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Abstract 

Dam systems are arrangements of interacting components that store and convey water for 

beneficial purposes. Dam failures are associated with extreme consequences to human life, the 

environment and the economy. Existing techniques for dam safety analysis tend to focus on 

verifying system performance at the edge of the design envelope. In analyzing the events which 

occur within the design envelope, linear chain-of-events models are often used to analyze the 

potential outcomes for the system. These chain-of-events models require that combinations of 

conditions are identified at the outset of the analysis, which can be very cumbersome given the 

number of physically possible combinations. Additional complications arising from feedback 

behaviour and time are not easily overcome using existing tools. Recent work in the industry 

has begun to focus on systems approaches to the problem, especially stochastic simulation. 

Given current computational abilities, stochastic simulation may not be capable of analyzing 

combinations of events that have a low combined probability but potentially extreme 

consequences. This research focuses on developing and implementing a methodology that 

dynamically characterizes combinations of component operating states and their potential 

impacts on dam safety. Automated generation of scenarios is achieved through the use of a 

component operating states database that defines all possible combinations of component states 

(scenarios) using combinatorics. A Deterministic Monte Carlo simulation framework 

systematically characterizes each scenario through a number of iterations that vary adverse 

operating state timing, impacts and inflows. Component interactions and feedbacks are 

represented within the system dynamics simulation model. Simulation outcomes provide 

useful indicators for dam operators including conditional failure rates, times to failure, failure 

inflow thresholds, and reservoir level exceedance frequencies. Dynamic system response can 

be assessed directly from the simulation outcomes. The scenario results may be useful to dam 

owners in emergency decision-making to inform response timelines and to justify the 

allocation of resources. Results may also help inform the development of improved operating 

strategies or upgrade alternatives that can reduce the impacts of these extreme events. This 

work offers a significant improvement in the ability to systematically characterize the potential 

combinations of events and their consequences.  
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Summary for Lay Audience 

 

This research presents a novel approach to define and characterize potential combinations of 

events that can impact the ability to safely manage water flow in dam systems. Dam systems 

consist of infrastructure whose primary purpose is to store and convey water for beneficial 

purposes, such as power production, water supply, flood control and recreation. The water 

barrier is the dam itself, and water passages may include gated or ungated spillway systems 

that release excess flows, diversions, tunnels or penstocks (pipelines) that convey water to 

power-generating turbines. Another key part of a dam system is the system operator(s). 

Operators can be a single person or an organization. In some cases the operation of the dam 

may be automated. Operators make decisions on how to adjust water flow through the dam 

based on available information, with the goal to safely and economically manage the reservoir. 

The failure of a dam can cause a major flood, potentially having catastrophic consequences to 

human life, the environment and the economy. One possible way in which a dam can fail is 

through the inadequate control of water flow. For example, should the outflow passages fail to 

function, inflows into the reservoir can cause the water level to rise to critical levels that may 

result in failure of the dam. This research focuses on the analysis of flow-control in dam 

systems. A dam system and the interactions amongst its components are modelled in detail and 

an exhaustive list of possible combinations of events is developed. Each of these combinations 

is simulated many times to characterize the potential outcomes that may occur. The simulation 

model calculates the water levels and flow releases as they change over time. Parameters were 

developed to provide some indication about the potential impacts of a scenario. The result is a 

systematic characterization of these unlikely, yet potentially hazardous, combinations of events 

that can affect the ability to safely operate a dam system. The information produced through 

this methodology may be useful in developing operating strategies and emergency response 

plans that could occur over the course of a dam’s lifetime.       
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Chapter 1  

1 Introduction 

This thesis focuses on the development of a new approach to the assessment of dam safety 

flow control using a systems approach. Concepts from within risk assessment, general 

systems theory and control system theory are investigated as potentially promising 

techniques for the assessment of dams as systems. A new methodology is presented which 

allows for automated generation and simulation of a more complete range of potential 

operating conditions for the system using a Deterministic Monte Carlo simulation 

framework with a system dynamics simulation model. System behaviour is quantified 

directly from the simulation outputs and helps identify combinations of events which can 

lead to the failure of dam systems to safely control inflows.  

This chapter contains an introduction to dam systems and a historical overview of dam 

failures. An introduction to the systems approach is also provided here, as well as research 

objectives and conclusions.  

1.1 Dam systems 

Dams are highly complex systems containing arrangements of components which interact 

to store and convey water for one or more purposes, including hydroelectric power, flood 

control, mine tailings impoundment, and water supply for residential, agricultural or 

industrial purposes. Dams create reservoirs and use of their storage provides for the 

redistribution of inflow in time and space. These systems contain physical infrastructure, 

mechanical components, electrical components, communications equipment and human 

controllers which are all functioning together for a single purpose: the safe and economical 

storage and passage of water. The components that influence the behaviour of a dam system 

can be both physical (eg. infrastructure), or nonphysical (eg. operational decision making). 

Typical components of a dam system can be grouped into categories of: (1) Infrastructure 

components such as the dam, penstocks, spillways, gates, turbines, etc., (2) Actuators 

which are typically mechanical or electrical assemblies that make changes to infrastructure 

positioning either manually or automatically, remotely or on-site, (3) Operators which 
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include human or automated system controllers as well as institutional and organizational 

operating guidelines and rules, and (4) Sensory components such as Supervisory Control 

and Data Acquisition (SCADA) systems or visual observation. Dam systems have external 

inputs, such as reservoir inflows and various disturbances, and system outputs or products. 

Products of a dam system can include reservoir outflow, power generation, environmental 

or recreational flows, flood control and irrigation water supply. Figure 1-1 contains a 

labelled photograph of Revelstoke Dam in British Columbia, Canada, which has a number 

of features that are discussed in the following paragraphs. 

The key feature of a dam system is the dam itself, which acts as a barrier to the natural 

course of a stream or river. Dam structures may be constructed of a variety of different 

materials in a variety of different ways, and this choice is dependent on the purpose for 

which the dam will serve as well as the geological conditions in the vicinity of the dam and 

the availability of construction materials. Materials used in the construction of dams can 

include timber, concrete, masonry, steel, as well as earth or rockfill in the form of 

embankment dams (Jansen 1983). Some dam sites may have multiple dam structures, with 

auxiliary structures known as “saddle dams” that also act to retain the water in the  

reservoir. For large dams, concrete and earthfill structures (or a combination of these) are 

most common. There are a number of types of concrete dams, including concrete gravity, 

arch and buttress dams (Jansen 1983). Earthfill dams may also come in a variety of forms 

and may be homogeneous (one material makes up the entire dam) or have zones of different 

fill materials with engineer-specified parameters designed to control seepage and hydraulic 

gradients. Dams may also have provisions for foundation seepage control such as cutoffs 

or grout curtains that increase the seepage path to prevent the erosion of foundation 

materials (Jansen 1983). In Figure 1-1, Revelstoke Dam, British Columbia, Canada 

consists of a concrete gravity dam and an earthfill dam.   
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Figure 1-1: Revelstoke Dam, British Columbia, Canada 

In addition to the water barrier, dams are typically equipped with some sort of outlet 

structure to pass the water downstream. In the simplest case of a free overflow weir, water 

flows over the top of the structure and down the natural course of the river. More complex 

dams often involve a number of outlets, which can include free overflow spillways, 

spillway gates, low level outlets and turbines (Jansen 1983). Free overflow spillways are 

sometimes a lowered section of the dam that is equipped to pass water when the reservoir 

exceeds the elevation of the spillway crest. The amount of water passing over the free 

overflow spillway is a direct function of the level of the reservoir. These uncontrolled 

release structures sometimes involve a chute to direct water downstream. Spillway chutes 

may be unlined or lined with a material such as concrete (Jansen 1983). Spillway gates and 

low level outlets are mechanically controlled structures (typically gates or valves) which 

can be opened and closed to release the desired amount of water. Spillway gates and valves 

may direct water into a chute, if there is a considerable distance for the water to pass or 

may discharge water directly downstream of the opening. Each gate or valve has its own 

rating curve, which is the numerical relationship between gate opening, gate position and 
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reservoir level (USBR 1987). Gates require many different components to operate, 

including structural, mechanical and electrical – and in some cases can be operated 

automatically or remotely as well as onsite. In Figure 1-1, a gated spillway is shown, with 

two radial gates that discharge into a concrete chute, terminating in a flip bucket and plunge 

pool.  

In the case of hydropower dam systems, another key component of the system is the 

hydropower generating infrastructure. Intake gates are sometimes used to control the flow 

of water towards the generating units from the upstream end. Water passes into a power 

conduit, typically a tunnel or penstock depending on the application, and moves 

downstream towards the turbine (Komey, 2014). Penstocks are large pipelines, which 

may be constructed from steel, woodstave, plastic or concrete. Surge shafts are 

sometimes used to regulate pressure transients in the penstock, which can fluctuate 

significantly due to adjustments to the turbine flow or closure of valves along the power 

conduit. Once the water reaches the end of the penstock, there may be a turbine intake 

valve which controls the flow and may be closed for maintenance. Past the penstock, 

water enters the turbine. The generator transfers the rotational energy of the turbine into 

electrical energy which is then converted unto useable voltage in a switchyard connected 

to the power grid. Turbines may also be equipped with Pressure Relief Valves, which 

control pressure transients in the penstock during load rejections where the wicket gates 

must be suddenly closed (Komey, 2014). At Revelstoke Dam (Figure 1-1), water passes 

through penstocks to the turbines at the powerhouse.  

There are many other features of a dam system which function to monitor, protect and 

control the dam and outlet structures. In some systems, dam operation is implemented 

primarily from a control center which may be located far away from the site itself. 

Operations planning based on an inflow forecast typically takes place off site at the control 

center. Operations may be implemented in real-time, with hourly instructions and minute-

by-minute changes to gate and/or turbine flow. The instructions may be sent out as signals 

from the control center via satellite or communications towers and are interpreted by 

Remote Terminal Units (RTU’s), which convert the signals into instructions for outlets 

and/or turbines and may also function to send information back to the control center 



5 

 

(Komey 2014). These RTU’s are part of the SCADA system which collects and distributes 

information and implements controls. Programmable Logic Controllers (PLC’s) are 

another key part of the SCADA system with a variety of functions, including 

implementation of the instructions transmitted by the RTU’s, implementing controls 

through a human-machine interface, as well as the collection and analysis of sensory data 

(Komey, 2014). Dams may have extensive monitoring equipment, including gauges to 

measure the elevation of the reservoir and positions of the gates, piezometers to measure 

the water level in dams, and weirs to monitor dam seepage (Jansen 1983; Duscha and 

Jansen 1988). This information can be recorded manually or collected by a PLC and 

transmitted to the control center using an RTU.  

The key input to a dam system is the reservoir inflows. Inflows are a function of the 

watershed characteristics, local climate and the hydrologic cycle. In the hydrologic cycle, 

moist air enters the atmosphere through evaporation and transpiration. As it cools, it 

condenses to form clouds, which release precipitation. Precipitation can fall in the form of 

rain or snow, depending on temperatures and ground elevations. Precipitation and 

snowmelt may contribute to reservoir inflows through runoff (water passing over the land 

surface) or groundwater (water passing through the sub-surface). Precipitation can vary 

significantly depending on the time of year as a result of seasonal climate influences. In 

addition to the amount of precipitation, the geological conditions, ground cover, and 

topography are significant factors affecting reservoir inflows. In regions closer to the poles, 

snow melt and the associated increase in inflows is often referred to as the “freshet”. The 

freshet is a period of high inflow resulting, in part, from snowmelt due to increasing 

temperatures. Freshet inflows may also be affected by heavy rainfall which can speed up 

the rate of snowmelt. The duration and magnitude of the freshet depends significantly on 

the regions topography, ground cover and climate. In other parts of the world, there may 

be wet and dry seasons that affect seasonal inflows. Contributions to inflow from 

groundwater may be significant depending on the regional geology and climate. In addition 

to natural inflows, there may also be additional inflows to the system from upstream dam 

outflows or in some cases, water diversion facilities. Forecasting of the inflows is a key 

part of safe system operation. There is inherent uncertainty in meteorological forecasts, 

with forecasting errors generally increasing as inflows increase.  
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Internal or external disturbances represent another input to dam systems. These include 

earthquakes, debris accumulation, forest fires, extreme wind and rain, ice storms, ice 

accumulation, vandalism, rodent activity, human error, component aging, etc. These 

disturbances may also be considered inputs to the system. Proper management of the 

system under these circumstances is of critical importance in keeping dam systems safe 

and preventing losses resulting from failures. 

For the remainder of this thesis, a dam system is defined as all components which interact 

for the purposes of water storage and conveyance. This includes all civil, mechanical and 

electrical infrastructure at a dam site, human operations and decision making, personnel 

and staffing, site access, sensory and communications equipment, information flow, as well 

as water in storage and conveyance. The dam system input is the inflow as well as any 

natural disturbances. The dam system output is the outflows and products of the system 

such as energy. This research focuses on the analysis of dam system flow control – that is, 

the safe conveyance of water through the system.  

 

1.2 Dam system failures 

The three general modes of failure for various types of dam include (1) internal erosion, 

which involves the migration of material from an embankment (or abutments) and can lead 

to weakening of the water barrier and eventually dam breach, (2) instability, which can 

result from uplift pressures or uneven settlement and can lead to failure by toppling or 

sliding, and (3) overtopping or flow control failures which result from a loss of control of 

the reservoir elevation and can potentially lead to failure modes (1) and (2) (Regan 2009). 

Different types of dams have different risks, for example an embankment dam has risks 

relating to slope instability, overtopping or internal/foundation erosion whereas a concrete 

dam has risks relating to foundation erosion, overtopping and instability due to sliding or 

overturning (USBR 1987). Dams also have risks relating to the conveyance of water: if one 

or more of the water conveyance components of the system fail or become blocked, there 

may be an uncontrolled release of flow or the reservoir could rise to an unsafe level that 
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could trigger failure of the entire dam (Baecher et al. 2013; Komey et al. 2015). High 

reservoir levels can result in a number of adverse impacts, including increased seepage, 

increased foundation or dam uplift pressures that could compromise dam stability, or 

overtopping of dam structures and/or abutments which can progress to erosion, head-

cutting and potentially loss of containment of the reservoir. Further, there are obvious risks 

relating to the collection, transfer, and use of information to make decisions that will 

ultimately affect the infrastructure and the risk of dam failure or uncontrolled flow release 

(Komey et al. 2015). In simple terms, the safety of dams relies on the ability to safely 

contain and convey flows through the dam system. 

A better understanding of how dams fail to operate safely and what the contributing factors 

are can help practitioners identify potential risks in similar structures and system 

arrangements. Despite the extreme consequences associated with dam safety incidents, 

post-event information is often limited to the immediate failure mode or proximate cause 

and the incident consequences. There are very few detailed accounts of the design, 

operational decisions and other states of the system that may have contributed to dam safety 

incidents. Some of the more well-known post event assessments of dam safety incidents 

include Teton Dam (Jansen 1983; Seed and Duncan 1987), Vajont Dam (Jansen 1983; 

Genevois and Ghirotti 2005), Baldwin Hills Dam (Jansen 1983), St. Francis Dam (Jansen 

1983), Carsington Dam (Kennard and Bromhead 2000), Taum Sauk pumped storage 

facility (FERC 2006), Folsom Dam (Todd 1999) and Oroville Dam (France et al. 2018a).  

There are a variety of different resources for information about dam safety incidents, 

mostly from American organizations. The Association of State Dam Safety Officials 

(ASDSO) has a number of sources for information about dam failures in the United States, 

including a website with case studies and lessons learned about select incidents (ASDSO, 

2016) and a table containing basic information relating to 187 incidents (ASDSO, n.d.). 

Jansen (1983) provided an excellent review of dam failure case histories in a technical 

publication by the United States Bureau of Reclamation (USBR). The National 

Performance of Dams Program (NPDP) is a database of American dam incidents and 

failures developed by Stanford University. Most of the incidents are from the late 1900s 

but the database includes incidents ranging from 1848 to 2015. A wide variety of incidents 
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are covered, from issues discovered during safety inspections to flow control incidents to 

complete dam failures, with a total of 2977 incidents. Other researchers have compiled and 

assessed similar databases to draw conclusions about dam safety risks (Foster et al. 2000a; 

Zhang et al. 2007; Charles et al. 2011). Regan (2009) compiled a database of over 4000 

dam failures worldwide, with half of these incidents coming from the United States. The 

database was assessed to answer questions mainly about the age of the dam at failure as 

well as the type of dam and the general failure mode (flood, seepage/piping, structural). 

Fry et al. (2004) developed a web-based Dam Accident DataBase (DADB) with 900 

incidents. Database entries included basic information about the dam and breach 

characteristics, dates of construction and failure as well as the failure mode, with links to 

references for users. Analysis of the past failures has shown that internal or foundation 

erosion and flooding events (overtopping) are the two major causes of catastrophic dam 

failure (Foster et al. 2000b; Donnelly 2005; Regan 2009). 

The likelihood of failure by internal erosion is traditionally estimated using empirical 

criteria developed by Foster et al. (2000b) and Foster and Fell (2001). Internal erosion 

processes are generally not well understood, and there are ongoing efforts to better 

understand the physical processes. Assessment of failure by overtopping is also a 

complicated process, because of the sheer number of factors which can contribute to the 

likelihood of dam overtopping. Such factors can include but are not limited to inflows, 

operational decisions, gate reliability, personnel availability, site accessibility, and natural 

disturbances such as ice or debris buildup (Lewin et al. 2003; Regan 2010; Komey et al. 

2015). There is a large amount of literature detailing various approaches to extreme flood 

estimation (Bocchiola et al. 2003; Kwon and Moon 2006; Kuo et al. 2007; USBR and 

USACE 2012), and many risk assessment methodologies check dam performance under 

these extreme flood loads (Regan 2010; Komey et al. 2015). However, it is difficult to 

assess overtopping incidents that could happen within the design envelope of the dam 

system due to a combination of events which together prevent water from being released 

and allow the reservoir to rise to an unsafe level (Regan 2010).  

Hartford et al. (2016) describes the “uncommon combination of common events”, where 

multiple seemingly benign events combine together to become a significant dam safety 
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problem. In the Noppikoski Dam failure incident, a number of conditions contributed to an 

inability to pass flows through the system, leading to overtopping failure of the dam. The 

mechanical hoist equipment did not function, and a crane was unable to be mobilized to 

the site in time to remove the stoplogs from the spillway as a result of extreme weather 

conditions (loss of access) and site staff unavailability. These issues, combined with higher 

than normal inflows, lead to rising reservoir levels which eventually overtopped and failed 

the earthfill embankment. Taum Sauk is another example of combinations of events 

interacting with disastrous consequences. The pumped storage facility was overfilled and 

breached as a result of improperly calibrated reservoir level sensing equipment and 

differential settlement of the dam crest. 

Lewin et al. (2003) analysed several USACE dams and noted that failure to operate the 

gate on demand would increase the probability of failure of the dam by between 2 to 250 

times. Furthermore, dams may also be in an unsafe state without complete structural failure 

of the dam, as a result of uncontrolled flow releases through a failed conduit. Regan (2010) 

and Baecher et al. (2013) assess several dam failures and uncontrolled flow releases, noting 

that dam safety incidents are often a result of complex interactions between system 

components. Both researchers advocate taking a “dams as systems” approach when 

assessing dam safety risks in order to avoid omission of potentially significant failure 

modes.  

The existing databases relating to dam safety incidents tend to focus more on the proximate 

causes of the incidents. The database assessments of Foster et al. (2000a, b) and Zhang et 

al. (2007) focus mainly on internal erosion in embankment dams, looking at embankment 

design and construction practices. Other assessments (Donnelly 2005; Regan 2010) look 

at dams in general but don’t tend to further decompose the incidents to look at contributing 

factors such as operational decisions, lack of maintenance, and component failures. 

King et al. (2016a) used information from a variety of sources to assess the causes of dam 

incidents resulting in uncontrolled releases of water. A database of dam incidents was 

compiled, and dam incidents were decomposed as much as possible to determine the 

components involved and the contributing factors. Failures were categorized depending on 
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the type of incident, with incidents grouped into categories based on the following failure 

modes: overtopping, penstock failure, embankment failure, uncontrolled flow release and 

other. Internal erosion events were considered to be a design and surveillance issue and as 

such were not included in the database, which intended to focus on operational safety. The 

database also recorded the type of component involved: Mechanical, electrical, structural, 

operational, and supervisory control and data acquisition (SCADA) systems. Incidents 

relating to a certain type of component could then be broken down more specifically (eg. 

for structural the spillway chute, the dam, the penstock, or the gate). Maintenance was 

considered to be an operational issue and as such is recorded in that category. Other 

relevant factors relating to the incident were also recorded, for example the presence of 

disturbances such as debris buildup, landslides, vandalism and earthquakes. 

Based on the completeness of information, incidents were then categorized as either 

acceptable or incomplete. Incomplete sources were omitted in some of the more detailed 

figures to allow for a more accurate assessment of the proportions of various types of 

contributing factors. Once all information for an incident was collected, the quality of 

information was assessed (acceptable or incomplete) and the incident was assigned a rank 

based on its severity using the following guidelines: 

• Catastrophic: Complete loss of flow control 

• Major: Temporary disablement of hydraulic structures leading to temporary loss 

of flow control 

• Minor: Temporary disablement of hydraulic structures that could potentially have 

resulted in a loss of flow control 

Table 1-1 (King et al., 2016) contains a list of the different sources used to compile the 

database. The number of incidents contributed to by each source is also listed. Most of the 

dams considered are in the United States because this data was most easily accessible. In 

the future, accessing the DADB of Fry et al. (2004), which was developed by a European 

team, could help increase the number of dams considered outside of the United States. 

Figure 1-2 (King et al., 2016) contains a breakdown of the source quality for each source 

used. The data from NPDP was scaled by 10 in the figure to make the quality of the other 

sources more clearly visible.  
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Table 1-1: Sources of incident information for database development (King et al., 

2016) 

Source Number of Incidents 

NPDP (2016) 1018 

ASDSO (2010) 79 

USBR (2014a) 17 

Charles (2011) 10 

Tavakoli (2015) 8 

Chanson (2000) 5 

FEMA and NJOEM (2004) 5 

Van Niekerk and Viljoen 
(2005) 

3 

Other 37 

 

Figure 1-2: Sources used in dam incidents database (King et al., 2016) 

A pie-chart of incident types is shown in Figure 1-3 (King et al., 2016), considering all 

incidents in the database. It is clear from the data that the most common incident type in 

the database is overtopping. It should be noted that overtopping can be related to many 

other factors such as operational decision making, gate failures, turbine failures, ice and 

debris buildup, etc. 
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Figure 1-3: Dam safety flow control incidents, by incident category (King et al., 

2016) 

Figure 1-4 (King et al., 2016) contains a plot showing the factors which contributed to 

overtopping events, taking into consideration only incidents with an acceptable amount of 

information. The most common reason for overtopping events is due to lack of spillway 

capacity. Over half of the overtopping incidents in the database were due to insufficient 

spillway capacity. However, this could be an indication that the operator did not leave 

enough freeboard in the reservoir to accommodate inflows up to the probable maximum 

flood volume. A more detailed analysis of each incident would be required to determine 

whether this was the case – such information is often not available or not reported. The 

second most common reason for dam overtopping was a result of a blocked spillway (eg. 

ice or debris). The next most common contributors to overtopping are gate issues and 

operator errors. Operator errors could involve the operator deciding not to open the gate, 

opening it too late or opening it to the wrong position. 

Figure 1-5 (King et al., 2016) contains a pie chart of the components involved in the 

incident, taking into consideration all events in the database that had enough information 

(677 incidents). Structural incidents were by far the most common, followed by mechanical 

and operational. Fewer events were related to electrical or SCADA failures. This 

distribution could be a limitation of the data: because issues relating to electrical and 

mechanical components may be more quickly resolved and thus less likely to lead to major 

incidents, it is possible that events relating to these components are under-reported. 
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Figure 1-4: Factors contributing to dam overtopping (King et al., 2016) 

 

 

Figure 1-5: Components involved in dam incidents (King et al., 2016) 

Figure 1-6 (King et al., 2016) contains a plot of the components involved in structural-

related dam safety incidents. Incidents are divided in each category to show the proportion 

that were catastrophic, major and minor. The most common type of structural incident was 

an inadequate spillway capacity; most of these incidents result in complete loss of control 

(the reservoir overtops the dam) and are thus classified as catastrophic. It should again be 

noted that inadequate spillway capacity may be tied to lack of conservatism in reservoir 
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operations. The second and third most common structural incidents were related to the 

spillway chute and penstock, respectively. Because these components actively pass water, 

they can become deteriorated and may fail if not properly maintained. For the spillway 

chute failures, not all were classified as catastrophic (uncontrolled flow release) because in 

some cases the gates could be closed or the reservoir level fell below the sill and the chute 

could be repaired. Most of the penstock failures are catastrophic because in some systems 

the intake gates may not be able to be closed under rupture flows. Penstock intake sills are 

also lower in comparison to spillway sills and therefore significantly more reservoir 

volume may be released in the event of penstock failure. Structural dam failures and 

spillway gate failures were the next most common structural flow control incidents. It 

should be noted that internal erosion and foundation failures were removed from the 

database and would influence the number of structural dam failures in the figure. Outlet 

pipes and intake structures were the least common components involved in structural flow 

control incidents. 

 

Figure 1-6: Components involved in structural incidents (King et al., 2016) 

Figure 1-7 (King et al., 2016) contains a graph showing the mechanical components 

involved in spillway related incidents. Spillway gate issues were by far the most common, 

followed by low level outlet and penstock valve failures. Less common were mechanical 

issues associated with gates, turbines and siphons. It is likely that turbine related issues are 
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under-reported because forced turbine outages may happen at any power generating facility 

without impeding the ability of the dam system to operate safely. In some cases, however, 

turbine outages during high inflow events could lead to potential loss of flow control. It is 

interesting to note that these incidents did not involve a high number of catastrophic events 

in comparison with the structural incidents. This is likely due to the fact that mechanical 

issues can be more rapidly repaired than structural incidents.  

 

Figure 1-7: Components involved in mechanics incidents (King et al., 2016) 

Figure 1-8 (King et al., 2016) contains a plot of the operational factors which contribute to 

flow control incidents. The data shows that maintenance issues were the most common 

operational factor, followed by the wrong decision being made. There were less instances 

of implementation errors or late decisions. It is important to note that operational factors 

are likely under-reported. Dam operators are not likely to admit mistakes following an 

event for liability reasons. It is also possible that lack of maintenance was a factor in many 

of the incidents reported under other component categories but wasn’t explicitly mentioned 

in the event synopsis. 

There were only 21 total incidents involving electrical issues and these were mostly 

related to inability to generate power (forced turbine outage) and power outages. It is 

possible that electrical issues are under-reported because electrical problems can be 

solved using back-up diesel, battery or mechanical power sources. Turbine-related power 

issues are also likely underreported as they are less likely to lead to serious dam safety 
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issues since the grid can often be brought back online relatively quickly. There were also 

very few issues relating to SCADA systems and it is likely these are also underreported. 

 

Figure 1-8: Operational factors contributing to incidents (King et al., 2016) 

 

Figure 1-9: Components and factors involved in spillway related incidents (King et 

al., 2016) 

Figure 1-9 (King et al., 2016) shows a plot of the components involved in spillway related 

incidents. By far the most common component involved in spillway related incidents was 

the chute. Debris buildup and mechanical gate issues were the second most common issue 

reported followed by structural gate issues and ice. As discussed earlier, because the sill of 

the spillway is relatively high, many spillway related incidents are not catastrophic. 
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Figure 1-10: Disturbances contributing to incidents (King et al., 2016) 

Figure 1-10 (King et al., 2016) shows the various disturbances involved in flow control 

incidents. The most common type of disturbance was landslides, and many of these were 

responsible for the penstock rupture incidents. Ice and debris were the next most common, 

followed by wind, earthquakes and animal burrows. Some of the disturbances are 

indicative of potential maintenance issues; for example, removal of vegetation, debris and 

animal burrows should be an important part of any dam safety program. Of all incidents 

where information about disturbances was available, 7.5% had multiple disturbances 

contributing to the incident. 

The results King et al. (2016a) indicate that there are many factors that influence the ability 

to control flows in a dam system. As such, dams should be considered (and analyzed) as 

complex systems of various components working together, quite often known as 

“system(s) of systems”. The sources of information for the King et al. (2016a) study 

include many non-technical articles which contained limited information about the 

incidents and as such provide only some insight into the complexity of the incidents and 

the factors involved. Understanding some of the more detailed event assessments can help 

illustrate the complexity of the problem of flow control in dam safety. The recent Oroville 

Dam spillway incident provides some useful context with respect to how a variety of 

factors may contribute to dam safety incidents. The interplay of components and events 

within a system can lead to emergent and dynamic behaviour, which the Oroville incident 
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is a good example of. A brief synopsis and discussion of the incident is described in the 

following section.   

1.2.1 Oroville dam spillway incident 

Completed in 1968, the Oroville Dam is a large embankment dam on the Feather River in 

California and is located at the upstream end of the Oroville-Thermalito complex, which 

consists of a number of dams and generating stations (FERC 2005a; France et al. 2018a). 

The Oroville Dam, as shown in Figure 1-11 (France et al. 2018a), consists of an 

embankment dam, a gated service spillway with eight operating gates and a large concrete 

chute, an emergency spillway overflow weir discharging into an unlined channel, and the 

Hyatt Powerplant. There is also a river valve outlet system and a tunnel carrying water 

towards another generating station downstream.  

  

Figure 1-11: Overview of the Oroville Dam (France et al. 2018) 

In February 2017, after severe storms and above average inflows, the gated service spillway 

was opened and discharged 1400 m3/s into the chute. On the morning of February 7, 2017, 

engineers noticed spray coming from the spillway chute and the gate was closed. Upon 

inspection, a large hole in the foundation and damage to concrete slabs was noticed, as 

shown in Figure 1-12 (France et al. 2018a). At this point, the reservoir was still rising, and 
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water began flowing over the emergency spillway overflow weir on February 11, 2017, 

peaking at around 350 m3/s on February 12. As the water flowed past the spillway crest 

structure and onto the natural ground downstream, erosion began to occur, and it 

progressed through head-cutting, upstream towards the chute structure as shown in Figure 

1-13. Undermining of the emergency spillway structure could have resulted in a 

catastrophic, uncontrolled release of flow. As such, an evacuation order was issued on 

February 12, 2017 and flow was increased to around 2800 m3/s over the gated service 

spillway (France et al. 2018a). This helped lower the reservoir levels to stop flow over the 

emergency spillway, however it resulted in extensive damage to the service spillway chute 

as shown in Figure 1-14.   

 

Figure 1-12: Oroville spillway chute damage (France et al. 2018)
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Figure 1-13: Erosion downstream of Oroville emergency overflow weir (France et 

al. 2018) 

 

Figure 1-14: Oroville spillway chute after incident (France et al. 2018) 

Following the incident, an independent forensic team (IFT) consisting of experts from 

various organizations was assembled to review in detail the factors contributing to the 

incident, providing a detailed report regarding contributing factors and proximate causes 

of the failure. The immediate cause of the issues in the service spillway chute was uplift 

pressures that were sufficient to dislodge and remove a section of spillway slab, exposing 

the underlying foundation directly to high velocity spillway flows. The underlying 

foundation consisted of rock that was “moderately to highly weathered and even soil like”, 

meaning erosion was able to progress to the degree that additional slab sections both up 

and downstream of the initial failure were mobilized (France et al. 2018a). For the 

emergency spillway, erosion began to occur of the natural ground downstream of the 

spillway structure and in some areas, it began to progress through head-cutting upstream 

towards the structure. This was mainly a result of the significant depths of erodible 
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weathered rock and soil as well as hillside topography and insufficient erosion protection 

and energy dissipation structures.  

Management decisions during the events were complicated by a number of issues. 

Continued erosion of the spillway chute could potentially lead to failure of a transmission 

tower located beside the spillway. There were uncertainties relating to whether progression 

of the chute failure upstream could eventually compromise the spillway headgate structure. 

Debris blockage of the river in combination with spillway tailwater could result in 

powerplant flooding, presenting potentially long-term issues with water management if the 

powerhouse was no longer able to discharge flows downstream (France et al. 2018a). 

Closing the spillway to mitigate these issues would mean utilizing the emergency spillway, 

the consequences of which were not known at the time. A decision was made to reduce 

service spillway flows, which resulted in water being released over the emergency spillway 

and the initiation of erosion there (France et al. 2018a). This presented a new, avoidable, 

and more threatening issue (undermining of the emergency spillway could progress to dam 

failure). The system operators were presented with a difficult trade-off and ultimately the 

decision to reduce flow over the service spillway meant increased flows were necessary 

later on to prevent further erosion at the emergency spillway.  

The IFT report also details extensively many indirect causes of the incident. Several issues 

in the design and construction of the spillway chute are mentioned, including insufficient 

foundation preparation for both the chute and emergency spillway, foundation drains which 

protruded into the chute slab sections, lack of additional reinforcement and robust slab joint 

keys, and anchor lengths which were insufficient considering the amount of weathered rock 

on which the chute was constructed (France et al. 2018a). A number of systemic issues 

relating to organizational, industry and regulatory factors were also identified.  Examples 

of these include a focus on dams instead of spillways, cost control resulting in a reactive 

approach to managing infrastructure problems, emphasis on dam production ahead of dam 

safety, as well as overconfidence and complacency regarding the safety of the 

infrastructure (France et al. 2018a).  
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The Oroville Dam spillway failure provides insight into the dynamic and often emergent 

nature of dam safety incidents. There were a large number of direct and indirect factors 

which contributed to the spillway failures, and management decisions during the incident 

were complicated by a number of trade-offs. The incident illustrates well the importance 

of considering the degree of complexity and interactivity in dam systems when analyzing 

dam safety flow control. This is essential to capture emergent system behaviour, which 

may not be obvious through analyses of the individual parts.  

 

1.3 Systems Approach 

Hartford et al. (2016) advocate for a systems approach to the problem of operational safety 

in dams and reservoirs, noting that: 

“A new approach is required, as current engineering practices do not and cannot 

address the character of some of the most probable causes of incidents and failures, 

which are the unforeseen combination of rather usual conditions. That is, most 

incidents and failures occur not because an extreme event occurs (eg. a flood or an 

earthquake), but rather because a series of more common events occurs, which in 

their unfortunate and unexpected combination leads to an adverse outcome – an 

incident or a failure… It may not be possible for an incident or failure to occur if 

all components, and therefore events, are in a perfectly normal state. Some 

conditions must be in the range of ‘not quite usual’ – for example, a 50-year flood, 

lack of required maintenance, slightly incompetent personnel or organization, bad 

instructions or policies, a power blackout, or the like – and yet not be extreme or 

malicious individually” 

Traditional risk assessment approaches include Failure Modes and Effects Analysis 

(FMEA), Potential Failure Modes Analysis (PFMA), Event Tree Analysis (ETA) and Fault 

Tree Analysis (FTA). FMEA is a systematic approach to determining the potential failure 

modes of system components and the effects that these may have on the system as a whole. 

PFMA is a heuristic failure modes brainstorming technique used commonly within the 
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dams industry (particularly in the United States). ETA is an inductive, chain-of-events style 

technique that can be used to determine the potential outcomes from a single initiating 

event. FTA is a deductive chain-of-events technique that starts with a high-level 

undesirable event and proceeds in more levels of detail to determine its causes.  

Hartford et al. (2016) suggests that systems safety engineering recognizes the three major 

ways for accidents to occur result from (1) the system capacity being exceeded, (2) 

combinations of failures of system components, none of which occurring individually 

would be cause for concern, or (3) a result of complex interactions between system 

components, none of which may have failed. In traditional dam safety practice, a standards 

based approach is followed, which addresses the first of these three causes of accidents – 

checking the system capacity against expected design loads, including extreme floods and 

earthquakes. Existing risk assessment approaches may provide some insight into the 

second and third type of accident, however there are a number of shortcomings in this area 

which are well documented within and outside of the dams industry (Regan 2010; Hartford 

et al. 2016; King et al. 2016b): 

1. The focus of traditional risk analysis tends to be on extreme events at the edge of 

the design envelope in terms of structural loads and inflows, while failures may 

occur well within the design envelope due to an uncommon combination of events 

which individually may not be uncommon (Baecher et al. 2013; Komey 2014; 

Hartford et al. 2016) 

 

2. Using chain-of-events analyses, all possible system hazards and component 

operating states must be determined at the beginning of the analysis. This 

requirement creates immense challenges for the analysis of anything other than 

simple dam and reservoir systems, since the number of physically possible 

combinations becomes overwhelmingly large (Hartford et al. 2016) 

 

3. Traditional analysis techniques such as fault trees and event trees often assume a 

linear progression of events, ignoring component interactions and oversimplifying 

dynamic system behaviour (Regan 2010; Leveson 2011; Thomas 2012) 
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4. Events are often assumed to be completely independent of one another, despite the 

fact that common cause events are possible (Putcha and Patev 2000; Leveson 2011; 

Komey et al. 2015) 

 

5. Systems are decomposed into more manageable sub-systems for analysis and the 

interactions between them are completely ignored or simplified (Regan 2010; 

Leveson 2011; Thomas 2012) 

A systems approach is beginning to emerge as a new technique to address some of the 

aforementioned shortcomings and make progress towards addressing the second and third 

type of incident. This is discussed in detail within the recent book “Operational Safety of 

Dams and Reservoirs” by Hartford et al. (2016). The systems approach is fundamentally 

rooted in systems theory.   

Systems theory has a long history of concurrent developments in various fields, with 

general systems theory being first defined by biologist Ludwig von Bertalanffy (1950; 

1968). Von Bertalanffy (1968) defines a system as “complex of interacting elements” in 

his book dealing with general systems theory and first used the term in a 1950 article 

dealing with open systems in the fields of physics and biology (Von Bertalanffy 1950). 

Open systems are those which have inputs and outputs resulting in a change in the system 

state, whereas closed systems have no external inputs or outputs. The idea of system 

feedbacks being a function of the system structure is described in this work, with the theory 

of feedback having origins in cybernetics (Wiener, 1948)  and social sciences (Richardson 

1991).  

Von Bertalanffy (1968) and Forrester (1961, 1969, 1971a) further developed the concepts 

of systems theory in a series of books dealing with biological, social, economic and other 

applications. Systems theory, cybernetics and control system theory were at least partly 

influenced by the efforts of some of the key authors to develop automatic systems for anti-

aircraft weaponry and radar devices during World War II (Wiener 1948; Brown and 

Campbell 1950; Forrester 1989), though Von Bertalanffy (1968) describes several other 
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key developments which led to a general systems theory. Forrester (1961) began 

developing system dynamics to analyze industrial and management systems, and pioneered 

the earliest forms of system dynamics simulation software packages. He later extended the 

application of system dynamics simulation to model the social dynamics of cities, countries 

and the world as a whole (Forrester 1969, 1971b, 1989).  

Key concepts in general systems theory include the consideration of the system as a whole 

consisting of interacting parts and the system boundary distinguishing its elements from 

their surrounding environment. Systems may be as small as a single atom and as large as 

the universe (Simonovic 2009). Simonovic (2009) provides a more detailed definition of a 

system as “a collection of various structural and non-structural elements that are collected 

and organized in such a way as to achieve some specific objective through the control and 

distribution of material resources, energy and information”, and formalizes this as: 

𝑆: 𝑋 → 𝑌 (1) 

Where 𝑋 is an input vector, 𝑌 is an output vector, and the system is a set of operations that 

transforms 𝑋 to 𝑌. Figure 14 (Simonovic 2009) contains a schematic presentation of this 

definition. 

 

Figure 1-15: Schematic presentation of system definition (Simonovic, 2009) 
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Another key concept of systems theory is feedback. Open systems, as shown in Figure 1-16 

(a) have inputs and outputs that drive the system behaviour. In feedback systems, as shown 

in Figure 1-16(b), the input is influenced by the system’s own past behaviour (Simonovic 

2009). The system is able to respond to its outputs by adjusting the inputs. This self-

regulating behaviour, known as homeostasis, is present in many mechanical systems and 

inspired the work of Wiener (1948) on man-machine systems. Wiener (1948) pioneered 

cybernetics – which is the study of control mechanisms in man-machine systems – and his 

work introduced the theory of feedback mechanisms, describing a variety of stabilizing and 

oscillatory systems. In parallel with the concept of feedback being introduced within the 

field of cybernetics, it was also being described within the context of social systems (Kast 

and Rosenzweig 1972; Richardson 1991). A thermostat provides an excellent example of 

self-regulation, where the thermostat is able to adjust the heat production based on the 

temperature in the room and the desired temperature (Simonovic 2009). Homeostasis acts 

to steer the system towards some desired goal.  

 

Figure 1-16: Schematic of an open system (a) and a closed system (b) 

A feedback loop is a closed path connecting two or more elements of a system. 

Understanding feedback loops requires an understanding of causality, that is, what 

elements of the system affect other elements of the system. The two types of loops are (1) 
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negative or balancing loops, which act to keep the system in a steady state, and (2) positive 

or reinforcing loops, which reinforce changes to the system with more change. Systems 

may contain one or potentially many of these loops and can be represented using causal 

loop diagrams that show the relationships between elements of the system (Forrester 

1971a). 

Dams may be considered a type of open system, where the inputs consist of system inflows 

and disturbances, and the outputs consist of system outflows and products (for example 

electricity). This is shown in Figure 1-17. 

 

Figure 1-17: Dams as open systems 

This configuration indicates limited “self-awareness” that is seen in closed systems. 

Inflows and disturbances cannot be controlled. However, within the system itself there may 

be many examples of closed-system type feedback loops present. To model the internal 

dynamics of the system itself there are a few useful aspects of general systems theory to 

consider. Control systems theory, which falls under the umbrella of general systems theory 

(Von Bertalanffy 1968), offers a new way of considering the structure of hydropower 

systems, which are effectively flow control systems.  

Control systems theory arose as a means of designing man-machine feedback systems that 

self-adjust to achieve the desired outputs (Wiener 1948). Åström and Murray (2008) define 

control as the use of algorithms and feedback in engineered systems. According to Åström 

and Murray (2008), controllers act to dynamically adjust the behaviour of system elements 

to achieve desired system outputs, using feedback to make adjustments.  One of the earliest 

examples of feedback in engineered systems was the development of a centrifugal 

governor, which controls the throttle of a steam engine to maintain a constant speed 

(Åström and Murray 2008). The central concept of control systems theory is the use of 
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feedback loops for sensing, computation and actuation. Leveson (2011) presents a generic 

feedback control loop which is simplified slightly in Figure 1-18.   

 

Figure 1-18: Generic control system structure 

Considering how the generic control system structure shown in Figure 1-18 can be applied 

to dam systems is relatively straightforward. The controlled process represents the 

hydraulic system state, that is, the water barriers, passages and infrastructure on the ground 

– the dam(s), gate(s) and turbine(s). The system state is measured by sensors – sensors may 

measure the current reservoir elevation, positions of gates, and even rainfall to predict 

system inputs (inflows). The controller represents the processing of that information into 

decisions regarding the required control actions to maintain safety and push the outputs 

towards the desired level (outputs can be power production as well as outflow). In a dam 

system, the controller may be a software program, a single person interpreting the system 

state and making decisions, or multiple people within an organization working together 

and using mathematical process models to assist in decision making. The output of the 

controlled process in the feedback loop is a set of control actions, or instructions, that are 

implemented through actuation of system features that change the hydraulic system state. 

Actuators in this case are the mechanical-electrical arrangements of infrastructure that 

function to change the positions of outlet structures (gates and turbine) to modify the 

outputs and keep the system safe. A control action could be to open the gate (actuate) to a 

certain position, with the goal of maintaining a safe reservoir level and avoiding excessive 

flooding downstream of the dam. 
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Leveson (2011) has applied the concept of control systems to safety in the aerospace 

industry, developing the Systems Theoretic Accident Modelling Process (STAMP) for 

accident analysis as well as Systems Theoretic Process Analysis (STPA) for the design and 

analysis of engineering control systems. These methods provide a systematic process for 

determining the potential control flaws that can lead to hazards in engineered processes, 

and they are based on the analysis of the hierarchical control system structure (Leveson 

2011). An STPA analysis is essentially a guided brainstorming session whose participants 

work through the control loop to determine potential control flaws, and further analyze 

what conditions could possibly lead to them. Identifying the control flaws allows engineers 

to determine methods to mitigate or eliminate them in system design and improvement. 

One fundamental difference limits the potential of the STPA approach when applied to 

dams. Leveson (2011) presents the approach to analyze control systems operating within 

the natural environment. Dam systems are systems that both operate within nature and 

attempt to control it. The key issue that complicates the problem of dam safety analysis is 

that the main system input (inflow) is a completely uncontrollable, nonlinear variable that 

the system intends to control. Controls may also be active (gates) or passive (free overflow 

spillways). As such, determining how the system will respond to changes in inflow as well 

as disturbances (both internal and external) requires a slightly different approach. 

Characterizing the reservoir elevation in response to the system operating state and inflows 

is a critical problem for dam safety analysis. While STPA can provide very useful insights 

regarding the system’s structure and its potential vulnerabilities, dynamic analysis of the 

system response is required to fully understand and mathematically characterize system 

behaviour.  

Two of the major techniques that can be used in the dynamic analysis of systems include 

simulation, optimization and multiobjective analysis (which expands on optimization to 

problems with multiple objectives). Simulation involves a “what if” assessment of the 

various inputs to a system, where outputs are determined in response to a particular set of 

inputs. Simulation inputs may be varied to determine system behaviour under a range of 

conditions (Simonovic, 2009) and link the system structure to its behaviour. Optimization, 

in contrast, provides a single optimal solution to a given system configuration, with 
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performance measured based on some objective function (eg. maximize profit). 

Optimization techniques are useful mainly for determining optimal operations strategies 

driven by a single articulated goal. They are unable to deal with the dynamic, feedback-

driven behaviour of complex systems. Optimization techniques may, however, present a 

useful tool for capturing operator’s thought processes and priorities in development of 

operating instructions. Optimization can be extremely useful for developing optimal 

operating decisions and policies. Simulation is the most promising systems analysis 

technique for this research because it (a) facilitates a very detailed representation of system 

structure, interactions and feedbacks, (b) links the system structure to system behaviour, 

and (c) allows for the assessment of the dynamic system response to various operating 

conditions.  

System dynamics simulation (Forrester 1971a) is a particularly promising simulation 

environment to deal with highly complex hydropower dam systems. In system dynamics 

simulation, the pattern of interaction between system elements is called the system 

structure, and the behaviour of the system is linked to its underlying structure (the 

relationships between system components). System behaviour is defined by the way in 

which the system variables change over time. The dynamics of how a system changes over 

time can be investigated by changing either the inputs or the system structure (Simonovic, 

2009).  

In order to carry out a system dynamics simulation, development of a model includes the 

following steps (Simonovic 2009): 

1. Understanding the system and defining its boundaries 

2. Identifying the variables that will influence the system’s behaviour 

3. Using mathematical relationships to describe the relationships between the 

variables 

4. Defining the structure of the model 

5. Simulating the model to understand the system behaviour 

The building blocks of system dynamics simulation models include (1) state variables 

(stocks), (2) flows, (3) auxiliary variables and (4) arrows showing relationships between 

variables which may include delays. The links between these model elements are 

interactions and feedback loops which ultimately drive the system’s behaviour. Stocks are 
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shown as boxes and represent the state-variables, or variables which increase or decrease 

in value over time and whose value can only be changed by flows. Flows are represented 

as rates over time which change the value of a stock. Each auxiliary variable in the model 

represents either an equation that is a function of the inputs (represented by arrows) or a 

constant. Delays may be added which represent time lags to variable changes.  

The key advantage of system dynamics simulation is the ability for it to be used as a 

problem-solving method. When problematic patterns of behaviour are observed, the 

relationships in the model that contribute to the issue can be inspected and the system 

structure can be modified to potentially eliminate or reduce the problem (Simonovic 2009). 

The system behaviour contains dynamic information about the state of each model variable, 

which could be useful for characterizing the reservoir elevation in response to a variety of 

system loads. System dynamics modelling offers a potential approach for assessment of a 

wide range of operating scenarios for a dam system, using automatically generated 

scenarios of potential component operating states. System dynamics is particularly suited 

for the modelling of control systems. The generic control system of Leveson (2011) is 

modified to represent a dam system in Figure 1-19, and extended to show the components 

within the different sub-systems in Figure 1-20. These provide a basic representation of a 

dam system as defined in this thesis.  

 

 

Figure 1-19: Generic control system structure adapted for a hydropower system 
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Figure 1-20: Detailed control system structure adapted for a hydropower system 

The following section describes the proposed objectives of this research in further detail. 

1.4 Research Objectives 

The primary objective of this research is to apply systems analysis techniques to the 

problem of flow control in dam safety. In particular, developing and implementing a 

methodology that facilitates the characterization of reservoir elevations for particular sets 

of inflows and operational constraints (scenarios) is necessary. This research draws on 

aspects of the broad domain of general systems theory as well as risk assessment, with the 
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goal of providing a systematic and thorough assessment of dam system performance under 

a wide range of loadings. The research objectives are as follows: 

1. Investigate the use of systems analysis and risk assessment concepts from within 

and outside of the dams industry in terms of their ability to determine potential 

operating scenarios for dam systems and the impacts scenarios have on system 

outcomes. 

2. Develop an approach that helps define a more complete range of potential operating 

scenarios (operating constraints) than is possible using existing techniques alone. 

3. Develop an improved dam safety analysis methodology that facilitates 

investigation of all potential operating scenarios and allows for information 

pertaining to individual scenarios to be analyzed. 

4. Develop a simulation approach that can handle complexity in system structure, 

feedbacks, interactivity and nonlinear behaviour and uses object-oriented 

modelling to improve model accessibility. 

5. Investigate dynamic indicators of system performance with respect to safety, as 

well as scenario criticality parameters that can be used to rank the importance of 

various scenarios from the simulation outcomes. 

These objectives lead to the development of a methodology that is applied to the 

Cheakamus Hydropower Project, which is located North of Squamish, British Columbia, 

Canada (See Figure 4-1). Cheakamus Hydropower Project is a single-reservoir system 

which discharges water from Daisy Lake through the main dam into the Cheakamus River 

through two spillway gates and a low level sluice gate. The Cheakamus River is part of the 

Squamish River catchment and flows into the Squamish River further downstream, 

eventually discharging into the ocean. Water from the reservoir is also discharged through 

two hydroelectric generating units in a remotely located powerhouse on the Squamish 

River, upstream of the Squamish-Cheakamus confluence. This system is modelled in detail 

and operating scenarios for the system are generated. Due to computational time 

limitations, a simpler version of the same system is also created, and the scenarios for the 
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simple system are run through a simulation model to produce a wide range of potential 

outcomes for the system. A comparison is provided between two different free overflow 

spillway configurations and operating schemes, to demonstrate how the modelling 

approach can give insight to dam owners and decision makers in terms of how system 

modifications affect system safety. 

1.5 Research Contributions 

The key outcomes of this research, in terms of advancements to the current state-of-

knowledge are as follows: 

1. It is generally accepted that a complete probabilistic risk assessment of complex 

dam systems is outside the current state-of-knowledge. This is partly due to the 

difficulties in estimation of failure probabilities (of the individual components and 

the systems themselves). This research shifts the focus to assessment of as many 

possibilities as can be identified, with the goal of providing a complete and 

indiscriminate assessment of as many possible outcomes for the system as can be 

generated (improved coverage of the “possibility space”). Probabilistic assessment 

is possible using the approach presented but is not the focus of the current research. 

However, the direct outputs from simulation can be used to estimate conditional 

probabilities of dam overtopping failure and reservoir level exceedance for a 

particular scenario.  

2. Current practices tend to focus on extreme, low probability events such as the 

Probable Maximum Flood (PMF) and Maximum Design Earthquake (MDE) at the 

edge of the design envelope, when events well within the design envelope may be 

contributing more to the overall risk. Assessment of events within the design 

envelope typically rely on expert judgement for scenario selection with only a small 

portion of possible scenarios being assessed in detail. There is currently no 

automated procedure available to determine a complete set of operating scenarios 

for dam systems. This research proposes a methodology that uses combinatorics to 

generate a more complete set of potential system operating conditions, including 

events within and at the edge of the design envelope. The approach presented in 
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this research automates the procedure of scenario generation, producing an 

exhaustive list of scenarios which results in slightly reduced subjectivity, though 

some subjectivity and expert judgement is inherently required in model 

development and operating state definition.   

3. Chain-of-event techniques such as fault trees are commonly used in dam safety 

assessments. This type of analysis is linear and oversimplified because it is 

incapable of properly handling component interaction and system feedbacks. The 

simulation model presented in this research is capable of modelling feedbacks and 

component interaction, providing a more realistic representation of complex dam 

systems. Results show how the reservoir level changes with time, which is a key 

goal of dam safety assessments that is not easily achieved using chain-of-event 

modelling.  

4. The simulation framework presented in this research is capable of a more thorough 

analysis of all potential scenarios determined through the automated scenario 

generation. In the Deterministic Monte Carlo Simulation framework, scenarios are 

the deterministic model inputs. The scenario impacts, timing and inflows can be 

varied using Monte Carlo techniques to more thoroughly explore the system’s 

“possibility space”. This results in estimates of conditional probabilities of failure 

and reservoir level exceedances over key levels, as well as failure inflow thresholds, 

which are natural outcomes of the approach presented in this work.  

5. The simulation modelling approach presented in this research is easily adaptable 

and can be modified to experiment with various sets of potential operating rules, 

response strategies and upgrades. When compared, asset owners and decision 

makers can quantify how the potential scenario outcomes change as different 

measures are introduced.  

Much of the recent focus on the operational safety of dams and reservoirs involves the 

utilization of fully stochastic simulation techniques, where probabilities of operating states 

are defined as inputs and operating states are randomly changed throughout a single 

continuous simulation. Stochastic simulation is quite useful and efficient for determining 
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the overall likelihood of flow control failure for a dam system. However, the simulation 

effort focuses on more likely events, so an extremely large computational effort is required 

to thoroughly analyze combinations of events. The coverage of the complete “possibility 

space” is driven by the probabilities of the events being considered and the number of years 

for which the model is run.  

This research proposes a Deterministic Monte Carlo simulation framework to 

systematically analyze combinations of component operating states. A systematically 

defined set of possible combinations of operating states (scenarios) is used upfront as a 

deterministic simulation input. Monte-Carlo variation of operating state outcomes (such as 

outage lengths, error magnitudes, timing of impacts and inflows) explores each scenario 

more completely. The key sources of novelty in this work are (a) the automated, 

combinatorial definition of operating scenarios and (b) the exhaustive exploration of 

scenario outcomes using a Deterministic Monte Carlo simulation framework. System 

dynamics simulation modelling is used to execute the simulations. The modelling approach 

is object oriented, providing a convenient tool for representing complex systems, and is 

easily modifiable which makes it particularly amenable to optioneering-style assessments. 

The analysis in this research is performed for each scenario, regardless of scenario 

likelihood. The influence of initial events on subsequent events is analyzed to ensure 

scenario outcomes are representative of the input scenario. Useful information can be 

extracted from each scenario’s simulation results. The goal is a more thorough assessment 

of potential operating scenarios than is possible using traditional risk assessment 

approaches or stochastic simulation techniques. The Deterministic Monte Carlo approach 

ensures a more complete coverage of the “possibility space” for a dam system. Complete 

probabilistic assessment is possible using this approach if information is available to 

support it. Sensitivity analysis to operating state probabilities is possible without significant 

additional computational effort (this is a particularly promising direction for future research 

but is not focused on in the current research).  
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1.6 Outline of the Thesis  

Chapter 2 provides a literature review detailing existing techniques most commonly used 

for traditional dam safety as well as the relatively new field of dam safety risk assessment. 

Next, a discussion of the research relating to the shortcomings of the traditional approaches 

to general risk assessment techniques is provided, including a review of some more recent 

work meant to reduce these shortcomings. Finally, a discussion of systems analysis 

techniques is provided, and some conclusions about the capabilities of these techniques are 

provided. 

Chapter 3 contains the complete and detailed methodology used in this work. An overall 

methodology justification and requirements are presented first. Next, the scenario 

development is described in two sections relating to the development of the component 

operating states database and the mathematical formulation to automatically convert 

database information into operating scenarios. Next, the Deterministic Monte Carlo 

simulation framework is presented. A description of the system dynamics simulation 

modelling approach is described, followed by the Monte Carlo techniques used to create 

scenario iterations. The general simulation framework and steps are presented next as well 

as a discussion of computational considerations. The following section describes the 

necessary simulation model input data. Finally, scenario outcome assessment is described.  

Chapter 4 contains a description of the case study. First, a description of BC Hydro’s 

Cheakamus Power Project is described, followed by a presentation of the database and 

scenario generation. Next, a description of scenario generation for a simplified 

representation of Cheakamus is described, followed by a description of the simplified 

system dynamics model development, testing and model runs. Simulation model input data 

is described in the following section. Finally, results are presented.  

Chapter 5 contains a discussion of the results and an overall methodology assessment. A 

discussion of future directions for this research is also provided. References and appendices 

follow.  
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Chapter 2  

2 Literature Review 

A review of the literature relating to traditional dam safety practice and current risk analysis 

techniques is provided in this chapter. The following section describes traditional dam 

safety practice. Next, a detailed discussion of risk analysis techniques is provided in the 

general context as well as within the domain of dam safety. The final section of this chapter 

contains a discussion of the systems approach to safety.  

2.1 Traditional dam safety practice 

Traditional dam safety practice typically follows a standards-based approach, where a dam 

is expected to be capable of passing a certain set of extreme loading conditions, such as the 

PMF (Mcgrath 2000). There is a significant amount of effort spent on estimating these 

extreme loading conditions, which are the “edge” of the design envelope. Factors of safety 

used in the design of the system are checked as more information becomes available and 

the estimates of these extreme loading conditions are refined. For example, as new flood 

estimation methodologies and improved hydrometeorological and hydrological data 

become available, dam owners can use this information to re-calculate the probable 

maximum precipitation (PMP), which is then used to compute the PMF (USBR 1987; 

USACE 2011). Similarly, structural, seismic and other load conditions relating to natural 

disturbances can be refined over time, and the standards-based approach essentially checks 

and re-checks whether the dam can withstand them. 

The United States Bureau of Reclamation USBR has a series of publicly-available 

standards, a number of which relate to dam and spillway design. The Spillway and Outlet 

Design Standard (No. 14) deals primarily with flow control in dams. The USBR states that 

the hydraulic loadings to be considered in spillway and outlet design are the Inflow Design 

Flood (IDF) and construction diversion floods (USBR 2014b). The IDF is defined as the 

maximum flood hydrograph used in the design of a dam, and it is either equal to or smaller 

than the Probable Maximum Flood (PMF). The USBR defines the PMF as “the flood 

hydrograph that results from the maximum runoff condition due to the most severe 
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combination of hydrologic and meteorological conditions that are considered reasonably 

possible for the drainage basin under study” (USBR 2014b). Selection of the IDF in dams 

built before the early 1940’s was based on extrapolation of existing data, for example 

selecting a flood that was 50% larger than the flood of record for a site (USBR 2014b). 

Between the late 1940’s until the 1980’s, IDF’s were set equal to the maximum probable 

floods (roughly equal to the PMF but computed with only site specific data) until the PMF 

was adopted. IDF selection was then modified to consider the downstream hazard potential 

classification and possible impacts relating to loss of operation. Eventually, frequency 

flood hydrograph calculations were used in selection of the IDF, where dams of a particular 

consequence category were designed to withstand a flood with a particular return period. 

Since the mid 1990’s, a quantitative risk-based approach has been adopted by most 

American agencies. The USBR utilizes an f-N chart, which is a graph that plots estimated 

loss of life against the probability of different failure modes. The USBR’s f-N chart has 

defined zones, where points within certain zones of the chart require either increased or 

decreased justification for further risk reduction. A starting frequency flood is defined and 

f-N pairs corresponding to it are plotted. The frequency flood is then increased until all of 

the f-N pairs (for each failure mode) are within the zone indicating decreasing justification 

to reduce risks. The USBR’s design standard also contains a description of potential failure 

modes (PFM’s).  

A similar process for IDF calculation is used by the United States Army Corps of Engineers 

(USACE) and other American dam organizations, and the process is generalized in the 

Federal Emergency Management Agency’s (FEMA) “Federal Guidelines for Dam Safety” 

(FEMA 2004). The Canadian Dam Association’s (CDA) guidelines describe both risk-

based and consequence-based approaches for selection of IDF and MDE (CDA 2007). The 

USACE also provides engineering manuals that include technical guidance and standards. 

In the “Safety of Dams – Policy and Procedures” document (USACE 2011),  minimum 

requirements for hydrology and hydraulics of dam systems are outlined, including the 

capacity requirements for spillways and outlet works, as well as the reliability of gates. 

Geotechnical and structural minimum requirements are also described, and the document 

cites reference material containing quantitative standards, where applicable. Factors of 
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safety for structural assessment and design may be provided by the dam agencies, as well 

as loading conditions to be considered (CDA 2007) 

In addition to standards, there is a considerable focus on best practices in dam safety. The 

USBR and USACE developed a Best Practices Training Manual (USBR and USACE 

2015a) containing chapters covering a variety of considerations in dam safety. Of particular 

relevance to the flow control focus of this work are the chapters relating to overtopping 

failure, failure of spillway gates and operational considerations. In the chapter on 

overtopping failure, the manual mentions that vulnerability of the system to gate failures 

during major floods can be simulated using simple flood routing by eliminating one of the 

gates from the analysis. The manual also suggests testing the sensitivity of flood routing 

by implementing delayed control of the gates as a result of human error.  The chapter on 

failure of spillway gates focuses mainly on structural strength and stability assessment, as 

well as failure modes and best practices for maintenance. The operational risks chapter 

focuses on issues relating to events within the design envelope of the dam and suggests the 

use of event trees for their assessment (see Section 2.2.4). There is also a chapter on the 

probability of failure of electrical and mechanical systems of spillway gates, which 

suggests a multi-step approach to incorporating this equipment in dam safety analysis. 

First, probability distributions are applied for estimation of individual component failure 

rates. Next, fault trees (see Section 2.2.3) are presented as a way of analyzing the 

probability of failure for the gate system as a whole. Finally, event trees detailing the chain-

of-events for the overall dam system are suggested as a means of determining the overall 

likelihood of failure as a result of failure of the gate to operate on demand. Frequent 

inspection is suggested as a best practice to identify and address failures of gate equipment. 

Gate power supply redundancy is also recommended. 

In general, the North American dam associations seem to be shifting towards a risk-based 

approach to dam safety, the key tools of which are described in the following section. In 

terms of international dam safety practice, McGrath (2000) provides an overview of the 

use of risk assessment in dam safety, using specific examples of legislature and current 

practice from several countries. Bowles (1998a) provides a review of the state of the 

practice based on experience in risk assessment for dams in the U.S. and Australia, noting 
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several drivers that have lead dam owners to adopt a risk-based approach. One of the key 

issues is that severe standards may require cost-prohibitive measures for compliance. 

Bowles (1998a) notes that increasing severity of standards does not always result in 

reduced risk because dam owners, regulators, and government agencies simply cannot 

afford to meet the standards. In some states, regulators have worked with dam owners in a 

risk-based approach which prioritizes projects and partial fixes that are affordable to the 

dam owner, resulting in an overall reduced risk (Bowles et al. 1998a). Using a risk-based 

approach, dam owners can provide numerical risk assessment outcomes as justification for 

focusing on the most significant dam safety risks in the portfolio of dams (Bowles et al. 

1998a, b; Bowles 2001). Portfolio risk assessment is a technical ranking method used to 

prioritize dam upgrades, and has been applied to dams in Australia (Bowles et al. 1998b; 

Foster et al. 2000b), the U.S. (Cyganiewicz and Smart 2000; USACE 2011; USBR 2011; 

Srivastava 2013), the U.K. (Morris et al. 2012), Europe and Canada (Donnelly 2005).  

It is important to note that the standards-based approach and the risk-based approach are 

not mutually exclusive, as standards are typically included in the risk-based approach 

(USACE 2011). Further, the focus in these technical guidelines still seems to be placed on 

definition of the design envelope and assessment of dam performance at the edge of this 

design envelope. In essence, the standards-based approach is still in place – the system’s 

design envelope is simply determined using more sophisticated probabilistic risk 

assessment tools.  While some discussion is provided with respect to operational safety 

under normal conditions (eg. USBR 2014b), there is very little guidance relating to how 

the operational safety of the systems can be assessed, though event trees are presented as a 

potential tool. It is worth noting that Canadian structural code associations are 

contemplating a switch to “performance-based engineering” which uses simulation to 

assess structural performance risk in response to a range of potential loading conditions 

(Ellingwood 2017). This shift has resulted from a need to consider climate change impacts 

in structural design.    

The following section details some of the current practices in risk analysis, from within 

and outside of the dams industry.  



42 

 

 

2.2 Current practices in risk analysis 

Risk is most frequently defined as the product of the failure probabilities and consequences. 

Risk analysis is the process used to determine and estimate risks – this may involve the 

definition and analysis of different loading conditions, failure modes and consequences as 

well as probability estimation (Cyganiewicz and Smart 2000). Risk assessment is the use 

of information from risk analysis to evaluate the various sources of risk and make decisions 

(Mcgrath 2000). This section focuses on techniques used for risk analysis. 

There are a variety of different practices used in the analysis of risk and safety of 

engineered systems. Society of Automotive Engineers (SAE)’s Aerospace Recommended 

Practice document (SAE 1996), and a number of standards (IEC 2008, 2010) from the 

International Electrotechnical Commission (IEC) provide useful reference material for 

developing an initial understanding of the various assessment tools. Many of the 

approaches described by SAE and IEC are not mutually exclusive; that is, multiple 

approaches may be used in a system safety assessment, and the results of one approach 

may become the inputs of another. Four of the most commonly used techniques for system 

safety assessment, in particular within the dams industry, are Failure Modes and Effects 

Analysis (FMEA) and it’s descendant Potential Failure Modes Analysis (PFMA), Fault 

Tree Analysis (FTA) and Event Tree Analysis (ETA). These are described in the following 

sections, which present the general theory, applications and limitations of each approach. 

Additional methods are then briefly described. 

2.2.1 Failure Modes and Effects Analysis (FMEA) 

FMEA is a systematic assessment approach that seeks to determine potential failure modes 

and identify their causes and the potential effects on system performance (IEC 2008). It 

was first developed in 1949 by the U.S. Military for weapons systems and refined in the 

1960’s for applications in the aerospace industry (Stamatis 2002; Thomas 2012). The use 

of FMEA was extended in the 1970’s to automotive, aerospace and petrochemical 

industries (SAE 1967; National Research Council 1981) and was later applied in the 
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nuclear, food, drugs, and cosmetics industries (Duckworth and Moore 2010) as well as the 

dams industry (Hartford and Baecher 2004; dos Santos et al. 2012).  

There are a number of different implementations of FMEA, however the general approach 

remains consistent (Thomas 2013). FMEA essentially identifies components and their 

failure modes, and then identifies the causes and effects for each failure mode. Failure 

Modes, Effects and Criticality Analysis (FMECA) adds an additional step where the 

severity and probability of events are used to determine the failure modes criticality 

(Thomas 2013). Details regarding the FMEA and FMECA processes are described in the 

IEC’s International Standard 60812 (IEC 2008) as well as SAE’s Aerospace 

Recommended Practice manual, ARP4761 (SAE 1996).  

The IEC standard provides an overview of the information that should be made available 

to the team performing the analysis. In particular, the system boundary should be clearly 

defined and its elements, their characteristics, function and connections with other elements 

should be known. Levels of redundancy, system inputs and outputs, and information 

regarding how the system structure changes in response to different operating modes are 

also essential for the analyst team (IEC 2008). Representing the hierarchical system 

structure through the use of diagrams is recommended to illustrate relationships between 

components, redundancies and the inputs and outputs (IEC 2008). Information relating to 

maintenance routines, frequency of use of the different aspects of the system as well as 

operation should also be made available to the analysis team. The FMEA process described 

in IEC 60812 is illustrated in the following diagram (Schmittner et al. 2014): 

The process involves identifying failure modes for a particular component, and then for 

each failure mode determining the effects, severity, causes and the frequency or 

probability. Analysis of severity may be done using qualitative descriptors such as 

catastrophic, critical, marginal and insignificant. This process is done for all components 

of the system at the particular level of detail of analysis. Once this detailed, component-

level assessment is complete, the effects of failures on the next level of the system should 

be determined (IEC 2008). In a hierarchical system, the effects at the immediate level 

become the failure modes at the next level, and this can continue until the highest level of 
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the system is analyzed (IEC 2008; dos Santos et al. 2012). In this way, the immediate 

effects of a failure on the system as a whole can be determined. In FMECA, criticality is 

a qualitative measure of the relative degree of importance of a failure mode, and it is 

determined using the likelihood and severity of the failure mode (IEC 2008). There are a 

number of different ways in which criticality can be assessed and these are outlined in 

IEC 60812.  

 

Figure 2-1: FMEA Process (Schmittner, 2014) 

The FMEA/FMECA process typically involves a multi-disciplinary team of experts who 

work together to analyze the system (Hartford and Baecher 2004; dos Santos et al. 2012). 
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Information from the process is usually recorded in a tabular worksheet form and often 

uses the aid of diagrams and flow charts to illustrate how the event propagates through the 

system (Mcgrath 2000; Bartsch 2004; IEC 2008; dos Santos et al. 2012). The IEC standard 

(IEC 2008) and the dam-specific risk assessment text by Hartford and Baecher (2004) 

provide example worksheets similar to the one shown in Table 2-1. Analysts may wish to 

consider the ways in which a failure may be detected or prevented in the analysis and can 

use the results of the analysis to form conclusions regarding actions that can be taken to 

mitigate or eliminate important failure modes.  

Table 2-1: FMEA Sample Worksheet 

Component Function 

Failure 

Modes and 

causes 

Local 

consequence 

Global 

consequence 

Ability 

to 

detect 

Severity Probability 
Treatment 

action 

         

Within the dams industry, there are some examples of FMEA being utilized for 

assessments of dam safety (Putcha and Patev 2000; Shaw et al. 2000; Hartford and Baecher 

2004; dos Santos et al. 2012). Hartford (2001) notes that BC Hydro considered FMEA to 

be an important precursor to quantitative risk assessment as early as the mid 1990s. By the 

early 2000’s the majority of American dam associations (eg. USBR, USACE, FMEA) 

began advocating for a heuristic FMEA-inspired approach called PFMA (see Section 2.2.2) 

that would reduce the time and effort required to complete a true FMEA.  

The IEC and SAE standards note some limitations of the FMEA/FMECA approach. 

Despite successful applications in multi-level hierarchical systems, IEC (2008) states that 

analysis of multi-level systems can introduce complications and errors, suggesting that 

limiting the analysis to two levels of a hierarchical system is preferable. It is noted that the 

key assumption in FMEA is that failure modes are independent. The ability of the FMEA 

process to deal with common-cause failure is quite limited, and at best they can only be 

analyzed qualitatively (SAE 1996; IEC 2008). This means that only a subset of all possible 

failure scenarios are considered (Thomas 2013). There are also limitations in dealing with 

human factors and software errors that may contribute to system failures (IEC 2008). 

Nonlinear and feedback relationships are unable to be analyzed effectively using 

FMEA/FMECA (Thomas 2013), so failure initiation and progression can be extremely 
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difficult to assess (Shaw et al. 2000; Bartsch 2004). Zhang et al. (2018) note that analysis 

of redundancy in systems is complicated by component interdependency. The IEC (2008) 

suggests utilizing fault tree analysis to deal with interrelationship scenarios and common 

cause failures. Thomas (2013) suggests that FMEA/FMECA, by its nature, is only able to 

analyze scenarios that are triggered by a failure – the result is a set of both safe and unsafe 

scenarios, with an equal amount of time spent analyzing each. There are, however, some 

unsafe scenarios which may not be triggered by failures at all, and these are omitted from 

the analysis. Dos Santos (2012) and Zhang et al. (2018) suggest that components may take 

on multiple potential states so the binary definition of functional or failed may not be 

adequate. Many authors have also noted that FMEA is a time and resource consuming 

process which requires a significant amount of information and spends considerable time 

analyzing less-relevant failure modes (Mcgrath 2000; Shaw et al. 2000; Bartsch 2004; IEC 

2008; dos Santos et al. 2012). Shaw et al. (2000) points out that FMEA was developed for 

active systems, in which each component has an output action – whereas in dam systems, 

many of the components are passive. dos Santos et al. (2012) found that FMEA did not 

give adequate consideration to time dependencies or deterioration where in reality, some 

components progress slowly towards a failed state.  

The advantages and disadvantages of the approach are summarized in Table 2-2. In spite 

of these limitations, FMEA/FMECA still provides a useful and systematic tool for the 

identification and assessment of potential failures modes in a variety of systems and 

processes. Identifying failure modes is an important aspect of risk analysis and for the 

analysis of system safety in general. Knowing what the possible failures are facilitates the 

development of strategies to eliminate, detect, mitigate and/or reduce their likelihood of 

occurrence. 
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Table 2-2: Advantages and disadvantages of FMEA 

Advantages Disadvantages 

-Systematic approach1,2,3 

-Determines potential failure states of 

system components and their effects on 

other components of the system1,2,3 

-Failure-focus that can miss unsafe non-

failure component states or interactions2 

-Difficulty in analyzing redundancy1,3 

-Static analysis with limited ability to 

analyze feedback, interaction, time, 

dynamic system behaviour1,2 

-Common-cause failures, human factors 

and software errors are challenging within 

this framework2 

-Difficulty and significant complexity 

with multi-level hierarchical system 

analysis1,3 

1 Hartford and Baecher (2004) 

2 Thomas (2013) 

3 IEC (2008) 

2.2.2 Potential Failure Modes Analysis (PFMA) 

PFMA is a qualitative analysis tool that is utilized primarily within the dams industry. 

PFMA is essentially a simplified, heuristic variant of Failure Modes and Effects Analysis 

(FMEA) which was developed in the early 2000’s by FERC in response to the time and 

resource commitments required to perform a comprehensive FMEA (Hartford and Baecher 

2004; France et al. 2018a). Dam safety literature pre-dating FERC’s introduction of PFMA 

(FERC 2005b) often refers to FMEA (eg. Bowles et al. 1998b; Putcha and Patev 2000; 

Stewart 2000; Barker et al. 2003; Faber and Stewart 2003; Hartford and Baecher 2004; 

Wieland et al. 2005), though many researchers and dam agencies now use the simplified 

PFMA methodology as a result of the influence of the American dam associations (eg. 

Bowles et al. 2011; USACE 2011; SPANCOLD 2012; USBR and USACE 2012b; Adamo 

et al. 2017).  
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Despite sometimes being mentioned as a single approach, there are fundamental 

differences between PFMA and FMEA/FMECA. FMEA/FMECA is a systematic approach 

that works up from the most detailed level of a hierarchical system to higher levels of the 

system. In PFMA, this is done heuristically for the system as a whole. This also means the 

definition of a failure mode may be slightly different between the two methods. In FMEA, 

a failure is defined as a components ability to achieve it’s intended function – failures are 

defined at the component level. In PFMA, failures are defined at the system level – only 

events which result in a problem at the system level are considered.  

PFMA is essentially a failure mode brainstorming session involving a team of experts, 

including engineers, field staff and operating staff. The PFMA team performs a review of 

all existing data, historical records and information and uses this to come up with possible 

modes of failure for the dam, including their causes, qualitative likelihood descriptors, and 

consequences (FERC 2005b). The failure modes are categorized into the following groups 

(FERC 2005b): 

• Category I – Highlighted potential failure mode (increased significance and 

likelihood) 

• Category II – Potential failure modes considered but not highlighted (lesser 

significance and likelihood) 

• Category III – More information or analysis needed to classify  

• Category IV – Potential failure mode ruled out (physically impossible or unlikely) 

FERC (2005b) states that the result of a PFMA analysis is an information resource that can 

help illuminate failure modes not previously considered, while highlighting the importance 

of failure modes with high consequence and likelihood. The guidance document also states 

that the analysis may identify some failure modes which are less significant than previously 

thought, due to their associated consequences or likelihood (FERC 2005b). It is suggested 

by some researchers and organizations (eg. Bowles et al. 1999, 2011; FERC 2007; USBR 

and USACE 2015; Adamo et al. 2017) that PFMA is the first step in risk assessment, to be 

followed by the quantification of risk, using event trees or other guidelines.  

In 2003, The Federal Energy Regulatory Commission (FERC) made PFMA a requirement 

for all American dams meeting certain criteria (relating to hazard level and size under the 

Code of Federal Regulations 18 Part 12 Subpart D), and published a technical document 
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detailing the steps of the analysis (FERC 2005b; Hoeg et al. 2007). The USACE and USBR 

also include PFMA in their dam safety policies and best practices manuals (USACE 2011; 

USBR and USACE 2015b). Several other agencies have their own guidelines, webinars 

and supporting documents (Hydrometrics Inc. 2011; USSD 2013; ASDSO 2018). The 

CDA dam safety guidelines do not specifically mention PFMA (CDA 2007).  

Despite its widespread use and successes in identifying some failure modes as well as 

helping dam owners prioritize risk reduction measures (eg. FERC 2007; Adamo et al. 

2017), the PFMA process is not without its shortcomings. This became especially apparent 

following the Oroville Dam incident of 2017 (France et al. 2018a).  

In the aftermath of the incident, an independent forensic team consisting of engineers from 

a variety of organizations was assembled to review the causes of the incident (France et al. 

2018a). It was revealed that the dam had been the subject of three PFMA’s in 2005, 2009 

and most recently in 2014. Failure modes relating to the emergency overflow spillway and 

spillway chute were overlooked in 2005 and 2009. In 2014, two relevant failure modes 

were identified. The first was related to the emergency spillway: “A PMF flood event is 

occurring and over 10 feet of water is spilling over the emergency spillway at Oroville 

Dam. Erosion begins where the flow is entering the Feather River and progresses by head-

cutting into the reservoir” (France et al. 2018a). The possibility of erosion happening at 

lower spillway flows was not considered and the failure mode was classified as Category 

IV (non-credible) as a result of its perceived likelihood being small. The second relevant 

potential failure mode was the failure of the spillway chute: “Cavitation or slabjacking 

results in loss of the concrete lining in the spillway chute downstream of the [spillway 

gates]. The rock in the spillway chute erodes and the [spillway gates are] undermined and 

lost” (France et al. 2018a). Again, this potential failure mode was classified as Category 

IV (non-credible), as a result of its perceived likelihood being small.  

The Oroville incident has helped highlight some of the shortcomings of PFMA. In two of 

the three PFMA sessions, the pertinent failure modes were completely missed, and in the 

third, their likelihoods were perceived to be so low as to not warrant further investigation 

or remediation. The 2014 PFMA was the result of two weeks of analysis and was 
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considered to be very thorough by all involved, however some key errors in judgement 

were made relating to assumptions about the geologic conditions and the condition of the 

spillway chute (France et al. 2018a). France et al. (2018a) notes that a considerable 

emphasis is placed on loss-of-life during the PFMA process, resulting in some plausible 

scenarios being eliminated from the list and categorized as Category IV due to perceived 

minimal consequences. In addition to this, there tends to be more emphasis on the dams 

themselves, and less emphasis on their appurtenant structures. France et al. (2018a) also 

noted issues with the FERC categorization scheme – FERC (2005b) states that “If you do 

not fully develop a [potential failure mode], you cannot categorize it”, when in reality more 

information is often necessary to properly categorize some of the potential failure modes. 

Another key issue with the PFMA process is that the results are subjective and could vary 

significantly depending on the individuals involved, the data available and the time 

allocated for the process. This is obvious when considering that two of the three PFMA 

reports overlooked failure modes relating to the spillways (France et al. 2018a). The 

independent forensic investigators also noted that PFMA was considerably less structured 

than FMEA. 

The advantages and disadvantages of PFMA are summarized in Table 2-3.While PFMA 

represents a positive step by the dam industry towards considering more than just 

engineering standards like the PMF and MDE, there are some limitations to simplifying 

the analysis of such complex systems. The interactions among components and the 

consequences of these interactions may be missed in the analysis. The system is not 

necessarily broken down and analyzed in a hierarchical way as it is in FMEA/FMECA, so 

lower level failures may be overlooked. The approach suffers from the same issues as 

FMEA/FMECA in terms of common cause failures, human factors and software errors. 

The classification scheme allows practitioners to “rule out” lower-consequence or less 

likely events, despite the fact that these events do contribute to the overall system risk. The 

focus of the PFMA reports available publicly tends to be on dam breach or collapse over 

other seemingly less consequential modes of failure. Many researchers and agencies (eg. 

Bowles et al. 1999, 2011; FERC 2007; SPANCOLD 2012; USBR and USACE 2015; 

Adamo et al. 2017) consider PFMA to be the first step in quantitative risk assessment (event 

tree analysis is often recommended as the next step). While identification of failures modes 
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is an important first step in quantitative risk assessment, PFMA effectively rules out some 

failure modes and could potentially be missing others. It is also not possible using PFMA 

to systematically identify possible sequences of events which may be benign on their own, 

but together could lead to catastrophic consequences (Hartford et al. 2016).  

 

Table 2-3: Advantages and disadvantages of PFMA 

Advantages Disadvantages 

-Improves the understanding of dam risks 

by determining the site-specific causes of 

potential issues1  

-Efficient1 

 

-Heuristic brainstorming approach that 

relies on expert judgement and mental 

models of complex systems2 

-Failure-focus that can miss unsafe non-

failure component states or interactions  

-Tendency to analyze only conditions that 

lead to uncontrolled release of the 

reservoir2 

-Static analysis of linear chains of events, 

with limited ability to analyze feedback, 

interaction, time, or dynamic system 

behaviour2,3 

-Human and operational aspects of 

failures difficult to analyze2 

-Some failure modes may be determined 

“non-credible” but may still have 

significant safety impacts2   

1 FERC (2005b) 

2 France et al. (2018a) 

3 Regan (2010) 

 

2.2.3 Fault Tree Analysis 

Fault trees were originally developed in the 1960’s to analyze missile systems (Thomas 

2012). Fault Tree Analysis (FTA) was developed as a way of identifying combinations of 
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failures and determining their likelihoods. They were first applied to assess the launch 

system of Minuteman I, and were extended for components throughout the system on 

Minuteman II (Ericson 1999). Boeing began using fault trees to assess aircraft by 1966 and 

by the end of the 1960’s, fault trees were the standard of practice for the weapons and 

aerospace industries (Ericson 1999). In the early 1970’s, fault trees were adopted by the 

nuclear and chemical industries and software systems were developed to improve analysis 

abilities (Ericson 1999; Thomas 2012). In the 1980’s and 1990’s, the approach was being 

applied in the robotics industry (Lin and Wang 1997) and software industry (Leveson 1995; 

Hansen et al. 1998). 

Fault trees can be thought of as the mirror image of event trees, in that they use deductive 

reasoning whereas event trees use inductive reasoning. Fault trees start with an undesirable 

event and proceed from the general to the specific, using a backward logic to determine the 

potential causes of an undesirable event (Hartford and Baecher 2004). The result is a 

graphical depiction which moves down the page in levels of detail that progress with each 

step in the tree (SAE 1996). This results in a tree structure which shows how combinations 

of undesirable events or failures at lower level components can cause the event in question. 

In fault trees, faults are the undesirable events (also known as “top events” and lower level 

events are failures (Thomas 2012). In FTA, a separate fault tree would be constructed for 

each undesirable event (SAE 1996). There are several graphical constructs used in the 

development of fault trees including what are known as “logic gates”, which are presented 

in Table 2-4 (Lee et al. 1985; SAE 1996). There are also graphical constructs showing 

events, with different symbols representing different types of faults (Lee et al. 1985).  

The development of a fault tree starts by determining what immediate failures would be 

responsible for the top event (fault). The analyst then moves down the tree in increasing 

levels of detail, determining the causes of each failure and linking them using the 

appropriate logic gates. Fault tree creation stops when the root causes of an event are 

determined or further development is deemed unnecessary (SAE 1996).  

The act of constructing the fault tree alone can provide useful information in terms of what 

needs to fail for the top event to occur. A cut set is a unique combination of events within 
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the fault tree that could lead to failure. A fault tree may have many cut sets depending on 

its level of complexity. The smallest set of events that can lead to the top event is known 

as the minimal cut set (Thomas 2013). Investigating the cut sets and organizing them based 

on the number of primary events in each cut set can be a useful qualitative tool for 

determining what primary events (or combinations of them) are the most concerning.   

Table 2-4: Basic event tree logic gates 

Symbol Name Description 

 
AND TRUE if all input events occur 

 
OR TRUE if at least one of the input events 

occurs 

m  

VOTE TRUE if at least m of the input events 

occurs 

 
EXCLUSIVE OR TRUE if only one of the input events 

occurs 

 
PRIORITY AND TRUE if input events occur in a particular 

order 

 

INHIBIT TRUE if all inputs event occur, as well as 

an additional (typically external) event 

Determining the minimal cut set can be challenging if events occur in multiple places 

within the fault tree – this can happen if there is dependence between two or more events 

and is relatively common for complex systems (SAE 1996). For fault trees without 

interdependence (each event occurs only once), relatively simple rules can be followed to 

determine the probability of the top event. Assuming the probability of an event A can be 

represented by P(A), the basic rules for quantitative analysis are derived from set theory 

and are determined as follows (SAE 1996): 

• The probability of events 𝐴 AND 𝐵 both occurring is 𝑃(𝐴𝐵) and is equal to 𝑃(𝐴) ∗

𝑃(𝐵). For three events connected by AND gates, the three probabilities are 
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multiplied, and so on. This represents the intersection of sets A AND B, as shown 

in Figure 2-2 by the area represented by AB. 

 

Figure 2-2: Illustration of the intersection of A AND B 

• The probability of events 𝐴 OR 𝐵 occurring can be denoted 𝑃(𝐴 + 𝐵) and is equal 

to 𝑃(𝐴)  +  𝑃(𝐵) – [𝑃(𝐴) ∗ 𝑃(𝐵)]. For three events connected by OR gates, the 

equation becomes 𝑃(𝐴 + 𝐵 + 𝐶) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶) − [𝑃(𝐴) ∗ 𝑃(𝐵)] −

[𝑃(𝐵) ∗ 𝑃(𝐶)] − [𝑃(𝐶) ∗ 𝑃(𝐴)] + [𝑃(𝐴) ∗ 𝑃(𝐵) ∗ 𝑃(𝐶)]. The set theory used to 

develop the second equation is shown in Figure 2-3. The total area shaded is known 

as the union of sets A, B, and C. Each of the two-circle intersections (AB, AC, BC) 

is negated once to avoid double counting, and then the three-circle intersection 

(ABC) is re-added to ensure the complete area is counted for. 

 

Figure 2-3: illustration of the union of sets A, B and C (OR) 
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• The probability of mutually exclusive events occurring (if one occurs the other 

can’t) is simply equal to 𝑃(𝐴 + 𝐵) = 𝑃(𝐴) + 𝑃(𝐵), with 𝑃(𝐴𝐵) = 0. The set 

theory used to derive this concept is shown in Figure 2-4. Note in this illustration, 

there is no overlap between sets A and B, which indicates mutual exclusivity.  

 

Figure 2-4: Illustration of mutual exclusivity in sets A and B 

These basic rules, derived from simple set theory, can be applied to calculate the 

probability of occurrence for the top event. This is illustrated using an example shown in 

Figure 2-5. In Figure 19, the top event can only occur if both Failure A AND Failure B 

occur. Failure A can only occur if one OR more of Failure C, D, or E occur. The basic 

probabilistic analysis process is shown in the example figure. To calculate the probability 

of the top event, the probabilities of Failures B, C, D and E are required. The possible cut 

sets are CB, DB, EB, CDB, DEB, CEB, and CDEB. Failure A has its own set of primary 

events, so it is not a primary event and is not counted in the cut sets, while Failure B is a 

primary event because it is not further decomposed. 
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Figure 2-5: Simple fault tree example 

As mentioned previously, fault tree analysis can be complicated when events or failures 

appear multiple times within the tree. This indicates common-cause failures (SAE 1996). 

Qualitatively, this can be analyzed by looking at the list of possible cut sets. For cut sets 

where a failure can lead to more than one primary event, a common cause failure has 

occurred. This more complex situation necessitates the use of Boolean Analysis to 

appropriately compute the probability of the top event (SAE 1996). Boolean algebra is a 

mathematical formulation that deals with True or False events (1’s and 0’s), which is useful 

for fault trees where events either occur or do not occur (Hartford and Baecher 2004). The 

SAE Aerospace Recommended Practice manual provides an excellent example of 

“Boolean reduction” in analysis of complex fault trees (SAE 1996). The method for 

determining the minimal cut sets is shown and the Boolean Logic rules are described. There 

are a variety of computational software packages available to aid in the construction and 
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mathematical assessment of fault trees, including Prepp/Kitt, SETS, FTAP, Importance, 

Isograph and COMCAN (Lee et al. 1985; Ericson 1999; Barker et al. 2006). These tools 

are typically capable of performing cutset determination and probability calculation 

automatically (SAE 1996). 

Due to its general simplicity and ability to graphically illustrate potential paths to failure, 

FTA has become widely used across a variety of industries as mentioned previously. It is 

a powerful tool that provides excellent insight into the possible ways in which primary 

events (failures) can lead to top events. The limitations of the approach are also well 

documented. Thomas (2012) notes that the approach relies heavily on the initial list of top 

events – it does not determine these. Some other approach must be used. FTA also heavily 

relies on the quality of information pertaining to the system of interest, and it may be 

possible to omit events from the tree inadvertently. No systematic techniques are available 

to ensure an exhaustive analysis is completed. Thomas (2012) notes that the decomposition 

in an FTA often stops at a subjective point in the analysis, where causes of failure become 

less obvious and more complex – essentially, “FTA often finds what is only intuitively 

obvious”. Human factors and software errors are not easily reduced to a simple binary 

representation (failing or functioning) and as such they are not easily incorporated into an 

FTA analysis (Thomas 2012). Perhaps most importantly, FTA focuses on failures alone, 

and as such it may omit non-failure causes of a top event that could occur as a result of 

design errors, omissions or other factors such as delays and human error. Many issues that 

contribute to accidents historically are dynamic processes that may not be easily 

represented as simple failures (Thomas 2012). Furthermore, the fault tree assumes linear 

relationships among system components and is unable to capture component interactions 

or time-dependent, nonlinear feedback behaviour which may lead to unexpected outcomes 

for the system of interest. 

Hartford and Baecher (2004) provide an excellent overview of FTA within the context of 

dam safety. They describe methods of estimating the probability of the top event when 

common-cause failures are observed. Their review of FTA also discusses methods for 

determining the relative importance of cutsets. In general, there are a limited number of 

dam safety applications of FTA available within the public domain. Putcha and Patev 
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(2005) describe the application of fault trees as a method for analyzing dam gates and 

operating equipment, presenting generalized fault trees showing how a gate may fail to 

open or close. These generalized fault trees could be useful for practitioners as a starting 

point for application to a specific system of interest. Putcha and Patev (2005) suggest the 

use of criticality indices derived through FMEA as a means of ranking the relative 

importance of components within the gate system fault trees. They go on to use the 

criticality along with failure rates to determine probabilities of individual component 

failures, which can then be used to determine the overall probability of the top event (Patev 

et al. 2005). The approach presented provides a good starting point for fault tree analysis 

of dam gate systems.   

Barker et al. (2006) used fault tree analysis to assess the reliability of various options for a 

spillway system upgrade in Queensland, Australia. A variety of different operating states 

were analyzed using fault trees, and human error was included in the analysis. Several 

scenarios were tested, and sensitivity analysis was performed for various assumptions 

regarding grid reliability, operating staff assumptions, PLC reliability and redundancy, as 

well as backup power source reliability and redundancy (Barker et al. 2006). The authors 

note that the results of the analysis were useful in selecting the final configuration for the 

system upgrade, but do not show the fault tree arrangement or mathematical computations 

used. 

The advantages and disadvantages of FTA are summarized in Table 2-5. Hartford and 

Baecher (2004) note some disadvantages to the use of fault trees for analysis of dam 

systems, mainly pertaining to the high level of complexity in large fault trees and the 

reliance on expert judgement in their construction. Nevertheless, they note that fault tree 

analysis may be the only alternative in some cases to modelling complex systems in an 

attempt to understand and quantify failure modes. One key issue in the use of fault trees is 

they represent a linear event progression (Thomas 2012). In dam systems, components may 

not instantaneously progress towards a failed state, instead degrading in some way over 

time. Inflows introduce another nonlinear variable that complicates analysis using fault 

trees. Traditional FTA may not be capable of characterizing the reservoir level with respect 
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to different system operating conditions and inputs, which is an important goal in the 

context of dam safety. 

In more recent studies, Bayesian Networks and algorithms have been applied as a means 

to overcome some of the limitations associated with fault trees (Ching and Leu 2009; Jong 

and Leu 2013). Ching and Leu (2009) used a Poisson process to model time-varying 

arrivals of disturbances, representing the system using a fault tree model with a Bayesian 

algorithm incorporated to assess uncertainty. The goal of the analysis was to model how 

the reliability of civil infrastructure changes over time. The approach was demonstrated on 

a spillway gate system for a dam in Taiwan and was found to offer a fast solution that 

helped overcome some of the issues associated with lack of failure rate data. Results 

showing remaining life and failure rate plotted against time are shown for the case study. 

Jong and Leu (2013) applied a hybrid approach using fault tree analysis in conjunction 

with Bayesian Networking to overcome some of the limitations associated with both 

approaches. Their approach was to transform fault trees, which are more easily and 

logically developed, into Bayesian Networks, which are more tedious and difficult to set 

up for complex systems but allow for expert knowledge to be incorporated with Bayesian 

Probability Theory for improved diagnosis of system faults (Jong and Leu 2013). The 

approach was demonstrated on three Taiwanese dam systems and shown to match Weibull-

distribution based reliability analysis of those systems. While these approaches do address 

the traditional FTA limitation of failure rates that change over time, they do not consider 

system inflows, interactions between components or the overall system response to 

component failures. These issues remain outside of the capabilities of FTA at the current 

time. 
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Table 2-5: Advantages and disadvantages of FTA 

Advantages Disadvantages 

-Logical and visual method for displaying 

failure paths through a system1 

-Can be used to estimate probability of 

top events and unique paths to the top 

event2 

-Works very well at identifying the 

importance of component failure modes3 

 

 

-Failure-based method that can miss 

unsafe scenarios caused by interactions or 

non-failures3 

-May not follow system flow diagram so 

it can be difficult to relate fault tree logic 

to the actual interactions within the 

system1 

-Difficulty capturing software errors or 

human behaviour3 

-Relies on mental models of system 

structure and expert judgement3 

-Static analysis with limited ability to 

analyze time or dynamic system 

behaviour3 

-Discrete component states for variables 

that may be continuous or have multiple 

states3 

1 Hartford and Baecher (2004) 

2 Lee et al. (1985) 

3 Thomas (2013) 

 

2.2.4 Event Tree Analysis 

Event Tree Analysis (ETA) was originally developed for safety assessments of nuclear 

power plants in the United States in 1975 through the WASH-1400 study (IEC 2010; 

Thomas 2013). The original goal of the WASH-1400 study had been to develop a large 

and detailed fault tree of the system, but it was determined that this would be far too large 

to be practical. Event trees were conceived as a means of defining potential accident paths, 

where failures within the path could be further deconstructed using FTA (Thomas 2013). 
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Despite being developed for use alongside FTA, ETA has also been presented as a separate 

tool for analysis of system dependability (Skelton 1997; Rausand and Hoyland 2004; IEC 

2010).  

Rausand and Hoyland (2004) define ETA as an inductive technique that begins with a 

problem in the system (an initiating event), and proceeds to identify paths by which the 

problem may develop. ETA is similar to FTA in that it is a chain-of-events type analysis, 

but differs from FTA in that it starts with an event and proceeds forward to determine the 

possible outcomes (Thomas 2013). Event trees can be used to determine the probability of 

the possible outcomes resulting from an initiating event (IEC 2010). The International 

Electrotechnical Commission has published a standard detailing ETA which documents 

the steps in event tree development and quantitative assessment of outcome probabilities 

(IEC 2010). In ETA, mitigating factors are considered to be factors within the system that 

are intended to reduce the consequences of an initiating event. ETA then logically steps 

through each of these mitigating factors and determines what happens next when the factor 

either succeeds or fails to perform its intended function (Rausand and Hoyland 2004; IEC 

2010). The different steps of the event tree are called nodes, and their probability can be 

calculated using FTA, as originally intended by the developers in the WASH-1400 study 

(IEC 2010). The probabilities of each unique path in the event tree are then simply 

multiplied together to estimate the ultimate probability of the outcome.  

It is important to note that in an ETA, the initiating events are not determined through the 

analysis. Rather, the sequences of events and outcomes that could possibly result from an 

initiating event are determined and their probabilities are quantified (IEC 2010). In this 

way, ETA is not a standalone analysis tool (Thomas 2013). Initiating events may be 

determined using some other form of analysis. Rausand and Hoyland (2004) mention 

FMECA along with Preliminary Hazard Analysis (PHA) and hazard and operability 

analysis (HAZOP) as potential techniques to determine the initiating event. 

The first step in an ETA involves clearly defining the system of interest and its boundaries. 

Next, initiating events are selected and the mitigating factors required to prevent outcomes 

or accidents are determined and organized depending on their respective time of 
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intervention (IEC 2010). The success or failure of a mitigating factor determines the next 

step in the tree and in this way, sequences of events are defined. Each unique path through 

the tree represents a unique sequence of events. The probability of success or failure of 

each mitigating factor is multiplied together along with the initiating event’s probability, 

𝑃(𝐼𝐸) to determine the probability of the outcome (Rausand and Hoyland 2004). This is 

demonstrated using the simple example shown in Figure 2-6. 

 

Figure 2-6: Generic event tree with probability calculation 

The IEC standard specifies that overbars are used to indicate failed mitigating factors (IEC 

2010). For example, the probability of mitigating factor A failing is 𝑃(�̅�). The probability 

of success and failure are mutually exclusive. That is, 𝑃(𝐴) = 1 − 𝑃(�̅�). A success and a 

failure may not occur concurrently.  

In general, the ETA method is relatively easy to apply, and quantification uses 

straightforward mathematical concepts. It is a useful tool for visualization of event chains 

and can enable identification of outcomes that may not be generated using simple 

brainstorming (IEC 2010). With a complete set of initiating events, ETA provides a useful 

tool for depicting and analyzing potential system outcomes. Event trees are capable of 

improving the understanding of various failure modes and estimating the likelihoods of 
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failure of systems in general. They remain a widely used tool across many industries, 

including but not limited to hazardous processes (Ferdous et al. 2011; Villa and Cozzani 

2016), supply chain risk management (Tummala and Schoenherr 2011), infrastructure risk 

management (Ezell et al. 2000), and nuclear safety (Rychkov and Kawahara 2015). Many 

of the recent applications of ETA incorporate new techniques to deal with uncertainty in 

the probability estimates (Ferdous et al. 2011; Srivastava 2013) or dynamic behaviour 

(Bowles et al. 2011b; Rychkov and Kawahara 2015). 

Like all approaches, ETA is not without its limitations, and these are well documented 

within the applicable reference material. The approach is inherently reliant on practical 

experience and understanding of the system (IEC 2010). Thomas (2013) points out that 

because ETA starts with an initiating event and the functions in place to mitigate its 

consequences, preventative measures for the event itself can not be included in the analysis. 

Software has also been developed to address human factor considerations in event trees, 

however the decisions are typically either randomized or reduced to binary variables of 

success or failure (Thomas 2012). Thomas (2012) suggests that the mitigating factors in 

event trees are assumed to be independent of one another, when in reality this may not be 

the case. He cites the Three Mile Island and Fukushima nuclear incidents as an example of 

how seemingly independent issues may be caused by the same factors (Thomas 2013). 

Multi-state variables are unable to be modelled in event trees, despite being present in may 

complex systems (Villa and Cozzani 2016). Finally, Thomas (2013) states that ETA is 

fundamentally a failure-based method focusing on the propagation of component failures 

through the system. As such, an entire subset of potentially unsafe scenarios that do not 

involve failures at all may be impossible to assess through the use of ETA. Importantly, 

Hartford et al. (2016) suggests that the nature of ETA requires that events and their 

combinations must be identified at the outset. Because of this, the development of thorough 

and complete event trees is incredibly challenging since the number of physically possible 

conditions is so large. Further, consideration of time, feedbacks and nonlinear behaviour 

present additional challenges that are not obviously surmountable given the current state 

of the science (IEC 2010; Hartford et al. 2016).   
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Because of its relative simplicity for the analysis of complex systems, ETA has become a 

prominent tool in dam safety risk assessment since the mid 1980s (Whitman 1984; 

Stedinger et al. 1989; Bowles et al. 1999; Hill et al. 2001; Hill and Bowles 2003; Goodarzi 

2010). They are considered by many to be the next step in quantitative risk assessment after 

a PFMA, in particular by the American dam associations (FERC 2005b; Bowles et al. 

2011b; USACE 2011; USBR and USACE 2015b).  

In the dams industry, the approach is commonly paired with PFMA to further analyze and 

quantify chains of events (USBR and USACE 2015b). PFMA is used to come up with the 

initiating events and ETA is used to quantify the various potential outcomes. Figure 2-7 

(Hill et al. 2001) illustrates an event tree for a fictitious dam, showing how the event 

propagates through the system. Some event sequences are collapsed at the black nodes.  

 

Figure 2-7: Event tree examples (Hill et al. 2001) 

Whitman (1984) was one of the first authors to apply event trees in the dams domain, 

modelling the geotechnical aspects of dam safety with an event tree that progressed from 

embankment dam cracks through drain and filter states to either non-failure, piping failure 

or slope instability. The event tree is described as a very simplistic and generalized 

representation and interpretation of possible outcomes; however, it is thought by the author 

to give some structure to a process that would otherwise be very subjective. Similar, high 

level event tree examples from the early dam safety ETA literature are presented by Bowles 
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et al. (1987) and Yeigan (1991). Quantifying the probabilities of events in the event trees 

presents a major analytical challenge, so in early applications of risk analysis a verbal 

guideline or “Kent Chart” was used. Kent Charts were developed by Sherman Kent in the 

1960’s and were adopted by the CIA for a brief time to assign numerical probabilities to 

verbal descriptors (Hartford 2001). Vick (1992) presented one such chart for use within the 

dams domain. 

By the mid 1990’s and early 2000’s, a “de-compositional” approach to event trees began 

being used. In response to the subjectivity of the simplified approaches being utilized, BC 

Hydro began investigating the use of analytical techniques for estimating probabilities in 

event trees (Hartford 2001). Hartford (2001) presented a detailed event tree as part of the 

quantitative risk assessment for seismic events at Hugh Keenleyside dam in BC, noting 

that this was the first analytically based risk analysis of a dam performed to date. Analytical 

and numerical techniques were used in the quantification of failure probabilities instead of 

subjective judgement. Another early application of quantitative, analytical risk assessment 

from the late 1990’s was for the Hume Dam in Australia (McDonald and Wan 1999). By 

the late 1990’s both BC Hydro and the Australian engineers who performed the Hume Dam 

assessment had concluded that simplified risk analysis, using Kent Charts and high-level 

event trees, was not sufficient to provide conclusive evidence of a dam’s degree of safety 

or for use in dam safety decision making (Hartford 2001). 

In more recent years, the use of event tree analysis has become more widespread and 

computational tools have been developed to improve the degree of analysis that can be 

achieved. DAMRAE is an event tree software which improves the capabilities of event 

trees, allowing for (a) modelling of continuous variables (such as inflow or ground 

acceleration) and (b) modelling of deterministic relationships between variables, for 

example the reservoir stage-discharge relationship or the deformation function as a result 

of earthquake loading and initial conditions (Srivastava 2008, 2013; Srivastava et al. 2012). 

The DAMRAE software was able to overcome some of the issues with the earlier 

applications of event trees and provides a path forward for use of this technique in the 

future. It was developed for the USACE to be used in their dam safety risk management 

program and is included in USACE’s dam safety policy and procedures (Bowles et al. 
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2011a; USACE 2011). The DAMRAE software has since been applied in several 

applications (Bowles et al. 2010, 2011a, b, 2015). Srivastava (2013) includes a detailed 

description of DAMRAE and uses an example system to show how it can be used to test 

various risk-reduction alternatives.  

A summary of the advantages and disadvantages of ETA is presented in Table 2-6. Regan 

(2010) has identified examples of dam failures, including Teton and Taum Sauk, in which 

nonlinear behavior was observed, noting that event trees are too simplistic to anticipate the 

complex interactions occurring within various levels of a dam system. This echoes the 

general conclusions made by Thomas (2012) with respect to accidents in the nuclear and 

aerospace domain. Zhang et al. (2011) note that ETA may not be suitable for analysis when 

there are multiple initiating events. Dam systems involve dynamic, interacting components 

with time-varying inputs. These result in a time-dependent evolution of events, which the 

IEC (2010) identifies as another limitation of ETA. The development of more advanced 

software overcomes some of these limitations, however it remains challenging to include 

timing in event tree analysis (Hartford et al. 2016). Because of this, ETA has limited 

applicability for dam safety applications in which reservoir response to disturbances 

occurring over time is a specific goal. Despite these limitations, it remains a useful tool for 

envisioning and understanding general possibilities for event propagation through complex 

systems.  
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Table 2-6: Advantages and disadvantages of ETA 

Advantages Disadvantages 

-Logical and visual method for displaying 

sequences of events1 

-Very efficient way to estimate the 

probability of failure as a result of an 

initiating event1 

 

 

-Failure-based method that can miss 

unsafe scenarios caused by interactions or 

non-failures2 

-Static analysis of a one-way chain-of-

events with limited ability to analyze 

feedbacks, time or dynamic system 

behaviour2 

-Difficulty capturing software errors or 

human behaviour2 

-Discrete component states for variables 

that may be continuous or have multiple 

possible states2 

-Difficult to assess common-cause 

failures2 

1 Hartford and Baecher (2004) 

2 Thomas (2013) 

2.2.5 Additional methods 

The following sections provide a brief overview of some additional methods that may be 

used in system safety assessment.    

2.2.5.1 Dependence Diagrams (DD) 

Dependence Diagrams (DD) are described by SAE (1996) as “pictorial representation[s] 

of combinations of failures for the purpose of probability analysis”. DD’s may also be 

referred to as Reliability Block Diagrams (RBD). The DD shows the same logic as a fault 

tree using either serial or parallel arrangements of boxes (faults), showing the different 

paths that could lead to a top event (failure condition). The fault event links represent AND 

events when organized in parallel and OR events when organized in series. The setup and 

mathematical formulation are demonstrated using a very simple example shown in Figure 

2-8.  
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Figure 2-8: Dependence Diagram example 

DDs may become very complex, and it may be possible for multiple instances of the same 

fault to appear in different paths within the diagram (SAE 1996). These represent the 

common cause failures. Like in FTA, Boolean Algebra and Boolean reduction may be 

required to ensure probabilities are correctly combined (SAE 1996). A variety of different 

box types may be used to illustrate different types of failure events. DDs (or RBDs) and 

fault trees achieve the same goal, and they require the same inputs and knowledge of the 

system. DDs are particularly useful for showing redundancy, which may not be as 

obviously visible in a fault tree.  They are also subject to the same limitations as described 

in the discussions regarding FTA. 

2.2.5.2 Bayesian Networks (BN) 

Bayesian Networks (BN) are becoming more widely used in risk analysis across a variety 

of industries. They are probabilistic, graphical models of the dependencies between 

different variables within a system (Villa and Cozzani 2016). The variables of the system 

are represented using nodes, and the dependence between them is represented using arrows. 

Each node or variable can be represented by a number of states – these can include 

failed/working, true/false, or various literal descriptors or numerical values (Smith 2006). 

Probabilistic calculations can proceed based on the diagram using Bayes theorem of 

relationships among conditional probabilities, which states that:  

𝑃(𝑐𝑎𝑢𝑠𝑒|𝑒𝑓𝑓𝑒𝑐𝑡) =
𝑃(𝑒𝑓𝑓𝑒𝑐𝑡|𝑐𝑎𝑢𝑠𝑒) ∗ 𝑃(𝑐𝑎𝑢𝑠𝑒)

𝑃(𝑐𝑎𝑢𝑠𝑒)
 

Figure 2-9 contains a simple example of a BN, with the corresponding probability 

calculations shown (Hartford and Baecher 2004). As the number of variables (nodes) 
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increases in a BN, the calculation of the probability of the final state becomes increasingly 

complex.  

 

Figure 2-9: Simple Bayesian network example 

BNs are capable of dealing with multi-state variables and conditional dependencies which 

gives them an advantage over other chain-of-event style models like FTA and ETA (Villa 

and Cozzani 2016; El-Awady 2019). Villa and Cozzani (2016) notes that ETA and FTA 

can be used as a starting point for development of a BN, and presents a software capable 

of performing the transformation.  

Zhang et al. (2011) applied BN to determine probability of overtopping or internal erosion 

failures of embankment dams using data available from an embankment dam distress 

database. The networks developed had a number of different components of the dam and 

their potential states were either yes/no or a literal descriptor such as satisfactory or 

unsatisfactory. The goal of the analysis was to determine the probability of failure and 

sensitivity analyses were performed to determine the most important factors that 

contributed to the failure modes in consideration (Zhang et al. 2011). Smith (2006) 

developed a BN for a dam, considering internal erosion and overtopping failure modes. 

The model developed included variables for precipitation and reservoir level, though it is 

unclear how these were modelled and whether the approach developed is capable of 

determining the reservoir level with respect to time. El-Awady (2019) used simulation 

supported BN to improve the ability of the BN approach to model feedback behaviour. The 
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approach presented is able to model sub-BN’s of particular components in more detail than 

previous applications. Contributors to failure were identified for case studies within the 

nuclear and hydropower industries. The approach is promising for determining system 

vulnerabilities and estimates of probability given limited information. Despite the advances 

offered by the recent applications of BN, the approach may not be well suited to determine 

the reservoir elevation (and the values of other variables) with respect to time. 

 

2.2.5.3 Markov Analysis (MA) 

Markov Analysis (MA) is another widely-used failure-based method for assessment of 

system safety and probability of failure. Markov models (also known as Markov chains) 

are useful for representing the different system states and the relationships between them 

over time. In Markov models, the transitions between different states are represented by 

the rates of failure of the different components. The key property of Markov models is that 

future system states depend only on the current system state, regardless of what led to the 

current state (SAE 1996). Markov models can be used to represent series systems, parallel 

systems, and systems which are able to recover and repair themselves.   

MA is able to handle common cause failures and interactions in ways that are more 

challenging using FTA and DD’s. They are also able to handle a wider range of system 

behaviours (SAE 1996). The size of the Markov model grows exponentially in relation to 

the number of components, which can make MA an extremely complex process.  

 

2.3 Systems approach to safety 
 

The research of Leveson (2011) and Thomas (2012) provide an excellent overview of the 

limitations associated with the risk-based approaches described in the previous sections. 

One of the key issues mentioned is that the commonly used techniques focus on failures, 

which means an entire sub-set of potentially unsafe scenarios may be missing in the 

analysis. Additionally, the authors state that these traditional risk analysis techniques are 
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unable to effectively deal with software issues as well as human error and judgement. 

Commonly used risk analysis tools are often static and/or linear, and as such the ability to 

determine potentially unsafe scenarios arising from interaction and feedback is limited. 

Analysis of common cause failures also presents some challenges. Based on these 

limitations, a systems approach to safety engineering has emerged within the aerospace 

industry (Leveson 1995, 2011; Leveson et al. 2003), and it is beginning to be recognized 

and applied in other industries, including nuclear (Song 2012; Thomas 2012), automotive 

(Vernacchia 2018), railway (France et al. 2018b), software (Pope and Breneman 2018) and 

dams (Dusil and To 2016; To et al. 2018). 

Leveson (2011) utilizes control systems theory to assess several accidents. Many of the 

examples deal with aerospace and aviation, however examples from other high-profile 

accidents such as the Walkerton drinking water incident and the Titanic disaster are also 

provided. Analysis of these accidents led to the development of two generic tools that use 

a control systems approach to the analyze system safety. The first is Systems Theoretic 

Accident Model and Processes (STAMP), which was developed for post-accident 

assessments. The second, Systems Theoretic Process Analysis (STPA), stems from the 

STAMP technique and was developed for analysis of existing control systems or systems 

in the design phase.  STPA is a systematic process for brainstorming potential control flaws 

of control systems.  

Prior to initiating STPA, the hierarchical control system structure for the system of interest 

should be developed and the hazards for the system should be defined. This is often done 

using a flow chart, showing the interactions among elements at different levels of the 

system. Four general categories of unsafe control actions are provided (Leveson 2011; 

Thomas 2013): 

(1) A required control action not provided or not followed 

(2) Unsafe control action is provided that leads to a hazard 

(3) A required control action is provided either too late, too early or out of sequence 
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(4) A required control action is not applied for the wrong amount of time (either applied 

too long or stopped too soon).  

The first step of STPA is to define unsafe control actions for each of the controls in the 

system of interest. The control actions can be documented using a table such as the example 

shown in Table 2-7. For each control action identified, the analysts will describe how the 

situation would unfold and what hazard it could lead to. There may be multiple descriptions 

under each column for each control action, pertaining to different situations that could lead 

to a particular unsafe control action being applied and the resultant effects it would have. 

The second step is to take each of the identified unsafe control actions and identify its 

causal factors. This is done by using the hierarchical system structure as a guide and 

looking at the control loop. Investigating the control loop with respect to each unsafe 

control action can help identify how an unsafe control action might occur – for example, 

due to incorrect information, a faulty process model or a failed component.  

Table 2-7: STPA example table documenting potentially hazardous control actions 

Control action (1) Not 

provided 

(2) Not 

followed 

(3) Initiated at 

the wrong time 

(4) Applied for 

the wrong 

amount of time 

Control action 1 … … … … 

 

The result of the STPA analysis is a detailed list of what might cause hazards within the 

system and why. Unlike failure-based methods used in traditional risk assessment, STPA 

is able to identify non-failure causes of hazards for a system, which makes it a very 

promising tool for system safety assessment. The approach also does not attempt to 

estimate probabilities of different outcomes, instead aiming to identify them so they can be 

addressed or eliminated.  

Thomas (2012) advocates the use of Leveson’s (2011) tools and presents a methodology 

for automating the identification of hazards using Leveson’s (2011) Systems Theoretic 

Process Analysis (STPA) model, mainly focusing on potential applications in the nuclear 

industry. Song (2012) applied the STPA procedure to a specific process at the Darlington 

Nuclear facility in Ontario, Canada, finding that this procedure enhanced the ability to 
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identify potentially hazardous conditions at the system level. BC Hydro has recently 

applied STPA for analysis of dam systems in two applications, the results of which are 

described by Dusil and To (2016) and To and Dusil (2018). The researchers found that the 

STPA approach is able to identify vulnerabilities which may be overlooked using 

conventional risk assessment techniques used for dam safety. It was noted that STPA may 

not be able to replace existing techniques, but it does provide useful and complimentary 

insights (Dusil and To 2016).  

There are two key limitations of STPA as it pertains to the analysis of dam systems. The 

first is the natural variability within which the infrastructure is operating and may be 

attempting to control (inflows, earthquakes, debris build up, ice, etc.). It is not possible to 

use STPA to determine at what inflow a potentially unsafe situation would become an 

accident or determine reservoir level response to a set of inflows and operating conditions. 

The second limitation is that dam systems have components which control the system in a 

passive way, and STPA was designed for analysis of actively controlled systems. In a dam 

system, the dams are passively retaining water and the free overflow spillway passively 

conveys water. Identifying issues that could arise with these passive system components is 

not possible using STPA. Despite these limitations, STPA does offer a promising tool for 

addressing issues relating to software and human factors as well as non-failure related 

causes of potential hazards. 

Another systems technique that is becoming more widely used in dam safety applications 

is simulation. Simulation is a “what if” assessment approach that describes how the system 

responds to different inputs (Simonovic 2009). A simulation model describes the 

relationships and interactions between different components within a system, and it can be 

as detailed as is necessary to achieve its desired purpose. Simulation models contain 

numerical representations of physical and nonphysical relationships within the system, and 

may have some type of operating rules in place to determine how controls are applied 

(Simonovic 2009). Simulation results include a set of outputs, which are the values of the 

different variables of the system over time. Analysts can experiment with various inputs to 

determine how the outputs change. The two most common simulation techniques are 

deterministic and stochastic. In deterministic simulation, a specific set of inputs generates 
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a specific set of outputs, and multiple runs of the model will always produce the same 

results. In stochastic simulation, inputs or internal processes of the model may be randomly 

generated using Monte Carlo techniques. This means that two simulation runs with the 

same input parameters will produce different results. 

Simulation is particularly suited to the problem of dam safety (Hartford et al. 2016). It 

allows for interactive and dynamic behaviour to be modelled, which is important when 

considering the different types of both physical and non-physical components in dam 

systems. Simulation is capable of determining how the system state changes over time 

(Simonovic 2009), and as such it is the only tool described in this literature review that is 

capable of directly calculating the reservoir level response to various operating scenarios. 

Dam system behaviour is highly dependent on the inflows, the initial system state, the 

states of operating equipment and many other factors – experimenting with these factors 

through simulation is perhaps the most straightforward way to determine the system 

response. Simulation allows for an investigation into the emergent behaviour of systems, 

which results from complex interactions between components and events, and may be 

difficult to envision by analysing components or sub-systems individually. By modelling 

the whole system at a sufficient level of detail, the feedbacks and relationships that may 

lead to emergent behaviour can be incorporated into the model structure.  

The potential benefits of simulation and the systems approach in general are becoming 

recognized within the dams industry. Regan (2010), Baecher (2013), Komey et al., (2015), 

Micovic et al. (2015), and Hartford et al. (2016) all advocate for the consideration of dams 

as systems. Baecher et al. (2013) present a stochastic simulation methodology framework 

for dam safety flow control analysis. Hartford et al. (2016) present two examples that 

utilize a systems approach embedded within a stochastic simulation to determine the 

likelihood of failures for dam systems. One of the examples described by Hartford et al. 

(2016) and developed by Komey (2014; 2015) involves stochastic simulation of 

hydropower dam response to disturbances such as ice, debris, and human intervention on 

the Mattagami River System in Ontario, Canada. The approach utilizes the GoldSim 

Monte-Carlo modelling platform to determine various impacts these disturbances may 

have on safe operation of the system (Komey 2014; Hartford et al. 2016). A probabilistic 
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framework is used to model disturbances such as ice and debris, with fragility curves and 

simple failure rates defined to determine the probability of gate or turbine failure, and 

gamma distributions to determine time to repair (Komey 2014; Hartford et al. 2016). 

(Zielinski et al. 2016) use a similar approach to Komey (2014; 2015) to assess the safety 

of the Madawaska River System in Ontario, Canada, using a 10,000 year continuous 

simulation to estimate the probability of failure for each dam in the system. Another 

example described by Hartford et al. (2016) involves a system dynamics model of the Göta 

River System in Sweden, with the system built up in layers of increasing complexity. The 

model can be run in either stochastic or deterministic mode and is used to investigate 

system response to sea level fluctuations, landslides and climate change. 

These probability-driven stochastic model examples help address many of the 

shortcomings of traditional risk assessment approaches. Dynamic, nonlinear behaviour can 

be captured by these models and they can be developed to be as complex as necessary to 

more realistically represent the system of interest. One limitation of the stochastic 

simulation approach is that it requires a very large number of simulation years in order to 

assess combinations of component operating states that have a very low probability of 

occurring together. There is no way of assuring the modeller that a complete set of possible 

operating states has been captured in the simulation. The operating state combinations that 

arise from a stochastic simulation model will differ between two different runs of a 

simulation with the same inputs. Beyond some certain limit, if the stochastic simulation is 

run for long enough, there would be a complete set of possible operating scenarios. 

However, there would be a significant amount of time and resources spent simulating 

conditions where nothing is wrong with the system. Given the large number of potential 

combinations of operating states and current computational abilities, a full assessment of 

all scenarios using stochastic techniques is not currently possible. Despite these limitations, 

the work of Zielinski et al. (2016) and Komey (2014, 2015) provide a good indication that 

a shift in focus is required from extreme events to events occurring within the design 

envelope that might actually contribute more to the overall system risk.  
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2.4 Summary 

In the preceding sections of this chapter, a number of tools were presented that are 

commonly used within the dams industry to analyze system risk. A description of the 

advantages and limitations of each approach was provided. Ultimately, the more commonly 

applied techniques in risk analysis have served the dams community well. Hartford et al. 

(2016) suggest that the risk based approach has significantly improved the understanding 

of dam safety in a number of ways. These include facilitating analysis of less easily 

analyzed failure modes such as internal erosion, highlighting the importance of analyzing 

human factors, and indicating that the extreme events required for dam design may not be 

the most significant contributors to risk. There are, however, limitations to the most 

commonly applied techniques. It would be extremely challenging using these approaches 

to analyze the combinatorically large number of possible events that may possible occur. 

Interactions and feedbacks are typically simplified or omitted using the traditional 

techniques, meaning dynamic behaviour cannot be effectively analyzed. Many issues arise 

when dealing with human factors, software errors and design flaws. Analysis of time-

considerations is also beyond the scope of applicability of these existing approaches. 

Finally, many existing approaches omit further consideration of certain combinations of 

events which have a low combined probability – despite there being enough of these 

combinations to add up to a significant risk to the system. The following paragraphs detail 

the main conclusions from the assessment of current practices in risk analysis.  

FMEA is a tool for determining how components of a system can fail and what their causes 

and effects will be. The effects of failures at one level of the system can be determined on 

the next level up until the entire system is analyzed. This approach is a useful tool for 

brainstorming and determining potential disturbances which create the constraints within 

which the system may operate. However, FMEA is a failure-based method that may miss 

a sub-set of potentially unsafe scenarios that are not triggered by failures. It is not able to 

systematically determine combinations of constraints that could be encountered in system 

operation. It is also unable to determine and quantify the reservoir level response and has 

presented some challenges when dealing with complexity, feedback and interaction within 
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hierarchical systems (the IEC standard on FMEA states that limiting analysis to a 

maximum of two levels of hierarchy is good practice). 

PFMA is a useful tool for looking at systems as a whole and brainstorming potential failure 

modes which could develop at the system level. However, it is a completely heuristic 

approach, and does not explicitly involve analysis of various levels of a hierarchical system 

or the interactions between the levels. It does not facilitate quantification of system 

behaviour and may miss certain components which are considered to be of less importance 

to the analysts due to perceived low consequence or likelihood. It has the same limitations 

as FMEA and relies more heavily on expert judgement and subjectivity. 

ETA and FTA are both very practical tools for quantitative probabilistic assessment of 

failures and their impacts. However, these approaches are failure-based, linearize the 

progression of events and are unable to easily deal with feedback and nonlinear 

interactions. ETA and FTA also begin with initiating events, and top events (faults), 

respectively, which must be predetermined in some way. There is a very serious challenge 

using these approaches in analyzing combinations of events, of which there may be an 

extremely large number of possibilities. This is not a challenge that will be easily overcome 

given the current state of the science. Finally, these approaches are not able to determine 

the reservoir level response to various operating conditions due to their inability to analyze 

component interactions and feedback behaviour.  

Ultimately, the existing approaches, while useful, may not be adequate to capture the 

dynamic behaviour of complex, interacting hierarchical systems. Because of the 

recognized limitations, a systems approach has begun to emerge, and is beginning to gain 

some momentum within the dams industry for analysis of system safety (Hartford et al. 

2016). STPA is an excellent tool for analyzing potential control flaws in complex, actively 

controlled systems. The key limitations of STPA that pertain to the analysis of dam systems 

are that (a) dam systems may have many safety-critical components that provide passive 

control, and (b) dam systems are acting to control natural inflows, so determining the 

dynamic system response to the inflows is necessary to get a complete picture of system 

safety. STPA is unable to determine the reservoir level response to various conditions. 
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Nevertheless, STPA does provide a good starting point for the assessment of the actively 

controlled components of a dam system. It provides very useful information for 

determining potential system operating constraints (scenarios) for actively controlled 

components in a systematic way and includes both failures and non-failures.  

Simulation is another tool that can be used in the systems approach, and it is becoming 

more commonly applied within the dams industry for safety analysis. Hartford et al. (2016) 

focuses on several applications of stochastic simulation. In stochastic simulation, random 

failures of components may be initiated (with random outage lengths) to determine the 

overall probability of failure for the system. In this way, each run of a stochastic simulation 

model would produce a different output. If run for enough years, the probability of failure 

would begin to converge on a single value. The approach is becoming more widely applied 

for dam safety analysis (Komey 2014; Komey et al. 2015; Hartford et al. 2016). Stochastic 

simulation addresses more of the research requirements described previously than other 

safety assessment approaches for dam systems. Stochastic simulation can capture dynamic 

feedback relationships between system components if the system is modelled in adequate 

detail. Simulation outputs for a dam system can include the reservoir level fluctuations in 

response to various inflows and constraints, which makes simulation a particularly 

promising tool for dam safety analysis. It is also possible to assess potential “combinations 

of events” using stochastic simulation, though the ability to do so is limited by the length 

of the run (computing power). Because the probabilities applied to the events (equipment 

states) are relatively low, multiple events occurring and impacting one another are very 

rare within a stochastic simulation if not run for enough years. In theory, stochastic 

simulations run for enough simulation-years would eventually cover all of the possibilities, 

however the computational requirements to achieve a complete coverage of the 

possibilities would be beyond current capabilities. As such, the existing implementations 

of stochastic simulation may not be able to capture a complete set of possible combinations 

of component operating states at the current time. Stochastic simulation has the benefit of 

easily estimating the overall probability of flow control failure of a system, though the 

assessment of criticality for specific scenarios would require the use of data mining 

techniques as well as extremely large number of simulation-years. Some of the current 
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limitations associated with a purely stochastic approach can be demonstrated using a 

simple example.  

Consider a system with five components, A, B, C, D and E. Assuming each component is 

either functioning or failed, there are 25=32 potential combinations of failures as follows 

(normal component states are not shown): 

No failures, A, B, C, D, E, AB, AC, AD, AE, BC, BD, BE, CD, CE, DE, ABC, ABD, ABE, 

ACD, ACE, ADE, BCD, BCE, BDE, CDE, ABCD, ABCE, ABDE, ACDE, BCDE, 

ABCDE. 

For this example, assume that the goal of the stochastic simulation is to generate all possible 

combinations of the component operating states at least once. Assuming that the probability 

of failure for each component is 0.1% per day, and the model is run for as many years as 

necessary at a daily time step until each combination has been simulated at least once, the 

number of years required to arrive at each combination is shown in Table 2-8, which also 

shows the corresponding number of years within which each combination was simulated.  

Obviously, the combinations (scenarios) with less failures have a higher probability and 

are simulated more frequently than the combinations with a higher number of failures. It is 

also worth noting the high number of non-failure years simulated. Averaging over 50 total 

runs, the simulation spends about 25% of its time simulating non-failure years. This 

number is dependent on the assumed failure rates and will increase as the assumed failure 

rates decrease. The amount of effort spent simulating each scenario is a function of its 

probability, so some of the worse scenarios are focused on less because of their low 

likelihood. About half of the possible scenarios (the lower, less probable part of the list) 

are simulated less than 40 times, which means the simulation focuses less than ~0.5% of 

the simulation effort on those scenarios. A very large number of simulation-years would 

be required to collect enough data with which to assess the criticality of these more severe 

and less likely combinations of operating states. 

A volumetric representation of the system’s “possibility space” is another useful way of 

demonstrating how stochastic simulation samples different events. The “possibility space”  
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Table 2-8: Stochastic simulation of operating state combinations 

Combination 

Run 

1 2 3 4 5 6 7 8 9 10 

A 1007 485 319 685 1152 667 328 310 498 202 

B 922 479 316 674 1132 624 341 313 517 176 

C 952 475 312 649 1191 684 349 289 510 191 

D 955 462 293 701 1149 625 324 299 508 180 

E 984 462 266 683 1183 668 362 295 518 198 

AB 192 91 58 125 219 130 57 58 87 40 

AC 205 95 55 130 192 138 86 68 104 35 

AD 183 77 43 131 212 144 60 49 103 32 

AE 172 97 56 128 263 107 72 61 98 40 

BC 195 111 61 142 233 118 69 56 105 30 

BD 185 95 56 143 225 124 59 59 88 38 

BE 184 93 67 126 221 139 68 55 103 32 

CD 190 84 65 129 252 145 57 60 112 50 

CE 198 92 68 135 218 133 66 57 110 43 

DE 188 87 54 135 233 139 77 51 102 42 

ABC 36 24 9 29 40 25 11 9 24 7 

ABD 46 24 7 27 44 26 18 12 22 8 

ABE 34 20 12 24 54 22 11 20 15 8 

ACD 45 19 9 25 43 26 14 8 26 6 

ACE 31 21 12 36 50 21 13 12 20 6 

ADE 30 18 7 24 39 28 15 8 16 9 

BCD 44 14 19 29 36 25 11 14 22 6 

BCE 34 13 12 29 49 23 14 10 20 9 

BDE 25 20 9 16 51 29 12 14 25 8 

CDE 39 13 9 15 59 26 14 15 31 7 

ABCD 7 3 2 2 6 2 2 1 2 2 

ABCE 4 7 3 3 5 6 3 3 3 2 

ABDE 10 6 6 7 9 7 1 2 7 1 

ACDE 8 2 3 6 3 10 5 5 4 2 

BCDE 5 2 1 6 14 5 1 1 5 2 

ABCDE 1 1 1 1 1 1 1 1 1 1 

Total number of 

failures simulated 7111 3492 2210 4995 8578 4867 2521 2215 3806 1413 

Total number of 

non-failures 

simulated 4814 2428 1483 3433 5801 3206 1719 1597 2506 968 

Total 11925 5920 3693 8428 14379 8073 4240 3812 6312 2381 
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is a visual representation of the full realm of physically possible system states and their 

frequency of occurrence. In Figure 2-10 (King and Simonovic, 2020), the frequency, 𝐹𝑁 of 

𝑁 components in an adverse operating state (𝑁𝑈) is plotted against the frequency, 𝐹𝐷 of 

outage durations 𝐷𝑈. Simple FN relationships are assumed and a 3-dimensional possibility 

space is created. The planes of adverse component operating states are represented using 

red, orange, green, blue and purple outlined areas. It is important to note that this possibility 

space is a very simplified representation of the problem – the possibility space would also 

include inflows, starting reservoir elevations and timing of component outages. 

Nevertheless, using this simplified example figure, the stochastic samples can be plotted 

(shown as black dots). Each dot represents one sample that could be stochastically 

generated. The dots are centred around zero component outages, which have a higher 

frequency, zero components out of service and zero outage length. While the samples do 

extend into the outer reaches of the possibility space, they provide the best coverage of the 

higher-frequency scenarios (zero to one components unavailable). The coverage of the less 

probable, more extreme scenarios (where more components are out of service) is limited 

by the number of years for which the simulation is run. In a stochastic simulation, this 

volume is predefined, since the components, their outage frequency and their outage length 

frequency are inputs to the model. 

In conclusion, neither the more commonly used risk assessment approaches or the existing 

techniques utilized from the systems approach are currently capable of systematic and 

dynamic evaluation of the combinations of events that can lead to flow control failure in 

dam systems. A new methodology is required, building on the existing tools from the 

systems approach to define, analyze and evaluate a more complete range of potential 

combinations of events (scenarios). The approach must be able to handle complexity, 

feedback and nonlinear behaviour. Dynamic indicators of the system performance are a 

required output of the analysis, as well as parameters that can be used to rank the relative 

importance of a large number of potential scenarios.  
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Figure 2-10: Stochastic sampling from within the possibility space 
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Chapter 3  

3 Methodology 

In this chapter, an improved methodology for assessment of flow control in dam safety is 

developed. The methodology draws on the benefits of existing approaches where possible, 

making improvements that can facilitate a more thorough understanding of system 

response to a more complete set of scenarios. The next section describes the methodology 

justification and development, followed by a complete description of the methodology 

steps.  

3.1 Justification and development 

A dam system is fundamentally an open control system. It is forced by inputs (inflows) 

which vary with time in a relatively predictable way. Dam system outputs (outflows, 

energy, etc.) are also constrained in relatively predictable ways, but random deviations 

within the system may occur that affect the system outputs. For example, a spillway gate 

can open or close to release the desired amount of flow downstream, but failure of 

infrastructure which supports the gate function can cause the output constraints to deviate 

from their normal values. There is a need within the dams industry to better understand 

how dam system outputs may be constrained and what possible system outcomes may 

result. Specifically, determining the reservoir level and outflow response to the full range 

of possible operating constraints is an important goal that can help dam owners better 

understand vulnerabilities within the system and determine appropriate courses of action 

to address them. Using the control system structure presented by Leveson (2011) and 

modified for a dam system, a basic mathematical framework can be developed for 

calculation of the reservoir storage over time (which is directly related to the elevation 

through a stage-storage curve). This is shown in Figure 3-1. The boundaries of the system 

are the point at which the inflows enter the reservoir and the point at which the outflows 

leave the dam. Included in the system is all of the infrastructure at the dam site, including 

dams, gates, gate actuators, sensors as well as information relay, processing, operational 

decision making and implementation of operations (which may take place off site).  
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Figure 3-1: Mathematical framework for determining dam system behaviour 

The control loop shows how information is passed through the system and what the main 

connections are between different sectors (feedbacks). The relationships between Storage, 

Inflow and Release are easily represented by basic mathematical equations and rule curves 

for decision making with respect to controlled flow releases. This type of modelling is done 

frequently for operations planning and analysis of dam systems. The area where more work 

is needed is in determining constraints that come into play in several sectors of the system 

and may impact measured system state values, operational decisions, operability of 

equipment and capacity of water passages. The goal of this research is (a) systematically 

defining these operating conditions and (b) understanding how they may adversely impact 

the system state and outputs. A new approach is necessary with the following goals: 

• Reduced reliance on subjectivity and expert judgement. 

• Ability to determine potential constraints on system operation.  

• Ability to determine potential constraints that are not limited to failure modes.  

• Automatic generation of potential combinations of constraints.  

• Determine the likelihood of constraints without significant simplifying 

assumptions.  

• Quantification of the dynamic system response to constraints. Specifically, how the 

reservoir level and outflows change with time for a given set of constraints 

(component operating states), constraint parameters and inflows. 
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• Inclusion of feedbacks, interactions and nonlinear behaviour. 

• Ability to deal with system complexity without the use of extreme simplifications 

that undermine the results. 

• Ability to deal with uncertainty in the outcomes. 

• Estimation of criticality for a given scenario. 

• Estimation of overall probability of flow control failure for the system. 

Table 3-1 contains a list of the main approaches discussed in the literature review, 

evaluating them within the context of these research goals based on the observations in the 

previous chapter. It is important to note that many of these tools may not be utilized 

independently. The results of FMEA, for example, can be used as inputs to FTA or ETA. 

Combining the tools may result in improved ability to achieve these research goals, 

however the key limitations remain for the majority: an inability to model dynamic system 

behaviour, complexity, feedback and interaction. The most promising tool in terms of the 

aforementioned research requirements is the stochastic simulation approach, described in 

detail by Hartford et al. (2016). The key limitation of the stochastic simulation is that it 

spends a significant amount of effort simulating non-failures, and as such may not be an 

efficient means of systematic evaluation of each possible combination of events. The 

methodology proposed in this work seeks to determine (a) what the possible combinations 

of events are, (b) what their range of impacts might be and (c) what their relative 

importance (criticality) is, with respect to other scenarios. 

Systematic analysis of each possible scenario, in theory, may be achieved using a 

completely deterministic simulation of predefined scenarios. However, the timing of the 

scenario’s predetermined adverse operating states (events) and determining whether events 

influence one another significantly complicates the analysis. To completely and 

deterministically analyze the full range of possible outcomes of a single scenario, all 

possible combinations of event timing and inflows should be considered. Consider an 

example scenario with three events, A, B, and C, and 10,000 years of possible daily inflow 

values (this number of inflow-years is selected, in theory, to include inflows up to the PMF 

which has an annual exceedance frequency of 1 in 10,000 years). There are a total of 365 ∗

10,000 = 3,650,000 possible inflow start days. Assuming the events can happen any time  
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Table 3-1: Overview of approaches and their applicability to the research problem 

Requirement FMEA PFMA ETA FTA STPA 

Stochastic 

Simulation 

Reduced 

subjectivity 

Slightly 

(systematic 

process) 

No (fully 

heuristic) 
No No 

Slightly 

(systematic 

process) 

Slightly (simulation 

model 

automatically 

determine system 

outcomes) 

Determine 

constraints on 

system 

operation 

Yes Yes 

No – 

Requires this 

upfront 

No – 

Requires this 

upfront 

Yes 
No – Requires this 

upfront 

Ability to 

address non-

failure related 

constraints  

No – 

Failure 

based 

method 

No – 

Failure 

based 

method 

No – Failure 

based 

method 

No – Failure 

based 

method 

Yes 

Yes – If non-

failures included in 

potential constraints 

Automatically 

determine 

potential 

combinations of 

constraints 

(scenarios) 

No No No No Yes No 

Determine 

likelihood of 

constraints 

without 

significant 

simplifying 

assumptions 

No No No No No No 

Quantification 

of dynamic 

system response  

No – Static 

analysis 

No – 

Static 

analysis 

No – Linear 

chain-of-

events 

No – Linear 

chain-of-

events 

No – Static 

analysis 

Yes – Dynamic 

analysis 

Inclusion of 

feedbacks and 

nonlinear 

behaviour 

No – Static 

analysis  

No – 

Static 

analysis  

No – Linear 

chain-of-

events 

No – Linear 

chain-of-

events 

Includes 

feedbacks 

but does not 

analyze 

system 

behaviour 

Yes – Dynamic 

analysis that can 

include feedbacks 

and nonlinear 

behaviour 

Ability to 

handle 

complexity 

Somewhat, 

can pose 

challenges  

Somewhat, 

can pose 

challenges 

Somewhat, 

can pose 

challenges 

Somewhat, 

can pose 

challenges 

Yes Yes 

Assessment of 

uncertainty in 

the outcomes of 

a scenario 

No – Does 

not 

analyze 

scenario 

outcomes 

No – Does 

not 

analyze 

scenario 

outcomes 

Yes – Can 

experiment 

with 

assumptions 

Yes – Can 

experiment 

with 

assumptions 

No – Does 

not analyze 

scenario 

outcomes 

Not directly – 

Could potentially 

assess specific 

scenarios using data 

mining 

Ability to deal 

with common 

cause failures 

Limited to 

qualitative 

only 

Limited to 

qualitative 

only 

Limited – 

requires 

careful 

consideration 

Limited – 

requires 

careful 

consideration 

Yes Yes 

Estimation of 

scenario's 

criticality 

No – Static 

analysis 

No – 

Static 

analysis 

Yes  Yes  

No – STPA 

is generally 

qualitative 

Not directly – 

Could potentially 

assess specific 

scenarios using data 

mining 

Estimation of 

overall system 

flow control 

failure 

probability 

No – Static 

analysis 

No – 

Static 

analysis 

Yes, if all 

possible 

combinations 

included 

Yes, if all 

possible 

combinations 

included 

No – STPA 

does not 

involve 

probabilistic 

assessment 

Yes 
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within a one-year window, there are a total of 365 ∗ 365 ∗ 365 = 48,627,125 possible 

combinations of event initiation times (the day in which the adverse operating state begins). 

This means 3,650,000 ∗ 48,627,125 = 1.77 × 1014 possible ways to execute the 

simulation for a single scenario with three events occurring. This number considers only 

one set of possible impacts for event A, B, and C, which may have impacts (for example, 

outage lengths), that can significantly vary. Clearly, the number of combinations and 

scenarios that must be analyzed to fully define the suite of potential outcomes for a system 

becomes computationally prohibitive, even with state-of-the-art computing technology 

such as cluster computing. Monte Carlo selection of event timing and inflow start day from 

s synthetically generated inflow record can be useful to sample a small number of these 

possibilities and dynamically characterize some of the possible outcomes for a given 

scenario. Each predetermined scenario can be simulated through a number of Monte Carlo 

iterations to better understand the possible range of outcomes resulting from that scenario. 

This is the hybrid Deterministic Monte Carlo approach proposed in this research, where 

events (component operating states) are pre-selected and their impacts, timing and inflows 

are varied to better understand the possibilities within current computational capabilities. 

The scenario inputs represent the deterministic portion of the model, and the varying of 

scenario parameters represents the Monte Carlo portion of the model. 

The approach presented in this thesis aims to provide a more even coverage of the 

possibility space, as shown in Figure 3-2 (King and Simonovic, 2020). The sample dots 

are color coded, to indicate which “adverse component operating state plane” the samples 

are taken from. The Deterministic Monte Carlo approach forces the simulation to take 

samples from within each plane, because it does not rely on the frequencies of failure and 

duration to generate the samples. Each plane represents a single scenario, and the scenarios 

are predetermined and simulated regardless of their likelihood. For the Deterministic 

Monte Carlo approach, only a single sample would be taken to represent “normal” 

conditions. In the proposed approach, the frequencies of the component outages and outage 

lengths are not required to run the model, so the frequency dimension of the possibility 

space is not defined. If enough information is available to define these frequencies, a 

complete probabilistic analysis using the results of the analysis is possible.  



88 

 

 

Figure 3-2: Deterministic Monte Carlo sampling from within the possibility space 

Another key timing related issue that must be considered is the problem of whether 

preceding events are influencing the results of subsequent events. Such considerations arise 

when a component failure has been rectified, but the overall system remains in a “disturbed 

state”, that is, the system has not been restored to the state that it would have been in if the 

component failure had not occurred.  This means that the “system state deviance” must be 

a factor to be considered along with the timing of component failures. Since “system state 

deviance” is determined by operational decisions, (eg. The decision to release water to 

return to a normal state), these decisions must be somehow included as factors in 

determining the extent of the deviance. This can be achieved by analyzing whether the 

reservoir level has returned to a predefined “normal” state following the initiation of an 
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event. If not, there may be independent sub-scenarios within the simulation that should not 

count towards results of the scenario being analyzed. Consider the example shown in 

Figure 3-3 (King and Simonovic, 2020), which has three events A, B and C occurring 

within some time of one another.  

 

Figure 3-3: Example output reservoir elevations for Scenario ABC (King and 

Simonovic, 2020) 

In the example, the reservoir has a constant elevation of 1 m under normal circumstances 

where everything is operational. The event outage occurrence dates and lengths (durations) 

are represented by the horizontal lines above the plots. For Outcome 1 (light red), Event A 

causes an increase to about 1.3 m and then the reservoir level returns to the normal 

elevation of 1 m prior to the initiation of Event B. The rate at which it returns to the normal 

elevation would be determined by the operations planning algorithm within the simulation 

model. Event B causes in increase in reservoir elevation to about 1.8 m, after which Event 

C begins and increases the reservoir a further 0.1 m. After Event C, the reservoir returns to 

its normal elevation as a result of the operations planning decisions. In Outcome 1, Event 

A does not have any impact on the outcome of Events B and C, because the reservoir level 

has returned to a normal elevation. Event B, however, does impact Event C. Thus, for 

Outcome 1, two sub-scenarios are observed: (1) The result of Event A, and (2) the 

combined result of Events B and C. In Outcome 2 (dark red), the reservoir rises to about 

1.95 m following Event A, at which point dam breach is triggered and the reservoir drops 
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to 0 m in elevation. In this case, the only sub-scenario being analyzed is Event A. This 

example shows that despite the simulation being intended to analyze the combined impacts 

of Events A, B and C, they cannot be assumed to be influencing one another. Some analysis 

of each simulated outcome (the reservoir levels from each simulated Monte-Carlo iteration) 

is required to ensure simulation results are attributed to the actual scenarios being 

represented within the analysis. “Complete iterations” are considered to be the subset of 

scenario results where all of the scenario’s events both occurred and affected one another.  

In using the proposed Deterministic Monte Carlo approach, it is important to consider that 

the goal of the exercise is to analyze all scenarios (predefined combinations of operating 

states) as completely as possible given computational time constraints, to determine the 

criticality of these combinations and identify particularly vulnerable components. There 

should be enough data on each scenario to estimate the range of expected system 

performance as well as the failure frequencies, failure inflow thresholds and reservoir level 

exceedance frequencies. To ensure there is enough data collected for each scenario, it may 

be necessary to limit the time between events to ensure their collective impacts can be 

assessed. This limit may be determined as a function of the impact lengths for a given 

iteration (for example, by taking the sum of impact lengths). Whether the event initiation 

time limit should be more or less than the sum of the impact lengths requires experimenting 

with scenarios to determine how long the system typically takes to return to normal 

operation. For “flashy” reservoirs with relatively limited storage compared to inflows, the 

recovery time following a return to normal operations may be quite short – days or even 

hours. For reservoirs with large storage in comparison to inflows, this recovery time may 

be significantly longer. The recovery time may also be less than the sum of impact lengths, 

due to inflows that are less than the total capacity of the available flow conveyance 

facilities. The recovery time should influence the modellers decision regarding the 

appropriate time limit for event initiation. 

In summary, the methodology developed in this work uses a systems approach for dam 

safety analysis, attempting to draw on the strengths of the existing techniques, combining 

and building on them with the goal of addressing the key element that is missing in all of 

them – assessing outcomes from a large number of the possible combinations of events.  



91 

 

This research focuses on identification and analysis of a more complete subset of 

potentially unsafe scenarios than has previously been considered in dam safety analysis. A 

Deterministic Monte Carlo simulation approach is proposed, in which scenarios are 

systematically defined upfront and used as a deterministic input to the model. Defining the 

complete set of failures and events to be simulated ensures all combinations of the defined 

component operating states (or constraints) are evaluated. It also means that the simulation 

efforts are divided equally between each scenario (combination of operating states), so a 

more thorough analysis of each scenario is possible than using a purely stochastic 

approach. Finally, the proposed approach reduces the amount of time spent simulating non-

failures. The scenario parameters, such as the timing and magnitude of impacts, are varied 

using Monte Carlo techniques so that each scenario is run as many times as possible given 

computational time constraints. Varying impact parameters allows some analysis of the 

uncertainty relating to the estimate of scenario impact magnitudes (for example, it is hard 

to estimate how long a component will be out of service, so a range of different values can 

be tested). Conditional probabilities of failure and reservoir level exceedances above key 

elevations (given a scenario has occurred) are direct outputs of the simulation. In this way, 

a much larger subset of the events that contribute to the probability are analyzed. Focusing 

on numerically assessing the entire design envelope and the complete range of possibilities 

can help asset owners in becoming more prepared for any event (or combination of events), 

regardless of its probability.  

A flow chart detailing the overall methodology is shown in Figure 3-4 (King and 

Simonovic, 2020). First, a component operating states database is created, which defines 

individual components and their operating states, causal factors and potential range of 

direct impacts. These represent the constraints within which the system may have to 

function. Population of the database requires extensive knowledge of the system and is 

similar to a FMEA but also includes non-failure operating states. A combinatorial 

procedure uses the database entries to come up with the complete range of potential 

scenarios for the system, which are used as inputs to a simulation model. Synthetic climate 

data is generated for the system of interest and used in a hydrological model to develop a 

long, synthetic timeseries of inflows to be used as inputs in the simulation model. The 

scenarios become the inputs for a deterministic simulation model which is run many times 
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for each scenario, with Monte-Carlo generated inputs that vary the inflows and incident 

timing, as well as the scenario impacts. Outcomes are descriptors of the system behaviour 

over time, including the releases through various conduits as well as adverse impacts, such 

as dam overtopping, uncontrolled flow releases, or dam breach. Outcomes for each 

scenario are assessed and aggregated performance measures for scenario groups are 

computed. The results of the analysis could be utilized to develop or refine response and 

mitigation strategies to improve system performance. Further analysis may be possible that 

would allow for overall estimates of the probability of failure for each individual scenario, 

and probability of failure for the system as a whole – this would require probabilistic 

analysis of operating states, which is a complex task that is not explored in this research.  

The proposed methodology has been developed to meet as many of the requirements in 

Table 3-1 as possible within the time frame of the work. The key missing pieces are that 

(a) it still inherently relies on subjectivity in the population of the operating states database 

and development of the simulation model – there is currently no substitute for expert 

knowledge and engineering judgement; (b) the likelihood of operating states are still 

difficult to estimate without significant simplifying assumptions; and, (c) the approach 

does not directly result in estimates of overall probability of flow control failure for the 

system, though with some additional analysis this may be possible. There are also an 

extremely large number of configurations (with different inflow sequences, event timing, 

and impact magnitudes) for each combination of operating states, as described earlier in 

this section – this approach covers only a small subset of the possible configurations for 

each scenario, through the use of Monte Carlo techniques. This means that results between 

two identical simulations of a given scenario would vary, and the results are only estimates 

of the criticality of each scenario, given computational time constraints. 
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Figure 3-4: Overall methodology flow chart (King and Simonovic, 2020) 

Each of the methodology steps are described in detail in the following sections. First, a 

description of the components operating state database and the process for database 

population is provided. Next, scenario development is discussed with a description of the 

combinatorial procedure developed in this research. Then, a detailed description of the 

Deterministic Monte Carlo simulation approach is presented, which uses a system 

dynamics simulation model with Monte-Carlo varied inputs. The following section 

contains a description of the modelling approach used for inflow generation. Finally, 
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scenario outcome assessment is discussed including the selection of criticality parameters 

and performance measures.   

3.2 Component Operating States Database 

A component operating states database is used to define the operating states for each 

system component and the causal factors that could lead to the development of the 

operating states. The approach of database population is similar to FMEA but also 

considers non-failure related operating states, including normal or functional operating 

states. Population of the database can significantly benefit from the application of (a) the 

STPA technique for actively controlled components and (b) a single-level FMEA analysis 

for system components. There is still a significant amount of reliance on expert judgement, 

but this may be slightly reduced if the systematic approach of STPA is used to inform 

database population.  

In order to develop an exhaustive list of potential operating scenarios for a hydropower 

system, each individual component of the system (whether it be physical or non-physical) 

must be analysed and its modes of operation considered. This is achieved using an 

operating states database, which was designed using a relational database software called 

Microsoft SQL Server (MSSQL). MSSQL is a software used to generate and populate 

computer databases. It can be used to generate interfaces that assist with database 

population and information access. Using MSSQL, data are organized into relational tables 

to model aspects of reality, such as the system elements, at different levels (system, 

component and reservoir), the operating states and their characteristics as well as the causal 

factors. Another important feature used in the design of the database is the store 

procedures, which include functions that provide flexibility for developers, and are used 

to insert and recover data very efficiently from the database with less computational 

burden. In addition to this, there are views which allow the combination of several tables 

in a relational way and return aggregated data to the user interface. The structure and the 

entity relationship (ER) diagram of the database is shown in Figure 3-5 which depicts the 

relationships between various levels of the system. The lines connecting the objects (tables) 

in Figure 3-5 represent “foreigner keys” which ensure data consistency and integrity. The 

database was designed to facilitate simple data entry using a web-based user interface. It 
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may also be accessed, modified and queried using MSSQL Server Management Studio. 

The design of the database is meant to be as general as possible, facilitating the analysis of 

various dam systems with different configurations. Figure 3-5 presents three major groups 

of tables organized as: a) System elements: containing the tables representing the System, 

Component and Reservoir level elements; b) Operational States: containing the tables 

representing the operating states for each of the system elements; c) Casual Factors: 

containing the tables storing the causal factors; d) Auxiliary objects: containing tables that 

are used to store user accounts and system logs.  

 

Figure 3-5: Database Structure 

In order to keep track of and assess each individual component in the system, a hierarchical 

database structure is used in which components can be broken down into multiple sub-

components and easily tracked using a components tree with drop-down lists containing 

components in an increasingly higher level of detail. Hydropower systems consist of a large 

number of complex, interacting components at various levels of the system, and often in 
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various locations. Use of a components tree helps the user set up the relationships between 

these higher and lower level components of the system. 

The components tree consists of three levels. These are as follows: 

• System level, which includes reservoirs, communications equipment and other 

high-level components of the overall system 

• Reservoir level, which breaks down the system-level components into their sub-

components. This includes dams, spillway gates, generating units, sensors and other 

infrastructure assemblies that exist for a single reservoir. Reservoir level 

components also include non-infrastructure system components such as the 

operations staff and inflow forecasting for the reservoir.  

• Component level, which breaks down (when possible) the reservoir-level 

components into their sub-components. A spillway gate may have several 

interacting sub-components which function together, and these can be broken down 

at the component level and tied to the gate for which they represent.  

These levels of the system are stored as tables in the database and can be seen in Figure 

3-5a under “System elements” group and the object names are: “ComponentLevel”, 

“ReservoirLevel” and “SystemLevel”. The components tree ensures that each sub-

component is tied to an individual component at a higher level, allowing for complex 

system structures to be represented fully while maintaining relationships between the 

higher-level components and the sub-components of which they are comprised. 

Components are also assigned a type to facilitate integration with the simulation model. 

Once components are defined, the individual operating states for each component can be 

described. The operating states database includes normal operating status for each 

component, as well as adverse operating states which can include failure or non-failure 

events. Operating states include several entries, shown in Figure 3-5b under “Operating 

States” group and listed below – these may be expanded upon, if necessary, for different 

systems being analyzed:  

• Operating state type: normal, failed, failed closed, failed in place, collapsed, 

delayed, erroneous 
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• Impact type: none, outage, delay, error, blockage, settlement, cracking, wave, 

uncontrolled release of water 

• Operating state description: qualitative descriptor for operating state 

• Minimum impact: numerical minimum value of impact 

• Maximum impact: numerical maximum value of impact 

• Average impact: numerical average value (mode) of impact 

• Unit type: The units of the impact 

• Notes: user entries on data sources and/or assumptions 

A numerical range of impact magnitudes is included (see “Operating States” table in Figure 

3-5b since it may not be possible to estimate accurately the exact amount of time needed 

to repair certain components or the magnitude of error or delay which may occur under 

varying circumstances. For the more extreme failure modes, such as collapse of a dam or 

spillway gate, the process of repair could take years due to a number of factors including 

the degree of damage, the design process, the contract tendering process and even political 

considerations. Including a wide range of potential impacts for each operating state allows 

the full range of potential impact times to be explored. This structure also facilitates Monte-

Carlo simulation which can be used to investigate the full range of system behaviour 

outcomes for a given scenario (set of component operating states).  

Each operating state can be assigned one or more causal factors, with details as specified 

in Figure 3-5c under “Causal Factors”. Causal factors are the events which lead to the 

operating state being described. Several causal factor types are required as various 

components of the system may be vulnerable to different disturbances. These include 

earthquake, maintenance, debris, excessive rainfall, ice, etc. The user may create a specific 

list for the system of interest. It may be desirable in some cases to define the magnitude of 

causal factor that could lead to the event. In the case of an earthquake, certain components 

may be vulnerable under certain degrees of ground acceleration. For some causal factors, 

it may not be possible to provide a numerical definition. Causal factors may also be 

assigned date index ranges, which specify the minimum or maximum date within which 

the causal factor can occur (as an integer between 1 and 365). An entry under causal factors 

was also added to allow for quantification of the probability of the causal factor leading to 
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the operating state. While this information is useful in overall calculations of scenario 

probability, it is extremely hard to define in the presence of limited data. The focus of this 

research is to define and analyze the full range of potential operating conditions for a dam 

system, and probabilistic assessment remains an important area for future work. 

The procedure for population of the database is detailed in Figure 3-6. First, system 

documentation and details can be used to populate the components tree for the system of 

interest. Components at the different levels of the system are defined. Next, gathering of 

information relating to failures, expert knowledge, and any FMEA and STPA outcomes  

 

Figure 3-6: Component operating states database population flow chart 

should be gathered to begin definition of operating states, population of operating states 

tables and causal factor information. Populating the table is quite similar to an FMEA in 

that it is expert knowledge and judgement from a variety of experts would be recommended 

in populating the database to ensure the most exhaustive list of operating states, impacts 

and causal factors which is as accurate as possible. The key difference from an FMEA is 

that non-failure operating states may also be included within the database. In addition, 
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component failure effects on other components or higher levels of the system can be 

programmed into the simulation model and do not need to be addressed within the database. 

While a significant amount of subjectivity remains in database population, placing the 

focus on individual components at different levels of the system and determining their 

direct impacts is necessary to allow for automated scenario generation. The database is 

structured so that various users can work together to provide inputs, facilitated using user 

identification (see “Auxiliary objects” in Figure 3-5d). Users of the database can enter in 

their details and create a user ID and password to be entered upon accessing the database 

interface. This, along with IP address tracking ensures all sensitive information is kept 

secure. 

 

3.3 Operating State Scenario Development 

The information in the database contains as many of the systems components and their 

potential operating states that can be defined by the modeller(s). A combinatorial procedure 

is required to automatically generate the complete list of operating state combinations from 

the database. Each scenario will represent one possible combination of operating states (or 

set of constraints) for each component in the system. The use of combinatorics will ensure 

an exhaustive list of potential operating scenarios is developed. Deterministic modelling of 

each of the scenarios, with Monte Carlo variation of their potential parameters, will allow 

for a more complete investigation of scenarios and potential system outcomes than may be 

possible using a purely stochastic model. 

Consider a system of three components, A, B, and C, each which can either be functional 

or failed. The total number of possible combinations of operating states is 23 = 8. These 

are:  

𝐴𝐵𝐶, �̅�𝐵𝐶, 𝐴𝐵̅̅ ̅̅ 𝐶, �̅�𝐵𝐶̅, 𝐴𝐵𝐶̅̅ ̅̅ ̅̅  𝐴�̅�𝐶, 𝐴𝐵𝐶̅̅ ̅̅ , 𝐴𝐵𝐶̅  

where a solid line over the variable represents its failed state. A process is required that can 

not only determine the number of combinations but can determine what the combinations 

themselves are. The process should also work for components with more than one 
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operating state, since this methodology considers operating states outside of the traditional 

binary definition of “functional” or “failed”. The Cartesian Product meets these 

requirements. Consider a set of operating states for each component, such that: 

𝐴,  �̅�  ∈ 𝑨 

𝐵. �̅� ∈ 𝑩 

𝐶,  𝐶 ̅̅ ̅ ∈ 𝑪 

The Cartesian Product 𝑨 × 𝑩 × 𝑪 defines all possible combinations, as listed above. 

Consider component 𝑨 has an additional operating state in its operating state set, such that 

𝐴, �̅�, �̂� ∈ 𝑨. The operation 𝑨 × 𝑩 × 𝑪 would then yield 3 × 2 × 2 = 12 possible 

outcomes, as follows:  

𝐴𝐵𝐶, �̅�𝐵𝐶, 𝐴𝐵̅̅ ̅̅ 𝐶, �̅�𝐵𝐶̅, 𝐴𝐵𝐶̅̅ ̅̅ ̅̅  𝐴�̅�𝐶, 𝐴𝐵𝐶̅̅ ̅̅ , 𝐴𝐵𝐶̅, �̂�𝐵𝐶, �̂��̅�𝐶, �̂�𝐵𝐶̅, �̂�𝐵𝐶̅̅ ̅̅  

This example demonstrates the use of the Cartesian Product for generating all possible 

combinations of sets of varying lengths. To achieve the goal of coming up with all possible 

combinations of operating states for the system, the information from the database can be 

converted into operating state sets for each component of the system. Then, the Cartesian 

Product is applied to come up with a list of all possible combinations, where each 

combination is one unique set of operating states for each component in the system (a 

scenario). The process for scenario generation is detailed in Figure 3-7. The scenarios 

generated through this process become the input to the simulation model. The following 

paragraphs describe the steps and mathematical descriptions of the process.  

From the database, tables detailing the database inputs at each level of the system can be 

extracted. The component number and operating state number for each of the components 

and operating states can be used to generate unique identifiers, as shown in Equation 3.1. 
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Figure 3-7: Scenario generation flow chart 

𝐶1 = [𝑐1𝑜𝑠1, 𝑐1𝑜𝑠2, 𝑐1𝑜𝑠3, 𝑐1𝑜𝑠4…𝑐1𝑜𝑠𝑚1
]

𝐶2 = [𝑐2𝑜𝑠1, 𝑐2𝑜𝑠2, 𝑐2𝑜𝑠3, 𝑐2𝑜𝑠4…𝑐2𝑜𝑠𝑚2
]

⋮
𝐶𝑛 = [𝑐𝑛𝑜𝑠1, 𝑐𝑛𝑜𝑠2, 𝑐𝑛𝑜𝑠3, 𝑐𝑛𝑜𝑠4…𝑐𝑛𝑜𝑠𝑚𝑛

]

(3.1) 

where 𝐶1…𝐶𝑛 represent the system component operating state sets for components 1 

through 𝑛 and 𝑛 ∈ (1…𝑁), 𝑐1…𝑐𝑛 represent the components 1 through n, 

and 𝑜𝑠1…𝑜𝑠𝑚𝑛
 represent operating states 1 through 𝑚𝑛 for component n which has 𝑚 

operating states, 𝑚 ∈ (1…𝑀). The component operating state sets contain a list of all 

unique operating state and causal factor combinations for a given component. The actual 

numbers given to components are generated directly from the database identifiers, and the 

operating states are then labelled 1 to m. The number of unique operating state/causal factor 
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combinations for each component may vary so the component operating state sets are not 

equal in length from component to component. 

Cartesian product of these sets can be easily obtained using Python’s itertools package, 

with the product function (Python Software Foundation 2012). The function is an efficient 

iterator containing nested “for” loops which essentially work as an odometer that advances 

the rightmost element on each iteration. This produces an exhaustive list of potential 

system operating scenarios, which contain one operating state for each component in the 

system. Using the Cartesian Product of each component’s operating state set produces an 

exhaustive list of elements (scenarios) which include a complete list of operating states for 

every component in the system. Scenarios take the form shown in Equation 3.2: 

𝑆 = [𝑐1𝑜𝑠𝑚1, 𝑐2𝑜𝑠𝑚2, … , 𝑐𝑛𝑜𝑠𝑚𝑛] (3.2) 

where each scenario S consists of a single operating state for every component in the 

system. The operating states are kept track of using operating state identifiers as shown in 

Equation 1.  

The total number of possible operating states TS is therefore equal to the number of 

elements in the Cartesian product of the component operating state sets. The number of 

elements in the Cartesian product is the product of the length of each set: 

𝑇𝑆 =∏𝑀𝑛

𝑁

𝑛=1

(3.3) 

where 𝑀𝑛 is equal to the number of individual operating state/causal factor combinations 

for each component 𝑛, 𝑛 ∈ (1…𝑁).  

The resultant number of potential scenarios will be a function of the number of operating 

states and components, and as such will be extremely high for a complex system modelled 

in significant detail. Because the goal of this methodology is to simulate each and every 

scenario to determine the potential impacts, it may be necessary in practice to consolidate 

multiple components or causal factors into categories based on the modes of failure or 

adverse impacts, to reduce the number of scenarios and ensure the computational feasibility 
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of the simulation model. This could potentially be achieved through additional analysis – 

fault tree analysis may be particularly suited to determining multiple paths of failures that 

lead to the same higher-level fault, which could then be consolidated into a single operating 

state (this could be particularly promising for spillway gate and turbine systems).  

While some of the generated scenarios may be relatively unrealistic in comparison to 

others, this approach focuses on determining all of the possibilities. The worst-case 

scenario where every component is in an undesirable state is extremely unlikely, yet still 

possible and does contribute (in a very small way) to the overall probability of failure. 

Understanding system behaviour in response to any scenario can help guide the selection 

of operating strategies and investments to improve system safety and guide system 

recovery.  

This methodology for scenario generation does not consider the time between changes in 

operating states for different components or the inflows, which would significantly 

complicate the procedure. Instead, this is dealt with using a Deterministic Monte Carlo 

Simulation framework, where the operating states for each component (scenarios) are 

predetermined and used as inputs to a simulation model. For each deterministic simulation 

of a particular scenario, the uncertainty arising from varying time between events, impact 

magnitudes and inflows is varied in a number of Monte Carlo iterations, as detailed in 

Section 3.4.  

 

3.4 Deterministic Monte Carlo Simulation Framework 

This section presents a framework for the Deterministic Monte Carlo Simulation. First, a 

description of the simulation model development is provided. In this research, a system 

dynamics simulation environment is used. Next, a discussion of the Monte-Carlo variation 

of scenario parameters is provided. The system dynamics simulation model is run in a 

hybrid deterministic/Monte Carlo environment where (a) the operating states associated 

with a single scenario are used as inputs for a single execution of the simulation, and (b) 

the parameters of that particular scenario are varied in a series of iterations, using Monte 
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Carlo generated parameters for operating state timing, impacts and inflows. The final 

section of this chapter details the simulation execution steps.  

 

3.4.1 System Dynamics Simulation Model Development 

Simonovic (2009) presents simulation techniques that deal with water resources in general, 

with a particular focus on system dynamics simulation as a tool for water resources 

engineers. In system dynamics, a stock-and-flow model can be used to represent the system 

structure, showing the complex interactions between system components. These complex 

interactions are the source of the system behaviour and can help identify emergent 

behaviours that may not be easily assessed through analysis of the system’s individual 

parts. By modelling the system as a whole and all relevant feedbacks and relationships 

between components, the overall system behaviour can be characterized. The stock-and-

flow representation facilitates easy modification of the system structure to experiment with 

various upgrades or operational strategies that have the potential to improve system 

performance. Recall, stocks are represented as boxes and flows are represented as pipelines 

into or out of the stock controlled by spigots (with a “source” or “sink” that supplies or 

drains flows). Flows have units of material over time, and while inflows and outflows for 

the dam system are represented as flows in this particular application, there are many other 

types of flows that can be used which may have nothing to do with water. Auxiliary 

variables and arrows make up the other major components of a stock-and-flow model, and 

these represent constants or variables that change with time according to a mathematical 

equation or algorithm.  

Consider a simple dam system, with a single reservoir and dam that is controlled only by 

a free overflow weir.  Figure 3-8 contains a representation of this system. Reservoir Storage 

is represented as a stock with units m3. The value of Reservoir Storage can only be changed 

by the flows into or out of the stock. Flows have the same units as the stock over time. In 

this example. Inflow and Outflow are the stocks and have units of m3/s. 



105 

 

 

Figure 3-8: Simple dam system with free overflow weir 

The change in Reservoir Storage can be computed as: 

𝑑𝑆

𝑑𝑡
= 𝐼 − 𝑄𝑜𝑢𝑡 (3.4) 

Where 𝑆 represents Reservoir Storage, 𝑡 represents time, 𝐼 represents Inflows and 𝑂 

represents Outflows. System dynamics tools use integration to calculate the value of the 

stock at each timestep. The Reservoir Level (𝑅𝑆𝐸) value is a function of the Reservoir 

Storage as defined by the Stage-Storage Curve. Similarly, Free Overflow Weir Discharge 

(𝑄𝑤𝑒𝑖𝑟) is a function of the Reservoir Level, as defined by the Stage-Discharge Curve for 

the weir. Equations presented here are generated from the Cheakamus System 

characteristics, the details of which are summarized in Appendix A.   

𝑅𝑆𝐸 = −1.12 ∗ 10−5  ∗  𝑆2  +  3.24 ∗ 10−2  ∗ 𝑆 +  3.64 ∗ 102 (3.5) 

𝑄𝑤𝑒𝑖𝑟 = −35.8 ∗ 𝑅𝑆𝐸3 +  40.9 ∗ 103 ∗ 𝑅𝑆𝐸2  − 15.6 ∗ 106 ∗ 𝑅𝑆𝐸 +  19.8 ∗ 108 
𝑄𝑤𝑒𝑖𝑟 = 0 𝑓𝑜𝑟 𝑅𝑆𝐸 < 378.41 (3.6)

 

Note that for “flashy” reservoirs with little storage in comparison to inflow volumes, the 

reservoir elevation may vary greatly throughout the day, so weir discharges may also vary 

hourly. For a model run on a daily timestep, it may be necessary to compute the Free 

Overflow Weir Discharge, 𝑄𝑤𝑒𝑖𝑟 for a given day by iterating within the function over a 24-

hour period. This will ensure weir discharges accurately reflect reality.  
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Inflows represent an external model input, which in this case ranges from 5 to 25 m3/s. 

Outflows (𝑄𝑜𝑢𝑡) are equal to the Free Overflow Weir Discharge: 

𝑄𝑜𝑢𝑡 = 𝑄𝑤𝑒𝑖𝑟 (3.7) 

If we simulate this model with a constant inflow and user-defined Stage-Storage and Stage-

Discharge curves, as well as an initial starting reservoir level (10 m3/s-d), we can see that 

the model reaches a steady state, where the discharge over the weir is equal to the constant 

inflow. This is shown in Figure 3-9 for three different constant discharge values. Note that 

the reservoir level can be represented using units of volume (m3), however using the units 

m3/s-d can considers the available flow rate over time, which simplifies the calculations 

required. 

 

Figure 3-9: Simulation of simple dam system with free overflow weir 

 

Suppose we add a single gate to this system, modifying the stock-and-flow diagram in 

Figure 3-10. The Gate Discharge (𝑄𝑔𝑎𝑡𝑒) is a function of the Gate Position (𝐺𝑃) and 

Reservoir Level, as defined by the Gate Rating Curve (provided by BC Hydro and 

summarized in Appendix A). For this single-gate system, the rating curves for both gates 

are combined into a single gate (by simply adding the discharge columns). The gate rating 

curves can be used in a two-dimensional interpolation to determine what the corresponding 

flow is for a given reservoir elevation and gate position. This can be done using simple 

Python functions such as interp2d which is part of the scipy package. 
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𝑄𝑔𝑎𝑡𝑒 = 𝑓(𝑅𝑆𝐸, 𝐺𝑃) (3.8) 

The outflow then becomes: 

𝑄𝑜𝑢𝑡 = 𝑄𝑤𝑒𝑖𝑟 + 𝑄𝑔𝑎𝑡𝑒 (3.9) 

Simulating this system for constant inflows of 32 m3/s with a variable gate position yields 

a similar result where a steady state is achieved, as shown in Figure 3-11. In the blue line 

in Figure 11, the gate position is the smallest and the reservoir rises to the free overflow 

spill. At this point, an instantaneous increase in the outflow is observed as the overflow 

spillway begins to pass flow. It is important to note that the increase in outflow at a smaller 

time step (say, hourly) would be more gradual than the daily plots may indicate. 

 

 

Figure 3-10: Simple dam system with free overflow weir and gate 
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Figure 3-11: Simulation results for simple system with free overflow weir and gate 

If we add a sinusoidal relationship to represent seasonal variations in the system inflow, 

we start to see some more variation in the resultant reservoir levels, as shown in Figure 

3-12. The relationship used in this simple simulation model is chosen to roughly mimic the 

natural seasonal variation in flows for the Cheakamus system, with time 𝑡: 

𝐼 = 60 ∗ sin 0.015(𝑡 − 80) + 70 (3.10) 

 

Figure 3-12: Simulation results for simple system with free overflow weir, gate, and 

sinusoidal-varying inflows 

Including some day-to-day variability in inflows for the simple system can be done using 

a random normally distributed variable (with a mean of 0 and a scale of 30) which is added 

to the time-dependent sinusoidal inflow value. The value is then truncated, so that the 

minimum inflow value cannot be less than 2 m3/s. The simple system simulation results 

with added daily variability are shown in Figure 3-13. The fluctuation in the reservoir levels 

is more extreme, and the resulting reservoir levels and inflows begin to vary more greatly.  
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Figure 3-13: Simulation results for simple system with free overflow weir, gate, 

sinusoidal inflows with daily variability 

Obviously, for normal operation of a dam with a gated spillway, the gate positions are not 

kept constant throughout the year and for all inflows. Gate positions may be selected based 

on a number of inputs, including the inflow forecast, rule curves, target reservoir 

elevations, outflow constraints and downstream impacts. Creating an algorithm to simulate 

operations planning is a more challenging aspect of model development, in particular in 

the case of cascading and parallel dam systems. Optimization is frequently cited in the 

literature and works well for balancing inflows, downstream effects, reservoir operational 

limits and outflow constraints. However, optimization may significantly impede 

computational efficiency, which is an important consideration when running the simulation 

model a large number of times. For this simplified example based on a version of the 

Cheakamus project with only a single gate, an if-then-else type algorithm has been 

developed for Operations Planning. The algorithm uses 14 days of inflow forecasting to 

determine the appropriate gate releases that will keep the reservoir level between target 

elevations (see Figure A5 in Appendix A). Inflow Forecast is based on the sinusoidal 

relationship described previously, with no random normal variable added. This means the 

operations planning algorithm has some indication of the average inflow to expect over the 

next 14 days but is not aware of any major deviations from the normal level due to the 

random normally distributed variable that is added. The Operations Planning algorithm is 

detailed in Figure 3-14 (King and Simonovic 2020). The output variable from Operations 

Planning for this simple example is gate flow, which can be transformed into a gate position 

instruction. The Gate Position is calculated using a reverse two-dimensional interpolation 
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using the Operations Planning output (the desired gate flow) and the Reservoir Level, based 

on the Gate Rating Curve. The resultant stock and flow model is shown in Figure 3-15.  

 

 

Figure 3-14: Simple operations planning algorithm King and Simonovic (2020) 
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The simulation results for the example with operations planning implemented are shown 

in Figure 3-16. The reservoir rises to the level of El 376.5 m (the Normal Maximum 

Reservoir Level), and hovers at that level or just above and below based on the deviations 

introduced by the random normal variable added to the inflow. Note that there are no power 

flow release facilities included in the model, so the algorithm keeps the reservoir level high 

because there is no reason to discharge more additional water than necessary to meet the 

maximum reservoir level target.  

 

 

Figure 3-15: Simple dam system with a single weir and gate, with operations 

planning algorithm implemented (King and Simonovic, 2020) 
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Figure 3-16: Simulation results for simple dam system with single weir and gate, 

with operations planning algorithm implemented (King and Simonovic, 2020) 

Another important feature of the simulation model will be the ability to simulate 

component failures or outages. Considering the simple example developed, this can be 

added by creating a variable that tracks remaining time to repair following gate failures, 

Gate Remaining Time to Repair, 𝐺𝑅𝑇𝑇𝑅. This is modelled as a stock, which receives a 

pulse of Gate Failure, 𝐺𝐹, when the gate fails. The stock drains with the value time when 

its value is positive, using the flow Gate Repair, 𝐺𝑅. The gate remaining time to repair can 

then be implemented in the model based on the impacts of a gate outage – in this simple 

example the situation modelled will be that the gate fails in the closed position. Gate failure 

causes an inflow to the stock of 20 days at time 𝑡 = 100, and the gate becomes stuck in 

the closed position for a 20-day period. The modified stock and flow diagram for this is 

shown in Figure 3-17. 
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Figure 3-17: Simple system with gate and weir, with operations planning and gate 

failures implemented (King and Simonovic 2020) 

In this example, the gate remaining time to repair is calculated as: 

𝑑𝐺𝑅𝑇𝑇𝑅

𝑑𝑡
= 𝐺𝐹 − 𝐺𝑅 (3.11) 

Gate Failure is calculated as: 

𝑖𝑓 𝑡 = 100, 𝐺𝐹 = 20 

𝑒𝑙𝑠𝑒, 𝐺𝐹 = 0 (3.12) 

 

Gate Repair is calculated as: 

𝑖𝑓 𝐺𝑅𝑇𝑇𝑅 > 0, 𝐺𝑅 = 1 

𝑒𝑙𝑠𝑒 𝐺𝑅 = 0 (3.13) 

The Gate Position can then be calculated based on the gate availability: 

𝑖𝑓 𝐺𝑅𝑇𝑇𝑅 = 0, 𝐺𝑃 = 𝑓(𝑂𝑃, 𝑅𝑆𝐸) 
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𝑒𝑙𝑠𝑒, 𝐺𝑃 = 0 (3.14) 

where 𝑂𝑃 represents the operations planning output, which is representative of the desired 

gate flow. Simulating this model yields the outcomes shown in Figure 3-18. The impacts 

of the gate failure can be seen in the image starting at day 100 of the simulation, where the 

gate position and gate flow drop to zero, and the reservoir elevation rises above the target 

elevation. Flow over the free overflow weir is observed during the gate outage (these are 

not shown but are the difference between Outflow and Gate Flow). Once the gate is back 

online, the gated spillway flow is increased significantly to reduce the reservoir elevation 

to within the target levels. The inflow on the day of the gate’s return to service is less than 

predicted, so the operator opens the gate more than is necessary and the reservoir drops to 

just above the gate sill elevation (El. 367.28 m). In reality, operators will have a relatively 

better idea with respect to the expected inflow. Dam operators would also be able to adjust 

the gate position within the 24-hour period if the inflows are less than predicted to ensure 

rapid drawdown of the reservoir does not occur. This is one potential limitation of running 

the model on a 24-hour timestep, though improved inflow prediction for the operations 

planning algorithm would avoid the issue. For less flashy reservoirs, a daily time step may 

be adequate. 

As more features are added to the simple simulation model, the nonlinearity of the problem 

becomes more obvious. Calculation of the reservoir level response becomes increasingly 

more complex as additional components, variable gate positions, natural variability in 

inflows, outages, etc. are added to the simulation model. These interactions are not easily 

modelled using traditional tools, so simulation is necessary for quantifying the system 

response to various inputs. These simple examples help build a clear case for system 

dynamics simulation as a tool to determine reservoir level response to various operating 

conditions. The system dynamics platform offers a particularly suitable modelling 

environment for complex, dynamic systems with interactions among components.  The 

object-oriented building blocks help visualize the connections between the different 

components of the system. This visual representation of the system structure can be 

inspected to help gain confidence in the model performance. Subscripting is another useful 
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tool that can help modellers easily add series and parallel dams to a system without 

complete re-programming. Subscripting is also useful for the modelling of multiple sub-

components or redundant features of the system.  

 

Figure 3-18: Simulation of simple system with single gate and weir, operations 

planning, and gate failure implemented (King and Simonovic 2020) 

The general process for the development of a system dynamics simulation model for a 

hydropower system is described in Figure 3-19 (King and Simonovic, 2020). The process 

is iterative, that is, model development is influenced by model testing, and development 

continues until the modeller is satisfied that the modelled system is an adequate 

representation of reality. The model is a description of physical and nonphysical 

relationships among system components. A significant amount of information about the 

system is required to define these relationships mathematically, and expert judgement is 

necessary in model development. Dividing the model into interconnected sub-systems 

shown in different views or sectors may be helpful to organize the model presentation. Sub-

systems may be connected to each other by one or more variables. These sectors can follow 

a generic control loop, such as the one presented in Section 1.3 and Figure 1-20, as 

described by Leveson (2011) and adapted for a hydropower system. The sectors include: 
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(1) A controller, who interprets information relating to the state of the system and produces 

a set of operating instructions, (2) Actuators, the mechanical-electrical assemblies which 

work to move gates in the controlled process, (3) A controlled process, representing the 

infrastructure being controlled or the hydraulic system state, (4) Sensors, which relay 

information back to the controller and (5) Disturbances, which are not directly part of the 

control loop but may affect the functionality of any one of its features. This high-level 

system structure represents a hierarchical system of systems, with each box representing 

its own system (Leveson 2011). King et al. (2017) presents a detailed system dynamics 

model of a dam system that is broken down into control system sectors. The benefit of 

developing a detailed model of the system components is that low-level failures and other 

events within the system can be initiated and the simulation model can determine the 

system-level impacts for a particular set of inflows and event parameters.  

Selection of the variables that will be required to adequately represent the system is 

another important step. The variables represent states of the system which the modeller is 

interested in over time, and there may also be a number of intermediate variables that 

transform information between the key variables of interest. The variable types are 

stocks, flows and auxiliary variables. Stocks may include reservoir levels, remaining 

repair times and even gate positions, depending on how the modeller wants to set up the 

equations. Flows are the values which have units over time and represent the inflow and 

outflow of the stock value. Auxiliary variables are neither stocks, nor flows, and may 

represent physical or nonphysical relationships and processes. Subscripting can be used 

so that a single representation of a variable and its relationships (equations) can be 

applied. This is particularly useful for representation of multiple reservoirs, gates or other 

redundant features of the system. Defining the relationships requires expert knowledge of 

the system, data, and programming capability. Some auxiliary variable equations can be 

represented by simple if-then-else type formulae, others may represent nonlinear 

relationships or even complex algorithms with a number of processes occurring 

internally. 
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Figure 3-19: Simulation model development flow chart (King and Simonovic 2020) 

The model output is only as good as the modellers understanding of the interactions and 

relationships within the system being analyzed. Like all models, simulation models are 

abstractions of reality. Sterman (2000) argues that, because of this, all models are “wrong” 

and that simulation models can never be validated or verified in the traditional sense of the 

word. There are, however, a number of tests that can be done to gain confidence in the 

model performance. These tests should be done iteratively throughout the model 

development process. Analyzing the system structure and feedbacks to ensure all important 

variables are represented and their equations are grounded in reality is important. This 

includes checking the water balance, rating curves and other physically-derived variables. 

Checking the dimensions is another important model test. Historical records of system 
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operation are also particularly useful for testing and development of the model. A direct 

comparison between simulated and actual values provides information to the modeller 

about how well the system is mimicking reality in terms of normal operation. Comparison 

of system reservoir levels and outflows can help the modeller adjust the system structure 

so the system behaviour better captures the dynamics – this is particularly important during 

the development of operating rules. Once the model results are relatively close to reality, 

the model is ready for simulation.   

 

3.4.2 Monte-Carlo variation of scenario parameters 

Each automatically generated scenario (see Section 3.3) contains a list of component 

operating states which may be normal, erroneous, failed, etc. Each component operating 

state is tied to one or more causal factors and has a specified range of impacts that can be 

expected should the operating state occur. Impacts may include outage length, error 

magnitude, or delay length. Linking this information into the simulation model in a way 

that allows a wide range of potential outcomes to be explored for each scenario is a critical 

part of the implementation. An example of such a link was shown in the previous section. 

System dynamics modelling is inherently deterministic, so specific instructions for how to 

implement the scenario must be given to the model before running. Monte-Carlo selection 

of simulation inputs is considered to be the most efficient way to assess the outcomes from 

as many implementation possibilities for a single scenario as can be achieved within the 

computational time constraints. Each operating state has varying impact magnitudes 

between minimum and maximum values specified in the database. In addition to this, the 

adverse operating states may be occurring within some temporal proximity to one another 

but not at the exact same time. Inflows may also significantly affect the way an operating 

state changes the system behaviour. While simulation facilitates the assessment of 

component interactions, feedbacks and nonlinear system behaviour, the Monte-Carlo 

variation of these important simulation inputs can help better capture a range of system 

behaviour that is possible as a result of a given scenario. The temporal proximity of the 

adverse operating states, the magnitude of impacts and the system inflows can all easily be 

varied using a Monte-Carlo simulation approach. Each scenario can be run many times 
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(iterations), varying these inputs to explore the system behavior in response to a random 

subset of the total implementation possibilities for each scenario. This helps provide more 

information about the uncertainty associated with a particular scenario in terms of the range 

of system response that can be expected. 

A wide range of hydrological conditions may be tested for each operating scenario, by 

selecting a random year and start date for each Monte-Carlo run of each scenario. The year 

and start date can be linked to a synthetic inflow time series (this is discussed in Section 

3.5.2. 

Operating state impact magnitudes may be difficult to estimate, and can vary significantly 

depending on the timing, organizational factors, and availability of materials to rectify the 

adverse operating state, etc. The potential range of operating state impact magnitudes is 

represented using minimum impact, maximum impact and average impact (mode) as 

specified in the component operating states database in the operating states description. 

This information can be used to generate Monte-Carlo inputs with a triangular distribution 

(Kotz and van Dorp 2004): 

𝐼𝑚𝑝𝑎𝑐𝑡 =

{
 

 𝑖𝑚𝑖𝑛 +√𝑈(𝑖𝑚𝑎𝑥 − 𝑖min)(𝑖𝑎𝑣𝑔 − 𝑖𝑚𝑖𝑛)                 𝑓𝑜𝑟 0 < 𝑈 < 𝐹(𝑖𝑎𝑣𝑔)

𝑖𝑚𝑎𝑥 −√(1 − 𝑈)(𝑖𝑚𝑎𝑥 − 𝑖min)(𝑖𝑚𝑎𝑥 − 𝑖𝑎𝑣𝑔)    𝑓𝑜𝑟 𝐹(𝑖𝑎𝑣𝑔) ≤ 𝑈 < 1

(3.15) 

where 𝑈 represents a random variate from the uniform distribution between 0 and 1,  𝑖𝑚𝑖𝑛 

represents the minimum impact value specified in the database, 𝑖𝑚𝑎𝑥 represents the 

maximum impact value specified in the database, 𝑖𝑎𝑣𝑔 represents the average value 

specified in the database and 𝐹(𝑖𝑎𝑣𝑔) = (𝑖𝑎𝑣𝑔 − 𝑖𝑚𝑖𝑛)/(𝑖𝑚𝑎𝑥 − 𝑖min). A random impact 

magnitude for each operating state is generated in this way and used as the second Monte-

Carlo input to the simulation model.  

Timing of events may also vary within a scenario, and events can occur at the same time 

or within hours, weeks or even months of one another. The temporal proximity of events 

represents the third Monte-Carlo input to the simulation model. The causal factors for each 

operating state play a roll in determining operating state proximity. The number of causal 
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factors can be used to determine the number of time steps between adverse operating states 

arising from different causal factors. Operating states with the same causal factor (for 

example, an earthquake) are initiated at the same time. Operating states for subsequent 

causal factors are initiated at some value, ∆𝑡𝑛𝑐 in the future where 𝑛𝑐 ∈ (0,… ,𝑁𝐶) and 

𝑁𝐶 is equal to the number of unique causal factors less one (because the first causal factor 

is implemented at time t=0 in the simulation). The ordering of causal factors is also shuffled 

for each iteration so that the first operating state(s) change between Monte-Carlo inputs. 

For some causal factors, including lack of maintenance and aging, impact timing is 

completely randomized if more than one component is affected; that is, failure of one 

component due to lack of maintenance may not occur at the same time as the failure of 

another component that has not been maintained. There may be a time limit within which 

these events can occur, as defined by the user for the system of interest. This is a parameter 

that helps increase the chance that the events are impacting one another so that the scenarios 

represented in the outputs are reflective of the input scenario (discussed further in Section 

3.4.3).   

In addition to generating these randomized parameters for each scenario, it is necessary to 

program component-specific connections that link the database’s operating state identifiers 

to the specific point in the simulation model where the component failure, error or delay 

occurs. An example of how this can be done was provided in Section 3.4.1. The timing and 

impact magnitude can be represented by variables that change with each Monte Carlo 

iteration. Inflow sequences for each iteration can be selected from the historical record 

using the randomly generated start day and year. Directing the impact towards the correct 

component and implementing it requires significant modelling effort and expert 

judgement. The implementation of these connections will differ from application to 

application and must be done at the front-end of the simulation model to ensure the scenario 

information is routed properly through the simulation model. The randomly generated 

impact parameters and timing must be connected to the appropriate variable within the 

simulation model. Once the connections are made, simulation can proceed following 

Figure 3-20 as discussed in the following section.  
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It is important to note that random numbers generated by computer code are not truly 

random, because they rely on algorithms that repeat. They are technically “pseudo-

random” numbers. When a very large number of scenarios is run for many iterations, there 

is a possibility that a pattern may be observed within the random numbers generated by the 

model. This issue is not explored further in this research but remains an important issue in 

computational science. 

3.4.3 Deterministic Monte Carlo Simulation Process 

The process for scenario simulation is described in Figure 3-20 (King and Simonovic, 

2020). In the simulation, each scenario is given a unique simulation number (“seed 

number”). At the start of the simulation, a “seeds to run” list is developed. Each seed 

number corresponds to a line in a list of the scenarios, which contains a unique set of 

operating state combinations for the system. This is used to gather the information from 

the database tables and set-up the Monte-Carlo parameters for the particular scenario being 

simulated. The Monte Carlo parameters are randomized inputs that vary within the bounds 

specified in the operating states database. This allows for a more subset of the potential 

outcomes for a given scenario to be explored. Once the Monte Carlo input generation is 

completed based on the scenario of interest, the simulation of the scenario proceeds.  
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Figure 3-20: Simulation flow chart 

Following the simulation of each scenario iteration, timing considerations must be 

addressed, to ensure the results are accurately attributed to the scenario being represented. 

This can be done by analyzing the “system state deviance” to determine whether 

subsequent events are dependant on preceding events. An event dependency algorithm to 

analyze the outputs from each iteration is necessary in order to count the simulation results 

towards the scenarios that are truly represented within the output data. Recall the example 

reservoir elevation plots for two iterations shown in Figure 3-21 (King and Simonovic, 

2020). Given the time of occurrence of A, B and C, the reservoir level under normal 

operations, and the resultant reservoir levels, a simple comparison can be used to determine 

whether events are influencing one another. The algorithm to analyze scenario outcomes 

is shown in Figure 3-22 (King and Simonovic, 2020). 



123 

 

 

Figure 3-21: Example output reservoir elevations for Scenario ABC (King and 

Simonovic 2020) 

 

First, an empty event list is created, and the time is set to 𝑡 = 0. The analysis starts by first 

checking if a new event (adverse operating state) is initiated at the current time step The 

event initiation time is determined through Monte-Carlo sampling. If a new event is 

initiated, the event is added to the event list. If no previous events are in the list, time t 

represents the scenario start day. If there are events in the event list, a check is done to see 

whether the event impacts are over – this is a simple comparison of the following y days 

of simulated reservoir elevations with the previously expected reservoir elevations for that 

set of inflows. The choice of the number of subsequent days to be compared depends on 

the system being modelled and may be shorter or longer depending on the storage relative 

to the inflows. If the elevations are within a certain threshold, 𝑥, of the previously expected 

reservoir levels for all days within a three-day period, the scenario is considered to be over. 

The threshold is a small number that indicates the reservoir levels are basically the same – 

it may also vary depending on the reservoir being modelled and must be chosen by the 

analyst for the system of interest. Once the reservoir levels are restored to the previously 

expected values, the results for the scenario are saved, the event list is emptied, and the 

analysis proceeds to the next timestep. If the elevations are not yet matching, the analysis 

proceeds to the next time step, as long as the reservoir elevations haven’t risen to a 
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sufficient level to fail the dam by overtopping. If the dam has failed by overtopping, the 

results are processed and saved for the events in the list. The process continues through all 

of the timesteps, until either there are no more time steps to analyze or the dam has failed. 

 

Figure 3-22: Event dependency algorithm (King and Simonovic, 2020) 

This process, when applied to Outcome 1 in Figure 3-21 saves results for Scenario A, and 

Scenario BC. For Outcome 2, it saves results for Scenario A only. This process could also 

be useful to analyze outcomes from fully stochastic simulation models, extracting more 

information than a singular probability of failure for the system being analyzed (though 

this is not examined in this research). 
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Once all iterations for a given scenario are analyzed, the scenario results are saved and the 

seed number is added to the completed seeds list. Then, a new scenario is chosen from the 

seeds to run list and executed. Simulation of the complete list of scenarios is a significant 

computational task, depending on the size of the scenario list and complexity of the 

simulation model. Linking of each individual component in the database to the 

corresponding system dynamics model component is required prior to the start of the 

simulation. Synthetic inflow sequences are also required for the simulation, to provide 

more variable hydrological conditions than can typically be observed in the historical 

record (see Section 3.5.2). Depending on the size of the problem, it may be beneficial to 

use cluster computing to simulate multiple scenarios (seeds) in parallel, since the scenarios 

are completely independent and do not communicate between one another. More 

information about the cluster computing application is provided in Appendix F. 

In using the Deterministic Monte Carlo approach, it is important to consider that the goal 

of the exercise is to analyze all scenarios (predefined combinations of operating states) as 

completely as possible given computational time constraints, to determine the criticality of 

these combinations. There should be enough data on each scenario to estimate the range of 

expected system performance and calculate the criticality parameters: conditional failure 

frequencies, failure inflow thresholds and conditional reservoir level exceedance 

frequencies. To ensure there is enough data collected for each scenario, it may be necessary 

to limit the time between events to ensure their collective impacts can be assessed. This 

limit may be determined as a function of the impact lengths for a given iteration (for 

example, by taking the sum of impact lengths). Whether the event initiation time limit 

should be greater than or less than the sum of the impact lengths requires experimenting 

with scenarios to determine how long the system typically takes to return to normal 

operation. For “flashy” reservoirs with relatively limited storage compared to inflows, the 

recovery time following a return to normal operations may be quite short – days or even 

hours. For reservoirs with large storage in comparison to inflows, this recovery time may 

be significantly longer. The recovery time may also be less than the sum of impact lengths, 

due to inflows that are less than the total capacity of the available flow conveyance 

facilities. The recovery time should influence the modellers decision regarding the 

appropriate time limit for event initiation. If the time limit for event initiation is too long, 
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there may be two or more sub-scenarios within each scenario, and not enough data relating 

to the collective impact of the combination of events. 

 

3.4.4 Computational Considerations 

Another important topic relevant to the simulation framework is the computational 

considerations. Computational efficiency is a major factor in this research, since a large 

number of scenarios are being analyzed, each for many iterations. The computing time for 

a single year and the number of scenarios to be analyzed governs the computational effort 

that will be required to execute the Deterministic Monte Carlo approach. As the modelled 

system complexity increases, so does the length of time to run a simulation. In addition, 

the number of scenarios is exponentially proportional to the number of component 

operating state-causal factor combinations. As such, a trade-off becomes evident between 

the level of detail to which the system is modelled and the amount of computational time 

the simulations will take to execute. This is one potential limitation of the approach. Each 

modeller may evaluate the trade-off differently, and this could result in two modellers 

creating different versions of the same system. Ultimately, this issue remains unavoidable 

within current computational abilities. That said, cluster computing is becoming more 

widely available and can be utilized to improve the simulation throughput. In the case 

study, Compute Canada cluster computing resources are leveraged to evaluate a large 

number of scenarios in parallel. This is made possible by the fact that each scenario can 

run independently of other scenarios, so a large number of cores may be used independently 

to run different scenarios at the same time. Despite the advantages of using cluster 

computing, an extremely large number of scenarios may still take a significant amount of 

time to evaluate, and output data storage is another potential factor that limits the level of 

complexity and number of scenarios that can be efficiently analyzed. The trade-off between 

complexity and computational effort remains. While the issue is not investigated further in 

this work, there are some potential directions for future research that may help to reduce 

the impacts of this limitation.  
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3.5 Simulation Model Input Data 

There is a significant amount of data required to execute the simulation model. This 

includes site-specific physical relationships, synthetic inflows and baseline operations data 

for comparison with simulation outcomes to assess whether events are influenced by 

preceding events within the simulation. 

3.5.1 Physical Relationships 

The physical relationships for the system of interest are a required input of the simulation 

model. Stage-storage relationships relate the amount of water in the reservoir to the 

reservoir elevation which is used in various calculations. These relationships may be 

developed using bathymetry or pre-flooding lidar surveys and are typically readily 

available for existing dam systems. The relationship may be in the form of a table or a 

graph. Curve-fitting can be used to avoid interpolation calculations by creating a function 

that is representative of the stage-storage curve for all relevant reservoir elevations (the 

minimum to absolute maximum elevation that could be observed in simulation). Piecewise 

functions may be required for certain systems, to better capture the relationship over 

specific reservoir elevation bands.  

Stage-discharge relationships relate the reservoir elevation to water spilling over free 

overflow weirs and dam structures and are another required input to the model. These can 

be developed using simple free-crest weir equations, and may also be readily available for 

the system being modelled. Again, converting the relationship to a function using curve-

fitting may be desirable to avoid interpolations within the simulation (for efficiency). 

Another key input is the relationship between gate position, reservoir elevation and flow, 

which is known as the gate rating curve. For most dam systems, these are developed in the 

form of either a table or curve. Two-dimensional interpolations can be used within the 

simulation to calculate the flow value based on inputs of reservoir level and gate position. 
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3.5.2 Synthetic Inflow Generation 

For many dam systems, the historical record of inflows may only be as old as the dam itself 

and may not be a good indicator of potential variability in inflow conditions. Basing the 

outcomes of a dam safety assessment on the historically observed flows alone would 

significantly limit the analysis. As such, tools that can be applied for generation of synthetic 

inflows are described in this research. First, a stochastic weather generator (KnnCAD) is 

used to generate synthetic daily climate data, and next, a hydrologic model (Raven) is used 

to convert the daily climate data into reservoir inflows.  

The KnnCAD weather generator is a non-parametric tool for stochastic, multi-site, multi-

variable generation of climate data that was first introduced by Sharif and Burn (2006) and 

later modified by Prodanovic and Simonovic (2008), Eum and Simonovic (2012) and King 

et al. (2014, 2015). The weather generator is based on the K-Nearest Neighbour (KNN) 

resampling technique which reshuffles and perturbs the historical climate data to generate 

a longer time series with increased variability that is statistically similar to the historical 

record. The approach allows for easy multi-site climate data generation that preserves the 

spatial correlation between sites without assuming relationships between weather 

variables. In addition, no assumptions about the probability distributions of variables are 

required. King et al (2014, 2015) modified the KNN approach using a block resampling 

technique which was found to significantly improve temporal correlations in the resulting 

temperatures. These temporal correlations are extremely important in climates such as 

Canada where snow accumulation and melt contribute significantly to flood events. The 

KnnCAD weather generator was chosen for this research due to the demonstrated ability 

to generate statistically similar climate datasets. The most current version of the model is 

available on the GitHub repository FIDS-UWO/Climate and a technical manual containing 

the model equations, scripts and step-by-step instructions was developed by Mandal et al. 

(2017). A user interface makes application of this model quite straightforward. Historical 

time-series of climate variables are uploaded to the user interface for each site of interest. 

Perturbation parameters are selected – these parameters dictate the proportion of 

“randomness” that is applied to the climate variables. The model is then run for a user-

selected number of “blocks” which are the length of the historical input data. 
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Following generation of climate data, hydrological modelling is required to convert the 

daily climate data into reservoir inflows for the site of interest. There are a number of 

approaches that can be used; however Raven Hydrological Modelling Framework is the 

platform used by BC Hydro and as such was selected for this project. Raven is a highly 

flexible modelling framework that allows the user to select the specific modelling code or 

approach to be utilized. In this research, the application is a mountain watershed, and as 

such the UBC Watershed Model approach is used (Quick and Pipes 1977; Micovic and 

Quick 1999). The UBC Watershed model utilizes daily maximum and minimum 

temperatures as well as precipitation to forecast snow accumulation and melt, along with 

soil moisture, groundwater transfer and evapotranspiration. Basin area-elevation 

characteristics are direct inputs to the model, which has the ability to include several 

elevation bands or zones that allows more realistic modelling of mountain runoff (Quick 

and Pipes 1977). Calibration of the model involves experimentation with specific 

parameters relating to various physical aspects of the system in order to find the parameter 

set that most closely correlates the outputs with the runoff calibration period (Quick and 

Pipes 1977). Combinations of different weather stations may be experimented with to find 

the set that provides the best calibration. Once the model is calibrated, the synthetic daily 

climate data from the stochastic weather generator can be used directly as an input to the 

calibrated model. Simulation of runoff is done in water-years which begin in October and 

end in September, to allow for proper continuity of snowmelt modelling. The resulting 

dataset is a long, synthetic inflow time series with higher variability than the historically 

observed data. This synthetic inflow set can be used directly in the simulation model. 

3.5.3 Baseline Operations Data 

Once the simulation model has been completed and synthetic inflows are developed, it is 

necessary to develop baseline operations data. The baseline operations data is the normal 

reservoir elevations, which are used in the final step of the simulation to analyze whether 

the events simulated within an iteration are independent of one another (and whether the 

iteration is “complete”). This is described in detail in Section 3.4.3. 

The baseline reservoir elevations can be calculated by running a single continuous 

simulation of the same length as the synthetic inflows. During the simulation, no 
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disturbances are implemented and the system is operated normally. The resulting reservoir 

levels are recorded and saved to be utilized in the scenario iteration analysis following each 

simulation.  

 

3.6 Scenario Outcome Assessment 

Following completion of the scenario simulations, there is an extremely large amount of 

data from which useful information needs to be extracted. In this research, criticality 

parameters are used to provide information about the severity of a scenario. The criticality 

parameters assessed are the conditional failure frequency, conditional frequency of 

exceeding key reservoir levels and failure inflow thresholds for each scenario. Ranking and 

filtering scenario subsets (of N affected components) can give insights into system 

vulnerabilities and key components affecting dam safety.  

Accessing and analyzing individual scenario results may also be useful. Dynamic 

performance measures are used in this research to better understand the dynamic system 

response to a given scenario. These performance measures may differ depending on the 

system of interest and can change from application to application. In this work, reservoir 

elevations over critical levels, flow conveyance capacity, and uncontrolled releases are 

selected and described in the following sections.   

3.6.1 Criticality Parameters 

The simulation environment presented in this research explores a random subset of the 

potential outcomes relating to a given scenario. Each scenario is simulated 2000 times, 

providing increased coverage of the possibility space (See Figure 3-2). This allows for an 

estimation of the criticality associated with a given scenario. Criticality parameters have 

been selected to provide useful insights about the range of outcomes simulated for each 

scenario. These include: the conditional failure frequency, the failure inflow thresholds, 

and the conditional reservoir level exceedance frequency (conditional on the scenario 

occurring).  
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As a direct result of the simulation, it is possible to determine the conditional probability 

of failure for a scenario from its complete iterations (all of the operating states for that 

particular scenario have both occurred and affected one another). This is easily done by 

determining the number of complete iterations, calculating the number of dam breaches 

occurring within the complete iterations, and determining the total proportion of failures, 

as follows. 

𝐶𝐹𝐹 (%) =
𝑁𝐵
𝐼𝑡
× 100 (3.16) 

where 𝑁𝐵 is equal to the number of breaches observed in all complete iterations, and 𝐼𝑡 is 

equal to the number of complete iterations for the scenario being analyzed. Again, complete 

iterations are where all operating states for a given scenario have both occurred and affected 

one another – so iterations with multiple sub-scenarios or dam breaches occurring prior to 

all events being initiated are excluded from the calculation.  

Another useful outcome from the simulation model is the inflow thresholds, above which 

failure occurs for a given scenario. In this research, the inflow thresholds are computed by 

looking at the 5-day average daily inflow preceding a dam breach, as well as the 5-day 

maximum daily inflow preceding a dam breach, taking the minimum across all simulations, 

as follows. 

𝐼𝑇𝑎𝑣 = min(avg [𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5]𝑖𝑓) (3.17) 

𝐼𝑇𝑚𝑎𝑥 = min(max [𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5]𝑖𝑡𝑓 ) (3.18) 

where 𝐼𝑛 represents the inflow on the 𝑛𝑡ℎ day preceeding the dam breach, 𝑛 = 1. . .5, and 𝑠 

represents the simulation iteration, 𝑖𝑡𝑓 = 1… 𝐼𝑇𝐹 and 𝐼𝑇𝐹 is equal to the number of 

iterations that were completely simulated for a certain scenario and where the dam failed. 

The minimum is taken of all maximum or average 5-day inflows preceding failure, for the 

complete iterations within which a failure occurred. It is also possible to consider volume 

of inflows in the days preceding a dam failure, however that was not explored in this 

research. 
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Another useful criticality parameter is the time it takes, following the start of the scenario, 

for the system to reach a failed state. This is simply calculated as the mean time to failure.  

Finally, regardless of whether a dam failure occurs, there may be adverse impacts relating 

to exceedances above particular reservoir elevations. The likelihood of exceeding a key 

reservoir elevation is another easily calculated outcome from the model. The maximum 

reservoir elevation for each run of a given scenario can be computed and used to compute 

the proportion of runs where elevations exceed the reservoir level of interest, as follows. 

𝐶𝑅𝐸𝐹(%) =
𝐼𝑅𝑆𝐸>𝐶𝐸
𝐼𝑡

× 100 (3.19) 

where 𝐼𝑅𝑆𝐸>𝐶𝐸 represents the number of complete iterations where the reservoir elevation 

exceeded the critical level, 𝐶𝐸, and 𝐼𝑡 represents the total number of complete iterations. 

This is the conditional probability of exceedance for that reservoir elevation and scenario. 

The scenarios can then be sorted based on their criticality parameters to illuminate the most 

troublesome operating conditions within which the system may be operating. Grouping the 

list of scenarios into a smaller list is possible by combining scenarios that contain the same 

operating states with different causal factors. This can help reduce the list size while 

providing extra simulation-years with which to estimate the failure frequency. If there is 

sufficient information to estimate the frequencies of each operating state in the model, it 

may be possible to compute the frequency of failure for the system using simple probability 

theory, as can be illustrated using a simple example. 

Conditional overtopping failure frequencies for an example scenario are shown in Table 

3-2 (given the scenario has occurred). When combined with the estimated frequency of 

occurrence of the events, an overall estimate for the frequency of overtopping failure for 

the system can be made using basic concepts from probability theory. A simple example is 

used to demonstrate this. Consider a system with components A, B, and C, which are each 

functional or failed. If each of the three components has lower and upper bound failure rate 

estimates ranging from 0.1% to 1%, an overall probabilistic assessment of the system can 

be made using the conditional overtopping failure frequencies generated through 
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Deterministic Monte Carlo simulation, as shown in Table 3-2. The conditional failure 

frequencies are assumed for the sake of the example. 

Table 3-2: Probabilistic risk assessment using example simulation 

Scenario 

Conditional 

frequency of system 

failure given 

scenario occurs (%) 

Lower bound frequency of 

component failure: 

A=0.1% 

B=0.1% 

C=0.1% 

Lower bound frequency of 

component failure: 

A=1% 

B=1% 

C=1% 

A 1 9.98*10-4 9.80E*10-3 

B 1 9.98*10-4 9.80*10-3 

C 1 9.98*10-4 9.80*10-3 

AB 5 5.00*10-6 4.95*10-4 

AC 5 5.00E*10-6 4.95*10-4 

BC 5 5.00E*10-6 4.95*10-4 

ABC 20 2.00E*10-8 2.00*10-5 

Total 

probability 

of flow 

control 

failure  3.01*10-3 3.09*10-2 

 

In Table 3, the conditional frequency of dam overtopping failure for each scenario is 

multiplied by the probabilities of the system states , as follows: 𝑃(𝐴) = 𝑃(𝐴) ∗ 𝑃(�̅�) ∗

𝑃(𝐶̅) ∗ 𝑃(𝑓), where �̅� = 1 − 𝐵, and the solid line over the component indicates it is not 

failed, and 𝑃(𝑓) represents the conditional probability of overtopping failure for the system 

given the scenario has occurred. In the table, the lower and upper bound estimates are 

calculated to illustrate the sensitivity of the results to the assumed component failure 

probabilities. This is particularly advantageous where failure rate data is limited and 

uncertain. The Deterministic Monte Carlo approach does not require complete re-

simulation if the sensitivity of the results to the assumed probabilities is to be analyzed. 

The sensitivity of the overall probability of failure for the system can be easily calculated 

by simply modifying the assumed component failure rates and updating the equation. In 

contrast, a fully stochastic simulation approach would require re-simulation to analyze the 

sensitivity of results to assumed failure rates, since the probabilities are embedded within 

the stochastic simulation model.  
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In the absence of reliable information relating to the failure of various components, the 

overall failure rates were not explored further in this research. This topic remains an 

important area for future work.   

3.6.2 Performance measures  

In terms of overall assessment of the system performance, it is useful to define dynamic 

safety performance measures that can be plotted over time from the scenario outputs. These 

performance measures show how the system changes over time and, where possible, the 

recovery from the disturbance. Different performance measures may be selected for 

different systems of interest. In selecting these performance measures, it is important to 

consider the functions which a dam is meant to carry out and how the system may reach a 

less desirable state.  

Dam systems act to store and convey water for beneficial purposes such as hydropower, 

water supply and flood control. The dam acts to retain water and its flow-conveyance 

features (eg. spillways, turbines, low level outlets and valves) are controlled by dam 

operators to pass water and maintain reservoir levels within safe limits. Loss of control of 

the reservoir can occur as a result of natural disturbances such as earthquakes, landslides, 

debris, etc., as well as a number of internal factors including operational failures, inflow 

forecasting errors, site access and staffing problems as well as systemic problems like 

failing to maintain and upgrade infrastructure. Loss of functionality of flow-conveyance 

features of the system can directly lead to loss of reservoir control, potentially causing 

overtopping and failure. Issues with dam design or external disturbances can also affect the 

dam itself resulting in the inability to retain water which could potentially lead to dam 

collapse and catastrophic flooding. In considering the functions a dam is meant to perform, 

it becomes clear that two key performance measures relate to flow retention and flow 

conveyance. Flow conveyance capacity and uncontrolled flow releases are chosen to 

represent flow conveyance and retention, and reservoir elevations exceeding critical safety 

levels is also selected. These performance indicators and their values over time can be 

calculated directly from simulation outputs. The result is a numerical indicator showing 

how the dams condition changes with time for a given operating scenario.  
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It is ultimately up to the experts and asset owners to determine an appropriate amount of 

detail for the simulation model and select a particular set of performance measures of 

interest for a specific system. The following sections describe the performance measures 

selected for this research, but others may be added depending on the dam of interest. A 

final section describes aggregation of scenario outcomes to reach general conclusions about 

the performance of the dam. 

3.6.2.1 Conveyance Capacity 

Conveyance capacity represents the ability of flow-conveyance infrastructure such as 

turbines and spillways to pass water through the system. This is an important indicator of 

system safety because a loss in conveyance results in a lowered ability to manage inflows 

safely. Conveyance capacity is equal to the available total discharge capacity as a function 

of time (Equation 22):  

𝐶𝐶(𝑡) =∑𝐹𝐶(𝑐, 𝑡)

𝐶

𝑐=0

 (3.20) 

Where 𝐶𝐶(𝑡) is the discharge capacity of the system at full pool for time 𝑡, and 𝐹𝐶(𝑐, 𝑡) is 

the discharge capacity of flow-conveyance component 𝑐 (𝑐 = 1…𝐶) at full pool for time 

𝑡. If all conveyance facilities are performing, the maximum performance value is thus equal 

to the maximum discharge at full pool, including free overflow facilities (and the minimum 

performance is 0 m3/s). 

3.6.2.2 Total Uncontrolled Release 

Another key indicator of dam system safety is the ability of the system to retain water 

where it is meant to do so. Failure to retain water results in an uncontrolled release of flow, 

which may be through the dam itself (dam breach), or through a failed penstock, spillway 

gate, or turbine head cover. Uncontrolled release also includes any water passing over the 

free-crest spillway and dam, which represents flow that is no longer under the control of 

the operators. Total uncontrolled release (𝑈𝑅) is calculated at each time step and is shown 

in Equation 22: 

𝑈𝑅(𝑡) = 𝑄𝐷𝐵(𝑡) + 𝑄𝑃𝐿(𝑡) + 𝑄𝑂𝐹(𝑡) + 𝑄𝐻𝐶(𝑡) + 𝑄𝐺𝐶(𝑡) (3.21) 
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Where 𝑄𝐷𝐵 is the dam breach flow, 𝑄𝑃𝐿 is the penstock leakage, 𝑄𝑂𝐹 is the flow passing 

through the overflow weir or over the dam, 𝑄𝐻𝐶 is any water escaping through the head 

cover of the turbine, and 𝑄𝐺𝐶 is any water passing through a failed spillway gate. The 

individual uncontrolled release variables are useful on their own as well, and can be 

investigated for a particular scenario and iteration directly from the model output. 

Combining these into a single variable, 𝑈𝑅, provides some useful indication about the 

performance and helps reduce the size of the simulation output files, but when there are 

multiple sources of uncontrolled release it may become more difficult to analyze what the 

sources are. This is a minor limitation that can be overcome by saving these flows 

separately if additional data storage capacity is available.   

3.6.2.3 Reservoir elevations exceeding critical safety levels 

Perhaps the most important indicator of dam system safety is the reservoir elevation itself. 

Dam systems typically have reservoir operating limits within which the reservoir remains, 

known as the normal minimum and normal maximum flows. Some excursions above the 

maximum level may be expected during high inflow conditions, and there may be a safety-

critical reservoir levels which the reservoir should not exceed due to potential dam safety 

problems. For an earth dam, the elevation of the core or filter material should not be 

exceeded as this may result in internal erosion and could potentially progress to dam 

failure. For a concrete dam, there may be other factors such as structural stability being 

reduced above a certain reservoir level. This elevation will differ between dam systems 

and could be equal to the height of the dam itself. Elevations over critical safety levels can 

be visualized in two ways: (1) by observing the resulting reservoir level plots for each 

complete iteration of a scenario, where all scenario events both occurred and affected one 

another, and (2) through reservoir level time exceedance frequency plots. These plots can 

be easily derived by collecting all observations for each complete scenario iteration and 

determining the percentage of time that various elevations are exceeded using the following 

formula (USBR 2018): 

𝐸𝐹𝑟𝑒𝑓 𝑒𝑙. =
𝑁𝑜𝑏𝑠 − (𝑁𝑒𝑥𝑟𝑒𝑓 𝑒𝑙. + 1)

𝑁𝑜𝑏𝑠 + 1
∗ 100 (3.22) 
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Where 𝐸𝐹𝑟𝑒𝑓 𝑒𝑙. is the exceedance frequency for a specific reservoir elevation 𝑟𝑒𝑓 𝑒𝑙., 

𝑁𝑜𝑏𝑠 is the total number of observed daily reservoir elevation values from the scenario’s 

complete iterations (all events occurring and affecting one another), and 𝑁𝑒𝑥𝑟𝑒𝑓 𝑒𝑙. is the 

number of observations where the elevation exceeded 𝑟𝑒𝑓 𝑒𝑙. To generate exceedance 

frequency curves, a range of reservoir elevations is taken from the minimum to the 

maximum at a user-defined interval, and the exceedance frequency is computed for each. 

The reservoir levels are then plotted against the exceedance frequencies. Key critical levels 

(such as free overflow spillway sill elevation and the elevations of key structures) can be 

plotted on the exceedance frequency curves to help illustrate the severity of the scenario.  

3.7  Summary 

This chapter presents the methodology for the research. First, a description of the 

requirements of a new approach and the ability of existing tools to meet these requirements 

is provided. While each approach offers specific advantages, there are limitations inherent 

to all of the approaches used within and outside of the dams industry. This leads to the 

methodology development, which aims to meet as many of the requirements as possible. 

This research proposes using a systems approach to the problem of dam safety analysis, 

systematically characterizing pre-generated scenarios through simulation.  

A new methodology is presented that uses Deterministic Monte Carlo simulation to analyze 

a wide range of potential operating conditions for a dam system. Scenarios are used as 

deterministic inputs to the model, and the scenario parameters are varied using Monte Carlo 

techniques to explore each scenario’s potential outcomes. In order to generate a list of 

scenarios for the simulation model, an operating states database is developed which can be 

applied to any system, and used to document components, their operating states, causal 

factors, and operating state impacts. Using database outputs and component operating state 

sets, a combinatorial procedure applies the Cartesian Product to come up with the complete 

range of component operating state combinations (scenarios). The scenarios becomes the 

input to the Deterministic Monte Carlo simulation framework. 

The simulation framework uses the pre-generated scenarios (operating states) as inputs, 

with Monte Carlo variation of inflows as well as operating state impact timing and 
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magnitude. This simulation framework has the advantage of (a) investigating a larger, more 

complete set of potential scenarios than is practical using traditional methods, and (b) 

providing a more in-depth analysis of the range of system behaviour in response to each 

scenario.  

Simulations are performed using a system dynamics simulation model, which is capable of 

representing complexity, feedbacks and component interactions in a relatively 

straightforward way. The object-oriented modelling environment used in system dynamics 

clearly shows the components and the relationships between them which improves the 

transparency of the model and the ease with which it is built and modified. Timing 

considerations are also addressed in this work. An algorithm is proposed to assess whether 

preceding events within a simulation affected the events that occurred later.  

The results from the simulation can be analyzed in a number of ways. Post-processing of 

individual scenarios can be performed to determine the conditional probabilities of failure 

and excursions above key reservoir elevations, as well as inflow thresholds for failure. 

Individual scenario results can be used to plot the reservoir elevations, flow conveyance 

capacity and uncontrolled releases over time, as well as reservoir exceedance frequency 

plots.  The methodology proposed in this work provides a means of evaluating the full 

range of possible operating state combinations for the system within current computational 

abilities. At this time, the same outcome would not be possible using stochastic techniques 

because the occurrence of these combinations of events is quite rare (they have a low 

probability), so a prohibitively large number of simulation-years would be required to 

achieve the same result. The methodology in this research also evaluates scenarios dynamic 

outcomes, taking into account feedbacks and nonlinear behaviour which are not readily 

dealt with using the traditional risk assessment techniques.   
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Chapter 4 

4 Case Study: Cheakamus Hydropower Project 

The methodology presented in the previous chapter has been applied to BC Hydro’s 

Cheakamus Hydropower Project. A complete database representation of the system is 

presented, and the combinatorial procedure is used to generate all combinations of 

component operating states (scenarios). A full detailed system dynamics model 

representative of the Cheakamus Project is described in King et al. (2017). Due to an 

extremely large number of potential scenarios for the case study, a simplified proof-of-

concept example was subsequently developed, which has some of the characteristics of the 

Cheakamus Project. The key difference is a reduced number of system features, with the 

goal of reducing the number of potential scenarios to ensure simulation feasibility with the 

limited computational resources available. With limited computational resources on the 

Compute Canada systems, it was possible to simulate two complete runs through 1.11 

Million scenarios, each with over 1000 different Monte-Carlo input parameters (iterations). 

The two runs completed were the base case and the dam safety improved case which 

contained modifications to operating rules and components.  

The following section provides a description of the Cheakamus Hydropower Project which 

was the study area for this research. Next, a description of the system dynamics model 

development is provided for the detailed representation of this system. The following 

section deals with scenario generation for the detailed Cheakamus representation. Next, a 

description of the simplified version of the Cheakamus system is provided, due to the 

extremely high number of scenarios generated for the complex system representation. The 

simplified generation of scenario is described, as well as a detailed description of the 

simulation model configuration and testing. Inflow generation for the case study is 

presented, followed by a description of the scenario simulation process. Finally, simulation 

results and discussion are provided. 
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4.1 Cheakamus Hydropower Project Description 

The Cheakamus Hydropower Project is located 30km north of Squamish, British 

Columbia, Canada and is operated by BC Hydro, the provincial power utility. The 

Cheakamus River originates approximately 25km southeast of Whistler, B.C. and has an 

area of 1070km2. The headwaters start at 2500m above sea level and the river eventually 

discharges into the Squamish River 26km downstream of the dam at El. 30m (above sea 

level). Cheakamus Dam impounds Daisy Lake and has a drainage area of 780km2, 

receiving about 75% of the Cheakamus river inflow (BC Hydro 2005).  The average 

reservoir inflow is around 50m3/s (BC Hydro 2005). 

 

Figure 4-1: Cheakamus Hydropower Project area map (BC Hydro, 2005) 
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Figure 4-1 contains a map of the region with the locations of the dam and powerhouse 

shown. Daisy lake has a live storage capability of 55 million m3 and a typical operating 

range of El. 364.90m to El. 377.25m (BC Hydro 2005). The stage-storage curve for Daisy 

Lake is provided in Appendix A. 

The Cheakamus Main Dam consists of an Earthfill Dam, a Concrete Main Dam gravity 

structure, and a concrete gravity overflow Wing Dam. Daisy Lake is also impounded 

Saddle Dam No 1. An overflow channel, along with the Wing Dam and Saddle Dam No. 

1, provide free overflow discharge capability for the system. A power canal leads to the 

power intake structure at Shadow Lake which is impounded by the Shadow Lake Saddle 

Dam. Water for power is drawn through a canal beneath Highway 99 and into an 11km 

tunnel through Cloudburst Mountain. At the end of the tunnel, two penstocks carry the 

water to a powerhouse that discharges into the Squamish River upstream of its confluence 

with the Cheakamus River. The maximum power discharge is 65m3/s which can generate 

up to 157MW of power through two vertical Francis units. Flood flows are discharged into 

the Cheakamus River at the Concrete Main Dam, which contains two Spillway Operating 

Gates (SPOGs) with a combined discharge capacity of 1590m3/s at the maximum normal 

reservoir level (MNRL) of El. 378.26m. A low level outlet sluice (LLO) with a discharge 

capacity of 196m3/s at MNRL and five free overflow spillway ports are also located at the 

concrete dam. There is an additional low level outlet controlled by a Hollow Cone Valve 

which is considered to be out of service. Details regarding the relationship between 

elevation and discharge for fully open gates are provided in Appendix A. The project 

schematic is shown in Figure 4-2. An overall site plan showing the locations of the dams 

can be found in Figure 4-3. 

The province of BC underwent a water use planning process for Cheakamus Dam that 

prescribed minimum discharges downstream of the dam, flow ramping rates (rates of 

discharge increase) and operating levels to be adhered to (if possible) by the system 

operators. The minimum discharge information is shown in Appendix A (BC Hydro 2005). 

The historical daily inflows are also shown in Appendix A.  
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Figure 4-2: Cheakamus Hydropower Project system schematic (BC Hydro, 2005) 
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Figure 4-3: Cheakamus dam site overview 

It is also useful to understand the control system infrastructure in place for the Cheakamus 

System. A hierarchical control system structure is shown in Figure 4-4. This schematic 

shows the regulatory and organizational controllers at the top, moving down towards the 

control infrastructure itself. The exchange, transfer and movement of information 

throughout the system is shown in detail in this figure.  

The Cheakamus System structure and data were used with the framework described in 

Section 3.2 to populate the component operating states database for the Cheakamus System 

and generate an extensive list of potential operating scenarios (Section 3.3). This process 

is described in the following section. 

 



144 

 

 

Figure 4-4: Hierarchical control system structure of Cheakamus Project 

 

4.2 Cheakamus Database Population and Scenario 
Development 

To generate scenarios for the Cheakamus System, an in-depth understanding of the system 

and its interactions is required. Information should be collected about the system structure, 

components and connections. This will help in identifying the components and their 

potential operating states within the database. In this research, STPA is used to improve 

the understanding of the system for database population. The process also helps inform the 

development of the system structure within the simulation model. Following STPA, the 
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database is populated and the database outcomes are used to generate the complete list of 

scenarios.  

4.2.1 Systems Theoretic Process Analysis for Cheakamus System 

In order to help facilitate the development of the operating states database, the STPA 

procedure of Leveson (2011) was applied to a high-level version of the detailed Cheakamus 

system. STPA is a systematic approach to evaluating potential control actions that can lead 

to hazards for a system. The control actions can then, if possible, become operating states 

within the database or can be programmed into the simulation model.  

The goal of the STPA analysis was a high level review of potentially hazardous conditions 

at the dam site, to help guide the development of the model and operating states database. 

The control system structure developed for this process is shown in Figure 4-4 and 

Appendix B contains the complete analysis that was done (though this would likely change 

and become much more comprehensive with expert input from BC Hydro). 

Prior to initiating an STPA analysis, the high-level system hazards must be defined. The 

hazards selected for Cheakamus Dam are as follows: 

• H1: High flows released into Cheakamus River and/or Squamish River (flood) 

• H2: Flow releases to Cheakamus River stopped (fish kill) 

• H3: Equipment damaged (economic/safety impact) 

• H4: Loss of power production (economic impact) 

Next, a set of high-level system safety constraints (requirements) are defined, as follows: 

• SH1: Flows released into Cheakamus and/or Squamish must not exceed a level that 

causes damage downstream  

• SH2: Flow must always be released to Cheakamus River 

• SH3: Equipment must not become damaged 

Following the definition of these hazards and safety constraints or requirements, a detailed 

hierarchical control system structure can be developed, as shown in Figure 4-4. Then, the 

process can begin, with the first step being to identify unsafe control actions. Unsafe 

control actions are defined for each control feature of the system, which in this case 
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includes both gates, both turbines and the low-level outlet. A table is used with four 

columns that can be used to guide the assessment: providing causes hazard, not providing 

causes hazard, wrong timing or order causes hazard, and stopping too soon or applying too 

long causes hazard.  

Once the unsafe control actions (UCA’s) are defined, the next step in the process involves 

looking at each UCA individually and considering how the issue may arise (the causes). 

Finally, additional factors can be listed.  

Looking at the detailed description of UCA’s and their causes (Step 2 in Appendix B) 

provides some interesting insights regarding the degree to which the approach presented in 

this work is able to fully cover the range of potential operating states. Focusing on the 

scenarios that involve flooding (H1), there are some instances where human factors may 

lead to more complicated scenarios than the automated procedure developed in this work 

is able to generate. Some scenarios may require additional effort for simulation due to the 

complex nature of human decision making. UCA1/UCA10 from the STPA analysis is 

presented below to illustrate this. 

UCA1/UCA10: SPOG Open command not provided when water level high, inflow high or 

both [H1, H3] 

 Case 1: Water level high, inflow low, open command not provided 

-Controllers (OP, PSOSE, ACC, DS) unaware of reservoir level due to 

gauge failure, sensor failures or communication delays 

-High tides at Squamish mean there are flooding impacts when additional 

flows are released from the CMS system. Controllers (OP, PSOSE, ACC, 

DC) make a decision to hold water back, allowing the reservoir to rise to an 

unsafe state even though the inflow is relatively low. 

 Case 2: Water level high, inflow high, open command not provided 
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-Controllers (OP, PSOSE, ACC) believe they can return the reservoir to a 

safe level using the powerhouse and/or LLO and/or other SPOG due to 

inflow forecast errors 

-Controllers (OP, PSOSE, ACC, DS) unaware of reservoir level due to 

gauge failure, sensor failures or communication delays 

-High tides at Squamish mean there are flooding impacts when additional 

flows are released from the CMS system. Controllers (OP, PSOSE, ACC, 

DC) make a decision to hold water back, allowing the reservoir to rise to 

unsafe levels 

-Controllers do not follow procedure (human error due to fatigue or shift 

change at PSOSE/FVO) 

 Case 3: Water level low, inflow high, open command not provided 

-Controllers (OP, PSOSE, ACC) believe they can keep the reservoir at a 

safe level without opening the gate, due to inflow forecast errors or process 

errors 

 -Gate(s) out of service for maintenance purposes and therefore cannot be opened. 

 -Controller thinks gate open (sensor failure, communication delay) 

In this example, there is a potential scenario where high tides at Squamish (downstream of 

Cheakamus) lead the operator to hold back water when a high-inflow event is occurring. 

This scenario would be difficult to analyze within the proposed Deterministic Monte Carlo 

model, due to the major factor being human decision making. It would require additional 

simulation effort to fully capture this potential scenario. Process errors or controllers not 

following procedure are difficult to simulate since there are so many different ways in 

which the decision-making can unfold.  Some of the causes of the UCA shown above (for 

example gates being out of service, sensor failures, communication delays, inflow forecast 

errors, etc.) are both easily incorporated into the operating states database, and easily 

simulated using the system dynamics model. 
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STPA is quite useful as a preliminary assessment tool that can be used to inform the 

development of the operating states database and simulation model. The results of the 

assessment can also significantly help with identifying and some non-failure related 

operating constraints that have the potential to lead to a hazard – the operating states 

database and simulation model can then be developed to ensure simulation of these non-

failure related events is possible. Some of the scenarios uncovered through this systematic 

assessment approach would be difficult to quantify using the automated simulation 

approach described in this work and may not fit well into the database structure. However, 

they may be able to be analyzed through a more case-specific simulation experiment. 

Performing an STPA is helpful to improve the understanding of the system and ensure 

operators are aware of all potential causes of failure for the system in order to manage risks 

and avoid catastrophic impacts of dam failure.  

It is important to note that the STPA analysis in Appendix B is provided for illustrative 

purposes only. It is in no way representative of a complete assessment for the real 

Cheakamus System, and was not performed by BC Hydro personnel.  

 

4.2.2 Database Population and Scenario Generation 

The component operating states database was populated based on the components in the 

Cheakamus Hydropower Project and the information gathered through the STPA process. 

The components tree showing the system configuration is provided in Figure 4-5. Each 

component in the leftmost column is at the Reservoir Level. Each drop-down to the right 

of this consists of the Component Level features of the system. Each of the components 

contains a minimum of two operating states (normal and adverse) and each operating state 

has a minimum of one causal factor. Each combination of operating state and causal factor 

is recorded as a separate operating state. The complete database extract table for the 

complex system is presented in Appendix C. 

The information in the database is used to come up with a unique identifier for each object 

in the system as well as it’s causal factors. For Reservoir Level components, the 
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ReservoirLevelID is used as the component identifier, 𝑛, and a number 𝑚𝑛, 𝑚𝑛 ∈

 (1…𝑀𝑛) is assigned to each operating state/causal factor combination for component 𝑛. 

The operating state identifier takes the form 𝑛_𝑚𝑛, which is used to group the operating 

states into sets for each component that are used in the calculation of the Cartesian product. 

For objects at the component level, the ReservoirLevelID and the ComponentLevelID are 

combined into a three to four-digit number which is used as the component identifier, 𝑛, 

since there may be multiple items at the Component Level for a single Reservoir Level 

item. Operating state/causal factor combinations are similarly assigned a number 𝑚𝑛. The 

identifiers can be seen in the database extract table in Appendix C Once the identifiers are 

assigned, they are grouped into sets and Python’s itertools product function is used to 

compute the Cartesian Product, which results in a list of all possible combinations of 

operating state identifiers for each component. 

 

 

Figure 4-5: Components tree for the Cheakamus System 
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Table 4-1 contains a list of each component in the system and its object identifier, n, which 

is a two-digit number for Reservoir Level items and a three to four-digit number for 

Component Level items. The name of each component is shown as well as the total number 

of operating states in each operating state set, Mn. Multiplying together all of the numbers 

in the column Mn, as per Equation 3 gives the total number of possible scenarios, or the 

number of elements in the Cartesian product, which is equal to 1.83 x 1027. This number 

can be verified by computing the Cartesian product using Python’s itertools product 

function, which generates a list of the same length. Each element in the generated list 

contains a single operating state for all components in the system. This is an exhaustive list 

which includes everything from a completely functional system to a system where every 

component has some adverse operating state.  

An additional calculation was done where causal factors leading to the same operating state 

were grouped as a single operating state. This would avoid redundant simulations of the 

same operating states with different contributing causal factors – though the model does 

distinguish between causal factors in terms of time-of-year restrictions. The number of 

scenarios with grouped causal factors for the Cheakamus system model is 1.54 x 1017, 

which is significantly fewer scenarios than if each causal factor-operating state 

combination is considered separately. Grouping of causal factors to avoid redundancy may 

potentially be an effective way to reduce the number of simulations required to evaluate 

each scenario. 

Obviously, simulation of such large number of scenarios would be computationally 

prohibitive given the current state of technology and the finite resources available for this 

research project. As such, the simulation portion of this research is focusing on a simplified 

abstraction of the Cheakamus System, described in the following section.   
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Table 4-1: Number of unique operating state and causal factor combinations for 

each component in the complex system 

Object ID, 

n 
ReservoirLevelID ComponentLevelID Reservoir Level Name Component Level Name Mn 

46 46  Gate Pier 2 

22 22  Main Earth Dam 1 

18 18  Dam Programmable Logic Controller 3 

19 19  Powerhouse Programmable Logic Controller 3 

16 16  Dam Remote Terminal Unit 3 

17 17  Powerhouse Remote Terminal Unit 3 

21 21  Main Dam 2 

27 27  Backup Diesel Generator 5 

29 29  Dam Access 5 

28 28  Powerhouse Access 5 

30 30  Reservoir Elevation Sensor 1 7 

31 31  Reservoir Elevation Sensor 2 7 

47 47  Reservoir Elevation Sensor 3 7 

37 37  Gate 1 Linear Position Sensor 4 

39 39  Gate 2 Linear Position Sensor 4 

38 38  Gate 2 Rotational Position Sensor 4 

36 36  Gate 1 Rotational Position Sensor 4 

41 41  Power tunnel 2 

42 42  Penstock 2 

44 44  Powerhouse Grid 5 

43 43  Dam Grid 5 

45 45  Inflow Forecast 3 

48 48  Site Staff Availability 3 

1326 13 26 Gate 1 Gate Hoist 1 6 

1328 13 28 Gate 1 Skinplate 3 

1331 13 31 Gate 1 Gearbox 3 

1332 13 32 Gate 1 Motor 4 

1333 13 33 Gate 1 Structural Supports 4 

1334 13 34 Gate 1 Hoist Gate Connection 1 2 

1343 13 43 Gate 1 Thrustor Brake 3 

1355 13 55 Gate 1 Backup Motor 4 

1357 13 57 Gate 1 Gate 1 Opening 2 

1416 14 16 Gate 2 Gate Hoist 2 6 

1418 14 18 Gate 2 Skinplate 3 

1421 14 21 Gate 2 Gearbox 3 

1422 14 22 Gate 2 Motor 4 

1423 14 23 Gate 2 Structural Supports 4 

1424 14 24 Gate 2 Hoist Gate Connection 2 2 

1444 14 44 Gate 2 Thrustor Brake 3 

1456 14 56 Gate 2 Backup Motor 4 

1458 14 58 Gate 2 Gate 2 Opening 2 

836 8 36 Turbine 1 Head Cover 2 

837 8 37 Turbine 1 Wicket Gates 2 

838 8 38 Turbine 1 Generator 2 

1039 10 39 Turbine 2 Head Cover 2 

1040 10 40 Turbine 2 Wicket Gates 2 

1041 10 41 Turbine 2 Generator 2 

1546 15 46 Low Level Outlet Hoist 6 

1547 15 47 Low Level Outlet Skinplate 3 

1548 15 48 Low Level Outlet Motor 4 

1549 15 49 Low Level Outlet Support 4 

1550 15 50 Low Level Outlet Hoist Gate Connection 2 

1551 15 51 Low Level Outlet Thrustor Brake 3 

1554 15 54 Low Level Outlet Gearbox 3 
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4.3 Simplified System Database Population and Scenario 
Development 

Due to the extremely large number of scenarios generated for a complex representation of 

the Cheakamus System, a simplified abstraction of the system was developed to facilitate 

scenario simulation. The goal of this simplification was to create a system that mimics the 

function of Cheakamus but has significantly less components and as such fewer scenarios 

to simulate. This simplified system provides a proof-of-concept for the methodology 

described in this research. For applications to similar systems to Cheakamus, it may be 

desirable to utilize some of the simplifications described here, such as aggregating 

components with similar impacts into grouped components, with the goal of reducing the 

occurrence of redundant scenarios. This process could potentially be guided by the use of 

fault tree analysis for sub-systems such as the gate equipment. Due to computational 

resource limitations for this research, the simplified system lacks some of the key 

redundancy features of the real Cheakamus System that increase its overall level of safety. 

As such, results for the simplified system are not considered to be representative of the real 

Cheakamus Project safety and performance. 

In the simplified version of the system, the existing reservoir stage-storage relationship is 

used. The two spillway gates (SPOG1 and SPOG2) are combined into a single gate (SPOG) 

with a rating curve equal to the sum of the discharge columns from the individual rating 

curves. The Low Level Outlet sluice is omitted from the model. The two turbines are 

combined into a single unit capable of conveying the total flow of both units. The main 

communications equipment in the Cheakamus System (the PLC and the RTU) are idealized 

as a single component (PLCRTU). Gate components are also simplified into categories 

representing the impacts that occur upon failure – gate failing in place, gate failing closed, 

and gate collapse. The sensors for the reservoir level are combined into a single sensor and 

the sensors for gate position are omitted. Wicket gates are eliminated from the turbine 

components and a single grid is modelled instead of separate power connections to the 

powerhouse and the dam. In addition to the component changes, some causal factors were 

omitted from the analysis to reduce further the scenario list, since each operating state-

causal factor combination is counted as a unique operating state.  
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To show how the model can be useful in assessment of safety improvements realized by 

potential capital upgrades and operating rules, two cases are simulated. These are a “base 

case” which has a significantly smaller free overflow spillway than the real system, and a 

“dam safety improved case” which has an identical free overflow spillway as well as 

improved operating rules and a slightly reduced failure frequency for certain components. 

These scenarios are described further in Section 4.4.3. 

Using the simplified abstraction of the Cheakamus System, a new version of the database 

was developed. Figure 4-6 contains the components tree for the simplified system. 

Appendix D contains the full database details for the simplified system. Table 4-2 contains 

a list of each component in the simplified system including its identifier, 𝑛, the 

ReservoirLevelID and ComponentLevelID (from the database), component description 

and the number of operating states in each component’s operating state set, Mn.  

  

Figure 4-6: Components tree for the simplified system 

Multiplying together the values of Mn as shown in Equation 3 yields the total number of 

possible scenarios for the system, which is equal to 5.5 x 105. This number can be verified 
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by computing the Cartesian Product using Python’s itertools product function, which 

generates a list of scenarios of the same length. 

Table 4-2: Number of unique operating state and causal factor combinations for 

each component in the simplified system 

Object ID, n ReservoirLevelID ComponentLevelID Reservoir Level Name Component Level Name Mn 

18 18  Programmable Logic Controller / Remote Terminal Unit 4 

29 29  Dam Access 4 

30 30  Res El Sensor 1 5 

42 42  Penstock 2 

44 44  Grid 4 

45 45  CMS Inflow Forecast 1 

48 48  Site Staff Availability 3 

836 8 36 Turbine 1 Head Cover 2 

838 8 38 Turbine 1 Generator 2 

1359 13 59 Gate 1 Gate opening 2 

1361 13 61 Gate 1 Components failing open 3 

1362 13 62 Gate 1 Components failing closed 4 

1360 13 60 Gate 1 Components failing in place 3 

Comparing the total number of possible scenarios for the complex representation of 

Cheakamus to the simple system, it is clear that with more components and a larger number 

of operating states and causal factors, the number of possible operating scenarios grows 

exponentially. There is a trade-off between the level of complexity represented and the 

amount of computational effort required – this requires serious consideration in model 

development and could result in different modellers creating different versions of the same 

system. It is very important to ensure any simplifications of real-world systems take into 

consideration component redundancies that can significantly improve scenario outcomes. 

Future work should explore methods for reducing the impact of this tradeoff by decreasing 

the computational effort required to cover larger numbers of scenarios – this may include 

the use of pattern recognition techniques.    

Table 4-3 and Table 4-4 contain the key database parameters from a single example 

scenario for the simple system, for the components at the Reservoir Level and the 

Component Level, respectively. The example scenario contains the following identifiers 

(in the form Component_OperatingStateNumber): 
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[18_1, 44_1, 30_1, 45_1, 29_4, 42_2, 48_3, 838_1, 836_2, 1359_1, 1360_2, 1361_1, 

1362_1] 

 

Table 4-3: Database information from example scenario: Reservoir Level 

Identifier 

Reservoir 

Level 

Name 

Operating 

State 

Name 

Min Max Avg 

Causal 

Factor 

Name 

Max 

Date 

Min 

Date 

18_1 
PLC/RTU PLC offline 

1 24 6 
Voltage 

Fluctuation 
365 0 

44_1 Grid Grid failure 0.04 7 0.16 Wind storm 365 0 

30_1 
Reservoir Elevation 
Sensor 1 

Wrong Reading 
10 100 25 

Temperature 
365 0 

45_1 
CMS Inflow Forecast Inflow forecast 

normal 
0 0 0 

None 
365 1 

29_4 Dam Access Typical access time 2 4 2.5 None 365 1 

42_2 Penstock Normal operation 0 0 0 None 365 0 

48_3 Site Staff Availability Staff available 0 0 0 None 365 0 

Table 4-4: Database information from example scenario: Component Level 

Identifier Reservoir 

Level 

Name 

Component 

Level 

Name 

Operating 

State 

Name 

Min Max Avg Causal 

Factor 

Name 

Min 

Date 

Max 

Date 

838_1 Turbine 1 Generator Load Rejection 0.1 7 0.25 Maintenance 1 365 

836_2 Turbine 1 Head Cover Normal 0 0 0 None 1 365 

1359_1 Gate 1 Gate opening Normal 0 0 0 None 1 365 

1360_2 Gate 1 Components 

failing in place 

Components of 

the gate fail 

causing it to 
remain in place 

0.5 120 7 Maintenance 1 365 

1361_1 Gate 1 Components 

failing open 

Normal 0 0 0 Normal 1 365 

1362_1 Gate 1 Components 
failing closed 

Normal 0 0 0 Normal 1 365 

In the example scenario, the PLC/RTU is offline due to a voltage fluctuation, and the grid 

is offline because of a wind storm. Temperature fluctuations have affected the reservoir 

elevation sensor which is giving a false reading. There is also a load rejection which results 

in the unit being offline. Components of the gate are also failed due to a lack of maintenance 

and the gate is stuck in its current position. These tables provide a good indication of the 

information that the simulation model reads in to run the simulation: The minimum, 

maximum and average impact magnitudes and the causal factor date restrictions are used 

in the Monte Carlo generation of parameters for each iteration of the particular scenario 

being run.   
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A description of the system dynamics model developed for the simplified system is 

provided in the following section.  

 

4.4 Simplified System Model Description 

The simplified system as described in the database was initially modelled using the system 

dynamics software Vensim (Ventana Systems 2015) interfaced with Python (Python 

Software Foundation, 2012). It was eventually converted into a pure-code Python script 

using the sdpy package to facilitate simulation using cluster computing on the Linux 

operating systems at Compute Canada. Converting the code to a Python environment also 

significantly improved the simulation efficiency by reducing the overhead associated with 

passing information between Vensim and Python. Appendix E contains the Python script 

for the scenario generation. A complete package that can be used to run simulations can be 

found in the electronic files under the dam_safety_simulation folder. This section describes 

the model in more detail and provides the model testing results that compare the simulation 

outputs to the historically observed Cheakamus System (on which the model is loosely 

based). A description of the base case and the dam safety improved case for the simulations 

is also provided. 

The key benefit of using a system dynamics software package such as Vensim is that the 

system structure can be constructed in an object-oriented way, allowing for easy 

visualization and modification of the relationships between system components. 

Subscripting is another useful feature. Vensim allows for multiple sectors or model views, 

which are related to one another using “shadow variables” that link the variables between 

the sectors. One drawback associated with Vensim and similar software packages is there 

may be limitations to the complexity of functions defined within the software. As a result 

of this limitation, a link between the Vensim program and Python programming language 

was made using the venpy package (Breach 2015) which allows function equations to be 

programmed directly in python. While this link is useful for model development and 

testing, there is a significant amount of overhead associated with passing information 

between the two programs. Since the goal of this research is to simulate the full suite of 



157 

 

potential scenarios, the model was eventually converted directly to Python script, however 

the model structure remains the same. The object-oriented building blocks and equations 

in Vensim and Python can easily be translated to the pure Python environment using the 

pysd package (provided in the dam_safety_simulation folder of the electronic appendix).  

The following sections describe the system dynamics model development. Screen shots of 

the system structure are taken from Vensim.   

4.4.1 Model description 

The following sections provide the detailed equations used in each of the system dynamics 

model sectors. The model sectors follow the generic control loop of Leveson (2011), which 

is expanded on to detail the relationships modelled in each sector in Figure 4-7. The 

Hydraulic System State sector contains the water balance and pertinent relationships to 

that. Reservoir inflows, storage and outflows are modelled. Outflows are a sum of flows 

through the turbine, uncontrolled flows through the penstock, gate flows, overflows and 

dam breach flows. Dam breach initiation and gate blockage are also modelled within the 

sector, as well as the binary position of the power intake gate. The Sensors Sector includes 

the collection and relay of reservoir level information for use in the operations sector. 

Reservoir sensor errors and relay issues are also modelled within the sector. The Operations 

Sector models the decision making and implementation. This includes inflow forecasting, 

operations planning, remote or manual actuation and delays in mobilization of personnel 

to the site. The Gate Actuators Sector models the gate position and availability, which is a 

function of the condition of the gate components as well as power supply. The Turbine 

Actuators Sector models the condition of power flow release components and determines 

the releases through the unit and uncontrolled releases through a ruptured penstock or failed 

head cover. Finally, the Disturbances Sector models the implementation of adverse 

operating states (which are a model input). This includes failures, errors and delays as well 

as capacity losses at the gate due to debris accumulation.  
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Figure 4-7: Simulation model sectors 

The following paragraphs provide the stock-and-flow diagrams, details and equations for 

each of the model sectors. Each stock-and-flow diagram shows the relationships within the 

sub-system. Variables can also enter the sub-system from other sub-systems. 

4.4.1.1 Hydraulic System State Sector 

The Hydraulic System State Sector is shown in Figure 4-8 with the variable names and 

symbols shown in Table 4-5. This sector represents the status of the hydraulic infrastructure 

in the system relating to water retention (dams) and conveyance (water passages). It should 

be noted that components which move – such as gates, valves, and turbines – are considered 

Actuators. The functioning of these electrical, mechanical and structural components are 

represented within the Actuators sector and are not modelled as part of the Hydraulic 
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System State sector. Reservoir storage, flow conveyance through gates and turbines, 

overtopping and breach are represented in this sector.  

 

Figure 4-8: Hydraulic System State Sector 

Table 4-5: Hydraulic System State Sector variable names 

Variable name Variable symbol 

Reservoir Storage (m3/s-day) S 

Reservoir Level (m) El 

Inflow (m3/s) I 

Outflow (m3/s) O 

Unobstructed gate flow (m3/s) QGU 

Gated spill release (m3/s) QG 

Power flow release (m3/s) QP 

Gate position (m) g 

Gate capacity (%) GC 

Overflow (m3/s) QOF 

Breach triggered (binary) EDB 

Breach flow (m3/s) QDB 

Powerhouse flow conveyance (m3/s) PQC 

Penstock leakage (m3/s) QPen 

Other component time to repair (penstock) (days) Pttr 

Intake gate closure (binary) IG 
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In this sector, reservoir storage is represented as a stock, with flows Inflow, I, increasing 

its value and Outflow, O, decreasing its value. The reservoir storage stock value is 

calculated by determining the difference in inflow and outflow at each time step, as shown 

in Equation 4:  

𝑑𝑆

𝑑𝑡
= 𝐼 − 𝑂 (4.1) 

Where S represents storage, t represents time, I represents inflow and O represents outflow. 

Storage is directly related to reservoir elevation (El) as described by the stage-storage table 

for the reservoir of interest. The Stage-storage curve (SSC) which determines reservoir 

elevation El from storage S and it’s reverse (SSCRev) are supporting functions described 

in more detail in Appendix E. 

The model outflow O represents a summation of the outflows from each of the N spillway 

gate conduits (QGi, i=1….n), flows passing through the turbines (QP), and any 

uncontrolled flow releases (UCR). Uncontrolled flow releases include additional outflows 

from penstock leakage (PL), overflows (OF), and dam breach flows (DBF). Equations 5 

and 6 pertain to model outflow (O) and Uncontrolled flow releases, respectively: 

𝑂 = 𝑄𝐺 + 𝑄𝑃 + 𝑈𝐶𝑅 (4.2) 

𝑈𝐶𝑅 = 𝑄𝑃𝐿 + 𝑄𝑂𝐹 + 𝑄𝐷𝐵 (4.3) 

Unobstructed gated spill releases (UGO) are a function of reservoir elevation (El) and 

spillway gate position (g), as determined by the spill release rating curve. This function 

retrieves the value of the reservoir level and the gate position and calls the supporting 

function “GateFlowCalc” using those as arguments (See Appendix E).  

In some operating scenarios, debris may block the spillway gate opening, reducing the 

capacity of the spillway gate, so the unobstructed gated spill release is then multiplied by 

the gate’s real time capacity, (GC), to get the actual gated spill release (QG).  This is shown 

in Equation 7:  

𝑄𝐺𝑖 = 𝐺𝐶 ∗ 𝑄𝐺𝑈 (4.4) 
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Where GC is a ratio of full capacity and has a value between 0 and 1.  

Overflow (QOF) is determined following Figure 4-9 using the overflow stage-discharge 

curve OTC as well as the stage-storage curve SSC and its reverse SSCrev from the 

supporting functions in Appendix D. The overflow stage-discharge curve represents the 

hydraulic relationship between the elevation of the reservoir and the total overflow 

discharge (through the free overflow spillways, as well as any additional discharges over 

the concrete and earthfill dams). The stage-discharge curve OTC is manipulated in the base 

case by increasing the spillway crest by 2m and multiplying the result by 0.3 to represent 

a scaled down capacity of the free overflow structures in the base case.  

 

Figure 4-9: Overflow calculation 

Because the Cheakamus Reservoir is somewhat flashy (the reservoir can fluctuate 

relatively quickly), the daily time step introduces some issues in calculating the aggregated 



162 

 

daily overflow spill. Because the fluctuations in reservoir level can occur at a finer time 

step than daily, the overflow values at the start of the day may not be equal to the overflow 

values at the end of the day. To address this problem, a nested hourly calculation is used, 

as shown in Figure 4-9. This takes into account whether the reservoir will exceed or drop 

below the free overflow spillway within the 24-hour period, and the resultant changes in 

overflow spill based on the fluctuating reservoir elevation.  

Dam breach is assumed to be triggered (EDB) once the reservoir elevation exceeds a 

particular level (DBEl) above the earth dam crest (defined using expert judgement), and 

takes on a value of 0 for not breached or 1 for breached (Equations 8 and 9), with dam 

breach flows (DBF) equal to the full reservoir storage (the reservoir is completely emptied 

when the dam breaches): 

𝐹𝑜𝑟 (𝐸𝑙 > 𝐷𝐵𝐸𝑙): 𝐸𝐷𝐵 = 1,     𝐹𝑜𝑟 (𝐸𝑙 < 𝐷𝐵𝐸𝑙): 𝐸𝐷𝐵 = 0 (4.5) 

𝐹𝑜𝑟 𝐸𝐷𝐵 = 1:𝑄𝐷𝐵 = 𝑆,     𝐹𝑜𝑟 𝐸𝐷𝐵 = 0:𝑄𝐷𝐵 = 0 (4.6) 

Penstock rupture is initiated through the Disturbances Sector when the penstock fails, 

which is represented by Other components time to repair with subscript Penstock, 𝑃𝑡𝑡𝑟. 

Penstock leakage, 𝑄𝑝𝑒𝑛 is equal to the “head cover max flow” from the turbine actuators 

sector (see Section 4.4.1.5), unless the intake gate is closed. This is described in Equation 

4.7:  

𝑖𝑓 𝐼𝐺 = 0 𝑎𝑛𝑑 𝑃𝑡𝑡𝑟 > 0:      𝑄𝑝𝑒𝑛 = 𝐻𝐶𝑀𝐹 

𝑒𝑙𝑠𝑒:   𝑄𝑝𝑒𝑛 = 0 (4.7) 

The variable intake gate (IG) represents the status of the maintenance gate at the top of the 

penstock, where zero represents an open gate and 1 represents a closed gate. Power intake 

gates are present in most dam systems with hydropower generation at the upstream end of 

the power flow conduit. The intake gate provides a means to dewater and inspect/maintain 

the penstock and powerhouse components. In some dam systems, these gates may be able 

to close under excessive flows resulting from penstock rupture or head cover failure, 

reducing the negative impacts. In other systems, the reservoir must be at an elevation below 
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the sill of the intake gate before it can close. In the case of penstock failure, all of the water 

moving towards the powerhouse exits the penstock before making it there. Power flow 

releases from all units (QP) are equal to the powerhouse flow conveyance PQC less the 

water escaping through the penstock (QPen) via leakage or rupture as shown in Equation 

4.8. 

𝑄𝑃 = 𝑃𝑄𝐶 − 𝑄𝑃𝑒𝑛        𝑖𝑓 𝐼𝐺 = 0, (4.8)

𝑄𝑃 = 0                          𝑖𝑓 𝐼𝐺 = 1
 

If the intake gate is closed (IG=1), power outflow (PO) is equal to zero.  

Variables shown in Figure 4-8 in grey font with chevron brackets are known as “shadow 

variables” These are the key variables which connect into the Hydraulic System State 

Sector from other sectors of the model. The variable “Other component remaining time to 

repair” enters the Hydraulic System State Sector from the Disturbances Sector. Variables 

“Gate position” and “Powerhouse flow conveyance” enter into the Hydraulic System State 

Sector from the Actuators Sector, which is broken down into Gate Actuators and Turbine 

Actuators. 

4.4.1.2 Sensors Sector 

The sensors sector is shown in Figure 4-10 and the variable symbols are outlined in Table 

4-6.  

 

Figure 4-10: Sensors Sector 
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Table 4-6: Sensors Sector variable names 

Variable name Variable symbol 

Reservoir level (m) El 

Sensor Error (%) SE 

Sensor condition (binary) SC 

Gauge reading (-) SRd 

Gauge processing (-) SP 

Gauge relay (-) SRl 

If the gauge is functioning properly (SC=1) then the gauge reading is equal to the reservoir 

level (El). If the gauge is failed (flat-lined), the value is equal to the last read reservoir 

elevation as per Equation 4.9: 

𝐹𝑜𝑟 𝑆𝐶 = 1:   𝑆𝑅𝑑 = 𝐸𝑙 + 𝐸𝑙 ∗ (
𝑆𝐸

100
)      

𝐹𝑜𝑟 𝑆𝐶 = 0:   𝑆𝑅𝑑 = −9999 (4.9)
 

The gauge processing (SP) represents the interpretation step in the data collection system, 

which is carried out by software (a PLC) and will be site-specific. If the PLC is non-

functional the SP will return a value of -9999 which indicates a missing value. The 

processed value is transmitted to the controller through the gauge relay (SRl) if the relay is 

available. The relay is usually carried out by a remote terminal unit (RTU), which is 

modelled as a single variable with the PLC. Thus, if the PLCRTU component is non-

functional (RA=0), this also means that no information is transmitted to the controller 

Operations Sector. 

4.4.1.3 Operations Sector 

The Operations Sector for the hydropower system is shown in Figure 4-11 and Table 4-7 

contains the relevant variables. This sector describes the use of information relating to the 

current state of the system to forecast inflows and make reservoir operating decisions.  

Inflow forecasting may be done by applying a random, normally distributed error to the 

actual reservoir inflows, which are an input to the hydraulic system state sector. In 

reality, hydrologists use climate forecasts and watershed modelling to develop inflow 

forecasts that are considered during operations planning. While these processes could be 

incorporated into the simulation model, it would necessitate significant additional 



165 

 

computational effort. Instead, random errors may be applied to reservoir inflows to 

ensure operations planning is simulated using realistically inaccurate inflow information. 

Since the objective of this case study is to compare directly the base case and the dam 

safety improved case, inflow forecasting errors were removed from the potential 

operating states, since the random errors would differ between these two runs. Inflow 

forecast is simply the upcoming 14 days of inflows, as follows: 

𝐼𝐹𝑑 = 𝐼𝑡+𝑑 (4.10) 

where 𝑑 = 0,… ,13 and 𝑡 is the current timestep. 

 

 

Figure 4-11: Operations Sector 
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Table 4-7: Operations Sector variable names 

Variable description Variable symbol 

Inflow (m3/s) I 

Inflow forecast calculation (m3/s) IFd, d=1…D 

Operations planning (m3/s) OPf, f=1…F 

Turbine instructions (m3/s) Ip 

Gate instructions (m) Ig 

Gate control redundancy (-) GCR 

Other Component time to repair (-) OCttr 

Sensor time to repair (-) Sttr 

Manual actuation required (binary) MA 

Delay in contacting site staff Ds 

Delay in accessing site Da 

Contact initiated with site staff CI 

Contacting site staff CS 

Time remaining to contact site staff TRC 

Plant staff notified PSN 

Mobilizing initiated MobI 

Mobilizing Mob 

Site staff mobilized SSM 

Demobilize Demob 

Following inflow forecasting, operations planning (OPf) proceeds. The result for 

operations planning is a vector of two variables (f=1…F and F=K+N), each representing 

a single instruction for a single controlled flow release component (K turbines and N gates, 

in this case study, K=N=1 and 𝐹=2). The main operations planning algorithm takes several 

key inputs (inflow forecast, reservoir elevation, day references, component availabilities 

and reservoir elevation limits) and determines the corresponding operating instructions for 

the system to ensure minimum flow releases are met and reservoir level restrictions are 

adhered to if possible. It can be found in the function OpsPlan which is described in 

Appendix E. The algorithm begins by assuming the minimum fish flow is released and the 

remainder of the inflow is passed through the powerhouse (up to the maximum) for a 14-

day window from the current date. The resultant reservoir levels are then checked, adjusted 

and re-checked to ensure the operating instructions result in reservoir levels that are within 

the specified normal maximum (NMax) and minimum (NMin). To ensure enough water is 

available for the winter low-flow period, the normal minimum reservoir level was adjusted 

to El. 370 m for the months of November and December for the purposes of the modelling. 

Operations planning follows the algorithm shown in Figure 4-12, which includes power  
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Figure 4-12: Operations Planning algorithm 



168 

 

flow releases through the turbine, following the logic that (a) fish flows are met, (b) 

additional inflows can be released through the power conduit, (c) any exceedance over 

NMax can be avoided by releasing more water through the power conduit or spill, and (d) 

any exceedance below NMin can be reduced from spill flows, then power flows. The 

algorithm generates instructions in terms of flow for the gate and turbine. The operations 

planning function in the Operations Sector OPf collects and organizes the information 

necessary to be passed to the OpsPlan function which is described further Appendix E. 

Gate operation may be carried out remotely or on-site. The default operation is remote, 

however manual actuation (MA) may be required if (a) communications equipment 

(PLCRTU) is out of service (OCttr>0) or (b) the reservoir elevation sensor is not functional 

(Sttr>0). The value of MA is set to 0 as the default, but changes to 1 if the equipment 

required to operate the gate remotely is failed, as per Equation 4.11: 

𝑀𝐴 = 0      𝑖𝑓 𝑆𝑡𝑡𝑟 = 0 𝑎𝑛𝑑 𝑂𝐶𝑡𝑡𝑟 = 0 

𝑀𝐴 = 1      𝑖𝑓 𝑆𝑡𝑡𝑟 > 0 𝑜𝑟 𝑂𝐶𝑡𝑡𝑟 > 0 (4.11) 

When MA=1, manual actuation is initiated. This occurs through a series of auxiliary 

variables and stocks which appear complex but are simple value holders that implement 

delays in contacting staff and mobilizing them to site.   

The stock “Manual actuation initiated” (MAI) is a variable that, when equal to 1, indicates 

that the mobilization process is underway. The inflow to this stock is the variable Initiate, 

which is calculated as per Equation 4.12: 

𝑖𝑓 𝑀𝐴 = 1 𝑎𝑛𝑑 𝑀𝐴𝐼 = 0: 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒 = 1 

𝐸𝑙𝑠𝑒: 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒 = 0 (4.12) 

Demobilization (DM) is the outflow of the stock MAI, and sets this value back to zero when 

staff have mobilized and are on site (SSM) and manual actuation (MA) is no longer required, 

as per Equation 4.13: 

𝑖𝑓 𝑆𝑆𝑀 = 1 𝑎𝑛𝑑 𝑀𝐴 = 0:𝐷𝑀 = 1 

𝑒𝑙𝑠𝑒: 𝐷𝑀 = 0 (4.13) 
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The next step in the process is notifying the plant manager so that site staff can be 

mobilized. This is represented using a stock “Time remaining to contact staff”, (TRC), 

which tracks any delays in this process. The stock input is “Contact initiation” (CI) and the 

delay associated with the contacting and dispatch of staff, Ds, is an input from the 

disturbances sector. Plant staff notified (PSN) is another variable that tracks whether staff 

have been made aware of any issues at the site. Contact initiation (CI) is calculated as 

follows: 

    𝑖𝑓 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒 = 1 𝑎𝑛𝑑 𝑆𝑆𝑀 = 0 𝑎𝑛𝑑 𝑃𝑆𝑁 = 0:     𝐶𝐼 = 𝐷𝑠 

𝑒𝑙𝑠𝑒:     𝐶𝐼 = 0 (4.14) 

This sends a pulse to the TRC stock, which is equal to the predetermined delay time (if 

any), which is pre-determined at the start of the simulation through the Monte Carlo 

scenario generation. The stock outflow, “Contacting” (CS) is then equal to the timestep 

while the value of the stock is greater than zero. Once the TRC stock has filled and drained, 

the plant staff are considered to be notified PSN. The PSN variable represents this by taking 

on a value of 1 when the staff are dispatched to site, and zero when they are not, as follows: 

𝑖𝑓 𝑀𝐴 = 1 𝑎𝑛𝑑 𝑇𝑅𝐶 = 0: 𝑃𝑆𝑁 = 1 

𝑒𝑙𝑠𝑒: 𝑃𝑆𝑁 = 0 (4.15) 

Next, the site staff begin to mobilize to the site. There may be a delay in mobilization due 

to site access issues such as traffic or emergencies, “delay in accessing site” (Ds). These 

delays are a direct Monte Carlo generated input from the simulation model when site access 

is delayed. This delay is again represented using a stock “Time remaining to access site”, 

(TRA), which receives a pulse of inflow from “Mobilization initiated” (MobI), and has 

outflow “Mobilizing” (Mob). The variable MobI is calculated as follows: 

𝑖𝑓 𝑃𝑆𝑁(𝑡) = 1 𝑎𝑛𝑑 𝑃𝑆𝑁(𝑡 − 1) = 0:𝑀𝑜𝑏𝐼 = 𝐷𝑠 

𝑒𝑙𝑠𝑒 𝑖𝑓 𝐷𝑒𝑚𝑜𝑏 = 1:𝑀𝑜𝑏𝐼 = 1 

𝑒𝑙𝑠𝑒:𝑀𝑜𝑏𝐼 = 0 (4.16) 
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This variable sends a pulse equal to Ds (the delay time) when mobilization is initiated, and 

zero otherwise except during demobilization, when the standard mobilization time (1 day) 

is sent as a pulse to the stock TRA to re-set the standard site access time. The variable 

“Mobilizing” (Mob), drains the stock TRA at the rate of time, when its value is positive – 

this represents the travel of site staff to the dam. Finally, once the value of the TRA stock 

is zero and mobilization is still required (MAI=1), the site staff are mobilized and at the 

dam “Site staff mobilized” (SSM=1), as per Equation 4.17: 

    𝑖𝑓 𝑇𝑅𝐴 = 0 𝑎𝑛𝑑 𝑀𝐴𝐼 = 1:      𝑆𝑆𝑀 = 1 

       𝑒𝑙𝑠𝑒:     𝑆𝑆𝑀 = 0 (4.17) 

Once the site staff are mobilized, actuation of the gate can occur manually. Demobilization 

(Demob) occurs when manual actuation is no longer required (MA=0) and site staff are 

present at the site (SSM=1), as follows: 

    𝑖𝑓 𝑀𝐴 = 0 𝑎𝑛𝑑 𝑆𝑆𝑀 = 1:      𝐷𝑒𝑚𝑜𝑏 = 1 

       𝑒𝑙𝑠𝑒:     𝐷𝑒𝑚𝑜𝑏 = 0 (4.18) 

4.4.1.4 Gate Actuators Sector 

The Actuators Sector has been broken down into two sub-sectors: (1) Gate Actuators and 

(2) Turbine Actuators, because both the function and purpose of these components are very 

different. Outlet Gates may be operated manually or remotely and rely on either grid power 

or a backup power source as well as a series of interconnected mechanical and electrical 

components which function together to make the gate operable. Turbines are typically 

operated remotely, require an operational grid to be functional (power must be exported 

somewhere) and rely on vastly different components to achieve their intended purpose. As 

such, actuation of a gate is not modelled alongside actuation of a turbine and the sectors 

are shown separately. 

The Spillway Gate Actuators Sector is shown in Figure 4-13 with relevant variable symbols 

presented in Table 4-8. This sector represents each of the mechanical, electrical and 

structural components involved in operation of a spill release gate. The components are 
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grouped based on the outcomes of component failure into three categories: (1) Components 

failing the gate in the closed position, (2) Components collapsing the gate and (3) 

Components causing the gate to fail in its current position. The model has been generalized 

as much as possible to represent both radial and sluice-type spillway gates but may need to 

be modified for representation of different types of gates or for valve release facilities (eg. 

Stop-log gates, Hollow cone valves, Howell-Bunger valves). Backup power supplies may 

also easily be added to the model. 

 

Figure 4-13: Gate Actuators Sector 

Table 4-8: Gate Actuators variable names 

Variable Description Variable Name 

Gate instructions (m) Ig 

Site staff mobilized (binary) SSM 

Gate position (m) g 

Last gate position (m) Lg 

Gate availability (binary) GAv 

Gate remaining time to repair (days) GRTTRc, c=1…C 

Gate power supply (binary) GPS 

Gate collapse (binary) GC 

Gate failed closed FC 

Gate failed in place FIP 

Maximum gate position MGP 

Failures of the component groups are each associated with different times to repair which 

are modelled in the “Disturbances” sector. Disturbances in the system, for example seismic 

events, may affect all or some of these components and the maximum repair time for each 
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of the affected components then becomes the length of time the gate is unavailable (out of 

service) for. 

The gate can either be operated remotely or by site staff if manual actuation (MA) is 

triggered as described in the previous section. If MA=1, site staff must be mobilized 

(SSM=1) in order for the gate control system to be operated and for actuation to take place. 

If MA=0, the gate’s remote actuator is functioning properly and the gate may be operated 

from the control center.  

The gate components are binary indicators of component availability and are used in the 

calculation of overall gate availability and as indicators of whether the gate is collapsed 

(GC) or failed in place (FIP) or failed closed (FC). The values of the C affected gate 

components for each gate, i, are set to 0 if the remaining time to repair is greater than 0 and 

1 if the remaining time to repair is 0 (ie. there is no damage to the component), as per 

Equation 4.19: 

𝐹𝑜𝑟 𝐺𝑅𝑇𝑇𝑅𝑐 > 0: 𝑐 = 0 ,    𝐹𝑜𝑟 𝐺𝑅𝑇𝑇𝑅𝑐 = 0: 𝑐 = 1 (4.19)   

Gate availability is set equal to one if all gate components are available (values equal to 

one), the power supply is available (GPS=1) and either remote actuation is possible (MA=0) 

or staff are on site to operate the gate (MA=1 and SSA=1). Gate collapse (GCi) is set equal 

to one if the “components collapsing gate” is equal to zero and fail closed (FCi) is set equal 

to one if the “components failing gate closed” is equal to zero. Gate instructions are 

measured in meters of opening and are determined from the Operations Sector, entering 

the Gate Actuators sub-system as a shadow variable. Gate position is then determined as 

follows. 

𝑔𝑖 = 𝑀𝐺𝑃    𝑓𝑜𝑟 𝐺𝐶 = 1 

𝑔𝑖 = 0   𝑓𝑜𝑟 𝐹𝐶 = 1 

𝑔𝑖 = 𝐼𝑔    𝑓𝑜𝑟 𝐺𝐴𝑣 = 1 

𝑔𝑖 = 𝐿𝑔   𝑓𝑜𝑟 𝐺𝐴𝑣 = 0 (4.20) 
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Last gate position Lg is stored by Python and used as the default gate position if the gate is 

unable to be moved due to failure of a component. The gate position g is then used as an 

input to the Hydraulic System State sector.   

4.4.1.5 Turbine Actuators Sector 

The model structure for the power Actuators Sector is shown in Figure 4-14 with relevant 

variables described in Table 4-9. The power Actuators Sector has been simplified 

significantly due to the high complexity associated with operation of a generating unit. 

Wicket gates could be modelled as a stock with flows of opening and closing, however this 

would require modelling the governor and other turbine components in significant detail. 

It was assumed that modelling in this way would increase complexity but not improve the 

result significantly. As such, powerhouse flow conveyance is the key variable being 

modelled, and the availability of the components required for the powerhouse to function 

are shown as inputs that determine whether power can pass through the powerhouse and 

electricity can be generated (Power remaining time to repair). The two very high-level 

power component failures that are being modelled are the generator (which causes a load 

rejection) and the turbine head cover which can fail causing an uncontrolled release of 

water into the powerhouse and downstream. In reality, there are many ways in which a 

turbine can fail to operate safely, however the inability to pass flow and the uncontrolled 

release of flow are the two major outcomes of significant power related failures, so these 

components were considered to be representative. 

The values for head cover (HC) and generator (PGen) are determined by “Power remaining 

time to repair” which tracks the time left in repairs following failures of these components. 

If the remaining time to repair value is positive, their value is set to zero (this equation is 

the same as for the gate components above). Unit availability then depends on the 

availability of the wicket gates, generator and grid (GrAv) following Equation 4.21: 

𝑖𝑓 𝐻𝐶 = 1 𝑎𝑛𝑑 𝑃𝐺𝑒𝑛 = 1:     𝑃𝑈𝐴 = 1     
𝑒𝑙𝑠𝑒: 𝑃𝑈𝐴 = 0 (4.21)
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Figure 4-14: Power Actuators Sector 

Table 4-9: Power Actuators variable names 

Variable description Variable name 

Turbine instructions (m3/s) IP 

Unit availability (binary) PUA 

Unit flow (m3/s) QU 

Generator (binary) PGen 

Head cover (binary) HC 

Powerhouse grid availability (binary) GrAv 

Powerhouse flow conveyance (m3/s) PFC 

Head cover max flow (m3/s) HCMF 

Intake gate closed (binary) IG 

If any of PWG, PGen or GA are equal to zero, PUA=0 and the unit cannot release any water 

(QP=0) unless the head cover (HC) is failed, in which case the maximum head cover flow 

is released through the unit, as per Equation 4.22: 

   𝐼𝑓 𝑃𝑈𝐴 = 1:      𝑄𝑃 = 𝐼𝑃  
𝑖𝑓 𝑃𝑈𝐴 = 0 𝑎𝑛𝑑 𝐻𝐶 = 1:     𝑄𝑃𝑗 = 0   

𝐼𝐹 𝑃𝑈𝐴 = 0 𝑎𝑛𝑑 𝐻𝐶 = 0, 𝑄𝑃 = 𝐻𝐶𝑀𝐹 (4.22)

 

Head cover max flow (HCMF) is a site-specific relationship to be determined by the 

modeller. In this case, the assumption is that the maximum turbine flow for the current 

reservoir level can be multiplied by five to represent the total flow that would pass through 

the failed unit. If this flow causes reservoir elevations to drop below the sill, a correction 
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is made to represent the reduction in flow being passed into the power tunnel from the 

reservoir (Qsill). The head cover release also depends on the intake gate closed variable 

(IG), and is equal to zero if the intake gate is closed. The equation is as follows: 

𝑖𝑓 𝐼𝐺 = 0:    𝐻𝐶𝑀𝐹 = min(5 ∗ 𝑇𝑄𝑀𝐴𝑋(𝑅𝑆𝐸, 𝑎𝑣 = 1), 𝑄𝑠𝑖𝑙𝑙) 

𝑒𝑙𝑠𝑒:     𝐻𝐶𝑀𝐹 = 0 (4.23) 

Where 𝑇𝑄𝑀𝐴𝑋 represents the supporting function described in Appendix E which 

calculates the maximum flow through the turbine for a given reservoir level (RSE) and 

availability set equal to 1. Qsill represents the reduction in this value that would be 

observed when the reservoir passes below the sill within the current day. A simple volume 

calculation is done to calculate Qsill as follows: 

𝑄𝑠𝑖𝑙𝑙 = max (𝑆 + 𝐼 − 𝑄𝐺 − 𝑆𝑆𝐶𝑟𝑒𝑣(363.06), 0) (4.24) 

where S is the storage, I is the inflow QG is the gated spill release, and SSCrev represents 

the reverse lookup from reservoir level to storage. El. 363.06 is the elevation of the gate 

sill. Qsill cannot be negative. It is important to note here a key difference between the base 

case and the dam safety improved case. For the dam safety improved case, the head cover 

maximum flow, 𝐻𝐶𝑀𝐹, is multiplied by 1/24 to represent intake gate closure within an 

hour of rupture occurrence. This is because the time-step of the model is daily and it is 

assumed that the gate closure would happen immediately upon detection of the rupture 

(within one hour), so the maximum flows are simply scaled by this factor.  

Equation 18 shows that the powerhouse flow conveyance (PQC) is equal to the sum of 

releases through each turbine: 

𝑃𝑄𝐶 = 𝑄𝑈 (4.25) 

Powerhouse flow conveyance connects into the Hydraulic System State Sector.  

4.4.1.6 Disturbances Sector 

The main goal of the Disturbances Sector is to implement component failures which result 

from a variety of causes from the components operating state database. Components have 
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been divided into four groups: Gate components, power components, other components 

and sensors. This helps facilitate detailed modelling of various component failures, for 

example the gate hoist or the gate motor becoming out of service following some 

disturbance. Other components include the penstock, communications equipment, and the 

grid. The gate and power components include all key components of the “Gate actuators” 

and “Turbine actuators” sectors, respectively, which may fail resulting in various impacts 

to the system. Stocks are used in this sector to represent the remaining time left on the 

repair. The stock inflows consist of a single pulse (incoming time to repair). The stocks are 

drained by a constant time when their value is positive, as shown in the following equation: 

𝑖𝑓 𝑐𝑅𝑇𝑇𝑅 > 1:  𝑐𝑅𝑒𝑝𝑎𝑖𝑟 = 1 

𝑒𝑙𝑠𝑒 𝑖𝑓  0 < 𝑐𝑅𝑇𝑇𝑅 < 1:  𝑐𝑅𝑒𝑝𝑎𝑖𝑟 = 𝑐𝑅𝑇𝑇𝑅 

𝑒𝑙𝑠𝑒:           𝑐𝑅𝑒𝑝𝑎𝑖𝑟 = 0                                       (4.26) 

This ensures the stock is drained by time when its value is positive and prevents the stock 

value from becoming negative. The small c represents the component type (Gate, Power, 

Other or Sensor). The component failure variables connecting to the time to repair stock 

inflows receive information from the model to implement component failures of various 

lengths at specific time steps (the Monte Carlo inputs). This is demonstrated in Section 

3.4.1 and has been generalized to take Monte Carlo inputs of Impact Time 𝐼𝑇 and Impact 

Length 𝐼𝐿:  

𝑖𝑓 𝑡 = 𝐼𝑇:  𝑐𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 = 𝐼𝐿 

𝑒𝑙𝑠𝑒:  𝑐𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 = 0 (4.27) 

GateAll and PowerAll represent the total maximum remaining time to repair of all 

components represented by the stock, as indicators that are used in the Gate Availability 

and Turbine Availability calculation. The component Remaining Time to Repair (𝑐𝑅𝑇𝑇𝑅) 

values for Gate, Power, Sensor and Other components are then routed into the model to the 

corresponding location to be implemented in simulation, as described in the previous model 

description sections. 
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Figure 4-15: Disturbances Sector 

4.4.2 Simulation model testing 

As discussed in Section 3.4.3, testing can be done to gain confidence in the model 

performance. Checking the water balance to ensure the formulae are properly defined is an 

important step. Another very useful test is to compare the model outputs with the observed 

data for the system. This was done by running the simulation using Cheakamus historical 

inflows and comparing the results with the real Cheakamus operating data. The model was 

tested by modifying the operations planning function and comparing the results with the 

historical data for operations including reservoir elevation, turbine flow and spill. The 

results of the model test are shown in Figure 4-16. 

Figure 4-16(a) and (b) contain the reservoir elevations from the observed record and 

simulation, respectively. It is clear from the plots that the simulation model tends to hold 

the reservoir higher than it would be under typical operation. This is a result of the 

operations planning algorithm, which does not use optimization. In the initial development 

of the complex model, operations planning was performed daily using a differential 

evolution optimization model. The optimization model planned reservoir levels for one 
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year of expected inflows using the 14-day inflow forecast and weekly average inflows for 

the remainder of the year. The change in reservoir storage was used to calculate the 

instructions for the gates and turbines. This procedure for operations planning results in a 

very accurate model test that is shown in King et al (2017). Once the scale of the simulation 

problem was more accurately defined, the optimization step was determined to be 

sufficiently time consuming to justify its removal from the program, and the model was 

switched to a simple algorithm to calculate releases. As such, the simulated reservoir levels 

for the historical model test are not as close to the observed values, however they are still 

well within the operational limits.  

Figure 4-16 (c) and (d) show the turbine flows from the historical operations record in 

comparison to the simulation. The median lines are fairly close, though the simulation 

model tends to release more water than the historical record, which is likely due to the fact 

that the Cheakamus System is often used for peaking, meaning it may run fully during 

certain hours of the day and be shut off at night, resulting in lower overall flows.  

Figure 4-16 (e) and (f) show total spill releases for the historical and simulated operations, 

respectively. There is a close agreement between the medians for spill release, however 

larger spill events tend to be reduced in the simulated results in favour of slightly longer, 

more moderate spills. 
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Figure 4-16: Operations validation for the simplified system model 

4.4.3 Base case vs. dam safety improved model runs 

Two full runs through the potential operating scenarios are performed in this research for 

two different cases: the base case and the dam safety improved case. The difference 



180 

 

between these scenarios is described in this section and summarized in Table 4-10. The 

goal of these two different runs is to show how the simulation model results can be used to 

assess improvements made by changing operating strategies and investing in upgrades to 

the system.  

Scenario A: The base case is a simplified version of the Cheakamus system as described 

above. The key change that was made for this case was that the free overflow spillway 

capacity was significantly reduced (by 70%) and the crest was raised by 2m. The purpose 

of this was to directly induce more failures in the base case, creating a substantial difference 

between the dam safety improved case which has a free overflow spillway identical in size 

to the one in the real Cheakamus system. This change was made in response to a very low 

observed failure rate for the dam safety improved case, given the ability of the free 

overflow spillway to safely pass even large inflows when the capacity of the system to 

convey water through the gates and turbines is significantly reduced.   

Scenario B: The dam safety improved case has a full-sized free overflow spillway 

consistent with that of the real Cheakamus Dam. In addition to this, the intake gate for the 

powerhouse is upgraded to allow it to close under penstock rupture or head cover failure 

flow. Because of the daily timestep and the relatively small and flashy Daisy Lake, this is 

implemented in two ways. First, the intake gate is closed immediately the day after a 

rupture or head cover failure is realized. Secondly, the total penstock rupture and head 

cover failure flows are reduced to 1/24th of their actual values, to reflect closure of the gate 

within an hour of the initiating failure. Another key change in the dam safety improved 

model is that in the event of lowered capacity in the system resulting from a gate outage, 

or loss of remote control due to PLCRTU outage or grid outage, the target reservoir level 

is lowered to El. 367.8m which is 0.5m above the crest of the spillway. The goal of this 

operational change is to avoid free overflow events and dam failure by preparing for large 

inflow events which the system may not be capable of conveying through the power 

passage alone. Increased redundancy in the communications equipment was modelled by 

reducing the number of outages for the PLCRTU component to one half of the scenarios. 

This is done by modifying the Monte-Carlo generated outage times for a randomly selected 

half of the iterations to zero. Sensor errors and outages were similarly reduced by one half 
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to indicate improved sensory equipment at the site. Finally, the instances of the gate failing 

closed were reduced by 20% to reflect upgraded components in the gate resulting in fewer 

of these failures.  

Table 4-10: Base Case vs. Dam Safety Improved Case 

Base Case Dam Safety Improved 

Free overflow spillway restricted to release 

only 30% of Cheakamus Dam discharges, 

with a crest 2m higher 

Free overflow spillway identical to 

Cheakamus Dam 

Single PLC/RTU device 
Dual PLC/RTU device, resulting in 

50% fewer outages of that component 

Intake gate unable to close under penstock 

rupture or head cover failure flows 

Intake gate upgraded to allow closure 

under penstock rupture or head cover 

failure flows 

Default gate redundancy 

Gate redundancy improved to reduce 

instances of the gate failing closed by 

20% 

Reservoir level targets consistent with 

typical Cheakamus operations 

Reservoir level target lowered to El. 

367.8m if system capacity is restricted 

Each scenario is run through the simulation model with two thousand iterations and the 

complete simulation is run once for the base case and once for the dam safety improved 

case. The goal of this is to illustrate the improvements made between the two runs. Because 

there are such a large number of scenarios and iterations being modelled, more varied 

inflow sequences are required than observed in the historical record. This is described in 

the following section.   

4.5 Simulation Model Input Data 

The simulation model data inputs include the physical relationships, the synthetic inflows 

and the baseline operations (reservoir levels) for the system. 

4.5.1 Physical Relationships 

The first physical relationship used in the model is the stage-storage curve, which relates 

the elevation of the reservoir to the storage in m3/s-day. The units chosen to represent 

storage help simplify the calculations within the simulation model. The stage-storage data 

for the Cheakamus Project were used in the simulation model and are presented in 
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Appendix A. Curve-fitting was used to develop a relationship valid for the possible 

reservoir elevations, and the resultant relationship is described in Appendix E for the stage-

storage curve (𝑆𝑆𝐶).  

The stage-discharge curve for the Cheakamus System are also used in the simulation model 

(See Appendix A). A function representing the total overflow is created using curve-fitting 

to reflect the overflow discharge pertaining to a certain elevation. The resultant function is 

described in Appendix E for the overflow curve 𝑂𝑇𝐶.  

The combined gate rating curve for the two Cheakamus Spillway Operating Gates (SPOGs) 

is also used in the model. The rating curves for each gate are combined into a single curve 

for a larger gate by adding the discharge columns from the curve. The resulting combined 

curve is used directly in the model in a 2-dimensional interpolation.  

The maximum turbine flow pertaining to different reservoir elevations is required in the 

model to ensure generating restrictions at low reservoir elevations are taken into account. 

This is calculated from the units operating curves and converted to a piecewise linear 

function. A similar piecewise linear curve is developed for the maximum possible gate 

flow at different reservoir elevations.  

 

4.5.2 Synthetic Inflow Generation 

Synthetic inflow generation was carried out by reshuffling and perturbing the historical 

climate data using a stochastic weather generator (KnnCAD) and using the results as inputs 

to the Raven hydrologic modelling tool. KnnCAD and Raven are described in Section 

3.3.1. For the Cheakamus Hydropower Project, a single station located at the dam (CMS) 

is used for inflow forecasting.  

Twenty-seven years of historical daily climate data from the CMS station was used as an 

input to the KnnCAD weather generator. The data included daily minimum and maximum 

temperatures as well as precipitation. KnnCAD reshuffles and perturbs the historical 

climate data to come up with a statistically similar block of data the same length as the 
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input data, so 371 blocks of climate data were created by the weather generator for a total 

of 10,017 years of data. For real applications of this approach, closer to 1 Million years of 

climate data is recommended to ensure adequate variability in the inflow sequences, 

however 10,000 was determined to be adequate for the purposes of this proof-of-concept 

example.  

A validation of the historical versus simulated climate data is shown in Figure 4-17. Figure 

4-17(a) and (b) contain boxplots of daily precipitation (no outliers) and total monthly 

precipitation respectively. The blue line plot overlaid on the boxplots shows the historical 

median values. For daily precipitation, there is a close match between the median historical 

and simulated values. The daily precipitation values were shown without outliers because 

the outliers were quite high in comparison with the boxplots, with one simulated value 

exceeding 800mm in March. The number of outliers in the data indicates the ability of the 

model to simulate more extreme precipitation events than in the observed record. The 

synthetic climate data tends to underestimate the total monthly precipitation, with the 

historical medians being close to the 75th percentile of the simulated data in January, March 

through July, October and December. For February and August there is a close agreement 

and there is a smaller underestimation in September and November. Despite the 

underestimation of the median total monthly precipitation values, the simulated data does 

match the monthly trend shape and there are a fair number of outliers from the monthly 

data. Figure 4-16(c) and (d) contain monthly minimum and maximum temperature 

boxplots of the simulated data, with historical medians overlaid on the graphs. There is a 

fairly close agreement in the trends, however both the median minimum and maximum 

temperatures do tend to slightly underestimate the historical medians. There are, however, 

a significant number of outliers which indicates values outside of the historical record are 

present in the simulated data.  
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Figure 4-17: Validation plots for synthetic climate data at for CMS station 

The UBC watershed model requires water-years as an input, which run from October 1 to 

September 31, so some reorganizing of the resultant datasets is required. Once the data is 

reorganized, it can be used as an input to the calibrated watershed model (UBC Watershed 

model on Raven) for the Cheakamus System. BC Hydro provided an up-to-date calibration 

for use in this research so the calibration and validation procedure for the hydrologic 

modelling is not discussed in this text.  

Figure 4-18 (a) and (b) show the historical and simulated daily inflow data, respectively 

with the lightest blue lines showing the 10th and 90th percentiles, the medium blue lines 

showing the 25th and 75th percentiles and the 50th percentile shown in dark blue. The 

percentiles of the historical vs. simulated data align well and there are significantly more 

extreme inflow events observed in the simulated record, which is the goal of synthetic 
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inflow generation. The synthetic inflow percentiles are slightly smoother because of the 

large number of observations for each day (10,000). The maximum inflow event observed 

historically is approximately 650m3/s and the maximum inflow event observed in the 

simulated record is about 2000m3/s.  

 

Figure 4-18: Validation of synthetic inflow sequences, Daisy Lake inflows 

4.5.3 Baseline Operations Data 

The baseline operations data were computed by running the simulation model for the 

10,000 years of synthetic inflows and recording the observed reservoir elevations given 

that nothing within the system had failed. The results from the baseline operations data are 

shown in Figure 4-19. It is important to note that the operations planning algorithm in this 

simulation has perfect 14-day foresight about inflows and all flow release facilities are 

operational, so only one reservoir level excursion above the normal maximum level of El. 
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376.5 is observed over the 10,000 years. This excursion corresponds to a peak daily inflow 

of 2,000 m3/s. During this large inflow event, the spill capacity of the gates and power 

flow releases are exceeded and the reservoir increases to El. 380 m. This is below the 

elevation of the free-overflow spillway, which is at El 380.41 in the base case (the crest of 

the concrete dam).  

 

Figure 4-19: Baseline operations data from 10,000 year synthetic inflow record 



187 

 

4.6 Simulation Results 

The results from the simulation are presented in the following sub-sections. There were a 

total of 552,960 scenarios run for the base case and the dam safety improved case. Each 

scenario was executed for 2000 iterations, for a total of 1.1 Billion simulated years per run. 

The high performance computing environment used to execute the scenarios is provided in 

Appendix F. The following section presents a description of the overall results, which 

include both the criticality parameters as well as maximum and minimum values of 

performance measures for each simulated scenario. Next is a description of outcomes for 

selected scenarios, where performance measures and reservoir elevations can be explored 

in further detail. 

4.6.1 Overall results discussion 

Using the output .npz files from the simulation, the criticality parameters and minimum (or 

maximum) performance measures were computed for each simulated scenario. The output 

files and output analysis code are formulated so that only the complete iterations (those 

where all scenario operating states both occurred and affected one another) for a given 

scenario are considered in the computation of that scenario’s parameters. Results can be 

found in the electronic appendix, in the folder “Simulation_Results”. The file 

“OutputResultsAll_base.xlsx” contains the simulation results for the base case, and 

“OutputResultsAll_dsi.xlsx” contains the results for the dam safety improved case. For the 

base case, there were a total of 9,669,654 failures simulated over a total of 857,102,076 

completely implemented iterations (regardless of scenario), making the overall simulation 

flow control failure rate for the base case equal to 1.13%. This is not to be misinterpreted 

as the failure rate for the system – the failure rate for the system overall would be 

significantly reduced if the probabilities of occurrence of the operating states were taken 

into consideration. For the dam safety improved case, only 2 out of 809,563,591 complete 

iterations resulted in dam failure, making the overall simulation flow control failure rate 

for the system equal to 2.47 × 10-7%. Again, this is not to be misinterpreted as the overall 

estimated failure rate for the dam system – it simply represents the proportion of 

simulations that resulted in dam failure, regardless of the probabilities of each simulated 

scenario. The number of failures observed in the dam safety improved case was extremely 
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small – likely as a result of the significantly larger free overflow spillway being capable of 

passing the largest inflows in the synthetic record if the reservoir elevation is below a 

certain level. Comparing the simulation failure rates for the two cases shows how 

significantly the increased overflow spillway capacity affects the rates of failure for the 

scenarios. These results are summarized in Table 4-11. 

Investigating specific scenarios can give further insights into the vulnerability of the system 

to various combinations of events. Within the results spreadsheets 

(OutputResultsAll_base.xlsx and OutputResultsAll_dsi.xlsx), column headers are used to 

describe the parameters calculated for each scenario. In this analysis, the operating state 

impacts did not depend on the causal factors – that is, a single operating state would have 

the same range of impacts regardless of what causal factor resulted in it occurring. Because 

of this, it is possible to combine scenarios with the same sets of adverse operating states 

into a causal factor-independent set of scenarios, which have more observations and 

therefore an improved estimate of the criticality parameters. This sorting resulted in a total 

of 6,144 combined scenarios that can be easily analyzed in more detail. These are presented 

in “Results_CombinedComps_base.xlsx” and “Results_CombinedComps_dsi” for the 

base case and the dam safety improved case, respectively. Within each of these results 

spreadsheets, there are different tabs containing the complete results (All) as well as filtered 

results which contain scenarios that have the same number of adverse causal factors (𝑁 =

1…5). 

Sorting the failure rate values in the combined results spreadsheet (All) for the base case 

shows that for 229 scenarios, the failure rate was greater than or equal to 10%. Scrolling 

through this list shows that all of these scenarios involved a restriction in capacity as a 

result of the gate being failed, either closed or in place. Interestingly, another component 

that frequently appears in the most severe scenarios is the penstock rupture. This is a direct 

result of the outage length of penstock rupture scenarios – which can exceed a full year 

following the event. In this case, the reservoir would initially drain through the penstock 

until it is below the sill of the intake gate, which would then be closed. After the intake 

gate is closed, the power water passages are out of service for a significant amount of time. 

This means that while initially some uncontrolled release may be observed, there may be 
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longer-term complications associated with operating the reservoir once the power passages 

are isolated and the flow conveyance capacity has been lost. Turbine head cover failures 

are also higher up on the list for the same reasons. Other issues that come up within this 

more severe scenario list include site access and staffing issues, communications 

equipment (PLC/RTU) failures, and sensor issues.  

 

Table 4-11: Overall results summary 
 

Base Case Dam Safety Improved 

Total number of years 

simulated (complete 

iterations) 
857,102,076 809,563,591 

Total number of 

failures simulated 

(complete iterations) 
9,669,654 4 

Simulation Failure 

Rate* 
1.13% 2.47 × 10-7% 

Highest scenario 

failure rate 
16.227% 0.005% 

Average failure inflow 

threshold (mean 5-day 

inflow preceding 

failure) 

114 m3/s 835 m3/s 

Average failure inflow 

threshold (max 5-day 

inflow preceding 

failure) 

160 m3/s 1588 m3/s 

 

For the dam safety improved case, the two scenarios that lead to failure resulted from a loss 

in gate capacity (gate failing closed or in place), in combination with sensor issues, access 

delays. Additionally, both failure scenarios included a loss of power flow conveyance 

through either penstock rupture (and subsequent lengthy outage) or as a result of grid 

failure and resulting load rejection. 

The overall average inflow thresholds – the minimum average/maximum daily inflow in 

the 5 days preceding failure – are 114 m3/s and 160 m3/s, respectively, for the base case. 

These increase to 835 m3/s and 1588 m3/s for the dam safety improved case (with only two 
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failures). Obviously, the failures in the dam safety improved case are a result of very high 

inflows that exceed the safe discharge capacity of system.  

A few more general conclusions can be drawn from the overall results tables. The highest 

observed conditional failure rate in the base case was 16.227%, versus only 0.005% in the 

dam safety improved case. For both cases, dam overtopping failure and high reservoir 

elevations were most frequently occurring as a result of loss of flow conveyance capacity 

– specifically, losses in conveyance capacity involving the gate, which can pass 

significantly more flow than the power conduit. Sensor errors, communications failures 

and access/staffing issues were also significant contributors to overtopping failures and 

reservoir level excursions above the key levels.  

Looking at the results based on the number of affected components may also provide useful 

insights into the most vulnerable aspects of the system. Filtering the list to only a single 

component being affected gives the results in  Table 4-12 and Table 4-13, for the base case 

and the dam safety improved case, respectively. These tables have been abbreviated 

slightly (by reducing number of columns) to ensure the columns fit on the page. The 

columns in the table show the conditional failure frequency, failure inflow thresholds, 

conditional frequency of exceeding key reservoir elevations, the minimum discharge 

capacity and the maximum uncontrolled release. The final column shows the name of the 

affected component.  

For the base case (Table 4-12), the obvious result is that the components whose failure 

results in the most significant capacity loss (the gate components causing the gate to fail 

closed or in place) lead to the greatest failure rates and highest reservoir levels. Next are 

the sensor errors, which can result in lack of conservatism in reservoir operations. None of 

the other components on their own lead to failure in the base case, but gate blockage, grid 

outages and sensor failures also caused reservoir elevations to exceed key levels. For the 

dam safety improved case, none of the components on their own lead to failure of the dam 

due to overtopping. Issues with communication or sensors lead to the highest reservoir 

levels. Interestingly, penstock ruptures and head cover failures also resulted in some 

scenarios with reservoir elevations exceeding key levels. This is an unexpected result that 
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may be a result of the operations planning algorithm not taking into account the lost power 

flow release capacity, and thus keeping the spillway gate closed during those scenarios. In 

future runs of this model, the unit availability function should be modified to reflect the 

lost ability to pass water through the power conduit following closure of the power intake 

gate.   

Looking more closely at the reservoir level exceedances in the base case, it is clear that 

reservoir excursions above key levels were directly related to either a loss of capacity or 

loss of remote visibility (reservoir level sensor failure or error). For the base case, failure 

of the gate in the closed position had a 15% chance of resulting in overtopping of the 

earthfill dam (and a 1.6% chance of overtopping it enough to cause dam breach). The 

frequency of overtopping the earthfill dam was reduced to about 2.8% for the gate failing 

in place as a result of some residual discharge capacity resulting from the gate being stuck 

in the position it was at prior to failure. For the dam safety improved case, overtopping of 

the earthfill dam was avoided for all single affected component simulations, except for the 

penstock rupture which results in a lengthy outage that, as discussed above, may not (but 

should have been) be recognized by the operations planning algorithm. In general for the 

dam safety improved case, loss of visibility resulting from either sensor issues or 

communication system failure (PLCRTU) resulted in the most significant exceedances of 

key reservoir levels. Surprisingly, loss of conveyance through the gate alone was not 

enough to cause reservoir level excursions even resulting in spill, which is somewhat 

surprising. This is likely a direct result of the conservative operating strategy in the dam 

safety improved simulations, which target reduced reservoir elevations in the case of loss 

of gate functionality.  

Looking at the minimum discharge capacity gives some context to why the reservoir 

elevations may have risen. For both cases, the most significant losses in flow conveyance 

capacity (the maximum active discharge capacity being 1655 m3/s) resulted from gate 

issues – the gate failing closed, in place, or being blocked. Not surprisingly, these were 

associated with higher likelihoods of exceeding key reservoir levels in the base case (but 

not in the dam safety improved simulations as a result of more conservative operations).
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Table 4-12: Results for a single affected component, base case 

Conditional 

Failure 

Frequency 

(%) 

5-day 

Inflow 

Threshold 

(average 

daily) 

5-day 

Inflow 

Threshold 

(maximum 

daily) 

Conditional 

Frequency of 

Exceeding El. 

377.95 m 

(WL Max) 

Conditional 

Frequency of 

Exceeding El. 

378.41 m (free 

overflow spill) 

Conditional 

Frequency of 

Exceeding El. 

380.4 m 

(Concrete dam) 

Conditional 

Frequency of 

Exceeding El. 

381.42 m 

(Earthfill dam) 

Minimum 

Discharge 

Capacity 

Mean 

time to 

failure 

(days) 

Components 

1.63 147.54 229.20 41.41 40.31 36.41 15.53 65.00 34.36 Gate fails closed 

0.53 195.65 242.17 18.20 17.37 14.08 2.84 69.91 45.00 Gate fails in place 

0.05 753.10 1995.10 10.36 8.50 3.77 0.25 1655.00 7.00 Sensor Error 

0.00 NA NA 48.82 41.81 18.09 0.25 383.60 NA Gate opening 

0.00 NA NA 26.82 22.02 4.37 0.00 1655.00 NA Grid 

0.00 NA NA 0.02 0.00 0.00 0.00 1655.00 NA Sensor Fail 

0.00 NA NA 0.00 0.00 0.00 0.00 1655.00 NA PLCRTU 

0.00 NA NA 0.00 0.00 0.00 0.00 1590.00 NA Penstock 

0.00 NA NA 0.00 0.00 0.00 0.00 1590.00 NA Head Cover 

0.00 NA NA 0.00 0.00 0.00 0.00 1590.00 NA Generator 

0.00 NA NA 0.00 0.00 0.00 0.00 1655.00 NA Gate collapse 
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Table 4-13: Results for a single affected component, dam safety improved case 

Conditional 

Failure 

Frequency 

(%) 

5-day 

Inflow 

Threshold 

(average 

daily) 

5-day 

Inflow 

Threshold 

(maximu

m daily) 

Conditional 

Frequency of 

Exceeding El. 

377.95 m (WL 

Max) 

Conditional 

Frequency of 

Exceeding El. 

378.41 m (free 

overflow spill) 

Conditional 

Frequency of 

Exceeding El. 

380.4 m 

(Concrete dam) 

Conditional 

Frequency of 

Exceeding El. 

381.42 m 

(Earthfill dam) 

Minimum 

Discharge 

Capacity 

Mean 

time to 

failure 

(days) 

Components 

0.00 NA NA 51.55 43.56 0.00 0.00 1655.00 NA PLCRTU 

0.00 NA NA 40.05 39.07 0.00 0.00 1655.00 NA Sensor Fail 

0.00 NA NA 28.34 24.59 0.00 0.00 1655.00 NA Sensor Error 

0.00 NA NA 18.17 17.11 0.03 0.00 1590.00 NA Penstock 

0.00 NA NA 12.55 9.91 0.00 0.00 1655.00 NA Grid 

0.00 NA NA 0.18 0.14 0.00 0.00 1590.00 NA Head Cover 

0.00 NA NA 0.00 0.00 0.00 0.00 1590.00 NA Generator 

0.00 NA NA 0.00 0.00 0.00 0.00 383.60 NA Gate opening 

0.00 NA NA 0.00 0.00 0.00 0.00 69.91 NA 
Gate fails in 

place 

0.00 NA NA 0.00 0.00 0.00 0.00 1655.00 NA Gate collapse 

0.00 NA NA 0.00 0.00 0.00 0.00 65.00 NA 
Gate fails 

closed 
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Sensor errors did not result in any losses in discharge capacity but lead to increased 

reservoir levels in both cases through improper reservoir level operation.  

Another indicator of the criticality of a scenario is the mean time to failure. For the base 

case, this ranged from 34-45 days in the scenarios with a loss of conveyance through the 

gate. This reduces to only 7 days in the case of reservoir level sensor errors, which indicates 

the potential severity of operating the reservoir assuming the reservoir level is lower than 

it actually is.  

For scenarios with two affected components, the results for the base case and dam safety 

improved case are shown in tab N=2 of “Results_CombinedComps_base.xlsx” and 

“Results_CombinedComps_dsi.xlsx”, in the Simulation_Results folder of the electronic 

appendix. There are 77 total combinations of components in these two-component 

scenarios (these combinations represent the combined scenarios which take into account 

results from the same scenario with different causal factors). For the base case, the 

combinations with the highest failure frequencies (2-15%) involved failure of both gate 

and power discharge components. Despite failures of the turbine head cover and penstock 

resulting initially in uncontrolled releases, the long-term impacts of these component 

failures is lengthy outages of the discharge facilities (once the intake gate is closed) – this 

means lower overall flow conveyance capacity in the long term. These higher failure 

frequency cases resulted in a 19-35% chance of overtopping the earthfill dam – even if the 

overtopping did not lead to a failure, significant damage would be observed in these cases.  

For the dam safety improved case, the combined loss of both power and gate releases lead 

to some instances of overtopping of the concrete dam, which could potentially cause 

significant damage. Free overflow spill was observed more frequently when both gate and 

power flow release facilities were out of service, and sensor issues in combination with 

gate failures also had a high conditional frequency of free overflow spill.  

In the N=3 tabs of the same spreadsheets, the three-component combined scenarios are 

presented. For the base case, similar results are seen where the scenarios resulting in a 

complete loss of controlled discharge capacity (both gated and power flow releases) had 

the highest failure rates. The most extreme case involved a penstock rupture and 
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subsequent outage of the power flow release facilities, the gate failing in place and in the 

closed position – which had a 16% failure rate and a 43% chance of overtopping the 

earthfill dam. In this case, there are two potentially overlapping conditions of the gate – 

failed in place and failed closed – in the simulation model, the gate failing closed takes 

precedence over failures in place. For the dam safety improved case, the scenarios with the 

most significant overflow frequencies tended to include gate outages or capacity 

restrictions, loss of flow through the power conduit, and either sensor errors and/or 

communications equipment failures.  

Another important observation is that for a relatively small proportion of the scenarios 

simulated, there may not have been enough complete iterations simulated to develop a 

meaningful characterization of the scenario. This is because in the post-processing, an 

analysis is done that determines whether all of the events occurred and affected one 

another. For some scenarios, events may be initiated after the system has already recovered 

from preceding events. In this case, the iteration is not representative of the cumulative 

effects of the combination of events and is filtered out of the scenario results. This can be 

observed by sorting the “OutputResultsAll_base.xlsx” and “OutputResultsAll_dsi.xlsx” by 

the column “Number of simulation-years”. In the base case, about 30,000 scenarios had 

less than 500 complete iterations out of 2000 simulated, and 1170 of these had less than 

100 complete iterations. About 32,000 scenarios in the dam safety improved case had less 

than 500 complete iterations out of 2000 simulated years, and 519 of these had less than 

100 complete iterations. This indicates a significant limitation of the modelling framework 

applied in the case study – the number of iterations completed may not provide sufficient 

data with which to estimate credible conditional failure or reservoir level exceedance 

frequencies. This observation indicates that additional computing time may be required to 

properly analyze scenarios without sufficient data points – perhaps by setting some 

minimum complete iteration threshold within the simulation. It is worth noting that these 

scenarios involved a higher number of events occurring. This means that the time frame 

within which the different events can occur is relatively large (since it is equal to the sum 

of the Monte Carlo generated outage lengths and can be up to 365 days). As such, there 

may be several instances where the events do not affect one another (the reservoir level 
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recovers prior to the next subsequent event). This observation will be an important 

consideration in future applications of this methodology. 

 

4.6.2 Assessment of individual scenario outcomes 

Another output from the simulation model is arrays containing the dynamic performance 

indicators for complete iterations of each scenario, as well as the reservoir levels. These 

can be plotted to visually represent the system behaviour in response to various input 

scenarios and Monte Carlo parameters. Five scenarios have been selected and plotted to 

illustrate how results individually can be compared between the two cases. The summary 

tables containing the key data for each of the selected scenarios are shown in Table 4-14 

and Table 4-15 for the base case and the dam safety improved case, respectively.  

The first scenario involves the gate failing in the closed position as a result of ice, the grid 

being failed due to wind, and the site access being delayed due to traffic issues (Seed 

number 301490). Figure 4-20 contains the plotted reservoir elevations (in the first row), 

flow conveyance capacities (second row) and total uncontrolled releases (third row), for 

the base case (first column) and the dam safety improved case (second column). For the 

reservoir levels, the mean value is shown in black and the 10th and 90th percentiles are 

shown in darker grey. Each light grey line represents the dynamic reservoir level response 

for a single iteration of the scenario. Only completely implemented iterations are plotted – 

that is, scenarios in which the dam failed, or the events did not affect one another are not 

included. The length of each light grey line depends on the length of time within which the 

reservoir differed from the “normal” reservoir elevations for the same time period and 

inflow. For this scenario, the maximum length of time for which the reservoir deviated 

from the normal elevation was 250 days.  

Looking at the reservoir elevation plots, it is immediately clear that the reservoir elevations 

in the base case were significantly higher than in the dam safety improved case. In the base 

case, no significant efforts are made to operate the system more conservatively given a loss 

in capacity. In contrast, for the dam safety improved case, the target reservoir elevation is  
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Figure 4-20: Dynamic results for seed 301490 
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reduced when the gate becomes unavailable. The reservoir is then lowered with whatever 

capacity is available, creating more storage should inflows exceed the remaining available 

capacity. As such, the dam safety improved case 90th percentile reservoir levels rise to a 

maximum of El. 379 m, which is significantly less than the El. 381 m observed in the base 

case. Failures within the base case are observed when the reservoir level sharply drops to 

El. 353.75 m. There are a total of 44 failures observed in the base case, with a failure rate 

of around 4%. The mean time to failure in this scenario was about 24 days. There were no 

failures observed in the dam safety improved case. It is also worth noting that the reservoir 

elevations dropped below the normal minimum (NMin) in the dam safety improved case. 

It is not immediately clear why this is the case since the target reservoir elevation is equal 

to NMin. The problem results from the operations planning algorithm not accounting for 

any free overflow spill when the projected reservoir elevations exceed the sill of the 

overflow spillway – in these cases, the reservoir level is reduced more than is necessary to 

achieve the NMin target. Future runs of the model should address this issue. 

The total active flow conveyance capacities are plotted in the second row of Figure 4-20. 

The black line represents the mean values. The results are similar for both the base case 

and the dam safety improved case. One issue with these values is that the grid failure does 

not register as a loss of capacity though the power conveyance system, despite resulting in 

a load rejection and closure of the wicket gates. This component interaction is programmed 

into the simulation model, but not accounted for in the calculation of available capacity. 

Again, future runs of the model can be modified to address this problem. Because of this, 

the minimum flow conveyance capacity recorded for both scenarios was 65 m3/s, which is 

the maximum flow that can be passed through the power conduit. 

The third row shows the uncontrolled releases for the system, which are clearly 

significantly higher in the base case as the concrete and earthfill dams are overtopped. The 

maximum uncontrolled release for the base case was around 2000 m3/s, and about 620 m3/s 

in the dam safety improved case.  The average uncontrolled release was similar for both 

the base case and the dam safety improved case.  
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It is also possible from the dynamic reservoir elevation plots to determine the conditional 

reservoir level exceedance frequencies for the scenario – that is, the percentage of time 

where the observed reservoir elevations for the scenario exceeded various levels. The daily 

reservoir level values are recorded from each complete iteration (where all events occurred 

and affected one another) and the percent of observations exceeding various reservoir 

levels is calculated. Figure 4-21 contains the conditional reservoir level exceedance 

frequencies for seed 301490, with the base case shown in red and the dam safety improved 

case shown in blue. This graphic is an excellent indicator of the improvement made by the 

dam safety improved case over the base case. The difference between the two lines is 

indicative of the level of improvement gained by the system upgrades and operating 

strategies employed in the dam safety improved case.  

 

Figure 4-21: Conditional reservoir level exceedance frequencies for seed 301490 

The second scenario involves debris blockage of the gate as well as a reservoir level sensor 

error resulting from temperature fluctuations causing instrument decalibration (seed 

386196). The results are shown in Figure 4-22, where the first row shows the reservoir 

levels with the base case in the first column and the dam safety improved case in the second 

column. For this scenario, results show similar mean and 90th percentile reservoir 

elevations, with higher maximum levels observed in the base case. The higher maximum 
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levels are a direct result of the increase in free overflow spill capacity, which helps to offset 

the loss in capacity caused by debris buildup at the gates. There are some excursions below 

the normal minimum (NMin) reservoir level in both cases as a result of the sensor errors. 

The dam failed by overtopping in two scenarios for the base case and the average time to 

failure was 146 days.   

The second row shows the active flow conveyance capacities for the base case and dam 

safety improved case in the first and second columns, respectively. The results are similar 

for both cases, with average values that are almost equal. The debris blockage is 

predetermined using the Monte Carlo randomization of scenario input parameters, however 

the length of time for which the debris blockage remains depends on the system inflows. 

When inflows fall below 65 m3/s, the simulation model assumes that debris can be removed 

from the gate and capacity is restored.  

In the third row, uncontrolled releases are presented for the base case and the dam safety 

improved case in the first and second column. Again, uncontrolled releases involve any 

free overflow spill, as well as dam breach flows and flows from penstock rupture or gate 

collapse. In this case, the majority of observed uncontrolled release is due to overflow spill, 

which may be through the overflow spillway but potentially can include dangerous 

concrete and earthfill dam overtopping. In the base case, there are two spikes when the 

uncontrolled releases exceed 1250 m3/s, at approximately day 120 and day 180. These 

correspond to the iterations where dam breach occurred. Omitting these two scenarios, the 

overall uncontrolled release observed in the dam safety improved case was slightly higher, 

likely as a result of the increased free overflow spillway capacity at lower elevations.  

Figure 4-23 contains the conditional reservoir level exceedance plots for seed 386196. The 

plots for both the base case and the dam safety improved case are very similar, with the 

only notable difference at the tail end of the curve where the maximum observed elevations 

in the base case exceeded those observed in the dam safety improved case. This small 

difference can be attributed primarily to the increased free overflow spillway capacity in 

the dam safety improved case – the decrease in the exceedance line occurs just above the 

level at which free overflow spill is initiated.  
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Figure 4-22: Dynamic results for seed 386196 
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Figure 4-23: Conditional reservoir level exceedance frequencies for seed 386196 

The next scenario is one of the more extreme combinations of events that lead to the highest 

combined scenario failure rate in the base case. This scenario involves failure of the gate 

in place, failure of the gate closed and a penstock rupture (seed 403429). For the reservoir 

elevations, a clear improvement is seen in the dam safety improved case in comparison 

with the base case. The reservoir level 90th percentile is around El. 379 m for the dam safety 

improved case, and El. 381.13 m in the base case. Because of the higher maximum 

reservoir elevations in the base case, a large number of failures are observed (296) and the 

failure frequency is quite high (17.3%). The average time to failure in the base case was 

114 days. There are no failures in the dam safety improved case, partly due to the increased 

free overflow spillway capacity, and partly due to the operator reducing the reservoir level 

and operating more conservatively (if reservoir drawdown capacity is available).  

The second row shows the available active flow conveyance capacity of the system. For 

both cases, the available capacity drops to zero when both power and gated releases are 

unavailable as a result of the penstock rupture. The 65 m3/s capacity of the power conduit 

is seen at the top part of the figure where the gate capacity recovers but the penstock is still 

unavailable. The results are similar between the dam safety improved and the base case.  
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The third row shows the total uncontrolled releases for the base case and the dam safety 

improved case in the first and second column, respectively. The total uncontrolled releases 

include penstock rupture flows, free overflow, dam overtopping flows and dam breach 

flows, so it can be somewhat difficult to decipher what the contributing factors are in a 

scenario which could have all of these. Obviously, the dam breach flows significantly 

increase the maximum values observed in the base case. The uncontrolled releases in the 

dam safety improved case have a maximum of about 390 m3/s with the 90th percentile being 

around 80 m3/s. For the base case, the 90th percentile values are around the same. The initial 

spike in the mean uncontrolled release values can be attributed to penstock ruptures, which 

may happen on day 1 of the simulation for about 1/3 of the simulated scenarios (based on 

the random selection of initiating event). In the base case, the initial spike is near 100 m3/s, 

and this is reduced to about 15 m3/s in the dam safety improved case since the intake gate 

can be closed under rupture flows. 

Figure 4-25 contains the conditional reservoir level exceedance frequencies for seed 

403429. There is a relatively close agreement between the base case and the dam safety 

improved case, with the latter actually exceeding the base case values for elevations less 

than El. 378.5 m. This is somewhat surprising given the differences observed in the 

dynamic reservoir elevation plots for the same scenario. One potential contributing factor 

is that less water is released from uncontrolled penstock rupture flows in the dam safety 

improved case (since the intake gate closes under rupture flows). This means the reservoir 

level may be higher when gate failures initiate, or that the reservoir level does not decrease 

by a substantial amount if the penstock failure is initiated after the gate failure. The result 

is moderately higher reservoir elevations through parts of the curve up until free overflow 

spill is initiated (El. 378.41 m). Above El 378.5, the dam safety improved case drops off 

below the base case curve, meaning the reservoir level did not reach the same maximum 

levels. This is a result of the increased free overflow spillway capacity, which helps 

maintain reservoir levels below El. 380 m.  
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Figure 4-24: Dynamic results for seed 403429 
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Figure 4-25: Conditional reservoir level exceedance frequencies for seed 403429 

 

The next scenario involves a single component failure – a penstock rupture due to an 

earthquake (seed 403440). The reservoir levels are shown in the first row, with the base 

case in the first column and the dam safety improved case in the second column. The key 

difference between the two plots is that the reservoir level drops significantly lower in the 

base case. This is a direct result of the ability of the intake gate to close under rupture flows 

in the dam safety improved case. This results in significantly smaller uncontrolled release 

flows (see the figures in the third row). It is important to note that the flows recorded 

represent the average daily flows, and that peak outflows may be significantly higher for 

the dam safety improved case where the intake gate closes within an hour of rupture. The 

loss in capacity observed is related to the inability to pass flows through the generating unit 

while the penstock is being repaired.  

Figure 4-27 contains the conditional reservoir level exceedance frequencies for the base 

case (red) and the dam safety improved case (blue), respectively. The dam safety improved 

case has a higher conditional reservoir level exceedance frequency in comparison with the 
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base case, as a result of a smaller volume of water being lost through the penstock. This 

means the reservoir remains at a higher elevation throughout the course of the scenario. 

 

Figure 4-26: Dynamic results for seed 403440 
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Figure 4-27: Conditional reservoir level exceedance frequency, seed 403440 

 

The final scenario selected for discussion is one of only two scenarios that resulted in an 

overtopping failure in the dam safety improved case. This scenario involved a number of 

events: the gate failing closed, a sensor error, delays in accessing the site and an outage of 

the grid (seed 281617). Figure 4-28 contains the dynamic results for this scenario. The first 

row of the figure shows the dynamic reservoir levels for the scenario. In the base case (first 

column) many of the scenarios exceeded the water licensed maximum level and 21 dam 

breaches occurred. The average time to failure in the base case was about 47 days. In the 

dam safety improved case, there were excursions above the water licensed normal level, 

however these tended to be less extreme than in the base case. This is in part due to a larger 

free overflow spillway, and also because of the operating strategy to reduce the reservoir 

elevation during outages affecting the gate. One failure is observed, occurring within three 

days of the start of the scenario. In both cases, the capacity loss is similar, dropping down 

to the turbine only being available during the gate outage. Uncontrolled releases are 

generally similar between the two cases, with the more extreme spikes in the base case 

corresponding with the dam failures. Figure 4-29 contains the reservoir level exceedance  
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Figure 4-28: Dynamic results for seed 281617 
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plots for seed 281617. There is a significant difference between the two curves, with the 

dam safety improved case generally spending less time at higher reservoir elevations than 

the base case. 

 

Figure 4-29: Conditional reservoir level exceedance frequency, seed 281617 

 

Overall, the results from these individual example scenarios provide useful information 

that can help to better understand the dynamic system response to individual scenarios. 

Comparing the results between the two cases gives a good indication about the 

improvements made by introducing refined operational strategies and improving 

infrastructure. The conditional reservoir level exceedance frequencies provide an 

additional indication of whether there are significant improvements between scenarios.  

The summary of the results from each of the highlighted scenarios can be found in Table 

4-14 and Table 4-15, respectively. These tables, along with the dynamic results and 

reservoir time exceedance plots provide a good comparison between the two runs of the 

model. Ultimately, there are a large number of scenarios to be discussed and only a very 

small subset were analyzed in this thesis. However, the analysis of these scenarios provides 

some indication of how the modifications to the system improve the performance in these 
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extreme conditions. The dynamic analyses, as well as the tabular outputs from the 

simulation (discussed in the previous section) are useful outputs that can help identify 

vulnerable components of the system. Comparing the results between the different model 

runs can help build a business case for upgrades to the system and may be helpful to guide 

emergency planning activities.  
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Table 4-14: Summary of results from individual scenario outcomes, base case 

Seed 

Number 

Condition

al Failure 

Frequency 

(%) 

5-day 

Inflow 

Threshold 

(avg 

daily) 

5-day 

Inflow 

Threshold 

(max 

daily) 

Minimum 

Discharge 

Capacity 

(m3/s) 

Maximum 

Uncontrolled 

Release 

(m3/s) 

Maximum 

Reservoir 

Level (m) 

Number of 

Simulation-

years 

Average time 

to failure 

(days) 

Components 

301490 4.37 150 164 65 2026 383.65 1007 23.91 
Access delay, grid failure, 

gate fails closed 

386196 0.10 350 582 383 1928 382.74 1992 145.50 
Sensor error, gate opening 

blocked 

403429 17.32 109 164 0 1766 383.61 1709 114.59 
Penstock rupture, gate fails 

in place, gate fails closed 

403440 0.00 NA NA 1590 316 377.94 2000 NA Penstock rupture 

281617 3.11 154 168 65 1671.01 382.33 676 46.76 
Access delay, sensor error, 

grid failure, gate fails closed 
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Table 4-15: Summary of results from individual scenario outcomes, dam safety improved case 

Seed 

Number 

Conditional 

Failure 

Frequency 

(%) 

5-day 

Inflow 

Threshold 

(avg 

daily) 

5-day 

Inflow 

Threshold 

(max 

daily) 

Minimum 

Discharge 

Capacity 

(m3/s) 

Maximum 

Uncontrolled 

Release 

(m3/s) 

Maximum 

Reservoir 

Level (m) 

Number 

of 

Simulati

on-

years 

Average 

time to 

failure 

(days) 

Components 

301490 0 NA NA 65 620 379.92 NA 917 
Access delay, grid failure, 

gate fails closed 

386196 0 NA NA 383 370 379.65 NA 1830 
Sensor error, gate opening 

blocked 

403429 0 NA NA 0 400 379.52 NA 1691 
Penstock rupture, gate fails in 

place, gate fails closed 

403440 0 NA NA 1590 14 377.94 NA 2000 Penstock rupture 

281617 0.17 835.35 1588.17 65 1882.25 385.29 3 605 
Access delay, sensor error, 

grid failure, gate fails closed 

  



213 

 

4.7 Summary 

The methodology developed in this research was applied to the Cheakamus System, located 

near Squamish, BC. First, a detailed representation of the Cheakamus System was created 

within the components operating state database. Operating states, impacts and causal 

factors were defined in the operating states database. The combinatorial procedure 

developed in this research was applied to the outputs of the dataset. For the detailed 

representation of Cheakamus, a total of 1.83 x 1027 operating state combinations 

(scenarios) were defined. This is a good indication of the dimensionality of the problem – 

the number of potential scenarios increases exponentially with the level of detail.  

A simplified proof-of-concept representation of Cheakamus was developed next, with a 

single gate and a single turbine. This representation of the system returned 552,960 

potential scenarios. A system dynamics simulation model representative of the simplified 

system was developed and tested by comparing the results with historical operations data. 

The simulation model was run 2000 times for each of the 552,960 scenarios, and for two 

separate cases (a total of 2.2 Billion years of inflows were run through the simulation 

model). The base case is representative of the simplified Cheakamus System with a smaller 

free overflow spillway. The dam safety improved case represents the same system with a 

free overflow spillway size that mimics the real system. The dam safety improved case also 

included a number of operational improvements, including power flow intake gates that 

could be closed under extreme flows, as well as improved communications redundancy 

and more conservative operating rules that aim to prevent reservoir level excursions above 

target levels. Each of the 2000 iterations for a scenario contained unique Monte Carlo-

varied parameters for timing, impact magnitude and inflows. Synthetic inflows outside of 

the historically observed range were simulated using a stochastic weather generator and a 

hydrological model. The Monte Carlo variation of inflows was done by randomly choosing 

a day and year from the historical record and sampling the subsequent inflows. A 

triangularly distributed variable was generated using the minimum, maximum and average 

specified impact magnitude from the database for each adverse operating state simulated. 

Timing of adverse operating states was done by shuffling the operating states and assigning 

random times from within the first six months of the year long simulation.  
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In terms of implementation, high-performance computing (HPC) resources are required for 

implementation of this ambitious simulation exercise. In this research, there were 1.11 

Billion years of daily simulations performed, with 2000 Monte-Carlo iterations for each of 

the 552,960 Million scenarios. This was performed twice – once for a base case and once 

for a dam safety improved case. The total of 2.22 Billion simulation-years was made 

possible by development of a very efficient simulation model and use of a serial farming 

approach that runs many simulations in parallel on HPC clusters. The simulations were 

completed in a period of about three weeks, though results would vary depending on the 

resources available and the HPC clusters utilized. The speed with which this large 

simulation task was completed is considered to be a substantive achievement. 

The results from the simulation were analyzed by sorting and filtering the lists of results 

for each scenario. Scenarios with 1, 2 and 3 contributing components were filtered out and 

discussed to gain insights about the most critical components that could contribute to 

failure. The dam failures in the base case occurred in 1.3% of the total simulated years. For 

the dam safety improved case, this was reduced to 2.47 × 10-7% of simulated years. These 

failure rates are not to be confused with estimates of overtopping failure frequency for the 

system as a whole – in order to compute that, operating state frequencies must be pre-

defined. The proportion of failures simulated does give some indication as to the level of 

improvement made when the dam safety improved modifications are made to the system. 

For the base case, loss of conveyance through both power and gate release facilities was 

the most significant contributor to failure. For the dam safety improved case, only two 

failures were observed – both of these corresponded with a loss of gate and power flow 

capacity, sensor issues and the most extreme flood in the synthetic record. This is indicative 

of a much more robust overflow spillway system in the dam safety improved version of 

the model.   

An assessment of some of the individual scenario results was also provided. Five scenarios 

were selected and the dynamic reservoir elevations and performance measures were 

plotted, along with the reservoir exceedance frequencies. These plots provided useful 

indications of the difference between the base case and the dam safety improved case for a 

given scenario, and could be used to better understand the system response to the scenarios.  
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Because the case study and analyses in this work were representative of a very simplified 

version of the Cheakamus System, they should not be interpreted as conclusions for the 

existing Cheakamus Project. Comparing the base case results (with a smaller free overflow 

spillway) to the dam safety results (with a free overflow spillway equal in size to the 

Cheakamus Dam), showed that the free overflow spillway was, in all but two cases, able 

to prevent reservoir elevations from reaching the level assumed to fail the dam. The 

comparison of results between the two cases simulated shows how the methodology may 

be useful in quantifying the improvements made by various system upgrades and 

configurations. Results from the case study illustrated that the approach presented here 

could be useful to assist dam safety emergency response decision making, by indicating 

how critical a scenario is and roughly how long there is to regain control over the reservoir. 

In addition, the results may be useful in operational decision making with respect to outages 

and operating rules, and could help build a business case for capital improvements to the 

system. The analysis was also useful in predicting potential combinations of event that 

could lead to failure, and identifying the events (or component states) that were most likely 

to result in significant safety impacts.   
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5 Discussion and Conclusions 

Dam systems are arrangements of physical and nonphysical components which act to store 

and convey water for beneficial purposes such as power production, irrigation, water 

supply and flood control. Dams can be thought of as open systems, where inflows, outflows 

and disturbances cross the system boundary. Within the boundary of the system, feedbacks 

act to monitor reservoir levels and inflows, and adjust controls to maintain reservoir levels 

within target values, and meet desired outflow requirements, if possible. There are a wide 

range of potential constraints which may impact the ability of the dam to achieve its desired 

purpose for safe containment and conveyance of flows. The major research contributions 

in this work are (a) the systematic definition of combinations of events which can influence 

the ability to safely control flow in a dam system, and (b) the dynamic characterization of 

the system performance in response to these events using a Deterministic Monte Carlo 

simulation framework with a system dynamics simulation model.  

The following paragraphs discuss the outcomes of this work as they pertain to the 

objectives outlined in Chapter 1.   

• The first objective was to investigate the use of systems analysis and risk 

assessment concepts from within and outside of the dams industry in terms of their 

ability to determine potential operating scenarios for dam systems and the impacts 

scenarios have on system outcomes. This was achieved by looking at the relevant 

literature and evaluating the various techniques with respect to their ability to 

achieve the research requirements.  

• The second objective was to develop an approach that helps define a more complete 

range of potential operating scenarios (operating constraints) than is possible using 

existing techniques alone. This was achieved through the use of a components 

operating states database that details each component, their operating states, 

operating state impacts and causal factors. Combinatorics was used to 

automatically convert the database entries into an exhaustive list of potential 

operating scenarios. The existing methodologies described in the literature review 

rely on expert judgement to determine possible combinations of events – of which 
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there are so many that it would be unreasonable for a team of experts to conceive 

of them. Thus, the number of scenarios that can be defined using this methodology 

far exceeds the scope of existing methods.  

• The third objective was to develop an improved dam safety analysis methodology 

that facilitates systematic investigation of all potential operating scenarios and 

allows for the outcomes of individual scenarios to be characterized. The 

Deterministic Monte Carlo simulation framework proposed in this research is able 

to dynamically evaluate each possible scenario through a number of iterations. 

Scenarios are used as an input to the model, to ensure each scenario is 

systematically characterized and an equal amount of simulation effort is spent on 

each. This allows for a more complete assessment of potentially hazardous 

outcomes than has been achieved using existing techniques.  

• The fourth objective was to develop a simulation approach that can handle 

complexity in system structure, feedbacks, interactivity and nonlinear behaviour 

and uses object-oriented modelling to improve model accessibility. The system 

dynamics simulation model developed in this work is well suited to this objective 

and can be built to as much detail as is required to adequately capture the failure 

modes of interest to the modeller.  

• The fifth objective was to investigate dynamic indicators of system performance 

with respect to safety, as well as scenario criticality parameters that can be used to 

rank the importance of various scenarios from the simulation outcomes. A number 

of criticality parameters are proposed in this work, and these as well as the dynamic 

outcomes of the system performance were shown in the simulation results.  

The following section contains a more detailed evaluation of the methodology which 

pertains to the requirements stated in Chapter 3. Next is a discussion of potential areas for 

future work.   
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5.1 Methodology evaluation  

Like all approaches, the proposed methodology described in this research does have some 

limitations. A discussion of its strengths and weaknesses of the methodology is provided 

here. The requirements for a new approach to dam safety analysis were outlined in Chapter 

3 and are repeated here with a more detailed discussion regarding the progress made 

towards each. 

The first requirement is for an approach with reduced subjectivity. The approach presented 

in this research achieves this requirement. The automated generation of scenarios helps 

eliminate reliance on heuristic thinking and expert judgement with respect to combinations 

of possible system states. Use of STPA in the development of the operating states database 

for actively controlled system components such as gates and turbines also helps to reduce 

subjectivity. Despite the improvements in limiting subjectivity, there is still (and will 

always be) a requirement for expert judgement in the component operating state database 

population and the level of detail in which to model the system.  

The second requirement of the approach developed is to address non-failure related 

constraints on system operation. All failure-based approaches are inherently limited in 

terms of the analysis of non-failures, and this is documented well by Leveson (2011) and 

Thomas (2012). Approaches which are focused on failures alone may miss a sub-set of 

potentially unsafe scenarios triggered by conditions that did not result from a failure. The 

proposed methodology is capable of assessing many of the scenarios not triggered by a 

failure. The database developed in this research includes both failure and non-failure 

operating states. The database and simulation model are well suited to deal with errors and 

delays which do not necessarily involve failure of components. There are, however, some 

non-failure related scenarios that were revealed through STPA analysis that were not 

captured within the simulation model presented in this work. Human factors and software 

requirements are issues that simulation is well-suited to address, so it may be possible in 

the future to improve the capabilities of the simulation model in this respect. Design flaws 

may be simulated, but need to be well understood and programmed into the simulation 

model. The simulations run in the case study do not specifically address these issues, and 
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the STPA portion of the case study (Section 4.1) highlights some of the scenarios that were 

missed within this application, but could potentially be represented in the future.    

The next requirements on the list are to determine the potential constraints on system 

operation and to systematically determine potential combinations of these. The approach 

presented in this work achieves this requirement through the use of the operating states 

database population, and automatically generates combinations of operating states using 

the combinatorial procedure. Population of the database will benefit from the strengths of 

the systematic FMEA and STPA approaches.   

Another requirement is to determine the likelihood of operational constraints (operating 

states) without significant simplifying assumptions. This remains a significant issue in 

probabilistic risk assessment that is difficult to address in the absence of supporting failure 

rate data. The methodology presented in this research does not attempt to address this 

problem. However, this research does determine the conditional probability of 

failure/reservoir level exceedance, given a scenario. Using this information, it may be 

possible to perform sensitivity analyses to assumptions regarding component probability 

of failure, without significant simulation effort. This represents one advantage over 

completely stochastic simulation models, which require re-simulation to analyze the 

sensitivity to assumed probabilities. The extension of this work to include full probabilistic 

assessment was not considered, since failure rate data for the components modelled was 

not available to provide a meaningful assessment. 

The next few requirements are (a) quantifying the dynamic system response to operating 

scenarios, (b) including feedbacks and nonlinear behaviour, (c) capability to handle 

complexity. These are all dealt with specifically using the system dynamics simulation 

approach. System dynamics simulation is well suited to modelling the complex web of 

component interactions and feedbacks using object-oriented programming which is 

relatively transparent (interactions shown using stock and flow diagrams) and also easily 

modifiable. Inspection of the system structure is a useful way of gaining confidence in the 

model. The simulation model characterizes how the values of variables change with time 

– a direct output of the model is the reservoir level response to a particular scenario, which 
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is of significant importance for dam safety analysis. The outputs of the simulation may 

indicate emergent behaviour that results from component interactions. One major 

consideration for the simulation model presented is that the choice of simulation timestep 

must be selected such that all failure modes being considered are properly modelled. 

Penstock pressure transients and cavitation in turbines or spillway chutes happens over 

seconds, milliseconds or even shorter time intervals. These issues were not explored within 

this thesis, but could potentially be included in future applications of the work using nested 

processes within a simulation model that operates at a larger timestep (this would reduce 

the computational effort associated with such a fine time-resolution). While the approach 

presented is, in theory, capable of modelling the system with any desired level of 

complexity and at any time-resolution, there may be significant computational challenges 

when applying the methodology to very complex systems. As the complexity of the system 

being modelled increases, so does computational effort and number of scenarios to be 

analyzed. Future research should focus on improving the computational efficiency of the 

simulation model framework. Another time-related limitation is that the randomly initiated 

failures of components may not coincide with likely instances of failure in the real world. 

For example, in a real dam system, a spillway gate may be dormant or not “on demand” 

for a substantial period during the year. Failing the gate randomly may under-estimate the 

potential impacts this failure could have by initiating it when inflows are normal or low. 

That said, with regular gate testing being implemented in many dam safety programs across 

the world, it may not be unrealistic to detect a failed state during a low-flow period.  

The next requirement is to assess the uncertainty in scenario outcomes. This is a 

particularly challenging issue in all modelling exercises. The uncertainty of scenario 

outcomes can be assessed by looking at the range of results from the Monte Carlo iterations 

of each scenario. By varying the simulation parameters and event timing, the sensitivity of 

the results to various inflows, event timing and event impact magnitudes is performed. 

There are a number of uncertainties in other model assumptions that have not been 

analyzed in this work and remain an important area for future work. 

The ability to deal with common cause failures is another requirement of the methodology 

presented in this work. This is addressed within the operating states database and 
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simulation. Operating states which have the same causal factor are programmed to occur 

at the same point in time in the simulation. Computing the scenario probability (if the 

failure rate data are available) may be slightly more challenging, since care must be taken 

to ensure the probabilities of the common causes are not double counted. 

The last two requirements of this research are the ability to calculate the conditional 

probability of failure for a given scenario, and the ability to calculate the probability of 

failure for the system as a whole. A direct outcome of the Monte Carlo simulation for each 

scenario is the conditional frequency of failure for that scenario, given the inflows and the 

range of impact parameters simulated. One limitation is that the number of data points with 

which to estimate these frequencies may be limited, since there may be many iterations 

within a scenario that are not representative of a “complete scenario” where all events are 

both occurring and impacting one another. These incomplete iterations, which are not 

representative of the scenario, increase the simulation effort without improving the result 

and result in fewer data points with which to calculate the overall failure likelihood. In the 

future, this could be dealt with by setting a minimum number of “completely implemented” 

iterations, or experimenting with the maximum timestep before which all events must occur 

within the scenario. Estimation of a system’s overall frequency of overtopping failure is 

not a direct outcome of this research. However, assuming the frequency of each operating 

state can be estimated, it may be possible to perform a complete probabilistic analysis of 

simulation results. Ensuring calculations are correct may be challenging for common-cause 

failures, though there is some guidance in the literature on this subject. Running the 

simulation using Deterministic Monte Carlo will also facilitate a relatively straightforward 

sensitivity analysis to assumed operating state frequencies. This is an important area for 

future work.  

In general, the approach presented in this work provides some key advantages over the 

existing techniques used within and outside of the dams industry. Traditional assessments 

tend to rely on techniques developed for use in industries that face different challenges than 

are experienced in dams systems. Dam systems are dynamic systems of many interacting 

components acting to control (both actively and passively) a randomly varying natural 

input (inflow). Determining the reservoir level response to various inflows and operating 
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constraints is not easily done using traditional failure modes brainstorming exercises or 

chain-of-event style analysis. Chain-of-events analyses (FTA and ETA) are limited in their 

ability to address interactivity and nonlinear response. Existing systems approaches to 

safety such as STPA offer some improvements, but are designed to deal with actively 

controlled systems, whereas dam systems have both active and passive controls. STPA is 

also unable to analyze reservoir level fluctuations in response to constraints. Stochastic 

simulation is the only technique that is able to determine reservoir level response to various 

constraints. It is also perhaps the easiest approach to estimate the overall system probability 

of overtopping failure. If run for enough years, a fully stochastic model, in theory, would 

eventually simulate the full range of potential operating state combinations. However, a 

fully stochastic simulation spends a significant amount of computational effort simulating 

non-failure states and would require a computationally prohibitive number of simulation-

years to achieve a more thorough analysis of each possible combination of events. 

Ultimately, the ability of the traditional stochastic approach to analyze potentially 

threatening combinations of events is limited by the number of simulation-years – at the 

current time it is not possible to achieve a full coverage of all potential combinations of 

events using this method.  

The methodology described in this research draws on the strengths of existing methods to 

more fully and systematically determine how the system will respond to as many 

combinations of events as can be determined. The operating states database and 

combinatorial procedure help to automate the process of determining potential constraints 

on system operation. The Deterministic Monte Carlo simulation framework systematically 

characterizes the potential system responses which may be expected for a given scenario. 

Scenarios are deterministic inputs to a simulation model that is run for a large number of 

iterations with Monte Carlo varying scenario parameters. The system dynamics simulation 

model is capable of representing as much complexity as desired in systems with component 

interaction and feedback in a transparent and easily modifiable object-oriented 

programming environment. The level of detail with which each aspect of the system is 

modelled also facilitates linking the model with the components database to enable the 

deterministic simulation of all of the possible combinations of operating states arrived at 

in the scenario generation procedure. Through system dynamics simulation, emergent 
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behaviour may be observed as a result of component interactions, with outcomes that may 

not be easily foreseeable by analysing sub-systems or parts of the system. Simulations 

automatically generate metrics such as the conditional failure frequencies and reservoir 

level exceedance frequencies for a particular scenario. While this research focuses on 

safety-specific indicators, it may also be possible to investigate environmental, regulatory 

and economic considerations from the simulation outcomes. 

There are some limitations of the approach proposed in this thesis. Despite the much larger 

number of scenarios that this approach is able to generate and assess, the STPA analysis 

identified some scenarios that were not captured by the simulation. These scenarios 

involved operational decision making and process model errors, which would add another 

(very large) dimension to the simulation analysis – though it is theoretically possible to 

analyze such issues using simulation. The results from the case study illustrated how the 

number of possible scenarios increases exponentially with the number of components being 

modelled and the number of operating state-causal factor combinations. Ultimately, the 

methodology presented allows modellers build the system to as high a level of detail as is 

desired so that the key interactions and feedbacks are fully modelled. In applying the 

approach, however, this may result in computational feasibility challenges. It is possible 

that simplifications to improve computational efficiency could affect the outcomes of the 

analysis. Future work must address the computational requirements of fully-detailed 

models to ensure this approach can be extended to real dam systems. It is also not clear 

whether the consideration of each operating state-causal factor as a separate operating state 

is necessary – this introduces a fair amount of redundant simulation but was introduced to 

ensure causal factors and common cause failures were represented within the model. 

Finally, while the post-processing of scenarios helps to filter out scenarios that were not 

representative of the input scenario (ie. all events did not occur prior to dam failure, or all 

events did not affect one another), it may result in fewer data points than reasonable to 

estimate the conditional failure frequency and other criticality parameters. 

The following section details some potential directions for future research. 
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5.2 Directions for Future Research 

For future applications, it may be interesting to simulate the set of scenarios with starting 

reservoir elevations that would differ from “normal” conditions, in an attempt to model the 

system response to situations that could arise as a result of operational trade-offs that are 

difficult to generate automatically. 

The most important area for future research relating to this approach is to incorporate 

probabilistic assessment into the approach. The methodology presented is set up fairly well 

to achieve this goal, in that the operating states database could be extended to allow 

estimates of the probabilities of causal factors and/or probabilities of component failure 

conditional on the causal factor occurring. These probabilities along with the Deterministic 

Monte-Carlo simulation results (conditional probabilities of failure or reservoir level 

exceedance) could be used in estimating the overall failure rate for each scenario. The 

benefit of the Deterministic Monte Carlo approach for assessment of overall overtopping 

failure probability is that the sensitivity to assumed operating state probabilities can be 

analyzed without significant additional computational effort. The full suite of results could 

be used to assess the probability of overtopping failure of the dam using traditional 

probability theory. The results would be a probability assessment that takes into account a 

far wider coverage of the possible operating states for the system than may be achieved 

using traditional techniques. The probability of flow control failure of the dam is an 

important decision-making factor for dam owners in terms of fleet management. 

Obviously, resources should be directed towards dams which have a higher probability of 

failure and/or a higher consequence category. In addition to this, the change in frequency 

of overtopping failure as a result of by different alternative operating strategies and capital 

upgrades could help provide a business case for investing in different alternatives (along 

with the visual aid of the aggregated scenario performance measure plots).  

Another very important area for future work is in improving the computational feasibility 

of the approach described in this research. When the combinatorial procedure was applied 

to a detailed model of the Cheakamus System, 1.89 x 1027 scenarios resulted. This would 

obviously be computationally infeasible in a reasonable amount of time, though advances 

in computing capabilities may make it more feasible in the future. In the meantime, work 
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on applying the methodology to real systems with grouped components similar to what was 

done in the simplified system will help reduce the number of scenarios to a more realistic 

and computationally reasonable number. Grouping components could potentially be 

guided by a fault tree analysis of sub-systems within the system – for example, a fault tree 

analysis of the gate system to determine groups of components that might lead to a specific 

operating state for the gate as a whole. Implementing nested time-steps to address issues 

such as cavitation, pressure transients, erosion, slope stability and internal erosion would 

add additional complexity but is also an important area for future work. Further 

improvements to the simulation model speed may also be possible, although they would 

require a substantial effort and possibly a switch to a C++ or similar compiled 

programming language. Compiled programming languages are generally considered to be 

the most computationally efficient, however they are slightly less user friendly and require 

more programming experience.   

Another potential direction for future work is the integration of the system dynamics 

simulation with AI to drive (or even build) the simulation model. Deep learning algorithms 

could potentially be applied to process the results to provide additional useful information 

from simulation outcomes. Finally, pattern recognition techniques may be useful to reduce 

the number of combinations required to assess each simulation outcome. This is a 

particularly promising direction that could help improve the limitation resulting from the 

trade-off between computational feasibility and level of complexity modelled. 

Ultimately, these promising directions for future work may help to strengthen the approach, 

making it more readily applicable to existing, highly complex dam systems.   
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Appendix A: Cheakamus Hydropower Project Details 

This appendix contains the numerical relationships for reservoir storage and flow 

conveyance at Cheakamus Dam. These relationships can be found in the publicly 

available Water Use Plan. 

 

Figure A1 Stage-Storage curve for Daisy Lake Reservoir (BC Hydro 2005) 

 

Figure A2: Rating Curve for radial gates fully open and free overflow (BC Hydro 

2005) 
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Figure A3: Rating curve for low level outlet sluice gate fully open (BC Hydro 2005) 

 

 

Figure A4: Historical Inflows to Daisy Lake (BC Hydro 2005) 
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Figure A5: Daisy Lake NMin and NMax reservoir levels (data from BC Hydro 

2005) 

 

Figure A6: Minimum discharges below Daisy Lake Dam (data from BC Hydro 

2005)  
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Appendix B: STPA Analysis of Cheakamus Dam 

Cheakamus Dam System STPA analysis 

Note that this analysis was not done by BC Hydro personnel and therefore should not be 

interpreted to represent real conclusions for the Cheakamus System. 

High-level system hazards: 

H1: High flows released into Cheakamus River and/or Squamish River (flood) 

H2: Flow releases to Cheakamus River stopped (fish kill) 

H3: Equipment damaged (economic/safety impact) 

H4: Loss of power production (economic impact) 

-Not sure about this one. This happens quite often, during low flows or during 

maintenance, is it really to be considered an accident? I’ve decided to remove it 

from the list because it’s a pretty regular occurrence. It might be more suitable to 

be added to the list for a large dam where water is always passing through the 

powerhouse (eg. Mica, Revelstoke, GMS) 

 

High-level system safety constraints (requirements): 

SH1: Flows released into Cheakamus and/or Squamish must not exceed a level that 

causes damage downstream (unless inflows do?) 

SH2: Flow must always be released to Cheakamus River 

SH3: Equipment must not become damaged 
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System Control Structure 

 

Figure B1: Hierarchical system structure  
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Table B1: STEP 1: Unsafe control actions 

# Control 

Action 

Not Providing 

causes hazard 

Providing 

causes hazard 

Wrong 

timing/order 

causes hazard 

Stopping too 

soon/applying 

too long causes 

hazard 

1 SPOG1 

Open 

-UCA1 Open 

command not 

provided when 

water level 

high, inflow 

high or both 

[H1, H3] 

 

-UCA2 Open 

command not 

provided when 

SPOG2 and 

LLO closed 

[H2] 

 

-UCA3 Open 

command not 

provided but 

gate opens on 

its own [H1] 

-UCA4 Open 

command 

provided 

resulting in 

downstream 

flooding [H1] 

 

-UCA5 Open 

command 

provided when 

gates blocked 

with debris/ice 

[H1, H3] 

 

-UCA6 Open 

command 

provided but 

gate stays 

closed [H2, 

H3] 

-UCA7 Open 

command 

provided too 

late, after 

reservoir filled 

to unsafe level 

and/or gates 

overtopped 

[H1, H3] 

 

-UCA8 Gate 

not left open 

long enough, 

reservoir 

continues to 

rise [H1, H3] 

 

-UCA9 Gate 

left open too 

long, resulting 

in draining of 

the reservoir to 

gate sill and 

fish kill [H2] 

2 SPOG2 

Open 

-UCA10 Open 

command not 

-UCA13 Open 

command 

-UCA16 Open 

command 

-UCA17 Gate 

not left open 
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provided when 

water level 

high, inflow 

high or both 

[H1, H3] 

 

-UCA11 Open 

command not 

provided when 

SPOG1 and 

LLO closed 

[H2] 

 

-UCA12 Open 

command not 

provided but 

gate opens on 

its own [H1] 

provided 

resulting in 

downstream 

flooding [H1] 

 

-UCA14 Open 

command 

provided when 

gates blocked 

with debris/ice 

[H1, H3] 

 

-UCA15 Open 

command 

provided but 

gate stays 

closed [H2, 

H3] 

provided too 

late, after 

reservoir filled 

to unsafe level 

and/or gates 

overtopped 

[H1, H3] 

 

long enough, 

reservoir 

continues to 

rise [H1, H3] 

 

-UCA18 Gate 

left open too 

long, resulting 

in draining of 

the reservoir to 

gate sill and 

fish kill [H2] 

3 SPOG1 

Close 

-UCA19 Close 

command not 

provided when 

inflows and  

water level low 

(approaching 

sill) [H2] 

-UCA20 Close 

command not 

-UCA21 Close 

command 

provided when 

reservoir 

and/or inflows 

high [H1, H3] 

 

-UCA22 Close 

command 

-UCA23 Close 

command 

provided too 

early, reservoir 

level increases 

[H1, H3] 

 

-UCA24 Close 

command 
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provided when 

SPOG2 and/or 

LLO releasing 

excess water 

[H1] 

 

UCA25 Close 

command not 

provided, gate 

closes on its 

own [H1, H2, 

H3] 

provided when 

SPOG2 and 

LLO closed 

[H2] 

provided too 

late, reservoir 

drains [H2] 

 

4 SPOG2 

Close 

-UCA26 Close 

command not 

provided but 

gate closes on 

its own [H1, 

H2, H3] 

 

-UCA27 Close 

command not 

provided when 

inflows and  

water level low 

(approaching 

sill) [H2] 

 

-UCA29 Close 

command 

provided when 

reservoir 

and/or inflows 

high [H1, H3] 

 

-UCA30 Close 

command 

provided when 

SPOG1 and 

LLO closed 

[H2] 

-UCA31 Close 

command 

provided too 

early, reservoir 

level increases 

[H1, H3] 

 

-UCA32 Close 

command 

provided too 

late, reservoir 

drains [H2] 
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-UCA28 Close 

command not 

provided when 

SPOG1 and/or 

LLO releasing 

excess water 

[H1] 

5 LLO Open -UCA33 Open 

command not 

provided when 

SPOGs closed 

[H1, H2, H3] 

-UCA34 Open 

command 

provided when 

SPOGs open 

[H1] 

 

-UCA35 Open 

command 

provided too 

late [H1, H2, 

H3] 

UCA36 Open 

command 

provided too 

long, reservoir 

drains [H2] 

 

-UCA37 Open 

command 

stopped too 

early, reservoir 

rises [H1, H3] 

6 LLO Close -UCA38 Close 

command not 

provided when 

reservoir level 

approaching 

sill [H2] 

UCA39: Close 

command 

provided when 

inflows and 

reservoir 

elevation high 

[H1, H2, H3] 

 

 

UCA40: Close 

command 

provided too 

early [H1, H2, 

H3] 

 

UCA41: Close 

command 
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provided too 

late [H2] 

7 T1 Open -UCA42 Open 

command not 

provided when 

inflows high 

and SPOGs out 

of service [H1, 

H3] 

-UCA43 Open 

command 

provided but 

does not work, 

SPOGs out of 

service [H1, 

H3] 

-UCA44 Open 

command 

provided too 

late, SPOGs 

out of service 

and inflow 

high [H1, H3] 

 

 

-UCA45 Open 

command 

provided too 

long, reservoir 

level falls 

below power 

intake sill 

8 T2 Open -UCA46 Open 

command not 

provided when 

inflows high 

and SPOGs out 

of service [H1, 

H3] 

-UCA47 Open 

command 

provided but 

does not work, 

SPOGs out of 

service [H1, 

H3] 

-UCA48 Open 

command 

provided too 

late, SPOGs 

out of service 

and inflow 

high [H1, H3] 

 

 

-UCA49 Open 

command 

provided too 

long, reservoir 

level falls 

below power 

intake sill 

9 T1 Close -UCA50 Close 

command not 

provided when 

reservoir levels 

low [H2] 

 

-UCA52 Close 

command 

provided when 

reservoir 

levels high 

[H1, H3] 

-UCA53 Close 

command 

provided too 

late, reservoir 

level low [H2] 
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-UCA51 

Turbine closes 

when 

command not 

provided 

causing water 

hammer and 

penstock 

rupture [H3] 

10 T2 Close -UCA54 Close 

command not 

provided when 

reservoir levels 

low [H2] 

 

-UCA55 

Turbine closes 

when 

command not 

provided 

causing water 

hammer and 

penstock 

rupture [H2, 

H3] 

-UCA56 Close 

command 

provided when 

reservoir 

levels high 

[H1, H3] 

-UCA57 Close 

command 

provided too 

late, reservoir 

level low [H2] 
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STEP 2: Causes of unsafe control actions 

NOTE: additional details provided about recurring potential issues at end of this section. 

 

UCA1/UCA10: SPOG Open command not provided when water level high, inflow high 

or both [H1, H3] 

 Case 1: Water level high, inflow low, open command not provided 

-Controllers (OP, PSOSE, ACC, DS) unaware of reservoir level due to 

gauge failure, sensor failures or communication delays 

-High tides at Squamish mean there are flooding impacts when additional 

flows are released from the CMS system. Controllers (OP, PSOSE, ACC, 

DC) make a decision to hold water back, allowing the reservoir to rise to 

an unsafe state even though the inflow is relatively low. 

 Case 2: Water level high, inflow high, open command not provided 

-Controllers (OP, PSOSE, ACC) believe they can return the reservoir to a 

safe level using the powerhouse and/or LLO and/or other SPOG due to 

inflow forecast errors 

-Controllers (OP, PSOSE, ACC, DS) unaware of reservoir level due to 

gauge failure, sensor failures or communication delays 

-High tides at Squamish mean there are flooding impacts when additional 

flows are released from the CMS system. Controllers (OP, PSOSE, ACC, 

DC) make a decision to hold water back, allowing the reservoir to rise to 

unsafe levels 

-Controllers do not follow procedure (human error due to fatigue or shift 

change at PSOSE/FVO) 
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 Case 3: Water level low, inflow high, open command not provided 

-Controllers (OP, PSOSE, ACC) believe they can keep the reservoir at a 

safe level without opening the gate, due to inflow forecast errors or 

process errors 

 -Gate(s) out of service for maintenance purposes and therefore cannot be opened. 

 -Controller thinks gate open (sensor failure, communication delay) 

 

UCA2/UCA11: SPOG Open command not provided when other SPOG and LLO closed 

[H2] 

 -Procedural: Inflow low and operators want to conserve water for power 

production 

 -Controller (ACC) makes a mistake due to being tired or shift change 

-Controller thinks gate open (sensor failure, communication delay) 

 

UCA3/UCA12: SPOG Open command not provided but gate opens on its own [H1] 

-Gate position sensor failure causes PLC to open gate spuriously 

 

UCA4/UCA13: SPOG Open command provided resulting in downstream flooding [H1] 

-Controllers (OP, PSOSE, ACC) issue a command to open the gate to a large 

opening, resulting in downstream flooding 

 -Inflow forecast error (controller thinks inflow is going to be higher than it 

is) 
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-Sensor failure or delay resulting in operator thinking reservoir 

level/inflow is higher than it actually is and opening gate to return it to a 

safe level 

-Controllers issue a command to open the gate and the force is too high, alarm 

sent and ignored by controller, or sensor fails and alarm not sent - so the steel 

yields and there is an uncontrolled release of water. Note – hoist likely to fail first.   

-Backup motor engages when main motor functional due to missing signal, two 

motors functioning to move gears causing overforce on hoist, hoist failure and 

gate fails closed. If inflows high enough, this could potentially result in dam 

breach. 

UCA5/UCA14: SPOG Open command provided when gates blocked with debris or ice 

[H1, H2, H3] 

-Operator (remote or manual) tries to open gate but it is blocked by debris/ice and 

a gate component fails (hoist, motor, strut) [H3] 

 -Gate fails open and a large amount of water is released [H1] 

 -Gate fails closed and no water is released [H2] 

  -Could potentially result in [H1] if inflows high enough 

-Operator (remote or manual) opens gate but debris or ice result in less water 

being released than intended. Reservoir then rises to an unsafe level and excessive 

flows are discharged via free overflow spillway and/or over the dam crest [H1] 

-Gate opens as planned and debris flushed through spillway chute damages chute 

[H3] 

 

UCA6/UCA15: SPOG Open command provided but gate stays closed [H2, H3] 
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-Gate component has failed (deterioration or disturbance), resulting in inability to 

move gate  

-Unable to move due to inadequate lubrication of guidewall/skinplate 

interface or trunnion 

-Gate sensor failed and PLC thinks gate is open so it doesn’t move the gate (or 

gate sensor doing it’s job but debris in the way/some sort of interruption that 

makes the sensor sense the wrong position) 

-Grid failed, diesel backup failed, site staff unavailable to operate temporary 

diesel generator  

-Emergency situation such as an earthquake/landslide, or site 

inaccessibility 

 

UCA7/UCA16: SPOG Open command provided too late, after reservoir filled to unsafe 

level and/or gates overtopped [H1, H3] 

-Inflow forecast errors so controller doesn’t think gate needs to be opened.  

-Sensor errors so controller doesn’t realize reservoir level is high 

 -Reservoir rises to above gates which can then no longer be opened and 

may be damaged [H1, H3] 

 -Reservoir rises to above gates which may still be opened but too late to 

prevent dangerous releases over free overflow and/or dam crests [H1, H3] 

-Gate cannot be opened past 2m remotely. Delay in mobilizing site staff leads to 

unsafe conditions (access road issues/short staffed due to time of evening or 

weekend, inflows high and staff need ~2h minimum to reach site from Mission 

office) 
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-High tides at Squamish mean there are flooding impacts when additional flows 

are released from the CMS system. Controllers (OP, PSOSE, ACC, DC) make a 

decision to hold water back, allowing the reservoir to rise to an unsafe state even 

though the inflow is relatively low. Dam safety controller (DS) steps in at a 

certain reservoir elevation to override operations planners but by then it is too late 

 

UCA8/UCA17: SPOG Gate not left open long enough, reservoir continues to rise [H1, 

H3] 

-Controller thinks reservoir is lower (sensor failure) so they close gate  

-Controller thinks inflows are manageable with other release facilities (inflow 

forecast/process model error) so they close the gate 

-Gate closes on its own due to failure of some gate component (gate fails closed) 

 

UCA9/UCA18: SPOG Gate left open too long, resulting in draining of the reservoir to 

gate sill and fish kill [H2] 

-Controller thinks reservoir is higher (sensor failure/delay/relay failure) so they 

keep the gate open  

-Loss of power to close gate (grid, diesel), temporary diesel requiring staff 

mobilization which has some delay 

-Loss of site access and remote gate control meaning gate cannot be closed until 

site accessed or sat/microwave links working 

-Gate fails in open position 

-Loss of remote gate control, mobilization of staff to site to close gate takes too 

long and reservoir drains below sill  
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-UCA19/UCA27 SPOG Close command not provided when inflows and water level low 

(approaching sill) [H2] 

 -Reservoir level gauge faulty or delayed so controller thinks reservoir is higher 

than it is   and drains it to the sill  

-Controller thinks inflows are high (inflow forecast error) and keeps gate open 

despite plummeting reservoir elevation 

-Operator lowering reservoir following signs of internal erosion or earthquake 

 

-UCA20/UCA28 SPOG Close command not provided when other SPOG and/or LLO 

releasing excess water [H1] 

-Process model: Controller thinks inflows high so keeps outflows high (past 

experience/ inflow forecast error) 

-Process model: Controller thinks reservoir is high so keeps outflows high (sensor 

error, past experience with flashy reservoir) 

-Inflows and reservoir level high, controller following procedure 

-Lowering reservoir due to signs of internal erosion/damaged dam(s) 

 

-UCA25/UCA26 SPOG Close command not provided, gate closes on its own [H1, H2, 

H3] 

 -Gate fails closed (failure of hoist, connections, structural, sensor, etc.) 

 -Spurious closure due to faulty gate position sensor 
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-UCA21/UCA29 SPOG Close command provided when reservoir and/or inflows high 

[H1, H3] 

 -Case 1: Reservoir high, inflows low 

-Controller relies on past experience and thinks the situation can be 

handled with minimum fish flow and maximum power flow releases. If 

the reservoir is above the level of the earth dam filter, this decision could 

put the dam at risk of failure. 

-Controller believes reservoir is low (gauge failure or delay, relay failure) 

 -Case 2: Reservoir low, inflows high 

-Controller wants to fill reservoir higher to conserve water for energy 

production. Eventually if inflows stay high, this could mean larger spills 

later [H1] or even put the dam at risk in extreme cases [H1, H3]  

-Controller believes inflows are low (inflow forecast error) 

- High tides at Squamish and high tributary flows in Squamish and lower 

Cheakamus mean controller opts to hold water back to prevent flooding. 

 -Case 3: Reservoir high, inflows high 

-High tides at Squamish and high tributary flows in Squamish and lower 

Cheakamus mean controller opts to hold water back to prevent flooding.   

-Controller believes inflows are low (inflow forecast error) and believes 

power and minimum fish flow discharge will be sufficient to return water 

level to safe state  

-Controller believes reservoir is low (gauge failure or delay, relay failure) 

and wants to fill to higher level to use the water for power production   
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-Spillway chute becomes damaged (debris? Or age) and operator wants to avoid 

further damage to chute so the gates are closed and the reservoir is allowed to rise 

to the level of the free overflow spillway. If inflows are high enough, this could 

potentially put the dam at risk of overtopping. Could also cause damage to and/or 

undermining of saddle/wing dams 

 

-UCA22/UCA30 SPOG Close command provided when other SPOG and LLO closed 

[H2] 

-Controller thinks water is being released through SPOG and/or LLO for fish 

flows (faulty SPOG position gauge and/or delay in information from on-site 

operator of LLO) 

-ACC controller accidentally sends command to close gate  

 

-UCA23/UCA31 SPOG Close command provided too early, reservoir level increases 

[H1, H3] 

 -Controller thinks reservoir level is low (gauge failure or delay) 

 -Controller thinks inflow is low (inflow forecast error) 

-High tides at Squamish mean there are flooding impacts when additional flows 

are released from the CMS system. Controllers (OP, PSOSE, ACC, DC) make a 

decision to hold water back, closing the SPOGs to the minimum fish flow, 

allowing the reservoir to rise to an unsafe state  

 

-UCA24/UCA32 SPOG close command provided too late, reservoir drains [H2] 
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 -Controller thinks reservoir level is higher than the gate sill (gauge failure or 

delay) 

-Controller thinks inflow is high (inflow forecast error) so keeps reservoir open to 

pre-spill for a storm that never comes, resulting in the reservoir being drained to 

the sill  

-Operator is responding to issues at another site and overlooks the fact that the 

CMS reservoir is draining to the sill 

-MICROWAVE/Sat links fail, by the time site staff arrive to close gate, reservoir 

is below gate sill 

 

-UCA33 LLO Open command not provided when SPOGs closed [H1, H2, H3] 

-Controller thinks SPOGs are open (SPOG position sensor failure, or relay 

failure) [H1, H2, H3] 

 -SPOGs fail closed, controller unaware [H1, H2, H3] 

 

-UCA34 LLO Open command provided when SPOGs open [H1] 

-Controller thinks inflows are very high (inflow forecast error) and releases an 

excess amount of water downstream than is necessary to control reservoir level 

[H1] 

 

-UCA35 LLO Open command provided too late [H1, H2, H3] 

-SPOGs failed, high inflows, operator mobilization to site takes longer than 

expected (traffic/personnel issues/timing) [H1, H2, H3] 
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-UCA36 LLO Open command provided too long, reservoir drains [H2] 

-Controller expects very high inflows (inflow forecast error). Operator mobilizes 

to site and opens gate then leaves site. When inflows shown to be low and 

reservoir is draining, operator must mobilize to site to close gate (site access 

issues, personnel issues) 

  

-UCA37 LLO Open command stopped too early, reservoir level increases [H1, H3] 

-Controller thinks inflows are manageable with SPOGs so operator mobilizes to 

site to close LLO. SPOGs fail closed after operator leaves site resulting in 

increase in reservoir elevation. 

-Downstream flooding at Squamish due to high tide and tributary flows, so 

controller decides to hold water back and reduces LLO flow to minimum fish 

flow. SPOGs closed for maintenance. 

-Failure of LLO in closed position, SPOGs closed and/or out of service 

 

UCA38: LLO Close command not provided when reservoir level approaching sill [H2] 

 -Operator thinks reservoir level higher than it is (sensor failure/delay)  

-Damage to dam structure means reservoir must be drained to avoid potential 

internal erosion issues (earthquake/aging). Inflow falls to below the set LLO 

outflow and reservoir falls below sill, resulting in fish kill. 

 

UCA39: LLO Close command provided when inflows and reservoir elevation high [H1, 

H3] 
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-Controller feels inflows are manageable with SPOGs and power releases so 

operator closes LLO. SPOGs/power releases then fail after operator leaves site 

and reservoir rises to unsafe level [H1, H2, H3] 

 

UCA40: LLO close command provided too early [H1, H2, H3] 

-Controller feels inflows are manageable with SPOGs and power releases so 

operator closes LLO. Inflows increase (inflow forecast error) and/or 

SPOGs/Powerhouse fail  

-SPOGs out of service for maintenance. During the reverse lockout procedure 

when SPOGs are being brought back online, operator closes LLO too early 

(communication error with colleagues on site), resulting in fish kill 

 

UCA41: LLO Close command provided too late [H2] 

-SPOGs out of service. Controller thinks reservoir level is higher than it is (sensor 

failure or delay). Once controller realizes it is approaching sill, staff are mobilized 

to site to close the gate, but mobilization takes too long and reservoir drained to 

sill of LLO (traffic, personnel, timing)   

 

-UCA42/UCA46 Turbine Open command not provided when inflows high and SPOGs 

out of service [H1, H3] 

-Grid unavailable so turbine cannot be opened  

-Price of power is negative, PSOSE and FVO need to keep generation to a 

minimum while they import power from out of province 
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-UCA43/UCA47 Turbine Open command provided but does not work, SPOGs out of 

service [H1, H3] 

 -Load rejection at powerhouse, wicket gate failure, etc. 

-Failure of remote control, site inaccessibility (forest fire, landslide, washouts in 

Squamish valley) 

 

-UCA44/UCC48 Turbine Open command provided too late, SPOGs out of service and 

inflow high [H1, H3] 

-Remote control failed (MICROWAVE and satellite or issue within powerhouse), 

site accessibility is delayed due to poor weather conditions and traffic 

 

-UCA45/UCC49 Turbine Open command provided too long, reservoir level falls below 

power intake sill 

-Power shortages in lower mainland so PSOSE and FVO opt to prioritize 

generation, drawing reservoir to below sill of SPOG/LLO 

-Controller unaware that the reservoir is low (sensor failure) runs powerhouse 

until reservoir falls below SPOG/LLO sill resulting in fish kill 

 

-UCA50/UCA54 Turbine Close command not provided when reservoir levels low [H2] 

-Energy shortage in lower mainland pushes controllers (PSOSE, ACC) to keep 

generating when reservoir elevation dropping to below LLO sill 

-Controller unaware reservoir is low (sensor failure) so powerhouse is run until 

reservoir falls below SPOG/LLO sill resulting in fish kill 
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-UCA51/UCA55 Turbine closes when command not provided causing water hammer and 

penstock rupture [H2, H3] 

-Load rejection, plugging/collapse of surge shaft resulting in water hammer that 

ruptures penstock resulting in damage and draining of the reservoir to intake sill  

 

-UCA52/UCA56 Turbine Close command provided when reservoir levels high [H1, H3] 

-Price of energy becomes negative, SPOG1 and SPOG2 out of service for 

maintenance and inflows high. Controllers choose to close turbines and use LLO 

for spill releases, resulting in high reservoir elevations when inflows exceed LLO 

capacity  

-Price of energy becomes negative. SPOG1 and SPOG2 subsequently fail closed 

and reservoir rises to unsafe elevation when inflows exceed LLO capacity 

 

UCA53/UCA57 Turbine Close command provided too late, reservoir level low [H2] 

-Remote control of powerhouse fails, water dropping to below sill of LLO before 

personnel can access site to close wicket gates (traffic, site access restriction due 

to fire hazard, washouts or landslide) [H2] 

 

Further details about specific components/failures: 

 

Other considerations/scenarios for Turbines: 
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-Rough load zone operation leading to failure of the head cover(s), draining 

reservoir through powerhouse. Though, there does not appear to be a rough load 

zone specified for the Cheakamus units. [H2, H3] 

-Runaway turbine if generation/grid links severed? [H2, H3] 

 

Non-control related considerations: 

-Earthquake causing settlement of earth dam and/or toppling of 

wing/saddle/concrete dams [H1, H3] 

-Barrier slide failure (may or may not be earthquake induced) leading to buildup 

of material in Cheakamus Valley downstream from dam resulting in inability to 

pass water through system, eventual overtopping/breach 

 

Causes of failures of recurring components from STPA analysis: 

RTU’s (2): (1) Controls SPOGs, (2) Collects sensor info from PLC and relays to 

microwave/sat links. Failure resulting in loss of remote gate control and loss of visibility. 

-Power supply failure (backup batteries at end of service life) 

-Microprocessor failure 

-Lightning (one or both) 

-Earthquake causing structural movement of RTU/wiring/etc. 

PLC: 

-Voltage fluctuations causing them to lock themselves out. Automatically reboot 

or require manual reboot.  
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-Backup batteries at end of service life, voltage too low for PLC 

-May lose visibility in the event of grid failure since everything is coming to this 

PLC and being transferred to RTU/microwave/satellite 

 

Gate position sensors (2): One rotary, one linear. Rotary converts angular to distance 

linearized with shape of gate, lookup table within sensor to determine opening. Linear is 

a straight rod at the trunnion, linearized in PLC. Transfers info to PLC.  

 -Power supply failures (grid or rodent activity) 

 -Failure of linear sensor in the event of ice storm possible (exposed to elements) 

-Linear sensor is temperature sensitive, in hot weather it may appear gate is 

moving when it is not. 

-PLC issues when one is way off from the other? 

 

Reservoir level sensors (3) + staff gauge: PLC takes standard deviation between each 

one. If outside 4cm nominal difference, sensor omitted. Average of 2 or 3 taken. If two 

fail, PLC reads reservoir elevation as failed and passes that to RTU for control centre 

relay 

 -Linearity issues  

 -Temperature issues both high and low temperatures 

 -Must be rearranged every quarter – potential for issues in readings at end of 

quarter. 

 -If failed, site staff would have to go read staff gauge for accurate reservoir level 

reading 
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Site access: 

 -2-2.5 hours optimal 

-In emergency, may be able to instruct power crews in Squamish on how to open 

gate or fly in (helicopter) 

-Forest fires, earthquakes (highway collapse), traffic, barrier slide could all 

prevent access 

-Overtopping of dam would surely prevent access (it would be flooded. Once that 

happens, nobody can access site). 

 

Microwave failure: 

 -Earthquake  

 -Ice 

 -Can only be fixed in summer, very much weather dependant  

 

Gates: 

 -Multiple motors 

 -Can be operated by power drill via gearbox 

 -One gate stiffened for overtopping flows, one isn’t 

-Overtravel limit – mechanical switch failure stops drum from turning when gate 

opened too high 



269 

 

-Backup gate drive motor 

-Gearbox or drum failure would be catastrophic 

 -misalignment of gears (earthquake) 

 -lubrication issue (though would still work for a time) 

 -May be designed to open with a single hoist (need to check this) 
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Appendix C: Operating States Database for Cheakamus System 

Table C1: Reservoir-level database components for Cheakamus System 

ReservoirLeve

lID 

ReservoirLevelTy

peID 

ReservoirLevelNam

e 

OperatingStat

eID 

OperatingStateName OperatingStateTy

peID 

ImpactType

ID 

CausalFacto

rID 

CausalFactorTyp

eID 

CausalFactorName MaxDa

te 

MinDa

te 

46 1 Gate Pier 220 NA 2 4 226 25 None 365 1 

22 1 Main Earth Dam 104 None 2 4 227 25 None 365 1 

18 4 Dam PLC 138 Functional 2 4 252 25 None 365 0 

19 4 Powerhouse PLC 140 Functional 2 4 253 25 None 365 0 

16 5 Dam RTU 142 Functional 2 4 254 25 None 365 0 

17 5 Powerhouse RTU 144 Functional 2 4 255 25 None 365 0 

21 8 Main Dam 106 None 2 4 264 25 None 365 0 

27 11 Backup Diesel 

Generator 

113 None 2 4 265 25 None 365 0 

29 12 Dam Access 115 Typical access time 2 2 266 25 None 365 0 

28 12 Powerhouse Access 117 Typical access time 2 2 267 25 None 365 0 

30 23 Res El Sensor 1 218 Reading correct 2 4 268 25 None 365 0 

31 23 Res El Sensor 2 212 Reading correct 2 4 269 25 None 365 0 

47 23 Res El Sensor 3 209 Reading correct 2 4 270 25 None 365 0 

37 23 SPOG1Position_L 126 Reading correct 2 4 271 25 None 365 0 

39 23 SPOG2Position_L 132 Reading correct 2 4 272 25 None 365 0 

38 23 SPOG2Position_R 135 Reading correct 2 4 273 25 None 365 0 

36 23 SPOG1Position_R 221 Reading normal 2 4 274 25 None 365 0 

41 25 Power tunnel 175 None 2 4 275 25 None 365 0 

42 26 Penstock 177 Normal operation 2 4 276 25 None 365 0 

44 27 CMS Grid 187 Normal Operation 2 4 277 25 None 365 0 

43 27 Rainbow Grid 189 Normal Operation 2 4 278 25 None 365 0 

45 28 CMS Inflow 

Forecast 

192 Inflow forecast normal 2 4 279 25 None 365 0 

48 29 Site Staff 

Availability 

214 Staff available 2 4 280 25 None 365 0 
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ReservoirLeve

lID 

ReservoirLevelTy

peID 

ReservoirLevelNam

e 

OperatingStat

eID 

OperatingStateName OperatingStateTy

peID 

ImpactType

ID 

CausalFacto

rID 

CausalFactorTyp

eID 

CausalFactorName MaxDa

te 

MinDa

te 

18 4 Dam PLC 139 PLC offline 1 1 64 10 Voltage fluctuation  365 0 

18 4 Dam PLC 139 PLC offline 1 1 65 1 Earthquake 365 0 

16 5 Dam RTU 143 Offline 1 1 66 11 Lightning  274 120 

17 5 Powerhouse RTU 145 Offline 1 1 67 11 Lightning 274 120 

16 5 Dam RTU 143 Offline 1 1 68 1 Earthquake 365 0 

17 5 Powerhouse RTU 145 Offline 1 1 69 1 Earthquake 365 0 

21 8 Main Dam 107 Cracking of concrete 1 7 72 1 Earthquake 365 0 

27 11 Backup Diesel 

Generator 

114 Generator fails, no power 1 1 82 1 Earthquake 365 0 

27 11 Backup Diesel 

Generator 

114 Generator fails, no power 1 1 83 1 Earthquake 365 0 

27 11 Backup Diesel 

Generator 

114 Generator fails, no power 1 1 84 9 Aging 365 0 

27 11 Backup Diesel 

Generator 

114 Generator fails, no power 1 1 85 2 Lack of maintenance 365 0 

29 12 Dam Access 116 Access dangerous, delayed or not 

possible 

6 2 86 14 Traffic/traffic indicent 365 0 

29 12 Dam Access 116 Access dangerous, delayed or not 

possible 

6 2 87 4 Excessive rainfall causes road 

washout 

365 0 

29 12 Dam Access 116 Access dangerous, delayed or not 

possible 

6 2 88 1 Earthquake 365 0 

29 12 Dam Access 116 Access dangerous, delayed or not 

possible 

6 2 89 16 Forest fire resulting in evacuation 273 181 

19 4 Powerhouse PLC 141 PLC offline 1 1 94 10 Voltage fluctuation  365 0 

19 4 Powerhouse PLC 141 PLC offline 1 1 95 1 Earthquake 365 0 

41 25 Power tunnel 176 Power tunnel collapse 1 5 111 1 Earthquake 365 0 

42 26 Penstock 178 Penstock rupture 1 9 114 1 Earthquake 365 0 

28 12 Powerhouse Access 118 Access dangerous, delayed or not 

possible 

6 2 152 14 Traffic/traffic indicent 365 0 

28 12 Powerhouse Access 118 Access dangerous, delayed or not 

possible 

6 2 153 4 Excessive rainfall causes road 

washout 

365 0 

28 12 Powerhouse Access 118 Access dangerous, delayed or not 

possible 

6 2 154 1 Earthquake 365 0 

28 12 Powerhouse Access 118 Access dangerous, delayed or not 

possible 

6 2 155 16 Forest fire resulting in evacuation 365 0 

44 27 CMS Grid 188 Grid failure 1 1 156 5 Ice storm 59 0 

44 27 CMS Grid 188 Grid failure 1 1 157 7 Wind storm 365 0 

44 27 CMS Grid 188 Grid failure 1 1 158 16 Forest fire destroys infrastructure 273 120 

44 27 CMS Grid 188 Grid failure 1 1 159 11 Lightning destroys infrastructure 273 120 
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ReservoirLeve

lID 

ReservoirLevelTy

peID 

ReservoirLevelNam

e 

OperatingStat

eID 

OperatingStateName OperatingStateTy

peID 

ImpactType

ID 

CausalFacto

rID 

CausalFactorTyp

eID 

CausalFactorName MaxDa

te 

MinDa

te 

43 27 Rainbow Grid 190 Grid failure 1 1 160 5 Ice storm 59 0 

43 27 Rainbow Grid 190 Grid failure 1 1 161 7 Wind storm 365 0 

43 27 Rainbow Grid 190 Grid failure 1 1 162 16 Forest fire destroys infrastructure 273 120 

43 27 Rainbow Grid 190 Grid failure 1 1 163 11 Lightning destroys infrastructure 273 120 

46 1 Gate Pier 195 Failure of gate pier 1 1 164 1 Earthquake 365 0 

47 23 Res El Sensor 3 210 No Reading 1 1 180 1 Earthquake 365 0 

47 23 Res El Sensor 3 210 No Reading 1 1 181 12 Rodent activity causes short in 

wiring  

365 0 

47 23 Res El Sensor 3 210 No Reading 1 1 182 2 Lack of maintenance 365 0 

47 23 Res El Sensor 3 210 No Reading 1 1 183 9 Aging 365 0 

47 23 Res El Sensor 3 208 Wrong Reading 8 3 184 2 Failed to recalibrate seasonally 365 0 

47 23 Res El Sensor 3 208 Wrong Reading 8 3 185 17 High or low temps result in 

decalibration 

365 0 

37 23 SPOG1Position_L 128 Wrong Reading 8 3 186 5 Ice buildup 59 0 

37 23 SPOG1Position_L 128 Wrong Reading 8 3 189 2 Lack of maintenance 365 0 

37 23 SPOG1Position_L 128 Wrong Reading 8 3 190 1 Earthquake 365 0 

39 23 SPOG2Position_L 134 Wrong Reading 8 3 191 5 Ice buildup causes sensor to 

decalibrate 

59 0 

39 23 SPOG2Position_L 134 Wrong Reading 8 3 192 2 Lack of maintenance 365 0 

39 23 SPOG2Position_L 134 Wrong Reading 8 3 193 1 Earthquake 365 0 

36 23 SPOG1Position_R 131 Wrong Reading 8 3 195 2 Lack of maintenance, sensor 

deteriorates 

365 0 

36 23 SPOG1Position_R 131 Wrong Reading 8 3 196 1 Earthquake 365 0 

36 23 SPOG1Position_R 131 Wrong Reading 8 3 197 12 Rodent activity  365 0 

38 23 SPOG2Position_R 137 Wrong Reading 8 3 198 2 Lack of maintenance 365 0 

38 23 SPOG2Position_R 137 Wrong Reading 8 3 199 1 Earthquake 365 0 

38 23 SPOG2Position_R 137 Wrong Reading 8 3 200 12 Rodent activity  365 0 

31 23 Res El Sensor 2 211 Wrong Reading 8 3 204 2 Failed to recalibrate seasonally 365 0 

31 23 Res El Sensor 2 211 Wrong Reading 8 3 205 17 High or low temps result in 

decalibration 

365 0 

31 23 Res El Sensor 2 213 No Reading 1 1 206 1 Earthquake 365 0 

31 23 Res El Sensor 2 213 No Reading 1 1 207 12 Rodent activity  365 0 
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ReservoirLeve

lID 

ReservoirLevelTy

peID 

ReservoirLevelNam

e 

OperatingStat

eID 

OperatingStateName OperatingStateTy

peID 

ImpactType

ID 

CausalFacto

rID 

CausalFactorTyp

eID 

CausalFactorName MaxDa

te 

MinDa

te 

31 23 Res El Sensor 2 213 No Reading 1 1 208 2 Lack of maintenance 365 0 

31 23 Res El Sensor 2 213 No Reading 1 1 209 9 Aging 365 0 

30 23 Res El Sensor 1 217 Wrong Reading 8 3 210 2 Failed to recalibrate seasonally 365 0 

30 23 Res El Sensor 1 217 Wrong Reading 8 3 211 17 High or low temps result in 

decalibration 

365 0 

30 23 Res El Sensor 1 219 No Reading 1 1 212 1 Earthquake 365 0 

30 23 Res El Sensor 1 219 No Reading 1 1 213 12 Rodent activity  365 0 

30 23 Res El Sensor 1 219 No Reading 1 1 214 2 Lack of maintenance 365 0 

30 23 Res El Sensor 1 219 No Reading 1 1 215 9 Aging 365 0 

45 28 CMS Inflow 

Forecast 

194 Inflow forecasting error 8 3 216 20 Operator fatigue 365 1 

45 28 CMS Inflow 

Forecast 

194 Inflow forecasting error 8 3 217 21 Uncertainty 365 1 

48 29 Site Staff 

Availability 

215 Staff unavailable 6 2 218 22 Weekend or evening 365 1 

48 29 Site Staff 

Availability 

215 Staff unavailable 6 2 219 23 Staff are busy and unable to 

access site 

365 1 
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Table C2: Component-Level database components for Cheakamus System 

ReservoirL

evelID 

ReservoirLeve

lTypeID 

ReservoirLev

elName 

Component

LevelID 

ComponentLev

elTypeID 

ComponentLev

elName 

OperatingS

tateID 

OperatingStateName OperatingStat

eTypeID 

ImpactT

ypeID 

CausalFactor

TypeID 

CausalFactorName Min

Date 

Max

Date 

13 2 Gate 1 26 1 Gate Hoist 1 183 Normal 2 4 25 None 0 365 

13 2 Gate 1 28 2 Skinplate 23 Normal 2 4 25 None 0 365 

13 2 Gate 1 31 5 Gearbox 35 Normal 2 4 25 None 0 365 

13 2 Gate 1 32 10 Motor 36 Normal 2 4 25 None 0 365 

13 2 Gate 1 33 11 Structural 

Supports 

37 Normal 2 4 25 None 0 365 

13 2 Gate 1 34 12 Hoist Gate 

Connection 1 

38 Normal 2 4 25 None 0 365 

13 2 Gate 1 43 16 Thrustor Brake 69 Normal 2 4 25 None 0 365 

13 2 Gate 1 55 10 Backup Motor 165 Normal 2 4 25 None 0 365 

13 2 Gate 1 57 19 Gate 1 Opening 179 Normal 2 4 25 None 0 365 

14 2 Gate 2 16 1 Gate Hoist 2 48 Normal 2 4 25 None 0 365 

14 2 Gate 2 18 2 Skinplate 44 Normal 2 4 25 None 0 365 

14 2 Gate 2 21 5 Gearbox 57 Normal 2 4 25 None 0 365 

14 2 Gate 2 22 10 Motor 58 Normal 2 4 25 None 0 365 

14 2 Gate 2 23 11 Structural 

Supports 

76 Normal 2 4 25 None 0 365 

14 2 Gate 2 24 12 Hoist Gate 

Connection 2 

65 Normal 2 4 25 None 0 365 

14 2 Gate 2 44 16 Thrustor Brake 74 Normal 2 4 25 None 0 365 

14 2 Gate 2 56 10 Backup Motor 167 Normal 2 4 25 None 0 365 

14 2 Gate 2 58 19 Gate 2 Opening 181 Normal 2 4 25 None 0 365 

8 3 Turbine 1 36 13 Head Cover 80 Normal 2 4 25 None 0 365 

8 3 Turbine 1 37 14 Wicket Gates 83 Normal 2 4 25 None 0 365 

8 3 Turbine 1 38 15 Generator 85 Normal 2 4 25 None 0 365 

10 3 Turbine 2 39 13 Head Cover 87 Normal 2 4 25 None 0 365 

10 3 Turbine 2 40 14 Wicket Gates 90 Normal 2 4 25 None 0 365 

10 3 Turbine 2 41 15 Generator 92 Normal 2 4 25 None 0 365 

15 7 Low Level 

Outlet 

46 1 Hoist 146 Normal 2 4 25 None 0 365 

15 7 Low Level 

Outlet 

47 2 Skinplate 148 Normal 2 4 25 None 0 365 
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ReservoirL

evelID 

ReservoirLeve

lTypeID 

ReservoirLev

elName 

Component

LevelID 

ComponentLev

elTypeID 

ComponentLev

elName 

OperatingS

tateID 

OperatingStateName OperatingStat

eTypeID 

ImpactT

ypeID 

CausalFactor

TypeID 

CausalFactorName Min

Date 

Max

Date 

15 7 Low Level 

Outlet 

48 10 Motor 150 Normal 2 4 25 None 0 365 

15 7 Low Level 

Outlet 

49 11 Support 152 Normal 2 4 25 None 0 365 

15 7 Low Level 

Outlet 

50 12 Hoist Gate 

Connection 

155 Normal 2 4 25 None 0 365 

15 7 Low Level 

Outlet 

51 12 Thrustor Brake 157 Normal 2 4 25 None 0 365 

15 7 Low Level 

Outlet 

54 5 Gearbox 160 Normal 2 4 25 None 0 365 

13 2 Gate 1 26 1 Gate Hoist 1 20 Steel yields, hoists fail, gate 

fails closed 

3 1 5 Ice force on gate 1 69 

13 2 Gate 1 26 1 Gate Hoist 1 20 Steel yields, hoists fail, gate 

fails closed 

3 1 3 Debris force on gate 120 274 

14 2 Gate 2 16 1 Gate Hoist 2 94 Steel yields, hoists fail, gate 

fails closed 

3 1 5 Ice force on gate 0 69 

14 2 Gate 2 16 1 Gate Hoist 2 94 Steel yields, hoists fail, gate 

fails closed 

3 1 3 Debris force on gate 120 274 

13 2 Gate 1 28 2 Skinplate 24 Steel yields 4 1 3 Debris force 120 274 

13 2 Gate 1 28 2 Skinplate 24 Steel yields 4 1 2 Lack of maintenance 0 365 

14 2 Gate 2 18 2 Skinplate 95 Steel yields 4 1 3 Debris force on gate 120 274 

14 2 Gate 2 18 2 Skinplate 95 Steel yields 4 1 2 Lack of maintenance 0 365 

13 2 Gate 1 31 5 Gearbox 34 Gearbox stripped 4 1 1 Movement of gears 0 365 

13 2 Gate 1 31 5 Gearbox 34 Gearbox stripped 4 1 2 Lack of maintenance 0 365 

14 2 Gate 2 21 5 Gearbox 96 Gearbox stripped 4 1 1 Movement of gears 0 365 

14 2 Gate 2 21 5 Gearbox 96 Gearbox stripped 4 1 2 Lack of maintenance 0 365 

13 2 Gate 1 26 1 Gate Hoist 1 20 Steel yields, hoists fail, gate 

fails closed 

3 1 8 Both motors engage 

resulting in overforce 

0 365 

13 2 Gate 1 26 1 Gate Hoist 1 20 Steel yields, hoists fail, gate 

fails closed 

3 1 8 Overforce alarm fails 0 365 

14 2 Gate 2 16 1 Gate Hoist 2 94 Steel yields, hoists fail, gate 

fails closed 

3 1 8 Both motors engage 

resulting in overforce 

0 365 

14 2 Gate 2 16 1 Gate Hoist 2 94 Steel yields, hoists fail, gate 

fails closed 

3 1 8 Overforce alarm fails 0 365 

13 2 Gate 1 32 10 Motor 40 Motor Failure 4 1 2 Lack of maintenance 0 365 

13 2 Gate 1 32 10 Motor 40 Motor Failure 4 1 1 Earthquake 0 365 

13 2 Gate 1 32 10 Motor 40 Motor Failure 4 1 9 Old motor 1 364 

13 2 Gate 1 55 10 Backup Motor 166 Motor Failure 4 1 2 Lack of maintenance 0 365 

13 2 Gate 1 55 10 Backup Motor 166 Motor Failure 4 1 1 Earthquake 0 365 

13 2 Gate 1 55 10 Backup Motor 166 Motor Failure 4 1 9 Old motor 0 365 
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ReservoirL

evelID 

ReservoirLeve

lTypeID 

ReservoirLev

elName 

Component

LevelID 

ComponentLev

elTypeID 

ComponentLev

elName 

OperatingS

tateID 

OperatingStateName OperatingStat

eTypeID 

ImpactT

ypeID 

CausalFactor

TypeID 

CausalFactorName Min

Date 

Max

Date 

14 2 Gate 2 22 10 Motor 97 Motor Failure 4 1 2 Lack of maintenance 0 365 

14 2 Gate 2 22 10 Motor 97 Motor Failure 4 1 1 Earthquake 0 365 

14 2 Gate 2 22 10 Motor 97 Motor Failure 4 1 9 Old motor 0 365 

14 2 Gate 2 56 10 Backup Motor 168 Motor Failure 4 1 2 Lack of maintenance 0 365 

14 2 Gate 2 56 10 Backup Motor 168 Motor Failure 4 1 1 Earthquake 0 365 

14 2 Gate 2 56 10 Backup Motor 168 Motor Failure 4 1 9 Old motor 0 365 

13 2 Gate 1 33 11 Structural 

Supports 

41 Supports deform and gate 

collapses 

5 1 1 Earthquake 0 365 

13 2 Gate 1 33 11 Structural 

Supports 

41 Supports deform and gate 

collapses 

5 1 8 Overforce alarm fails 0 365 

14 2 Gate 2 23 11 Structural 

Supports 

98 Supports deform and gate 

collapses 

5 1 1 Earthquake 0 365 

14 2 Gate 2 23 11 Structural 

Supports 

98 Supports deform and gate 

collapses 

5 1 8 Overforce alarm fails 0 365 

13 2 Gate 1 33 11 Structural 

Supports 

42 Supports deform and gate 

becomes immoveable 

4 1 1 Earthquake 0 365 

14 2 Gate 2 23 11 Structural 

Supports 

99 Supports deform and gate 

becomes immoveable 

4 1 1 Earthquake 0 365 

13 2 Gate 1 34 12 Hoist Gate 

Connection 1 

43 Gate connection snaps 3 1 9 Aging 0 365 

14 2 Gate 2 24 12 Hoist Gate 

Connection 2 

100 Gate connection snaps 3 1 9 Aging 0 365 

13 2 Gate 1 43 16 Thrustor Brake 70 Brake fails, gate closes 3 1 9 Aging 0 365 

13 2 Gate 1 43 16 Thrustor Brake 70 Brake fails, gate closes 3 1 8 Feedback failure 0 365 

14 2 Gate 2 44 16 Thrustor Brake 101 Brake fails, gate closes 3 1 9 Aging 0 365 

14 2 Gate 2 44 16 Thrustor Brake 101 Brake fails, gate closes 3 1 8 Feedback failure 0 365 

13 2 Gate 1 57 19 Gate 1 Opening 180 Opening is blocked 2 5 3 Debris accumulates at gate 

opening 

120 274 

14 2 Gate 2 58 19 Gate 2 Opening 182 Opening is blocked 2 5 3 Debris accumulates at gate 

opening 

120 274 

8 3 Turbine 1 36 13 Head Cover 81 Bolt fatigue, head cover failure 5 9 2 Lack of maintenance 0 365 

8 3 Turbine 1 37 14 Wicket Gates 82 Wicket gates fail closed 1 1 2 Lack of maintenance 0 365 

10 3 Turbine 2 39 13 Head Cover 88 Bolt fatigue, head cover failure 5 9 2 Lack of maintenance 0 365 

15 7 Low Level 

Outlet 

48 10 Motor 151 Motor Failure 4 1 2 Lack of maintenance 0 365 

15 7 Low Level 

Outlet 

48 10 Motor 151 Motor Failure 4 1 1 Earthquake 0 365 

15 7 Low Level 

Outlet 

48 10 Motor 151 Motor Failure 4 1 9 Old motor 0 365 

15 7 Low Level 

Outlet 

49 11 Support 184 Supports deform and gate 

collapses 

5 1 1 Earthquake 0 365 
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ReservoirL

evelID 

ReservoirLeve

lTypeID 

ReservoirLev

elName 

Component

LevelID 

ComponentLev

elTypeID 

ComponentLev

elName 

OperatingS

tateID 

OperatingStateName OperatingStat

eTypeID 

ImpactT

ypeID 

CausalFactor

TypeID 

CausalFactorName Min

Date 

Max

Date 

15 7 Low Level 

Outlet 

49 11 Support 184 Supports deform and gate 

collapses 

5 1 8 Feedback failure 0 365 

15 7 Low Level 

Outlet 

49 11 Support 185 Supports deform and gate 

becomes immoveable 

4 1 1 Earthquake 0 365 

15 7 Low Level 

Outlet 

50 12 Hoist Gate 

Connection 

156 Gate connection snaps 3 1 9 Aging 0 365 

15 7 Low Level 

Outlet 

51 12 Thrustor Brake 158 Brake fails, gate closes 3 1 9 Aging 0 365 

15 7 Low Level 

Outlet 

51 12 Thrustor Brake 158 Brake fails, gate closes 3 1 8 Feedback failure 0 365 

15 7 Low Level 

Outlet 

54 5 Gearbox 159 Gearbox stripped 4 1 1 Earthquake 0 365 

15 7 Low Level 

Outlet 

54 5 Gearbox 159 Gearbox stripped 4 1 2 Lack of maintenance 0 365 

15 7 Low Level 

Outlet 

47 2 Skinplate 149 Steel yields 4 1 2 Lack of maintenance 0 365 

15 7 Low Level 

Outlet 

47 2 Skinplate 149 Steel yields 4 1 3 Debris force on gate 0 365 

13 2 Gate 1 26 1 Gate Hoist 1 20 Steel yields, hoists fail, gate 

fails closed 

3 1 2 Lack of maintenance 0 365 

14 2 Gate 2 16 1 Gate Hoist 2 94 Steel yields, hoists fail, gate 

fails closed 

3 1 2 Lack of maintenance 0 365 

15 7 Low Level 

Outlet 

46 1 Hoist 186 Steel yields, hoists fail, gate 

fails closed 

3 1 8 Both motors engage 

resulting in overforce 

0 365 

15 7 Low Level 

Outlet 

46 1 Hoist 186 Steel yields, hoists fail, gate 

fails closed 

3 1 8 Feedback failure 0 365 

15 7 Low Level 

Outlet 

46 1 Hoist 186 Steel yields, hoists fail, gate 

fails closed 

3 1 2 Lack of maintenance 0 365 

15 7 Low Level 

Outlet 

46 1 Hoist 186 Steel yields, hoists fail, gate 

fails closed 

3 1 5 Ice force on gate 0 365 

15 7 Low Level 

Outlet 

46 1 Hoist 186 Steel yields, hoists fail, gate 

fails closed 

3 1 3 Debris force on gate 0 365 

8 3 Turbine 1 38 15 Generator 86 Load Rejection 1 1 2 Lack of maintenance 0 365 

10 3 Turbine 2 41 15 Generator 93 Load Rejection 1 1 2 Lack of maintenance 0 365 

10 3 Turbine 2 40 14 Wicket Gates 216 Wicket gates fail closed 1 1 2 Lack of maintenance 0 365 
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Appendix D: Operating States Database for Simplified System 

Table D1: Reservoir-Level database components for Simplified System 

 

Ind 

Reservoir 

LevelId 

ReservoirLevel

TypeId 

ReservoirLevel 

Name 

Operating 

StateId 
OperatingStateName 

Operating 

StateTypeId 

Impact 

TypeId 
Min Max Avg UnitId 

Causal 

FactorId 

CausalFactor

TypeId 

CausalFactor 

Name 

Max 

Date 

Min

Date 

18_1 18 4 PLC/RTU 139 PLC offline 1 1 1 24 6 2 64 10 
Voltage 

Fluctuation 
365 0 

18_2 18 4 PLC/RTU 139 PLC offline 1 1 1 24 6 2 65 1 Earthquake 365 0 

29_1 29 12 Dam Access 116 
Access dangerous, 

delayed or not possible 
6 2 4 48 12 1 86 14 Traffic 365 0 

29_2 29 12 Dam Access 116 
Access dangerous, 

delayed or not possible 
6 2 4 48 12 1 88 1 Earthquake 365 0 

29_3 29 12 Dam Access 116 
Access dangerous, 

delayed or not possible 
6 2 4 48 12 1 89 16 Forest Fire 273 181 

42_1 42 26 Penstock 178 Penstock rupture 1 9 60 365 90 1 114 1 Earthquake 365 0 

44_1 44 27 Grid 188 Grid failure 1 1 0.04 7 0.167 1 157 7 Wind storm 365 0 

44_2 44 27 Grid 188 Grid failure 1 1 0.04 7 0.167 1 158 16 Forest Fire 273 120 

30_1 30 23 
Reservoir Elevation 

Sensor 1 
217 Wrong Reading 8 3 10 100 25 11 211 17 Temperature 365 0 

30_2 30 23 
Reservoir Elevation 

Sensor 1 
219 No Reading 1 1 0.167 5 1 1 212 1 Earthquake 365 0 

30_3 30 23 
Reservoir Elevation 

Sensor 1 
219 No Reading 1 1 0.167 5 1 1 214 2 

Lack of 

Maintenance 
365 0 

45_1 45 28 
CMS Inflow 

Forecast 
194 Inflow forecasting error 8 3 -3 3 0 8 217 21 Uncertainty 365 1 

48_1 48 29 
Site Staff 

Availability 
215 Staff unavailable 6 2 1 24 4 2 218 22 Timing 365 1 

48_2 48 29 
Site Staff 

Availability 
215 Staff unavailable 6 2 1 24 4 2 219 23 Timing 365 1 

18_3 18 4 PLCRTU 138 Functional 2 4 0 0 0 1 252 25 None 365 0 

29_4 29 12 Dam Access 115 Typical access time 2 2 2 4 2.5 2 266 25 None 365 1 

30_4 30 23 
Reservoir Elevation 

Sensor 1 
218 Reading correct 2 4 0 0 0 4 268 25 None 365 0 

42_2 42 26 Penstock 177 Normal operation 2 4 0 0 0 1 276 25 None 365 0 

44_3 44 27 Grid 187 Normal Operation 2 4 0 0 0 1 277 25 None 365 1 

45_2 45 28 
CMS Inflow 

Forecast 
192 Inflow forecast normal 2 4 0 0 0 11 279 25 None 365 0 

48_3 48 29 
Site Staff 

Availability 
214 Staff available 2 4 0 0 0 1 280 25 None 365 0 

18_4 18 4 PLC/RTU 139 PLC offline 1 1 1 24 6 2 292 11 Lightning 273 120 

30_5 30 23 
Reservoir Elevation 

Sensor 1 
219 No Reading 1 1 0.167 5 1 1 213 12 

Rodent 

Activity 
365 0 

44_4 44 27 Grid 188 Grid failure 1 1 0.04 7 0.16 1 159 11 Lightning 273 120 
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Table D2: Component-Level database components for Simplified System 

Identifier Reservoir

LevelID 

Reservoir

Level 

TypeID 

Reservoir 

Level 

Name 

Component 

LevelID 

Component 

LevelTypeI

D 

Component 

LevelName 

Operating

StateID 

Operating 

StateName 

Operating 

StateType 

ID 

Impact

TypeI

D 

Min Max Avg Causal 

FactorID 

Causal 

Factor 

TypeID 

CausalFactor

Name 

Min

Date 

Max

Date 

836_1 8 3 Turbine 1 36 13 Head Cover 81 Bolt fatigue, 

reservoir 

drained through 

turbine hole 

5 9 365 730 365 117 2 Maintenance 1 365 

838_1 8 3 Turbine 1 38 15 Generator 86 Load Rejection 1 1 0.1 7 0.2

5 

201 2 Maintenance 1 365 

836_2 8 3 Turbine 1 36 13 Head Cover 80 Normal 2 4 0 0 0 246 25 None 1 365 

838_2 8 3 Turbine 1 38 15 Generator 85 Normal 2 4 0 0 0 248 25 None 1 365 

1359_1 13 2 Gate 1 59 19 Gate 

opening 

222 Normal 2 4 0 0 0 281 25 None 1 365 

1359_2 13 2 Gate 1 59 19 Gate 

opening 

223 Gate is blocked 

by debris 

1 5 10 80 20 282 3 Debris 90 334 

1360_1 13 2 Gate 1 60 5 Components 

failing in 

place 

225 Components of 

the gate fail 

causing it to 

remain in place 

4 1 0.5 120 7 283 1 Earthquake 1 365 

1360_2 13 2 Gate 1 60 5 Components 

failing in 

place 

225 Components of 

the gate fail 

causing it to 

remain in place 

4 1 0.5 120 7 284 2 Maintenance 1 365 

1361_1 13 2 Gate 1 61 11 Components 

failing open 

226 Normal 2 4 0 0 0 285 25 Normal 1 365 

1361_2 13 2 Gate 1 61 11 Components 

failing open 

227 Components of 

the gate 

collapse and 

water is 

released 

5 1 210 730 240 286 1 Earthquake 1 365 

1361_3 13 2 Gate 1 61 11 Components 

failing open 

227 Components of 

the gate 

collapse and 

water is 

released 

5 1 210 730 240 287 8 Feedback 

Failure 

1 365 

1362_1 13 2 Gate 1 62 1 Components 

failing 

closed 

228 Normal 2 4 0 0 0 288 25 Normal 1 365 

1362_2 13 2 Gate 1 62 1 Components 

failing 

closed 

229 Components of 

the gate fail 

causing it to 

close 

3 1 1 120 20 289 9 Aging 1 365 

1362_3 13 2 Gate 1 62 1 Components 

failing 

closed 

229 Components of 

the gate fail 

causing it to 

close 

3 1 1 120 20 290 5 Ice 1 59 

1362_4 13 2 Gate 1 62 1 Components 

failing 

closed 

229 Components of 

the gate fail 

causing it to 

close 

3 1 1 120 20 291 8 Feedback 

Failure 

1 365 

1360_3 13 2 Gate 1 60 5 Components 

failing in 

place 

224 Normal 2 4 0 0 0 294 25 None 1 365 
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Appendix E: Simulation Script Organization and Discussion 

The general description of the steps within the simulation model code is shown in Figure . 

The complete code is presented in Appendix E. The following sub-sections provide 

additional information about the equations used in the simulation model. 

The first section of the code is entitled “1. Initialization”, where required packages are 

imported and data files are read in to be utilized within the code. The simulation model 

requires several supporting files, including input CSV’s containing information such as 

synthetic inflows, fish flow requirements, database data, baseline operating conditions (no 

failure), and rating curves for the spillway. In addition to this, several Python packages 

must be installed prior to running. These are listed below: 

• numpy 

• pandas 

• time 

• datetime  

• sys 

• argparse 

• os 

• random 

Many of the aforementioned packages are available from an open source Anaconda3 

installation at  https://www.anaconda.com/distribution/. Most of the packages can be 

installed easily using conda install in the command prompt. In addition to these packages, 

the sdpy project must also be imported, as well as scenarios.py. These files and all 

necessary input files are available in the electronic appendix in the Dam_Safety_Model 

folder.  

In the initialization section, arguments are also defined that allow the program to be called 

from the command prompt with a user-specified seed number and set the number of 

years/iterations (𝑁𝑌𝑟) to be simulated. The seed number represents the scenario number 

https://www.anaconda.com/distribution/
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and for the simplified system it can vary between 0 and 552,960 (the total number of 

scenarios).  

The following portion of the code is entitled “2. Generating Seeds”. The seed number is 

used to retrieve the scenario operating state identifiers as shown in the example scenario in 

the previous section. These operating state identifiers are used to extract the pertinent 

database information for the scenario of interest and convert the information into Monte-

Carlo parameters for simulation. The “boolop” parameter is used to determine whether a 

seed should be randomized or not. It may be set equal to zero for script testing purposes, 

which will set all randomized components of the code to a single value – start dates are set 

to zero, start years are set sequentially from zero, average values are chosen for impacts, 

and all impacts occur on day 1 of the simulation. If “boolop” is set equal to one, a complete 

Monte-Carlo randomization of the inputs is performed. Starting dates from the inflow 

sequences are randomized using a start day (0-364) and a start year (0 to the number of 

synthetic inflow years simulated) – these can then be used to select the inflows for the 

simulation. The impacts for each operating state are randomized using the triangular 

distribution, with the minimum, maximum and average values as the inputs. Timing of 

impacts is also randomized, with impacts that have the same causal factor occurring on the 

same day except for maintenance and aging issues. The first impact begins on day 1 and 

subsequent impacts can occur on any day between day 1 and day 𝑇𝑚𝑎𝑥. For the case study, 

𝑇𝑚𝑎𝑥 is set equal to the sum of the outage lengths generated for the iteration being 

considered. Truncating the maximum timing allows for the impacts of each operating state 

to be realized and, if possible, recovered from, during the simulation time frame. 𝑇𝑚𝑎𝑥 is 

selected with the goal of increasing the number of “complete iterations”, where all events 

in a scenario both occur and affect one another. This will depend on the system being 

modelled and how flashy the reservoir is. 

It is important to note that two runs were simulated for the case study (see details in Section 

4.5.2). Some of the differences between functions within the two runs are also described 

throughout the remaining text in this section. 
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The next section of the simulation code is entitled “3. Initializing Supporting Functions 

and Arrays” sets up functions and arrays to be utilized within the simulation model. The 

supporting functions are not directly part of the system dynamics model but may be called 

by it many times during the simulation. The supporting functions are optimized, if 

 

Figure E1: Simulation model process steps 
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possible, using “jit” – a “just-in-time” compiler that optimizes their performance. This 

ensures these functions, which are called many times in a given simulation, are executed 

as quickly as possible. The functions include: 

• Stage-storage curve (SSC) which determines reservoir elevation El from storage S 

as in Equation 25, and it’s reverse (SSCRev) which finds the roots of Equation 25 

to determine storage from elevation. These functions are located at line 724 and 

731 of the code at the end of this Appendix. 

𝐸𝑙 = −1.1201𝑒 − 05 𝑆2  +  0.032473 𝑆 +  364.6572 (𝐸. 1) 

• Stage-discharge curve for the free overflow sections (OTC), which is calculated 

using Equation 26, but is manipulated in the base case by increasing the spillway 

crest elevation by 2m and multiplying the result by 0.3 to represent a scaled down 

capacity of the free overflow structures in the base case. This was done to induce a 

larger number of dam failures for the proof-of-concept, since the spillway capacity 

of the real Cheakamus Dam is generally sufficient enough to prevent major 

consequences in even the most extreme scenarios. The code representing the two 

different overtopping curves for the base case and the dam safety improved case 

can be found on lines 734 and 2052, respectively, in the code at the end of this 

Appendix.  

𝑄𝑂𝑇 = −35.75 𝐸𝑙3 +  40896.27 𝐸𝑙2  − 15593240.1 𝐸𝑙 +  1981715583.1 (𝐸. 2) 

• Maximum flow calculator for the gate (SPOGMaxFlow), which follows the 

piecewise Equation __ (see line 763 of the code at the end of this Appendix). The 

maximum flow through the gate is a function of the reservoir level 𝑅𝑆𝐸 and the 

gate availability 𝑎𝑣, and was calculated in excel from the combined rating curve 

for two Cheakamus gates. 
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𝑆𝑃𝑂𝐺𝑄𝑀𝐴𝑋(𝑅𝑆𝐸, 𝑎𝑣 = 1)

=

{
  
 

  
 
0                                                                                              𝑖𝑓 𝑅𝑆𝐸 < 367.28

19.1(𝑅𝑆𝐸) − 7011.7                                         𝑖𝑓 367.28 ≤ 𝑅𝑆𝐸 < 367.5

37.3(𝑅𝑆𝐸) − 13715.8                                        𝑖𝑓  367.5 ≤ 𝑅𝑆𝐸 < 367.8

49.7(𝑅𝑆𝐸) − 18252                                               𝑖𝑓  367.8 ≤ 𝑅𝑆𝐸 < 369

2.15(𝑅𝑆𝐸)2 − 1496.34(𝑅𝑆𝐸) + 258875.4      𝑖𝑓  369 ≤ 𝑅𝑆𝐸 < 381.6
861.1 + 728.9                                                                         𝑖𝑓 𝑅𝑆𝐸 ≥ 381.6

 

𝑆𝑃𝑂𝐺𝑄𝑀𝐴𝑋(𝑅𝑆𝐸, 𝑎𝑣 = 0) = 0                                                                (𝐸. 3)  

• Maximum flow calculator for the turbine (fncTurbineMaxFlow), as per Equation 

E.4. This function computes the maximum flow through the turbine for a given 

reservoir level, and was calculated from the combined gross head-power-flow 

curves from the two Cheakamus units (see line 748 in the code at the end of this 

Appendix.).  

𝑇𝑄𝑀𝐴𝑋(𝑅𝑆𝐸, 𝑎𝑣 = 1)

=

{
 

 
0                                                                                               𝑖𝑓 𝑅𝑆𝐸 < 363.05

13.98(𝑅𝑆𝐸) − 5075.44                                   𝑖𝑓  363.05 ≤ 𝑅𝑆𝐸 < 365.05

18.02(𝑅𝑆𝐸) − 6551.46                                   𝑖𝑓  365.05 ≤ 𝑅𝑆𝐸 < 367.05
65                                                                                             𝑖𝑓 𝑅𝑆𝐸 ≥ 367.05

 

𝑇𝑄𝑀𝐴𝑋(𝑅𝑆𝐸, 𝑎𝑣 = 0) = 0                                                                              (𝐸. 4)  

 

• A function to convert the spillway flow and reservoir elevation to gate instructions 

(GateInstr at line 782 in the code at the end of this Appendix) and a function to 

convert gate position and reservoir level to gate flow (GateFlowClac at line 828). 

These functions utilize a simple two-dimensional interpolation from the combined 

spillway gate rating curves provided by BC Hydro. The relationships between the 

maximum gate opening and discharge are shown in Appendix A. 
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• A function which finds the value of 𝑦0 by linear interpolation using the two closest 

point pairs (𝑥1, 𝑦1), (𝑥2, 𝑦2) to a given 𝑥0, following Equation E.5 (interpolate at 

line 814 in the code at the end of this Appendix): 

𝑦0 = 𝑦1 + (𝑥0 − 𝑥1)
𝑦2 − 𝑦1
𝑥2 − 𝑥1

 (𝐸. 5) 

• A function to calculate the date reference number that is used to determine the time 

of year for reservoir level limits and minimum flow releases (dayrefs at line 923) – 

this simply uses the startday (0 to 365) and the time step to determine the day of 

the year. 

• A function to get the minimum flow release for the upcoming days (getfishflow) 

which simply inserts the day-reference index into the fish flow array (line 902 in 

the code at the end of this Appendix) 

• A function to generate an availability array for a component based on the total 

outage time (availarray at line 1033) – this simply converts an interger into an array 

of zeros and ones that represent whether a component is available or unavailable 

over a 14 day window from the current day – for example an input value of 8 would 

mean the component is unavailable for the next 8 days, and would produce an array 

[0,0,0,0,0,0,0,0,1,1,1,1,1,1]. 

• The main operations planning algorithm, which takes several key inputs (inflow 

forecast, reservoir elevation, day references, component availabilities and reservoir 

elevation limits) and determines the corresponding operating instructions for the 

system to ensure minimum flow releases are met and reservoir level restrictions are 

adhered to if possible (OpsPlan at line 960 in the code at the end of this Appendix). 

This follows a similar if-then-else type algorithm as presented in Figure 3-14, but 

with power flow releases added – see Figure . The algorithm begins by assuming 

the minimum fish flow is released and the remainder of the inflow is passed through 

the powerhouse (up to the maximum) for a 14-day window from the current date. 

The resultant reservoir levels are then checked, adjusted and re-checked to ensure 
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the operating instructions result in reservoir levels that are within the specified 

normal maximum (NMax) and minimum (NMin). To ensure enough water is 

available for the winter low-flow period, the normal minimum reservoir level was 

adjusted to El. 370 m for the months of November and December for the purposes 

of the modelling. 

 

Figure E2: Operations Planning algorithm for simulation model 
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• A function to retrieve the normal operating maximum and minimum reservoir 

elevation corresponding to the reference day (GetNMax at line 1076 in the code at 

the end of this Appendix) – this simply inserts the day reference (day of the year) 

into an array containing the normal maximum and minimum levels for each day of 

the year. 

The next section of code (4. Defining sdpy functions) contains the details of the system 

dynamics model, broken down into sectors. The functions for the hydraulic system state 

are shown in 4.1, the sensors in 4.2, the disturbances in 4.3, operations in 4.4, gate actuators 

in 4.5 and turbine actuators in 4.6. The output_saving function (line 1565) is used to store 

information from the model in memory for later post-processing. The model sectors are 

described in sub-sections 4.4.1.1 to 4.4.1.6. 

Section 5 of the code (line 2005) is where the base case model is run. This section utilizes 

the features of the sdpy package to run the simulation for each of the iterations. Stocks must 

be re-set to their initial value following each iteration. Section 6 (line 2035) contains some 

re-initiation of key functions to reflect the changes in the dam safety improved case and 

also saves the results from the first run (base case) under different names for post-

processing. Section 6 then re-runs the model with the same inputs as the base case for the 

dam safety improved case. 

Section 7 of the script (line 2220) contains post-processing of the data, which involves the 

analysis of event dependency and saving of pertinent data from the scenario into “.npz” 

file formats. This format represents a compressed dictionary of arrays that are easily loaded 

into python for future analysis and plotting. 
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1. """  
2. SIMULATION SCRIPT  
3.   
4. This code contains the necessary script to run the simplified system dynamics mo

del,  
5. with seed inputs as defined by the user, as well as NYr input to set the number 

of   
6. iterations. Flush_period argument should remain at 1.   
7.   
8. @author: Leanna King  
9. """   
10.    
11. """  
12. 1. INITIALIZATION  
13.   
14. -Importing necessary directories  
15. -Reading and organizing input files  
16.   
17. """   
18.    
19. import time   
20. t0=time.time()   
21. from numba import njit, jit   
22. #from scipy.interpolate import interp2d   
23. #from scipy.interpolate import interp1d   
24. import numpy as np   
25. import pandas as pd   
26. from datetime import datetime   
27. import sdpy   
28. import sys   
29. import argparse   
30. from scenarios import all_scenarios   
31. import os   
32.    
33.    
34. def datafile_path(filename):   
35.     return os.path.join(os.path.dirname(sys.argv[0]), 'data', filename)   
36.    
37. def RangeConstrainedParam(name, minvalue, maxvalue):   
38.     def parse(s):   
39.         n=int(s)   
40.         if n < minvalue or n > maxvalue:   
41.             raise ValueError()   
42.         return n   
43.     parse.__name__ = name   
44.     return parse   
45.    
46. maxseednum = len(all_scenarios)-1   
47. parser = argparse.ArgumentParser(description='')   
48. parser.add_argument('--NYr',   
49.                     type=RangeConstrainedParam('NYr', 1, 10000),   
50.                     default=5)   
51. parser.add_argument('--seednum',   
52.                     type=RangeConstrainedParam('seednum', 0, maxseednum),   
53.                     default=301476) #813840 represents normal conditions   
54. parser.add_argument('--flush_period',   
55.                     type=RangeConstrainedParam('flush_period', 1, 10000),   
56.                     default=1)   
57. args = parser.parse_args()   
58.    
59.    
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60. model = sdpy.Sdmodel()   
61.    
62. NYr=args.NYr   
63. seednum = args.seednum   
64.    
65. year=0   
66. boolop=1 #Set to 1 for randomized, zero for non-randomized.   
67. seedgen=1 #Set to 1 to generate seed, set to zero to read a previously generated

 seed file.   
68.    
69.    
70. NormalRSEs=pd.read_csv(datafile_path(r'BaselineRSEs.csv'), header=0).values   
71. NormalTBFs=pd.read_csv(datafile_path(r'BaselineTBFs.csv'), header=0).values   
72. NormalSPOGs=pd.read_csv(datafile_path(r'BaselineSPOGs.csv'), header=0).values   
73. NormalOTs=pd.read_csv(datafile_path(r'BaselineOTs.csv'), header=0).values   
74. NormalTSs=NormalSPOGs   
75.    
76. #Inflow timeseries - SYNTHETIC - 10,374 years   
77. Inflow_year=np.loadtxt(datafile_path("SyntheticInflow_Years.txt"), delimiter=","

)   
78. InflowJan1Start=np.zeros((365*2,10373))   
79. for yr in range(10373):   
80.     InflowJan1Start[0:365, yr]=Inflow_year[:,yr]   
81.     InflowJan1Start[365:730,yr]=Inflow_year[:,yr+1]   
82.    
83.    
84. """  
85. 2. GENERATING SEEDS  
86.   
87. -The seeds set the randomized parameters for each NYr using a Monte-

Carlo framework  
88. -Seeds can be loaded from a previous output file if seedgen=0  
89. -Or, create a seed from the seed number if seedgen=1  
90. """   
91.    
92. ScenarioRL=datafile_path("S_RLAll-Inds-d.csv")   
93. ScenarioCL=datafile_path("S_CLAll-Inds-d.csv")   
94.    
95. #print("Seednum: "+str(seednum))   
96.    
97. deltatmax=40 #set this based on system, or make it variable depending on number 

of adverse OS's   
98.    
99. if seedgen==0:   
100.     Seeds=np.load(str("Outputs-"+str(seednum)+"-e.npz"))   
101.    
102. if seedgen==1:   
103.     import time   
104.     import random   
105.    
106.     #Defining dictionaries   
107.     #Reservoir Level components   
108.     RLev={13: "G",   
109.              8: "T",   
110.              18: "PLR",   
111.              29: "ACC",   
112.              42: "PN",   
113.              44: "GD",   
114.              30: "SN",   
115.              48: "STF",   
116.              45: "IF"   
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117.             }   
118.    
119.     #Impact Types   
120.     Impacts={1: "o",   
121.              2: "d",   
122.              3: "e",   
123.              5: "bl",   
124.              4: "n",   
125.              9: "ur"   
126.             }   
127.    
128.     #OS Types   
129.     OSTypes={1: "f",   
130.              2: "n",   
131.              3: "fc",   
132.              4: "fip",   
133.              5: "c",   
134.              6: "d",   
135.              8: "e"   
136.             }   
137.    
138.     #Component level components   
139.     CLType={13: "HC",   
140.             15: "GEN",   
141.             19: "GO",   
142.             5: "FIP",   
143.             11: "FO",   
144.             1: "FC",   
145.           }   
146.    
147.     CFType={1: "eq",   
148.             2: "mt",   
149.             3: "deb",   
150.             4: "ra",   
151.             5: "ice",   
152.             7: "wnd",   
153.             8: "fb",   
154.             9: "age",   
155.             10: "vf",   
156.             11: "ltg",   
157.             12: "rat",   
158.             13: "dsg",   
159.             14: "trf",   
160.             15: "wsh",   
161.             16: "fir",   
162.             17: "tem",   
163.             18: "wha",   
164.             20: "ofa",   
165.             21: "unc",   
166.             22: "tim",   
167.             23: "emr",   
168.             25: "non",   
169.             }   
170.    
171.     CFDates={1: [0,365],   
172.              2: [0,365],   
173.              3: [90,334],   
174.              4: [0,365],   
175.              5: [0, 60],   
176.              7: [0,365],   
177.              8: [0,365],   
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178.              9: [0,365],   
179.              10: [0,365],   
180.              11: [90, 334],   
181.              12: [0,365],   
182.              13: [0,365],   
183.              14: [0,365],   
184.              15: [0,365],   
185.              16: [151, 304],   
186.              17: [0,365],   
187.              18: [0,365],   
188.              20: [0,365],   
189.              21: [0,365],   
190.              22: [0,365],   
191.              23: [0,365],   
192.              25: [0,365],   
193.             }   
194. #    @jit   
195.     def gen_avg(expected_avg, n, a, b, boolop):   
196.         if boolop==1: #random   
197.             out=np.random.uniform(a, b, n)   
198.         if boolop==0: #nonrandom   
199.             out=np.ones(n)*expected_avg   
200.         return out   
201. #    @jit   
202.     def dayrefs(Startdays, timestep, NYr):   
203.         daynum=Startdays+int(timestep) #STARTDAYS CONTAINS 1-

365 STARTING DAY REF FOR EACH INFLOW SEQUENCE   
204.         dayref365=np.zeros((365,NYr))   
205.         dayref365[0, :]=daynum   
206.         for t in range(364):  #Converts vensim date into numbers 1-

365 to represent dates in the model   
207.             for yr in range(NYr):   
208.                 if dayref365[t, yr]+1<365:   
209.                     dayref365[t+1, yr]=dayref365[t, yr]+1   
210.                 else: dayref365[t+1, yr]=0   
211.         return dayref365   
212. #    @jit   
213.     def randintswitch(low, high, NYears ,boolop):   
214.         if boolop==1: #randomly sets int between low and high   
215.             out=np.zeros(NYears)   
216.             for i in range(NYears):   
217.                 out[i]=np.random.randint(low, high[i], 1)   
218.             return out   
219.         if boolop==0: #defaults to low if non-randomized   
220.             return np.ones(NYears)*low   
221. #    @jit   
222.     def randintswitch2(low, high, NYears ,boolop):   
223.         if boolop==1: #randomly sets int between low and high   
224.             return np.random.randint(low, high, NYears)   
225.         if boolop==0: #defaults to low if non-randomized   
226.             return np.ones(NYears)*low   
227. #    @jit   
228.     def randintswitchCF(mindate, maxdate, refdates, lowest, highest,  bo

olop):   
229.         if boolop==1: #randomly sets int between low and high   
230.             if mindate!=0 or maxdate!=365:   
231.                 clipped=np.clip(refdates, mindate, maxdate)   
232.                 dates=np.random.randint(np.min(clipped), np.max(clipped)

)   
233.                 return np.where(refdates==dates)[0]   
234.             else:   
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235.                 return np.random.randint(lowest, highest)   
236.         if boolop==0: #defaults to low if non-randomized   
237.             return lowest   
238. #    @jit   
239.     def randswitch(mini, avg, maxi, Nyears, boolop):   
240.         if boolop==1:   
241.             return np.random.triangular(mini, avg, maxi, Nyears) #return

s triangular distributed variables   
242.         if boolop==0:   
243.             return np.ones(Nyears)*avg   
244.    
245.     name1=ScenarioRL   
246.     name2=ScenarioCL   
247.    
248.     S_RL=pd.read_csv(name1)   
249.     S_RL=S_RL.set_index("NewInd")   
250.     S_CL=pd.read_csv(name2)   
251.     S_CL=S_CL.set_index("NewInd") #setting index to the formatted OS IDs

   
252.    
253.     scenar = all_scenarios[seednum]   
254.     ScenarioRL=S_RL.filter(items=scenar[0:7], axis=0)   
255.     ScenarioCL=S_CL.filter(items=scenar[7:13], axis=0)   
256.    
257.    
258.     RLInds=ScenarioRL.index.tolist()   
259.     CLInds=ScenarioCL.index.tolist()   
260.     SD=[]   
261.    
262.     #Use dictonary to get scenario names   
263.     for c in range(np.shape(ScenarioRL["ReservoirLevelId"])[0]):   
264.         RLID=RLev[ScenarioRL.loc[RLInds[c]]["ReservoirLevelId"]]   
265.         IMP=Impacts[ScenarioRL.loc[RLInds[c]]["ImpactTypeId"]]   
266.         OS=OSTypes[ScenarioRL.loc[RLInds[c]]["OperatingStateTypeId"]]   
267.         CF=CFType[ScenarioRL.loc[RLInds[c]]["CausalFactorTypeId"]]   
268.         SD.append(str(RLID + "-" + OS + IMP + "-" + CF + "_"))   
269.    
270.     for c in range(np.shape(ScenarioCL["ReservoirLevelId"])[0]):   
271.         RLID=RLev[ScenarioCL.loc[CLInds[c]]["ReservoirLevelId"]]   
272.         CLID=CLType[ScenarioCL.loc[CLInds[c]]["ComponentLevelTypeId"]]   
273.         IMP=Impacts[ScenarioCL.loc[CLInds[c]]["ImpactTypeId"]]   
274.         OS=OSTypes[ScenarioCL.loc[CLInds[c]]["OperatingStateTypeId"]]   
275.         CF=CFType[ScenarioCL.loc[CLInds[c]]["CausalFactorTypeId"]]   
276.         SD.append(str(RLID +"-"+ CLID + "-" + OS + IMP + "-

" + CF + "_"))   
277.    
278.     #omitting normal conditions   
279.     out=[i for i in SD if not ('-nn' in i)]   
280.    
281.     #Formatting as one long string explaining what's happening in scenar

io   
282.     ScenarioDescriptor="".join(out)   
283.    
284.     #SET RANDOM START DATES FOR SIMULATION   
285.     #Between May 1 - Sept 30 thunderstorm season   
286.     possible_starts = [ (x, y) for x in range( 0,364 ) for y in range( 0

, 9999 ) ]   
287.     if boolop == 1:   
288.         Starts = random.sample( possible_starts, NYr )   
289.     if boolop == 0:   
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290.         Starts = possible_starts[ 0 : NYr ] #just takes the first bunch 
if non-randomized   

291.    
292.     Startdays=np.zeros(NYr)   
293.     Startyears=np.zeros(NYr)   
294.     for i in range(NYr):   
295.         Startdays[i]=Starts[i][0]   
296.         Startyears[i]=Starts[i][1]   
297.    
298.     refdays=dayrefs(Startdays, 0, NYr) #returns 365xNYr array containing

 reference dates from 1-365   
299.    
300.     #Determine unique causal factors for timing   
301.     cfs=[]   
302.     ScenarioRL2=ScenarioRL[ScenarioRL["ReservoirLevelId"]!=29]   
303.     ScenarioRL3=ScenarioRL2[ScenarioRL2["ReservoirLevelId"]!=48]   
304.     cfs.append(ScenarioRL3["CausalFactorTypeId"])   
305.     #remove site access and staffing delays from cf list since they are 

implemented differently   
306.     cfs.append(ScenarioCL["CausalFactorTypeId"])   
307.    
308.     CFS=np.zeros(int(np.size(cfs[0]))+ int(np.size(cfs[1])))   
309.     for i in range(len(cfs[0])):   
310.         CFS[i]=cfs[0][i]   
311.     for i in range(len(cfs[1])):   
312.         CFS[i+np.size(cfs[0])]=cfs[1][i]   
313.     uniqueCFs=np.unique(CFS)   
314.     uniqueCFs=np.setdiff1d(uniqueCFs,[25])   
315.    
316.     impacttimes=np.zeros((np.size(uniqueCFs), 2,NYr)) #CF, Impact Time, 

Year   
317.     for i in range(NYr):   
318.         if boolop==1:   
319.             random.shuffle(uniqueCFs) #does not shuffle if boolop=0 (non

 randomized)   
320.         impacttimes[:, 0,i]=uniqueCFs   #This is the order of occurrence

 of the causal factor impacts for the simulation   
321.         for j in range(np.size(uniqueCFs)):   
322.             impacttimes[j, 1, i]=randintswitchCF(CFDates[uniqueCFs[j]][0

],CFDates[uniqueCFs[j]][1], refdays[:,i], 1, deltatmax, boolop=boolop) #Sets ran
dom times for subsequent disturbances within 6 months of original   

323.         if np.size(uniqueCFs)>0:   
324.             impacttimes[0,1,i]=1 #set all first disturbances to day 1   
325.     #now make a dataframe with start times for each CF   
326.     imptimessorted=np.zeros((np.size(uniqueCFs), 2,NYr))   
327.     for i in range(NYr):   
328.         imptime=impacttimes[:,:,i]   
329.         imptimessorted[:,:,i]=imptime[imptime[:,0].argsort()]   
330.    
331.    
332.             #Debris on gate opening. Set reduced gate capacity   
333.     ReducedCapacities=1+np.zeros(( NYr)) #default no blockage   
334.             #one for each gate and inflow (can randomize degree of block

age b/w min and max)   
335.     AllDebris=ScenarioCL[ScenarioCL["ImpactTypeId"]==5]   
336.     AllDebris=AllDebris.reset_index(drop=True)   
337.     for c in range(np.shape(AllDebris["ReservoirLevelId"])[0]):   
338.                 cavg=1.-(AllDebris["Avg"][c]/100.)   
339.                 cmin=1.-(AllDebris["Min"][c]/100.)   
340.                 cmax=1.-(AllDebris["Max"][c]/100.)   
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341.                 ReducedCapacities=gen_avg(cavg, NYr, cmin, cmax, boolop)
   

342.    
343.     Day1Used_MtnAge=np.zeros((2,NYr))   
344.    
345.     #Organize outages by component   
346.     GateOutagesAll=np.zeros((3, NYr)) #FC, FO, FIP   
347.     GateCollapses=np.zeros((1,NYr))   
348.     Gdeltat=np.zeros((3, NYr))   
349.     SPOG1OutagesCL=ScenarioCL[(ScenarioCL["ImpactTypeId"]==1) & (Scenari

oCL["ReservoirLevelId"]==13)]   
350.     SPOG1OutagesCL=SPOG1OutagesCL.reset_index()   
351.     for c in range (np.shape(SPOG1OutagesCL["ReservoirLevelId"])[0]):   
352.    
353.         if SPOG1OutagesCL["ComponentLevelTypeId"][c]==1: #Fail closed   
354.             GateOutagesAll[0,:]=randswitch(SPOG1OutagesCL["Min"][c], SPO

G1OutagesCL["Avg"][c], SPOG1OutagesCL["Max"][c], NYr, boolop)   
355.    
356.    
357.    
358.         if SPOG1OutagesCL["ComponentLevelTypeId"][c]==11: #Fail open/col

lapse   
359.             GateOutagesAll[1,:]=randswitch(SPOG1OutagesCL["Min"][c], SPO

G1OutagesCL["Avg"][c], SPOG1OutagesCL["Max"][c], NYr, boolop)   
360.             if SPOG1OutagesCL["OperatingStateTypeId"][c]==5:   
361.                 GateCollapses[0,:]=1+np.zeros(NYr)   
362.    
363.    
364.         if SPOG1OutagesCL["ComponentLevelTypeId"][c]==5: #Fail in place 

  
365.             GateOutagesAll[2,:]=randswitch(SPOG1OutagesCL["Min"][c], SPO

G1OutagesCL["Avg"][c], SPOG1OutagesCL["Max"][c], NYr, boolop)   
366.    
367.    
368.    
369.     TurbineOutagesAll=np.zeros((2, NYr)) #HC, GEN   
370.     Tdeltat=np.zeros((2,NYr))   
371.     TB1OutagesCL=(ScenarioCL[ScenarioCL["ReservoirLevelId"]==8]) #filter

 to turbine only   
372.     TB1OutagesCL=(TB1OutagesCL[TB1OutagesCL["OperatingStateTypeId"]!=2])

 #omit normal conditions   
373.     TB1OutagesCL=TB1OutagesCL.reset_index(drop=True)   
374.     for c in range (np.shape(TB1OutagesCL["ReservoirLevelId"])[0]):   
375.         if TB1OutagesCL["ComponentLevelTypeId"][c]==13: #Head Cover HC R

ESULTS IN UNCONTROLLED RELEASE   
376.             TurbineOutagesAll[0,:]=randswitch(TB1OutagesCL["Min"][c],TB1

OutagesCL["Avg"][c], TB1OutagesCL["Max"][c], NYr, boolop)   
377.    
378.         if TB1OutagesCL["ComponentLevelTypeId"][c]==15: #Generator   
379.             TurbineOutagesAll[1,:]=randswitch(TB1OutagesCL["Min"][c],TB1

OutagesCL["Avg"][c], TB1OutagesCL["Max"][c], NYr, boolop)   
380.             ind=int(np.where(imptimessorted[:,0,1]==TB1OutagesCL["Causal

FactorTypeId"][c])[0])   
381.    
382.    
383.     AllOutagesRL=(ScenarioRL[ScenarioRL["ImpactTypeId"].isin([1,9])])   
384.     AllOutagesRL=AllOutagesRL.reset_index(drop=True)   
385.     ScenarioRL=ScenarioRL.reset_index(drop=True)   
386.     AllErrors=ScenarioRL[ScenarioRL["ImpactTypeId"]==3] #Errors to senso

rs and Inflow Forecast   
387.     AllErrors=AllErrors.reset_index(drop=True)   
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388.    
389.     OCOutages=np.zeros((3,NYr))   
390.     #PLCRTU,  Penstock, Grid   
391.     SOutages=np.zeros(NYr)   
392.     #Res El Sensor 1   
393.    
394.     OCdeltat=np.zeros((3,NYr))   
395.     Sdeltat=np.zeros(NYr)   
396.     for c in range (np.shape(AllOutagesRL["ReservoirLevelId"])[0]):   
397.     #Other components   
398.         if AllOutagesRL["ReservoirLevelId"][c]==18: #Dam PLC failure HOU

RS   
399.             OCOutages[0, :]=randswitch(AllOutagesRL["Min"][c], AllOutage

sRL["Avg"][c], AllOutagesRL["Max"][c], NYr, boolop)   
400.    
401.    
402.         if AllOutagesRL["ReservoirLevelId"][c]==42: #Penstock   
403.             OCOutages[1,:]=randswitch(AllOutagesRL["Min"][c], AllOutages

RL["Avg"][c], AllOutagesRL["Max"][c], NYr, boolop)   
404.    
405.         if AllOutagesRL["ReservoirLevelId"][c]==44: #CMS GRID   
406.             OCOutages[2,:]=randswitch(AllOutagesRL["Min"][c], AllOutages

RL["Avg"][c], AllOutagesRL["Max"][c], NYr, boolop)   
407.    
408.     #Sensors   
409.         if AllOutagesRL["ReservoirLevelId"][c]==30: #RE Sensor 1   
410.             SOutages=randswitch(AllOutagesRL["Min"][c], AllOutagesRL["Av

g"][c], AllOutagesRL["Max"][c], NYr, boolop)   
411.    
412.    
413.    
414.     SErrors=np.zeros(NYr)   
415.     SErrorDeltat=np.zeros(NYr)   
416.     SErrorDuration=randintswitch2(1, 10, NYr, boolop) #randomly setting 

error duration between 1 and 10 days   
417.     IFErrorDuration=randintswitch2(1, 10, NYr, boolop)   
418.     IFErrorDeltat=np.zeros(NYr) #randomly setting error duration between

 1 and 10 days   
419.    
420.     for c in range (np.shape(AllErrors["ReservoirLevelId"])[0]):   
421.     #Other components   
422.         if AllErrors["ReservoirLevelId"][c]==30: #Res El Sensor 1   
423.             SErrors=randswitch(AllErrors["Min"][c], AllErrors["Avg"][c],

 AllErrors["Max"][c], NYr, boolop)   
424.    
425.         if AllErrors["ReservoirLevelId"][c]==45: #Inflow forecast error 

  
426.             ind=int(np.where(imptimessorted[:,0,1]==AllErrors["CausalFac

torTypeId"][c])[0])   
427.             IFErrorDeltat=imptimessorted[ind,1,:]   
428.    
429.    
430.    
431.     DelayAccess=np.zeros((2, NYr))   
432.     DelayStaff=np.zeros(NYr)   
433.     AllDelays=ScenarioRL[ScenarioRL["ImpactTypeId"]==2]   
434.     AllDelays=AllDelays.reset_index(drop=True)   
435.     for c in range (np.shape(AllDelays["ReservoirLevelId"])[0]):   
436.     #Other components   
437.         if AllDelays["ReservoirLevelId"][c]==29: #Dam Access   
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438.             DelayAccess[0, :]=randswitch(AllDelays["Min"][c], AllDelays[
"Avg"][c], AllDelays["Max"][c], NYr, boolop)   

439.    
440.         if AllDelays["ReservoirLevelId"][c]==28: #Powerhouse Access   
441.             DelayAccess[1, :]=randswitch(AllDelays["Min"][c], AllDelays[

"Avg"][c], AllDelays["Max"][c], NYr, boolop)   
442.    
443.         if AllDelays["ReservoirLevelId"][c]==48: #Powerhouse Access   
444.             DelayStaff[:]=randswitch(AllDelays["Min"][c], AllDelays["Avg

"][c], AllDelays["Max"][c], NYr, boolop)   
445.    
446.    
447.     """  
448.     NOW DETERMINE MAX IMPACT INITIATION TIME BASED ON TIME TO REPAIR FOR

 COMPONENTS THAT CAUSE A LOSS IN CAPACITY  
449.     """   
450.     #figure out length of time components are out for...   
451.     deltatmax=GateOutagesAll[0,:] + GateOutagesAll[1,:] + GateOutagesAll

[2,:] + TurbineOutagesAll[1,:] + TurbineOutagesAll[0,:] + OCOutages[0,:] + OCOut
ages[1,:]+ OCOutages[2,:] + SErrorDuration + SErrors   

452.     deltatmax=deltatmax*0.8  #somewhat arbitrary. Can experiment and sel
ect to ensure enough data points are collected for each scenario   

453.     deltatmax=deltatmax.clip(4, 180)   
454.    
455.    
456.     """  
457.     NOW THAT WE HAVE SET DELTATMAX, WE CAN SET THE IMPACT TIMES  
458.     """   
459.    
460.     for c in range (np.shape(SPOG1OutagesCL["ReservoirLevelId"])[0]):   
461.    
462.         if SPOG1OutagesCL["ComponentLevelTypeId"][c]==1: #Fail closed   
463.             ind=int(np.where(imptimessorted[:,0,1]==SPOG1OutagesCL["Caus

alFactorTypeId"][c])[0])   
464.             Gdeltat[0,:]=imptimessorted[ind,1,:]   
465.             if imptimessorted[ind,0,0]==2:  #mtnce   
466.                 for y in range(NYr):   
467.                     if imptimessorted[ind,1,y]>1:   
468.                         Gdeltat[0,y]=randintswitch(0, deltatmax, 1, bool

op)   
469.                     else:   
470.                         if Day1Used_MtnAge[0,y]==1:   
471.                             Gdeltat[0,y]=randintswitch(0, deltatmax, 1, 

boolop) #set all mtnce events randomly except the first occurrence of a day 1 mt
nce failure   

472.                         else:   
473.                             Gdeltat[0,y]=1   
474.                             Day1Used_MtnAge[0,y]=1   
475.    
476.             if imptimessorted[ind,0,0]==9:  #aging   
477.                 for y in range(NYr):   
478.                     if imptimessorted[ind,1,y]>1:   
479.                         Gdeltat[0,y]=randintswitch(0, deltatmax, 1, bool

op) #set all aging events randomly except the first occurrence of a day 1 age fa
ilure   

480.                     else:   
481.                         if Day1Used_MtnAge[1,y]==1:   
482.                             Gdeltat[0,y]=randintswitch(0, deltatmax, 1, 

boolop)   
483.                         else:   
484.                             Gdeltat[0,y]=1   
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485.                             Day1Used_MtnAge[1,y]=1   
486.    
487.    
488.    
489.         if SPOG1OutagesCL["ComponentLevelTypeId"][c]==11: #Fail open/col

lapse   
490.             ind=int(np.where(imptimessorted[:,0,1]==SPOG1OutagesCL["Caus

alFactorTypeId"][c])[0])   
491.             Gdeltat[1,:]=imptimessorted[ind,1,:]   
492.             if SPOG1OutagesCL["OperatingStateTypeId"][c]==5:   
493.                 GateCollapses[0,:]=1+np.zeros(NYr)   
494.             if imptimessorted[ind,0,0]==2:  #mtnce   
495.                 for y in range(NYr):   
496.                     if imptimessorted[ind,1,y]>1:   
497.                         Gdeltat[1,y]=randintswitch(0, deltatmax, 1, bool

op)   
498.                     else:   
499.                         if Day1Used_MtnAge[0,y]==1:   
500.                             Gdeltat[1,y]=randintswitch(0, deltatmax, 1, 

boolop) #set all mtnce events randomly except the first occurrence of a day 1 mt
nce failure   

501.                         else:   
502.                             Gdeltat[1,y]=1   
503.                             Day1Used_MtnAge[0,y]=1   
504.             if imptimessorted[ind,0,0]==9:  #aging   
505.                 for y in range(NYr):   
506.                     if imptimessorted[ind,1,y]>1:   
507.                         Gdeltat[1,y]=randintswitch(0, deltatmax, 1, bool

op) #set all aging events randomly except the first occurrence of a day 1 age fa
ilure   

508.                     else:   
509.                         if Day1Used_MtnAge[1,y]==1:   
510.                             Gdeltat[1,y]=randintswitch(0, deltatmax, 1, 

boolop)   
511.                         else:   
512.                             Gdeltat[1,y]=1   
513.                             Day1Used_MtnAge[1,y]=1   
514.    
515.    
516.         if SPOG1OutagesCL["ComponentLevelTypeId"][c]==5: #Fail in place 

  
517.             ind=int(np.where(imptimessorted[:,0,1]==SPOG1OutagesCL["Caus

alFactorTypeId"][c])[0])   
518.             Gdeltat[2,:]=imptimessorted[ind,1,:]   
519.             if imptimessorted[ind,0,0]==2:  #mtnce   
520.                 for y in range(NYr):   
521.                     if imptimessorted[ind,1,y]>1:   
522.                         Gdeltat[2,y]=randintswitch(0, deltatmax, 1, bool

op)   
523.                     else:   
524.                         if Day1Used_MtnAge[0,y]==1:   
525.                             Gdeltat[2,y]=randintswitch(0, deltatmax, 1, 

boolop) #set all mtnce events randomly except the first occurrence of a day 1 mt
nce failure   

526.                         else:   
527.                             Gdeltat[2,y]=1   
528.                             Day1Used_MtnAge[0,y]=1   
529.             if imptimessorted[ind,0,0]==9:  #aging   
530.                 for y in range(NYr):   
531.                     if imptimessorted[ind,1,y]>1:   
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532.                         Gdeltat[2,y]=randintswitch(0, deltatmax, 1, bool
op) #set all aging events randomly except the first occurrence of a day 1 age fa
ilure   

533.                     else:   
534.                         if Day1Used_MtnAge[1,y]==1:   
535.                             Gdeltat[2,y]=randintswitch(0, deltatmax, 1, 

boolop)   
536.                         else:   
537.                             Gdeltat[2,y]=1   
538.                             Day1Used_MtnAge[1,y]=1   
539.    
540.    
541.    
542.     for c in range (np.shape(TB1OutagesCL["ReservoirLevelId"])[0]):   
543.         if TB1OutagesCL["ComponentLevelTypeId"][c]==13: #Head Cover HC R

ESULTS IN UNCONTROLLED RELEASE   
544.             ind=int(np.where(imptimessorted[:,0,1]==TB1OutagesCL["Causal

FactorTypeId"][c])[0])   
545.             Tdeltat[0,:]=imptimessorted[ind,1,:]   
546.             if imptimessorted[ind,0,0]==2:  #mtnce   
547.                 for y in range(NYr):   
548.                     if imptimessorted[ind,1,y]>1:   
549.                         Tdeltat[0,y]=randintswitch(0, deltatmax, 1, bool

op)   
550.                     else:   
551.                         if Day1Used_MtnAge[0,y]==1:   
552.                             Tdeltat[0,y]=randintswitch(0, deltatmax, 1, 

boolop) #set all mtnce events randomly except the first occurrence of a day 1 mt
nce failure   

553.                         else:   
554.                             Tdeltat[0,y]=1   
555.                             Day1Used_MtnAge[0,y]=1   
556.             if imptimessorted[ind,0,0]==9:  #aging   
557.                 for y in range(NYr):   
558.                     if imptimessorted[ind,1,y]>1:   
559.                         Tdeltat[0,y]=randintswitch(0, deltatmax, 1, bool

op) #set all aging events randomly except the first occurrence of a day 1 age fa
ilure   

560.                     else:   
561.                         if Day1Used_MtnAge[1,y]==1:   
562.                             Tdeltat[0,y]=randintswitch(0, deltatmax, 1, 

boolop)   
563.                         else:   
564.                             Tdeltat[0,y]=1   
565.                             Day1Used_MtnAge[1,y]=1   
566.    
567.         if TB1OutagesCL["ComponentLevelTypeId"][c]==15: #Generator   
568.             ind=int(np.where(imptimessorted[:,0,1]==TB1OutagesCL["Causal

FactorTypeId"][c])[0])   
569.             Tdeltat[1,:]=imptimessorted[ind,1,:]   
570.             if imptimessorted[ind,0,0]==2:  #mtnce   
571.                 for y in range(NYr):   
572.                     if imptimessorted[ind,1,y]>1:   
573.                         Tdeltat[1,y]=randintswitch(0, deltatmax, 1, bool

op)   
574.                     else:   
575.                         if Day1Used_MtnAge[0,y]==1:   
576.                             Tdeltat[1,y]=randintswitch(0, deltatmax, 1, 

boolop) #set all mtnce events randomly except the first occurrence of a day 1 mt
nce failure   

577.                         else:   
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578.                             Tdeltat[1,y]=1   
579.                             Day1Used_MtnAge[0,y]=1   
580.             if imptimessorted[ind,0,0]==9:  #aging   
581.                 for y in range(NYr):   
582.                     if imptimessorted[ind,1,y]>1:   
583.                         Tdeltat[1,y]=randintswitch(0, deltatmax, 1, bool

op) #set all aging events randomly except the first occurrence of a day 1 age fa
ilure   

584.                     else:   
585.                         if Day1Used_MtnAge[1,y]==1:   
586.                             Tdeltat[1,y]=randintswitch(0, deltatmax, 1, 

boolop)   
587.                         else:   
588.                             Tdeltat[1,y]=1   
589.                             Day1Used_MtnAge[1,y]=1   
590.    
591.    
592.     for c in range (np.shape(AllOutagesRL["ReservoirLevelId"])[0]):   
593.     #Other components   
594.         if AllOutagesRL["ReservoirLevelId"][c]==18: #Dam PLC failure HOU

RS   
595.             ind=int(np.where(imptimessorted[:,0,1]==AllOutagesRL["Causal

FactorTypeId"][c])[0])   
596.             OCdeltat[0,:]=imptimessorted[ind,1,:]   
597.             if imptimessorted[ind,0,0]==2:  #mtnce   
598.                 for y in range(NYr):   
599.                     if imptimessorted[ind,1,y]>1:   
600.                         OCdeltat[0,y]=randintswitch(0, deltatmax, 1, boo

lop)   
601.                     else:   
602.                         if Day1Used_MtnAge[0,y]==1:   
603.                             OCdeltat[0,y]=randintswitch(0, deltatmax, 1,

 boolop) #set all mtnce events randomly except the first occurrence of a day 1 m
tnce failure   

604.                         else:   
605.                             OCdeltat[0,y]=1   
606.                             Day1Used_MtnAge[0,y]=1   
607.             if imptimessorted[ind,0,0]==9:  #aging   
608.                 for y in range(NYr):   
609.                     if imptimessorted[ind,1,y]>1:   
610.                         OCdeltat[0,y]=randintswitch(0, deltatmax, 1, boo

lop) #set all aging events randomly except the first occurrence of a day 1 age f
ailure   

611.                     else:   
612.                         if Day1Used_MtnAge[1,y]==1:   
613.                             OCdeltat[0,y]=randintswitch(0, deltatmax, 1,

 boolop)   
614.                         else:   
615.                             OCdeltat[0,y]=1   
616.                             Day1Used_MtnAge[1,y]=1   
617.    
618.    
619.         if AllOutagesRL["ReservoirLevelId"][c]==42: #Penstock   
620.             ind=int(np.where(imptimessorted[:,0,1]==AllOutagesRL["Causal

FactorTypeId"][c])[0])   
621.             OCdeltat[1,:]=imptimessorted[ind,1,:]   
622.             if imptimessorted[ind,0,0]==2:  #mtnce   
623.                 for y in range(NYr):   
624.                     if imptimessorted[ind,1,y]>1:   
625.                         OCdeltat[1,y]=randintswitch(0, deltatmax, 1, boo

lop)   
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626.                     else:   
627.                         if Day1Used_MtnAge[0,y]==1:   
628.                             OCdeltat[1,y]=randintswitch(0, deltatmax, 1,

 boolop) #set all mtnce events randomly except the first occurrence of a day 1 m
tnce failure   

629.                         else:   
630.                             OCdeltat[1,y]=1   
631.                             Day1Used_MtnAge[0,y]=1   
632.             if imptimessorted[ind,0,0]==9:  #aging   
633.                 for y in range(NYr):   
634.                     if imptimessorted[ind,1,y]>1:   
635.                         OCdeltat[1,y]=randintswitch(0, deltatmax, 1, boo

lop) #set all aging events randomly except the first occurrence of a day 1 age f
ailure   

636.                     else:   
637.                         if Day1Used_MtnAge[1,y]==1:   
638.                             OCdeltat[1,y]=randintswitch(0, deltatmax, 1,

 boolop)   
639.                         else:   
640.                             OCdeltat[1,y]=1   
641.                             Day1Used_MtnAge[1,y]=1   
642.    
643.         if AllOutagesRL["ReservoirLevelId"][c]==44: #CMS GRID   
644.             ind=int(np.where(imptimessorted[:,0,1]==AllOutagesRL["Causal

FactorTypeId"][c])[0])   
645.             OCdeltat[2,:]=imptimessorted[ind,1,:]   
646.             if imptimessorted[ind,0,0]==2:  #mtnce   
647.                 for y in range(NYr):   
648.                     if imptimessorted[ind,1,y]>1:   
649.                         OCdeltat[2,y]=randintswitch(0, deltatmax, 1, boo

lop)   
650.                     else:   
651.                         if Day1Used_MtnAge[0,y]==1:   
652.                             OCdeltat[2,y]=randintswitch(0, deltatmax, 1,

 boolop) #set all mtnce events randomly except the first occurrence of a day 1 m
tnce failure   

653.                         else:   
654.                             OCdeltat[2,y]=1   
655.                             Day1Used_MtnAge[0,y]=1   
656.             if imptimessorted[ind,0,0]==9:  #aging   
657.                 for y in range(NYr):   
658.                     if imptimessorted[ind,1,y]>1:   
659.                         OCdeltat[2,y]=randintswitch(0, deltatmax, 1, boo

lop) #set all aging events randomly except the first occurrence of a day 1 age f
ailure   

660.                     else:   
661.                         if Day1Used_MtnAge[1,y]==1:   
662.                             OCdeltat[2,y]=randintswitch(0, deltatmax, 1,

 boolop)   
663.                         else:   
664.                             OCdeltat[2,y]=1   
665.                             Day1Used_MtnAge[1,y]=1   
666.    
667.     #Sensors   
668.         if AllOutagesRL["ReservoirLevelId"][c]==30: #RE Sensor 1   
669.             ind=int(np.where(imptimessorted[:,0,1]==AllOutagesRL["Causal

FactorTypeId"][c])[0])   
670.             Sdeltat=imptimessorted[ind,1,:]   
671.             if imptimessorted[ind,0,0]==2:  #mtnce   
672.                 for y in range(NYr):   
673.                     if imptimessorted[ind,1,y]>1:   



301 

 

674.                         Sdeltat[y]=randintswitch(0, deltatmax, 1, boolop
)   

675.                     else:   
676.                         if Day1Used_MtnAge[0,y]==1:   
677.                             Sdeltat[y]=randintswitch(0, deltatmax, 1, bo

olop) #set all mtnce events randomly except the first occurrence of a day 1 mtnc
e failure   

678.                         else:   
679.                             Sdeltat[y]=1   
680.                             Day1Used_MtnAge[0,y]=1   
681.             if imptimessorted[ind,0,0]==9:  #aging   
682.                 for y in range(NYr):   
683.                     if imptimessorted[ind,1,y]>1:   
684.                         Sdeltat[y]=randintswitch(0, deltatmax, 1, boolop

) #set all aging events randomly except the first occurrence of a day 1 age fail
ure   

685.                     else:   
686.                         if Day1Used_MtnAge[1,y]==1:   
687.                             Sdeltat[y]=randintswitch(0, deltatmax, 1, bo

olop)   
688.                         else:   
689.                             Sdeltat[y]=1   
690.                             Day1Used_MtnAge[1 ,y]=1   
691.    
692.    
693.    
694.    
695.     for c in range (np.shape(AllErrors["ReservoirLevelId"])[0]):   
696.     #Other components   
697.         if AllErrors["ReservoirLevelId"][c]==30: #Res El Sensor 1   
698.             ind=int(np.where(imptimessorted[:,0,1]==AllErrors["CausalFac

torTypeId"][c])[0])   
699.             SErrorDeltat=imptimessorted[ind,1,:]   
700.    
701.    
702.         if AllErrors["ReservoirLevelId"][c]==45: #Inflow forecast error 

  
703.             ind=int(np.where(imptimessorted[:,0,1]==AllErrors["CausalFac

torTypeId"][c])[0])   
704.             IFErrorDeltat=imptimessorted[ind,1,:]   
705.    
706.    
707.    
708.    
709. """  
710. 3. INITIALIZING SUPPORTING FUNCTIONS AND ARRAYS  
711.   
712. -Sets up arrays to be populated by SD model  
713. -Sets up supporting functions  
714. -

Functions defined here are not part of the System Dynamics model but may be call
ed from it  

715.   
716. """   
717.    
718. runname="Simple64-i1-O-2018-5yr"   
719. runname1=runname   
720.    
721. start=(str(datetime.now()))   
722.   
723. @njit   



302 

 

724. def SSC(storage): #Stage storage curve   
725.     if storage<1400:   
726.         return -1.1201e-

05 * storage**2 + 0.032473 * storage + 364.6572   
727.     else:   
728.         return 388.16   
729.   
730. @njit   
731. def SSCrev(stage): #Storage stage curve   
732.     return np.roots(np.array([-1.1201e-05, 0.032473, 364.6572-

stage]))[1]   
733. @njit   
734. def OTC(elev): #Overtopping curve   
735.     if elev<=380.41: #378.41   
736.         return 0   
737.     else:   
738.         return (-35.7505780379803*(elev-2)**3 + 40896.2749435669*(elev-

2)**2 -15593240.0619064*(elev-2) + 1981715583.08889)*0.3   
739.    
740.    
741. #Rating curves for different gates to be used to switch between gate pos

ition and flow   
742. RatingCurve1=pd.read_csv(datafile_path("SPOGAllRC.csv"), index_col=0)   
743. x1=np.asarray(RatingCurve1.index.values, dtype=float)   
744. y1=np.asarray(RatingCurve1.columns.values, dtype=float)   
745. z1=np.asarray(RatingCurve1.values, dtype=float)   
746.   
747. @njit   
748. def fncTurbineMaxFlow(elev, flagT):   
749.     if flagT==1: #// Turb on   
750.         if elev < 363.05:   
751.             result = 0   
752.         elif 363.05 <= elev < 365.05:   
753.             result = 13.98 * elev - 5075.44   
754.         elif 365.05 <= elev < 367.05:   
755.             result = 18.02334 * elev - 6551.46   
756.         else:   
757.             result = 65   
758.     else: #//both off   
759.         return 0   
760.     return result   
761.   
762. @njit   
763. def SPOGMaxFlow(elev, flag): #Sums the values from two gates into a sing

le gate discharge   
764.     if flag == 1:   
765.         if 367.28<=elev<367.5:   
766.             out1= 19.09091*elev-7011.7   
767.         if 367.5<=elev<=367.8:   
768.             out1= 37.33334*elev-13715.8   
769.         if 367.8<=elev<=369:#368.1:   
770.             out1= 49.667*elev-18252   
771.         if 369 <=elev < 381.6:  #367.8 sill   
772.             out1= 2.154624239*elev**2 - 1496.3410084*elev + 258875.37647

999998   
773.         elif elev >= 381.6:   
774.             out1= 861.1+728.9   
775.         else:   
776.             out1= 0   
777.     else:   
778.         out1=0   
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779.     return out1   
780.   
781. @njit   
782. def GateInstr(ResEl, OP):   
783.     y=y1   
784.     z=z1   
785.     x=x1   
786.     GatePosition=0   
787.     if (ResEl > 367.28):   
788.         Yo=np.abs(y-ResEl).argsort()[0:2]   
789.         WtYo0=np.abs((ResEl-y[Yo[0]])/(y[Yo[0]]-y[Yo[1]]))   
790.         WtYo1=np.abs((ResEl-y[Yo[1]])/(y[Yo[0]]-y[Yo[1]]))   
791.         ResElFlow=(1-WtYo0)*z[:,Yo[0]]+(1-WtYo1)*z[:,Yo[1]]   
792.         GateFlow=np.round(OP,2)   
793.         GateFlowMax=np.max(ResElFlow)   
794.         if GateFlow<=0:   
795.             return 0   
796.         else:   
797.             if (GateFlow>GateFlowMax):   
798.                 GateFlow=GateFlowMax-0.01   
799.             if GateFlow < ResElFlow[0]:   
800.                 return x[0]   
801.             elif GateFlow > ResElFlow[-1]:   
802.                 return x[-1]   
803.             else:   
804.                 for i in range(len(ResElFlow) - 1):   
805.                     if ResElFlow[i] <= GateFlow <= ResElFlow[i + 1]:   
806.                         X1, X2 = ResElFlow[i], ResElFlow[i + 1]   
807.                         Y1, Y2 = x[i], x[i + 1]   
808.    
809.                         return Y1 + (Y2 - Y1) / (X2 - X1) * (GateFlow - 

X1)   
810.     else:   
811.         return GatePosition   
812.   
813. @njit   
814. def interpolate(x0, x, y):   
815.     if x0 < x[0]:   
816.         return y[0]   
817.     elif x0 > x[-1]:   
818.         return y[-1]   
819.     else:   
820.         for i in range(len(x) - 1):   
821.             if x[i] <= x0 <= x[i + 1]:   
822.                 x1, x2 = x[i], x[i + 1]   
823.                 y1, y2 = y[i], y[i + 1]   
824.    
825.                 return y1 + (y2 - y1) / (x2 - x1) * (x0 - x1)   
826.   
827. @njit   
828. def GateFlowCalc(ResEl, GP):   
829.     y=y1   
830.     z=z1   
831.     x=x1   
832.     GateFlow=0   
833.     if (ResEl > 367.28):   
834.         if GP>12.5:   
835.             GP=12.4999   
836.         Yo=np.abs(y-ResEl).argsort()[0:2]   
837.         WtYo0=np.abs((ResEl-y[Yo[0]])/(y[Yo[0]]-y[Yo[1]]))   
838.         WtYo1=np.abs((ResEl-y[Yo[1]])/(y[Yo[0]]-y[Yo[1]]))   
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839.         ResElFlow=(1-WtYo0)*z[:,Yo[0]]+(1-WtYo1)*z[:,Yo[1]]   
840. #        GateFlow=interpolate(GP, x, ResElFlow)   
841.         if GP < x[0]:   
842.             return ResElFlow[0]   
843.         elif GP > x[-1]:   
844.             return ResElFlow[-1]   
845.         else:   
846.             for i in range(len(x) - 1):   
847.                 if x[i] <= GP <= x[i + 1]:   
848.                     X1, X2 = x[i], x[i + 1]   
849.                     Y1, Y2 = ResElFlow[i], ResElFlow[i + 1]   
850.    
851.                     return Y1 + (Y2 - Y1) / (X2 - X1) * (GP - X1)   
852.     else:   
853.         return GateFlow   
854.    
855. #Storage min and max   
856. Smin=8.864837907352   
857. Smax=516.35   
858.    
859. #Set arrays to save model outputs for NYr years of inflows   
860. year=0   
861. RSEs=np.zeros((365,NYr))   
862. TBFs=np.zeros((365,NYr))   
863. SPOGs=np.zeros((365,NYr))   
864. OT=np.zeros((365,NYr))   
865. INFs=np.zeros((365,NYr))   
866. OUTFs=np.zeros((365,NYr))   
867. GPs=np.zeros((365, NYr))   
868. GAVs=np.zeros((365, NYr))   
869. UAVs=np.zeros((365, NYr))   
870. MOBI=np.zeros((365, NYr))   
871. MOB=np.zeros((365, NYr))   
872. TOTR=np.zeros((365,NYr))   
873. DEBRISREMOVAL=np.zeros(NYr)   
874. DAY=np.zeros((365,NYr))   
875. MON=np.zeros((365,NYr))   
876. AllMaxQ_t=np.zeros((365,2, NYr))   
877. AllMaxQ=[861.1+728.9,32.5+32.5]   
878. TTRS=np.zeros((365,8, NYr))   
879. Retention=np.zeros((365,NYr))   
880. yearnum=np.zeros(NYr)   
881. for yr in range(NYr):   
882.     yearnum[yr]=str(1984+yr)   
883. GateCaps=np.zeros((365, NYr))   
884. CAPs=np.zeros((365, NYr))   
885. EOCs=np.zeros((365, NYr))   
886. UCRs=np.zeros((365,NYr))   
887. GCRs=np.zeros((365,NYr))   
888. GAVs=np.zeros((365, NYr))   
889. OSDs=-1+np.zeros((36,NYr)) #36 component outage start dates   
890. OLs=np.zeros((36,NYr))   
891. #Inflow forecast accuracy data   
892. #ForecastError=pd.read_csv(datafile_path("CMSForecastError.csv"), index_

col=0)   
893. #day=ForecastError.index.values #day of forecast   
894. #errordata=ForecastError.values #error mean, mean over 110cms and standa

rd deviation, std over 110cms   
895. #MAEt=interp1d(day,errordata[:,0])   
896. #MAE110t=interp1d(day,errordata[:,1])   
897. #SEt=interp1d(day,errordata[:,2])   
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898. #SE110t=interp1d(day,errordata[:,3])   
899. Fish=pd.read_csv(datafile_path("Fish.csv"), header=0).values[:,1].astype

("float64")   
900.   
901. @njit   
902. def getfishflow(dayref):   
903.     return Fish[int(dayref[0]):int(dayref[0]+14)]   
904. #Fish=np.zeros((3,3))   
905. #Fish-[0,:]=[5,7,3]   
906. #Fish [1,:]=[0,90,304]   
907. #Fish[2,:]=[89,303,365]   
908. #   
909. #@njit   
910. #def getfishflow(dayref):   
911. #    return Fish[int(dayref[0]):int(dayref[0]+14)]   
912. ##    ff=np.zeros(14)   
913. ##    for i in range(14):   
914. ##        if dayref[i]<90:   
915. ##            ff[i]=5   
916. ##        elif dayref[i]<304:   
917. ##            ff[i]=7   
918. ##        elif dayref[i]<365:   
919. ##            ff[i]=3   
920. ##    return ff   
921.   
922. @njit   
923. def dayrefs(Startdays, timestep):   
924.     daynum=Startdays+int(timestep) #STARTDAYS CONTAINS 1-

365 STARTING DAY REF   
925.     if daynum>365:   
926.         daynum=daynum-365   
927.     dayref=np.zeros(14)   
928.     dayref[0]=daynum   
929.     for t in range(13):  #Converts vensim date into numbers 1-

365 to represent dates in the model   
930.         if dayref[t]+1<366:   
931.             dayref[t+1]=dayref[t]+1   
932.         else: dayref[t+1]=1   
933.     return dayref   
934.    
935.    
936. #SETTING UP RANDOM SIMULATION START POINTS AND ASSIGNING BASELINE CONDIT

IONS FROM "NORMAL" OPS   
937.    
938.    
939. if seedgen==0:   
940.     Startdays=Seeds['Startdays']   
941.     Starts=Seeds['Starts'] #np.transpose(Seeds["Starts"]) for jan 1 star

ts   
942.    
943.    
944. #Starts=np.transpose(Starts)   
945. daynum=Startdays.copy()   
946. OutputDayrefs=np.zeros((365,NYr))   
947. OutputDayrefs[0, :]=daynum   
948. for t in range(364):  #Converts vensim date into numbers 1-

365 to represent dates in the model   
949.     for yr in range(NYr):   
950.         if OutputDayrefs[t, yr]+1<366:   
951.             OutputDayrefs[t+1, yr]=OutputDayrefs[t, yr]+1   
952.         else: OutputDayrefs[t+1, yr]=1   
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953.    
954. StartRSEs=np.zeros(NYr)   
955. for i in range(NYr):   
956.     StartRSEs[i]=NormalRSEs[Starts[i][0], Starts[i][1]] #for jan 1 start

s   
957.     #StartRSEs[i]=NormalRSEs[Starts[0,i], Starts[1,i]] #for SeedsS_Nov06

_2018   
958.    
959. #SET UP INFLOWS AND BASELINE   
960.    
961. Inflow=np.zeros((730,NYr)) #2 year min   
962. B_RSEs = np.zeros((365, NYr))   
963. B_TBFs = np.zeros((365, NYr))   
964. B_TSs = np.zeros((365, NYr))   
965. B_OTs = np.zeros((365, NYr))   
966. for i in range(NYr):   
967.     startdayind=Starts[i][0]   
968.     Inflow[0:int(730-

startdayind),i]=InflowJan1Start[startdayind:730,Starts[i][1]]   
969.     Inflow[int(730-

startdayind):730,i]=InflowJan1Start[0:int(startdayind),Starts[i][1]+1]   
970.     B_RSEs[0:int(365-

startdayind),i]=NormalRSEs[startdayind:365,Starts[i][1]]   
971.     B_RSEs[int(365-

startdayind):365,i]=NormalRSEs[0:int(startdayind),Starts[i][1]+1]   
972.     B_TBFs[0:int(365-

startdayind),i]=NormalTBFs[startdayind:365,Starts[i][1]+1]   
973.     B_TBFs[int(365-

startdayind):365,i]=NormalTBFs[0:int(startdayind),Starts[i][1]+2]   
974.     B_TSs[0:int(365-

startdayind),i]=NormalTSs[startdayind:365,Starts[i][1]+1]   
975.     B_TSs[int(365-

startdayind):365,i]=NormalTSs[0:int(startdayind),Starts[i][1]+2]   
976.     B_OTs[0:int(365-

startdayind),i]=NormalOTs[startdayind:365,Starts[i][1]+1]   
977.     B_OTs[int(365-

startdayind):365,i]=NormalOTs[0:int(startdayind),Starts[i][1]+2]   
978.    
979. if seedgen==0:   
980.     ReducedCapacities=Seeds['ReducedCapacities']   
981.    
982. ReducedCapacityMinimumTime=10 #10 days to arrange debris removal, at a m

inimum   
983. global DebrisRemoval   
984. DebrisRemoval=0   
985.    
986. Inf114=np.zeros(14)   
987.    
988. #This is used to ensure inflow forecast and ops planning done once per 2

4 hours (at midnight)   
989. #def isinterger(number):   
990. #    return np.equal(np.mod(number, 1), 0)   
991.    
992.    
993. #@njit   
994. #def getmaxq(component, ResEl): #returns the maximum available discharge

 for a given component for all res els   
995. #    if component==0: #GATE 1   
996. #        GateFlowMax=SPOGMaxFlow(ResEl, 1)   
997. #    elif component==2: #TURBINE 1g   
998. #        GateFlowMax=fncTurbineMaxFlow(ResEl, 1)   
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999. #    return GateFlowMax   
1000.   
1001. @njit   
1002. def fncSPOGMaxFlow(elev, flag, El1d):   
1003.     if flag == 1:   
1004.         if 367.28<=elev<367.5:   
1005.             out1= 9.545455*elev-3505.85   
1006.             out2= 9.545455*elev-3505.85   
1007.         if 367.5<=elev<=367.8:   
1008.             out1= 18.66667*elev-6857.9   
1009.             out2= 18.66667*elev-6857.9   
1010.         if 367.8<=elev<=369:#368.1:   
1011.             out1= 25*elev-9187.3   
1012.             out2= 24.66667*elev-9064.7   
1013.         if 369 <=elev < 381.6:  #367.8 sill   
1014.             out1= 1.494595567*elev**2 - 1056.252204*elev + 186302.1873   
1015.             out2= 0.660028672*elev**2 - 440.0888044*elev + 72573.18918   
1016.         if elev >= 381.6:   
1017.             out1= 861.1   
1018.             out2= 728.9   
1019.         if elev<367.28:   
1020.             out1= 0   
1021.             out2=0   
1022.         if El1d>376.5: #corects max flow for extreme high inflow events 

  
1023.             elev=(elev+376.50)/2.   
1024.             out1= 1.494595567*elev**2 - 1056.252204*elev + 186302.1873   
1025.             out2= 0.660028672*elev**2 - 440.0888044*elev + 72573.18918   
1026.    
1027.     else:   
1028.         out1=0   
1029.         out2=0   
1030.     return out1+out2   
1031.   
1032. @njit   
1033. def availarray(length):   
1034.     out=np.ones(14)   
1035.     if length>0:   
1036.         out[0:length]=0   
1037.     return out   
1038.   
1039. @njit   
1040. def OpsPlan(InflowForecast, Storage, dayref, SPG1Av,  TbAv1, resElPens):

   
1041.     FishFlow=getfishflow(dayref)   
1042.     SPOG1Av=availarray(int(SPG1Av))   
1043.     TurbAv1=availarray(int(TbAv1))   
1044.    
1045.     VolInflow=np.sum(InflowForecast)   
1046.     #FIRST ASSUME SPILL EQUAL TO FISH FOW   
1047.     Spill=min(FishFlow[0],   
1048.                            fncSPOGMaxFlow(SSC(Storage), SPOG1Av[0], 373)

)   
1049.     #Assume power flow equal to max. of difference between inflow an fis

h flow, or total available turbine flow   
1050.     PFlow=max(min(fncTurbineMaxFlow(SSC(Storage), TurbAv1[0]), InflowFor

ecast[0]-Spill), 0)   
1051.    
1052.     #Now check multi-day reservoir elevation   
1053.     Spl=Spill+np.zeros(14)   
1054.     Pow=PFlow+np.zeros(14)   
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1055.     HiRes=0   
1056.     LoRes=0   
1057.     for i in range(13):   
1058.         VolOut=(i+1)*(Spill+PFlow)   
1059.         VolInflow=np.sum(InflowForecast[0:i+1])   
1060.         StorageD=Storage+VolInflow-VolOut   
1061.         SLimitsD=GetNMax(resElPens[0,:], resElPens[2,:], resElPens[1,:],

 dayref[i])   
1062.    
1063.         if StorageD>SLimitsD[1]: #If 14 day storage exceeds nmax   
1064.             HiRes+=1   
1065.             #ensure power flow is max:   
1066.             Pow[i]=min(PFlow+(StorageD-

SLimitsD[1])*(1./(i+1)),fncTurbineMaxFlow(SSC(Storage), TurbAv1[0]))   
1067.             #recalculate and recheck   
1068.             VolOut=(i+1)*(Spl[i]+Pow[i])   
1069.             StorageD=Storage+VolInflow-VolOut   
1070.             if StorageD>SLimitsD[1]: #add 1/14 of difference each day to

 spill to bring res el down   
1071.                 Spl[i]=min(Spill+(StorageD-

SLimitsD[1])*(1./(i+1)), fncSPOGMaxFlow(SSC(Storage), SPOG1Av[0], SSC(StorageD))
)   

1072.    
1073.         if StorageD<SLimitsD[0]: #If final storage less than nmin   
1074.             LoRes+=1   
1075.             #ensure spill is min   
1076.             Spl[i]=min(FishFlow[0],   
1077.                   fncSPOGMaxFlow(SSC(Storage), SPOG1Av[0], SSC(StorageD)

))   
1078.             #recalulate and recheck   
1079.             VolOut=(i+1)*(Spl[i]+Pow[i])   
1080.             StorageD=Storage+VolInflow-VolOut   
1081.             if StorageD<SLimitsD[0]: #reduce power flow to conserve wate

r   
1082.                 Pow[i]=max(PFlow-(1./(i+1))*(SLimitsD[0]-StorageD), 0)   
1083.    
1084.    
1085.    
1086.     if HiRes>0:   
1087.         Spill=np.max(Spl)   
1088.         PFlow=np.max(Pow) #high reservoir levels trump low reservoir lev

els   
1089.    
1090.     else:   
1091.         if LoRes>0:   
1092.             Spill=np.min(Spl)   
1093.             PFlow=np.min(Pow)   
1094.         else:   
1095.             Spill=Spl[0]   
1096.             PFlow=Pow[0]   
1097.    
1098.    
1099.     #check day 1 elevs again   
1100.     Storage1d=Storage+InflowForecast[0]-Spill-PFlow   
1101.     SLimitsD=GetNMax(resElPens[0,:], resElPens[2,:], resElPens[1,:], day

ref[0])   
1102.     if Storage1d>SLimitsD[1]:   
1103.         #increase power   
1104.         PFlow=fncTurbineMaxFlow(SSC(Storage), TurbAv1[0])   
1105.         #recalculate   
1106.         Storage1d=Storage+InflowForecast[0]-Spill-PFlow   
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1107.         if Storage1d>SLimitsD[1]:   
1108.    
1109.         #increase spill more   
1110.             spl=Spill   
1111.             Spill=min(Spill+(Storage1d-

SLimitsD[1]), fncSPOGMaxFlow(SSC(Storage), SPOG1Av[0], SSC(Storage1d)))   
1112.             if SPOG1Av[0]==1 and Spill<spl+(Storage1d-SLimitsD[1]):   
1113.                 Spill=min(Spill+(Storage1d-SLimitsD[1]), 1590)   
1114.             #recalculate   
1115.             Storage1d=Storage+InflowForecast[0]-Spill-PFlow   
1116.             if Storage1d>SLimitsD[1]+0.1: #if inflow causes reservoir to

 rise to extreme levels within 1 ts   
1117.                 Spill=min(Spill+(Storage1d-

SLimitsD[1]), fncSPOGMaxFlow(SSC((Storage+Storage1d)/2), SPOG1Av[0], SSC(Storage
1d)))   

1118.                 Storage1d=Storage+InflowForecast[0]-Spill-PFlow   
1119.    
1120.     if Storage1d<SLimitsD[0]:   
1121.         #decrease spill   
1122.         Spill=max(Spill-(SLimitsD[0]-Storage1d), FishFlow[0])   
1123.         #recalculate   
1124.         Storage1d=Storage+InflowForecast[0]-Spill-PFlow   
1125.         if Storage1d<SLimitsD[0]:   
1126.             PFlow=max(PFlow-(SLimitsD[0]-Storage1d), 0)   
1127.    
1128.     if Spill<FishFlow[0]:   
1129.         if SPOG1Av[0]==1: #If spill less than FF and spillway is availab

le, readjust SPOG flow and Pflow   
1130.             Spill2=min(FishFlow[0], fncSPOGMaxFlow(SSC(Storage), SPOG1Av

[0], SSC(Storage1d)))   
1131.             PFlow=max(fncTurbineMaxFlow(SSC(Storage), TurbAv1[0]), PFlow

-(Spill2-Spill))   
1132.    
1133.     Spill2=Spill   
1134.     #Now allocate discharge   
1135.     Ops=[0,0] #SPOG1,Turb1   
1136.     if SPOG1Av[0]==1:   
1137.         Ops[0]=min(Spill2, fncSPOGMaxFlow(SSC(Storage), SPOG1Av[0], SSC(

Storage1d)))   
1138.         if SPOG1Av[0]==1 and Spill2>Ops[0]: #this helps with large inflo

w events, where the initial gate capacity is too low, but the reservoir ends up 
too high   

1139.             Ops[0]=Spill2   
1140.         if (SSC(Storage)<367.28):   
1141.             Ops[0]=0   
1142.     elif SPOG1Av[0]==0:   
1143.         if SPOG1Av[0]==1:   
1144.             Ops[0]=0   
1145.    
1146.     if TurbAv1[0]==1:   
1147.         Ops[1]=PFlow   
1148.    
1149.     elif TurbAv1[0]==0:   
1150.         Ops[1]=0   
1151.    
1152.    
1153.     return Ops   
1154.   
1155. @njit   
1156. def GetNMax(lstResLimitDays, VResLower, VResUpper, dayref):   
1157.     i = -1   
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1158.     ColumnsCount = VResLower.shape[0]   
1159.     if (lstResLimitDays[1] > dayref >= lstResLimitDays[0]):   
1160.         i = 0   
1161.     if (dayref>= lstResLimitDays[1]):   
1162.         i = 1   
1163.     if (dayref >= lstResLimitDays[2]):   
1164.         i = 2   
1165.     if (ColumnsCount==4):   
1166.         if (dayref >= lstResLimitDays[3]):   
1167.             i = 3   
1168.     if (ColumnsCount==5):   
1169.         if (dayref >= lstResLimitDays[4]):   
1170.             i = 4   
1171.     if (ColumnsCount==6):   
1172.         if (dayref >= lstResLimitDays[5]):   
1173.             i = 5   
1174.     if (ColumnsCount==7):   
1175.         if (dayref >= lstResLimitDays[6]):   
1176.             i = 6   
1177.     return (VResLower[i], VResUpper[i])   
1178.    
1179.    
1180. #Determines month and day of year so fish flows and res el penalties cor

respond to timing   
1181.    
1182. if seedgen==0:   
1183.     ScenarioDescriptor=Seeds["ScenarioDescriptor"]   
1184.    
1185.    
1186. """  
1187. 4. DEFINING sdpy FUNCTIONS  
1188.   
1189. Broken down sector-by-sector:  
1190.     4.1. Hydaulic System State  
1191.     4.2. Sensors  
1192.     4.3. Disturbances  
1193.     4.4. Operations  
1194.     4.5. Gate Actuators  
1195.     4.6. Turbine Actuators  
1196.   
1197. """   
1198.    
1199. """  
1200. 4.1. HYDRAULIC SYSTEM STATE  
1201. """   
1202.    
1203. initial_reservoir_storage=SSCrev(B_RSEs[0,year])   
1204. if initial_reservoir_storage<=-

304.1:  #making sure initial reservoir level isn't breach level, if any   
1205.     initial_reservoir_storage=364.27   
1206.       
1207. @sdpy.stock(model, initial_reservoir_storage, name='Reservoir Storage',c

ache=False, jit=False)   
1208. def reservoir_storage(t):   
1209.     out=reservoir_inflow(t) - reservoir_outflow(t)   
1210.     return out   
1211.   
1212. @sdpy.aux(model, name='Inflow',cache=False, jit=False)   
1213. def reservoir_inflow(t):   
1214.     daytimestep=t   
1215.     return float(Inflow[daytimestep,year])   
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1216.   
1217. @sdpy.aux(model, name="Outflow",cache=False, jit=False)   
1218. def reservoir_outflow(t):   
1219.     return float(gated_spill_release(t) + overtopping_flow(t) + power_fl

ow_release(t) + penstock_leakage(t) + earth_dam_seepage(t) + breach_flow(t))   
1220.   
1221. @sdpy.aux(model, name="Reservoir Level",cache=False, jit=False)   
1222. def reservoir_level(t):   
1223.     return SSC(reservoir_storage(t))   
1224.   
1225. @sdpy.aux(model, name="Overtopping Flow",cache=False, jit=False)   
1226. def overtopping_flow(t):   
1227.     level=reservoir_level(t)   
1228.     storage=reservoir_storage(t)   
1229.     pf=power_flow_release(t)   
1230.     sf=gated_spill_release(t)   
1231.     inf=reservoir_inflow(t)   
1232.     storage2=storage+inf-pf-sf   
1233.     Overtoppingflow=0   
1234.     OTs=np.zeros(24)   
1235.     if level>378.41 or SSC(storage2)>378.41:   
1236.         for i in range(24):   
1237.             OTs[i]=max(OTC(SSC(storage)), 0)*(1/24.)   
1238.             #water balance   
1239.             storage=storage+inf/24.-OTs[i]-pf/24.-sf/24.   
1240.         Overtoppingflow=np.sum(OTs)   
1241.     return Overtoppingflow   
1242.   
1243. @sdpy.aux(model, name="Unobstructed Gate Flow",cache=False, jit=False)   
1244. def unobstructed_gate_flow(t):   
1245. #    av=gate_availability(t)   
1246. #    ops=operations_planning(t)[0]   
1247. #    SC=sensor_condition(t)   
1248. #    Se=sensor_error(t)   
1249.     level=reservoir_level(t)   
1250. #    SE=1   
1251. #    Spillflow=0   
1252. #    if Se!=0:   
1253. #        SE=0   
1254. #    if av==1 and (SE+SC==2) and level>367.28:   
1255. #        #if gate available, sensors functional, man act working or some

one on site set directly to operations plan   
1256. #        Spillflow=ops   
1257. #    else:   
1258.         #if gate unavailable or issues with actuation or sensors, use ga

te position to determine flow   
1259.     g = gate_position(t)   
1260.     Spillflow=GateFlowCalc(level,g)   
1261.     return Spillflow   
1262.   
1263. @sdpy.aux(model, name="Gated Spill Release",cache=False, jit=False)   
1264. def gated_spill_release(t):   
1265.     if breach_triggered(t)==0:   
1266.         if components_collapsing_gate(t)==1:   
1267.             return gate_capacity(t)*unobstructed_gate_flow(t)   
1268.         else:   
1269.             return min(1590, max(reservoir_storage(t) + reservoir_inflow

(t) - 83.1357, 0))   
1270.     else:   
1271.         return 0   
1272.    
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1273. DebrisRemoval= np.zeros(1)   
1274. @sdpy.aux(model, name="Gated Capacity",cache=False, jit=False)   
1275. def gate_capacity(t):   
1276.     timestep=t   
1277.     #DebrisRemoval = 0 #global todo   
1278.     currentinflow=reservoir_inflow(t)   
1279.     inflowthreshold=65 #assume less than this required to remove debris 

  
1280.     Capacity=1   
1281.     if ReducedCapacities[year]<1:   
1282.         if timestep>=1 and timestep<=24.*ReducedCapacityMinimumTime:   
1283.             Capacity=ReducedCapacities[year]   
1284.         if timestep>=24.*ReducedCapacityMinimumTime: #debris removal can

 start after a minimum time   
1285.             if DebrisRemoval[0]==0:   
1286.                 if currentinflow<inflowthreshold:  #Debris removal only 

less than inflow threshold   
1287.                     DebrisRemoval[0]=1   
1288.             if DebrisRemoval[0]==0:  #if debrs, set to reduced capacitie

s   
1289.                 Capacity=ReducedCapacities[year]   
1290.             if DebrisRemoval[0]==1: #if debris removed, set to full capa

city   
1291.                 Capacity=1   
1292.     return float(Capacity)   
1293.   
1294. @sdpy.aux(model, name="Power Flow Release",cache=False, jit=False)   
1295. def power_flow_release(t):   
1296.     if breach_triggered(t)==0:   
1297.         return powerhouse_flow_conveyance(t)   
1298.     else:   
1299.         return 0   
1300.   
1301. @sdpy.aux(model, name="Penstock Leakage",cache=False, jit=False)   
1302. def penstock_leakage(t):   
1303.     if intake_gate_closure(t)==0 and breach_triggered(t)==0 and other_co

mponent_remaining_time_to_repair(t)[1]>0:   
1304.         return head_cover_max_flow(t)   
1305.     else:   
1306.         return 0   
1307.    
1308. RESEL_IG=[]   
1309. @sdpy.aux(model, name="Intake Gate Closure",cache=False, jit=False)   
1310. def intake_gate_closure(t):   
1311.     penstockrup=other_component_remaining_time_to_repair(t)[1]   
1312.     hcfail=power_remaining_time_to_repair(t)[0]   
1313.     igclosed=0   
1314.     if hcfail>0 or penstockrup>0:   
1315.         RESEL_IG.append(reservoir_level(t))   
1316.         if (np.min(RESEL_IG)<363.06): #Intake gate can be closed once re

servoir drawn down past sill of intake gate   
1317.             igclosed=1   
1318.     return igclosed   
1319.   
1320. @sdpy.aux(model, name="Uncontrolled Release",cache=False, jit=False)   
1321. def uncontrolled_release(t):   
1322.     ucr=0   
1323.     if head_cover(t)==0:   
1324.         ucr+=np.max([power_flow_release(t),0])   
1325.     if gate_collapse(t)==1:   
1326.         ucr+=np.max([gated_spill_release(t),0])   
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1327.     ucr+=np.max([penstock_leakage(t),0])   
1328.     ucr+=np.max([breach_flow(t),0])   
1329.     ucr+=overtopping_flow(t)   
1330.     return ucr   
1331.    
1332. BREACHT=np.zeros((365,NYr))   
1333. @sdpy.aux(model, name="Breach Triggered",cache=False, jit=False)   
1334. def breach_triggered(t):   
1335.     bt=np.max(RSEs[:,year])   
1336.     if bt>381.73:   
1337.         BREACHT[t,year]=1   
1338.         return 1   
1339.     else:   
1340.         return 0   
1341.   
1342. @sdpy.aux(model, name="Breach Flow",cache=False, jit=False)   
1343. def breach_flow(t):   
1344.     if breach_triggered(t)==1:   
1345.         return reservoir_storage(t) + reservoir_inflow(t) - (-304.012)   
1346.     else:   
1347.         return 0   
1348.   
1349. @sdpy.aux(model, name="Earth Dam Settlement",cache=False, jit=False)   
1350. def earth_dam_settlement(t):   
1351.     return 0 #not used for this model   
1352.   
1353. @sdpy.aux(model, name="Earth Dam Seepage",cache=False, jit=False)   
1354. def earth_dam_seepage(t):   
1355.     return 0 #not used for this model   
1356.     #IF THEN ELSE(Earth dam settlement=0, 0 ,   
1357. #IF THEN ELSE(Reservoir Level>364.9, Earth dam settlement*Reservoir Leve

l*0.1 , 0 ))   
1358.    
1359.    
1360. """  
1361. 4.2. SENSORS  
1362.   
1363. """   
1364.    
1365. if seedgen==0:   
1366.     SErrorDeltat=Seeds['SErrorDeltat']   
1367.     SErrorDuration=Seeds['SErrorDuration']   
1368.     SErrors=Seeds['SErrors']   
1369.   
1370. @sdpy.aux(model, name="Sensor Condition",cache=False, jit=False)   
1371. def sensor_condition(t):   
1372.     if sensor_remaining_time_to_repair(t)>0:   
1373.         return 0   
1374.     else:   
1375.         return 1   
1376.   
1377. @sdpy.aux(model, name="Gauge Reading",cache=False, jit=False)   
1378. def gauge_reading(t):   
1379.     if sensor_condition(t)==1:   
1380.         return reservoir_level(t) + (sensor_error(t)/100)*reservoir_leve

l(t)   
1381.     else:   
1382.         return -1000   
1383.     #IF THEN ELSE( Sensor condition=1 , Reservoir Level+((Sensor Error)/

100)*Reservoir Level , -1000)   
1384.   
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1385. @sdpy.aux(model, name="Gauge Processing",cache=False, jit=False)   
1386. def gauge_processing(t):   
1387.     if other_component_remaining_time_to_repair(t)[0]>0:   
1388.         return -1000   
1389.     else:   
1390.         return gauge_reading(t)   
1391.     #IF THEN ELSE(Other component remaining time to repair[PLCRTU]>0, -

1000 , Gauge reading)   
1392.   
1393. @sdpy.aux(model, name="Gauge Relay",cache=False, jit=False)   
1394. def gauge_relay(t):   
1395.     return gauge_processing(t)   
1396.   
1397. @sdpy.aux(model, name="Sensor Error",cache=False, jit=False)   
1398. def sensor_error(t):   
1399.     timestep=t   
1400.     error=0   
1401.     if (timestep>=SErrorDeltat[year] and timestep<=(SErrorDeltat[year]+S

ErrorDuration[year])):   
1402.         error=SErrors[year] #sets sensor components to failure time   
1403.     return error   
1404.    
1405. """  
1406. 4.3 DISTURBANCES  
1407.   
1408. """   
1409.    
1410. gatecomps = sdpy.SubRange('gatecomps', ['C_FC', 'C_FO', 'C_FIP'])   
1411. turbinecomps = sdpy.SubRange('turbinecomps', ['HC', 'GEN'])   
1412. othercomps = sdpy.SubRange('othercomps', ["PLCRTU", "PEN", "GRID"])   
1413.    
1414.    
1415. if seedgen==0:   
1416.     GateOutagesAll=Seeds['GateOutagesAll']   
1417.     GateCollapses=Seeds['GateCollapses']   
1418.     Gdeltat=Seeds['Gdeltat']   
1419.   
1420. @sdpy.aux(model, name="Gate Component Failures",cache=False, jit=False) 

  
1421. @sdpy.subscript(gatecomps)   
1422. def gate_component_failures(t):   
1423.     timestep=t   
1424.     timetorepair=np.zeros(3)   
1425.     #SPOG1, 3 different general components can be set to failure, also o

ne general   
1426.     #C_FC, C_FO, C_FIP (fail open/collapse, fail closed, fail in place) 

  
1427.     for c in range(3):   
1428.         if timestep==Gdeltat[c, year]:   
1429.             if GateOutagesAll[c, year]>0:   
1430.                 timetorepair[c]=GateOutagesAll[c, year] #sets gate compo

nents to failure time   
1431.     return timetorepair   
1432.   
1433. @sdpy.aux(model, name='Gate Time To Repair',cache=False, jit=False)   
1434. @sdpy.subscript(gatecomps)   
1435. def gate_time_to_repair(t):   
1436.     return gate_component_failures(t)   
1437.   
1438. @sdpy.aux(model, name='Gate Repair',cache=False, jit=False)   
1439. @sdpy.subscript(gatecomps)   
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1440. def gate_repair(t):   
1441.     ret=np.zeros(3)   
1442.     for i in range(3):   
1443.         if gate_remaining_time_to_repair(t)[i]>1:   
1444.             ret[i]=1   
1445.         else:   
1446.             if gate_remaining_time_to_repair(t)[i]<=1 and gate_remaining

_time_to_repair(t)[i]>0:   
1447.                 ret[i]=gate_remaining_time_to_repair(t)[i]   
1448.             else:   
1449.                 ret[i]=0   
1450.     return ret   
1451. #if_then_else(gate_remaining_time_to_repair(t)>1, 1,   
1452. #             if_then_else(gate_remaining_time_to_repair(t)<1 and gate_r

emaining_time_to_repair(t)>0, gate_remaining_time_to_repair(t),0) )   
1453. #    IF THEN ELSE(Gate remaining time to repair[GateComps]>1, 1 , IF THE

N ELSE(Gate remaining time to repair[GateComps]<1 :AND: Gate remaining time to r
epair[GateComps]>0,Gate remaining time to repair[GateComps],0) )   

1454.   
1455. @sdpy.stock(model, np.zeros(3), name='Gate Remaining Time To Repair',cac

he=False, jit=False)   
1456. @sdpy.subscript(gatecomps)   
1457. def gate_remaining_time_to_repair(t):   
1458.     return gate_time_to_repair(t) - gate_repair(t)   
1459.    
1460. GFORTTR=np.zeros((365,NYr))   
1461. @sdpy.aux(model, name='Gate All',cache=False, jit=False)   
1462. def gate_all(t):   
1463.     GFORTTR[t,year]=gate_remaining_time_to_repair(t)[1]   
1464.     maxs=np.max(gate_remaining_time_to_repair(t))   
1465.     return maxs   
1466.    
1467. if seedgen==0:   
1468.     TurbineOutagesAll=Seeds['TurbineOutagesAll']   
1469.     Tdeltat=Seeds['Tdeltat']   
1470.   
1471. @sdpy.aux(model, name='Power component Failures',cache=False, jit=False)

   
1472. @sdpy.subscript(turbinecomps)   
1473. def power_component_failures(t):   
1474.     timestep=t   
1475.     timetorepair=np.zeros(2)   #gen #HC   
1476.     for c in range(2):   
1477.         if timestep==Tdeltat[c, year]:   
1478.             if TurbineOutagesAll[c, year]>0:   
1479.                 timetorepair[c]=TurbineOutagesAll[c, year] #sets gate co

mponents to failure time   
1480.     return timetorepair   
1481.   
1482. @sdpy.aux(model, name='Power Time To Repair',cache=False, jit=False)   
1483. @sdpy.subscript(turbinecomps)   
1484. def power_time_to_repair(t):   
1485.     return power_component_failures(t)   
1486.   
1487. @sdpy.aux(model, name='Power Repair',cache=False, jit=False)   
1488. @sdpy.subscript(turbinecomps)   
1489. def power_repair(t):   
1490.     ret=np.zeros(2)   
1491.     for i in range(2):   
1492.         if power_remaining_time_to_repair(t)[i]>1:   
1493.             ret[i]=1   
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1494.         else:   
1495.             if power_remaining_time_to_repair(t)[i]<=1 and power_remaini

ng_time_to_repair(t)[i]>0:   
1496.                 ret[i]=power_remaining_time_to_repair(t)[i]   
1497.             else:   
1498.                 ret[i]=0   
1499.     return ret   
1500. #    if_then_else(power_remaining_time_to_repair(t)>1, 1,   
1501. #             if_then_else(power_remaining_time_to_repair(t)<1 and power

_remaining_time_to_repair(t)>0, power_remaining_time_to_repair(t),0) )   
1502.   
1503. @sdpy.stock(model, np.zeros(2), name='Power Remaining Time To Repair',ca

che=False, jit=False)   
1504. @sdpy.subscript(turbinecomps)   
1505. def power_remaining_time_to_repair(t):   
1506.     return power_time_to_repair(t) - power_repair(t)   
1507.   
1508. @sdpy.aux(model, name='Power All',cache=False, jit=False)   
1509. def power_all(t):   
1510.     maxs=np.max(power_remaining_time_to_repair(t))   
1511.     return maxs   
1512.    
1513. if seedgen==0:   
1514.     OCdeltat=Seeds['OCdeltat']   
1515.     OCOutages=Seeds['OCOutages']   
1516.   
1517. @sdpy.aux(model, name='Other Component Failures',cache=False, jit=False)

   
1518. @sdpy.subscript(othercomps)   
1519. def other_component_failures(t):   
1520.     timetorepair=np.zeros(3)   
1521.     #0 Dam PLCRTU, 1 Penstock, 2 Grid   
1522.     timestep=t   
1523.     for c in range(3):   
1524.         if timestep==OCdeltat[c, year]:   
1525.             if OCOutages[c, year]>0:   
1526.                 timetorepair[c]=OCOutages[c, year] #sets other component

s to failure time   
1527.    
1528.     return timetorepair   
1529.   
1530. @sdpy.aux(model, name='Other Component Time To Repair',cache=False, jit=

False)   
1531. @sdpy.subscript(othercomps)   
1532. def other_component_time_to_repair(t):   
1533.     return other_component_failures(t)   
1534.   
1535. @sdpy.aux(model, name='Other Component Repair',cache=False, jit=False)   
1536. @sdpy.subscript(othercomps)   
1537. def other_component_repair(t):   
1538.     ret=np.zeros(3)   
1539.     for i in range(3):   
1540.         if other_component_remaining_time_to_repair(t)[i]>1:   
1541.             ret[i]=1   
1542.         else:   
1543.             if other_component_remaining_time_to_repair(t)[i]<=1 and oth

er_component_remaining_time_to_repair(t)[i]>0:   
1544.                 ret[i]=other_component_remaining_time_to_repair(t)[i]   
1545.             else:   
1546.                 ret[i]=0   
1547.     return ret   
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1548. #    if_then_else(other_component_remaining_time_to_repair(t)>1, 1,   
1549. #             if_then_else(other_component_remaining_time_to_repair(t)<1

 and other_component_remaining_time_to_repair(t)>0, other_component_remaining_ti
me_to_repair(t),0) )   

1550.   
1551. @sdpy.stock(model, np.zeros(3), name='Other Component Remaining Time To 

Repair',cache=False, jit=False)   
1552. @sdpy.subscript(othercomps)   
1553. def other_component_remaining_time_to_repair(t):   
1554.     return other_component_time_to_repair(t)-other_component_repair(t)   
1555.    
1556. if seedgen==0:   
1557.     SOutages=Seeds['SOutages']   
1558.     Sdeltat=Seeds['SOutages']   
1559.   
1560. @sdpy.aux(model, name='Sensor Failures',cache=False, jit=False)   
1561. def sensor_failures(t):   
1562.     timestep=t   
1563.     timetorepair=0   
1564.     if timestep==Sdeltat[year]:   
1565.         if SOutages[year]>0:   
1566.             timetorepair=SOutages[year] #sets sensor components to failu

re time   
1567.     return timetorepair   
1568.   
1569. @sdpy.aux(model, name='Sensor Time To Repair',cache=False, jit=False)   
1570. def sensor_time_to_repair(t):   
1571.     return sensor_failures(t)   
1572.   
1573. @sdpy.aux(model, name='Sensor Repair',cache=False, jit=False)   
1574. def sensor_repair(t):   
1575.     if sensor_remaining_time_to_repair(t)>1:   
1576.         return 1   
1577.     else:   
1578.         if sensor_remaining_time_to_repair(t)<=1 and sensor_remaining_ti

me_to_repair(t)>0:   
1579.             return sensor_remaining_time_to_repair(t)   
1580.         else:   
1581.             return 0   
1582.   
1583. @sdpy.stock(model, 0, name='Sensor Remaining Time To Repair',cache=False

, jit=False)   
1584. def sensor_remaining_time_to_repair(t):   
1585.     return sensor_time_to_repair(t)-sensor_repair(t)   
1586.    
1587.    
1588. """  
1589. 4.4. OPERATIONS  
1590.   
1591. """   
1592. controls = sdpy.SubRange('controls', ['g1', 't1'])   
1593.    
1594. if seedgen==0:   
1595.     IFErrorDeltat=Seeds['IFErrorDeltat']   
1596.     IFErrorDuration=Seeds['IFErrorDuration']   
1597.   
1598.   
1599. @sdpy.aux(model, name='Operations Planning',cache=False, jit=False)   
1600. @sdpy.subscript(controls)   
1601. def operations_planning(t):   
1602.     timestep=t   
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1603.     dayref=dayrefs(Startdays[year], timestep)   
1604.     FishFlow=getfishflow(dayref)   
1605.     Inf114=Inflow[timestep:14+timestep, year] #Changed to one day ahead 

so proper spills are released for Vensim version   
1606.     InfForecast=Inf114   
1607.     gaugerelay=gauge_relay(t)   
1608.     if gaugerelay<-

900 or gaugerelay>381.73: #If error is so high that it becomes obvious   
1609.         storage=-1000   
1610.     else:   
1611.         storage=SSCrev(gaugerelay)   
1612.     StaffOnSite=site_staff_mobilized(t)   
1613.     actualstorage=reservoir_storage(t)   
1614.     if (StaffOnSite>0) or (storage==-1000):   
1615.         if storage==-1000:   
1616.             storage=SSCrev(RSEs[timestep-

1, year]) #if unknown, takes previous days value   
1617.         if StaffOnSite==1:   
1618.             storage=actualstorage  #if someone is on site, takes actual 

value   
1619.     InitialStorage=np.float64(storage)#+lastinf-outfs   
1620.     resElPens=np.zeros((3,3))#Penalties for res el   
1621.     resElPens[0,:]=[0,273,304]   
1622.     resElPens[1,:]=[426.99, 300.39, 300.39]   
1623.     resElPens[2,:]=[99.58693574984267,99.58693574984267, 171.28] #123.60

856547318923 from 87.055 to help reduce 0 spill events   
1624.     penstockrup=other_component_remaining_time_to_repair(t)[1] #penstock

   
1625.     hcfail=power_remaining_time_to_repair(t)[0] #head cover   
1626.     igate=intake_gate_closure(t)   
1627.     if penstockrup>0 or hcfail>0:   
1628.         if igate==0: #reduce res el targets to get res below intake gate

 sill so it can be closed   
1629.             resElPens[1,:]=[-48.5, -48.5, -48.5]   
1630.             resElPens[2,:]=[-47, -47, -47] #lowered   
1631.         #draw down reservoir to sill   
1632.     SPOG1Av=gate_all(t)   #Availbility set based on "gate time to repair

"   
1633.     TurbAv1=power_all(t)   
1634.     Nextday=np.zeros(2)   
1635.    
1636.     Optimized=OpsPlan(InfForecast, InitialStorage, dayref,  SPOG1Av,  Tu

rbAv1,  resElPens)   
1637.     Nextday=np.array(Optimized.copy())   #SPOG1, Turb1   
1638.    
1639.     Nextday.clip(min=0) #omit negatives.   
1640.    
1641.     return Nextday   
1642.    
1643. BREACHQ=np.zeros((365, NYr))   
1644. IGCLOSE=np.zeros((365, NYr))   
1645. @sdpy.aux(model, name='Output Saving',cache=False, jit=False)   
1646. def output_saving(t):   
1647.     timestep=t   
1648.     outfs=reservoir_outflow(t)   
1649.     IGCLOSE[timestep,year]=intake_gate_closure(t)   
1650.     BREACHQ[timestep,year]=breach_flow(t)   
1651.     GAVs[timestep, year]=unit_availability(t)   
1652.     UAVs[timestep,year]=gate_availability(t)   
1653.     timetorepairg=gate_remaining_time_to_repair(t) #model['Gate remainin

g time to repair[GateComps]']   
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1654.     timetorepairt=power_remaining_time_to_repair(t) #model['Power remain
ing time to repair[TurbineComps]']   

1655.     RSEs[timestep, year]=reservoir_level(t) #model['Reservoir Level']   
1656.     TBFs[timestep, year]=power_flow_release(t) #model["Power flow releas

e"]   
1657.     SPOGs[timestep, year]=gated_spill_release(t) #model["Gated spill rel

ease"]   
1658.     OT[timestep, year]=overtopping_flow(t)   
1659.     INFs[timestep,year]=reservoir_inflow(t) #model["Inflow"]   
1660.     OUTFs[timestep,year]=outfs   
1661.     TTRS[timestep,0:3, year]=gate_remaining_time_to_repair(t) #model['Ga

te remaining time to repair[GateComps]']   
1662.     TTRS[timestep,3:5, year]=power_remaining_time_to_repair(t) #model['P

ower remaining time to repair[TurbineComps]']   
1663.     TTRS[int(timestep),5:8, year]=other_component_remaining_time_to_repa

ir(t) #model['Other component remaining time to repair[Other infrastructure]']   
1664.     if TTRS[timestep, 2, year]<=0:   
1665.         GPs[timestep,year]=gate_position(t) #model["Gate Position"]   
1666.     if TTRS[timestep, 2, year]>0:   
1667.         GPs[timestep,year]=GPs[timestep-1, year]   
1668.     AllMaxQ_t[timestep,:, year]=np.array(AllMaxQ)   
1669.     if timetorepairg[0]>0:   
1670.         AllMaxQ_t[timestep,0, year] = 0 #gate fails closed, cap is at 0 

  
1671.     if timetorepairg[1]>0:   
1672.         AllMaxQ_t[timestep,0, year] = 861.1+728.9 #gate fails open, cap 

is maxed   
1673.     if timetorepairg[2]>0:   
1674.         tempgatecap=GateFlowCalc(381.6,gate_position(t))   
1675.         AllMaxQ_t[timestep,0, year] = tempgatecap #gate fails in place, 

cap is max flow @ current opening   
1676.     if intake_gate_closure(t)==1: #turbine capacity is zero when intake 

gate closed   
1677.         AllMaxQ_t[timestep, 1, year]=0   
1678.     GateCaps[t,year]=gate_capacity(t)   
1679.     AllMaxQ_t[timestep,0, year]=np.multiply(AllMaxQ_t[int(timestep),0, y

ear], GateCaps[t,year]) #account for debris blockage   
1680.     if timetorepairt[1]>0: #Generator outage   
1681.          AllMaxQ_t[timestep,1, year]=0   
1682.     CAPs[timestep, year]=np.sum(AllMaxQ_t[timestep,:, year])   
1683.     UCRs[timestep, year]=uncontrolled_release(t)   
1684.     GCRs[timestep, year]=gate_control_redundancy(t)   
1685.     return 1   
1686.   
1687.   
1688. @sdpy.aux(model, name='Turbine Instructions',cache=False, jit=False)   
1689. def turbine_instructions(t):   
1690.     return operations_planning(t)[1]   
1691.   
1692.   
1693. @sdpy.aux(model, name='Gate Instructions',cache=False, jit=False)   
1694. def gate_instructions(t):   
1695.     ResEl=reservoir_level(t)   
1696.     OP=operations_planning(t)[0]   
1697.     gps=GateInstr(ResEl, OP)   
1698. #    print("getALLgp: Gate Instruction q: "+str(OPs[0]) + "  Gate positi

on: " +str(gps) + "  Res El: "+str(ResEl))   
1699.     return gps   
1700.   
1701. @sdpy.aux(model, name='Manual Actuation',cache=False, jit=False)   
1702. def manual_actuation(t):   
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1703.     if other_component_remaining_time_to_repair(t)[0]>0 or dam_grid_avai
lability(t)==0 or sensor_remaining_time_to_repair(t)>0:   

1704.         MOBI[t,year]=1   
1705.         return 1   
1706.     else:   
1707.         return 0   
1708. #IF THEN ELSE(Other component remaining time to repair[PLCRTU]>0 :OR: Ga

te instructions>2 :OR: Dam grid availability=0 :OR: Sensor remaining time to rep
air>0, 1 , 0 )+0*Operations planning[g1]   

1709.   
1710. @sdpy.aux(model, name='Initiate',cache=False, jit=False)   
1711. def initiate(t):   
1712.     #IF THEN ELSE(Manual actuation=1:AND:Manual Actuation Initiated<=0, 

1 , 0 )   
1713.     if manual_actuation(t)==1 and manual_actuation_initiated(t)<=0:   
1714.         return 1   
1715.     else:   
1716.         return 0   
1717.   
1718. @sdpy.aux(model, name='Demobilize',cache=False, jit=False)   
1719. def demobilize(t):   
1720.     #IF THEN ELSE(Manual actuation=0:AND:Site staff mobilized=1, 1 , 0) 

  
1721.     os=output_saving(t)   
1722.     if manual_actuation(t)==0 and site_staff_mobilized(t)==1:   
1723.         return 1   
1724.     else:   
1725.         return 0   
1726.   
1727. @sdpy.stock(model, 0, name='Manual Actuation Initiated',cache=False, jit

=False)   
1728. def manual_actuation_initiated(t):   
1729.     return initiate(t)-demobilize(t)   
1730.    
1731. if seedgen==0:   
1732.     DelayStaff=Seeds['DelayStaff']   
1733.   
1734. @sdpy.aux(model, name='Delay In Contacting Staff',cache=False, jit=False

)   
1735. def delay_in_contacting_staff(t):   
1736.     delay=1   
1737.     if manual_actuation_initiated(t)==1:   
1738.         delay=DelayStaff[year] #sets sensor components to failure time   
1739.     return float(delay)   
1740.    
1741. if seedgen==0:   
1742.     DelayAccess=Seeds["DelayAccess"]   
1743.   
1744. @sdpy.aux(model, name='Delay In Accessing Site',cache=False, jit=False) 

  
1745. def delay_in_accessing_site(t):   
1746.     delay=3+np.zeros(2)   
1747.     for c in range(2):   
1748.         if manual_actuation_initiated(t)==1:   
1749.                 delay[c]=DelayAccess[c, year]   
1750.     return float(delay[0]) #Can add powerhouse delays later, ignoring fo

r now.   
1751.   
1752. @sdpy.aux(model, name='Contact Initiation',cache=False, jit=False)   
1753. def contact_initiation(t):   
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1754.     #IF THEN ELSE(Initiate=1 :AND: Site staff mobilized=0 :AND: Plant st
aff notified=0, Delay in contacting staff   

1755. #, IF THEN ELSE(Demobilize=1, 1 , 0 ))   
1756.     if initiate(t)==1 and site_staff_mobilized(t)==0 and plant_staff_not

ified(t)==0:   
1757.         return delay_in_contacting_staff(t)   
1758.     else:   
1759.         if demobilize(t)==1:   
1760.             return 1   
1761.         else:   
1762.             return 0   
1763.   
1764. @sdpy.aux(model, name='Contacting',cache=False, jit=False)   
1765. def contacting(t):   
1766.     #IF THEN ELSE(Time remaining to contact plant manager and site staff

>0 :AND: Manual Actuation Initiated=1, IF THEN ELSE(Time remaining to contact pl
ant manager and site staff<1, Time remaining to contact plant manager and site s
taff, 1) , 0 )   

1767.     if time_remaining_to_contact_staff(t)>0 and manual_actuation_initiat
ed(t)==1:   

1768.         if time_remaining_to_contact_staff(t)<1:   
1769.             return time_remaining_to_contact_staff(t)   
1770.         else:   
1771.             return 1   
1772.     else:   
1773.         return 0   
1774.   
1775. @sdpy.stock(model, 1, name='Time Remaining To Contact Staff',cache=False

, jit=False)   
1776. def time_remaining_to_contact_staff(t):   
1777.     return contact_initiation(t)-contacting(t)   
1778.   
1779. @sdpy.aux(model, name='Plant Staff Notified',cache=False, jit=False)   
1780. def plant_staff_notified(t):   
1781.     #IF THEN ELSE(Time remaining to contact plant manager and site staff

<=0 :AND: Manual Actuation Initiated=1, 1 , 0 )   
1782.     if time_remaining_to_contact_staff(t)<=0 and manual_actuation_initia

ted(t)==1:   
1783.         return 1   
1784.     else:   
1785.         return 0   
1786.    
1787. plantStaffNotified=np.zeros(365)   
1788. @sdpy.aux(model, name='Mobilization Initiated',cache=False, jit=False)   
1789. def mobilization_initiated(t):   
1790.     time=t   
1791.     plantStaffNotified[int(time)]=plant_staff_notified(t)   
1792.     AccessDelay=delay_in_accessing_site(t)   
1793.     demob=demobilize(t)   
1794.     Mobinit=0   
1795.     if time>0:   
1796.         if plantStaffNotified[int(time)]==1 and plantStaffNotified[int(t

ime-1)]==0:   
1797.             Mobinit=AccessDelay  #Adding delays in access time to stock 

  
1798.     if demob==1:   
1799.         Mobinit=1 #returning stock to demobilized value which is 3 hr ti

me to get to site on av   
1800.     return float(Mobinit)   
1801.   
1802.   
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1803. @sdpy.aux(model, name='Mobilizing',cache=False, jit=False)   
1804. def mobilizing(t):   
1805.     #IF THEN ELSE(Time remaining to access site>0 :AND: Manual Actuation

 Initiated=1 :AND: Time remaining to contact plant manager and site staff<=0, IF
 THEN ELSE(Time remaining to access site<1, Time remaining to access site, 1), 0
 )   

1806.     if time_remaining_to_access_site(t)>0 and manual_actuation_initiated
(t)==1 and time_remaining_to_contact_staff(t)<=0:   

1807.         if time_remaining_to_access_site(t)<1:   
1808.             return time_remaining_to_access_site(t)   
1809.         else:   
1810.             return 1   
1811.     else:   
1812.         return 0   
1813.   
1814. @sdpy.stock(model, 1, name='Time Remaining To Access Site',cache=False, 

jit=False)   
1815. def time_remaining_to_access_site(t):   
1816.     return mobilization_initiated(t)-mobilizing(t)   
1817.   
1818. @sdpy.aux(model, name='Site Staff Mobilized',cache=False, jit=False)   
1819. def site_staff_mobilized(t):   
1820.     #IF THEN ELSE(Time remaining to access site<=0 :AND: Manual Actuatio

n Initiated=1 :AND: Time remaining to contact plant manager and site staff<=0, 1
, 0)   

1821.     if time_remaining_to_access_site(t)<=0 and manual_actuation_initiate
d(t)==1 and time_remaining_to_contact_staff(t)<=0:   

1822.         MOB[t,year]=1   
1823.         return 1   
1824.     else:   
1825.         return 0   
1826.   
1827. @sdpy.aux(model, name='Gate Control Redundancy',cache=False, jit=False) 

  
1828. def gate_control_redundancy(t):   
1829.     #IF THEN ELSE(Manual actuation=0, 2, IF THEN ELSE(Manual actuation=1

 :AND: Site staff mobilized=1, 1 , 0 ))   
1830.     if manual_actuation(t)==0:   
1831.         return 2   
1832.     else:   
1833.         if manual_actuation(t)==1 and site_staff_mobilized(t)==1:   
1834.             return 1   
1835.         else:   
1836.             return 0   
1837.    
1838. """  
1839. 4.5.  GATE ACTUATORS  
1840.   
1841. """   
1842.   
1843. @sdpy.aux(model, name='Dam Grid Availability',cache=False, jit=False)   
1844. def dam_grid_availability(t):   
1845.     #IF THEN ELSE(Other component remaining time to repair[Grid]>0, 0, 1

)   
1846.     if other_component_remaining_time_to_repair(t)[2]>0:   
1847.         return 0   
1848.     else:   
1849.         return 1   
1850.   
1851. @sdpy.aux(model, name='Gate Power Supply',cache=False, jit=False)   
1852. def gate_power_supply(t):   
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1853.     return dam_grid_availability(t)   
1854.   
1855. @sdpy.aux(model, name="Gate Availability",cache=False, jit=False)   
1856. def gate_availability(t):   
1857.     time=t   
1858.     gateavail=1   
1859.     sstaff=site_staff_mobilized(t)   
1860.     staffproblemgate=0   
1861.     if time>0:   
1862.         if (other_component_remaining_time_to_repair(t)[0]>0 or other_co

mponent_remaining_time_to_repair(t)[2]>0) and sstaff==0:   
1863.             staffproblemgate=1   
1864.         gateout=gate_all(t)   
1865.         if gateout>0 or staffproblemgate==1:   
1866.             gateavail=0   
1867.     return float(gateavail)   
1868.   
1869. @sdpy.aux(model, name="Components Failing Gate In Place",cache=False, ji

t=False)   
1870. def components_failing_gate_in_place(t):   
1871.     #IF THEN ELSE(Gate remaining time to repair[C FIP]>0, 0 , 1 )   
1872.     if gate_remaining_time_to_repair(t)[2]>0:   
1873.         return 0   
1874.     else:   
1875.         return 1   
1876.   
1877. @sdpy.aux(model, name="Components Collapsing Gate",cache=False, jit=Fals

e)   
1878. def components_collapsing_gate(t):   
1879.     #IF THEN ELSE(Gate remaining time to repair[C FO]>0, 0 , 1 )   
1880.     if gate_remaining_time_to_repair(t)[1]>0:   
1881.         return 0   
1882.     else:   
1883.         return 1   
1884.   
1885. @sdpy.aux(model, name="Components Failing Gate Closed",cache=False, jit=

False)   
1886. def components_failing_gate_closed(t):   
1887.     #IF THEN ELSE(Gate remaining time to repair[C FC]>0, 0 , 1 )   
1888.     if gate_remaining_time_to_repair(t)[0]>0:   
1889.         return 0   
1890.     else:   
1891.         return 1   
1892.   
1893. @sdpy.aux(model, name="Gate Collapsed",cache=False, jit=False)   
1894. def gate_collapse(t):   
1895.     #IF THEN ELSE(Components collapsing gate=0, 1 , 0 )   
1896.     if components_collapsing_gate(t)==0:   
1897.         return 1   
1898.     else:   
1899.         return 0   
1900.   
1901. @sdpy.aux(model, name="Fail Closed",cache=False, jit=False)   
1902. def fail_closed(t):   
1903.     #IF THEN ELSE(Components failing gate closed=0, 1 , 0)   
1904.     if components_failing_gate_closed(t)==0:   
1905.         return 1   
1906.     else:   
1907.         return 0   
1908.    
1909. max_opening=12.5   



324 

 

1910.   
1911. @sdpy.aux(model, name="Last Gate Position",cache=False, jit=False)   
1912. def last_gate_position(t):   
1913.     timestep=t   
1914.     gp=GPs[timestep,year]   
1915.     if gate_availability(t)==0:   
1916.         gateavinds=np.where(GAVs[:,year]==1)[0]   
1917.         if np.size(gateavinds)!=0:   
1918.             lastgateactivets=np.max(gateavinds)   
1919.             gp=GPs[lastgateactivets, year]   
1920.     return gp   
1921.   
1922. @sdpy.aux(model, name="Gate Position",cache=False, jit=False)   
1923. def gate_position(t):   
1924.     GColl=gate_collapse(t)   
1925.     MaxO=12.5   
1926.     GFClosed=fail_closed(t)   
1927.     GateAvailability=gate_availability(t)   
1928.     GAVs[int(t), year]=GateAvailability   
1929.     GateInstructions=gate_instructions(t)   
1930.     LastGatePosition=last_gate_position(t)   
1931.     if GColl==1:   
1932.         return MaxO   
1933.     if GFClosed==1:   
1934.         return 0   
1935.     if GateAvailability==1:   
1936.         return GateInstructions   
1937.     if GateAvailability==0:   
1938.         return LastGatePosition   
1939.    
1940.    
1941. """  
1942. 4.6. TURBINE ACTUATORS  
1943.   
1944. """   
1945.   
1946. @sdpy.aux(model, name='Unit Availability',cache=False, jit=False)   
1947. def unit_availability(t):   
1948.     time=t   
1949.     turbavail=1   
1950.     if time>0:   
1951.         turbout=power_all(t)   
1952.         penstockrup=other_component_remaining_time_to_repair(t)[1] #pens

tock   
1953.         if turbout>0:   
1954.             turbavail=0   
1955.         if penstockrup>0:   
1956.             turbavail=0   
1957.         if other_component_remaining_time_to_repair(t)[2]>0: #grid failu

re   
1958.             turbavail=0   
1959.     return turbavail   
1960.   
1961. @sdpy.aux(model, name='Head Cover',cache=False, jit=False)   
1962. def head_cover(t):   
1963.     if power_remaining_time_to_repair(t)[0]>0:   
1964.         return 0   
1965.     else:   
1966.         return 1   
1967.   
1968. @sdpy.aux(model, name='Generator',cache=False, jit=False)   
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1969. def generator(t):   
1970.     if power_remaining_time_to_repair(t)[1]>0:   
1971.         return 0   
1972.     else:   
1973.         return 1   
1974.   
1975. @sdpy.aux(model, name='Head Cover Max Flow',cache=False, jit=False)   
1976. def head_cover_max_flow(t):   
1977.     flag1=head_cover(t)+1 #if head cover = 0 then flag=1   
1978.     if other_component_remaining_time_to_repair(t)[1]>0: #penstock   
1979.         flag1=1   
1980.     resels=reservoir_level(t)   
1981.     t1=fncTurbineMaxFlow(resels, flag1)   
1982.     if intake_gate_closure(t)==1:   
1983.         return 0   
1984.     if intake_gate_closure(t)==0:   
1985.         return np.max([np.min([5*(t1), reservoir_storage(t)+reservoir_in

flow(t)-gated_spill_release(t)-(-48.6)]), 0])   
1986.   
1987. @sdpy.aux(model, name='Turbine Flow',cache=False, jit=False)   
1988. def turbine_flow(t):   
1989.     #IF THEN ELSE(Components collapsing gate=1, IF THEN ELSE(Head Cover=

0, Head Cover Max Flow , IF THEN ELSE(Unit availability=1, Turbine instructions 
, 0)), 0)   

1990.     if components_collapsing_gate(t)==1:   
1991.         if head_cover(t)==0:   
1992.             return head_cover_max_flow(t)   
1993.         if head_cover(t)==1 and unit_availability(t)==1:   
1994.             return turbine_instructions(t)   
1995.         else: return 0   
1996.     else:   
1997.         return 0   
1998.   
1999. @sdpy.aux(model, name="Powerhouse Flow Conveyance",cache=False, jit=Fals

e)   
2000. def powerhouse_flow_conveyance(t):   
2001.     return turbine_flow(t)   
2002.    
2003. """  
2004. 5. MODEL RUNNING (Base Case)  
2005.   
2006. Stocks redefined each loop to ensure initial values are reset.  
2007. This may be changed later so stocks are also defined within their sector

s above.  
2008.   
2009. """   
2010. for yr in range(NYr):   
2011.     year=yr   
2012.     # Define time parameters to run model   
2013.     initial_time = 0   
2014.     final_time = 364   
2015.     time_step = 1   
2016.     model.run(initial_time, final_time, time_step)   
2017. #    print("Completed year :"+str(yr), flush=(yr%args.flush_period==0)) 

  
2018.     initial_reservoir_storage=SSCrev(B_RSEs[0,year])   
2019.     if initial_reservoir_storage<=-

304.1:  #making sure initial reservoir level isn't a failure   
2020.         initial_reservoir_storage=364.27   
2021.     model.reinitStock(initial_reservoir_storage, reservoir_storage)   
2022.     model.reinitStock(np.zeros(3), gate_remaining_time_to_repair)   
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2023.     model.reinitStock(np.zeros(2), power_remaining_time_to_repair)   
2024.     model.reinitStock(np.zeros(3), other_component_remaining_time_to_rep

air)   
2025.     model.reinitStock(0, sensor_remaining_time_to_repair)   
2026.     model.reinitStock(1, time_remaining_to_access_site)   
2027.     model.reinitStock(1, time_remaining_to_contact_staff)   
2028.     model.reinitStock(0, manual_actuation_initiated)   
2029.     plantStaffNotified=np.zeros(365)   
2030.     RESEL_IG=[]   
2031.    
2032.    
2033. """  
2034. 6. DAM SAFETY PRIORITIZED RUN  
2035.   
2036. """   
2037.    
2038. Output=[RSEs, TBFs, SPOGs, OT]   
2039. Otheroutput=[TTRS, TOTR, DEBRISREMOVAL, DAY, MON]   
2040. EOCs=RSEs-376.5   
2041. EOCs[EOCs<0]=0 #Filling in elevations over the core and truncating to ze

ro if less than 376.5   
2042.   
2043. @njit   
2044. def OTC(elev): #Overtopping curve   
2045.     if elev<=378.41:   
2046.         return 0   
2047.     else:   
2048.         return (-35.7505780379803*elev**3 + 40896.2749435669* elev**2 -

15593240.0619064*elev + 1981715583.08889)   
2049.    
2050.    
2051. RESEL_IG=[]   
2052. @sdpy.aux(model, name="Intake Gate Closure",cache=False, jit=False)   
2053. def intake_gate_closure(t):   
2054.     penstockrup=other_component_remaining_time_to_repair(t)[1]   
2055.     hcfail=power_remaining_time_to_repair(t)[0]   
2056.     igclosed=0   
2057.     timestep=t   
2058.     if hcfail>0 or penstockrup>0:   
2059.         if timestep>OCdeltat[1,year]+1:   
2060.             igclosed=1 #closes immediately after 1 timestep   
2061.     return igclosed   
2062.   
2063. @sdpy.aux(model, name="Head Cover Max Flow",cache=False, jit=False)   
2064. def head_cover_max_flow(t): #reduces to 1/24th of actual release to acco

unt for intake gate closure under rupture flow   
2065.     flag1=head_cover(t)+1 #if head cover = 0 then flag=1   
2066.     if other_component_remaining_time_to_repair(t)[1]>0: #penstock   
2067.         flag1=1   
2068.     resels=reservoir_level(t)   
2069.     t1=fncTurbineMaxFlow(resels, flag1)   
2070.     if intake_gate_closure(t)==1:   
2071.         return 0   
2072.     if intake_gate_closure(t)==0:   
2073.         return (1/24.)*np.max([np.min([5*(t1), reservoir_storage(t)+rese

rvoir_inflow(t)-gated_spill_release(t)-(-48.6)]), 0])   
2074.   
2075. @sdpy.aux(model, name='Operations Planning',cache=False, jit=False)   
2076. @sdpy.subscript(controls)   
2077. def operations_planning(t):   
2078.     timestep=t   
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2079.     dayref=dayrefs(Startdays[year], timestep)   
2080.     Inf114=Inflow[timestep:14+timestep, year] #Changed to one day ahead 

so proper spills are released for Vensim version   
2081.     InfForecast=Inf114   
2082.     gaugerelay=gauge_relay(t)   
2083.     if gaugerelay<-

900 or gaugerelay>381.73: #If error is so high that it becomes obvious   
2084.         storage=-1000   
2085.     else:   
2086.         storage=SSCrev(gaugerelay)   
2087.     StaffOnSite=site_staff_mobilized(t)   
2088.     actualstorage=reservoir_storage(t)   
2089.     if (StaffOnSite>0) or (storage==-1000):   
2090.         if storage==-1000:   
2091.             storage=SSCrev(RSEs[timestep-

1, year]) #if unknown, takes previous days value   
2092.         if StaffOnSite==1:   
2093.             storage=actualstorage  #if someone is on site, takes actual 

value   
2094.     InitialStorage=np.float64(storage)#+lastinf-outfs   
2095.     resElPens=np.zeros((3,3))#Penalties for res el   
2096.     resElPens[0,:]=[0,273,304]   
2097.     resElPens[1,:]=[426.99, 300.39, 300.39]   
2098.     resElPens[2,:]=[99.58693574984267,99.58693574984267, 171.28] #123.60

856547318923 from 87.055 to help reduce 0 spill events   
2099.     SPOG1Av=gate_all(t)   #Availbility set based on "gate time to repair

"   
2100.     TurbAv1=power_all(t)   
2101.     if SPOG1Av>0 or other_component_remaining_time_to_repair(t)[0]>0 or 

other_component_remaining_time_to_repair(t)[2]>0:   
2102.         #if grid, plc or gate unavailable   
2103.         resElPens[1,:]=[100, 100, 100] #reducing target nmax to 367.8 to

 keep reservoir low for large inflow events   
2104.     Nextday=np.zeros(2)   
2105.    
2106.     Optimized=OpsPlan(InfForecast, InitialStorage, dayref,  SPOG1Av,  Tu

rbAv1,  resElPens)   
2107.     if SPOG1Av>0 or other_component_remaining_time_to_repair(t)[0]>0 or 

other_component_remaining_time_to_repair(t)[2]>0:   
2108.         if TurbAv1<=0:   
2109.             Optimized[1]=fncTurbineMaxFlow(SSC(InitialStorage), 1)   
2110.     Nextday=np.array(Optimized.copy())   #SPOG1, Turb1   
2111.     Nextday.clip(min=0) #omit negatives.   
2112.     return Nextday   
2113.    
2114.    
2115. #indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr 

* 0.5))   
2116. #OCOutages[0,indices] = 0   
2117. #OCdeltat[0,indices] = 0   
2118. #indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr 

* 0.5))   
2119. #SErrors[indices]=0   
2120. #SErrorDeltat[indices]=0   
2121. #indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr 

* 0.5))   
2122. #SOutages[indices]=0   
2123. #Sdeltat[indices]=0   
2124.    
2125.    
2126. #Save simulation 1 results with 1 in them.   
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2127. RSEs1=RSEs   
2128. TBFs1=TBFs   
2129. SPOGs1=SPOGs   
2130. OT1=OT   
2131. OUTFs1=OUTFs   
2132. TTRS1=TTRS   
2133. CAPs1=CAPs   
2134. EOCs1=EOCs   
2135. UCRs1=UCRs   
2136. GCRs1=GCRs   
2137. GAVs1=GAVs   
2138. GPs1=GPs   
2139.    
2140. #Redefining arrays for second run   
2141. RSEs=np.zeros((365,NYr))   
2142. GAVs=np.zeros((365,NYr))   
2143. TBFs=np.zeros((365,NYr))   
2144. SPOGs=np.zeros((365,NYr))   
2145. OT=np.zeros((365,NYr))   
2146. INFs=np.zeros((365,NYr))   
2147. OUTFs=np.zeros((365,NYr))   
2148. GPs=np.zeros((365, NYr))   
2149. TOTR=np.zeros((365,NYr))   
2150. DEBRISREMOVAL=np.zeros(NYr)   
2151. DAY=np.zeros((365,NYr))   
2152. MON=np.zeros((365,NYr))   
2153. AllMaxQ_t=np.zeros((365,2, NYr))   
2154. AllMaxQ=[861.1+728.9,32.5+32.5]   
2155. TTRS=np.zeros((365,8, NYr))   
2156. Retention=np.zeros((365,NYr))   
2157. yearnum=np.zeros(NYr)   
2158. for yr in range(NYr):   
2159.     yearnum[yr]=str(1984+yr)   
2160. CAPs=np.zeros((365, NYr))   
2161. EOCs=np.zeros((365, NYr))   
2162. UCRs=np.zeros((365,NYr))   
2163. GCRs=np.zeros((365,NYr))   
2164.    
2165. #Reducing sensor issues, plcrtu failures by 50%   
2166. OCOutages1=OCOutages.copy()   
2167. OCdeltat1=OCdeltat.copy()   
2168. SErrors1=SErrors.copy()   
2169. SErrorDeltat1=SErrorDeltat.copy()   
2170. SOutages1=SOutages.copy()   
2171. Sdeltat1=Sdeltat.copy()   
2172. GateOutagesAll1=GateOutagesAll.copy()   
2173.    
2174. indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr *

 0.5))   
2175. OCOutages[0,indices] = 0   
2176. OCdeltat[0,indices] = 0   
2177. indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr *

 0.5))   
2178. SErrors[indices]=0   
2179. SErrorDeltat[indices]=0   
2180. indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr *

 0.5))   
2181. SOutages[indices]=0   
2182. Sdeltat[indices]=0   
2183. indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr *

 0.2))   
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2184. GateOutagesAll[0,indices] = 0 #gate failing closed 15% improvement   
2185. indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr *

 0.2))   
2186. GateOutagesAll[2,indices] = 0 #gate failing in place 15% improvement   
2187.    
2188.    
2189. for yr in range(NYr):   
2190.     tm=time.time()   
2191.     year=yr   
2192.     initial_reservoir_storage=SSCrev(B_RSEs[0,year])   
2193.     if initial_reservoir_storage<=-

304.1:  #making sure initial reservoir level isn't a failure   
2194.         initial_reservoir_storage=364.27   
2195.     model.reinitStock(initial_reservoir_storage, reservoir_storage)   
2196.     model.reinitStock(np.zeros(3), gate_remaining_time_to_repair)   
2197.     model.reinitStock(np.zeros(2), power_remaining_time_to_repair)   
2198.     model.reinitStock(np.zeros(3), other_component_remaining_time_to_rep

air)   
2199.     model.reinitStock(0, sensor_remaining_time_to_repair)   
2200.     model.reinitStock(1, time_remaining_to_access_site)   
2201.     model.reinitStock(1, time_remaining_to_contact_staff)   
2202.     model.reinitStock(0, manual_actuation_initiated)   
2203.    
2204.     # Define time parameters to run model   
2205.     initial_time = 0   
2206.     final_time = 364   
2207.     time_step = 1   
2208.    
2209.    
2210.     model.run(initial_time, final_time, time_step)   
2211. #    print("Completed DS year :"+str(yr), flush=(yr%args.flush_period==0

))   
2212. #    tm1=time.time()   
2213. #    timer.append(tm1-tm)   
2214.     plantStaffNotified=np.zeros(365)   
2215.     RESEL_IG=[]   
2216.    
2217.    
2218. """  
2219. 7. POST-PROCESSING AND SAVING RESULTS  
2220. Percentiles are saved to reduce output file sizes as much as possible  
2221.   
2222. """   
2223.    
2224. S_RL=pd.read_csv(name1)   
2225. S_RL=S_RL.set_index("NewInd")   
2226. S_CL=pd.read_csv(name2)   
2227. S_CL=S_CL.set_index("NewInd") #setting index to the formatted OS IDs   
2228.    
2229. scenar = all_scenarios[seednum]   
2230. ScenarioRL=S_RL.filter(items=scenar[0:7], axis=0)   
2231. ScenarioCL=S_CL.filter(items=scenar[7:13], axis=0)   
2232. AbnormalRL=ScenarioRL[ScenarioRL['CausalFactorName']!="None"]   
2233. AbnormalCL=ScenarioCL[ScenarioCL['CausalFactorName']!="None"]   
2234. AbnormalCL=AbnormalCL[AbnormalCL['CausalFactorName']!="Normal"]   
2235.    
2236. ScenarioIDs=[]   
2237.    
2238. for i in range(len(AbnormalRL)):   
2239.     ScenarioIDs.append(AbnormalRL.index[i])   
2240. for i in range(len(AbnormalCL)):   
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2241.     ScenarioIDs.append(AbnormalCL.index[i])   
2242.    
2243. AllAdScenarios=ScenarioIDs.copy()   
2244.    
2245. AllTimes=np.zeros((11, NYr))   
2246. AllTimes[0:3,:]=Gdeltat   
2247. AllTimes[3:5,:]=Tdeltat   
2248. AllTimes[5,:]=Sdeltat1   
2249. AllTimes[6:9,:]=OCdeltat1   
2250. if "1359_2" in ScenarioIDs: #adding debris   
2251.     AllTimes[9,:]=np.ones(NYr)   
2252. AllTimes[10,:]=IFErrorDeltat   
2253. AllTimes=AllTimes.transpose()   
2254. ColNames=["1362", "1361", "1360", "836", "838","30", "18","42","44", "13

59", "45"]   
2255. AllTimes=pd.DataFrame(AllTimes, columns=ColNames)   
2256.    
2257. PersonnelScenarios=[]   
2258. if "48_1" in ScenarioIDs:   
2259.     PersonnelScenarios.append("48")   
2260.     ScenarioIDs.remove("48_1")   
2261. if "48_2" in ScenarioIDs:   
2262.     PersonnelScenarios.append("48")   
2263.     ScenarioIDs.remove("48_2")   
2264. if "29_1" in ScenarioIDs:   
2265.     PersonnelScenarios.append("29")   
2266.     ScenarioIDs.remove("29_1")   
2267. if "29_2" in ScenarioIDs:   
2268.     PersonnelScenarios.append("29")   
2269.     ScenarioIDs.remove("29_2")   
2270. if "29_3" in ScenarioIDs:   
2271.     PersonnelScenarios.append("29")   
2272.     ScenarioIDs.remove("29_3")   
2273.    
2274.    
2275.    
2276. ScenarioIDs_simp=[]   
2277. for i in range(len(ScenarioIDs)):   
2278.     head, sep, tail = ScenarioIDs[i].partition('_')   
2279.     ScenarioIDs_simp.append(head)   
2280.    
2281. AdTimes=AllTimes[ScenarioIDs_simp]   
2282.    
2283. TrueScenarios1=[] #this will contain a list of true scenario results   
2284. for yr in range(NYr):   
2285.     imptimes=AdTimes.iloc[yr]   
2286.     imptimesarr=np.array(imptimes)   
2287.     RSEdiff=1 #this means there is a difference between the normal and c

ase reservoir levels   
2288.     scenar=[]   
2289.     for t in range(361):   
2290.         if t in imptimesarr:   
2291.             if len(scenar)==0:   
2292.                 scenstart=t   
2293.             imps=imptimes[imptimes == t].index   
2294.             for i in range(len(imps)):   
2295.                 scenar.append(imps[i])       #will keep adding to this s

cenario as events happen, if RSEs don't change   
2296.         #NOW check for scenario end, which happens when the next 3 days 

RSE is within 0.05 m of normal   
2297.         if len(scenar)!=0:   
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2298.             if (-0.05<(RSEs1[t+1,yr]-B_RSEs[t+1, yr])<0.05) and (-
0.05<(RSEs1[t+2,yr]-B_RSEs[t+2, yr])<0.05) and (-0.05<(RSEs1[t+3,yr]-
B_RSEs[t+3, yr])<0.05) or (RSEs1[t,yr]<=353.75) or (t==360):   

2299.                 RSEdiff=0   
2300.                 scenend=t   
2301.                 if len(PersonnelScenarios)>0:   
2302. #                    if imps[i]=='44' or imps[i]=='18': #plc/rtu or grid

 failures necessitate site access for gate op   
2303.                     scenar+=PersonnelScenarios #add site and staff delay

s to ensure they are counted towards scenario   
2304.    
2305.                 if scenstart!=scenend:   
2306.                 #post process sub-scenario   
2307.                     Failure=0   
2308.                     RSEs1subset=RSEs1[scenstart:t+1, yr]   
2309.                     SPOGs1subset=SPOGs1[scenstart:t+1, yr]   
2310.                     TBFs1subset=TBFs1[scenstart:t+1, yr]   
2311.                     OTs1subset=OT1[scenstart:t+1, yr]   
2312.    
2313.                     CAPs1subset=CAPs1[scenstart:t+1, yr]   
2314.                     UCRs1subset=UCRs1[scenstart:t+1, yr]   
2315.                     GCRs1subset=GCRs1[scenstart:t+1, yr]   
2316.                     if np.sum(UCRs1subset)==0:   
2317.                         UCRs1subset=0 #avoid saving useless info   
2318.                     if min(CAPs1subset)==1655:   
2319.                         CAPs1subset=1655 #avoid saving useless info   
2320.                     if min(GCRs1subset)==2:   
2321.                         GCRs1subset=2 #avoid saving useless info   
2322.                     INFsubset=INFs[scenstart:t+1, yr]   
2323.                     Avg5dInfThreshold=0   
2324.                     Max5dInfThreshold=0   
2325.                     if min(RSEs1subset)<=353.75:   
2326.                         Failure=1   
2327.                         minind=np.argmin(RSEs1subset)   
2328.                         if minind>5:   
2329.                             Avg5dInfThreshold=np.mean(INFsubset[minind-

5:minind])   
2330.                             Max5dInfThreshold=max(INFsubset[minind-

5:minind])   
2331.                         else:   
2332.                             Avg5dInfThreshold=np.mean(INFsubset[0:minind

])   
2333.                             Max5dInfThreshold=max(INFsubset[0:minind])   
2334.                     maxRSE=max(RSEs1subset)   
2335.                     #replacing elements in scenar with complete OS ident

ifier   
2336.                     scenar1= {pref:ele for pref in scenar for ele in All

AdScenarios if pref in ele}   
2337.                     scenar1 = list(scenar1.values())   
2338.                     AllOS=['18_3', '29_4', '30_4', '42_2', '44_3', '45_2

', '48_3', '836_2', '838_2', '1359_1', '1360_3', '1361_1', '1362_1']   
2339.                     for i in range(len(scenar1)): #convert all normal to

 the scenario represented in scenar1   
2340.                         head, sep, tail = scenar1[i].partition('_')   
2341.                         indices = [i for i, s in enumerate(AllOS) if hea

d in s]   
2342.                         AllOS[indices[0]]=scenar1[i] #complete list of O

S's   
2343.                     #Convert list of OS's to seed number   
2344.                     subseednum=all_scenarios.get_scenario_index(AllOS)   
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2345.                     sOut1=[subseednum, scenar1, Starts[yr], (scenstart, 
scenend), Failure, (Avg5dInfThreshold, Max5dInfThreshold), maxRSE, RSEs1subset, 
CAPs1subset, UCRs1subset, GCRs1subset, yr, SPOGs1subset, TBFs1subset, OTs1subset
]   

2346.                     #reset scenar   
2347.                     scenar=[]   
2348.                     TrueScenarios1.append(sOut1)   
2349.                     if RSEs1[t,yr]<=353.75: #eliminate unnecessary furth

er processing   
2350.                         break   
2351.                 else:   
2352.                     scenar=[] #skips scenarios that didn't cause any dif

ference in reservoir levels   
2353.    
2354. # Dam safety improved   
2355.                        
2356. AllTimes=np.zeros((11, NYr))   
2357. AllTimes[0:3,:]=Gdeltat   
2358. AllTimes[3:5,:]=Tdeltat   
2359. AllTimes[5,:]=Sdeltat   
2360. AllTimes[6:9,:]=OCdeltat   
2361. if "1359_2" in ScenarioIDs: #adding debris   
2362.     AllTimes[9,:]=np.ones(NYr)   
2363. AllTimes[10,:]=IFErrorDeltat   
2364. AllTimes=AllTimes.transpose()   
2365. ColNames=["1362", "1361", "1360", "836", "838","30", "18","42","44", "13

59", "45"]   
2366. AllTimes=pd.DataFrame(AllTimes, columns=ColNames)   
2367.    
2368.    
2369. ScenarioIDs_simp=[]   
2370. for i in range(len(ScenarioIDs)):   
2371.     head, sep, tail = ScenarioIDs[i].partition('_')   
2372.     ScenarioIDs_simp.append(head)   
2373.    
2374. AdTimes=AllTimes[ScenarioIDs_simp]   
2375.    
2376. TrueScenarios=[] #this will contain a list of true scenario results   
2377. for yr in range(NYr):   
2378.     imptimes=AdTimes.iloc[yr]   
2379.     imptimesarr=np.array(imptimes)   
2380.     RSEdiff=1 #this means there is a difference between the normal and c

ase reservoir levels   
2381.     scenar=[]   
2382.     for t in range(361):   
2383.         if t in imptimesarr:   
2384.             if len(scenar)==0:   
2385.                 scenstart=t   
2386.             imps=imptimes[imptimes == t].index   
2387.             for i in range(len(imps)):   
2388.                 scenar.append(imps[i])       #will keep adding to this s

cenario as events happen, if RSEs don't change   
2389.         #NOW check for scenario end, which happens when the next 3 days 

RSE is within 0.05 m of normal   
2390.         if len(scenar)!=0:   
2391.             if (-0.05<(RSEs[t+1,yr]-B_RSEs[t+1, yr])<0.05) and (-

0.05<(RSEs[t+2,yr]-B_RSEs[t+2, yr])<0.05) and (-0.05<(RSEs[t+3,yr]-
B_RSEs[t+3, yr])<0.05) or (RSEs[t,yr]<=353.75) or (t==360):   

2392.                 RSEdiff=0   
2393.                 scenend=t   
2394.                 if len(PersonnelScenarios)>0:   
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2395. #                    if imps[i]=='44' or imps[i]=='18': #plc/rtu or grid
 failures necessitate site access for gate op   

2396.                     scenar+=PersonnelScenarios #add site and staff delay
s to ensure they are counted towards scenario   

2397.                 if scenstart!=scenend:   
2398.                     RSEdiff=0   
2399.                     scenend=t   
2400.                     #post process sub-scenario   
2401.                     Failure=0   
2402.                     RSEs1subset=RSEs[scenstart:t+1, yr]   
2403.                     CAPs1subset=CAPs[scenstart:t+1, yr]   
2404.                     UCRs1subset=UCRs[scenstart:t+1, yr]   
2405.                     GCRs1subset=GCRs[scenstart:t+1, yr]   
2406.                     if np.sum(UCRs1subset)==0:   
2407.                         UCRs1subset=0 #avoid saving useless info   
2408.                     if min(CAPs1subset)==1655:   
2409.                         CAPs1subset=1655 #avoid saving useless info   
2410.                     if min(GCRs1subset)==2:   
2411.                         GCRs1subset=2 #avoid saving useless info   
2412.                     INFsubset=INFs[scenstart:t+1, yr]   
2413.                     Avg5dInfThreshold=0   
2414.                     Max5dInfThreshold=0   
2415.                     if min(RSEs1subset)<=353.75:   
2416.                         Failure=1   
2417.                         minind=np.argmin(RSEs1subset)   
2418.                         if minind>5:   
2419.                             Avg5dInfThreshold=np.mean(INFsubset[minind-

5:minind])   
2420.                             Max5dInfThreshold=max(INFsubset[minind-

5:minind])   
2421.                         else:   
2422.                             Avg5dInfThreshold=np.mean(INFsubset[0:minind

])   
2423.                             Max5dInfThreshold=max(INFsubset[0:minind])   
2424.                     maxRSE=max(RSEs1subset)   
2425.                     #replacing elements in scenar with complete OS ident

ifier   
2426.                     scenar1= {pref:ele for pref in scenar for ele in All

AdScenarios if pref in ele}   
2427.                     scenar1 = list(scenar1.values())   
2428.                     AllOS=['18_3', '29_4', '30_4', '42_2', '44_3', '45_2

', '48_3', '836_2', '838_2', '1359_1', '1360_3', '1361_1', '1362_1']   
2429.                     for i in range(len(scenar1)): #convert all normal to

 the scenario represented in scenar1   
2430.                         head, sep, tail = scenar1[i].partition('_')   
2431.                         indices = [i for i, s in enumerate(AllOS) if hea

d in s]   
2432.                         AllOS[indices[0]]=scenar1[i] #complete list of O

S's   
2433.                     #Convert list of OS's to seed number   
2434.                     subseednum=all_scenarios.get_scenario_index(AllOS)   
2435.                     sOut=[subseednum, scenar1, Starts[yr], (scenstart, s

cenend), Failure, (Avg5dInfThreshold, Max5dInfThreshold), maxRSE, RSEs1subset, C
APs1subset, UCRs1subset, GCRs1subset, yr]   

2436.                     #reset scenar   
2437.                     scenar=[]   
2438.                     TrueScenarios.append(sOut)   
2439.                     if RSEs[t,yr]<=353.75: #eliminate unnecessary furthe

r processing   
2440.                         break   
2441.                 else:   
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2442.                     scenar=[] #skips scenarios that didn't cause any dif
ference in reservoir levels   

2443.    
2444.                       
2445.    
2446. #Error messages   
2447. #Check min and max RSEs   
2448. err=[]   
2449. mnrse=np.min(RSEs)   
2450. if mnrse<320:   
2451.     err.append("Minimum RSE below el. 320m")   
2452. mxspog=np.max(SPOGs)   
2453. if mxspog>1590:   
2454.     err.append("Gate flow exceeds 1590 maximumum")   
2455.    
2456.    
2457. #reorganizing outputs   
2458. numscen=len(TrueScenarios1)       
2459. seednums1=np.zeros(numscen)   
2460. seedstarts1=np.zeros((numscen,2))   
2461. scendates1=np.zeros((numscen,2))   
2462. failures1=np.zeros(numscen)   
2463. infthresh1=np.zeros((numscen,2))   
2464. years1=np.zeros(numscen)   
2465. maxrse1=np.zeros(numscen)   
2466. for i in range(numscen):   
2467.     seednums1[i]=TrueScenarios1[i][0]   
2468.     seedstarts1[i,:]=TrueScenarios1[i][2]   
2469.     scendates1[i,:]=TrueScenarios1[i][3]   
2470.     failures1[i]=TrueScenarios1[i][4]   
2471.     infthresh1[i,:]=TrueScenarios1[i][5]   
2472.     maxrse1[i]=TrueScenarios1[i][6]   
2473.     years1[i]=TrueScenarios1[i][11]   
2474.    
2475. seedfailures1=0   
2476. for i in range(numscen):   
2477.     if seednums1[i]==seednum:   
2478.         seedfailures1+=failures1[i]   
2479. seedsim1=np.count_nonzero(seednums1==seednum)   
2480.    
2481.    
2482. TSIterations1=np.where(seednums1==seednum)[0]   
2483. if len(TSIterations1)>0:   
2484.     scenariolengthmax=int(np.max(scendates1[:,1]-scendates1[:,0]))+1   
2485.     RSEs1all=np.zeros((len(TSIterations1), scenariolengthmax))   
2486.     RSEs1all[RSEs1all==0]='nan'   
2487.     SPOGs1all=np.zeros((len(TSIterations1), scenariolengthmax))   
2488.     SPOGs1all[SPOGs1all==0]='nan'   
2489.     TBFs1all=np.zeros((len(TSIterations1), scenariolengthmax))   
2490.     TBFs1all[TBFs1all==0]='nan'   
2491.     OTs1all=np.zeros((len(TSIterations1), scenariolengthmax))   
2492.     OTs1all[OTs1all==0]='nan'   
2493.    
2494.     CAPs1all=np.zeros((len(TSIterations1), scenariolengthmax))   
2495.     CAPs1all[CAPs1all==0]='nan'   
2496.     UCRs1all=np.zeros((len(TSIterations1), scenariolengthmax))    
2497.     UCRs1all[UCRs1all==0]='nan'   
2498.     GCRs1all=np.zeros((len(TSIterations1), scenariolengthmax))   
2499.     GCRs1all[GCRs1all==0]='nan'   
2500.     for j in range(len(TSIterations1)):   
2501.         i=TSIterations1[j]   



335 

 

2502.         scenariolength=int(scendates1[i,1]-scendates1[i,0])   
2503.         RSEs1all[j,0:len(TrueScenarios1[i][7])]=TrueScenarios1[i][7]   
2504.         if RSEs1all[j,len(TrueScenarios1[i][7])-1]<=353.75:   
2505.             RSEs1all[j, len(TrueScenarios1[i][7]):scenariolengthmax]=353

.75 #count breach all the way to the end for plotting   
2506.         try:   
2507.             CAPs1all[j,0:len(TrueScenarios1[i][8])]=TrueScenarios1[i][8]

   
2508.         except:   
2509.             CAPs1all[j,0]=TrueScenarios1[i][8]   
2510.         try:   
2511.             UCRs1all[j,0:len(TrueScenarios1[i][9])]=TrueScenarios1[i][9]

   
2512.         except:   
2513.             UCRs1all[j,0]=TrueScenarios1[i][9]   
2514.         try:   
2515.             GCRs1all[j,0:len(TrueScenarios1[i][10])]=TrueScenarios1[i][1

0]   
2516.         except:           
2517.             GCRs1all[j,0]=TrueScenarios1[i][10]   
2518.         try:   
2519.             SPOGs1all[j,0:len(TrueScenarios1[i][12])]=TrueScenarios1[i][

12]   
2520.         except:           
2521.             SPOGs1all[j,0]=TrueScenarios1[i][12]   
2522.         try:   
2523.             TBFs1all[j,0:len(TrueScenarios1[i][13])]=TrueScenarios1[i][1

3]   
2524.         except:           
2525.             TBFs1all[j,0]=TrueScenarios1[i][13]   
2526.         try:   
2527.             OTs1all[j,0:len(TrueScenarios1[i][14])]=TrueScenarios1[i][14

]   
2528.         except:           
2529.             OTs1all[j,0]=TrueScenarios1[i][14]   
2530.    
2531. else:   
2532.     RSEs1all=np.array(["nan","nan"])   
2533.     SPOGs1all=np.array(["nan","nan"])   
2534.     TBFs1all=np.array(["nan","nan"])   
2535.     OTs1all=np.array(["nan","nan"])   
2536.     CAPs1all=np.array(["nan","nan"])   
2537.     UCRs1all=np.array(["nan","nan"])   
2538.     GCRs1all=np.array(["nan","nan"])   
2539.    
2540.    
2541. #reorganizing outputs   
2542. numscen=len(TrueScenarios)       
2543. seednums=np.zeros(numscen)   
2544. seedstarts=np.zeros((numscen,2))   
2545. scendates=np.zeros((numscen,2))   
2546. failures=np.zeros(numscen)   
2547. infthresh=np.zeros((numscen,2))   
2548. maxrse=np.zeros(numscen)   
2549. years=np.zeros((numscen,2))   
2550. for i in range(numscen):   
2551.     seednums[i]=TrueScenarios[i][0]   
2552.     seedstarts[i,:]=TrueScenarios[i][2]   
2553.     scendates[i,:]=TrueScenarios[i][3]   
2554.     failures[i]=TrueScenarios[i][4]   
2555.     infthresh[i,:]=TrueScenarios[i][5]   
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2556.     maxrse[i]=TrueScenarios[i][6]   
2557.     years[i]=TrueScenarios[i][11]   
2558.    
2559. seedfailures=0   
2560. for i in range(numscen):   
2561.     if seednums[i]==seednum:   
2562.         seedfailures+=failures[i]   
2563. seedsim=np.count_nonzero(seednums==seednum)   
2564.        
2565. TSIterations=np.where(seednums==seednum)[0]   
2566. if len(TSIterations)>0:   
2567.     scenariolengthmax=int(np.max(scendates[:,1]-scendates[:,0]))+1   
2568.     RSEsall=np.zeros((len(TSIterations), scenariolengthmax))   
2569.     RSEsall[RSEsall==0]='nan'   
2570.     CAPsall=np.zeros((len(TSIterations), scenariolengthmax))   
2571.     CAPsall[CAPsall==0]='nan'   
2572.     UCRsall=np.zeros((len(TSIterations), scenariolengthmax))    
2573.     UCRsall[UCRsall==0]='nan'   
2574.     GCRsall=np.zeros((len(TSIterations), scenariolengthmax))   
2575.     GCRsall[GCRsall==0]='nan'   
2576.     for j in range(len(TSIterations)-1):   
2577.         i=TSIterations[j]   
2578.         scenariolength=int(scendates[i,1]-scendates[i,0])   
2579.         RSEsall[j,0:len(TrueScenarios[i][7])]=TrueScenarios[i][7]   
2580.         if RSEsall[j,len(TrueScenarios[i][7])-1]<=353.75:   
2581.             RSEsall[j, len(TrueScenarios1[i][7]):scenariolengthmax]=353.

75 #count breach all the way to the end for plotting   
2582.         try:   
2583.             CAPsall[j,0:len(TrueScenarios[i][8])]=TrueScenarios[i][8]   
2584.         except:   
2585.             CAPsall[j,0]=TrueScenarios[i][8]   
2586.         try:   
2587.             UCRsall[j,0:len(TrueScenarios[i][9])]=TrueScenarios[i][9]   
2588.         except:   
2589.             UCRsall[j,0]=TrueScenarios[i][9]   
2590.         try:   
2591.             GCRsall[j,0:len(TrueScenarios[i][10])]=TrueScenarios[i][10] 

  
2592.         except:           
2593.             GCRsall[j,0]=TrueScenarios[i][10]   
2594.    
2595. else:   
2596.     RSEsall=np.array(["nan","nan"])   
2597.     SPOGsall=np.array(["nan","nan"])   
2598.     TBFsall=np.array(["nan","nan"])   
2599.     OTsall=np.array(["nan","nan"])   
2600.     CAPsall=np.array(["nan","nan"])   
2601.     UCRsall=np.array(["nan","nan"])   
2602.     GCRsall=np.array(["nan","nan"])   
2603.    
2604.              
2605.        
2606. #Write txt output file   
2607. if len(err)==0:       
2608.     np.savez_compressed(str("Outputs-"+str(seednum)+".npz"),   
2609.              seednums1=seednums1,   
2610.              seedstards1=seedstarts1,   
2611.              scendates1=scendates1,   
2612.              failures1=failures1,   
2613.              infthresh1=infthresh1,   
2614.              maxrse1=maxrse1,   
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2615.              seedfailures1=seedfailures1,   
2616.              seedsim1=seedsim1,   
2617.              RSEs1all=RSEs1all.transpose(),   
2618.              CAPS1all=CAPs1all.transpose(),   
2619.              UCRs1all=UCRs1all.transpose(),   
2620.              GCRs1all=GCRs1all.transpose(),   
2621.              seednums=seednums,   
2622.              seedstards=seedstarts,   
2623.              scendates=scendates,   
2624.              failures=failures,   
2625.              infthresh=infthresh,   
2626.              maxrse=maxrse,   
2627.              seedfailures=seedfailures,   
2628.              seedsim=seedsim,   
2629.              RSEsall=RSEsall.transpose(),   
2630.              CAPSall=CAPsall.transpose(),   
2631.              UCRsall=UCRsall.transpose(),   
2632.              GCRsall=GCRsall.transpose()   
2633.          )   
2634.    
2635.    
2636. if len(err)>0:   
2637.     np.savez(str("Outputs-"+str(seednum)+"-e.npz"),   
2638.              seednums1=seednums1,   
2639.              seedstards1=seedstarts1,   
2640.              scendates1=scendates1,   
2641.              failures1=failures1,   
2642.              infthresh1=infthresh1,   
2643.              maxrse1=maxrse1,   
2644.              seedfailures1=seedfailures1,   
2645.              seedsim1=seedsim1,   
2646.              RSEs1all=RSEs1all.transpose(),   
2647.              CAPS1all=CAPs1all.transpose(),   
2648.              UCRs1all=UCRs1all.transpose(),   
2649.              GCRs1all=GCRs1all.transpose(),   
2650.              seednums=seednums,   
2651.              seedstards=seedstarts,   
2652.              scendates=scendates,   
2653.              failures=failures,   
2654.              infthresh=infthresh,   
2655.              maxrse=maxrse,   
2656.              seedfailures=seedfailures,   
2657.              seedsim=seedsim,   
2658.              RSEsall=RSEsall.transpose(),   
2659.              CAPSall=CAPsall.transpose(),   
2660.              UCRsall=UCRsall.transpose(),   
2661.              GCRsall=GCRsall.transpose()       
2662.          )   
2663.    
2664. t0_2=time.time()   
2665.    
2666. #print("elapsed time: " +str(t0_2-t0))   
2667. #   
2668. #   
2669. #print("number of data points, base case:" +str(np.count_nonzero(seednum

s1==seednum)))   
2670. #   
2671. #print("number of data points, DSI case:" +str(np.count_nonzero(seednums

==seednum)))  
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Appendix F: High Performance Computing 

There are a total of 552,960 simulations, each simulated for 2000 iterations for two runs: 

the base case and the dam safety improved case. Each iteration lasts for one year, so there 

are a total of 2.2 Billion simulation-years. This is obviously a very large simulation exercise 

that requires HPC resources to be executed efficiently. Compute Canada offers several 

HPC clusters, and this research utilized Graham, Cedar and Niagara to complete the 

simulations. Each cluster has thousands of nodes and each node may have several cores. 

Because the scenarios are completely independent of one another, serial farming is the best 

implementation for efficient simulation for this project. Serial farming means that 

processes can run completely independently on multiple cores at a time, and their order of 

execution is not important. In order to set up the serial farming environment, a simulation 

controller is required.  

The controller is a bash-scripted program that performs several functions and was 

developed with assistance from a programming consultant due to its complex nature. It is 

used to set up workspaces on the various clusters, and to send scenarios to the clusters in 

preparation for simulation. Once the simulations are on the cluster and ready for 

processing, the controller is used to initiate “jobs” which process the simulations on the 

cluster. When submitting a job, the user can specify the number of jobs, the number of 

cores to be used for each individual job as well as the time limit after which the job 

terminates. The controller also manages the list of scenarios which have been completed, 

submitted, failed or are still running and ensures there are no duplicating simulations for a 

single scenario. The status of the jobs in terms of the number of scenarios running, 

completed, and waiting in the queue can be queried by the user. Once jobs on Graham or 

Cedar clusters are finished, the controller automatically resubmits the jobs to continue 

processing the list of scenarios. The user must monitor the job status periodically, and 

ensure more scenarios are available on the list for continued processing. For the Niagara 

cluster, jobs are not able to re-submit themselves, so the user must manually submit either 

smaller numbers of large jobs or larger numbers of small jobs and monitor them. Finally, 

the controller is used to download the scenario output files to the local machine, which in 

this case is a virtual private server. Given the 10TB storage capacity, the *.npz compressed 
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array files contain only the key outputs – dynamic reservoir level response, criticality 

parameters and performance measures. These *.npz array files are stored in a directory that 

contains sub-folders with 1000 files each.  

During the initial test run of the controller, some issues with the simulation model for 

specific scenarios were identified and repaired. The initial run of the model was completed 

over a three-week period. Compute Canada has a specific scheduling algorithm which 

allocates resources to users based on their priority as well as the amount of processing 

previously carried out. The jobs wait to start in a queueing system, and once a user’s 

allocation is used up the priority of their jobs is reduced. This queuing system makes it 

difficult to estimate exactly what the throughput and simulation time will be. Resource 

allocations significantly improve throughput, and this was realized on the second complete 

simulation of the scenarios.  



340 

 

Curriculum Vitae 

 

Name:   Leanna M. King 

 

Post-secondary  University of Western Ontario 

Education and  London, Ontario, Canada 

Degrees:   2007-2011 B.E.Sc. 

 

The University of Western Ontario 

London, Ontario, Canada 

2011-2012 M.E.Sc. 

 

 

Honours and  Alexander Graham Bell Canada Graduate Scholarship (NSERC 

Awards: CGS-D) 

 2016-2019 

 

 Ontario Graduate Scholarship  

 2011-2012, 2015 

 

 UWO Entrance Scholarship 

 2007 

 

 

Related Work  Engineer-in-Training 

Experience   Dam Safety, BC Hydro 

2019-Present 

 

Teaching Assistant 

The University of Western Ontario 

2011-2012, 2015-2017 

 

Engineer-in-Training 

Hydrotechnical Division, BC Hydro 

2013-2015 

 

Publications: 

King LM, Simonovic SP (2020) A Deterministic Monte Carlo simulation framework for 

dam safety flow-control assessment. Water 12(2): 505. doi: 10.3390/w12020505   

King LM, Schardong A, Simonovic SP (2019) A combinatorial procedure to determine 

the full range of potential operating scenarios for a dam system. Water Resources 

Management 33(4):1451-1466. doi: 10.1007/s11269-018-2182-3 



341 

 

King LM, Simonovic SP, Hartford DND (2017) Using system dynamics simulation for 

assessment of hydropower system safety. Water Resources Research 53(8): 7148-

7174. doi: 10.1002/2017WR020834 

King LM, Keech S, Simonovic SP (2016) An Investigation of the Factors and 

Components Involved in Dam Safety Flow Control Incidents. Journal of Dam 

Engineering 27:1–19 

King LM, McLeod AI, Simonovic SP. (2015) Improved Weather Generator Algorithm 

for Multisite Simulation of Precipitation and Temperature. Journal of the American 

Water Resources Association 51(5). 

King LM, McLeod AI, Simonovic SP. (2014) Simulation of historical temperatures using 

a multi-site, multivariate block resampling algorithm with perturbation. 

Hydrological Processes 28(3). 

King LM, Irwin S. Sarwar R, McLeod AI, Simonovic SP. (2012) The effects of climate 

change on extreme precipitation events in the upper Thames River Basin: A 

comparison of downscaling approaches. Canadian Water Resources Journal. 37(3).  

 

 

 


	Using a systems approach to analyze the operational safety of dams
	Recommended Citation

	OLE_LINK1

