasticity of the lung tissue such that the lungs are unable to 

completely empty and become hyperinflated.  Emphysema also contributes to loss of 

tethering forces holding the small airways open and in severe cases, obliterates terminal 

airways causing reduced total airway cross-sectional area.  Emphysema can be divided into 

different types based on where along the respiratory zone the damage occurs.62,63  Most 

relevant to this thesis is centrilobular emphysema, which results from the destruction of the 

respiratory bronchioles while preserving the alveolar ducts and sacs and is the pattern most 
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commonly observed in COPD caused by cigarette smoking.59  Regardless of the type of 

emphysematous lung damage, the airspaces become permanently enlarged, reducing the 

surface area of the lung available for gas exchange.  Most patients with COPD will have 

some combination of both airways disease and emphysema, while few patients have 

extremes of one or the other.64 

Tobacco cigarette smoking has been recognized as the main cause of and largest risk factor 

for COPD development, however it is well understood now that only approximately 20% 

of smokers will develop COPD and up to 30% of patients with COPD are life-long never-

smokers.65,66  A number of other host and environmental factors have now been 

identified,67 including genetic variants,68,69 suboptimal lung development in childhood,70 

occupational exposures,71 air pollution,72 childhood respiratory infections,73 as well as life-

long asthma.9  Onset of COPD typically occurs after age 40,54 however may occur earlier 

in life due to genetic conditions such as alpha-one antitrypsin deficiency. 

1.3.3 Asthma-COPD Overlap 

The two previous sections describe the extremes of asthma and COPD that are easily 

identified.  Consistent with this idea, asthma and COPD are often treated as unique 

conditions with separate and distinct pathophysiologies.74  Some argue though that the two 

are heterogeneous and overlapping conditions with common origins and clinical 

expressions.  This idea was originally proposed in 1961 and is known as the Dutch 

hypothesis.75  Although loosely defined, it is acknowledged now that 15-45% of patients 

with obstructive lung disease will exhibit some overlap of both asthma and COPD.76,77  

Despite the high prevalence, no prospective studies have been conducted to evaluate this 

group of patients; patients with overlapping features are often excluded from respective 

asthma and COPD trials78,79 and very little is known to date about the pathogenesis of 

asthma-COPD overlap.  The most recent consensus guidelines suggest key features of 

asthma-COPD overlap to be persistent airflow limitation in symptomatic patients over the 

age of 40, documented history of asthma in childhood or early adulthood and significant 

exposure to cigarette or biomass smoke,79 however this definition is still not standardized.  

It is well-known now that asthma is a risk factor for COPD development9,10 and that up to 

10% of asthmatics will progressively develop irreversible airflow limitation or COPD.11,12  
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1.4 Clinical Tools to Measure Pulmonary Function 

Objective measures of pulmonary function, collectively known as pulmonary function 

tests, play an important role in the diagnosis and monitoring of patients with asthma and 

COPD.  Importantly, pulmonary function tests are simple, inexpensive and relatively quick 

to perform.  There are a number of tools currently available, each serving a unique purpose 

to measure different aspects of lung disease.  In this section, the clinical tools used to 

measure pulmonary function relevant to the original work presented in this thesis and their 

corresponding measurements are introduced.  The measurement deviations in the context 

of asthma and COPD are also discussed. 

1.4.1 Spirometry 

Spirometry measures volume and airflow from the lungs as air is inhaled and exhaled as a 

function of time80 and is the most commonly reported pulmonary function test.  Spirometry 

has been extensively standardized by international societies and these criteria are widely 

implemented.80  Figure 1-5 shows an example of a handheld spirometer used to measure 

airflow at the mouth and a corresponding volume-time curve.  The patient holds the 

spirometer while seated in the upright position with nose clips on and makes a tight seal 

around the mouthpiece with their lips.  After 3-4 tidal breaths, the patient is instructed to 

inhale completely and then fully and forcefully exhale until their lungs are completely 

empty.  Airflow is measured at the mouth over the entire maneuver to calculate exhaled 

volumes, as shown in Figure 1-5.  The volume of air expired during the first second is the 

forced expiratory volume in one second (FEV1), whereas the volume of air expired over 

the entire exhalation maneuver is the forced vital capacity (FVC).  FEV1 and FVC are 

measured in litres and are commonly expressed as a percentage of a predicted value using 

reference equations based on the patient’s age, sex, height and ethnicity.81  The ratio of 

FEV1 to FVC (FEV1/FVC) is also commonly reported.   
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Figure 1-5 Handheld spirometer and typical volume-time curve 

Handheld spirometer records volume-time curve to measure the forced expiratory volume 

in one second (FEV1) and forced vital capacity (FVC). 

Expiratory airflow becomes limited in both asthma and COPD due to luminal narrowing 

and airway obstruction.  In asthma, FEV1, FVC and FEV1/FVC may be reduced because 

of airway smooth muscle thickening and constriction, inflammation or intraluminal 

plugging.  In COPD, FEV1, FVC and FEV1/FVC may be reduced because of airway 

inflammation, intraluminal plugging or collapsed airways.  In both cases, FVC may also 

be reduced because of premature airway closure during forced expiration.  FEV1 and 

FEV1/FVC are important diagnostic and classification markers of COPD and this is 

described in more detail in section 1.5.4. 

1.4.2 Plethysmography 

Lung Volumes and Capacities 

Plethysmography measures changes in volume in the body and accordingly, can be used to 

measure lung volumes and capacities.  Figure 1-6 shows a common whole-body 

plethysmograph and corresponding volume-time curve.  The lung volumes and capacities 

measured are also shown on the volume-time curve.  Tidal volume (VT) is the total volume 

of gas inhaled and exhaled during normal tidal breathing.  Functional residual capacity 

(FRC) is the volume of gas in the lungs after exhalation during normal tidal breathing and 

residual volume (RV) is the volume of gas in the lungs after a complete exhalation.  

Inspiratory reserve volume (IRV) is the volume of gas maximally inhaled from the top of 

normal inhalation during normal tidal breathing, whereas expiratory reserve volume (ERV) 
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is the volume of gas maximally exhaled from the end of a normal exhalation during tidal 

breathing.  Inspiratory capacity (IC) is the volume of gas inhaled from the end of a normal 

exhalation during tidal breathing and vital capacity (VC) is the volume of gas inhaled from 

end of a complete exhalation.  Finally, total lung capacity (TLC) is the volume of gas in 

the lungs at end full inhalation.  Although many of these volumes and capacities can also 

be measured using simple spirometry, plethysmography is required to determine FRC, RV 

and TLC.  

 

Figure 1-6 Whole-body plethysmograph and typical volume-time curve 

Whole-body plethysmograph measures lung capacities and volumes. 

During testing, patients are seated upright inside the plethysmograph with nose clips on 

and their hands on their cheeks; the chamber is sealed to create an airtight closed system 

with known interior volume.  After 3-4 tidal breaths, the mouthpiece is closed by a shutter 

at end tidal expiration and the patient is instructed to perform a series of gentle pants for 2-

3 seconds against the closed shutter.  Once the shutter reopens and following a few tidal 

breaths, the patient is instructed to inhale fully and then passively exhale fully.  During the 

panting maneuver, the lungs expand causing the pressure and volume inside the lungs to 

decrease and increase, respectively.  In turn, the pressure within the sealed chamber 

increases and the volume within the box decreases to accommodate the new volume of the 

patient’s lungs.  The pressure within the box and at the mouth are measured and in this 

way, plethysmography directly measures FRC using Boyle’s Law relating pressure and 

volume in an isothermal environment.82  VT, IRV, ERV, IC and VC are determined from 

the spirometry-like maneuver performed after the shutter is re-opened.  RV is then 

calculated as FRC minus ERV, and TLC as the sum of FRC and IC.  It is important to note 
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that body plethysmography is just one option to measure FRC; nitrogen washout or helium 

dilution techniques may also be used and the lung volumes measured by each technique 

are standardized,82 however the work in this thesis employs plethysmography.   Similar to 

spirometry, lung volumes can be expressed as a percent of a predicted value based on the 

patient’s age, sex, height and ethnicity.83 

Gas trapping in both asthma and COPD causes RV, FRC and TLC to increase.  The ratio 

of RV to TLC (RV/TLC) is often expressed as an indication for gas trapping.  In asthma, 

gas trapping may be due to increased smooth muscle and inflammation that cause 

narrowing of the airway lumen, particularly in the small airways.  In COPD, small airways 

inflammation may cause gas trapping, and loss of elastic recoil from emphysematous tissue 

destruction may also contribute to increased RV, FRC and TLC.   

Airways Resistance 

In general, resistance is defined as the ratio of driving pressure to flow; thus, in the context 

the lungs, airways resistance (Raw) is the ratio of the difference between alveolar and mouth 

pressure and the flow rate measured at the mouth as shown in Equation 1-3:   

Equation 1-3 Raw [cmH2O∙s/L]=
Alveolar pressure - Mouth pressure [cmH2O]

Flow rate (V̇) [L/s]
  

Similar to the panting maneuver described previously for the measurement of lung 

volumes, a panting maneuver is also performed to measure airways resistance, this time 

with additional open-shutter panting prior to closed-shutter panting.  Although flow rate 

may be directly measured at the mouth, alveolar pressure is not directly available during 

the panting maneuver.  Instead, the pressure differential is inferred from the box pressure 

and the inverse slope of the pressure-flow plot is known as specific airways resistance 

(sRaw), a corrected index for airways resistance regardless of lung volume.    
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As shown in Equation 1-4, Raw is then derived from sRaw normalized to FRC: 

Equation 1-4 Raw [cmH2O∙s/L]=
sRaw [cmH2O∙s]

FRC [L]
  

Predictive reference equations exist for Raw based on patient age, sex, height and 

ethnicity.84,85 Resistance of the airways is directly related to the luminal diameter of the 

branches.  Raw is especially increased in asthma due to increased smooth muscle and 

inflammation that cause narrowing of the airway lumen.  Parenchymal pathologies in 

COPD typically do not influence Raw, however small airways inflammation in COPD can 

lead to narrowing of the airway lumen and increase Raw.  

1.4.3 Diffusing Capacity of the Lung 

The efficiency of gas exchange within the lungs can be determined using the single-breath 

carbon monoxide uptake technique86 to measure the diffusing capacity of the lung for 

carbon monoxide (DLCO), which provides an indirect measure of oxygen diffusion across 

the alveolar membrane.  Carbon monoxide is used instead of oxygen because its uptake in 

the pulmonary capillaries is diffusion-limited only – oxygen, on the other hand, is limited 

by diffusion and perfusion.  Because of its binding affinity for hemoglobin that is 

approximately 210-times greater than that of oxygen and the use of an extremely low 

concentration of carbon monoxide that does not cause complete saturation of hemoglobin, 

the pressure of carbon monoxide in the pulmonary capillary remains constant over time.87  

Patients are again seated upright with nose clips on; after four tidal breaths, patients are 

instructed to exhale completely to RV, then to rapidly inhale a test gas mixture to TLC and 

hold their breath at TLC for 8-10 seconds before exhalation.  The test gas contains a 

mixture of 0.3% carbon monoxide, 21% oxygen, a balance of nitrogen and a tracer gas.  

During the breath-hold at TLC, the carbon monoxide diffuses across the alveolar-capillary 

membrane into the blood.  The first 150 mL of exhaled gas is discarded to account for 

anatomical dead space within the lungs, after which a discrete sample of alveolar gas is 

analyzed by comparing the concentrations of carbon monoxide in the exhaled sample to 

that of the inhaled gas.  DLCO then is the conductance (flow normalized to pressure) of 

carbon monoxide from the inspired test gas to the bloodstream and is measured in units of 
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mLmin-1mmHg.  DLCO may also expressed be as a percent of a predicted value based on 

the patient’s age, sex, height and ethnicity.88  Notably, the tracer gas also serves to measure 

the initial alveolar carbon monoxide concentration and the alveolar volume from which the 

carbon monoxide uptake is occurring.  The tracer gas must be one that is insoluble, 

biologically inert and has a diffusivity similar to that of carbon monoxide so as not to 

interfere with the measurement of carbon monoxide concentration; typical tracer gases are 

neon (0.5%) or helium (10%).   

The capacity of the lung to exchange gas across the alveolar-capillary interface, and thus 

the DLCO measurement, is dependent on a number of structural and functional factors that 

reflect a variety of physiological conditions.  For the purposes of this thesis, DLCO is 

measured to determine the effective alveolar-capillary surface area available for gas 

exchange within the lung.  In patients with COPD, DLCO may be reduced due to decreased 

surface area of the alveolar-capillary membrane caused by emphysematous tissue 

destruction.  DLCO is not commonly measured in asthma because of the nature of its 

pathophysiology that does not impact the pulmonary parenchyma.  

1.4.4 Oscillometry 

First developed over 60 years ago,89,90 oscillometry is an emerging pulmonary function test 

that measures lung biomechanics.  Oscillometry views the lungs as a linear dynamic 

system, which allows the lungs to be considered from a systems analysis perspective 

(inputs converted to outputs) and treated as an electrical circuit.  Some background 

information on the mechanical properties of the lungs is first required to understand the 

basis of oscillometry.   

As described previously in section 1.2.3, the respiratory system functions through the 

mechanical expansion and contraction of the thoracic cavity, which alters the pressure 

inside the lungs and results in airflow.  The key to oscillometry is respiratory system 

impedance (Zrs) – the quantity that directly relates pressure and airflow in the lungs and 

reflects how difficult it is for air to flow through the airways.91  By applying airflow at a 

known rate (input) and measuring pressure over time (output) at the mouth, impedance can 

be calculated.  All pulmonary function measurements previously described in this thesis 
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are viewed in the time domain (ie, lung volume over time).  When considering the lungs 

as a linear dynamic system,91 in the time domain, inputs are converted to outputs by 

convolution, which is a computationally expensive and challenging task.  By taking the 

Fourier transform of the pressure and flow signals to convert to the frequency domain, the 

relationship between pressure (P) and airflow (V̇) is reduced to multiplication and the 

impedance calculation becomes computationally simpler as shown in Equation 1-5:   

Equation 1-5 P(f) [cmH2O]=Zrs(f) [cmH2O∙s/L] ∙ V̇(f) [L/s]  

Airflows are applied at the mouth using small-amplitude pressure oscillations that contain 

multiple frequencies at once to determine impedance over a frequency range.  Pressure is 

measured at the mouth for each of the frequencies in the signal, and the impedance is 

subsequently calculated over the same frequency range.   

Again in contrast to the other pulmonary function tests described previously, which 

measure only the magnitude of pressure, flow and volume, impedance describes the 

relationship for both magnitude and phase between pressure and flow and is therefore a 

complex number.  As shown in Equation 1-6, respiratory system resistance (Rrs) is the in-

phase or real component of impedance, whereas reactance (Xrs) is the out-of-phase or 

imaginary component: 

Equation 1-6 Zrs(f) [cmH2O∙s/L] = Rrs(f) + iXrs(f)  

Resistance and reactance are the intrinsic properties of the respiratory system that 

determine how it responds to input, or airflow in this case.  Taken together, oscillometry 

measures respiratory system resistance and reactance over a frequency range.  A common 

handheld oscillometer and corresponding impedance-frequency curve are shown in Figure 

1-7.  While seated in the upright position with nose clips on and hands on their cheeks, the 

patient performs normal tidal breathing into the mouthpiece on the handheld device for 16 

seconds as the pressure oscillations are superimposed over the normal breathing pattern.  

The patient is instructed to use their hands to support the cheeks and upper airways to avoid 

shunting of the applied oscillations in the upper airways and force the applied oscillations 
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to travel to the lungs.  The applied oscillations typically begin at 4-5 Hz to avoid overlap 

with the patient’s normal breathing pattern, which is typically 0.5 Hz or less.91  

 

Figure 1-7 Handheld oscillometer and impedance-frequency curve 

Handheld oscillometer measures respiratory system impedance, including resistance and 

reactance, over 5-37 Hz frequency range. 

The impedance-frequency curve in Figure 1-7 is that of a healthy person without 

respiratory disease.  Resistance is always positive and normally not frequency dependent.  

Analogous to airways resistance measured by plethysmography described previously, 

oscillometry-measured resistance is related to airway lumen calibre.  Reactance always 

begins negative at low frequencies, and is frequency-dependent such that it crosses zero at 

some frequency and becomes positive.  Reactance is related to elastic properties of the 

lung, but the exact property measured depends on the frequency at which the measurement 

is made; at low frequencies, reactance is negative and reflects tissue elastance, whereas at 

higher frequencies, reactance is positive and reflects tissue inertance.  The point at which 

reactance equals zero is the resonant frequency (fres) – here, elastic and inertive forces are 

equal and overall impedance is completely resistive.  The area under the reactance curve 

may also be integrated up to fres and this value is known as the reactance area (AX).92  

In asthma and COPD, oscillometry-derived resistance may increase as a result of airway 

obstruction for the same reasons as outlined previously for plethysmography-derived 

resistance.  The resistance-frequency curve may be elevated at low frequencies causing it 

to become frequency-dependent (scooped shape), with or without additional increases 
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across all frequencies (upwards shift).  The frequency-dependent nature of resistance 

reflects heterogeneous airway obstruction and is often attributed to increased resistance in 

the small airways; this enhanced sensitivity to small airways disease93 demonstrates the 

major advantage of oscillometry over plethysmography-derived airways resistance and 

other pulmonary function tests.  The frequency-dependence of resistance is quantified as 

the resistance at 5 Hz minus the resistance at 19 Hz (R5-19).  Reactance may also be 

increased as a result of inflammation in the small airways that causes reduced elasticity of 

the lungs in both asthma and COPD.  In emphysematous COPD, reactance may increase 

because of loss of elastic recoil of the parenchyma.  In all cases, the reactance curve will 

typically become more negative at low frequencies (downward shift) and fres may also 

increase, both of which subsequently cause AX to increase.  

Oscillometry has recently gained clinical traction because, compared with the pulmonary 

function tests described previously, it requires minimal coaching and patient effort.  

Reference values exist for oscillometry measurements94 but the current equations were 

developed based only on Caucasian adults in European countries.  The Global Health 

Initiative is currently developing global reference values for oscillometry which will be 

similar to that of spirometry, plethysmography and DLCO.  There are multiple commercially 

available oscillometers, however in contrast with spirometry and plethysmography, 

oscillometry techniques and devices are not yet well standardized.  There exists many 

variations in the functions used to generate the oscillations as well as the frequency ranges 

used.  Oscillometry is an overarching term to include the forced oscillation technique and 

impulse oscillometry, which differ by the way the oscillations are generated.  The work in 

this thesis employs the forced oscillation technique over a frequency range of 5-37 Hz.  It 

is important to note that here, ‘forced’ describes the forcing function used to generate the 

oscillations, not a forced exhalation maneuver as is performed during spirometry. 

1.5 Clinical Assessments to Characterize Asthma and COPD  

The tools outlined above, particularly spirometry, can be used to assess features of asthma 

and COPD to provide characterization towards certain phenotypes and classify disease 

severity.  Validated questionnaires have also been developed to sensitively probe patient-

reported outcomes.   
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1.5.1 Bronchodilator Reversibility 

Reversible airflow limitation is a key feature of asthma.  The goal of reversibility testing 

is to determine whether a patient’s lung function improves with bronchodilator treatment, 

which is assessed using spirometry before and after bronchodilator administration.  The 

most common regimen to evaluate bronchodilator reversibility is using a short-acting beta-

agonist (SABA) such as salbutamol.  Following baseline spirometry, four separate 100 g 

doses of aerosolized salbutamol are administered and spirometry is repeated after 15 

minutes.  Salbutamol acts directly on smooth muscle receptors in the airway wall to relieve 

muscle constriction and dilate the airway lumen.  A total dose of 400 g and wait time of 

15 minutes are used and standardized to ensure that the response is high enough on the 

salbutamol dose-response curve.95  Reversibility is assessed by evaluating the difference 

between pre- and post-bronchodilator FEV1 or FVC in absolute volume and as a percent of 

baseline measurements.  Clinically relevant bronchodilator response is defined as an 

improvement in FEV1 or FVC of 200 mL and 12% from baseline.95  These thresholds were 

chosen to be confidently greater than the error in spirometry measurements; changes less 

than 150 mL or 8% are likely to be within the normal measurement variability.96,97  Patients 

are also instructed to withhold their prescribed bronchodilator medications prior to 

reversibility testing. 

Spirometry is the test of choice for confirming bronchodilator reversibility, although 

changes in plethysmography- and oscillometry-derived metrics also typically respond to 

bronchodilator.  Airflow limitation in COPD is generally regarded as incompletely 

reversible; pulmonary function tests in COPD are typically performed post-bronchodilator 

only.   

1.5.2 Airway Hyperresponsiveness 

Airway hyperresponsiveness is another common feature of asthma, and is defined as 

increased sensitivity of the airways to inhaled stimuli.98  Methacholine challenge testing is 

the most commonly performed method for the assessment of airway hyperresponsiveness 

in patients and standardized guidelines are published.99  Methacholine is nebulized and 

inhaled by the patient, after which it directly stimulates airway smooth muscle to contract 



 

23 

and cause bronchoconstriction and a decrease in FEV1; increasing methacholine doses are 

inhaled until FEV1 decreases by 20%.  In this way, methacholine challenge testing creates 

an ideal, controlled environment to simulate an asthma attack.  Baseline spirometry is first 

performed to determine pre-challenge FEV1 and the target decrease in FEV1.  Saline diluent 

or a methacholine dose of 0.03 mg/mL is then administered, and after nebulization, 

spirometry is repeated.  If FEV1 has not decreased by 20%, the next highest concentration 

of methacholine is administered and this process is repeated until FEV1 has decreased at 

least 20% or the 16 mg/mL maximum methacholine dose has been administered.  Similar 

to reversibility testing, patients are again instructed to withhold their prescribed asthma 

medications prior to completing methacholine challenge testing according to guidelines.99  

The provocative concentration required to decrease FEV1 by 20% (PC20) is the primary 

outcome measurement from methacholine challenge testing and is estimated according to 

Equation 1-7: 

Equation 1-7 PC20 [mg/mL]= antilog [log C1+
( log C2- log C1)(20-R1)

R2-R1

]  

C and R are the methacholine concentration and percent decrease in FEV1 from baseline, 

respectively, and the 1 and 2 subscripts represent the second-to-last and last measurements, 

respectively.  PC20 greater than 16 mg/mL indicates normal airway hyperresponsiveness, 

whereas PC20 less than 4 mg/mL indicates abnormal airway hyperresponsiveness.  PC20 

between 4-16 mg/mL is recognized as borderline hyperresponsiveness and is more 

challenging to interpret.99 

Although methacholine challenge testing for airway hyperresponsiveness is sensitive for 

asthma, it is not specific.99   This means that the lack of airway hyperresponsiveness (PC20 

> 16 mg/mL) can help to exclude asthma, but the presence of airway hyperresponsiveness 

(PC20 < 4 mg/mL) is not always perfectly indicative of asthma.37 
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1.5.3 Questionnaires 

Questionnaires are important clinical tools to evaluate a patient’s perception of their 

respiratory disease.  The asthma control questionnaire (ACQ)100 evaluates asthma control 

during the previous week using five symptom-related questions (night awakening, 

symptoms on awakening, activity limitation, shortness of breath and wheezing), as well as 

questions for daily bronchodilator use and pre-bronchodilator FEV1.  Each question is 

scored on a scale of 0-6 and the total score is calculated as a mean the individual question 

scores; all seven questions may be used for the ACQ-7, or abbreviated versions101 may be 

used to omit pre-bronchodilator FEV1 (ACQ-6) or both pre-bronchodilator FEV1 and daily 

bronchodilator use (ACQ-5).  The primary goal of asthma care is to achieve and maintain 

asthma control, which refers to the extent to which a patient’s asthma symptoms can be 

reduced or eliminated by treatment.102  Accordingly, the ACQ is widely used as a clinical 

trial endpoint.103,104  Total scores range from 0 to 6, where 0 reflects total control and 6 

reflects severely uncontrolled.  The minimal clinically important difference for ACQ is 

0.5.101 

The asthma quality of life questionnaire (AQLQ),105 as the name suggests, probes asthma-

related quality-of-life during the previous two weeks.  The AQLQ consists of 32 questions 

related to symptoms, activity limitation, emotional function and exposure to environmental 

stimuli.  Each question is scored on Likert scale from 1 for totally limited/limited a very 

great deal/limited all of the time/severely limited to 7 for limited none of the time/not at all 

limited, depending on the question.  Total AQLQ score is calculated as the mean of all 32 

question; total scores close to 1 represent poor asthma quality-of-life and scores close 7 

represent very good quality-of-life.  AQLQ score is also commonly used as a clinical trial 

endpoint104 and its minimal clinically important difference is 0.5.106 

It is important to acknowledge that there are a number of variations of questionnaires 

designed to probe asthma control and quality-of-life – ACQ and AQLQ are employed in 

this thesis, although they are not the only options.  It is also worth acknowledging the St. 

George’s Respiratory Questionnaire (SGRQ),107 which measures the impact of respiratory 

disease on an individual’s overall health, daily activities and perceived well-being, is 

mostly commonly used for patients with COPD.   
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1.5.4 Disease Severity 

Asthma 

Asthma severity is determined by the type and amount of treatment required to control 

symptoms and prevent exacerbations.  Asthma therapies can be grouped into three main 

types: controllers, relievers and add-ons.37  Controller medications are used to continuously 

reduce airway inflammation, control symptoms and reduce exacerbations.  Controller 

therapy is typically in the form of inhaled corticosteroids (ICS), with or without long-acting 

beta-agonist (LABA) combination.  As shown in Table 1-1, it is the daily dose of controller 

ICS which forms the basis of asthma severity classification.  The Global Initiative for 

Asthma (GINA) defines ‘treatment steps’ based on the required daily dose of ICS (low, 

medium, high), from as-needed, reliever-only use for very mild asthma at treatment step 1 

to daily high dose for very severe asthma at treatment step 5.37  Reliever therapies are 

provided to all patients for as-needed acute symptom relief, and are now also in the form 

of ICS-LABA combination.  Add-on therapies are considered when symptoms and 

exacerbations persist despite optimized treatment with ICS-LABA, and take many forms 

from bronchodilator to anti-inflammatory actions.   

Table 1-1 GINA criteria for asthma severity classification 

  ICS/ICS-LABA Use 

GINA Step 1 Very Mild As needed 

GINA Step 2 Mild Daily low dose ICS 

GINA Step 3 Moderate Daily low dose ICS-LABA 

GINA Step 4 Severe Daily medium dose ICS-LABA 

GINA Step 5 Very Severe Daily high dose ICS-LABA 

Adapted from GINA Global Strategy for Asthma Management and Prevention 

2019 report37 

COPD 

COPD severity criteria are comparatively more straightforward.  Spirometry thresholds are 

used to both diagnose and stratify COPD severity according to the Global Initiative for 

Chronic Obstructive Lung Disease (GOLD) guidelines.54  Post-bronchodilator FEV1/FVC 

less than 0.70 is the diagnostic criteria for COPD, and disease severity is subsequently 

stratified from mild (GOLD I) to very severe (GOLD IV) based on FEV1 percent predicted 

(%pred).  Table 1-2 shows the FEV1 thresholds that define each level of COPD severity. 
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Table 1-2 GOLD criteria for COPD severity classification 

FEV1/FVC < 0.70 

GOLD I Mild FEV1 ≥ 80%pred 

GOLD II Moderate 50% ≤ FEV1 < 80%pred 

GOLD III Severe 30% ≤ FEV1 < 50%pred 

GOLD IV Very Severe FEV1 < 30%pred 

Adapted from GOLD Global Strategy for the Diagnosis, Management, 

and Prevention of Chronic Obstructive Pulmonary Disease 2019 report.54 

1.6 Imaging of Pulmonary Structure and Function 

The pulmonary function tests described previously in section 1.4 provide rapid, 

inexpensive measurements that are well understood.  Unfortunately, these measurements 

cannot inform on regional disease heterogeneity,108,109 are weakly predictive of early 

disease and disease progression,24,110 and are insensitive to the small airways.111,112  

Pulmonary imaging, on the other hand, provides regional structural and functional 

measurements of lung disease that are sensitive to the entire bronchial tree.  With respect 

to the lungs and this thesis, planar x-ray, x-ray computed tomography (CT), nuclear 

medicine and magnetic resonance imaging (MRI) are reviewed here.    

1.6.1 Planar X-ray 

Planar x-ray imaging, as the name suggests, uses x-ray radiation to generate two-

dimensional images of the body.  Since its advent in 1895 by Wilhelm Röntgen, planar x-

ray has become the most common method to image the chest and lung disease because of 

its low cost, low radiation dose, short acquisition window and ease of access.  Planar x-ray 

images (also known as radiographs) are produced by positioning the patient between an x-

ray source and detector that are directly opposite each other.  While the patient holds their 

breath, x-rays are passed through the thorax and are differentially attenuated by different 

anatomical structures.  The detector measures the relative attenuation of the x-rays after 

they exit the body and generates a two-dimensional projection image that is a superposition 

of all anatomy along the x-ray path.  Image contrast is thus generated by the relative 

attenuation of x-rays across the body; high-attenuating structures, such as bone, appear 

bright on an x-ray image, whereas low-attenuating structures, such as lung parenchyma, 

appear dark.  Images of the thorax are typically acquired while the patient stands upright 

for anterior-posterior or lateral projections, or both.  The radiation dose associated with 
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planar chest x-rays is on the order of 0.01 mSv,113 or 0.6% that of the average annual 

background radiation in Toronto, Canada.114 

Lung volume abnormalities on planar x-ray are commonly assessed by the shape of the 

lungs.  Hyperinflation is detected by elongated lung volumes and flattening of the 

diaphragm in asthma115-117 and COPD,118 especially in severe emphysema.119  Bronchial 

wall thickening or plugging may also be evident on chest x-ray in patients with 

asthma.115,117  Lung abnormalities typically need to be quite severe in order to be detectable 

by chest x-ray; in fact, chest x-ray imaging in the clinical care of asthma and COPD often 

serves to rule out alternative causes of respiratory-related symptoms such as shortness of 

breath.  Moreover, the two-dimensional projection nature of planar x-ray images has 

motivated the development of three-dimensional x-ray approaches to capture depth and 

tomographic information. 

1.6.2 X-ray Computed Tomography 

X-ray computed tomography (CT) imaging also leverages the body’s x-ray attenuating 

properties, however it does so in a three-dimensional manner.  CT was first developed in 

the 1970s and continuous improvements in acquisition speeds and image quality since have 

made CT the modality of choice for the evaluation of lung disease.  Multi-detector 

technology now allows for sub-millimetre isotropic imaging of the entire lung volume in a 

single breath-hold, permitting multi-planar and three-dimensional reconstructions.   

1.6.2.1 Conventional CT 

CT images are produced using an x-ray source and detector array that are positioned 

opposite one another and rotate around the patient acquiring multiple x-ray projection 

images at different angles.  As the x-ray source and detector rotate, the scanner bed with 

the patient laying supine passes through the imaging components of the system to acquire 

axial images of the entire thorax as the patient holds their breath.  The projections are then 

reconstructed into a three-dimensional volumetric image, typically using filtered back 

projection or iterative reconstruction techniques.120   
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Each voxel in the reconstructed image is represented by a measurement of the tissue density 

relative to that of water, known as Hounsfield units (HU)121 according to Equation 1-8: 

Equation 1-8 Hounsfield unit [HU]= (
μ

tissue
-μ

water

μ
water

) ∙1000  

where  represents the linear attenuation coefficient for the tissue of interest or water.  The 

attenuation of water is normalized to 0 HU, and it follows that the HU of air is -1000, low-

attenuating structures such as the lung parenchyma have HU near -800, and high-

attenuating structures such as bone have HU near +1000.  The typical radiation dose 

associated with clinical chest CT protocols is much greater than that of planar x-ray at 7-8 

mSv.122  Low-dose research CT protocols have been established with doses on the order of 

1.6 mSv,24,25,27 or roughly equivalent to the average annual background radiation in 

Toronto, Canada.114  Advanced image reconstruction methods have more recently been 

developed to achieve ultra-low-doses on the order of 0.1-0.4 mSv,123,124 however such 

techniques have not yet been widely implemented clinically.125  CT images of the lungs 

may be acquired after inspiratory or expiratory maneuvers, depending on the evaluation of 

interest.  

In patients with asthma and COPD, CT is commonly used to assess structure of the airways, 

lung parenchyma and pulmonary vessels; this thesis primarily focuses on airway and 

parenchymal measurements.  Figure 1-8 shows inspiratory CT images in the coronal plane 

for comparison between a healthy control and patients with asthma and COPD.  Airway 

findings on CT include bronchial wall thickening, bronchial dilation, luminal narrowing, 

bronchiectasis, mucous plugging, atelectasis or mosaic lung attenuation, whereas 

parenchymal abnormalities are reflected in focal regions of low attenuation.  In Figure 1-8, 

airway wall thickening is evident in the asthmatic patient, and a narrow window highlights 

regions of low attenuation in the patient with COPD.  CT evaluation of lung disease has 

been revolutionized by the application of computational analysis to generate quantitative 

CT imaging biomarkers, collectively known as quantitative CT.126  A number of software 

platforms are commercially available for quantitative CT analysis – Pulmonary 
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Workstation 2.0, Apollo and VIDAVision are examples from VIDA Diagnostics Inc. 

(Coralville, IA, USA) which have been approved for clinical use.   

 

Figure 1-8 Inspiratory coronal CT with corresponding airway trees 

Top: CT images in typical lung window (W) and level (L) used to visualize structural 

airway and parenchymal abnormalities. 

Middle: CT images with narrow window to highlight low attenuating areas. Compared with 

healthy participant, COPD participant shows regions with low x-ray attenuation indicative 

of parenchymal disease and airspace enlargement, whereas parenchyma in asthmatic 

participant appears normal. 

Bottom: Three-dimensional airway reconstructions show fewer CT-resolved airways in 

asthma and COPD.  
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Airways 

Semi- and fully-automated approaches have been developed to segment the large airways 

in three dimensions.  Such techniques take advantage of the cylindrical shape of the airways 

and the inherent contrast between the air within the airway lumen and highly vascularized 

airway wall.  In an inspiratory CT image, airways can typically be resolved and segmented 

up to the tenth generation and reliably measured up to the fifth and sixth generations.127  

Figure 1-8 also shows three-dimensional airway reconstructions for each patient.  Large 

airway morphology is measured using metrics analogous to those used in histology, such 

as airway wall area percent and wall thickness, as shown in in Equation 1-9 and Equation 

1-10 respectively: 

Equation 1-9 Wall area percent [%]=
Airway wall area [mm2]

Total area [mm2]
∙100  

Equation 1-10 Wall thickness [mm]=Outer diameter - Inner diameter [mm]  

The large airways in asthma have been extensively evaluated using CT.  Asthmatics show 

greater wall thickness compared with healthy controls128-134 and wall thickness increases 

with increasing disease severity.129,135,136  Wall thickness in asthma is directly related to 

airway remodeling on pathology131,136,137 and correlates with airway 

obstruction130,131,134,136,138 and airway hyperresponsiveness.133,136,139  Airway wall thickness 

on CT also decreases in response to inhaled corticosteroid treatment132,140,141 and bronchial 

thermoplasty.142  Beyond airway morphology, a quantitative scoring system has been 

developed to measure the burden of intraluminal airway plugging, and in patients with 

asthma, a high plug score was associated with worse airflow obstruction and airway 

eosinophilia.143  Evaluation of the large airways in COPD using CT has been less 

straightforward.  Although early CT work observed narrowed airway lumens and fewer 

peripheral airways in patients with COPD compared with never-smokers controls144-146 and 

relationships between airway wall thickness and airflow obstruction,145,147-149 more recent 

work by Smith and colleagues demonstrated thinner airway walls relative to controls when 

comparing spatially-matched airways.150  These recent results highlight the importance of 

airway sampling technique when reporting and comparing quantitative CT airway 

measurements in patients with COPD.  In contrast, the total number of airways visible and 
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segmented on CT may be quantified as total airway count (TAC).151  Airway count was 

first investigated in patients with COPD and was shown to be reduced with greater 

emphysematous destruction in the right upper lobe,151 and in following was shown to be 

decreased relative to never-smoking controls in the whole lung and before the onset of 

emphysema.152  Overall, the common quantitative CT airway measurements at the disposal 

of clinical and research studies include lumen diameter, lumen area (LA), wall area percent 

(WA%), wall thickness (WT), total airway count (TAC), square root of wall area of a 

hypothetical airway of internal perimeter 10 mm (Pi10), and airway circularity.  

As described previously in section 1.3, the small airways (<2 mm diameter) play an 

important role in the pathogenesis of both asthma and COPD.  Although the small airways 

are beyond the spatial resolution limits of CT, small airways disease can be indirectly 

assessed via air trapping on expiratory CT.  Air trapping appears as mosaic attenuation, 

which is defined as variable lung attenuation that results in a heterogeneous appearance of 

the lung parenchyma.153  Automated thresholds are applied to the lung density histogram 

and air trapping is quantified as the relative area of the lung with Hounsfield units less than 

-856 (RA856)154 – -856 HU is chosen because it is the attenuation value of normally inflated 

lung, thus the lungs at end expiration contain less air and should have higher attenuation 

than -856 HU.155  In asthma, air trapping is elevated compared with healthy controls156,157 

and related to disease severity,158 airflow obstruction138,154,156 and airway 

hyperresponsiveness.154  CT air trapping has been shown to be sensitive to treatment effects 

with inhaled corticosteroids,159,160 bronchial thermoplasty142 and montelukast, a 

leukotriene receptor antagonist.161  In COPD, CT air trapping is related to airflow 

obstruction,162,163 however it can be difficult to distinguish from emphysema using a simple 

threshold.155  For this reason, expiratory CT is not commonly assessed alone in COPD, but 

rather in conjunction with inspiratory CT using image registration techniques as described 

subsequently.   
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Parenchyma 

The parenchyma is assessed for emphysema also using densitometric thresholds on 

inspiratory CT.  The key feature of emphysema on CT is decreased lung density,164 and 

regions of low attenuation in a COPD participant compared with the healthy and asthma 

participants are highlighted using a narrow window in Figure 1-8.  Similar to that of air 

trapping on expiratory CT, automated thresholds are applied to the lung density histogram 

to quantify the extent of emphysema on inspiratory CT.  Thresholds ranging from -910 to 

-970 HU165-167 or the 15th percentile of the density histogram (HU15 or PD15)168 have been 

validated against histology.  The relative area of the lung less than -950 HU provides the 

best balance of sensitivity and specificity and is therefore most commonly used.155  

Emphysema is considered present when RA950 is greater than 6.8%.167  Unsurprisingly, 

RA950 is typically less than 6.8% in asthma.  In COPD, RA950 is elevated and shows good 

agreement with manual emphysema scores by radiologists169 and is related to airflow 

obstruction.170 

Beyond single image sets at inspiration or expiration, novel quantitative CT methods and 

biomarkers have been developed by co-registering inspiratory and expiratory images.  As 

alluded to previously, this is particularly useful for patients with COPD to distinguish 

emphysematous regions from regions of air trapping and this forms the basis of parametric 

response mapping171 and disease probability measure.172  Parametric response mapping 

uses the density thresholds previously described for emphysema and air trapping on 

inspiratory and expiratory CT, respectively, to classify lung tissue into normal, 

emphysematous or gas-trapped regions on a voxel-wise basis.  Disease probability measure 

uses the same fundamental principles, however instead of using single thresholds, it uses a 

probability of each category based on normalized densities at inspiration and expiration on 

a continuous scale.  The non-emphysematous air trapping category has been termed 

‘functional small airway disease’, and together, these categories make up the primary 

imaging phenotypes of COPD that are well-recognized and widely implemented in COPD 

research.173  Ostridge and colleagues directly compared parametric response mapping and 

disease probability measure and observed good agreement between the two methods.174  

This study also demonstrated relationships between disease probability measure air 

trapping and oscillometry measures of small airways disease,174 providing physiological 
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validation for the air trapping measurement.  Parametric response mapping has been 

extensively applied in COPD to sensitively identify regions of gas trapping,175-177 and these 

regions were recently validated against pathology as measure of small airways disease in 

severe COPD.178  Preliminary work in asthma has demonstrated an increase in regions of 

parametric response map gas trapping in patients with severe asthma compared with 

nonsevere asthma and controls,179 however given its dependence on emphysema, the 

technique has not been widely applied in asthma studies.  Alternatively, the air volume 

change and amount of deformation between inspiratory and expiratory CT images may be 

quantified180 and these quantitative CT metrics show differing volume changes and tissue 

deformations between asthmatics and healthy controls.181  Choi and colleagues used a 

combination of airway and parenchymal measurements to develop quantitative CT clusters 

of asthma patients,182 providing for the first time, quantitative imaging phenotypes of 

asthma.  The same authors subsequently used similar methods to compare quantitative CT 

phenotypes of asthma and COPD patients.183 

1.6.2.2 Dual-energy CT 

The previous section summarizes the rich structural CT measurements of the lung, with the 

exception of some that indirectly represent pulmonary function.  Direct functional 

assessments of the lungs are also possible using CT with inhaled contrasts and advanced 

CT techniques.  Functional CT imaging of the lungs was first performed using a 

conventional-CT-like acquisition with inhaled xenon-133 (133Xe) to measure regional 

ventilation.  After a wash-in period, regions ventilated with 133Xe have increased CT 

density compared with non-ventilated regions.184  The poor xenon enhancement associated 

with this technique limited its application though and has motivated xenon ventilation 

imaging using a dual-energy CT approach.  Although first introduced in the 1970s,185 dual-

energy CT has only recently been applied to measure regional ventilation using 133Xe.186  

Compared with conventional CT, dual-energy CT acquires two separate images at different 

x-ray tube voltages, one each at a high and low energy.  Moreover, dual-source technology 

enables simultaneous acquisition of these two images; as the name suggests, dual-source 

systems are equipped with two x-ray sources and two corresponding detectors oriented 90 

from each other that simultaneously rotate around the patient.  The real advantage of dual-
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energy CT over conventional methods is that it is sensitive to both tissue attenuation in HU 

and chemical composition of the lung.  Regional gas distribution is generated using three-

material decomposition based on attenuation differences at different energy levels to 

differentiate inhaled xenon from the lung parenchyma and air.187  Following a wash-in 

period where patients breathe a mixture of xenon and oxygen for 2-3 minutes, static 

ventilation images may be acquired during an inspiratory breath-hold or dynamic images 

may be acquired during wash-in and wash-out phases.188  The average radiation dose 

associated with dual-energy CT is approximately 3 mSv for static acquisitions and 8 mSv 

for dynamic acquisitions.187 

As expected, xenon ventilation on dual-energy CT is homogeneous in healthy controls.188  

In patients with asthma, dual-energy CT shows ventilation abnormalities189,190 that are 

associated with thicker airway walls also measured using CT,189 sensitive to bronchodilator 

treatment190,191 and related to asthma symptoms.192,193  In COPD, dual-energy CT 

demonstrates structural and ventilation abnormalities related to airways disease and 

emphysema.194  Another study used xenon ventilation dual-energy CT to classify areas of 

normal, air trapped and emphysematous tissue in patients with COPD,195 similar to that 

described previously for parametric response mapping.   

The wealth and utility of structural and functional information from all CT methods is clear, 

yet the application of quantitative CT is still limited beyond the research setting.  Dual-

energy CT in particular is limited due to the high concentrations of inhaled xenon required 

to provide adequate contrast that may cause respiratory depression.  Even using low-dose 

conventional CT protocols, the risks stemming from ionizing radiation exposure limits the 

use of CT in serial studies of treatment response or longitudinal monitoring, especially in 

children and young adults with chronic lung disease.   

1.6.3 Nuclear Medicine 

Nuclear medicine imaging techniques employ radioactive tracers to measure lung function, 

and are used to measure ventilation, perfusion and ventilation-perfusion mismatch.  As it 

is most relevant to this thesis, this section specifically focuses on nuclear medicine 

measurements of pulmonary ventilation.  It is important to note that nuclear medicine 



 

35 

imaging methods alone only provide functional information and must be combined with 

other modalities to obtain structure-function relationships. 

1.6.3.1 Scintigraphy 

Scintigraphy measures gamma radiation to form a two-dimensional projection image of 

radioactivity in the body.  While the patient lays supine, radionuclide tracers are either 

injected or inhaled and once inside the body, undergo radioactive decay and emit gamma 

rays.  The gamma rays are detected by gamma cameras around the patient which convert 

the absorbed energy into an electrical signal to form an image.  Regions of high 

radionuclide content appear as hot spots on the image.   

Tracers may be radioactive themselves or labeled with a radionuclide.  Evaluation of 

regional ventilation is typically performed used radioactive gases, radioactively-labeled 

aerosols or Technegas.196  Common radioactive tracer gases are 133Xe and krypton-81m 

(81mKr) and the radionuclide technetium-99m (99mTc) is used to label 99mTc-diethylene-

triamine pentaacetate (DTPA) aerosol and Technegas.  Early research and clinical 

applications most commonly employed inhaled 133Xe, however Technegas distribution in 

the lungs is similar to 133Xe and is actually is favoured now because its deposition remains 

stable for more than 20 minutes.197   

Although the primary pulmonary application of scintigraphy is diagnosis of pulmonary 

embolism,198 scintigraphy was the first method to regionally identify ventilation 

abnormalities in patients with asthma in the 1960s18,19 and studies identifying the same in 

COPD followed shortly thereafter.199,200  In patients with asthma, the effects of 

methacholine-201 and histamine-induced202 bronchoconstriction on regional ventilation 

distribution were also demonstrated using scintigraphy.  Similar to planar x-ray, the two-

dimensional nature of scintigraphy has motivated the development of three-dimensional 

approaches.  

1.6.3.2 Single Photon Emission Computed Tomography 

By the late 1990s, nuclear medicine studies of the lung transitioned to single photon 

emission computed tomography (SPECT) for three-dimensional imaging.  Analogous to 
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planar x-ray and CT, SPECT offers a three-dimensional tomographic approach to image 

gamma radiation.196  The same radionuclide tracers may be used for SPECT, and two-

dimensional scintigraphy projections are acquired at multiple angles around the patient and 

reconstructed to form three-dimensional image.  The radiation exposure associated with 

SPECT is dependent on the radionuclide used, though a typical ventilation-perfusion study 

using 99mTc is approximately 2-3 mSv.196  Hybrid SPECT/CT systems are available for 

simultaneous structure-function imaging.203  

Physiological studies have employed SPECT to measure airway closure204 and predictably 

have shown increased ventilation abnormalities in asthma relative to controls205 and 

demonstrated bronchoconstrictive response to methacholine.206  In COPD, SPECT 

demonstrated increased ventilation abnormalities compared with control participants207 

and has been used to determine severity of airflow obstruction208 and the degree of 

ventilation within emphysematous bullae.209  Beyond ventilation imaging, SPECT lends 

itself to the investigation of regional deposition of inhaled aerosols when labelled with 

99mTc to evaluate the delivery efficacy of inhaled treatments.210,211  

1.6.3.3 Positron Emission Tomography 

Positron emission tomography (PET) imaging also offers three-dimensional information, 

however in contrast to SPECT, PET uses positron-emitting isotopes to form images of 

metabolic activity.  A radionuclide is either injected or inhaled and once inside the body, 

begins to decay and emits a positron.  The positron will only travel a short distance before 

colliding with an electron and undergoing annihilation – this process produces two gamma 

photons of equal energy that are emitted 180 from each other and detected coincidentally 

using gamma cameras oriented circumferentially around the patient.  The source particle 

is subsequently spatially located along the straight line between the two detector elements, 

and all detected sources are reconstructed into a volumetric image.212  Hybrid PET/CT213 

and PET/MRI214 systems are available for simultaneous structure-function imaging, 

however applications of each are not common for the study of asthma and COPD.  

Although PET imaging is less common than scintigraphy and SPECT for pulmonary 

applications, pulmonary ventilation has been assessed using nitrogen-13 (13NN), either as 
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a bolus injection or inhaled aerosol.  13NN is not soluble in blood or tissue and is eliminated 

exclusively in the lungs;212 when injected, it travels to the lungs, crosses the alveolar 

membrane to the airspaces and is eliminated from the body by ventilation.  Accordingly, 

well-ventilated lung regions will quickly wash out the tracer whereas unventilated regions 

retain the tracer because of gas trapping.  Alternatively, when inhaled, 13NN does not reach 

poorly-ventilated lung regions.212  The primary studies employing 13NN PET in asthma 

have studied the effects of methacholine on regional ventilation and observed regions of 

poor ventilation following bronchoconstriction.20,215  In COPD, 13NN PET was observed 

to be sensitive to airways disease versus emphysematous phenotypes.216  Because of the 

short half-life (approximately 10 minutes) and rapid elimination of 13NN from the body, 

the radiation dose associated with 13NN PET ventilation-perfusion studies is quite low at 

approximately 0.2 mSv.212  Although beyond the scope of this thesis, it is worth noting that 

fluorine-18-fluorodeoxyglucose (18F-FDG) PET has been suggested as a biomarker for 

pulmonary inflammation,217,218 however future work is required to determine its utility in 

asthma and COPD. 

Although SPECT and PET offer three-dimensional imaging (versus scintigraphy) and 

functional information, both methods are inherently limited by low spatial resolution and 

still carry risk due to the radiation exposure.  SPECT is further affected by motion artifacts 

owing to long acquisition times, and PET relies on cyclotrons for the production of 

radioisotopes that make it less widely available.  SPECT and PET have unique applications 

for physiological studies of ventilation, perfusion and ventilation-perfusion mismatch, 

however remain research tools for asthma and COPD. 

1.6.4 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) uses non-ionizing radiofrequency waves to generate 

images by manipulating magnetic spins of different nuclei in the body.  Conventional MRI 

leverages the nuclear spins of protons (1H) and provides excellent soft tissue contrast based 

on proton density of the tissue of interest.  Radiofrequency waves excite the nuclei and the 

image is acquired as the nuclei relax and resultant signal decays back to equilibrium. A 

range of MRI methods currently available to obtain structural and functional information 

of the lungs are described here. 
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1.6.4.1 Conventional 1H MRI 

MRI examinations of the chest and lungs make up 2% of all examinations worldwide.219  

MRI of the lungs is challenging technically because of the inherent properties of the lung 

compared with, for example, the brain.  The tissue density of the lungs is approximately 

0.1 g/cm3, which contributes to extremely low 1H signal intensity.220  For context, the 

density of the lungs is approximately 10% that of the brain.221  Moreover, the same reasons 

that make the lung so efficient for gas exchange pose additional challenges for lung MRI; 

the 480 million alveoli and 100 m2 of air tissue-interfaces in the lung further degrade the 

pulmonary MRI signal by creating local magnetic field inhomogeneities, or susceptibility 

artifacts.222,223  This causes extremely rapid signal dephasing and decay (0.4-0.9 ms), 

making it challenging to acquire sufficient signal to generate contrast within the lungs using 

conventional sequences.  Finally, pulmonary MRI is highly impacted by artifacts from 

cardiac and respiratory motion.  Together, these factors contribute to low pulmonary MRI 

signal such that the lungs appear as dark signal voids, as shown in Figure 1-9 and making 

it challenging to differentiate between health and disease.  

 
Figure 1-9 1H MRI of the lungs  

Top row: Conventional 1H shows structural information and differences are 

indistinguishable between healthy participant and those with asthma and COPD.  

Bottom row: UTE 1H MRI shows more structural information, where regions of low signal 

intensity are visible in asthma and COPD participants compared with healthy participant.  
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The obvious safety advantage of MRI over CT and nuclear medicine has motivated the 

development and of novel methods to overcome these technical challenges in order to 

achieve increased pulmonary MRI signal and obtain structural information.  Ultra-short 

echo time (UTE) MRI methods do so by reducing time between radiofrequency excitation 

and data acquisition to acquire signal from lung tissue before it decays.220  UTE 1H images 

are shown in Figure 1-9, demonstrating enhanced signal within lung parenchyma in 

comparison to conventional 1H.  UTE MRI is particularly useful for evaluating 

parenchymal diseases – using a free-breathing approach in conjunction with respiratory 

gating, Ohno and colleagues demonstrated comparable visualization of pulmonary 

anatomy using UTE MRI versus CT in a variety of parenchymal diseases.224  In COPD, a 

multi-volume breath-hold approach showed strong relationships with CT measurements of 

emphysema225 and similar work in asthma showed decreased parenchymal signal intensity 

in asthma compared with healthy controls.226  These preliminary results highlight the 

potential for UTE MRI in patients with asthma and COPD and developments are ongoing 

to achieve increased parenchymal signal using more rapid acquisition times.  Although 

anatomical 1H MRI of the lung is developing rapidly, it does not provide information 

beyond that of a low-dose CT so the field has pushed towards pulmonary functional MRI. 

1.6.4.2 Inhaled Gas MRI 

MRI of inhaled fluorinated and hyperpolarized gases has been used extensively over the 

last 25 years to evaluate regional lung structure and function in patients with lung disease.  

Using specialized multi-nuclear hardware and pulse sequences, the gases are imaged 

directly once inhaled by the patient.  Although the gases are not endogenous and provide 

excellent contrast in that way, intrapulmonary tracer gases have low spin density at thermal 

equilibrium that generates three orders of magnitude less MRI signal than that of solid 

tissue or fluids in the body.  Each gas requires different techniques to improve the spin 

density and MR visibility, and have their own respective advantages and disadvantages 

that lend themselves to different applications.  In all cases, anatomical 1H is typically also 

acquired to provide matched anatomical information.  

Of the inhaled gas MRI applications, inhaled fluorinated gas MRI was the first to be 

proposed in 1984,227 although it was not evaluated in humans until 2008.228  Fluorinated 
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gas MRI is enabled using inhaled sulfur hexafluoride (SF6), hexafluoroethane (C2F6), 

tetrafluoromethane (CF6), perfluoropropane (PFP; C3F8) or octafluorobutane (C4F8), all of 

which are non-toxic and contain multiple fluorine-19 (19F) nuclei to increase the spin 

density.  Moreover, 19F has a rapid signal relaxation time that allows for extensive signal 

averaging to improve image signal-to-noise.  Importantly, 19F is naturally abundant and 

does not require hyperpolarization, so the associated costs for 19F MRI are lower than that 

of hyperpolarized gases.  Dedicated 19F radiofrequency coils are generally desired but not 

required; the gyromagnetic ratio of 19F is close to that of 1H (40.052 MHz/T) so 19F can be 

imaged using conventional 1H hardware, however at the cost of reduced image quality due 

to slight off-resonance effects.  Patients are instructed to breathe the fluorinated gas mixed 

with oxygen for 5-7 breaths to reach steady state concentration of 19F in the lungs, after 

which images may be acquired in a static breath-hold or during the wash-in and wash-out 

of the contrast gas.  19F MRI shows homogeneous ventilation in healthy volunteers229,230 

and a visual increase in heterogeneity of gas distribution in patients with asthma230 and 

COPD230,231 compared with healthy controls.  These studies demonstrate that sufficient and 

clinically relevant signal may be achieved using 19F MRI, however it still suffers from low 

spatial resolution that has limited its widespread application in asthma and COPD. 

On the other hand, hyperpolarized gas MRI provides images of pulmonary structure and 

function with high spatial and temporal resolution.  Hyperpolarized gas MRI is enabled 

using noble gases helium-3 (3He) or xenon-129 (129Xe) which, as the name suggests, are 

hyperpolarized to increase their spin densities.232  In contrast to 19F, signal averaging cannot 

be performed because 3He and 129Xe have long signal relaxation times.  The technique was 

originally discovered using 129Xe when Albert and colleagues recognized that the 

polarization of the nuclei could be increased by approximately 100,000 times and provided 

the first 129Xe MR image of excised mouse lungs in 1994.233  For both 3He and 129Xe, 

hyperpolarization is achieved via spin-exchange optical pumping234 whereby a circularly 

polarized laser is used to bombard a glass cell housing rubidium and the noble gas.  The 

circularly polarized light, with wavelength corresponding to the transition energy of 

rubidium, is absorbed by and polarizes the rubidium.  Subsequent collisions between 

polarized rubidium and the noble gas transfer angular momentum to the noble gas, 

effectively increasing the nuclear-spin polarization of the noble gas and improving its MR 
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signal.  The cell itself is housed inside Helmholtz coils to maintain a constant magnetic 

field and minimize the rate at which the polarized noble gas atoms decay back to thermal 

equilibrium.  A single inhalation of up to 1.0 L of hyperpolarized gas is sufficient to 

generate high resolution static breath-hold MR images.  

Following Albert and colleagues’ initial results using 129Xe,233 the field quickly 

transitioned to 3He235 because of its three-fold greater gyromagnetic ratio (32.434 MHz/T 

for 3He versus 11.777 MHz/T for 129Xe) and greater achievable polarization levels with 

simpler turn-key systems (30-40% for 3He versus 8-25% for 129Xe).  This meant that greater 

MRI signal and thus image quality could be achieved using small volumes of polarized 

3He.  The field was entirely dominated by 3He until recently when the global shortage and 

high cost of 3He236 pushed researchers back towards 129Xe.237,238  As a result, 129Xe 

polarizer technology has significantly advanced to achieve polarization to the same order 

as 3He.239-241  Differences have been observed between the results produced by 3He and 

129Xe which are further discussed later on, however importantly, both have excellent safety 

and tolerability in healthy participants and patients with respiratory disease.242-244  129Xe 

MRI is now approved for clinical use in the United Kingdom and positive phase III clinical 

trial results for 129Xe MRI against gold-standard 133Xe scintigraphy just completed this year 

will support clinical approval in the United States later in 2020.245  These methods allow 

for measurement of regional ventilation, lung microstructure and gas exchange.  It is 

important to note that both 3He and 129Xe MRI require dedicated multi-nuclear MR 

systems, radiofrequency coils and hyperpolarizers.  In the grand scheme of inhaled gas 

MRI, hyperpolarized gas applications are much more predominant than fluorinated gas; 

the remainder of this section is dedicated to hyperpolarized gas imaging of the lung. 

Ventilation Imaging 

Imaging the spin density of hyperpolarized gases provides a visualization of the regional 

distribution of inhaled 3He or 129Xe in the lungs, highlighting regions that do and do not 

ventilate well.  Figure 1-10 demonstrates regional distribution of hyperpolarized 3He 

(cyan) and 129Xe (purple) in a healthy volunteer and participants with asthma and COPD.  

Compared with the healthy volunteer, where ventilation is homogeneous throughout, 3He 

and 129Xe show visually obvious ventilation heterogeneity in asthma and COPD.  Noble 
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gas ventilation images are co-registered to anatomical 1H (grey-scale) to delineate regions 

of hyperpolarized gas signal void, which are termed ventilation defects.  Early work by 

Altes and colleagues demonstrated good agreement between 3He MRI and 133Xe 

scintigraphy ventilation images.246  Notably, when comparing paired 3He and 129Xe images, 

both remain homogenous in the healthy volunteer, but 129Xe ventilation is more 

heterogeneous than 3He in the asthma and COPD participants with larger and more 

numerous defects.  These results have been observed systematically in asthma247 and 

COPD248,249 and suggest that 129Xe is more sensitive to lung abnormalities than 3He.  It is 

important to note that the images shown in Figure 1-10 were acquired after a single static 

inhalation of hyperpolarized gas; dynamic wash-in and wash-out investigations have been 

carried out,250,251 however single, static inhalations remain the most commonly employed 

method. 

 

Figure 1-10 Hyperpolarized 3He and 129Xe MRI  
3He (cyan) and 129Xe (purple) MRI co-registered to anatomical 1H (grey-scale) show 

homogeneous ventilation for healthy participant and ventilation heterogeneity for asthma 

and COPD participants. In asthma and COPD, 129Xe MRI ventilation is visually more 

heterogeneous than 3He.  
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The extent of ventilation abnormalities was initially quantified using visual scoring and 

manual segmentation, however semi-automated252-254 and automated255,256 approaches are 

now widely used.  Quantitative MRI biomarkers include the ventilated volume,257 

ventilation coefficient of variation,258 ventilation defect volume259,260 and ventilation defect 

percent.252,253,257,261  Second-order texture features of MRI signal have also been 

quantified.262  VDP is the most widely disseminated biomarker to date, owing to its robust 

reproducibility23,259 and well-established relationships with clinical indices.248,263  VDP is 

calculated as the ventilation defect volume normalized (VDV) to the thoracic cavity 

volume (TCV)252 as shown in Equation 1-11: 

Equation 1-11 Ventilation defect percent [%]=
Ventilation defect volume [mL]

Thoracic cavity volume [mL]
∙100 

In asthma, and as shown in Figure 1-10, ventilation is typically more heterogeneous than 

healthy controls,258,263-265 although not all asthmatics have ventilation defects.264,266  

Asthmatics with defects tend to be older,266 and ventilation defects increase with increasing 

disease severity,263,267 are related to airflow obstruction22,260,263,266 and related to 

plethysmography airways resistance.265  By lung lobe, one study showed a predominance 

of defects in the right upper and middle lobes in patients with asthma.267  Ventilation 

defects increase in size and number following methacholine-265,268 and exercise-induced268-

270 bronchoconstriction, and partially or completely resolve with bronchodilation.247,264,268  

Investigations of the short-term temporal nature of ventilation defects in asthma 

demonstrated persistence in the same spatial locations for same-day,23,264 7-14 day,271 and 

up 1.5-year repeat evaluations.22,23  Repeat methacholine challenges also revealed the same 

regions of lung affected by bronchoconstriction for up to 1.5 years.22  Although long-term 

investigations have not yet been undertaken, these MRI findings refute the idea of diffuse 

and random airway abnormalities in asthma and suggest the importance of regional 

heterogeneity within the asthmatic lung.272  Moreover, ventilation defects are unique 

predictors of asthma control273 and exacerbations,274 suggesting an important role for MRI 

ventilation defects as an indicator of patient outcomes.   

Ventilation defects in asthma may arise from any of the underlying airway pathologies 

introduced in section 1.3.1 and the pathology has been investigated using a number of 
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different approaches.  Using CT airway measurements, ventilation defects have been 

shown to be quantitatively and spatially related to abnormally remodeled large airways266 

and intraluminal plugging by mucus and cellular debris.275  Fain and colleagues also 

demonstrated the contribution of small airways to ventilation defects via spatial 

correlations with regions of air trapping on expiratory CT260 and relationships with 

oscillometry small airways resistance further suggest the role of small airways in 

ventilation defects in asthma.276  Using a more invasive approach, a preliminary 

investigation of image-guided bronchoscopic biopsies in regions of ventilation defects 

demonstrated increased goblet cell hyperplasia and squamous metaplasia in regions of 

defects versus well-ventilated regions in the same participants.277    With respect to airway 

inflammation, ventilation defects have been shown to be related to fractional exhaled nitric 

oxide,265 neutrophils in bronchoalveolar lavage260 and sputum eosinophils.278  In 

conjunction with sputum measurements and pre- and post-bronchodilator evaluations, MRI 

can distinguish regions with inflammatory versus non-inflammatory contributions to 

ventilation heterogeneity.278  With an understanding of the pathophysiology, it follows that 

ventilation defect response to treatment has been demonstrated with montelukast,270 

bronchial thermoplasty279 and dupilumab.280  Preliminary results of a randomized control 

trial for MRI-guided bronchial thermoplasty demonstrated non-inferior results compared 

with the conventional whole-lung approach,281 and larger-scale image-guided studies are 

ongoing.282 

Many similar results have been observed in patients with COPD.  Ventilation is also more 

heterogeneous in COPD compared with healthy controls,248,259,283 and ventilation defects 

increase with increasing COPD severity259,284 and are related to airflow obstruction.248,283  

In milder disease, ventilation defects are more predominant in the basal lung and the 

distribution becomes more homogeneous in more severe disease.285  Repeatability of 

ventilation defects in COPD has been observed on same-day and 7-day evaluations,259 

which is in agreement with the understanding of persistent airflow obstruction in COPD.  

Regional and quantitative improvements in ventilation defects have however been 

observed following bronchodilation in the absence of spirometric improvement,286 

suggesting the increased sensitivity of MRI ventilation abnormalities to bronchodilation in 

COPD.   Importantly, ventilation defects are related to COPD symptoms and exercise 
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limitation287 and are predictive of COPD exacerbations.288  Pathologically, ventilation 

defects are spatially and quantitatively related to CT measurements of emphysema289 and 

comparison with CT parametric response maps revealed that ventilation defects in mild 

COPD are related to air trapping and small airways disease, whereas in severe COPD, 

defects are more related to emphysema.284   

The sensitivity and safety of MRI provide a unique opportunity to evaluate the natural 

progression of lung diseases.  The progressive nature of COPD was evaluated in a 

preliminary longitudinal study in 15 participants with COPD, which demonstrated that 

MRI ventilation significantly worsened after two years in the absence of FEV1 changes.290  

In a larger cohort study evaluating spirometry, CT and MRI over three years, only MRI 

ventilation biomarkers significantly predicted disease worsening in mild-moderate 

COPD.291  In comparison in asthma, MRI ventilation abnormalities have only been studied 

over a longitudinal period of up to 1.5 years.22,23  With the novel understanding of a 

progressive phenotype of asthma and progression to COPD, longitudinal studies are 

required to better understand asthma disease progression, and previous results in 

COPD290,291 suggest MRI ventilation biomarkers may be sensitive to early disease changes. 

Diffusion-weighted Imaging 

Diffusion-weighted hyperpolarized gas MRI leverages the self-diffusion of the inhaled 

gases to measure the lung microstructure.292 The random Brownian motion of the noble 

gas atoms reflects the restricted diffusion of the gases within the airways and airspaces and 

is quantified as apparent diffusion coefficients (ADC).  The diffusion time interval is a 

surrogate of airspace size or dimension such that increased ADC reflects a greater mean 

square displacement of the gas molecule, which typically occurs in enlarged airspaces in 

the case of emphysema.  ADC were first evaluated using 3He, which were validated against 

histology61 and shown to be highly reproducible in vivo.259,293  3He ADC were subsequently 

used to validate 129Xe ADC.294  Owing to the respective pathophysiologies, diffusion-

weighted MRI is commonly evaluated in COPD but not asthma.  

Limited studies in asthma show conflicting evidence; some studies have shown elevated 

ADC compared with healthy controls295,296 whereas another observed no difference.265  

ADC has however been shown to increase following methacholine-induced 
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bronchoconstriction and subsequently decrease with bronchodilation.265  The 

methacholine-induced increase in ADC was suggested to be due to gas trapping,265 and a 

more recent study demonstrated direct relationships between elevated ADC in asthma and 

CT-measured gas trapping.296 

In COPD, ADC are certainly elevated relative to healthy controls248,297,298 and as expected, 

are related to CT measurements of emphysema.248,299,300  ADC are also related to airflow 

obstruction297,299 and diffusing capacity of the lung.294  In a 3He-129Xe comparative study, 

ADC were used to explain the differences between 3He and 129Xe ventilation defects, which 

was ultimately determined to be related to emphysema.289  The use of ADC in COPD 

phenotyping has also been described in a preliminary investigation,301 similar to that for 

CT described previously.  It is important to acknowledge however that ADC measurements 

are limited to those regions that ventilate in a single breath-hold and therefore may be 

unable to probe the most diseased regions. 

Dissolved-phase Imaging 

129Xe is especially advantageous because, unlike 3He, it is soluble in biological tissue and 

can probe the efficiency of gas exchange.302,303  The so-called dissolved phase refers to 

xenon dissolved in the alveolar-capillary membrane and red blood cells within the 

pulmonary capillaries – once dissolved, 129Xe exhibits a chemical shift from the gaseous 

state that can be resolved as three distinct nuclear MR peaks: 1) gas, 2) tissue barrier plus 

plasma, and 3) red blood cell.  The gas state reflects the spin density imaging described 

previously and has the largest measurable signal.  The tissue barrier plus plasma signal 

represents 129Xe dissolved in the alveolar-capillary membrane and blood plasma.  The 

tissue barrier and plasma themselves have indistinguishable chemical shifts and together 

combine for the second largest signal approximately 197 ppm from the gas state.304  Once 

uptaken into the red blood cells, 129Xe exhibits an additional chemical shift of 

approximately 20 ppm beyond the tissue-plasma peak, creating the third and smallest peak.  

All three compartments may be imaged simultaneously within a single breath-hold of 

129Xe303 to quantify gas exchange on a regional level.305  Each peak may be quantified as a 

defect percent on its own analogous to VDP, or ratios between the peaks may also 

expressed, for example tissue-to-gas, red blood cell-to-gas, or red blood cell-to-tissue.306  
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The primary applications of dissolved-phase imaging have been in diseases of pulmonary 

fibrosis, with limited application to date in asthma and COPD.  In the first evaluation of 

asthma and COPD using 129Xe dissolved-phase MRI, Qing and colleagues observed 

reduced red blood cell-to-tissue ratio in COPD and increased variance in the red blood cell-

to-tissue ratio in asthma, both compared with healthy controls.306  Additional preliminary 

work has observed greater improvements in 129Xe barrier and red blood cell biomarkers 

compared with ventilation following dual bronchodilator therapy307 and also identified 

phenotypes of gas exchange in patients with COPD.308  Although there are limited 

applications of dissolved phase imaging to date in obstructive lung disease, there is 

enormous opportunity for 129Xe dissolved phase to better understand pathophysiology, 

evaluate and determine new disease phenotypes, and evaluate treatment response.  Similar 

to ADC, dissolved-phase measurements are also limited to those regions that ventilate in a 

single breath-hold. 

1.6.4.3 Functional 1H MRI 

Fourier decomposition MRI (FDMRI) is a free-breathing 1H approach that permits 

simultaneous ventilation and perfusion imaging of the lung.309  As the patient tidally 

breathes, a time series of 1H images are acquired and subsequently deformably co-

registered to a reference image frame.  The reference image is usually chosen as one at 

mid-position between end-inspiration and end-expiration.  In the registered image, the 

signal intensity oscillates over time due to the mechanical compression and expansion of 

the lung tissue during breathing.  Fast Fourier transforms of the signal oscillations in each 

voxel generate the ‘signal intensity’ of the ventilation map using the first ventilation 

harmonic, which corresponds to the respiratory rate.  Example FDMR ventilation images 

are shown in Figure 1-11 for healthy, asthmatic and COPD participants.  The same process 

may be performed at the cardiac rate to generate perfusion maps.309 
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Figure 1-11 Functional 1H FDMRI  

FDMRI ventilation maps (magenta) generated from free-breathing 1H MRI co-registered 

to anatomical 1H (grey-scale) show homogeneous ventilation for healthy participant and 

ventilation heterogeneity for asthma and COPD participants.  

FDMRI sensitively detects ventilation abnormalities in both asthma310 and COPD311 that 

show strong agreement with 3He static ventilation abnormalities.  FDMRI may however 

exhibit a small bias towards smaller ventilation defect abnormalities than 3He, likely owing 

to the different time constants for lung filling during the image acquisition time (2 minutes 

FDMRI versus 12 seconds 3He).310  Kaireit and colleagues also demonstrated strong 

agreement between FDMRI and dynamic washout 19F MRI ventilation abnormalities in 

patients with COPD.312  In a randomized control trial, a similar variation of FDMRI313 

showed ventilation improvements in patients with COPD following dual bronchodilator 

therapy.314 

Although FDMRI requires advanced post-processing to generate functional maps, it 

eliminates the need for additional hardware and contrast agents, and enables functional 

ventilation maps on any MRI system using conventional 1H sequences and coils.  A rapid, 

automated pipeline was recently developed315 to facilitate wider translation of this 

technique.   

1.7 Thesis Hypotheses and Objectives 

The underlying structure-function determinants of ventilation heterogeneity in asthma are 

not well understood.  In silico models suggest that asthmatic airway abnormalities are 

random, whereas early in vivo MRI results suggest airway abnormalities in asthma are not 

random.  Instead, MRI findings reveal focal ventilation abnormalities that persist for up to 
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1.5 years.22,23  There is enormous potential for pulmonary imaging to provide a better 

understanding of the mechanisms and physiological relevance of ventilation heterogeneity 

in asthma.  Accordingly, the overarching objective of this thesis was to exploit sensitive 

pulmonary imaging measurements to better understand the structure and function of the 

asthmatic lung that drive ventilation heterogeneity and provide a foundation for imaging 

to guide disease phenotyping, predict disease worsening, and deliver personalized asthma 

treatment.  The hypotheses and objectives specific to each chapter of this thesis are 

described below.  

We first wanted to better understand the structural biomechanics of ventilation 

heterogeneity in asthma compared with that of COPD and if these differences could be 

explained by oscillometry and MRI ventilation defects.  We hypothesized that oscillometry 

measurements of resistance and reactance exhibit different relationships with MRI 

ventilation defects in participants with asthma and COPD.  The objective of Chapter 2 

was therefore to evaluate and compare hyperpolarized 3He MRI and oscillometry in 

participants with asthma versus those with COPD, never-smokers without asthma and ex-

smokers without COPD. 

We next wanted to understand the long-term spatial and temporal nature of airway and 

ventilation abnormalities in asthma.  Based on previous work that showed that ventilation 

abnormalities are spatially persistent for up to 1.5 years, we hypothesized that MRI 

ventilation defects and CT airway abnormalities in asthma are spatially and quantitatively 

persistent for longer than 1.5 years.  In Chapter 3, our objective was to evaluate and 

compare CT airway and MRI ventilation abnormalities in nonidentical twins over a period 

7 years. 

Building on this, we further evaluated the long-term structure-function relationships in 

asthma in a group of unrelated asthma patients.  We also wanted to determine the role for 

MRI in predicting disease worsening and we hypothesized that ventilation defects are 

predictive of future bronchodilator reversibility.  In Chapter 4, we conducted a proof-of-

concept study in 11 mild-to-moderate asthmatics over 6.5 years with the objective to 
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investigate the long-term pattern of ventilation defects and to identify predictors of 

longitudinal bronchodilator reversibility after 6.5 years. 

Finally, based on previous work in COPD, we wondered whether the airway tree appears 

truncated on CT in patients with asthma.  Due to the nature of airway remodeling in asthma, 

we hypothesized that CT airway count is reduced in patients with severe asthma compared 

to those with mild-to-moderate asthma, and that this reduction is associated with thickened 

airway walls and worse lung function.  Accordingly, the objective of Chapter 5 was to 

measure CT total airway count in patients with asthma across a range of severities and 

evaluate relationships with asthma severity, airway morphology, pulmonary function, and 

MRI ventilation. 

In Chapter 6, I provide an overview and summary of the important observations and 

conclusions from Chapters 2-5. I also discuss the study specific and general limitations 

for these studies and suggest some potential solutions. I conclude my thesis with an outline 

of future studies that can build on the work presented here.  
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CHAPTER 2  

2 OSCILLOMETRY AND PULMONARY MAGNETIC 

RESONANCE IMAGING IN ASTHMA AND COPD 

To better understand the biomechanical impacts of asthma and how this compares to 

COPD, we evaluated and compared oscillometry and MRI ventilation defects in 

participants with asthma and COPD as well as never-smokers without asthma and ex-

smokers without COPD. 

The contents of this chapter were previously published in the journal Physiological 

Reports: RL Eddy, A Westcott, GN Maksym, G Parraga, RJ Dandurand. Oscillometry and 

Pulmonary Magnetic Resonance Imaging in Asthma and COPD. Physiol Rep. 

2019;7(1):e13955. This article is available under the terms of the Creative Commons 

Attribution License. 

2.1 Introduction 

First developed over 60 years ago,1 oscillometry has re-emerged as a way to generate 

clinical measurements in patients with obstructive lung disease because minimal coaching 

and patient effort is required.  Moreover, oscillometry is well-tolerated in young and old 

patients across disease severities2 and is sensitive to small airway abnormalities.3  

Oscillometry also provides a non-invasive way4 to reveal lung pathologies that result in 

ventilation heterogeneity5-7 by directly measuring resistance and reactance as functions of 

frequency.  It is well established that in asthma, respiratory-system resistance responds to 

bronchodilator inhalation8-11 and is frequency-dependent.12-14  The frequency dependence 

of resistance has also been observed in patients with chronic obstructive pulmonary disease 

(COPD),15 in whom low frequency resistance also diminishes after bronchodilation.8,9   

In patients with asthma and COPD, reactance is more negative at low frequencies.16  The 

area under the reactance curve can be quantified as the reactance area (AX)17 which is 

determined by the reactance value measured at the lowest frequency, the resonant 

frequency, and the shape of the low frequency reactance curve.  AX measurements correlate 

strongly with the frequency dependence of resistance18
 and in asthmatics, AX detects 

bronchodilator8 and bronchial challenge19 responses in the absence of low frequency 

reactance changes.  Furthermore, AX has been suggested as a useful tool for early disease 
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screening and monitoring in COPD, and may be more sensitive to therapy response than 

the frequency dependence of resistance.20    

X-ray computed tomography (CT) airway measurements were previously shown to be 

related to oscillometry measurements of resistance in asthma21 and COPD.22  Quantitative 

CT measurements of emphysema have also been shown to be related to oscillometry-

measured reactance in COPD22 and there are differences in the relationships between CT 

measurements and respiratory impedance in different COPD phenotypes.23  Magnetic 

resonance imaging (MRI) using inhaled noble gases was also recently used to discern the 

relationships between low frequency resistance and elastance as well as the frequency 

dependence of resistance with MRI signal intensity coefficients of variation.24  Another 

study showed a relationship between MRI ventilation defect percent (VDP) and the 

frequency-dependence of resistance in COPD patients.25  

While these previous results are intriguing, no large-scale, controlled study has investigated 

a diversity of patients across a spectrum of disease severities to ascertain the relationships 

between experimental oscillometry measurements and imaging biomarkers of airway and 

parenchymal disease.  This is important because in patients with asthma and COPD, airway 

and parenchymal abnormalities both contribute to symptomatic derangements in lung 

function and poor exercise capacity.  In recent years, there has been modest clinical support 

for experimental impedance measurements as a way to evaluate patients.20,26  Accordingly, 

our objective was to investigate the relationships between oscillometry measurements 

including resistance, reactance and the frequency dependence of resistance as well as AX 

with MRI ventilation defect measurements across a wide variety of patients.  In contrast 

with previous investigations,24,25,27 here we evaluated participants with asthma and those 

with COPD (with and without emphysema) as well as control groups of never-smokers 

without asthma and ex-smokers without COPD. 
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2.2 Materials and Methods  

2.2.1 Study Participants and Design 

We evaluated never-smokers aged 60 to 90 years, asthmatics aged 18 to 70 years and ex-

smokers with and without COPD aged 50 to 90 years who provided written informed 

consent to study protocols approved by the local research ethics board and Health Canada 

and registered (NCT02483403, NCT02279329, NCT02351141 https://clinicaltrials.gov).  

All subjects underwent a single three-hour study visit including spirometry, 

plethysmography, oscillometry and MRI.  Some of these subjects were previously 

evaluated and results published.25  Never-smokers performed all testing without 

administration of a short-acting bronchodilator.  Participants with asthma and all ex-

smokers performed all testing after administration of a short-acting bronchodilator.  In 

addition, all ex-smokers underwent post-bronchodilator thoracic CT.  Post-bronchodilator 

testing was performed 20 minutes after administration of four inhaled doses of 100 μg 

Novo-Salbutamol HFA (Teva Novopharm Ltd., Toronto, ON, Canada) through a 

pressurized metered-dose inhaler using an AeroChamber Plus spacer (Trudell Medical 

International, London, ON, Canada).   

2.2.2 Pulmonary Function Tests 

Spirometry and plethysmography were performed using a MedGraphics Elite Series 

plethysmograph (MGC Diagnostics Corporation, St. Paul, MN, USA).  Spirometry was 

performed according to American Thoracic Society (ATS)/European Respiratory Society 

(ERS) guidelines28 to measure the forced expiratory volume in one second (FEV1), forced 

vital capacity (FVC) and FEV1/FVC, while plethysmography was performed to measure 

lung volumes and airways resistance (Raw).  For never-smokers and all ex-smokers, the 

diffusing capacity of the lung for carbon monoxide (DLCO) was also measured using a 

stand-alone gas analyzer attached to the plethysmograph.  For post-bronchodilator testing 

in asthma, ex-smoker and COPD subgroups, participants withheld short-acting β-agonists 

for 6 hours, long-acting β-agonists for 12 hours and long-acting muscarinic antagonists for 

24 hours before their study visit. 
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2.2.3 Oscillometry  

Oscillometry was performed using the tremoFlo C-100 Airwave Oscillometry System 

(Thorasys, Montreal, QC, Canada) with the non-harmonic composite airwaves in the adult 

frequency range consisting of 5, 11, 13, 17, 19, 23, 29, 31 and 37 Hz to measure total 

respiratory system resistance at 5 Hz (R5), frequency-dependence of resistance as R at 5 

Hz minus R at 19 Hz (R5-19), reactance at 5 Hz (X5), resonant frequency (fres) and AX.  AX 

was calculated by integrating the reactance curve from 5 Hz to fres and when fres was greater 

than 37 Hz, the reactance curve was truncated at 37 Hz and integrated up to that point.  

Participants were seated comfortably with legs uncrossed and supported their chin and 

cheeks with their hands to limit upper airway shunt.  Oscillometry measurements were 

acquired over 16 seconds and repeated for three acceptable and repeatable tests, as judged 

by a coefficient of variation in resistance at 5 Hz (CVR5) of < 15%.  Artefacts were 

automatically identified and removed by the manufacturer’s automated algorithms.  

Calibration of the oscillometry unit was performed daily using the vendor-provided 

nominal 2 cmH2Os/L reference test load.   

2.2.4 Image Acquisition and Analysis 

All subjects underwent anatomical proton (1H) followed by hyperpolarized 3He static 

ventilation MRI (within five minutes) using a whole body 3T system (MR750 Discovery, 

General Electric Healthcare, Milwaukee, WI) with broadband imaging capability as 

previously described.29  3He gas was polarized to 30-40% polarization (HeliSpin; Polarean 

Inc., Durham, NC, USA) and diluted with N2 gas to 25% 3He by volume.  Subjects were 

positioned supine in the scanner with their arms above their head and instructed to inhale 

1.0 L of gas (100% N2 for 1H MRI, 3He/N2 mixture for 3He MRI) from functional residual 

capacity (FRC) and coronal images were acquired in 8-15 seconds under breath-hold 

conditions.  For all image acquisition, FRC was assumed to be the lung volume at end tidal 

expiration. 

Hyperpolarized 3He MR images were analyzed using in-house segmentation software as 

previously described.30  Briefly, a single user placed seeds on the 1H and 3He images to 
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label the lung and the surrounding background tissue and image registration and 

segmentation were completed automatically.  3He images were segmented into five clusters 

of signal intensity using three-dimensional k-means clustering,31 and the ventilation defect 

percent (VDP) was quantified as the ventilation defect volume normalized to the thoracic 

cavity volume.   

Ex-smoker participants were transported from the MRI suite to the CT suite by wheelchair 

to avoid exercise-induced dilatation of the airways. Thoracic CT volumes were acquired 

within ten minutes of completion of MRI using a 64-slice LightSpeed VCT system 

(General Electric Healthcare) as previously described32 under breath-hold conditions after 

full inspiration.  The total effective dose for each CT scan was 1.8 mSv as calculated using 

the manufacturer’s settings and the ImPACT patient dosimetry calculator (based on the 

UK Health Protection Agency NRPB-SR250 software).   

Thoracic CT images were analyzed using Pulmonary Workstation 2.0 (VIDA Diagnostics 

Inc., Coralville, IA, USA) to quantify emphysema using the relative area of the lung < -

950 Hounsfield units (RA950).  An RA950 threshold of 6.8% was used to stratify COPD 

subjects with and without CT evidence of emphysema.33 

2.2.5 Statistical Analysis  

Data were tested for normality using the Shapiro-Wilk test using IBM SPSS Statistics 25.0 

(IBM Corporation, Armonk, NY, USA) and when not normally distributed, non-parametric 

statistics were performed.  One-way ANOVA and Kruskal-Wallis H test were performed 

for group-wise differences with post-hoc least significant difference and Holm-Bonferroni 

correction to adjust for multiple comparisons and Fisher’s exact test was used for 

categorical variables using SPSS.  Univariate relationships were evaluated using Pearson 

correlations (r) for normally distributed data and Spearman correlations (ρ) when the data 

were not normally distributed using GraphPad Prism 7.00 (GraphPad Software, La Jolla, 

CA, USA).  Multivariable models were generated in SPSS using the enter approach to 

determine the contributions of R5, R5-19, X5 and AX to VDP using age, sex and body mass 

index (BMI) as covariates for four separate models: (1) all subjects, (2) never-smokers and 

ex-smokers with and without COPD, (3) ex-smokers with and without COPD, and (4) 
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asthmatics only.  Results were considered statistically significant when the probability of 

making a Type I error was less than 5% (p<0.05). 

2.3 Results 

We evaluated 175 participants including 42 elderly never-smokers (74±7 years), 49 

participants with asthma (48±12 years; n=14 treatment steps 1-2, n=35 treatment steps 3-4 

as per the Global Initiative for Asthma [GINA] guidelines34), 28 ex-smokers without 

COPD (70±9 years) and 56 ex-smokers with COPD (73±9 years; n=18 mild [GOLD I], 

n=22 moderate [GOLD II], n=16 severe [GOLD III-IV]).  Table 2-1 shows demographic, 

pulmonary function test and imaging measurements for never-smokers, asthma 

participants, ex-smokers and COPD participants and between-group differences are shown 

in Figure 2-1 for select data.  We note that for 10 participants, fres was greater than 37 Hz 

(n=1 asthma, n=9 COPD).  Participants with COPD had significantly worse post-

bronchodilator pulmonary function than never-smoker and ex-smoker participants, 

whereas participants with asthma did not have significantly different post-bronchodilator 

oscillometry measurements than never-smokers and ex-smokers.  There were no 

significant differences between never-smoker and ex-smoker subgroups.  
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Table 2-1 Participant demographics 
Parameter  

Mean (±SD) 

Never-smokers 

(n=42) 

Asthma 

(n=49) 

Ex-smokers 

(n=28) 

COPD 

(n=56) 

Sig diff* 

(p) 

Age years 74 (7) 48 (13) 70 (9) 73 (9) <0.0001 

Male n (%) 21 (50) 19 (39) 16 (57) 36 (64) 0.1 

BMI kg/m2 27 (4) 28 (5) 31 (4) 26 (4) <0.0001 

FEV1 %pred 107 (18) 77 (21) 102 (19) 68 (27) <0.0001 

FVC %pred 103 (15) 88 (15) 95 (19) 92 (21) 0.002 

FEV1/FVC % 77 (6) 69 (13) 80 (6) 53 (12) <0.0001 

RV %pred 98 (22) 121 (33) 100 (21) 148 (47) <0.0001 

TLC %pred 100 (13) 102 (15) 96 (13) 113 (18) <0.0001 

RV/TLC %pred 96 (17) 118 (23) 104 (16) 129 (26) <0.0001 

DLCO %pred 90 (16) - 87 (17) 61 (23) <0.0001 

Raw %pred 83 (38) 105 (51) 65 (24) 117 (49) <0.0001 

R5 cmH2Os/L 3.59 (1.68) 4.25 (1.49) 3.32 (1.12) 3.64 (1.23) 0.7 

R5-19 cmH2Os/L 0.54 (0.76) 0.82 (0.87) 0.36 (0.54) 0.96 (0.79) 0.001 

X5 cmH2Os/L -1.41 (0.88) -1.86 (1.26) -1.42 (0.72) -2.41 (1.57) 0.001 

fres Hz✝ 19.77 (7.40) 19.53 (6.86) 20.20 (5.78) 23.66 (7.67) 0.001 

AX cmH2O/L 12.94 (14.94) 14.38 (14.90) 9.79 (7.57) 23.30 (19.96) 0.008 

VDP % 3 (2) 5 (6) 5 (4) 19 (12) <0.0001 

SD=standard deviation; Sig diff=significance of difference; BMI=body mass index; 

FEV1=forced expiratory volume in one second; %pred=percent predicted; FVC=forced vital 

capacity; RV=residual volume; TLC=total lung capacity; DLCO=diffusing capacity of the lung 

for carbon monoxide; Raw=airways resistance; R5=respiratory system resistance at 5 Hz; R5-

19=frequency dependence of resistance; X5=respiratory system reactance at 5 Hz; fres=resonant 

frequency; AX=reactance area; VDP=ventilation defect percent. 

Pre-bronchodilator values shown for never-smokers and post-bronchodilator values shown for 

asthmatics, ex-smokers and COPD subjects. 

*Significance of difference calculated using one-way ANOVA for parametric variables and 

Kruskal-Wallis H test for non-parametric variables; significant values are bolded. 
✝n=42 for never-smokers, n=48 for asthma, n=28 for ex-smokers, n=47 for COPD; fres> 37 Hz 

for remaining subjects. 
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Figure 2-1 Pulmonary function test and MRI VDP measurements 

A) Significantly lower FEV1 in asthma and COPD compared to never-smokers and ex-

smokers.  B) Significantly greater RV/TLC in asthma and COPD compared to never-

smokers and ex-smokers.  C) Significantly greater Raw in asthma as compared to ex-

smokers and COPD subjects and significantly greater Raw in COPD as compared to never 

and ex-smokers. D) Significantly greater VDP in COPD as compared to all other 

subgroups. E) R5 not significantly different between all subgroups. F) Significantly greater 

R5-19, and, G) Significantly more negative X5, and, H) significantly greater AX in COPD as 

compared to never- and ex-smokers. 
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Figure 2-2 shows 3He MRI ventilation defects and oscillometry plots for two 

representative participants in each group: one with low (normal) VDP and one with greater 

(abnormal) VDP.  For participants with asthma and COPD, worse ventilation heterogeneity 

qualitatively reflected increased frequency dependence of resistance and reactance as well 

as greater AX.  Increased ventilation heterogeneity in never-smokers and ex-smokers 

without COPD, however, did not reflect qualitatively apparent changes in oscillometry. As 

shown quantitatively in Figure 2-3, in asthma and COPD participants, post-bronchodilator 

VDP was significantly related to R5-19, X5 and AX, but not R5.  For never-smokers, VDP 

was significantly negatively related to R5 only and there were no relationships in ex-

smokers (not shown).   
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Figure 2-2 Relationships between MRI ventilation heterogeneity and impedance 

measurements in representative subjects 

Centre slice coronal static ventilation 3He MRI (cyan) co-registered to anatomical 1H (grey-

scale) and corresponding oscillometry plots for two representative asthma, COPD, never-

smokers and ex-smokers.  
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Figure 2-3 Quantitative relationships between MRI VDP and impedance measurements 

A) VDP was not significantly related to R5 in asthma nor in COPD subjects. B) VDP was 

significantly related to R5-19 , and, C) X5 and, D) AX in asthma and COPD participants. 

 



 

86 

Table 2-2 shows multivariable models that predict VDP from oscillometric parameters R5, 

R5-19, X5 and AX.  R5 (β=-0.22, p=0.01) and X5 (β=-0.34, p=0.03) significantly added to the 

prediction of VDP for all subjects (Model 1: R=0.63, R2=0.39, p<0.0001).  For never-

smokers and ex-smokers with and without COPD, R5 (β=-0.48, p=0.001), R5-19 (β=0.35, 

p=0.03) and X5 (β=-0.41, p=0.03) significantly added to the prediction of VDP (Model 2: 

R=0.66, R2=0.44, p<0.0001), whereas for only ex-smokers with and without COPD, the 

overall model was significant (Model 3: R=0.62, R2=0.38, p<0.0001) but none of the 

oscillometry parameters significantly added to the model.  The overall model was also 

significant for asthmatic participants only (Model 4: R=0.65, R2=0.43, p=0.001) but none 

of the oscillometry parameters significantly added to the model.   

Table 2-2 Multivariable models to predict VDP from oscillometry 
 Unstandardized Standardized 

p 
Variable B Standard Error β 

MODEL 1: All subjects, n=175 (R=0.63; R2=0.39, p<0.0001) 

   R5 -1.98 0.77 -0.22 0.01 

   R5-19 1.81 1.61 0.15 0.3 

   X5 -2.75 1.26 -0.34 0.03 

   AX 0.13 0.11 0.21 0.2 

     

MODEL 2: Never-smokers, ex-smokers with and without COPD, n=126 (R=0.66, R2=0.44, 

p<0.0001) 

   R5 -3.96 1.17 -0.48 0.001 

   R5-19 5.14 2.35 0.35 0.03 

   X5 -3.55 1.63 -0.41 0.03 

   AX 0.10 0.13 0.15 0.5 

     

MODEL 3: Ex-smokers with and without COPD, n=84 (R=0.62; R2=0.38, p<0.0001) 

   R5 -2.95 1.93 -0.29 0.1 

   R5-19 6.24 3.41 0.39 0.07 

   X5 -1.16 2.20 -0.14 0.6 

   AX 0.18 0.17 0.27 0.3 

     

MODEL 4: Asthma only, n=49 (R=0.65, R2=0.43, p=0.001) 

   R5 -1.28 0.84 -0.20 0.1 

   R5-19 3.33 1.85 0.49 0.08 

   X5 1.15 1.36 0.24 0.4 

   AX 0.14 0.13 0.36 0.3 

VDP=ventilation defect percent; R5=resistance at 5 Hz; R5-19=resistance at 5 Hz minus 

resistance at 19 Hz; X5=reactance at 5 Hz; AX=reactance area. 

Covariates: age, sex, BMI 
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Of the 56 COPD participants evaluated, 33 had CT evidence of emphysema (RA950 ≥ 

6.8%33) and 23 had no CT evidence of emphysema (RA950 < 6.8%).  VDP was not 

significantly related to R5 regardless of the presence of emphysema, but VDP was related 

to Ax in COPD with (ρ=0.39, p=0.02) and without emphysema (ρ=0.43, p=0.04).  VDP 

and R5-19 were significantly related in COPD subjects without emphysema only (ρ=0.54, 

p=0.008), and significantly related to X5 in COPD subjects with emphysema only (ρ=-0.36, 

p=0.04).  There was no CT evidence of emphysema (all RA950 < 6.8%) in ex-smokers 

without spirometry evidence of airflow limitation based on GOLD criteria of FEV1/FVC < 

0.7.35  

2.4 Discussion 

We evaluated oscillometry and hyperpolarized  3He MRI measurements in a relatively 

large group of patients with asthma and COPD as well as two control groups and made 

four important observations: 1) in asthma and COPD participants, VDP was significantly 

but weakly correlated with R5-19, X5 and AX, but not R5, 2) in COPD patients without 

emphysema, VDP was related only to R5-19 and AX, and only X5 and AX in COPD patients 

with emphysema, 3) in an ex-smoker control group, there were no significant relationships 

while in never-smokers, only VDP and R5 were related, and, 4) AX was weakly related to 

VDP in all subgroups with airflow obstruction, demonstrating its sensitivity to airflow 

obstruction but not specificity to type of obstruction. 

The relationship between oscillometry and MRI VDP with quality-of-life measurements 

was previously investigated in 100 patients25 and this previous work was in agreement with 

our observations. The fact that there were no significant relationships between VDP and 

oscillometry in the control subgroups except for R5 and VDP in never-smokers is also 

congruent with previous results.25  Based on this previous work, our results were not 

unexpected.  R5 reflects the resistance of the entire respiratory system including all airways 

(and not the just the small airways or the larger airways) and this may explain why 

significant relationships with VDP were not present.  R5 was also not significantly different 

between the four subgroups, whereas R5-19, X5, AX as well as plethysmography-measured 

airways resistance (Raw) were.  This suggests that R5 is not sensitive to the differences in 
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resistance in our patient population and this could be because much of the resistance in 

these patients may be due to the peripheral airways and this effect is overshadowed in the 

R5 signal.  Oscillometry measurements that reflect the heterogeneity of airway narrowing 

(R5-19) as well as X5 and AX
36,37 were all related to VDP in asthma and all COPD patients, 

and none of these relationships were detected in never- or ex-smokers.  Notably, ventilation 

defects in severe COPD were previously shown to be related to both emphysema and small 

airways disease38,39 so the negative relationship between VDP and X5 in COPD was not 

surprising. This was not previously observed25 perhaps due to the current study’s larger 

sample size across all grades of COPD severity.  It has been shown in experimental studies 

in humans and animals however, that the major influence of heterogeneity is its impact on 

resistance and elastance between 0.1 – 5 Hz,40-42 whereas our system is limited to 5 Hz and 

above.  We are thus only capturing the ‘tail-end’ of the impact of heterogeneities using R5-

19 and this may explain the weak correlations observed.    

To better understand how oscillometry and MRI VDP measurements are related and may 

explain the biomechanical impact of obstructive lung disease in patients, we generated 

multivariable models.  We were surprised to observe that R5 significantly contributed to 

the models with all subjects (Model 1) and in never-smokers and ex-smokers with and 

without COPD (Model 2).  R5 did not significantly contribute to the models in ex-smokers 

with and without COPD (Model 3) or in asthmatics (Model 4). Based on these differences 

it is possible that the R5 results were being driven by the never-smoker subgroup in whom 

there is no airflow obstruction. There were no significant coefficients in Model 3 and 4 

which may be due to the smaller subgroup sizes which limited power to detect significant 

contributions. However, R5-19 has the greatest relative influence on VDP in Models 3 and 

4 which did not include the never-smoker group.   

COPD patients can be phenotyped based on the presence of airways disease and 

emphysema43 and these phenotypes also reflect differences in lung biomechanics and 

function.23  We observed differences in the relationships between VDP and oscillometry 

measurements in COPD patients with and without emphysema, although it is likely that all 

COPD patients had airways disease too.  The fact that X5 and AX were related to VDP in 

emphysematous COPD patients suggests that X5 and AX may reflect parenchymal stiffness 
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or derecruitment, resulting in ventilation defects.  In contrast, in COPD patients with little 

or no emphysema, VDP was related to AX and R5-19 indicative of heterogeneous airway 

narrowing largely in the periphery, which was in agreement with previous work.2  The 

different behaviours of R5-19 and X5 in COPD patients with and without emphysema 

suggests that X5 measures a different component that is independent of heterogeneous 

airway obstruction associated with R5-19.5  However, AX was weakly significantly related 

to VDP in patients with and without emphysema, and this suggests that it is non-specific 

to the type of obstruction (either airways disease or emphysema) in COPD patients.  

Emphysematous and airways disease phenotypes may be best identified by appropriate use 

of R5-19 and X5.  In COPD patients, it is also important to acknowledge that airways disease 

and emphysema phenotypes are typically observed in combination,44 so future 

examinations should also evaluate mixed phenotypes which were not evaluated here. 

AX was originally developed to improve the signal-to-noise ratio of respiratory system 

reactance compared to reactance values at a single frequency.17  Table 2-3 provides an 

overview of the advantages and limitations of oscillometry measurements of obstructive 

lung disease including AX.  It is clear that AX is sensitive to airflow obstruction, however 

it is non-specific to the type of obstruction and cannot distinguish airway constriction from 

lung recruitment or parenchymal stiffening.  R5-19 on the other hand is known to reflect 

obstruction in the distal airways12 whereas X5 is known to reflect elastic components of the 

lung.  Moreover, AX and the frequency dependence of resistance may depend on the 

number and choice of harmonics in the forcing waveform making them variable in different 

settings.  For AX, the largest influence is the first harmonic since this is where the most of 

the area is located, and different commercially available devices start at different 

frequencies anywhere from 4 Hz for adults up to 8 Hz for children.  Our data also 

demonstrated that for COPD participants with markedly abnormal AX greater than 50 

cmH2O/L, VDP values ranged from 5% to 45% (Figure 3D) and this suggests that AX is 

weakly related to inter-subject VDP differences.  We note that AX did not significantly 

contribute to VDP in any of the multivariable models.  The multiple correlation coefficients 

ranged from 0.62-0.66 with R2=0.39-0.44, so together, the oscillometry parameters 

contributed to no more than 44% of the variability in VDP regardless of subgroup. 
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Table 2-3 Advantages and limitations of oscillometry measurements 

Advantages  Limitations 

Frequency Dependence of Resistance (R5-19) 

+ Signal averaging minimizes noise and 

potential artefacts 

+ Differentiates proximal from distal 

obstruction 

+ Detects mild/early obstruction  

 - Variable in different settings  

  
 

   

Reactance at 5 Hz (X5) 

+ Reflects elastic components 

+ Reflects peripheral airway disease 

 -  More noise  

- Non-specific to obstruction versus 

restriction 

 

   

Reactance Area (AX)   

+ Sensitive to obstruction 

+ Signal averaging minimizes noise and 

potential artefacts 

+ Units of cmH2O/L, similar to 

compliance 

+ Sensitive to intra-subject response to 

therapy or provocation 

 - Non-specific to type of obstruction  

- Variable in different settings  

- When fres is undefined, Ax value is 

user-defined (hence variable between 

different devices) 

- Weakly related to inter-subject 

differences 

 

 

 

We also recognize a number of other study limitations.  Hyperpolarized 3He MRI is 

unlikely to be clinically used because of the vanishing global quantities and exorbitant cost 

of 3He.45  129Xe MRI is more sensitive to airway obstruction,38,46 less costly and therefore, 

more feasible for clinical examinations so it will be important to compare oscillometry and 

129Xe MRI measurements in patients.  Moreover, shunting of the oscillatory waves to the 

upper airways reduces sensitivity to obstruction despite firm cheek-holding.47  This means 

that in patients with obstruction, impedance may be underestimated, which may have also 

limited the correlation strengths observed here.  We note that the never-smoker control 

group studied here underwent testing without inhaled bronchodilators whereas asthmatics, 

ex-smokers and COPD ex-smokers were evaluated post-bronchodilator. We previously 

showed that there was no post-bronchodilator MRI ventilation response in elderly never-

smokers48 with ventilation abnormalities, so we expect no confounding effects due to the 

lack of post-bronchodilator measurements in this subgroup.  Finally, we also acknowledge 

positional differences in the oscillometry (seated upright) and MRI measurements (supine).  

Respiratory system resistance is increased in the supine position compared to upright49,50 
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and the presence of emphysema also causes large upright to supine AX variability,51 which 

may also explain why the relationships observed here were weak to moderate. 

To our knowledge, this is the largest controlled evaluation of oscillometry and functional 

MRI undertaken in patients and healthy volunteers.  The pattern of significant relationships 

for VDP with R5-19 and X5 was different between the different disease subgroups (i.e., 

COPD with and without emphysema, asthma).  On the other hand, the relationship of AX 

with VDP was similar across disease subgroups, suggesting that AX is a sensitive but not 

specific measurement of obstruction.  The different relationships for MRI VDP with R5-19 

and X5 may reflect airway and parenchymal disease-specific biomechanical abnormalities 

that lead to ventilation defects.   
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CHAPTER 3  

3 NONIDENTICAL TWINS WITH ASTHMA: 

SPATIALLY-MATCHED CT AIRWAY AND MRI 

VENTILATION ABNORMALITIES 

To better understand the long-term spatial and temporal nature of ventilation 

heterogeneity in asthma, we evaluated and compared CT airway and MRI ventilation 

abnormalities in nonidentical twins.  We compared these measurements between the twins 

over two visits separated by seven years and estimated the probability of the twins having 

the same MRI ventilation abnormality. 

The contents of this chapter were previously published in the journal Chest: RL Eddy, AM 

Matheson, S Svenningsen, D Knipping, C Licskai, DG McCormack, G Parraga. 

Nonidentical Twins with Asthma: Spatially-matched CT Airway and MRI Ventilation 

Abnormalities. Chest. 2019;156(6):e111-6. This article is available under the terms of the 

Creative Commons CC-BY-NC-ND License. 

3.1 Introduction 

We report magnetic resonance (MR) and x-ray computed tomography (CT) imaging 

findings for female adult non-identical twins with moderate asthma who recounted a 

similar clinical history and symptoms of asthma since childhood, or about 40 years.  In 

both 48-year-old women, there were spatially identical MRI ventilation defects and the 

same abnormal subsegmental airway, both of which remained persistently abnormal in the 

same spatial location over a period of seven years. 

In patients with asthma, chronic cough, dyspnea and wheeze as well as acute 

bronchoconstrictive worsening can be directly related to abnormal airway smooth muscle,1 

luminal inflammation and mucus plugging,2 and airway wall remodeling.3  Pulmonary 

functional MRI has recently revealed that asthma may be expressed in a spatially 

heterogeneous manner, leading to MRI quantifiable ventilation heterogeneity4,5 and 

ventilation defects that are both spatially and temporally persistent.6,7  Importantly and 

across a number of different research centres, pulmonary functional MRI has shown that 

in patients with asthma, ventilation abnormalities do not appear to be stochastic, nor 

diffusely homogeneous.6  Such MRI findings contradict in silico modeling studies that 

predict randomly distributed ventilation defects in patients with asthma.8,9   
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3.2 Case 

As part of a longitudinal asthma study (clinicaltrials.gov NCT02351141, ethics board# 

103516), we prospectively followed female twins for two study visits between January 

2010 and March 2017 using hyperpolarized 3He MRI, thoracic CT and pulmonary function 

tests.  Both twins were never-smokers (tobacco and cannabis) and attended separate 

baseline visits, each reporting a longstanding diagnosis of moderate asthma according to 

the Global Initiative for Asthma (GINA) treatment step criteria.10  Their clinical histories 

were similar; they reported that both parents were heavy tobacco smokers within the family 

home and both father and mother had a clinical history of airways disease.  They both lived 

within 25 km of each other and their original family home during their lifetime.  Neither 

twin reported occupational exposures or risk; they worked as healthcare (Twin1) and 

daycare (Twin2) providers for most of their working lives. The twins had been 

independently prescribed 400 mcg daily dose budesonide combined with formoterol 

(Twin1, 200/6 mcg 2-puffs od; Twin2, 200/6 mcg 1-puff bid), by different asthma 

specialist care providers for the past decade.  During the seven-year follow-up period, 

asthma medications remained the same and there were no asthma exacerbations reported.  

They both reported weak-to-moderate controller medication adherence, although both 

exhibited audible wheeze, shortness of breath and reported significant exercise limitation.  

Both twins had airways hyperreactivity, with a provocative concentration of methacholine 

resulting in a 20% decrease in FEV1 (PC20) of 0.08 mg/mL for Twin1 and 0.07 mg/mL for 

Twin2 at the baseline visit. They also demonstrated bronchodilator reversibility according 

to ATS/ERS guidelines11 over the follow-up period (Twin1, ΔFEV1=260 mL, 14%; Twin2, 

ΔFEV1=220 mL, 15%).  FEV1 did not change over the follow-up period for both twins 

(+30 mL for Twin1, +130 mL for Twin2; less than the minimal clinically important 

different for FEV1 in asthma12,13) and they both reported adequate asthma control (asthma 

control questionnaire score [ACQ] <1.0). 

Figure 1 shows pre-bronchodilator hyperpolarized 3He MRI at baseline (V1) and follow-

up (V2), seven-years later.  MR ventilation images provided in Figure 1 shows that for both 

twins there was a spatially identical, focal ventilation defect at baseline; the same left upper 

lobe ventilation abnormality also persisted at follow-up in both twins.  We co-registered 
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the follow-up MRI ventilation to the patient’s thoracic CT and generated three-dimensional 

airway trees (Figure 1, right panel) in order to reveal the specific airways that corresponded 

to the persistent MRI ventilation defects in each patient.  The posterior branch of the left 

upper lobe apico-posterior bronchopulmonary segment (LB2) was abnormally remodeled 

and at follow-up, the subsegmental airway wall-area-percent was 71% for Twin1 and 75% 

for Twin 2 (both of which are markedly abnormal based on the literature14,15).  Inset panels 

provide two-dimensional coronal CT airway subsegments which show that LB2 was not 

visible distally (due to airway termination or closure) to the same extent in Twin2 as in 

Twin1. 

We also co-registered the airway trees to directly compare the twins’ overall tree, as shown 

in Figure 2. The bulk airway anatomy was similar, with differences mainly in branching 

angles.  Notably, Twin2 had less airways overall than Twin1 (total airway count 166 versus 

202), and this is reflected in the number of airways by airway tree generation distal to LB2 

and RB1.  Wall-area-percent at the generation of the LB2 airway spatially-related to the 

persistent ventilation defect (indicated by * in Figure 2), was increased relative to RB1 (as 

a comparator) in both twins. 
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Figure 3-1  Spatially-matched MRI ventilation defects and CT airways for twins with 

asthma 

Tables show spirometry and MRI ventilation defect percent (VDP) at both visits, as well 

as CT total airway count (TAC) and asthma control questionnaire (ACQ-7) score at visit 

2. 3He MRI ventilation (cyan) co-registered to anatomical 1H (grey-scale) for the twins at 

two study visits with yellow arrows showing spatially similar ventilation defects between 

the twins and over time. Follow-up 3D MRI ventilation on right co-registered to CT and 

3D airway tree shows spatial relationship between left upper lobe apico-posterior 

segmental airway leading to similar defect, with inset showing airway segment on CT. 

White arrows show spatially persistent airways in 3D and in 2D CT inset.  
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Figure 3-2  Co-registered CT airway trees 

Co-registered airway trees for Twin1 (dark blue) and Twin2 (light blue) show similar bulk 

airway anatomy. Airway trees were registered to align LB2 and comparator RB1 (zoomed, 

white arrows) and corresponding number of airway branches (n) and mean wall area 

percent (WA%) by airway tree generation are shown for both segments. Stars (*) in the 

table indicate generation of abnormally remodeled LB2 airway that corresponds to the 

spatially persistent defect between the twins. 
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3.3 Discussion 

A number of MRI investigations of asthma point to gas distribution abnormalities that are 

spatially and temporally persistent, suggestive of ventilation heterogeneity that is spatially 

non-random and preserved over time. We wondered about the likelihood of twins with 

asthma having identical MRI ventilation defects that could be identified as related to 

abnormal airways measured using CT; we also wondered if such abnormalities might also 

persist after a long-period of time in asthma patients with relatively stable disease.  

If we assume that ventilation abnormalities are randomly distributed, to estimate the 

probability of two participants with asthma having the same segmental ventilation defect 

over a relatively long period of time, we considered the 19 anatomically and functionally 

distinct bronchopulmonary segments and made the following assumptions: 1) both patients 

with asthma would report at least one ventilation defect and no more than one defect per 

bronchopulmonary segment (ie., >0 and <19 ventilation defects),16 and, 2) there was an 

equivalent probability for each of the 19 bronchopulmonary segments to express a 

ventilation defect.  We assumed that each of the twins would have at least one ventilation 

defect because of their longstanding clinical asthma diagnosis of asthma and their age.16  

Asthma patients with MRI ventilation defects are typically older than asthma patients 

without defects5 and these twins were older than the mean age of participants in this 

previously reported investigation (35±11-years5).  We first observed one ventilation defect 

in the apico-posterior left upper lobe segment in Twin1, and the probability for this single 

defect in this single bronchopulmonary segment was 1 in 19.  Following this estimate, the 

probability that Twin2 would have exactly one defect in the same bronchopulmonary 

segment was 1 in 192 or 1 in 361.   

Mathematical models of asthmatic airways predict that ventilation or gas distribution 

abnormalities would be random or stochastic.8,9,17  If we assume that the occurrence of 

ventilation defects in asthma was random over time such that the presence and spatial 

locations of ventilation abnormalities appeared in different lung segments over time, we 

could also determine the probability that two patients have the same single segmental 

ventilation defect at baseline and again at seven-year follow-up to be 1 in 194 or 1 in 

130,321.  These odds are less likely than a single individual’s risk of being struck by 
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lightning (~1 in 10,000 lifetime, 1 in 100,000 annual risk) and suggests that MRI 

ventilation defects may not be randomly distributed.  While MRI studies have shown that 

the presence and size of specific ventilation defects may fluctuate modestly over time,7,18 

MRI ventilation defects in participants with asthma are mainly spatially persistent.  In both 

twins, there was evidence of airways hyperreactivity and bronchodilator reversibility 

through the follow-up period, so the abnormal remodeling of the apico-posterior left upper 

lobe airway may stem from increased airway smooth muscle mass.  However, we cannot 

comment on the contribution of airway inflammation because it was not evaluated.  

Longitudinal MRI and CT studies in patients with asthma have demonstrated persistent 

and dynamic disease components,7,18-20 whereas here we focused on persistently abnormal 

regions.  For example, Twin1 exhibited ventilation heterogeneity in the right lung base that 

was not present at follow-up, nor in Twin2.  These regions of abnormal ventilation were 

associated with abnormally remodeled airways (Twin1 RB9 and RB10 most distal 

branches mean WA%=68% generation 5 versus LB2 WA%=71% generation 6).  We think 

that intermittent ventilation abnormalities may be due to transient inflammation in 

combination with airway remodeling, although inflammatory status was not evaluated. 

Limitations of our case study and analysis include the fact that the twins were only 

evaluated twice and the assumption we made that there was an equal probability of 

ventilation defects appearing in any of the 19 bronchopulmonary segments.  In other words, 

we did not take into consideration that, in twins, there might be a bias for airway and 

ventilation abnormalities in specific lung regions.  In addition, we did not make any 

assumptions about a potential upper limit for ventilation defect number, less than the 19 

potential segmental airways.  However, in our experience in over 200 asthmatic patients, 

there are typically fewer than five ventilation defects in participants with moderate disease, 

which is consistent with previous investigations.16  Therefore, the probability of repeated 

defects in space and time as we observed would be lower, so our estimates are conservative.  

A more rigorous analysis could include the probability of multiple ventilation defects, the 

probability of twins having asthma, or the probability of subsegmental (38 subsegments) 

or sub-subsegmental (76 sub-subsegments) ventilation defects, all of which would serve to 

lower the probabilities estimated here.  Finally, we have assumed the persistent ventilation 

defect in these patients to be related to asthma pathophysiology and/or abnormal airway 
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structure.  These findings could also be explained to some extent by shared genetics, epi-

genetics or in utero events, which we did not evaluate here and cannot rule out. 

In twins with asthma, we observed a single spatially-identical MRI ventilation defect 

related to abnormal airway remodeling which persisted in the same spatial location after 

seven years. If ventilation defects occur randomly in asthmatics, the probability of this 

occurring in both patients in the same location, twice over seven years is ~1 in 130,000. 
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CHAPTER 4  

4 HYPERPOLARIZED HELIUM 3 MRI IN MILD-TO-

MODERATE ASTHMA: PREDICTION OF 

POSTBRONCHODILATOR REVERSIBILITY 

Building on the evidence of spatially and temporally persistent regional lung abnormalities 

in twins with asthma from Chapter 3, we wanted to evaluate the long-term structure-

function relationships in unrelated asthma patients and determine the role for MRI 

ventilation abnormalities in predicting longitudinal disease worsening.   

In order to quantitatively evaluate ventilation abnormalities over time, we first determined 

the minimal clinically important difference for MRI ventilation defects; this work is 

provided in Appendix A. 

The contents of this chapter were previously published in the journal Radiology: RL Eddy, 

S Svenningsen, C Licskai, DG McCormack, G Parraga. Hyperpolarized Helium 3 MRI in 

Mild-to-Moderate Asthma: Prediction of Postbronchodilator Reversibility. Radiology. 

2019;293(1):212-20. Permission to reproduce this article was granted by the Radiological 

Society of North America (RSNA) and is provided in Appendix B. 

4.1 Introduction 

In patients who have asthma, chronic airways disease typically results in variable airflow 

obstruction that may be partially or completely reversed using bronchodilators.1  Many 

people with asthma maintain stable lung function and bronchodilator reversibility over 

time, while a subset of patients may experience accelerated lung function decline and 

eventually lose post-bronchodilator reversibility.2-4  Recent epidemiological studies have 

revealed that in up to 10% of people with asthma, airways disease may lead to chronic, 

persistent airflow obstruction and chronic obstructive pulmonary disease5,6 but the 

mechanisms underlying these changes are not fully understood. 

Airway remodeling caused by chronic inflammation has been suggested to mediate 

changes that result in airflow obstruction that is not bronchodilator-reversible.7  Asthma 

involves both the small and large airways and it is difficult to measure small airway 

dysfunction using spirometry measurements of the forced expiratory volume in one second 

(FEV1) because it is insensitive to peripheral airway changes.   
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The morphologic structure of remodeled and inflamed airways can be directly measured 

using thoracic radiographic CT8-10 and airway function may also be viewed by using 

expiratory CT lucency of gas trapping11,12 or parametric response mapping.13,14  Parametric 

response map gas trapping was shown14 to be increased in participants with severe asthma 

as compared with participants with non-severe asthma and control participants.  Inhaled 

hyperpolarized gas MRI directly probes ventilation as a consequence of both central and 

peripheral airway function and has revealed the presence of non-random ventilation 

defects15 that are the functional consequences of airway remodeling, inflammation and/or 

intraluminal plugging.16-18  In patients with asthma, MRI ventilation defects are spatially-

related to abnormally remodeled airways,16,17 positively correlated with disease severity19 

and improved in response to bronchodilators,15,20  The size and spatial locations of MRI 

ventilation abnormalities persist over time21,22 and are related to asthma exacerbations23 

and asthma control/quality-of-life.24  

Although epidemiological studies5,6,25 suggest that asthma progression to chronic 

obstructive pulmonary disease may be relatively common, it is difficult to identify patients 

who are at-risk.  Because hyperpolarized helium 3 (3He) and xenon 129 (129Xe) MRI 

provide sensitive tools to simultaneously measure both small and large airway function, 

we hypothesized that MRI ventilation abnormalities would be predictive of future FEV1 

bronchodilator reversibility and, at the same time, ventilation defects would remain 

spatially-persistent during follow-up.  Accordingly, the purpose of this study was to 

investigate six-year longitudinal changes in hyperpolarized 3He MRI ventilation defects in 

study participants with mild-moderate asthma and identify predictors of longitudinal 

changes in post-bronchodilator FEV1 reversibility. 

4.2 Materials and Methods 

4.2.1 Study Participants and Design 

Between January 2010 and April 2011, we consecutively recruited study participants from 

a tertiary care pulmonary clinic who had mild-to-moderate asthma (ie, prescribed medium-

high dose inhaled corticosteroid with long-acting beta-agonist LABA or less treatment for 

asthma controller medication) according to the Global Initiative for Asthma treatment step 
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criteria,1 and were aged 18−70 years with less than 1 pack-year smoking history.  

Participants provided written informed consent to an ethics-board-approved, Health 

Insurance Portability and Accountability Act-compliant, registered (ClinicalTrials.gov: 

NCT02351141) protocol for baseline and 6-year follow-up visits (November 2016−June 

2017).  Exclusion criteria included the following: FEV1 greater than 80%pred and 

concentration of methacholine required to decrease FEV1 by 20% from baseline (PC20) 

greater than 8 mg/mL, claustrophobia, inability to undergo spirometry, body mass index 

greater than 40 kg/m2, and contraindications to MRI (ie, metal, electronic, or magnetic 

implants).  Baseline measurements were previously reported17 and focused on the cross-

sectional analyses; in our study, we reported the longitudinal follow-up measurements after 

6 years and compared them with baseline measurements.  Data generated during our study 

are available from the corresponding author. 

Spirometry, plethysmography, CT and MRI were performed at both study visits.  At 

baseline, participants underwent a methacholine challenge, with MRI and spirometry 

performed before methacholine, after methacholine and after bronchodilator recovery, and 

plethysmography and CT before methacholine.  At follow-up, participants underwent all 

tests before and after bronchodilator only (no methacholine challenge at follow-up), with 

CT performed after bronchodilator.  We used electronic health records and participant self-

reports to measure exacerbations and changes in medication during the study visit 

interval.26 

4.2.2 Pulmonary Function Tests and Methacholine Challenge 

Spirometry was performed according to American Thoracic Society guidelines27 by using 

a spirometer (ndd EasyOne; ndd Medizintechnik AG, Zurich, Switzerland).  

Plethysmography was performed by using a plethysmograph (MedGraphics Elite Series; 

MGC Diagnostics Corporation, St. Paul, MN) to measure lung volumes and airways 

resistance.  Methacholine challenge was performed according to American Thoracic 

Society guidelines28 with the two-minute tidal breathing method up to and including PC20 

by using a breath-actuated nebulizer (AeroEclipse II; Trudell Medical International, 

London, ON, Canada).  Bronchodilation was achieved following four separate doses of 

100 μg of novo-salbutamol hydrofluoroalkane (Teva Novopharm Ltd., Toronto, ON, 
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Canada) through a pressurized metred-dose inhaler using a spacer (AeroChamber Plus; 

Trudell Medical International).  Bronchodilator reversibility of FEV1 was defined as a post-

bronchodilator increase of 200 mL and 12%29; participants were dichotomized as reversible 

or not reversible FEV1 at follow-up.  The minimal clinically important difference for FEV1 

was used to determine changes in FEV1 between visits as previously described.29,30  

Participants withheld asthma medications according to American Thoracic Society 

guidelines28 before both visits as follows: short-acting β-agonists were withheld for 8 

hours, long-acting β-agonists were withheld for 48 hours and long-acting muscarinic agents 

were withheld for 24 hours. 

4.2.3 MRI Parameters and Analysis 

We performed anatomical proton (hydrogen 1 [1H]) and 3He static ventilation MRI at the 

coronal plane within 5 minutes by using a whole-body 3.0-T imager (Discovery MR750; 

General Electric Healthcare, Milwaukee, WI) with broadband capability as previously 

described.31  Participants were instructed to inhale a gas mixture from a 1.0-L bag (Tedlar®; 

Jensen Inert Products, Coral Springs, FL) from functional residual capacity, and 15 coronal 

sections were acquired in 8-15 seconds at breath-hold.  We performed 1H MRI before 

hyperpolarized 3He during 1.0-L breath-hold of high purity, medical-grade nitrogen (N2; 

Spectra Gases, Alpha, NJ) by using the whole-body radiofrequency coil and a fast-spoiled 

gradient-recalled echo sequence (partial echo acquisition; total acquisition time, 8 seconds; 

repetition time msec/echo time msec, 4.7/1.2; flip angle, 30º; field of view, 40x40cm2; 

bandwidth, 24.4kHz; 128x80 matrix zero-padded to 128x128; partial echo percentage, 

62.5%, 15-17 sections; slice section thickness, 15mm; no gap).  3He gas was polarized to 

30−40% by using a commercial turn-key polarizer (HeliSpin; Polarean, Durham, NC).  We 

performed 3He static ventilation MRI during 1.0-L breath-hold of hyperpolarized 3He 

diluted to 25% by volume with N2 by using a single-channel rigid elliptical transmit-receive 

chest coil (RAPID Biomedical, Wuerzburg, Germany) and a two-dimensional multisection 

fast-gradient-recalled echo sequence (partial echo acquisition; total acquisition time, 11 

seconds; repetition time msec/echo time msec, 3.8/1.0; flip angle, 7º; field of view, 

40x40cm2; bandwidth, 48.8kHz;  128x80 matrix zero-padded to 128x128; partial echo 

percentage, 62.5%, 15-17 sections; section thickness, 15mm; no gap).   
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Quantitative MRI analysis was performed by a single observer (R.L.E., with four-years 

experience) who was blinded to baseline and follow-up visits by using in-house 

segmentation software (smallest detectable difference32 and minimal clinically important 

difference33) in MATLAB R2016a (Mathworks, Natick, MA) as previously described.32  

Static ventilation images were segmented by using three-dimensional k-means clustering 

that classified voxel intensities into five clusters ranging from signal void or ventilation 

defects (cluster 1) to hyperintense signal (cluster 5; all ventilated volume clusters 2-5).  

Ventilation abnormalities were quantified as the ventilation defect volume (VDV) and as 

the ventilation defect percent (VDV normalized to the MRI-measured volume of the 

thoracic cavity).  Repeatability of MRI VDV and ventilation defect percent in this study 

was evaluated by a single observer (R.L.E., blinded for segmentation) in five randomly 

selected participants.  Blinded participant selection and randomization between repeated 

segmentation rounds was provided by an additional observer who did not participate in the 

data analysis.  Quantitative, clinically-relevant MRI changes were evaluated by using the 

following equation: ΔVDV>|110| mL, which is the published minimal clinically important 

difference for VDV,33 where ΔVDV is the change in VDV.  The spatial locations of 

ventilation defects were visually and qualitatively compared between visits (R.L.E.).   

4.2.4 CT Parameters and Analysis 

Thoracic CT was performed within 10 minutes of MRI using a 64-section system 

(LightSpeed VCT; GE Healthcare) at breath-hold after inhalation of 1.0 L of N2 from 

functional residual capacity to volume match to MRI.  Participants were transported from 

MRI to CT by wheelchair to avoid exercise-induced changes.  At baseline, CT was 

performed in a 4−10 cm axial region of interest with visually obvious ventilation defects 

as previously described17 to reduce radiation dose.  At follow-up, a full CT image of the 

thorax was acquired by using a low-dose protocol as previously described.34   

Thoracic CT images were analyzed by using a commercial workstation (Pulmonary 

Workstation 2.0; VIDA Diagnostics Inc., Coralville, IA) to segment and measure the three-

dimensional airway tree.  The measurements between visits were compared within the 

region of the partial CT acquired at baseline. 
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4.2.5 Statistical Analysis 

Data were tested for normality by using Shapiro-Wilk tests with commercially-available 

software (SPSS Statistics 25.0; IBM Corporation, Armonk, NJ).  When data were not 

normally distributed, they were log transformed.  Measurements for each visit were 

compared by using paired t-tests, and bronchodilator-reversible and bronchodilator-not-

reversible subgroup measurements were compared by using unpaired t-tests (SPSS; IBM).  

MRI VDV and ventilation defect percent repeatability were determined by using the 

coefficient of variation and two-way mixed effects intraclass correlation coefficient (SPSS; 

IBM).  Univariable relationships were evaluated by using Pearson correlation coefficients 

(r) in commercially-available software (GraphPad Prism 7.00; GraphPad Software, La 

Jolla, CA) for follow-up post-bronchodilator change in FEV1 with baseline measurements 

related to the methacholine challenge.  These included FEV1 and VDV before 

methacholine with differences between challenge states (ie, post-methacholine minus pre-

methacholine) and PC20.  On the basis of univariable relationships, multivariable models 

were generated (SPSS; IBM) by using the enter approach to determine the largest influence 

for predicting FEV1 bronchodilator reversibility (post-bronchodilator change in FEV1 in 

milliliters) at follow-up for the following two models: a) baseline variables that had 

significant univariable relationships with post-bronchodilator change in FEV1 at follow-

up, and b) age, FEV1, and PC20 at baseline which have been shown2,4,35 to predict future 

bronchodilator reversibility, along with baseline VDV.  The regression coefficients for the 

variables in the multivariable models were expressed as standardized β.  Results were 

considered statistically significant when the probability of making a Type I error was less 

than 5% (p < 0.05). 

4.3 Results 

4.3.1 Study Participants  

The study flow chart is provided in Figure 4-1; 26 participants were enrolled17 but two 

participants (2/26, 8%) did not have asthma and were excluded.  Of 24 participants who 

completed the baseline visit, nine participants (35%) were lost to follow-up because they 

moved farther than 500 km away or could not be contacted, and four participants (15%) 
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participants declined the follow-up visit.  In total, 11 participants (seven men and 4 women) 

with mild-moderate asthma (Global Initiative for Asthma treatment steps 1-41) were 

evaluated twice within mean  78 months ± 7 (standard deviation; median, 79 months; range, 

68-87).  Mean participant age was 42 years ± 9 at baseline (men, 41 years ± 10; women, 

44 years ± 6, p=.63) and 49 years ± 9 at follow-up (men, 48 years ± 10; women, 51 years 

± 7, p=.62).  Table 4-5 in the supplement shows the baseline measurements for participants 

who completed longitudinal follow-up (11 participants; 42%) and those who were lost to 

follow-up (15 participants, 58%).  Participants who completed longitudinal follow-up were 

older (mean age 42 years ± 9 vs 28 years ± 9, respectively; p<.01) with worse lung function 

overall (all p<.05 except forced vital capacity and total lung capacity) and ventilation defect 

percent (5% ± 4 vs 2% ± 1, respectively; p<.01). 

 

Figure 4-1 Study flowchart of patient inclusion and exclusion  

Two participants were excluded because they did not have current asthma.  

*Enrolled per Svenningsen et al17 

Table 4-1 provides demographic, pulmonary function test, and MRI measurements.  A 

participant listing is provided in Table 4-6 and a detailed list of asthma medications is 

provided in Table 4-7, both in the supplement.  Between the baseline and follow-up visits, 

mean body mass index (27 kg/m2 ± 4 vs 28 kg/m2 ± 4, respectively; p=.03) and mean 

residual volume (126%pred ± 20 vs 136%pred ± 26, respectively; p=.02) were different; all 

other measurements were not different (p>.05).  All participants were never-smokers (0 

pack-year) and none reported an asthma exacerbation between study visits.  All participants 
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except one (participant S06) were prescribed inhaled corticosteroids and/or inhaled 

corticosteroids with long-acting β-agonist at baseline.  During the interval between visits, 

nine participants (82%) remained on the same type and dose of medication whereas a single 

participant (participant S03) changed the type of inhaled corticosteroid and long-acting β-

agonist controller while administered the same daily inhaled corticosteroid dose.  Against 

medical advice, a single participant (participant S11) refused to self-administer prescribed 

asthma medications during the interval between the baseline and follow-up visits. 
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Table 4-1 Participant and MRI measurements at baseline and follow-up 
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4.3.2 3He MRI Ventilation at Baseline and Follow-up 

MRI measurements were highly repeatable with coefficient of variation of 5% (95% 

confidence interval: 3%, 7%) and intraclass correlation coefficient of 1.00 (95% confidence 

interval 0.98, 1.00) for both VDV and ventilation defect percent. For eight study 

participants (of 11 participants, 73%), MRI ventilation defects remained in the same 

location at the 6-year follow-up MRI and were similar in size (change in VDV between 

visits, <110 mL).  Figure 4-2 shows 3He MRI ventilation at baseline and follow-up and 

airway corresponding to a persistent defect for a representative participant with stable VDV 

(participant S03).  A subsegmental bifurcation in the RB8 bronchus showed narrowing in 

the inferior daughter branch compared with the superior daughter branch.  For the 

remaining three participants (of 11; 27%), follow-up pre-bronchodilator ventilation defects 

were visually and quantitatively larger than baseline defects (change in VDV between 

visits, ≥110 mL) and were in the same lung regions as baseline post-methacholine 

ventilation defects.  Figure 4-3 shows 3He MRI ventilation and airway corresponding to 

worsened follow-up defect for a representative participant with worse VDV at follow-up 

(participant S01).  The LB8 bronchus leading to the worsened follow-up defect was 

abruptly truncated. 
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Figure 4-2 3He MRI ventilation in a representative participant with stable ventilation 

between baseline and follow-up 

A, Centre coronal section 3He ventilation MRI (cyan, administered as an inhaled contrast 

agent) coregistered to anatomic hydrogen 1 (1H) MRI (gray scale) for baseline 

premethacholine challenge (pre-MCh) and follow-up before and after bronchodilator (pre-

BD and post-BD, respectively). Persistent defects between visits are shown (arrows).  

B, Follow-up three-dimensional 3He MRI shows ventilation coregistered to CT with three-

dimensional airway tree at oblique angle. Inset (coronal view) shows RB8 bronchus 

subsegmental bifurcation. Inferior daughter branch leading to persistent defect between 

baseline and follow-up appears narrowed compared with superior daughter branch. 

Participant S03 was a man with mild-to-moderate asthma (baseline and follow-up, 

respectively: age, 28 years and 35 years; forced expiratory volume in 1 second, 3.97 L and 

4.19 L; ventilation defect volume, 340 mL and 260 mL). 
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Figure 4-3 3He MRI ventilation in a representative participant with worse ventilation at 6-

year follow-up 

A, Centre coronal section 3He ventilation MRI (cyan, administered as an inhaled contrast 

agent) coregistered anatomic hydrogen 1 MRI (gray scale) for baseline premethacholine 

challenge (pre) and after methacholine challenge (post), and follow-up before (pre) and 

after (post) bronchodilator. Worsened defects were shown between visits (arrows).  

B, Follow-up three-dimensional 3He MRI shows ventilation coregistered to CT with three-

dimensional airway tree at oblique angle. Inset on top (coronal view) shows LB8 bronchus 

leading to worsened follow-up defect. Lumen appears clear and open but is abruptly 

truncated within three sections anteriorly (inset on bottom). Participant S01 was a woman 

with mild-to-moderate asthma (baseline and follow-up, respectively: age, 36 and 41 years; 

forced expiratory volume in 1 second, 2.28 L and 1.71 L; ventilation defect volume, 270 

mL and 780 mL). 

Table 4-2 shows CT airway measurements including airway wall area percent, lumen area, 

wall thickness, and number of mucus plugs at baseline and follow-up, and total airway 

count at follow-up.  For all participants at baseline versus follow-up, mean wall area 

percent (70% ± 2 vs 69% ± 1, respectively; p=.14) and wall thickness (28.3 mm ± 2.1 vs 

27.8 mm ± 3.3, respectively; p=.66) were not different, whereas mean lumen area was 

greater at follow-up (baseline vs follow-up, 5.4 mm2 ± 1.9 vs 6.9 mm2 ± 1.6, respectively; 

p<.001).  Airway measurements were not different between subgroups (p>.05).  One 
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participant (participant S01) had three subsegmental mucus plugs at follow-up in the LB4, 

RB2 and RB10 bronchi, which did not correspond to ventilation defects. 

Table 4-2 CT measurements 
 Baseline (n=11) Follow-up (n=11) 

Participant 
WA% 

LA 

(mm2) 

WT 

(mm) 
M WA% 

LA 

(mm2) 

WT 

(mm) 
M TAC 

Stable VDV at follow-up (n=8) 

 S02 69 6.7 28.3 0 69 8.8 24.5 0/0 170 

 S03 72 4.8 28.5 0 70 5.9 27.2 0/0 130 

 S04 72 3.5 25.7 0 69 6.0 25.3 0/0 166 

 S06 72 5.7 28.7 0 67 7.8 23.6 0/0 145 

 S07 72 4.9 27.0 0 69 7.1 27.3 0/0 180 

 S08 69 3.0 24.5 0 69 4.5 25.3 0/0 202 

 S09 74 4.3 31.6 0 71 6.5 29.3 0/0 165 

 S10 69 6.7 28.3 0 68 7.8 29.7 0/0 141 

 Mean (±SD) 71 (2) 5.0 (1.4) 27.8 (2.1) - 69 (1) 6.8 (1.4) 26.5 (2.2) - 162 (23) 

Worse VDV at follow-up (n=3) 

 S01 70 3.4 27.6 0 72 4.5 26.3 1/3 114 

 S05 66 3.8 29.3 0 71 5.7 31.5 0/0 224 

 S11 69 6.8 28.6 0 67 8.2 31.1 0/0 196 

 Mean (±SD) 68 (2) 4.7 (1.9) 28.5 (0.9) - 70 (3) 6.1 (1.9) 29.7 (2.9) - 178 (57) 

Group differences (n=11) 

 p .12 .87 .72 - .66 .30 .59 - .51 

ALL (±SD) 

(n=11) 

70 (2) 5.4 (1.9) 28.3 (2.1) - 69 (1) 6.9 (1.6) 27.8 (3.3) - 167 (33) 

Difference from baseline (p) .14 <.001 .66 - - 

WA%=wall area percent; LA=lumen area; WT=wall thickness; M=mucus; TAC=total airway 

count; VDV=ventilation defect volume; SD=standard deviation. 

Mucus indicates mucus plugging. 

Measurements are matched for segments within partial CT images acquired at baseline, except 

mucus plugging at follow-up shown as matched partial CT/whole thoracic CT. 
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4.3.3 FEV1 and Ventilation Defect Postbronchodilator Reversibility 

Measurements 

Table 4-3 shows FEV1 and ventilation defect post-bronchodilator reversibility 

measurements for each participant by groups with stable and worse VDV at follow-up.  At 

follow-up, six participants were not FEV1 bronchodilator reversible and eight participants 

had marginal MRI ventilation defect (change in VDV was greater than -110 mL) 

bronchodilator reversibility (grey-shaded cells).  We compared measurements between 

FEV1 reversible and not reversible participant groups and, as shown in Figure 4-4, PC20 

was greater (ie, more normal) in participants who were not reversible (Figure 4-4A; 

p=.01), whereas the ratio of residual volume to total lung capacity (RV/TLC) was greater 

in participants who were bronchodilator reversible (Figure 4-4B; p<.001).  All other 

measurements were not different between reversible and not reversible participant groups 

(supplement Table 4-8; p>.05).  We also plotted baseline measurements against post-

bronchodilator ΔFEV1 at follow-up and univariable relationships are shown in Figure 

4-4C and D.  PC20 (r=-.61, p=.049), and pre-methacholine challenge VDV (r=.67, p=.02) 

at baseline were related to post-bronchodilator change in FEV1.  All other measurements 

were not correlated with post-bronchodilator change in FEV1 (supplement Table 4-9, 

p>.05).  
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Table 4-3 Changes in forced expiratory volume in 1 second and ventilation defects 
 Baseline 

PostBD−PreMCh 

  Baseline 

PostBD−PostMCh 

 Follow-up 

PostBD−PreBD 

 ΔFEV1  
(mL, %) 

ΔVD  
(mL, %) 

  ΔFEV1  
(mL, %) 

ΔVD  
(mL, %) 

 ΔFEV1  
(mL, %) 

ΔVD  
(mL, %) 

 Stable VDV at follow-up (n=8) 

 S02 -520, -15 -190, -3   +780, +35 -420, -7  +680, +24 -200, -4 

 S03 +380, +10 -120, -2   +1360, +45 -1710, -25  +220, +5 -90, -2 

 S04 +30, +2 -10, 0   +360, +37 -80, -2  +220, +15 -20, 0 

 S06 +70, +3 +10, 0   +810, +43 -1150, -19  +150, +5 -10, 0 

 S07 -90, -2 -210, -4   +1080, +53 -870, -11  +950, +37 -250, -2 

 S08 +470, +26 -30, -1   +1010, +81 -230, -4  +260, +14 -10, 0 

 S09 -350, -9 -70, -2   +650, +21 -340, -5  +400, +11 -50, -2 

 S10 -30, -1 +10, 0   +580, +29 -630, -9  +60, +2 +20, 0 

 Mean -10, +2 -80, -1   +830, +43 -680, -10  +370, +14 -80, -1 

 SD 330, 12 120, 3   310, 18 480, 7  300, 11 100, 2 

 Worse VDV at follow-up (n=3) 

 S01 -110, -5 +190, +5   +800, +58 -1040, -19  +1030, +60 -580, -11 

 S05 +200, +7 -60, 0   +600, +23 -430, -6  +160, +5 -100, -1 

 S11 -140, -6 +40, +1   +740, +48 -340, -7  +110, +5 -40, -1 

 Mean -20, -1 +60, +2   +710, +42 -600, -10  +430, +23 -240, -4 

 SD 190, 7 130, 3   100, 18 380, 7  520, 32 300, 6 

 ALL (n=11) 

 Mean -10, +1 -30, 0   +760, +40 -570, -9   +300, +14 -100, -2 

 SD 270, 10 100, 2   270, 18 500, 8  370, 18 160, 3 

BD=bronchodilator; MCh=methacholine challenge; FEV1=forced expiratory volume in 

one second; VD=ventilation defects; VDV=ventilation defect volume; SD=standard 

deviation. 

ΔFEV1 shown as absolute difference in mL and as a percent of baseline. 

ΔVD shown as absolute ventilation defect volume (VDV) difference in mL and as 

absolute ventilation defect percent (VDP) difference. 

Grey shaded cells indicate not reversible FEV1 and VDV (n=6 not reversible FEV1, n=8 

not reversible VDV). 
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Figure 4-4 Group differences and univariable relationships for postBD FEV1 reversibility 

A, Baseline concentration of methacholine required to decrease FEV1 by 20% (PC20; log 

scale) was lower (ie, worse) in FEV1-reversible participants (p=.01) and, B, baseline 

residual volume (RV)-to-total lung capacity (TLC) ratio (RV/TLC) was greater in 

reversible participants (p<.001).  

C, Natural logarithm of PC20 (lnPC20; r=0.61; p=.049) and, D, premethacholine challenge 

(preMCh) VDV (r=0.67; p=.02) were related to BD change in FEV1 (ΔFEV1) at follow-

up. 
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4.3.4 Multivariable Analysis 

We generated multivariable models to explore potential predictors of post-bronchodilator 

FEV1 reversibility at follow-up (Table 4-4).  Baseline pre-methacholine challenge VDV 

(standardized β=0.89; p=.01) and pre-methacholine challenge to post-bronchodilator 

change in VDV (standardized β=0.58; p=.03) predicted post-bronchodilator change in 

FEV1 (model 1: R2=.80; p=.01).  A second model including FEV1, age and PC20 did not 

predict post-bronchodilator change in FEV1 (model 2: R2=.63; p=.15).   

Table 4-4 Multivariable model to predict bronchodilator reversibility 
 Unstandardized Standardized p 

Parameter B Standard Error β  

MODEL 1: FEV1 reversibility at follow-up, n=11 (R2=.80, p<.01) 

   Baseline PreMCh VDV✝ 1.86 0.47 0.89 .01 

   Baseline PostBD−PreMCh ΔVDV✝ 1.80 0.67 0.58 .03 

   PC20 mL2/mg* -0.11 0.05 -0.41  .052 

MODEL 2: FEV1 reversibility at follow-up n=11 (R2=.63, p=.15) 

   Baseline PreMCh VDV✝ 1.15 0.67 0.55 .14 

   Baseline PreMCh FEV1
✝ -0.01 0.01 -0.14 .72 

   Age mL/year -0.01  0.02 -0.26  .54 

   PC20 mL2/mg* -0.08  0.10 -0.29  .48 

B=regression coefficient; β=standardized regression coefficient; FEV1=forced expiratory 

volume in one second; MCh=methacholine challenge; VDV=ventilation defect volume; 

BD= bronchodilator; PC20=concentration of methacholine causing 20% decrease in FEV1. 

*log transformed PC20. For all models, dependent variable being predicted was 

bronchodilator ΔFEV1 in mL at follow-up (FEV1,post-FEV1,pre). Percent predicted (%pred) 

was used for pre-MCh FEV1 to account for age, sex, height and race differences, and 

absolute differences in mL were used for ΔFEV1. 
✝Unitless because independent and dependent variables have the same units. 

  



 

122 

4.4 Discussion 

Recent epidemiological studies have revealed that in up to 10% of asthmatics, airways 

disease may lead to chronic, persistent airflow obstruction and chronic obstructive 

pulmonary disease, but the mechanisms underlying these changes are not fully understood.  

In this study, we investigated six-year longitudinal changes in hyperpolarized 3He MRI 

ventilation defects in individuals with mild-to-moderate asthma and sought to identify 

predictors of longitudinal changes in post-bronchodilator FEV1-reversibility. We showed 

that MRI ventilation predicts long-term post-bronchodilator FEV1 reversibility in mild-to-

moderate asthma.  We observed: 1) negligible post-bronchodilator reversibility in six of 11 

participants at follow-up, 2) baseline MRI ventilation defects predicted follow-up post-

bronchodilator reversibility (R2=.80, p=.01), 3) MRI ventilation defects persisted in the 

same spatial locations 6.5-years later, and, 4) ventilation defects worsened in three of 11 

participants, in the same lung regions they previously worsened during methacholine 

challenge, 6.5-years prior.  

MRI ventilation defects persisted in the same spatial locations at follow-up.  For three 

participants (S01, S05, S11), ventilation defects also worsened in the same spatial regions 

that worsened during a methacholine challenge, approximately 6.5 years prior.  Previous 

studies have evaluated MRI ventilation defects for up to approximately 1.5 years21,22 and 

revealed spatially persistent defects,21 suggesting that fixed asthma airway abnormalities 

are spatially heterogeneous.  We also evaluated CT airway measurements to investigate the 

underlying pathophysiology of persistent and worsening ventilation defects which revealed 

inter-individual differences and mucus plugs in a single participant who worsened.  

However, there was no spatial relationship between ventilation worsening and mucus plugs 

in this participant with mild-moderate asthma.  

The prevalence of negligible bronchodilator reversibility in our participant cohort (6/11, 

55%) was higher than previously reported in epidemiological studies.5,6  In all but one of 

these participants, there were no changes in medication (except for S11 who refused 

prescribed ICS/LABA) or exacerbations.  Moreover, at follow-up, two participants in this 

subgroup (S06, S10) met the criteria for fixed airflow obstruction consistent with COPD36 

and two others (S05, S11) had worse VDV at follow-up.  Airway remodeling caused by 
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chronic inflammation has been suggested to mediate changes that result in airflow 

obstruction not reversed by bronchodilators7 and patients with asthma not using regular 

treatment may progress to irreversible obstruction.4  We did not test for airway 

inflammation, so it is possible that inadequately controlled inflammation was responsible 

for the lack of reversibility which is consistent with the CT finding here of mucus plugs in 

only one participant. 

For two participants (S04, S08) there was poorly reversible post-bronchodilator VDV 

alongside physiologically-relevant FEV1 reversibility, and in participant S11 who 

apparently stopped all asthma medications, there was neither FEV1 nor VDV post-

bronchodilator reversibility and ventilation defects worsened at follow-up.  These findings 

are consistent with unresolved small airway abnormalities or mucus plugs37 leading to 

persistent ventilation defects that are not reversed using salbutamol, which mainly has 

receptors in the central airways.  This could also be consistent with airway inflammation18 

and suggests that irreversible FEV1 and worsening ventilation defects may result from 

inadequate treatment and/or poor adherence to prescribed asthma medication.   

MRI ventilation defect volume at baseline predicted bronchodilator reversibility at follow-

up whereas age, PC20 and FEV1 did not predict bronchodilator reversibility.  Although 

baseline VDV had the greatest relative influence, the difference between pre-methacholine 

and post-challenge recovery ventilation defects (PostBD−PreMCh ΔVDV) also 

significantly contributed.  Abnormal FEV1 and reduced post-bronchodilator FEV1 

reversibility were previously shown to predict post-bronchodilator FEV1 reversibility.4  

Both diminished4 and augmented2,35 airway hyper-responsiveness were also shown to 

predict FEV1 decline and irreversible airflow obstruction in asthmatics.  Severe airway 

hyper-responsiveness was previously suggested to have a protective effect on the airways 

by preventing airway narrowing, thereby preserving bronchodilator reversibility.4  Whilst 

post-bronchodilator FEV1 changes following methacholine have been evaluated,38 to our 

knowledge, this is the first exploration of the potential longitudinal consequence of 

ventilation defects induced using methacholine.  It is somewhat counterintuitive that 

diminished ventilation at baseline predicted post-bronchodilator reversibility six years 

later.  MRI ventilation defects can be due to large and small airway abnormalities, 
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inflammation and/or intraluminal mucus plugging;17,18,37 the fact that baseline ventilation 

defects and the post-bronchodilator change in ventilation defects following a methacholine 

challenge predict future FEV1 reversibility suggests that it is airway abnormalities and not 

inflammation or mucus plugging that drive MRI predictions of future post-bronchodilator 

reversibility.  However, the near complete lack of mucus plugs in the participants studied 

here means we cannot test the role of mucus in our longitudinal findings.  Nevertheless, 

we think these results highlight the utility and sensitivity of MRI ventilation measurements 

for hypothesis-driven, mechanistic studies, especially when combined with pulmonary 

function tests and thoracic CT.  We think it is important to point out that MRI and CT are 

highly complementary.  In other words, MRI in combination with CT provides a way to 

discern the airway structural and luminal determinants of ventilation abnormalities in 

asthma.  

We acknowledge the small sample size and the fact that this study was limited to two time 

points, both of which limit the generalizability of the multivariable models.  Baseline and 

follow-up MRI evaluations were also different, but this allowed us to explore different 

relationships between airway hyper-responsiveness, ventilation defects and bronchodilator 

reversibility.  Finally, we recognize that compared to 3He MRI, 129Xe MRI offers a much 

less costly and highly sensitive alternative to measure small airway function,20 so with 

129Xe MRI, we would expect similar if not more sensitive detection of ventilation defects.   

In study participants with mild to moderate asthma, MRI ventilation defect volume 

predicted reversibility of post-bronchodilator FEV1, six years later, suggesting that 

pulmonary functional MRI may help identify patients at risk for the transition from asthma 

to fixed airflow obstruction and chronic obstructive pulmonary disease.   
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4.6 Supplement 

Table 4-5 Baseline measurements for participants who completed longitudinal follow-up 

and lost to follow-up 

Parameter 

(±SD) 

All 

(n=26) 

Completed 

Follow-up 

(n=11) 

Lost to 

Follow-up 

(n=15) 

Sig Diff* 

(p) 

Age years 35 (11) 42 (9) 28 (9) <.01 

Female Sex n 14  4 10 .23 

BMI kg/m2 25 (5) 27 (4) 25 (5) .32 

FVC %pred 93 (11) 87 (13) 96 (10) .06 

FEV1 %pred 84 (15) 76 (12) 93 (12) <.01 

FEV1/FVC % 74 (11) 70 (7) 81 (10) <.01 

RV %pred 113 (24) 126 (20) 104 (24) .02 

TLC %pred 101 (9) 103 (9) 100 (9) .28 

RV/TLC %pred 113 (20) 123 (18) 106 (19) .03 

Raw %pred 124 (69) 172 (68) 91 (49) <.01 

PC20 mg/mL 5.87 (12.28) 0.50 (0.72) 9.80 (15.15) <.01 

VDP % 3 (3) 5 (4) 2 (1) <.01 

SD=standard deviation; BMI=body mass index; FVC=forced vital capacity; 

%pred=percent predicted; FEV1=forced expiratory volume in one second; RV=residual 

volume; TLC=total lung capacity; Raw=airways resistance; PC20=concentration of 

methacholine causing a 20% decrease in FEV1; VDP=ventilation defect percent. 

*Significance of difference between participants included and excluded for longitudinal 

follow-up.  
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Table 4-6 Participant listing of demographic characteristics and pulmonary function and 

MRI measurements at baseline and follow-up. 
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Table 4-7 Medication use at both visits 

 Baseline Follow-up 

Corticosteroid use, n (%)   

  None 1 (9) 2 (18) 

  Low-medium dose ICS 10 (91) 9 (82) 

  High-dose ICS 0 0 

  OCS 0 0 

Types of controllers, n (%)   

  ICS only 1 (10) 1 (11) 

  ICS/LABA only 8 (80) 7 (78) 

  ICS/LABA + ICS 1 (10) 1 (11) 

ICS=inhaled corticosteroid; OCS=oral corticosteroid; LABA=long-acting β-agonist. 

Participants were prescribed budesonide alone or in combination with formoterol, 

except for one participant prescribed fluticasone furoate in combination with 

vilanterol and another prescribed budesonide alone and in combination with 

formoterol.  No participants were prescribed leukotriene receptor antagonists (LTRA) 

or tiotropium. 
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Table 4-8 Baseline measurement differences between reversible and not reversible 

participant groups 

Parameter (±SD) 

Reversible 

(n=5) 

Not Reversible 

(n=6) 

Sig Diff 

(p) 

Age years 42 (6) 42 (11) >.99 

Female Sex n 3 1 .24 

BMI kg/m2 26 (4) 27 (4) .89 

FVC %pred 83 (10) 91 (15) .39 

FEV1 %pred 72 (12) 79 (13) .43 

PostMCh−PreMCh ΔFEV1 L -0.85 (0.41) -0.77 (0.23) .69 

PostBD−PreMCh ΔFEV1 L -0.04 (0.35) 0.02 (0.26) .73 

PostBD−PostMCh ΔFEV1 L 0.81 (0.28) 0.79 (0.29) .93 

FEV1/FVC % 70 (6) 70 (8) .98 

RV %pred 144 (13) 111 (8) <.01* 

TLC %pred 105 (8) 102 (10) .64 

RV/TLC %pred 139 (7) 109 (8) <.001 

Raw %pred 209 (36) 109 (8) .17 

PC20 mg/mL 0.08 (0.01) 0.84 (0.86) .01 

VDV mL 310 (230) 190 (120) .27 

PostMCh−PreMCh ΔVDV mL 0.48 (0.48) 0.74 (0.53) .42 

PostBD−PreMCh ΔVDV mL -0.05 (0.16) -0.04 (0.06) .80 

PostBD−PostMCh ΔVDV mL -0.53 (0.41) -0.77 (0.55) .45 

VDP % 6 (4) 4 (2) .36 

SD=standard deviation; BMI=body mass index; FVC=forced vital capacity; 

%pred=percent predicted; FEV1=forced expiratory volume in one second; 

MCh=methacholine challenge; VD=bronchodilator; RV=residual volume; TLC=total 

lung capacity; Raw=airways resistance; PC20=concentration of methacholine causing a 

20% decrease in FEV1; VDV=ventilation defect volume; VDP=ventilation defect 

percent. *Highly collinear with RV/TLC therefore only reported RV. 

NOTE: subgroups defined by bronchodilator reversibility at follow-up. 
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Table 4-9 Correlation coefficients for univariable relationships with post-

bronchodilator ΔFEV1 at follow-up 

Parameter  

Pearson Coeff 

(r) 

Sig 

(p) 

FEV1 %pred .23 .50 

PostMCh−PreMCh ΔFEV1 L .16 .65 

PostBD−PreMCh ΔFEV1 L -.08 .81 

PostBD−PostMCh ΔFEV1 L -.18 .60 

VDV mL .67 .02 

PostMCh−PreMCh ΔVDV mL -.61 .048 

PostBD−PreMCh ΔVDV mL -.42 .20 

PostBD−PostMCh ΔVDV mL .25 .46 

lnPC20 mg/mL -.61 .049 

FEV1=forced expiratory volume in one second; %pred=percent predicted; 

MCh=methacholine challenge; BD=bronchodilator; VDV=ventilation defect 

volume; PC20=concentration of methacholine causing a 20% decrease in 

FEV1; VDV=ventilation defect volume. 
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CHAPTER 5  

5 IS COMPUTED TOMOGRAPHY TOTAL AIRWAY 

COUNT RELATED TO ASTHMA SEVERITY AND 

AIRWAY STRUCTURE-FUNCTION? 

To better understand regional and whole-lung airway abnormalities in asthma, we 

evaluated CT total airway count in participants with asthma over a range of severities and 

compared these results with previously published results for COPD.  We determined the 

relationship between CT total airway count with airway morphology, pulmonary function 

and MRI ventilation.  

The contents of this chapter were previously published in the journal American Journal of 

Respiratory and Critical Care Medicine: RL Eddy, S Svenningsen, M Kirby, D Knipping, 

DG McCormack, C Licskai, P Nair, G Parraga. Is Computed Tomography Total Airway 

Count Related to Asthma Severity and Airway Structure-function? Am J Respir Crit Care 

Med. 2020. [Epub ahead of print] Permission to reproduce this article was granted by the 

American Thoracic Society (ATS) and is provided in Appendix B. 

5.1 Introduction 

In asthma, airways disease caused by smooth muscle abnormalities, inflammation and/or 

mucus hypersecretion leads to variable airflow obstruction that is reversible or improves 

post-bronchodilator.1  Airway abnormalities in asthma are believed to encompass the entire 

tracheobronchial tree from the large to the small airways2 and small airways disease is 

recognized as a distinct phenotype of asthma.2-4  While small airway abnormalities remain 

difficult to directly measure, the large airways have been extensively investigated in vivo, 

using x-ray computed tomography (CT).  Airway walls in asthmatics are thicker as 

compared to healthy controls5-12 and this thickening tends to worsen with increasing asthma 

severity.  Until now, CT studies of asthma have focused on morphological airway 

measurements and their relationships with clinical measurements, however the total 

number of CT-visible airways in patients with asthma has not been investigated. 

Landmark studies of airways disease in COPD were performed using micro-CT13-15 and 

more recently, in vivo CT total airway count (TAC) revealed missing distal airways that 

were associated with thinning airway walls in patients with mild COPD.16  We think this 

finding may have implications for airways disease in asthma and hypothesized that in 
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severe asthma, thickened airways are concomitant with airway obstruction and/or 

occlusion, which could be quantified using TAC. 

Accordingly, our objective was to measure and evaluate CT total airway count in patients 

with asthma across a range of severities and explore potential relationships of TAC with 

asthma severity, airway measurements, pulmonary function and pulmonary functional 

magnetic resonance imaging (MRI).  A preliminary description of these results was 

previously reported in abstract form.17 

5.2 Materials and Methods 

5.2.1 Study Participants and Design 

Study participants with asthma according to the Global Initiative for Asthma (GINA) 

treatment step criteria1 were recruited as a convenience sample between ages 18 to 70 years 

with <1 pack year smoking history from two tertiary care respirology clinics (Asthma 

Centre, St Joseph’s Health Care London, Western University, London, Ontario, Canada; 

Firestone Institute for Respiratory Health, St Joseph’s Health Care Hamilton, McMaster 

University, Hamilton, Ontario, Canada).  Participants provided written informed consent 

to an ethics board and Health Canada-approved, registered (www.clinicaltrials.gov, 

NCT02351141) protocol for a single study visit (Robarts Research Institute, Western 

University, London Canada).  Participants performed spirometry, plethysmography and 

MRI before and after bronchodilator and completed a single post-bronchodilator thoracic 

CT as well as the asthma control (ACQ-6)18 and quality of life questionnaires (AQLQ).19  

Participants were stratified by asthma severity according to GINA treatment steps1 as: 

GINA1-3, GINA4, and GINA5. 

5.2.2 Pulmonary Function Tests 

Spirometry and plethysmography were performed using a MedGraphics Elite Series 

plethysmograph (MGC Diagnostics Corporation, St. Paul, MN, USA).  Spirometry was 

performed according to ATS guidelines20 to measure FEV1 and FVC, and plethysmography 

was performed to measure lung volumes and airways resistance.  Post-bronchodilator 

measurements were acquired after four separate doses of 100 μg of Novo-Salbutamol HFA 

(Teva Novopharm Ltd., Toronto, ON, Canada) through a pressurized metred-dose inhaler 

http://www.clinicaltrials.gov/
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using an AeroChamber Plus spacer (Trudell Medical International, London, ON, Canada).  

Participants withheld asthma medications before the study visit according to ATS 

guidelines20: short-acting β-agonists for ≥6 hours, long-acting β-agonists for ≥12 hours and 

long-acting muscarinic agents for ≥24 hours.  

5.2.3 CT 

Thoracic CT was acquired post-bronchodilator using a 64-slice LightSpeed VCT system 

(General Electric Healthcare, Milwaukee, WI, USA) as previously described21 from apex 

to base under breath-hold conditions after inhalation of 1.0 L of N2 gas from functional 

residual capacity.  CT parameters were as follows: 64 x 0.625 collimation, 120 kVp, 100 

mA, tube rotation time 500 ms, pitch 1.25, standard reconstruction kernel, 1.25 mm slice 

thickness and field of view (FOV) 36-40 cm2.  The total effective dose for each CT scan 

was 1.8 mSv, calculated using the manufacturer’s settings and the ImPACT patient 

dosimetry calculator (based on the UK Health Protection Agency NRPB-SR250 software). 

Thoracic CT images were analyzed by a single observer with four-years experience (RLE) 

using Pulmonary Workstation 2.0 (VIDA Diagnostics Inc., Coralville, IA, USA) to 

segment and label the airway tree and lung lobes.  All airway segments in the segmented 

tree were summed to quantify total airway count (TAC),16 and airway counts were also 

generated by tree generation from the trachea (generation 0) to generation 11.   

We utilized a combination of automated airway segmentation and manual segmentation in 

the presence of complete airway lumen occlusions (possible mucus, cellular debris or its 

combination22).  These were also recorded by manual inspection during airway 

segmentation as follows: 1) if there was completely visible lumen on both proximal and 

distal sides of an occlusion, the airway was manually segmented to its terminus and TAC 

was recorded at the distal terminus beyond the occlusion, and, 2) if there was lumen visible 

only on the proximal side of an occlusion which terminated the airway, TAC was recorded 

at the proximal end of the occlusion and not beyond the occlusion.  Anatomically 

equivalent segmental, subsegmental and sub-subsegmental airways for five airway paths 

(RB1, RB4, RB10, LB1, LB10; third to fifth generation)23 were used to generate airway 

wall area percent (WA%) and lumen area (LA).  We determined if subsegmental and sub-
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subsegmental daughter branches were missing for the five airway paths using the output 

file exported from Pulmonary Workstation 2.0.  All airway segments were assigned a 

unique identifier that linked each parent airway to its corresponding daughter branches, 

and we defined participants with missing subsegments (generation 4) and sub-subsegments 

(generation 5) if one or more daughter branches were missing in the report.  Airways were 

qualitatively assessed for segmental branch variants similar to previously published 

results.24 

5.2.4 MRI 

Anatomical proton (1H) and 3He static ventilation MRI were acquired within five minutes 

of each other using a whole-body 3.0 T Discovery MR750 (General Electric Healthcare, 

Milwaukee, WI, USA) system with broadband imaging capability as previously 

described.25  Participants were instructed to inhale a gas mixture from a 1.0 L Tedlar® bag 

(Jensen Inert Products, Coral Springs, FL, USA) from functional residual capacity, and 15 

coronal slices were acquired in 8-15 seconds under breath-hold conditions.  1H MRI was 

performed before hyperpolarized 3He during 1.0 L breath-hold of ultra-high purity, 

medical-grade nitrogen (N2; Spectra Gases, Alpha, NJ, USA).  3He gas was polarized to 

30−40% (HeliSpin; Polarean, Durham, NC, USA) and static ventilation imaging was 

performed during 1.0 L breath-hold of hyperpolarized 3He diluted to 25% by volume with 

N2.   

Quantitative MRI analysis was performed by a single observer with four-years experience 

(RLE) using in-house segmentation software as previously described26 and MRI ventilation 

abnormalities were quantified as the ventilation defect percent (VDP; ventilation defect 

volume normalized to the MRI-measured thoracic cavity volume).  VDP was also 

generated for each lung lobe by registering MRI to CT and normalizing the ventilation 

defect volume within each lobe to the corresponding lobe volume.27 

5.2.5 Statistical Analysis 

All statistical analysis was performed using SPSS Statistics 25.0 (IBM Corporation, 

Armonk, NJ, USA).  Data were tested for normality using Shapiro-Wilk tests and when not 

normally distributed, non-parametric tests were performed.  Demographic, pulmonary 
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function test and imaging measurements between treatment step groups were compared 

using one-way analysis of variance (ANOVA) or Kruskal-Wallis tests with post-hoc Holm-

Bonferroni correction for multiple comparisons.  An analysis of covariance (ANCOVA) 

was used to compare TAC by treatment step group adjusted by age, sex and body mass 

index (BMI) as potential covariates, with post-hoc Holm-Bonferroni correction for 

multiple comparisons.  The number of participants with missing sub-subsegmental 

branches was plotted in a histogram for the number of missing sub-subsegments, and the 

mode from the histogram was used to dichotomize participants; groups were compared 

using unpaired t-tests.  Receiver operator characteristic (ROC) curves were generated to 

determine thresholds for TAC and the number of missing sub-subsegments for 

differentiating mild (GINA1-3) from severe asthma (GINA4-5).  Univariate relationships 

were evaluated using Pearson (r) or Spearman (ρ) correlation coefficients.  Multivariable 

models were generated using the enter approach to determine the relative influence of 

significant univariate parameters on FEV1 and WA%, with age, sex and BMI entered in 

the first step as potential covariates.  All results were considered statistically significant 

when the probability of making a Type I error was less than 5% (p < 0.05). 

5.3 Results 

5.3.1 Participant Demographics, Pulmonary Function and Imaging 

Measurements 

We evaluated 70 participants with a clinical diagnosis of asthma as shown in Table 5-1.  

There were 15 participants in the GINA1-3 subgroup (6 females/9 males, 45±12 years), 19 

participants in the GINA4 subgroup (10 females/9 males, 51±12 years) and 36 participants 

in the GINA5 subgroup (24 females/12 males, 48±13 years).  Participants in the GINA4 

group had worse FEV1 (64±19%pred vs. 88±20%pred, p=0.003) and FEV1/FVC (58±17% vs. 

74±11%, p=0.006) as compared to participants in the GINA1-3 subgroup.  Participants in 

the GINA5 subgroup had worse FEV1 (65±22%pred vs. 88±20%pred, p=0.004) and FVC 

(80±18%pred vs. 94±14%pred, p=0.03), WA% (68.2±1.7% vs. 66.7±1.5%, p=0.006) and 

VDP (10±8% vs. 3±2%, p=0.02) compared with participants in the GINA1-3 subgroup.  

There were no differences between the GINA4 and GINA5 subgroups.  CT FOV differed 

to a small extent among study participants such that FOV=36x36 cm2 for 47 participants, 
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FOV=40x40 cm2 for 20 participants, FOV=39x39 cm2 for 2 participants and FOV=41x41 

cm2 for a single participant.  Importantly, TAC was not significantly different between 

subgroups based on FOV (p=0.7) and FOV was not significantly different between GINA 

subgroups (p=0.1). 

Table 5-1 Participant demographics, pulmonary function and imaging measurements 

Parameter (±SD) ALL  

(n=70) 

GINA1-3 

(n=15) 

GINA4 

(n=19) 

GINA5  

(n=36) 

 Age years 48 (12) 45 (12) 51 (12) 48 (13) 

 Female n (%) 40 (57) 6 (40) 10 (53) 24 (67) 

 BMI kg/m2 29 (5) 28 (5) 28 (6) 30 (5) 

 ACQ-6 Score 1.6 (1.2) 1.6 (0.9) 1.3 (1.3) 1.7 (1.3) 

 AQLQ Score 5.0 (1.4) 5.1 (1.1) 5.5 (1.3) 4.7 (1.4) 

 FEV1 %pred 70 (22) 88 (20) 64 (19)* 65 (22)* 

 BD ΔFEV1 % 17 (20) 8 (11) 16 (21) 20 (22) 

 FVC %pred 85 (17) 94 (14) 86 (14) 80 (18)* 

 FEV1/FVC % 65 (14) 74 (11) 58 (17)* 64 (12) 

 RV L 2.41 (0.67) 2.29 (0.55) 2.67 (0.53) 2.32 (0.77) 

 RV %pred 131 (35) 125 (35) 144 (24) 128 (39) 

 TLC L 5.98 (1.18) 6.47 (0.89) 6.19 (1.10) 5.63 (1.27) 

 TLC %pred 104 (14) 105 (11) 110 (10)* 100 (15) 

 RV/TLC %pred 127 (26) 118 (25) 131 (19) 128 (30) 

 Raw %pred 195 (118) 167 (93) 190 (80) 210 (244) 

 CT FOV cm2 37 (2) 37 (2) 38 (2) 37 (2) 

 TAC n 154 (45) 183 (49) 148 (36)* 146 (47)* 

 WA% 67.7 (1.6) 66.7 (1.5) 67.5 (1.1) 68.2 (1.7)* 

 LA mm2 10.5 (2.4) 11.5 (2.0) 10.4 (2.4) 9.7 (2.7) 

 VDP %† 9 (8) 3 (2) 10 (10) 10 (8)* 

ACQ=asthma control questionnaire; AQLQ=asthma quality of life questionnaire; 

BD=bronchodilator; BMI=body mass index; FEV1=forced expiratory volume in one 

second; FOV=field of view; FVC=forced vital capacity; GINA=Global Initiative for 

Asthma; LA=lumen area; Raw=airways resistance; RV=residual volume; SD=standard 

deviation; TAC=total airway count; TLC=total lung capacity; VDP=ventilation defect 

percent; WA%=wall area percent; %pred=percent predicted. 

*Significantly different from GINA Steps 1-3 (p<0.05) using one-way ANOVA for 

parametric variables or Kruskal Wallis tests for non-parametric variables, both with post-

hoc Holm Bonferroni corrections. †n=60 

5.3.2 Is TAC Reduced with Increasing Asthma Severity? 

In Figure 5-1, representative 3D reconstructed CT airway trees show that with greater 

asthma severity, the airway tree has fewer segmented airways.  TAC was significantly 

lower in the GINA4 (145±10, p=0.03) and GINA5 (148±7, p=0.045) subgroups as 
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compared to GINA1-3 subgroup (182±11) when adjusting for covariates (age, sex, BMI).  

BMI was the only significant covariate (p=0.003), whereas age and sex were not significant 

(p=0.05 and p=0.06, respectively).  We performed an additional ANCOVA to include 

RV/TLC as a covariate, however RV/TLC was not significant (p=0.07) and TAC and 

GINA subgroup remained a significant interaction (p=0.03).  TAC was not different 

between males and females (males TAC=155±42 vs. females TAC=155±50, p=1.0), and 

there was no significant interaction between sex and GINA status for TAC (p=0.2).  Figure 

5-1 also shows that TAC was significantly reduced for generations 6 (p=0.04) and 7 

(p=0.01) for the GINA4 subgroup and generations 6 (p=0.04), 7 (p=0.01), 10 (p=0.01) and 

11 (p=0.02) for the GINA5 subgroup as compared to the GINA1-3 subgroup.  The values 

for airway count by generation are shown in supplementary Table 5-6, as well as those 

previously published for healthy never-smokers16 for comparison. 

 
Figure 5-1 CT airway count by airway tree generation 

Three-dimensional reconstruction of the segmented airway tree for representative 

participants with asthma by Global Initiative for Asthma (GINA) treatment steps for 

asthma severity shows reduced airways as asthma severity increases (top). Total airway 

count was significantly less for GINA4 (p=0.03) and GINA5 (p=0.045) participants 

compared with GINA1-3 participants.  GINA4 participants had significantly less airways 

at airway tree generations 6 and 7 compared with GINA1-3, whereas GINA5 participants 
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had significantly less airways at generations 6, 7, 10 and 11 compared with GINA1-3.  Stars 

(*) indicate significantly different from GINA1-3. 

5.3.3 Is TAC Associated with Abnormal Airway Structure and Function? 

Table 5-2 shows the number of participants with CT invisible or missing subsegmental 

(generation 4) and sub-subsegmental (generation 5) daughter branches.  A total of 19 

participants (27%) were missing subsegmental branches, which was most common in the 

right middle lobe (RB4; 13/19).  A total of 69 participants (99%) were missing sub-

subsegmental branches, and this was most common in the left lower lobe (LB10; 54/69) 

and right middle lobe (RB4; 48/69).  The distribution of participants with missing sub-

subsegments provided in Figure 5-2 shows that the most common number of missing sub-

subsegments (mode) was 10; 34/70 participants or 49% were missing ≥10 (or ≥50%) of 20 

potential total sub-subsegmental airways.  Figure 5-2 also shows that asthma participants 

with ≥10 missing sub-subsegments (n=34) had increased WA% (68.6±1.4% vs. 

66.8±1.3%, p<0.0001) and reduced LA (9.1±1.9 mm2 vs. 11.8±2.2 mm2, p<0.0001) 

compared with participants with <10 missing sub-subsegments (n=36).  Participants with 

≥10 missing sub-subsegments also had greater pre-bronchodilator VDP compared with 

participants with <10 missing sub-subsegments (7±7% vs. 11±9%, p=0.03), but not post-

bronchodilator VDP (5±7% vs. 7±6%, p=0.053).  VDP improved post-bronchodilator in 

both subgroups dichotomized by missing sub-subsegments (both p<0.001).  ROC curves 

showed an area under the curve of 0.71 (p=0.01) for TAC.  A TAC threshold of 165 

discriminated between subgroups with a sensitivity of 60% and specificity of 67%. 

Table 5-2 Participants with missing subsegmental and sub-subsegmental 

daughter branches by whole-lung and lung lobe 

 

Parameter 

Number of Participants 

n=70 

n (%) Subsegments Sub-subsegments 

Whole-lung 19 (27) 69 (99) 

RUL (RB1) 2 (3) 21 (30) 

RML (RB4) 13 (19) 48 (69) 

RLL (RB10) 2 (3) 45 (64) 

LUL (LB1) 5 (7) 42 (60) 

LLL (LB10) 4 (6) 54 (77) 

LLL=left lower lobe; LUL=left upper lobe; RLL=right lower lobe; RML=right 

middle lobe; RUL=right upper lobe. All percentages shown as fraction of total n=70. 
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Figure 5-2 Airway morphology and VDP by number of missing sub-subsegmental airways 

Participants were dichotomized by the number of missing sub-subsegmental airways less 

than and greater than the mode of the number of missing sub-subsegmental airways 

(mode=10); 36 participants had <10 missing sub-subsegmental airways and 34 had ≥10 

missing sub-subsegmental airways.  For participants with ≥10 missing sub-subsegmental 

airways, wall area percent (WA%) was significantly greater and lumen area (LA) was 

significantly less (both p<0.0001), compared with participants with ≥10 missing sub-

subsegmental airways. Pre-bronchodilator (BD) ventilation defect percent (VDP) was 

significantly worse in participants with ≥10 missing sub-subsegments (p=0.03) but post-

BD VDP was not different (p=0.053). 
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The relationship between missing sub-subsegmental airways and VDP on a lobar level is 

shown in Figure 5-3.  MRI ventilation defect percent (VDP) was significantly greater in 

the right middle lobe (RML, p=0.04), right lower lobe (RLL, p<0.0001) and left lower lobe 

(LLL, p<0.0001) as compared to the right upper lobe (RUL), and VDP was significantly 

greater in the RLL (p<0.0001) and LLL (p<0.0001) as compared to the left upper lobe 

(LUL).  We also classified participants by the number of missing sub-subsegments on each 

of the five airway paths; as compared to participants with 0 missing sub-subsegments, 

participants with 3-4 missing on RB10 and LB1 had significantly greater VDP in the RLL 

and LUL, respectively (both p=0.04), whereas participants with 1-2 missing had 

significantly greater VDP in the LUL (p=0.02). Groups were not different for the RML 

(p=0.7), LLL (p=0.3), nor RUL (p=0.5; not shown). 
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Figure 5-3 MRI VDP by lung lobe 

MRI ventilation defect percent (VDP) was significantly greater in the right middle lobe 

(RML), right lower lobe (RLL) and left lower lobe (LLL) as compared to the right upper 

lobe (RUL; *p<0.05); VDP was significantly greater in the RLL and LLL as compared to 

the left upper lobe (LUL; †p<0.05). As compared to participants with 0 missing sub-

subsegments, participants with 3-4 missing sub-subsegments on RB10 and LB1 had 

significantly greater VDP in the RLL and LUL, respectively (both p=0.04), whereas 

participants with 1-2 missing sub-subsegments had significantly greater VDP in the LUL 

(p=0.02). Groups were not different for the RML nor LLL. 
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As shown in Table 5-3, we also investigated airway branch variants at the segmental level.  

Airway branch variants were observed in 18 of 70 participants (26%).  The most common 

branch variants were the accessory sub-superior segment (n=10, 14%) and the accessory 

left-medial basal segment (n=4, 6%).  Other variants included an absent right-medial basal, 

accessory right anterior, accessory right-medial basal and accessory airway off the left 

main bronchus, before the left upper lobe bronchus.  Participants with airway variants had 

significantly diminished pre-bronchodilator RV (117±28%pred vs. 137±36%pred, p=0.03), 

TLC (99±14%pred vs. 105±13%pred, p=0.04) and RV/TLC (117±24%pred vs. 130±26%pred, 

p=0.050), significantly diminished post-bronchodilator MRI VDP (5±6% vs. 7±7%, 

p=0.048), and significantly greater LA (11.6±2.4 mm2 vs. 10.1±2.4 mm2), compared with 

participants without airway variants.  TAC was not significantly different between 

participants with and without airway variants (164±33 vs. 152±50, p=0.4). 

Table 5-3 Segmental airway branch variants 

Parameter 

n (%) 

Number of Participants 

n=70 

None 52 (74) 

Any 18 (26) 

   Accessory sub-superior (RB6)* 10 (14) 

   Absent right-medial basal (RB7) 1 (1) 

   Accessory left-medial basal (LB7) 4 (6) 

   Accessory right anterior (RB3) 1 (1) 

   Accessory right-medial basal (RB7) 1 (1) 

   Accessory left main bronchus† 1 (1) 

*Accessory right sub-superior (RB6) observed in 10 of 70 

participants, 2 of which also had accessory left sub-superior (LB6), 

and 1 of which also had absent right-medial basal (RB7). 
†Accessory branch off left main bronchus, before left upper lobe 

bronchus. 
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Table 5-4 summarizes the number of participants with CT evidence of airway occlusions 

that either terminated or did not terminate airways and the total number of airway 

occlusions observed during the segmentation process.  Intraluminal airway occlusions were 

identified in 20 of the 70 (29%) participants; five (7%) participants had occlusions that 

terminated the airway (11 total occlusions) and 15 participants (22%) had occlusions that 

did not terminate the airway segmentation distal to the plug (31 total occlusions).  Of the 

five participants with occlusions terminating airways, two were GINA4 (2/19, 11%) and 

three were GINA5 (3/36, 8%).  Of the 15 participants with occlusions that did not terminate 

the airways, one was GINA3 (1/15, 7%), four were GINA4 (4/19, 21%) and ten were 

GINA5 (10/36, 28%). 

Table 5-4 CT airway count and airway occlusion 

 

Parameter 

ALL 

(n=70) 

GINA1-3 

(n=15) 

GINA4 

(n=19) 

GINA5  

(n=36) 

Occlusions terminating airways 

   Participants n (%)  5 (7) 0 2 (11) 3 (8) 

   Occlusions n 11 0 3 8 

     

Occlusions not terminating airway 

   Participants n (%)  15 (22) 1 (7) 4 (21) 10 (28) 

   Occlusions n 31 1 10 20 

     

No occlusions 

   Participants n (%) 50 (71) 14 (93) 13 (68) 23 (64) 

GINA=Global Initiative for Asthma.  

5.3.4 Is TAC Related to FEV1 and Airway Wall Area? 

Figure 5-4 shows that TAC was moderately related to post-bronchodilator FEV1 (r=0.39, 

p=0.001; post-bronchodilator ΔFEV1 r=-0.38, p=0.002 [not shown]), WA% (r=-0.55, 

p<0.0001) and LA (r=0.52, p<0.0001).  In a subset of 60 participants who underwent 

hyperpolarized 3He MRI (two did not fit the MRI coil and eight were consented to 129Xe 

MRI only), TAC was also related to post-bronchodilator VDP (ρ=-0.34, p=0.008).  TAC 

was weakly related to RV/TLC (r=-0.28, p=0.02), but not FVC (r=0.24, p=0.051), RV (r=-

0.21, p=0.09), TLC (r=-0.02, p=0.9) nor FOV (r=0.03, p=0.8; data not shown). 
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Figure 5-4 CT total airway count relationships 

Total airway count was significantly related to post-bronchodilator FEV1 (r=0.39, p=0.001) 

and MRI ventilation defect percent (VDP; ρ=-0.34, p=0.008), as well as CT wall area 

percent (WA%; r=-0.55, p<0.0001) and lumen area (LA; r=0.52, p<0.0001). 

Multivariable models to determine the relative influence of TAC on FEV1 and WA%, 

adjusted for covariates, are shown in Table 5-5.  First, we determined the relative influence 

of CT imaging measurements on FEV1 (Model 1: R2=0.27, p=0.003), for which TAC was 

the only predictor (β=0.50, p=0.001).  Next, we determined the relative influence of CT 

and MRI on FEV1 (Model 2: R2=0.49, p<0.0001), and both CT TAC (β=0.27, p=0.03) and 

MRI VDP (β=-0.53, p<0.0001) significantly contributed.  Finally, in a model for WA% 

(Model 3: R2=0.32, p=0.0001), only TAC was a significant predictor (β=-0.53, p<0.0001).  

Some of these important relationships can be demonstrated in Figure 5-5 where 3D 

reconstructed airway trees are shown co-registered to 3He MRI static ventilation.   
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Table 5-5 Multivariable models 

 Unstandardized Standardized 
p 

Parameter B Standard Error β 

MODEL 1: FEV1 %pred (R2=0.27, p=0.003) 

   TAC 0.22 0.07 0.50 0.001 

   WA% -0.58 2.44 -0.05 0.8 

   LA -0.62 1.62 -0.07 0.7 

MODEL 2: FEV1 %pred (R2=0.49, p<0.0001) 

   TAC 0.13 0.06 0.27 0.03 

   WA% -0.25 2.25 -0.02 0.9 

   LA -0.18 1.45 -0.02 0.9 

   VDP -1.34 0.28 -0.53 <0.0001 

MODEL 3: WA% (R2=0.32, p=0.0001) 

   TAC -0.02 0.01 -0.53 <0.0001 

   FEV1 -0.01 0.01 -0.07 0.7 

   VDP -0.02 0.04 -0.09 0.5 

B=regression coefficient; β=standardized regression coefficient; FEV1=forced 

expiratory volume in one second; LA=lumen area; TAC=total airway count; 

VDP=ventilation defect percent; WA%=wall area percent; %pred=percent predicted. 
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Figure 5-5 Airway count and wall area relationship with MRI ventilation defects and FEV1 

Three-dimensional reconstruction of the segmented airway tree co-registered to two-

dimensional coronal centre slice 3He MRI static ventilation (cyan) and anatomical 1H 

(grey-scale) for participants with <10 (left) and ≥10 (right) missing sub-subsegments.  The 

participant with <10 missing sub-subsegments (45-year-old female) has greater TAC, less 

MRI ventilation defects and greater FEV1 than the participant with ≥10 missing sub-

subsegments (31-year-old female).  The two-dimensional airway paths to RB1 (below) 

show the CT-visible sub-subsegmental daughter branch (RB1ai) with less abnormal airway 

wall thickening at the subsegmental level (RB1a) for the participant with <10 missing sub-

subsegments, versus the missing sub-segmental daughter branch with marked airway wall 

thickening at the segmental level for a participant with ≥10 missing sub-subsegments.  
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5.4 Discussion 

Recent work has shown that CT total airway count decreases with increasing severity in 

COPD16 and based on these findings, we wondered whether airways also appear missing 

on CT in asthma and about the potential relationship of CT TAC with asthma severity.  We 

evaluated 70 participants with asthma and made the following observations: 1) TAC was 

diminished in GINA4 and GINA5 participants compared with GINA1-3, 2) asthma 

participants with ≥10 missing sub-subsegmental airways had thicker airway walls, 

narrower airway lumens and worse MRI ventilation defects than asthma participants with 

<10 missing sub-subsegmental airways, and 3) TAC was moderately related to FEV1, MRI 

VDP, airway wall thickness and lumen area, and in multivariate models, TAC 

independently predicted FEV1 and WA%. 

5.4.1 TAC is Reduced with Increasing Asthma Severity 

To our knowledge, this is the first time the relationship between CT airway count and 

asthma severity has been directly measured and we were surprised to observe that the total 

number of CT-visible airways was reduced in GINA4-5 participants.  Moreover, mean 

TAC for all asthma participants in this study (154±45) was less than mean TAC previously 

reported for never-smoker healthy participants in the CanCOLD cohort (221±73),16 

suggesting the reduced number of airways may be linked to asthma susceptibility or 

pathogenesis.  In fact, TAC reported for GINA1-3 (183±49) and GINA4-5 (148±36, 

146±47, respectively) were qualitatively similar to TAC measurements previously reported 

in GOLD 1 (190±66) and GOLD II COPD (152±53), respectively.16  We note that BMI 

was the only significant covariate when comparing TAC between treatment steps; age, sex 

and RV/TLC were not significant covariates.   To the best of our knowledge, there are no 

previously published TAC values for patients with asthma.  Missing or CT-invisible 

airways started to be obvious at generation 6 in asthma which is similar to previous findings 

(generation 5) in COPD16 and could be due to airway narrowing, obstruction and/or 

obliteration.  We note that four participants with the lowest FEV1/FVC were GINA4, which 

may dictate a need for treatment step-up.1  The GINA4 subgroup sample size was about 

half the GINA5 subgroup and the small sample size may have also influenced this result. 
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5.4.2 TAC is Associated with Abnormal Airway Structure and Function 

For asthmatics with ≥10 missing sub-subsegmental airways, airway walls were thicker and 

airway lumens were narrower; this is in agreement with extensive CT studies 

demonstrating thickened airway walls in patients with asthma.5-12  COPD participants were 

previously dichotomized using the presence or absence of sub-subsegmental branches.16  

However, we were alarmed that all but one participant had missing sub-subsegments and 

the dichotomization scheme previously described was not possible.  In fact, approximately 

50% of the 70 participants we evaluated were missing half or more (≥10) of the total 20 

possible sub-subsegmental airways.  We note that the mean number of missing sub-

subsegments was 9, the median=8, and the mode=10 and that using any of these thresholds 

resulted in the same subgroup composition.  Similar to previous work in COPD,16 our 

results suggest that in asthma, CT-invisible airways may be related to abnormal airway 

structure, which may be a combination of airway remodeling28 and/or intraluminal 

occlusion.22  Intraluminal airway occlusion (mucus, cellular debris or their combination) 

was identified in 20 participants, although such occlusions terminated the airways in a 

quarter of those with occlusions (5 of 20) which is 7% (5 of 70) of all participants evaluated.  

All but one participant with occlusions reported severe asthma, which is similar to previous 

reports,22 although we observed fewer occlusions or plugs in fewer participants overall than 

previously reported.  Together, this suggests that intraluminal occlusions did not have a 

large impact on TAC in this study.  The presence of thicker airway walls and narrowed 

lumens in subsegmental airways that were missing daughter branches suggest that it is 

obstruction (via airway wall remodeling or collapse), rather than airway destruction that is 

responsible for our findings in participants with asthma.  Quantitative CT phenotypes have 

been identified in patients with asthma29 largely based on proximal airway morphology 

including airway luminal narrowing and wall thickness.  TAC provides a complementary 

quantitative CT measurement that reflects the architecture of the airway tree and may help 

to further enrich imaging-based phenotypes of asthma.  We also investigated the functional 

consequences of reduced TAC and observed worse MRI ventilation defects in participants 

with more missing sub-subsegments on the whole-lung level and worse MRI VDP in lung 

lobes with greater prevalence of missing sub-subsegments.  Previous work30 demonstrated 

a relationship between thickened airway walls and MRI ventilation defects in asthma, 
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which is congruent with our finding that TAC and abnormal airway structure contribute to 

abnormal MRI ventilation on whole-lung and regional lobar levels.   

Similar to recently published findings in COPD,24 we observed airway variants in 18 of 70 

or 26% of participants. The most common variant was an accessory sub-superior segment 

which was observed 14% of participants.  These results are in good agreement with 

published results in 3,000 COPD participants,24 with very similar prevalence of airway 

variants and the presence of the accessory sub-superior segment.  Interestingly, MRI VDP 

was worse in participants with conventional segmental airway anatomy compared with 

participants with airway variants, which may be explained by the smaller airway lumens 

also observed in participants with conventional airway tree architecture.  We were not 

powered to investigate relationships for individual airway variants which should be 

investigated in larger-scale studies. 

5.4.3 TAC is Related to FEV1 and Airway Wall Area 

TAC was significantly, albeit weakly to moderately, related to FEV1, VDP, WA% and LA.  

In addition, TAC was inversely and positively correlated with WA% and LA, respectively.  

This suggests that thickened airway walls and narrow airway lumens help explain 

diminished TAC in asthma, in contrast to COPD where missing airways were related to 

thinning airway walls.16  The relationship between TAC and VDP was especially weak, 

possibly because a large proportion of participants reported VDP<5%.  We note that VDP 

values here were similar to previously reported values in mild-moderate (3-4%30,31) and 

severe asthma (6-10%31,32).  Univariate relationships were used to drive multivariable 

models to investigate these relationships and showed that among the CT measurements 

investigated, TAC was the only independent predictor of FEV1.  In a separate model, CT 

TAC and MRI VDP together explained a greater proportion of FEV1 variability.  Hence, 

CT airway count provided unique information related to FEV1, independent of airway 

morphology.  Previous work in COPD16 also showed that TAC and lumen area both helped 

to explain FEV1.  To more deeply explore this finding and our own results, we generated 

an additional multivariable model using only CT wall area percent (β=-0.24, p=0.2) and 

CT lumen area (β=0.04, p=0.8), neither of which was significant (model R2=0.13, p=0.1).  
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It is important to note that airway wall and lumen measurements were generated for 

anatomically equivalent segmental, subsegmental and sub-subsegmental airways in five 

airway paths.23  BMI was a significant covariate in the multivariable models (participant 

age and sex were not) which may help explain the weak to moderate univariate 

relationships.  CT in combination with MRI offers highly complementary information 

about lung structure and function in patients with asthma and generates an understanding 

of the functional consequences of structural abnormalities.  TAC also uniquely explained 

airway wall morphology (WA%) which suggests there is some form of interaction between 

airway thickening and apparently lost/missing or CT invisible airways. 

5.4.4 Limitations and Unanswered Questions 

Limitations of our study include the fact that the study was based on a convenience sample 

dominated by more severe disease, such that we were underpowered to individually 

evaluate GINA1-3 (GINA1 n=4, GINA2 n=2 and GINA3 n=9).  A population-based 

sample would provide more participants with milder disease which would allow for the 

detection of differences between all GINA subgroups.  It is important to note that CT 

images were acquired at functional residual capacity plus 1.0 L to volume-match CT and 

MRI datasets.  We pondered the relationship between CT/MRI lung volume and airway 

count and the fact that most studies acquire CT close to TLC.16  CT lung volume acquisition 

differences could impact participants with larger lung volumes because at a lower fraction 

of vital capacity, the elastic forces tethering the airways open would also be lowered which 

would impact lumen diameters and potentially contribute to reduced TAC.  We note 

however that TAC was not significantly related to the fraction of lung volume for imaging 

normalized to vital capacity (r=0.04, p=0.7) or total lung capacity (r=0.045, p=0.7).  We 

did not acquire expiratory CT and therefore we have no CT measurements of air 

trapping33,34 so it is not possible to compare parametric response map or expiratory CT 

lucency measures with TAC in this study.  Although CT FOV differed to a small extent 

among study participants, we confirmed that CT FOV was not different between treatment 

step groups and was not correlated with TAC, nor was TAC different between participant 

groups with different FOV.  We also acknowledge the lack of repeat and longitudinal 

follow-up CT imaging at this time.  Future work will be needed evaluate the reproducibility 
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of TAC in participants with asthma and potential changes in TAC over time.  Whereas 

repeat and sometimes longitudinal CT in patients with asthma is not common due to 

radiation burden, MRI allows for repeat evaluations without added risk to patients.  Missing 

airways on CT were related to worse MRI ventilation defects on whole-lung and lobar 

levels, and previous work has demonstrated spatial relationships between focal ventilation 

defects and abnormally remodeled airways.30,35  Although MRI and CT measure different 

but complimentary information, this supports the notion that ventilation defects are 

indicative of abnormal airways in severe asthma and can be used to guide treatment 

decisions or localized therapies with the goal of resolving ventilation defects and thus, 

airway abnormalities and asthma control. 

This study raises more questions than it answers. What are the underlying 

pathophysiological processes that drive airway drop-out in severe asthma?  Do mucus or 

other types of occlusions play a role and were these more dominant at airway termini at a 

timepoint prior to our evaluation?  In other words, is the relative lack of mucus at most 

airway termini definitive for the process underlying missing airways?  Are some patients 

preprogrammed for low TAC which may be coincident to, or predictive of the development 

of asthma?  Is TAC a missing link between asthma-COPD overlap or the asthma transition 

to loss of post-bronchodilator reversibility and COPD?  How does TAC change over time, 

with and without treatment?  Future studies ought to investigate histologic airway wall 

remodeling,28 inflammatory markers including sputum cell counts or exhaled nitric 

oxide32,36 and/or CT scores for intraluminal obstructions22,37 to elucidate the underlying 

mechanisms for missing airways.  Integration of TAC with ‘omic investigations or 

genome-wide association studies (GWAS)38,39 may help determine possible 

predispositions for reduced TAC and development of obstructive lung disease.  Finally, 

longitudinal studies are also required to understand the stability of TAC over time and how 

it may help monitor disease progression or changes in response to therapy.   
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5.4.5 Conclusions 

Whilst chronic airflow obstruction and airway obliteration have been described in 

COPD,13-15 airways disease in asthma is regarded as temporally variable and reversible 

within an entire tracheobronchial tree.  Here we show that the airway tree is truncated in 

patients with severe asthma and the reduced number of terminal airways is similar in 

magnitude to what was previously reported in moderate COPD.16  The reduced number of 

airways detected using CT in asthma may be related to airway obstruction (luminal 

plugging, airway collapse or wall thickening) rather than destruction or obliteration.  How 

TAC may change with treatment or over time in patients with asthma remains to be 

determined.  In severe asthma, MRI ventilation heterogeneity was recently likened to a 

canary in the coal mine40 because MRI ventilation abnormalities uniquely explained 

asthma control40 and also predicted the transition of asthma to fixed obstruction.41  In a 

similar manner, the airway tree may represent the tunneling shafts that support the coal 

mining operation; once blocked or destroyed, the entire enterprise is threatened and 

sometimes doomed.  
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5.6 Supplement 

Table 5-6 Total airway count by airway generation 

Generation 

Count (±SD) 

Never-smokers1 GINA1-3 

(n=15) 

GINA4 

(n=19) 

GINA5 

(n=36) 

0 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 

1 2.0 (0.1) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 

2 4.0 (0.1) 4.3 (0.8) 4.5 (1.4) 4.2 (0.5) 

3 13.0 (0.8) 13.4 (0.6) 13.9 (1.1) 13.5 (1.0) 

4 24.2 (1.3) 25.0 (2.2) 24.9 (1.7) 25.0 (2.5) 

5 43.5 (6.2) 45.3 (6.2) 39.4 (7.3) 38.8 (10.1) 

6 52.3 (17.4) 46.9 (16.3) 32.0 (15.4)* 34.9 (17.3) 

7 42.1 (22.9) 27.5 (16.3) 14.8 (8.8)* 13.8 (12.1)* 

8 23.3 (16.4) 10.1 (10.5) 5.3 (4.7) 5.8 (5.5) 

9 10.8 (9.8) 2.5 (3.3) 2.2 (2.7) 1.3 (2.0) 

10 3.8 (4.6) 1.1 (1.8) 0.3 (0.6) 0.2 (0.6)* 

11 - 0.3 (0.7) 0.0 (0.0) 0.0 (0.0)* 

GINA=Global Initiative for Asthma. 1From Kirby et al., 2018. *Significantly different 

from treatment steps 1-3, p<0.05. 
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CHAPTER 6  

6 CONCLUSIONS AND FUTURE DIRECTIONS 

In this final chapter, I provide a summary and overview of the important findings and 

conclusions presented in Chapters 2-5.  The limitations specific to each study and general 

limitations are also provided with some potential solutions.  Finally, I end my thesis with 

future directions based on what we observed using hyperpolarized 3He MRI, CT and 

oscillometry. 

6.1 Overview and Research Questions 

Asthma has long been idealized as a diffuse airways disease with variable symptoms and 

airflow limitation despite evidence of ventilation heterogeneity that was first identified 

over six decades ago.1-4  Structure and function of asthma are still clinically characterized 

using the forced expiratory volume in one second (FEV1) – although FEV1 is a simple and 

inexpensive measurement, it only provides a global measurement of lung function that 

cannot capture the regional heterogeneity of airway abnormalities that may be responsible 

for symptoms and disease worsening.  In an effort to better understand the mechanisms of 

ventilation heterogeneity, computational models have been generated and suggest that the 

regional heterogeneity observed in asthma can only be described by randomly distributed 

airway abnormalities throughout the whole lung.5,6  The in vivo mechanisms however have 

been challenging to measure using current clinical tools such as FEV1.  As a result, asthma 

is still regarded as a random disease and treatments are geared towards all airways and not 

individualized.   

Quantitative pulmonary imaging methods have been developed to directly visualize and 

quantify regional abnormalities in patients with lung disease.  In particular, hyperpolarized 

gas MRI provides in vivo images of regional gas distribution in high resolution.  As 

expected, MRI ventilation in young healthy volunteers is homogeneously distributed,7,8 

whereas in asthmatics, characteristic ventilation heterogeneity is observed.9,10  In 

conjunction with CT and oscillometry, the underlying structure of ventilation heterogeneity 

may be ascertained; focal ventilation abnormalities, known as ventilation defects, are 

spatially and quantitatively related to abnormal large11 and small airways.12,13  The 

physiological relevance of ventilation defects has been anchored to important clinical 
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measures including FEV1,11,12,14,15 asthma control16 and airway inflammation.17  

Preliminary longitudinal studies in asthma demonstrate that defects are spatially and 

temporally persistent for up to 1.5 years,15,18 importantly contradicting in silico results.  

These early disruptive MRI results suggest that asthmatic airway and corresponding 

ventilation abnormalities are not random.  Despite this evidence and support for clinical 

use, pulmonary imaging has played a limited role in asthma research and clinical care 

because the physiological mechanisms, long-term nature and clinical relevance of regional 

ventilation heterogeneity in asthma are poorly understood. 

The overarching objective of this thesis was to exploit sensitive pulmonary imaging 

measurements to better understand the structure and function of the asthmatic lung that 

drive ventilation heterogeneity and provide a foundation for imaging to guide disease 

phenotyping for personalized asthma treatment and predict disease worsening.   

The specific research questions addressed were: 1) Are the biomechanical impacts of 

ventilation heterogeneity in asthma different from those of COPD and can these differences 

be explained using oscillometry and MRI ventilation defects? (Chapter 2); 2) Are 

ventilation defects similar between twins with asthma and spatially and temporally 

persistent over long periods of time? (Chapter 3); 3) Are ventilation defects spatially and 

quantitatively persistent over long periods of time in unrelated asthma patients, and can 

ventilation defects predict future bronchodilator reversibility? (Chapter 4); and 4) Is the 

airway tree truncated in severe asthma and are truncated airways to thickened airway walls 

and worse airway function? (Chapter 5) 

6.2 Summary and Conclusions 

In Chapter 2, we evaluated the relationships between hyperpolarized 3He MRI ventilation 

defects and oscillometry measurements of lung biomechanics in a total of 175 participants 

including 49 with asthma, 56 with COPD, 28 ex-smokers without COPD and 42 never-

smokers without lung disease.  In both asthma and COPD, VDP was significantly related 

to R5-19 (asthma: ρ=0.48, p=0.0005; COPD: ρ=0.45, p=0.0004), X5 (asthma: ρ=-0.41, 

p=0.004; COPD: ρ=-0.38, p=0.004) and AX (asthma: ρ=0.47, p=0.0007; COPD: ρ=0.43, 

p=0.0009).  When COPD participants were dichotomized by the presence of emphysema 
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(RA950≥6.8%), VDP was sig`nificantly related to X5 in those with emphysema (ρ=-0.36, 

p=0.04) whereas in those without emphysema, VDP was related to R5-19 (ρ=0.54, p=0.008).  

VDP was significantly related to AX in participants with (ρ=0.39, p=0.02) and without 

(ρ=0.43, p=0.04) emphysema.  These results suggest that MRI VDP and oscillometry-

measured R5-19 and X5 may reflect disease-specific airway and parenchymal biomechanical 

abnormalities that lead to ventilation defects.  

In Chapter 3, we evaluated the spatial and temporal nature of CT airway and 

hyperpolarized 3He MRI ventilation abnormalities over the course of seven years in adult 

female nonidentical twins with asthma.  Both twins showed a spatially-matched 

subsegmental MRI ventilation defect in the left upper lobe corresponding to the LB2 

apicoposterior bronchopulmonary segment.  At 7-year follow-up, the LB2 WA% was 71% 

and 75% for twin 1 and twin 2, respectively.  Based on the 19 anatomically and functionally 

distinct bronchopulmonary segments, and under the assumptions of no more than one 

defect per segment and an equivalent probability for each of the 19 segments to express a 

defect, we estimated the probability that two patients have the same single defect at two 

timepoints to be 1 in 130,321.  These findings suggest that ventilation abnormalities may 

not be randomly distributed within patients with asthma and persist distal to airway 

abnormalities for long periods of time. 

In Chapter 4, we investigated 6-year longitudinal changes in hyperpolarized 3He 

ventilation defects in 11 participants with mild-to-moderate and aimed to determine 

predictors of longitudinal post-bronchodilator FEV1 reversibility.  There were no 

differences between FEV1 (76%pred vs 76%pred, p=0.9) and MRI VDV (240 mL vs 250 mL, 

p=0.9) between baseline and follow-up and no participants experienced any medication 

changes or exacerbations during the time between study visits.  For 8 of 11 participants, 

MRI ventilation defects were spatially and quantitatively persistent between study visits.  

For the remaining 3 participants, ventilation defects worsened in the same locations 

previously induced by methacholine at the baseline visit.  At follow-up, FEV1 was not 

reversible in 6 of 11 participants; baseline PC20 was significantly worse in FEV1-reversible 

compared with nonreversible participants (0.08±0.01 mg/mL vs 0.84±0.86 mg/mL, 

p=0.01).  No other measurements were significantly different between FEV1 reversible and 



 

162 

FEV1 non-reversible groups.  In multivariable models including MRI VDV, FEV1, PC20 

and participant age, only VDV significantly predicted post-bronchodilator FEV1 

reversibility at follow-up (R2=0.80, p<0.01).  These results suggest that MRI ventilation 

defects are spatially persistent over 6.5 years, and are uniquely predictive of future 

bronchodilator reversibility in patients with asthma.  

In Chapter 5, we measured CT TAC in 70 participants with asthma across a range of 

severities including 15 GINA1-3, 19 GINA4 and 36 GINA5, and evaluated relationships 

for TAC with asthma severity, airway morphology, pulmonary function and MRI 

ventilation.  TAC was significantly diminished in GINA4 (145±10, p=0.03) and GINA5 

(148±7, p=0.045) compared with GINA1-3 (182±11).  Sub-subsegmental airways were 

CT-invisible or missing in 69 of 70 participants.  The most common number of missing 

sub-subsegments was 10, and participants with ≥10 missing sub-subsegments had worse 

WA% (68.6±1.4% vs 66.8±1.3±, p<0.0001), LA (9.1±1.9 mm2 vs 11.8±2.2 mm2, 

p<0.0001) and VDP (7±7% vs 11±9%, p=0.03) than those with <10 missing sub-

subsegments.  In a multivariable model including all CT parameters, TAC (β=0.50, 

p=0.001) independently predicted FEV1 (R2=0.27, p=0.003).  In a separate model including 

VDP, TAC (β=0.27, p=0.03) and VDP (β=-0.53, p<0.0001) combined to explain FEV1 

(R2=0.49, p<0.0001).  In severe asthma, TAC was reduced to a similar degree as previously 

published results in moderate COPD, and these results challenge our understanding of 

airways disease in asthma as temporally variable and reversible.  

In summary, we have provided: 1) an understanding of biomechanical lung abnormalities 

specifically related to asthma compared with COPD with and without emphysema; 2) 

evidence of a spatially-matched MRI ventilation defect in twins with asthma that is 

spatially and temporally persistent for seven years; 3) evidence that MRI ventilation defects 

are spatially and temporally persistent for over six years in a group of participants with 

mild-to-moderate asthma, and that ventilation defects are predictive of future 

bronchodilator reversibility; 4) evidence that airway wall thickening is related to reduced 

total number of CT-visible airways in severe asthma that is similar in magnitude to 

moderate COPD and related to worse MRI VDP. 
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6.3 Limitations 

The most significant limitations from Chapters 2-5 are presented here.  The study specific 

limitations are also provided within the Discussion section of each respective chapter.  

Following the study specific limitations, general limitations common to all chapters are 

addressed.   

6.3.1 Study Specific Limitations 

Chapter 2: Oscillometry and Pulmonary Magnetic Resonance Imaging in Asthma and 

COPD 

In the study presented in Chapter 2, the oscillometry-derived results were limited by the 

use of raw values without correction for age or anthropometric factors.  It is well-

established that pulmonary function measurements vary with age, sex, height and 

ethnicity.19  Although our participant cohort was well-matched for sex and consisted only 

of Caucasian adults, impedance differences between groups, or lack of differences, may 

have been influenced by participant age and height.  This may also partially explain the 

weak correlations observed between oscillometry measurements and MRI VDP.  Diverse, 

global reference equations are currently under development for oscillometry, and future 

investigations should employ normalized values where possible.  

Another limitation of this study derives from the fact R5-19 may not capture the largest 

influence of ventilation heterogeneity on the frequency dependence of resistance.  

Experimental studies in animal models and humans have shown that heterogeneity has the 

largest influence on respiratory system resistance between 0.1-5 Hz.20-22  We therefore only 

captured a small portion of the impact of heterogeneities using R5-19 and this may explain 

the weak correlations observed.  It is important to note though that all commercially 

available oscillometry devices approved for use in humans employ broadband signals with 

lower bounds of 4-5 Hz.23  Future studies could investigate the relationships between 

respiratory system resistance at frequencies <5 Hz and MRI ventilation heterogeneity, 

however this would require custom-built oscillometry systems.  

As a technical limitation, shunting of the oscillatory waves to the upper airways reduces 

sensitivity of oscillometry measurements to obstruction.24  This means that in patients with 
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severe airflow obstruction, impedance may be underestimated and this may also have 

influenced correlation strengths observed in this study.  To mitigate the effects of upper 

airway shunt, we perform extensive coaching and instruct participants to firmly hold their 

cheeks with their hands.   

Finally, we acknowledge that oscillometry and MRI measurements were acquired in 

different positions, introducing the potential for postural effects.  Oscillometry was 

performed in the upright position whereas MRI was performed supine and this may have 

had an additional impact on the strength of the relationships between MRI and oscillometry 

measurements of ventilation heterogeneity.  Previous work has demonstrated that R5 is 

increased in the supine position compared to upright25,26 and the presence of emphysema 

may also cause large upright-to-supine AX variability.27  Regardless, we took steps to 

mitigate and minimize potential postural effects in this study by completing imaging within 

five minutes to limit the time that patients are supine, which has been shown to minimize 

atelectasis.28 

Chapter 3: Nonidentical Twins with Asthma: Spatially-matched CT Airway and MRI 

Ventilation Abnormalities 

In the study presented in Chapter 3, we only evaluated one set of twins.  Our results are 

thus difficult to generalize to all patients or twins with asthma.  We assumed the persistent 

ventilation defect in these participants to be related to asthma pathophysiology and/or 

abnormal airway structure.  It is possible that these findings could also be explained to 

some extent by shared genetics, epi-genetics or in utero events, which we did not evaluate 

here and could not rule out.  Future investigations would benefit from a more complete 

clinical history incorporating these factors.  

Based on the assumptions we made, our probability estimate for a repeated ventilation 

abnormality in space and time was conservative.  In twins, there may be a bias for airway 

and ventilation abnormalities in specific lung regions which we did not account for.  

Moreover, we did not make any assumptions about an upper limit of number of ventilation 

defects that might be less than one for each of the 19 potential segmental airways.  In the 

literature, participants with moderate disease typically have fewer than five ventilation 
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defects.14  A more rigorous analysis could include the probability of twins having asthma, 

the probability of multiple ventilation defects, or the probability of subsegmental (38 

subsegments) or sub-subsegmental (76 sub-subsegments) ventilation defects.  However, 

accounting for these factors would only serve to lower the estimated probability and would 

likely more strongly support our conclusions.   

Chapter 4: Hyperpolarized Helium 3 MRI in Mild-to-Moderate Asthma: Prediction of 

Postbronchodilator Reversibility 

The longitudinal study presented in Chapter 4 was limited by the small sample size of 

only mild-to-moderate participants and this limits the generalizability of the multivariable 

model results to the broader asthma population.  Importantly however, hyperpolarized gas 

MRI measurements are extremely sensitive; as demonstrated in this study and others in the 

literature, significant group differences and relationships may be detected using small 

sample sizes.  Nonetheless, this study generated pilot data that can motivate large imaging 

cohort studies of asthma over a range of asthma severities to further confirm the results 

observed here.   

Another limitation of this study was the partial thoracic CT images that were acquired at 

the baseline timepoint which limited the regional airway comparisons between study visits.  

Low-dose research CT protocols similar to that used at the time of follow-up are now 

widely available and may be employed in future studies to longitudinally investigate 

morphological airway changes.  Further development of ultra-low dose CT methods29,30 

may also facilitate the broader use of longitudinal CT imaging in patients with asthma.  In 

spite of the partial CT volume, we were able to demonstrate persistent structure-function 

relationships in specific lung regions.  

Chapter 5: Is Computed Tomography Total Airway Count Related to Asthma Severity and 

Airway Structure-function? 

The study presented in Chapter 5 was based on a convenience sample of asthmatics 

recruited from local tertiary care centres, thus our participant population was dominated by 

more severe disease.  We were underpowered to individually compare GINA treatment 

steps 1-3 to tease out differences between all levels of asthma severity.  The strength of the 
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study could have been improved using a population-based sample which would have better 

facilitated recruitment of participants with milder disease.   

Another limitation was the acquisition of CT images at FRC+1.0 L.  While this facilitates 

comparison and registration to MRI by volume-matching the acquisitions, most studies 

acquire CT close to TLC and this may limit our comparisons to previous work.31  The lung 

volume acquisition differences could especially impact participants with larger lung 

volumes because at a lower fraction of vital capacity, the elastic forces tethering the 

airways open would be reduced; this would impact lumen diameters and potentially 

contribute to decreased TAC.  We determined that TAC was however not significantly 

related to the CT lung volume normalized to vital capacity (r=0.04, p=0.7) or total lung 

capacity (r=0.05, p=0.7), therefore we suspect lung inflation at imaging to have minimally 

impacted our results.  We also did not acquire expiratory CT and therefore could not 

evaluate the regional nor whole-lung relationships between imaging measurements of gas 

trapping32,33 and TAC.  Future large cohort studies could benefit from paired inspiratory-

expiratory CT imaging to contemporaneously evaluate and compare TAC and gas trapping.  

6.3.2 General Limitations 

A general limitation to the studies presented in Chapters 2-5 is the lack of measurements 

of airway inflammation.  Asthma is characterized by chronic airway inflammation, 

however we were unable to ascertain the role of inflammation within our findings.  

Previous work has demonstrated a direct relationship between MRI VDP and sputum 

eosinophils and suggested that ventilation defects which persist following bronchodilator 

are indicative of unresolved airway inflammation.17  To our advantage in the absence of 

inflammatory biomarkers in Chapters 4 and 5, we used pre- and post-bronchodilator MRI 

evaluations to infer the role of smooth muscle dysfunction.  In future work, direct 

comparison of oscillometry, CT airway and MRI ventilation abnormalities to airways 

inflammation will be important towards guiding clinical treatment decisions and for 

personalized therapy.  Ongoing studies at our centre are now prospectively evaluating non-

invasive biomarkers of inflammation from exhaled breath, sputum and blood in 

conjunction with MRI study visits. 
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Another general limitation to all chapters was our focus only on ventilation defects (as a 

volume and percent of total lung volume), though it is obvious that hyperpolarized gas MRI 

ventilation is not binary.  In addition to ventilation defects, four distinct intensities of MR 

gas signal can be visualized by expert readers ranging from hypo- to hyper-intense signal.34  

The heterogeneity of the gas signal itself is evident in Figure 1-10 in the introduction for 

both 3He and 129Xe in asthma and COPD.  The well-established clinical relevance of 

ventilation defects in asthma supported their investigation in this thesis,11,16 however the 

clinical relevance of the MRI signal distribution and its spatial and temporal behaviour are 

unknown.  The semi-automated MR image segmentation method employed in this thesis 

quantifies each of the four respective intensities34 that can subsequently be investigated 

individually to determine their underlying mechanisms and clinical relevance.  

Alternatively, coefficients of variation35 or texture features36 of the signal intensity may be 

investigated to directly probe heterogeneity.  Oscillometry-MRI comparisons like those in 

Chapter 2 may particularly benefit from direct comparison of signal intensity 

measurements because these are likely the regions actually probed by the oscillatory waves.  

In future work, it will be important to evaluate the signal intensity and its heterogeneity in 

space and time in conjunction with ventilation defects. 

Pertinent to Chapters 3-4, we acknowledge the limited longitudinal analysis of two 

timepoints.  Including a third timepoint, especially one at an interim point between the two 

study visits would add strength to these studies as well as to our conclusions of non-

random, spatially and temporally persistent CT airway and MRI ventilation abnormalities.  

Moreover, we acknowledge the lack of longitudinal timepoints altogether in Chapters 2 

and 5.  We think that reduced CT TAC in severe has important implications for airways 

disease in asthma, however future work will be needed evaluate the reproducibility of TAC 

in participants with asthma and potential changes in TAC over time.  Moreover, 

oscillometry has excellent intra-patient reproducibility37 that could make it a sensitive tool 

for detecting changes in ventilation heterogeneity over long periods of time. 

An important limitation through Chapters 2-5 is the limited worldwide supply and 

subsequent high cost of 3He that has inhibited its clinical translation.38  3He MRI has played 

an important role in our developing understanding of asthma in previous work and the work 
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presented in this thesis, however novel prospective research studies using 3He are unlikely.  

In contrast, 129Xe is less costly and poised for clinical translation; clinical approval 

currently exists in the United Kingdom and approval is pending in the United States.  129Xe 

MRI is more sensitive to airway obstruction and exhibits significantly greater ventilation 

defects than 3He in both asthma39 and COPD.40  This increased sensitivity will be 

advantageous in future research and clinical studies, but could have implications for the 

conclusions in this thesis.  For example, only 27% of participants in Chapter 4 showed 

spatially persistent but quantitatively larger or worsened ventilation defects at follow-up.  

If this study were repeated using 129Xe MRI, it is plausible that more participants would 

show worsening defects that were undetected with 3He.  Moreover, one might hypothesize 

that there are stronger relationships between 129Xe VDP and oscillometry measurements 

compared to those in Chapter 2 due to systematically greater VDP or possible wider 

dynamic range of VDP compared with 3He.  Speculations aside, future 129Xe MRI studies 

are required to validate the results presented here using 3He MRI.  129Xe is additionally 

advantageous because it can provide regional measurements of gas exchange.  All 

prospective studies currently ongoing or upcoming at Western University in London, 

Canada are now employing 129Xe for ventilation and gas exchange measurements in 

patients with asthma and COPD. 

6.4 Future Directions 

6.4.1 Between-participant Probability Maps of MRI Ventilation Defects in 

Asthma 

The work presented in Chapters 3 and 4 of this thesis demonstrated spatially and 

temporally persistent CT airway abnormalities and MRI ventilation defects within 

participants with mild-to-moderate asthma.  The results in Chapter 3 also demonstrated a 

spatially-matched ventilation abnormality between twins with asthma, and this promotes 

speculation about a spatial preference for airway and ventilation abnormalities between 

participants with asthma.  As a result, we now pose the following research questions: 

1) Are there more likely regional locations for airway and ventilation abnormalities 

between different participants with asthma? 
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2) Does inhaled methacholine act on particular airways between different 

participants with asthma? 

To answer these questions, we retrospectively evaluated 31 participants with asthma, 

including 12 with mild-to-moderate and 19 with severe asthma, to describe a proof-of-

concept spatial probability distribution of MRI ventilation defects between patients with 

asthma.  Participants underwent hyperpolarized 3He MRI before and after methacholine 

and images were segmented using a semi-automated method.34  Each image in the 

respective groups of mild-to-moderate and severe asthma, before and after methacholine, 

were deformably co-registered using the modality-independent neighbourhood descriptor 

method (MIND)41 in MATLAB R2015a (Mathworks, Natick, MA, USA) as previously 

described.42  The ventilation mask for one participant was selected as the fixed reference 

image and the 3He images for all participants in each group were registered to the one mask 

to enable direct comparisons.   

Figure 6-1 shows preliminary probability maps for mild-to-moderate and severe asthma 

participants at baseline and post-methacholine.  These maps describe the probability that a 

voxel was ventilated across the group of asthma patients included in each model; brighter 

blue regions represent higher likelihood of that voxel being ventilated whereas dark blue 

regions represent lower likelihood of that voxel being ventilated (ie, ventilation defects).  

Qualitatively comparing baseline and post-methacholine maps, the ventilation distribution 

is visually more heterogeneous following methacholine for both mild-moderate and severe 

asthmatics.  At baseline, there is a visual superior-inferior gradient in both mild-moderate 

and severe participants, such that superior regions showed a greater likelihood of being 

ventilated.  Post-methacholine, a posterior-anterior ventilation gradient becomes more 

evident.  In severe asthma specifically, two locations can be visually identified in the post-

methacholine posterior slice that appear as ventilation defects in roughly 50% or more of 

the sample, in the upper left and right lung lobes. 
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Figure 6-1 Ventilation defect probability maps for mild-moderate and severe asthma 

Posterior, centre and anterior slices pre- and post-methacholine showing regional 

probability of ventilation defects between participants with asthma.  Colour map represents 

no ventilation in black (0%) to complete ventilation in cyan (100%) throughout the patients 

included in the model.  

These results point towards a regional preference for the location of ventilation defects and 

abnormally remodeled airways between participants with asthma.  These results may be 

important for the development of novel therapies that can be targeted towards regions with 

the highest likelihood to be abnormal.  The registration pipeline and maps generated here 

provide a framework for development and application of a probability model of the 

distribution of ventilation in patients with asthma.  Towards generating a functional atlas 

of the asthmatic lung that is generalizable to the broader asthma population, it will be 
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important to continue to build this model by continuously including data from more 

research participants.  

6.4.2 Contributions of Large versus Small Airways to Ventilation 

Heterogeneity in Asthma 

With the understanding that ventilation defects in asthma are spatially persistent for long 

periods of time, ventilation defects may serve as important targets for novel asthma 

therapies, including image-guided and targeted small airway approaches.  Ventilation 

defects in asthma may be driven by large11 or small12 airway abnormalities, however the 

relative contribution of large versus small airway obstruction to ventilation heterogeneity 

in a given patient is not well-understood.   

With this in mind, we hypothesize that CT airway tree geometries can be used to 

differentiate the contributions of large versus small airways to ventilation heterogeneity in 

a patient-specific approach using CT airway tree geometries.  In a preliminary study, we 

aimed to develop a pipeline to calculate VDP related to the small or large airways using 

paired MRI ventilation and CT image sets.  MR ventilation images were segmented using 

a semi-automated method34 and CT airway trees were segmented up to the 10th generation 

using commercial software (Pulmonary Workstation 2.0; VIDA Diagnostics Inc., 

Coralville, IA, USA).  Airways that could be segmented were assumed to be all large 

airways, and those that could not be segmented were considered the small airways.  MR 

static ventilation images were co-registered to the thoracic CT volume and airway tree 

using the MIND method41 in MATLAB R2015a (Mathworks, Natick, MA, USA).  The 

trachea was manually removed from the airway tree and the remaining airways were dilated 

on a voxel-wise basis using a 20x3 ellipsoid in order to account for the volume around the 

large airways.  This volume was subsequently used to separate the 3He ventilation into 

relative contributions of the small and large airways, and VDP was calculated as the 

volume of defects within each region normalized to the total volume of that region.  This 

pipeline is outlined in Figure 6-2.  
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Figure 6-2 Small versus large airways image analysis pipeline 

MRI ventilation was deformably co-registered to the thoracic CT and airway tree volumes 

(A) and the registered airway tree (B) was dilated in 3D on a voxel-wise basis (C).  The 

dilated airway tree volume was registered to the segmented ventilation clusters (D) to 

generate the ventilation volume corresponding to the large and small airways.  

As a proof-of-concept, the pipeline was evaluated in 20 participants with asthma, 10 each 

with mild-to-moderate and severe asthma.  Whole-lung (5±4% vs 8±4%, p=0.1), large 

airway (2±2% vs 3±3%, p=0.3) and small airway VDP (6±5% vs 10±3%, p=0.055) were 

not significantly different between mild-to-moderate and severe asthma groups.  In both 

mild-to-moderate and severe asthma, small airways VDP was significantly greater than 

large airways VDP (p=0.002 and p=0.0001, respectively).  Relationships for FEV1 with 

whole-lung and large and small airway VDP are shown in Figure 6-3.  Whole-lung (r=-

0.6, p=0.008) and large airway (r=-0.6, p=0.01) VDP were significantly related to FEV1, 

whereas small airway VDP was not (r=-0.3, p=0.2).  Because FEV1 is known to be 

dominated by airflow in the large airways,43 the relationship between FEV1 and large 

airways VDP provides initial validation of our pipeline.  This pipeline provides a first step 

towards distinguishing the large versus small airway contributions to ventilation 

heterogeneity in asthma.  
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Figure 6-3 Relationships between FEV1 and whole-lung, large and small airway VDP 

In 20 participants with asthma, whole-lung and large airway VDP were significantly related 

to FEV1 whereas small airways VDP was not. 

Our results in Chapter 5 however suggest that the assumption that the airways in the 

segmented tree represent all large airways may be invalid, especially in severe asthma.  

This pipeline can be extended to account for a priori spatial relationships between large 

airways and ventilation defects.  Alternatively, a computational three-dimensional airway 

tree model consisting of 64,895 airways44 could be used to simulate large versus small 

airway narrowing in asthma related to ventilation defects.  Although this approach is not 

patient-specific, it provides a controlled environment to model both the large and small 

airways and eliminates the impact of airways that appear missing on CT.  Previous work 

has generated image-functional models using this airway tree in conjunction with MRI 

ventilation in participants with asthma to simulate respiratory system impedance by 

narrowing the small airways that were spatially related to ventilation defects.13,45  When 

directly compared with experimental oscillometry impedance measurements, the simulated 

results did not completely explain the experimental impedance,13 which may suggest an 

interplay between both large and small airways to generate ventilation defects that differs 

between patients.  In contrast to the previous computational models with promote random 

airway abnormalities using a model of a single terminus,5,46 models generated using a 

three-dimensional airway tree with patient-specific MRI ventilation and experimental 

oscillometry measurements can provide a way to generate models of the large versus small 

airways abnormalities in patients with asthma. 
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6.4.3 Imaging Phenotypes of Asthma 

Quantitative imaging biomarkers provide novel ways to generate imaging-based 

phenotyping or clustering of patients with respiratory disease.  Imaging plays a large role 

in COPD clinical care owing to multiple large cohort studies that have established imaging 

phenotypes of COPD47,48 using x-ray computed tomography (CT)49-52 and inhaled gas 

MRI.53  In contrast, pulmonary imaging has played a limited role in asthma research and 

clinical care because the mechanisms and physiological relevance of regional ventilation 

heterogeneity have been poorly understood.  In the Severe Asthma Research Program 

cohort, one study used CT measurements of proximal airway structure, tissue biomechanics 

and gas trapping to identify for the first time imaging phenotypes of asthma.54  Pulmonary 

functional MRI measurements have never been evaluated independently or in conjunction 

with CT for the generation of imaging phenotypes of asthma.  The results in this thesis 

have provided an understanding of the pulmonary imaging structure-function determinants 

of ventilation heterogeneity in asthma and support the use of MRI results to phenotype 

asthma.  

The AIM-IT cohort study at Western University in London, Canada is the largest known 

cohort study with paired CT and inhaled gas MRI in participants with asthma and provides 

a unique platform to explore imaging phenotypes of asthma using both CT and MRI.  As 

a first step, we used MRI VDP and CT airway measurements to drive imaging-based 

clusters of asthma in 60 participants with asthma, including 16 mild-moderate and 44 

severe.  CT TAC and morphological airway measurements were generated as they were in 

Chapter 5.  Univariate relationships were assessed between VDP and CT TAC, WA%, 

WT, LA and Pi10, with age, sex and BMI included as covariates.  These relationships 

suggested VDP, TAC, Pi10, age and BMI sufficiently explained the variability in the data.  

Based on these five parameters, k-means clustering was used to generate clusters of 

participants with similar parameters in MATLAB R2018a (Mathworks, USA).  K-means 

clustering and corresponding Dunn’s coefficients were used to determine the quality of the 

clustering method and were evaluated for 3-6 clusters; Dunn’s coefficient was greatest for 

6 clusters (3, 4, 5, 6: 0.05, 0.11, 0.16, 0.18), and the resultant 6 clusters are described in 

Figure 6-4. 
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Figure 6-4 MR and CT imaging-based clusters of asthma 

Description of 6 imaging-based clusters of asthma with values for each variable included 

in the clustering.  Representative 3He MR (cyan) ventilation images co-registered to 

anatomical 1H (grey-scale) and CT airway tree (yellow) are shown for each cluster.  
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These results provide a first MRI-driven approach to phenotype asthma as a proof-of-

concept, however for MRI phenotypes to be clinically translated they must be driven by 

129Xe MRI.  As previously addressed, 129Xe MRI is more sensitive to airway abnormalities 

than 3He and it follows that 129Xe MRI may more sensitively detect different phenotypes.  

Moreover, 129Xe MRI measurements of signal intensity heterogeneity may also be included 

to further develop MRI phenotypes of asthma.  As a final step, it will be critical for these 

MRI phenotypes to be anchored to important clinical characteristics of asthma54 such as 

age at onset, sex, obesity, severity, disease control, presence and nature of inflammation, 

and bronchodilator reversibility.  We expect that MRI phenotypes of asthma will be related 

to well-established clinical phenotypes and subsequently can be used to guide clinical 

treatment decisions, regional therapies and development of novel therapies. 

6.5 Significance and Impact 

Even though the regional heterogeneity of asthma has been understood for over 60 years 

and early MRI results suggested focal abnormalities in patients were not random, 

pulmonary structure and function are still clinically characterized by FEV1 and underlying 

regional structure-function abnormalities and their variation over time remained uncertain.  

Today, asthma is still regarded as random and treatments are geared towards all airways 

and not individualized.  A better understanding of the mechanisms and physiological 

relevance of regional ventilation heterogeneity in asthma is critical at this time as the 

number of people in Canada and worldwide with asthma is continuously growing55,56 and 

10% of these patients will progressively worsen to develop COPD.57,58   

This thesis advances our understanding of asthma the spatially heterogeneous nature of 

asthma.  The studies presented in this thesis provide strong evidence that airway 

abnormalities and corresponding ventilation defects in asthma are not random, but are 

spatially and temporally persistent for up to 7 years.  We have provided for the first time, 

evidence that disease worsening occurs in previously abnormal airways and that MRI 

ventilation abnormalities sensitively predict longitudinal disease worsening towards 

development of COPD.  Ventilation abnormalities have a specific biomechanical impact 

in asthma compared with COPD, however in severe asthma, the airway tree becomes 

truncated to a similar degree as moderate COPD. 
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The long-term spatial and temporal persistence of airway and ventilation abnormalities in 

asthma makes them ideally suited for personalized treatment targets as well as targets for 

novel therapy development.  Although there are often differences between asthma and 

COPD, a similar truncation of the airway tree in asthma and airways-disease predominant 

COPD challenges our understanding of these differences.  MRI ventilation abnormalities 

may be the ‘red flag’ to identify patients at risk for asthma worsening to COPD and provide 

a means to stratify these patients for more rigorous treatment.  Armed with these 

understandings of regional airway and ventilation abnormalities in asthma, there is 

increased potential to guide treatment decisions and regional therapies, predict disease 

worsening and ultimately, improve patient outcomes.  
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APPENDICES 

Appendix A – What is the Minimal Clinically Important Difference for Helium-3 

Magnetic Resonance Imaging Ventilation Defects? 

In this article, we determined the minimal clinically important difference for MRI 

ventilation defects which accounts for both patient-reported asthma control and the 

ventilation defect measurement error.  This work was a necessary first step in order to 

evaluate longitudinal changes in ventilation defects in Chapter 4.  

The contents of this appendix were previously published in the European Respiratory 

Journal as a research letter: RL Eddy, S Svenningsen, DG McCormack, G Parraga. What 

is the minimal clinically important difference for helium-3 magnetic resonance imaging 

ventilation defects? Eur Respir J. 2018;51(6). Permission to reproduce this article was 

granted by the European Respiratory Society (ERS) and is provided in Appendix B. 

To the Editor: 

Pulmonary magnetic resonance imaging (MRI) using inhaled polarised gases provides a 

way to directly visualise and sensitively measure lung ventilation abnormalities or 

ventilation defects;1 the burden in individual patients may be directly quantified as the 

percent ventilation volume,2 ventilation defect volume (VDV)3 or ventilation defect 

percent (VDP)4 which is VDV normalised to the total lung volume.  In patients with 

asthma, MRI ventilation defects worsen during methacholine5 and exercise challenge5,6 

and respond to bronchodilation.5,6  However, it is still unknown if quantitative changes in 

MRI ventilation abnormalities directly reflect changes in patient-related outcomes like 

symptoms; this is important when considering MRI for clinical and research studies in 

asthma patients which requires an understanding of the minimal clinically important 

difference (MCID). 

First described in 1989,7 the MCID reflects the smallest measurement difference that 

patients perceive as beneficial.  MCID estimations typically involve patient perception but 

up to nine methods have been reported,8 and no standard for calculating MCID has been 

established.  For example, changes in clinical parameters provide the foundation for the so-

called anchor-based MCID approach,9 in which patient- or clinician-reported metrics serve 

as ‘anchors’.  On the other hand, distribution-based or data-driven approaches reflect 
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instrument error and precision, including the standard error of measurement (SEM)10 which 

has been validated as a proxy for the MCID. 

Here we estimate the MCID of MRI VDV and VDP using distribution- and anchor-based 

approaches.  We used both approaches because MRI VDV and VDP measurement 

precision are heavily dependent on the algorithm used and the reproducibility of the 

quantification.  First, we used the SEM to estimate the distribution-based MCID for VDV 

based on algorithm precision previously published.3  As previously described,3 pulmonary 

MRI VDV is quantified using a semi-automated algorithm in units of mL while VDP is 

measured as a percentage of the thoracic cavity volume in units of %.  Based on five 

repeated segmentation rounds in 15 subjects, the SEM for VDP was calculated as the 

square root of the repeated measures intra-observer VDP variance and was 40 mL.3 We 

also consider the smallest detectable difference (SDD) which generates confidence about 

measurement uncertainty.  The previously calculated SDD for VDV was 110 mL,3 and 

because this is larger than the SEM, it is possible that an observed change less than the 

SEM would be due to measurement error.  In contrast, if the SDD is smaller than the MCID, 

it is possible to distinguish a clinically important change with adequate measurement 

precision.  To be certain that a clinically important change is not due to measurement error, 

we propose to conservatively use the MCID of 110 mL which reflects measurement 

precision, instead of 40 mL which was the measured SEM. 

For the anchor-based method, we used the patient-reported and validated asthma control 

questionnaire (ACQ) score11 as the anchor and the significant relationship between ACQ 

score and MRI VDP previously published in 18 asthmatic patients.12  In these asthmatics, 

the relationship between ACQ score and VDP was determined by equation of their linear 

relationship as VDP=7.5ACQ – 5.0.12  The MCID for ACQ score was previously 

determined to be 0.511 and therefore based on the linear relationship, a 0.5 change in ACQ 

would result in a 4% VDP difference.  Therefore, using ACQ score as an anchor, the VDP 

MCID is 4%. 

While ACQ score and exacerbations may be used in asthma clinical trials, the most 

commonly-used objective endpoint is the forced expiratory volume in one second (FEV1); 
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the MCID for FEV1 is often described as a range which for asthmatics is 100–200 mL.13  

In contrast with FEV1 which is dominated by the large airways,14 MRI is sensitive to all 

airways and the MCID is 110 mL for VDV (distribution-based) and 4% for VDP (anchor-

based).  The 4% VDP MCID can be translated to a VDV of 200 mL based on the mean 

thoracic cavity volume segmented from MRI which was reported to be 5.0 L.3  In a similar 

manner, the VDV MCID of 110 mL is equivalent to approximately 2%.  Thus, we report a 

range of 110–200 mL for VDV and 2–4% for VDP as MCID ranges.  To illustrate the 

quantitative meaning of the MCID of VDP in individual patients, Figure 1 shows MRI for 

three patients with asthma with visually and quantitatively improved ventilation following 

bronchodilation (increasing VDP improvement shown from left to right).  For subject S1 

there was a change in VDV/VDP equivalent to the distribution-based MCID or SDD.  For 

subjects S2 and S3, there were post-bronchodilator changes in VDV/VDP that were similar 

in magnitude to the anchor-based MCID estimate.  Notably, S1 and S3 showed clinically 

significant post-bronchodilator FEV1 changes (≥ 200 mL and ≥ 12%), while S2 did not.  

The sensitivity of MRI to post-bronchodilator changes highlights a unique opportunity for 

pulmonary MRI to help explain subjective or patient-perceived improvements (i.e. ACQ 

or quality of life improvements) that are not reflected by FEV1.  The number of experts 

using hyperpolarised gas MRI in asthma clinical trials is still very small so it is important 

to consider the MRI VDP MCID in the context of the MCID of other established asthma 

biomarkers.  The MCID we calculated for MRI VDP is similar to the MCID for FEV1 in 

asthma at 110-200 mL.  Moreover, we have used the ACQ MCID of 0.511 to determine the 

upper limit of this range at 200 mL and therefore these are already intrinsically related.  

The MCID for the asthma quality of life questionnaire (AQLQ) is also 0.515 and though 

the relationship between VDP and AQLQ has not been directly established, we previously 

showed that VDP is significantly worse in patients with lower quality of life (AQLQ<5).12  

MRI VDP directly detects early changes in clinically important pathologies with high 

reproducibility.16  Taken together, this means that MRI has both the sensitivity and 

precision needed for clinical studies, although the complexity and cost of the acquisition 

of these measurements compared to other tests is still a limitation. 
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Figure 1.  Change in asthmatic magnetic resonance imaging (MRI) ventilation after 

bronchodilator (BD) for three representative subjects.  Three asthmatic subjects exhibited 

visual changes in MR ventilation post-BD.  A 45-year-old male (S1) underwent an 

improvement in ventilation equal to the smallest detectable difference and distribution-

based minimal clinically important difference (MCID), while a 28-year-old-female (S2) 

and a 31-year-old female (S3) underwent improvements at least as large as the anchor-

based MCID.  Notably, S1 and S3 also exhibited clinically significant changes in forced 

expiratory volume in 1 s (FEV1) (≥200 mL and 12%) but S2 did not.  VDV: ventilation 

defect volume; VDP: ventilation defect percent. 

It is important to consider the 3He MRI results in the context of future development of 

129Xe MRI which is much less costly to acquire. In this regard, we previously directly 

compared 3He and 129Xe MRI and showed that 129Xe VDP was greater than 3He VDP in 

asthmatics;17 this suggested that there was enhanced sensitivity to airway abnormalities 

using 129Xe gas which we speculated was due to the viscosity and diffusivity of the gas, so 

that 129Xe VDP was systematically larger than 3He VDP in asthmatics.  Based on this 

important information, we speculate that the slope of the linear relationship between ACQ 
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and 129Xe VDP, and thus the MCID, would be similar to 3He MRI VDP, but these 

calculations still need to be undertaken in a prospective 129Xe MRI study.  It is also 

important to note that, though there is no standard for calculating MCID values, the anchor-

based estimation we generated here was based on cross-sectional data and did not reflect 

within-subject variability or response to therapy.  Considering the original definition of 

MCID,7 “within-subject” differences in response to therapy will be important to investigate 

in prospectively designed clinical trials. 

In summary, pulmonary MRI biomarkers of ventilation have already provided some 

intriguing results in patients with asthma, but to our knowledge, MRI biomarkers have not 

been used in large-scale clinical trials of potential new therapies.  Other considerations 

aside (i.e. technological and financial), this lack of uptake may reflect the lack of a deep 

understanding of the relationship between MRI biomarkers with how patients perceive 

symptoms. We provide calculations of MCID for 3He MRI VDV and VDP to support the 

use of MRI in the research and development of novel therapies, as well as therapy decisions 

or n=1 trials, towards more precise decision making in individual patients.   
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