
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-1-2020 12:00 PM

Using a systems approach to analyze the operational safety of Using a systems approach to analyze the operational safety of

dams dams

Leanna M. King, The University of Western Ontario

Supervisor: Simonovic, Slobodan P., The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Civil and Environmental Engineering

© Leanna M. King 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Hydraulic Engineering Commons

Recommended Citation Recommended Citation
King, Leanna M., "Using a systems approach to analyze the operational safety of dams" (2020). Electronic
Thesis and Dissertation Repository. 6880.
https://ir.lib.uwo.ca/etd/6880

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6880&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1087?utm_source=ir.lib.uwo.ca%2Fetd%2F6880&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6880?utm_source=ir.lib.uwo.ca%2Fetd%2F6880&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

i

Abstract

Dam systems are arrangements of interacting components that store and convey water for

beneficial purposes. Dam failures are associated with extreme consequences to human life, the

environment and the economy. Existing techniques for dam safety analysis tend to focus on

verifying system performance at the edge of the design envelope. In analyzing the events which

occur within the design envelope, linear chain-of-events models are often used to analyze the

potential outcomes for the system. These chain-of-events models require that combinations of

conditions are identified at the outset of the analysis, which can be very cumbersome given the

number of physically possible combinations. Additional complications arising from feedback

behaviour and time are not easily overcome using existing tools. Recent work in the industry

has begun to focus on systems approaches to the problem, especially stochastic simulation.

Given current computational abilities, stochastic simulation may not be capable of analyzing

combinations of events that have a low combined probability but potentially extreme

consequences. This research focuses on developing and implementing a methodology that

dynamically characterizes combinations of component operating states and their potential

impacts on dam safety. Automated generation of scenarios is achieved through the use of a

component operating states database that defines all possible combinations of component states

(scenarios) using combinatorics. A Deterministic Monte Carlo simulation framework

systematically characterizes each scenario through a number of iterations that vary adverse

operating state timing, impacts and inflows. Component interactions and feedbacks are

represented within the system dynamics simulation model. Simulation outcomes provide

useful indicators for dam operators including conditional failure rates, times to failure, failure

inflow thresholds, and reservoir level exceedance frequencies. Dynamic system response can

be assessed directly from the simulation outcomes. The scenario results may be useful to dam

owners in emergency decision-making to inform response timelines and to justify the

allocation of resources. Results may also help inform the development of improved operating

strategies or upgrade alternatives that can reduce the impacts of these extreme events. This

work offers a significant improvement in the ability to systematically characterize the potential

combinations of events and their consequences.

ii

Keywords

Dam safety, system safety, systems modelling, hydropower, dams, simulation, system

dynamics, system dynamics simulation, combinatorics, risk assessment

iii

Summary for Lay Audience

This research presents a novel approach to define and characterize potential combinations of

events that can impact the ability to safely manage water flow in dam systems. Dam systems

consist of infrastructure whose primary purpose is to store and convey water for beneficial

purposes, such as power production, water supply, flood control and recreation. The water

barrier is the dam itself, and water passages may include gated or ungated spillway systems

that release excess flows, diversions, tunnels or penstocks (pipelines) that convey water to

power-generating turbines. Another key part of a dam system is the system operator(s).

Operators can be a single person or an organization. In some cases the operation of the dam

may be automated. Operators make decisions on how to adjust water flow through the dam

based on available information, with the goal to safely and economically manage the reservoir.

The failure of a dam can cause a major flood, potentially having catastrophic consequences to

human life, the environment and the economy. One possible way in which a dam can fail is

through the inadequate control of water flow. For example, should the outflow passages fail to

function, inflows into the reservoir can cause the water level to rise to critical levels that may

result in failure of the dam. This research focuses on the analysis of flow-control in dam

systems. A dam system and the interactions amongst its components are modelled in detail and

an exhaustive list of possible combinations of events is developed. Each of these combinations

is simulated many times to characterize the potential outcomes that may occur. The simulation

model calculates the water levels and flow releases as they change over time. Parameters were

developed to provide some indication about the potential impacts of a scenario. The result is a

systematic characterization of these unlikely, yet potentially hazardous, combinations of events

that can affect the ability to safely operate a dam system. The information produced through

this methodology may be useful in developing operating strategies and emergency response

plans that could occur over the course of a dam’s lifetime.

iv

Dedicated to my hero, my Dad.

v

Acknowledgments

First and foremost, I would like to thank my supervisor Prof. Slobodan Simonovic. Prof.

Simonovic has been a mentor of mine for many years, beginning during my undergraduate

degree. He provided guidance for my undergraduate and M.E.Sc theses, and even went so far

as to help me in my job search following graduation. He encouraged me to pursue a career in

an area that would allow me to develop further as a researcher and for that I am forever grateful.

I am very fortunate that Prof. Simonovic would take the time to meet with me weekly

throughout the duration of my PhD program, and ensured I received any help I needed with

some of the more technical aspects of this work. The technical advice, guidance and direction

he has provided has been invaluable to this project. I am so grateful for his unwavering support

and encouragement throughout this process.

I would also like to extend my sincere gratitude to our industry collaborator for the project,

Dr. Des Hartford. I first met Des during my initial job interview at BC Hydro and he

immediately began talking to me about the project that would eventually inspire this PhD

research. Throughout my time at BC Hydro, Des has been an excellent and supportive

mentor. He was instrumental in securing funding from BC Hydro to complete this research.

Des has been the key industry advisor for this work, attending regular meetings over the

course of the project to help guide the research direction to ensure it maintains practical

relevance. He has contributed an inordinate amount of time evaluating, challenging and

discussing this research with me. The invaluable insights gained through his efforts have

helped me substantially improve the quality and applicability of this work. Des has also

provided guidance which has helped improve the presentation of this thesis as well as address

some of the methodology limitations. I look forward to continued collaboration with Des in

future research endeavours.

I would like to thank Derek Sakamoto of BC Hydro for his very valuable technical advice and

additional guidance on this project. Derek used his own personal time away from work to

attend project meetings and was always just an e-mail away from answering any technical

questions I had. Thanks also to Dr. Zoran Micovic and Dr. Georg Jost from BC Hydro for their

help with some of the hydrological modelling aspects of this work. I would also like to

vi

acknowledge all of my colleagues at BC Hydro who supported this research from the

beginning, in particular Stephen Rigbey and Dr. Robert Schubak.

I am very thankful to everybody who helped me with the massive undertaking that was the

programming side of this research. I am so grateful to have had the opportunity to work with

Patrick Breach from FIDS. Patrick provided a significant amount of programming guidance

and help. From the very beginning, Patrick helped me switch to the Python programming

language, and at several points during the project has provided his personal assistance for some

of the complex programming issues I faced. He developed the VenPy Python package which

was used to facilitate initial model development, and later the sdpy Python package which

allowed me to move the entire system dynamics model to Python. This project would have

been a lot harder without his help and friendship. Dr. Andre Schardong has also been extremely

helpful throughout this research in terms of programming assistance. He assisted me with

developing an optimization model that was initially used in the system dynamics model to

represent operations planning. He also helped design the database that would become a critical

part of scenario development. My sincerest thank you also to Mr. Levon Manukyan who

designed the simulation controller for Sharcnet and helped me tackle such a huge computing

task. It would not have been possible without his help.

I am also very grateful for the friendship and encouragement of all of my colleagues in FIDS

(both past and current), as well as the friends I made in the broader community of students at

Western.

I am thankful for the funding provided for this research by both BC Hydro and NSERC through

the collaborative research and development grant. I am also thankful to NSERC and OGS for

supporting me financially through scholarships.

I would like to express my sincerest gratitude to the faculty at Western University for their

teaching and encouragement throughout my PhD program, as well as my Masters and

Undergraduate degrees. I am grateful to Dr. Girma Bitsaumlak for his guidance and help

regarding the use of Compute Canada systems. Thanks also to the office and administrative

staff who have been so accommodating and helpful during the entire duration of my time at

Western University, in particular Stephanie Lawrence, Whitney Barrett and Kirsten Edwards.

vii

Finally, I would like to extend my gratitude to those nearest and dearest to me. Thank you to

my parents Denise and Graham King for their love and support, as well as my brother Ian King,

and sister Stephanie King. I am so lucky to have such a supportive family. Thank you for

putting up with me throughout this process and providing me with help and support in every

possible way. I am so grateful to have a close circle of people that I can rely on for help and

support at any time.

viii

Table of Contents

Abstract .. i

Summary for Lay Audience ... iii

Acknowledgments... v

Table of Contents ... viii

List of Tables ... xi

List of Figures .. xiii

List of Appendices ... xviii

Acronyms ... xix

Chapter 1 ... 1

1 Introduction .. 1

1.1 Dam systems ... 1

1.2 Dam system failures .. 6

1.2.1 Oroville dam spillway incident ... 18

1.3 Systems Approach .. 22

1.4 Research Objectives .. 32

1.5 Research Contributions ... 34

1.6 Outline of the Thesis ... 37

Chapter 2 ... 38

2 Literature Review ... 38

2.1 Traditional dam safety practice ... 38

2.2 Current practices in risk analysis .. 42

2.2.1 Failure Modes and Effects Analysis (FMEA) .. 42

2.2.2 Potential Failure Modes Analysis (PFMA)... 47

2.2.3 Fault Tree Analysis ... 51

ix

2.2.4 Event Tree Analysis .. 60

2.2.5 Additional methods ... 67

2.3 Systems approach to safety ... 70

2.4 Discussion .. Error! Bookmark not defined.

Chapter 3 ... 83

3 Methodology .. 83

3.1 Justification and development... 83

3.2 Component Operating States Database ... 94

3.3 Operating State Scenario Development .. 99

3.4 Deterministic Monte Carlo Simulation Framework ... 103

3.4.1 System Dynamics Simulation Model Development 104

3.4.2 Monte-Carlo variation of scenario parameters 118

3.4.3 Deterministic Monte Carlo Simulation Process 121

3.4.4 Computational Considerations .. 126

3.5 Simulation Model Input Data.. 127

3.5.1 Physical Relationships .. 127

3.5.2 Synthetic Inflow Generation ... 128

3.5.3 Baseline Operations Data .. 129

3.6 Scenario Outcome Assessment ... 130

3.6.1 Criticality Parameters.. 130

3.6.2 Performance measures .. 134

Chapter 4 ... 139

4 Case Study: Cheakamus Hydropower Project ... 139

4.1 Cheakamus Hydropower Project Description ... 140

4.2 Cheakamus Database Population and Scenario Development............................ 144

4.2.1 Systems Theoretic Process Analysis for Cheakamus System 145

x

4.2.2 Database Population and Scenario Generation 148

4.3 Simplified System Database Population and Scenario Development................. 152

4.4 Simplified System Model Description .. 156

4.4.1 Model description ... 157

4.4.2 Simulation model testing .. 177

4.4.3 Base case vs. dam safety improved model runs 179

4.5 Simulation Model Input Data.. 181

4.5.1 Physical Relationships .. 181

4.5.2 Synthetic Inflow Generation ... 182

4.5.3 Baseline Operations Data .. 185

4.6 Simulation Results .. 187

4.6.1 Overall results discussion ... 187

4.6.2 Assessment of individual scenario outcomes ... 196

5 Discussion and Conclusions ... 213

5.1 Methodology evaluation ... 218

5.2 Directions for Future Research ... 224

References ... 226

Appendix A: Cheakamus Hydropower Project Details .. 242

Appendix B: STPA Analysis of Cheakamus Dam ... 245

Appendix C: Operating States Database for Cheakamus System 270

Appendix D: Operating States Database for Simplified System 278

Appendix E: Simulation Script Organization and Discussion .. 280

Appendix F: High Performance Computing ... 338

Curriculum Vitae .. 340

xi

List of Tables

Table 1-1: Sources of incident information for database development (King et al., 2016) 11

Table 2-1: FMEA Sample Worksheet... 45

Table 2-2: Advantages and disadvantages of FMEA ... 47

Table 2-3: Advantages and disadvantages of PFMA .. 51

Table 2-4: Basic event tree logic gates ... 53

Table 2-5: Advantages and disadvantages of FTA ... 60

Table 2-6: Advantages and disadvantages of ETA ... 67

Table 2-7: STPA example table documenting potentially hazardous control actions 72

Table 2-8: Stochastic simulation of operating state combinations ... 80

Table 3-1: Overview of approaches and their applicability to the research problem 86

Table 3-2: Probabilistic risk assessment using example simulation 133

Table 4-1: Number of unique operating state and causal factor combinations for each

component in the complex system .. 151

Table 4-2: Number of unique operating state and causal factor combinations for each

component in the simplified system ... 154

Table 4-3: Database information from example scenario: Reservoir Level 155

Table 4-4: Database information from example scenario: Component Level 155

Table 4-5: Hydraulic System State Sector variable names ... 159

Table 4-6: Sensors Sector variable names .. 164

Table 4-7: Operations Sector variable names ... 166

xii

Table 4-8: Gate Actuators variable names .. 171

Table 4-9: Power Actuators variable names ... 174

Table 4-10: Base Case vs. Dam Safety Improved Case .. 181

Table 4-11: Overall results summary .. 189

Table 4-12: Results for a single affected component, base case ... 192

Table 4-13: Results for a single affected component, dam safety improved case 193

Table 4-14: Summary of results from individual scenario outcomes, base case 211

Table 4-15: Summary of results from individual scenario outcomes, dam safety improved

case .. 212

xiii

List of Figures

Figure 1-1: Revelstoke Dam, British Columbia, Canada ... 3

Figure 1-2: Sources used in dam incidents database (King et al., 2016) 11

Figure 1-3: Dam safety flow control incidents, by incident category (King et al., 2016) 12

Figure 1-4: Factors contributing to dam overtopping (King et al., 2016)............................... 13

Figure 1-5: Components involved in dam incidents (King et al., 2016)................................. 13

Figure 1-6: Components involved in structural incidents (King et al., 2016) 14

Figure 1-7: Components involved in mechanics incidents (King et al., 2016)....................... 15

Figure 1-8: Operational factors contributing to incidents (King et al., 2016) 16

Figure 1-9: Components and factors involved in spillway related incidents (King et al., 2016)

... 16

Figure 1-10: Disturbances contributing to incidents (King et al., 2016) 17

Figure 1-11: Overview of the Oroville Dam (France et al. 2018) .. 18

Figure 1-12: Oroville spillway chute damage (France et al. 2018) .. 19

Figure 1-13: Erosion downstream of Oroville emergency overflow weir (France et al. 2018)

... 20

Figure 1-14: Oroville spillway chute after incident (France et al. 2018) 20

Figure 1-15: Schematic presentation of system definition (Simonovic, 2009) 25

Figure 1-16: Schematic of an open system (a) and a closed system (b) 26

Figure 1-17: Dams as open systems.. 27

Figure 1-18: Generic control system structure.. 28

xiv

Figure 1-19: Generic control system structure adapted for a hydropower system 31

Figure 1-20: Detailed control system structure adapted for a hydropower system 32

Figure 2-1: FMEA Process (Schmittner, 2014) .. 44

Figure 2-2: Illustration of the intersection of A AND B ... 54

Figure 2-3: illustration of the union of sets A, B and C (OR) .. 54

Figure 2-4: Illustration of mutual exclusivity in sets A and B .. 55

Figure 2-5: Simple fault tree example .. 56

Figure 2-6: Generic event tree with probability calculation ... 62

Figure 2-7: Event tree examples (Hill et al. 2001).. 64

Figure 2-8: Dependence Diagram example .. 68

Figure 2-9: Simple Bayesian network example .. 69

Figure 2-10: Stochastic sampling from within the possibility space 82

Figure 3-1: Mathematical framework for determining dam system behaviour 84

Figure 3-2: Deterministic Monte Carlo sampling from within the possibility space 88

Figure 3-3: Example output reservoir elevations for Scenario ABC (King and Simonovic,

2020) ... 89

Figure 3-4: Overall methodology flow chart (King and Simonovic, 2020) 93

Figure 3-5: Database Structure ... 95

Figure 3-6: Component operating states database population flow chart 98

Figure 3-7: Scenario generation flow chart .. 101

Figure 3-8: Simple dam system with free overflow weir ... 105

xv

Figure 3-9: Simulation of simple dam system with free overflow weir 106

Figure 3-10: Simple dam system with free overflow weir and gate 107

Figure 3-11: Simulation results for simple system with free overflow weir and gate 108

Figure 3-12: Simulation results for simple system with free overflow weir, gate, and

sinusoidal-varying inflows .. 108

Figure 3-13: Simulation results for simple system with free overflow weir, gate, sinusoidal

inflows with daily variability .. 109

Figure 3-14: Simple operations planning algorithm King and Simonovic (2020) 110

Figure 3-15: Simple dam system with a single weir and gate, with operations planning

algorithm implemented (King and Simonovic, 2020) .. 111

Figure 3-16: Simulation results for simple dam system with single weir and gate, with

operations planning algorithm implemented (King and Simonovic, 2020) 112

Figure 3-17: Simple system with gate and weir, with operations planning and gate failures

implemented (King and Simonovic 2020) .. 113

Figure 3-18: Simulation of simple system with single gate and weir, operations planning, and

gate failure implemented (King and Simonovic 2020) ... 115

Figure 3-19: Simulation model development flow chart (King and Simonovic 2020) 117

Figure 3-20: Simulation flow chart ... 122

Figure 3-21: Example output reservoir elevations for Scenario ABC (King and Simonovic

2020) ... 123

Figure 3-22: Event dependency algorithm (King and Simonovic, 2020) 124

Figure 4-1: Cheakamus Hydropower Project area map (BC Hydro, 2005) 140

Figure 4-2: Cheakamus Hydropower Project system schematic (BC Hydro, 2005) 142

xvi

Figure 4-3: Cheakamus dam site overview ... 143

Figure 4-4: Hierarchical control system structure of Cheakamus Project 144

Figure 4-5: Components tree for the Cheakamus System .. 149

Figure 4-6: Components tree for the simplified system.. 153

Figure 4-7: Simulation model sectors ... 158

Figure 4-8: Hydraulic System State Sector ... 159

Figure 4-9: Overflow calculation .. 161

Figure 4-10: Sensors Sector .. 163

Figure 4-11: Operations Sector ... 165

Figure 4-12: Operations Planning algorithm .. 167

Figure 4-13: Gate Actuators Sector .. 171

Figure 4-14: Power Actuators Sector .. 174

Figure 4-15: Disturbances Sector .. 177

Figure 4-16: Operations validation for the simplified system model 179

Figure 4-17: Validation plots for synthetic climate data at for CMS station 184

Figure 4-18: Validation of synthetic inflow sequences, Daisy Lake inflows 185

Figure 4-19: Baseline operations data from 10,000 year synthetic inflow record 186

Figure 4-20: Dynamic results for seed 301490 ... 197

Figure 4-21: Conditional reservoir level exceedance frequencies for seed 301490 199

Figure 4-22: Dynamic results for seed 386196 ... 201

xvii

Figure 4-23: Conditional reservoir level exceedance frequencies for seed 386196 202

Figure 4-24: Dynamic results for seed 403429 ... 204

Figure 4-25: Conditional reservoir level exceedance frequencies for seed 403429 205

Figure 4-26: Dynamic results for seed 403440 ... 206

Figure 4-27: Conditional reservoir level exceedance frequency, seed 403440 207

Figure 4-28: Dynamic results for seed 281617 ... 208

Figure 4-29: Conditional reservoir level exceedance frequency, seed 281617 209

xviii

List of Appendices

Appendix A: Cheakamus Hydropower Project Details ..241

Appendix B: STPA Analysis of Cheakamus Dam ...244

Appendix C: Operating States Database for Cheakamus System269

Appendix D: Operating States Database for Simplified System ..277

Appendix E: Simulation Script Organization and Discussion ..279

Appendix F: High Performance Computing ...337

Curriculum Vitae ..339

xix

Acronyms

ETA Event Tree Analysis

FERC Federal Energy Regulatory Commission

FTA Fault Tree Analysis

FMEA Failure Modes and Effects Analysis

IDF Inflow Design Flood

MDE Maximum Design Earthquake

PFMA Potential Failure Modes Analysis

PFM Potential Failure Mode

PLC Programmable Logic Controller

PMF Probable Maximum Flood

PMP Probable Maximum Precipitation

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition

STPA Systems Theoretic Process Analysis

STAMP Systems Theoretic Accident Model and Processes

USBR United States Bureau of Reclamation

USACE United States Army Corps of Engineers

1

Chapter 1

1 Introduction

This thesis focuses on the development of a new approach to the assessment of dam safety

flow control using a systems approach. Concepts from within risk assessment, general

systems theory and control system theory are investigated as potentially promising

techniques for the assessment of dams as systems. A new methodology is presented which

allows for automated generation and simulation of a more complete range of potential

operating conditions for the system using a Deterministic Monte Carlo simulation

framework with a system dynamics simulation model. System behaviour is quantified

directly from the simulation outputs and helps identify combinations of events which can

lead to the failure of dam systems to safely control inflows.

This chapter contains an introduction to dam systems and a historical overview of dam

failures. An introduction to the systems approach is also provided here, as well as research

objectives and conclusions.

1.1 Dam systems

Dams are highly complex systems containing arrangements of components which interact

to store and convey water for one or more purposes, including hydroelectric power, flood

control, mine tailings impoundment, and water supply for residential, agricultural or

industrial purposes. Dams create reservoirs and use of their storage provides for the

redistribution of inflow in time and space. These systems contain physical infrastructure,

mechanical components, electrical components, communications equipment and human

controllers which are all functioning together for a single purpose: the safe and economical

storage and passage of water. The components that influence the behaviour of a dam system

can be both physical (eg. infrastructure), or nonphysical (eg. operational decision making).

Typical components of a dam system can be grouped into categories of: (1) Infrastructure

components such as the dam, penstocks, spillways, gates, turbines, etc., (2) Actuators

which are typically mechanical or electrical assemblies that make changes to infrastructure

positioning either manually or automatically, remotely or on-site, (3) Operators which

2

include human or automated system controllers as well as institutional and organizational

operating guidelines and rules, and (4) Sensory components such as Supervisory Control

and Data Acquisition (SCADA) systems or visual observation. Dam systems have external

inputs, such as reservoir inflows and various disturbances, and system outputs or products.

Products of a dam system can include reservoir outflow, power generation, environmental

or recreational flows, flood control and irrigation water supply. Figure 1-1 contains a

labelled photograph of Revelstoke Dam in British Columbia, Canada, which has a number

of features that are discussed in the following paragraphs.

The key feature of a dam system is the dam itself, which acts as a barrier to the natural

course of a stream or river. Dam structures may be constructed of a variety of different

materials in a variety of different ways, and this choice is dependent on the purpose for

which the dam will serve as well as the geological conditions in the vicinity of the dam and

the availability of construction materials. Materials used in the construction of dams can

include timber, concrete, masonry, steel, as well as earth or rockfill in the form of

embankment dams (Jansen 1983). Some dam sites may have multiple dam structures, with

auxiliary structures known as “saddle dams” that also act to retain the water in the

reservoir. For large dams, concrete and earthfill structures (or a combination of these) are

most common. There are a number of types of concrete dams, including concrete gravity,

arch and buttress dams (Jansen 1983). Earthfill dams may also come in a variety of forms

and may be homogeneous (one material makes up the entire dam) or have zones of different

fill materials with engineer-specified parameters designed to control seepage and hydraulic

gradients. Dams may also have provisions for foundation seepage control such as cutoffs

or grout curtains that increase the seepage path to prevent the erosion of foundation

materials (Jansen 1983). In Figure 1-1, Revelstoke Dam, British Columbia, Canada

consists of a concrete gravity dam and an earthfill dam.

3

Figure 1-1: Revelstoke Dam, British Columbia, Canada

In addition to the water barrier, dams are typically equipped with some sort of outlet

structure to pass the water downstream. In the simplest case of a free overflow weir, water

flows over the top of the structure and down the natural course of the river. More complex

dams often involve a number of outlets, which can include free overflow spillways,

spillway gates, low level outlets and turbines (Jansen 1983). Free overflow spillways are

sometimes a lowered section of the dam that is equipped to pass water when the reservoir

exceeds the elevation of the spillway crest. The amount of water passing over the free

overflow spillway is a direct function of the level of the reservoir. These uncontrolled

release structures sometimes involve a chute to direct water downstream. Spillway chutes

may be unlined or lined with a material such as concrete (Jansen 1983). Spillway gates and

low level outlets are mechanically controlled structures (typically gates or valves) which

can be opened and closed to release the desired amount of water. Spillway gates and valves

may direct water into a chute, if there is a considerable distance for the water to pass or

may discharge water directly downstream of the opening. Each gate or valve has its own

rating curve, which is the numerical relationship between gate opening, gate position and

4

reservoir level (USBR 1987). Gates require many different components to operate,

including structural, mechanical and electrical – and in some cases can be operated

automatically or remotely as well as onsite. In Figure 1-1, a gated spillway is shown, with

two radial gates that discharge into a concrete chute, terminating in a flip bucket and plunge

pool.

In the case of hydropower dam systems, another key component of the system is the

hydropower generating infrastructure. Intake gates are sometimes used to control the flow

of water towards the generating units from the upstream end. Water passes into a power

conduit, typically a tunnel or penstock depending on the application, and moves

downstream towards the turbine (Komey, 2014). Penstocks are large pipelines, which

may be constructed from steel, woodstave, plastic or concrete. Surge shafts are

sometimes used to regulate pressure transients in the penstock, which can fluctuate

significantly due to adjustments to the turbine flow or closure of valves along the power

conduit. Once the water reaches the end of the penstock, there may be a turbine intake

valve which controls the flow and may be closed for maintenance. Past the penstock,

water enters the turbine. The generator transfers the rotational energy of the turbine into

electrical energy which is then converted unto useable voltage in a switchyard connected

to the power grid. Turbines may also be equipped with Pressure Relief Valves, which

control pressure transients in the penstock during load rejections where the wicket gates

must be suddenly closed (Komey, 2014). At Revelstoke Dam (Figure 1-1), water passes

through penstocks to the turbines at the powerhouse.

There are many other features of a dam system which function to monitor, protect and

control the dam and outlet structures. In some systems, dam operation is implemented

primarily from a control center which may be located far away from the site itself.

Operations planning based on an inflow forecast typically takes place off site at the control

center. Operations may be implemented in real-time, with hourly instructions and minute-

by-minute changes to gate and/or turbine flow. The instructions may be sent out as signals

from the control center via satellite or communications towers and are interpreted by

Remote Terminal Units (RTU’s), which convert the signals into instructions for outlets

and/or turbines and may also function to send information back to the control center

5

(Komey 2014). These RTU’s are part of the SCADA system which collects and distributes

information and implements controls. Programmable Logic Controllers (PLC’s) are

another key part of the SCADA system with a variety of functions, including

implementation of the instructions transmitted by the RTU’s, implementing controls

through a human-machine interface, as well as the collection and analysis of sensory data

(Komey, 2014). Dams may have extensive monitoring equipment, including gauges to

measure the elevation of the reservoir and positions of the gates, piezometers to measure

the water level in dams, and weirs to monitor dam seepage (Jansen 1983; Duscha and

Jansen 1988). This information can be recorded manually or collected by a PLC and

transmitted to the control center using an RTU.

The key input to a dam system is the reservoir inflows. Inflows are a function of the

watershed characteristics, local climate and the hydrologic cycle. In the hydrologic cycle,

moist air enters the atmosphere through evaporation and transpiration. As it cools, it

condenses to form clouds, which release precipitation. Precipitation can fall in the form of

rain or snow, depending on temperatures and ground elevations. Precipitation and

snowmelt may contribute to reservoir inflows through runoff (water passing over the land

surface) or groundwater (water passing through the sub-surface). Precipitation can vary

significantly depending on the time of year as a result of seasonal climate influences. In

addition to the amount of precipitation, the geological conditions, ground cover, and

topography are significant factors affecting reservoir inflows. In regions closer to the poles,

snow melt and the associated increase in inflows is often referred to as the “freshet”. The

freshet is a period of high inflow resulting, in part, from snowmelt due to increasing

temperatures. Freshet inflows may also be affected by heavy rainfall which can speed up

the rate of snowmelt. The duration and magnitude of the freshet depends significantly on

the regions topography, ground cover and climate. In other parts of the world, there may

be wet and dry seasons that affect seasonal inflows. Contributions to inflow from

groundwater may be significant depending on the regional geology and climate. In addition

to natural inflows, there may also be additional inflows to the system from upstream dam

outflows or in some cases, water diversion facilities. Forecasting of the inflows is a key

part of safe system operation. There is inherent uncertainty in meteorological forecasts,

with forecasting errors generally increasing as inflows increase.

6

Internal or external disturbances represent another input to dam systems. These include

earthquakes, debris accumulation, forest fires, extreme wind and rain, ice storms, ice

accumulation, vandalism, rodent activity, human error, component aging, etc. These

disturbances may also be considered inputs to the system. Proper management of the

system under these circumstances is of critical importance in keeping dam systems safe

and preventing losses resulting from failures.

For the remainder of this thesis, a dam system is defined as all components which interact

for the purposes of water storage and conveyance. This includes all civil, mechanical and

electrical infrastructure at a dam site, human operations and decision making, personnel

and staffing, site access, sensory and communications equipment, information flow, as well

as water in storage and conveyance. The dam system input is the inflow as well as any

natural disturbances. The dam system output is the outflows and products of the system

such as energy. This research focuses on the analysis of dam system flow control – that is,

the safe conveyance of water through the system.

1.2 Dam system failures

The three general modes of failure for various types of dam include (1) internal erosion,

which involves the migration of material from an embankment (or abutments) and can lead

to weakening of the water barrier and eventually dam breach, (2) instability, which can

result from uplift pressures or uneven settlement and can lead to failure by toppling or

sliding, and (3) overtopping or flow control failures which result from a loss of control of

the reservoir elevation and can potentially lead to failure modes (1) and (2) (Regan 2009).

Different types of dams have different risks, for example an embankment dam has risks

relating to slope instability, overtopping or internal/foundation erosion whereas a concrete

dam has risks relating to foundation erosion, overtopping and instability due to sliding or

overturning (USBR 1987). Dams also have risks relating to the conveyance of water: if one

or more of the water conveyance components of the system fail or become blocked, there

may be an uncontrolled release of flow or the reservoir could rise to an unsafe level that

7

could trigger failure of the entire dam (Baecher et al. 2013; Komey et al. 2015). High

reservoir levels can result in a number of adverse impacts, including increased seepage,

increased foundation or dam uplift pressures that could compromise dam stability, or

overtopping of dam structures and/or abutments which can progress to erosion, head-

cutting and potentially loss of containment of the reservoir. Further, there are obvious risks

relating to the collection, transfer, and use of information to make decisions that will

ultimately affect the infrastructure and the risk of dam failure or uncontrolled flow release

(Komey et al. 2015). In simple terms, the safety of dams relies on the ability to safely

contain and convey flows through the dam system.

A better understanding of how dams fail to operate safely and what the contributing factors

are can help practitioners identify potential risks in similar structures and system

arrangements. Despite the extreme consequences associated with dam safety incidents,

post-event information is often limited to the immediate failure mode or proximate cause

and the incident consequences. There are very few detailed accounts of the design,

operational decisions and other states of the system that may have contributed to dam safety

incidents. Some of the more well-known post event assessments of dam safety incidents

include Teton Dam (Jansen 1983; Seed and Duncan 1987), Vajont Dam (Jansen 1983;

Genevois and Ghirotti 2005), Baldwin Hills Dam (Jansen 1983), St. Francis Dam (Jansen

1983), Carsington Dam (Kennard and Bromhead 2000), Taum Sauk pumped storage

facility (FERC 2006), Folsom Dam (Todd 1999) and Oroville Dam (France et al. 2018a).

There are a variety of different resources for information about dam safety incidents,

mostly from American organizations. The Association of State Dam Safety Officials

(ASDSO) has a number of sources for information about dam failures in the United States,

including a website with case studies and lessons learned about select incidents (ASDSO,

2016) and a table containing basic information relating to 187 incidents (ASDSO, n.d.).

Jansen (1983) provided an excellent review of dam failure case histories in a technical

publication by the United States Bureau of Reclamation (USBR). The National

Performance of Dams Program (NPDP) is a database of American dam incidents and

failures developed by Stanford University. Most of the incidents are from the late 1900s

but the database includes incidents ranging from 1848 to 2015. A wide variety of incidents

8

are covered, from issues discovered during safety inspections to flow control incidents to

complete dam failures, with a total of 2977 incidents. Other researchers have compiled and

assessed similar databases to draw conclusions about dam safety risks (Foster et al. 2000a;

Zhang et al. 2007; Charles et al. 2011). Regan (2009) compiled a database of over 4000

dam failures worldwide, with half of these incidents coming from the United States. The

database was assessed to answer questions mainly about the age of the dam at failure as

well as the type of dam and the general failure mode (flood, seepage/piping, structural).

Fry et al. (2004) developed a web-based Dam Accident DataBase (DADB) with 900

incidents. Database entries included basic information about the dam and breach

characteristics, dates of construction and failure as well as the failure mode, with links to

references for users. Analysis of the past failures has shown that internal or foundation

erosion and flooding events (overtopping) are the two major causes of catastrophic dam

failure (Foster et al. 2000b; Donnelly 2005; Regan 2009).

The likelihood of failure by internal erosion is traditionally estimated using empirical

criteria developed by Foster et al. (2000b) and Foster and Fell (2001). Internal erosion

processes are generally not well understood, and there are ongoing efforts to better

understand the physical processes. Assessment of failure by overtopping is also a

complicated process, because of the sheer number of factors which can contribute to the

likelihood of dam overtopping. Such factors can include but are not limited to inflows,

operational decisions, gate reliability, personnel availability, site accessibility, and natural

disturbances such as ice or debris buildup (Lewin et al. 2003; Regan 2010; Komey et al.

2015). There is a large amount of literature detailing various approaches to extreme flood

estimation (Bocchiola et al. 2003; Kwon and Moon 2006; Kuo et al. 2007; USBR and

USACE 2012), and many risk assessment methodologies check dam performance under

these extreme flood loads (Regan 2010; Komey et al. 2015). However, it is difficult to

assess overtopping incidents that could happen within the design envelope of the dam

system due to a combination of events which together prevent water from being released

and allow the reservoir to rise to an unsafe level (Regan 2010).

Hartford et al. (2016) describes the “uncommon combination of common events”, where

multiple seemingly benign events combine together to become a significant dam safety

9

problem. In the Noppikoski Dam failure incident, a number of conditions contributed to an

inability to pass flows through the system, leading to overtopping failure of the dam. The

mechanical hoist equipment did not function, and a crane was unable to be mobilized to

the site in time to remove the stoplogs from the spillway as a result of extreme weather

conditions (loss of access) and site staff unavailability. These issues, combined with higher

than normal inflows, lead to rising reservoir levels which eventually overtopped and failed

the earthfill embankment. Taum Sauk is another example of combinations of events

interacting with disastrous consequences. The pumped storage facility was overfilled and

breached as a result of improperly calibrated reservoir level sensing equipment and

differential settlement of the dam crest.

Lewin et al. (2003) analysed several USACE dams and noted that failure to operate the

gate on demand would increase the probability of failure of the dam by between 2 to 250

times. Furthermore, dams may also be in an unsafe state without complete structural failure

of the dam, as a result of uncontrolled flow releases through a failed conduit. Regan (2010)

and Baecher et al. (2013) assess several dam failures and uncontrolled flow releases, noting

that dam safety incidents are often a result of complex interactions between system

components. Both researchers advocate taking a “dams as systems” approach when

assessing dam safety risks in order to avoid omission of potentially significant failure

modes.

The existing databases relating to dam safety incidents tend to focus more on the proximate

causes of the incidents. The database assessments of Foster et al. (2000a, b) and Zhang et

al. (2007) focus mainly on internal erosion in embankment dams, looking at embankment

design and construction practices. Other assessments (Donnelly 2005; Regan 2010) look

at dams in general but don’t tend to further decompose the incidents to look at contributing

factors such as operational decisions, lack of maintenance, and component failures.

King et al. (2016a) used information from a variety of sources to assess the causes of dam

incidents resulting in uncontrolled releases of water. A database of dam incidents was

compiled, and dam incidents were decomposed as much as possible to determine the

components involved and the contributing factors. Failures were categorized depending on

10

the type of incident, with incidents grouped into categories based on the following failure

modes: overtopping, penstock failure, embankment failure, uncontrolled flow release and

other. Internal erosion events were considered to be a design and surveillance issue and as

such were not included in the database, which intended to focus on operational safety. The

database also recorded the type of component involved: Mechanical, electrical, structural,

operational, and supervisory control and data acquisition (SCADA) systems. Incidents

relating to a certain type of component could then be broken down more specifically (eg.

for structural the spillway chute, the dam, the penstock, or the gate). Maintenance was

considered to be an operational issue and as such is recorded in that category. Other

relevant factors relating to the incident were also recorded, for example the presence of

disturbances such as debris buildup, landslides, vandalism and earthquakes.

Based on the completeness of information, incidents were then categorized as either

acceptable or incomplete. Incomplete sources were omitted in some of the more detailed

figures to allow for a more accurate assessment of the proportions of various types of

contributing factors. Once all information for an incident was collected, the quality of

information was assessed (acceptable or incomplete) and the incident was assigned a rank

based on its severity using the following guidelines:

• Catastrophic: Complete loss of flow control

• Major: Temporary disablement of hydraulic structures leading to temporary loss

of flow control

• Minor: Temporary disablement of hydraulic structures that could potentially have

resulted in a loss of flow control

Table 1-1 (King et al., 2016) contains a list of the different sources used to compile the

database. The number of incidents contributed to by each source is also listed. Most of the

dams considered are in the United States because this data was most easily accessible. In

the future, accessing the DADB of Fry et al. (2004), which was developed by a European

team, could help increase the number of dams considered outside of the United States.

Figure 1-2 (King et al., 2016) contains a breakdown of the source quality for each source

used. The data from NPDP was scaled by 10 in the figure to make the quality of the other

sources more clearly visible.

11

Table 1-1: Sources of incident information for database development (King et al.,

2016)

Source Number of Incidents

NPDP (2016) 1018

ASDSO (2010) 79

USBR (2014a) 17

Charles (2011) 10

Tavakoli (2015) 8

Chanson (2000) 5

FEMA and NJOEM (2004) 5

Van Niekerk and Viljoen
(2005)

3

Other 37

Figure 1-2: Sources used in dam incidents database (King et al., 2016)

A pie-chart of incident types is shown in Figure 1-3 (King et al., 2016), considering all

incidents in the database. It is clear from the data that the most common incident type in

the database is overtopping. It should be noted that overtopping can be related to many

other factors such as operational decision making, gate failures, turbine failures, ice and

debris buildup, etc.

12

Figure 1-3: Dam safety flow control incidents, by incident category (King et al.,

2016)

Figure 1-4 (King et al., 2016) contains a plot showing the factors which contributed to

overtopping events, taking into consideration only incidents with an acceptable amount of

information. The most common reason for overtopping events is due to lack of spillway

capacity. Over half of the overtopping incidents in the database were due to insufficient

spillway capacity. However, this could be an indication that the operator did not leave

enough freeboard in the reservoir to accommodate inflows up to the probable maximum

flood volume. A more detailed analysis of each incident would be required to determine

whether this was the case – such information is often not available or not reported. The

second most common reason for dam overtopping was a result of a blocked spillway (eg.

ice or debris). The next most common contributors to overtopping are gate issues and

operator errors. Operator errors could involve the operator deciding not to open the gate,

opening it too late or opening it to the wrong position.

Figure 1-5 (King et al., 2016) contains a pie chart of the components involved in the

incident, taking into consideration all events in the database that had enough information

(677 incidents). Structural incidents were by far the most common, followed by mechanical

and operational. Fewer events were related to electrical or SCADA failures. This

distribution could be a limitation of the data: because issues relating to electrical and

mechanical components may be more quickly resolved and thus less likely to lead to major

incidents, it is possible that events relating to these components are under-reported.

13

Figure 1-4: Factors contributing to dam overtopping (King et al., 2016)

Figure 1-5: Components involved in dam incidents (King et al., 2016)

Figure 1-6 (King et al., 2016) contains a plot of the components involved in structural-

related dam safety incidents. Incidents are divided in each category to show the proportion

that were catastrophic, major and minor. The most common type of structural incident was

an inadequate spillway capacity; most of these incidents result in complete loss of control

(the reservoir overtops the dam) and are thus classified as catastrophic. It should again be

noted that inadequate spillway capacity may be tied to lack of conservatism in reservoir

14

operations. The second and third most common structural incidents were related to the

spillway chute and penstock, respectively. Because these components actively pass water,

they can become deteriorated and may fail if not properly maintained. For the spillway

chute failures, not all were classified as catastrophic (uncontrolled flow release) because in

some cases the gates could be closed or the reservoir level fell below the sill and the chute

could be repaired. Most of the penstock failures are catastrophic because in some systems

the intake gates may not be able to be closed under rupture flows. Penstock intake sills are

also lower in comparison to spillway sills and therefore significantly more reservoir

volume may be released in the event of penstock failure. Structural dam failures and

spillway gate failures were the next most common structural flow control incidents. It

should be noted that internal erosion and foundation failures were removed from the

database and would influence the number of structural dam failures in the figure. Outlet

pipes and intake structures were the least common components involved in structural flow

control incidents.

Figure 1-6: Components involved in structural incidents (King et al., 2016)

Figure 1-7 (King et al., 2016) contains a graph showing the mechanical components

involved in spillway related incidents. Spillway gate issues were by far the most common,

followed by low level outlet and penstock valve failures. Less common were mechanical

issues associated with gates, turbines and siphons. It is likely that turbine related issues are

15

under-reported because forced turbine outages may happen at any power generating facility

without impeding the ability of the dam system to operate safely. In some cases, however,

turbine outages during high inflow events could lead to potential loss of flow control. It is

interesting to note that these incidents did not involve a high number of catastrophic events

in comparison with the structural incidents. This is likely due to the fact that mechanical

issues can be more rapidly repaired than structural incidents.

Figure 1-7: Components involved in mechanics incidents (King et al., 2016)

Figure 1-8 (King et al., 2016) contains a plot of the operational factors which contribute to

flow control incidents. The data shows that maintenance issues were the most common

operational factor, followed by the wrong decision being made. There were less instances

of implementation errors or late decisions. It is important to note that operational factors

are likely under-reported. Dam operators are not likely to admit mistakes following an

event for liability reasons. It is also possible that lack of maintenance was a factor in many

of the incidents reported under other component categories but wasn’t explicitly mentioned

in the event synopsis.

There were only 21 total incidents involving electrical issues and these were mostly

related to inability to generate power (forced turbine outage) and power outages. It is

possible that electrical issues are under-reported because electrical problems can be

solved using back-up diesel, battery or mechanical power sources. Turbine-related power

issues are also likely underreported as they are less likely to lead to serious dam safety

16

issues since the grid can often be brought back online relatively quickly. There were also

very few issues relating to SCADA systems and it is likely these are also underreported.

Figure 1-8: Operational factors contributing to incidents (King et al., 2016)

Figure 1-9: Components and factors involved in spillway related incidents (King et

al., 2016)

Figure 1-9 (King et al., 2016) shows a plot of the components involved in spillway related

incidents. By far the most common component involved in spillway related incidents was

the chute. Debris buildup and mechanical gate issues were the second most common issue

reported followed by structural gate issues and ice. As discussed earlier, because the sill of

the spillway is relatively high, many spillway related incidents are not catastrophic.

17

Figure 1-10: Disturbances contributing to incidents (King et al., 2016)

Figure 1-10 (King et al., 2016) shows the various disturbances involved in flow control

incidents. The most common type of disturbance was landslides, and many of these were

responsible for the penstock rupture incidents. Ice and debris were the next most common,

followed by wind, earthquakes and animal burrows. Some of the disturbances are

indicative of potential maintenance issues; for example, removal of vegetation, debris and

animal burrows should be an important part of any dam safety program. Of all incidents

where information about disturbances was available, 7.5% had multiple disturbances

contributing to the incident.

The results King et al. (2016a) indicate that there are many factors that influence the ability

to control flows in a dam system. As such, dams should be considered (and analyzed) as

complex systems of various components working together, quite often known as

“system(s) of systems”. The sources of information for the King et al. (2016a) study

include many non-technical articles which contained limited information about the

incidents and as such provide only some insight into the complexity of the incidents and

the factors involved. Understanding some of the more detailed event assessments can help

illustrate the complexity of the problem of flow control in dam safety. The recent Oroville

Dam spillway incident provides some useful context with respect to how a variety of

factors may contribute to dam safety incidents. The interplay of components and events

within a system can lead to emergent and dynamic behaviour, which the Oroville incident

18

is a good example of. A brief synopsis and discussion of the incident is described in the

following section.

1.2.1 Oroville dam spillway incident

Completed in 1968, the Oroville Dam is a large embankment dam on the Feather River in

California and is located at the upstream end of the Oroville-Thermalito complex, which

consists of a number of dams and generating stations (FERC 2005a; France et al. 2018a).

The Oroville Dam, as shown in Figure 1-11 (France et al. 2018a), consists of an

embankment dam, a gated service spillway with eight operating gates and a large concrete

chute, an emergency spillway overflow weir discharging into an unlined channel, and the

Hyatt Powerplant. There is also a river valve outlet system and a tunnel carrying water

towards another generating station downstream.

Figure 1-11: Overview of the Oroville Dam (France et al. 2018)

In February 2017, after severe storms and above average inflows, the gated service spillway

was opened and discharged 1400 m3/s into the chute. On the morning of February 7, 2017,

engineers noticed spray coming from the spillway chute and the gate was closed. Upon

inspection, a large hole in the foundation and damage to concrete slabs was noticed, as

shown in Figure 1-12 (France et al. 2018a). At this point, the reservoir was still rising, and

19

water began flowing over the emergency spillway overflow weir on February 11, 2017,

peaking at around 350 m3/s on February 12. As the water flowed past the spillway crest

structure and onto the natural ground downstream, erosion began to occur, and it

progressed through head-cutting, upstream towards the chute structure as shown in Figure

1-13. Undermining of the emergency spillway structure could have resulted in a

catastrophic, uncontrolled release of flow. As such, an evacuation order was issued on

February 12, 2017 and flow was increased to around 2800 m3/s over the gated service

spillway (France et al. 2018a). This helped lower the reservoir levels to stop flow over the

emergency spillway, however it resulted in extensive damage to the service spillway chute

as shown in Figure 1-14.

Figure 1-12: Oroville spillway chute damage (France et al. 2018)

20

Figure 1-13: Erosion downstream of Oroville emergency overflow weir (France et

al. 2018)

Figure 1-14: Oroville spillway chute after incident (France et al. 2018)

Following the incident, an independent forensic team (IFT) consisting of experts from

various organizations was assembled to review in detail the factors contributing to the

incident, providing a detailed report regarding contributing factors and proximate causes

of the failure. The immediate cause of the issues in the service spillway chute was uplift

pressures that were sufficient to dislodge and remove a section of spillway slab, exposing

the underlying foundation directly to high velocity spillway flows. The underlying

foundation consisted of rock that was “moderately to highly weathered and even soil like”,

meaning erosion was able to progress to the degree that additional slab sections both up

and downstream of the initial failure were mobilized (France et al. 2018a). For the

emergency spillway, erosion began to occur of the natural ground downstream of the

spillway structure and in some areas, it began to progress through head-cutting upstream

towards the structure. This was mainly a result of the significant depths of erodible

21

weathered rock and soil as well as hillside topography and insufficient erosion protection

and energy dissipation structures.

Management decisions during the events were complicated by a number of issues.

Continued erosion of the spillway chute could potentially lead to failure of a transmission

tower located beside the spillway. There were uncertainties relating to whether progression

of the chute failure upstream could eventually compromise the spillway headgate structure.

Debris blockage of the river in combination with spillway tailwater could result in

powerplant flooding, presenting potentially long-term issues with water management if the

powerhouse was no longer able to discharge flows downstream (France et al. 2018a).

Closing the spillway to mitigate these issues would mean utilizing the emergency spillway,

the consequences of which were not known at the time. A decision was made to reduce

service spillway flows, which resulted in water being released over the emergency spillway

and the initiation of erosion there (France et al. 2018a). This presented a new, avoidable,

and more threatening issue (undermining of the emergency spillway could progress to dam

failure). The system operators were presented with a difficult trade-off and ultimately the

decision to reduce flow over the service spillway meant increased flows were necessary

later on to prevent further erosion at the emergency spillway.

The IFT report also details extensively many indirect causes of the incident. Several issues

in the design and construction of the spillway chute are mentioned, including insufficient

foundation preparation for both the chute and emergency spillway, foundation drains which

protruded into the chute slab sections, lack of additional reinforcement and robust slab joint

keys, and anchor lengths which were insufficient considering the amount of weathered rock

on which the chute was constructed (France et al. 2018a). A number of systemic issues

relating to organizational, industry and regulatory factors were also identified. Examples

of these include a focus on dams instead of spillways, cost control resulting in a reactive

approach to managing infrastructure problems, emphasis on dam production ahead of dam

safety, as well as overconfidence and complacency regarding the safety of the

infrastructure (France et al. 2018a).

22

The Oroville Dam spillway failure provides insight into the dynamic and often emergent

nature of dam safety incidents. There were a large number of direct and indirect factors

which contributed to the spillway failures, and management decisions during the incident

were complicated by a number of trade-offs. The incident illustrates well the importance

of considering the degree of complexity and interactivity in dam systems when analyzing

dam safety flow control. This is essential to capture emergent system behaviour, which

may not be obvious through analyses of the individual parts.

1.3 Systems Approach

Hartford et al. (2016) advocate for a systems approach to the problem of operational safety

in dams and reservoirs, noting that:

“A new approach is required, as current engineering practices do not and cannot

address the character of some of the most probable causes of incidents and failures,

which are the unforeseen combination of rather usual conditions. That is, most

incidents and failures occur not because an extreme event occurs (eg. a flood or an

earthquake), but rather because a series of more common events occurs, which in

their unfortunate and unexpected combination leads to an adverse outcome – an

incident or a failure… It may not be possible for an incident or failure to occur if

all components, and therefore events, are in a perfectly normal state. Some

conditions must be in the range of ‘not quite usual’ – for example, a 50-year flood,

lack of required maintenance, slightly incompetent personnel or organization, bad

instructions or policies, a power blackout, or the like – and yet not be extreme or

malicious individually”

Traditional risk assessment approaches include Failure Modes and Effects Analysis

(FMEA), Potential Failure Modes Analysis (PFMA), Event Tree Analysis (ETA) and Fault

Tree Analysis (FTA). FMEA is a systematic approach to determining the potential failure

modes of system components and the effects that these may have on the system as a whole.

PFMA is a heuristic failure modes brainstorming technique used commonly within the

23

dams industry (particularly in the United States). ETA is an inductive, chain-of-events style

technique that can be used to determine the potential outcomes from a single initiating

event. FTA is a deductive chain-of-events technique that starts with a high-level

undesirable event and proceeds in more levels of detail to determine its causes.

Hartford et al. (2016) suggests that systems safety engineering recognizes the three major

ways for accidents to occur result from (1) the system capacity being exceeded, (2)

combinations of failures of system components, none of which occurring individually

would be cause for concern, or (3) a result of complex interactions between system

components, none of which may have failed. In traditional dam safety practice, a standards

based approach is followed, which addresses the first of these three causes of accidents –

checking the system capacity against expected design loads, including extreme floods and

earthquakes. Existing risk assessment approaches may provide some insight into the

second and third type of accident, however there are a number of shortcomings in this area

which are well documented within and outside of the dams industry (Regan 2010; Hartford

et al. 2016; King et al. 2016b):

1. The focus of traditional risk analysis tends to be on extreme events at the edge of

the design envelope in terms of structural loads and inflows, while failures may

occur well within the design envelope due to an uncommon combination of events

which individually may not be uncommon (Baecher et al. 2013; Komey 2014;

Hartford et al. 2016)

2. Using chain-of-events analyses, all possible system hazards and component

operating states must be determined at the beginning of the analysis. This

requirement creates immense challenges for the analysis of anything other than

simple dam and reservoir systems, since the number of physically possible

combinations becomes overwhelmingly large (Hartford et al. 2016)

3. Traditional analysis techniques such as fault trees and event trees often assume a

linear progression of events, ignoring component interactions and oversimplifying

dynamic system behaviour (Regan 2010; Leveson 2011; Thomas 2012)

24

4. Events are often assumed to be completely independent of one another, despite the

fact that common cause events are possible (Putcha and Patev 2000; Leveson 2011;

Komey et al. 2015)

5. Systems are decomposed into more manageable sub-systems for analysis and the

interactions between them are completely ignored or simplified (Regan 2010;

Leveson 2011; Thomas 2012)

A systems approach is beginning to emerge as a new technique to address some of the

aforementioned shortcomings and make progress towards addressing the second and third

type of incident. This is discussed in detail within the recent book “Operational Safety of

Dams and Reservoirs” by Hartford et al. (2016). The systems approach is fundamentally

rooted in systems theory.

Systems theory has a long history of concurrent developments in various fields, with

general systems theory being first defined by biologist Ludwig von Bertalanffy (1950;

1968). Von Bertalanffy (1968) defines a system as “complex of interacting elements” in

his book dealing with general systems theory and first used the term in a 1950 article

dealing with open systems in the fields of physics and biology (Von Bertalanffy 1950).

Open systems are those which have inputs and outputs resulting in a change in the system

state, whereas closed systems have no external inputs or outputs. The idea of system

feedbacks being a function of the system structure is described in this work, with the theory

of feedback having origins in cybernetics (Wiener, 1948) and social sciences (Richardson

1991).

Von Bertalanffy (1968) and Forrester (1961, 1969, 1971a) further developed the concepts

of systems theory in a series of books dealing with biological, social, economic and other

applications. Systems theory, cybernetics and control system theory were at least partly

influenced by the efforts of some of the key authors to develop automatic systems for anti-

aircraft weaponry and radar devices during World War II (Wiener 1948; Brown and

Campbell 1950; Forrester 1989), though Von Bertalanffy (1968) describes several other

25

key developments which led to a general systems theory. Forrester (1961) began

developing system dynamics to analyze industrial and management systems, and pioneered

the earliest forms of system dynamics simulation software packages. He later extended the

application of system dynamics simulation to model the social dynamics of cities, countries

and the world as a whole (Forrester 1969, 1971b, 1989).

Key concepts in general systems theory include the consideration of the system as a whole

consisting of interacting parts and the system boundary distinguishing its elements from

their surrounding environment. Systems may be as small as a single atom and as large as

the universe (Simonovic 2009). Simonovic (2009) provides a more detailed definition of a

system as “a collection of various structural and non-structural elements that are collected

and organized in such a way as to achieve some specific objective through the control and

distribution of material resources, energy and information”, and formalizes this as:

𝑆: 𝑋 → 𝑌 (1)

Where 𝑋 is an input vector, 𝑌 is an output vector, and the system is a set of operations that

transforms 𝑋 to 𝑌. Figure 14 (Simonovic 2009) contains a schematic presentation of this

definition.

Figure 1-15: Schematic presentation of system definition (Simonovic, 2009)

26

Another key concept of systems theory is feedback. Open systems, as shown in Figure 1-16

(a) have inputs and outputs that drive the system behaviour. In feedback systems, as shown

in Figure 1-16(b), the input is influenced by the system’s own past behaviour (Simonovic

2009). The system is able to respond to its outputs by adjusting the inputs. This self-

regulating behaviour, known as homeostasis, is present in many mechanical systems and

inspired the work of Wiener (1948) on man-machine systems. Wiener (1948) pioneered

cybernetics – which is the study of control mechanisms in man-machine systems – and his

work introduced the theory of feedback mechanisms, describing a variety of stabilizing and

oscillatory systems. In parallel with the concept of feedback being introduced within the

field of cybernetics, it was also being described within the context of social systems (Kast

and Rosenzweig 1972; Richardson 1991). A thermostat provides an excellent example of

self-regulation, where the thermostat is able to adjust the heat production based on the

temperature in the room and the desired temperature (Simonovic 2009). Homeostasis acts

to steer the system towards some desired goal.

Figure 1-16: Schematic of an open system (a) and a closed system (b)

A feedback loop is a closed path connecting two or more elements of a system.

Understanding feedback loops requires an understanding of causality, that is, what

elements of the system affect other elements of the system. The two types of loops are (1)

27

negative or balancing loops, which act to keep the system in a steady state, and (2) positive

or reinforcing loops, which reinforce changes to the system with more change. Systems

may contain one or potentially many of these loops and can be represented using causal

loop diagrams that show the relationships between elements of the system (Forrester

1971a).

Dams may be considered a type of open system, where the inputs consist of system inflows

and disturbances, and the outputs consist of system outflows and products (for example

electricity). This is shown in Figure 1-17.

Figure 1-17: Dams as open systems

This configuration indicates limited “self-awareness” that is seen in closed systems.

Inflows and disturbances cannot be controlled. However, within the system itself there may

be many examples of closed-system type feedback loops present. To model the internal

dynamics of the system itself there are a few useful aspects of general systems theory to

consider. Control systems theory, which falls under the umbrella of general systems theory

(Von Bertalanffy 1968), offers a new way of considering the structure of hydropower

systems, which are effectively flow control systems.

Control systems theory arose as a means of designing man-machine feedback systems that

self-adjust to achieve the desired outputs (Wiener 1948). Åström and Murray (2008) define

control as the use of algorithms and feedback in engineered systems. According to Åström

and Murray (2008), controllers act to dynamically adjust the behaviour of system elements

to achieve desired system outputs, using feedback to make adjustments. One of the earliest

examples of feedback in engineered systems was the development of a centrifugal

governor, which controls the throttle of a steam engine to maintain a constant speed

(Åström and Murray 2008). The central concept of control systems theory is the use of

28

feedback loops for sensing, computation and actuation. Leveson (2011) presents a generic

feedback control loop which is simplified slightly in Figure 1-18.

Figure 1-18: Generic control system structure

Considering how the generic control system structure shown in Figure 1-18 can be applied

to dam systems is relatively straightforward. The controlled process represents the

hydraulic system state, that is, the water barriers, passages and infrastructure on the ground

– the dam(s), gate(s) and turbine(s). The system state is measured by sensors – sensors may

measure the current reservoir elevation, positions of gates, and even rainfall to predict

system inputs (inflows). The controller represents the processing of that information into

decisions regarding the required control actions to maintain safety and push the outputs

towards the desired level (outputs can be power production as well as outflow). In a dam

system, the controller may be a software program, a single person interpreting the system

state and making decisions, or multiple people within an organization working together

and using mathematical process models to assist in decision making. The output of the

controlled process in the feedback loop is a set of control actions, or instructions, that are

implemented through actuation of system features that change the hydraulic system state.

Actuators in this case are the mechanical-electrical arrangements of infrastructure that

function to change the positions of outlet structures (gates and turbine) to modify the

outputs and keep the system safe. A control action could be to open the gate (actuate) to a

certain position, with the goal of maintaining a safe reservoir level and avoiding excessive

flooding downstream of the dam.

29

Leveson (2011) has applied the concept of control systems to safety in the aerospace

industry, developing the Systems Theoretic Accident Modelling Process (STAMP) for

accident analysis as well as Systems Theoretic Process Analysis (STPA) for the design and

analysis of engineering control systems. These methods provide a systematic process for

determining the potential control flaws that can lead to hazards in engineered processes,

and they are based on the analysis of the hierarchical control system structure (Leveson

2011). An STPA analysis is essentially a guided brainstorming session whose participants

work through the control loop to determine potential control flaws, and further analyze

what conditions could possibly lead to them. Identifying the control flaws allows engineers

to determine methods to mitigate or eliminate them in system design and improvement.

One fundamental difference limits the potential of the STPA approach when applied to

dams. Leveson (2011) presents the approach to analyze control systems operating within

the natural environment. Dam systems are systems that both operate within nature and

attempt to control it. The key issue that complicates the problem of dam safety analysis is

that the main system input (inflow) is a completely uncontrollable, nonlinear variable that

the system intends to control. Controls may also be active (gates) or passive (free overflow

spillways). As such, determining how the system will respond to changes in inflow as well

as disturbances (both internal and external) requires a slightly different approach.

Characterizing the reservoir elevation in response to the system operating state and inflows

is a critical problem for dam safety analysis. While STPA can provide very useful insights

regarding the system’s structure and its potential vulnerabilities, dynamic analysis of the

system response is required to fully understand and mathematically characterize system

behaviour.

Two of the major techniques that can be used in the dynamic analysis of systems include

simulation, optimization and multiobjective analysis (which expands on optimization to

problems with multiple objectives). Simulation involves a “what if” assessment of the

various inputs to a system, where outputs are determined in response to a particular set of

inputs. Simulation inputs may be varied to determine system behaviour under a range of

conditions (Simonovic, 2009) and link the system structure to its behaviour. Optimization,

in contrast, provides a single optimal solution to a given system configuration, with

30

performance measured based on some objective function (eg. maximize profit).

Optimization techniques are useful mainly for determining optimal operations strategies

driven by a single articulated goal. They are unable to deal with the dynamic, feedback-

driven behaviour of complex systems. Optimization techniques may, however, present a

useful tool for capturing operator’s thought processes and priorities in development of

operating instructions. Optimization can be extremely useful for developing optimal

operating decisions and policies. Simulation is the most promising systems analysis

technique for this research because it (a) facilitates a very detailed representation of system

structure, interactions and feedbacks, (b) links the system structure to system behaviour,

and (c) allows for the assessment of the dynamic system response to various operating

conditions.

System dynamics simulation (Forrester 1971a) is a particularly promising simulation

environment to deal with highly complex hydropower dam systems. In system dynamics

simulation, the pattern of interaction between system elements is called the system

structure, and the behaviour of the system is linked to its underlying structure (the

relationships between system components). System behaviour is defined by the way in

which the system variables change over time. The dynamics of how a system changes over

time can be investigated by changing either the inputs or the system structure (Simonovic,

2009).

In order to carry out a system dynamics simulation, development of a model includes the

following steps (Simonovic 2009):

1. Understanding the system and defining its boundaries

2. Identifying the variables that will influence the system’s behaviour

3. Using mathematical relationships to describe the relationships between the

variables

4. Defining the structure of the model

5. Simulating the model to understand the system behaviour

The building blocks of system dynamics simulation models include (1) state variables

(stocks), (2) flows, (3) auxiliary variables and (4) arrows showing relationships between

variables which may include delays. The links between these model elements are

interactions and feedback loops which ultimately drive the system’s behaviour. Stocks are

31

shown as boxes and represent the state-variables, or variables which increase or decrease

in value over time and whose value can only be changed by flows. Flows are represented

as rates over time which change the value of a stock. Each auxiliary variable in the model

represents either an equation that is a function of the inputs (represented by arrows) or a

constant. Delays may be added which represent time lags to variable changes.

The key advantage of system dynamics simulation is the ability for it to be used as a

problem-solving method. When problematic patterns of behaviour are observed, the

relationships in the model that contribute to the issue can be inspected and the system

structure can be modified to potentially eliminate or reduce the problem (Simonovic 2009).

The system behaviour contains dynamic information about the state of each model variable,

which could be useful for characterizing the reservoir elevation in response to a variety of

system loads. System dynamics modelling offers a potential approach for assessment of a

wide range of operating scenarios for a dam system, using automatically generated

scenarios of potential component operating states. System dynamics is particularly suited

for the modelling of control systems. The generic control system of Leveson (2011) is

modified to represent a dam system in Figure 1-19, and extended to show the components

within the different sub-systems in Figure 1-20. These provide a basic representation of a

dam system as defined in this thesis.

Figure 1-19: Generic control system structure adapted for a hydropower system

32

Figure 1-20: Detailed control system structure adapted for a hydropower system

The following section describes the proposed objectives of this research in further detail.

1.4 Research Objectives

The primary objective of this research is to apply systems analysis techniques to the

problem of flow control in dam safety. In particular, developing and implementing a

methodology that facilitates the characterization of reservoir elevations for particular sets

of inflows and operational constraints (scenarios) is necessary. This research draws on

aspects of the broad domain of general systems theory as well as risk assessment, with the

33

goal of providing a systematic and thorough assessment of dam system performance under

a wide range of loadings. The research objectives are as follows:

1. Investigate the use of systems analysis and risk assessment concepts from within

and outside of the dams industry in terms of their ability to determine potential

operating scenarios for dam systems and the impacts scenarios have on system

outcomes.

2. Develop an approach that helps define a more complete range of potential operating

scenarios (operating constraints) than is possible using existing techniques alone.

3. Develop an improved dam safety analysis methodology that facilitates

investigation of all potential operating scenarios and allows for information

pertaining to individual scenarios to be analyzed.

4. Develop a simulation approach that can handle complexity in system structure,

feedbacks, interactivity and nonlinear behaviour and uses object-oriented

modelling to improve model accessibility.

5. Investigate dynamic indicators of system performance with respect to safety, as

well as scenario criticality parameters that can be used to rank the importance of

various scenarios from the simulation outcomes.

These objectives lead to the development of a methodology that is applied to the

Cheakamus Hydropower Project, which is located North of Squamish, British Columbia,

Canada (See Figure 4-1). Cheakamus Hydropower Project is a single-reservoir system

which discharges water from Daisy Lake through the main dam into the Cheakamus River

through two spillway gates and a low level sluice gate. The Cheakamus River is part of the

Squamish River catchment and flows into the Squamish River further downstream,

eventually discharging into the ocean. Water from the reservoir is also discharged through

two hydroelectric generating units in a remotely located powerhouse on the Squamish

River, upstream of the Squamish-Cheakamus confluence. This system is modelled in detail

and operating scenarios for the system are generated. Due to computational time

limitations, a simpler version of the same system is also created, and the scenarios for the

34

simple system are run through a simulation model to produce a wide range of potential

outcomes for the system. A comparison is provided between two different free overflow

spillway configurations and operating schemes, to demonstrate how the modelling

approach can give insight to dam owners and decision makers in terms of how system

modifications affect system safety.

1.5 Research Contributions

The key outcomes of this research, in terms of advancements to the current state-of-

knowledge are as follows:

1. It is generally accepted that a complete probabilistic risk assessment of complex

dam systems is outside the current state-of-knowledge. This is partly due to the

difficulties in estimation of failure probabilities (of the individual components and

the systems themselves). This research shifts the focus to assessment of as many

possibilities as can be identified, with the goal of providing a complete and

indiscriminate assessment of as many possible outcomes for the system as can be

generated (improved coverage of the “possibility space”). Probabilistic assessment

is possible using the approach presented but is not the focus of the current research.

However, the direct outputs from simulation can be used to estimate conditional

probabilities of dam overtopping failure and reservoir level exceedance for a

particular scenario.

2. Current practices tend to focus on extreme, low probability events such as the

Probable Maximum Flood (PMF) and Maximum Design Earthquake (MDE) at the

edge of the design envelope, when events well within the design envelope may be

contributing more to the overall risk. Assessment of events within the design

envelope typically rely on expert judgement for scenario selection with only a small

portion of possible scenarios being assessed in detail. There is currently no

automated procedure available to determine a complete set of operating scenarios

for dam systems. This research proposes a methodology that uses combinatorics to

generate a more complete set of potential system operating conditions, including

events within and at the edge of the design envelope. The approach presented in

35

this research automates the procedure of scenario generation, producing an

exhaustive list of scenarios which results in slightly reduced subjectivity, though

some subjectivity and expert judgement is inherently required in model

development and operating state definition.

3. Chain-of-event techniques such as fault trees are commonly used in dam safety

assessments. This type of analysis is linear and oversimplified because it is

incapable of properly handling component interaction and system feedbacks. The

simulation model presented in this research is capable of modelling feedbacks and

component interaction, providing a more realistic representation of complex dam

systems. Results show how the reservoir level changes with time, which is a key

goal of dam safety assessments that is not easily achieved using chain-of-event

modelling.

4. The simulation framework presented in this research is capable of a more thorough

analysis of all potential scenarios determined through the automated scenario

generation. In the Deterministic Monte Carlo Simulation framework, scenarios are

the deterministic model inputs. The scenario impacts, timing and inflows can be

varied using Monte Carlo techniques to more thoroughly explore the system’s

“possibility space”. This results in estimates of conditional probabilities of failure

and reservoir level exceedances over key levels, as well as failure inflow thresholds,

which are natural outcomes of the approach presented in this work.

5. The simulation modelling approach presented in this research is easily adaptable

and can be modified to experiment with various sets of potential operating rules,

response strategies and upgrades. When compared, asset owners and decision

makers can quantify how the potential scenario outcomes change as different

measures are introduced.

Much of the recent focus on the operational safety of dams and reservoirs involves the

utilization of fully stochastic simulation techniques, where probabilities of operating states

are defined as inputs and operating states are randomly changed throughout a single

continuous simulation. Stochastic simulation is quite useful and efficient for determining

36

the overall likelihood of flow control failure for a dam system. However, the simulation

effort focuses on more likely events, so an extremely large computational effort is required

to thoroughly analyze combinations of events. The coverage of the complete “possibility

space” is driven by the probabilities of the events being considered and the number of years

for which the model is run.

This research proposes a Deterministic Monte Carlo simulation framework to

systematically analyze combinations of component operating states. A systematically

defined set of possible combinations of operating states (scenarios) is used upfront as a

deterministic simulation input. Monte-Carlo variation of operating state outcomes (such as

outage lengths, error magnitudes, timing of impacts and inflows) explores each scenario

more completely. The key sources of novelty in this work are (a) the automated,

combinatorial definition of operating scenarios and (b) the exhaustive exploration of

scenario outcomes using a Deterministic Monte Carlo simulation framework. System

dynamics simulation modelling is used to execute the simulations. The modelling approach

is object oriented, providing a convenient tool for representing complex systems, and is

easily modifiable which makes it particularly amenable to optioneering-style assessments.

The analysis in this research is performed for each scenario, regardless of scenario

likelihood. The influence of initial events on subsequent events is analyzed to ensure

scenario outcomes are representative of the input scenario. Useful information can be

extracted from each scenario’s simulation results. The goal is a more thorough assessment

of potential operating scenarios than is possible using traditional risk assessment

approaches or stochastic simulation techniques. The Deterministic Monte Carlo approach

ensures a more complete coverage of the “possibility space” for a dam system. Complete

probabilistic assessment is possible using this approach if information is available to

support it. Sensitivity analysis to operating state probabilities is possible without significant

additional computational effort (this is a particularly promising direction for future research

but is not focused on in the current research).

37

1.6 Outline of the Thesis

Chapter 2 provides a literature review detailing existing techniques most commonly used

for traditional dam safety as well as the relatively new field of dam safety risk assessment.

Next, a discussion of the research relating to the shortcomings of the traditional approaches

to general risk assessment techniques is provided, including a review of some more recent

work meant to reduce these shortcomings. Finally, a discussion of systems analysis

techniques is provided, and some conclusions about the capabilities of these techniques are

provided.

Chapter 3 contains the complete and detailed methodology used in this work. An overall

methodology justification and requirements are presented first. Next, the scenario

development is described in two sections relating to the development of the component

operating states database and the mathematical formulation to automatically convert

database information into operating scenarios. Next, the Deterministic Monte Carlo

simulation framework is presented. A description of the system dynamics simulation

modelling approach is described, followed by the Monte Carlo techniques used to create

scenario iterations. The general simulation framework and steps are presented next as well

as a discussion of computational considerations. The following section describes the

necessary simulation model input data. Finally, scenario outcome assessment is described.

Chapter 4 contains a description of the case study. First, a description of BC Hydro’s

Cheakamus Power Project is described, followed by a presentation of the database and

scenario generation. Next, a description of scenario generation for a simplified

representation of Cheakamus is described, followed by a description of the simplified

system dynamics model development, testing and model runs. Simulation model input data

is described in the following section. Finally, results are presented.

Chapter 5 contains a discussion of the results and an overall methodology assessment. A

discussion of future directions for this research is also provided. References and appendices

follow.

38

Chapter 2

2 Literature Review

A review of the literature relating to traditional dam safety practice and current risk analysis

techniques is provided in this chapter. The following section describes traditional dam

safety practice. Next, a detailed discussion of risk analysis techniques is provided in the

general context as well as within the domain of dam safety. The final section of this chapter

contains a discussion of the systems approach to safety.

2.1 Traditional dam safety practice

Traditional dam safety practice typically follows a standards-based approach, where a dam

is expected to be capable of passing a certain set of extreme loading conditions, such as the

PMF (Mcgrath 2000). There is a significant amount of effort spent on estimating these

extreme loading conditions, which are the “edge” of the design envelope. Factors of safety

used in the design of the system are checked as more information becomes available and

the estimates of these extreme loading conditions are refined. For example, as new flood

estimation methodologies and improved hydrometeorological and hydrological data

become available, dam owners can use this information to re-calculate the probable

maximum precipitation (PMP), which is then used to compute the PMF (USBR 1987;

USACE 2011). Similarly, structural, seismic and other load conditions relating to natural

disturbances can be refined over time, and the standards-based approach essentially checks

and re-checks whether the dam can withstand them.

The United States Bureau of Reclamation USBR has a series of publicly-available

standards, a number of which relate to dam and spillway design. The Spillway and Outlet

Design Standard (No. 14) deals primarily with flow control in dams. The USBR states that

the hydraulic loadings to be considered in spillway and outlet design are the Inflow Design

Flood (IDF) and construction diversion floods (USBR 2014b). The IDF is defined as the

maximum flood hydrograph used in the design of a dam, and it is either equal to or smaller

than the Probable Maximum Flood (PMF). The USBR defines the PMF as “the flood

hydrograph that results from the maximum runoff condition due to the most severe

39

combination of hydrologic and meteorological conditions that are considered reasonably

possible for the drainage basin under study” (USBR 2014b). Selection of the IDF in dams

built before the early 1940’s was based on extrapolation of existing data, for example

selecting a flood that was 50% larger than the flood of record for a site (USBR 2014b).

Between the late 1940’s until the 1980’s, IDF’s were set equal to the maximum probable

floods (roughly equal to the PMF but computed with only site specific data) until the PMF

was adopted. IDF selection was then modified to consider the downstream hazard potential

classification and possible impacts relating to loss of operation. Eventually, frequency

flood hydrograph calculations were used in selection of the IDF, where dams of a particular

consequence category were designed to withstand a flood with a particular return period.

Since the mid 1990’s, a quantitative risk-based approach has been adopted by most

American agencies. The USBR utilizes an f-N chart, which is a graph that plots estimated

loss of life against the probability of different failure modes. The USBR’s f-N chart has

defined zones, where points within certain zones of the chart require either increased or

decreased justification for further risk reduction. A starting frequency flood is defined and

f-N pairs corresponding to it are plotted. The frequency flood is then increased until all of

the f-N pairs (for each failure mode) are within the zone indicating decreasing justification

to reduce risks. The USBR’s design standard also contains a description of potential failure

modes (PFM’s).

A similar process for IDF calculation is used by the United States Army Corps of Engineers

(USACE) and other American dam organizations, and the process is generalized in the

Federal Emergency Management Agency’s (FEMA) “Federal Guidelines for Dam Safety”

(FEMA 2004). The Canadian Dam Association’s (CDA) guidelines describe both risk-

based and consequence-based approaches for selection of IDF and MDE (CDA 2007). The

USACE also provides engineering manuals that include technical guidance and standards.

In the “Safety of Dams – Policy and Procedures” document (USACE 2011), minimum

requirements for hydrology and hydraulics of dam systems are outlined, including the

capacity requirements for spillways and outlet works, as well as the reliability of gates.

Geotechnical and structural minimum requirements are also described, and the document

cites reference material containing quantitative standards, where applicable. Factors of

40

safety for structural assessment and design may be provided by the dam agencies, as well

as loading conditions to be considered (CDA 2007)

In addition to standards, there is a considerable focus on best practices in dam safety. The

USBR and USACE developed a Best Practices Training Manual (USBR and USACE

2015a) containing chapters covering a variety of considerations in dam safety. Of particular

relevance to the flow control focus of this work are the chapters relating to overtopping

failure, failure of spillway gates and operational considerations. In the chapter on

overtopping failure, the manual mentions that vulnerability of the system to gate failures

during major floods can be simulated using simple flood routing by eliminating one of the

gates from the analysis. The manual also suggests testing the sensitivity of flood routing

by implementing delayed control of the gates as a result of human error. The chapter on

failure of spillway gates focuses mainly on structural strength and stability assessment, as

well as failure modes and best practices for maintenance. The operational risks chapter

focuses on issues relating to events within the design envelope of the dam and suggests the

use of event trees for their assessment (see Section 2.2.4). There is also a chapter on the

probability of failure of electrical and mechanical systems of spillway gates, which

suggests a multi-step approach to incorporating this equipment in dam safety analysis.

First, probability distributions are applied for estimation of individual component failure

rates. Next, fault trees (see Section 2.2.3) are presented as a way of analyzing the

probability of failure for the gate system as a whole. Finally, event trees detailing the chain-

of-events for the overall dam system are suggested as a means of determining the overall

likelihood of failure as a result of failure of the gate to operate on demand. Frequent

inspection is suggested as a best practice to identify and address failures of gate equipment.

Gate power supply redundancy is also recommended.

In general, the North American dam associations seem to be shifting towards a risk-based

approach to dam safety, the key tools of which are described in the following section. In

terms of international dam safety practice, McGrath (2000) provides an overview of the

use of risk assessment in dam safety, using specific examples of legislature and current

practice from several countries. Bowles (1998a) provides a review of the state of the

practice based on experience in risk assessment for dams in the U.S. and Australia, noting

41

several drivers that have lead dam owners to adopt a risk-based approach. One of the key

issues is that severe standards may require cost-prohibitive measures for compliance.

Bowles (1998a) notes that increasing severity of standards does not always result in

reduced risk because dam owners, regulators, and government agencies simply cannot

afford to meet the standards. In some states, regulators have worked with dam owners in a

risk-based approach which prioritizes projects and partial fixes that are affordable to the

dam owner, resulting in an overall reduced risk (Bowles et al. 1998a). Using a risk-based

approach, dam owners can provide numerical risk assessment outcomes as justification for

focusing on the most significant dam safety risks in the portfolio of dams (Bowles et al.

1998a, b; Bowles 2001). Portfolio risk assessment is a technical ranking method used to

prioritize dam upgrades, and has been applied to dams in Australia (Bowles et al. 1998b;

Foster et al. 2000b), the U.S. (Cyganiewicz and Smart 2000; USACE 2011; USBR 2011;

Srivastava 2013), the U.K. (Morris et al. 2012), Europe and Canada (Donnelly 2005).

It is important to note that the standards-based approach and the risk-based approach are

not mutually exclusive, as standards are typically included in the risk-based approach

(USACE 2011). Further, the focus in these technical guidelines still seems to be placed on

definition of the design envelope and assessment of dam performance at the edge of this

design envelope. In essence, the standards-based approach is still in place – the system’s

design envelope is simply determined using more sophisticated probabilistic risk

assessment tools. While some discussion is provided with respect to operational safety

under normal conditions (eg. USBR 2014b), there is very little guidance relating to how

the operational safety of the systems can be assessed, though event trees are presented as a

potential tool. It is worth noting that Canadian structural code associations are

contemplating a switch to “performance-based engineering” which uses simulation to

assess structural performance risk in response to a range of potential loading conditions

(Ellingwood 2017). This shift has resulted from a need to consider climate change impacts

in structural design.

The following section details some of the current practices in risk analysis, from within

and outside of the dams industry.

42

2.2 Current practices in risk analysis

Risk is most frequently defined as the product of the failure probabilities and consequences.

Risk analysis is the process used to determine and estimate risks – this may involve the

definition and analysis of different loading conditions, failure modes and consequences as

well as probability estimation (Cyganiewicz and Smart 2000). Risk assessment is the use

of information from risk analysis to evaluate the various sources of risk and make decisions

(Mcgrath 2000). This section focuses on techniques used for risk analysis.

There are a variety of different practices used in the analysis of risk and safety of

engineered systems. Society of Automotive Engineers (SAE)’s Aerospace Recommended

Practice document (SAE 1996), and a number of standards (IEC 2008, 2010) from the

International Electrotechnical Commission (IEC) provide useful reference material for

developing an initial understanding of the various assessment tools. Many of the

approaches described by SAE and IEC are not mutually exclusive; that is, multiple

approaches may be used in a system safety assessment, and the results of one approach

may become the inputs of another. Four of the most commonly used techniques for system

safety assessment, in particular within the dams industry, are Failure Modes and Effects

Analysis (FMEA) and it’s descendant Potential Failure Modes Analysis (PFMA), Fault

Tree Analysis (FTA) and Event Tree Analysis (ETA). These are described in the following

sections, which present the general theory, applications and limitations of each approach.

Additional methods are then briefly described.

2.2.1 Failure Modes and Effects Analysis (FMEA)

FMEA is a systematic assessment approach that seeks to determine potential failure modes

and identify their causes and the potential effects on system performance (IEC 2008). It

was first developed in 1949 by the U.S. Military for weapons systems and refined in the

1960’s for applications in the aerospace industry (Stamatis 2002; Thomas 2012). The use

of FMEA was extended in the 1970’s to automotive, aerospace and petrochemical

industries (SAE 1967; National Research Council 1981) and was later applied in the

43

nuclear, food, drugs, and cosmetics industries (Duckworth and Moore 2010) as well as the

dams industry (Hartford and Baecher 2004; dos Santos et al. 2012).

There are a number of different implementations of FMEA, however the general approach

remains consistent (Thomas 2013). FMEA essentially identifies components and their

failure modes, and then identifies the causes and effects for each failure mode. Failure

Modes, Effects and Criticality Analysis (FMECA) adds an additional step where the

severity and probability of events are used to determine the failure modes criticality

(Thomas 2013). Details regarding the FMEA and FMECA processes are described in the

IEC’s International Standard 60812 (IEC 2008) as well as SAE’s Aerospace

Recommended Practice manual, ARP4761 (SAE 1996).

The IEC standard provides an overview of the information that should be made available

to the team performing the analysis. In particular, the system boundary should be clearly

defined and its elements, their characteristics, function and connections with other elements

should be known. Levels of redundancy, system inputs and outputs, and information

regarding how the system structure changes in response to different operating modes are

also essential for the analyst team (IEC 2008). Representing the hierarchical system

structure through the use of diagrams is recommended to illustrate relationships between

components, redundancies and the inputs and outputs (IEC 2008). Information relating to

maintenance routines, frequency of use of the different aspects of the system as well as

operation should also be made available to the analysis team. The FMEA process described

in IEC 60812 is illustrated in the following diagram (Schmittner et al. 2014):

The process involves identifying failure modes for a particular component, and then for

each failure mode determining the effects, severity, causes and the frequency or

probability. Analysis of severity may be done using qualitative descriptors such as

catastrophic, critical, marginal and insignificant. This process is done for all components

of the system at the particular level of detail of analysis. Once this detailed, component-

level assessment is complete, the effects of failures on the next level of the system should

be determined (IEC 2008). In a hierarchical system, the effects at the immediate level

become the failure modes at the next level, and this can continue until the highest level of

44

the system is analyzed (IEC 2008; dos Santos et al. 2012). In this way, the immediate

effects of a failure on the system as a whole can be determined. In FMECA, criticality is

a qualitative measure of the relative degree of importance of a failure mode, and it is

determined using the likelihood and severity of the failure mode (IEC 2008). There are a

number of different ways in which criticality can be assessed and these are outlined in

IEC 60812.

Figure 2-1: FMEA Process (Schmittner, 2014)

The FMEA/FMECA process typically involves a multi-disciplinary team of experts who

work together to analyze the system (Hartford and Baecher 2004; dos Santos et al. 2012).

45

Information from the process is usually recorded in a tabular worksheet form and often

uses the aid of diagrams and flow charts to illustrate how the event propagates through the

system (Mcgrath 2000; Bartsch 2004; IEC 2008; dos Santos et al. 2012). The IEC standard

(IEC 2008) and the dam-specific risk assessment text by Hartford and Baecher (2004)

provide example worksheets similar to the one shown in Table 2-1. Analysts may wish to

consider the ways in which a failure may be detected or prevented in the analysis and can

use the results of the analysis to form conclusions regarding actions that can be taken to

mitigate or eliminate important failure modes.

Table 2-1: FMEA Sample Worksheet

Component Function

Failure

Modes and

causes

Local

consequence

Global

consequence

Ability

to

detect

Severity Probability
Treatment

action

Within the dams industry, there are some examples of FMEA being utilized for

assessments of dam safety (Putcha and Patev 2000; Shaw et al. 2000; Hartford and Baecher

2004; dos Santos et al. 2012). Hartford (2001) notes that BC Hydro considered FMEA to

be an important precursor to quantitative risk assessment as early as the mid 1990s. By the

early 2000’s the majority of American dam associations (eg. USBR, USACE, FMEA)

began advocating for a heuristic FMEA-inspired approach called PFMA (see Section 2.2.2)

that would reduce the time and effort required to complete a true FMEA.

The IEC and SAE standards note some limitations of the FMEA/FMECA approach.

Despite successful applications in multi-level hierarchical systems, IEC (2008) states that

analysis of multi-level systems can introduce complications and errors, suggesting that

limiting the analysis to two levels of a hierarchical system is preferable. It is noted that the

key assumption in FMEA is that failure modes are independent. The ability of the FMEA

process to deal with common-cause failure is quite limited, and at best they can only be

analyzed qualitatively (SAE 1996; IEC 2008). This means that only a subset of all possible

failure scenarios are considered (Thomas 2013). There are also limitations in dealing with

human factors and software errors that may contribute to system failures (IEC 2008).

Nonlinear and feedback relationships are unable to be analyzed effectively using

FMEA/FMECA (Thomas 2013), so failure initiation and progression can be extremely

46

difficult to assess (Shaw et al. 2000; Bartsch 2004). Zhang et al. (2018) note that analysis

of redundancy in systems is complicated by component interdependency. The IEC (2008)

suggests utilizing fault tree analysis to deal with interrelationship scenarios and common

cause failures. Thomas (2013) suggests that FMEA/FMECA, by its nature, is only able to

analyze scenarios that are triggered by a failure – the result is a set of both safe and unsafe

scenarios, with an equal amount of time spent analyzing each. There are, however, some

unsafe scenarios which may not be triggered by failures at all, and these are omitted from

the analysis. Dos Santos (2012) and Zhang et al. (2018) suggest that components may take

on multiple potential states so the binary definition of functional or failed may not be

adequate. Many authors have also noted that FMEA is a time and resource consuming

process which requires a significant amount of information and spends considerable time

analyzing less-relevant failure modes (Mcgrath 2000; Shaw et al. 2000; Bartsch 2004; IEC

2008; dos Santos et al. 2012). Shaw et al. (2000) points out that FMEA was developed for

active systems, in which each component has an output action – whereas in dam systems,

many of the components are passive. dos Santos et al. (2012) found that FMEA did not

give adequate consideration to time dependencies or deterioration where in reality, some

components progress slowly towards a failed state.

The advantages and disadvantages of the approach are summarized in Table 2-2. In spite

of these limitations, FMEA/FMECA still provides a useful and systematic tool for the

identification and assessment of potential failures modes in a variety of systems and

processes. Identifying failure modes is an important aspect of risk analysis and for the

analysis of system safety in general. Knowing what the possible failures are facilitates the

development of strategies to eliminate, detect, mitigate and/or reduce their likelihood of

occurrence.

47

Table 2-2: Advantages and disadvantages of FMEA

Advantages Disadvantages

-Systematic approach1,2,3

-Determines potential failure states of

system components and their effects on

other components of the system1,2,3

-Failure-focus that can miss unsafe non-

failure component states or interactions2

-Difficulty in analyzing redundancy1,3

-Static analysis with limited ability to

analyze feedback, interaction, time,

dynamic system behaviour1,2

-Common-cause failures, human factors

and software errors are challenging within

this framework2

-Difficulty and significant complexity

with multi-level hierarchical system

analysis1,3

1 Hartford and Baecher (2004)

2 Thomas (2013)

3 IEC (2008)

2.2.2 Potential Failure Modes Analysis (PFMA)

PFMA is a qualitative analysis tool that is utilized primarily within the dams industry.

PFMA is essentially a simplified, heuristic variant of Failure Modes and Effects Analysis

(FMEA) which was developed in the early 2000’s by FERC in response to the time and

resource commitments required to perform a comprehensive FMEA (Hartford and Baecher

2004; France et al. 2018a). Dam safety literature pre-dating FERC’s introduction of PFMA

(FERC 2005b) often refers to FMEA (eg. Bowles et al. 1998b; Putcha and Patev 2000;

Stewart 2000; Barker et al. 2003; Faber and Stewart 2003; Hartford and Baecher 2004;

Wieland et al. 2005), though many researchers and dam agencies now use the simplified

PFMA methodology as a result of the influence of the American dam associations (eg.

Bowles et al. 2011; USACE 2011; SPANCOLD 2012; USBR and USACE 2012b; Adamo

et al. 2017).

48

Despite sometimes being mentioned as a single approach, there are fundamental

differences between PFMA and FMEA/FMECA. FMEA/FMECA is a systematic approach

that works up from the most detailed level of a hierarchical system to higher levels of the

system. In PFMA, this is done heuristically for the system as a whole. This also means the

definition of a failure mode may be slightly different between the two methods. In FMEA,

a failure is defined as a components ability to achieve it’s intended function – failures are

defined at the component level. In PFMA, failures are defined at the system level – only

events which result in a problem at the system level are considered.

PFMA is essentially a failure mode brainstorming session involving a team of experts,

including engineers, field staff and operating staff. The PFMA team performs a review of

all existing data, historical records and information and uses this to come up with possible

modes of failure for the dam, including their causes, qualitative likelihood descriptors, and

consequences (FERC 2005b). The failure modes are categorized into the following groups

(FERC 2005b):

• Category I – Highlighted potential failure mode (increased significance and

likelihood)

• Category II – Potential failure modes considered but not highlighted (lesser

significance and likelihood)

• Category III – More information or analysis needed to classify

• Category IV – Potential failure mode ruled out (physically impossible or unlikely)

FERC (2005b) states that the result of a PFMA analysis is an information resource that can

help illuminate failure modes not previously considered, while highlighting the importance

of failure modes with high consequence and likelihood. The guidance document also states

that the analysis may identify some failure modes which are less significant than previously

thought, due to their associated consequences or likelihood (FERC 2005b). It is suggested

by some researchers and organizations (eg. Bowles et al. 1999, 2011; FERC 2007; USBR

and USACE 2015; Adamo et al. 2017) that PFMA is the first step in risk assessment, to be

followed by the quantification of risk, using event trees or other guidelines.

In 2003, The Federal Energy Regulatory Commission (FERC) made PFMA a requirement

for all American dams meeting certain criteria (relating to hazard level and size under the

Code of Federal Regulations 18 Part 12 Subpart D), and published a technical document

49

detailing the steps of the analysis (FERC 2005b; Hoeg et al. 2007). The USACE and USBR

also include PFMA in their dam safety policies and best practices manuals (USACE 2011;

USBR and USACE 2015b). Several other agencies have their own guidelines, webinars

and supporting documents (Hydrometrics Inc. 2011; USSD 2013; ASDSO 2018). The

CDA dam safety guidelines do not specifically mention PFMA (CDA 2007).

Despite its widespread use and successes in identifying some failure modes as well as

helping dam owners prioritize risk reduction measures (eg. FERC 2007; Adamo et al.

2017), the PFMA process is not without its shortcomings. This became especially apparent

following the Oroville Dam incident of 2017 (France et al. 2018a).

In the aftermath of the incident, an independent forensic team consisting of engineers from

a variety of organizations was assembled to review the causes of the incident (France et al.

2018a). It was revealed that the dam had been the subject of three PFMA’s in 2005, 2009

and most recently in 2014. Failure modes relating to the emergency overflow spillway and

spillway chute were overlooked in 2005 and 2009. In 2014, two relevant failure modes

were identified. The first was related to the emergency spillway: “A PMF flood event is

occurring and over 10 feet of water is spilling over the emergency spillway at Oroville

Dam. Erosion begins where the flow is entering the Feather River and progresses by head-

cutting into the reservoir” (France et al. 2018a). The possibility of erosion happening at

lower spillway flows was not considered and the failure mode was classified as Category

IV (non-credible) as a result of its perceived likelihood being small. The second relevant

potential failure mode was the failure of the spillway chute: “Cavitation or slabjacking

results in loss of the concrete lining in the spillway chute downstream of the [spillway

gates]. The rock in the spillway chute erodes and the [spillway gates are] undermined and

lost” (France et al. 2018a). Again, this potential failure mode was classified as Category

IV (non-credible), as a result of its perceived likelihood being small.

The Oroville incident has helped highlight some of the shortcomings of PFMA. In two of

the three PFMA sessions, the pertinent failure modes were completely missed, and in the

third, their likelihoods were perceived to be so low as to not warrant further investigation

or remediation. The 2014 PFMA was the result of two weeks of analysis and was

50

considered to be very thorough by all involved, however some key errors in judgement

were made relating to assumptions about the geologic conditions and the condition of the

spillway chute (France et al. 2018a). France et al. (2018a) notes that a considerable

emphasis is placed on loss-of-life during the PFMA process, resulting in some plausible

scenarios being eliminated from the list and categorized as Category IV due to perceived

minimal consequences. In addition to this, there tends to be more emphasis on the dams

themselves, and less emphasis on their appurtenant structures. France et al. (2018a) also

noted issues with the FERC categorization scheme – FERC (2005b) states that “If you do

not fully develop a [potential failure mode], you cannot categorize it”, when in reality more

information is often necessary to properly categorize some of the potential failure modes.

Another key issue with the PFMA process is that the results are subjective and could vary

significantly depending on the individuals involved, the data available and the time

allocated for the process. This is obvious when considering that two of the three PFMA

reports overlooked failure modes relating to the spillways (France et al. 2018a). The

independent forensic investigators also noted that PFMA was considerably less structured

than FMEA.

The advantages and disadvantages of PFMA are summarized in Table 2-3.While PFMA

represents a positive step by the dam industry towards considering more than just

engineering standards like the PMF and MDE, there are some limitations to simplifying

the analysis of such complex systems. The interactions among components and the

consequences of these interactions may be missed in the analysis. The system is not

necessarily broken down and analyzed in a hierarchical way as it is in FMEA/FMECA, so

lower level failures may be overlooked. The approach suffers from the same issues as

FMEA/FMECA in terms of common cause failures, human factors and software errors.

The classification scheme allows practitioners to “rule out” lower-consequence or less

likely events, despite the fact that these events do contribute to the overall system risk. The

focus of the PFMA reports available publicly tends to be on dam breach or collapse over

other seemingly less consequential modes of failure. Many researchers and agencies (eg.

Bowles et al. 1999, 2011; FERC 2007; SPANCOLD 2012; USBR and USACE 2015;

Adamo et al. 2017) consider PFMA to be the first step in quantitative risk assessment (event

tree analysis is often recommended as the next step). While identification of failures modes

51

is an important first step in quantitative risk assessment, PFMA effectively rules out some

failure modes and could potentially be missing others. It is also not possible using PFMA

to systematically identify possible sequences of events which may be benign on their own,

but together could lead to catastrophic consequences (Hartford et al. 2016).

Table 2-3: Advantages and disadvantages of PFMA

Advantages Disadvantages

-Improves the understanding of dam risks

by determining the site-specific causes of

potential issues1

-Efficient1

-Heuristic brainstorming approach that

relies on expert judgement and mental

models of complex systems2

-Failure-focus that can miss unsafe non-

failure component states or interactions

-Tendency to analyze only conditions that

lead to uncontrolled release of the

reservoir2

-Static analysis of linear chains of events,

with limited ability to analyze feedback,

interaction, time, or dynamic system

behaviour2,3

-Human and operational aspects of

failures difficult to analyze2

-Some failure modes may be determined

“non-credible” but may still have

significant safety impacts2

1 FERC (2005b)

2 France et al. (2018a)

3 Regan (2010)

2.2.3 Fault Tree Analysis

Fault trees were originally developed in the 1960’s to analyze missile systems (Thomas

2012). Fault Tree Analysis (FTA) was developed as a way of identifying combinations of

52

failures and determining their likelihoods. They were first applied to assess the launch

system of Minuteman I, and were extended for components throughout the system on

Minuteman II (Ericson 1999). Boeing began using fault trees to assess aircraft by 1966 and

by the end of the 1960’s, fault trees were the standard of practice for the weapons and

aerospace industries (Ericson 1999). In the early 1970’s, fault trees were adopted by the

nuclear and chemical industries and software systems were developed to improve analysis

abilities (Ericson 1999; Thomas 2012). In the 1980’s and 1990’s, the approach was being

applied in the robotics industry (Lin and Wang 1997) and software industry (Leveson 1995;

Hansen et al. 1998).

Fault trees can be thought of as the mirror image of event trees, in that they use deductive

reasoning whereas event trees use inductive reasoning. Fault trees start with an undesirable

event and proceed from the general to the specific, using a backward logic to determine the

potential causes of an undesirable event (Hartford and Baecher 2004). The result is a

graphical depiction which moves down the page in levels of detail that progress with each

step in the tree (SAE 1996). This results in a tree structure which shows how combinations

of undesirable events or failures at lower level components can cause the event in question.

In fault trees, faults are the undesirable events (also known as “top events” and lower level

events are failures (Thomas 2012). In FTA, a separate fault tree would be constructed for

each undesirable event (SAE 1996). There are several graphical constructs used in the

development of fault trees including what are known as “logic gates”, which are presented

in Table 2-4 (Lee et al. 1985; SAE 1996). There are also graphical constructs showing

events, with different symbols representing different types of faults (Lee et al. 1985).

The development of a fault tree starts by determining what immediate failures would be

responsible for the top event (fault). The analyst then moves down the tree in increasing

levels of detail, determining the causes of each failure and linking them using the

appropriate logic gates. Fault tree creation stops when the root causes of an event are

determined or further development is deemed unnecessary (SAE 1996).

The act of constructing the fault tree alone can provide useful information in terms of what

needs to fail for the top event to occur. A cut set is a unique combination of events within

53

the fault tree that could lead to failure. A fault tree may have many cut sets depending on

its level of complexity. The smallest set of events that can lead to the top event is known

as the minimal cut set (Thomas 2013). Investigating the cut sets and organizing them based

on the number of primary events in each cut set can be a useful qualitative tool for

determining what primary events (or combinations of them) are the most concerning.

Table 2-4: Basic event tree logic gates

Symbol Name Description

AND TRUE if all input events occur

OR TRUE if at least one of the input events

occurs

m

VOTE TRUE if at least m of the input events

occurs

EXCLUSIVE OR TRUE if only one of the input events

occurs

PRIORITY AND TRUE if input events occur in a particular

order

INHIBIT TRUE if all inputs event occur, as well as

an additional (typically external) event

Determining the minimal cut set can be challenging if events occur in multiple places

within the fault tree – this can happen if there is dependence between two or more events

and is relatively common for complex systems (SAE 1996). For fault trees without

interdependence (each event occurs only once), relatively simple rules can be followed to

determine the probability of the top event. Assuming the probability of an event A can be

represented by P(A), the basic rules for quantitative analysis are derived from set theory

and are determined as follows (SAE 1996):

• The probability of events 𝐴 AND 𝐵 both occurring is 𝑃(𝐴𝐵) and is equal to 𝑃(𝐴) ∗

𝑃(𝐵). For three events connected by AND gates, the three probabilities are

54

multiplied, and so on. This represents the intersection of sets A AND B, as shown

in Figure 2-2 by the area represented by AB.

Figure 2-2: Illustration of the intersection of A AND B

• The probability of events 𝐴 OR 𝐵 occurring can be denoted 𝑃(𝐴 + 𝐵) and is equal

to 𝑃(𝐴) + 𝑃(𝐵) – [𝑃(𝐴) ∗ 𝑃(𝐵)]. For three events connected by OR gates, the

equation becomes 𝑃(𝐴 + 𝐵 + 𝐶) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶) − [𝑃(𝐴) ∗ 𝑃(𝐵)] −

[𝑃(𝐵) ∗ 𝑃(𝐶)] − [𝑃(𝐶) ∗ 𝑃(𝐴)] + [𝑃(𝐴) ∗ 𝑃(𝐵) ∗ 𝑃(𝐶)]. The set theory used to

develop the second equation is shown in Figure 2-3. The total area shaded is known

as the union of sets A, B, and C. Each of the two-circle intersections (AB, AC, BC)

is negated once to avoid double counting, and then the three-circle intersection

(ABC) is re-added to ensure the complete area is counted for.

Figure 2-3: illustration of the union of sets A, B and C (OR)

55

• The probability of mutually exclusive events occurring (if one occurs the other

can’t) is simply equal to 𝑃(𝐴 + 𝐵) = 𝑃(𝐴) + 𝑃(𝐵), with 𝑃(𝐴𝐵) = 0. The set

theory used to derive this concept is shown in Figure 2-4. Note in this illustration,

there is no overlap between sets A and B, which indicates mutual exclusivity.

Figure 2-4: Illustration of mutual exclusivity in sets A and B

These basic rules, derived from simple set theory, can be applied to calculate the

probability of occurrence for the top event. This is illustrated using an example shown in

Figure 2-5. In Figure 19, the top event can only occur if both Failure A AND Failure B

occur. Failure A can only occur if one OR more of Failure C, D, or E occur. The basic

probabilistic analysis process is shown in the example figure. To calculate the probability

of the top event, the probabilities of Failures B, C, D and E are required. The possible cut

sets are CB, DB, EB, CDB, DEB, CEB, and CDEB. Failure A has its own set of primary

events, so it is not a primary event and is not counted in the cut sets, while Failure B is a

primary event because it is not further decomposed.

56

Figure 2-5: Simple fault tree example

As mentioned previously, fault tree analysis can be complicated when events or failures

appear multiple times within the tree. This indicates common-cause failures (SAE 1996).

Qualitatively, this can be analyzed by looking at the list of possible cut sets. For cut sets

where a failure can lead to more than one primary event, a common cause failure has

occurred. This more complex situation necessitates the use of Boolean Analysis to

appropriately compute the probability of the top event (SAE 1996). Boolean algebra is a

mathematical formulation that deals with True or False events (1’s and 0’s), which is useful

for fault trees where events either occur or do not occur (Hartford and Baecher 2004). The

SAE Aerospace Recommended Practice manual provides an excellent example of

“Boolean reduction” in analysis of complex fault trees (SAE 1996). The method for

determining the minimal cut sets is shown and the Boolean Logic rules are described. There

are a variety of computational software packages available to aid in the construction and

57

mathematical assessment of fault trees, including Prepp/Kitt, SETS, FTAP, Importance,

Isograph and COMCAN (Lee et al. 1985; Ericson 1999; Barker et al. 2006). These tools

are typically capable of performing cutset determination and probability calculation

automatically (SAE 1996).

Due to its general simplicity and ability to graphically illustrate potential paths to failure,

FTA has become widely used across a variety of industries as mentioned previously. It is

a powerful tool that provides excellent insight into the possible ways in which primary

events (failures) can lead to top events. The limitations of the approach are also well

documented. Thomas (2012) notes that the approach relies heavily on the initial list of top

events – it does not determine these. Some other approach must be used. FTA also heavily

relies on the quality of information pertaining to the system of interest, and it may be

possible to omit events from the tree inadvertently. No systematic techniques are available

to ensure an exhaustive analysis is completed. Thomas (2012) notes that the decomposition

in an FTA often stops at a subjective point in the analysis, where causes of failure become

less obvious and more complex – essentially, “FTA often finds what is only intuitively

obvious”. Human factors and software errors are not easily reduced to a simple binary

representation (failing or functioning) and as such they are not easily incorporated into an

FTA analysis (Thomas 2012). Perhaps most importantly, FTA focuses on failures alone,

and as such it may omit non-failure causes of a top event that could occur as a result of

design errors, omissions or other factors such as delays and human error. Many issues that

contribute to accidents historically are dynamic processes that may not be easily

represented as simple failures (Thomas 2012). Furthermore, the fault tree assumes linear

relationships among system components and is unable to capture component interactions

or time-dependent, nonlinear feedback behaviour which may lead to unexpected outcomes

for the system of interest.

Hartford and Baecher (2004) provide an excellent overview of FTA within the context of

dam safety. They describe methods of estimating the probability of the top event when

common-cause failures are observed. Their review of FTA also discusses methods for

determining the relative importance of cutsets. In general, there are a limited number of

dam safety applications of FTA available within the public domain. Putcha and Patev

58

(2005) describe the application of fault trees as a method for analyzing dam gates and

operating equipment, presenting generalized fault trees showing how a gate may fail to

open or close. These generalized fault trees could be useful for practitioners as a starting

point for application to a specific system of interest. Putcha and Patev (2005) suggest the

use of criticality indices derived through FMEA as a means of ranking the relative

importance of components within the gate system fault trees. They go on to use the

criticality along with failure rates to determine probabilities of individual component

failures, which can then be used to determine the overall probability of the top event (Patev

et al. 2005). The approach presented provides a good starting point for fault tree analysis

of dam gate systems.

Barker et al. (2006) used fault tree analysis to assess the reliability of various options for a

spillway system upgrade in Queensland, Australia. A variety of different operating states

were analyzed using fault trees, and human error was included in the analysis. Several

scenarios were tested, and sensitivity analysis was performed for various assumptions

regarding grid reliability, operating staff assumptions, PLC reliability and redundancy, as

well as backup power source reliability and redundancy (Barker et al. 2006). The authors

note that the results of the analysis were useful in selecting the final configuration for the

system upgrade, but do not show the fault tree arrangement or mathematical computations

used.

The advantages and disadvantages of FTA are summarized in Table 2-5. Hartford and

Baecher (2004) note some disadvantages to the use of fault trees for analysis of dam

systems, mainly pertaining to the high level of complexity in large fault trees and the

reliance on expert judgement in their construction. Nevertheless, they note that fault tree

analysis may be the only alternative in some cases to modelling complex systems in an

attempt to understand and quantify failure modes. One key issue in the use of fault trees is

they represent a linear event progression (Thomas 2012). In dam systems, components may

not instantaneously progress towards a failed state, instead degrading in some way over

time. Inflows introduce another nonlinear variable that complicates analysis using fault

trees. Traditional FTA may not be capable of characterizing the reservoir level with respect

59

to different system operating conditions and inputs, which is an important goal in the

context of dam safety.

In more recent studies, Bayesian Networks and algorithms have been applied as a means

to overcome some of the limitations associated with fault trees (Ching and Leu 2009; Jong

and Leu 2013). Ching and Leu (2009) used a Poisson process to model time-varying

arrivals of disturbances, representing the system using a fault tree model with a Bayesian

algorithm incorporated to assess uncertainty. The goal of the analysis was to model how

the reliability of civil infrastructure changes over time. The approach was demonstrated on

a spillway gate system for a dam in Taiwan and was found to offer a fast solution that

helped overcome some of the issues associated with lack of failure rate data. Results

showing remaining life and failure rate plotted against time are shown for the case study.

Jong and Leu (2013) applied a hybrid approach using fault tree analysis in conjunction

with Bayesian Networking to overcome some of the limitations associated with both

approaches. Their approach was to transform fault trees, which are more easily and

logically developed, into Bayesian Networks, which are more tedious and difficult to set

up for complex systems but allow for expert knowledge to be incorporated with Bayesian

Probability Theory for improved diagnosis of system faults (Jong and Leu 2013). The

approach was demonstrated on three Taiwanese dam systems and shown to match Weibull-

distribution based reliability analysis of those systems. While these approaches do address

the traditional FTA limitation of failure rates that change over time, they do not consider

system inflows, interactions between components or the overall system response to

component failures. These issues remain outside of the capabilities of FTA at the current

time.

60

Table 2-5: Advantages and disadvantages of FTA

Advantages Disadvantages

-Logical and visual method for displaying

failure paths through a system1

-Can be used to estimate probability of

top events and unique paths to the top

event2

-Works very well at identifying the

importance of component failure modes3

-Failure-based method that can miss

unsafe scenarios caused by interactions or

non-failures3

-May not follow system flow diagram so

it can be difficult to relate fault tree logic

to the actual interactions within the

system1

-Difficulty capturing software errors or

human behaviour3

-Relies on mental models of system

structure and expert judgement3

-Static analysis with limited ability to

analyze time or dynamic system

behaviour3

-Discrete component states for variables

that may be continuous or have multiple

states3

1 Hartford and Baecher (2004)

2 Lee et al. (1985)

3 Thomas (2013)

2.2.4 Event Tree Analysis

Event Tree Analysis (ETA) was originally developed for safety assessments of nuclear

power plants in the United States in 1975 through the WASH-1400 study (IEC 2010;

Thomas 2013). The original goal of the WASH-1400 study had been to develop a large

and detailed fault tree of the system, but it was determined that this would be far too large

to be practical. Event trees were conceived as a means of defining potential accident paths,

where failures within the path could be further deconstructed using FTA (Thomas 2013).

61

Despite being developed for use alongside FTA, ETA has also been presented as a separate

tool for analysis of system dependability (Skelton 1997; Rausand and Hoyland 2004; IEC

2010).

Rausand and Hoyland (2004) define ETA as an inductive technique that begins with a

problem in the system (an initiating event), and proceeds to identify paths by which the

problem may develop. ETA is similar to FTA in that it is a chain-of-events type analysis,

but differs from FTA in that it starts with an event and proceeds forward to determine the

possible outcomes (Thomas 2013). Event trees can be used to determine the probability of

the possible outcomes resulting from an initiating event (IEC 2010). The International

Electrotechnical Commission has published a standard detailing ETA which documents

the steps in event tree development and quantitative assessment of outcome probabilities

(IEC 2010). In ETA, mitigating factors are considered to be factors within the system that

are intended to reduce the consequences of an initiating event. ETA then logically steps

through each of these mitigating factors and determines what happens next when the factor

either succeeds or fails to perform its intended function (Rausand and Hoyland 2004; IEC

2010). The different steps of the event tree are called nodes, and their probability can be

calculated using FTA, as originally intended by the developers in the WASH-1400 study

(IEC 2010). The probabilities of each unique path in the event tree are then simply

multiplied together to estimate the ultimate probability of the outcome.

It is important to note that in an ETA, the initiating events are not determined through the

analysis. Rather, the sequences of events and outcomes that could possibly result from an

initiating event are determined and their probabilities are quantified (IEC 2010). In this

way, ETA is not a standalone analysis tool (Thomas 2013). Initiating events may be

determined using some other form of analysis. Rausand and Hoyland (2004) mention

FMECA along with Preliminary Hazard Analysis (PHA) and hazard and operability

analysis (HAZOP) as potential techniques to determine the initiating event.

The first step in an ETA involves clearly defining the system of interest and its boundaries.

Next, initiating events are selected and the mitigating factors required to prevent outcomes

or accidents are determined and organized depending on their respective time of

62

intervention (IEC 2010). The success or failure of a mitigating factor determines the next

step in the tree and in this way, sequences of events are defined. Each unique path through

the tree represents a unique sequence of events. The probability of success or failure of

each mitigating factor is multiplied together along with the initiating event’s probability,

𝑃(𝐼𝐸) to determine the probability of the outcome (Rausand and Hoyland 2004). This is

demonstrated using the simple example shown in Figure 2-6.

Figure 2-6: Generic event tree with probability calculation

The IEC standard specifies that overbars are used to indicate failed mitigating factors (IEC

2010). For example, the probability of mitigating factor A failing is 𝑃(𝐴̅). The probability

of success and failure are mutually exclusive. That is, 𝑃(𝐴) = 1 − 𝑃(𝐴̅). A success and a

failure may not occur concurrently.

In general, the ETA method is relatively easy to apply, and quantification uses

straightforward mathematical concepts. It is a useful tool for visualization of event chains

and can enable identification of outcomes that may not be generated using simple

brainstorming (IEC 2010). With a complete set of initiating events, ETA provides a useful

tool for depicting and analyzing potential system outcomes. Event trees are capable of

improving the understanding of various failure modes and estimating the likelihoods of

63

failure of systems in general. They remain a widely used tool across many industries,

including but not limited to hazardous processes (Ferdous et al. 2011; Villa and Cozzani

2016), supply chain risk management (Tummala and Schoenherr 2011), infrastructure risk

management (Ezell et al. 2000), and nuclear safety (Rychkov and Kawahara 2015). Many

of the recent applications of ETA incorporate new techniques to deal with uncertainty in

the probability estimates (Ferdous et al. 2011; Srivastava 2013) or dynamic behaviour

(Bowles et al. 2011b; Rychkov and Kawahara 2015).

Like all approaches, ETA is not without its limitations, and these are well documented

within the applicable reference material. The approach is inherently reliant on practical

experience and understanding of the system (IEC 2010). Thomas (2013) points out that

because ETA starts with an initiating event and the functions in place to mitigate its

consequences, preventative measures for the event itself can not be included in the analysis.

Software has also been developed to address human factor considerations in event trees,

however the decisions are typically either randomized or reduced to binary variables of

success or failure (Thomas 2012). Thomas (2012) suggests that the mitigating factors in

event trees are assumed to be independent of one another, when in reality this may not be

the case. He cites the Three Mile Island and Fukushima nuclear incidents as an example of

how seemingly independent issues may be caused by the same factors (Thomas 2013).

Multi-state variables are unable to be modelled in event trees, despite being present in may

complex systems (Villa and Cozzani 2016). Finally, Thomas (2013) states that ETA is

fundamentally a failure-based method focusing on the propagation of component failures

through the system. As such, an entire subset of potentially unsafe scenarios that do not

involve failures at all may be impossible to assess through the use of ETA. Importantly,

Hartford et al. (2016) suggests that the nature of ETA requires that events and their

combinations must be identified at the outset. Because of this, the development of thorough

and complete event trees is incredibly challenging since the number of physically possible

conditions is so large. Further, consideration of time, feedbacks and nonlinear behaviour

present additional challenges that are not obviously surmountable given the current state

of the science (IEC 2010; Hartford et al. 2016).

64

Because of its relative simplicity for the analysis of complex systems, ETA has become a

prominent tool in dam safety risk assessment since the mid 1980s (Whitman 1984;

Stedinger et al. 1989; Bowles et al. 1999; Hill et al. 2001; Hill and Bowles 2003; Goodarzi

2010). They are considered by many to be the next step in quantitative risk assessment after

a PFMA, in particular by the American dam associations (FERC 2005b; Bowles et al.

2011b; USACE 2011; USBR and USACE 2015b).

In the dams industry, the approach is commonly paired with PFMA to further analyze and

quantify chains of events (USBR and USACE 2015b). PFMA is used to come up with the

initiating events and ETA is used to quantify the various potential outcomes. Figure 2-7

(Hill et al. 2001) illustrates an event tree for a fictitious dam, showing how the event

propagates through the system. Some event sequences are collapsed at the black nodes.

Figure 2-7: Event tree examples (Hill et al. 2001)

Whitman (1984) was one of the first authors to apply event trees in the dams domain,

modelling the geotechnical aspects of dam safety with an event tree that progressed from

embankment dam cracks through drain and filter states to either non-failure, piping failure

or slope instability. The event tree is described as a very simplistic and generalized

representation and interpretation of possible outcomes; however, it is thought by the author

to give some structure to a process that would otherwise be very subjective. Similar, high

level event tree examples from the early dam safety ETA literature are presented by Bowles

65

et al. (1987) and Yeigan (1991). Quantifying the probabilities of events in the event trees

presents a major analytical challenge, so in early applications of risk analysis a verbal

guideline or “Kent Chart” was used. Kent Charts were developed by Sherman Kent in the

1960’s and were adopted by the CIA for a brief time to assign numerical probabilities to

verbal descriptors (Hartford 2001). Vick (1992) presented one such chart for use within the

dams domain.

By the mid 1990’s and early 2000’s, a “de-compositional” approach to event trees began

being used. In response to the subjectivity of the simplified approaches being utilized, BC

Hydro began investigating the use of analytical techniques for estimating probabilities in

event trees (Hartford 2001). Hartford (2001) presented a detailed event tree as part of the

quantitative risk assessment for seismic events at Hugh Keenleyside dam in BC, noting

that this was the first analytically based risk analysis of a dam performed to date. Analytical

and numerical techniques were used in the quantification of failure probabilities instead of

subjective judgement. Another early application of quantitative, analytical risk assessment

from the late 1990’s was for the Hume Dam in Australia (McDonald and Wan 1999). By

the late 1990’s both BC Hydro and the Australian engineers who performed the Hume Dam

assessment had concluded that simplified risk analysis, using Kent Charts and high-level

event trees, was not sufficient to provide conclusive evidence of a dam’s degree of safety

or for use in dam safety decision making (Hartford 2001).

In more recent years, the use of event tree analysis has become more widespread and

computational tools have been developed to improve the degree of analysis that can be

achieved. DAMRAE is an event tree software which improves the capabilities of event

trees, allowing for (a) modelling of continuous variables (such as inflow or ground

acceleration) and (b) modelling of deterministic relationships between variables, for

example the reservoir stage-discharge relationship or the deformation function as a result

of earthquake loading and initial conditions (Srivastava 2008, 2013; Srivastava et al. 2012).

The DAMRAE software was able to overcome some of the issues with the earlier

applications of event trees and provides a path forward for use of this technique in the

future. It was developed for the USACE to be used in their dam safety risk management

program and is included in USACE’s dam safety policy and procedures (Bowles et al.

66

2011a; USACE 2011). The DAMRAE software has since been applied in several

applications (Bowles et al. 2010, 2011a, b, 2015). Srivastava (2013) includes a detailed

description of DAMRAE and uses an example system to show how it can be used to test

various risk-reduction alternatives.

A summary of the advantages and disadvantages of ETA is presented in Table 2-6. Regan

(2010) has identified examples of dam failures, including Teton and Taum Sauk, in which

nonlinear behavior was observed, noting that event trees are too simplistic to anticipate the

complex interactions occurring within various levels of a dam system. This echoes the

general conclusions made by Thomas (2012) with respect to accidents in the nuclear and

aerospace domain. Zhang et al. (2011) note that ETA may not be suitable for analysis when

there are multiple initiating events. Dam systems involve dynamic, interacting components

with time-varying inputs. These result in a time-dependent evolution of events, which the

IEC (2010) identifies as another limitation of ETA. The development of more advanced

software overcomes some of these limitations, however it remains challenging to include

timing in event tree analysis (Hartford et al. 2016). Because of this, ETA has limited

applicability for dam safety applications in which reservoir response to disturbances

occurring over time is a specific goal. Despite these limitations, it remains a useful tool for

envisioning and understanding general possibilities for event propagation through complex

systems.

67

Table 2-6: Advantages and disadvantages of ETA

Advantages Disadvantages

-Logical and visual method for displaying

sequences of events1

-Very efficient way to estimate the

probability of failure as a result of an

initiating event1

-Failure-based method that can miss

unsafe scenarios caused by interactions or

non-failures2

-Static analysis of a one-way chain-of-

events with limited ability to analyze

feedbacks, time or dynamic system

behaviour2

-Difficulty capturing software errors or

human behaviour2

-Discrete component states for variables

that may be continuous or have multiple

possible states2

-Difficult to assess common-cause

failures2

1 Hartford and Baecher (2004)

2 Thomas (2013)

2.2.5 Additional methods

The following sections provide a brief overview of some additional methods that may be

used in system safety assessment.

2.2.5.1 Dependence Diagrams (DD)

Dependence Diagrams (DD) are described by SAE (1996) as “pictorial representation[s]

of combinations of failures for the purpose of probability analysis”. DD’s may also be

referred to as Reliability Block Diagrams (RBD). The DD shows the same logic as a fault

tree using either serial or parallel arrangements of boxes (faults), showing the different

paths that could lead to a top event (failure condition). The fault event links represent AND

events when organized in parallel and OR events when organized in series. The setup and

mathematical formulation are demonstrated using a very simple example shown in Figure

2-8.

68

Figure 2-8: Dependence Diagram example

DDs may become very complex, and it may be possible for multiple instances of the same

fault to appear in different paths within the diagram (SAE 1996). These represent the

common cause failures. Like in FTA, Boolean Algebra and Boolean reduction may be

required to ensure probabilities are correctly combined (SAE 1996). A variety of different

box types may be used to illustrate different types of failure events. DDs (or RBDs) and

fault trees achieve the same goal, and they require the same inputs and knowledge of the

system. DDs are particularly useful for showing redundancy, which may not be as

obviously visible in a fault tree. They are also subject to the same limitations as described

in the discussions regarding FTA.

2.2.5.2 Bayesian Networks (BN)

Bayesian Networks (BN) are becoming more widely used in risk analysis across a variety

of industries. They are probabilistic, graphical models of the dependencies between

different variables within a system (Villa and Cozzani 2016). The variables of the system

are represented using nodes, and the dependence between them is represented using arrows.

Each node or variable can be represented by a number of states – these can include

failed/working, true/false, or various literal descriptors or numerical values (Smith 2006).

Probabilistic calculations can proceed based on the diagram using Bayes theorem of

relationships among conditional probabilities, which states that:

𝑃(𝑐𝑎𝑢𝑠𝑒|𝑒𝑓𝑓𝑒𝑐𝑡) =
𝑃(𝑒𝑓𝑓𝑒𝑐𝑡|𝑐𝑎𝑢𝑠𝑒) ∗ 𝑃(𝑐𝑎𝑢𝑠𝑒)

𝑃(𝑐𝑎𝑢𝑠𝑒)

Figure 2-9 contains a simple example of a BN, with the corresponding probability

calculations shown (Hartford and Baecher 2004). As the number of variables (nodes)

69

increases in a BN, the calculation of the probability of the final state becomes increasingly

complex.

Figure 2-9: Simple Bayesian network example

BNs are capable of dealing with multi-state variables and conditional dependencies which

gives them an advantage over other chain-of-event style models like FTA and ETA (Villa

and Cozzani 2016; El-Awady 2019). Villa and Cozzani (2016) notes that ETA and FTA

can be used as a starting point for development of a BN, and presents a software capable

of performing the transformation.

Zhang et al. (2011) applied BN to determine probability of overtopping or internal erosion

failures of embankment dams using data available from an embankment dam distress

database. The networks developed had a number of different components of the dam and

their potential states were either yes/no or a literal descriptor such as satisfactory or

unsatisfactory. The goal of the analysis was to determine the probability of failure and

sensitivity analyses were performed to determine the most important factors that

contributed to the failure modes in consideration (Zhang et al. 2011). Smith (2006)

developed a BN for a dam, considering internal erosion and overtopping failure modes.

The model developed included variables for precipitation and reservoir level, though it is

unclear how these were modelled and whether the approach developed is capable of

determining the reservoir level with respect to time. El-Awady (2019) used simulation

supported BN to improve the ability of the BN approach to model feedback behaviour. The

70

approach presented is able to model sub-BN’s of particular components in more detail than

previous applications. Contributors to failure were identified for case studies within the

nuclear and hydropower industries. The approach is promising for determining system

vulnerabilities and estimates of probability given limited information. Despite the advances

offered by the recent applications of BN, the approach may not be well suited to determine

the reservoir elevation (and the values of other variables) with respect to time.

2.2.5.3 Markov Analysis (MA)

Markov Analysis (MA) is another widely-used failure-based method for assessment of

system safety and probability of failure. Markov models (also known as Markov chains)

are useful for representing the different system states and the relationships between them

over time. In Markov models, the transitions between different states are represented by

the rates of failure of the different components. The key property of Markov models is that

future system states depend only on the current system state, regardless of what led to the

current state (SAE 1996). Markov models can be used to represent series systems, parallel

systems, and systems which are able to recover and repair themselves.

MA is able to handle common cause failures and interactions in ways that are more

challenging using FTA and DD’s. They are also able to handle a wider range of system

behaviours (SAE 1996). The size of the Markov model grows exponentially in relation to

the number of components, which can make MA an extremely complex process.

2.3 Systems approach to safety

The research of Leveson (2011) and Thomas (2012) provide an excellent overview of the

limitations associated with the risk-based approaches described in the previous sections.

One of the key issues mentioned is that the commonly used techniques focus on failures,

which means an entire sub-set of potentially unsafe scenarios may be missing in the

analysis. Additionally, the authors state that these traditional risk analysis techniques are

71

unable to effectively deal with software issues as well as human error and judgement.

Commonly used risk analysis tools are often static and/or linear, and as such the ability to

determine potentially unsafe scenarios arising from interaction and feedback is limited.

Analysis of common cause failures also presents some challenges. Based on these

limitations, a systems approach to safety engineering has emerged within the aerospace

industry (Leveson 1995, 2011; Leveson et al. 2003), and it is beginning to be recognized

and applied in other industries, including nuclear (Song 2012; Thomas 2012), automotive

(Vernacchia 2018), railway (France et al. 2018b), software (Pope and Breneman 2018) and

dams (Dusil and To 2016; To et al. 2018).

Leveson (2011) utilizes control systems theory to assess several accidents. Many of the

examples deal with aerospace and aviation, however examples from other high-profile

accidents such as the Walkerton drinking water incident and the Titanic disaster are also

provided. Analysis of these accidents led to the development of two generic tools that use

a control systems approach to the analyze system safety. The first is Systems Theoretic

Accident Model and Processes (STAMP), which was developed for post-accident

assessments. The second, Systems Theoretic Process Analysis (STPA), stems from the

STAMP technique and was developed for analysis of existing control systems or systems

in the design phase. STPA is a systematic process for brainstorming potential control flaws

of control systems.

Prior to initiating STPA, the hierarchical control system structure for the system of interest

should be developed and the hazards for the system should be defined. This is often done

using a flow chart, showing the interactions among elements at different levels of the

system. Four general categories of unsafe control actions are provided (Leveson 2011;

Thomas 2013):

(1) A required control action not provided or not followed

(2) Unsafe control action is provided that leads to a hazard

(3) A required control action is provided either too late, too early or out of sequence

72

(4) A required control action is not applied for the wrong amount of time (either applied

too long or stopped too soon).

The first step of STPA is to define unsafe control actions for each of the controls in the

system of interest. The control actions can be documented using a table such as the example

shown in Table 2-7. For each control action identified, the analysts will describe how the

situation would unfold and what hazard it could lead to. There may be multiple descriptions

under each column for each control action, pertaining to different situations that could lead

to a particular unsafe control action being applied and the resultant effects it would have.

The second step is to take each of the identified unsafe control actions and identify its

causal factors. This is done by using the hierarchical system structure as a guide and

looking at the control loop. Investigating the control loop with respect to each unsafe

control action can help identify how an unsafe control action might occur – for example,

due to incorrect information, a faulty process model or a failed component.

Table 2-7: STPA example table documenting potentially hazardous control actions

Control action (1) Not

provided

(2) Not

followed

(3) Initiated at

the wrong time

(4) Applied for

the wrong

amount of time

Control action 1 … … … …

The result of the STPA analysis is a detailed list of what might cause hazards within the

system and why. Unlike failure-based methods used in traditional risk assessment, STPA

is able to identify non-failure causes of hazards for a system, which makes it a very

promising tool for system safety assessment. The approach also does not attempt to

estimate probabilities of different outcomes, instead aiming to identify them so they can be

addressed or eliminated.

Thomas (2012) advocates the use of Leveson’s (2011) tools and presents a methodology

for automating the identification of hazards using Leveson’s (2011) Systems Theoretic

Process Analysis (STPA) model, mainly focusing on potential applications in the nuclear

industry. Song (2012) applied the STPA procedure to a specific process at the Darlington

Nuclear facility in Ontario, Canada, finding that this procedure enhanced the ability to

73

identify potentially hazardous conditions at the system level. BC Hydro has recently

applied STPA for analysis of dam systems in two applications, the results of which are

described by Dusil and To (2016) and To and Dusil (2018). The researchers found that the

STPA approach is able to identify vulnerabilities which may be overlooked using

conventional risk assessment techniques used for dam safety. It was noted that STPA may

not be able to replace existing techniques, but it does provide useful and complimentary

insights (Dusil and To 2016).

There are two key limitations of STPA as it pertains to the analysis of dam systems. The

first is the natural variability within which the infrastructure is operating and may be

attempting to control (inflows, earthquakes, debris build up, ice, etc.). It is not possible to

use STPA to determine at what inflow a potentially unsafe situation would become an

accident or determine reservoir level response to a set of inflows and operating conditions.

The second limitation is that dam systems have components which control the system in a

passive way, and STPA was designed for analysis of actively controlled systems. In a dam

system, the dams are passively retaining water and the free overflow spillway passively

conveys water. Identifying issues that could arise with these passive system components is

not possible using STPA. Despite these limitations, STPA does offer a promising tool for

addressing issues relating to software and human factors as well as non-failure related

causes of potential hazards.

Another systems technique that is becoming more widely used in dam safety applications

is simulation. Simulation is a “what if” assessment approach that describes how the system

responds to different inputs (Simonovic 2009). A simulation model describes the

relationships and interactions between different components within a system, and it can be

as detailed as is necessary to achieve its desired purpose. Simulation models contain

numerical representations of physical and nonphysical relationships within the system, and

may have some type of operating rules in place to determine how controls are applied

(Simonovic 2009). Simulation results include a set of outputs, which are the values of the

different variables of the system over time. Analysts can experiment with various inputs to

determine how the outputs change. The two most common simulation techniques are

deterministic and stochastic. In deterministic simulation, a specific set of inputs generates

74

a specific set of outputs, and multiple runs of the model will always produce the same

results. In stochastic simulation, inputs or internal processes of the model may be randomly

generated using Monte Carlo techniques. This means that two simulation runs with the

same input parameters will produce different results.

Simulation is particularly suited to the problem of dam safety (Hartford et al. 2016). It

allows for interactive and dynamic behaviour to be modelled, which is important when

considering the different types of both physical and non-physical components in dam

systems. Simulation is capable of determining how the system state changes over time

(Simonovic 2009), and as such it is the only tool described in this literature review that is

capable of directly calculating the reservoir level response to various operating scenarios.

Dam system behaviour is highly dependent on the inflows, the initial system state, the

states of operating equipment and many other factors – experimenting with these factors

through simulation is perhaps the most straightforward way to determine the system

response. Simulation allows for an investigation into the emergent behaviour of systems,

which results from complex interactions between components and events, and may be

difficult to envision by analysing components or sub-systems individually. By modelling

the whole system at a sufficient level of detail, the feedbacks and relationships that may

lead to emergent behaviour can be incorporated into the model structure.

The potential benefits of simulation and the systems approach in general are becoming

recognized within the dams industry. Regan (2010), Baecher (2013), Komey et al., (2015),

Micovic et al. (2015), and Hartford et al. (2016) all advocate for the consideration of dams

as systems. Baecher et al. (2013) present a stochastic simulation methodology framework

for dam safety flow control analysis. Hartford et al. (2016) present two examples that

utilize a systems approach embedded within a stochastic simulation to determine the

likelihood of failures for dam systems. One of the examples described by Hartford et al.

(2016) and developed by Komey (2014; 2015) involves stochastic simulation of

hydropower dam response to disturbances such as ice, debris, and human intervention on

the Mattagami River System in Ontario, Canada. The approach utilizes the GoldSim

Monte-Carlo modelling platform to determine various impacts these disturbances may

have on safe operation of the system (Komey 2014; Hartford et al. 2016). A probabilistic

75

framework is used to model disturbances such as ice and debris, with fragility curves and

simple failure rates defined to determine the probability of gate or turbine failure, and

gamma distributions to determine time to repair (Komey 2014; Hartford et al. 2016).

(Zielinski et al. 2016) use a similar approach to Komey (2014; 2015) to assess the safety

of the Madawaska River System in Ontario, Canada, using a 10,000 year continuous

simulation to estimate the probability of failure for each dam in the system. Another

example described by Hartford et al. (2016) involves a system dynamics model of the Göta

River System in Sweden, with the system built up in layers of increasing complexity. The

model can be run in either stochastic or deterministic mode and is used to investigate

system response to sea level fluctuations, landslides and climate change.

These probability-driven stochastic model examples help address many of the

shortcomings of traditional risk assessment approaches. Dynamic, nonlinear behaviour can

be captured by these models and they can be developed to be as complex as necessary to

more realistically represent the system of interest. One limitation of the stochastic

simulation approach is that it requires a very large number of simulation years in order to

assess combinations of component operating states that have a very low probability of

occurring together. There is no way of assuring the modeller that a complete set of possible

operating states has been captured in the simulation. The operating state combinations that

arise from a stochastic simulation model will differ between two different runs of a

simulation with the same inputs. Beyond some certain limit, if the stochastic simulation is

run for long enough, there would be a complete set of possible operating scenarios.

However, there would be a significant amount of time and resources spent simulating

conditions where nothing is wrong with the system. Given the large number of potential

combinations of operating states and current computational abilities, a full assessment of

all scenarios using stochastic techniques is not currently possible. Despite these limitations,

the work of Zielinski et al. (2016) and Komey (2014, 2015) provide a good indication that

a shift in focus is required from extreme events to events occurring within the design

envelope that might actually contribute more to the overall system risk.

76

2.4 Summary

In the preceding sections of this chapter, a number of tools were presented that are

commonly used within the dams industry to analyze system risk. A description of the

advantages and limitations of each approach was provided. Ultimately, the more commonly

applied techniques in risk analysis have served the dams community well. Hartford et al.

(2016) suggest that the risk based approach has significantly improved the understanding

of dam safety in a number of ways. These include facilitating analysis of less easily

analyzed failure modes such as internal erosion, highlighting the importance of analyzing

human factors, and indicating that the extreme events required for dam design may not be

the most significant contributors to risk. There are, however, limitations to the most

commonly applied techniques. It would be extremely challenging using these approaches

to analyze the combinatorically large number of possible events that may possible occur.

Interactions and feedbacks are typically simplified or omitted using the traditional

techniques, meaning dynamic behaviour cannot be effectively analyzed. Many issues arise

when dealing with human factors, software errors and design flaws. Analysis of time-

considerations is also beyond the scope of applicability of these existing approaches.

Finally, many existing approaches omit further consideration of certain combinations of

events which have a low combined probability – despite there being enough of these

combinations to add up to a significant risk to the system. The following paragraphs detail

the main conclusions from the assessment of current practices in risk analysis.

FMEA is a tool for determining how components of a system can fail and what their causes

and effects will be. The effects of failures at one level of the system can be determined on

the next level up until the entire system is analyzed. This approach is a useful tool for

brainstorming and determining potential disturbances which create the constraints within

which the system may operate. However, FMEA is a failure-based method that may miss

a sub-set of potentially unsafe scenarios that are not triggered by failures. It is not able to

systematically determine combinations of constraints that could be encountered in system

operation. It is also unable to determine and quantify the reservoir level response and has

presented some challenges when dealing with complexity, feedback and interaction within

77

hierarchical systems (the IEC standard on FMEA states that limiting analysis to a

maximum of two levels of hierarchy is good practice).

PFMA is a useful tool for looking at systems as a whole and brainstorming potential failure

modes which could develop at the system level. However, it is a completely heuristic

approach, and does not explicitly involve analysis of various levels of a hierarchical system

or the interactions between the levels. It does not facilitate quantification of system

behaviour and may miss certain components which are considered to be of less importance

to the analysts due to perceived low consequence or likelihood. It has the same limitations

as FMEA and relies more heavily on expert judgement and subjectivity.

ETA and FTA are both very practical tools for quantitative probabilistic assessment of

failures and their impacts. However, these approaches are failure-based, linearize the

progression of events and are unable to easily deal with feedback and nonlinear

interactions. ETA and FTA also begin with initiating events, and top events (faults),

respectively, which must be predetermined in some way. There is a very serious challenge

using these approaches in analyzing combinations of events, of which there may be an

extremely large number of possibilities. This is not a challenge that will be easily overcome

given the current state of the science. Finally, these approaches are not able to determine

the reservoir level response to various operating conditions due to their inability to analyze

component interactions and feedback behaviour.

Ultimately, the existing approaches, while useful, may not be adequate to capture the

dynamic behaviour of complex, interacting hierarchical systems. Because of the

recognized limitations, a systems approach has begun to emerge, and is beginning to gain

some momentum within the dams industry for analysis of system safety (Hartford et al.

2016). STPA is an excellent tool for analyzing potential control flaws in complex, actively

controlled systems. The key limitations of STPA that pertain to the analysis of dam systems

are that (a) dam systems may have many safety-critical components that provide passive

control, and (b) dam systems are acting to control natural inflows, so determining the

dynamic system response to the inflows is necessary to get a complete picture of system

safety. STPA is unable to determine the reservoir level response to various conditions.

78

Nevertheless, STPA does provide a good starting point for the assessment of the actively

controlled components of a dam system. It provides very useful information for

determining potential system operating constraints (scenarios) for actively controlled

components in a systematic way and includes both failures and non-failures.

Simulation is another tool that can be used in the systems approach, and it is becoming

more commonly applied within the dams industry for safety analysis. Hartford et al. (2016)

focuses on several applications of stochastic simulation. In stochastic simulation, random

failures of components may be initiated (with random outage lengths) to determine the

overall probability of failure for the system. In this way, each run of a stochastic simulation

model would produce a different output. If run for enough years, the probability of failure

would begin to converge on a single value. The approach is becoming more widely applied

for dam safety analysis (Komey 2014; Komey et al. 2015; Hartford et al. 2016). Stochastic

simulation addresses more of the research requirements described previously than other

safety assessment approaches for dam systems. Stochastic simulation can capture dynamic

feedback relationships between system components if the system is modelled in adequate

detail. Simulation outputs for a dam system can include the reservoir level fluctuations in

response to various inflows and constraints, which makes simulation a particularly

promising tool for dam safety analysis. It is also possible to assess potential “combinations

of events” using stochastic simulation, though the ability to do so is limited by the length

of the run (computing power). Because the probabilities applied to the events (equipment

states) are relatively low, multiple events occurring and impacting one another are very

rare within a stochastic simulation if not run for enough years. In theory, stochastic

simulations run for enough simulation-years would eventually cover all of the possibilities,

however the computational requirements to achieve a complete coverage of the

possibilities would be beyond current capabilities. As such, the existing implementations

of stochastic simulation may not be able to capture a complete set of possible combinations

of component operating states at the current time. Stochastic simulation has the benefit of

easily estimating the overall probability of flow control failure of a system, though the

assessment of criticality for specific scenarios would require the use of data mining

techniques as well as extremely large number of simulation-years. Some of the current

79

limitations associated with a purely stochastic approach can be demonstrated using a

simple example.

Consider a system with five components, A, B, C, D and E. Assuming each component is

either functioning or failed, there are 25=32 potential combinations of failures as follows

(normal component states are not shown):

No failures, A, B, C, D, E, AB, AC, AD, AE, BC, BD, BE, CD, CE, DE, ABC, ABD, ABE,

ACD, ACE, ADE, BCD, BCE, BDE, CDE, ABCD, ABCE, ABDE, ACDE, BCDE,

ABCDE.

For this example, assume that the goal of the stochastic simulation is to generate all possible

combinations of the component operating states at least once. Assuming that the probability

of failure for each component is 0.1% per day, and the model is run for as many years as

necessary at a daily time step until each combination has been simulated at least once, the

number of years required to arrive at each combination is shown in Table 2-8, which also

shows the corresponding number of years within which each combination was simulated.

Obviously, the combinations (scenarios) with less failures have a higher probability and

are simulated more frequently than the combinations with a higher number of failures. It is

also worth noting the high number of non-failure years simulated. Averaging over 50 total

runs, the simulation spends about 25% of its time simulating non-failure years. This

number is dependent on the assumed failure rates and will increase as the assumed failure

rates decrease. The amount of effort spent simulating each scenario is a function of its

probability, so some of the worse scenarios are focused on less because of their low

likelihood. About half of the possible scenarios (the lower, less probable part of the list)

are simulated less than 40 times, which means the simulation focuses less than ~0.5% of

the simulation effort on those scenarios. A very large number of simulation-years would

be required to collect enough data with which to assess the criticality of these more severe

and less likely combinations of operating states.

A volumetric representation of the system’s “possibility space” is another useful way of

demonstrating how stochastic simulation samples different events. The “possibility space”

80

Table 2-8: Stochastic simulation of operating state combinations

Combination

Run

1 2 3 4 5 6 7 8 9 10

A 1007 485 319 685 1152 667 328 310 498 202

B 922 479 316 674 1132 624 341 313 517 176

C 952 475 312 649 1191 684 349 289 510 191

D 955 462 293 701 1149 625 324 299 508 180

E 984 462 266 683 1183 668 362 295 518 198

AB 192 91 58 125 219 130 57 58 87 40

AC 205 95 55 130 192 138 86 68 104 35

AD 183 77 43 131 212 144 60 49 103 32

AE 172 97 56 128 263 107 72 61 98 40

BC 195 111 61 142 233 118 69 56 105 30

BD 185 95 56 143 225 124 59 59 88 38

BE 184 93 67 126 221 139 68 55 103 32

CD 190 84 65 129 252 145 57 60 112 50

CE 198 92 68 135 218 133 66 57 110 43

DE 188 87 54 135 233 139 77 51 102 42

ABC 36 24 9 29 40 25 11 9 24 7

ABD 46 24 7 27 44 26 18 12 22 8

ABE 34 20 12 24 54 22 11 20 15 8

ACD 45 19 9 25 43 26 14 8 26 6

ACE 31 21 12 36 50 21 13 12 20 6

ADE 30 18 7 24 39 28 15 8 16 9

BCD 44 14 19 29 36 25 11 14 22 6

BCE 34 13 12 29 49 23 14 10 20 9

BDE 25 20 9 16 51 29 12 14 25 8

CDE 39 13 9 15 59 26 14 15 31 7

ABCD 7 3 2 2 6 2 2 1 2 2

ABCE 4 7 3 3 5 6 3 3 3 2

ABDE 10 6 6 7 9 7 1 2 7 1

ACDE 8 2 3 6 3 10 5 5 4 2

BCDE 5 2 1 6 14 5 1 1 5 2

ABCDE 1 1 1 1 1 1 1 1 1 1

Total number of

failures simulated 7111 3492 2210 4995 8578 4867 2521 2215 3806 1413

Total number of

non-failures

simulated 4814 2428 1483 3433 5801 3206 1719 1597 2506 968

Total 11925 5920 3693 8428 14379 8073 4240 3812 6312 2381

81

is a visual representation of the full realm of physically possible system states and their

frequency of occurrence. In Figure 2-10 (King and Simonovic, 2020), the frequency, 𝐹𝑁 of

𝑁 components in an adverse operating state (𝑁𝑈) is plotted against the frequency, 𝐹𝐷 of

outage durations 𝐷𝑈. Simple FN relationships are assumed and a 3-dimensional possibility

space is created. The planes of adverse component operating states are represented using

red, orange, green, blue and purple outlined areas. It is important to note that this possibility

space is a very simplified representation of the problem – the possibility space would also

include inflows, starting reservoir elevations and timing of component outages.

Nevertheless, using this simplified example figure, the stochastic samples can be plotted

(shown as black dots). Each dot represents one sample that could be stochastically

generated. The dots are centred around zero component outages, which have a higher

frequency, zero components out of service and zero outage length. While the samples do

extend into the outer reaches of the possibility space, they provide the best coverage of the

higher-frequency scenarios (zero to one components unavailable). The coverage of the less

probable, more extreme scenarios (where more components are out of service) is limited

by the number of years for which the simulation is run. In a stochastic simulation, this

volume is predefined, since the components, their outage frequency and their outage length

frequency are inputs to the model.

In conclusion, neither the more commonly used risk assessment approaches or the existing

techniques utilized from the systems approach are currently capable of systematic and

dynamic evaluation of the combinations of events that can lead to flow control failure in

dam systems. A new methodology is required, building on the existing tools from the

systems approach to define, analyze and evaluate a more complete range of potential

combinations of events (scenarios). The approach must be able to handle complexity,

feedback and nonlinear behaviour. Dynamic indicators of the system performance are a

required output of the analysis, as well as parameters that can be used to rank the relative

importance of a large number of potential scenarios.

82

Figure 2-10: Stochastic sampling from within the possibility space

83

Chapter 3

3 Methodology

In this chapter, an improved methodology for assessment of flow control in dam safety is

developed. The methodology draws on the benefits of existing approaches where possible,

making improvements that can facilitate a more thorough understanding of system

response to a more complete set of scenarios. The next section describes the methodology

justification and development, followed by a complete description of the methodology

steps.

3.1 Justification and development

A dam system is fundamentally an open control system. It is forced by inputs (inflows)

which vary with time in a relatively predictable way. Dam system outputs (outflows,

energy, etc.) are also constrained in relatively predictable ways, but random deviations

within the system may occur that affect the system outputs. For example, a spillway gate

can open or close to release the desired amount of flow downstream, but failure of

infrastructure which supports the gate function can cause the output constraints to deviate

from their normal values. There is a need within the dams industry to better understand

how dam system outputs may be constrained and what possible system outcomes may

result. Specifically, determining the reservoir level and outflow response to the full range

of possible operating constraints is an important goal that can help dam owners better

understand vulnerabilities within the system and determine appropriate courses of action

to address them. Using the control system structure presented by Leveson (2011) and

modified for a dam system, a basic mathematical framework can be developed for

calculation of the reservoir storage over time (which is directly related to the elevation

through a stage-storage curve). This is shown in Figure 3-1. The boundaries of the system

are the point at which the inflows enter the reservoir and the point at which the outflows

leave the dam. Included in the system is all of the infrastructure at the dam site, including

dams, gates, gate actuators, sensors as well as information relay, processing, operational

decision making and implementation of operations (which may take place off site).

84

Figure 3-1: Mathematical framework for determining dam system behaviour

The control loop shows how information is passed through the system and what the main

connections are between different sectors (feedbacks). The relationships between Storage,

Inflow and Release are easily represented by basic mathematical equations and rule curves

for decision making with respect to controlled flow releases. This type of modelling is done

frequently for operations planning and analysis of dam systems. The area where more work

is needed is in determining constraints that come into play in several sectors of the system

and may impact measured system state values, operational decisions, operability of

equipment and capacity of water passages. The goal of this research is (a) systematically

defining these operating conditions and (b) understanding how they may adversely impact

the system state and outputs. A new approach is necessary with the following goals:

• Reduced reliance on subjectivity and expert judgement.

• Ability to determine potential constraints on system operation.

• Ability to determine potential constraints that are not limited to failure modes.

• Automatic generation of potential combinations of constraints.

• Determine the likelihood of constraints without significant simplifying

assumptions.

• Quantification of the dynamic system response to constraints. Specifically, how the

reservoir level and outflows change with time for a given set of constraints

(component operating states), constraint parameters and inflows.

85

• Inclusion of feedbacks, interactions and nonlinear behaviour.

• Ability to deal with system complexity without the use of extreme simplifications

that undermine the results.

• Ability to deal with uncertainty in the outcomes.

• Estimation of criticality for a given scenario.

• Estimation of overall probability of flow control failure for the system.

Table 3-1 contains a list of the main approaches discussed in the literature review,

evaluating them within the context of these research goals based on the observations in the

previous chapter. It is important to note that many of these tools may not be utilized

independently. The results of FMEA, for example, can be used as inputs to FTA or ETA.

Combining the tools may result in improved ability to achieve these research goals,

however the key limitations remain for the majority: an inability to model dynamic system

behaviour, complexity, feedback and interaction. The most promising tool in terms of the

aforementioned research requirements is the stochastic simulation approach, described in

detail by Hartford et al. (2016). The key limitation of the stochastic simulation is that it

spends a significant amount of effort simulating non-failures, and as such may not be an

efficient means of systematic evaluation of each possible combination of events. The

methodology proposed in this work seeks to determine (a) what the possible combinations

of events are, (b) what their range of impacts might be and (c) what their relative

importance (criticality) is, with respect to other scenarios.

Systematic analysis of each possible scenario, in theory, may be achieved using a

completely deterministic simulation of predefined scenarios. However, the timing of the

scenario’s predetermined adverse operating states (events) and determining whether events

influence one another significantly complicates the analysis. To completely and

deterministically analyze the full range of possible outcomes of a single scenario, all

possible combinations of event timing and inflows should be considered. Consider an

example scenario with three events, A, B, and C, and 10,000 years of possible daily inflow

values (this number of inflow-years is selected, in theory, to include inflows up to the PMF

which has an annual exceedance frequency of 1 in 10,000 years). There are a total of 365 ∗

10,000 = 3,650,000 possible inflow start days. Assuming the events can happen any time

86

Table 3-1: Overview of approaches and their applicability to the research problem

Requirement FMEA PFMA ETA FTA STPA

Stochastic

Simulation

Reduced

subjectivity

Slightly

(systematic

process)

No (fully

heuristic)
No No

Slightly

(systematic

process)

Slightly (simulation

model

automatically

determine system

outcomes)

Determine

constraints on

system

operation

Yes Yes

No –

Requires this

upfront

No –

Requires this

upfront

Yes
No – Requires this

upfront

Ability to

address non-

failure related

constraints

No –

Failure

based

method

No –

Failure

based

method

No – Failure

based

method

No – Failure

based

method

Yes

Yes – If non-

failures included in

potential constraints

Automatically

determine

potential

combinations of

constraints

(scenarios)

No No No No Yes No

Determine

likelihood of

constraints

without

significant

simplifying

assumptions

No No No No No No

Quantification

of dynamic

system response

No – Static

analysis

No –

Static

analysis

No – Linear

chain-of-

events

No – Linear

chain-of-

events

No – Static

analysis

Yes – Dynamic

analysis

Inclusion of

feedbacks and

nonlinear

behaviour

No – Static

analysis

No –

Static

analysis

No – Linear

chain-of-

events

No – Linear

chain-of-

events

Includes

feedbacks

but does not

analyze

system

behaviour

Yes – Dynamic

analysis that can

include feedbacks

and nonlinear

behaviour

Ability to

handle

complexity

Somewhat,

can pose

challenges

Somewhat,

can pose

challenges

Somewhat,

can pose

challenges

Somewhat,

can pose

challenges

Yes Yes

Assessment of

uncertainty in

the outcomes of

a scenario

No – Does

not

analyze

scenario

outcomes

No – Does

not

analyze

scenario

outcomes

Yes – Can

experiment

with

assumptions

Yes – Can

experiment

with

assumptions

No – Does

not analyze

scenario

outcomes

Not directly –

Could potentially

assess specific

scenarios using data

mining

Ability to deal

with common

cause failures

Limited to

qualitative

only

Limited to

qualitative

only

Limited –

requires

careful

consideration

Limited –

requires

careful

consideration

Yes Yes

Estimation of

scenario's

criticality

No – Static

analysis

No –

Static

analysis

Yes Yes

No – STPA

is generally

qualitative

Not directly –

Could potentially

assess specific

scenarios using data

mining

Estimation of

overall system

flow control

failure

probability

No – Static

analysis

No –

Static

analysis

Yes, if all

possible

combinations

included

Yes, if all

possible

combinations

included

No – STPA

does not

involve

probabilistic

assessment

Yes

87

within a one-year window, there are a total of 365 ∗ 365 ∗ 365 = 48,627,125 possible

combinations of event initiation times (the day in which the adverse operating state begins).

This means 3,650,000 ∗ 48,627,125 = 1.77 × 1014 possible ways to execute the

simulation for a single scenario with three events occurring. This number considers only

one set of possible impacts for event A, B, and C, which may have impacts (for example,

outage lengths), that can significantly vary. Clearly, the number of combinations and

scenarios that must be analyzed to fully define the suite of potential outcomes for a system

becomes computationally prohibitive, even with state-of-the-art computing technology

such as cluster computing. Monte Carlo selection of event timing and inflow start day from

s synthetically generated inflow record can be useful to sample a small number of these

possibilities and dynamically characterize some of the possible outcomes for a given

scenario. Each predetermined scenario can be simulated through a number of Monte Carlo

iterations to better understand the possible range of outcomes resulting from that scenario.

This is the hybrid Deterministic Monte Carlo approach proposed in this research, where

events (component operating states) are pre-selected and their impacts, timing and inflows

are varied to better understand the possibilities within current computational capabilities.

The scenario inputs represent the deterministic portion of the model, and the varying of

scenario parameters represents the Monte Carlo portion of the model.

The approach presented in this thesis aims to provide a more even coverage of the

possibility space, as shown in Figure 3-2 (King and Simonovic, 2020). The sample dots

are color coded, to indicate which “adverse component operating state plane” the samples

are taken from. The Deterministic Monte Carlo approach forces the simulation to take

samples from within each plane, because it does not rely on the frequencies of failure and

duration to generate the samples. Each plane represents a single scenario, and the scenarios

are predetermined and simulated regardless of their likelihood. For the Deterministic

Monte Carlo approach, only a single sample would be taken to represent “normal”

conditions. In the proposed approach, the frequencies of the component outages and outage

lengths are not required to run the model, so the frequency dimension of the possibility

space is not defined. If enough information is available to define these frequencies, a

complete probabilistic analysis using the results of the analysis is possible.

88

Figure 3-2: Deterministic Monte Carlo sampling from within the possibility space

Another key timing related issue that must be considered is the problem of whether

preceding events are influencing the results of subsequent events. Such considerations arise

when a component failure has been rectified, but the overall system remains in a “disturbed

state”, that is, the system has not been restored to the state that it would have been in if the

component failure had not occurred. This means that the “system state deviance” must be

a factor to be considered along with the timing of component failures. Since “system state

deviance” is determined by operational decisions, (eg. The decision to release water to

return to a normal state), these decisions must be somehow included as factors in

determining the extent of the deviance. This can be achieved by analyzing whether the

reservoir level has returned to a predefined “normal” state following the initiation of an

89

event. If not, there may be independent sub-scenarios within the simulation that should not

count towards results of the scenario being analyzed. Consider the example shown in

Figure 3-3 (King and Simonovic, 2020), which has three events A, B and C occurring

within some time of one another.

Figure 3-3: Example output reservoir elevations for Scenario ABC (King and

Simonovic, 2020)

In the example, the reservoir has a constant elevation of 1 m under normal circumstances

where everything is operational. The event outage occurrence dates and lengths (durations)

are represented by the horizontal lines above the plots. For Outcome 1 (light red), Event A

causes an increase to about 1.3 m and then the reservoir level returns to the normal

elevation of 1 m prior to the initiation of Event B. The rate at which it returns to the normal

elevation would be determined by the operations planning algorithm within the simulation

model. Event B causes in increase in reservoir elevation to about 1.8 m, after which Event

C begins and increases the reservoir a further 0.1 m. After Event C, the reservoir returns to

its normal elevation as a result of the operations planning decisions. In Outcome 1, Event

A does not have any impact on the outcome of Events B and C, because the reservoir level

has returned to a normal elevation. Event B, however, does impact Event C. Thus, for

Outcome 1, two sub-scenarios are observed: (1) The result of Event A, and (2) the

combined result of Events B and C. In Outcome 2 (dark red), the reservoir rises to about

1.95 m following Event A, at which point dam breach is triggered and the reservoir drops

90

to 0 m in elevation. In this case, the only sub-scenario being analyzed is Event A. This

example shows that despite the simulation being intended to analyze the combined impacts

of Events A, B and C, they cannot be assumed to be influencing one another. Some analysis

of each simulated outcome (the reservoir levels from each simulated Monte-Carlo iteration)

is required to ensure simulation results are attributed to the actual scenarios being

represented within the analysis. “Complete iterations” are considered to be the subset of

scenario results where all of the scenario’s events both occurred and affected one another.

In using the proposed Deterministic Monte Carlo approach, it is important to consider that

the goal of the exercise is to analyze all scenarios (predefined combinations of operating

states) as completely as possible given computational time constraints, to determine the

criticality of these combinations and identify particularly vulnerable components. There

should be enough data on each scenario to estimate the range of expected system

performance as well as the failure frequencies, failure inflow thresholds and reservoir level

exceedance frequencies. To ensure there is enough data collected for each scenario, it may

be necessary to limit the time between events to ensure their collective impacts can be

assessed. This limit may be determined as a function of the impact lengths for a given

iteration (for example, by taking the sum of impact lengths). Whether the event initiation

time limit should be more or less than the sum of the impact lengths requires experimenting

with scenarios to determine how long the system typically takes to return to normal

operation. For “flashy” reservoirs with relatively limited storage compared to inflows, the

recovery time following a return to normal operations may be quite short – days or even

hours. For reservoirs with large storage in comparison to inflows, this recovery time may

be significantly longer. The recovery time may also be less than the sum of impact lengths,

due to inflows that are less than the total capacity of the available flow conveyance

facilities. The recovery time should influence the modellers decision regarding the

appropriate time limit for event initiation.

In summary, the methodology developed in this work uses a systems approach for dam

safety analysis, attempting to draw on the strengths of the existing techniques, combining

and building on them with the goal of addressing the key element that is missing in all of

them – assessing outcomes from a large number of the possible combinations of events.

91

This research focuses on identification and analysis of a more complete subset of

potentially unsafe scenarios than has previously been considered in dam safety analysis. A

Deterministic Monte Carlo simulation approach is proposed, in which scenarios are

systematically defined upfront and used as a deterministic input to the model. Defining the

complete set of failures and events to be simulated ensures all combinations of the defined

component operating states (or constraints) are evaluated. It also means that the simulation

efforts are divided equally between each scenario (combination of operating states), so a

more thorough analysis of each scenario is possible than using a purely stochastic

approach. Finally, the proposed approach reduces the amount of time spent simulating non-

failures. The scenario parameters, such as the timing and magnitude of impacts, are varied

using Monte Carlo techniques so that each scenario is run as many times as possible given

computational time constraints. Varying impact parameters allows some analysis of the

uncertainty relating to the estimate of scenario impact magnitudes (for example, it is hard

to estimate how long a component will be out of service, so a range of different values can

be tested). Conditional probabilities of failure and reservoir level exceedances above key

elevations (given a scenario has occurred) are direct outputs of the simulation. In this way,

a much larger subset of the events that contribute to the probability are analyzed. Focusing

on numerically assessing the entire design envelope and the complete range of possibilities

can help asset owners in becoming more prepared for any event (or combination of events),

regardless of its probability.

A flow chart detailing the overall methodology is shown in Figure 3-4 (King and

Simonovic, 2020). First, a component operating states database is created, which defines

individual components and their operating states, causal factors and potential range of

direct impacts. These represent the constraints within which the system may have to

function. Population of the database requires extensive knowledge of the system and is

similar to a FMEA but also includes non-failure operating states. A combinatorial

procedure uses the database entries to come up with the complete range of potential

scenarios for the system, which are used as inputs to a simulation model. Synthetic climate

data is generated for the system of interest and used in a hydrological model to develop a

long, synthetic timeseries of inflows to be used as inputs in the simulation model. The

scenarios become the inputs for a deterministic simulation model which is run many times

92

for each scenario, with Monte-Carlo generated inputs that vary the inflows and incident

timing, as well as the scenario impacts. Outcomes are descriptors of the system behaviour

over time, including the releases through various conduits as well as adverse impacts, such

as dam overtopping, uncontrolled flow releases, or dam breach. Outcomes for each

scenario are assessed and aggregated performance measures for scenario groups are

computed. The results of the analysis could be utilized to develop or refine response and

mitigation strategies to improve system performance. Further analysis may be possible that

would allow for overall estimates of the probability of failure for each individual scenario,

and probability of failure for the system as a whole – this would require probabilistic

analysis of operating states, which is a complex task that is not explored in this research.

The proposed methodology has been developed to meet as many of the requirements in

Table 3-1 as possible within the time frame of the work. The key missing pieces are that

(a) it still inherently relies on subjectivity in the population of the operating states database

and development of the simulation model – there is currently no substitute for expert

knowledge and engineering judgement; (b) the likelihood of operating states are still

difficult to estimate without significant simplifying assumptions; and, (c) the approach

does not directly result in estimates of overall probability of flow control failure for the

system, though with some additional analysis this may be possible. There are also an

extremely large number of configurations (with different inflow sequences, event timing,

and impact magnitudes) for each combination of operating states, as described earlier in

this section – this approach covers only a small subset of the possible configurations for

each scenario, through the use of Monte Carlo techniques. This means that results between

two identical simulations of a given scenario would vary, and the results are only estimates

of the criticality of each scenario, given computational time constraints.

93

Figure 3-4: Overall methodology flow chart (King and Simonovic, 2020)

Each of the methodology steps are described in detail in the following sections. First, a

description of the components operating state database and the process for database

population is provided. Next, scenario development is discussed with a description of the

combinatorial procedure developed in this research. Then, a detailed description of the

Deterministic Monte Carlo simulation approach is presented, which uses a system

dynamics simulation model with Monte-Carlo varied inputs. The following section

contains a description of the modelling approach used for inflow generation. Finally,

94

scenario outcome assessment is discussed including the selection of criticality parameters

and performance measures.

3.2 Component Operating States Database

A component operating states database is used to define the operating states for each

system component and the causal factors that could lead to the development of the

operating states. The approach of database population is similar to FMEA but also

considers non-failure related operating states, including normal or functional operating

states. Population of the database can significantly benefit from the application of (a) the

STPA technique for actively controlled components and (b) a single-level FMEA analysis

for system components. There is still a significant amount of reliance on expert judgement,

but this may be slightly reduced if the systematic approach of STPA is used to inform

database population.

In order to develop an exhaustive list of potential operating scenarios for a hydropower

system, each individual component of the system (whether it be physical or non-physical)

must be analysed and its modes of operation considered. This is achieved using an

operating states database, which was designed using a relational database software called

Microsoft SQL Server (MSSQL). MSSQL is a software used to generate and populate

computer databases. It can be used to generate interfaces that assist with database

population and information access. Using MSSQL, data are organized into relational tables

to model aspects of reality, such as the system elements, at different levels (system,

component and reservoir), the operating states and their characteristics as well as the causal

factors. Another important feature used in the design of the database is the store

procedures, which include functions that provide flexibility for developers, and are used

to insert and recover data very efficiently from the database with less computational

burden. In addition to this, there are views which allow the combination of several tables

in a relational way and return aggregated data to the user interface. The structure and the

entity relationship (ER) diagram of the database is shown in Figure 3-5 which depicts the

relationships between various levels of the system. The lines connecting the objects (tables)

in Figure 3-5 represent “foreigner keys” which ensure data consistency and integrity. The

database was designed to facilitate simple data entry using a web-based user interface. It

95

may also be accessed, modified and queried using MSSQL Server Management Studio.

The design of the database is meant to be as general as possible, facilitating the analysis of

various dam systems with different configurations. Figure 3-5 presents three major groups

of tables organized as: a) System elements: containing the tables representing the System,

Component and Reservoir level elements; b) Operational States: containing the tables

representing the operating states for each of the system elements; c) Casual Factors:

containing the tables storing the causal factors; d) Auxiliary objects: containing tables that

are used to store user accounts and system logs.

Figure 3-5: Database Structure

In order to keep track of and assess each individual component in the system, a hierarchical

database structure is used in which components can be broken down into multiple sub-

components and easily tracked using a components tree with drop-down lists containing

components in an increasingly higher level of detail. Hydropower systems consist of a large

number of complex, interacting components at various levels of the system, and often in

96

various locations. Use of a components tree helps the user set up the relationships between

these higher and lower level components of the system.

The components tree consists of three levels. These are as follows:

• System level, which includes reservoirs, communications equipment and other

high-level components of the overall system

• Reservoir level, which breaks down the system-level components into their sub-

components. This includes dams, spillway gates, generating units, sensors and other

infrastructure assemblies that exist for a single reservoir. Reservoir level

components also include non-infrastructure system components such as the

operations staff and inflow forecasting for the reservoir.

• Component level, which breaks down (when possible) the reservoir-level

components into their sub-components. A spillway gate may have several

interacting sub-components which function together, and these can be broken down

at the component level and tied to the gate for which they represent.

These levels of the system are stored as tables in the database and can be seen in Figure

3-5a under “System elements” group and the object names are: “ComponentLevel”,

“ReservoirLevel” and “SystemLevel”. The components tree ensures that each sub-

component is tied to an individual component at a higher level, allowing for complex

system structures to be represented fully while maintaining relationships between the

higher-level components and the sub-components of which they are comprised.

Components are also assigned a type to facilitate integration with the simulation model.

Once components are defined, the individual operating states for each component can be

described. The operating states database includes normal operating status for each

component, as well as adverse operating states which can include failure or non-failure

events. Operating states include several entries, shown in Figure 3-5b under “Operating

States” group and listed below – these may be expanded upon, if necessary, for different

systems being analyzed:

• Operating state type: normal, failed, failed closed, failed in place, collapsed,

delayed, erroneous

97

• Impact type: none, outage, delay, error, blockage, settlement, cracking, wave,

uncontrolled release of water

• Operating state description: qualitative descriptor for operating state

• Minimum impact: numerical minimum value of impact

• Maximum impact: numerical maximum value of impact

• Average impact: numerical average value (mode) of impact

• Unit type: The units of the impact

• Notes: user entries on data sources and/or assumptions

A numerical range of impact magnitudes is included (see “Operating States” table in Figure

3-5b since it may not be possible to estimate accurately the exact amount of time needed

to repair certain components or the magnitude of error or delay which may occur under

varying circumstances. For the more extreme failure modes, such as collapse of a dam or

spillway gate, the process of repair could take years due to a number of factors including

the degree of damage, the design process, the contract tendering process and even political

considerations. Including a wide range of potential impacts for each operating state allows

the full range of potential impact times to be explored. This structure also facilitates Monte-

Carlo simulation which can be used to investigate the full range of system behaviour

outcomes for a given scenario (set of component operating states).

Each operating state can be assigned one or more causal factors, with details as specified

in Figure 3-5c under “Causal Factors”. Causal factors are the events which lead to the

operating state being described. Several causal factor types are required as various

components of the system may be vulnerable to different disturbances. These include

earthquake, maintenance, debris, excessive rainfall, ice, etc. The user may create a specific

list for the system of interest. It may be desirable in some cases to define the magnitude of

causal factor that could lead to the event. In the case of an earthquake, certain components

may be vulnerable under certain degrees of ground acceleration. For some causal factors,

it may not be possible to provide a numerical definition. Causal factors may also be

assigned date index ranges, which specify the minimum or maximum date within which

the causal factor can occur (as an integer between 1 and 365). An entry under causal factors

was also added to allow for quantification of the probability of the causal factor leading to

98

the operating state. While this information is useful in overall calculations of scenario

probability, it is extremely hard to define in the presence of limited data. The focus of this

research is to define and analyze the full range of potential operating conditions for a dam

system, and probabilistic assessment remains an important area for future work.

The procedure for population of the database is detailed in Figure 3-6. First, system

documentation and details can be used to populate the components tree for the system of

interest. Components at the different levels of the system are defined. Next, gathering of

information relating to failures, expert knowledge, and any FMEA and STPA outcomes

Figure 3-6: Component operating states database population flow chart

should be gathered to begin definition of operating states, population of operating states

tables and causal factor information. Populating the table is quite similar to an FMEA in

that it is expert knowledge and judgement from a variety of experts would be recommended

in populating the database to ensure the most exhaustive list of operating states, impacts

and causal factors which is as accurate as possible. The key difference from an FMEA is

that non-failure operating states may also be included within the database. In addition,

99

component failure effects on other components or higher levels of the system can be

programmed into the simulation model and do not need to be addressed within the database.

While a significant amount of subjectivity remains in database population, placing the

focus on individual components at different levels of the system and determining their

direct impacts is necessary to allow for automated scenario generation. The database is

structured so that various users can work together to provide inputs, facilitated using user

identification (see “Auxiliary objects” in Figure 3-5d). Users of the database can enter in

their details and create a user ID and password to be entered upon accessing the database

interface. This, along with IP address tracking ensures all sensitive information is kept

secure.

3.3 Operating State Scenario Development

The information in the database contains as many of the systems components and their

potential operating states that can be defined by the modeller(s). A combinatorial procedure

is required to automatically generate the complete list of operating state combinations from

the database. Each scenario will represent one possible combination of operating states (or

set of constraints) for each component in the system. The use of combinatorics will ensure

an exhaustive list of potential operating scenarios is developed. Deterministic modelling of

each of the scenarios, with Monte Carlo variation of their potential parameters, will allow

for a more complete investigation of scenarios and potential system outcomes than may be

possible using a purely stochastic model.

Consider a system of three components, A, B, and C, each which can either be functional

or failed. The total number of possible combinations of operating states is 23 = 8. These

are:

𝐴𝐵𝐶, 𝐴̅𝐵𝐶, 𝐴𝐵̅̅ ̅̅ 𝐶, 𝐴̅𝐵𝐶̅, 𝐴𝐵𝐶̅̅ ̅̅ ̅̅ 𝐴𝐵̅𝐶, 𝐴𝐵𝐶̅̅ ̅̅ , 𝐴𝐵𝐶̅

where a solid line over the variable represents its failed state. A process is required that can

not only determine the number of combinations but can determine what the combinations

themselves are. The process should also work for components with more than one

100

operating state, since this methodology considers operating states outside of the traditional

binary definition of “functional” or “failed”. The Cartesian Product meets these

requirements. Consider a set of operating states for each component, such that:

𝐴, 𝐴̅ ∈ 𝑨

𝐵. 𝐵̅ ∈ 𝑩

𝐶, 𝐶 ̅̅ ̅ ∈ 𝑪

The Cartesian Product 𝑨 × 𝑩 × 𝑪 defines all possible combinations, as listed above.

Consider component 𝑨 has an additional operating state in its operating state set, such that

𝐴, 𝐴̅, 𝐴̂ ∈ 𝑨. The operation 𝑨 × 𝑩 × 𝑪 would then yield 3 × 2 × 2 = 12 possible

outcomes, as follows:

𝐴𝐵𝐶, 𝐴̅𝐵𝐶, 𝐴𝐵̅̅ ̅̅ 𝐶, 𝐴̅𝐵𝐶̅, 𝐴𝐵𝐶̅̅ ̅̅ ̅̅ 𝐴𝐵̅𝐶, 𝐴𝐵𝐶̅̅ ̅̅ , 𝐴𝐵𝐶̅, 𝐴̂𝐵𝐶, 𝐴̂𝐵̅𝐶, 𝐴̂𝐵𝐶̅, 𝐴̂𝐵𝐶̅̅ ̅̅

This example demonstrates the use of the Cartesian Product for generating all possible

combinations of sets of varying lengths. To achieve the goal of coming up with all possible

combinations of operating states for the system, the information from the database can be

converted into operating state sets for each component of the system. Then, the Cartesian

Product is applied to come up with a list of all possible combinations, where each

combination is one unique set of operating states for each component in the system (a

scenario). The process for scenario generation is detailed in Figure 3-7. The scenarios

generated through this process become the input to the simulation model. The following

paragraphs describe the steps and mathematical descriptions of the process.

From the database, tables detailing the database inputs at each level of the system can be

extracted. The component number and operating state number for each of the components

and operating states can be used to generate unique identifiers, as shown in Equation 3.1.

101

Figure 3-7: Scenario generation flow chart

𝐶1 = [𝑐1𝑜𝑠1, 𝑐1𝑜𝑠2, 𝑐1𝑜𝑠3, 𝑐1𝑜𝑠4…𝑐1𝑜𝑠𝑚1
]

𝐶2 = [𝑐2𝑜𝑠1, 𝑐2𝑜𝑠2, 𝑐2𝑜𝑠3, 𝑐2𝑜𝑠4…𝑐2𝑜𝑠𝑚2
]

⋮
𝐶𝑛 = [𝑐𝑛𝑜𝑠1, 𝑐𝑛𝑜𝑠2, 𝑐𝑛𝑜𝑠3, 𝑐𝑛𝑜𝑠4…𝑐𝑛𝑜𝑠𝑚𝑛

]

(3.1)

where 𝐶1…𝐶𝑛 represent the system component operating state sets for components 1

through 𝑛 and 𝑛 ∈ (1…𝑁), 𝑐1…𝑐𝑛 represent the components 1 through n,

and 𝑜𝑠1…𝑜𝑠𝑚𝑛
 represent operating states 1 through 𝑚𝑛 for component n which has 𝑚

operating states, 𝑚 ∈ (1…𝑀). The component operating state sets contain a list of all

unique operating state and causal factor combinations for a given component. The actual

numbers given to components are generated directly from the database identifiers, and the

operating states are then labelled 1 to m. The number of unique operating state/causal factor

102

combinations for each component may vary so the component operating state sets are not

equal in length from component to component.

Cartesian product of these sets can be easily obtained using Python’s itertools package,

with the product function (Python Software Foundation 2012). The function is an efficient

iterator containing nested “for” loops which essentially work as an odometer that advances

the rightmost element on each iteration. This produces an exhaustive list of potential

system operating scenarios, which contain one operating state for each component in the

system. Using the Cartesian Product of each component’s operating state set produces an

exhaustive list of elements (scenarios) which include a complete list of operating states for

every component in the system. Scenarios take the form shown in Equation 3.2:

𝑆 = [𝑐1𝑜𝑠𝑚1, 𝑐2𝑜𝑠𝑚2, … , 𝑐𝑛𝑜𝑠𝑚𝑛] (3.2)

where each scenario S consists of a single operating state for every component in the

system. The operating states are kept track of using operating state identifiers as shown in

Equation 1.

The total number of possible operating states TS is therefore equal to the number of

elements in the Cartesian product of the component operating state sets. The number of

elements in the Cartesian product is the product of the length of each set:

𝑇𝑆 =∏𝑀𝑛

𝑁

𝑛=1

(3.3)

where 𝑀𝑛 is equal to the number of individual operating state/causal factor combinations

for each component 𝑛, 𝑛 ∈ (1…𝑁).

The resultant number of potential scenarios will be a function of the number of operating

states and components, and as such will be extremely high for a complex system modelled

in significant detail. Because the goal of this methodology is to simulate each and every

scenario to determine the potential impacts, it may be necessary in practice to consolidate

multiple components or causal factors into categories based on the modes of failure or

adverse impacts, to reduce the number of scenarios and ensure the computational feasibility

103

of the simulation model. This could potentially be achieved through additional analysis –

fault tree analysis may be particularly suited to determining multiple paths of failures that

lead to the same higher-level fault, which could then be consolidated into a single operating

state (this could be particularly promising for spillway gate and turbine systems).

While some of the generated scenarios may be relatively unrealistic in comparison to

others, this approach focuses on determining all of the possibilities. The worst-case

scenario where every component is in an undesirable state is extremely unlikely, yet still

possible and does contribute (in a very small way) to the overall probability of failure.

Understanding system behaviour in response to any scenario can help guide the selection

of operating strategies and investments to improve system safety and guide system

recovery.

This methodology for scenario generation does not consider the time between changes in

operating states for different components or the inflows, which would significantly

complicate the procedure. Instead, this is dealt with using a Deterministic Monte Carlo

Simulation framework, where the operating states for each component (scenarios) are

predetermined and used as inputs to a simulation model. For each deterministic simulation

of a particular scenario, the uncertainty arising from varying time between events, impact

magnitudes and inflows is varied in a number of Monte Carlo iterations, as detailed in

Section 3.4.

3.4 Deterministic Monte Carlo Simulation Framework

This section presents a framework for the Deterministic Monte Carlo Simulation. First, a

description of the simulation model development is provided. In this research, a system

dynamics simulation environment is used. Next, a discussion of the Monte-Carlo variation

of scenario parameters is provided. The system dynamics simulation model is run in a

hybrid deterministic/Monte Carlo environment where (a) the operating states associated

with a single scenario are used as inputs for a single execution of the simulation, and (b)

the parameters of that particular scenario are varied in a series of iterations, using Monte

104

Carlo generated parameters for operating state timing, impacts and inflows. The final

section of this chapter details the simulation execution steps.

3.4.1 System Dynamics Simulation Model Development

Simonovic (2009) presents simulation techniques that deal with water resources in general,

with a particular focus on system dynamics simulation as a tool for water resources

engineers. In system dynamics, a stock-and-flow model can be used to represent the system

structure, showing the complex interactions between system components. These complex

interactions are the source of the system behaviour and can help identify emergent

behaviours that may not be easily assessed through analysis of the system’s individual

parts. By modelling the system as a whole and all relevant feedbacks and relationships

between components, the overall system behaviour can be characterized. The stock-and-

flow representation facilitates easy modification of the system structure to experiment with

various upgrades or operational strategies that have the potential to improve system

performance. Recall, stocks are represented as boxes and flows are represented as pipelines

into or out of the stock controlled by spigots (with a “source” or “sink” that supplies or

drains flows). Flows have units of material over time, and while inflows and outflows for

the dam system are represented as flows in this particular application, there are many other

types of flows that can be used which may have nothing to do with water. Auxiliary

variables and arrows make up the other major components of a stock-and-flow model, and

these represent constants or variables that change with time according to a mathematical

equation or algorithm.

Consider a simple dam system, with a single reservoir and dam that is controlled only by

a free overflow weir. Figure 3-8 contains a representation of this system. Reservoir Storage

is represented as a stock with units m3. The value of Reservoir Storage can only be changed

by the flows into or out of the stock. Flows have the same units as the stock over time. In

this example. Inflow and Outflow are the stocks and have units of m3/s.

105

Figure 3-8: Simple dam system with free overflow weir

The change in Reservoir Storage can be computed as:

𝑑𝑆

𝑑𝑡
= 𝐼 − 𝑄𝑜𝑢𝑡 (3.4)

Where 𝑆 represents Reservoir Storage, 𝑡 represents time, 𝐼 represents Inflows and 𝑂

represents Outflows. System dynamics tools use integration to calculate the value of the

stock at each timestep. The Reservoir Level (𝑅𝑆𝐸) value is a function of the Reservoir

Storage as defined by the Stage-Storage Curve. Similarly, Free Overflow Weir Discharge

(𝑄𝑤𝑒𝑖𝑟) is a function of the Reservoir Level, as defined by the Stage-Discharge Curve for

the weir. Equations presented here are generated from the Cheakamus System

characteristics, the details of which are summarized in Appendix A.

𝑅𝑆𝐸 = −1.12 ∗ 10−5 ∗ 𝑆2 + 3.24 ∗ 10−2 ∗ 𝑆 + 3.64 ∗ 102 (3.5)

𝑄𝑤𝑒𝑖𝑟 = −35.8 ∗ 𝑅𝑆𝐸3 + 40.9 ∗ 103 ∗ 𝑅𝑆𝐸2 − 15.6 ∗ 106 ∗ 𝑅𝑆𝐸 + 19.8 ∗ 108
𝑄𝑤𝑒𝑖𝑟 = 0 𝑓𝑜𝑟 𝑅𝑆𝐸 < 378.41 (3.6)

Note that for “flashy” reservoirs with little storage in comparison to inflow volumes, the

reservoir elevation may vary greatly throughout the day, so weir discharges may also vary

hourly. For a model run on a daily timestep, it may be necessary to compute the Free

Overflow Weir Discharge, 𝑄𝑤𝑒𝑖𝑟 for a given day by iterating within the function over a 24-

hour period. This will ensure weir discharges accurately reflect reality.

106

Inflows represent an external model input, which in this case ranges from 5 to 25 m3/s.

Outflows (𝑄𝑜𝑢𝑡) are equal to the Free Overflow Weir Discharge:

𝑄𝑜𝑢𝑡 = 𝑄𝑤𝑒𝑖𝑟 (3.7)

If we simulate this model with a constant inflow and user-defined Stage-Storage and Stage-

Discharge curves, as well as an initial starting reservoir level (10 m3/s-d), we can see that

the model reaches a steady state, where the discharge over the weir is equal to the constant

inflow. This is shown in Figure 3-9 for three different constant discharge values. Note that

the reservoir level can be represented using units of volume (m3), however using the units

m3/s-d can considers the available flow rate over time, which simplifies the calculations

required.

Figure 3-9: Simulation of simple dam system with free overflow weir

Suppose we add a single gate to this system, modifying the stock-and-flow diagram in

Figure 3-10. The Gate Discharge (𝑄𝑔𝑎𝑡𝑒) is a function of the Gate Position (𝐺𝑃) and

Reservoir Level, as defined by the Gate Rating Curve (provided by BC Hydro and

summarized in Appendix A). For this single-gate system, the rating curves for both gates

are combined into a single gate (by simply adding the discharge columns). The gate rating

curves can be used in a two-dimensional interpolation to determine what the corresponding

flow is for a given reservoir elevation and gate position. This can be done using simple

Python functions such as interp2d which is part of the scipy package.

107

𝑄𝑔𝑎𝑡𝑒 = 𝑓(𝑅𝑆𝐸, 𝐺𝑃) (3.8)

The outflow then becomes:

𝑄𝑜𝑢𝑡 = 𝑄𝑤𝑒𝑖𝑟 + 𝑄𝑔𝑎𝑡𝑒 (3.9)

Simulating this system for constant inflows of 32 m3/s with a variable gate position yields

a similar result where a steady state is achieved, as shown in Figure 3-11. In the blue line

in Figure 11, the gate position is the smallest and the reservoir rises to the free overflow

spill. At this point, an instantaneous increase in the outflow is observed as the overflow

spillway begins to pass flow. It is important to note that the increase in outflow at a smaller

time step (say, hourly) would be more gradual than the daily plots may indicate.

Figure 3-10: Simple dam system with free overflow weir and gate

108

Figure 3-11: Simulation results for simple system with free overflow weir and gate

If we add a sinusoidal relationship to represent seasonal variations in the system inflow,

we start to see some more variation in the resultant reservoir levels, as shown in Figure

3-12. The relationship used in this simple simulation model is chosen to roughly mimic the

natural seasonal variation in flows for the Cheakamus system, with time 𝑡:

𝐼 = 60 ∗ sin 0.015(𝑡 − 80) + 70 (3.10)

Figure 3-12: Simulation results for simple system with free overflow weir, gate, and

sinusoidal-varying inflows

Including some day-to-day variability in inflows for the simple system can be done using

a random normally distributed variable (with a mean of 0 and a scale of 30) which is added

to the time-dependent sinusoidal inflow value. The value is then truncated, so that the

minimum inflow value cannot be less than 2 m3/s. The simple system simulation results

with added daily variability are shown in Figure 3-13. The fluctuation in the reservoir levels

is more extreme, and the resulting reservoir levels and inflows begin to vary more greatly.

109

Figure 3-13: Simulation results for simple system with free overflow weir, gate,

sinusoidal inflows with daily variability

Obviously, for normal operation of a dam with a gated spillway, the gate positions are not

kept constant throughout the year and for all inflows. Gate positions may be selected based

on a number of inputs, including the inflow forecast, rule curves, target reservoir

elevations, outflow constraints and downstream impacts. Creating an algorithm to simulate

operations planning is a more challenging aspect of model development, in particular in

the case of cascading and parallel dam systems. Optimization is frequently cited in the

literature and works well for balancing inflows, downstream effects, reservoir operational

limits and outflow constraints. However, optimization may significantly impede

computational efficiency, which is an important consideration when running the simulation

model a large number of times. For this simplified example based on a version of the

Cheakamus project with only a single gate, an if-then-else type algorithm has been

developed for Operations Planning. The algorithm uses 14 days of inflow forecasting to

determine the appropriate gate releases that will keep the reservoir level between target

elevations (see Figure A5 in Appendix A). Inflow Forecast is based on the sinusoidal

relationship described previously, with no random normal variable added. This means the

operations planning algorithm has some indication of the average inflow to expect over the

next 14 days but is not aware of any major deviations from the normal level due to the

random normally distributed variable that is added. The Operations Planning algorithm is

detailed in Figure 3-14 (King and Simonovic 2020). The output variable from Operations

Planning for this simple example is gate flow, which can be transformed into a gate position

instruction. The Gate Position is calculated using a reverse two-dimensional interpolation

110

using the Operations Planning output (the desired gate flow) and the Reservoir Level, based

on the Gate Rating Curve. The resultant stock and flow model is shown in Figure 3-15.

Figure 3-14: Simple operations planning algorithm King and Simonovic (2020)

111

The simulation results for the example with operations planning implemented are shown

in Figure 3-16. The reservoir rises to the level of El 376.5 m (the Normal Maximum

Reservoir Level), and hovers at that level or just above and below based on the deviations

introduced by the random normal variable added to the inflow. Note that there are no power

flow release facilities included in the model, so the algorithm keeps the reservoir level high

because there is no reason to discharge more additional water than necessary to meet the

maximum reservoir level target.

Figure 3-15: Simple dam system with a single weir and gate, with operations

planning algorithm implemented (King and Simonovic, 2020)

112

Figure 3-16: Simulation results for simple dam system with single weir and gate,

with operations planning algorithm implemented (King and Simonovic, 2020)

Another important feature of the simulation model will be the ability to simulate

component failures or outages. Considering the simple example developed, this can be

added by creating a variable that tracks remaining time to repair following gate failures,

Gate Remaining Time to Repair, 𝐺𝑅𝑇𝑇𝑅. This is modelled as a stock, which receives a

pulse of Gate Failure, 𝐺𝐹, when the gate fails. The stock drains with the value time when

its value is positive, using the flow Gate Repair, 𝐺𝑅. The gate remaining time to repair can

then be implemented in the model based on the impacts of a gate outage – in this simple

example the situation modelled will be that the gate fails in the closed position. Gate failure

causes an inflow to the stock of 20 days at time 𝑡 = 100, and the gate becomes stuck in

the closed position for a 20-day period. The modified stock and flow diagram for this is

shown in Figure 3-17.

113

Figure 3-17: Simple system with gate and weir, with operations planning and gate

failures implemented (King and Simonovic 2020)

In this example, the gate remaining time to repair is calculated as:

𝑑𝐺𝑅𝑇𝑇𝑅

𝑑𝑡
= 𝐺𝐹 − 𝐺𝑅 (3.11)

Gate Failure is calculated as:

𝑖𝑓 𝑡 = 100, 𝐺𝐹 = 20

𝑒𝑙𝑠𝑒, 𝐺𝐹 = 0 (3.12)

Gate Repair is calculated as:

𝑖𝑓 𝐺𝑅𝑇𝑇𝑅 > 0, 𝐺𝑅 = 1

𝑒𝑙𝑠𝑒 𝐺𝑅 = 0 (3.13)

The Gate Position can then be calculated based on the gate availability:

𝑖𝑓 𝐺𝑅𝑇𝑇𝑅 = 0, 𝐺𝑃 = 𝑓(𝑂𝑃, 𝑅𝑆𝐸)

114

𝑒𝑙𝑠𝑒, 𝐺𝑃 = 0 (3.14)

where 𝑂𝑃 represents the operations planning output, which is representative of the desired

gate flow. Simulating this model yields the outcomes shown in Figure 3-18. The impacts

of the gate failure can be seen in the image starting at day 100 of the simulation, where the

gate position and gate flow drop to zero, and the reservoir elevation rises above the target

elevation. Flow over the free overflow weir is observed during the gate outage (these are

not shown but are the difference between Outflow and Gate Flow). Once the gate is back

online, the gated spillway flow is increased significantly to reduce the reservoir elevation

to within the target levels. The inflow on the day of the gate’s return to service is less than

predicted, so the operator opens the gate more than is necessary and the reservoir drops to

just above the gate sill elevation (El. 367.28 m). In reality, operators will have a relatively

better idea with respect to the expected inflow. Dam operators would also be able to adjust

the gate position within the 24-hour period if the inflows are less than predicted to ensure

rapid drawdown of the reservoir does not occur. This is one potential limitation of running

the model on a 24-hour timestep, though improved inflow prediction for the operations

planning algorithm would avoid the issue. For less flashy reservoirs, a daily time step may

be adequate.

As more features are added to the simple simulation model, the nonlinearity of the problem

becomes more obvious. Calculation of the reservoir level response becomes increasingly

more complex as additional components, variable gate positions, natural variability in

inflows, outages, etc. are added to the simulation model. These interactions are not easily

modelled using traditional tools, so simulation is necessary for quantifying the system

response to various inputs. These simple examples help build a clear case for system

dynamics simulation as a tool to determine reservoir level response to various operating

conditions. The system dynamics platform offers a particularly suitable modelling

environment for complex, dynamic systems with interactions among components. The

object-oriented building blocks help visualize the connections between the different

components of the system. This visual representation of the system structure can be

inspected to help gain confidence in the model performance. Subscripting is another useful

115

tool that can help modellers easily add series and parallel dams to a system without

complete re-programming. Subscripting is also useful for the modelling of multiple sub-

components or redundant features of the system.

Figure 3-18: Simulation of simple system with single gate and weir, operations

planning, and gate failure implemented (King and Simonovic 2020)

The general process for the development of a system dynamics simulation model for a

hydropower system is described in Figure 3-19 (King and Simonovic, 2020). The process

is iterative, that is, model development is influenced by model testing, and development

continues until the modeller is satisfied that the modelled system is an adequate

representation of reality. The model is a description of physical and nonphysical

relationships among system components. A significant amount of information about the

system is required to define these relationships mathematically, and expert judgement is

necessary in model development. Dividing the model into interconnected sub-systems

shown in different views or sectors may be helpful to organize the model presentation. Sub-

systems may be connected to each other by one or more variables. These sectors can follow

a generic control loop, such as the one presented in Section 1.3 and Figure 1-20, as

described by Leveson (2011) and adapted for a hydropower system. The sectors include:

116

(1) A controller, who interprets information relating to the state of the system and produces

a set of operating instructions, (2) Actuators, the mechanical-electrical assemblies which

work to move gates in the controlled process, (3) A controlled process, representing the

infrastructure being controlled or the hydraulic system state, (4) Sensors, which relay

information back to the controller and (5) Disturbances, which are not directly part of the

control loop but may affect the functionality of any one of its features. This high-level

system structure represents a hierarchical system of systems, with each box representing

its own system (Leveson 2011). King et al. (2017) presents a detailed system dynamics

model of a dam system that is broken down into control system sectors. The benefit of

developing a detailed model of the system components is that low-level failures and other

events within the system can be initiated and the simulation model can determine the

system-level impacts for a particular set of inflows and event parameters.

Selection of the variables that will be required to adequately represent the system is

another important step. The variables represent states of the system which the modeller is

interested in over time, and there may also be a number of intermediate variables that

transform information between the key variables of interest. The variable types are

stocks, flows and auxiliary variables. Stocks may include reservoir levels, remaining

repair times and even gate positions, depending on how the modeller wants to set up the

equations. Flows are the values which have units over time and represent the inflow and

outflow of the stock value. Auxiliary variables are neither stocks, nor flows, and may

represent physical or nonphysical relationships and processes. Subscripting can be used

so that a single representation of a variable and its relationships (equations) can be

applied. This is particularly useful for representation of multiple reservoirs, gates or other

redundant features of the system. Defining the relationships requires expert knowledge of

the system, data, and programming capability. Some auxiliary variable equations can be

represented by simple if-then-else type formulae, others may represent nonlinear

relationships or even complex algorithms with a number of processes occurring

internally.

117

Figure 3-19: Simulation model development flow chart (King and Simonovic 2020)

The model output is only as good as the modellers understanding of the interactions and

relationships within the system being analyzed. Like all models, simulation models are

abstractions of reality. Sterman (2000) argues that, because of this, all models are “wrong”

and that simulation models can never be validated or verified in the traditional sense of the

word. There are, however, a number of tests that can be done to gain confidence in the

model performance. These tests should be done iteratively throughout the model

development process. Analyzing the system structure and feedbacks to ensure all important

variables are represented and their equations are grounded in reality is important. This

includes checking the water balance, rating curves and other physically-derived variables.

Checking the dimensions is another important model test. Historical records of system

118

operation are also particularly useful for testing and development of the model. A direct

comparison between simulated and actual values provides information to the modeller

about how well the system is mimicking reality in terms of normal operation. Comparison

of system reservoir levels and outflows can help the modeller adjust the system structure

so the system behaviour better captures the dynamics – this is particularly important during

the development of operating rules. Once the model results are relatively close to reality,

the model is ready for simulation.

3.4.2 Monte-Carlo variation of scenario parameters

Each automatically generated scenario (see Section 3.3) contains a list of component

operating states which may be normal, erroneous, failed, etc. Each component operating

state is tied to one or more causal factors and has a specified range of impacts that can be

expected should the operating state occur. Impacts may include outage length, error

magnitude, or delay length. Linking this information into the simulation model in a way

that allows a wide range of potential outcomes to be explored for each scenario is a critical

part of the implementation. An example of such a link was shown in the previous section.

System dynamics modelling is inherently deterministic, so specific instructions for how to

implement the scenario must be given to the model before running. Monte-Carlo selection

of simulation inputs is considered to be the most efficient way to assess the outcomes from

as many implementation possibilities for a single scenario as can be achieved within the

computational time constraints. Each operating state has varying impact magnitudes

between minimum and maximum values specified in the database. In addition to this, the

adverse operating states may be occurring within some temporal proximity to one another

but not at the exact same time. Inflows may also significantly affect the way an operating

state changes the system behaviour. While simulation facilitates the assessment of

component interactions, feedbacks and nonlinear system behaviour, the Monte-Carlo

variation of these important simulation inputs can help better capture a range of system

behaviour that is possible as a result of a given scenario. The temporal proximity of the

adverse operating states, the magnitude of impacts and the system inflows can all easily be

varied using a Monte-Carlo simulation approach. Each scenario can be run many times

119

(iterations), varying these inputs to explore the system behavior in response to a random

subset of the total implementation possibilities for each scenario. This helps provide more

information about the uncertainty associated with a particular scenario in terms of the range

of system response that can be expected.

A wide range of hydrological conditions may be tested for each operating scenario, by

selecting a random year and start date for each Monte-Carlo run of each scenario. The year

and start date can be linked to a synthetic inflow time series (this is discussed in Section

3.5.2.

Operating state impact magnitudes may be difficult to estimate, and can vary significantly

depending on the timing, organizational factors, and availability of materials to rectify the

adverse operating state, etc. The potential range of operating state impact magnitudes is

represented using minimum impact, maximum impact and average impact (mode) as

specified in the component operating states database in the operating states description.

This information can be used to generate Monte-Carlo inputs with a triangular distribution

(Kotz and van Dorp 2004):

𝐼𝑚𝑝𝑎𝑐𝑡 =

{

 𝑖𝑚𝑖𝑛 +√𝑈(𝑖𝑚𝑎𝑥 − 𝑖min)(𝑖𝑎𝑣𝑔 − 𝑖𝑚𝑖𝑛) 𝑓𝑜𝑟 0 < 𝑈 < 𝐹(𝑖𝑎𝑣𝑔)

𝑖𝑚𝑎𝑥 −√(1 − 𝑈)(𝑖𝑚𝑎𝑥 − 𝑖min)(𝑖𝑚𝑎𝑥 − 𝑖𝑎𝑣𝑔) 𝑓𝑜𝑟 𝐹(𝑖𝑎𝑣𝑔) ≤ 𝑈 < 1

(3.15)

where 𝑈 represents a random variate from the uniform distribution between 0 and 1, 𝑖𝑚𝑖𝑛

represents the minimum impact value specified in the database, 𝑖𝑚𝑎𝑥 represents the

maximum impact value specified in the database, 𝑖𝑎𝑣𝑔 represents the average value

specified in the database and 𝐹(𝑖𝑎𝑣𝑔) = (𝑖𝑎𝑣𝑔 − 𝑖𝑚𝑖𝑛)/(𝑖𝑚𝑎𝑥 − 𝑖min). A random impact

magnitude for each operating state is generated in this way and used as the second Monte-

Carlo input to the simulation model.

Timing of events may also vary within a scenario, and events can occur at the same time

or within hours, weeks or even months of one another. The temporal proximity of events

represents the third Monte-Carlo input to the simulation model. The causal factors for each

operating state play a roll in determining operating state proximity. The number of causal

120

factors can be used to determine the number of time steps between adverse operating states

arising from different causal factors. Operating states with the same causal factor (for

example, an earthquake) are initiated at the same time. Operating states for subsequent

causal factors are initiated at some value, ∆𝑡𝑛𝑐 in the future where 𝑛𝑐 ∈ (0,… ,𝑁𝐶) and

𝑁𝐶 is equal to the number of unique causal factors less one (because the first causal factor

is implemented at time t=0 in the simulation). The ordering of causal factors is also shuffled

for each iteration so that the first operating state(s) change between Monte-Carlo inputs.

For some causal factors, including lack of maintenance and aging, impact timing is

completely randomized if more than one component is affected; that is, failure of one

component due to lack of maintenance may not occur at the same time as the failure of

another component that has not been maintained. There may be a time limit within which

these events can occur, as defined by the user for the system of interest. This is a parameter

that helps increase the chance that the events are impacting one another so that the scenarios

represented in the outputs are reflective of the input scenario (discussed further in Section

3.4.3).

In addition to generating these randomized parameters for each scenario, it is necessary to

program component-specific connections that link the database’s operating state identifiers

to the specific point in the simulation model where the component failure, error or delay

occurs. An example of how this can be done was provided in Section 3.4.1. The timing and

impact magnitude can be represented by variables that change with each Monte Carlo

iteration. Inflow sequences for each iteration can be selected from the historical record

using the randomly generated start day and year. Directing the impact towards the correct

component and implementing it requires significant modelling effort and expert

judgement. The implementation of these connections will differ from application to

application and must be done at the front-end of the simulation model to ensure the scenario

information is routed properly through the simulation model. The randomly generated

impact parameters and timing must be connected to the appropriate variable within the

simulation model. Once the connections are made, simulation can proceed following

Figure 3-20 as discussed in the following section.

121

It is important to note that random numbers generated by computer code are not truly

random, because they rely on algorithms that repeat. They are technically “pseudo-

random” numbers. When a very large number of scenarios is run for many iterations, there

is a possibility that a pattern may be observed within the random numbers generated by the

model. This issue is not explored further in this research but remains an important issue in

computational science.

3.4.3 Deterministic Monte Carlo Simulation Process

The process for scenario simulation is described in Figure 3-20 (King and Simonovic,

2020). In the simulation, each scenario is given a unique simulation number (“seed

number”). At the start of the simulation, a “seeds to run” list is developed. Each seed

number corresponds to a line in a list of the scenarios, which contains a unique set of

operating state combinations for the system. This is used to gather the information from

the database tables and set-up the Monte-Carlo parameters for the particular scenario being

simulated. The Monte Carlo parameters are randomized inputs that vary within the bounds

specified in the operating states database. This allows for a more subset of the potential

outcomes for a given scenario to be explored. Once the Monte Carlo input generation is

completed based on the scenario of interest, the simulation of the scenario proceeds.

122

Figure 3-20: Simulation flow chart

Following the simulation of each scenario iteration, timing considerations must be

addressed, to ensure the results are accurately attributed to the scenario being represented.

This can be done by analyzing the “system state deviance” to determine whether

subsequent events are dependant on preceding events. An event dependency algorithm to

analyze the outputs from each iteration is necessary in order to count the simulation results

towards the scenarios that are truly represented within the output data. Recall the example

reservoir elevation plots for two iterations shown in Figure 3-21 (King and Simonovic,

2020). Given the time of occurrence of A, B and C, the reservoir level under normal

operations, and the resultant reservoir levels, a simple comparison can be used to determine

whether events are influencing one another. The algorithm to analyze scenario outcomes

is shown in Figure 3-22 (King and Simonovic, 2020).

123

Figure 3-21: Example output reservoir elevations for Scenario ABC (King and

Simonovic 2020)

First, an empty event list is created, and the time is set to 𝑡 = 0. The analysis starts by first

checking if a new event (adverse operating state) is initiated at the current time step The

event initiation time is determined through Monte-Carlo sampling. If a new event is

initiated, the event is added to the event list. If no previous events are in the list, time t

represents the scenario start day. If there are events in the event list, a check is done to see

whether the event impacts are over – this is a simple comparison of the following y days

of simulated reservoir elevations with the previously expected reservoir elevations for that

set of inflows. The choice of the number of subsequent days to be compared depends on

the system being modelled and may be shorter or longer depending on the storage relative

to the inflows. If the elevations are within a certain threshold, 𝑥, of the previously expected

reservoir levels for all days within a three-day period, the scenario is considered to be over.

The threshold is a small number that indicates the reservoir levels are basically the same –

it may also vary depending on the reservoir being modelled and must be chosen by the

analyst for the system of interest. Once the reservoir levels are restored to the previously

expected values, the results for the scenario are saved, the event list is emptied, and the

analysis proceeds to the next timestep. If the elevations are not yet matching, the analysis

proceeds to the next time step, as long as the reservoir elevations haven’t risen to a

124

sufficient level to fail the dam by overtopping. If the dam has failed by overtopping, the

results are processed and saved for the events in the list. The process continues through all

of the timesteps, until either there are no more time steps to analyze or the dam has failed.

Figure 3-22: Event dependency algorithm (King and Simonovic, 2020)

This process, when applied to Outcome 1 in Figure 3-21 saves results for Scenario A, and

Scenario BC. For Outcome 2, it saves results for Scenario A only. This process could also

be useful to analyze outcomes from fully stochastic simulation models, extracting more

information than a singular probability of failure for the system being analyzed (though

this is not examined in this research).

125

Once all iterations for a given scenario are analyzed, the scenario results are saved and the

seed number is added to the completed seeds list. Then, a new scenario is chosen from the

seeds to run list and executed. Simulation of the complete list of scenarios is a significant

computational task, depending on the size of the scenario list and complexity of the

simulation model. Linking of each individual component in the database to the

corresponding system dynamics model component is required prior to the start of the

simulation. Synthetic inflow sequences are also required for the simulation, to provide

more variable hydrological conditions than can typically be observed in the historical

record (see Section 3.5.2). Depending on the size of the problem, it may be beneficial to

use cluster computing to simulate multiple scenarios (seeds) in parallel, since the scenarios

are completely independent and do not communicate between one another. More

information about the cluster computing application is provided in Appendix F.

In using the Deterministic Monte Carlo approach, it is important to consider that the goal

of the exercise is to analyze all scenarios (predefined combinations of operating states) as

completely as possible given computational time constraints, to determine the criticality of

these combinations. There should be enough data on each scenario to estimate the range of

expected system performance and calculate the criticality parameters: conditional failure

frequencies, failure inflow thresholds and conditional reservoir level exceedance

frequencies. To ensure there is enough data collected for each scenario, it may be necessary

to limit the time between events to ensure their collective impacts can be assessed. This

limit may be determined as a function of the impact lengths for a given iteration (for

example, by taking the sum of impact lengths). Whether the event initiation time limit

should be greater than or less than the sum of the impact lengths requires experimenting

with scenarios to determine how long the system typically takes to return to normal

operation. For “flashy” reservoirs with relatively limited storage compared to inflows, the

recovery time following a return to normal operations may be quite short – days or even

hours. For reservoirs with large storage in comparison to inflows, this recovery time may

be significantly longer. The recovery time may also be less than the sum of impact lengths,

due to inflows that are less than the total capacity of the available flow conveyance

facilities. The recovery time should influence the modellers decision regarding the

appropriate time limit for event initiation. If the time limit for event initiation is too long,

126

there may be two or more sub-scenarios within each scenario, and not enough data relating

to the collective impact of the combination of events.

3.4.4 Computational Considerations

Another important topic relevant to the simulation framework is the computational

considerations. Computational efficiency is a major factor in this research, since a large

number of scenarios are being analyzed, each for many iterations. The computing time for

a single year and the number of scenarios to be analyzed governs the computational effort

that will be required to execute the Deterministic Monte Carlo approach. As the modelled

system complexity increases, so does the length of time to run a simulation. In addition,

the number of scenarios is exponentially proportional to the number of component

operating state-causal factor combinations. As such, a trade-off becomes evident between

the level of detail to which the system is modelled and the amount of computational time

the simulations will take to execute. This is one potential limitation of the approach. Each

modeller may evaluate the trade-off differently, and this could result in two modellers

creating different versions of the same system. Ultimately, this issue remains unavoidable

within current computational abilities. That said, cluster computing is becoming more

widely available and can be utilized to improve the simulation throughput. In the case

study, Compute Canada cluster computing resources are leveraged to evaluate a large

number of scenarios in parallel. This is made possible by the fact that each scenario can

run independently of other scenarios, so a large number of cores may be used independently

to run different scenarios at the same time. Despite the advantages of using cluster

computing, an extremely large number of scenarios may still take a significant amount of

time to evaluate, and output data storage is another potential factor that limits the level of

complexity and number of scenarios that can be efficiently analyzed. The trade-off between

complexity and computational effort remains. While the issue is not investigated further in

this work, there are some potential directions for future research that may help to reduce

the impacts of this limitation.

127

3.5 Simulation Model Input Data

There is a significant amount of data required to execute the simulation model. This

includes site-specific physical relationships, synthetic inflows and baseline operations data

for comparison with simulation outcomes to assess whether events are influenced by

preceding events within the simulation.

3.5.1 Physical Relationships

The physical relationships for the system of interest are a required input of the simulation

model. Stage-storage relationships relate the amount of water in the reservoir to the

reservoir elevation which is used in various calculations. These relationships may be

developed using bathymetry or pre-flooding lidar surveys and are typically readily

available for existing dam systems. The relationship may be in the form of a table or a

graph. Curve-fitting can be used to avoid interpolation calculations by creating a function

that is representative of the stage-storage curve for all relevant reservoir elevations (the

minimum to absolute maximum elevation that could be observed in simulation). Piecewise

functions may be required for certain systems, to better capture the relationship over

specific reservoir elevation bands.

Stage-discharge relationships relate the reservoir elevation to water spilling over free

overflow weirs and dam structures and are another required input to the model. These can

be developed using simple free-crest weir equations, and may also be readily available for

the system being modelled. Again, converting the relationship to a function using curve-

fitting may be desirable to avoid interpolations within the simulation (for efficiency).

Another key input is the relationship between gate position, reservoir elevation and flow,

which is known as the gate rating curve. For most dam systems, these are developed in the

form of either a table or curve. Two-dimensional interpolations can be used within the

simulation to calculate the flow value based on inputs of reservoir level and gate position.

128

3.5.2 Synthetic Inflow Generation

For many dam systems, the historical record of inflows may only be as old as the dam itself

and may not be a good indicator of potential variability in inflow conditions. Basing the

outcomes of a dam safety assessment on the historically observed flows alone would

significantly limit the analysis. As such, tools that can be applied for generation of synthetic

inflows are described in this research. First, a stochastic weather generator (KnnCAD) is

used to generate synthetic daily climate data, and next, a hydrologic model (Raven) is used

to convert the daily climate data into reservoir inflows.

The KnnCAD weather generator is a non-parametric tool for stochastic, multi-site, multi-

variable generation of climate data that was first introduced by Sharif and Burn (2006) and

later modified by Prodanovic and Simonovic (2008), Eum and Simonovic (2012) and King

et al. (2014, 2015). The weather generator is based on the K-Nearest Neighbour (KNN)

resampling technique which reshuffles and perturbs the historical climate data to generate

a longer time series with increased variability that is statistically similar to the historical

record. The approach allows for easy multi-site climate data generation that preserves the

spatial correlation between sites without assuming relationships between weather

variables. In addition, no assumptions about the probability distributions of variables are

required. King et al (2014, 2015) modified the KNN approach using a block resampling

technique which was found to significantly improve temporal correlations in the resulting

temperatures. These temporal correlations are extremely important in climates such as

Canada where snow accumulation and melt contribute significantly to flood events. The

KnnCAD weather generator was chosen for this research due to the demonstrated ability

to generate statistically similar climate datasets. The most current version of the model is

available on the GitHub repository FIDS-UWO/Climate and a technical manual containing

the model equations, scripts and step-by-step instructions was developed by Mandal et al.

(2017). A user interface makes application of this model quite straightforward. Historical

time-series of climate variables are uploaded to the user interface for each site of interest.

Perturbation parameters are selected – these parameters dictate the proportion of

“randomness” that is applied to the climate variables. The model is then run for a user-

selected number of “blocks” which are the length of the historical input data.

129

Following generation of climate data, hydrological modelling is required to convert the

daily climate data into reservoir inflows for the site of interest. There are a number of

approaches that can be used; however Raven Hydrological Modelling Framework is the

platform used by BC Hydro and as such was selected for this project. Raven is a highly

flexible modelling framework that allows the user to select the specific modelling code or

approach to be utilized. In this research, the application is a mountain watershed, and as

such the UBC Watershed Model approach is used (Quick and Pipes 1977; Micovic and

Quick 1999). The UBC Watershed model utilizes daily maximum and minimum

temperatures as well as precipitation to forecast snow accumulation and melt, along with

soil moisture, groundwater transfer and evapotranspiration. Basin area-elevation

characteristics are direct inputs to the model, which has the ability to include several

elevation bands or zones that allows more realistic modelling of mountain runoff (Quick

and Pipes 1977). Calibration of the model involves experimentation with specific

parameters relating to various physical aspects of the system in order to find the parameter

set that most closely correlates the outputs with the runoff calibration period (Quick and

Pipes 1977). Combinations of different weather stations may be experimented with to find

the set that provides the best calibration. Once the model is calibrated, the synthetic daily

climate data from the stochastic weather generator can be used directly as an input to the

calibrated model. Simulation of runoff is done in water-years which begin in October and

end in September, to allow for proper continuity of snowmelt modelling. The resulting

dataset is a long, synthetic inflow time series with higher variability than the historically

observed data. This synthetic inflow set can be used directly in the simulation model.

3.5.3 Baseline Operations Data

Once the simulation model has been completed and synthetic inflows are developed, it is

necessary to develop baseline operations data. The baseline operations data is the normal

reservoir elevations, which are used in the final step of the simulation to analyze whether

the events simulated within an iteration are independent of one another (and whether the

iteration is “complete”). This is described in detail in Section 3.4.3.

The baseline reservoir elevations can be calculated by running a single continuous

simulation of the same length as the synthetic inflows. During the simulation, no

130

disturbances are implemented and the system is operated normally. The resulting reservoir

levels are recorded and saved to be utilized in the scenario iteration analysis following each

simulation.

3.6 Scenario Outcome Assessment

Following completion of the scenario simulations, there is an extremely large amount of

data from which useful information needs to be extracted. In this research, criticality

parameters are used to provide information about the severity of a scenario. The criticality

parameters assessed are the conditional failure frequency, conditional frequency of

exceeding key reservoir levels and failure inflow thresholds for each scenario. Ranking and

filtering scenario subsets (of N affected components) can give insights into system

vulnerabilities and key components affecting dam safety.

Accessing and analyzing individual scenario results may also be useful. Dynamic

performance measures are used in this research to better understand the dynamic system

response to a given scenario. These performance measures may differ depending on the

system of interest and can change from application to application. In this work, reservoir

elevations over critical levels, flow conveyance capacity, and uncontrolled releases are

selected and described in the following sections.

3.6.1 Criticality Parameters

The simulation environment presented in this research explores a random subset of the

potential outcomes relating to a given scenario. Each scenario is simulated 2000 times,

providing increased coverage of the possibility space (See Figure 3-2). This allows for an

estimation of the criticality associated with a given scenario. Criticality parameters have

been selected to provide useful insights about the range of outcomes simulated for each

scenario. These include: the conditional failure frequency, the failure inflow thresholds,

and the conditional reservoir level exceedance frequency (conditional on the scenario

occurring).

131

As a direct result of the simulation, it is possible to determine the conditional probability

of failure for a scenario from its complete iterations (all of the operating states for that

particular scenario have both occurred and affected one another). This is easily done by

determining the number of complete iterations, calculating the number of dam breaches

occurring within the complete iterations, and determining the total proportion of failures,

as follows.

𝐶𝐹𝐹 (%) =
𝑁𝐵
𝐼𝑡
× 100 (3.16)

where 𝑁𝐵 is equal to the number of breaches observed in all complete iterations, and 𝐼𝑡 is

equal to the number of complete iterations for the scenario being analyzed. Again, complete

iterations are where all operating states for a given scenario have both occurred and affected

one another – so iterations with multiple sub-scenarios or dam breaches occurring prior to

all events being initiated are excluded from the calculation.

Another useful outcome from the simulation model is the inflow thresholds, above which

failure occurs for a given scenario. In this research, the inflow thresholds are computed by

looking at the 5-day average daily inflow preceding a dam breach, as well as the 5-day

maximum daily inflow preceding a dam breach, taking the minimum across all simulations,

as follows.

𝐼𝑇𝑎𝑣 = min(avg [𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5]𝑖𝑓) (3.17)

𝐼𝑇𝑚𝑎𝑥 = min(max [𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5]𝑖𝑡𝑓) (3.18)

where 𝐼𝑛 represents the inflow on the 𝑛𝑡ℎ day preceeding the dam breach, 𝑛 = 1. . .5, and 𝑠

represents the simulation iteration, 𝑖𝑡𝑓 = 1… 𝐼𝑇𝐹 and 𝐼𝑇𝐹 is equal to the number of

iterations that were completely simulated for a certain scenario and where the dam failed.

The minimum is taken of all maximum or average 5-day inflows preceding failure, for the

complete iterations within which a failure occurred. It is also possible to consider volume

of inflows in the days preceding a dam failure, however that was not explored in this

research.

132

Another useful criticality parameter is the time it takes, following the start of the scenario,

for the system to reach a failed state. This is simply calculated as the mean time to failure.

Finally, regardless of whether a dam failure occurs, there may be adverse impacts relating

to exceedances above particular reservoir elevations. The likelihood of exceeding a key

reservoir elevation is another easily calculated outcome from the model. The maximum

reservoir elevation for each run of a given scenario can be computed and used to compute

the proportion of runs where elevations exceed the reservoir level of interest, as follows.

𝐶𝑅𝐸𝐹(%) =
𝐼𝑅𝑆𝐸>𝐶𝐸
𝐼𝑡

× 100 (3.19)

where 𝐼𝑅𝑆𝐸>𝐶𝐸 represents the number of complete iterations where the reservoir elevation

exceeded the critical level, 𝐶𝐸, and 𝐼𝑡 represents the total number of complete iterations.

This is the conditional probability of exceedance for that reservoir elevation and scenario.

The scenarios can then be sorted based on their criticality parameters to illuminate the most

troublesome operating conditions within which the system may be operating. Grouping the

list of scenarios into a smaller list is possible by combining scenarios that contain the same

operating states with different causal factors. This can help reduce the list size while

providing extra simulation-years with which to estimate the failure frequency. If there is

sufficient information to estimate the frequencies of each operating state in the model, it

may be possible to compute the frequency of failure for the system using simple probability

theory, as can be illustrated using a simple example.

Conditional overtopping failure frequencies for an example scenario are shown in Table

3-2 (given the scenario has occurred). When combined with the estimated frequency of

occurrence of the events, an overall estimate for the frequency of overtopping failure for

the system can be made using basic concepts from probability theory. A simple example is

used to demonstrate this. Consider a system with components A, B, and C, which are each

functional or failed. If each of the three components has lower and upper bound failure rate

estimates ranging from 0.1% to 1%, an overall probabilistic assessment of the system can

be made using the conditional overtopping failure frequencies generated through

133

Deterministic Monte Carlo simulation, as shown in Table 3-2. The conditional failure

frequencies are assumed for the sake of the example.

Table 3-2: Probabilistic risk assessment using example simulation

Scenario

Conditional

frequency of system

failure given

scenario occurs (%)

Lower bound frequency of

component failure:

A=0.1%

B=0.1%

C=0.1%

Lower bound frequency of

component failure:

A=1%

B=1%

C=1%

A 1 9.98*10-4 9.80E*10-3

B 1 9.98*10-4 9.80*10-3

C 1 9.98*10-4 9.80*10-3

AB 5 5.00*10-6 4.95*10-4

AC 5 5.00E*10-6 4.95*10-4

BC 5 5.00E*10-6 4.95*10-4

ABC 20 2.00E*10-8 2.00*10-5

Total

probability

of flow

control

failure 3.01*10-3 3.09*10-2

In Table 3, the conditional frequency of dam overtopping failure for each scenario is

multiplied by the probabilities of the system states , as follows: 𝑃(𝐴) = 𝑃(𝐴) ∗ 𝑃(𝐵̅) ∗

𝑃(𝐶̅) ∗ 𝑃(𝑓), where 𝐵̅ = 1 − 𝐵, and the solid line over the component indicates it is not

failed, and 𝑃(𝑓) represents the conditional probability of overtopping failure for the system

given the scenario has occurred. In the table, the lower and upper bound estimates are

calculated to illustrate the sensitivity of the results to the assumed component failure

probabilities. This is particularly advantageous where failure rate data is limited and

uncertain. The Deterministic Monte Carlo approach does not require complete re-

simulation if the sensitivity of the results to the assumed probabilities is to be analyzed.

The sensitivity of the overall probability of failure for the system can be easily calculated

by simply modifying the assumed component failure rates and updating the equation. In

contrast, a fully stochastic simulation approach would require re-simulation to analyze the

sensitivity of results to assumed failure rates, since the probabilities are embedded within

the stochastic simulation model.

134

In the absence of reliable information relating to the failure of various components, the

overall failure rates were not explored further in this research. This topic remains an

important area for future work.

3.6.2 Performance measures

In terms of overall assessment of the system performance, it is useful to define dynamic

safety performance measures that can be plotted over time from the scenario outputs. These

performance measures show how the system changes over time and, where possible, the

recovery from the disturbance. Different performance measures may be selected for

different systems of interest. In selecting these performance measures, it is important to

consider the functions which a dam is meant to carry out and how the system may reach a

less desirable state.

Dam systems act to store and convey water for beneficial purposes such as hydropower,

water supply and flood control. The dam acts to retain water and its flow-conveyance

features (eg. spillways, turbines, low level outlets and valves) are controlled by dam

operators to pass water and maintain reservoir levels within safe limits. Loss of control of

the reservoir can occur as a result of natural disturbances such as earthquakes, landslides,

debris, etc., as well as a number of internal factors including operational failures, inflow

forecasting errors, site access and staffing problems as well as systemic problems like

failing to maintain and upgrade infrastructure. Loss of functionality of flow-conveyance

features of the system can directly lead to loss of reservoir control, potentially causing

overtopping and failure. Issues with dam design or external disturbances can also affect the

dam itself resulting in the inability to retain water which could potentially lead to dam

collapse and catastrophic flooding. In considering the functions a dam is meant to perform,

it becomes clear that two key performance measures relate to flow retention and flow

conveyance. Flow conveyance capacity and uncontrolled flow releases are chosen to

represent flow conveyance and retention, and reservoir elevations exceeding critical safety

levels is also selected. These performance indicators and their values over time can be

calculated directly from simulation outputs. The result is a numerical indicator showing

how the dams condition changes with time for a given operating scenario.

135

It is ultimately up to the experts and asset owners to determine an appropriate amount of

detail for the simulation model and select a particular set of performance measures of

interest for a specific system. The following sections describe the performance measures

selected for this research, but others may be added depending on the dam of interest. A

final section describes aggregation of scenario outcomes to reach general conclusions about

the performance of the dam.

3.6.2.1 Conveyance Capacity

Conveyance capacity represents the ability of flow-conveyance infrastructure such as

turbines and spillways to pass water through the system. This is an important indicator of

system safety because a loss in conveyance results in a lowered ability to manage inflows

safely. Conveyance capacity is equal to the available total discharge capacity as a function

of time (Equation 22):

𝐶𝐶(𝑡) =∑𝐹𝐶(𝑐, 𝑡)

𝐶

𝑐=0

 (3.20)

Where 𝐶𝐶(𝑡) is the discharge capacity of the system at full pool for time 𝑡, and 𝐹𝐶(𝑐, 𝑡) is

the discharge capacity of flow-conveyance component 𝑐 (𝑐 = 1…𝐶) at full pool for time

𝑡. If all conveyance facilities are performing, the maximum performance value is thus equal

to the maximum discharge at full pool, including free overflow facilities (and the minimum

performance is 0 m3/s).

3.6.2.2 Total Uncontrolled Release

Another key indicator of dam system safety is the ability of the system to retain water

where it is meant to do so. Failure to retain water results in an uncontrolled release of flow,

which may be through the dam itself (dam breach), or through a failed penstock, spillway

gate, or turbine head cover. Uncontrolled release also includes any water passing over the

free-crest spillway and dam, which represents flow that is no longer under the control of

the operators. Total uncontrolled release (𝑈𝑅) is calculated at each time step and is shown

in Equation 22:

𝑈𝑅(𝑡) = 𝑄𝐷𝐵(𝑡) + 𝑄𝑃𝐿(𝑡) + 𝑄𝑂𝐹(𝑡) + 𝑄𝐻𝐶(𝑡) + 𝑄𝐺𝐶(𝑡) (3.21)

136

Where 𝑄𝐷𝐵 is the dam breach flow, 𝑄𝑃𝐿 is the penstock leakage, 𝑄𝑂𝐹 is the flow passing

through the overflow weir or over the dam, 𝑄𝐻𝐶 is any water escaping through the head

cover of the turbine, and 𝑄𝐺𝐶 is any water passing through a failed spillway gate. The

individual uncontrolled release variables are useful on their own as well, and can be

investigated for a particular scenario and iteration directly from the model output.

Combining these into a single variable, 𝑈𝑅, provides some useful indication about the

performance and helps reduce the size of the simulation output files, but when there are

multiple sources of uncontrolled release it may become more difficult to analyze what the

sources are. This is a minor limitation that can be overcome by saving these flows

separately if additional data storage capacity is available.

3.6.2.3 Reservoir elevations exceeding critical safety levels

Perhaps the most important indicator of dam system safety is the reservoir elevation itself.

Dam systems typically have reservoir operating limits within which the reservoir remains,

known as the normal minimum and normal maximum flows. Some excursions above the

maximum level may be expected during high inflow conditions, and there may be a safety-

critical reservoir levels which the reservoir should not exceed due to potential dam safety

problems. For an earth dam, the elevation of the core or filter material should not be

exceeded as this may result in internal erosion and could potentially progress to dam

failure. For a concrete dam, there may be other factors such as structural stability being

reduced above a certain reservoir level. This elevation will differ between dam systems

and could be equal to the height of the dam itself. Elevations over critical safety levels can

be visualized in two ways: (1) by observing the resulting reservoir level plots for each

complete iteration of a scenario, where all scenario events both occurred and affected one

another, and (2) through reservoir level time exceedance frequency plots. These plots can

be easily derived by collecting all observations for each complete scenario iteration and

determining the percentage of time that various elevations are exceeded using the following

formula (USBR 2018):

𝐸𝐹𝑟𝑒𝑓 𝑒𝑙. =
𝑁𝑜𝑏𝑠 − (𝑁𝑒𝑥𝑟𝑒𝑓 𝑒𝑙. + 1)

𝑁𝑜𝑏𝑠 + 1
∗ 100 (3.22)

137

Where 𝐸𝐹𝑟𝑒𝑓 𝑒𝑙. is the exceedance frequency for a specific reservoir elevation 𝑟𝑒𝑓 𝑒𝑙.,

𝑁𝑜𝑏𝑠 is the total number of observed daily reservoir elevation values from the scenario’s

complete iterations (all events occurring and affecting one another), and 𝑁𝑒𝑥𝑟𝑒𝑓 𝑒𝑙. is the

number of observations where the elevation exceeded 𝑟𝑒𝑓 𝑒𝑙. To generate exceedance

frequency curves, a range of reservoir elevations is taken from the minimum to the

maximum at a user-defined interval, and the exceedance frequency is computed for each.

The reservoir levels are then plotted against the exceedance frequencies. Key critical levels

(such as free overflow spillway sill elevation and the elevations of key structures) can be

plotted on the exceedance frequency curves to help illustrate the severity of the scenario.

3.7 Summary

This chapter presents the methodology for the research. First, a description of the

requirements of a new approach and the ability of existing tools to meet these requirements

is provided. While each approach offers specific advantages, there are limitations inherent

to all of the approaches used within and outside of the dams industry. This leads to the

methodology development, which aims to meet as many of the requirements as possible.

This research proposes using a systems approach to the problem of dam safety analysis,

systematically characterizing pre-generated scenarios through simulation.

A new methodology is presented that uses Deterministic Monte Carlo simulation to analyze

a wide range of potential operating conditions for a dam system. Scenarios are used as

deterministic inputs to the model, and the scenario parameters are varied using Monte Carlo

techniques to explore each scenario’s potential outcomes. In order to generate a list of

scenarios for the simulation model, an operating states database is developed which can be

applied to any system, and used to document components, their operating states, causal

factors, and operating state impacts. Using database outputs and component operating state

sets, a combinatorial procedure applies the Cartesian Product to come up with the complete

range of component operating state combinations (scenarios). The scenarios becomes the

input to the Deterministic Monte Carlo simulation framework.

The simulation framework uses the pre-generated scenarios (operating states) as inputs,

with Monte Carlo variation of inflows as well as operating state impact timing and

138

magnitude. This simulation framework has the advantage of (a) investigating a larger, more

complete set of potential scenarios than is practical using traditional methods, and (b)

providing a more in-depth analysis of the range of system behaviour in response to each

scenario.

Simulations are performed using a system dynamics simulation model, which is capable of

representing complexity, feedbacks and component interactions in a relatively

straightforward way. The object-oriented modelling environment used in system dynamics

clearly shows the components and the relationships between them which improves the

transparency of the model and the ease with which it is built and modified. Timing

considerations are also addressed in this work. An algorithm is proposed to assess whether

preceding events within a simulation affected the events that occurred later.

The results from the simulation can be analyzed in a number of ways. Post-processing of

individual scenarios can be performed to determine the conditional probabilities of failure

and excursions above key reservoir elevations, as well as inflow thresholds for failure.

Individual scenario results can be used to plot the reservoir elevations, flow conveyance

capacity and uncontrolled releases over time, as well as reservoir exceedance frequency

plots. The methodology proposed in this work provides a means of evaluating the full

range of possible operating state combinations for the system within current computational

abilities. At this time, the same outcome would not be possible using stochastic techniques

because the occurrence of these combinations of events is quite rare (they have a low

probability), so a prohibitively large number of simulation-years would be required to

achieve the same result. The methodology in this research also evaluates scenarios dynamic

outcomes, taking into account feedbacks and nonlinear behaviour which are not readily

dealt with using the traditional risk assessment techniques.

139

Chapter 4

4 Case Study: Cheakamus Hydropower Project

The methodology presented in the previous chapter has been applied to BC Hydro’s

Cheakamus Hydropower Project. A complete database representation of the system is

presented, and the combinatorial procedure is used to generate all combinations of

component operating states (scenarios). A full detailed system dynamics model

representative of the Cheakamus Project is described in King et al. (2017). Due to an

extremely large number of potential scenarios for the case study, a simplified proof-of-

concept example was subsequently developed, which has some of the characteristics of the

Cheakamus Project. The key difference is a reduced number of system features, with the

goal of reducing the number of potential scenarios to ensure simulation feasibility with the

limited computational resources available. With limited computational resources on the

Compute Canada systems, it was possible to simulate two complete runs through 1.11

Million scenarios, each with over 1000 different Monte-Carlo input parameters (iterations).

The two runs completed were the base case and the dam safety improved case which

contained modifications to operating rules and components.

The following section provides a description of the Cheakamus Hydropower Project which

was the study area for this research. Next, a description of the system dynamics model

development is provided for the detailed representation of this system. The following

section deals with scenario generation for the detailed Cheakamus representation. Next, a

description of the simplified version of the Cheakamus system is provided, due to the

extremely high number of scenarios generated for the complex system representation. The

simplified generation of scenario is described, as well as a detailed description of the

simulation model configuration and testing. Inflow generation for the case study is

presented, followed by a description of the scenario simulation process. Finally, simulation

results and discussion are provided.

140

4.1 Cheakamus Hydropower Project Description

The Cheakamus Hydropower Project is located 30km north of Squamish, British

Columbia, Canada and is operated by BC Hydro, the provincial power utility. The

Cheakamus River originates approximately 25km southeast of Whistler, B.C. and has an

area of 1070km2. The headwaters start at 2500m above sea level and the river eventually

discharges into the Squamish River 26km downstream of the dam at El. 30m (above sea

level). Cheakamus Dam impounds Daisy Lake and has a drainage area of 780km2,

receiving about 75% of the Cheakamus river inflow (BC Hydro 2005). The average

reservoir inflow is around 50m3/s (BC Hydro 2005).

Figure 4-1: Cheakamus Hydropower Project area map (BC Hydro, 2005)

141

Figure 4-1 contains a map of the region with the locations of the dam and powerhouse

shown. Daisy lake has a live storage capability of 55 million m3 and a typical operating

range of El. 364.90m to El. 377.25m (BC Hydro 2005). The stage-storage curve for Daisy

Lake is provided in Appendix A.

The Cheakamus Main Dam consists of an Earthfill Dam, a Concrete Main Dam gravity

structure, and a concrete gravity overflow Wing Dam. Daisy Lake is also impounded

Saddle Dam No 1. An overflow channel, along with the Wing Dam and Saddle Dam No.

1, provide free overflow discharge capability for the system. A power canal leads to the

power intake structure at Shadow Lake which is impounded by the Shadow Lake Saddle

Dam. Water for power is drawn through a canal beneath Highway 99 and into an 11km

tunnel through Cloudburst Mountain. At the end of the tunnel, two penstocks carry the

water to a powerhouse that discharges into the Squamish River upstream of its confluence

with the Cheakamus River. The maximum power discharge is 65m3/s which can generate

up to 157MW of power through two vertical Francis units. Flood flows are discharged into

the Cheakamus River at the Concrete Main Dam, which contains two Spillway Operating

Gates (SPOGs) with a combined discharge capacity of 1590m3/s at the maximum normal

reservoir level (MNRL) of El. 378.26m. A low level outlet sluice (LLO) with a discharge

capacity of 196m3/s at MNRL and five free overflow spillway ports are also located at the

concrete dam. There is an additional low level outlet controlled by a Hollow Cone Valve

which is considered to be out of service. Details regarding the relationship between

elevation and discharge for fully open gates are provided in Appendix A. The project

schematic is shown in Figure 4-2. An overall site plan showing the locations of the dams

can be found in Figure 4-3.

The province of BC underwent a water use planning process for Cheakamus Dam that

prescribed minimum discharges downstream of the dam, flow ramping rates (rates of

discharge increase) and operating levels to be adhered to (if possible) by the system

operators. The minimum discharge information is shown in Appendix A (BC Hydro 2005).

The historical daily inflows are also shown in Appendix A.

142

CHEAKAMUS RIVER

SPOG (2)

RADIAL

GATES

DAISY LAKE RESERVOIR

NI

CMS

(2)

TUNNEL

SQUAMISH RIVER

CHEAKAMUS

(CMS)

LLOG (1)

SLUICE

GATE

HCV (1)

FISHWATER

LEGEND

Power Intake

NPRF Spillway Gate (SPOG)

NPRF Low Level Outlet

(LLOG)

NPRF Outlet Works Gate

(OWOG)

NPRF Weir (ungated)

Generating Plant (n units)

Syphon

NPRF Non Power Release Facility

LLOG(n) Low Level Outlet Gate

(number of gates or valves)

SPOG(n) Spillway Gate (number of

gates or bays)

OWOG(n) Outlet Works Gate (number of

gates)

HCV(n) Hollow Cone Valve (number of

valves)

NI Natural Inflow

S

PLN

(n)

CHEAKAMUS PROJECT

Figure 4-2: Cheakamus Hydropower Project system schematic (BC Hydro, 2005)

143

Figure 4-3: Cheakamus dam site overview

It is also useful to understand the control system infrastructure in place for the Cheakamus

System. A hierarchical control system structure is shown in Figure 4-4. This schematic

shows the regulatory and organizational controllers at the top, moving down towards the

control infrastructure itself. The exchange, transfer and movement of information

throughout the system is shown in detail in this figure.

The Cheakamus System structure and data were used with the framework described in

Section 3.2 to populate the component operating states database for the Cheakamus System

and generate an extensive list of potential operating scenarios (Section 3.3). This process

is described in the following section.

144

Figure 4-4: Hierarchical control system structure of Cheakamus Project

4.2 Cheakamus Database Population and Scenario
Development

To generate scenarios for the Cheakamus System, an in-depth understanding of the system

and its interactions is required. Information should be collected about the system structure,

components and connections. This will help in identifying the components and their

potential operating states within the database. In this research, STPA is used to improve

the understanding of the system for database population. The process also helps inform the

development of the system structure within the simulation model. Following STPA, the

145

database is populated and the database outcomes are used to generate the complete list of

scenarios.

4.2.1 Systems Theoretic Process Analysis for Cheakamus System

In order to help facilitate the development of the operating states database, the STPA

procedure of Leveson (2011) was applied to a high-level version of the detailed Cheakamus

system. STPA is a systematic approach to evaluating potential control actions that can lead

to hazards for a system. The control actions can then, if possible, become operating states

within the database or can be programmed into the simulation model.

The goal of the STPA analysis was a high level review of potentially hazardous conditions

at the dam site, to help guide the development of the model and operating states database.

The control system structure developed for this process is shown in Figure 4-4 and

Appendix B contains the complete analysis that was done (though this would likely change

and become much more comprehensive with expert input from BC Hydro).

Prior to initiating an STPA analysis, the high-level system hazards must be defined. The

hazards selected for Cheakamus Dam are as follows:

• H1: High flows released into Cheakamus River and/or Squamish River (flood)

• H2: Flow releases to Cheakamus River stopped (fish kill)

• H3: Equipment damaged (economic/safety impact)

• H4: Loss of power production (economic impact)

Next, a set of high-level system safety constraints (requirements) are defined, as follows:

• SH1: Flows released into Cheakamus and/or Squamish must not exceed a level that

causes damage downstream

• SH2: Flow must always be released to Cheakamus River

• SH3: Equipment must not become damaged

Following the definition of these hazards and safety constraints or requirements, a detailed

hierarchical control system structure can be developed, as shown in Figure 4-4. Then, the

process can begin, with the first step being to identify unsafe control actions. Unsafe

control actions are defined for each control feature of the system, which in this case

146

includes both gates, both turbines and the low-level outlet. A table is used with four

columns that can be used to guide the assessment: providing causes hazard, not providing

causes hazard, wrong timing or order causes hazard, and stopping too soon or applying too

long causes hazard.

Once the unsafe control actions (UCA’s) are defined, the next step in the process involves

looking at each UCA individually and considering how the issue may arise (the causes).

Finally, additional factors can be listed.

Looking at the detailed description of UCA’s and their causes (Step 2 in Appendix B)

provides some interesting insights regarding the degree to which the approach presented in

this work is able to fully cover the range of potential operating states. Focusing on the

scenarios that involve flooding (H1), there are some instances where human factors may

lead to more complicated scenarios than the automated procedure developed in this work

is able to generate. Some scenarios may require additional effort for simulation due to the

complex nature of human decision making. UCA1/UCA10 from the STPA analysis is

presented below to illustrate this.

UCA1/UCA10: SPOG Open command not provided when water level high, inflow high or

both [H1, H3]

 Case 1: Water level high, inflow low, open command not provided

-Controllers (OP, PSOSE, ACC, DS) unaware of reservoir level due to

gauge failure, sensor failures or communication delays

-High tides at Squamish mean there are flooding impacts when additional

flows are released from the CMS system. Controllers (OP, PSOSE, ACC,

DC) make a decision to hold water back, allowing the reservoir to rise to an

unsafe state even though the inflow is relatively low.

 Case 2: Water level high, inflow high, open command not provided

147

-Controllers (OP, PSOSE, ACC) believe they can return the reservoir to a

safe level using the powerhouse and/or LLO and/or other SPOG due to

inflow forecast errors

-Controllers (OP, PSOSE, ACC, DS) unaware of reservoir level due to

gauge failure, sensor failures or communication delays

-High tides at Squamish mean there are flooding impacts when additional

flows are released from the CMS system. Controllers (OP, PSOSE, ACC,

DC) make a decision to hold water back, allowing the reservoir to rise to

unsafe levels

-Controllers do not follow procedure (human error due to fatigue or shift

change at PSOSE/FVO)

 Case 3: Water level low, inflow high, open command not provided

-Controllers (OP, PSOSE, ACC) believe they can keep the reservoir at a

safe level without opening the gate, due to inflow forecast errors or process

errors

 -Gate(s) out of service for maintenance purposes and therefore cannot be opened.

 -Controller thinks gate open (sensor failure, communication delay)

In this example, there is a potential scenario where high tides at Squamish (downstream of

Cheakamus) lead the operator to hold back water when a high-inflow event is occurring.

This scenario would be difficult to analyze within the proposed Deterministic Monte Carlo

model, due to the major factor being human decision making. It would require additional

simulation effort to fully capture this potential scenario. Process errors or controllers not

following procedure are difficult to simulate since there are so many different ways in

which the decision-making can unfold. Some of the causes of the UCA shown above (for

example gates being out of service, sensor failures, communication delays, inflow forecast

errors, etc.) are both easily incorporated into the operating states database, and easily

simulated using the system dynamics model.

148

STPA is quite useful as a preliminary assessment tool that can be used to inform the

development of the operating states database and simulation model. The results of the

assessment can also significantly help with identifying and some non-failure related

operating constraints that have the potential to lead to a hazard – the operating states

database and simulation model can then be developed to ensure simulation of these non-

failure related events is possible. Some of the scenarios uncovered through this systematic

assessment approach would be difficult to quantify using the automated simulation

approach described in this work and may not fit well into the database structure. However,

they may be able to be analyzed through a more case-specific simulation experiment.

Performing an STPA is helpful to improve the understanding of the system and ensure

operators are aware of all potential causes of failure for the system in order to manage risks

and avoid catastrophic impacts of dam failure.

It is important to note that the STPA analysis in Appendix B is provided for illustrative

purposes only. It is in no way representative of a complete assessment for the real

Cheakamus System, and was not performed by BC Hydro personnel.

4.2.2 Database Population and Scenario Generation

The component operating states database was populated based on the components in the

Cheakamus Hydropower Project and the information gathered through the STPA process.

The components tree showing the system configuration is provided in Figure 4-5. Each

component in the leftmost column is at the Reservoir Level. Each drop-down to the right

of this consists of the Component Level features of the system. Each of the components

contains a minimum of two operating states (normal and adverse) and each operating state

has a minimum of one causal factor. Each combination of operating state and causal factor

is recorded as a separate operating state. The complete database extract table for the

complex system is presented in Appendix C.

The information in the database is used to come up with a unique identifier for each object

in the system as well as it’s causal factors. For Reservoir Level components, the

149

ReservoirLevelID is used as the component identifier, 𝑛, and a number 𝑚𝑛, 𝑚𝑛 ∈

 (1…𝑀𝑛) is assigned to each operating state/causal factor combination for component 𝑛.

The operating state identifier takes the form 𝑛_𝑚𝑛, which is used to group the operating

states into sets for each component that are used in the calculation of the Cartesian product.

For objects at the component level, the ReservoirLevelID and the ComponentLevelID are

combined into a three to four-digit number which is used as the component identifier, 𝑛,

since there may be multiple items at the Component Level for a single Reservoir Level

item. Operating state/causal factor combinations are similarly assigned a number 𝑚𝑛. The

identifiers can be seen in the database extract table in Appendix C Once the identifiers are

assigned, they are grouped into sets and Python’s itertools product function is used to

compute the Cartesian Product, which results in a list of all possible combinations of

operating state identifiers for each component.

Figure 4-5: Components tree for the Cheakamus System

150

Table 4-1 contains a list of each component in the system and its object identifier, n, which

is a two-digit number for Reservoir Level items and a three to four-digit number for

Component Level items. The name of each component is shown as well as the total number

of operating states in each operating state set, Mn. Multiplying together all of the numbers

in the column Mn, as per Equation 3 gives the total number of possible scenarios, or the

number of elements in the Cartesian product, which is equal to 1.83 x 1027. This number

can be verified by computing the Cartesian product using Python’s itertools product

function, which generates a list of the same length. Each element in the generated list

contains a single operating state for all components in the system. This is an exhaustive list

which includes everything from a completely functional system to a system where every

component has some adverse operating state.

An additional calculation was done where causal factors leading to the same operating state

were grouped as a single operating state. This would avoid redundant simulations of the

same operating states with different contributing causal factors – though the model does

distinguish between causal factors in terms of time-of-year restrictions. The number of

scenarios with grouped causal factors for the Cheakamus system model is 1.54 x 1017,

which is significantly fewer scenarios than if each causal factor-operating state

combination is considered separately. Grouping of causal factors to avoid redundancy may

potentially be an effective way to reduce the number of simulations required to evaluate

each scenario.

Obviously, simulation of such large number of scenarios would be computationally

prohibitive given the current state of technology and the finite resources available for this

research project. As such, the simulation portion of this research is focusing on a simplified

abstraction of the Cheakamus System, described in the following section.

151

Table 4-1: Number of unique operating state and causal factor combinations for

each component in the complex system

Object ID,

n
ReservoirLevelID ComponentLevelID Reservoir Level Name Component Level Name Mn

46 46 Gate Pier 2

22 22 Main Earth Dam 1

18 18 Dam Programmable Logic Controller 3

19 19 Powerhouse Programmable Logic Controller 3

16 16 Dam Remote Terminal Unit 3

17 17 Powerhouse Remote Terminal Unit 3

21 21 Main Dam 2

27 27 Backup Diesel Generator 5

29 29 Dam Access 5

28 28 Powerhouse Access 5

30 30 Reservoir Elevation Sensor 1 7

31 31 Reservoir Elevation Sensor 2 7

47 47 Reservoir Elevation Sensor 3 7

37 37 Gate 1 Linear Position Sensor 4

39 39 Gate 2 Linear Position Sensor 4

38 38 Gate 2 Rotational Position Sensor 4

36 36 Gate 1 Rotational Position Sensor 4

41 41 Power tunnel 2

42 42 Penstock 2

44 44 Powerhouse Grid 5

43 43 Dam Grid 5

45 45 Inflow Forecast 3

48 48 Site Staff Availability 3

1326 13 26 Gate 1 Gate Hoist 1 6

1328 13 28 Gate 1 Skinplate 3

1331 13 31 Gate 1 Gearbox 3

1332 13 32 Gate 1 Motor 4

1333 13 33 Gate 1 Structural Supports 4

1334 13 34 Gate 1 Hoist Gate Connection 1 2

1343 13 43 Gate 1 Thrustor Brake 3

1355 13 55 Gate 1 Backup Motor 4

1357 13 57 Gate 1 Gate 1 Opening 2

1416 14 16 Gate 2 Gate Hoist 2 6

1418 14 18 Gate 2 Skinplate 3

1421 14 21 Gate 2 Gearbox 3

1422 14 22 Gate 2 Motor 4

1423 14 23 Gate 2 Structural Supports 4

1424 14 24 Gate 2 Hoist Gate Connection 2 2

1444 14 44 Gate 2 Thrustor Brake 3

1456 14 56 Gate 2 Backup Motor 4

1458 14 58 Gate 2 Gate 2 Opening 2

836 8 36 Turbine 1 Head Cover 2

837 8 37 Turbine 1 Wicket Gates 2

838 8 38 Turbine 1 Generator 2

1039 10 39 Turbine 2 Head Cover 2

1040 10 40 Turbine 2 Wicket Gates 2

1041 10 41 Turbine 2 Generator 2

1546 15 46 Low Level Outlet Hoist 6

1547 15 47 Low Level Outlet Skinplate 3

1548 15 48 Low Level Outlet Motor 4

1549 15 49 Low Level Outlet Support 4

1550 15 50 Low Level Outlet Hoist Gate Connection 2

1551 15 51 Low Level Outlet Thrustor Brake 3

1554 15 54 Low Level Outlet Gearbox 3

152

4.3 Simplified System Database Population and Scenario
Development

Due to the extremely large number of scenarios generated for a complex representation of

the Cheakamus System, a simplified abstraction of the system was developed to facilitate

scenario simulation. The goal of this simplification was to create a system that mimics the

function of Cheakamus but has significantly less components and as such fewer scenarios

to simulate. This simplified system provides a proof-of-concept for the methodology

described in this research. For applications to similar systems to Cheakamus, it may be

desirable to utilize some of the simplifications described here, such as aggregating

components with similar impacts into grouped components, with the goal of reducing the

occurrence of redundant scenarios. This process could potentially be guided by the use of

fault tree analysis for sub-systems such as the gate equipment. Due to computational

resource limitations for this research, the simplified system lacks some of the key

redundancy features of the real Cheakamus System that increase its overall level of safety.

As such, results for the simplified system are not considered to be representative of the real

Cheakamus Project safety and performance.

In the simplified version of the system, the existing reservoir stage-storage relationship is

used. The two spillway gates (SPOG1 and SPOG2) are combined into a single gate (SPOG)

with a rating curve equal to the sum of the discharge columns from the individual rating

curves. The Low Level Outlet sluice is omitted from the model. The two turbines are

combined into a single unit capable of conveying the total flow of both units. The main

communications equipment in the Cheakamus System (the PLC and the RTU) are idealized

as a single component (PLCRTU). Gate components are also simplified into categories

representing the impacts that occur upon failure – gate failing in place, gate failing closed,

and gate collapse. The sensors for the reservoir level are combined into a single sensor and

the sensors for gate position are omitted. Wicket gates are eliminated from the turbine

components and a single grid is modelled instead of separate power connections to the

powerhouse and the dam. In addition to the component changes, some causal factors were

omitted from the analysis to reduce further the scenario list, since each operating state-

causal factor combination is counted as a unique operating state.

153

To show how the model can be useful in assessment of safety improvements realized by

potential capital upgrades and operating rules, two cases are simulated. These are a “base

case” which has a significantly smaller free overflow spillway than the real system, and a

“dam safety improved case” which has an identical free overflow spillway as well as

improved operating rules and a slightly reduced failure frequency for certain components.

These scenarios are described further in Section 4.4.3.

Using the simplified abstraction of the Cheakamus System, a new version of the database

was developed. Figure 4-6 contains the components tree for the simplified system.

Appendix D contains the full database details for the simplified system. Table 4-2 contains

a list of each component in the simplified system including its identifier, 𝑛, the

ReservoirLevelID and ComponentLevelID (from the database), component description

and the number of operating states in each component’s operating state set, Mn.

Figure 4-6: Components tree for the simplified system

Multiplying together the values of Mn as shown in Equation 3 yields the total number of

possible scenarios for the system, which is equal to 5.5 x 105. This number can be verified

154

by computing the Cartesian Product using Python’s itertools product function, which

generates a list of scenarios of the same length.

Table 4-2: Number of unique operating state and causal factor combinations for

each component in the simplified system

Object ID, n ReservoirLevelID ComponentLevelID Reservoir Level Name Component Level Name Mn

18 18 Programmable Logic Controller / Remote Terminal Unit 4

29 29 Dam Access 4

30 30 Res El Sensor 1 5

42 42 Penstock 2

44 44 Grid 4

45 45 CMS Inflow Forecast 1

48 48 Site Staff Availability 3

836 8 36 Turbine 1 Head Cover 2

838 8 38 Turbine 1 Generator 2

1359 13 59 Gate 1 Gate opening 2

1361 13 61 Gate 1 Components failing open 3

1362 13 62 Gate 1 Components failing closed 4

1360 13 60 Gate 1 Components failing in place 3

Comparing the total number of possible scenarios for the complex representation of

Cheakamus to the simple system, it is clear that with more components and a larger number

of operating states and causal factors, the number of possible operating scenarios grows

exponentially. There is a trade-off between the level of complexity represented and the

amount of computational effort required – this requires serious consideration in model

development and could result in different modellers creating different versions of the same

system. It is very important to ensure any simplifications of real-world systems take into

consideration component redundancies that can significantly improve scenario outcomes.

Future work should explore methods for reducing the impact of this tradeoff by decreasing

the computational effort required to cover larger numbers of scenarios – this may include

the use of pattern recognition techniques.

Table 4-3 and Table 4-4 contain the key database parameters from a single example

scenario for the simple system, for the components at the Reservoir Level and the

Component Level, respectively. The example scenario contains the following identifiers

(in the form Component_OperatingStateNumber):

155

[18_1, 44_1, 30_1, 45_1, 29_4, 42_2, 48_3, 838_1, 836_2, 1359_1, 1360_2, 1361_1,

1362_1]

Table 4-3: Database information from example scenario: Reservoir Level

Identifier

Reservoir

Level

Name

Operating

State

Name

Min Max Avg

Causal

Factor

Name

Max

Date

Min

Date

18_1
PLC/RTU PLC offline

1 24 6
Voltage

Fluctuation
365 0

44_1 Grid Grid failure 0.04 7 0.16 Wind storm 365 0

30_1
Reservoir Elevation
Sensor 1

Wrong Reading
10 100 25

Temperature
365 0

45_1
CMS Inflow Forecast Inflow forecast

normal
0 0 0

None
365 1

29_4 Dam Access Typical access time 2 4 2.5 None 365 1

42_2 Penstock Normal operation 0 0 0 None 365 0

48_3 Site Staff Availability Staff available 0 0 0 None 365 0

Table 4-4: Database information from example scenario: Component Level

Identifier Reservoir

Level

Name

Component

Level

Name

Operating

State

Name

Min Max Avg Causal

Factor

Name

Min

Date

Max

Date

838_1 Turbine 1 Generator Load Rejection 0.1 7 0.25 Maintenance 1 365

836_2 Turbine 1 Head Cover Normal 0 0 0 None 1 365

1359_1 Gate 1 Gate opening Normal 0 0 0 None 1 365

1360_2 Gate 1 Components

failing in place

Components of

the gate fail

causing it to
remain in place

0.5 120 7 Maintenance 1 365

1361_1 Gate 1 Components

failing open

Normal 0 0 0 Normal 1 365

1362_1 Gate 1 Components
failing closed

Normal 0 0 0 Normal 1 365

In the example scenario, the PLC/RTU is offline due to a voltage fluctuation, and the grid

is offline because of a wind storm. Temperature fluctuations have affected the reservoir

elevation sensor which is giving a false reading. There is also a load rejection which results

in the unit being offline. Components of the gate are also failed due to a lack of maintenance

and the gate is stuck in its current position. These tables provide a good indication of the

information that the simulation model reads in to run the simulation: The minimum,

maximum and average impact magnitudes and the causal factor date restrictions are used

in the Monte Carlo generation of parameters for each iteration of the particular scenario

being run.

156

A description of the system dynamics model developed for the simplified system is

provided in the following section.

4.4 Simplified System Model Description

The simplified system as described in the database was initially modelled using the system

dynamics software Vensim (Ventana Systems 2015) interfaced with Python (Python

Software Foundation, 2012). It was eventually converted into a pure-code Python script

using the sdpy package to facilitate simulation using cluster computing on the Linux

operating systems at Compute Canada. Converting the code to a Python environment also

significantly improved the simulation efficiency by reducing the overhead associated with

passing information between Vensim and Python. Appendix E contains the Python script

for the scenario generation. A complete package that can be used to run simulations can be

found in the electronic files under the dam_safety_simulation folder. This section describes

the model in more detail and provides the model testing results that compare the simulation

outputs to the historically observed Cheakamus System (on which the model is loosely

based). A description of the base case and the dam safety improved case for the simulations

is also provided.

The key benefit of using a system dynamics software package such as Vensim is that the

system structure can be constructed in an object-oriented way, allowing for easy

visualization and modification of the relationships between system components.

Subscripting is another useful feature. Vensim allows for multiple sectors or model views,

which are related to one another using “shadow variables” that link the variables between

the sectors. One drawback associated with Vensim and similar software packages is there

may be limitations to the complexity of functions defined within the software. As a result

of this limitation, a link between the Vensim program and Python programming language

was made using the venpy package (Breach 2015) which allows function equations to be

programmed directly in python. While this link is useful for model development and

testing, there is a significant amount of overhead associated with passing information

between the two programs. Since the goal of this research is to simulate the full suite of

157

potential scenarios, the model was eventually converted directly to Python script, however

the model structure remains the same. The object-oriented building blocks and equations

in Vensim and Python can easily be translated to the pure Python environment using the

pysd package (provided in the dam_safety_simulation folder of the electronic appendix).

The following sections describe the system dynamics model development. Screen shots of

the system structure are taken from Vensim.

4.4.1 Model description

The following sections provide the detailed equations used in each of the system dynamics

model sectors. The model sectors follow the generic control loop of Leveson (2011), which

is expanded on to detail the relationships modelled in each sector in Figure 4-7. The

Hydraulic System State sector contains the water balance and pertinent relationships to

that. Reservoir inflows, storage and outflows are modelled. Outflows are a sum of flows

through the turbine, uncontrolled flows through the penstock, gate flows, overflows and

dam breach flows. Dam breach initiation and gate blockage are also modelled within the

sector, as well as the binary position of the power intake gate. The Sensors Sector includes

the collection and relay of reservoir level information for use in the operations sector.

Reservoir sensor errors and relay issues are also modelled within the sector. The Operations

Sector models the decision making and implementation. This includes inflow forecasting,

operations planning, remote or manual actuation and delays in mobilization of personnel

to the site. The Gate Actuators Sector models the gate position and availability, which is a

function of the condition of the gate components as well as power supply. The Turbine

Actuators Sector models the condition of power flow release components and determines

the releases through the unit and uncontrolled releases through a ruptured penstock or failed

head cover. Finally, the Disturbances Sector models the implementation of adverse

operating states (which are a model input). This includes failures, errors and delays as well

as capacity losses at the gate due to debris accumulation.

158

Figure 4-7: Simulation model sectors

The following paragraphs provide the stock-and-flow diagrams, details and equations for

each of the model sectors. Each stock-and-flow diagram shows the relationships within the

sub-system. Variables can also enter the sub-system from other sub-systems.

4.4.1.1 Hydraulic System State Sector

The Hydraulic System State Sector is shown in Figure 4-8 with the variable names and

symbols shown in Table 4-5. This sector represents the status of the hydraulic infrastructure

in the system relating to water retention (dams) and conveyance (water passages). It should

be noted that components which move – such as gates, valves, and turbines – are considered

Actuators. The functioning of these electrical, mechanical and structural components are

represented within the Actuators sector and are not modelled as part of the Hydraulic

159

System State sector. Reservoir storage, flow conveyance through gates and turbines,

overtopping and breach are represented in this sector.

Figure 4-8: Hydraulic System State Sector

Table 4-5: Hydraulic System State Sector variable names

Variable name Variable symbol

Reservoir Storage (m3/s-day) S

Reservoir Level (m) El

Inflow (m3/s) I

Outflow (m3/s) O

Unobstructed gate flow (m3/s) QGU

Gated spill release (m3/s) QG

Power flow release (m3/s) QP

Gate position (m) g

Gate capacity (%) GC

Overflow (m3/s) QOF

Breach triggered (binary) EDB

Breach flow (m3/s) QDB

Powerhouse flow conveyance (m3/s) PQC

Penstock leakage (m3/s) QPen

Other component time to repair (penstock) (days) Pttr

Intake gate closure (binary) IG

160

In this sector, reservoir storage is represented as a stock, with flows Inflow, I, increasing

its value and Outflow, O, decreasing its value. The reservoir storage stock value is

calculated by determining the difference in inflow and outflow at each time step, as shown

in Equation 4:

𝑑𝑆

𝑑𝑡
= 𝐼 − 𝑂 (4.1)

Where S represents storage, t represents time, I represents inflow and O represents outflow.

Storage is directly related to reservoir elevation (El) as described by the stage-storage table

for the reservoir of interest. The Stage-storage curve (SSC) which determines reservoir

elevation El from storage S and it’s reverse (SSCRev) are supporting functions described

in more detail in Appendix E.

The model outflow O represents a summation of the outflows from each of the N spillway

gate conduits (QGi, i=1….n), flows passing through the turbines (QP), and any

uncontrolled flow releases (UCR). Uncontrolled flow releases include additional outflows

from penstock leakage (PL), overflows (OF), and dam breach flows (DBF). Equations 5

and 6 pertain to model outflow (O) and Uncontrolled flow releases, respectively:

𝑂 = 𝑄𝐺 + 𝑄𝑃 + 𝑈𝐶𝑅 (4.2)

𝑈𝐶𝑅 = 𝑄𝑃𝐿 + 𝑄𝑂𝐹 + 𝑄𝐷𝐵 (4.3)

Unobstructed gated spill releases (UGO) are a function of reservoir elevation (El) and

spillway gate position (g), as determined by the spill release rating curve. This function

retrieves the value of the reservoir level and the gate position and calls the supporting

function “GateFlowCalc” using those as arguments (See Appendix E).

In some operating scenarios, debris may block the spillway gate opening, reducing the

capacity of the spillway gate, so the unobstructed gated spill release is then multiplied by

the gate’s real time capacity, (GC), to get the actual gated spill release (QG). This is shown

in Equation 7:

𝑄𝐺𝑖 = 𝐺𝐶 ∗ 𝑄𝐺𝑈 (4.4)

161

Where GC is a ratio of full capacity and has a value between 0 and 1.

Overflow (QOF) is determined following Figure 4-9 using the overflow stage-discharge

curve OTC as well as the stage-storage curve SSC and its reverse SSCrev from the

supporting functions in Appendix D. The overflow stage-discharge curve represents the

hydraulic relationship between the elevation of the reservoir and the total overflow

discharge (through the free overflow spillways, as well as any additional discharges over

the concrete and earthfill dams). The stage-discharge curve OTC is manipulated in the base

case by increasing the spillway crest by 2m and multiplying the result by 0.3 to represent

a scaled down capacity of the free overflow structures in the base case.

Figure 4-9: Overflow calculation

Because the Cheakamus Reservoir is somewhat flashy (the reservoir can fluctuate

relatively quickly), the daily time step introduces some issues in calculating the aggregated

162

daily overflow spill. Because the fluctuations in reservoir level can occur at a finer time

step than daily, the overflow values at the start of the day may not be equal to the overflow

values at the end of the day. To address this problem, a nested hourly calculation is used,

as shown in Figure 4-9. This takes into account whether the reservoir will exceed or drop

below the free overflow spillway within the 24-hour period, and the resultant changes in

overflow spill based on the fluctuating reservoir elevation.

Dam breach is assumed to be triggered (EDB) once the reservoir elevation exceeds a

particular level (DBEl) above the earth dam crest (defined using expert judgement), and

takes on a value of 0 for not breached or 1 for breached (Equations 8 and 9), with dam

breach flows (DBF) equal to the full reservoir storage (the reservoir is completely emptied

when the dam breaches):

𝐹𝑜𝑟 (𝐸𝑙 > 𝐷𝐵𝐸𝑙): 𝐸𝐷𝐵 = 1, 𝐹𝑜𝑟 (𝐸𝑙 < 𝐷𝐵𝐸𝑙): 𝐸𝐷𝐵 = 0 (4.5)

𝐹𝑜𝑟 𝐸𝐷𝐵 = 1:𝑄𝐷𝐵 = 𝑆, 𝐹𝑜𝑟 𝐸𝐷𝐵 = 0:𝑄𝐷𝐵 = 0 (4.6)

Penstock rupture is initiated through the Disturbances Sector when the penstock fails,

which is represented by Other components time to repair with subscript Penstock, 𝑃𝑡𝑡𝑟.

Penstock leakage, 𝑄𝑝𝑒𝑛 is equal to the “head cover max flow” from the turbine actuators

sector (see Section 4.4.1.5), unless the intake gate is closed. This is described in Equation

4.7:

𝑖𝑓 𝐼𝐺 = 0 𝑎𝑛𝑑 𝑃𝑡𝑡𝑟 > 0: 𝑄𝑝𝑒𝑛 = 𝐻𝐶𝑀𝐹

𝑒𝑙𝑠𝑒: 𝑄𝑝𝑒𝑛 = 0 (4.7)

The variable intake gate (IG) represents the status of the maintenance gate at the top of the

penstock, where zero represents an open gate and 1 represents a closed gate. Power intake

gates are present in most dam systems with hydropower generation at the upstream end of

the power flow conduit. The intake gate provides a means to dewater and inspect/maintain

the penstock and powerhouse components. In some dam systems, these gates may be able

to close under excessive flows resulting from penstock rupture or head cover failure,

reducing the negative impacts. In other systems, the reservoir must be at an elevation below

163

the sill of the intake gate before it can close. In the case of penstock failure, all of the water

moving towards the powerhouse exits the penstock before making it there. Power flow

releases from all units (QP) are equal to the powerhouse flow conveyance PQC less the

water escaping through the penstock (QPen) via leakage or rupture as shown in Equation

4.8.

𝑄𝑃 = 𝑃𝑄𝐶 − 𝑄𝑃𝑒𝑛 𝑖𝑓 𝐼𝐺 = 0, (4.8)

𝑄𝑃 = 0 𝑖𝑓 𝐼𝐺 = 1

If the intake gate is closed (IG=1), power outflow (PO) is equal to zero.

Variables shown in Figure 4-8 in grey font with chevron brackets are known as “shadow

variables” These are the key variables which connect into the Hydraulic System State

Sector from other sectors of the model. The variable “Other component remaining time to

repair” enters the Hydraulic System State Sector from the Disturbances Sector. Variables

“Gate position” and “Powerhouse flow conveyance” enter into the Hydraulic System State

Sector from the Actuators Sector, which is broken down into Gate Actuators and Turbine

Actuators.

4.4.1.2 Sensors Sector

The sensors sector is shown in Figure 4-10 and the variable symbols are outlined in Table

4-6.

Figure 4-10: Sensors Sector

164

Table 4-6: Sensors Sector variable names

Variable name Variable symbol

Reservoir level (m) El

Sensor Error (%) SE

Sensor condition (binary) SC

Gauge reading (-) SRd

Gauge processing (-) SP

Gauge relay (-) SRl

If the gauge is functioning properly (SC=1) then the gauge reading is equal to the reservoir

level (El). If the gauge is failed (flat-lined), the value is equal to the last read reservoir

elevation as per Equation 4.9:

𝐹𝑜𝑟 𝑆𝐶 = 1: 𝑆𝑅𝑑 = 𝐸𝑙 + 𝐸𝑙 ∗ (
𝑆𝐸

100
)

𝐹𝑜𝑟 𝑆𝐶 = 0: 𝑆𝑅𝑑 = −9999 (4.9)

The gauge processing (SP) represents the interpretation step in the data collection system,

which is carried out by software (a PLC) and will be site-specific. If the PLC is non-

functional the SP will return a value of -9999 which indicates a missing value. The

processed value is transmitted to the controller through the gauge relay (SRl) if the relay is

available. The relay is usually carried out by a remote terminal unit (RTU), which is

modelled as a single variable with the PLC. Thus, if the PLCRTU component is non-

functional (RA=0), this also means that no information is transmitted to the controller

Operations Sector.

4.4.1.3 Operations Sector

The Operations Sector for the hydropower system is shown in Figure 4-11 and Table 4-7

contains the relevant variables. This sector describes the use of information relating to the

current state of the system to forecast inflows and make reservoir operating decisions.

Inflow forecasting may be done by applying a random, normally distributed error to the

actual reservoir inflows, which are an input to the hydraulic system state sector. In

reality, hydrologists use climate forecasts and watershed modelling to develop inflow

forecasts that are considered during operations planning. While these processes could be

incorporated into the simulation model, it would necessitate significant additional

165

computational effort. Instead, random errors may be applied to reservoir inflows to

ensure operations planning is simulated using realistically inaccurate inflow information.

Since the objective of this case study is to compare directly the base case and the dam

safety improved case, inflow forecasting errors were removed from the potential

operating states, since the random errors would differ between these two runs. Inflow

forecast is simply the upcoming 14 days of inflows, as follows:

𝐼𝐹𝑑 = 𝐼𝑡+𝑑 (4.10)

where 𝑑 = 0,… ,13 and 𝑡 is the current timestep.

Figure 4-11: Operations Sector

166

Table 4-7: Operations Sector variable names

Variable description Variable symbol

Inflow (m3/s) I

Inflow forecast calculation (m3/s) IFd, d=1…D

Operations planning (m3/s) OPf, f=1…F

Turbine instructions (m3/s) Ip

Gate instructions (m) Ig

Gate control redundancy (-) GCR

Other Component time to repair (-) OCttr

Sensor time to repair (-) Sttr

Manual actuation required (binary) MA

Delay in contacting site staff Ds

Delay in accessing site Da

Contact initiated with site staff CI

Contacting site staff CS

Time remaining to contact site staff TRC

Plant staff notified PSN

Mobilizing initiated MobI

Mobilizing Mob

Site staff mobilized SSM

Demobilize Demob

Following inflow forecasting, operations planning (OPf) proceeds. The result for

operations planning is a vector of two variables (f=1…F and F=K+N), each representing

a single instruction for a single controlled flow release component (K turbines and N gates,

in this case study, K=N=1 and 𝐹=2). The main operations planning algorithm takes several

key inputs (inflow forecast, reservoir elevation, day references, component availabilities

and reservoir elevation limits) and determines the corresponding operating instructions for

the system to ensure minimum flow releases are met and reservoir level restrictions are

adhered to if possible. It can be found in the function OpsPlan which is described in

Appendix E. The algorithm begins by assuming the minimum fish flow is released and the

remainder of the inflow is passed through the powerhouse (up to the maximum) for a 14-

day window from the current date. The resultant reservoir levels are then checked, adjusted

and re-checked to ensure the operating instructions result in reservoir levels that are within

the specified normal maximum (NMax) and minimum (NMin). To ensure enough water is

available for the winter low-flow period, the normal minimum reservoir level was adjusted

to El. 370 m for the months of November and December for the purposes of the modelling.

Operations planning follows the algorithm shown in Figure 4-12, which includes power

167

Figure 4-12: Operations Planning algorithm

168

flow releases through the turbine, following the logic that (a) fish flows are met, (b)

additional inflows can be released through the power conduit, (c) any exceedance over

NMax can be avoided by releasing more water through the power conduit or spill, and (d)

any exceedance below NMin can be reduced from spill flows, then power flows. The

algorithm generates instructions in terms of flow for the gate and turbine. The operations

planning function in the Operations Sector OPf collects and organizes the information

necessary to be passed to the OpsPlan function which is described further Appendix E.

Gate operation may be carried out remotely or on-site. The default operation is remote,

however manual actuation (MA) may be required if (a) communications equipment

(PLCRTU) is out of service (OCttr>0) or (b) the reservoir elevation sensor is not functional

(Sttr>0). The value of MA is set to 0 as the default, but changes to 1 if the equipment

required to operate the gate remotely is failed, as per Equation 4.11:

𝑀𝐴 = 0 𝑖𝑓 𝑆𝑡𝑡𝑟 = 0 𝑎𝑛𝑑 𝑂𝐶𝑡𝑡𝑟 = 0

𝑀𝐴 = 1 𝑖𝑓 𝑆𝑡𝑡𝑟 > 0 𝑜𝑟 𝑂𝐶𝑡𝑡𝑟 > 0 (4.11)

When MA=1, manual actuation is initiated. This occurs through a series of auxiliary

variables and stocks which appear complex but are simple value holders that implement

delays in contacting staff and mobilizing them to site.

The stock “Manual actuation initiated” (MAI) is a variable that, when equal to 1, indicates

that the mobilization process is underway. The inflow to this stock is the variable Initiate,

which is calculated as per Equation 4.12:

𝑖𝑓 𝑀𝐴 = 1 𝑎𝑛𝑑 𝑀𝐴𝐼 = 0: 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒 = 1

𝐸𝑙𝑠𝑒: 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒 = 0 (4.12)

Demobilization (DM) is the outflow of the stock MAI, and sets this value back to zero when

staff have mobilized and are on site (SSM) and manual actuation (MA) is no longer required,

as per Equation 4.13:

𝑖𝑓 𝑆𝑆𝑀 = 1 𝑎𝑛𝑑 𝑀𝐴 = 0:𝐷𝑀 = 1

𝑒𝑙𝑠𝑒: 𝐷𝑀 = 0 (4.13)

169

The next step in the process is notifying the plant manager so that site staff can be

mobilized. This is represented using a stock “Time remaining to contact staff”, (TRC),

which tracks any delays in this process. The stock input is “Contact initiation” (CI) and the

delay associated with the contacting and dispatch of staff, Ds, is an input from the

disturbances sector. Plant staff notified (PSN) is another variable that tracks whether staff

have been made aware of any issues at the site. Contact initiation (CI) is calculated as

follows:

 𝑖𝑓 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒 = 1 𝑎𝑛𝑑 𝑆𝑆𝑀 = 0 𝑎𝑛𝑑 𝑃𝑆𝑁 = 0: 𝐶𝐼 = 𝐷𝑠

𝑒𝑙𝑠𝑒: 𝐶𝐼 = 0 (4.14)

This sends a pulse to the TRC stock, which is equal to the predetermined delay time (if

any), which is pre-determined at the start of the simulation through the Monte Carlo

scenario generation. The stock outflow, “Contacting” (CS) is then equal to the timestep

while the value of the stock is greater than zero. Once the TRC stock has filled and drained,

the plant staff are considered to be notified PSN. The PSN variable represents this by taking

on a value of 1 when the staff are dispatched to site, and zero when they are not, as follows:

𝑖𝑓 𝑀𝐴 = 1 𝑎𝑛𝑑 𝑇𝑅𝐶 = 0: 𝑃𝑆𝑁 = 1

𝑒𝑙𝑠𝑒: 𝑃𝑆𝑁 = 0 (4.15)

Next, the site staff begin to mobilize to the site. There may be a delay in mobilization due

to site access issues such as traffic or emergencies, “delay in accessing site” (Ds). These

delays are a direct Monte Carlo generated input from the simulation model when site access

is delayed. This delay is again represented using a stock “Time remaining to access site”,

(TRA), which receives a pulse of inflow from “Mobilization initiated” (MobI), and has

outflow “Mobilizing” (Mob). The variable MobI is calculated as follows:

𝑖𝑓 𝑃𝑆𝑁(𝑡) = 1 𝑎𝑛𝑑 𝑃𝑆𝑁(𝑡 − 1) = 0:𝑀𝑜𝑏𝐼 = 𝐷𝑠

𝑒𝑙𝑠𝑒 𝑖𝑓 𝐷𝑒𝑚𝑜𝑏 = 1:𝑀𝑜𝑏𝐼 = 1

𝑒𝑙𝑠𝑒:𝑀𝑜𝑏𝐼 = 0 (4.16)

170

This variable sends a pulse equal to Ds (the delay time) when mobilization is initiated, and

zero otherwise except during demobilization, when the standard mobilization time (1 day)

is sent as a pulse to the stock TRA to re-set the standard site access time. The variable

“Mobilizing” (Mob), drains the stock TRA at the rate of time, when its value is positive –

this represents the travel of site staff to the dam. Finally, once the value of the TRA stock

is zero and mobilization is still required (MAI=1), the site staff are mobilized and at the

dam “Site staff mobilized” (SSM=1), as per Equation 4.17:

 𝑖𝑓 𝑇𝑅𝐴 = 0 𝑎𝑛𝑑 𝑀𝐴𝐼 = 1: 𝑆𝑆𝑀 = 1

 𝑒𝑙𝑠𝑒: 𝑆𝑆𝑀 = 0 (4.17)

Once the site staff are mobilized, actuation of the gate can occur manually. Demobilization

(Demob) occurs when manual actuation is no longer required (MA=0) and site staff are

present at the site (SSM=1), as follows:

 𝑖𝑓 𝑀𝐴 = 0 𝑎𝑛𝑑 𝑆𝑆𝑀 = 1: 𝐷𝑒𝑚𝑜𝑏 = 1

 𝑒𝑙𝑠𝑒: 𝐷𝑒𝑚𝑜𝑏 = 0 (4.18)

4.4.1.4 Gate Actuators Sector

The Actuators Sector has been broken down into two sub-sectors: (1) Gate Actuators and

(2) Turbine Actuators, because both the function and purpose of these components are very

different. Outlet Gates may be operated manually or remotely and rely on either grid power

or a backup power source as well as a series of interconnected mechanical and electrical

components which function together to make the gate operable. Turbines are typically

operated remotely, require an operational grid to be functional (power must be exported

somewhere) and rely on vastly different components to achieve their intended purpose. As

such, actuation of a gate is not modelled alongside actuation of a turbine and the sectors

are shown separately.

The Spillway Gate Actuators Sector is shown in Figure 4-13 with relevant variable symbols

presented in Table 4-8. This sector represents each of the mechanical, electrical and

structural components involved in operation of a spill release gate. The components are

171

grouped based on the outcomes of component failure into three categories: (1) Components

failing the gate in the closed position, (2) Components collapsing the gate and (3)

Components causing the gate to fail in its current position. The model has been generalized

as much as possible to represent both radial and sluice-type spillway gates but may need to

be modified for representation of different types of gates or for valve release facilities (eg.

Stop-log gates, Hollow cone valves, Howell-Bunger valves). Backup power supplies may

also easily be added to the model.

Figure 4-13: Gate Actuators Sector

Table 4-8: Gate Actuators variable names

Variable Description Variable Name

Gate instructions (m) Ig

Site staff mobilized (binary) SSM

Gate position (m) g

Last gate position (m) Lg

Gate availability (binary) GAv

Gate remaining time to repair (days) GRTTRc, c=1…C

Gate power supply (binary) GPS

Gate collapse (binary) GC

Gate failed closed FC

Gate failed in place FIP

Maximum gate position MGP

Failures of the component groups are each associated with different times to repair which

are modelled in the “Disturbances” sector. Disturbances in the system, for example seismic

events, may affect all or some of these components and the maximum repair time for each

172

of the affected components then becomes the length of time the gate is unavailable (out of

service) for.

The gate can either be operated remotely or by site staff if manual actuation (MA) is

triggered as described in the previous section. If MA=1, site staff must be mobilized

(SSM=1) in order for the gate control system to be operated and for actuation to take place.

If MA=0, the gate’s remote actuator is functioning properly and the gate may be operated

from the control center.

The gate components are binary indicators of component availability and are used in the

calculation of overall gate availability and as indicators of whether the gate is collapsed

(GC) or failed in place (FIP) or failed closed (FC). The values of the C affected gate

components for each gate, i, are set to 0 if the remaining time to repair is greater than 0 and

1 if the remaining time to repair is 0 (ie. there is no damage to the component), as per

Equation 4.19:

𝐹𝑜𝑟 𝐺𝑅𝑇𝑇𝑅𝑐 > 0: 𝑐 = 0 , 𝐹𝑜𝑟 𝐺𝑅𝑇𝑇𝑅𝑐 = 0: 𝑐 = 1 (4.19)

Gate availability is set equal to one if all gate components are available (values equal to

one), the power supply is available (GPS=1) and either remote actuation is possible (MA=0)

or staff are on site to operate the gate (MA=1 and SSA=1). Gate collapse (GCi) is set equal

to one if the “components collapsing gate” is equal to zero and fail closed (FCi) is set equal

to one if the “components failing gate closed” is equal to zero. Gate instructions are

measured in meters of opening and are determined from the Operations Sector, entering

the Gate Actuators sub-system as a shadow variable. Gate position is then determined as

follows.

𝑔𝑖 = 𝑀𝐺𝑃 𝑓𝑜𝑟 𝐺𝐶 = 1

𝑔𝑖 = 0 𝑓𝑜𝑟 𝐹𝐶 = 1

𝑔𝑖 = 𝐼𝑔 𝑓𝑜𝑟 𝐺𝐴𝑣 = 1

𝑔𝑖 = 𝐿𝑔 𝑓𝑜𝑟 𝐺𝐴𝑣 = 0 (4.20)

173

Last gate position Lg is stored by Python and used as the default gate position if the gate is

unable to be moved due to failure of a component. The gate position g is then used as an

input to the Hydraulic System State sector.

4.4.1.5 Turbine Actuators Sector

The model structure for the power Actuators Sector is shown in Figure 4-14 with relevant

variables described in Table 4-9. The power Actuators Sector has been simplified

significantly due to the high complexity associated with operation of a generating unit.

Wicket gates could be modelled as a stock with flows of opening and closing, however this

would require modelling the governor and other turbine components in significant detail.

It was assumed that modelling in this way would increase complexity but not improve the

result significantly. As such, powerhouse flow conveyance is the key variable being

modelled, and the availability of the components required for the powerhouse to function

are shown as inputs that determine whether power can pass through the powerhouse and

electricity can be generated (Power remaining time to repair). The two very high-level

power component failures that are being modelled are the generator (which causes a load

rejection) and the turbine head cover which can fail causing an uncontrolled release of

water into the powerhouse and downstream. In reality, there are many ways in which a

turbine can fail to operate safely, however the inability to pass flow and the uncontrolled

release of flow are the two major outcomes of significant power related failures, so these

components were considered to be representative.

The values for head cover (HC) and generator (PGen) are determined by “Power remaining

time to repair” which tracks the time left in repairs following failures of these components.

If the remaining time to repair value is positive, their value is set to zero (this equation is

the same as for the gate components above). Unit availability then depends on the

availability of the wicket gates, generator and grid (GrAv) following Equation 4.21:

𝑖𝑓 𝐻𝐶 = 1 𝑎𝑛𝑑 𝑃𝐺𝑒𝑛 = 1: 𝑃𝑈𝐴 = 1
𝑒𝑙𝑠𝑒: 𝑃𝑈𝐴 = 0 (4.21)

174

Figure 4-14: Power Actuators Sector

Table 4-9: Power Actuators variable names

Variable description Variable name

Turbine instructions (m3/s) IP

Unit availability (binary) PUA

Unit flow (m3/s) QU

Generator (binary) PGen

Head cover (binary) HC

Powerhouse grid availability (binary) GrAv

Powerhouse flow conveyance (m3/s) PFC

Head cover max flow (m3/s) HCMF

Intake gate closed (binary) IG

If any of PWG, PGen or GA are equal to zero, PUA=0 and the unit cannot release any water

(QP=0) unless the head cover (HC) is failed, in which case the maximum head cover flow

is released through the unit, as per Equation 4.22:

 𝐼𝑓 𝑃𝑈𝐴 = 1: 𝑄𝑃 = 𝐼𝑃
𝑖𝑓 𝑃𝑈𝐴 = 0 𝑎𝑛𝑑 𝐻𝐶 = 1: 𝑄𝑃𝑗 = 0

𝐼𝐹 𝑃𝑈𝐴 = 0 𝑎𝑛𝑑 𝐻𝐶 = 0, 𝑄𝑃 = 𝐻𝐶𝑀𝐹 (4.22)

Head cover max flow (HCMF) is a site-specific relationship to be determined by the

modeller. In this case, the assumption is that the maximum turbine flow for the current

reservoir level can be multiplied by five to represent the total flow that would pass through

the failed unit. If this flow causes reservoir elevations to drop below the sill, a correction

175

is made to represent the reduction in flow being passed into the power tunnel from the

reservoir (Qsill). The head cover release also depends on the intake gate closed variable

(IG), and is equal to zero if the intake gate is closed. The equation is as follows:

𝑖𝑓 𝐼𝐺 = 0: 𝐻𝐶𝑀𝐹 = min(5 ∗ 𝑇𝑄𝑀𝐴𝑋(𝑅𝑆𝐸, 𝑎𝑣 = 1), 𝑄𝑠𝑖𝑙𝑙)

𝑒𝑙𝑠𝑒: 𝐻𝐶𝑀𝐹 = 0 (4.23)

Where 𝑇𝑄𝑀𝐴𝑋 represents the supporting function described in Appendix E which

calculates the maximum flow through the turbine for a given reservoir level (RSE) and

availability set equal to 1. Qsill represents the reduction in this value that would be

observed when the reservoir passes below the sill within the current day. A simple volume

calculation is done to calculate Qsill as follows:

𝑄𝑠𝑖𝑙𝑙 = max (𝑆 + 𝐼 − 𝑄𝐺 − 𝑆𝑆𝐶𝑟𝑒𝑣(363.06), 0) (4.24)

where S is the storage, I is the inflow QG is the gated spill release, and SSCrev represents

the reverse lookup from reservoir level to storage. El. 363.06 is the elevation of the gate

sill. Qsill cannot be negative. It is important to note here a key difference between the base

case and the dam safety improved case. For the dam safety improved case, the head cover

maximum flow, 𝐻𝐶𝑀𝐹, is multiplied by 1/24 to represent intake gate closure within an

hour of rupture occurrence. This is because the time-step of the model is daily and it is

assumed that the gate closure would happen immediately upon detection of the rupture

(within one hour), so the maximum flows are simply scaled by this factor.

Equation 18 shows that the powerhouse flow conveyance (PQC) is equal to the sum of

releases through each turbine:

𝑃𝑄𝐶 = 𝑄𝑈 (4.25)

Powerhouse flow conveyance connects into the Hydraulic System State Sector.

4.4.1.6 Disturbances Sector

The main goal of the Disturbances Sector is to implement component failures which result

from a variety of causes from the components operating state database. Components have

176

been divided into four groups: Gate components, power components, other components

and sensors. This helps facilitate detailed modelling of various component failures, for

example the gate hoist or the gate motor becoming out of service following some

disturbance. Other components include the penstock, communications equipment, and the

grid. The gate and power components include all key components of the “Gate actuators”

and “Turbine actuators” sectors, respectively, which may fail resulting in various impacts

to the system. Stocks are used in this sector to represent the remaining time left on the

repair. The stock inflows consist of a single pulse (incoming time to repair). The stocks are

drained by a constant time when their value is positive, as shown in the following equation:

𝑖𝑓 𝑐𝑅𝑇𝑇𝑅 > 1: 𝑐𝑅𝑒𝑝𝑎𝑖𝑟 = 1

𝑒𝑙𝑠𝑒 𝑖𝑓 0 < 𝑐𝑅𝑇𝑇𝑅 < 1: 𝑐𝑅𝑒𝑝𝑎𝑖𝑟 = 𝑐𝑅𝑇𝑇𝑅

𝑒𝑙𝑠𝑒: 𝑐𝑅𝑒𝑝𝑎𝑖𝑟 = 0 (4.26)

This ensures the stock is drained by time when its value is positive and prevents the stock

value from becoming negative. The small c represents the component type (Gate, Power,

Other or Sensor). The component failure variables connecting to the time to repair stock

inflows receive information from the model to implement component failures of various

lengths at specific time steps (the Monte Carlo inputs). This is demonstrated in Section

3.4.1 and has been generalized to take Monte Carlo inputs of Impact Time 𝐼𝑇 and Impact

Length 𝐼𝐿:

𝑖𝑓 𝑡 = 𝐼𝑇: 𝑐𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 = 𝐼𝐿

𝑒𝑙𝑠𝑒: 𝑐𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 = 0 (4.27)

GateAll and PowerAll represent the total maximum remaining time to repair of all

components represented by the stock, as indicators that are used in the Gate Availability

and Turbine Availability calculation. The component Remaining Time to Repair (𝑐𝑅𝑇𝑇𝑅)

values for Gate, Power, Sensor and Other components are then routed into the model to the

corresponding location to be implemented in simulation, as described in the previous model

description sections.

177

Figure 4-15: Disturbances Sector

4.4.2 Simulation model testing

As discussed in Section 3.4.3, testing can be done to gain confidence in the model

performance. Checking the water balance to ensure the formulae are properly defined is an

important step. Another very useful test is to compare the model outputs with the observed

data for the system. This was done by running the simulation using Cheakamus historical

inflows and comparing the results with the real Cheakamus operating data. The model was

tested by modifying the operations planning function and comparing the results with the

historical data for operations including reservoir elevation, turbine flow and spill. The

results of the model test are shown in Figure 4-16.

Figure 4-16(a) and (b) contain the reservoir elevations from the observed record and

simulation, respectively. It is clear from the plots that the simulation model tends to hold

the reservoir higher than it would be under typical operation. This is a result of the

operations planning algorithm, which does not use optimization. In the initial development

of the complex model, operations planning was performed daily using a differential

evolution optimization model. The optimization model planned reservoir levels for one

178

year of expected inflows using the 14-day inflow forecast and weekly average inflows for

the remainder of the year. The change in reservoir storage was used to calculate the

instructions for the gates and turbines. This procedure for operations planning results in a

very accurate model test that is shown in King et al (2017). Once the scale of the simulation

problem was more accurately defined, the optimization step was determined to be

sufficiently time consuming to justify its removal from the program, and the model was

switched to a simple algorithm to calculate releases. As such, the simulated reservoir levels

for the historical model test are not as close to the observed values, however they are still

well within the operational limits.

Figure 4-16 (c) and (d) show the turbine flows from the historical operations record in

comparison to the simulation. The median lines are fairly close, though the simulation

model tends to release more water than the historical record, which is likely due to the fact

that the Cheakamus System is often used for peaking, meaning it may run fully during

certain hours of the day and be shut off at night, resulting in lower overall flows.

Figure 4-16 (e) and (f) show total spill releases for the historical and simulated operations,

respectively. There is a close agreement between the medians for spill release, however

larger spill events tend to be reduced in the simulated results in favour of slightly longer,

more moderate spills.

179

Figure 4-16: Operations validation for the simplified system model

4.4.3 Base case vs. dam safety improved model runs

Two full runs through the potential operating scenarios are performed in this research for

two different cases: the base case and the dam safety improved case. The difference

180

between these scenarios is described in this section and summarized in Table 4-10. The

goal of these two different runs is to show how the simulation model results can be used to

assess improvements made by changing operating strategies and investing in upgrades to

the system.

Scenario A: The base case is a simplified version of the Cheakamus system as described

above. The key change that was made for this case was that the free overflow spillway

capacity was significantly reduced (by 70%) and the crest was raised by 2m. The purpose

of this was to directly induce more failures in the base case, creating a substantial difference

between the dam safety improved case which has a free overflow spillway identical in size

to the one in the real Cheakamus system. This change was made in response to a very low

observed failure rate for the dam safety improved case, given the ability of the free

overflow spillway to safely pass even large inflows when the capacity of the system to

convey water through the gates and turbines is significantly reduced.

Scenario B: The dam safety improved case has a full-sized free overflow spillway

consistent with that of the real Cheakamus Dam. In addition to this, the intake gate for the

powerhouse is upgraded to allow it to close under penstock rupture or head cover failure

flow. Because of the daily timestep and the relatively small and flashy Daisy Lake, this is

implemented in two ways. First, the intake gate is closed immediately the day after a

rupture or head cover failure is realized. Secondly, the total penstock rupture and head

cover failure flows are reduced to 1/24th of their actual values, to reflect closure of the gate

within an hour of the initiating failure. Another key change in the dam safety improved

model is that in the event of lowered capacity in the system resulting from a gate outage,

or loss of remote control due to PLCRTU outage or grid outage, the target reservoir level

is lowered to El. 367.8m which is 0.5m above the crest of the spillway. The goal of this

operational change is to avoid free overflow events and dam failure by preparing for large

inflow events which the system may not be capable of conveying through the power

passage alone. Increased redundancy in the communications equipment was modelled by

reducing the number of outages for the PLCRTU component to one half of the scenarios.

This is done by modifying the Monte-Carlo generated outage times for a randomly selected

half of the iterations to zero. Sensor errors and outages were similarly reduced by one half

181

to indicate improved sensory equipment at the site. Finally, the instances of the gate failing

closed were reduced by 20% to reflect upgraded components in the gate resulting in fewer

of these failures.

Table 4-10: Base Case vs. Dam Safety Improved Case

Base Case Dam Safety Improved

Free overflow spillway restricted to release

only 30% of Cheakamus Dam discharges,

with a crest 2m higher

Free overflow spillway identical to

Cheakamus Dam

Single PLC/RTU device
Dual PLC/RTU device, resulting in

50% fewer outages of that component

Intake gate unable to close under penstock

rupture or head cover failure flows

Intake gate upgraded to allow closure

under penstock rupture or head cover

failure flows

Default gate redundancy

Gate redundancy improved to reduce

instances of the gate failing closed by

20%

Reservoir level targets consistent with

typical Cheakamus operations

Reservoir level target lowered to El.

367.8m if system capacity is restricted

Each scenario is run through the simulation model with two thousand iterations and the

complete simulation is run once for the base case and once for the dam safety improved

case. The goal of this is to illustrate the improvements made between the two runs. Because

there are such a large number of scenarios and iterations being modelled, more varied

inflow sequences are required than observed in the historical record. This is described in

the following section.

4.5 Simulation Model Input Data

The simulation model data inputs include the physical relationships, the synthetic inflows

and the baseline operations (reservoir levels) for the system.

4.5.1 Physical Relationships

The first physical relationship used in the model is the stage-storage curve, which relates

the elevation of the reservoir to the storage in m3/s-day. The units chosen to represent

storage help simplify the calculations within the simulation model. The stage-storage data

for the Cheakamus Project were used in the simulation model and are presented in

182

Appendix A. Curve-fitting was used to develop a relationship valid for the possible

reservoir elevations, and the resultant relationship is described in Appendix E for the stage-

storage curve (𝑆𝑆𝐶).

The stage-discharge curve for the Cheakamus System are also used in the simulation model

(See Appendix A). A function representing the total overflow is created using curve-fitting

to reflect the overflow discharge pertaining to a certain elevation. The resultant function is

described in Appendix E for the overflow curve 𝑂𝑇𝐶.

The combined gate rating curve for the two Cheakamus Spillway Operating Gates (SPOGs)

is also used in the model. The rating curves for each gate are combined into a single curve

for a larger gate by adding the discharge columns from the curve. The resulting combined

curve is used directly in the model in a 2-dimensional interpolation.

The maximum turbine flow pertaining to different reservoir elevations is required in the

model to ensure generating restrictions at low reservoir elevations are taken into account.

This is calculated from the units operating curves and converted to a piecewise linear

function. A similar piecewise linear curve is developed for the maximum possible gate

flow at different reservoir elevations.

4.5.2 Synthetic Inflow Generation

Synthetic inflow generation was carried out by reshuffling and perturbing the historical

climate data using a stochastic weather generator (KnnCAD) and using the results as inputs

to the Raven hydrologic modelling tool. KnnCAD and Raven are described in Section

3.3.1. For the Cheakamus Hydropower Project, a single station located at the dam (CMS)

is used for inflow forecasting.

Twenty-seven years of historical daily climate data from the CMS station was used as an

input to the KnnCAD weather generator. The data included daily minimum and maximum

temperatures as well as precipitation. KnnCAD reshuffles and perturbs the historical

climate data to come up with a statistically similar block of data the same length as the

183

input data, so 371 blocks of climate data were created by the weather generator for a total

of 10,017 years of data. For real applications of this approach, closer to 1 Million years of

climate data is recommended to ensure adequate variability in the inflow sequences,

however 10,000 was determined to be adequate for the purposes of this proof-of-concept

example.

A validation of the historical versus simulated climate data is shown in Figure 4-17. Figure

4-17(a) and (b) contain boxplots of daily precipitation (no outliers) and total monthly

precipitation respectively. The blue line plot overlaid on the boxplots shows the historical

median values. For daily precipitation, there is a close match between the median historical

and simulated values. The daily precipitation values were shown without outliers because

the outliers were quite high in comparison with the boxplots, with one simulated value

exceeding 800mm in March. The number of outliers in the data indicates the ability of the

model to simulate more extreme precipitation events than in the observed record. The

synthetic climate data tends to underestimate the total monthly precipitation, with the

historical medians being close to the 75th percentile of the simulated data in January, March

through July, October and December. For February and August there is a close agreement

and there is a smaller underestimation in September and November. Despite the

underestimation of the median total monthly precipitation values, the simulated data does

match the monthly trend shape and there are a fair number of outliers from the monthly

data. Figure 4-16(c) and (d) contain monthly minimum and maximum temperature

boxplots of the simulated data, with historical medians overlaid on the graphs. There is a

fairly close agreement in the trends, however both the median minimum and maximum

temperatures do tend to slightly underestimate the historical medians. There are, however,

a significant number of outliers which indicates values outside of the historical record are

present in the simulated data.

184

Figure 4-17: Validation plots for synthetic climate data at for CMS station

The UBC watershed model requires water-years as an input, which run from October 1 to

September 31, so some reorganizing of the resultant datasets is required. Once the data is

reorganized, it can be used as an input to the calibrated watershed model (UBC Watershed

model on Raven) for the Cheakamus System. BC Hydro provided an up-to-date calibration

for use in this research so the calibration and validation procedure for the hydrologic

modelling is not discussed in this text.

Figure 4-18 (a) and (b) show the historical and simulated daily inflow data, respectively

with the lightest blue lines showing the 10th and 90th percentiles, the medium blue lines

showing the 25th and 75th percentiles and the 50th percentile shown in dark blue. The

percentiles of the historical vs. simulated data align well and there are significantly more

extreme inflow events observed in the simulated record, which is the goal of synthetic

185

inflow generation. The synthetic inflow percentiles are slightly smoother because of the

large number of observations for each day (10,000). The maximum inflow event observed

historically is approximately 650m3/s and the maximum inflow event observed in the

simulated record is about 2000m3/s.

Figure 4-18: Validation of synthetic inflow sequences, Daisy Lake inflows

4.5.3 Baseline Operations Data

The baseline operations data were computed by running the simulation model for the

10,000 years of synthetic inflows and recording the observed reservoir elevations given

that nothing within the system had failed. The results from the baseline operations data are

shown in Figure 4-19. It is important to note that the operations planning algorithm in this

simulation has perfect 14-day foresight about inflows and all flow release facilities are

operational, so only one reservoir level excursion above the normal maximum level of El.

186

376.5 is observed over the 10,000 years. This excursion corresponds to a peak daily inflow

of 2,000 m3/s. During this large inflow event, the spill capacity of the gates and power

flow releases are exceeded and the reservoir increases to El. 380 m. This is below the

elevation of the free-overflow spillway, which is at El 380.41 in the base case (the crest of

the concrete dam).

Figure 4-19: Baseline operations data from 10,000 year synthetic inflow record

187

4.6 Simulation Results

The results from the simulation are presented in the following sub-sections. There were a

total of 552,960 scenarios run for the base case and the dam safety improved case. Each

scenario was executed for 2000 iterations, for a total of 1.1 Billion simulated years per run.

The high performance computing environment used to execute the scenarios is provided in

Appendix F. The following section presents a description of the overall results, which

include both the criticality parameters as well as maximum and minimum values of

performance measures for each simulated scenario. Next is a description of outcomes for

selected scenarios, where performance measures and reservoir elevations can be explored

in further detail.

4.6.1 Overall results discussion

Using the output .npz files from the simulation, the criticality parameters and minimum (or

maximum) performance measures were computed for each simulated scenario. The output

files and output analysis code are formulated so that only the complete iterations (those

where all scenario operating states both occurred and affected one another) for a given

scenario are considered in the computation of that scenario’s parameters. Results can be

found in the electronic appendix, in the folder “Simulation_Results”. The file

“OutputResultsAll_base.xlsx” contains the simulation results for the base case, and

“OutputResultsAll_dsi.xlsx” contains the results for the dam safety improved case. For the

base case, there were a total of 9,669,654 failures simulated over a total of 857,102,076

completely implemented iterations (regardless of scenario), making the overall simulation

flow control failure rate for the base case equal to 1.13%. This is not to be misinterpreted

as the failure rate for the system – the failure rate for the system overall would be

significantly reduced if the probabilities of occurrence of the operating states were taken

into consideration. For the dam safety improved case, only 2 out of 809,563,591 complete

iterations resulted in dam failure, making the overall simulation flow control failure rate

for the system equal to 2.47 × 10-7%. Again, this is not to be misinterpreted as the overall

estimated failure rate for the dam system – it simply represents the proportion of

simulations that resulted in dam failure, regardless of the probabilities of each simulated

scenario. The number of failures observed in the dam safety improved case was extremely

188

small – likely as a result of the significantly larger free overflow spillway being capable of

passing the largest inflows in the synthetic record if the reservoir elevation is below a

certain level. Comparing the simulation failure rates for the two cases shows how

significantly the increased overflow spillway capacity affects the rates of failure for the

scenarios. These results are summarized in Table 4-11.

Investigating specific scenarios can give further insights into the vulnerability of the system

to various combinations of events. Within the results spreadsheets

(OutputResultsAll_base.xlsx and OutputResultsAll_dsi.xlsx), column headers are used to

describe the parameters calculated for each scenario. In this analysis, the operating state

impacts did not depend on the causal factors – that is, a single operating state would have

the same range of impacts regardless of what causal factor resulted in it occurring. Because

of this, it is possible to combine scenarios with the same sets of adverse operating states

into a causal factor-independent set of scenarios, which have more observations and

therefore an improved estimate of the criticality parameters. This sorting resulted in a total

of 6,144 combined scenarios that can be easily analyzed in more detail. These are presented

in “Results_CombinedComps_base.xlsx” and “Results_CombinedComps_dsi” for the

base case and the dam safety improved case, respectively. Within each of these results

spreadsheets, there are different tabs containing the complete results (All) as well as filtered

results which contain scenarios that have the same number of adverse causal factors (𝑁 =

1…5).

Sorting the failure rate values in the combined results spreadsheet (All) for the base case

shows that for 229 scenarios, the failure rate was greater than or equal to 10%. Scrolling

through this list shows that all of these scenarios involved a restriction in capacity as a

result of the gate being failed, either closed or in place. Interestingly, another component

that frequently appears in the most severe scenarios is the penstock rupture. This is a direct

result of the outage length of penstock rupture scenarios – which can exceed a full year

following the event. In this case, the reservoir would initially drain through the penstock

until it is below the sill of the intake gate, which would then be closed. After the intake

gate is closed, the power water passages are out of service for a significant amount of time.

This means that while initially some uncontrolled release may be observed, there may be

189

longer-term complications associated with operating the reservoir once the power passages

are isolated and the flow conveyance capacity has been lost. Turbine head cover failures

are also higher up on the list for the same reasons. Other issues that come up within this

more severe scenario list include site access and staffing issues, communications

equipment (PLC/RTU) failures, and sensor issues.

Table 4-11: Overall results summary

Base Case Dam Safety Improved

Total number of years

simulated (complete

iterations)
857,102,076 809,563,591

Total number of

failures simulated

(complete iterations)
9,669,654 4

Simulation Failure

Rate*
1.13% 2.47 × 10-7%

Highest scenario

failure rate
16.227% 0.005%

Average failure inflow

threshold (mean 5-day

inflow preceding

failure)

114 m3/s 835 m3/s

Average failure inflow

threshold (max 5-day

inflow preceding

failure)

160 m3/s 1588 m3/s

For the dam safety improved case, the two scenarios that lead to failure resulted from a loss

in gate capacity (gate failing closed or in place), in combination with sensor issues, access

delays. Additionally, both failure scenarios included a loss of power flow conveyance

through either penstock rupture (and subsequent lengthy outage) or as a result of grid

failure and resulting load rejection.

The overall average inflow thresholds – the minimum average/maximum daily inflow in

the 5 days preceding failure – are 114 m3/s and 160 m3/s, respectively, for the base case.

These increase to 835 m3/s and 1588 m3/s for the dam safety improved case (with only two

190

failures). Obviously, the failures in the dam safety improved case are a result of very high

inflows that exceed the safe discharge capacity of system.

A few more general conclusions can be drawn from the overall results tables. The highest

observed conditional failure rate in the base case was 16.227%, versus only 0.005% in the

dam safety improved case. For both cases, dam overtopping failure and high reservoir

elevations were most frequently occurring as a result of loss of flow conveyance capacity

– specifically, losses in conveyance capacity involving the gate, which can pass

significantly more flow than the power conduit. Sensor errors, communications failures

and access/staffing issues were also significant contributors to overtopping failures and

reservoir level excursions above the key levels.

Looking at the results based on the number of affected components may also provide useful

insights into the most vulnerable aspects of the system. Filtering the list to only a single

component being affected gives the results in Table 4-12 and Table 4-13, for the base case

and the dam safety improved case, respectively. These tables have been abbreviated

slightly (by reducing number of columns) to ensure the columns fit on the page. The

columns in the table show the conditional failure frequency, failure inflow thresholds,

conditional frequency of exceeding key reservoir elevations, the minimum discharge

capacity and the maximum uncontrolled release. The final column shows the name of the

affected component.

For the base case (Table 4-12), the obvious result is that the components whose failure

results in the most significant capacity loss (the gate components causing the gate to fail

closed or in place) lead to the greatest failure rates and highest reservoir levels. Next are

the sensor errors, which can result in lack of conservatism in reservoir operations. None of

the other components on their own lead to failure in the base case, but gate blockage, grid

outages and sensor failures also caused reservoir elevations to exceed key levels. For the

dam safety improved case, none of the components on their own lead to failure of the dam

due to overtopping. Issues with communication or sensors lead to the highest reservoir

levels. Interestingly, penstock ruptures and head cover failures also resulted in some

scenarios with reservoir elevations exceeding key levels. This is an unexpected result that

191

may be a result of the operations planning algorithm not taking into account the lost power

flow release capacity, and thus keeping the spillway gate closed during those scenarios. In

future runs of this model, the unit availability function should be modified to reflect the

lost ability to pass water through the power conduit following closure of the power intake

gate.

Looking more closely at the reservoir level exceedances in the base case, it is clear that

reservoir excursions above key levels were directly related to either a loss of capacity or

loss of remote visibility (reservoir level sensor failure or error). For the base case, failure

of the gate in the closed position had a 15% chance of resulting in overtopping of the

earthfill dam (and a 1.6% chance of overtopping it enough to cause dam breach). The

frequency of overtopping the earthfill dam was reduced to about 2.8% for the gate failing

in place as a result of some residual discharge capacity resulting from the gate being stuck

in the position it was at prior to failure. For the dam safety improved case, overtopping of

the earthfill dam was avoided for all single affected component simulations, except for the

penstock rupture which results in a lengthy outage that, as discussed above, may not (but

should have been) be recognized by the operations planning algorithm. In general for the

dam safety improved case, loss of visibility resulting from either sensor issues or

communication system failure (PLCRTU) resulted in the most significant exceedances of

key reservoir levels. Surprisingly, loss of conveyance through the gate alone was not

enough to cause reservoir level excursions even resulting in spill, which is somewhat

surprising. This is likely a direct result of the conservative operating strategy in the dam

safety improved simulations, which target reduced reservoir elevations in the case of loss

of gate functionality.

Looking at the minimum discharge capacity gives some context to why the reservoir

elevations may have risen. For both cases, the most significant losses in flow conveyance

capacity (the maximum active discharge capacity being 1655 m3/s) resulted from gate

issues – the gate failing closed, in place, or being blocked. Not surprisingly, these were

associated with higher likelihoods of exceeding key reservoir levels in the base case (but

not in the dam safety improved simulations as a result of more conservative operations).

192

Table 4-12: Results for a single affected component, base case

Conditional

Failure

Frequency

(%)

5-day

Inflow

Threshold

(average

daily)

5-day

Inflow

Threshold

(maximum

daily)

Conditional

Frequency of

Exceeding El.

377.95 m

(WL Max)

Conditional

Frequency of

Exceeding El.

378.41 m (free

overflow spill)

Conditional

Frequency of

Exceeding El.

380.4 m

(Concrete dam)

Conditional

Frequency of

Exceeding El.

381.42 m

(Earthfill dam)

Minimum

Discharge

Capacity

Mean

time to

failure

(days)

Components

1.63 147.54 229.20 41.41 40.31 36.41 15.53 65.00 34.36 Gate fails closed

0.53 195.65 242.17 18.20 17.37 14.08 2.84 69.91 45.00 Gate fails in place

0.05 753.10 1995.10 10.36 8.50 3.77 0.25 1655.00 7.00 Sensor Error

0.00 NA NA 48.82 41.81 18.09 0.25 383.60 NA Gate opening

0.00 NA NA 26.82 22.02 4.37 0.00 1655.00 NA Grid

0.00 NA NA 0.02 0.00 0.00 0.00 1655.00 NA Sensor Fail

0.00 NA NA 0.00 0.00 0.00 0.00 1655.00 NA PLCRTU

0.00 NA NA 0.00 0.00 0.00 0.00 1590.00 NA Penstock

0.00 NA NA 0.00 0.00 0.00 0.00 1590.00 NA Head Cover

0.00 NA NA 0.00 0.00 0.00 0.00 1590.00 NA Generator

0.00 NA NA 0.00 0.00 0.00 0.00 1655.00 NA Gate collapse

193

Table 4-13: Results for a single affected component, dam safety improved case

Conditional

Failure

Frequency

(%)

5-day

Inflow

Threshold

(average

daily)

5-day

Inflow

Threshold

(maximu

m daily)

Conditional

Frequency of

Exceeding El.

377.95 m (WL

Max)

Conditional

Frequency of

Exceeding El.

378.41 m (free

overflow spill)

Conditional

Frequency of

Exceeding El.

380.4 m

(Concrete dam)

Conditional

Frequency of

Exceeding El.

381.42 m

(Earthfill dam)

Minimum

Discharge

Capacity

Mean

time to

failure

(days)

Components

0.00 NA NA 51.55 43.56 0.00 0.00 1655.00 NA PLCRTU

0.00 NA NA 40.05 39.07 0.00 0.00 1655.00 NA Sensor Fail

0.00 NA NA 28.34 24.59 0.00 0.00 1655.00 NA Sensor Error

0.00 NA NA 18.17 17.11 0.03 0.00 1590.00 NA Penstock

0.00 NA NA 12.55 9.91 0.00 0.00 1655.00 NA Grid

0.00 NA NA 0.18 0.14 0.00 0.00 1590.00 NA Head Cover

0.00 NA NA 0.00 0.00 0.00 0.00 1590.00 NA Generator

0.00 NA NA 0.00 0.00 0.00 0.00 383.60 NA Gate opening

0.00 NA NA 0.00 0.00 0.00 0.00 69.91 NA
Gate fails in

place

0.00 NA NA 0.00 0.00 0.00 0.00 1655.00 NA Gate collapse

0.00 NA NA 0.00 0.00 0.00 0.00 65.00 NA
Gate fails

closed

194

Sensor errors did not result in any losses in discharge capacity but lead to increased

reservoir levels in both cases through improper reservoir level operation.

Another indicator of the criticality of a scenario is the mean time to failure. For the base

case, this ranged from 34-45 days in the scenarios with a loss of conveyance through the

gate. This reduces to only 7 days in the case of reservoir level sensor errors, which indicates

the potential severity of operating the reservoir assuming the reservoir level is lower than

it actually is.

For scenarios with two affected components, the results for the base case and dam safety

improved case are shown in tab N=2 of “Results_CombinedComps_base.xlsx” and

“Results_CombinedComps_dsi.xlsx”, in the Simulation_Results folder of the electronic

appendix. There are 77 total combinations of components in these two-component

scenarios (these combinations represent the combined scenarios which take into account

results from the same scenario with different causal factors). For the base case, the

combinations with the highest failure frequencies (2-15%) involved failure of both gate

and power discharge components. Despite failures of the turbine head cover and penstock

resulting initially in uncontrolled releases, the long-term impacts of these component

failures is lengthy outages of the discharge facilities (once the intake gate is closed) – this

means lower overall flow conveyance capacity in the long term. These higher failure

frequency cases resulted in a 19-35% chance of overtopping the earthfill dam – even if the

overtopping did not lead to a failure, significant damage would be observed in these cases.

For the dam safety improved case, the combined loss of both power and gate releases lead

to some instances of overtopping of the concrete dam, which could potentially cause

significant damage. Free overflow spill was observed more frequently when both gate and

power flow release facilities were out of service, and sensor issues in combination with

gate failures also had a high conditional frequency of free overflow spill.

In the N=3 tabs of the same spreadsheets, the three-component combined scenarios are

presented. For the base case, similar results are seen where the scenarios resulting in a

complete loss of controlled discharge capacity (both gated and power flow releases) had

the highest failure rates. The most extreme case involved a penstock rupture and

195

subsequent outage of the power flow release facilities, the gate failing in place and in the

closed position – which had a 16% failure rate and a 43% chance of overtopping the

earthfill dam. In this case, there are two potentially overlapping conditions of the gate –

failed in place and failed closed – in the simulation model, the gate failing closed takes

precedence over failures in place. For the dam safety improved case, the scenarios with the

most significant overflow frequencies tended to include gate outages or capacity

restrictions, loss of flow through the power conduit, and either sensor errors and/or

communications equipment failures.

Another important observation is that for a relatively small proportion of the scenarios

simulated, there may not have been enough complete iterations simulated to develop a

meaningful characterization of the scenario. This is because in the post-processing, an

analysis is done that determines whether all of the events occurred and affected one

another. For some scenarios, events may be initiated after the system has already recovered

from preceding events. In this case, the iteration is not representative of the cumulative

effects of the combination of events and is filtered out of the scenario results. This can be

observed by sorting the “OutputResultsAll_base.xlsx” and “OutputResultsAll_dsi.xlsx” by

the column “Number of simulation-years”. In the base case, about 30,000 scenarios had

less than 500 complete iterations out of 2000 simulated, and 1170 of these had less than

100 complete iterations. About 32,000 scenarios in the dam safety improved case had less

than 500 complete iterations out of 2000 simulated years, and 519 of these had less than

100 complete iterations. This indicates a significant limitation of the modelling framework

applied in the case study – the number of iterations completed may not provide sufficient

data with which to estimate credible conditional failure or reservoir level exceedance

frequencies. This observation indicates that additional computing time may be required to

properly analyze scenarios without sufficient data points – perhaps by setting some

minimum complete iteration threshold within the simulation. It is worth noting that these

scenarios involved a higher number of events occurring. This means that the time frame

within which the different events can occur is relatively large (since it is equal to the sum

of the Monte Carlo generated outage lengths and can be up to 365 days). As such, there

may be several instances where the events do not affect one another (the reservoir level

196

recovers prior to the next subsequent event). This observation will be an important

consideration in future applications of this methodology.

4.6.2 Assessment of individual scenario outcomes

Another output from the simulation model is arrays containing the dynamic performance

indicators for complete iterations of each scenario, as well as the reservoir levels. These

can be plotted to visually represent the system behaviour in response to various input

scenarios and Monte Carlo parameters. Five scenarios have been selected and plotted to

illustrate how results individually can be compared between the two cases. The summary

tables containing the key data for each of the selected scenarios are shown in Table 4-14

and Table 4-15 for the base case and the dam safety improved case, respectively.

The first scenario involves the gate failing in the closed position as a result of ice, the grid

being failed due to wind, and the site access being delayed due to traffic issues (Seed

number 301490). Figure 4-20 contains the plotted reservoir elevations (in the first row),

flow conveyance capacities (second row) and total uncontrolled releases (third row), for

the base case (first column) and the dam safety improved case (second column). For the

reservoir levels, the mean value is shown in black and the 10th and 90th percentiles are

shown in darker grey. Each light grey line represents the dynamic reservoir level response

for a single iteration of the scenario. Only completely implemented iterations are plotted –

that is, scenarios in which the dam failed, or the events did not affect one another are not

included. The length of each light grey line depends on the length of time within which the

reservoir differed from the “normal” reservoir elevations for the same time period and

inflow. For this scenario, the maximum length of time for which the reservoir deviated

from the normal elevation was 250 days.

Looking at the reservoir elevation plots, it is immediately clear that the reservoir elevations

in the base case were significantly higher than in the dam safety improved case. In the base

case, no significant efforts are made to operate the system more conservatively given a loss

in capacity. In contrast, for the dam safety improved case, the target reservoir elevation is

197

Figure 4-20: Dynamic results for seed 301490

198

reduced when the gate becomes unavailable. The reservoir is then lowered with whatever

capacity is available, creating more storage should inflows exceed the remaining available

capacity. As such, the dam safety improved case 90th percentile reservoir levels rise to a

maximum of El. 379 m, which is significantly less than the El. 381 m observed in the base

case. Failures within the base case are observed when the reservoir level sharply drops to

El. 353.75 m. There are a total of 44 failures observed in the base case, with a failure rate

of around 4%. The mean time to failure in this scenario was about 24 days. There were no

failures observed in the dam safety improved case. It is also worth noting that the reservoir

elevations dropped below the normal minimum (NMin) in the dam safety improved case.

It is not immediately clear why this is the case since the target reservoir elevation is equal

to NMin. The problem results from the operations planning algorithm not accounting for

any free overflow spill when the projected reservoir elevations exceed the sill of the

overflow spillway – in these cases, the reservoir level is reduced more than is necessary to

achieve the NMin target. Future runs of the model should address this issue.

The total active flow conveyance capacities are plotted in the second row of Figure 4-20.

The black line represents the mean values. The results are similar for both the base case

and the dam safety improved case. One issue with these values is that the grid failure does

not register as a loss of capacity though the power conveyance system, despite resulting in

a load rejection and closure of the wicket gates. This component interaction is programmed

into the simulation model, but not accounted for in the calculation of available capacity.

Again, future runs of the model can be modified to address this problem. Because of this,

the minimum flow conveyance capacity recorded for both scenarios was 65 m3/s, which is

the maximum flow that can be passed through the power conduit.

The third row shows the uncontrolled releases for the system, which are clearly

significantly higher in the base case as the concrete and earthfill dams are overtopped. The

maximum uncontrolled release for the base case was around 2000 m3/s, and about 620 m3/s

in the dam safety improved case. The average uncontrolled release was similar for both

the base case and the dam safety improved case.

199

It is also possible from the dynamic reservoir elevation plots to determine the conditional

reservoir level exceedance frequencies for the scenario – that is, the percentage of time

where the observed reservoir elevations for the scenario exceeded various levels. The daily

reservoir level values are recorded from each complete iteration (where all events occurred

and affected one another) and the percent of observations exceeding various reservoir

levels is calculated. Figure 4-21 contains the conditional reservoir level exceedance

frequencies for seed 301490, with the base case shown in red and the dam safety improved

case shown in blue. This graphic is an excellent indicator of the improvement made by the

dam safety improved case over the base case. The difference between the two lines is

indicative of the level of improvement gained by the system upgrades and operating

strategies employed in the dam safety improved case.

Figure 4-21: Conditional reservoir level exceedance frequencies for seed 301490

The second scenario involves debris blockage of the gate as well as a reservoir level sensor

error resulting from temperature fluctuations causing instrument decalibration (seed

386196). The results are shown in Figure 4-22, where the first row shows the reservoir

levels with the base case in the first column and the dam safety improved case in the second

column. For this scenario, results show similar mean and 90th percentile reservoir

elevations, with higher maximum levels observed in the base case. The higher maximum

200

levels are a direct result of the increase in free overflow spill capacity, which helps to offset

the loss in capacity caused by debris buildup at the gates. There are some excursions below

the normal minimum (NMin) reservoir level in both cases as a result of the sensor errors.

The dam failed by overtopping in two scenarios for the base case and the average time to

failure was 146 days.

The second row shows the active flow conveyance capacities for the base case and dam

safety improved case in the first and second columns, respectively. The results are similar

for both cases, with average values that are almost equal. The debris blockage is

predetermined using the Monte Carlo randomization of scenario input parameters, however

the length of time for which the debris blockage remains depends on the system inflows.

When inflows fall below 65 m3/s, the simulation model assumes that debris can be removed

from the gate and capacity is restored.

In the third row, uncontrolled releases are presented for the base case and the dam safety

improved case in the first and second column. Again, uncontrolled releases involve any

free overflow spill, as well as dam breach flows and flows from penstock rupture or gate

collapse. In this case, the majority of observed uncontrolled release is due to overflow spill,

which may be through the overflow spillway but potentially can include dangerous

concrete and earthfill dam overtopping. In the base case, there are two spikes when the

uncontrolled releases exceed 1250 m3/s, at approximately day 120 and day 180. These

correspond to the iterations where dam breach occurred. Omitting these two scenarios, the

overall uncontrolled release observed in the dam safety improved case was slightly higher,

likely as a result of the increased free overflow spillway capacity at lower elevations.

Figure 4-23 contains the conditional reservoir level exceedance plots for seed 386196. The

plots for both the base case and the dam safety improved case are very similar, with the

only notable difference at the tail end of the curve where the maximum observed elevations

in the base case exceeded those observed in the dam safety improved case. This small

difference can be attributed primarily to the increased free overflow spillway capacity in

the dam safety improved case – the decrease in the exceedance line occurs just above the

level at which free overflow spill is initiated.

201

Figure 4-22: Dynamic results for seed 386196

202

Figure 4-23: Conditional reservoir level exceedance frequencies for seed 386196

The next scenario is one of the more extreme combinations of events that lead to the highest

combined scenario failure rate in the base case. This scenario involves failure of the gate

in place, failure of the gate closed and a penstock rupture (seed 403429). For the reservoir

elevations, a clear improvement is seen in the dam safety improved case in comparison

with the base case. The reservoir level 90th percentile is around El. 379 m for the dam safety

improved case, and El. 381.13 m in the base case. Because of the higher maximum

reservoir elevations in the base case, a large number of failures are observed (296) and the

failure frequency is quite high (17.3%). The average time to failure in the base case was

114 days. There are no failures in the dam safety improved case, partly due to the increased

free overflow spillway capacity, and partly due to the operator reducing the reservoir level

and operating more conservatively (if reservoir drawdown capacity is available).

The second row shows the available active flow conveyance capacity of the system. For

both cases, the available capacity drops to zero when both power and gated releases are

unavailable as a result of the penstock rupture. The 65 m3/s capacity of the power conduit

is seen at the top part of the figure where the gate capacity recovers but the penstock is still

unavailable. The results are similar between the dam safety improved and the base case.

203

The third row shows the total uncontrolled releases for the base case and the dam safety

improved case in the first and second column, respectively. The total uncontrolled releases

include penstock rupture flows, free overflow, dam overtopping flows and dam breach

flows, so it can be somewhat difficult to decipher what the contributing factors are in a

scenario which could have all of these. Obviously, the dam breach flows significantly

increase the maximum values observed in the base case. The uncontrolled releases in the

dam safety improved case have a maximum of about 390 m3/s with the 90th percentile being

around 80 m3/s. For the base case, the 90th percentile values are around the same. The initial

spike in the mean uncontrolled release values can be attributed to penstock ruptures, which

may happen on day 1 of the simulation for about 1/3 of the simulated scenarios (based on

the random selection of initiating event). In the base case, the initial spike is near 100 m3/s,

and this is reduced to about 15 m3/s in the dam safety improved case since the intake gate

can be closed under rupture flows.

Figure 4-25 contains the conditional reservoir level exceedance frequencies for seed

403429. There is a relatively close agreement between the base case and the dam safety

improved case, with the latter actually exceeding the base case values for elevations less

than El. 378.5 m. This is somewhat surprising given the differences observed in the

dynamic reservoir elevation plots for the same scenario. One potential contributing factor

is that less water is released from uncontrolled penstock rupture flows in the dam safety

improved case (since the intake gate closes under rupture flows). This means the reservoir

level may be higher when gate failures initiate, or that the reservoir level does not decrease

by a substantial amount if the penstock failure is initiated after the gate failure. The result

is moderately higher reservoir elevations through parts of the curve up until free overflow

spill is initiated (El. 378.41 m). Above El 378.5, the dam safety improved case drops off

below the base case curve, meaning the reservoir level did not reach the same maximum

levels. This is a result of the increased free overflow spillway capacity, which helps

maintain reservoir levels below El. 380 m.

204

Figure 4-24: Dynamic results for seed 403429

205

Figure 4-25: Conditional reservoir level exceedance frequencies for seed 403429

The next scenario involves a single component failure – a penstock rupture due to an

earthquake (seed 403440). The reservoir levels are shown in the first row, with the base

case in the first column and the dam safety improved case in the second column. The key

difference between the two plots is that the reservoir level drops significantly lower in the

base case. This is a direct result of the ability of the intake gate to close under rupture flows

in the dam safety improved case. This results in significantly smaller uncontrolled release

flows (see the figures in the third row). It is important to note that the flows recorded

represent the average daily flows, and that peak outflows may be significantly higher for

the dam safety improved case where the intake gate closes within an hour of rupture. The

loss in capacity observed is related to the inability to pass flows through the generating unit

while the penstock is being repaired.

Figure 4-27 contains the conditional reservoir level exceedance frequencies for the base

case (red) and the dam safety improved case (blue), respectively. The dam safety improved

case has a higher conditional reservoir level exceedance frequency in comparison with the

206

base case, as a result of a smaller volume of water being lost through the penstock. This

means the reservoir remains at a higher elevation throughout the course of the scenario.

Figure 4-26: Dynamic results for seed 403440

207

Figure 4-27: Conditional reservoir level exceedance frequency, seed 403440

The final scenario selected for discussion is one of only two scenarios that resulted in an

overtopping failure in the dam safety improved case. This scenario involved a number of

events: the gate failing closed, a sensor error, delays in accessing the site and an outage of

the grid (seed 281617). Figure 4-28 contains the dynamic results for this scenario. The first

row of the figure shows the dynamic reservoir levels for the scenario. In the base case (first

column) many of the scenarios exceeded the water licensed maximum level and 21 dam

breaches occurred. The average time to failure in the base case was about 47 days. In the

dam safety improved case, there were excursions above the water licensed normal level,

however these tended to be less extreme than in the base case. This is in part due to a larger

free overflow spillway, and also because of the operating strategy to reduce the reservoir

elevation during outages affecting the gate. One failure is observed, occurring within three

days of the start of the scenario. In both cases, the capacity loss is similar, dropping down

to the turbine only being available during the gate outage. Uncontrolled releases are

generally similar between the two cases, with the more extreme spikes in the base case

corresponding with the dam failures. Figure 4-29 contains the reservoir level exceedance

208

Figure 4-28: Dynamic results for seed 281617

209

plots for seed 281617. There is a significant difference between the two curves, with the

dam safety improved case generally spending less time at higher reservoir elevations than

the base case.

Figure 4-29: Conditional reservoir level exceedance frequency, seed 281617

Overall, the results from these individual example scenarios provide useful information

that can help to better understand the dynamic system response to individual scenarios.

Comparing the results between the two cases gives a good indication about the

improvements made by introducing refined operational strategies and improving

infrastructure. The conditional reservoir level exceedance frequencies provide an

additional indication of whether there are significant improvements between scenarios.

The summary of the results from each of the highlighted scenarios can be found in Table

4-14 and Table 4-15, respectively. These tables, along with the dynamic results and

reservoir time exceedance plots provide a good comparison between the two runs of the

model. Ultimately, there are a large number of scenarios to be discussed and only a very

small subset were analyzed in this thesis. However, the analysis of these scenarios provides

some indication of how the modifications to the system improve the performance in these

210

extreme conditions. The dynamic analyses, as well as the tabular outputs from the

simulation (discussed in the previous section) are useful outputs that can help identify

vulnerable components of the system. Comparing the results between the different model

runs can help build a business case for upgrades to the system and may be helpful to guide

emergency planning activities.

211

Table 4-14: Summary of results from individual scenario outcomes, base case

Seed

Number

Condition

al Failure

Frequency

(%)

5-day

Inflow

Threshold

(avg

daily)

5-day

Inflow

Threshold

(max

daily)

Minimum

Discharge

Capacity

(m3/s)

Maximum

Uncontrolled

Release

(m3/s)

Maximum

Reservoir

Level (m)

Number of

Simulation-

years

Average time

to failure

(days)

Components

301490 4.37 150 164 65 2026 383.65 1007 23.91
Access delay, grid failure,

gate fails closed

386196 0.10 350 582 383 1928 382.74 1992 145.50
Sensor error, gate opening

blocked

403429 17.32 109 164 0 1766 383.61 1709 114.59
Penstock rupture, gate fails

in place, gate fails closed

403440 0.00 NA NA 1590 316 377.94 2000 NA Penstock rupture

281617 3.11 154 168 65 1671.01 382.33 676 46.76
Access delay, sensor error,

grid failure, gate fails closed

212

Table 4-15: Summary of results from individual scenario outcomes, dam safety improved case

Seed

Number

Conditional

Failure

Frequency

(%)

5-day

Inflow

Threshold

(avg

daily)

5-day

Inflow

Threshold

(max

daily)

Minimum

Discharge

Capacity

(m3/s)

Maximum

Uncontrolled

Release

(m3/s)

Maximum

Reservoir

Level (m)

Number

of

Simulati

on-

years

Average

time to

failure

(days)

Components

301490 0 NA NA 65 620 379.92 NA 917
Access delay, grid failure,

gate fails closed

386196 0 NA NA 383 370 379.65 NA 1830
Sensor error, gate opening

blocked

403429 0 NA NA 0 400 379.52 NA 1691
Penstock rupture, gate fails in

place, gate fails closed

403440 0 NA NA 1590 14 377.94 NA 2000 Penstock rupture

281617 0.17 835.35 1588.17 65 1882.25 385.29 3 605
Access delay, sensor error,

grid failure, gate fails closed

213

4.7 Summary

The methodology developed in this research was applied to the Cheakamus System, located

near Squamish, BC. First, a detailed representation of the Cheakamus System was created

within the components operating state database. Operating states, impacts and causal

factors were defined in the operating states database. The combinatorial procedure

developed in this research was applied to the outputs of the dataset. For the detailed

representation of Cheakamus, a total of 1.83 x 1027 operating state combinations

(scenarios) were defined. This is a good indication of the dimensionality of the problem –

the number of potential scenarios increases exponentially with the level of detail.

A simplified proof-of-concept representation of Cheakamus was developed next, with a

single gate and a single turbine. This representation of the system returned 552,960

potential scenarios. A system dynamics simulation model representative of the simplified

system was developed and tested by comparing the results with historical operations data.

The simulation model was run 2000 times for each of the 552,960 scenarios, and for two

separate cases (a total of 2.2 Billion years of inflows were run through the simulation

model). The base case is representative of the simplified Cheakamus System with a smaller

free overflow spillway. The dam safety improved case represents the same system with a

free overflow spillway size that mimics the real system. The dam safety improved case also

included a number of operational improvements, including power flow intake gates that

could be closed under extreme flows, as well as improved communications redundancy

and more conservative operating rules that aim to prevent reservoir level excursions above

target levels. Each of the 2000 iterations for a scenario contained unique Monte Carlo-

varied parameters for timing, impact magnitude and inflows. Synthetic inflows outside of

the historically observed range were simulated using a stochastic weather generator and a

hydrological model. The Monte Carlo variation of inflows was done by randomly choosing

a day and year from the historical record and sampling the subsequent inflows. A

triangularly distributed variable was generated using the minimum, maximum and average

specified impact magnitude from the database for each adverse operating state simulated.

Timing of adverse operating states was done by shuffling the operating states and assigning

random times from within the first six months of the year long simulation.

214

In terms of implementation, high-performance computing (HPC) resources are required for

implementation of this ambitious simulation exercise. In this research, there were 1.11

Billion years of daily simulations performed, with 2000 Monte-Carlo iterations for each of

the 552,960 Million scenarios. This was performed twice – once for a base case and once

for a dam safety improved case. The total of 2.22 Billion simulation-years was made

possible by development of a very efficient simulation model and use of a serial farming

approach that runs many simulations in parallel on HPC clusters. The simulations were

completed in a period of about three weeks, though results would vary depending on the

resources available and the HPC clusters utilized. The speed with which this large

simulation task was completed is considered to be a substantive achievement.

The results from the simulation were analyzed by sorting and filtering the lists of results

for each scenario. Scenarios with 1, 2 and 3 contributing components were filtered out and

discussed to gain insights about the most critical components that could contribute to

failure. The dam failures in the base case occurred in 1.3% of the total simulated years. For

the dam safety improved case, this was reduced to 2.47 × 10-7% of simulated years. These

failure rates are not to be confused with estimates of overtopping failure frequency for the

system as a whole – in order to compute that, operating state frequencies must be pre-

defined. The proportion of failures simulated does give some indication as to the level of

improvement made when the dam safety improved modifications are made to the system.

For the base case, loss of conveyance through both power and gate release facilities was

the most significant contributor to failure. For the dam safety improved case, only two

failures were observed – both of these corresponded with a loss of gate and power flow

capacity, sensor issues and the most extreme flood in the synthetic record. This is indicative

of a much more robust overflow spillway system in the dam safety improved version of

the model.

An assessment of some of the individual scenario results was also provided. Five scenarios

were selected and the dynamic reservoir elevations and performance measures were

plotted, along with the reservoir exceedance frequencies. These plots provided useful

indications of the difference between the base case and the dam safety improved case for a

given scenario, and could be used to better understand the system response to the scenarios.

215

Because the case study and analyses in this work were representative of a very simplified

version of the Cheakamus System, they should not be interpreted as conclusions for the

existing Cheakamus Project. Comparing the base case results (with a smaller free overflow

spillway) to the dam safety results (with a free overflow spillway equal in size to the

Cheakamus Dam), showed that the free overflow spillway was, in all but two cases, able

to prevent reservoir elevations from reaching the level assumed to fail the dam. The

comparison of results between the two cases simulated shows how the methodology may

be useful in quantifying the improvements made by various system upgrades and

configurations. Results from the case study illustrated that the approach presented here

could be useful to assist dam safety emergency response decision making, by indicating

how critical a scenario is and roughly how long there is to regain control over the reservoir.

In addition, the results may be useful in operational decision making with respect to outages

and operating rules, and could help build a business case for capital improvements to the

system. The analysis was also useful in predicting potential combinations of event that

could lead to failure, and identifying the events (or component states) that were most likely

to result in significant safety impacts.

216

5 Discussion and Conclusions

Dam systems are arrangements of physical and nonphysical components which act to store

and convey water for beneficial purposes such as power production, irrigation, water

supply and flood control. Dams can be thought of as open systems, where inflows, outflows

and disturbances cross the system boundary. Within the boundary of the system, feedbacks

act to monitor reservoir levels and inflows, and adjust controls to maintain reservoir levels

within target values, and meet desired outflow requirements, if possible. There are a wide

range of potential constraints which may impact the ability of the dam to achieve its desired

purpose for safe containment and conveyance of flows. The major research contributions

in this work are (a) the systematic definition of combinations of events which can influence

the ability to safely control flow in a dam system, and (b) the dynamic characterization of

the system performance in response to these events using a Deterministic Monte Carlo

simulation framework with a system dynamics simulation model.

The following paragraphs discuss the outcomes of this work as they pertain to the

objectives outlined in Chapter 1.

• The first objective was to investigate the use of systems analysis and risk

assessment concepts from within and outside of the dams industry in terms of their

ability to determine potential operating scenarios for dam systems and the impacts

scenarios have on system outcomes. This was achieved by looking at the relevant

literature and evaluating the various techniques with respect to their ability to

achieve the research requirements.

• The second objective was to develop an approach that helps define a more complete

range of potential operating scenarios (operating constraints) than is possible using

existing techniques alone. This was achieved through the use of a components

operating states database that details each component, their operating states,

operating state impacts and causal factors. Combinatorics was used to

automatically convert the database entries into an exhaustive list of potential

operating scenarios. The existing methodologies described in the literature review

rely on expert judgement to determine possible combinations of events – of which

217

there are so many that it would be unreasonable for a team of experts to conceive

of them. Thus, the number of scenarios that can be defined using this methodology

far exceeds the scope of existing methods.

• The third objective was to develop an improved dam safety analysis methodology

that facilitates systematic investigation of all potential operating scenarios and

allows for the outcomes of individual scenarios to be characterized. The

Deterministic Monte Carlo simulation framework proposed in this research is able

to dynamically evaluate each possible scenario through a number of iterations.

Scenarios are used as an input to the model, to ensure each scenario is

systematically characterized and an equal amount of simulation effort is spent on

each. This allows for a more complete assessment of potentially hazardous

outcomes than has been achieved using existing techniques.

• The fourth objective was to develop a simulation approach that can handle

complexity in system structure, feedbacks, interactivity and nonlinear behaviour

and uses object-oriented modelling to improve model accessibility. The system

dynamics simulation model developed in this work is well suited to this objective

and can be built to as much detail as is required to adequately capture the failure

modes of interest to the modeller.

• The fifth objective was to investigate dynamic indicators of system performance

with respect to safety, as well as scenario criticality parameters that can be used to

rank the importance of various scenarios from the simulation outcomes. A number

of criticality parameters are proposed in this work, and these as well as the dynamic

outcomes of the system performance were shown in the simulation results.

The following section contains a more detailed evaluation of the methodology which

pertains to the requirements stated in Chapter 3. Next is a discussion of potential areas for

future work.

218

5.1 Methodology evaluation

Like all approaches, the proposed methodology described in this research does have some

limitations. A discussion of its strengths and weaknesses of the methodology is provided

here. The requirements for a new approach to dam safety analysis were outlined in Chapter

3 and are repeated here with a more detailed discussion regarding the progress made

towards each.

The first requirement is for an approach with reduced subjectivity. The approach presented

in this research achieves this requirement. The automated generation of scenarios helps

eliminate reliance on heuristic thinking and expert judgement with respect to combinations

of possible system states. Use of STPA in the development of the operating states database

for actively controlled system components such as gates and turbines also helps to reduce

subjectivity. Despite the improvements in limiting subjectivity, there is still (and will

always be) a requirement for expert judgement in the component operating state database

population and the level of detail in which to model the system.

The second requirement of the approach developed is to address non-failure related

constraints on system operation. All failure-based approaches are inherently limited in

terms of the analysis of non-failures, and this is documented well by Leveson (2011) and

Thomas (2012). Approaches which are focused on failures alone may miss a sub-set of

potentially unsafe scenarios triggered by conditions that did not result from a failure. The

proposed methodology is capable of assessing many of the scenarios not triggered by a

failure. The database developed in this research includes both failure and non-failure

operating states. The database and simulation model are well suited to deal with errors and

delays which do not necessarily involve failure of components. There are, however, some

non-failure related scenarios that were revealed through STPA analysis that were not

captured within the simulation model presented in this work. Human factors and software

requirements are issues that simulation is well-suited to address, so it may be possible in

the future to improve the capabilities of the simulation model in this respect. Design flaws

may be simulated, but need to be well understood and programmed into the simulation

model. The simulations run in the case study do not specifically address these issues, and

219

the STPA portion of the case study (Section 4.1) highlights some of the scenarios that were

missed within this application, but could potentially be represented in the future.

The next requirements on the list are to determine the potential constraints on system

operation and to systematically determine potential combinations of these. The approach

presented in this work achieves this requirement through the use of the operating states

database population, and automatically generates combinations of operating states using

the combinatorial procedure. Population of the database will benefit from the strengths of

the systematic FMEA and STPA approaches.

Another requirement is to determine the likelihood of operational constraints (operating

states) without significant simplifying assumptions. This remains a significant issue in

probabilistic risk assessment that is difficult to address in the absence of supporting failure

rate data. The methodology presented in this research does not attempt to address this

problem. However, this research does determine the conditional probability of

failure/reservoir level exceedance, given a scenario. Using this information, it may be

possible to perform sensitivity analyses to assumptions regarding component probability

of failure, without significant simulation effort. This represents one advantage over

completely stochastic simulation models, which require re-simulation to analyze the

sensitivity to assumed probabilities. The extension of this work to include full probabilistic

assessment was not considered, since failure rate data for the components modelled was

not available to provide a meaningful assessment.

The next few requirements are (a) quantifying the dynamic system response to operating

scenarios, (b) including feedbacks and nonlinear behaviour, (c) capability to handle

complexity. These are all dealt with specifically using the system dynamics simulation

approach. System dynamics simulation is well suited to modelling the complex web of

component interactions and feedbacks using object-oriented programming which is

relatively transparent (interactions shown using stock and flow diagrams) and also easily

modifiable. Inspection of the system structure is a useful way of gaining confidence in the

model. The simulation model characterizes how the values of variables change with time

– a direct output of the model is the reservoir level response to a particular scenario, which

220

is of significant importance for dam safety analysis. The outputs of the simulation may

indicate emergent behaviour that results from component interactions. One major

consideration for the simulation model presented is that the choice of simulation timestep

must be selected such that all failure modes being considered are properly modelled.

Penstock pressure transients and cavitation in turbines or spillway chutes happens over

seconds, milliseconds or even shorter time intervals. These issues were not explored within

this thesis, but could potentially be included in future applications of the work using nested

processes within a simulation model that operates at a larger timestep (this would reduce

the computational effort associated with such a fine time-resolution). While the approach

presented is, in theory, capable of modelling the system with any desired level of

complexity and at any time-resolution, there may be significant computational challenges

when applying the methodology to very complex systems. As the complexity of the system

being modelled increases, so does computational effort and number of scenarios to be

analyzed. Future research should focus on improving the computational efficiency of the

simulation model framework. Another time-related limitation is that the randomly initiated

failures of components may not coincide with likely instances of failure in the real world.

For example, in a real dam system, a spillway gate may be dormant or not “on demand”

for a substantial period during the year. Failing the gate randomly may under-estimate the

potential impacts this failure could have by initiating it when inflows are normal or low.

That said, with regular gate testing being implemented in many dam safety programs across

the world, it may not be unrealistic to detect a failed state during a low-flow period.

The next requirement is to assess the uncertainty in scenario outcomes. This is a

particularly challenging issue in all modelling exercises. The uncertainty of scenario

outcomes can be assessed by looking at the range of results from the Monte Carlo iterations

of each scenario. By varying the simulation parameters and event timing, the sensitivity of

the results to various inflows, event timing and event impact magnitudes is performed.

There are a number of uncertainties in other model assumptions that have not been

analyzed in this work and remain an important area for future work.

The ability to deal with common cause failures is another requirement of the methodology

presented in this work. This is addressed within the operating states database and

221

simulation. Operating states which have the same causal factor are programmed to occur

at the same point in time in the simulation. Computing the scenario probability (if the

failure rate data are available) may be slightly more challenging, since care must be taken

to ensure the probabilities of the common causes are not double counted.

The last two requirements of this research are the ability to calculate the conditional

probability of failure for a given scenario, and the ability to calculate the probability of

failure for the system as a whole. A direct outcome of the Monte Carlo simulation for each

scenario is the conditional frequency of failure for that scenario, given the inflows and the

range of impact parameters simulated. One limitation is that the number of data points with

which to estimate these frequencies may be limited, since there may be many iterations

within a scenario that are not representative of a “complete scenario” where all events are

both occurring and impacting one another. These incomplete iterations, which are not

representative of the scenario, increase the simulation effort without improving the result

and result in fewer data points with which to calculate the overall failure likelihood. In the

future, this could be dealt with by setting a minimum number of “completely implemented”

iterations, or experimenting with the maximum timestep before which all events must occur

within the scenario. Estimation of a system’s overall frequency of overtopping failure is

not a direct outcome of this research. However, assuming the frequency of each operating

state can be estimated, it may be possible to perform a complete probabilistic analysis of

simulation results. Ensuring calculations are correct may be challenging for common-cause

failures, though there is some guidance in the literature on this subject. Running the

simulation using Deterministic Monte Carlo will also facilitate a relatively straightforward

sensitivity analysis to assumed operating state frequencies. This is an important area for

future work.

In general, the approach presented in this work provides some key advantages over the

existing techniques used within and outside of the dams industry. Traditional assessments

tend to rely on techniques developed for use in industries that face different challenges than

are experienced in dams systems. Dam systems are dynamic systems of many interacting

components acting to control (both actively and passively) a randomly varying natural

input (inflow). Determining the reservoir level response to various inflows and operating

222

constraints is not easily done using traditional failure modes brainstorming exercises or

chain-of-event style analysis. Chain-of-events analyses (FTA and ETA) are limited in their

ability to address interactivity and nonlinear response. Existing systems approaches to

safety such as STPA offer some improvements, but are designed to deal with actively

controlled systems, whereas dam systems have both active and passive controls. STPA is

also unable to analyze reservoir level fluctuations in response to constraints. Stochastic

simulation is the only technique that is able to determine reservoir level response to various

constraints. It is also perhaps the easiest approach to estimate the overall system probability

of overtopping failure. If run for enough years, a fully stochastic model, in theory, would

eventually simulate the full range of potential operating state combinations. However, a

fully stochastic simulation spends a significant amount of computational effort simulating

non-failure states and would require a computationally prohibitive number of simulation-

years to achieve a more thorough analysis of each possible combination of events.

Ultimately, the ability of the traditional stochastic approach to analyze potentially

threatening combinations of events is limited by the number of simulation-years – at the

current time it is not possible to achieve a full coverage of all potential combinations of

events using this method.

The methodology described in this research draws on the strengths of existing methods to

more fully and systematically determine how the system will respond to as many

combinations of events as can be determined. The operating states database and

combinatorial procedure help to automate the process of determining potential constraints

on system operation. The Deterministic Monte Carlo simulation framework systematically

characterizes the potential system responses which may be expected for a given scenario.

Scenarios are deterministic inputs to a simulation model that is run for a large number of

iterations with Monte Carlo varying scenario parameters. The system dynamics simulation

model is capable of representing as much complexity as desired in systems with component

interaction and feedback in a transparent and easily modifiable object-oriented

programming environment. The level of detail with which each aspect of the system is

modelled also facilitates linking the model with the components database to enable the

deterministic simulation of all of the possible combinations of operating states arrived at

in the scenario generation procedure. Through system dynamics simulation, emergent

223

behaviour may be observed as a result of component interactions, with outcomes that may

not be easily foreseeable by analysing sub-systems or parts of the system. Simulations

automatically generate metrics such as the conditional failure frequencies and reservoir

level exceedance frequencies for a particular scenario. While this research focuses on

safety-specific indicators, it may also be possible to investigate environmental, regulatory

and economic considerations from the simulation outcomes.

There are some limitations of the approach proposed in this thesis. Despite the much larger

number of scenarios that this approach is able to generate and assess, the STPA analysis

identified some scenarios that were not captured by the simulation. These scenarios

involved operational decision making and process model errors, which would add another

(very large) dimension to the simulation analysis – though it is theoretically possible to

analyze such issues using simulation. The results from the case study illustrated how the

number of possible scenarios increases exponentially with the number of components being

modelled and the number of operating state-causal factor combinations. Ultimately, the

methodology presented allows modellers build the system to as high a level of detail as is

desired so that the key interactions and feedbacks are fully modelled. In applying the

approach, however, this may result in computational feasibility challenges. It is possible

that simplifications to improve computational efficiency could affect the outcomes of the

analysis. Future work must address the computational requirements of fully-detailed

models to ensure this approach can be extended to real dam systems. It is also not clear

whether the consideration of each operating state-causal factor as a separate operating state

is necessary – this introduces a fair amount of redundant simulation but was introduced to

ensure causal factors and common cause failures were represented within the model.

Finally, while the post-processing of scenarios helps to filter out scenarios that were not

representative of the input scenario (ie. all events did not occur prior to dam failure, or all

events did not affect one another), it may result in fewer data points than reasonable to

estimate the conditional failure frequency and other criticality parameters.

The following section details some potential directions for future research.

224

5.2 Directions for Future Research

For future applications, it may be interesting to simulate the set of scenarios with starting

reservoir elevations that would differ from “normal” conditions, in an attempt to model the

system response to situations that could arise as a result of operational trade-offs that are

difficult to generate automatically.

The most important area for future research relating to this approach is to incorporate

probabilistic assessment into the approach. The methodology presented is set up fairly well

to achieve this goal, in that the operating states database could be extended to allow

estimates of the probabilities of causal factors and/or probabilities of component failure

conditional on the causal factor occurring. These probabilities along with the Deterministic

Monte-Carlo simulation results (conditional probabilities of failure or reservoir level

exceedance) could be used in estimating the overall failure rate for each scenario. The

benefit of the Deterministic Monte Carlo approach for assessment of overall overtopping

failure probability is that the sensitivity to assumed operating state probabilities can be

analyzed without significant additional computational effort. The full suite of results could

be used to assess the probability of overtopping failure of the dam using traditional

probability theory. The results would be a probability assessment that takes into account a

far wider coverage of the possible operating states for the system than may be achieved

using traditional techniques. The probability of flow control failure of the dam is an

important decision-making factor for dam owners in terms of fleet management.

Obviously, resources should be directed towards dams which have a higher probability of

failure and/or a higher consequence category. In addition to this, the change in frequency

of overtopping failure as a result of by different alternative operating strategies and capital

upgrades could help provide a business case for investing in different alternatives (along

with the visual aid of the aggregated scenario performance measure plots).

Another very important area for future work is in improving the computational feasibility

of the approach described in this research. When the combinatorial procedure was applied

to a detailed model of the Cheakamus System, 1.89 x 1027 scenarios resulted. This would

obviously be computationally infeasible in a reasonable amount of time, though advances

in computing capabilities may make it more feasible in the future. In the meantime, work

225

on applying the methodology to real systems with grouped components similar to what was

done in the simplified system will help reduce the number of scenarios to a more realistic

and computationally reasonable number. Grouping components could potentially be

guided by a fault tree analysis of sub-systems within the system – for example, a fault tree

analysis of the gate system to determine groups of components that might lead to a specific

operating state for the gate as a whole. Implementing nested time-steps to address issues

such as cavitation, pressure transients, erosion, slope stability and internal erosion would

add additional complexity but is also an important area for future work. Further

improvements to the simulation model speed may also be possible, although they would

require a substantial effort and possibly a switch to a C++ or similar compiled

programming language. Compiled programming languages are generally considered to be

the most computationally efficient, however they are slightly less user friendly and require

more programming experience.

Another potential direction for future work is the integration of the system dynamics

simulation with AI to drive (or even build) the simulation model. Deep learning algorithms

could potentially be applied to process the results to provide additional useful information

from simulation outcomes. Finally, pattern recognition techniques may be useful to reduce

the number of combinations required to assess each simulation outcome. This is a

particularly promising direction that could help improve the limitation resulting from the

trade-off between computational feasibility and level of complexity modelled.

Ultimately, these promising directions for future work may help to strengthen the approach,

making it more readily applicable to existing, highly complex dam systems.

226

References

Adamo N, Al-Ansari N, Laue J, et al (2017) Risk Management Concepts in Dam Safety

Evaluation: Mosul Dam as a Case Study. J Civ Eng Archit 11:635–652.

https://doi.org/10.17265/1934-7359/2017.07.002

ASDSO (2018) Application of PFMA in dam safety. In: Webinar.

https://learningcenter.damsafety.org/products/application-of-pfma-in-dam-safety-

download. Accessed 24 Nov 2018.

Association of State Dam Safety Officials (ASDSO) (2010) Dam Failures, Dam Incidents

(Near Failures). In: ASDSO Incident Database. https://damsafety.org/dam-failures.

Accessed 12 Jul 2015.

Åström KJ, Murray RM (2008) Feedback Systems: An Introduction for Scientists and

Engineers. Princeton University Press, Princeton, New Jersey

Baecher G, Ascila R, Hartford DND (2013) Hydropower and dam safety. In:

STAMP/STPA Workshop. Cambridge, Massachusetts

Barker M, Vivian B, Bowles DS (2006) Reliability assessment for a spillway gate

upgrade design in Queensland, Australia. In: USSD 2006 Conference. San Antonio,

Texas

Barker M, Vivian B, Matthews J, Oliver P (2003) Spillway Gate Reliability and Handling

of Risk for Radial and Drum Gates and Gate Operating. In: NZCOLD/ANCOLD

2003 Conference on Dams. pp 1–15

Bartsch M (2004) FMECA of the Ajaure Dam - A Methodology Study. In: 13th Biennial

Conference, Long Term Benefits and Performance of Dams. Thomas Telford,

Canterbury

BC Hydro (2005) Cheakamus Project Water Use Plan

BC Hydro (2013) Generation Operating Order: Cheakamus Project. Burnaby, BC

https://learningcenter.damsafety.org/products/application-of-pfma-in-dam-safety-download
https://learningcenter.damsafety.org/products/application-of-pfma-in-dam-safety-download
https://damsafety.org/dam-failures

227

Bocchiola D, De Michele C, Rosso R (2003) Review of recent advances in index flood

estimation. Hydrol Earth Syst Sci 7:283–296. https://doi.org/10.5194/hess-7-283-

2003

Bowles D, Ruthford M, Anderson L (2011a) Risk assessment of success dam, California:

Evaluation of operating restrictions as an interim measure to mitigate earthquake

risk. In: GeoRisk 2011: Geotechnical Risk Assessment and Management. Atlanta,

Georgia

Bowles DS (2001) Evaluation and Use of Risk Estimates in Dam Safety Decisionmaking.

In: Risk-Based Decisionmaking in Water Resources IX. pp 17–32

Bowles DS, Anderson LR, Chauhan SS, et al (2015) Risk assessment approach for coal

ash impoundments. In: ASDSO Conference on Dams. Louisville, Kentucky

Bowles DS, Anderson LR, Evelyn JB, et al (1999) Alamo dam demonstration risk

assessment. In: ANCOLD Annual Meeting. Jindabyne, Australia, pp 113–128

Bowles DS, Anderson LR, Glover TF (1987) Design level risk assessment for dams. In:

ASCE Seismic considerations in risk analysis of dams. pp 210–225

Bowles DS, Anderson LR, Glover TF (1998a) The practice of dam safety risk assessment

and management: Its roots, its branches and its fruit. In: USCOLD Annual Meeting.

Buffalo, New York, p 13

Bowles DS, Anderson LR, Glover TF, Chauhan SS (1998b) Portfolio Risk Assessment: a

Tool for Dam Safety Risk Management. In: 1998 USCOLD Annual Lecture.

Buffalo, New York, p 13

Bowles DS, Anderson LR, Ruthford ME, et al (2010) a Risk-Based Re-Evaluation of

Reservoir Operating Restrictions To Reduce the Risk of Failure From Earthquake

and Piping. In: ANCOLD Proceedings of Technical Groups. Hobart, Australia

Bowles DS, Chauhan SS, Anderson LR, Grove RC (2011b) Baseline risk assessment for

herbert hoover dike. In: Association of State Dam Safety Officials Annual

228

Conference 2011, Dam Safety 2011

Breach P (2015) Python tools for Vensim simulation software. In: GitHub.

https://github.com/pbreach/venpy. Accessed 3 Feb 2016

Brown GS, Campbell DP (1950) Instrument engineering: its growth and promise in

process-control problems. Mech Eng 72:124–127

CDA (2007) Dam Safety Guidelines 2007. In: Dam Safety Publications.

https://www.cda.ca/EN/Publications_Pages/Dam_Safety_Publications.aspx.

Accessed 04 May 2015.

Chanson H (2000) A review of accidents and failures of stepped spillways and weirs. In:

Proceedings of the Institution of Civil Engineers Water and Maritime Engineering.

pp 177–188

Charles JA, Tedd P, Warren A (2011) Lessons from historical dam incidents. In: Flood

and Coastal Erosion Risk Management Research and Development programme.

Department for Environment Food and Rural Affairs. Bristol, UK.

Ching J, Leu S Sen (2009) Bayesian updating of reliability of civil infrastructure facilities

based on condition-state data and fault-tree model. Reliab Eng Syst Saf 94:1962–

1974. https://doi.org/10.1016/j.ress.2009.07.002

Cyganiewicz JM, Smart JD (2000) U. S. Bureau of Reclamation’s use of risk analysis

and risk assessment in dam safety decision making. In: ICOLD 20th Congress.

Beijing, China, pp 1–19

Donnelly CR (2005) Assessing the safety and security of dams. In: International

Conference on Safety and Security of Energy Infrastructures in a Comparative

View. Brussels, Belgium, pp 1–34

dos Santos RNC, Caldeira LMMS, Serra JPB (2012) FMEA of a tailings dam. Georisk

Assess Manag Risk Engneered Syst Geohazards 6:89–104.

https://doi.org/10.1080/17499518.2011.615751

https://www.cda.ca/EN/Publications_Pages/Dam_Safety_Publications.aspx

229

Duckworth HA, Moore RA (2010) Social Responsibility: Failure Modes Effects and

Analysis. In: Industrial Innovation Series. Taylor and Francis, Abingdon, U. K.

Duscha LA, Jansen RB (1988) Surveillance. In: Jansen RB (ed) Advanced Dam

Engineering for Design, Construction, and Rehabilitation. Van Nostrand Reinhold,

New York, pp 777–799

Dusil R, To P (2016) Generation Water Passage – A System Perspective. In: Hydro

Power Engineering Exchange. Queenstown, New Zealand, pp 1–16

El-Awady A (2019) Probabilistic Failure Analysis of Complex Systems with Case

Studies in Nuclear and Hydropower Industries. PhD Thesis. University of Waterloo

Ellingwood BR (2017) Performance-based structural engineering in an era of climate

change: A risk-informed approach. In: Attar A, Lounis Z (eds) NRCC Workshop on

Climate Change and Code Adaptation. National Research Council of Canada,

Ottawa, Ontario

Ericson CA (1999) Fault Tree Analysis – A History. In: Proceedings of The 17th

International System Safety Conference. Orlando, Florida

Eum H-I, Simonovic SP (2012) Assessment on variability of extreme climate events for

the Upper Thames basin in Canada. Hydrol Process 26:485–499

Ezell BC, Farr J V., Wiese I (2000) Infrastructure Risk Analysis Model. J Infrastruct Syst

6:114–117

Faber MH, Stewart MG (2003) Risk assessment for civil engineering facilities: Critical

overview and discussion. Reliab Eng Syst Saf 80:173–184.

https://doi.org/10.1016/S0951-8320(03)00027-9

FEMA (2004) Federal Guidelines for Dam Safety- Selecting and Accomodating Inflow

Design Floods for Dams. Washington, D.C.

FEMA, NJOEM (2004) Findings of the Interagency Waterway Infrastructure

230

Improvement Task Force Report. Trenton, New Jersey.

FERC (2006) Report of Findings on the Overtopping and Embankment Breach of the

Upper Dam - Taum Sauk Pumped Storage Project. Washington, D.C.

FERC (2005a) Oroville Dam: Potential failure mode analysis study report. Washington,

D.C.

FERC (2005b) Dam Safety Performance Monitoring Program. Washington, D.C.

FERC (2007) Norway and Oakdale Hydroelectric Project: Baseline Risk Assessment

Report. Washington, D.C.

Ferdous R, Khan F, Sadiq R, et al (2011) Fault and Event Tree Analyses for Process

Systems Risk Analysis: Uncertainty Handling Formulations. Risk Anal 31:86–107.

https://doi.org/10.1111/j.1539-6924.2010.01475.x

Forrester J (1969) Urban Dynamics. MIT Press, Cambridge, Massachusetts

Forrester JW (1961) Industrial Dynamics. Productivity Press, Portland, Oregon

Forrester JW (1971a) Principles of Systems. MIT Press, Cambridge, Massachusetts

Forrester JW (1971b) World Dyamics. Wright-Allan Press. Cambridge, Massachusetts

Forrester JW (1989) The beginings of System Dynamics. In: international meeting of the

System Dynamics Society. Stuttgart, Germany, pp 1–16

Foster M, Fell R (2001) Assessing embankment dam filters that do not satisfy design

criteria. J Geotech Geoenvironmental Eng 127:398–407

Foster M, Fell R, Spannagle M (2000a) The statistics of embankment dam failures and

accidents. Can Geotech J 37:1000–1024. https://doi.org/10.1139/t00-030

Foster M, Fell R, Spannagle M (2000b) A method for assessing the relative likelihood of

failure of embankment dams by piping: Reply. Can Geotech J 37:1025–1061.

https://doi.org/10.1139/t01-109

231

France JW, Alvi IA, Dickson PA, et al (2018a) Independent Forensic Team Report

Oroville Dam Spillway Incident

France M, Mutler J, Safar H (2018b) New Guidance for CAST: Case Study of a US

Freight Rail Stop Signal Overrun & Collision. In: 2018 STAMP Workshop. Boston,

Massachusetts

Fry J, Vogel A, Courivaud J-R, Blais J-P (2004) Dam Accident Data Base DADB - The

Web Based Data Collection of ICOLD. In: Hewlett H (ed) 13th Conference of the

British Dam Society and the ICOLD European Club. Thomas Telford Limited,

Canterbury, UK, pp 298–304

Genevois R, Ghirotti M (2005) The 1963 Vaiont Landslide. G di Geol Appl 1:41–52.

https://doi.org/10.1474/GGA.2005-01.0-05.0005

Goodarzi E (2010) Estimating Probability of Failure Due to Internal Erosion with Event

Tree Analysis. Electron J Geotech Eng 15:935–948

Hansen KM, Ravn AP, Stavridou V (1998) From safety analysis to software

requirements. IEEE Trans Softw Eng 24:

Hartford DND (2001) Risk Analysis In Geotechnical And Earthquake Engineering :

State-Of-The-Art And Practice For Embankment Dams. In: Fourth International

Conference on Recent Advances in Geotechnical Earthquake Engineering. San

Diego, California

Hartford DND, Baecher GB (2004) Risk and Uncertainty in Dam Safety. Thomas Telford

Limited, London

Hartford DND, Baecher GB, Zielinski PA, et al (2016) Operational Safety of Dams and

Reservoirs. ICE Publishing, London

Hill P, Bowles D (2003) Estimating overall risk of dam failure: practical considerations

in combining failure probabilities. ANCOLD 2003 Risk Work 10

232

Hill PI, Bowles DS, Nathan RJ, Herweynen R (2001) On the Art of Event Tree

Modelling for Portfolio Risk Analysis. In: NZSOLD/ANCOLD Conference on

Dams. pp 1–10

Hoeg K, Fry J-J, Charlwood R (2007) Peer Review of Dam Safety at Suorva Dams.

Stockholm, Sweden

Hydrometrics Inc. (2011) Guidelines for Conducting a Simplified Failure Mode Analysis

for Montana Dams. Helena, Montana

IEC (2008) Analysis techniques for system reliability - Procedure for failure mode and

effects analysis (FMEA)

IEC (2010) Analysis techniques for dependability - Event tree analysis (ETA)

Jansen RB (1983) Dams and Public Safety. United States Department of the Interior,

Denver, Colorado

Jong CG, Leu S Sen (2013) Bayesian-network-based hydro-power fault diagnosis system

development by fault tree transformation. J Mar Sci Technol 21:367–379.

https://doi.org/10.6119/JMST-012-0508-3

Kast FE, Rosenzweig JE (1972) General systems theory: Applications for organization

and management. Acad Manag J 15:447–465. https://doi.org/10.5465/255141

Kennard MF, Bromhead EN (2000) Carsington Dam - The near-miss which became a

bulls-eye. Forensic Eng 102–111

King LM, Keech S, Simonovic SP (2016a) An Investigation of the Factors and

Components Involved in Dam Safety Flow Control Incidents. J Dam Eng 27:1–19

King LM, Mcleod AI, Simonovic SP (2015) Improved Weather Generator Algorithm for

Multisite Simulation of Precipitation and Temperature. J Am Water Resour Assoc

51:. https://doi.org/10.1111/1752-1688.12307

King LM, Mcleod AI, Simonovic SP (2014) Simulation of historical temperatures using a

233

multi-site, multivariate block resampling algorithm with perturbation. Hydrol

Process 28:. https://doi.org/10.1002/hyp.9596

King LM, Simonovic SP (2020) A Deterministic Monte Carlo Simulation Framework for

Dam Safety Flow Control Assessment. Water 12(2):505.

https://doi.org/10.3390/w12020505

King LM, Simonovic SP, Hartford DND (2017) Using system dynamics simulation for

assessment of hydropower system safety. Water Resour Res 53:.

https://doi.org/10.1002/2017WR020834

King LM, Simonovic SP, Hartford DND (2016b) A hydropower infrastructure simulation

model for assessment of resilience. In: Canadian Society of Civil Engineering 2016

National Conference. London, pp 1–11

Komey A (2014) A systems reliability approach to flow control in dam safety risk

analysis. MESc Thesis. University of Maryland College Park

Komey A, Deng Q, Baecher GB, et al (2015) Systems Reliability of Flow Control in

Dam Safety. In: 12th International Conference on Application of Statistics and

Probability in Civil Engineering, ICASP12. Vancouver, British Columbia, pp 1–8

Kotz S, van Dorp JR (2004) The Triangular Distribution. In: Beyond Beta: Other

continuous families of distributions with bounded support and applications. World

Scientific Publishing Co. Ptc. Ltd., Singapore, pp 1–32

Kuo J-T, Yen B-C, Hsu Y-C, Lin H-F (2007) Risk Analysis for Dam Overtopping—

Feitsui Reservoir as a Case Study. J Hydraul Eng 133:955–963.

https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(955)

Kwon HH, Moon YI (2006) Improvement of overtopping risk evaluations using

probabilistic concepts for existing dams. Stoch Environ Res Risk Assess 20:223–

237. https://doi.org/10.1007/s00477-005-0017-2

Lee WS, Grosh DL, Tillman FA, Lie CH (1985) Fault Tree Analysis, Methods, and

234

Applications - A Review. IEEE Trans Reliab R-34:194–203.

https://doi.org/10.1109/TR.1985.5222114

Leveson N, Daouk M, Dulac N, Marais K (2003) Applying STAMP in accident analysis.

In: Workshop on Investigating and Reporting of Incidents and Accidents.

Williamsburg, Virginia, pp 177–198

Leveson NG (1995) Safeware: System Safety and Computers. Addison-Wesley, Boston,

Massachusetts

Leveson NG (2011) Engineering a Safer World: Systems Thinking Applied to Safety.

The MIT Press, Cambridge, Massachusetts

Lewin J, Ballard G, Bowles DS (2003) Spillway Gate Reliability in the Context of

Overall Dam Failure Risk. In: 2003 USSD Annual Lecture. Charleston, South

Carolina, pp 1–17

Lin C-T, Wang M-J (1997) Hybrid fault tree analysis using fuzzy sets. Reliab Eng Syst

Saf 58:205-213

Mandal S, Breach PA, Guar A, Simonovic SP (2017) Tools for downscaling climate

variables: A technical manual. London, U.K.

McDonald L, Wan CF (1999) Risk assessment for Hume Dam - Lessons from estimating

the chance of failure. In: ANCOLD Conference on Dams. Jindabyne, Australia, pp

11–24

Mcgrath S (2000) To Study International Practice and Use of Risk Assessment in Dam

Management. In: The Winston Churchill memorial trust of Australia.

https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Values%2

C%20Technology%20and%20Innovation/People/Full%20Professors/Pieter%20van

%20Gelder/Citations/citatie20.pdf. Accessed 12 Sept 2019.

Micovic Z, Hartford DND, Schaefer MG, Barker BL (2015) Flood hazard for dam safety

- Where the focus should be? In: 25th ICOLD Congress. ICOLD, Stavanger,

https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Values%2C%20Technology%20and%20Innovation/People/Full%20Professors/Pieter%20van%20Gelder/Citations/citatie20.pdf
https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Values%2C%20Technology%20and%20Innovation/People/Full%20Professors/Pieter%20van%20Gelder/Citations/citatie20.pdf
https://d1rkab7tlqy5f1.cloudfront.net/TBM/Over%20faculteit/Afdelingen/Values%2C%20Technology%20and%20Innovation/People/Full%20Professors/Pieter%20van%20Gelder/Citations/citatie20.pdf

235

Norway, p 22

Micovic Z, Quick MC (1999) A rainfall and snowmelt runoff modelling approach to flow

estimation at ungauged sites in British Columbia. J Hydrol 226:101–120

Morris M, Wallis M, Brown A, et al (2012) Reservoir safety risk assessment – a new

guide. In: British Dam Society Annual Conference. Leeds, U.K., pp 1–10

National Research Council (1981) Safety and offshore oil. National Academy Press,

Washington, D.C.

NPDP (2016) National Performance of Dams Program, Stanford University.

http://npdp.stanford.edu/. Accessed 7 Jan 2016

Patev RC, Putcha C, Foltz SD (2005) Methodology for Risk Analysis of Dam Gates and

Associated Operating Equipment Using Fault Tree Analysis. Washington, D.C.

Pope G, Breneman J (2018) STPA for use by compiler and binary analysis tools. In: 2018

STAMP Workshop. Boston, Massachusetts

Prodanovic P, Simonovic SP (2008) Intensity duration frequency analysis under changing

climatic conditions. In: 4th International Symposium on Flood Defense: Managing

Flood Risk, Reliability and Vulnerability. Toronto, Ontario, pp 1–8

Putcha CS, Patev RC (2000) Investigation of Risk Assessment Methodology for Dam

Gates and Associated Operating Equipment. USACE, Washington, D.C.

Python Software Foundation (2012) Functions creating iterators for efficient looping. In:

Python Stand. Libr. https://docs.python.org/3/library/itertools.html. Accessed 14

May 2018.

Quick MC, Pipes A (1977) U.B.C Watershed Model. Hydrol Sci J 22:153–161.

https://doi.org/10.1080/02626667709491701

Rausand M, Hoyland A (2004) System Reliability Theory: Models, Statistical Methods,

and Applications, 2nd edn. John Wiley and Sons, Hoboken, New Jersey

https://docs.python.org/3/library/itertools.html

236

Regan PJ (2009) Dam failures vs. age of dams. In: 29th Annual USSD Conference.

Nashville, Tennessee

Regan PJ (2010) Dams as systems - A holistic approach to dam safety. In: USSD Annual

Meeting and Conference. Sacramento, California, pp 1307–1340

Richardson GP (1991) Feedback Thought in Social Science and Systems Theory.

University of Pennsylvania Press, Philadelphia

Rychkov V, Kawahara K (2015) ADAPT-MAAP4 coupling for a dynamic event tree

study. In: International Topical Meeting on Probabilistic Safety Assessment and

Analysis. Sun Valley, Idaho, pp 140–143

SAE (1996) Guidelines and methods for conducting the safety assessment process on

civil airborne systems and equipment.

SAE (1967) Design analysis procedure for Failure Modes, Effects and Criticality

Analysis

Schmittner C, Gruber T, Puschner P, Schoitsch E (2014) Security Application of Failure

Mode and Effect Analysis (FMEA). In: International Conference on Computer

Safety, Reliability, and Security. Firenze, Italy, pp 310–325

Seed HB, Duncan JM (1987) The faiure of Teton Dam. Eng Geol 24:173–205

Sharif M, Burn DH (2006) Simulating climate change scenarios using an improved K-

nearest neighbor model. J Hydrol 325:179–196.

https://doi.org/10.1016/j.jhydrol.2005.10.015

Shaw G, Fan BH, Hartford DND (2000) Seismic Safety Assessment of Two Concrete

Dams in a Cascade Development-Investigations Into the Use of Qualitative Risk. In:

12th World Conference on Earthquake Engineering. Auckland, New Zealand, pp 1–

8

Simonovic SP (2009) Managing Water Resources. UNESCO, London

237

Skelton B (1997) Process safety analysis: An introduction. Gulf Pub, Houston, Texas

Smith M (2006) Dam Risk Analysis Using Bayesian Networks. In: 2006 ECI Conference

on Geohazards. Lillehammer, Norway

Song Y (2012) Applying System-Theoretic Accident Model and Processes (STAMP) to

Hazard Analysis. MESc Thesis. McMaster University

SPANCOLD (2012) Risk analysis applied to management of dam safety. In: Technical

Guides on Dam Safety. Madrid, Spain.

Srivastava A (2008) Generalized Event Tree Algorithm and Software for Dam Safety

Risk Assessment. MESc Thesis. Utah State University

Srivastava A (2013) A Computational Framework for Dam Safety Risk Assessment with

Uncertainty Analysis. PhD Thesis. Utah State University

Srivastava A, Bowles DS, Chauhan SS (2012) Damrae-U: A tool for including

uncertainty in dam safety risk assessment. In: Association of State Dam Safety

Officials Annual Conference 2012. Denver, Colorado

Stamatis DH (2002) Design for six sigma. In: Six sigma and beyond. St Luice Press,

Boca Raton, Florida

Stedinger J, Heath D, Nagarwalla N (1989) Event tree simulation analysis for dam safety

problems risk analysis. In: Risk Analysis and Management of Natural and Man-

Made Hazards. Santa Barbara, California

Sterman JD (2000) Business Dynamics: Systems thinking and modeling for a complex

world. McGraw Hill, Boston, Massachusetts

Stewart RA (2000) Dam risk management. In: Proceedings of the International

Conference on Geotechnical & Geological Engineering (GeoEng 2000). Melbourne,

Australia, pp 19–24

Tavakoli N (2015) Comprehensive literature review on dam overtopping incidents. In:

238

Toledo MÁ, Morán R, Oñate E (eds) Dam Protections against Overtopping and

Accidental Leakage. Taylor and Francis Group, London, pp 169–180

Thomas J (2012) Extending and Automating a Systems- Theoretic Hazard Analysis for

Requirements Generation and Analysis. Sandia National Laboratories. Albuquerque,

New Mexico.

Thomas J (2013) Extending and automating a Systems-Theoretic hazard analysis for

requirements generation and analysis. PhD Thesis. Massachusetts Institute of

Technology

To P, Dusil R, Hydro BC (2018) STPA Application in Hydropower – Piloting

Experience. In: 2018 STAMP Workshop. Boston, Massachusetts

Todd R V (1999) Spillway tainter gate failure at Folsom Dam, California. In:

Waterpower Conference 1999. Las Vegas, pp 1–10

Tummala R, Schoenherr T (2011) Assessing and managing risks using the Supply Chain

Risk Management Process (SCRMP). Supply Chain Manag 16:474–483.

https://doi.org/10.1108/13598541111171165

USACE (2011) Safety of Dams - Policy and Procedures. Washington, D.C.

USBR (1987) Design of Small Dams, Third Edition. United States Department of the

Interior, Washington, D.C.

USBR (2014a) RCEM Reclamation Consequence Estimating Methodology: Dam failure

and flood event case history compilation. Denver, Colorado.

USBR (2014b) Design Standards No. 14: Appurtenant Structures for Dams (Spillways

and Outlet Works). Washington, D.C.

USBR (2011) Dam Safety Public Protection Guidelines. Denver, Colorado

USBR (2018) Hydrologic Hazard Analysis. Denver, Colorado.

239

USBR, USACE (2012) Hydrologic Hazard Analysis. In: Dam Safety Risk Analysis Best

Practices Training Manual. United States Department of the Interior, Denver

Colorado, pp 7.1-7.12

USBR, USACE (2015a) Best Practices Training Manual. United States Department of

the Interior, Denver Colorado

USBR, USACE (2015b) Potential Failure Mode Analysis. Washington, D.C.

USSD (2013) Routine Instrumented and Visual Monitoring of Dams Based on Potential

Failure Modes Analysis. Denver, Colorado

Van Niekerk HJ, Viljoen MJ (2005) Causes and consequences of the Merriespruit and

other tailings-dam failures. L Degrad Dev 16:201–212.

https://doi.org/10.1002/ldr.681

Ventana Systems (2015) Vensim. https://vensim.com/. Accessed 5 Jan 2017

Vernacchia MA (2018) Use of STPA Within the GM System Safety Process. In: 2018

STAMP Workshop. Boston, Massachusetts

Vick SG (1992) Risk in geotechnical practice. In: Geotechnique and natural hazards.

BiTech Publishers, Vancouver, British Columbia

Villa V, Cozzani V (2016) Application of Bayesian Networks to quantitative assessment

of safety barriers’ performance in the prevention of major accidents. Chem Eng

Trans 53:151–156. https://doi.org/10.3303/CET1653026

von Bertalanffy L (1968) General System Theory: Foundations, Development,

Applications. George Brazillier, Inc., New York

Von Bertalanffy L (1950) The theory of open systems in physics and biology. Science

(80-) 111:23–29. https://doi.org/10.1126/science.111.2872.23

Whitman R V (1984) Evaluating calculated risk in geotechnical engineering. J Geotech

Engrg 110:143–188

240

Wieland M, Malla S, Speerli J, et al (2005) Risk analysis of dam and powerhouse

structure of run-of-river powerplant in Latvia. In: 73rd Annual Meeting of ICOLD.

Tehran, Iran, p 10

Wiener N (1948) Cybernetics: or Control and Communication in the Animal and the

Machine. MIT Press, Cambridge, Massachusetts

Yegian BMK, Marciano EA, Ghahraman VG (1991) Seismic risk analysis for earth

dams. J Geotech Eng 117:18–34

Zhang L, Peng M, Chang D, Xu Y (2018) Analysis of Probability of Failure of Dams. In:

Dam Failure Mechanisms and Risk Assessment, 2016 edn. Singapore, pp 243–272

Zhang LM, Xu Y, Jia JS (2007) Analysis of earth dam failures: A database approach. In:

First International Symposium on Geotechnical Safety & Risk. Shanghai, China, pp

293–302

Zhang LM, Xu Y, Jia JS, Zhao C (2011) Diagnosis of embankment dam distresses using

Bayesian networks. Part 1. Global-level characteristics based on dam distress

database. Can Geotech J 48:1630–1644. https://doi.org/10.1139/T11-069

Zielinski PA, Perdikaris J, Zhou R, Sakamoto D (2016) Workshop E: Systems approach

and simulation in risk assessment of dams. In: Canadian Dam Association

Conference and Exhibition. Halifax, Nova Scotia

241

242

Appendix A: Cheakamus Hydropower Project Details

This appendix contains the numerical relationships for reservoir storage and flow

conveyance at Cheakamus Dam. These relationships can be found in the publicly

available Water Use Plan.

Figure A1 Stage-Storage curve for Daisy Lake Reservoir (BC Hydro 2005)

Figure A2: Rating Curve for radial gates fully open and free overflow (BC Hydro

2005)

243

Figure A3: Rating curve for low level outlet sluice gate fully open (BC Hydro 2005)

Figure A4: Historical Inflows to Daisy Lake (BC Hydro 2005)

244

Figure A5: Daisy Lake NMin and NMax reservoir levels (data from BC Hydro

2005)

Figure A6: Minimum discharges below Daisy Lake Dam (data from BC Hydro

2005)

245

Appendix B: STPA Analysis of Cheakamus Dam

Cheakamus Dam System STPA analysis

Note that this analysis was not done by BC Hydro personnel and therefore should not be

interpreted to represent real conclusions for the Cheakamus System.

High-level system hazards:

H1: High flows released into Cheakamus River and/or Squamish River (flood)

H2: Flow releases to Cheakamus River stopped (fish kill)

H3: Equipment damaged (economic/safety impact)

H4: Loss of power production (economic impact)

-Not sure about this one. This happens quite often, during low flows or during

maintenance, is it really to be considered an accident? I’ve decided to remove it

from the list because it’s a pretty regular occurrence. It might be more suitable to

be added to the list for a large dam where water is always passing through the

powerhouse (eg. Mica, Revelstoke, GMS)

High-level system safety constraints (requirements):

SH1: Flows released into Cheakamus and/or Squamish must not exceed a level that

causes damage downstream (unless inflows do?)

SH2: Flow must always be released to Cheakamus River

SH3: Equipment must not become damaged

246

System Control Structure

Figure B1: Hierarchical system structure

247

Table B1: STEP 1: Unsafe control actions

Control

Action

Not Providing

causes hazard

Providing

causes hazard

Wrong

timing/order

causes hazard

Stopping too

soon/applying

too long causes

hazard

1 SPOG1

Open

-UCA1 Open

command not

provided when

water level

high, inflow

high or both

[H1, H3]

-UCA2 Open

command not

provided when

SPOG2 and

LLO closed

[H2]

-UCA3 Open

command not

provided but

gate opens on

its own [H1]

-UCA4 Open

command

provided

resulting in

downstream

flooding [H1]

-UCA5 Open

command

provided when

gates blocked

with debris/ice

[H1, H3]

-UCA6 Open

command

provided but

gate stays

closed [H2,

H3]

-UCA7 Open

command

provided too

late, after

reservoir filled

to unsafe level

and/or gates

overtopped

[H1, H3]

-UCA8 Gate

not left open

long enough,

reservoir

continues to

rise [H1, H3]

-UCA9 Gate

left open too

long, resulting

in draining of

the reservoir to

gate sill and

fish kill [H2]

2 SPOG2

Open

-UCA10 Open

command not

-UCA13 Open

command

-UCA16 Open

command

-UCA17 Gate

not left open

248

provided when

water level

high, inflow

high or both

[H1, H3]

-UCA11 Open

command not

provided when

SPOG1 and

LLO closed

[H2]

-UCA12 Open

command not

provided but

gate opens on

its own [H1]

provided

resulting in

downstream

flooding [H1]

-UCA14 Open

command

provided when

gates blocked

with debris/ice

[H1, H3]

-UCA15 Open

command

provided but

gate stays

closed [H2,

H3]

provided too

late, after

reservoir filled

to unsafe level

and/or gates

overtopped

[H1, H3]

long enough,

reservoir

continues to

rise [H1, H3]

-UCA18 Gate

left open too

long, resulting

in draining of

the reservoir to

gate sill and

fish kill [H2]

3 SPOG1

Close

-UCA19 Close

command not

provided when

inflows and

water level low

(approaching

sill) [H2]

-UCA20 Close

command not

-UCA21 Close

command

provided when

reservoir

and/or inflows

high [H1, H3]

-UCA22 Close

command

-UCA23 Close

command

provided too

early, reservoir

level increases

[H1, H3]

-UCA24 Close

command

249

provided when

SPOG2 and/or

LLO releasing

excess water

[H1]

UCA25 Close

command not

provided, gate

closes on its

own [H1, H2,

H3]

provided when

SPOG2 and

LLO closed

[H2]

provided too

late, reservoir

drains [H2]

4 SPOG2

Close

-UCA26 Close

command not

provided but

gate closes on

its own [H1,

H2, H3]

-UCA27 Close

command not

provided when

inflows and

water level low

(approaching

sill) [H2]

-UCA29 Close

command

provided when

reservoir

and/or inflows

high [H1, H3]

-UCA30 Close

command

provided when

SPOG1 and

LLO closed

[H2]

-UCA31 Close

command

provided too

early, reservoir

level increases

[H1, H3]

-UCA32 Close

command

provided too

late, reservoir

drains [H2]

250

-UCA28 Close

command not

provided when

SPOG1 and/or

LLO releasing

excess water

[H1]

5 LLO Open -UCA33 Open

command not

provided when

SPOGs closed

[H1, H2, H3]

-UCA34 Open

command

provided when

SPOGs open

[H1]

-UCA35 Open

command

provided too

late [H1, H2,

H3]

UCA36 Open

command

provided too

long, reservoir

drains [H2]

-UCA37 Open

command

stopped too

early, reservoir

rises [H1, H3]

6 LLO Close -UCA38 Close

command not

provided when

reservoir level

approaching

sill [H2]

UCA39: Close

command

provided when

inflows and

reservoir

elevation high

[H1, H2, H3]

UCA40: Close

command

provided too

early [H1, H2,

H3]

UCA41: Close

command

251

provided too

late [H2]

7 T1 Open -UCA42 Open

command not

provided when

inflows high

and SPOGs out

of service [H1,

H3]

-UCA43 Open

command

provided but

does not work,

SPOGs out of

service [H1,

H3]

-UCA44 Open

command

provided too

late, SPOGs

out of service

and inflow

high [H1, H3]

-UCA45 Open

command

provided too

long, reservoir

level falls

below power

intake sill

8 T2 Open -UCA46 Open

command not

provided when

inflows high

and SPOGs out

of service [H1,

H3]

-UCA47 Open

command

provided but

does not work,

SPOGs out of

service [H1,

H3]

-UCA48 Open

command

provided too

late, SPOGs

out of service

and inflow

high [H1, H3]

-UCA49 Open

command

provided too

long, reservoir

level falls

below power

intake sill

9 T1 Close -UCA50 Close

command not

provided when

reservoir levels

low [H2]

-UCA52 Close

command

provided when

reservoir

levels high

[H1, H3]

-UCA53 Close

command

provided too

late, reservoir

level low [H2]

252

-UCA51

Turbine closes

when

command not

provided

causing water

hammer and

penstock

rupture [H3]

10 T2 Close -UCA54 Close

command not

provided when

reservoir levels

low [H2]

-UCA55

Turbine closes

when

command not

provided

causing water

hammer and

penstock

rupture [H2,

H3]

-UCA56 Close

command

provided when

reservoir

levels high

[H1, H3]

-UCA57 Close

command

provided too

late, reservoir

level low [H2]

253

STEP 2: Causes of unsafe control actions

NOTE: additional details provided about recurring potential issues at end of this section.

UCA1/UCA10: SPOG Open command not provided when water level high, inflow high

or both [H1, H3]

 Case 1: Water level high, inflow low, open command not provided

-Controllers (OP, PSOSE, ACC, DS) unaware of reservoir level due to

gauge failure, sensor failures or communication delays

-High tides at Squamish mean there are flooding impacts when additional

flows are released from the CMS system. Controllers (OP, PSOSE, ACC,

DC) make a decision to hold water back, allowing the reservoir to rise to

an unsafe state even though the inflow is relatively low.

 Case 2: Water level high, inflow high, open command not provided

-Controllers (OP, PSOSE, ACC) believe they can return the reservoir to a

safe level using the powerhouse and/or LLO and/or other SPOG due to

inflow forecast errors

-Controllers (OP, PSOSE, ACC, DS) unaware of reservoir level due to

gauge failure, sensor failures or communication delays

-High tides at Squamish mean there are flooding impacts when additional

flows are released from the CMS system. Controllers (OP, PSOSE, ACC,

DC) make a decision to hold water back, allowing the reservoir to rise to

unsafe levels

-Controllers do not follow procedure (human error due to fatigue or shift

change at PSOSE/FVO)

254

 Case 3: Water level low, inflow high, open command not provided

-Controllers (OP, PSOSE, ACC) believe they can keep the reservoir at a

safe level without opening the gate, due to inflow forecast errors or

process errors

 -Gate(s) out of service for maintenance purposes and therefore cannot be opened.

 -Controller thinks gate open (sensor failure, communication delay)

UCA2/UCA11: SPOG Open command not provided when other SPOG and LLO closed

[H2]

 -Procedural: Inflow low and operators want to conserve water for power

production

 -Controller (ACC) makes a mistake due to being tired or shift change

-Controller thinks gate open (sensor failure, communication delay)

UCA3/UCA12: SPOG Open command not provided but gate opens on its own [H1]

-Gate position sensor failure causes PLC to open gate spuriously

UCA4/UCA13: SPOG Open command provided resulting in downstream flooding [H1]

-Controllers (OP, PSOSE, ACC) issue a command to open the gate to a large

opening, resulting in downstream flooding

 -Inflow forecast error (controller thinks inflow is going to be higher than it

is)

255

-Sensor failure or delay resulting in operator thinking reservoir

level/inflow is higher than it actually is and opening gate to return it to a

safe level

-Controllers issue a command to open the gate and the force is too high, alarm

sent and ignored by controller, or sensor fails and alarm not sent - so the steel

yields and there is an uncontrolled release of water. Note – hoist likely to fail first.

-Backup motor engages when main motor functional due to missing signal, two

motors functioning to move gears causing overforce on hoist, hoist failure and

gate fails closed. If inflows high enough, this could potentially result in dam

breach.

UCA5/UCA14: SPOG Open command provided when gates blocked with debris or ice

[H1, H2, H3]

-Operator (remote or manual) tries to open gate but it is blocked by debris/ice and

a gate component fails (hoist, motor, strut) [H3]

 -Gate fails open and a large amount of water is released [H1]

 -Gate fails closed and no water is released [H2]

 -Could potentially result in [H1] if inflows high enough

-Operator (remote or manual) opens gate but debris or ice result in less water

being released than intended. Reservoir then rises to an unsafe level and excessive

flows are discharged via free overflow spillway and/or over the dam crest [H1]

-Gate opens as planned and debris flushed through spillway chute damages chute

[H3]

UCA6/UCA15: SPOG Open command provided but gate stays closed [H2, H3]

256

-Gate component has failed (deterioration or disturbance), resulting in inability to

move gate

-Unable to move due to inadequate lubrication of guidewall/skinplate

interface or trunnion

-Gate sensor failed and PLC thinks gate is open so it doesn’t move the gate (or

gate sensor doing it’s job but debris in the way/some sort of interruption that

makes the sensor sense the wrong position)

-Grid failed, diesel backup failed, site staff unavailable to operate temporary

diesel generator

-Emergency situation such as an earthquake/landslide, or site

inaccessibility

UCA7/UCA16: SPOG Open command provided too late, after reservoir filled to unsafe

level and/or gates overtopped [H1, H3]

-Inflow forecast errors so controller doesn’t think gate needs to be opened.

-Sensor errors so controller doesn’t realize reservoir level is high

 -Reservoir rises to above gates which can then no longer be opened and

may be damaged [H1, H3]

 -Reservoir rises to above gates which may still be opened but too late to

prevent dangerous releases over free overflow and/or dam crests [H1, H3]

-Gate cannot be opened past 2m remotely. Delay in mobilizing site staff leads to

unsafe conditions (access road issues/short staffed due to time of evening or

weekend, inflows high and staff need ~2h minimum to reach site from Mission

office)

257

-High tides at Squamish mean there are flooding impacts when additional flows

are released from the CMS system. Controllers (OP, PSOSE, ACC, DC) make a

decision to hold water back, allowing the reservoir to rise to an unsafe state even

though the inflow is relatively low. Dam safety controller (DS) steps in at a

certain reservoir elevation to override operations planners but by then it is too late

UCA8/UCA17: SPOG Gate not left open long enough, reservoir continues to rise [H1,

H3]

-Controller thinks reservoir is lower (sensor failure) so they close gate

-Controller thinks inflows are manageable with other release facilities (inflow

forecast/process model error) so they close the gate

-Gate closes on its own due to failure of some gate component (gate fails closed)

UCA9/UCA18: SPOG Gate left open too long, resulting in draining of the reservoir to

gate sill and fish kill [H2]

-Controller thinks reservoir is higher (sensor failure/delay/relay failure) so they

keep the gate open

-Loss of power to close gate (grid, diesel), temporary diesel requiring staff

mobilization which has some delay

-Loss of site access and remote gate control meaning gate cannot be closed until

site accessed or sat/microwave links working

-Gate fails in open position

-Loss of remote gate control, mobilization of staff to site to close gate takes too

long and reservoir drains below sill

258

-UCA19/UCA27 SPOG Close command not provided when inflows and water level low

(approaching sill) [H2]

 -Reservoir level gauge faulty or delayed so controller thinks reservoir is higher

than it is and drains it to the sill

-Controller thinks inflows are high (inflow forecast error) and keeps gate open

despite plummeting reservoir elevation

-Operator lowering reservoir following signs of internal erosion or earthquake

-UCA20/UCA28 SPOG Close command not provided when other SPOG and/or LLO

releasing excess water [H1]

-Process model: Controller thinks inflows high so keeps outflows high (past

experience/ inflow forecast error)

-Process model: Controller thinks reservoir is high so keeps outflows high (sensor

error, past experience with flashy reservoir)

-Inflows and reservoir level high, controller following procedure

-Lowering reservoir due to signs of internal erosion/damaged dam(s)

-UCA25/UCA26 SPOG Close command not provided, gate closes on its own [H1, H2,

H3]

 -Gate fails closed (failure of hoist, connections, structural, sensor, etc.)

 -Spurious closure due to faulty gate position sensor

259

-UCA21/UCA29 SPOG Close command provided when reservoir and/or inflows high

[H1, H3]

 -Case 1: Reservoir high, inflows low

-Controller relies on past experience and thinks the situation can be

handled with minimum fish flow and maximum power flow releases. If

the reservoir is above the level of the earth dam filter, this decision could

put the dam at risk of failure.

-Controller believes reservoir is low (gauge failure or delay, relay failure)

 -Case 2: Reservoir low, inflows high

-Controller wants to fill reservoir higher to conserve water for energy

production. Eventually if inflows stay high, this could mean larger spills

later [H1] or even put the dam at risk in extreme cases [H1, H3]

-Controller believes inflows are low (inflow forecast error)

- High tides at Squamish and high tributary flows in Squamish and lower

Cheakamus mean controller opts to hold water back to prevent flooding.

 -Case 3: Reservoir high, inflows high

-High tides at Squamish and high tributary flows in Squamish and lower

Cheakamus mean controller opts to hold water back to prevent flooding.

-Controller believes inflows are low (inflow forecast error) and believes

power and minimum fish flow discharge will be sufficient to return water

level to safe state

-Controller believes reservoir is low (gauge failure or delay, relay failure)

and wants to fill to higher level to use the water for power production

260

-Spillway chute becomes damaged (debris? Or age) and operator wants to avoid

further damage to chute so the gates are closed and the reservoir is allowed to rise

to the level of the free overflow spillway. If inflows are high enough, this could

potentially put the dam at risk of overtopping. Could also cause damage to and/or

undermining of saddle/wing dams

-UCA22/UCA30 SPOG Close command provided when other SPOG and LLO closed

[H2]

-Controller thinks water is being released through SPOG and/or LLO for fish

flows (faulty SPOG position gauge and/or delay in information from on-site

operator of LLO)

-ACC controller accidentally sends command to close gate

-UCA23/UCA31 SPOG Close command provided too early, reservoir level increases

[H1, H3]

 -Controller thinks reservoir level is low (gauge failure or delay)

 -Controller thinks inflow is low (inflow forecast error)

-High tides at Squamish mean there are flooding impacts when additional flows

are released from the CMS system. Controllers (OP, PSOSE, ACC, DC) make a

decision to hold water back, closing the SPOGs to the minimum fish flow,

allowing the reservoir to rise to an unsafe state

-UCA24/UCA32 SPOG close command provided too late, reservoir drains [H2]

261

 -Controller thinks reservoir level is higher than the gate sill (gauge failure or

delay)

-Controller thinks inflow is high (inflow forecast error) so keeps reservoir open to

pre-spill for a storm that never comes, resulting in the reservoir being drained to

the sill

-Operator is responding to issues at another site and overlooks the fact that the

CMS reservoir is draining to the sill

-MICROWAVE/Sat links fail, by the time site staff arrive to close gate, reservoir

is below gate sill

-UCA33 LLO Open command not provided when SPOGs closed [H1, H2, H3]

-Controller thinks SPOGs are open (SPOG position sensor failure, or relay

failure) [H1, H2, H3]

 -SPOGs fail closed, controller unaware [H1, H2, H3]

-UCA34 LLO Open command provided when SPOGs open [H1]

-Controller thinks inflows are very high (inflow forecast error) and releases an

excess amount of water downstream than is necessary to control reservoir level

[H1]

-UCA35 LLO Open command provided too late [H1, H2, H3]

-SPOGs failed, high inflows, operator mobilization to site takes longer than

expected (traffic/personnel issues/timing) [H1, H2, H3]

262

-UCA36 LLO Open command provided too long, reservoir drains [H2]

-Controller expects very high inflows (inflow forecast error). Operator mobilizes

to site and opens gate then leaves site. When inflows shown to be low and

reservoir is draining, operator must mobilize to site to close gate (site access

issues, personnel issues)

-UCA37 LLO Open command stopped too early, reservoir level increases [H1, H3]

-Controller thinks inflows are manageable with SPOGs so operator mobilizes to

site to close LLO. SPOGs fail closed after operator leaves site resulting in

increase in reservoir elevation.

-Downstream flooding at Squamish due to high tide and tributary flows, so

controller decides to hold water back and reduces LLO flow to minimum fish

flow. SPOGs closed for maintenance.

-Failure of LLO in closed position, SPOGs closed and/or out of service

UCA38: LLO Close command not provided when reservoir level approaching sill [H2]

 -Operator thinks reservoir level higher than it is (sensor failure/delay)

-Damage to dam structure means reservoir must be drained to avoid potential

internal erosion issues (earthquake/aging). Inflow falls to below the set LLO

outflow and reservoir falls below sill, resulting in fish kill.

UCA39: LLO Close command provided when inflows and reservoir elevation high [H1,

H3]

263

-Controller feels inflows are manageable with SPOGs and power releases so

operator closes LLO. SPOGs/power releases then fail after operator leaves site

and reservoir rises to unsafe level [H1, H2, H3]

UCA40: LLO close command provided too early [H1, H2, H3]

-Controller feels inflows are manageable with SPOGs and power releases so

operator closes LLO. Inflows increase (inflow forecast error) and/or

SPOGs/Powerhouse fail

-SPOGs out of service for maintenance. During the reverse lockout procedure

when SPOGs are being brought back online, operator closes LLO too early

(communication error with colleagues on site), resulting in fish kill

UCA41: LLO Close command provided too late [H2]

-SPOGs out of service. Controller thinks reservoir level is higher than it is (sensor

failure or delay). Once controller realizes it is approaching sill, staff are mobilized

to site to close the gate, but mobilization takes too long and reservoir drained to

sill of LLO (traffic, personnel, timing)

-UCA42/UCA46 Turbine Open command not provided when inflows high and SPOGs

out of service [H1, H3]

-Grid unavailable so turbine cannot be opened

-Price of power is negative, PSOSE and FVO need to keep generation to a

minimum while they import power from out of province

264

-UCA43/UCA47 Turbine Open command provided but does not work, SPOGs out of

service [H1, H3]

 -Load rejection at powerhouse, wicket gate failure, etc.

-Failure of remote control, site inaccessibility (forest fire, landslide, washouts in

Squamish valley)

-UCA44/UCC48 Turbine Open command provided too late, SPOGs out of service and

inflow high [H1, H3]

-Remote control failed (MICROWAVE and satellite or issue within powerhouse),

site accessibility is delayed due to poor weather conditions and traffic

-UCA45/UCC49 Turbine Open command provided too long, reservoir level falls below

power intake sill

-Power shortages in lower mainland so PSOSE and FVO opt to prioritize

generation, drawing reservoir to below sill of SPOG/LLO

-Controller unaware that the reservoir is low (sensor failure) runs powerhouse

until reservoir falls below SPOG/LLO sill resulting in fish kill

-UCA50/UCA54 Turbine Close command not provided when reservoir levels low [H2]

-Energy shortage in lower mainland pushes controllers (PSOSE, ACC) to keep

generating when reservoir elevation dropping to below LLO sill

-Controller unaware reservoir is low (sensor failure) so powerhouse is run until

reservoir falls below SPOG/LLO sill resulting in fish kill

265

-UCA51/UCA55 Turbine closes when command not provided causing water hammer and

penstock rupture [H2, H3]

-Load rejection, plugging/collapse of surge shaft resulting in water hammer that

ruptures penstock resulting in damage and draining of the reservoir to intake sill

-UCA52/UCA56 Turbine Close command provided when reservoir levels high [H1, H3]

-Price of energy becomes negative, SPOG1 and SPOG2 out of service for

maintenance and inflows high. Controllers choose to close turbines and use LLO

for spill releases, resulting in high reservoir elevations when inflows exceed LLO

capacity

-Price of energy becomes negative. SPOG1 and SPOG2 subsequently fail closed

and reservoir rises to unsafe elevation when inflows exceed LLO capacity

UCA53/UCA57 Turbine Close command provided too late, reservoir level low [H2]

-Remote control of powerhouse fails, water dropping to below sill of LLO before

personnel can access site to close wicket gates (traffic, site access restriction due

to fire hazard, washouts or landslide) [H2]

Further details about specific components/failures:

Other considerations/scenarios for Turbines:

266

-Rough load zone operation leading to failure of the head cover(s), draining

reservoir through powerhouse. Though, there does not appear to be a rough load

zone specified for the Cheakamus units. [H2, H3]

-Runaway turbine if generation/grid links severed? [H2, H3]

Non-control related considerations:

-Earthquake causing settlement of earth dam and/or toppling of

wing/saddle/concrete dams [H1, H3]

-Barrier slide failure (may or may not be earthquake induced) leading to buildup

of material in Cheakamus Valley downstream from dam resulting in inability to

pass water through system, eventual overtopping/breach

Causes of failures of recurring components from STPA analysis:

RTU’s (2): (1) Controls SPOGs, (2) Collects sensor info from PLC and relays to

microwave/sat links. Failure resulting in loss of remote gate control and loss of visibility.

-Power supply failure (backup batteries at end of service life)

-Microprocessor failure

-Lightning (one or both)

-Earthquake causing structural movement of RTU/wiring/etc.

PLC:

-Voltage fluctuations causing them to lock themselves out. Automatically reboot

or require manual reboot.

267

-Backup batteries at end of service life, voltage too low for PLC

-May lose visibility in the event of grid failure since everything is coming to this

PLC and being transferred to RTU/microwave/satellite

Gate position sensors (2): One rotary, one linear. Rotary converts angular to distance

linearized with shape of gate, lookup table within sensor to determine opening. Linear is

a straight rod at the trunnion, linearized in PLC. Transfers info to PLC.

 -Power supply failures (grid or rodent activity)

 -Failure of linear sensor in the event of ice storm possible (exposed to elements)

-Linear sensor is temperature sensitive, in hot weather it may appear gate is

moving when it is not.

-PLC issues when one is way off from the other?

Reservoir level sensors (3) + staff gauge: PLC takes standard deviation between each

one. If outside 4cm nominal difference, sensor omitted. Average of 2 or 3 taken. If two

fail, PLC reads reservoir elevation as failed and passes that to RTU for control centre

relay

 -Linearity issues

 -Temperature issues both high and low temperatures

 -Must be rearranged every quarter – potential for issues in readings at end of

quarter.

 -If failed, site staff would have to go read staff gauge for accurate reservoir level

reading

268

Site access:

 -2-2.5 hours optimal

-In emergency, may be able to instruct power crews in Squamish on how to open

gate or fly in (helicopter)

-Forest fires, earthquakes (highway collapse), traffic, barrier slide could all

prevent access

-Overtopping of dam would surely prevent access (it would be flooded. Once that

happens, nobody can access site).

Microwave failure:

 -Earthquake

 -Ice

 -Can only be fixed in summer, very much weather dependant

Gates:

 -Multiple motors

 -Can be operated by power drill via gearbox

 -One gate stiffened for overtopping flows, one isn’t

-Overtravel limit – mechanical switch failure stops drum from turning when gate

opened too high

269

-Backup gate drive motor

-Gearbox or drum failure would be catastrophic

 -misalignment of gears (earthquake)

 -lubrication issue (though would still work for a time)

 -May be designed to open with a single hoist (need to check this)

270

Appendix C: Operating States Database for Cheakamus System

Table C1: Reservoir-level database components for Cheakamus System

ReservoirLeve

lID

ReservoirLevelTy

peID

ReservoirLevelNam

e

OperatingStat

eID

OperatingStateName OperatingStateTy

peID

ImpactType

ID

CausalFacto

rID

CausalFactorTyp

eID

CausalFactorName MaxDa

te

MinDa

te

46 1 Gate Pier 220 NA 2 4 226 25 None 365 1

22 1 Main Earth Dam 104 None 2 4 227 25 None 365 1

18 4 Dam PLC 138 Functional 2 4 252 25 None 365 0

19 4 Powerhouse PLC 140 Functional 2 4 253 25 None 365 0

16 5 Dam RTU 142 Functional 2 4 254 25 None 365 0

17 5 Powerhouse RTU 144 Functional 2 4 255 25 None 365 0

21 8 Main Dam 106 None 2 4 264 25 None 365 0

27 11 Backup Diesel

Generator

113 None 2 4 265 25 None 365 0

29 12 Dam Access 115 Typical access time 2 2 266 25 None 365 0

28 12 Powerhouse Access 117 Typical access time 2 2 267 25 None 365 0

30 23 Res El Sensor 1 218 Reading correct 2 4 268 25 None 365 0

31 23 Res El Sensor 2 212 Reading correct 2 4 269 25 None 365 0

47 23 Res El Sensor 3 209 Reading correct 2 4 270 25 None 365 0

37 23 SPOG1Position_L 126 Reading correct 2 4 271 25 None 365 0

39 23 SPOG2Position_L 132 Reading correct 2 4 272 25 None 365 0

38 23 SPOG2Position_R 135 Reading correct 2 4 273 25 None 365 0

36 23 SPOG1Position_R 221 Reading normal 2 4 274 25 None 365 0

41 25 Power tunnel 175 None 2 4 275 25 None 365 0

42 26 Penstock 177 Normal operation 2 4 276 25 None 365 0

44 27 CMS Grid 187 Normal Operation 2 4 277 25 None 365 0

43 27 Rainbow Grid 189 Normal Operation 2 4 278 25 None 365 0

45 28 CMS Inflow

Forecast

192 Inflow forecast normal 2 4 279 25 None 365 0

48 29 Site Staff

Availability

214 Staff available 2 4 280 25 None 365 0

271

ReservoirLeve

lID

ReservoirLevelTy

peID

ReservoirLevelNam

e

OperatingStat

eID

OperatingStateName OperatingStateTy

peID

ImpactType

ID

CausalFacto

rID

CausalFactorTyp

eID

CausalFactorName MaxDa

te

MinDa

te

18 4 Dam PLC 139 PLC offline 1 1 64 10 Voltage fluctuation 365 0

18 4 Dam PLC 139 PLC offline 1 1 65 1 Earthquake 365 0

16 5 Dam RTU 143 Offline 1 1 66 11 Lightning 274 120

17 5 Powerhouse RTU 145 Offline 1 1 67 11 Lightning 274 120

16 5 Dam RTU 143 Offline 1 1 68 1 Earthquake 365 0

17 5 Powerhouse RTU 145 Offline 1 1 69 1 Earthquake 365 0

21 8 Main Dam 107 Cracking of concrete 1 7 72 1 Earthquake 365 0

27 11 Backup Diesel

Generator

114 Generator fails, no power 1 1 82 1 Earthquake 365 0

27 11 Backup Diesel

Generator

114 Generator fails, no power 1 1 83 1 Earthquake 365 0

27 11 Backup Diesel

Generator

114 Generator fails, no power 1 1 84 9 Aging 365 0

27 11 Backup Diesel

Generator

114 Generator fails, no power 1 1 85 2 Lack of maintenance 365 0

29 12 Dam Access 116 Access dangerous, delayed or not

possible

6 2 86 14 Traffic/traffic indicent 365 0

29 12 Dam Access 116 Access dangerous, delayed or not

possible

6 2 87 4 Excessive rainfall causes road

washout

365 0

29 12 Dam Access 116 Access dangerous, delayed or not

possible

6 2 88 1 Earthquake 365 0

29 12 Dam Access 116 Access dangerous, delayed or not

possible

6 2 89 16 Forest fire resulting in evacuation 273 181

19 4 Powerhouse PLC 141 PLC offline 1 1 94 10 Voltage fluctuation 365 0

19 4 Powerhouse PLC 141 PLC offline 1 1 95 1 Earthquake 365 0

41 25 Power tunnel 176 Power tunnel collapse 1 5 111 1 Earthquake 365 0

42 26 Penstock 178 Penstock rupture 1 9 114 1 Earthquake 365 0

28 12 Powerhouse Access 118 Access dangerous, delayed or not

possible

6 2 152 14 Traffic/traffic indicent 365 0

28 12 Powerhouse Access 118 Access dangerous, delayed or not

possible

6 2 153 4 Excessive rainfall causes road

washout

365 0

28 12 Powerhouse Access 118 Access dangerous, delayed or not

possible

6 2 154 1 Earthquake 365 0

28 12 Powerhouse Access 118 Access dangerous, delayed or not

possible

6 2 155 16 Forest fire resulting in evacuation 365 0

44 27 CMS Grid 188 Grid failure 1 1 156 5 Ice storm 59 0

44 27 CMS Grid 188 Grid failure 1 1 157 7 Wind storm 365 0

44 27 CMS Grid 188 Grid failure 1 1 158 16 Forest fire destroys infrastructure 273 120

44 27 CMS Grid 188 Grid failure 1 1 159 11 Lightning destroys infrastructure 273 120

272

ReservoirLeve

lID

ReservoirLevelTy

peID

ReservoirLevelNam

e

OperatingStat

eID

OperatingStateName OperatingStateTy

peID

ImpactType

ID

CausalFacto

rID

CausalFactorTyp

eID

CausalFactorName MaxDa

te

MinDa

te

43 27 Rainbow Grid 190 Grid failure 1 1 160 5 Ice storm 59 0

43 27 Rainbow Grid 190 Grid failure 1 1 161 7 Wind storm 365 0

43 27 Rainbow Grid 190 Grid failure 1 1 162 16 Forest fire destroys infrastructure 273 120

43 27 Rainbow Grid 190 Grid failure 1 1 163 11 Lightning destroys infrastructure 273 120

46 1 Gate Pier 195 Failure of gate pier 1 1 164 1 Earthquake 365 0

47 23 Res El Sensor 3 210 No Reading 1 1 180 1 Earthquake 365 0

47 23 Res El Sensor 3 210 No Reading 1 1 181 12 Rodent activity causes short in

wiring

365 0

47 23 Res El Sensor 3 210 No Reading 1 1 182 2 Lack of maintenance 365 0

47 23 Res El Sensor 3 210 No Reading 1 1 183 9 Aging 365 0

47 23 Res El Sensor 3 208 Wrong Reading 8 3 184 2 Failed to recalibrate seasonally 365 0

47 23 Res El Sensor 3 208 Wrong Reading 8 3 185 17 High or low temps result in

decalibration

365 0

37 23 SPOG1Position_L 128 Wrong Reading 8 3 186 5 Ice buildup 59 0

37 23 SPOG1Position_L 128 Wrong Reading 8 3 189 2 Lack of maintenance 365 0

37 23 SPOG1Position_L 128 Wrong Reading 8 3 190 1 Earthquake 365 0

39 23 SPOG2Position_L 134 Wrong Reading 8 3 191 5 Ice buildup causes sensor to

decalibrate

59 0

39 23 SPOG2Position_L 134 Wrong Reading 8 3 192 2 Lack of maintenance 365 0

39 23 SPOG2Position_L 134 Wrong Reading 8 3 193 1 Earthquake 365 0

36 23 SPOG1Position_R 131 Wrong Reading 8 3 195 2 Lack of maintenance, sensor

deteriorates

365 0

36 23 SPOG1Position_R 131 Wrong Reading 8 3 196 1 Earthquake 365 0

36 23 SPOG1Position_R 131 Wrong Reading 8 3 197 12 Rodent activity 365 0

38 23 SPOG2Position_R 137 Wrong Reading 8 3 198 2 Lack of maintenance 365 0

38 23 SPOG2Position_R 137 Wrong Reading 8 3 199 1 Earthquake 365 0

38 23 SPOG2Position_R 137 Wrong Reading 8 3 200 12 Rodent activity 365 0

31 23 Res El Sensor 2 211 Wrong Reading 8 3 204 2 Failed to recalibrate seasonally 365 0

31 23 Res El Sensor 2 211 Wrong Reading 8 3 205 17 High or low temps result in

decalibration

365 0

31 23 Res El Sensor 2 213 No Reading 1 1 206 1 Earthquake 365 0

31 23 Res El Sensor 2 213 No Reading 1 1 207 12 Rodent activity 365 0

273

ReservoirLeve

lID

ReservoirLevelTy

peID

ReservoirLevelNam

e

OperatingStat

eID

OperatingStateName OperatingStateTy

peID

ImpactType

ID

CausalFacto

rID

CausalFactorTyp

eID

CausalFactorName MaxDa

te

MinDa

te

31 23 Res El Sensor 2 213 No Reading 1 1 208 2 Lack of maintenance 365 0

31 23 Res El Sensor 2 213 No Reading 1 1 209 9 Aging 365 0

30 23 Res El Sensor 1 217 Wrong Reading 8 3 210 2 Failed to recalibrate seasonally 365 0

30 23 Res El Sensor 1 217 Wrong Reading 8 3 211 17 High or low temps result in

decalibration

365 0

30 23 Res El Sensor 1 219 No Reading 1 1 212 1 Earthquake 365 0

30 23 Res El Sensor 1 219 No Reading 1 1 213 12 Rodent activity 365 0

30 23 Res El Sensor 1 219 No Reading 1 1 214 2 Lack of maintenance 365 0

30 23 Res El Sensor 1 219 No Reading 1 1 215 9 Aging 365 0

45 28 CMS Inflow

Forecast

194 Inflow forecasting error 8 3 216 20 Operator fatigue 365 1

45 28 CMS Inflow

Forecast

194 Inflow forecasting error 8 3 217 21 Uncertainty 365 1

48 29 Site Staff

Availability

215 Staff unavailable 6 2 218 22 Weekend or evening 365 1

48 29 Site Staff

Availability

215 Staff unavailable 6 2 219 23 Staff are busy and unable to

access site

365 1

274

Table C2: Component-Level database components for Cheakamus System

ReservoirL

evelID

ReservoirLeve

lTypeID

ReservoirLev

elName

Component

LevelID

ComponentLev

elTypeID

ComponentLev

elName

OperatingS

tateID

OperatingStateName OperatingStat

eTypeID

ImpactT

ypeID

CausalFactor

TypeID

CausalFactorName Min

Date

Max

Date

13 2 Gate 1 26 1 Gate Hoist 1 183 Normal 2 4 25 None 0 365

13 2 Gate 1 28 2 Skinplate 23 Normal 2 4 25 None 0 365

13 2 Gate 1 31 5 Gearbox 35 Normal 2 4 25 None 0 365

13 2 Gate 1 32 10 Motor 36 Normal 2 4 25 None 0 365

13 2 Gate 1 33 11 Structural

Supports

37 Normal 2 4 25 None 0 365

13 2 Gate 1 34 12 Hoist Gate

Connection 1

38 Normal 2 4 25 None 0 365

13 2 Gate 1 43 16 Thrustor Brake 69 Normal 2 4 25 None 0 365

13 2 Gate 1 55 10 Backup Motor 165 Normal 2 4 25 None 0 365

13 2 Gate 1 57 19 Gate 1 Opening 179 Normal 2 4 25 None 0 365

14 2 Gate 2 16 1 Gate Hoist 2 48 Normal 2 4 25 None 0 365

14 2 Gate 2 18 2 Skinplate 44 Normal 2 4 25 None 0 365

14 2 Gate 2 21 5 Gearbox 57 Normal 2 4 25 None 0 365

14 2 Gate 2 22 10 Motor 58 Normal 2 4 25 None 0 365

14 2 Gate 2 23 11 Structural

Supports

76 Normal 2 4 25 None 0 365

14 2 Gate 2 24 12 Hoist Gate

Connection 2

65 Normal 2 4 25 None 0 365

14 2 Gate 2 44 16 Thrustor Brake 74 Normal 2 4 25 None 0 365

14 2 Gate 2 56 10 Backup Motor 167 Normal 2 4 25 None 0 365

14 2 Gate 2 58 19 Gate 2 Opening 181 Normal 2 4 25 None 0 365

8 3 Turbine 1 36 13 Head Cover 80 Normal 2 4 25 None 0 365

8 3 Turbine 1 37 14 Wicket Gates 83 Normal 2 4 25 None 0 365

8 3 Turbine 1 38 15 Generator 85 Normal 2 4 25 None 0 365

10 3 Turbine 2 39 13 Head Cover 87 Normal 2 4 25 None 0 365

10 3 Turbine 2 40 14 Wicket Gates 90 Normal 2 4 25 None 0 365

10 3 Turbine 2 41 15 Generator 92 Normal 2 4 25 None 0 365

15 7 Low Level

Outlet

46 1 Hoist 146 Normal 2 4 25 None 0 365

15 7 Low Level

Outlet

47 2 Skinplate 148 Normal 2 4 25 None 0 365

275

ReservoirL

evelID

ReservoirLeve

lTypeID

ReservoirLev

elName

Component

LevelID

ComponentLev

elTypeID

ComponentLev

elName

OperatingS

tateID

OperatingStateName OperatingStat

eTypeID

ImpactT

ypeID

CausalFactor

TypeID

CausalFactorName Min

Date

Max

Date

15 7 Low Level

Outlet

48 10 Motor 150 Normal 2 4 25 None 0 365

15 7 Low Level

Outlet

49 11 Support 152 Normal 2 4 25 None 0 365

15 7 Low Level

Outlet

50 12 Hoist Gate

Connection

155 Normal 2 4 25 None 0 365

15 7 Low Level

Outlet

51 12 Thrustor Brake 157 Normal 2 4 25 None 0 365

15 7 Low Level

Outlet

54 5 Gearbox 160 Normal 2 4 25 None 0 365

13 2 Gate 1 26 1 Gate Hoist 1 20 Steel yields, hoists fail, gate

fails closed

3 1 5 Ice force on gate 1 69

13 2 Gate 1 26 1 Gate Hoist 1 20 Steel yields, hoists fail, gate

fails closed

3 1 3 Debris force on gate 120 274

14 2 Gate 2 16 1 Gate Hoist 2 94 Steel yields, hoists fail, gate

fails closed

3 1 5 Ice force on gate 0 69

14 2 Gate 2 16 1 Gate Hoist 2 94 Steel yields, hoists fail, gate

fails closed

3 1 3 Debris force on gate 120 274

13 2 Gate 1 28 2 Skinplate 24 Steel yields 4 1 3 Debris force 120 274

13 2 Gate 1 28 2 Skinplate 24 Steel yields 4 1 2 Lack of maintenance 0 365

14 2 Gate 2 18 2 Skinplate 95 Steel yields 4 1 3 Debris force on gate 120 274

14 2 Gate 2 18 2 Skinplate 95 Steel yields 4 1 2 Lack of maintenance 0 365

13 2 Gate 1 31 5 Gearbox 34 Gearbox stripped 4 1 1 Movement of gears 0 365

13 2 Gate 1 31 5 Gearbox 34 Gearbox stripped 4 1 2 Lack of maintenance 0 365

14 2 Gate 2 21 5 Gearbox 96 Gearbox stripped 4 1 1 Movement of gears 0 365

14 2 Gate 2 21 5 Gearbox 96 Gearbox stripped 4 1 2 Lack of maintenance 0 365

13 2 Gate 1 26 1 Gate Hoist 1 20 Steel yields, hoists fail, gate

fails closed

3 1 8 Both motors engage

resulting in overforce

0 365

13 2 Gate 1 26 1 Gate Hoist 1 20 Steel yields, hoists fail, gate

fails closed

3 1 8 Overforce alarm fails 0 365

14 2 Gate 2 16 1 Gate Hoist 2 94 Steel yields, hoists fail, gate

fails closed

3 1 8 Both motors engage

resulting in overforce

0 365

14 2 Gate 2 16 1 Gate Hoist 2 94 Steel yields, hoists fail, gate

fails closed

3 1 8 Overforce alarm fails 0 365

13 2 Gate 1 32 10 Motor 40 Motor Failure 4 1 2 Lack of maintenance 0 365

13 2 Gate 1 32 10 Motor 40 Motor Failure 4 1 1 Earthquake 0 365

13 2 Gate 1 32 10 Motor 40 Motor Failure 4 1 9 Old motor 1 364

13 2 Gate 1 55 10 Backup Motor 166 Motor Failure 4 1 2 Lack of maintenance 0 365

13 2 Gate 1 55 10 Backup Motor 166 Motor Failure 4 1 1 Earthquake 0 365

13 2 Gate 1 55 10 Backup Motor 166 Motor Failure 4 1 9 Old motor 0 365

276

ReservoirL

evelID

ReservoirLeve

lTypeID

ReservoirLev

elName

Component

LevelID

ComponentLev

elTypeID

ComponentLev

elName

OperatingS

tateID

OperatingStateName OperatingStat

eTypeID

ImpactT

ypeID

CausalFactor

TypeID

CausalFactorName Min

Date

Max

Date

14 2 Gate 2 22 10 Motor 97 Motor Failure 4 1 2 Lack of maintenance 0 365

14 2 Gate 2 22 10 Motor 97 Motor Failure 4 1 1 Earthquake 0 365

14 2 Gate 2 22 10 Motor 97 Motor Failure 4 1 9 Old motor 0 365

14 2 Gate 2 56 10 Backup Motor 168 Motor Failure 4 1 2 Lack of maintenance 0 365

14 2 Gate 2 56 10 Backup Motor 168 Motor Failure 4 1 1 Earthquake 0 365

14 2 Gate 2 56 10 Backup Motor 168 Motor Failure 4 1 9 Old motor 0 365

13 2 Gate 1 33 11 Structural

Supports

41 Supports deform and gate

collapses

5 1 1 Earthquake 0 365

13 2 Gate 1 33 11 Structural

Supports

41 Supports deform and gate

collapses

5 1 8 Overforce alarm fails 0 365

14 2 Gate 2 23 11 Structural

Supports

98 Supports deform and gate

collapses

5 1 1 Earthquake 0 365

14 2 Gate 2 23 11 Structural

Supports

98 Supports deform and gate

collapses

5 1 8 Overforce alarm fails 0 365

13 2 Gate 1 33 11 Structural

Supports

42 Supports deform and gate

becomes immoveable

4 1 1 Earthquake 0 365

14 2 Gate 2 23 11 Structural

Supports

99 Supports deform and gate

becomes immoveable

4 1 1 Earthquake 0 365

13 2 Gate 1 34 12 Hoist Gate

Connection 1

43 Gate connection snaps 3 1 9 Aging 0 365

14 2 Gate 2 24 12 Hoist Gate

Connection 2

100 Gate connection snaps 3 1 9 Aging 0 365

13 2 Gate 1 43 16 Thrustor Brake 70 Brake fails, gate closes 3 1 9 Aging 0 365

13 2 Gate 1 43 16 Thrustor Brake 70 Brake fails, gate closes 3 1 8 Feedback failure 0 365

14 2 Gate 2 44 16 Thrustor Brake 101 Brake fails, gate closes 3 1 9 Aging 0 365

14 2 Gate 2 44 16 Thrustor Brake 101 Brake fails, gate closes 3 1 8 Feedback failure 0 365

13 2 Gate 1 57 19 Gate 1 Opening 180 Opening is blocked 2 5 3 Debris accumulates at gate

opening

120 274

14 2 Gate 2 58 19 Gate 2 Opening 182 Opening is blocked 2 5 3 Debris accumulates at gate

opening

120 274

8 3 Turbine 1 36 13 Head Cover 81 Bolt fatigue, head cover failure 5 9 2 Lack of maintenance 0 365

8 3 Turbine 1 37 14 Wicket Gates 82 Wicket gates fail closed 1 1 2 Lack of maintenance 0 365

10 3 Turbine 2 39 13 Head Cover 88 Bolt fatigue, head cover failure 5 9 2 Lack of maintenance 0 365

15 7 Low Level

Outlet

48 10 Motor 151 Motor Failure 4 1 2 Lack of maintenance 0 365

15 7 Low Level

Outlet

48 10 Motor 151 Motor Failure 4 1 1 Earthquake 0 365

15 7 Low Level

Outlet

48 10 Motor 151 Motor Failure 4 1 9 Old motor 0 365

15 7 Low Level

Outlet

49 11 Support 184 Supports deform and gate

collapses

5 1 1 Earthquake 0 365

277

ReservoirL

evelID

ReservoirLeve

lTypeID

ReservoirLev

elName

Component

LevelID

ComponentLev

elTypeID

ComponentLev

elName

OperatingS

tateID

OperatingStateName OperatingStat

eTypeID

ImpactT

ypeID

CausalFactor

TypeID

CausalFactorName Min

Date

Max

Date

15 7 Low Level

Outlet

49 11 Support 184 Supports deform and gate

collapses

5 1 8 Feedback failure 0 365

15 7 Low Level

Outlet

49 11 Support 185 Supports deform and gate

becomes immoveable

4 1 1 Earthquake 0 365

15 7 Low Level

Outlet

50 12 Hoist Gate

Connection

156 Gate connection snaps 3 1 9 Aging 0 365

15 7 Low Level

Outlet

51 12 Thrustor Brake 158 Brake fails, gate closes 3 1 9 Aging 0 365

15 7 Low Level

Outlet

51 12 Thrustor Brake 158 Brake fails, gate closes 3 1 8 Feedback failure 0 365

15 7 Low Level

Outlet

54 5 Gearbox 159 Gearbox stripped 4 1 1 Earthquake 0 365

15 7 Low Level

Outlet

54 5 Gearbox 159 Gearbox stripped 4 1 2 Lack of maintenance 0 365

15 7 Low Level

Outlet

47 2 Skinplate 149 Steel yields 4 1 2 Lack of maintenance 0 365

15 7 Low Level

Outlet

47 2 Skinplate 149 Steel yields 4 1 3 Debris force on gate 0 365

13 2 Gate 1 26 1 Gate Hoist 1 20 Steel yields, hoists fail, gate

fails closed

3 1 2 Lack of maintenance 0 365

14 2 Gate 2 16 1 Gate Hoist 2 94 Steel yields, hoists fail, gate

fails closed

3 1 2 Lack of maintenance 0 365

15 7 Low Level

Outlet

46 1 Hoist 186 Steel yields, hoists fail, gate

fails closed

3 1 8 Both motors engage

resulting in overforce

0 365

15 7 Low Level

Outlet

46 1 Hoist 186 Steel yields, hoists fail, gate

fails closed

3 1 8 Feedback failure 0 365

15 7 Low Level

Outlet

46 1 Hoist 186 Steel yields, hoists fail, gate

fails closed

3 1 2 Lack of maintenance 0 365

15 7 Low Level

Outlet

46 1 Hoist 186 Steel yields, hoists fail, gate

fails closed

3 1 5 Ice force on gate 0 365

15 7 Low Level

Outlet

46 1 Hoist 186 Steel yields, hoists fail, gate

fails closed

3 1 3 Debris force on gate 0 365

8 3 Turbine 1 38 15 Generator 86 Load Rejection 1 1 2 Lack of maintenance 0 365

10 3 Turbine 2 41 15 Generator 93 Load Rejection 1 1 2 Lack of maintenance 0 365

10 3 Turbine 2 40 14 Wicket Gates 216 Wicket gates fail closed 1 1 2 Lack of maintenance 0 365

278

Appendix D: Operating States Database for Simplified System

Table D1: Reservoir-Level database components for Simplified System

Ind

Reservoir

LevelId

ReservoirLevel

TypeId

ReservoirLevel

Name

Operating

StateId
OperatingStateName

Operating

StateTypeId

Impact

TypeId
Min Max Avg UnitId

Causal

FactorId

CausalFactor

TypeId

CausalFactor

Name

Max

Date

Min

Date

18_1 18 4 PLC/RTU 139 PLC offline 1 1 1 24 6 2 64 10
Voltage

Fluctuation
365 0

18_2 18 4 PLC/RTU 139 PLC offline 1 1 1 24 6 2 65 1 Earthquake 365 0

29_1 29 12 Dam Access 116
Access dangerous,

delayed or not possible
6 2 4 48 12 1 86 14 Traffic 365 0

29_2 29 12 Dam Access 116
Access dangerous,

delayed or not possible
6 2 4 48 12 1 88 1 Earthquake 365 0

29_3 29 12 Dam Access 116
Access dangerous,

delayed or not possible
6 2 4 48 12 1 89 16 Forest Fire 273 181

42_1 42 26 Penstock 178 Penstock rupture 1 9 60 365 90 1 114 1 Earthquake 365 0

44_1 44 27 Grid 188 Grid failure 1 1 0.04 7 0.167 1 157 7 Wind storm 365 0

44_2 44 27 Grid 188 Grid failure 1 1 0.04 7 0.167 1 158 16 Forest Fire 273 120

30_1 30 23
Reservoir Elevation

Sensor 1
217 Wrong Reading 8 3 10 100 25 11 211 17 Temperature 365 0

30_2 30 23
Reservoir Elevation

Sensor 1
219 No Reading 1 1 0.167 5 1 1 212 1 Earthquake 365 0

30_3 30 23
Reservoir Elevation

Sensor 1
219 No Reading 1 1 0.167 5 1 1 214 2

Lack of

Maintenance
365 0

45_1 45 28
CMS Inflow

Forecast
194 Inflow forecasting error 8 3 -3 3 0 8 217 21 Uncertainty 365 1

48_1 48 29
Site Staff

Availability
215 Staff unavailable 6 2 1 24 4 2 218 22 Timing 365 1

48_2 48 29
Site Staff

Availability
215 Staff unavailable 6 2 1 24 4 2 219 23 Timing 365 1

18_3 18 4 PLCRTU 138 Functional 2 4 0 0 0 1 252 25 None 365 0

29_4 29 12 Dam Access 115 Typical access time 2 2 2 4 2.5 2 266 25 None 365 1

30_4 30 23
Reservoir Elevation

Sensor 1
218 Reading correct 2 4 0 0 0 4 268 25 None 365 0

42_2 42 26 Penstock 177 Normal operation 2 4 0 0 0 1 276 25 None 365 0

44_3 44 27 Grid 187 Normal Operation 2 4 0 0 0 1 277 25 None 365 1

45_2 45 28
CMS Inflow

Forecast
192 Inflow forecast normal 2 4 0 0 0 11 279 25 None 365 0

48_3 48 29
Site Staff

Availability
214 Staff available 2 4 0 0 0 1 280 25 None 365 0

18_4 18 4 PLC/RTU 139 PLC offline 1 1 1 24 6 2 292 11 Lightning 273 120

30_5 30 23
Reservoir Elevation

Sensor 1
219 No Reading 1 1 0.167 5 1 1 213 12

Rodent

Activity
365 0

44_4 44 27 Grid 188 Grid failure 1 1 0.04 7 0.16 1 159 11 Lightning 273 120

279

Table D2: Component-Level database components for Simplified System

Identifier Reservoir

LevelID

Reservoir

Level

TypeID

Reservoir

Level

Name

Component

LevelID

Component

LevelTypeI

D

Component

LevelName

Operating

StateID

Operating

StateName

Operating

StateType

ID

Impact

TypeI

D

Min Max Avg Causal

FactorID

Causal

Factor

TypeID

CausalFactor

Name

Min

Date

Max

Date

836_1 8 3 Turbine 1 36 13 Head Cover 81 Bolt fatigue,

reservoir

drained through

turbine hole

5 9 365 730 365 117 2 Maintenance 1 365

838_1 8 3 Turbine 1 38 15 Generator 86 Load Rejection 1 1 0.1 7 0.2

5

201 2 Maintenance 1 365

836_2 8 3 Turbine 1 36 13 Head Cover 80 Normal 2 4 0 0 0 246 25 None 1 365

838_2 8 3 Turbine 1 38 15 Generator 85 Normal 2 4 0 0 0 248 25 None 1 365

1359_1 13 2 Gate 1 59 19 Gate

opening

222 Normal 2 4 0 0 0 281 25 None 1 365

1359_2 13 2 Gate 1 59 19 Gate

opening

223 Gate is blocked

by debris

1 5 10 80 20 282 3 Debris 90 334

1360_1 13 2 Gate 1 60 5 Components

failing in

place

225 Components of

the gate fail

causing it to

remain in place

4 1 0.5 120 7 283 1 Earthquake 1 365

1360_2 13 2 Gate 1 60 5 Components

failing in

place

225 Components of

the gate fail

causing it to

remain in place

4 1 0.5 120 7 284 2 Maintenance 1 365

1361_1 13 2 Gate 1 61 11 Components

failing open

226 Normal 2 4 0 0 0 285 25 Normal 1 365

1361_2 13 2 Gate 1 61 11 Components

failing open

227 Components of

the gate

collapse and

water is

released

5 1 210 730 240 286 1 Earthquake 1 365

1361_3 13 2 Gate 1 61 11 Components

failing open

227 Components of

the gate

collapse and

water is

released

5 1 210 730 240 287 8 Feedback

Failure

1 365

1362_1 13 2 Gate 1 62 1 Components

failing

closed

228 Normal 2 4 0 0 0 288 25 Normal 1 365

1362_2 13 2 Gate 1 62 1 Components

failing

closed

229 Components of

the gate fail

causing it to

close

3 1 1 120 20 289 9 Aging 1 365

1362_3 13 2 Gate 1 62 1 Components

failing

closed

229 Components of

the gate fail

causing it to

close

3 1 1 120 20 290 5 Ice 1 59

1362_4 13 2 Gate 1 62 1 Components

failing

closed

229 Components of

the gate fail

causing it to

close

3 1 1 120 20 291 8 Feedback

Failure

1 365

1360_3 13 2 Gate 1 60 5 Components

failing in

place

224 Normal 2 4 0 0 0 294 25 None 1 365

280

Appendix E: Simulation Script Organization and Discussion

The general description of the steps within the simulation model code is shown in Figure .

The complete code is presented in Appendix E. The following sub-sections provide

additional information about the equations used in the simulation model.

The first section of the code is entitled “1. Initialization”, where required packages are

imported and data files are read in to be utilized within the code. The simulation model

requires several supporting files, including input CSV’s containing information such as

synthetic inflows, fish flow requirements, database data, baseline operating conditions (no

failure), and rating curves for the spillway. In addition to this, several Python packages

must be installed prior to running. These are listed below:

• numpy

• pandas

• time

• datetime

• sys

• argparse

• os

• random

Many of the aforementioned packages are available from an open source Anaconda3

installation at https://www.anaconda.com/distribution/. Most of the packages can be

installed easily using conda install in the command prompt. In addition to these packages,

the sdpy project must also be imported, as well as scenarios.py. These files and all

necessary input files are available in the electronic appendix in the Dam_Safety_Model

folder.

In the initialization section, arguments are also defined that allow the program to be called

from the command prompt with a user-specified seed number and set the number of

years/iterations (𝑁𝑌𝑟) to be simulated. The seed number represents the scenario number

https://www.anaconda.com/distribution/

281

and for the simplified system it can vary between 0 and 552,960 (the total number of

scenarios).

The following portion of the code is entitled “2. Generating Seeds”. The seed number is

used to retrieve the scenario operating state identifiers as shown in the example scenario in

the previous section. These operating state identifiers are used to extract the pertinent

database information for the scenario of interest and convert the information into Monte-

Carlo parameters for simulation. The “boolop” parameter is used to determine whether a

seed should be randomized or not. It may be set equal to zero for script testing purposes,

which will set all randomized components of the code to a single value – start dates are set

to zero, start years are set sequentially from zero, average values are chosen for impacts,

and all impacts occur on day 1 of the simulation. If “boolop” is set equal to one, a complete

Monte-Carlo randomization of the inputs is performed. Starting dates from the inflow

sequences are randomized using a start day (0-364) and a start year (0 to the number of

synthetic inflow years simulated) – these can then be used to select the inflows for the

simulation. The impacts for each operating state are randomized using the triangular

distribution, with the minimum, maximum and average values as the inputs. Timing of

impacts is also randomized, with impacts that have the same causal factor occurring on the

same day except for maintenance and aging issues. The first impact begins on day 1 and

subsequent impacts can occur on any day between day 1 and day 𝑇𝑚𝑎𝑥. For the case study,

𝑇𝑚𝑎𝑥 is set equal to the sum of the outage lengths generated for the iteration being

considered. Truncating the maximum timing allows for the impacts of each operating state

to be realized and, if possible, recovered from, during the simulation time frame. 𝑇𝑚𝑎𝑥 is

selected with the goal of increasing the number of “complete iterations”, where all events

in a scenario both occur and affect one another. This will depend on the system being

modelled and how flashy the reservoir is.

It is important to note that two runs were simulated for the case study (see details in Section

4.5.2). Some of the differences between functions within the two runs are also described

throughout the remaining text in this section.

282

The next section of the simulation code is entitled “3. Initializing Supporting Functions

and Arrays” sets up functions and arrays to be utilized within the simulation model. The

supporting functions are not directly part of the system dynamics model but may be called

by it many times during the simulation. The supporting functions are optimized, if

Figure E1: Simulation model process steps

283

possible, using “jit” – a “just-in-time” compiler that optimizes their performance. This

ensures these functions, which are called many times in a given simulation, are executed

as quickly as possible. The functions include:

• Stage-storage curve (SSC) which determines reservoir elevation El from storage S

as in Equation 25, and it’s reverse (SSCRev) which finds the roots of Equation 25

to determine storage from elevation. These functions are located at line 724 and

731 of the code at the end of this Appendix.

𝐸𝑙 = −1.1201𝑒 − 05 𝑆2 + 0.032473 𝑆 + 364.6572 (𝐸. 1)

• Stage-discharge curve for the free overflow sections (OTC), which is calculated

using Equation 26, but is manipulated in the base case by increasing the spillway

crest elevation by 2m and multiplying the result by 0.3 to represent a scaled down

capacity of the free overflow structures in the base case. This was done to induce a

larger number of dam failures for the proof-of-concept, since the spillway capacity

of the real Cheakamus Dam is generally sufficient enough to prevent major

consequences in even the most extreme scenarios. The code representing the two

different overtopping curves for the base case and the dam safety improved case

can be found on lines 734 and 2052, respectively, in the code at the end of this

Appendix.

𝑄𝑂𝑇 = −35.75 𝐸𝑙3 + 40896.27 𝐸𝑙2 − 15593240.1 𝐸𝑙 + 1981715583.1 (𝐸. 2)

• Maximum flow calculator for the gate (SPOGMaxFlow), which follows the

piecewise Equation __ (see line 763 of the code at the end of this Appendix). The

maximum flow through the gate is a function of the reservoir level 𝑅𝑆𝐸 and the

gate availability 𝑎𝑣, and was calculated in excel from the combined rating curve

for two Cheakamus gates.

284

𝑆𝑃𝑂𝐺𝑄𝑀𝐴𝑋(𝑅𝑆𝐸, 𝑎𝑣 = 1)

=

{

0 𝑖𝑓 𝑅𝑆𝐸 < 367.28

19.1(𝑅𝑆𝐸) − 7011.7 𝑖𝑓 367.28 ≤ 𝑅𝑆𝐸 < 367.5

37.3(𝑅𝑆𝐸) − 13715.8 𝑖𝑓 367.5 ≤ 𝑅𝑆𝐸 < 367.8

49.7(𝑅𝑆𝐸) − 18252 𝑖𝑓 367.8 ≤ 𝑅𝑆𝐸 < 369

2.15(𝑅𝑆𝐸)2 − 1496.34(𝑅𝑆𝐸) + 258875.4 𝑖𝑓 369 ≤ 𝑅𝑆𝐸 < 381.6
861.1 + 728.9 𝑖𝑓 𝑅𝑆𝐸 ≥ 381.6

𝑆𝑃𝑂𝐺𝑄𝑀𝐴𝑋(𝑅𝑆𝐸, 𝑎𝑣 = 0) = 0 (𝐸. 3)

• Maximum flow calculator for the turbine (fncTurbineMaxFlow), as per Equation

E.4. This function computes the maximum flow through the turbine for a given

reservoir level, and was calculated from the combined gross head-power-flow

curves from the two Cheakamus units (see line 748 in the code at the end of this

Appendix.).

𝑇𝑄𝑀𝐴𝑋(𝑅𝑆𝐸, 𝑎𝑣 = 1)

=

{

0 𝑖𝑓 𝑅𝑆𝐸 < 363.05

13.98(𝑅𝑆𝐸) − 5075.44 𝑖𝑓 363.05 ≤ 𝑅𝑆𝐸 < 365.05

18.02(𝑅𝑆𝐸) − 6551.46 𝑖𝑓 365.05 ≤ 𝑅𝑆𝐸 < 367.05
65 𝑖𝑓 𝑅𝑆𝐸 ≥ 367.05

𝑇𝑄𝑀𝐴𝑋(𝑅𝑆𝐸, 𝑎𝑣 = 0) = 0 (𝐸. 4)

• A function to convert the spillway flow and reservoir elevation to gate instructions

(GateInstr at line 782 in the code at the end of this Appendix) and a function to

convert gate position and reservoir level to gate flow (GateFlowClac at line 828).

These functions utilize a simple two-dimensional interpolation from the combined

spillway gate rating curves provided by BC Hydro. The relationships between the

maximum gate opening and discharge are shown in Appendix A.

285

• A function which finds the value of 𝑦0 by linear interpolation using the two closest

point pairs (𝑥1, 𝑦1), (𝑥2, 𝑦2) to a given 𝑥0, following Equation E.5 (interpolate at

line 814 in the code at the end of this Appendix):

𝑦0 = 𝑦1 + (𝑥0 − 𝑥1)
𝑦2 − 𝑦1
𝑥2 − 𝑥1

 (𝐸. 5)

• A function to calculate the date reference number that is used to determine the time

of year for reservoir level limits and minimum flow releases (dayrefs at line 923) –

this simply uses the startday (0 to 365) and the time step to determine the day of

the year.

• A function to get the minimum flow release for the upcoming days (getfishflow)

which simply inserts the day-reference index into the fish flow array (line 902 in

the code at the end of this Appendix)

• A function to generate an availability array for a component based on the total

outage time (availarray at line 1033) – this simply converts an interger into an array

of zeros and ones that represent whether a component is available or unavailable

over a 14 day window from the current day – for example an input value of 8 would

mean the component is unavailable for the next 8 days, and would produce an array

[0,0,0,0,0,0,0,0,1,1,1,1,1,1].

• The main operations planning algorithm, which takes several key inputs (inflow

forecast, reservoir elevation, day references, component availabilities and reservoir

elevation limits) and determines the corresponding operating instructions for the

system to ensure minimum flow releases are met and reservoir level restrictions are

adhered to if possible (OpsPlan at line 960 in the code at the end of this Appendix).

This follows a similar if-then-else type algorithm as presented in Figure 3-14, but

with power flow releases added – see Figure . The algorithm begins by assuming

the minimum fish flow is released and the remainder of the inflow is passed through

the powerhouse (up to the maximum) for a 14-day window from the current date.

The resultant reservoir levels are then checked, adjusted and re-checked to ensure

286

the operating instructions result in reservoir levels that are within the specified

normal maximum (NMax) and minimum (NMin). To ensure enough water is

available for the winter low-flow period, the normal minimum reservoir level was

adjusted to El. 370 m for the months of November and December for the purposes

of the modelling.

Figure E2: Operations Planning algorithm for simulation model

287

• A function to retrieve the normal operating maximum and minimum reservoir

elevation corresponding to the reference day (GetNMax at line 1076 in the code at

the end of this Appendix) – this simply inserts the day reference (day of the year)

into an array containing the normal maximum and minimum levels for each day of

the year.

The next section of code (4. Defining sdpy functions) contains the details of the system

dynamics model, broken down into sectors. The functions for the hydraulic system state

are shown in 4.1, the sensors in 4.2, the disturbances in 4.3, operations in 4.4, gate actuators

in 4.5 and turbine actuators in 4.6. The output_saving function (line 1565) is used to store

information from the model in memory for later post-processing. The model sectors are

described in sub-sections 4.4.1.1 to 4.4.1.6.

Section 5 of the code (line 2005) is where the base case model is run. This section utilizes

the features of the sdpy package to run the simulation for each of the iterations. Stocks must

be re-set to their initial value following each iteration. Section 6 (line 2035) contains some

re-initiation of key functions to reflect the changes in the dam safety improved case and

also saves the results from the first run (base case) under different names for post-

processing. Section 6 then re-runs the model with the same inputs as the base case for the

dam safety improved case.

Section 7 of the script (line 2220) contains post-processing of the data, which involves the

analysis of event dependency and saving of pertinent data from the scenario into “.npz”

file formats. This format represents a compressed dictionary of arrays that are easily loaded

into python for future analysis and plotting.

288

1. """
2. SIMULATION SCRIPT
3.
4. This code contains the necessary script to run the simplified system dynamics mo

del,
5. with seed inputs as defined by the user, as well as NYr input to set the number

of
6. iterations. Flush_period argument should remain at 1.
7.
8. @author: Leanna King
9. """
10.
11. """
12. 1. INITIALIZATION
13.
14. -Importing necessary directories
15. -Reading and organizing input files
16.
17. """
18.
19. import time
20. t0=time.time()
21. from numba import njit, jit
22. #from scipy.interpolate import interp2d
23. #from scipy.interpolate import interp1d
24. import numpy as np
25. import pandas as pd
26. from datetime import datetime
27. import sdpy
28. import sys
29. import argparse
30. from scenarios import all_scenarios
31. import os
32.
33.
34. def datafile_path(filename):
35. return os.path.join(os.path.dirname(sys.argv[0]), 'data', filename)
36.
37. def RangeConstrainedParam(name, minvalue, maxvalue):
38. def parse(s):
39. n=int(s)
40. if n < minvalue or n > maxvalue:
41. raise ValueError()
42. return n
43. parse.__name__ = name
44. return parse
45.
46. maxseednum = len(all_scenarios)-1
47. parser = argparse.ArgumentParser(description='')
48. parser.add_argument('--NYr',
49. type=RangeConstrainedParam('NYr', 1, 10000),
50. default=5)
51. parser.add_argument('--seednum',
52. type=RangeConstrainedParam('seednum', 0, maxseednum),
53. default=301476) #813840 represents normal conditions
54. parser.add_argument('--flush_period',
55. type=RangeConstrainedParam('flush_period', 1, 10000),
56. default=1)
57. args = parser.parse_args()
58.
59.

289

60. model = sdpy.Sdmodel()
61.
62. NYr=args.NYr
63. seednum = args.seednum
64.
65. year=0
66. boolop=1 #Set to 1 for randomized, zero for non-randomized.
67. seedgen=1 #Set to 1 to generate seed, set to zero to read a previously generated

 seed file.
68.
69.
70. NormalRSEs=pd.read_csv(datafile_path(r'BaselineRSEs.csv'), header=0).values
71. NormalTBFs=pd.read_csv(datafile_path(r'BaselineTBFs.csv'), header=0).values
72. NormalSPOGs=pd.read_csv(datafile_path(r'BaselineSPOGs.csv'), header=0).values
73. NormalOTs=pd.read_csv(datafile_path(r'BaselineOTs.csv'), header=0).values
74. NormalTSs=NormalSPOGs
75.
76. #Inflow timeseries - SYNTHETIC - 10,374 years
77. Inflow_year=np.loadtxt(datafile_path("SyntheticInflow_Years.txt"), delimiter=","

)
78. InflowJan1Start=np.zeros((365*2,10373))
79. for yr in range(10373):
80. InflowJan1Start[0:365, yr]=Inflow_year[:,yr]
81. InflowJan1Start[365:730,yr]=Inflow_year[:,yr+1]
82.
83.
84. """
85. 2. GENERATING SEEDS
86.
87. -The seeds set the randomized parameters for each NYr using a Monte-

Carlo framework
88. -Seeds can be loaded from a previous output file if seedgen=0
89. -Or, create a seed from the seed number if seedgen=1
90. """
91.
92. ScenarioRL=datafile_path("S_RLAll-Inds-d.csv")
93. ScenarioCL=datafile_path("S_CLAll-Inds-d.csv")
94.
95. #print("Seednum: "+str(seednum))
96.
97. deltatmax=40 #set this based on system, or make it variable depending on number

of adverse OS's
98.
99. if seedgen==0:
100. Seeds=np.load(str("Outputs-"+str(seednum)+"-e.npz"))
101.
102. if seedgen==1:
103. import time
104. import random
105.
106. #Defining dictionaries
107. #Reservoir Level components
108. RLev={13: "G",
109. 8: "T",
110. 18: "PLR",
111. 29: "ACC",
112. 42: "PN",
113. 44: "GD",
114. 30: "SN",
115. 48: "STF",
116. 45: "IF"

290

117. }
118.
119. #Impact Types
120. Impacts={1: "o",
121. 2: "d",
122. 3: "e",
123. 5: "bl",
124. 4: "n",
125. 9: "ur"
126. }
127.
128. #OS Types
129. OSTypes={1: "f",
130. 2: "n",
131. 3: "fc",
132. 4: "fip",
133. 5: "c",
134. 6: "d",
135. 8: "e"
136. }
137.
138. #Component level components
139. CLType={13: "HC",
140. 15: "GEN",
141. 19: "GO",
142. 5: "FIP",
143. 11: "FO",
144. 1: "FC",
145. }
146.
147. CFType={1: "eq",
148. 2: "mt",
149. 3: "deb",
150. 4: "ra",
151. 5: "ice",
152. 7: "wnd",
153. 8: "fb",
154. 9: "age",
155. 10: "vf",
156. 11: "ltg",
157. 12: "rat",
158. 13: "dsg",
159. 14: "trf",
160. 15: "wsh",
161. 16: "fir",
162. 17: "tem",
163. 18: "wha",
164. 20: "ofa",
165. 21: "unc",
166. 22: "tim",
167. 23: "emr",
168. 25: "non",
169. }
170.
171. CFDates={1: [0,365],
172. 2: [0,365],
173. 3: [90,334],
174. 4: [0,365],
175. 5: [0, 60],
176. 7: [0,365],
177. 8: [0,365],

291

178. 9: [0,365],
179. 10: [0,365],
180. 11: [90, 334],
181. 12: [0,365],
182. 13: [0,365],
183. 14: [0,365],
184. 15: [0,365],
185. 16: [151, 304],
186. 17: [0,365],
187. 18: [0,365],
188. 20: [0,365],
189. 21: [0,365],
190. 22: [0,365],
191. 23: [0,365],
192. 25: [0,365],
193. }
194. # @jit
195. def gen_avg(expected_avg, n, a, b, boolop):
196. if boolop==1: #random
197. out=np.random.uniform(a, b, n)
198. if boolop==0: #nonrandom
199. out=np.ones(n)*expected_avg
200. return out
201. # @jit
202. def dayrefs(Startdays, timestep, NYr):
203. daynum=Startdays+int(timestep) #STARTDAYS CONTAINS 1-

365 STARTING DAY REF FOR EACH INFLOW SEQUENCE
204. dayref365=np.zeros((365,NYr))
205. dayref365[0, :]=daynum
206. for t in range(364): #Converts vensim date into numbers 1-

365 to represent dates in the model
207. for yr in range(NYr):
208. if dayref365[t, yr]+1<365:
209. dayref365[t+1, yr]=dayref365[t, yr]+1
210. else: dayref365[t+1, yr]=0
211. return dayref365
212. # @jit
213. def randintswitch(low, high, NYears ,boolop):
214. if boolop==1: #randomly sets int between low and high
215. out=np.zeros(NYears)
216. for i in range(NYears):
217. out[i]=np.random.randint(low, high[i], 1)
218. return out
219. if boolop==0: #defaults to low if non-randomized
220. return np.ones(NYears)*low
221. # @jit
222. def randintswitch2(low, high, NYears ,boolop):
223. if boolop==1: #randomly sets int between low and high
224. return np.random.randint(low, high, NYears)
225. if boolop==0: #defaults to low if non-randomized
226. return np.ones(NYears)*low
227. # @jit
228. def randintswitchCF(mindate, maxdate, refdates, lowest, highest, bo

olop):
229. if boolop==1: #randomly sets int between low and high
230. if mindate!=0 or maxdate!=365:
231. clipped=np.clip(refdates, mindate, maxdate)
232. dates=np.random.randint(np.min(clipped), np.max(clipped)

)
233. return np.where(refdates==dates)[0]
234. else:

292

235. return np.random.randint(lowest, highest)
236. if boolop==0: #defaults to low if non-randomized
237. return lowest
238. # @jit
239. def randswitch(mini, avg, maxi, Nyears, boolop):
240. if boolop==1:
241. return np.random.triangular(mini, avg, maxi, Nyears) #return

s triangular distributed variables
242. if boolop==0:
243. return np.ones(Nyears)*avg
244.
245. name1=ScenarioRL
246. name2=ScenarioCL
247.
248. S_RL=pd.read_csv(name1)
249. S_RL=S_RL.set_index("NewInd")
250. S_CL=pd.read_csv(name2)
251. S_CL=S_CL.set_index("NewInd") #setting index to the formatted OS IDs

252.
253. scenar = all_scenarios[seednum]
254. ScenarioRL=S_RL.filter(items=scenar[0:7], axis=0)
255. ScenarioCL=S_CL.filter(items=scenar[7:13], axis=0)
256.
257.
258. RLInds=ScenarioRL.index.tolist()
259. CLInds=ScenarioCL.index.tolist()
260. SD=[]
261.
262. #Use dictonary to get scenario names
263. for c in range(np.shape(ScenarioRL["ReservoirLevelId"])[0]):
264. RLID=RLev[ScenarioRL.loc[RLInds[c]]["ReservoirLevelId"]]
265. IMP=Impacts[ScenarioRL.loc[RLInds[c]]["ImpactTypeId"]]
266. OS=OSTypes[ScenarioRL.loc[RLInds[c]]["OperatingStateTypeId"]]
267. CF=CFType[ScenarioRL.loc[RLInds[c]]["CausalFactorTypeId"]]
268. SD.append(str(RLID + "-" + OS + IMP + "-" + CF + "_"))
269.
270. for c in range(np.shape(ScenarioCL["ReservoirLevelId"])[0]):
271. RLID=RLev[ScenarioCL.loc[CLInds[c]]["ReservoirLevelId"]]
272. CLID=CLType[ScenarioCL.loc[CLInds[c]]["ComponentLevelTypeId"]]
273. IMP=Impacts[ScenarioCL.loc[CLInds[c]]["ImpactTypeId"]]
274. OS=OSTypes[ScenarioCL.loc[CLInds[c]]["OperatingStateTypeId"]]
275. CF=CFType[ScenarioCL.loc[CLInds[c]]["CausalFactorTypeId"]]
276. SD.append(str(RLID +"-"+ CLID + "-" + OS + IMP + "-

" + CF + "_"))
277.
278. #omitting normal conditions
279. out=[i for i in SD if not ('-nn' in i)]
280.
281. #Formatting as one long string explaining what's happening in scenar

io
282. ScenarioDescriptor="".join(out)
283.
284. #SET RANDOM START DATES FOR SIMULATION
285. #Between May 1 - Sept 30 thunderstorm season
286. possible_starts = [(x, y) for x in range(0,364) for y in range(0

, 9999)]
287. if boolop == 1:
288. Starts = random.sample(possible_starts, NYr)
289. if boolop == 0:

293

290. Starts = possible_starts[0 : NYr] #just takes the first bunch
if non-randomized

291.
292. Startdays=np.zeros(NYr)
293. Startyears=np.zeros(NYr)
294. for i in range(NYr):
295. Startdays[i]=Starts[i][0]
296. Startyears[i]=Starts[i][1]
297.
298. refdays=dayrefs(Startdays, 0, NYr) #returns 365xNYr array containing

 reference dates from 1-365
299.
300. #Determine unique causal factors for timing
301. cfs=[]
302. ScenarioRL2=ScenarioRL[ScenarioRL["ReservoirLevelId"]!=29]
303. ScenarioRL3=ScenarioRL2[ScenarioRL2["ReservoirLevelId"]!=48]
304. cfs.append(ScenarioRL3["CausalFactorTypeId"])
305. #remove site access and staffing delays from cf list since they are

implemented differently
306. cfs.append(ScenarioCL["CausalFactorTypeId"])
307.
308. CFS=np.zeros(int(np.size(cfs[0]))+ int(np.size(cfs[1])))
309. for i in range(len(cfs[0])):
310. CFS[i]=cfs[0][i]
311. for i in range(len(cfs[1])):
312. CFS[i+np.size(cfs[0])]=cfs[1][i]
313. uniqueCFs=np.unique(CFS)
314. uniqueCFs=np.setdiff1d(uniqueCFs,[25])
315.
316. impacttimes=np.zeros((np.size(uniqueCFs), 2,NYr)) #CF, Impact Time,

Year
317. for i in range(NYr):
318. if boolop==1:
319. random.shuffle(uniqueCFs) #does not shuffle if boolop=0 (non

 randomized)
320. impacttimes[:, 0,i]=uniqueCFs #This is the order of occurrence

 of the causal factor impacts for the simulation
321. for j in range(np.size(uniqueCFs)):
322. impacttimes[j, 1, i]=randintswitchCF(CFDates[uniqueCFs[j]][0

],CFDates[uniqueCFs[j]][1], refdays[:,i], 1, deltatmax, boolop=boolop) #Sets ran
dom times for subsequent disturbances within 6 months of original

323. if np.size(uniqueCFs)>0:
324. impacttimes[0,1,i]=1 #set all first disturbances to day 1
325. #now make a dataframe with start times for each CF
326. imptimessorted=np.zeros((np.size(uniqueCFs), 2,NYr))
327. for i in range(NYr):
328. imptime=impacttimes[:,:,i]
329. imptimessorted[:,:,i]=imptime[imptime[:,0].argsort()]
330.
331.
332. #Debris on gate opening. Set reduced gate capacity
333. ReducedCapacities=1+np.zeros((NYr)) #default no blockage
334. #one for each gate and inflow (can randomize degree of block

age b/w min and max)
335. AllDebris=ScenarioCL[ScenarioCL["ImpactTypeId"]==5]
336. AllDebris=AllDebris.reset_index(drop=True)
337. for c in range(np.shape(AllDebris["ReservoirLevelId"])[0]):
338. cavg=1.-(AllDebris["Avg"][c]/100.)
339. cmin=1.-(AllDebris["Min"][c]/100.)
340. cmax=1.-(AllDebris["Max"][c]/100.)

294

341. ReducedCapacities=gen_avg(cavg, NYr, cmin, cmax, boolop)

342.
343. Day1Used_MtnAge=np.zeros((2,NYr))
344.
345. #Organize outages by component
346. GateOutagesAll=np.zeros((3, NYr)) #FC, FO, FIP
347. GateCollapses=np.zeros((1,NYr))
348. Gdeltat=np.zeros((3, NYr))
349. SPOG1OutagesCL=ScenarioCL[(ScenarioCL["ImpactTypeId"]==1) & (Scenari

oCL["ReservoirLevelId"]==13)]
350. SPOG1OutagesCL=SPOG1OutagesCL.reset_index()
351. for c in range (np.shape(SPOG1OutagesCL["ReservoirLevelId"])[0]):
352.
353. if SPOG1OutagesCL["ComponentLevelTypeId"][c]==1: #Fail closed
354. GateOutagesAll[0,:]=randswitch(SPOG1OutagesCL["Min"][c], SPO

G1OutagesCL["Avg"][c], SPOG1OutagesCL["Max"][c], NYr, boolop)
355.
356.
357.
358. if SPOG1OutagesCL["ComponentLevelTypeId"][c]==11: #Fail open/col

lapse
359. GateOutagesAll[1,:]=randswitch(SPOG1OutagesCL["Min"][c], SPO

G1OutagesCL["Avg"][c], SPOG1OutagesCL["Max"][c], NYr, boolop)
360. if SPOG1OutagesCL["OperatingStateTypeId"][c]==5:
361. GateCollapses[0,:]=1+np.zeros(NYr)
362.
363.
364. if SPOG1OutagesCL["ComponentLevelTypeId"][c]==5: #Fail in place

365. GateOutagesAll[2,:]=randswitch(SPOG1OutagesCL["Min"][c], SPO

G1OutagesCL["Avg"][c], SPOG1OutagesCL["Max"][c], NYr, boolop)
366.
367.
368.
369. TurbineOutagesAll=np.zeros((2, NYr)) #HC, GEN
370. Tdeltat=np.zeros((2,NYr))
371. TB1OutagesCL=(ScenarioCL[ScenarioCL["ReservoirLevelId"]==8]) #filter

 to turbine only
372. TB1OutagesCL=(TB1OutagesCL[TB1OutagesCL["OperatingStateTypeId"]!=2])

 #omit normal conditions
373. TB1OutagesCL=TB1OutagesCL.reset_index(drop=True)
374. for c in range (np.shape(TB1OutagesCL["ReservoirLevelId"])[0]):
375. if TB1OutagesCL["ComponentLevelTypeId"][c]==13: #Head Cover HC R

ESULTS IN UNCONTROLLED RELEASE
376. TurbineOutagesAll[0,:]=randswitch(TB1OutagesCL["Min"][c],TB1

OutagesCL["Avg"][c], TB1OutagesCL["Max"][c], NYr, boolop)
377.
378. if TB1OutagesCL["ComponentLevelTypeId"][c]==15: #Generator
379. TurbineOutagesAll[1,:]=randswitch(TB1OutagesCL["Min"][c],TB1

OutagesCL["Avg"][c], TB1OutagesCL["Max"][c], NYr, boolop)
380. ind=int(np.where(imptimessorted[:,0,1]==TB1OutagesCL["Causal

FactorTypeId"][c])[0])
381.
382.
383. AllOutagesRL=(ScenarioRL[ScenarioRL["ImpactTypeId"].isin([1,9])])
384. AllOutagesRL=AllOutagesRL.reset_index(drop=True)
385. ScenarioRL=ScenarioRL.reset_index(drop=True)
386. AllErrors=ScenarioRL[ScenarioRL["ImpactTypeId"]==3] #Errors to senso

rs and Inflow Forecast
387. AllErrors=AllErrors.reset_index(drop=True)

295

388.
389. OCOutages=np.zeros((3,NYr))
390. #PLCRTU, Penstock, Grid
391. SOutages=np.zeros(NYr)
392. #Res El Sensor 1
393.
394. OCdeltat=np.zeros((3,NYr))
395. Sdeltat=np.zeros(NYr)
396. for c in range (np.shape(AllOutagesRL["ReservoirLevelId"])[0]):
397. #Other components
398. if AllOutagesRL["ReservoirLevelId"][c]==18: #Dam PLC failure HOU

RS
399. OCOutages[0, :]=randswitch(AllOutagesRL["Min"][c], AllOutage

sRL["Avg"][c], AllOutagesRL["Max"][c], NYr, boolop)
400.
401.
402. if AllOutagesRL["ReservoirLevelId"][c]==42: #Penstock
403. OCOutages[1,:]=randswitch(AllOutagesRL["Min"][c], AllOutages

RL["Avg"][c], AllOutagesRL["Max"][c], NYr, boolop)
404.
405. if AllOutagesRL["ReservoirLevelId"][c]==44: #CMS GRID
406. OCOutages[2,:]=randswitch(AllOutagesRL["Min"][c], AllOutages

RL["Avg"][c], AllOutagesRL["Max"][c], NYr, boolop)
407.
408. #Sensors
409. if AllOutagesRL["ReservoirLevelId"][c]==30: #RE Sensor 1
410. SOutages=randswitch(AllOutagesRL["Min"][c], AllOutagesRL["Av

g"][c], AllOutagesRL["Max"][c], NYr, boolop)
411.
412.
413.
414. SErrors=np.zeros(NYr)
415. SErrorDeltat=np.zeros(NYr)
416. SErrorDuration=randintswitch2(1, 10, NYr, boolop) #randomly setting

error duration between 1 and 10 days
417. IFErrorDuration=randintswitch2(1, 10, NYr, boolop)
418. IFErrorDeltat=np.zeros(NYr) #randomly setting error duration between

 1 and 10 days
419.
420. for c in range (np.shape(AllErrors["ReservoirLevelId"])[0]):
421. #Other components
422. if AllErrors["ReservoirLevelId"][c]==30: #Res El Sensor 1
423. SErrors=randswitch(AllErrors["Min"][c], AllErrors["Avg"][c],

 AllErrors["Max"][c], NYr, boolop)
424.
425. if AllErrors["ReservoirLevelId"][c]==45: #Inflow forecast error

426. ind=int(np.where(imptimessorted[:,0,1]==AllErrors["CausalFac

torTypeId"][c])[0])
427. IFErrorDeltat=imptimessorted[ind,1,:]
428.
429.
430.
431. DelayAccess=np.zeros((2, NYr))
432. DelayStaff=np.zeros(NYr)
433. AllDelays=ScenarioRL[ScenarioRL["ImpactTypeId"]==2]
434. AllDelays=AllDelays.reset_index(drop=True)
435. for c in range (np.shape(AllDelays["ReservoirLevelId"])[0]):
436. #Other components
437. if AllDelays["ReservoirLevelId"][c]==29: #Dam Access

296

438. DelayAccess[0, :]=randswitch(AllDelays["Min"][c], AllDelays[
"Avg"][c], AllDelays["Max"][c], NYr, boolop)

439.
440. if AllDelays["ReservoirLevelId"][c]==28: #Powerhouse Access
441. DelayAccess[1, :]=randswitch(AllDelays["Min"][c], AllDelays[

"Avg"][c], AllDelays["Max"][c], NYr, boolop)
442.
443. if AllDelays["ReservoirLevelId"][c]==48: #Powerhouse Access
444. DelayStaff[:]=randswitch(AllDelays["Min"][c], AllDelays["Avg

"][c], AllDelays["Max"][c], NYr, boolop)
445.
446.
447. """
448. NOW DETERMINE MAX IMPACT INITIATION TIME BASED ON TIME TO REPAIR FOR

 COMPONENTS THAT CAUSE A LOSS IN CAPACITY
449. """
450. #figure out length of time components are out for...
451. deltatmax=GateOutagesAll[0,:] + GateOutagesAll[1,:] + GateOutagesAll

[2,:] + TurbineOutagesAll[1,:] + TurbineOutagesAll[0,:] + OCOutages[0,:] + OCOut
ages[1,:]+ OCOutages[2,:] + SErrorDuration + SErrors

452. deltatmax=deltatmax*0.8 #somewhat arbitrary. Can experiment and sel
ect to ensure enough data points are collected for each scenario

453. deltatmax=deltatmax.clip(4, 180)
454.
455.
456. """
457. NOW THAT WE HAVE SET DELTATMAX, WE CAN SET THE IMPACT TIMES
458. """
459.
460. for c in range (np.shape(SPOG1OutagesCL["ReservoirLevelId"])[0]):
461.
462. if SPOG1OutagesCL["ComponentLevelTypeId"][c]==1: #Fail closed
463. ind=int(np.where(imptimessorted[:,0,1]==SPOG1OutagesCL["Caus

alFactorTypeId"][c])[0])
464. Gdeltat[0,:]=imptimessorted[ind,1,:]
465. if imptimessorted[ind,0,0]==2: #mtnce
466. for y in range(NYr):
467. if imptimessorted[ind,1,y]>1:
468. Gdeltat[0,y]=randintswitch(0, deltatmax, 1, bool

op)
469. else:
470. if Day1Used_MtnAge[0,y]==1:
471. Gdeltat[0,y]=randintswitch(0, deltatmax, 1,

boolop) #set all mtnce events randomly except the first occurrence of a day 1 mt
nce failure

472. else:
473. Gdeltat[0,y]=1
474. Day1Used_MtnAge[0,y]=1
475.
476. if imptimessorted[ind,0,0]==9: #aging
477. for y in range(NYr):
478. if imptimessorted[ind,1,y]>1:
479. Gdeltat[0,y]=randintswitch(0, deltatmax, 1, bool

op) #set all aging events randomly except the first occurrence of a day 1 age fa
ilure

480. else:
481. if Day1Used_MtnAge[1,y]==1:
482. Gdeltat[0,y]=randintswitch(0, deltatmax, 1,

boolop)
483. else:
484. Gdeltat[0,y]=1

297

485. Day1Used_MtnAge[1,y]=1
486.
487.
488.
489. if SPOG1OutagesCL["ComponentLevelTypeId"][c]==11: #Fail open/col

lapse
490. ind=int(np.where(imptimessorted[:,0,1]==SPOG1OutagesCL["Caus

alFactorTypeId"][c])[0])
491. Gdeltat[1,:]=imptimessorted[ind,1,:]
492. if SPOG1OutagesCL["OperatingStateTypeId"][c]==5:
493. GateCollapses[0,:]=1+np.zeros(NYr)
494. if imptimessorted[ind,0,0]==2: #mtnce
495. for y in range(NYr):
496. if imptimessorted[ind,1,y]>1:
497. Gdeltat[1,y]=randintswitch(0, deltatmax, 1, bool

op)
498. else:
499. if Day1Used_MtnAge[0,y]==1:
500. Gdeltat[1,y]=randintswitch(0, deltatmax, 1,

boolop) #set all mtnce events randomly except the first occurrence of a day 1 mt
nce failure

501. else:
502. Gdeltat[1,y]=1
503. Day1Used_MtnAge[0,y]=1
504. if imptimessorted[ind,0,0]==9: #aging
505. for y in range(NYr):
506. if imptimessorted[ind,1,y]>1:
507. Gdeltat[1,y]=randintswitch(0, deltatmax, 1, bool

op) #set all aging events randomly except the first occurrence of a day 1 age fa
ilure

508. else:
509. if Day1Used_MtnAge[1,y]==1:
510. Gdeltat[1,y]=randintswitch(0, deltatmax, 1,

boolop)
511. else:
512. Gdeltat[1,y]=1
513. Day1Used_MtnAge[1,y]=1
514.
515.
516. if SPOG1OutagesCL["ComponentLevelTypeId"][c]==5: #Fail in place

517. ind=int(np.where(imptimessorted[:,0,1]==SPOG1OutagesCL["Caus

alFactorTypeId"][c])[0])
518. Gdeltat[2,:]=imptimessorted[ind,1,:]
519. if imptimessorted[ind,0,0]==2: #mtnce
520. for y in range(NYr):
521. if imptimessorted[ind,1,y]>1:
522. Gdeltat[2,y]=randintswitch(0, deltatmax, 1, bool

op)
523. else:
524. if Day1Used_MtnAge[0,y]==1:
525. Gdeltat[2,y]=randintswitch(0, deltatmax, 1,

boolop) #set all mtnce events randomly except the first occurrence of a day 1 mt
nce failure

526. else:
527. Gdeltat[2,y]=1
528. Day1Used_MtnAge[0,y]=1
529. if imptimessorted[ind,0,0]==9: #aging
530. for y in range(NYr):
531. if imptimessorted[ind,1,y]>1:

298

532. Gdeltat[2,y]=randintswitch(0, deltatmax, 1, bool
op) #set all aging events randomly except the first occurrence of a day 1 age fa
ilure

533. else:
534. if Day1Used_MtnAge[1,y]==1:
535. Gdeltat[2,y]=randintswitch(0, deltatmax, 1,

boolop)
536. else:
537. Gdeltat[2,y]=1
538. Day1Used_MtnAge[1,y]=1
539.
540.
541.
542. for c in range (np.shape(TB1OutagesCL["ReservoirLevelId"])[0]):
543. if TB1OutagesCL["ComponentLevelTypeId"][c]==13: #Head Cover HC R

ESULTS IN UNCONTROLLED RELEASE
544. ind=int(np.where(imptimessorted[:,0,1]==TB1OutagesCL["Causal

FactorTypeId"][c])[0])
545. Tdeltat[0,:]=imptimessorted[ind,1,:]
546. if imptimessorted[ind,0,0]==2: #mtnce
547. for y in range(NYr):
548. if imptimessorted[ind,1,y]>1:
549. Tdeltat[0,y]=randintswitch(0, deltatmax, 1, bool

op)
550. else:
551. if Day1Used_MtnAge[0,y]==1:
552. Tdeltat[0,y]=randintswitch(0, deltatmax, 1,

boolop) #set all mtnce events randomly except the first occurrence of a day 1 mt
nce failure

553. else:
554. Tdeltat[0,y]=1
555. Day1Used_MtnAge[0,y]=1
556. if imptimessorted[ind,0,0]==9: #aging
557. for y in range(NYr):
558. if imptimessorted[ind,1,y]>1:
559. Tdeltat[0,y]=randintswitch(0, deltatmax, 1, bool

op) #set all aging events randomly except the first occurrence of a day 1 age fa
ilure

560. else:
561. if Day1Used_MtnAge[1,y]==1:
562. Tdeltat[0,y]=randintswitch(0, deltatmax, 1,

boolop)
563. else:
564. Tdeltat[0,y]=1
565. Day1Used_MtnAge[1,y]=1
566.
567. if TB1OutagesCL["ComponentLevelTypeId"][c]==15: #Generator
568. ind=int(np.where(imptimessorted[:,0,1]==TB1OutagesCL["Causal

FactorTypeId"][c])[0])
569. Tdeltat[1,:]=imptimessorted[ind,1,:]
570. if imptimessorted[ind,0,0]==2: #mtnce
571. for y in range(NYr):
572. if imptimessorted[ind,1,y]>1:
573. Tdeltat[1,y]=randintswitch(0, deltatmax, 1, bool

op)
574. else:
575. if Day1Used_MtnAge[0,y]==1:
576. Tdeltat[1,y]=randintswitch(0, deltatmax, 1,

boolop) #set all mtnce events randomly except the first occurrence of a day 1 mt
nce failure

577. else:

299

578. Tdeltat[1,y]=1
579. Day1Used_MtnAge[0,y]=1
580. if imptimessorted[ind,0,0]==9: #aging
581. for y in range(NYr):
582. if imptimessorted[ind,1,y]>1:
583. Tdeltat[1,y]=randintswitch(0, deltatmax, 1, bool

op) #set all aging events randomly except the first occurrence of a day 1 age fa
ilure

584. else:
585. if Day1Used_MtnAge[1,y]==1:
586. Tdeltat[1,y]=randintswitch(0, deltatmax, 1,

boolop)
587. else:
588. Tdeltat[1,y]=1
589. Day1Used_MtnAge[1,y]=1
590.
591.
592. for c in range (np.shape(AllOutagesRL["ReservoirLevelId"])[0]):
593. #Other components
594. if AllOutagesRL["ReservoirLevelId"][c]==18: #Dam PLC failure HOU

RS
595. ind=int(np.where(imptimessorted[:,0,1]==AllOutagesRL["Causal

FactorTypeId"][c])[0])
596. OCdeltat[0,:]=imptimessorted[ind,1,:]
597. if imptimessorted[ind,0,0]==2: #mtnce
598. for y in range(NYr):
599. if imptimessorted[ind,1,y]>1:
600. OCdeltat[0,y]=randintswitch(0, deltatmax, 1, boo

lop)
601. else:
602. if Day1Used_MtnAge[0,y]==1:
603. OCdeltat[0,y]=randintswitch(0, deltatmax, 1,

 boolop) #set all mtnce events randomly except the first occurrence of a day 1 m
tnce failure

604. else:
605. OCdeltat[0,y]=1
606. Day1Used_MtnAge[0,y]=1
607. if imptimessorted[ind,0,0]==9: #aging
608. for y in range(NYr):
609. if imptimessorted[ind,1,y]>1:
610. OCdeltat[0,y]=randintswitch(0, deltatmax, 1, boo

lop) #set all aging events randomly except the first occurrence of a day 1 age f
ailure

611. else:
612. if Day1Used_MtnAge[1,y]==1:
613. OCdeltat[0,y]=randintswitch(0, deltatmax, 1,

 boolop)
614. else:
615. OCdeltat[0,y]=1
616. Day1Used_MtnAge[1,y]=1
617.
618.
619. if AllOutagesRL["ReservoirLevelId"][c]==42: #Penstock
620. ind=int(np.where(imptimessorted[:,0,1]==AllOutagesRL["Causal

FactorTypeId"][c])[0])
621. OCdeltat[1,:]=imptimessorted[ind,1,:]
622. if imptimessorted[ind,0,0]==2: #mtnce
623. for y in range(NYr):
624. if imptimessorted[ind,1,y]>1:
625. OCdeltat[1,y]=randintswitch(0, deltatmax, 1, boo

lop)

300

626. else:
627. if Day1Used_MtnAge[0,y]==1:
628. OCdeltat[1,y]=randintswitch(0, deltatmax, 1,

 boolop) #set all mtnce events randomly except the first occurrence of a day 1 m
tnce failure

629. else:
630. OCdeltat[1,y]=1
631. Day1Used_MtnAge[0,y]=1
632. if imptimessorted[ind,0,0]==9: #aging
633. for y in range(NYr):
634. if imptimessorted[ind,1,y]>1:
635. OCdeltat[1,y]=randintswitch(0, deltatmax, 1, boo

lop) #set all aging events randomly except the first occurrence of a day 1 age f
ailure

636. else:
637. if Day1Used_MtnAge[1,y]==1:
638. OCdeltat[1,y]=randintswitch(0, deltatmax, 1,

 boolop)
639. else:
640. OCdeltat[1,y]=1
641. Day1Used_MtnAge[1,y]=1
642.
643. if AllOutagesRL["ReservoirLevelId"][c]==44: #CMS GRID
644. ind=int(np.where(imptimessorted[:,0,1]==AllOutagesRL["Causal

FactorTypeId"][c])[0])
645. OCdeltat[2,:]=imptimessorted[ind,1,:]
646. if imptimessorted[ind,0,0]==2: #mtnce
647. for y in range(NYr):
648. if imptimessorted[ind,1,y]>1:
649. OCdeltat[2,y]=randintswitch(0, deltatmax, 1, boo

lop)
650. else:
651. if Day1Used_MtnAge[0,y]==1:
652. OCdeltat[2,y]=randintswitch(0, deltatmax, 1,

 boolop) #set all mtnce events randomly except the first occurrence of a day 1 m
tnce failure

653. else:
654. OCdeltat[2,y]=1
655. Day1Used_MtnAge[0,y]=1
656. if imptimessorted[ind,0,0]==9: #aging
657. for y in range(NYr):
658. if imptimessorted[ind,1,y]>1:
659. OCdeltat[2,y]=randintswitch(0, deltatmax, 1, boo

lop) #set all aging events randomly except the first occurrence of a day 1 age f
ailure

660. else:
661. if Day1Used_MtnAge[1,y]==1:
662. OCdeltat[2,y]=randintswitch(0, deltatmax, 1,

 boolop)
663. else:
664. OCdeltat[2,y]=1
665. Day1Used_MtnAge[1,y]=1
666.
667. #Sensors
668. if AllOutagesRL["ReservoirLevelId"][c]==30: #RE Sensor 1
669. ind=int(np.where(imptimessorted[:,0,1]==AllOutagesRL["Causal

FactorTypeId"][c])[0])
670. Sdeltat=imptimessorted[ind,1,:]
671. if imptimessorted[ind,0,0]==2: #mtnce
672. for y in range(NYr):
673. if imptimessorted[ind,1,y]>1:

301

674. Sdeltat[y]=randintswitch(0, deltatmax, 1, boolop
)

675. else:
676. if Day1Used_MtnAge[0,y]==1:
677. Sdeltat[y]=randintswitch(0, deltatmax, 1, bo

olop) #set all mtnce events randomly except the first occurrence of a day 1 mtnc
e failure

678. else:
679. Sdeltat[y]=1
680. Day1Used_MtnAge[0,y]=1
681. if imptimessorted[ind,0,0]==9: #aging
682. for y in range(NYr):
683. if imptimessorted[ind,1,y]>1:
684. Sdeltat[y]=randintswitch(0, deltatmax, 1, boolop

) #set all aging events randomly except the first occurrence of a day 1 age fail
ure

685. else:
686. if Day1Used_MtnAge[1,y]==1:
687. Sdeltat[y]=randintswitch(0, deltatmax, 1, bo

olop)
688. else:
689. Sdeltat[y]=1
690. Day1Used_MtnAge[1 ,y]=1
691.
692.
693.
694.
695. for c in range (np.shape(AllErrors["ReservoirLevelId"])[0]):
696. #Other components
697. if AllErrors["ReservoirLevelId"][c]==30: #Res El Sensor 1
698. ind=int(np.where(imptimessorted[:,0,1]==AllErrors["CausalFac

torTypeId"][c])[0])
699. SErrorDeltat=imptimessorted[ind,1,:]
700.
701.
702. if AllErrors["ReservoirLevelId"][c]==45: #Inflow forecast error

703. ind=int(np.where(imptimessorted[:,0,1]==AllErrors["CausalFac

torTypeId"][c])[0])
704. IFErrorDeltat=imptimessorted[ind,1,:]
705.
706.
707.
708.
709. """
710. 3. INITIALIZING SUPPORTING FUNCTIONS AND ARRAYS
711.
712. -Sets up arrays to be populated by SD model
713. -Sets up supporting functions
714. -

Functions defined here are not part of the System Dynamics model but may be call
ed from it

715.
716. """
717.
718. runname="Simple64-i1-O-2018-5yr"
719. runname1=runname
720.
721. start=(str(datetime.now()))
722.
723. @njit

302

724. def SSC(storage): #Stage storage curve
725. if storage<1400:
726. return -1.1201e-

05 * storage**2 + 0.032473 * storage + 364.6572
727. else:
728. return 388.16
729.
730. @njit
731. def SSCrev(stage): #Storage stage curve
732. return np.roots(np.array([-1.1201e-05, 0.032473, 364.6572-

stage]))[1]
733. @njit
734. def OTC(elev): #Overtopping curve
735. if elev<=380.41: #378.41
736. return 0
737. else:
738. return (-35.7505780379803*(elev-2)**3 + 40896.2749435669*(elev-

2)**2 -15593240.0619064*(elev-2) + 1981715583.08889)*0.3
739.
740.
741. #Rating curves for different gates to be used to switch between gate pos

ition and flow
742. RatingCurve1=pd.read_csv(datafile_path("SPOGAllRC.csv"), index_col=0)
743. x1=np.asarray(RatingCurve1.index.values, dtype=float)
744. y1=np.asarray(RatingCurve1.columns.values, dtype=float)
745. z1=np.asarray(RatingCurve1.values, dtype=float)
746.
747. @njit
748. def fncTurbineMaxFlow(elev, flagT):
749. if flagT==1: #// Turb on
750. if elev < 363.05:
751. result = 0
752. elif 363.05 <= elev < 365.05:
753. result = 13.98 * elev - 5075.44
754. elif 365.05 <= elev < 367.05:
755. result = 18.02334 * elev - 6551.46
756. else:
757. result = 65
758. else: #//both off
759. return 0
760. return result
761.
762. @njit
763. def SPOGMaxFlow(elev, flag): #Sums the values from two gates into a sing

le gate discharge
764. if flag == 1:
765. if 367.28<=elev<367.5:
766. out1= 19.09091*elev-7011.7
767. if 367.5<=elev<=367.8:
768. out1= 37.33334*elev-13715.8
769. if 367.8<=elev<=369:#368.1:
770. out1= 49.667*elev-18252
771. if 369 <=elev < 381.6: #367.8 sill
772. out1= 2.154624239*elev**2 - 1496.3410084*elev + 258875.37647

999998
773. elif elev >= 381.6:
774. out1= 861.1+728.9
775. else:
776. out1= 0
777. else:
778. out1=0

303

779. return out1
780.
781. @njit
782. def GateInstr(ResEl, OP):
783. y=y1
784. z=z1
785. x=x1
786. GatePosition=0
787. if (ResEl > 367.28):
788. Yo=np.abs(y-ResEl).argsort()[0:2]
789. WtYo0=np.abs((ResEl-y[Yo[0]])/(y[Yo[0]]-y[Yo[1]]))
790. WtYo1=np.abs((ResEl-y[Yo[1]])/(y[Yo[0]]-y[Yo[1]]))
791. ResElFlow=(1-WtYo0)*z[:,Yo[0]]+(1-WtYo1)*z[:,Yo[1]]
792. GateFlow=np.round(OP,2)
793. GateFlowMax=np.max(ResElFlow)
794. if GateFlow<=0:
795. return 0
796. else:
797. if (GateFlow>GateFlowMax):
798. GateFlow=GateFlowMax-0.01
799. if GateFlow < ResElFlow[0]:
800. return x[0]
801. elif GateFlow > ResElFlow[-1]:
802. return x[-1]
803. else:
804. for i in range(len(ResElFlow) - 1):
805. if ResElFlow[i] <= GateFlow <= ResElFlow[i + 1]:
806. X1, X2 = ResElFlow[i], ResElFlow[i + 1]
807. Y1, Y2 = x[i], x[i + 1]
808.
809. return Y1 + (Y2 - Y1) / (X2 - X1) * (GateFlow -

X1)
810. else:
811. return GatePosition
812.
813. @njit
814. def interpolate(x0, x, y):
815. if x0 < x[0]:
816. return y[0]
817. elif x0 > x[-1]:
818. return y[-1]
819. else:
820. for i in range(len(x) - 1):
821. if x[i] <= x0 <= x[i + 1]:
822. x1, x2 = x[i], x[i + 1]
823. y1, y2 = y[i], y[i + 1]
824.
825. return y1 + (y2 - y1) / (x2 - x1) * (x0 - x1)
826.
827. @njit
828. def GateFlowCalc(ResEl, GP):
829. y=y1
830. z=z1
831. x=x1
832. GateFlow=0
833. if (ResEl > 367.28):
834. if GP>12.5:
835. GP=12.4999
836. Yo=np.abs(y-ResEl).argsort()[0:2]
837. WtYo0=np.abs((ResEl-y[Yo[0]])/(y[Yo[0]]-y[Yo[1]]))
838. WtYo1=np.abs((ResEl-y[Yo[1]])/(y[Yo[0]]-y[Yo[1]]))

304

839. ResElFlow=(1-WtYo0)*z[:,Yo[0]]+(1-WtYo1)*z[:,Yo[1]]
840. # GateFlow=interpolate(GP, x, ResElFlow)
841. if GP < x[0]:
842. return ResElFlow[0]
843. elif GP > x[-1]:
844. return ResElFlow[-1]
845. else:
846. for i in range(len(x) - 1):
847. if x[i] <= GP <= x[i + 1]:
848. X1, X2 = x[i], x[i + 1]
849. Y1, Y2 = ResElFlow[i], ResElFlow[i + 1]
850.
851. return Y1 + (Y2 - Y1) / (X2 - X1) * (GP - X1)
852. else:
853. return GateFlow
854.
855. #Storage min and max
856. Smin=8.864837907352
857. Smax=516.35
858.
859. #Set arrays to save model outputs for NYr years of inflows
860. year=0
861. RSEs=np.zeros((365,NYr))
862. TBFs=np.zeros((365,NYr))
863. SPOGs=np.zeros((365,NYr))
864. OT=np.zeros((365,NYr))
865. INFs=np.zeros((365,NYr))
866. OUTFs=np.zeros((365,NYr))
867. GPs=np.zeros((365, NYr))
868. GAVs=np.zeros((365, NYr))
869. UAVs=np.zeros((365, NYr))
870. MOBI=np.zeros((365, NYr))
871. MOB=np.zeros((365, NYr))
872. TOTR=np.zeros((365,NYr))
873. DEBRISREMOVAL=np.zeros(NYr)
874. DAY=np.zeros((365,NYr))
875. MON=np.zeros((365,NYr))
876. AllMaxQ_t=np.zeros((365,2, NYr))
877. AllMaxQ=[861.1+728.9,32.5+32.5]
878. TTRS=np.zeros((365,8, NYr))
879. Retention=np.zeros((365,NYr))
880. yearnum=np.zeros(NYr)
881. for yr in range(NYr):
882. yearnum[yr]=str(1984+yr)
883. GateCaps=np.zeros((365, NYr))
884. CAPs=np.zeros((365, NYr))
885. EOCs=np.zeros((365, NYr))
886. UCRs=np.zeros((365,NYr))
887. GCRs=np.zeros((365,NYr))
888. GAVs=np.zeros((365, NYr))
889. OSDs=-1+np.zeros((36,NYr)) #36 component outage start dates
890. OLs=np.zeros((36,NYr))
891. #Inflow forecast accuracy data
892. #ForecastError=pd.read_csv(datafile_path("CMSForecastError.csv"), index_

col=0)
893. #day=ForecastError.index.values #day of forecast
894. #errordata=ForecastError.values #error mean, mean over 110cms and standa

rd deviation, std over 110cms
895. #MAEt=interp1d(day,errordata[:,0])
896. #MAE110t=interp1d(day,errordata[:,1])
897. #SEt=interp1d(day,errordata[:,2])

305

898. #SE110t=interp1d(day,errordata[:,3])
899. Fish=pd.read_csv(datafile_path("Fish.csv"), header=0).values[:,1].astype

("float64")
900.
901. @njit
902. def getfishflow(dayref):
903. return Fish[int(dayref[0]):int(dayref[0]+14)]
904. #Fish=np.zeros((3,3))
905. #Fish-[0,:]=[5,7,3]
906. #Fish [1,:]=[0,90,304]
907. #Fish[2,:]=[89,303,365]
908. #
909. #@njit
910. #def getfishflow(dayref):
911. # return Fish[int(dayref[0]):int(dayref[0]+14)]
912. ## ff=np.zeros(14)
913. ## for i in range(14):
914. ## if dayref[i]<90:
915. ## ff[i]=5
916. ## elif dayref[i]<304:
917. ## ff[i]=7
918. ## elif dayref[i]<365:
919. ## ff[i]=3
920. ## return ff
921.
922. @njit
923. def dayrefs(Startdays, timestep):
924. daynum=Startdays+int(timestep) #STARTDAYS CONTAINS 1-

365 STARTING DAY REF
925. if daynum>365:
926. daynum=daynum-365
927. dayref=np.zeros(14)
928. dayref[0]=daynum
929. for t in range(13): #Converts vensim date into numbers 1-

365 to represent dates in the model
930. if dayref[t]+1<366:
931. dayref[t+1]=dayref[t]+1
932. else: dayref[t+1]=1
933. return dayref
934.
935.
936. #SETTING UP RANDOM SIMULATION START POINTS AND ASSIGNING BASELINE CONDIT

IONS FROM "NORMAL" OPS
937.
938.
939. if seedgen==0:
940. Startdays=Seeds['Startdays']
941. Starts=Seeds['Starts'] #np.transpose(Seeds["Starts"]) for jan 1 star

ts
942.
943.
944. #Starts=np.transpose(Starts)
945. daynum=Startdays.copy()
946. OutputDayrefs=np.zeros((365,NYr))
947. OutputDayrefs[0, :]=daynum
948. for t in range(364): #Converts vensim date into numbers 1-

365 to represent dates in the model
949. for yr in range(NYr):
950. if OutputDayrefs[t, yr]+1<366:
951. OutputDayrefs[t+1, yr]=OutputDayrefs[t, yr]+1
952. else: OutputDayrefs[t+1, yr]=1

306

953.
954. StartRSEs=np.zeros(NYr)
955. for i in range(NYr):
956. StartRSEs[i]=NormalRSEs[Starts[i][0], Starts[i][1]] #for jan 1 start

s
957. #StartRSEs[i]=NormalRSEs[Starts[0,i], Starts[1,i]] #for SeedsS_Nov06

_2018
958.
959. #SET UP INFLOWS AND BASELINE
960.
961. Inflow=np.zeros((730,NYr)) #2 year min
962. B_RSEs = np.zeros((365, NYr))
963. B_TBFs = np.zeros((365, NYr))
964. B_TSs = np.zeros((365, NYr))
965. B_OTs = np.zeros((365, NYr))
966. for i in range(NYr):
967. startdayind=Starts[i][0]
968. Inflow[0:int(730-

startdayind),i]=InflowJan1Start[startdayind:730,Starts[i][1]]
969. Inflow[int(730-

startdayind):730,i]=InflowJan1Start[0:int(startdayind),Starts[i][1]+1]
970. B_RSEs[0:int(365-

startdayind),i]=NormalRSEs[startdayind:365,Starts[i][1]]
971. B_RSEs[int(365-

startdayind):365,i]=NormalRSEs[0:int(startdayind),Starts[i][1]+1]
972. B_TBFs[0:int(365-

startdayind),i]=NormalTBFs[startdayind:365,Starts[i][1]+1]
973. B_TBFs[int(365-

startdayind):365,i]=NormalTBFs[0:int(startdayind),Starts[i][1]+2]
974. B_TSs[0:int(365-

startdayind),i]=NormalTSs[startdayind:365,Starts[i][1]+1]
975. B_TSs[int(365-

startdayind):365,i]=NormalTSs[0:int(startdayind),Starts[i][1]+2]
976. B_OTs[0:int(365-

startdayind),i]=NormalOTs[startdayind:365,Starts[i][1]+1]
977. B_OTs[int(365-

startdayind):365,i]=NormalOTs[0:int(startdayind),Starts[i][1]+2]
978.
979. if seedgen==0:
980. ReducedCapacities=Seeds['ReducedCapacities']
981.
982. ReducedCapacityMinimumTime=10 #10 days to arrange debris removal, at a m

inimum
983. global DebrisRemoval
984. DebrisRemoval=0
985.
986. Inf114=np.zeros(14)
987.
988. #This is used to ensure inflow forecast and ops planning done once per 2

4 hours (at midnight)
989. #def isinterger(number):
990. # return np.equal(np.mod(number, 1), 0)
991.
992.
993. #@njit
994. #def getmaxq(component, ResEl): #returns the maximum available discharge

 for a given component for all res els
995. # if component==0: #GATE 1
996. # GateFlowMax=SPOGMaxFlow(ResEl, 1)
997. # elif component==2: #TURBINE 1g
998. # GateFlowMax=fncTurbineMaxFlow(ResEl, 1)

307

999. # return GateFlowMax
1000.
1001. @njit
1002. def fncSPOGMaxFlow(elev, flag, El1d):
1003. if flag == 1:
1004. if 367.28<=elev<367.5:
1005. out1= 9.545455*elev-3505.85
1006. out2= 9.545455*elev-3505.85
1007. if 367.5<=elev<=367.8:
1008. out1= 18.66667*elev-6857.9
1009. out2= 18.66667*elev-6857.9
1010. if 367.8<=elev<=369:#368.1:
1011. out1= 25*elev-9187.3
1012. out2= 24.66667*elev-9064.7
1013. if 369 <=elev < 381.6: #367.8 sill
1014. out1= 1.494595567*elev**2 - 1056.252204*elev + 186302.1873
1015. out2= 0.660028672*elev**2 - 440.0888044*elev + 72573.18918
1016. if elev >= 381.6:
1017. out1= 861.1
1018. out2= 728.9
1019. if elev<367.28:
1020. out1= 0
1021. out2=0
1022. if El1d>376.5: #corects max flow for extreme high inflow events

1023. elev=(elev+376.50)/2.
1024. out1= 1.494595567*elev**2 - 1056.252204*elev + 186302.1873
1025. out2= 0.660028672*elev**2 - 440.0888044*elev + 72573.18918
1026.
1027. else:
1028. out1=0
1029. out2=0
1030. return out1+out2
1031.
1032. @njit
1033. def availarray(length):
1034. out=np.ones(14)
1035. if length>0:
1036. out[0:length]=0
1037. return out
1038.
1039. @njit
1040. def OpsPlan(InflowForecast, Storage, dayref, SPG1Av, TbAv1, resElPens):

1041. FishFlow=getfishflow(dayref)
1042. SPOG1Av=availarray(int(SPG1Av))
1043. TurbAv1=availarray(int(TbAv1))
1044.
1045. VolInflow=np.sum(InflowForecast)
1046. #FIRST ASSUME SPILL EQUAL TO FISH FOW
1047. Spill=min(FishFlow[0],
1048. fncSPOGMaxFlow(SSC(Storage), SPOG1Av[0], 373)

)
1049. #Assume power flow equal to max. of difference between inflow an fis

h flow, or total available turbine flow
1050. PFlow=max(min(fncTurbineMaxFlow(SSC(Storage), TurbAv1[0]), InflowFor

ecast[0]-Spill), 0)
1051.
1052. #Now check multi-day reservoir elevation
1053. Spl=Spill+np.zeros(14)
1054. Pow=PFlow+np.zeros(14)

308

1055. HiRes=0
1056. LoRes=0
1057. for i in range(13):
1058. VolOut=(i+1)*(Spill+PFlow)
1059. VolInflow=np.sum(InflowForecast[0:i+1])
1060. StorageD=Storage+VolInflow-VolOut
1061. SLimitsD=GetNMax(resElPens[0,:], resElPens[2,:], resElPens[1,:],

 dayref[i])
1062.
1063. if StorageD>SLimitsD[1]: #If 14 day storage exceeds nmax
1064. HiRes+=1
1065. #ensure power flow is max:
1066. Pow[i]=min(PFlow+(StorageD-

SLimitsD[1])*(1./(i+1)),fncTurbineMaxFlow(SSC(Storage), TurbAv1[0]))
1067. #recalculate and recheck
1068. VolOut=(i+1)*(Spl[i]+Pow[i])
1069. StorageD=Storage+VolInflow-VolOut
1070. if StorageD>SLimitsD[1]: #add 1/14 of difference each day to

 spill to bring res el down
1071. Spl[i]=min(Spill+(StorageD-

SLimitsD[1])*(1./(i+1)), fncSPOGMaxFlow(SSC(Storage), SPOG1Av[0], SSC(StorageD))
)

1072.
1073. if StorageD<SLimitsD[0]: #If final storage less than nmin
1074. LoRes+=1
1075. #ensure spill is min
1076. Spl[i]=min(FishFlow[0],
1077. fncSPOGMaxFlow(SSC(Storage), SPOG1Av[0], SSC(StorageD)

))
1078. #recalulate and recheck
1079. VolOut=(i+1)*(Spl[i]+Pow[i])
1080. StorageD=Storage+VolInflow-VolOut
1081. if StorageD<SLimitsD[0]: #reduce power flow to conserve wate

r
1082. Pow[i]=max(PFlow-(1./(i+1))*(SLimitsD[0]-StorageD), 0)
1083.
1084.
1085.
1086. if HiRes>0:
1087. Spill=np.max(Spl)
1088. PFlow=np.max(Pow) #high reservoir levels trump low reservoir lev

els
1089.
1090. else:
1091. if LoRes>0:
1092. Spill=np.min(Spl)
1093. PFlow=np.min(Pow)
1094. else:
1095. Spill=Spl[0]
1096. PFlow=Pow[0]
1097.
1098.
1099. #check day 1 elevs again
1100. Storage1d=Storage+InflowForecast[0]-Spill-PFlow
1101. SLimitsD=GetNMax(resElPens[0,:], resElPens[2,:], resElPens[1,:], day

ref[0])
1102. if Storage1d>SLimitsD[1]:
1103. #increase power
1104. PFlow=fncTurbineMaxFlow(SSC(Storage), TurbAv1[0])
1105. #recalculate
1106. Storage1d=Storage+InflowForecast[0]-Spill-PFlow

309

1107. if Storage1d>SLimitsD[1]:
1108.
1109. #increase spill more
1110. spl=Spill
1111. Spill=min(Spill+(Storage1d-

SLimitsD[1]), fncSPOGMaxFlow(SSC(Storage), SPOG1Av[0], SSC(Storage1d)))
1112. if SPOG1Av[0]==1 and Spill<spl+(Storage1d-SLimitsD[1]):
1113. Spill=min(Spill+(Storage1d-SLimitsD[1]), 1590)
1114. #recalculate
1115. Storage1d=Storage+InflowForecast[0]-Spill-PFlow
1116. if Storage1d>SLimitsD[1]+0.1: #if inflow causes reservoir to

 rise to extreme levels within 1 ts
1117. Spill=min(Spill+(Storage1d-

SLimitsD[1]), fncSPOGMaxFlow(SSC((Storage+Storage1d)/2), SPOG1Av[0], SSC(Storage
1d)))

1118. Storage1d=Storage+InflowForecast[0]-Spill-PFlow
1119.
1120. if Storage1d<SLimitsD[0]:
1121. #decrease spill
1122. Spill=max(Spill-(SLimitsD[0]-Storage1d), FishFlow[0])
1123. #recalculate
1124. Storage1d=Storage+InflowForecast[0]-Spill-PFlow
1125. if Storage1d<SLimitsD[0]:
1126. PFlow=max(PFlow-(SLimitsD[0]-Storage1d), 0)
1127.
1128. if Spill<FishFlow[0]:
1129. if SPOG1Av[0]==1: #If spill less than FF and spillway is availab

le, readjust SPOG flow and Pflow
1130. Spill2=min(FishFlow[0], fncSPOGMaxFlow(SSC(Storage), SPOG1Av

[0], SSC(Storage1d)))
1131. PFlow=max(fncTurbineMaxFlow(SSC(Storage), TurbAv1[0]), PFlow

-(Spill2-Spill))
1132.
1133. Spill2=Spill
1134. #Now allocate discharge
1135. Ops=[0,0] #SPOG1,Turb1
1136. if SPOG1Av[0]==1:
1137. Ops[0]=min(Spill2, fncSPOGMaxFlow(SSC(Storage), SPOG1Av[0], SSC(

Storage1d)))
1138. if SPOG1Av[0]==1 and Spill2>Ops[0]: #this helps with large inflo

w events, where the initial gate capacity is too low, but the reservoir ends up
too high

1139. Ops[0]=Spill2
1140. if (SSC(Storage)<367.28):
1141. Ops[0]=0
1142. elif SPOG1Av[0]==0:
1143. if SPOG1Av[0]==1:
1144. Ops[0]=0
1145.
1146. if TurbAv1[0]==1:
1147. Ops[1]=PFlow
1148.
1149. elif TurbAv1[0]==0:
1150. Ops[1]=0
1151.
1152.
1153. return Ops
1154.
1155. @njit
1156. def GetNMax(lstResLimitDays, VResLower, VResUpper, dayref):
1157. i = -1

310

1158. ColumnsCount = VResLower.shape[0]
1159. if (lstResLimitDays[1] > dayref >= lstResLimitDays[0]):
1160. i = 0
1161. if (dayref>= lstResLimitDays[1]):
1162. i = 1
1163. if (dayref >= lstResLimitDays[2]):
1164. i = 2
1165. if (ColumnsCount==4):
1166. if (dayref >= lstResLimitDays[3]):
1167. i = 3
1168. if (ColumnsCount==5):
1169. if (dayref >= lstResLimitDays[4]):
1170. i = 4
1171. if (ColumnsCount==6):
1172. if (dayref >= lstResLimitDays[5]):
1173. i = 5
1174. if (ColumnsCount==7):
1175. if (dayref >= lstResLimitDays[6]):
1176. i = 6
1177. return (VResLower[i], VResUpper[i])
1178.
1179.
1180. #Determines month and day of year so fish flows and res el penalties cor

respond to timing
1181.
1182. if seedgen==0:
1183. ScenarioDescriptor=Seeds["ScenarioDescriptor"]
1184.
1185.
1186. """
1187. 4. DEFINING sdpy FUNCTIONS
1188.
1189. Broken down sector-by-sector:
1190. 4.1. Hydaulic System State
1191. 4.2. Sensors
1192. 4.3. Disturbances
1193. 4.4. Operations
1194. 4.5. Gate Actuators
1195. 4.6. Turbine Actuators
1196.
1197. """
1198.
1199. """
1200. 4.1. HYDRAULIC SYSTEM STATE
1201. """
1202.
1203. initial_reservoir_storage=SSCrev(B_RSEs[0,year])
1204. if initial_reservoir_storage<=-

304.1: #making sure initial reservoir level isn't breach level, if any
1205. initial_reservoir_storage=364.27
1206.
1207. @sdpy.stock(model, initial_reservoir_storage, name='Reservoir Storage',c

ache=False, jit=False)
1208. def reservoir_storage(t):
1209. out=reservoir_inflow(t) - reservoir_outflow(t)
1210. return out
1211.
1212. @sdpy.aux(model, name='Inflow',cache=False, jit=False)
1213. def reservoir_inflow(t):
1214. daytimestep=t
1215. return float(Inflow[daytimestep,year])

311

1216.
1217. @sdpy.aux(model, name="Outflow",cache=False, jit=False)
1218. def reservoir_outflow(t):
1219. return float(gated_spill_release(t) + overtopping_flow(t) + power_fl

ow_release(t) + penstock_leakage(t) + earth_dam_seepage(t) + breach_flow(t))
1220.
1221. @sdpy.aux(model, name="Reservoir Level",cache=False, jit=False)
1222. def reservoir_level(t):
1223. return SSC(reservoir_storage(t))
1224.
1225. @sdpy.aux(model, name="Overtopping Flow",cache=False, jit=False)
1226. def overtopping_flow(t):
1227. level=reservoir_level(t)
1228. storage=reservoir_storage(t)
1229. pf=power_flow_release(t)
1230. sf=gated_spill_release(t)
1231. inf=reservoir_inflow(t)
1232. storage2=storage+inf-pf-sf
1233. Overtoppingflow=0
1234. OTs=np.zeros(24)
1235. if level>378.41 or SSC(storage2)>378.41:
1236. for i in range(24):
1237. OTs[i]=max(OTC(SSC(storage)), 0)*(1/24.)
1238. #water balance
1239. storage=storage+inf/24.-OTs[i]-pf/24.-sf/24.
1240. Overtoppingflow=np.sum(OTs)
1241. return Overtoppingflow
1242.
1243. @sdpy.aux(model, name="Unobstructed Gate Flow",cache=False, jit=False)
1244. def unobstructed_gate_flow(t):
1245. # av=gate_availability(t)
1246. # ops=operations_planning(t)[0]
1247. # SC=sensor_condition(t)
1248. # Se=sensor_error(t)
1249. level=reservoir_level(t)
1250. # SE=1
1251. # Spillflow=0
1252. # if Se!=0:
1253. # SE=0
1254. # if av==1 and (SE+SC==2) and level>367.28:
1255. # #if gate available, sensors functional, man act working or some

one on site set directly to operations plan
1256. # Spillflow=ops
1257. # else:
1258. #if gate unavailable or issues with actuation or sensors, use ga

te position to determine flow
1259. g = gate_position(t)
1260. Spillflow=GateFlowCalc(level,g)
1261. return Spillflow
1262.
1263. @sdpy.aux(model, name="Gated Spill Release",cache=False, jit=False)
1264. def gated_spill_release(t):
1265. if breach_triggered(t)==0:
1266. if components_collapsing_gate(t)==1:
1267. return gate_capacity(t)*unobstructed_gate_flow(t)
1268. else:
1269. return min(1590, max(reservoir_storage(t) + reservoir_inflow

(t) - 83.1357, 0))
1270. else:
1271. return 0
1272.

312

1273. DebrisRemoval= np.zeros(1)
1274. @sdpy.aux(model, name="Gated Capacity",cache=False, jit=False)
1275. def gate_capacity(t):
1276. timestep=t
1277. #DebrisRemoval = 0 #global todo
1278. currentinflow=reservoir_inflow(t)
1279. inflowthreshold=65 #assume less than this required to remove debris

1280. Capacity=1
1281. if ReducedCapacities[year]<1:
1282. if timestep>=1 and timestep<=24.*ReducedCapacityMinimumTime:
1283. Capacity=ReducedCapacities[year]
1284. if timestep>=24.*ReducedCapacityMinimumTime: #debris removal can

 start after a minimum time
1285. if DebrisRemoval[0]==0:
1286. if currentinflow<inflowthreshold: #Debris removal only

less than inflow threshold
1287. DebrisRemoval[0]=1
1288. if DebrisRemoval[0]==0: #if debrs, set to reduced capacitie

s
1289. Capacity=ReducedCapacities[year]
1290. if DebrisRemoval[0]==1: #if debris removed, set to full capa

city
1291. Capacity=1
1292. return float(Capacity)
1293.
1294. @sdpy.aux(model, name="Power Flow Release",cache=False, jit=False)
1295. def power_flow_release(t):
1296. if breach_triggered(t)==0:
1297. return powerhouse_flow_conveyance(t)
1298. else:
1299. return 0
1300.
1301. @sdpy.aux(model, name="Penstock Leakage",cache=False, jit=False)
1302. def penstock_leakage(t):
1303. if intake_gate_closure(t)==0 and breach_triggered(t)==0 and other_co

mponent_remaining_time_to_repair(t)[1]>0:
1304. return head_cover_max_flow(t)
1305. else:
1306. return 0
1307.
1308. RESEL_IG=[]
1309. @sdpy.aux(model, name="Intake Gate Closure",cache=False, jit=False)
1310. def intake_gate_closure(t):
1311. penstockrup=other_component_remaining_time_to_repair(t)[1]
1312. hcfail=power_remaining_time_to_repair(t)[0]
1313. igclosed=0
1314. if hcfail>0 or penstockrup>0:
1315. RESEL_IG.append(reservoir_level(t))
1316. if (np.min(RESEL_IG)<363.06): #Intake gate can be closed once re

servoir drawn down past sill of intake gate
1317. igclosed=1
1318. return igclosed
1319.
1320. @sdpy.aux(model, name="Uncontrolled Release",cache=False, jit=False)
1321. def uncontrolled_release(t):
1322. ucr=0
1323. if head_cover(t)==0:
1324. ucr+=np.max([power_flow_release(t),0])
1325. if gate_collapse(t)==1:
1326. ucr+=np.max([gated_spill_release(t),0])

313

1327. ucr+=np.max([penstock_leakage(t),0])
1328. ucr+=np.max([breach_flow(t),0])
1329. ucr+=overtopping_flow(t)
1330. return ucr
1331.
1332. BREACHT=np.zeros((365,NYr))
1333. @sdpy.aux(model, name="Breach Triggered",cache=False, jit=False)
1334. def breach_triggered(t):
1335. bt=np.max(RSEs[:,year])
1336. if bt>381.73:
1337. BREACHT[t,year]=1
1338. return 1
1339. else:
1340. return 0
1341.
1342. @sdpy.aux(model, name="Breach Flow",cache=False, jit=False)
1343. def breach_flow(t):
1344. if breach_triggered(t)==1:
1345. return reservoir_storage(t) + reservoir_inflow(t) - (-304.012)
1346. else:
1347. return 0
1348.
1349. @sdpy.aux(model, name="Earth Dam Settlement",cache=False, jit=False)
1350. def earth_dam_settlement(t):
1351. return 0 #not used for this model
1352.
1353. @sdpy.aux(model, name="Earth Dam Seepage",cache=False, jit=False)
1354. def earth_dam_seepage(t):
1355. return 0 #not used for this model
1356. #IF THEN ELSE(Earth dam settlement=0, 0 ,
1357. #IF THEN ELSE(Reservoir Level>364.9, Earth dam settlement*Reservoir Leve

l*0.1 , 0))
1358.
1359.
1360. """
1361. 4.2. SENSORS
1362.
1363. """
1364.
1365. if seedgen==0:
1366. SErrorDeltat=Seeds['SErrorDeltat']
1367. SErrorDuration=Seeds['SErrorDuration']
1368. SErrors=Seeds['SErrors']
1369.
1370. @sdpy.aux(model, name="Sensor Condition",cache=False, jit=False)
1371. def sensor_condition(t):
1372. if sensor_remaining_time_to_repair(t)>0:
1373. return 0
1374. else:
1375. return 1
1376.
1377. @sdpy.aux(model, name="Gauge Reading",cache=False, jit=False)
1378. def gauge_reading(t):
1379. if sensor_condition(t)==1:
1380. return reservoir_level(t) + (sensor_error(t)/100)*reservoir_leve

l(t)
1381. else:
1382. return -1000
1383. #IF THEN ELSE(Sensor condition=1 , Reservoir Level+((Sensor Error)/

100)*Reservoir Level , -1000)
1384.

314

1385. @sdpy.aux(model, name="Gauge Processing",cache=False, jit=False)
1386. def gauge_processing(t):
1387. if other_component_remaining_time_to_repair(t)[0]>0:
1388. return -1000
1389. else:
1390. return gauge_reading(t)
1391. #IF THEN ELSE(Other component remaining time to repair[PLCRTU]>0, -

1000 , Gauge reading)
1392.
1393. @sdpy.aux(model, name="Gauge Relay",cache=False, jit=False)
1394. def gauge_relay(t):
1395. return gauge_processing(t)
1396.
1397. @sdpy.aux(model, name="Sensor Error",cache=False, jit=False)
1398. def sensor_error(t):
1399. timestep=t
1400. error=0
1401. if (timestep>=SErrorDeltat[year] and timestep<=(SErrorDeltat[year]+S

ErrorDuration[year])):
1402. error=SErrors[year] #sets sensor components to failure time
1403. return error
1404.
1405. """
1406. 4.3 DISTURBANCES
1407.
1408. """
1409.
1410. gatecomps = sdpy.SubRange('gatecomps', ['C_FC', 'C_FO', 'C_FIP'])
1411. turbinecomps = sdpy.SubRange('turbinecomps', ['HC', 'GEN'])
1412. othercomps = sdpy.SubRange('othercomps', ["PLCRTU", "PEN", "GRID"])
1413.
1414.
1415. if seedgen==0:
1416. GateOutagesAll=Seeds['GateOutagesAll']
1417. GateCollapses=Seeds['GateCollapses']
1418. Gdeltat=Seeds['Gdeltat']
1419.
1420. @sdpy.aux(model, name="Gate Component Failures",cache=False, jit=False)

1421. @sdpy.subscript(gatecomps)
1422. def gate_component_failures(t):
1423. timestep=t
1424. timetorepair=np.zeros(3)
1425. #SPOG1, 3 different general components can be set to failure, also o

ne general
1426. #C_FC, C_FO, C_FIP (fail open/collapse, fail closed, fail in place)

1427. for c in range(3):
1428. if timestep==Gdeltat[c, year]:
1429. if GateOutagesAll[c, year]>0:
1430. timetorepair[c]=GateOutagesAll[c, year] #sets gate compo

nents to failure time
1431. return timetorepair
1432.
1433. @sdpy.aux(model, name='Gate Time To Repair',cache=False, jit=False)
1434. @sdpy.subscript(gatecomps)
1435. def gate_time_to_repair(t):
1436. return gate_component_failures(t)
1437.
1438. @sdpy.aux(model, name='Gate Repair',cache=False, jit=False)
1439. @sdpy.subscript(gatecomps)

315

1440. def gate_repair(t):
1441. ret=np.zeros(3)
1442. for i in range(3):
1443. if gate_remaining_time_to_repair(t)[i]>1:
1444. ret[i]=1
1445. else:
1446. if gate_remaining_time_to_repair(t)[i]<=1 and gate_remaining

_time_to_repair(t)[i]>0:
1447. ret[i]=gate_remaining_time_to_repair(t)[i]
1448. else:
1449. ret[i]=0
1450. return ret
1451. #if_then_else(gate_remaining_time_to_repair(t)>1, 1,
1452. # if_then_else(gate_remaining_time_to_repair(t)<1 and gate_r

emaining_time_to_repair(t)>0, gate_remaining_time_to_repair(t),0))
1453. # IF THEN ELSE(Gate remaining time to repair[GateComps]>1, 1 , IF THE

N ELSE(Gate remaining time to repair[GateComps]<1 :AND: Gate remaining time to r
epair[GateComps]>0,Gate remaining time to repair[GateComps],0))

1454.
1455. @sdpy.stock(model, np.zeros(3), name='Gate Remaining Time To Repair',cac

he=False, jit=False)
1456. @sdpy.subscript(gatecomps)
1457. def gate_remaining_time_to_repair(t):
1458. return gate_time_to_repair(t) - gate_repair(t)
1459.
1460. GFORTTR=np.zeros((365,NYr))
1461. @sdpy.aux(model, name='Gate All',cache=False, jit=False)
1462. def gate_all(t):
1463. GFORTTR[t,year]=gate_remaining_time_to_repair(t)[1]
1464. maxs=np.max(gate_remaining_time_to_repair(t))
1465. return maxs
1466.
1467. if seedgen==0:
1468. TurbineOutagesAll=Seeds['TurbineOutagesAll']
1469. Tdeltat=Seeds['Tdeltat']
1470.
1471. @sdpy.aux(model, name='Power component Failures',cache=False, jit=False)

1472. @sdpy.subscript(turbinecomps)
1473. def power_component_failures(t):
1474. timestep=t
1475. timetorepair=np.zeros(2) #gen #HC
1476. for c in range(2):
1477. if timestep==Tdeltat[c, year]:
1478. if TurbineOutagesAll[c, year]>0:
1479. timetorepair[c]=TurbineOutagesAll[c, year] #sets gate co

mponents to failure time
1480. return timetorepair
1481.
1482. @sdpy.aux(model, name='Power Time To Repair',cache=False, jit=False)
1483. @sdpy.subscript(turbinecomps)
1484. def power_time_to_repair(t):
1485. return power_component_failures(t)
1486.
1487. @sdpy.aux(model, name='Power Repair',cache=False, jit=False)
1488. @sdpy.subscript(turbinecomps)
1489. def power_repair(t):
1490. ret=np.zeros(2)
1491. for i in range(2):
1492. if power_remaining_time_to_repair(t)[i]>1:
1493. ret[i]=1

316

1494. else:
1495. if power_remaining_time_to_repair(t)[i]<=1 and power_remaini

ng_time_to_repair(t)[i]>0:
1496. ret[i]=power_remaining_time_to_repair(t)[i]
1497. else:
1498. ret[i]=0
1499. return ret
1500. # if_then_else(power_remaining_time_to_repair(t)>1, 1,
1501. # if_then_else(power_remaining_time_to_repair(t)<1 and power

_remaining_time_to_repair(t)>0, power_remaining_time_to_repair(t),0))
1502.
1503. @sdpy.stock(model, np.zeros(2), name='Power Remaining Time To Repair',ca

che=False, jit=False)
1504. @sdpy.subscript(turbinecomps)
1505. def power_remaining_time_to_repair(t):
1506. return power_time_to_repair(t) - power_repair(t)
1507.
1508. @sdpy.aux(model, name='Power All',cache=False, jit=False)
1509. def power_all(t):
1510. maxs=np.max(power_remaining_time_to_repair(t))
1511. return maxs
1512.
1513. if seedgen==0:
1514. OCdeltat=Seeds['OCdeltat']
1515. OCOutages=Seeds['OCOutages']
1516.
1517. @sdpy.aux(model, name='Other Component Failures',cache=False, jit=False)

1518. @sdpy.subscript(othercomps)
1519. def other_component_failures(t):
1520. timetorepair=np.zeros(3)
1521. #0 Dam PLCRTU, 1 Penstock, 2 Grid
1522. timestep=t
1523. for c in range(3):
1524. if timestep==OCdeltat[c, year]:
1525. if OCOutages[c, year]>0:
1526. timetorepair[c]=OCOutages[c, year] #sets other component

s to failure time
1527.
1528. return timetorepair
1529.
1530. @sdpy.aux(model, name='Other Component Time To Repair',cache=False, jit=

False)
1531. @sdpy.subscript(othercomps)
1532. def other_component_time_to_repair(t):
1533. return other_component_failures(t)
1534.
1535. @sdpy.aux(model, name='Other Component Repair',cache=False, jit=False)
1536. @sdpy.subscript(othercomps)
1537. def other_component_repair(t):
1538. ret=np.zeros(3)
1539. for i in range(3):
1540. if other_component_remaining_time_to_repair(t)[i]>1:
1541. ret[i]=1
1542. else:
1543. if other_component_remaining_time_to_repair(t)[i]<=1 and oth

er_component_remaining_time_to_repair(t)[i]>0:
1544. ret[i]=other_component_remaining_time_to_repair(t)[i]
1545. else:
1546. ret[i]=0
1547. return ret

317

1548. # if_then_else(other_component_remaining_time_to_repair(t)>1, 1,
1549. # if_then_else(other_component_remaining_time_to_repair(t)<1

 and other_component_remaining_time_to_repair(t)>0, other_component_remaining_ti
me_to_repair(t),0))

1550.
1551. @sdpy.stock(model, np.zeros(3), name='Other Component Remaining Time To

Repair',cache=False, jit=False)
1552. @sdpy.subscript(othercomps)
1553. def other_component_remaining_time_to_repair(t):
1554. return other_component_time_to_repair(t)-other_component_repair(t)
1555.
1556. if seedgen==0:
1557. SOutages=Seeds['SOutages']
1558. Sdeltat=Seeds['SOutages']
1559.
1560. @sdpy.aux(model, name='Sensor Failures',cache=False, jit=False)
1561. def sensor_failures(t):
1562. timestep=t
1563. timetorepair=0
1564. if timestep==Sdeltat[year]:
1565. if SOutages[year]>0:
1566. timetorepair=SOutages[year] #sets sensor components to failu

re time
1567. return timetorepair
1568.
1569. @sdpy.aux(model, name='Sensor Time To Repair',cache=False, jit=False)
1570. def sensor_time_to_repair(t):
1571. return sensor_failures(t)
1572.
1573. @sdpy.aux(model, name='Sensor Repair',cache=False, jit=False)
1574. def sensor_repair(t):
1575. if sensor_remaining_time_to_repair(t)>1:
1576. return 1
1577. else:
1578. if sensor_remaining_time_to_repair(t)<=1 and sensor_remaining_ti

me_to_repair(t)>0:
1579. return sensor_remaining_time_to_repair(t)
1580. else:
1581. return 0
1582.
1583. @sdpy.stock(model, 0, name='Sensor Remaining Time To Repair',cache=False

, jit=False)
1584. def sensor_remaining_time_to_repair(t):
1585. return sensor_time_to_repair(t)-sensor_repair(t)
1586.
1587.
1588. """
1589. 4.4. OPERATIONS
1590.
1591. """
1592. controls = sdpy.SubRange('controls', ['g1', 't1'])
1593.
1594. if seedgen==0:
1595. IFErrorDeltat=Seeds['IFErrorDeltat']
1596. IFErrorDuration=Seeds['IFErrorDuration']
1597.
1598.
1599. @sdpy.aux(model, name='Operations Planning',cache=False, jit=False)
1600. @sdpy.subscript(controls)
1601. def operations_planning(t):
1602. timestep=t

318

1603. dayref=dayrefs(Startdays[year], timestep)
1604. FishFlow=getfishflow(dayref)
1605. Inf114=Inflow[timestep:14+timestep, year] #Changed to one day ahead

so proper spills are released for Vensim version
1606. InfForecast=Inf114
1607. gaugerelay=gauge_relay(t)
1608. if gaugerelay<-

900 or gaugerelay>381.73: #If error is so high that it becomes obvious
1609. storage=-1000
1610. else:
1611. storage=SSCrev(gaugerelay)
1612. StaffOnSite=site_staff_mobilized(t)
1613. actualstorage=reservoir_storage(t)
1614. if (StaffOnSite>0) or (storage==-1000):
1615. if storage==-1000:
1616. storage=SSCrev(RSEs[timestep-

1, year]) #if unknown, takes previous days value
1617. if StaffOnSite==1:
1618. storage=actualstorage #if someone is on site, takes actual

value
1619. InitialStorage=np.float64(storage)#+lastinf-outfs
1620. resElPens=np.zeros((3,3))#Penalties for res el
1621. resElPens[0,:]=[0,273,304]
1622. resElPens[1,:]=[426.99, 300.39, 300.39]
1623. resElPens[2,:]=[99.58693574984267,99.58693574984267, 171.28] #123.60

856547318923 from 87.055 to help reduce 0 spill events
1624. penstockrup=other_component_remaining_time_to_repair(t)[1] #penstock

1625. hcfail=power_remaining_time_to_repair(t)[0] #head cover
1626. igate=intake_gate_closure(t)
1627. if penstockrup>0 or hcfail>0:
1628. if igate==0: #reduce res el targets to get res below intake gate

 sill so it can be closed
1629. resElPens[1,:]=[-48.5, -48.5, -48.5]
1630. resElPens[2,:]=[-47, -47, -47] #lowered
1631. #draw down reservoir to sill
1632. SPOG1Av=gate_all(t) #Availbility set based on "gate time to repair

"
1633. TurbAv1=power_all(t)
1634. Nextday=np.zeros(2)
1635.
1636. Optimized=OpsPlan(InfForecast, InitialStorage, dayref, SPOG1Av, Tu

rbAv1, resElPens)
1637. Nextday=np.array(Optimized.copy()) #SPOG1, Turb1
1638.
1639. Nextday.clip(min=0) #omit negatives.
1640.
1641. return Nextday
1642.
1643. BREACHQ=np.zeros((365, NYr))
1644. IGCLOSE=np.zeros((365, NYr))
1645. @sdpy.aux(model, name='Output Saving',cache=False, jit=False)
1646. def output_saving(t):
1647. timestep=t
1648. outfs=reservoir_outflow(t)
1649. IGCLOSE[timestep,year]=intake_gate_closure(t)
1650. BREACHQ[timestep,year]=breach_flow(t)
1651. GAVs[timestep, year]=unit_availability(t)
1652. UAVs[timestep,year]=gate_availability(t)
1653. timetorepairg=gate_remaining_time_to_repair(t) #model['Gate remainin

g time to repair[GateComps]']

319

1654. timetorepairt=power_remaining_time_to_repair(t) #model['Power remain
ing time to repair[TurbineComps]']

1655. RSEs[timestep, year]=reservoir_level(t) #model['Reservoir Level']
1656. TBFs[timestep, year]=power_flow_release(t) #model["Power flow releas

e"]
1657. SPOGs[timestep, year]=gated_spill_release(t) #model["Gated spill rel

ease"]
1658. OT[timestep, year]=overtopping_flow(t)
1659. INFs[timestep,year]=reservoir_inflow(t) #model["Inflow"]
1660. OUTFs[timestep,year]=outfs
1661. TTRS[timestep,0:3, year]=gate_remaining_time_to_repair(t) #model['Ga

te remaining time to repair[GateComps]']
1662. TTRS[timestep,3:5, year]=power_remaining_time_to_repair(t) #model['P

ower remaining time to repair[TurbineComps]']
1663. TTRS[int(timestep),5:8, year]=other_component_remaining_time_to_repa

ir(t) #model['Other component remaining time to repair[Other infrastructure]']
1664. if TTRS[timestep, 2, year]<=0:
1665. GPs[timestep,year]=gate_position(t) #model["Gate Position"]
1666. if TTRS[timestep, 2, year]>0:
1667. GPs[timestep,year]=GPs[timestep-1, year]
1668. AllMaxQ_t[timestep,:, year]=np.array(AllMaxQ)
1669. if timetorepairg[0]>0:
1670. AllMaxQ_t[timestep,0, year] = 0 #gate fails closed, cap is at 0

1671. if timetorepairg[1]>0:
1672. AllMaxQ_t[timestep,0, year] = 861.1+728.9 #gate fails open, cap

is maxed
1673. if timetorepairg[2]>0:
1674. tempgatecap=GateFlowCalc(381.6,gate_position(t))
1675. AllMaxQ_t[timestep,0, year] = tempgatecap #gate fails in place,

cap is max flow @ current opening
1676. if intake_gate_closure(t)==1: #turbine capacity is zero when intake

gate closed
1677. AllMaxQ_t[timestep, 1, year]=0
1678. GateCaps[t,year]=gate_capacity(t)
1679. AllMaxQ_t[timestep,0, year]=np.multiply(AllMaxQ_t[int(timestep),0, y

ear], GateCaps[t,year]) #account for debris blockage
1680. if timetorepairt[1]>0: #Generator outage
1681. AllMaxQ_t[timestep,1, year]=0
1682. CAPs[timestep, year]=np.sum(AllMaxQ_t[timestep,:, year])
1683. UCRs[timestep, year]=uncontrolled_release(t)
1684. GCRs[timestep, year]=gate_control_redundancy(t)
1685. return 1
1686.
1687.
1688. @sdpy.aux(model, name='Turbine Instructions',cache=False, jit=False)
1689. def turbine_instructions(t):
1690. return operations_planning(t)[1]
1691.
1692.
1693. @sdpy.aux(model, name='Gate Instructions',cache=False, jit=False)
1694. def gate_instructions(t):
1695. ResEl=reservoir_level(t)
1696. OP=operations_planning(t)[0]
1697. gps=GateInstr(ResEl, OP)
1698. # print("getALLgp: Gate Instruction q: "+str(OPs[0]) + " Gate positi

on: " +str(gps) + " Res El: "+str(ResEl))
1699. return gps
1700.
1701. @sdpy.aux(model, name='Manual Actuation',cache=False, jit=False)
1702. def manual_actuation(t):

320

1703. if other_component_remaining_time_to_repair(t)[0]>0 or dam_grid_avai
lability(t)==0 or sensor_remaining_time_to_repair(t)>0:

1704. MOBI[t,year]=1
1705. return 1
1706. else:
1707. return 0
1708. #IF THEN ELSE(Other component remaining time to repair[PLCRTU]>0 :OR: Ga

te instructions>2 :OR: Dam grid availability=0 :OR: Sensor remaining time to rep
air>0, 1 , 0)+0*Operations planning[g1]

1709.
1710. @sdpy.aux(model, name='Initiate',cache=False, jit=False)
1711. def initiate(t):
1712. #IF THEN ELSE(Manual actuation=1:AND:Manual Actuation Initiated<=0,

1 , 0)
1713. if manual_actuation(t)==1 and manual_actuation_initiated(t)<=0:
1714. return 1
1715. else:
1716. return 0
1717.
1718. @sdpy.aux(model, name='Demobilize',cache=False, jit=False)
1719. def demobilize(t):
1720. #IF THEN ELSE(Manual actuation=0:AND:Site staff mobilized=1, 1 , 0)

1721. os=output_saving(t)
1722. if manual_actuation(t)==0 and site_staff_mobilized(t)==1:
1723. return 1
1724. else:
1725. return 0
1726.
1727. @sdpy.stock(model, 0, name='Manual Actuation Initiated',cache=False, jit

=False)
1728. def manual_actuation_initiated(t):
1729. return initiate(t)-demobilize(t)
1730.
1731. if seedgen==0:
1732. DelayStaff=Seeds['DelayStaff']
1733.
1734. @sdpy.aux(model, name='Delay In Contacting Staff',cache=False, jit=False

)
1735. def delay_in_contacting_staff(t):
1736. delay=1
1737. if manual_actuation_initiated(t)==1:
1738. delay=DelayStaff[year] #sets sensor components to failure time
1739. return float(delay)
1740.
1741. if seedgen==0:
1742. DelayAccess=Seeds["DelayAccess"]
1743.
1744. @sdpy.aux(model, name='Delay In Accessing Site',cache=False, jit=False)

1745. def delay_in_accessing_site(t):
1746. delay=3+np.zeros(2)
1747. for c in range(2):
1748. if manual_actuation_initiated(t)==1:
1749. delay[c]=DelayAccess[c, year]
1750. return float(delay[0]) #Can add powerhouse delays later, ignoring fo

r now.
1751.
1752. @sdpy.aux(model, name='Contact Initiation',cache=False, jit=False)
1753. def contact_initiation(t):

321

1754. #IF THEN ELSE(Initiate=1 :AND: Site staff mobilized=0 :AND: Plant st
aff notified=0, Delay in contacting staff

1755. #, IF THEN ELSE(Demobilize=1, 1 , 0))
1756. if initiate(t)==1 and site_staff_mobilized(t)==0 and plant_staff_not

ified(t)==0:
1757. return delay_in_contacting_staff(t)
1758. else:
1759. if demobilize(t)==1:
1760. return 1
1761. else:
1762. return 0
1763.
1764. @sdpy.aux(model, name='Contacting',cache=False, jit=False)
1765. def contacting(t):
1766. #IF THEN ELSE(Time remaining to contact plant manager and site staff

>0 :AND: Manual Actuation Initiated=1, IF THEN ELSE(Time remaining to contact pl
ant manager and site staff<1, Time remaining to contact plant manager and site s
taff, 1) , 0)

1767. if time_remaining_to_contact_staff(t)>0 and manual_actuation_initiat
ed(t)==1:

1768. if time_remaining_to_contact_staff(t)<1:
1769. return time_remaining_to_contact_staff(t)
1770. else:
1771. return 1
1772. else:
1773. return 0
1774.
1775. @sdpy.stock(model, 1, name='Time Remaining To Contact Staff',cache=False

, jit=False)
1776. def time_remaining_to_contact_staff(t):
1777. return contact_initiation(t)-contacting(t)
1778.
1779. @sdpy.aux(model, name='Plant Staff Notified',cache=False, jit=False)
1780. def plant_staff_notified(t):
1781. #IF THEN ELSE(Time remaining to contact plant manager and site staff

<=0 :AND: Manual Actuation Initiated=1, 1 , 0)
1782. if time_remaining_to_contact_staff(t)<=0 and manual_actuation_initia

ted(t)==1:
1783. return 1
1784. else:
1785. return 0
1786.
1787. plantStaffNotified=np.zeros(365)
1788. @sdpy.aux(model, name='Mobilization Initiated',cache=False, jit=False)
1789. def mobilization_initiated(t):
1790. time=t
1791. plantStaffNotified[int(time)]=plant_staff_notified(t)
1792. AccessDelay=delay_in_accessing_site(t)
1793. demob=demobilize(t)
1794. Mobinit=0
1795. if time>0:
1796. if plantStaffNotified[int(time)]==1 and plantStaffNotified[int(t

ime-1)]==0:
1797. Mobinit=AccessDelay #Adding delays in access time to stock

1798. if demob==1:
1799. Mobinit=1 #returning stock to demobilized value which is 3 hr ti

me to get to site on av
1800. return float(Mobinit)
1801.
1802.

322

1803. @sdpy.aux(model, name='Mobilizing',cache=False, jit=False)
1804. def mobilizing(t):
1805. #IF THEN ELSE(Time remaining to access site>0 :AND: Manual Actuation

 Initiated=1 :AND: Time remaining to contact plant manager and site staff<=0, IF
 THEN ELSE(Time remaining to access site<1, Time remaining to access site, 1), 0
)

1806. if time_remaining_to_access_site(t)>0 and manual_actuation_initiated
(t)==1 and time_remaining_to_contact_staff(t)<=0:

1807. if time_remaining_to_access_site(t)<1:
1808. return time_remaining_to_access_site(t)
1809. else:
1810. return 1
1811. else:
1812. return 0
1813.
1814. @sdpy.stock(model, 1, name='Time Remaining To Access Site',cache=False,

jit=False)
1815. def time_remaining_to_access_site(t):
1816. return mobilization_initiated(t)-mobilizing(t)
1817.
1818. @sdpy.aux(model, name='Site Staff Mobilized',cache=False, jit=False)
1819. def site_staff_mobilized(t):
1820. #IF THEN ELSE(Time remaining to access site<=0 :AND: Manual Actuatio

n Initiated=1 :AND: Time remaining to contact plant manager and site staff<=0, 1
, 0)

1821. if time_remaining_to_access_site(t)<=0 and manual_actuation_initiate
d(t)==1 and time_remaining_to_contact_staff(t)<=0:

1822. MOB[t,year]=1
1823. return 1
1824. else:
1825. return 0
1826.
1827. @sdpy.aux(model, name='Gate Control Redundancy',cache=False, jit=False)

1828. def gate_control_redundancy(t):
1829. #IF THEN ELSE(Manual actuation=0, 2, IF THEN ELSE(Manual actuation=1

 :AND: Site staff mobilized=1, 1 , 0))
1830. if manual_actuation(t)==0:
1831. return 2
1832. else:
1833. if manual_actuation(t)==1 and site_staff_mobilized(t)==1:
1834. return 1
1835. else:
1836. return 0
1837.
1838. """
1839. 4.5. GATE ACTUATORS
1840.
1841. """
1842.
1843. @sdpy.aux(model, name='Dam Grid Availability',cache=False, jit=False)
1844. def dam_grid_availability(t):
1845. #IF THEN ELSE(Other component remaining time to repair[Grid]>0, 0, 1

)
1846. if other_component_remaining_time_to_repair(t)[2]>0:
1847. return 0
1848. else:
1849. return 1
1850.
1851. @sdpy.aux(model, name='Gate Power Supply',cache=False, jit=False)
1852. def gate_power_supply(t):

323

1853. return dam_grid_availability(t)
1854.
1855. @sdpy.aux(model, name="Gate Availability",cache=False, jit=False)
1856. def gate_availability(t):
1857. time=t
1858. gateavail=1
1859. sstaff=site_staff_mobilized(t)
1860. staffproblemgate=0
1861. if time>0:
1862. if (other_component_remaining_time_to_repair(t)[0]>0 or other_co

mponent_remaining_time_to_repair(t)[2]>0) and sstaff==0:
1863. staffproblemgate=1
1864. gateout=gate_all(t)
1865. if gateout>0 or staffproblemgate==1:
1866. gateavail=0
1867. return float(gateavail)
1868.
1869. @sdpy.aux(model, name="Components Failing Gate In Place",cache=False, ji

t=False)
1870. def components_failing_gate_in_place(t):
1871. #IF THEN ELSE(Gate remaining time to repair[C FIP]>0, 0 , 1)
1872. if gate_remaining_time_to_repair(t)[2]>0:
1873. return 0
1874. else:
1875. return 1
1876.
1877. @sdpy.aux(model, name="Components Collapsing Gate",cache=False, jit=Fals

e)
1878. def components_collapsing_gate(t):
1879. #IF THEN ELSE(Gate remaining time to repair[C FO]>0, 0 , 1)
1880. if gate_remaining_time_to_repair(t)[1]>0:
1881. return 0
1882. else:
1883. return 1
1884.
1885. @sdpy.aux(model, name="Components Failing Gate Closed",cache=False, jit=

False)
1886. def components_failing_gate_closed(t):
1887. #IF THEN ELSE(Gate remaining time to repair[C FC]>0, 0 , 1)
1888. if gate_remaining_time_to_repair(t)[0]>0:
1889. return 0
1890. else:
1891. return 1
1892.
1893. @sdpy.aux(model, name="Gate Collapsed",cache=False, jit=False)
1894. def gate_collapse(t):
1895. #IF THEN ELSE(Components collapsing gate=0, 1 , 0)
1896. if components_collapsing_gate(t)==0:
1897. return 1
1898. else:
1899. return 0
1900.
1901. @sdpy.aux(model, name="Fail Closed",cache=False, jit=False)
1902. def fail_closed(t):
1903. #IF THEN ELSE(Components failing gate closed=0, 1 , 0)
1904. if components_failing_gate_closed(t)==0:
1905. return 1
1906. else:
1907. return 0
1908.
1909. max_opening=12.5

324

1910.
1911. @sdpy.aux(model, name="Last Gate Position",cache=False, jit=False)
1912. def last_gate_position(t):
1913. timestep=t
1914. gp=GPs[timestep,year]
1915. if gate_availability(t)==0:
1916. gateavinds=np.where(GAVs[:,year]==1)[0]
1917. if np.size(gateavinds)!=0:
1918. lastgateactivets=np.max(gateavinds)
1919. gp=GPs[lastgateactivets, year]
1920. return gp
1921.
1922. @sdpy.aux(model, name="Gate Position",cache=False, jit=False)
1923. def gate_position(t):
1924. GColl=gate_collapse(t)
1925. MaxO=12.5
1926. GFClosed=fail_closed(t)
1927. GateAvailability=gate_availability(t)
1928. GAVs[int(t), year]=GateAvailability
1929. GateInstructions=gate_instructions(t)
1930. LastGatePosition=last_gate_position(t)
1931. if GColl==1:
1932. return MaxO
1933. if GFClosed==1:
1934. return 0
1935. if GateAvailability==1:
1936. return GateInstructions
1937. if GateAvailability==0:
1938. return LastGatePosition
1939.
1940.
1941. """
1942. 4.6. TURBINE ACTUATORS
1943.
1944. """
1945.
1946. @sdpy.aux(model, name='Unit Availability',cache=False, jit=False)
1947. def unit_availability(t):
1948. time=t
1949. turbavail=1
1950. if time>0:
1951. turbout=power_all(t)
1952. penstockrup=other_component_remaining_time_to_repair(t)[1] #pens

tock
1953. if turbout>0:
1954. turbavail=0
1955. if penstockrup>0:
1956. turbavail=0
1957. if other_component_remaining_time_to_repair(t)[2]>0: #grid failu

re
1958. turbavail=0
1959. return turbavail
1960.
1961. @sdpy.aux(model, name='Head Cover',cache=False, jit=False)
1962. def head_cover(t):
1963. if power_remaining_time_to_repair(t)[0]>0:
1964. return 0
1965. else:
1966. return 1
1967.
1968. @sdpy.aux(model, name='Generator',cache=False, jit=False)

325

1969. def generator(t):
1970. if power_remaining_time_to_repair(t)[1]>0:
1971. return 0
1972. else:
1973. return 1
1974.
1975. @sdpy.aux(model, name='Head Cover Max Flow',cache=False, jit=False)
1976. def head_cover_max_flow(t):
1977. flag1=head_cover(t)+1 #if head cover = 0 then flag=1
1978. if other_component_remaining_time_to_repair(t)[1]>0: #penstock
1979. flag1=1
1980. resels=reservoir_level(t)
1981. t1=fncTurbineMaxFlow(resels, flag1)
1982. if intake_gate_closure(t)==1:
1983. return 0
1984. if intake_gate_closure(t)==0:
1985. return np.max([np.min([5*(t1), reservoir_storage(t)+reservoir_in

flow(t)-gated_spill_release(t)-(-48.6)]), 0])
1986.
1987. @sdpy.aux(model, name='Turbine Flow',cache=False, jit=False)
1988. def turbine_flow(t):
1989. #IF THEN ELSE(Components collapsing gate=1, IF THEN ELSE(Head Cover=

0, Head Cover Max Flow , IF THEN ELSE(Unit availability=1, Turbine instructions
, 0)), 0)

1990. if components_collapsing_gate(t)==1:
1991. if head_cover(t)==0:
1992. return head_cover_max_flow(t)
1993. if head_cover(t)==1 and unit_availability(t)==1:
1994. return turbine_instructions(t)
1995. else: return 0
1996. else:
1997. return 0
1998.
1999. @sdpy.aux(model, name="Powerhouse Flow Conveyance",cache=False, jit=Fals

e)
2000. def powerhouse_flow_conveyance(t):
2001. return turbine_flow(t)
2002.
2003. """
2004. 5. MODEL RUNNING (Base Case)
2005.
2006. Stocks redefined each loop to ensure initial values are reset.
2007. This may be changed later so stocks are also defined within their sector

s above.
2008.
2009. """
2010. for yr in range(NYr):
2011. year=yr
2012. # Define time parameters to run model
2013. initial_time = 0
2014. final_time = 364
2015. time_step = 1
2016. model.run(initial_time, final_time, time_step)
2017. # print("Completed year :"+str(yr), flush=(yr%args.flush_period==0))

2018. initial_reservoir_storage=SSCrev(B_RSEs[0,year])
2019. if initial_reservoir_storage<=-

304.1: #making sure initial reservoir level isn't a failure
2020. initial_reservoir_storage=364.27
2021. model.reinitStock(initial_reservoir_storage, reservoir_storage)
2022. model.reinitStock(np.zeros(3), gate_remaining_time_to_repair)

326

2023. model.reinitStock(np.zeros(2), power_remaining_time_to_repair)
2024. model.reinitStock(np.zeros(3), other_component_remaining_time_to_rep

air)
2025. model.reinitStock(0, sensor_remaining_time_to_repair)
2026. model.reinitStock(1, time_remaining_to_access_site)
2027. model.reinitStock(1, time_remaining_to_contact_staff)
2028. model.reinitStock(0, manual_actuation_initiated)
2029. plantStaffNotified=np.zeros(365)
2030. RESEL_IG=[]
2031.
2032.
2033. """
2034. 6. DAM SAFETY PRIORITIZED RUN
2035.
2036. """
2037.
2038. Output=[RSEs, TBFs, SPOGs, OT]
2039. Otheroutput=[TTRS, TOTR, DEBRISREMOVAL, DAY, MON]
2040. EOCs=RSEs-376.5
2041. EOCs[EOCs<0]=0 #Filling in elevations over the core and truncating to ze

ro if less than 376.5
2042.
2043. @njit
2044. def OTC(elev): #Overtopping curve
2045. if elev<=378.41:
2046. return 0
2047. else:
2048. return (-35.7505780379803*elev**3 + 40896.2749435669* elev**2 -

15593240.0619064*elev + 1981715583.08889)
2049.
2050.
2051. RESEL_IG=[]
2052. @sdpy.aux(model, name="Intake Gate Closure",cache=False, jit=False)
2053. def intake_gate_closure(t):
2054. penstockrup=other_component_remaining_time_to_repair(t)[1]
2055. hcfail=power_remaining_time_to_repair(t)[0]
2056. igclosed=0
2057. timestep=t
2058. if hcfail>0 or penstockrup>0:
2059. if timestep>OCdeltat[1,year]+1:
2060. igclosed=1 #closes immediately after 1 timestep
2061. return igclosed
2062.
2063. @sdpy.aux(model, name="Head Cover Max Flow",cache=False, jit=False)
2064. def head_cover_max_flow(t): #reduces to 1/24th of actual release to acco

unt for intake gate closure under rupture flow
2065. flag1=head_cover(t)+1 #if head cover = 0 then flag=1
2066. if other_component_remaining_time_to_repair(t)[1]>0: #penstock
2067. flag1=1
2068. resels=reservoir_level(t)
2069. t1=fncTurbineMaxFlow(resels, flag1)
2070. if intake_gate_closure(t)==1:
2071. return 0
2072. if intake_gate_closure(t)==0:
2073. return (1/24.)*np.max([np.min([5*(t1), reservoir_storage(t)+rese

rvoir_inflow(t)-gated_spill_release(t)-(-48.6)]), 0])
2074.
2075. @sdpy.aux(model, name='Operations Planning',cache=False, jit=False)
2076. @sdpy.subscript(controls)
2077. def operations_planning(t):
2078. timestep=t

327

2079. dayref=dayrefs(Startdays[year], timestep)
2080. Inf114=Inflow[timestep:14+timestep, year] #Changed to one day ahead

so proper spills are released for Vensim version
2081. InfForecast=Inf114
2082. gaugerelay=gauge_relay(t)
2083. if gaugerelay<-

900 or gaugerelay>381.73: #If error is so high that it becomes obvious
2084. storage=-1000
2085. else:
2086. storage=SSCrev(gaugerelay)
2087. StaffOnSite=site_staff_mobilized(t)
2088. actualstorage=reservoir_storage(t)
2089. if (StaffOnSite>0) or (storage==-1000):
2090. if storage==-1000:
2091. storage=SSCrev(RSEs[timestep-

1, year]) #if unknown, takes previous days value
2092. if StaffOnSite==1:
2093. storage=actualstorage #if someone is on site, takes actual

value
2094. InitialStorage=np.float64(storage)#+lastinf-outfs
2095. resElPens=np.zeros((3,3))#Penalties for res el
2096. resElPens[0,:]=[0,273,304]
2097. resElPens[1,:]=[426.99, 300.39, 300.39]
2098. resElPens[2,:]=[99.58693574984267,99.58693574984267, 171.28] #123.60

856547318923 from 87.055 to help reduce 0 spill events
2099. SPOG1Av=gate_all(t) #Availbility set based on "gate time to repair

"
2100. TurbAv1=power_all(t)
2101. if SPOG1Av>0 or other_component_remaining_time_to_repair(t)[0]>0 or

other_component_remaining_time_to_repair(t)[2]>0:
2102. #if grid, plc or gate unavailable
2103. resElPens[1,:]=[100, 100, 100] #reducing target nmax to 367.8 to

 keep reservoir low for large inflow events
2104. Nextday=np.zeros(2)
2105.
2106. Optimized=OpsPlan(InfForecast, InitialStorage, dayref, SPOG1Av, Tu

rbAv1, resElPens)
2107. if SPOG1Av>0 or other_component_remaining_time_to_repair(t)[0]>0 or

other_component_remaining_time_to_repair(t)[2]>0:
2108. if TurbAv1<=0:
2109. Optimized[1]=fncTurbineMaxFlow(SSC(InitialStorage), 1)
2110. Nextday=np.array(Optimized.copy()) #SPOG1, Turb1
2111. Nextday.clip(min=0) #omit negatives.
2112. return Nextday
2113.
2114.
2115. #indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr

* 0.5))
2116. #OCOutages[0,indices] = 0
2117. #OCdeltat[0,indices] = 0
2118. #indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr

* 0.5))
2119. #SErrors[indices]=0
2120. #SErrorDeltat[indices]=0
2121. #indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr

* 0.5))
2122. #SOutages[indices]=0
2123. #Sdeltat[indices]=0
2124.
2125.
2126. #Save simulation 1 results with 1 in them.

328

2127. RSEs1=RSEs
2128. TBFs1=TBFs
2129. SPOGs1=SPOGs
2130. OT1=OT
2131. OUTFs1=OUTFs
2132. TTRS1=TTRS
2133. CAPs1=CAPs
2134. EOCs1=EOCs
2135. UCRs1=UCRs
2136. GCRs1=GCRs
2137. GAVs1=GAVs
2138. GPs1=GPs
2139.
2140. #Redefining arrays for second run
2141. RSEs=np.zeros((365,NYr))
2142. GAVs=np.zeros((365,NYr))
2143. TBFs=np.zeros((365,NYr))
2144. SPOGs=np.zeros((365,NYr))
2145. OT=np.zeros((365,NYr))
2146. INFs=np.zeros((365,NYr))
2147. OUTFs=np.zeros((365,NYr))
2148. GPs=np.zeros((365, NYr))
2149. TOTR=np.zeros((365,NYr))
2150. DEBRISREMOVAL=np.zeros(NYr)
2151. DAY=np.zeros((365,NYr))
2152. MON=np.zeros((365,NYr))
2153. AllMaxQ_t=np.zeros((365,2, NYr))
2154. AllMaxQ=[861.1+728.9,32.5+32.5]
2155. TTRS=np.zeros((365,8, NYr))
2156. Retention=np.zeros((365,NYr))
2157. yearnum=np.zeros(NYr)
2158. for yr in range(NYr):
2159. yearnum[yr]=str(1984+yr)
2160. CAPs=np.zeros((365, NYr))
2161. EOCs=np.zeros((365, NYr))
2162. UCRs=np.zeros((365,NYr))
2163. GCRs=np.zeros((365,NYr))
2164.
2165. #Reducing sensor issues, plcrtu failures by 50%
2166. OCOutages1=OCOutages.copy()
2167. OCdeltat1=OCdeltat.copy()
2168. SErrors1=SErrors.copy()
2169. SErrorDeltat1=SErrorDeltat.copy()
2170. SOutages1=SOutages.copy()
2171. Sdeltat1=Sdeltat.copy()
2172. GateOutagesAll1=GateOutagesAll.copy()
2173.
2174. indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr *

 0.5))
2175. OCOutages[0,indices] = 0
2176. OCdeltat[0,indices] = 0
2177. indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr *

 0.5))
2178. SErrors[indices]=0
2179. SErrorDeltat[indices]=0
2180. indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr *

 0.5))
2181. SOutages[indices]=0
2182. Sdeltat[indices]=0
2183. indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr *

 0.2))

329

2184. GateOutagesAll[0,indices] = 0 #gate failing closed 15% improvement
2185. indices = np.random.choice(np.arange(NYr), replace=False, size=int(NYr *

 0.2))
2186. GateOutagesAll[2,indices] = 0 #gate failing in place 15% improvement
2187.
2188.
2189. for yr in range(NYr):
2190. tm=time.time()
2191. year=yr
2192. initial_reservoir_storage=SSCrev(B_RSEs[0,year])
2193. if initial_reservoir_storage<=-

304.1: #making sure initial reservoir level isn't a failure
2194. initial_reservoir_storage=364.27
2195. model.reinitStock(initial_reservoir_storage, reservoir_storage)
2196. model.reinitStock(np.zeros(3), gate_remaining_time_to_repair)
2197. model.reinitStock(np.zeros(2), power_remaining_time_to_repair)
2198. model.reinitStock(np.zeros(3), other_component_remaining_time_to_rep

air)
2199. model.reinitStock(0, sensor_remaining_time_to_repair)
2200. model.reinitStock(1, time_remaining_to_access_site)
2201. model.reinitStock(1, time_remaining_to_contact_staff)
2202. model.reinitStock(0, manual_actuation_initiated)
2203.
2204. # Define time parameters to run model
2205. initial_time = 0
2206. final_time = 364
2207. time_step = 1
2208.
2209.
2210. model.run(initial_time, final_time, time_step)
2211. # print("Completed DS year :"+str(yr), flush=(yr%args.flush_period==0

))
2212. # tm1=time.time()
2213. # timer.append(tm1-tm)
2214. plantStaffNotified=np.zeros(365)
2215. RESEL_IG=[]
2216.
2217.
2218. """
2219. 7. POST-PROCESSING AND SAVING RESULTS
2220. Percentiles are saved to reduce output file sizes as much as possible
2221.
2222. """
2223.
2224. S_RL=pd.read_csv(name1)
2225. S_RL=S_RL.set_index("NewInd")
2226. S_CL=pd.read_csv(name2)
2227. S_CL=S_CL.set_index("NewInd") #setting index to the formatted OS IDs
2228.
2229. scenar = all_scenarios[seednum]
2230. ScenarioRL=S_RL.filter(items=scenar[0:7], axis=0)
2231. ScenarioCL=S_CL.filter(items=scenar[7:13], axis=0)
2232. AbnormalRL=ScenarioRL[ScenarioRL['CausalFactorName']!="None"]
2233. AbnormalCL=ScenarioCL[ScenarioCL['CausalFactorName']!="None"]
2234. AbnormalCL=AbnormalCL[AbnormalCL['CausalFactorName']!="Normal"]
2235.
2236. ScenarioIDs=[]
2237.
2238. for i in range(len(AbnormalRL)):
2239. ScenarioIDs.append(AbnormalRL.index[i])
2240. for i in range(len(AbnormalCL)):

330

2241. ScenarioIDs.append(AbnormalCL.index[i])
2242.
2243. AllAdScenarios=ScenarioIDs.copy()
2244.
2245. AllTimes=np.zeros((11, NYr))
2246. AllTimes[0:3,:]=Gdeltat
2247. AllTimes[3:5,:]=Tdeltat
2248. AllTimes[5,:]=Sdeltat1
2249. AllTimes[6:9,:]=OCdeltat1
2250. if "1359_2" in ScenarioIDs: #adding debris
2251. AllTimes[9,:]=np.ones(NYr)
2252. AllTimes[10,:]=IFErrorDeltat
2253. AllTimes=AllTimes.transpose()
2254. ColNames=["1362", "1361", "1360", "836", "838","30", "18","42","44", "13

59", "45"]
2255. AllTimes=pd.DataFrame(AllTimes, columns=ColNames)
2256.
2257. PersonnelScenarios=[]
2258. if "48_1" in ScenarioIDs:
2259. PersonnelScenarios.append("48")
2260. ScenarioIDs.remove("48_1")
2261. if "48_2" in ScenarioIDs:
2262. PersonnelScenarios.append("48")
2263. ScenarioIDs.remove("48_2")
2264. if "29_1" in ScenarioIDs:
2265. PersonnelScenarios.append("29")
2266. ScenarioIDs.remove("29_1")
2267. if "29_2" in ScenarioIDs:
2268. PersonnelScenarios.append("29")
2269. ScenarioIDs.remove("29_2")
2270. if "29_3" in ScenarioIDs:
2271. PersonnelScenarios.append("29")
2272. ScenarioIDs.remove("29_3")
2273.
2274.
2275.
2276. ScenarioIDs_simp=[]
2277. for i in range(len(ScenarioIDs)):
2278. head, sep, tail = ScenarioIDs[i].partition('_')
2279. ScenarioIDs_simp.append(head)
2280.
2281. AdTimes=AllTimes[ScenarioIDs_simp]
2282.
2283. TrueScenarios1=[] #this will contain a list of true scenario results
2284. for yr in range(NYr):
2285. imptimes=AdTimes.iloc[yr]
2286. imptimesarr=np.array(imptimes)
2287. RSEdiff=1 #this means there is a difference between the normal and c

ase reservoir levels
2288. scenar=[]
2289. for t in range(361):
2290. if t in imptimesarr:
2291. if len(scenar)==0:
2292. scenstart=t
2293. imps=imptimes[imptimes == t].index
2294. for i in range(len(imps)):
2295. scenar.append(imps[i]) #will keep adding to this s

cenario as events happen, if RSEs don't change
2296. #NOW check for scenario end, which happens when the next 3 days

RSE is within 0.05 m of normal
2297. if len(scenar)!=0:

331

2298. if (-0.05<(RSEs1[t+1,yr]-B_RSEs[t+1, yr])<0.05) and (-
0.05<(RSEs1[t+2,yr]-B_RSEs[t+2, yr])<0.05) and (-0.05<(RSEs1[t+3,yr]-
B_RSEs[t+3, yr])<0.05) or (RSEs1[t,yr]<=353.75) or (t==360):

2299. RSEdiff=0
2300. scenend=t
2301. if len(PersonnelScenarios)>0:
2302. # if imps[i]=='44' or imps[i]=='18': #plc/rtu or grid

 failures necessitate site access for gate op
2303. scenar+=PersonnelScenarios #add site and staff delay

s to ensure they are counted towards scenario
2304.
2305. if scenstart!=scenend:
2306. #post process sub-scenario
2307. Failure=0
2308. RSEs1subset=RSEs1[scenstart:t+1, yr]
2309. SPOGs1subset=SPOGs1[scenstart:t+1, yr]
2310. TBFs1subset=TBFs1[scenstart:t+1, yr]
2311. OTs1subset=OT1[scenstart:t+1, yr]
2312.
2313. CAPs1subset=CAPs1[scenstart:t+1, yr]
2314. UCRs1subset=UCRs1[scenstart:t+1, yr]
2315. GCRs1subset=GCRs1[scenstart:t+1, yr]
2316. if np.sum(UCRs1subset)==0:
2317. UCRs1subset=0 #avoid saving useless info
2318. if min(CAPs1subset)==1655:
2319. CAPs1subset=1655 #avoid saving useless info
2320. if min(GCRs1subset)==2:
2321. GCRs1subset=2 #avoid saving useless info
2322. INFsubset=INFs[scenstart:t+1, yr]
2323. Avg5dInfThreshold=0
2324. Max5dInfThreshold=0
2325. if min(RSEs1subset)<=353.75:
2326. Failure=1
2327. minind=np.argmin(RSEs1subset)
2328. if minind>5:
2329. Avg5dInfThreshold=np.mean(INFsubset[minind-

5:minind])
2330. Max5dInfThreshold=max(INFsubset[minind-

5:minind])
2331. else:
2332. Avg5dInfThreshold=np.mean(INFsubset[0:minind

])
2333. Max5dInfThreshold=max(INFsubset[0:minind])
2334. maxRSE=max(RSEs1subset)
2335. #replacing elements in scenar with complete OS ident

ifier
2336. scenar1= {pref:ele for pref in scenar for ele in All

AdScenarios if pref in ele}
2337. scenar1 = list(scenar1.values())
2338. AllOS=['18_3', '29_4', '30_4', '42_2', '44_3', '45_2

', '48_3', '836_2', '838_2', '1359_1', '1360_3', '1361_1', '1362_1']
2339. for i in range(len(scenar1)): #convert all normal to

 the scenario represented in scenar1
2340. head, sep, tail = scenar1[i].partition('_')
2341. indices = [i for i, s in enumerate(AllOS) if hea

d in s]
2342. AllOS[indices[0]]=scenar1[i] #complete list of O

S's
2343. #Convert list of OS's to seed number
2344. subseednum=all_scenarios.get_scenario_index(AllOS)

332

2345. sOut1=[subseednum, scenar1, Starts[yr], (scenstart,
scenend), Failure, (Avg5dInfThreshold, Max5dInfThreshold), maxRSE, RSEs1subset,
CAPs1subset, UCRs1subset, GCRs1subset, yr, SPOGs1subset, TBFs1subset, OTs1subset
]

2346. #reset scenar
2347. scenar=[]
2348. TrueScenarios1.append(sOut1)
2349. if RSEs1[t,yr]<=353.75: #eliminate unnecessary furth

er processing
2350. break
2351. else:
2352. scenar=[] #skips scenarios that didn't cause any dif

ference in reservoir levels
2353.
2354. # Dam safety improved
2355.
2356. AllTimes=np.zeros((11, NYr))
2357. AllTimes[0:3,:]=Gdeltat
2358. AllTimes[3:5,:]=Tdeltat
2359. AllTimes[5,:]=Sdeltat
2360. AllTimes[6:9,:]=OCdeltat
2361. if "1359_2" in ScenarioIDs: #adding debris
2362. AllTimes[9,:]=np.ones(NYr)
2363. AllTimes[10,:]=IFErrorDeltat
2364. AllTimes=AllTimes.transpose()
2365. ColNames=["1362", "1361", "1360", "836", "838","30", "18","42","44", "13

59", "45"]
2366. AllTimes=pd.DataFrame(AllTimes, columns=ColNames)
2367.
2368.
2369. ScenarioIDs_simp=[]
2370. for i in range(len(ScenarioIDs)):
2371. head, sep, tail = ScenarioIDs[i].partition('_')
2372. ScenarioIDs_simp.append(head)
2373.
2374. AdTimes=AllTimes[ScenarioIDs_simp]
2375.
2376. TrueScenarios=[] #this will contain a list of true scenario results
2377. for yr in range(NYr):
2378. imptimes=AdTimes.iloc[yr]
2379. imptimesarr=np.array(imptimes)
2380. RSEdiff=1 #this means there is a difference between the normal and c

ase reservoir levels
2381. scenar=[]
2382. for t in range(361):
2383. if t in imptimesarr:
2384. if len(scenar)==0:
2385. scenstart=t
2386. imps=imptimes[imptimes == t].index
2387. for i in range(len(imps)):
2388. scenar.append(imps[i]) #will keep adding to this s

cenario as events happen, if RSEs don't change
2389. #NOW check for scenario end, which happens when the next 3 days

RSE is within 0.05 m of normal
2390. if len(scenar)!=0:
2391. if (-0.05<(RSEs[t+1,yr]-B_RSEs[t+1, yr])<0.05) and (-

0.05<(RSEs[t+2,yr]-B_RSEs[t+2, yr])<0.05) and (-0.05<(RSEs[t+3,yr]-
B_RSEs[t+3, yr])<0.05) or (RSEs[t,yr]<=353.75) or (t==360):

2392. RSEdiff=0
2393. scenend=t
2394. if len(PersonnelScenarios)>0:

333

2395. # if imps[i]=='44' or imps[i]=='18': #plc/rtu or grid
 failures necessitate site access for gate op

2396. scenar+=PersonnelScenarios #add site and staff delay
s to ensure they are counted towards scenario

2397. if scenstart!=scenend:
2398. RSEdiff=0
2399. scenend=t
2400. #post process sub-scenario
2401. Failure=0
2402. RSEs1subset=RSEs[scenstart:t+1, yr]
2403. CAPs1subset=CAPs[scenstart:t+1, yr]
2404. UCRs1subset=UCRs[scenstart:t+1, yr]
2405. GCRs1subset=GCRs[scenstart:t+1, yr]
2406. if np.sum(UCRs1subset)==0:
2407. UCRs1subset=0 #avoid saving useless info
2408. if min(CAPs1subset)==1655:
2409. CAPs1subset=1655 #avoid saving useless info
2410. if min(GCRs1subset)==2:
2411. GCRs1subset=2 #avoid saving useless info
2412. INFsubset=INFs[scenstart:t+1, yr]
2413. Avg5dInfThreshold=0
2414. Max5dInfThreshold=0
2415. if min(RSEs1subset)<=353.75:
2416. Failure=1
2417. minind=np.argmin(RSEs1subset)
2418. if minind>5:
2419. Avg5dInfThreshold=np.mean(INFsubset[minind-

5:minind])
2420. Max5dInfThreshold=max(INFsubset[minind-

5:minind])
2421. else:
2422. Avg5dInfThreshold=np.mean(INFsubset[0:minind

])
2423. Max5dInfThreshold=max(INFsubset[0:minind])
2424. maxRSE=max(RSEs1subset)
2425. #replacing elements in scenar with complete OS ident

ifier
2426. scenar1= {pref:ele for pref in scenar for ele in All

AdScenarios if pref in ele}
2427. scenar1 = list(scenar1.values())
2428. AllOS=['18_3', '29_4', '30_4', '42_2', '44_3', '45_2

', '48_3', '836_2', '838_2', '1359_1', '1360_3', '1361_1', '1362_1']
2429. for i in range(len(scenar1)): #convert all normal to

 the scenario represented in scenar1
2430. head, sep, tail = scenar1[i].partition('_')
2431. indices = [i for i, s in enumerate(AllOS) if hea

d in s]
2432. AllOS[indices[0]]=scenar1[i] #complete list of O

S's
2433. #Convert list of OS's to seed number
2434. subseednum=all_scenarios.get_scenario_index(AllOS)
2435. sOut=[subseednum, scenar1, Starts[yr], (scenstart, s

cenend), Failure, (Avg5dInfThreshold, Max5dInfThreshold), maxRSE, RSEs1subset, C
APs1subset, UCRs1subset, GCRs1subset, yr]

2436. #reset scenar
2437. scenar=[]
2438. TrueScenarios.append(sOut)
2439. if RSEs[t,yr]<=353.75: #eliminate unnecessary furthe

r processing
2440. break
2441. else:

334

2442. scenar=[] #skips scenarios that didn't cause any dif
ference in reservoir levels

2443.
2444.
2445.
2446. #Error messages
2447. #Check min and max RSEs
2448. err=[]
2449. mnrse=np.min(RSEs)
2450. if mnrse<320:
2451. err.append("Minimum RSE below el. 320m")
2452. mxspog=np.max(SPOGs)
2453. if mxspog>1590:
2454. err.append("Gate flow exceeds 1590 maximumum")
2455.
2456.
2457. #reorganizing outputs
2458. numscen=len(TrueScenarios1)
2459. seednums1=np.zeros(numscen)
2460. seedstarts1=np.zeros((numscen,2))
2461. scendates1=np.zeros((numscen,2))
2462. failures1=np.zeros(numscen)
2463. infthresh1=np.zeros((numscen,2))
2464. years1=np.zeros(numscen)
2465. maxrse1=np.zeros(numscen)
2466. for i in range(numscen):
2467. seednums1[i]=TrueScenarios1[i][0]
2468. seedstarts1[i,:]=TrueScenarios1[i][2]
2469. scendates1[i,:]=TrueScenarios1[i][3]
2470. failures1[i]=TrueScenarios1[i][4]
2471. infthresh1[i,:]=TrueScenarios1[i][5]
2472. maxrse1[i]=TrueScenarios1[i][6]
2473. years1[i]=TrueScenarios1[i][11]
2474.
2475. seedfailures1=0
2476. for i in range(numscen):
2477. if seednums1[i]==seednum:
2478. seedfailures1+=failures1[i]
2479. seedsim1=np.count_nonzero(seednums1==seednum)
2480.
2481.
2482. TSIterations1=np.where(seednums1==seednum)[0]
2483. if len(TSIterations1)>0:
2484. scenariolengthmax=int(np.max(scendates1[:,1]-scendates1[:,0]))+1
2485. RSEs1all=np.zeros((len(TSIterations1), scenariolengthmax))
2486. RSEs1all[RSEs1all==0]='nan'
2487. SPOGs1all=np.zeros((len(TSIterations1), scenariolengthmax))
2488. SPOGs1all[SPOGs1all==0]='nan'
2489. TBFs1all=np.zeros((len(TSIterations1), scenariolengthmax))
2490. TBFs1all[TBFs1all==0]='nan'
2491. OTs1all=np.zeros((len(TSIterations1), scenariolengthmax))
2492. OTs1all[OTs1all==0]='nan'
2493.
2494. CAPs1all=np.zeros((len(TSIterations1), scenariolengthmax))
2495. CAPs1all[CAPs1all==0]='nan'
2496. UCRs1all=np.zeros((len(TSIterations1), scenariolengthmax))
2497. UCRs1all[UCRs1all==0]='nan'
2498. GCRs1all=np.zeros((len(TSIterations1), scenariolengthmax))
2499. GCRs1all[GCRs1all==0]='nan'
2500. for j in range(len(TSIterations1)):
2501. i=TSIterations1[j]

335

2502. scenariolength=int(scendates1[i,1]-scendates1[i,0])
2503. RSEs1all[j,0:len(TrueScenarios1[i][7])]=TrueScenarios1[i][7]
2504. if RSEs1all[j,len(TrueScenarios1[i][7])-1]<=353.75:
2505. RSEs1all[j, len(TrueScenarios1[i][7]):scenariolengthmax]=353

.75 #count breach all the way to the end for plotting
2506. try:
2507. CAPs1all[j,0:len(TrueScenarios1[i][8])]=TrueScenarios1[i][8]

2508. except:
2509. CAPs1all[j,0]=TrueScenarios1[i][8]
2510. try:
2511. UCRs1all[j,0:len(TrueScenarios1[i][9])]=TrueScenarios1[i][9]

2512. except:
2513. UCRs1all[j,0]=TrueScenarios1[i][9]
2514. try:
2515. GCRs1all[j,0:len(TrueScenarios1[i][10])]=TrueScenarios1[i][1

0]
2516. except:
2517. GCRs1all[j,0]=TrueScenarios1[i][10]
2518. try:
2519. SPOGs1all[j,0:len(TrueScenarios1[i][12])]=TrueScenarios1[i][

12]
2520. except:
2521. SPOGs1all[j,0]=TrueScenarios1[i][12]
2522. try:
2523. TBFs1all[j,0:len(TrueScenarios1[i][13])]=TrueScenarios1[i][1

3]
2524. except:
2525. TBFs1all[j,0]=TrueScenarios1[i][13]
2526. try:
2527. OTs1all[j,0:len(TrueScenarios1[i][14])]=TrueScenarios1[i][14

]
2528. except:
2529. OTs1all[j,0]=TrueScenarios1[i][14]
2530.
2531. else:
2532. RSEs1all=np.array(["nan","nan"])
2533. SPOGs1all=np.array(["nan","nan"])
2534. TBFs1all=np.array(["nan","nan"])
2535. OTs1all=np.array(["nan","nan"])
2536. CAPs1all=np.array(["nan","nan"])
2537. UCRs1all=np.array(["nan","nan"])
2538. GCRs1all=np.array(["nan","nan"])
2539.
2540.
2541. #reorganizing outputs
2542. numscen=len(TrueScenarios)
2543. seednums=np.zeros(numscen)
2544. seedstarts=np.zeros((numscen,2))
2545. scendates=np.zeros((numscen,2))
2546. failures=np.zeros(numscen)
2547. infthresh=np.zeros((numscen,2))
2548. maxrse=np.zeros(numscen)
2549. years=np.zeros((numscen,2))
2550. for i in range(numscen):
2551. seednums[i]=TrueScenarios[i][0]
2552. seedstarts[i,:]=TrueScenarios[i][2]
2553. scendates[i,:]=TrueScenarios[i][3]
2554. failures[i]=TrueScenarios[i][4]
2555. infthresh[i,:]=TrueScenarios[i][5]

336

2556. maxrse[i]=TrueScenarios[i][6]
2557. years[i]=TrueScenarios[i][11]
2558.
2559. seedfailures=0
2560. for i in range(numscen):
2561. if seednums[i]==seednum:
2562. seedfailures+=failures[i]
2563. seedsim=np.count_nonzero(seednums==seednum)
2564.
2565. TSIterations=np.where(seednums==seednum)[0]
2566. if len(TSIterations)>0:
2567. scenariolengthmax=int(np.max(scendates[:,1]-scendates[:,0]))+1
2568. RSEsall=np.zeros((len(TSIterations), scenariolengthmax))
2569. RSEsall[RSEsall==0]='nan'
2570. CAPsall=np.zeros((len(TSIterations), scenariolengthmax))
2571. CAPsall[CAPsall==0]='nan'
2572. UCRsall=np.zeros((len(TSIterations), scenariolengthmax))
2573. UCRsall[UCRsall==0]='nan'
2574. GCRsall=np.zeros((len(TSIterations), scenariolengthmax))
2575. GCRsall[GCRsall==0]='nan'
2576. for j in range(len(TSIterations)-1):
2577. i=TSIterations[j]
2578. scenariolength=int(scendates[i,1]-scendates[i,0])
2579. RSEsall[j,0:len(TrueScenarios[i][7])]=TrueScenarios[i][7]
2580. if RSEsall[j,len(TrueScenarios[i][7])-1]<=353.75:
2581. RSEsall[j, len(TrueScenarios1[i][7]):scenariolengthmax]=353.

75 #count breach all the way to the end for plotting
2582. try:
2583. CAPsall[j,0:len(TrueScenarios[i][8])]=TrueScenarios[i][8]
2584. except:
2585. CAPsall[j,0]=TrueScenarios[i][8]
2586. try:
2587. UCRsall[j,0:len(TrueScenarios[i][9])]=TrueScenarios[i][9]
2588. except:
2589. UCRsall[j,0]=TrueScenarios[i][9]
2590. try:
2591. GCRsall[j,0:len(TrueScenarios[i][10])]=TrueScenarios[i][10]

2592. except:
2593. GCRsall[j,0]=TrueScenarios[i][10]
2594.
2595. else:
2596. RSEsall=np.array(["nan","nan"])
2597. SPOGsall=np.array(["nan","nan"])
2598. TBFsall=np.array(["nan","nan"])
2599. OTsall=np.array(["nan","nan"])
2600. CAPsall=np.array(["nan","nan"])
2601. UCRsall=np.array(["nan","nan"])
2602. GCRsall=np.array(["nan","nan"])
2603.
2604.
2605.
2606. #Write txt output file
2607. if len(err)==0:
2608. np.savez_compressed(str("Outputs-"+str(seednum)+".npz"),
2609. seednums1=seednums1,
2610. seedstards1=seedstarts1,
2611. scendates1=scendates1,
2612. failures1=failures1,
2613. infthresh1=infthresh1,
2614. maxrse1=maxrse1,

337

2615. seedfailures1=seedfailures1,
2616. seedsim1=seedsim1,
2617. RSEs1all=RSEs1all.transpose(),
2618. CAPS1all=CAPs1all.transpose(),
2619. UCRs1all=UCRs1all.transpose(),
2620. GCRs1all=GCRs1all.transpose(),
2621. seednums=seednums,
2622. seedstards=seedstarts,
2623. scendates=scendates,
2624. failures=failures,
2625. infthresh=infthresh,
2626. maxrse=maxrse,
2627. seedfailures=seedfailures,
2628. seedsim=seedsim,
2629. RSEsall=RSEsall.transpose(),
2630. CAPSall=CAPsall.transpose(),
2631. UCRsall=UCRsall.transpose(),
2632. GCRsall=GCRsall.transpose()
2633.)
2634.
2635.
2636. if len(err)>0:
2637. np.savez(str("Outputs-"+str(seednum)+"-e.npz"),
2638. seednums1=seednums1,
2639. seedstards1=seedstarts1,
2640. scendates1=scendates1,
2641. failures1=failures1,
2642. infthresh1=infthresh1,
2643. maxrse1=maxrse1,
2644. seedfailures1=seedfailures1,
2645. seedsim1=seedsim1,
2646. RSEs1all=RSEs1all.transpose(),
2647. CAPS1all=CAPs1all.transpose(),
2648. UCRs1all=UCRs1all.transpose(),
2649. GCRs1all=GCRs1all.transpose(),
2650. seednums=seednums,
2651. seedstards=seedstarts,
2652. scendates=scendates,
2653. failures=failures,
2654. infthresh=infthresh,
2655. maxrse=maxrse,
2656. seedfailures=seedfailures,
2657. seedsim=seedsim,
2658. RSEsall=RSEsall.transpose(),
2659. CAPSall=CAPsall.transpose(),
2660. UCRsall=UCRsall.transpose(),
2661. GCRsall=GCRsall.transpose()
2662.)
2663.
2664. t0_2=time.time()
2665.
2666. #print("elapsed time: " +str(t0_2-t0))
2667. #
2668. #
2669. #print("number of data points, base case:" +str(np.count_nonzero(seednum

s1==seednum)))
2670. #
2671. #print("number of data points, DSI case:" +str(np.count_nonzero(seednums

==seednum)))

338

Appendix F: High Performance Computing

There are a total of 552,960 simulations, each simulated for 2000 iterations for two runs:

the base case and the dam safety improved case. Each iteration lasts for one year, so there

are a total of 2.2 Billion simulation-years. This is obviously a very large simulation exercise

that requires HPC resources to be executed efficiently. Compute Canada offers several

HPC clusters, and this research utilized Graham, Cedar and Niagara to complete the

simulations. Each cluster has thousands of nodes and each node may have several cores.

Because the scenarios are completely independent of one another, serial farming is the best

implementation for efficient simulation for this project. Serial farming means that

processes can run completely independently on multiple cores at a time, and their order of

execution is not important. In order to set up the serial farming environment, a simulation

controller is required.

The controller is a bash-scripted program that performs several functions and was

developed with assistance from a programming consultant due to its complex nature. It is

used to set up workspaces on the various clusters, and to send scenarios to the clusters in

preparation for simulation. Once the simulations are on the cluster and ready for

processing, the controller is used to initiate “jobs” which process the simulations on the

cluster. When submitting a job, the user can specify the number of jobs, the number of

cores to be used for each individual job as well as the time limit after which the job

terminates. The controller also manages the list of scenarios which have been completed,

submitted, failed or are still running and ensures there are no duplicating simulations for a

single scenario. The status of the jobs in terms of the number of scenarios running,

completed, and waiting in the queue can be queried by the user. Once jobs on Graham or

Cedar clusters are finished, the controller automatically resubmits the jobs to continue

processing the list of scenarios. The user must monitor the job status periodically, and

ensure more scenarios are available on the list for continued processing. For the Niagara

cluster, jobs are not able to re-submit themselves, so the user must manually submit either

smaller numbers of large jobs or larger numbers of small jobs and monitor them. Finally,

the controller is used to download the scenario output files to the local machine, which in

this case is a virtual private server. Given the 10TB storage capacity, the *.npz compressed

339

array files contain only the key outputs – dynamic reservoir level response, criticality

parameters and performance measures. These *.npz array files are stored in a directory that

contains sub-folders with 1000 files each.

During the initial test run of the controller, some issues with the simulation model for

specific scenarios were identified and repaired. The initial run of the model was completed

over a three-week period. Compute Canada has a specific scheduling algorithm which

allocates resources to users based on their priority as well as the amount of processing

previously carried out. The jobs wait to start in a queueing system, and once a user’s

allocation is used up the priority of their jobs is reduced. This queuing system makes it

difficult to estimate exactly what the throughput and simulation time will be. Resource

allocations significantly improve throughput, and this was realized on the second complete

simulation of the scenarios.

340

Curriculum Vitae

Name: Leanna M. King

Post-secondary University of Western Ontario

Education and London, Ontario, Canada

Degrees: 2007-2011 B.E.Sc.

The University of Western Ontario

London, Ontario, Canada

2011-2012 M.E.Sc.

Honours and Alexander Graham Bell Canada Graduate Scholarship (NSERC

Awards: CGS-D)

 2016-2019

 Ontario Graduate Scholarship

 2011-2012, 2015

 UWO Entrance Scholarship

 2007

Related Work Engineer-in-Training

Experience Dam Safety, BC Hydro

2019-Present

Teaching Assistant

The University of Western Ontario

2011-2012, 2015-2017

Engineer-in-Training

Hydrotechnical Division, BC Hydro

2013-2015

Publications:

King LM, Simonovic SP (2020) A Deterministic Monte Carlo simulation framework for

dam safety flow-control assessment. Water 12(2): 505. doi: 10.3390/w12020505

King LM, Schardong A, Simonovic SP (2019) A combinatorial procedure to determine

the full range of potential operating scenarios for a dam system. Water Resources

Management 33(4):1451-1466. doi: 10.1007/s11269-018-2182-3

341

King LM, Simonovic SP, Hartford DND (2017) Using system dynamics simulation for

assessment of hydropower system safety. Water Resources Research 53(8): 7148-

7174. doi: 10.1002/2017WR020834

King LM, Keech S, Simonovic SP (2016) An Investigation of the Factors and

Components Involved in Dam Safety Flow Control Incidents. Journal of Dam

Engineering 27:1–19

King LM, McLeod AI, Simonovic SP. (2015) Improved Weather Generator Algorithm

for Multisite Simulation of Precipitation and Temperature. Journal of the American

Water Resources Association 51(5).

King LM, McLeod AI, Simonovic SP. (2014) Simulation of historical temperatures using

a multi-site, multivariate block resampling algorithm with perturbation.

Hydrological Processes 28(3).

King LM, Irwin S. Sarwar R, McLeod AI, Simonovic SP. (2012) The effects of climate

change on extreme precipitation events in the upper Thames River Basin: A

comparison of downscaling approaches. Canadian Water Resources Journal. 37(3).

	Using a systems approach to analyze the operational safety of dams
	Recommended Citation

	OLE_LINK1

