
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-16-2020 10:30 AM

Computation of Sensitive Multiple Spaced Seeds Computation of Sensitive Multiple Spaced Seeds

Arnab Mallik, The University of Western Ontario

Supervisor: Ilie, Lucian, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Arnab Mallik 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Recommended Citation Recommended Citation
Mallik, Arnab, "Computation of Sensitive Multiple Spaced Seeds" (2020). Electronic Thesis and
Dissertation Repository. 6977.
https://ir.lib.uwo.ca/etd/6977

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6977?utm_source=ir.lib.uwo.ca%2Fetd%2F6977&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Similarity search is one of the most important problem in bioinformatics, with application in
read mapping, homology search, oligonucleotide design, etc. Similarity search is time and
memory intensive, hence heuristic methods using multiple spaced seeds are commonly em-
ployed. A spaced seed is a string of 1 and *, where 1 represents a match position and * repre-
sent don’t care position. Seeds are used to discover regions with identity, thus, it is imperative
to design seeds of high sensitivity, so as to maximize the number of hits.

We present SpEED2, a software program to generate multiple spaced seeds of high sensitiv-
ity. It uses a novel seed optimization approach and it outperforms all the leading programs used
for designing multiple spaced seeds like Iedera, AcoSeeD, and rasbhari. Our algorithm will
benefit several software that is dependent on good quality seeds for its operation like Pattern-
Hunter for similarity search, SHRiMP and BFAST for read mapping, bestPrimer for designing
primers, and many more.

Keywords: Multiple Spaced Seeds, Similarity Search, Local Alignment, Heuristic Algorithm

ii

Lay Summary

Multiple spaced seed is a set of one or more spaced seeds and they are used to find similar
regions between two biological sequences. A spaced seed is a string of 1 and *, where 1
represents a match position and * represent don’t care position. Two sequences are similar if
they are highly identical.

When a spaced seed is arranged with the two biological sequences to identify regions of
similarity, a hit occurs only if both the sequences are identical in all the match positions. How-
ever, we are not interested in the don’t care positions.

A measurement metric called sensitivity is used to differentiate good seeds from bad ones.
Sensitivity is the probability of detecting similar regions between sequences, good multiple
spaced seeds have high sensitivity whereas bad ones will have low sensitivity.

We have developed a software program named SpEED2 that generates multiple spaced
seeds of high sensitivity. In this dissertation, we first look into previous related works, then we
explain our algorithm and finally compare our results with other leading software concerned
with generating multiple spaced seeds and show our software program to be better than the
others.

iii

Acknowlegements

I would like to express my most sincere gratitude to my supervisor Dr. Lucian Ilie for his
valuable guidance and advice. His encouragement and feedback led me to complete this dis-
sertation. It was an absolute honour and privilege to work with such a wise person. I would
also like to show my heartiest gratitude to all the professors who taught me and helped me
build the background for this dissertation.

I would like to thank my father Manas Kumar Mallik and my mother Ruby Mallik for their
unconditional love and support throughout this arduous journey.

I acknowledge all my friends and lab mates for always motivating me and helping me
overcome all hurdle. Last but not the least, I thank the Department of Computer Science at
Western University for funding my graduate studies.

iv

Contents

Abstract ii

Lay Summary iii

Acknowlegements iv

List of Figures vii

List of Tables viii

List of Appendices ix

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 2
1.3 Objective . 2
1.4 Thesis Contribution . 2
1.5 Thesis Outline . 3

2 Background 4
2.1 Sequence Alignment . 5
2.2 Traditional Methods . 5

2.2.1 Needleman-Wunsch Algorithm . 6
2.2.2 Smith-Waterman Algorithm . 7

2.3 Heuristic Methods . 8
2.3.1 Suffix Tree Algorithms . 8

2.3.1.1 MUMmer . 9
2.3.1.2 Quasar . 11

2.3.2 Seeding Based Algorithms . 12
2.3.2.1 FASTA . 13
2.3.2.2 BLAST . 13
2.3.2.3 PatternHunter . 16
2.3.2.4 PatternHunter II . 18

2.4 Designing Multiple Spaced Seeds . 18
2.4.1 Iedera . 19
2.4.2 AcoSeeD . 20
2.4.3 rasbhari . 22

v

3 Methodology 25
3.1 SpEED . 25

3.1.1 Sensitivity . 25
3.1.2 Overlap Complexity . 26
3.1.3 Iterative Hill Climbing with Random Starts 26
3.1.4 Algorithm . 27
3.1.5 SpEED-Fast . 28

3.2 SpEED2 . 28
3.2.1 Estimated Sensitivity . 29
3.2.2 Indel Optimization . 32
3.2.3 Adaptive Seed Length . 35
3.2.4 SpEED2 Algorithm . 36

3.2.4.1 Compute min & max seed lengths 36
3.2.4.2 Compute all seed lengths . 37
3.2.4.3 Create homologous region 37
3.2.4.4 Populate the seeds with default value 37
3.2.4.5 Iterative hill climbing . 37
3.2.4.6 Adaptive seed lengths . 37
3.2.4.7 Indel optimization . 37
3.2.4.8 Calculate sensitivity . 37

4 Experimental Results 39
4.1 Operation Environment . 39
4.2 Experimental Setup . 39
4.3 Performance Measurement Metric . 40
4.4 Experimental Results . 40
4.5 Comparison . 41

5 Conclusion and Future Works 43
5.1 Summary . 43
5.2 Conclusion . 43
5.3 Future Works . 44

Bibliography 45

A SpEED2 Seeds 48
A.1 SHRiMP Seeds . 48
A.2 PatternHunter II Seeds . 53
A.3 BFAST Seeds . 55
A.4 MegaBLAST Seeds . 57

Curriculum Vitae 59

vi

List of Figures

2.1 A comparison of the helix and base structure of RNA and DNA 4
2.2 A comparison of local and global alignment 8
2.3 The suffix tree for S=acaaacatat . 9
2.4 Suffix tree for the sequence S = GAACCGACCT 9
2.5 Aligning M.genitalium and M. pneumoniae 10
2.6 Partition of D into overlapping blocks of size b 12
2.7 Identification of sequence similarities by FASTA. 14
2.8 Schematic of a BLAST search . 15
2.9 Hit and Extend Process . 16
2.10 Spaced seed example . 16
2.11 Spaced seed vs consecutive seed . 16
2.12 1 − hit performance of spaced model versus consecutive models 17
2.13 Performance of multiple spaced seeds . 19
2.14 The classical PatternHunter spaced seed designed using Iedera 20
2.15 AcoSeeD algorithm . 20
2.16 ACO construction graph for the identification of seed lengths 21
2.17 Construction graph and seed building procedure 22

3.1 An example of a hit using PatternHunter’s spaced seed 26
3.2 An example of the overlap complexity of two seeds 27
3.3 SpEED algorithm . 28
3.4 Example of estimated sensitivity calculation 30
3.5 Hit detection for estimating sensitivity . 31
3.6 Comparison between real and estimated sensitivity 31
3.7 Difference between real and estimated sensitivity 32
3.8 Comparison between real and estimated sensitivity 33
3.9 OC comparison between SpEED-Fast and rasbhari 34

4.1 Screenshot of SpEED2 output . 41

vii

List of Tables

2.1 An example of Pairwise Alignment . 5
2.2 An example of Needleman-Wunsch algorithm computation matrix 6
2.3 Optimal global alignment discovered . 7
2.4 An example of Smith-Waterman algorithm computation matrix 7
2.5 Optimal local alignment discovered . 7
2.6 Comparison between QUASAR, QUASAR-E and BLAST 12
2.7 Sensitivity comparison of different programs 24

4.1 Types of seeds used as dataset . 40
4.2 Comparison of different programs with SpEED2 42

A.1 SHRiMP seeds of weight 10 and homology length 50 48
A.2 SHRiMP seeds of weight 10 and homology length 50 48
A.3 SHRiMP seeds of weight 10 and homology length 50 48
A.4 SHRiMP seeds of weight 11 and homology length 50 49
A.5 SHRiMP seeds of weight 11 and homology length 50 49
A.6 SHRiMP seeds of weight 11 and homology length 50 49
A.7 SHRiMP seeds of weight 12 and homology length 50 50
A.8 SHRiMP seeds of weight 12 and homology length 50 50
A.9 SHRiMP seeds of weight 12 and homology length 50 50
A.10 SHRiMP seeds of weight 16 and homology length 50 51
A.11 SHRiMP seeds of weight 16 and homology length 50 51
A.12 SHRiMP seeds of weight 16 and homology length 50 51
A.13 SHRiMP seeds of weight 18 and homology length 50 52
A.14 SHRiMP seeds of weight 18 and homology length 50 52
A.15 SHRiMP seeds of weight 18 and homology length 50 52
A.16 PatternHunter II seeds of weight 11 and homology length 64 53
A.17 PatternHunter II seeds of weight 11 and homology length 64 54
A.18 PatternHunter II seeds of weight 11 and homology length 64 54
A.19 BFAST seeds of weight 22 and homology length 50 55
A.20 BFAST seeds of weight 22 and homology length 50 55
A.21 BFAST seeds of weight 22 and homology length 50 56
A.22 MegaBLAST seeds of weight 28, homology length 100 and sensitivity of 0.9 . 57
A.23 MegaBLAST seeds of weight 28, homology length 100 and sensitivity of 0.9 . 57
A.24 MegaBLAST seeds of weight 28, homology length 100 and sensitivity of 0.9 . 57
A.25 MegaBLAST seeds of weight 28, homology length 100 and sensitivity of 0.9 . 58
A.26 MegaBLAST seeds of weight 28, homology length 100 and sensitivity of 0.9 . 58

viii

List of Appendices

Appendix A . 48

ix

Chapter 1

Introduction

The main focus of bioinformatics is to interpret and analyze biological data using mathematical
and statistical models. The National Center for Biotechnology Information (NCBI) GenBank
currently contains nucleotide sequences for more than 250,000 organisms with supporting bib-
liographic and biological annotation. The GenBank has been growing exponentially since 1982
and is still growing [1].

There is a need to comb through such a vast repository of data in order to find sequences
of interest. If some new unknown sequences are encountered, it is wise to compare those new
sequences to similar sequences (from the repository) with known functionality. This will give
a lot of insight into the new sequence.

Sequence similarity search is the most common task in bioinformatics. Many applications
like gene and protein predictions, sequence assembly, evolutionary and phylogeny study etc.
are dependant on sequence similarity search. From a theoretical point of view, the problem of
sequence similarity search is complex and is based on the concept of sequence alignment.

More than 4 million web users access the NCBI website daily [2], even if a small fraction of
this many users are searching the database, that is still a lot of searches. Traditional approaches
of sequence alignment like Needleman-Wusch and Smith-Waterman algorithms use dynamic
programming and are able to find the optimal alignment between two sequences. However
these algorithms have quadratic run time (product of the lengths of the two sequences), hence
they are not feasible when long sequences are involved. So, heuristic approaches are needed,
which trade sensitivity for speed but might miss some true alignments. Seeding based ap-
proach is one of the most popular heuristic methods used like FASTA [3], BLAST [4] and
PatternHunter [5].

The Basic Local Alignment Search Tool (BLAST) is the most used tool for similarity
search. In the case of nucleotide sequences, BLAST finds an exact match of eleven consecutive
letters between the two sequences and treats this as a hit. Next, the identified hits are extended
greedily in both directions to find HSP or High-Scoring Sequence Pair.

The spaced seed, which was introduced in PatternHunter enhances the consecutive seed
of BLAST. This is because the hits detected by spaced seeds are more distributed whereas
consecutive seed tends to detect hits in clusters, as a result, spaced seeds do not generate
redundant hits, thus detecting more similar regions than consecutive seeds. By using optimized
spaced seeds, we can improve the sensitivity drastically and achieve results in time similar to
BLAST. Multiple spaced seeds were then introduced in PatternHunter II [6].

1

2 Chapter 1. Introduction

It has been seen that well-designed multiple spaced seeds can even achieve sensitivity that
is close to that observed for the Smith-Waterman algorithm and run at speeds similar to the
BLAST algorithm. Thus, algorithm, which design good multiple spaced seeds are an active
area of research.

1.1 Motivation
Similarity search based on the strategy of hit and extend is ubiquitous in genomics and pro-
teomics. Here, two biological sequences, such as DNA or protein sequences are aligned by
finding short seed matches called hits, which are then extended to high-scoring segment pairs
or HSPs.

Optimal spaced seed, which was introduced in PatternHunter [5] by Ma et al., has increased
both the sensitivity and the speed of similarity search. Further improvement was achieved by
using multiple spaced seeds in PatternHunterII [6] by Li et al. With the use of multiple spaced
seeds along with the hit and extend approach, heuristics methods are getting close to Smith-
Waterman sensitivity at BLASTn speeds.

However, computing optimal multiple spaced seeds used by PatternHunterII has proven to
be NP-hard [7] and current heuristic algorithms can be improved.

1.2 Problem Statement
Computing optimal multiple spaced seeds is NP-hard. So this problem is solved using heuristic
algorithms. The drawback of these heuristic approaches is that they are either fast and less
sensitive or are sensitive and very slow. There is a need for some approach that will produce
seeds of high sensitivity in an acceptable time. Our approach aims to alleviate this problem.

1.3 Objective
The main objective is to design multiple spaced seeds of high sensitivity within an acceptable
amount of time. Using these seeds, similarity search is possible and similar regions often
correspond to homologous regions.

1.4 Thesis Contribution
The major contribution of this thesis is that our novel approach generates good multiple spaced
seeds by modifying the lengths and composition of the seeds. We have implemented SpEED2,
which embodies our approach and is capable of producing multiple spaced seeds of high sen-
sitivity.

Various tools in bioinformatics depend on good seeds to solve their respective problems.
Problems concerned with gene and protein predictions, phylogeny and evolutionary analysis,
read mapping, primer design, and probe design which uses multiple spaced seeds will have
increased performance by using multiple spaced seeds designed by SpEED2.

1.5. Thesis Outline 3

1.5 Thesis Outline
In Chapter 2, we discuss multiple spaced seeds in detail. We talk about sequence alignment
and various implementations using dynamic programming and heuristic methods, their pros
and cons.

Then we look at leading software used for similarity search.
After this, we introduce multiple spaced seeds along with prominent works and leading

programs.
In Chapter 3, we discuss SpEED, followed by our approach and its implementation SpEED2

which is built on top of SpEED. Then we discuss its important algorithms followed by the en-
tire algorithm as a whole.

In Chapter 4, we present the experimental results produced by our software program
SpEED2 and also compare these results with other leading software like Iedera, AcoSeeD
and rasbhari.

In Chapter 5, we summarize our work. Finally, we present some possible future works.

Chapter 2

Background

A biological sequence is a single, continuous molecule of nucleic acid or protein. It can be
thought of as a multiple inheritance class hierarchy. One hierarchy is that of the underlying
molecule type: DNA, RNA, or protein. The other hierarchy is the way the underlying biological
sequence is represented by the data structure. It could be a physical or genetic map, an actual
sequence of amino acids or nucleic acids, or some more complicated data structure building a
composite view from other entries [8].

In simpler terms, biological sequences are one-dimensional series of nucleotides or amino
acids, which are naturally occurring monomers. Polymerization of nucleotides result in nucleic
acids, which are biological molecules of DNA (deoxyribonucleic acid) and RNA (ribonucleic
acid) as shown in 2.1. An amino acid is another naturally occurring monomer that polymerizes
to form a protein. All these are essential building blocks of life on Earth.

Figure 2.1: A comparison of the helix and base structure of RNA and DNA
Four types of nitrogen bases found in DNA are adenine (A), thymine (T), guanine (G), and

cytosine (C). RNA contains uracil (U) instead of thymine (T). [9]

4

2.1. Sequence Alignment 5

Sequence analysis of unknown nucleic acids and proteins are crucial in understanding the
evolution, function, and structure of organisms. The Human Genome Project [3] identified
more than 20,500 genes. Unknown sequences are a result of evolution from existing sequences,
hence it is common practice to perform sequence analysis, comparing the unknown to the
already known sequences present in the repository. Thus, sequence alignment is a critical step
while finding similar regions between two sequences.

2.1 Sequence Alignment

Two or more sequences inherited from a common ancestor are said to be homologous. We
search for similar sequences in the hope of finding homologous sequences. Sequence alignment
helps us determine whether two or more sequences descended from a common ancestor. It also
helps us infer a common function by locating functional elements. One important point to
keep in mind is that the ultimate goal of bioinformatics is to find the ”real” alignment of a
sequence according to real evolution. However, this is impossible by sequence alone, thus
we are forced to find the ”optimal” alignment instead. Optimal alignment and real alignment
might be different. The earliest attempts to computationally align sequences were made by
using edit distance [10] in 1966. Edit distance is the minimum number of edit operations it
takes to convert one sequence to another. Three types of operations - insertion, deletion, and
substitution are present to facilitate the conversion.

A great deal of literature was developed following that. Some of the most prominent work
includes Needleman-Wunsch’s dynamic-programming solution for global alignment [11], the
dynamic-programming solution for local alignment by Smith-Waterman [12], the BLAST tool
for searching similar regions using length 11 consecutive seed [4]. The PatternHunter intro-
duced spaced seeds [5], and PatternHunter II introduced the use of multiple spaced seeds [6].
The focus shifted towards designing of optimized multiple spaced seeds as evident from SpEED
[7, 13, 14] and numerous other works like iedera [15, 16, 17], AcoSeeD [18], rasbhari [19],
etc. We shall discuss more in the coming sections, but first, let us discuss some basic concepts
regarding sequence alignment.

2.2 Traditional Methods

Sequence alignment means arranging two sequences so that they are most similar to each other
column-wisely according to some scoring function. Let us look at the following example
with two sequences S 1 = AATGCATT and S 2 = GTGATT, where match score = +1 and mis-
match score = indel score = -1. We assume this simple scoring system to illustrate the process.

A A T G C A T T
G - T G - A T T

Table 2.1: An example of Pairwise Alignment
The pairwise alignment between sequence S 1 and sequence S 2. It shows three different

possible alignments for each position - match, mismatch and indels.

6 Chapter 2. Background

The blue letters indicate match positions in Table 2.1. The alignment score is +5−3 = 2 and
this is the optimal alignment. Indel is a molecular biology term for an insertion or a deletion of
bases in the genome of an organism due to genetic variation over time. In Table 2.1, the second
column (containing A and −) represents an indel and the − represent a gap. Global and local
alignments are two main types of alignment and their algorithms are discussed below.

2.2.1 Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm uses dynamic programming to find global alignment [11].
The main idea behind this algorithm is that the optimal alignment of the complete sequence
can be found by optimally aligning component sub-parts. In global alignment, the optimal path
must stretch from beginning to end in both the sequences.

To perform a Needleman-Wunsch alignment, a matrix is created to store the score M(i, j),
which is calculated as follows:

M(i, j) = max

Mi−1, j−1 + S (Ai, B j)
Mi−1, j + gap
Mi, j−1 + gap

Here gap is the gap penalty and function S returns the score for match/mismatch between
two letters Ai and B j. A matrix is filled using the above-mentioned recurrence relation, which
states that the value of any cell is the maximum among the mentioned three options (Mi−1, j−1

is the neighboring cell in the upper-left diagonal to the current cell, Mi−1, j is the cell above
the current cell and Mi, j−1 is the cell to the left of the current cell). Once the matrix is filled,
a trace-back is performed to determine the sequence of operations that lead to the final score
from the start. This algorithm has a time complexity of O(mn) and space complexity of O(mn),
where m and n are the lengths of the two sequences.

Let’s look at an example. We assume the two sequences and scoring system as follows.
Given S 1 = CTTAAG, S 2 = ATTAG. Match score = 2, mismatch score = −1 and indel score
= −2. We assume this simple scoring system to illustrate how the algorithm works.

A T T A G
0 -2 -4 -6 -8 -10

C -2 -1 -3 -5 -7 -9
T -4 -3 1 -1 -3 -5
T -6 -5 -1 3 1 -1
A -8 -4 -3 1 5 3
A -10 -6 -5 -1 3 4
G -12 -8 -7 -3 1 5

Table 2.2: An example of Needleman-Wunsch algorithm computation matrix

The matrix shown in Table 2.2 produces the global alignment shown in Table 2.3 with a
global alignment score of 5.

2.2. TraditionalMethods 7

C T T A A G
A T T - A G

Table 2.3: Optimal global alignment discovered

2.2.2 Smith-Waterman Algorithm
The Smith-Waterman algorithm uses dynamic programming to find optimal local alignments [12].
The Needleman-Wunsch algorithm was slightly modified to achieve local alignments. Here,
the alignment path may start and end internally, it does not need to reach the edges of the ma-
trix. To perform a Smith-Waterman alignment, a matrix is created to store the score M(i, j),
which is calculated as follows:

M(i, j) = max

Mi−1, j−1 + S (Ai, B j)
Mi−1, j + gap
Mi, j−1 + gap
0

This means that zero is the lowest value possible in the scoring matrix and all other components
of the recurrence relation remain the same as the Needleman-Wunsch algorithm, negative num-
bers are not allowed as in global alignment. This algorithm has a time complexity of O(mn)
and space complexity of O(mn), where m and n are the lengths of the two sequences.

Local alignments are performed everywhere possible along two sequences. Let’s look at
an example. We assume the two sequences and scoring system as follows. Given S 1 = GAT-
ACTTG, S 2 = AATAGTCT. Match score = 2, mismatch score = −1 and indel score = −2. We
assume this simple scoring system to illustrate how the algorithm works.

A A T A G T C T
0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 2 1 0 0
A 0 2 2 0 2 0 1 0 0
T 0 0 1 4 2 1 2 0 2
A 0 2 2 2 6 4 2 1 0
C 0 0 1 1 4 5 3 4 2
T 0 0 0 3 2 3 7 5 6
T 0 0 0 2 2 1 5 6 7
G 0 0 0 0 1 4 3 4 5

Table 2.4: An example of Smith-Waterman algorithm computation matrix

G A T A C T
A A T A G T

Table 2.5: Optimal local alignment discovered

8 Chapter 2. Background

The matrix shown in Table 2.4 produces the local alignment shown in Table 2.5 with a local
alignment score of 7.

Local alignments are performed everywhere possible along two sequences as shown in
Figure 2.2.

Figure 2.2: A comparison of local and global alignment
The global alignment stretches from the beginning till the end between the two given

sequences, whereas, local alignment detects smaller matches between the sequences and need
not stretch from the beginning till the end. [20]

2.3 Heuristic Methods
A heuristic algorithm is designed to solve a particular problem faster than traditional methods
by trading accuracy or precision for speed. The traditional methods require quadratic run-time
and memory. We have already discussed in the previous chapter why this is unacceptable, thus
the need for heuristic methods. We shall discuss two common strategies of similarity search:
suffix trees and seeding.

2.3.1 Suffix Tree Algorithms
Given a string S of n characters, a suffix tree for S is a rooted directed tree with exactly n + 1
leaves numbered 0 to n. Each internal node, other than the root, has at least two children and
each edge is labeled with a non-empty substring of S $ and no two edges out of a node can have
edge-labels beginning with the same character. The key feature of the suffix tree is that for any
leaf i, the concatenation of the edge-labels on the path from the root to the leaf i exactly spells
out the string S i, where S i = S [i...n − 1]$ denotes the i − th non-empty suffix of the string
S $, 0 ≤ i ≤ n [21]. Figure 2.3 shows an example of suffix tree.

A suffix tree quickly detects all unique sub-sequences for a given sequence because all
unique sub-sequences are associated with a leaf in a suffix tree, thus, it can be used to align
long DNA sequences. Weiner [22] and McCreight [23] gave us very efficient algorithms for
constructing suffix trees. Using Ukkonen’s algorithm [24], a suffix tree can be constructed in
linear-time and searching can also be done in linear time. There are two main disadvantages
of using suffix trees for sequence alignments: they perform well on highly similar sequences

2.3. HeuristicMethods 9

Figure 2.3: The suffix tree for S=acaaacatat
Traversing from the root to any leaf produces a complete suffix of the pattern S . Any valid

suffix must end with a $ symbol. [21]

but their performance degrades when mismatches are introduced i.e.- they are very poor in
handling mismatches. The other disadvantage is that they require a lot of memory. Here, we
discuss two suffix tree-based heuristic algorithms - MUMmer and Quasar.

2.3.1.1 MUMmer

MUMmer is a software system for aligning long sequences of DNA that have high similar-
ity. The system takes three inputs: two DNA sequences of high similarity - Genome A and
Genome B as well as the length of the shortest MUM the system will identify. A MUM is
a subsequence that occurs exactly once in Genome A and once in Genome B and is not con-
tained in any longer sequence. For highly similar sequences, the shortest MUM length is 50 bp,
for a less similar sequence, it is 20 bp. In the output, exact matches and all single nucleotide
polymorphisms (SNPs) are identified as well as significant repeats [25].

Figure 2.4: Suffix tree for the sequence S = GAACCGACCT
Travelling from the root to any leaf will produce a suffix of S . If we consider the left most leaf

(leaf 2), the suffix the path represents is aaccgacct. [25]

10 Chapter 2. Background

MUMmer is built using three component ideas: suffix trees as shown in Figure 2.4, the
longest increasing sub-sequence (LIS) and Smith-Waterman alignment. All three components
are tightly coupled into a single system. The alignment process consists of the following steps:

•Maximal Unique Matching (MUMs) sub-sequence decomposition : The most important
step in the alignment process of MUMmer is to identify MUMs. When the program
is run, a suffix tree T is constructed for Genome A and the suffixes of Genome B are
appended to T . All leaf nodes indicate whether it is suffix from Genome A or Genome B.
All MUMs can be discovered in just one run over the suffix tree T .

Figure 2.5: Aligning M.genitalium and M. pneumoniae
The top figure is the alignment produced by FASTA, the middle one by 25mer and the bottom

one by Maximal Unique Matching. The MUM alignment is the cleanest and is continuous
among all three alignments. [25]

• Sorting the MUMs : Once all the MUMs are found, they are sorted according to their posi-
tion in Genome A. Then, the corresponding matching positions are ordered in Genome B.
A variant of LIS algorithm [26] finds the longest set of MUMs that are in ascending order
for both the sequences.

2.3. HeuristicMethods 11

• Closing the gaps : After the global MUM-alignment is discovered, several algorithms are
used to complete the alignment by closing the local gaps. A gap is any interruption
present in MUM alignment which might occurs because of SNP interrution, an insertion
or a repeat.

Figure 2.5 illustrates the alignment at the level of complete genome. In all three figures,
M.genitalium and M. pneumoniae are aligned using FASTA (top), 25mers (an oligonucleotide
of 25 nucleotides - middle) and MUMs (bottom). The MUM alignment is the cleanest and is
continuous among all three alignments. The MUM alignment also clearly shows five translo-
cations of M.genitalium and M. pneumoniae, which is in agreement with the work of Him-
melreivh et al. [27]. Translocation means a change in location and in genetics, it refers to
the phenomenon when part of a chromosome is transferred to another chromosome. This is
certainly not evident from the other two alignments.

2.3.1.2 Quasar

QUASAR or Q-gram Alignment based on suffix arrays [28] is a similarity search tool which
is capable of quickly detecting sequences that are highly similar to the sequence that is being
queried. It uses a suffix array to index the whole database and applies modified q−tuple filtering
on the suffix array. QUASAR can be run in two modes - a RAM resident suffix array and a
disk resident suffix array. Since this program works well when both the sequences have high
similarity, QUASAR is a good fit when searching Expressed Sequence Tags (EST) databases
since they are derived from the same gene. ESTs are small pieces of DNA sequence (usually a
few 100 bp long) and they represent genes expressed in certain cells. ESTs are commonly used
to identify unknown genes and map their positions within a genome.

It has a memory requirement of 5|D| (5 times the size of whole database) and a running time
complexity of O(|D|log|D|) during the prepossessing step of suffix array creation and O(|S |.|D|)
while searching for a specific q − gram. |D| is the length of the whole database and |S | is the
length of the query sequence.

Let us now look at some of the key aspects of QUASAR. The algorithm for determining
all sequences in a database D that have a local similarity to a query sequence S . We say that a
sequence d ∈ D is locally similar to S , if there exists at least one pair (S [i : i + w − 1], d′) of
sub-strings with the following properties:

• The query sequence is S and the database to be searched is D. A sequence d ∈ D is locally
similar to S if

• d′ is a sub-string of d, S [i : i+w−l] is a sub-string of S of length w, where d′ and S [i : i+w−l]
have edit distance at most k.

We will now discuss in high-level the algorithm used here.

• Suffix Array as Index Data Structure : Use suffix array for all q − grams(Q) in D (known
as hitlist). Search for S against all Q. Searching S against whole D is avoided and only
Q (a small portion of D) is searched.

12 Chapter 2. Background

• Block Addressing : D is divided into blocks of size b (b ≥ 2w) and each block assigned
is numbered as shown in Figure 2.6. The block numbers are incremented whenever
q − gram is found in the block. All blocks having more than equal to t numbers are
checked for an approximate match using an alignment algorithm like BLAST.

Figure 2.6: Partition of D into overlapping blocks of size b
The figure illustrates the block addressing process of Quasar. The database D is divided into

smaller blocks of size b and are numbered. [28]

•Window Shifting and Alignment : Using the above two steps, all approximate matches can
be found for the first window S [l : w]. S [2 : w + 1] is the next window, S [l : q] is the old
q − gram and S [w − q + 2 : w + 1] is new q − gram. Then counter where, value is not t,
of all blocks having copies of this specific q − gram is decremented. All occurrences of
the new q − gram are found using suffix array and the corresponding block counters are
incremented. The window, having length w, is shifted over the string S until its end.

DB
Size

Mbps
Queries

Size (bps)
Itentical
Results

False Neg
E-value

Filtration
Ratio

CPU time (s)
QUASAR

CPU time (s)
QUASAR-E

CPU time (s)
BLAST

Mouse 73.5 368 91.4% 10−12 0.24% 0.123 0.128 3.37
Human 279.5 393 97.1% 10−14 0.17% 0.38 0.39 13.27

Table 2.6: Comparison between QUASAR, QUASAR-E and BLAST
[28]

Table 2.6 shows sensitivity and running times when searching mouse and human EST
databases with block size of 1024 bps. Query sequences of sizes 368bps and 393bps were
searched in the Mouse and Human EST databases. QUASAR searched through 73.5 Million
base pairs (Mbps) and 279.5 Mbps in 0.12s and 0.38s respectively. QUASAR-E with the suffix
array on the disk achieves nearly the same performance with 0.13 s and 0.39 s. Both QUASAR
and QUASAR-E are approximately 30 times faster than BLAST. From left to right the table
depicts the database, its size, average query length, identical results search percentage, average
E − values of the first missed sequence, the filtration ratio and lastly CPU times of QUASAR,
QUASAR-E and BLAST.

2.3.2 Seeding Based Algorithms
The seed-based approach is built upon the idea of filtration, where the alignment of a pair of
sequences is obtained by first detecting short identical segments of exact matches, called hits,
and then extending these matches greedily on both the sides for approximate matches, which

2.3. HeuristicMethods 13

results in regions known as high-scoring segment pair (HSP). In essence, these algorithms rely
on hit and extension of small exact matches. In this section, we will discuss four seed-based
heuristic approaches - FASTA, BLAST, PatternHunter and finally PatternHunter II.

2.3.2.1 FASTA

In 1985, FASTAP [29] was released that supported only protein to protein similarity search.
Later, in 1988, DNA to DNA similarity search along with other features was added to the
package and it was renamed as FASTA [3]. The FASTA package was the first product that
utilized seeding algorithms for similarity search against a database. It uses a short sequence
of all 1s of length k to find exact matches between the query sequence and database sequence
and then the Smith-Waterman algorithm is performed. Thus, k value determines the sensitivity
and speed of the search, and it is a trade-off. The higher the k value faster the search and the
smaller the k value, the more sensitive is the search. However, with a smaller k value, there is
a high chance of detecting regions that are false hits. The default value of k for DNA is chosen
to be 5 or 6. The search algorithm uses four steps to determine the pairwise similarity score.
Let us now look at them.

• A look-up table stores the positions of all k − tuple of the query sequence. A k − tuple is
string of k consecutive letters. The database sequence is read , one k− tuple at a time and
searched in the lookup table - a match that is found is known as hit. The 10 best diagonal
regions are discovered using a simple formula based on the number of k − tuple matches
and the distance between the matches as depicted in Figure 2.7 (A).

• All the 10 regions from the previous step are scored using a scoring matrix and the best
initial regions are stored. The returned regions are High Scoring Sequence Pairs (HSPs)
as depicted in Figure 2.7 (B).

• In the third step, a joining procedure is used to merge several HSPs (having a similarity
score greater than a threshold value) to form a single optimal alignment as in Figure 2.7
(C). A modified version of Smith-Waterman algorithms is run to find the optimal align-
ments within the window of diagonals discovered previously which are the maximum
gap lengths.

• After the final alignment is found, FASTA analyzes the result in order to distinguish it from
the random alignments. The dotted lines indicate the optimized alignment bounds and
optimal score is calculated based on this alignment - Figure 2.7 (D).

2.3.2.2 BLAST

BLAST or Basic Local Alignment Search Tool [4] was introduced in 1990 for quickly find-
ing a match to a query sequence in the database. BLAST identifies alignment between two
sequences by identifying hits (matching k consecutive letters, called k − mer), followed by a
more time-consuming process of hit extension. BLAST then provides a statistical measure of
the significance of the alignment detected to prove that it is not any random alignment.

14 Chapter 2. Background

Figure 2.7: Identification of sequence similarities by FASTA.
The four steps used by the FASTA program to calculate the initial and optimal similarity
scores between two sequences are shown. (A) Identify regions of identity. (B) Scan the

regions using a scoring matrix and save the best initial regions. Initial regions with scores less
than the joining threshold (27) are dashed. The asterisk denotes the highest scoring region
reported by FASTP. (C) Optimally join initial regions with scores greater than a threshold.
The solid lines denote regions that are joined to make up the optimized initial score. (D)

Recalculate an optimized alignment centered around the highest scoring initial region. The
dotted lines denote the bounds of the optimized alignment. The result of this alignment is

reported as the optimized score. [3]

The first version of BLAST was a standalone application and lacked many important fea-
tures [30]. Later, in 1996, BLAST became a web service with added capabilities [31]. The lat-
est release of BLAST [30] in 2009 started using non-consecutive seed (spaced seed) for DNA
comparison. Today, BLAST is a family of several programs including gapped BLAST [32],
MegaBLAST [33] etc.

Figure 2.8 shows the key steps of BLAST. We shall look at them here.

• Setup (Hit generation) : First, a scoring system is decided for a match, mismatch, and in-
dels. The query sequence is broken into k − mer, which are strings of length k. In the
case of nucleotide-to-nucleotide search, k is 11 and for protein-to-protein search, it is
3. The starting index of all k − mers is stored into a lookup table. BLAST then scans
the database looking for exact matches between the indexed k − mers and strings found

2.3. HeuristicMethods 15

Figure 2.8: Schematic of a BLAST search
The first phase is ”setup”. The query is read, low-complexity or other filtering might be

applied to the query, and a ”lookup” table is built. The next phase is ”scanning”. Each subject
sequence is scanned for words (”hits”) matching those in the lookup table. These hits are
further processed, extended by gap-free and gapped alignments, and scored. Significant
”preliminary” matches are saved for further processing. The final phase in the BLAST

algorithm, called the ”trace-back”, finds the locations of insertions and deletions for
alignments saved in the scanning phase. [30]

within the database sequences (not strictly true for proteins). A match found is known as
a hit.

• Scanning (Hit Extension) : When a hit occurs, BLAST attempts to extend the hit region in
both forward and backward direction to produce an alignment. BLAST will continue
this extension process as long as the alignment score keeps on increasing or until the
alignment score drops by a critical amount (known as dropoff) because of mismatch or
indels. The alignment formed is called a Highest-Scoring Segment Pair (HSP).

• Statistical Significance : Each alignment found by BLAST is assigned a statistical value,
called Expect Value or E − value. The E − value is the number of times an alignment is
better than an alignment found by random chance. A higher E − value threshold is less
stringent and thus capable of returning a randomly matched sequence. Sequences with
E − value less than 1e−04 can be considered homologous with an error rate of less than
0.01%.

Figure 2.9 shows how Blast consecutive weight-11 seed performs hit and extend operation

16 Chapter 2. Background

Figure 2.9: Hit and Extend Process
Hit detected (blue region) by weight-11 consecutive BLAST seed. Hit region is extended

greedily in both directions to form high sequence pair (HSP).

on two random DNA sequences.

2.3.2.3 PatternHunter

PatternHunter [5], introduced in 2002, implements a novel seeding and hit-processing algo-
rithm that generates a hit in a similar region with high probability while having a low expected
number of random hits at the same time. PatternHunter introduced the use of spaced seed,
which is much more sensitive than the consecutive BLAST seed. A spaced seeds can be de-
fined as a binary string of 0s and 1s. 1 represents a match position whereas a 0 represents a
don’t care position and the seeds must start and end with 1. The length of a spaced seed is the
number of characters in it and the weight of the seed is the number of 1s. Let us look at an
example of a spaced seed.

Figure 2.10: Spaced seed example
Hit detection by weight-11 spaced seed. When two sequences are aligned, a hit occurs if all
bases match in the corresponding match positions (1s) of the seed. The don’t care positions

(0s) need not match.

Figure 2.11: Spaced seed vs consecutive seed
When using a consecutive seed, many redundant hits are required to detect a similar region. In

the case of spaced seeds, lesser number of hits are required to detect a similar region. Thus,
spaced seed is able to discover regions which the consecutive seed is unable to.

2.3. HeuristicMethods 17

The spaced seed in Figure 2.10 is 111 ∗ 1 ∗ ∗1 ∗ 1 ∗ ∗11 ∗ 111. The length of this seed is 18
and the weight is 11. 1 represents match position and ∗ represent don’t care position. We can
see in the above figure that the seed hits a particular region (shown in blue) only when the two
sequences match at all positions of 1s, however, the don’t care positions are not considered.

In Figure 2.11, we see a consecutive seed and a spaced seed in action. From Pattern-
Hunter [5], we get to know why spaced seed models are more effective. The total number of
hits detected by both seed models are approximately equal. Also, from Figure 2.11 we see that
a consecutive seed usually uses more than one hit to detect one similar region (redundant hits).
Spaced seeds use fewer hits to detect the same, thus spaced seeds discover new undetected
regions.

Figure 2.12: 1 − hit performance of spaced model versus consecutive models
The figure shows 1 − hit performance of weight − 11 spaced seed model versus weight − 11

and weight − 10 consecutive seed models. Similarity is on the X-axis and sensitivity is on the
Y-axis. Similarity shows how identical the two sequences are and sensitivity is the probability

of detecting a hit. [5]

We shall look at the PatternHunter algorithm. The main steps of the algorithm are as
follows.

• Hit generation : A lookup table is maintained with the starting index position of all the sub-
sequences of the first sequence. Next, the second sequence is aligned with the spaced
seed and the starting position of all alignments is looked up in the lookup table. If found
in the table, a hit occurs. For each hit, PatternHunter looks up its diagonal in another
hashtable, to find the rightmost matched position on the diagonal.

18 Chapter 2. Background

• Hit extension : In the second step, the hits discovered in the previous step are greedily ex-
tended, stopping only when the alignment score drops by a predetermined value. Result-
ing regions formed after this process is known as a Highscoring Segment Pair (HSP).

• Gapping extension : In this step, all HSPs are extended to the left across gaps to link with
another HSP (if any suitable HSP is found). This step produces optimal partial alignment
and partial alignment score is calculated. Joining optimal partial alignment will result in
optimal alignment.

Figure 2.12 shows 1−hit performance of weight−11 spaced seed model versus weight−11
and weight − 10 consecutive seed models. We see that spaced seed of weight − 11 outperforms
both weight − 11 and weight − 10 Blast seed. The plot has similarity on X-axis and sensitivity
on Y-axis. Similarity shows how identical the two sequences are whereas sensitivity shows the
probability of detecting a hit.

2.3.2.4 PatternHunter II

PatternHunter II [6] uses optimized multiple spaced seed instead of a single spaced seed to
detect similar regions between two sequences. Given a homologous region of fixed length and
similarity, we can increase the probability of getting hits in two ways - either decrease the
weight of seed or we can use more than one seed. Reducing the weight by one increases the
expected number of hits by a factor of four (in case of nucleotide sequence). Doubling the
number of seeds increases the expected number of hits by a factor of two. Another way to
increase the probability of hits of seeds is to design better seeds (this will be discussed in the
next section).

While using multiple spaced seeds, a hit occurs if a region is hit by at least one seed.
PatternHunter II works in a similar way to PatternHunter, the major difference is that it uses
multiple hash table, one for each seed, instead of one. For each sub-string of the query se-
quence, all hits generated from all tables are used for gapped extensions (process discussed
in previous section). PatternHunter II achieves sensitivity close to that of Simith-Waterman at
speeds comparable to MegaBLAST.

Figure 2.13 shows the performance of the multiple spaced seeds. From low to high, the
solid curves are the hit probabilities of using 1, 2, 4, 8 and 16 weight− 11 spaced seeds, respec-
tively whereas the dashed curves are the hit probabilities of using the single optimal spaced
seed of weight 10, 9, 8 and 7 seeds, respectively.

2.4 Designing Multiple Spaced Seeds

We have already established the fact that selecting good multiple spaced seeds are paramount
to seed-based heuristic search methods which we discussed in the previous section. In this
section, we will look at software like Iedera, SpEED, AcoSeeD, and rasbhari. These software
tools produce multiple spaced seeds of high sensitivity and shall discuss each of them in more
detail.

2.4. DesigningMultiple Spaced Seeds 19

Figure 2.13: Performance of multiple spaced seeds
From low to high, the solid curves are the hit probabilities of using 1, 2, 4, 8 and 16

weight − 11 spaced seeds, respectively whereas the dashed curves are the hit probabilities of
using the single optimal spaced seed of weight 10, 9, 8 and 7 seeds, respectively. [6]

2.4.1 Iedera

Iedera is a tool to select and design spaced seeds, transition constrained spaced seeds, or more
generally subset seeds, and vectorized subset seed patterns. [15, 16, 17]. Spaced seeds can be
perfectly represented using the subset seed model and subset seed is an extension of spaced
seeds that deal with a non-binary alignment alphabet and, on the other hand, still allows an
efficient hashing method to locate seeds.

Iedera can be applied to both lossy and lossless seed design. It is already used to design
spaced seeds templates for read mappers, to design subset seed templates for protein sequences
or nucleic sequences.

In Iedera, a spaced seed is a string over the binary alphabet {#,−}, where # is a match
position and − is a don’t care position and the spaced seed is represented using π. Using these
notations, a spaced seed π ∈ {#,−}s hits an alignment A ∈ {0, 1}∗ at a position p if for all
i ∈ [1..s], π[i] = # implies A[p + i − 1] = 1, where s is the length or span of π.

Iedera is capable of producing spaced seeds based on both a Bernoulli model as well as a
Hidden Markov model. Figure 2.14 shows the classical PatternHunter 1 spaced seed designed
using Iedera.

20 Chapter 2. Background

Figure 2.14: The classical PatternHunter spaced seed designed using Iedera
PatternHunter seed can be designed by using the command : iedera -spaced -w 11, 11 -s

11, 18. Here, the seed weight is set to 11, and the span is at most 18 and homology region is
set to 64 by default. [16]

2.4.2 AcoSeeD
In this study, an Ant Colony Optimization (ACO) based algorithm, called AcoSeeD [18], is
used to generate optimal multiple spaced seeds. Ant Colony Optimization (ACO) [34] is a
meta-heuristic technique that simulates the behavior of real ant colony.

Figure 2.15: AcoSeeD algorithm
(A) shows the construction graph for building k spaced seeds, each of length w. (B) shows the
ant’s possible travel path, which can be up or right. (C) shows an example of building spaced
seeds of weight 4 and length 7. The path taken by an ant is RURUURR which corresponds to

the seeds 1 ∗ 1 ∗ ∗11. [18]

AcoSeeD uses an adaptation of the MAX-MIN Ant system which allows an ant colony
to travel in the form of a construction graph to create a spaced seed. The important steps of
AcoSeeD algorithms are:

• Construction Graph A construction graph has k rectangles of length w∗(lmax−w). Thus, the
set has k seeds each of weight w. Each ant builds k seeds by traveling on each rectangle

2.4. DesigningMultiple Spaced Seeds 21

either up or right from starting node (i, 0, 0) for rectangle i where i = 1, ...k. Travelling
right adds 1 and travelling up adds ∗. The pheromone concentration τ denotes how likely
the ant colony chooses either Up (∗) or Right (1).

Figure 2.15(A) shows the construction graph for building k spaced seeds, each of length
w. Figure 2.15(B) shows the ant’s possible travel path, which can be up or right. Figure
2.15(C) shows an example of building spaced seeds of weight 4 and length 7. The path
taken by an ant is RURUURR which corresponds to the seeds 1 ∗ 1 ∗ ∗11.

Figure 2.16: ACO construction graph for the identification of seed lengths
From the starting node in the construction graph, each ant chooses one of the following nodes
(1, lmin), (1, lmin +1), . . . , (1, lmax) so that seed 1 will end up having length lmin, lmin + 1, . . . ,
lmax respectively. As the seed length increases, the ant chooses the node (i, lengthi−1), (i, lmin +

1), . . . , (i, lmax) where i = 2, .., k. [18]

• ACO-Based Seed Length Identification Another ACO algorithm is used to identify the
length of each seed based on the construction graph in previous step. Each ant begins
from the starting node and chooses one of the following nodes (1, lmin), (1, lmin +1), . . .
, (1, lmax) so that seed 1 will end up having length lmin, lmin + 1, . . . , lmax respectively.
As the seed length increases, the ant chooses the node (i, lengthi−1), (i, lmin + 1), . . . , (i,
lmax) where i = 2, .., k. This is shown in Figure 2.16.

• AcoSeeD Algorithm Figure 2.17 shows the AcoSeeD algorithm.

• Local Search Using Overlap Complexity After each ant completes building a spaced seed,
its quality is measured by using overlap complexity [7, 13]. The overlap complexity,
which has polynomial runtime, is an approximation of sensitivity, which has exponential
runtime. Starting from the initial spaced seed constructed by the current ant, the local

22 Chapter 2. Background

search greedily swaps a 1 and a ∗ for each seed to obtain a new spaced seed with a better
approximated sensitivity.

Figure 2.17: Construction graph and seed building procedure
[18]

2.4.3 rasbhari
”Rapid Approach for Seed optimization Based on a Hill-climbing Algorithm that is Repeated
Iteratively” (or rasbhari in short) is an algorithm based on iterative hill climbing that generates
multiple spaced seeds of very high sensitivity [19]. rasbhari works a lot like SpEED [13] with
some key differences in the optimization step, SpEED is described in great detail in the next
chapter.

The software program accepts 4 inputs - seed weight, similarity level, number of seeds
and length of the homologous region. Based on these inputs, rasbhari creates a random seed
set and optimizes it based on overlap complexity and seed contribution using iterative hill-
climbing with random starts. The sensitivity of the optimized seed is calculated and this is the
output of the program along with the seed. Overlap complexity and sensitivity are discussed in
detail in the next chapter and the important steps of the rasbhari algorithm are described next.

• OC Contribution : The Overlap Complexity (OC) contribution of each seed can be found
as a by-product while calculating the overlap complexity [7, 13] of the entire seed set.
The contribution of the rth seed (Cr) is given by:

Cr =
∑
r′
αrr′

2.4. DesigningMultiple Spaced Seeds 23

where, αrr′ =
lr−1∑

s=1−lr′
2σrr′[s]

thus, Cr =
∑
r′

lr−1∑
s=1−lr′

2σrr′[s]

In other words, the contribution of the rth seed is the summation of overlap complexity
value of the rth seed with all other seeds in the set. The contribution of each seed is
required in the next step.

•Modified Hill-Climbing Algorithm : In this algorithm, a swap between a match position
and a don’t care position is made and OC is evaluated on a specific seed based on the
contribution value calculated in the previous step. Instead of looking at all possible
swap possibilities in all seeds, the algorithm looks at those seeds first which have high
contribution value. So, all the seeds in the set are sorted in descending value of Cr and
seeds are chose for optimization in that order. The modified hill climbing algorithm used
in rasbhari when running with default values is shown below.

for i from 1 to 5000 do
for j from 1 to 100 do

generate random multiple seed S i j

sort the seeds of S i j decreasingly by OC contribution
S cur ← the first seed of S i j

repeat 25000 times
swap random 1 and ∗ in S cur

if OC decreases then keep this as the new S i j

else S cur ← the next seed (restart from first if S cur is the last)
S i ← the multiple seed S i j that minimizes OC(S i j), for all j = 1..100

S ← the multiple seed that maximizes Sens(S i), for all i = 1...5000
return S

If swapping a match position and don’t care position does not improve the current seed set,
the next seed from sorted order is chosen and proceed in the same way. If swapping leads to
improvement in OC, then swap is accepted and again the new contributions of all the seeds are
calculated and seeds are again sorted in descending order. The hill climbing is performed

The hill climbing is continued until a user-defined number of times (25, 000 by default).
After this step, rasbhari gets a set of multiple spaced seeds with the lowest overlap complexity.
This whole process is repeated 100 times and the best set is chosen. Then sensitivity of this set
(with lowest OC) is computed. This whole process, in turn, is repeated 5, 000 times. This is
similar to SpEED, but in SpEED the sensitivity is calculated after one round of hill climbing
(total 5, 000 iterations). By contrast, rasbhari runs the modified hill-climbing routine 100 times
before calculating the sensitivity for the best seed set from these 100 runs. The final output
of rasbhari is the set of multiple spaced seeds with the highest sensitivity from the 5, 000
iterations. Results are shown in Table 2.7; rasbhari generates the best seeds in most of the seed
types. The highest sensitivity values are shown in bold.

24 Chapter 2. Background

rasbhari produces better quality seeds than SpEED in terms of sensitivity but it is almost
five orders of magnitude slower than SpEED when total time (overlap complexity optimization
time + sensitivity computation time) is considered. The main reason for this is that rasbhari
seeds are on average almost 1.8 times longer than SpEED seeds (having the same weight) on
average and we know that computing sensitivity takes an exponential amount of time.

This concludes our background studies. We have seen traditional methods of sequence
alignment like Needleman-Wunsch algorithm and Smith-Waterman algorithm. Then we looked
into different heuristic algorithms like MUMmer, BLAST and PatternHunter. Then, in the end,
we looked at algorithms like AcoSeeD and rasbhari which are concerned with creating multiple
spaced seeds. Next, we move on to SpEED and the Methodology of our developed software.

w p Iedera SpEED AcoSeeD rasbhari
SHRiMP2: 4 patterns (H = 50)

0.75 90.6820 90.9098 90.9513 90.9614
0.80 97.7586 97.8337 97.8521 97.855410
0.85 99.7437 99.7569 99.7614 99.7618
0.75 83.2413 83.3793 83.4728 83.4679
0.80 94.9350 94.9861 95.037 95.038611
0.85 99.2189 99.2431 99.2478 99.2506
0.80 90.3934 90.5750 90.6328 90.6648
0.85 98.0781 98.1589 98.1766 98.182412
0.90 99.8773 99.8821 99.8853 99.8864
0.85 84.5795 84.8212 84.9829 84.969
0.90 97.2806 97.4321 97.4712 97.503516
0.95 99.9331 99.9388 99.9419 99.9441
0.85 72.1695 73.1664 73.27 73.2209
0.90 93.0442 93.7120 93.7778 93.7818
0.95 99.6690 99.7500 99.7599 99.7557

PatternHunterII: 16 patterns (H = 64)
0.70 92.0708 93.2526 - 93.4653
0.75 98.3391 98.6882 - 98.757311
0.80 99.8366 99.8820 - 99.8907

BFAST: 10 patterns (H = 50)
0.85 60.1535 60.8127 - 60.9919
0.90 87.9894 88.5969 - 88.800522
0.95 99.2196 99.3659 - 99.4099

Table 2.7: Sensitivity comparison of different programs
[19]

Chapter 3

Methodology

In this chapter, we present a new software program capable of producing highly sensitive mul-
tiple spaced seeds called SpEED2. SpEED2 is built on top of SpEED [7, 13, 14], so first, we
describe the software program SpEED and some underlying concepts, then, we move on to our
work.

3.1 SpEED
Given the number of seeds, the weight of each seed, homology region length, and similarity
level, finding optimal multiple spaced seeds with these given parameters is NP-hard [7, 13]. It
is not possible to find the optimal seed by searching exhaustively because searching involves
two exponential-time steps - there are exponentially many seeds to be tried and computing the
sensitivity of each seed takes an exponential amount of time [7]. The simplest way to bypass
these two difficulties is by not considering all seeds and by avoiding computing sensitivity,
which is exactly what SpEED does [13].

First, we discuss sensitivity, then discuss how computing sensitivity is avoided and finally
discuss how exhaustive search is avoided. An important point to keep in mind is that the
sensitivity of seed has to be computed in order to gauge the quality of seed found but the
number of sensitivity computations can be minimized.

3.1.1 Sensitivity

Let us say there are two DNA sequences S 1 and S 2 having similarity p. When these two se-
quences are compared, we get another sequence R consisting of 1′s (corresponding to matches)
and 0′s (corresponding to mismatches) that occur with probability p and 1 − p, respectively
as shown in Figure 3.1. Therefore, given an infinite Bernoulli random sequence R and a seed
s, we can say that s hits R (ending) at position k if aligning the end of s with position k of R
results in every 1 in s to align with a 1 in R.

The sensitivity of a seed s is the probability that s hits R at or before position n [5, 7,
35]. Sensitivity depends on both the similarity level p as well as the length of the random
homologous region n. The sensitivity of a multiple spaced seed S is defined as the probability
that at least one seed of S hits a sequence R at or before position n. The sensitivity of multiple

25

26 Chapter 3. Methodology

Figure 3.1: An example of a hit using PatternHunter’s spaced seed
An example of a hit using PatternHunter’s spaced seed. All 1’s in the seed (the last row) must
correspond to matches between the sequences. The spaced seed s hits the Bernoulli sequence

R (ending) at the third position from the right. [7]

spaced seeds is calculated using in exponential time and space by a dynamic programming
algorithm in [6].

3.1.2 Overlap Complexity
In SpEED, a substitute for sensitivity known as the overlap complexity (OC) is introduced
in [7], which is inversely proportional to sensitivity. A good seed must have a high sensitivity
value and a low overlap complexity. The overlap complexity between two seeds s1 and s2 is
given by:

OC(s1, s2) =
|s1 |−1∑

i=1−|s2 |

2σ[i]

where σ[i] is the number of pairs of 1′s aligned together when a copy of s2 shifted by i
positions is aligned against s1. The shift i takes values from 1 − |s2| to |s1| − 1. Let us look at
an example with two seeds s1 = 11 ∗ ∗1 ∗ 1 and s2 = 1 ∗ 11 as shown in Figure 3.2. Overlap
Complexity (OC) value is 25 = 2 + 4 + 2 + 2 + 4 + 2 + 2 + 4 + 1 + 2.

For a multiple seed S = {s1, s2, ..., sk}, the overlap complexity is defined by:

OC(S) =
∑

1≤i≤ j≤k
OC(si, s j)

The overlap complexity can be computed in polynomial time. SpEED finds good seeds
using another polynomial-time heuristic algorithm. It starts with a fixed seed and repeatedly
modifies it to improve its overlap complexity (more precisely decrease the overlap complexity).
We discuss this procedure in the next section.

3.1.3 Iterative Hill Climbing with Random Starts
SpEED randomly chooses an initial set of seeds and improves these seeds based on OC. To
improve the current seed set P, the hill-climbing algorithm looks at all triplets (r, i, j) where Pr

is a seed in set P, and i and j are a match position and a don’t-care position in Pr, respectively.
For each such triplet (r, i, j), the algorithm considers the seed set that would be obtained from
P by swapping i and j in Pr. The OC is calculated for all seed sets that can be obtained in this
manner, and the P with the lowest OC is selected as the next seed set P, until OC cannot be
decreased any further. This whole process is repeated iteratively.

3.1. SpEED 27

Figure 3.2: An example of the overlap complexity of two seeds

OC(11 ∗ ∗1 ∗ 1; 1 ∗ 11) =
6∑

i=−3
2σ[i] = 25 [7]

The number of triplets (r, i, j) to be considered depends on the product of the number of
seeds m in the seed set P and the length of each seed l. For each of the triplets, the OC is
calculated for the seed set obtained by swapping i and j in Pr. The seed set Pmin with the lowest
OC is obtained by simulating all possible combinations of the triplets (r, i, j). The sensitivity
of Pmin is computed and the whole process is repeated 5000 times.

3.1.4 Algorithm

The input to the algorithm is the number of seeds (k), seed weight (w), homology length (H)
and sequence similarity value (p). In step 1 to step 7 from Figure 3.3, SpEED decides on the
length of all k seeds; m is the length of the shortest seed whereas M is the length of the longest
seed. In the practical implementation of SpEED [13], M value is not fixed to 25; m and M
values are derived from a precalculated array of numbers based input. The other k − 2 seed
lengths are calculated by using interpolation. In step 7, we end up with all k seeds of desired
lengths and each seed is filled up with the pattern shown in step 6.

From step 8 onwards, the algorithm is concerned with improving the initial seed set by
using iterative hill climbing based on overlap complexity. The initial seed set has a high overlap
complexity value and all possible swaps between a match position (1) and a don’t care position
(∗) are simulated and the swap is performed if and only if the overlap complexity of seed
set decreases, else not. The algorithm greedily chooses a swap that produces the maximum
decrease in overlap complexity value.

After the seed set with the lowest overlap complexity is discovered, the sensitivity of that
particular set is calculated. This whole above-mentioned process (except calculating m and M
values) is repeated 5, 000 times and the seed set with the highest sensitivity value is reported
back to the user as output. The complete SpEED algorithm is shown in Figure 3.3.

28 Chapter 3. Methodology

Figure 3.3: SpEED algorithm
The MULTIPLESEEDS algorithm which, given the weight and lengths of the seeds,

computes a multiple seed with low overlap complexity and, therefore, high sensitivity. [7]

3.1.5 SpEED-Fast
Two speed-up ideas have been suggested in [13] : the first algorithm computes the overlap
complexity (OC) faster, and the second algorithm speeds up the hill climbing procedure. These
two algorithms have been implemented in ”Efficient computation of spaced seeds” [14].

The first algorithm computes the overlap complexity faster by converting all seeds into 64-
bit integers i.e., 1 and ∗ are represented as bits 1 and 0. Thus, 1 ∗ ∗11 is converted to integer
10011 which is 19. The OC is then computed by shifting the bits and performing logical AND
on each bit of the seeds.

The second algorithm improves the speed of the hill climbing procedure by reducing the
work for the OC computation of each swap between a 1 and a ∗ (step 9 in Figure 3.3). Only
the new OC values, ie., those involving S r, are recomputed.

3.2 SpEED2
Our work, SpEED2 is built on top of the existing algorithms described above. We have modi-
fied the algorithm and added procedures to estimate the sensitivity, indel optimization of seeds
and adapt the seed lengths. We discuss estimating sensitivity, indel optimization and adap-

3.2. SpEED2 29

tive seed lengths in more detail in the next section and later, we describe the whole software
program.

3.2.1 Estimated Sensitivity
Calculating sensitivity requires exponential time and memory. We designed an algorithm for
approximating sensitivity which uses very little memory. Our approach is inspired by the work
in ”Multiple seeds sensitivity using a single seed with threshold” [36].

Sensitivity computation becomes infeasible for a set of seeds S = {s1, s2, ..., sk}, when there
is a large number of seeds (k) or when the length li, 1 ≤ i ≤ k, for any seed becomes very long.
The memory required to calculate sensitivity depends exponentially upon the total number of
don’t care positions (∗) in the seed set [6]. To gauge the quality of seeds with large k or li

values, we came up with a new performance measurement metric called estimated sensitivity.
Now we discuss how estimated sensitivity is calculated for any seed.

Given a similarity level p and length of homology region H, we create an array A of 108 bit
strings, each of length H. Each of these strings contains two values - either a 1 with probability
p or a 0 with probability 1 − p, in other words, we create 108 binary sequence of length H
following Bernoulli distribution with the given p value. H value determines the length of
each string in array A, in other words, it determines the number of bits required to represent
each array element. The maximum H value permitted by our code is 128 and the memory
requirement of A for maximum H value is 1.6 GB. We then consider each seed S i ∈ S and
count the number of times S as a whole hits A, then the count as a percentage of the length of
the array A is calculated and this percentage value is the estimated sensitivity.

Let us take an example of estimated sensitivity calculation. We consider a SHRiMP seed
set (S) with four seeds of weight (W) = 10 for similarity (p) = 0.75 and homology region
length (H) = 50.

111011011111
110110010000110111
111001010000100100111
11010100001000101000111

We also consider one random element Ai of array A. Since 32 < H ≤ 64, each element
Ai of can be represented using 64 bits. As H = 50, the 50 bits from right of Ai are populated
according to the input parameters, remaining 14 remains 0.

Ai = 0000000000000011001010111101011011110111111111111110111000101101. We
check the first seed 111011011111 as shown in Figure 3.4 and the seed hits Ai after 13 left
shifts, thus we say that S hits Ai. A hit is said to occur if at least one seed aligns perfectly with
a region in all the match positions (shown in blue), we don’t need to check with the other 3
seeds for this particular Ai as one seed already hits the region. Likewise, all the elements of A
are checked with all the seeds while keeping a count of the number of elements of A that were
hit. Finally, estimated sensitivity is defined as,

Estimated Sensitivity =
count
|A|

× 100%

30 Chapter 3. Methodology

Figure 3.4: Example of estimated sensitivity calculation
The seed 111011011111 is compared against a homologous region Ai. A hit is said to occur if

the seed aligns perfectly with the region in any position (shown in blue)

where count is the number of elements in A that are hit by the given seed set and |A| is
the total number of elements in the array A. In SpEED2, this whole process of hit detection
is efficiently implemented using bit-wise left shift (shown in Figure 3.5) along with bit-wise
AND operation (shown in Figure 3.5). Bit-wise AND operation between a seed and a region
(directly above the seed) will always produce that particular seed if a hit is detected.

It must be noted that in [36], an array of size 106 was used to estimate the sensitivity cor-
rectly up to the third significant digit. For our purpose of differentiating a good multiple spaced
seeds from a bad one, we required precision up to the fourth decimal place. The most intu-
itive solution to this problem was to use a longer array A and this is exactly what was done.
The challenge was to choose an array size that would not only produce estimated sensitivity
numerically equal to real sensitivity but also perform the computation quickly. The multi-
ple spaced seeds with the best estimated sensitivity obtained after 100 iterations (of various
weights, similarity value and a different number of seeds) were tested using different array
lengths - 107, 2 ∗ 107, 5 ∗ 107, 108, 109 and compared against the seed’s real sensitivity and each
other. One instance of the testing process is shown in Figure 3.6 and Figure 3.7.

The SHRiMP seed of similarity 0.75 was run 10 times with different array lengths like
106, 107, 5 ∗ 107, 108 and 109 and the resulting estimated sensitivity value was compared with
the real sensitivity and each other. In Figure 3.6, we have the array lengths in the X-axis and
sensitivity in the Y-axis. The red horizontal line represents the real sensitivity value. In Figure
3.7, we are comparing the absolute difference between estimated and real sensitivity values

3.2. SpEED2 31

Figure 3.5: Hit detection for estimating sensitivity
Bit-wise AND operation between a seed and a region will always result in that particular seed

if a hit is detected.

Figure 3.6: Comparison between real and estimated sensitivity
The SHRiMP seed of similarity 0.75 was run 10 times with different array lengths like 106,

107, 5 ∗ 107, 108 and 109 and the resulting estimated sensitivity value was compared with the
real sensitivity and each other.

for SHRiMP seed of similarity 0.75 with the array lengths in X-axis and absolute sensitivity
difference in the Y-axis.

We see that 108 produces results that mimic the real value. Also, it was observed that 108

and 109 lengths produced a very similar result with 109 running 10 times slower (algorithm has
linear runtime). We see such a result from Figure 3.8, where SHRiMP seed of similarity 0.75
was run 10 times with the array length of 108 and 109 and the resulting estimated sensitivity
value was compared with the real sensitivity and each other with the red horizontal line repre-
senting the real sensitivity value. The estimates of array of size 108 is slightly more dispersed
than 109 estimates, however on an average, 108 estimates are closer to the real one (as evident
by the orange lines inside the box plots).

The earlier versions of SpEED would crash if the code consumed all system memory while
computing sensitivity of long seeds, however, SpEED2 can detect whether sensitivity computa-
tion would crash the code. Before sensitivity is computed, SpEED2 calculates the total amount

32 Chapter 3. Methodology

Figure 3.7: Difference between real and estimated sensitivity
Absolute difference between estimated and real sensitivity values for SHRiMP seed of

similarity 0.75 with the array lengths in X-axis and absolute sensitivity difference in the
Y-axis.

of memory, sensitivity computation would consume and aborts the process if more than 90%
of system memory would be utilized and uses estimated sensitivity instead. Estimated sensi-
tivity calculation consumes an additional memory of 1 MB on top of the 1.6 GB required for
maintaining the homologous array, irrespective of the type of seed whereas computing the ac-
tual sensitivity of seeds varies greatly according to the type of seed - weight 10 SHRiMP seeds
consume less than 32 GB of memory whereas MegaBLAST seeds require more than 1 TB of
memory to compute sensitivity. This switching mechanism makes our code highly robust and
fault-tolerant.

3.2.2 Indel Optimization

Indel optimization is the novel algorithm that improves seeds designed by SpEED-Fast and
produces multiple spaced seeds of high sensitivity. Indel stands for insertion/deletion and this
algorithm either inserts or deletes a don’t care position in a randomly selected seed in a ran-
domly selected position.

Works like AcoSeeD [18] and rasbhari [19] tried to design more sensitive seeds, com-
pared to SpEED [7, 13], by optimizing the hill-climbing algorithm. These approaches tried to
maximize the cost function, which is sensitivity and believed that optimizing the hill-climbing
approach would prevent their algorithm from getting stuck in a local maximum, as a result,
seeds with higher sensitivity value would be discovered. rasbhari produces more sensitive
seeds than SpEED and if we compare them, we instantly notice that rasbhari seeds are longer,
approximately 80% longer than SpEED seeds and have considerably lower OC value.

3.2. SpEED2 33

Figure 3.8: Comparison between real and estimated sensitivity
SHRiMP seed of similarity 0.75 was run 10 times with the array length of 108 and 109 and the

resulting estimated sensitivity value was compared with the real sensitivity and each other
where the red horizontal line representing the real sensitivity value.

Let us look at some cases, we will refer to the shortest seed of the set as m and the longest
seed as M. In case of SpEED, m = 12 and M = 23 for weight 10 SHRiMP seeds and m = 23
and M = 36 in case of rasbhari. For weight 18 SHRiMP seeds, m = 22 and M = 36 in case
of SpEED and m = 39 and M = 60 in case of rasbhari. For PatternHunter II seeds, m = 14
and M = 27 in case of SpEED and m = 25 and M = 39 in case of rasbhari. For BFAST seeds,
m = 25 and M = 37 in case of SpEED and m = 47 and M = 72 in case of rasbhari.

Figure 3.9 shows the OC value of the multiple spaced seed designed after the 1st iteration
where the blue line is that of rasbhari and the red line is that of SpEED-Fast. On the Y-axis, we
have OC and on X-axis, we have SHRiMP seeds of different weights with similarity of 0.75.
It can be seen that rasbhari seeds consistently have a lower OC value.

Experimentally, we have observed that this reduction in OC value is obtained because of
the longer lengths of rasbhari seeds. We modified SpEED so that it designed seeds with lengths
equal to rasbhari seed lengths and the OC of these seeds was lower or same as those of rasbhari.

Thus we concluded that the seed lengths affect the OC value which in turn, affects the sen-
sitivity. So in SpEED2, we explored this uncharted approach of designing seeds by modifying
the seed lengths. We wanted an approach that not only modifies the length of seeds but also
changes the seed structure simultaneously, inserting or deleting don’t care positions to seed
set in random positions meet our requirement. The indel optimization algorithm is discussed
below.

The algorithm takes 3 parameters as input - a seed set S that needs to be optimized, n the
number of seeds in the set and curS ens which is the sensitivity of S . This algorithm is pre-
ceded by optimization using iterative hill-climbing based on OC, thus S is already somewhat

34 Chapter 3. Methodology

Figure 3.9: OC comparison between SpEED-Fast and rasbhari
The figure shows the OC value of the multiple spaced seed designed after the 1st iteration

where the blue line is that of rasbhari and the red line is that of SpEED-Fast.

optimized and curS ens is the highest value of sensitivity value seen before indel optimization
is performed. In this algorithm, we first randomly select one seed s out the given set S , then
randomly choose whether to insert or delete a don’t care position in s. For both the choices, a
valid position p is randomly chosen and indel is performed converting S to S ′. After that, S ′

is optimized by swapping between a 1 and a ∗ to lower the overlap complexity (OC) similar to
that of SpEED. In case of insertion, p can be any position except the first and last and in case
of deletion, a p is chosen such that a ∗ already exists in pth position of s. This whole process is
repeated 200 times and the best seed designed is stored as S ′′ and its corresponding sensitivity
is stored as curS ens. After trying out a different number of iterations ranging from 50 to 500,
we settled for 200 which strikes a good balance between optimizing and time requirement. The
seed set with the highest sensitivity from the 200 runs is stored in S ′′ and this is our optimized
multiple spaced seed, which is returned as output.

The seeds have positions from 0 to length(seed)−1. One drawback of the indel optimization
algorithm is that it has a high runtime because the algorithm uses sensitivity as cost function
while optimizing and we have already discussed that sensitivity computation is very expensive
in terms of both memory and time. This algorithm tries to improve the initial seed set 200
times, thus sensitivity is computed 200 times. We tried indel optimization by using OC as the
cost function as this would have made the computation very fast but it failed to produce good
results. Another issue with the indel optimization algorithm is that the length of some seed may
increase rapidly due to ∗ insertion and computing the sensitivity of lengthy multiple spaced
seeds is very expensive. Thankfully SpEED2 detects if sensitivity computation is possible
with the available memory and switches to estimated sensitivity for that particular iteration.
The multiple spaced seeds obtained after indel optimization have high sensitivity, and they are

3.2. SpEED2 35

available in Appendix A. We have also shown in the next chapter that SpEED2 seeds are more
sensitive than the seeds produced by other leading software.

Indel Optimization (S , n, curS ens)

- given: an unoptimized seed set S , number of seeds n, and
curS ens which is the sensitivity of S

- returns: optimized seed set S ′′

1. for i from 1 to 200 do
2. choice = 0 or 1
3. seed = S [s], 0 ≤ s ≤ n − 1
4. if (choice == 0)
5. pos = p, where 1 ≤ p ≤ length(seed) − 2
6. S ′ = add ∗ at pos in seed.
7. else if (choice == 1)
8. pos = p, where 1 ≤ p ≤ length(seed) − 2

and seed[p] == ∗

9. S ′ = remove ∗ at pos in seed.
10. sens = calculate sensitivity of S ′

11. optimize S ′ by swapping 1 and ∗ based on OC
12. if (sens > curS ens)
13. curS ens = sens
14. S ′′ = S ′

15. end for
16. return (S ′′)

3.2.3 Adaptive Seed Length

Adaptive seed length is the third algorithm which helps in designing highly sensitive seeds.
The SpEED2 algorithm contains 2 nested loops - an outer loop for optimizing OC using hill
climbing and an inner loop for indel optimization using sensitivity. The outer loop runs 1000
times and the inner loop runs 200 times for each outer loop. This algorithm is triggered after
every 10 iteration of the outer loop.

Let the length shortest seed of the set be m and the length of the longest seed be M and
length of all the other seeds are obtained from a pre-computed array of seed lengths (discussed
in section 3.1.4). As discussed above, the length of seed plays an important role in determin-
ing the sensitivity, so we want to adapt the length of initial unoptimized seed from the result
obtained from good indel-optimized seeds from previous iterations of the outer loop. Adapting
the seed lengths improves the performance of both the optimization algorithms - OC optimiza-
tion using hill climbing and indel optimization using sensitivity. The arithmetic means of m

36 Chapter 3. Methodology

and M values of the last 10 indel-optimized seeds are calculated and used as the initial seeds
for the next 10 iterations. Again this process is repeated every 10 iteration.

The performance of the hill-climbing algorithm is improved because the length of the initial
unoptimized seed is the same as those of highly optimized seeds obtained after indel optimiza-
tion, thus its OC will be lower than any randomly chosen initial seed set of predetermined
length. The performance of indel optimization is increased as no iteration is wasted to bring
seeds closer to lengths of highly sensitive seeds. The indel optimization algorithm immediately
focuses on improving seed sensitivity by modifying the seed pattern (a combination of 0s and
1s) instead of worrying about the lengths. Without using this algorithm, the initial seed set was
predetermined and many iterations of the indel optimization would be wasted in improving the
seed lengths and in the case of hill-climbing optimization, there is no provision to change seed
lengths.

Also, without this algorithm, the length of initial seeds (m and M value and all other seed
lengths) is determined from a pre-computed array and this would have made SpEED2 less
flexible and more dependant on the values from the pre-computed array. Also, our code learns
the features of good seeds that were designed before and builds on top of that and this learning
is updated every so often. In other words, this algorithm learns from previous mistakes and
experiences.

3.2.4 SpEED2 Algorithm

Here we first describe the key steps in the sequence they are executed then discuss the complete
SpEED2 algorithm as a whole.

SpEED2 Key Steps:-

1. Compute min & max seed lengths
2. Compute all seed lengths
3. Create homologous region
4. Populate the seeds with default value
5. Iterative hill climbing
6. Adapt the seed lengths
7. Indel optimization
8. Calculate sensitivity

3.2.4.1 Compute min & max seed lengths

In this step, the lengths the shortest seed (m) and the longest seed (M) is computed. These
two values depend on the number of seeds k, seed weight w, and homology length N and are
calculated using regression lines based on values present in precomputed arrays. The same
procedure was used in the original SpEED version.

3.2. SpEED2 37

3.2.4.2 Compute all seed lengths

After m and M values are computed, the length of the other seeds is computed heuristically
using interpolation. The same procedure was used in the original SpEED version.

3.2.4.3 Create homologous region

In this step, a homologous region is created by filling up an array with 108 strings of length
H containing 0s and 1s based on similarity value p. This array is used for estimating the
sensitivity when computing the actual sensitivity becomes infeasible. This step was discussed
in detail in the ”Estimated Sensitivity” section of Chapter 3.

3.2.4.4 Populate the seeds with default value

All the seeds are populated in a default format - 1 ∗ ∗.. ∗ 11..1. The start and ending positions
have matched positions. In the remaining positions, the first half is filled with ∗ and last half is
filled with 1.

3.2.4.5 Iterative hill climbing

SpEED2 randomly chooses an initial set of seeds and improves these seeds based on overlap
complexity (OC). This has been discussed before in the section ” Iterative Hill-Climbing with
Random Starts” section of Chapter 3. The same procedure was used in the original SpEED
version.

3.2.4.6 Adaptive seed lengths

Using this procedure, the minimum seed length (m) and maximum seed length (M) in the seed
set are modified based on previous results. All other seed lengths are calculated based on the m
and M values, so basically all seed lengths are chosen so as to maximize sensitivity. For every
10 hill climbing iterations, the arithmetic mean of m and M of the best seeds are calculated and
these values are used to create the initial seed from the 11th through to the 20th iteration. Again,
this process is repeated for the next 10 iterations.

3.2.4.7 Indel optimization

The seed set is optimized by randomly inserting a don’t care (∗) or deleting a don’t care (∗)
in a randomly chosen position in any seed. This step was thoroughly discussed in the section
”Indel Optimization” section of Chapter 3.

3.2.4.8 Calculate sensitivity

The quality of the designed seed is checked either using sensitivity or by estimating the sensi-
tivity when calculating actual sensitivity becomes infeasible. This step has been discussed in
great detail in ”Estimated Sensitivity” and ”Sensitivity” sections section of Chapter 3.

The complete SpEED2 algorithm is stated below.

38 Chapter 3. Methodology

SpEED2 (w, n, p, H)

- given: Weight of seed w, number of seeds n, similarity value p
and homology region length H

- returns: Optimized seed set S opt and bestS ens its sensitivity value

1. Compute lengths of m and M
2. Create homologous region
3. for i from 1 to 1000 do
4. for every 10 iterations, adapt seed lengths by recalculating m

and M values
5. All seeds s in seed set S are populated as 1 ∗ ∗.. ∗ 11..1
6. Iterative hill climbing is performed on S by swapping a 1

with a ∗ based on OC
7. S is modified to S ′ after OC optimization
8. for j from 1 to 200 do
9. Perform indel optimization

10. S ′ changed to S ′′ after indel optimization
11. S ′′ is optimized by swapping 1 and ∗ using OC
12. end for
13. S sens = S ′′, where S ′′ has highest sensitivity
14. end for
15. S opt = S sens, where S sens has highest sensitivity
16. bestS ens is the sensitivity of S opt

17. return S opt and bestS ens

Chapter 4

Experimental Results

In this chapter we present the experimental results produced by SpEED2 and also compare
these results with the leading software programs.

4.1 Operation Environment
SpEED2 is implemented in C++. All executions have been carried out on SHARCNET (Shared
Hierarchical Academic Research Computing Network), which is a consortium of high per-
formance computing cluster, more specifically, we ran our code on the dusky cluster whose
characteristics are described below:

• Processor: 32 cores

• RAM: 1000.0 GB

• Operating System: CentOS 6.3

• Compiler: GCC version 5.1.0

• Storage: 500 GB

Execution of SpEED2 is serial in nature so the code needs only one processor to run.
SpEED2 requires a lot of memory during sensitivity computation of lengthy seeds but the
program can also be run in memory deficient environment. In that case, seed quality would be
measured using estimated sensitivity instead of sensitivity.

4.2 Experimental Setup
To compare our software program with existing state-of-the-art programs, we generated mul-
tiple spaced seed based on the parameter settings that were practically used in a number of
popular biological sequence alignment/search programs such as SHRiMP [37], PatternHunter
II [6], BFAST [38], and MegaBLAST [33]. Let us look at each type of seed set. We will use k
to denote the number of seeds, p for similarity, w for seed weight and H for length of homology
region.

39

40 Chapter 4. Experimental Results

Name Seeds Weight Similarity
Homology

length
SHRiMP 4 10, 11, 12, 16, 18 0.75, 0.80, 0.85, 0.90, 0.95 50

PatternHunter II 16 11 0.70, 0.75, 0.80 64
BFAST 10 22 0.85, 0.90, 0.95 50

MegaBLAST 1, 2, 4, 8, 16 28 0.90 100

Table 4.1: Types of seeds used as dataset

SHRiMP consists of 15 types of seed sets, where each set has k = 4 and H = 50. The
weights, w have values 10, 11, 12, 16, 18 and p ranges from 0.75 to 0.95. See Table 4.1 for
exact configuration of seeds. PatternHunter II seed sets have k = 16, w = 11, H = 64, and
p value of 0.70, 0.75 or 0.80. BFAST seeds sets have k = 10, w = 22, H = 50, and p value
of 0.85, 0.90 or 0.95. Finally, we use MegaBLAST seeds which have w = 28, H = 100, and
p = 0.90 and the k has values 1, 2, 4, 8 or 16.

4.3 Performance Measurement Metric
We have used two measurement metrics:-

• Sensitivity

• Estimated Sensitivity

Sensitivity is the best metric to measure the performance of seeds as evident from all pre-
vious related works. However, in our work, we have also used estimated sensitivity wherever
sensitivity computation fails. Sensitivity has been used for SHRiMP, PatternHunter II, and
BFAST seeds whereas estimated sensitivity has been used for MegaBLAST seeds. We have
discussed both in great detail in the previous chapter.

4.4 Experimental Results
The multiple spaced seeds generated by SpEED2 are given in Appendix A. The output (mul-
tiple spaced seeds) from our program is slightly different from those shown in Appendix A. It
is in the form of strings consisting of 0s and 1s, where a 0 (instead of *) represent don’t care
position and a 1 represents match position. A sample output of SpEED2 is shown in Figure
4.1. In this instance our program was run using the command ./SpEED 10 4 0.75 50.

We ran the code 10 times for all datasets and considered the best result among the 10 runs.
The quality of SHRiMP, PatternHunter II, and BFAST seeds were measured using sensitivity,
whereas estimated sensitivity was used to measure the quality of MegaBLAST seeds. As dis-
cussed before, sensitivity calculation is exponential in runtime and memory consumption and
the lengthy MegaBLAST seeds consumed more memory than our system had. SpEED2 is able
to detect if the system would run out of memory and crash while computing the sensitivity and
would calculate estimated sensitivity instead.

4.5. Comparison 41

Figure 4.1: Screenshot of SpEED2 output
SpEED2 is designing 4 seeds of weight 10 with similarity level 0.75 and region length 50.

4.5 Comparison

In this section, we compare the seeds designed by SpEED2 with the seeds designed by other
leading software with the help of sensitivity and estimated sensitivity. The multiple spaced
seeds we found are available in Appendix A. As shown in Table 4.2, SpEED2 performs very
well when compared with other leading software like Iedera [15, 16, 17], SpEED [7, 13, 14],
AcoSeeD [18], and rasbhari [19]. The dataset used is shown in Table 4.1.

In each row, the value with the highest sensitivity is in bold font with a dark green back-
ground. The second highest sensitivity value for each row is in pale green. SpEED2 performs
well over all our datasets, producing the best seeds in all 26 cases. Also, it is evident that
rasbhari provides the second best seeds in most of the datasets.

Nowadays, longer seeds like that of MegaBLAST are more commonly used for similar-
ity search as they can be used to query huge genome databases relatively quickly. SpEED2
and SpEED are the only software programs able to design MegaBLAST seeds, all others fail
(mostly due to a lack of memory). We already know that computing sensitivity is a very ex-
pensive operation both in terms of memory and runtime (both exponential). Naturally, systems
run out of memory trying to calculate sensitivity of lengthy MegaBLAST seeds. SpEED2
overcomes this by using estimated sensitivity which consumes constant amount of memory.

Now, we shift our focus to rasbhari. The seeds computed by rasbhari are very close in terms
of sensitivity to those computed by us. The improvement achieved by our program might not
seem very significant initially, but, one must keep in mind that in the context of read alignment,
a 100-fold coverage of the human genome, a 1 percent improvement in seed sensitivity would

42 Chapter 4. Experimental Results

mean that 3 billion more nucleotides could be mapped [7].

Test Sensitivity
Weight Similarity Iedera SpEED AcoSeeD rasbhari SpEED2

SHRiMP - 4 seeds and Homology Length - 50
10 0.75 90.6820 90.9026 90.9513 90.9614 90.9680
10 0.80 97.7586 97.8384 97.8521 97.8554 97.8584
10 0.85 99.7437 99.7575 99.7614 99.7618 99.7624
11 0.75 83.2413 83.3570 83.4728 83.4679 83.5077
11 0.80 94.9350 95.0351 95.037 95.0386 95.0547
11 0.85 99.2189 99.2476 99.2478 99.2506 99.2510
12 0.80 90.3934 90.6389 90.6328 90.6648 90.6672
12 0.85 98.0781 98.1514 98.1766 98.1824 98.1858
12 0.90 99.8773 99.8836 99.8853 99.8864 99.8872
16 0.85 84.5795 84.8347 84.9829 84.969 84.9974
16 0.90 97.2806 97.4386 97.4712 97.5035 97.5162
16 0.95 99.9331 99.9405 99.9419 99.9441 99.9453
18 0.85 72.1695 73.1478 73.2700 73.2209 73.2977
18 0.90 93.0442 93.7651 93.7778 93.7800 93.7856
18 0.95 99.6690 99.7547 99.7599 99.7557 99.7633

PatternHunter II - 16 seeds and Homology Length - 64
11 0.70 92.0708 93.3406 - 93.4653 93.4892
11 0.75 98.3391 98.7156 - 98.7573 98.7624
11 0.80 99.8366 99.8859 - 99.8907 99.8910

BFAST - 10 seeds and Homology Length - 50
22 0.85 60.1535 60.9329 - 60.9919 61.0326
22 0.90 87.9894 88.7120 - 88.8005 88.8499
22 0.95 99.2196 99.3959 - 99.4099 99.4216

MegaBLAST - 1, 2, 4, 8. 16 seeds and Homology Length - 100
28 0.90 - 69.3208 - - 69.3780
28 0.90 - 79.6679 - - 81.2266
28 0.90 - 87.5677 - - 89.5934
28 0.90 - 92.7762 - - 94.7527
28 0.90 - 95.9170 - - 97.5533

Table 4.2: Comparison of different programs with SpEED2

Another aspect to keep in mind is that rasbhari is much more expensive in terms of memory
requirement as well as runtime when compared to SpEED2 because rasbhari seed are consis-
tently 70% to 80% longer. As a result, rasbhari can not compute MegaBLAST seeds and takes
more than 16 times longer to compute seeds when compared to our program.

Chapter 5

Conclusion and Future Works

In this chapter, we will discuss the summary of our work and possible future works to achieve
further improvements.

5.1 Summary

In this thesis, we have considered the problem of designing multiple spaced seeds for similarity
search. We have discussed various sequence alignment techniques including both traditional
and heuristic approaches and looked at some of the most popular algorithms and programs.
Then we discussed the topic of multiple spaced seeds along with some prominent software and
their shortcomings.

We then presented our work, which generates highly sensitive seeds and then discussed
how this increased performance is achieved by using indel optimization along with adaptive
seed length. Finally, we compare the performance of our algorithm with other state-of-the-art
software like Iedera, SpEED, AcoSeeD, and rasbhari.

5.2 Conclusion

Nearly half a century has elapsed since Needleman-Wunsch’s algorithm for global alignment,
still, sequence similarity search remains an active field of research. The main reason for this
is that sequence similarity helps to discover the evolutionary, structural, and functional rela-
tionship between unknown biological sequences by comparing them with known ones. Also,
biological repositories, such as GenBank of NCBI, are ever-increasing and efficient algorithms
are constantly required to make sense of such large quantities of data.

Seeding based approach is very popular when it comes to searching biological repositories.
For this technique to work, we must use multiple spaced seeds of high sensitivity. Our work
produces seeds of very high sensitivity within an acceptable amount of time.

The contribution of SpEED2 is that it generates good multiple spaced seeds and this, in
turn, helps to perform tasks that require similarity search like gene and protein predictions,
phylogeny, and evolutionary analysis, read mapping and primer design more accurately. Pro-
grams like PatternHunter which is used for homology search, SHRiMP, and BFAST used for

43

44 Chapter 5. Conclusion and FutureWorks

read mapping, and bestPrimer used for designing primers will benefit by using our software
program.

5.3 Future Works
There is plenty of scope for future works. Firstly, we can make the program a lot faster by
parallelization. Estimating the sensitivity and indel optimization are suitable candidates where
we could parallelize the execution since the loops are pretty much independent of each other.

Secondly, there is scope for improving the design of our software program. Currently,
SpEED2 can only handle up to a homology length of 128, but, in future, we would like it to be
able to work with longer regions.

Thirdly, we could also employ deep learning models in our future works to understand
hidden features behind designing highly sensitive multiple spaced seeds. In could produce
even better seeds.

Bibliography

[1] Dennis A Benson, Ilene Karsch-Mizrachi, David J Lipman, James Ostell, and David L
Wheeler. Genbank. Nucleic acids research, 33(suppl 1):D34–D38, 2005.

[2] NCBI Web Traffic. https://www.ncbi.nlm.nih.gov/stats/.

[3] William R Pearson and David J Lipman. Improved tools for biological sequence compar-
ison. Proceedings of the National Academy of Sciences, 85(8):2444–2448, 1988.

[4] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.
Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[5] Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive homology
search. Bioinformatics, 18(3):440–445, 2002.

[6] Ming Li, Bin Ma, Derek Kisman, and John Tromp. Patternhunter ii: Highly sensitive and
fast homology search. Journal of bioinformatics and computational biology, 2(03):417–
439, 2004.

[7] Lucian Ilie and Silvana Ilie. Multiple spaced seeds for homology search. Bioinformatics,
23(22):2969–2977, 2007.

[8] Biological Sequences. https://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML.

[9] DNA vs RNA – 5 Key Differences and Comparison.
https://www.technologynetworks.com/genomics/lists/what-are-the-key-differences-
between-dna-and-rna-296719.

[10] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[11] Saul B Needleman and Christian D Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of molecular biology,
48(3):443–453, 1970.

[12] Temple F Smith, Michael S Waterman, et al. Identification of common molecular subse-
quences. Journal of molecular biology, 147(1):195–197, 1981.

[13] Lucian Ilie, Silvana Ilie, and Anahita Mansouri Bigvand. Speed: fast computation of
sensitive spaced seeds. Bioinformatics, 27(17):2433–2434, 2011.

45

46 BIBLIOGRAPHY

[14] Silvana Ilie. Efficient computation of spaced seeds. BMC research notes, 5(1):123, 2012.

[15] Gregory Kucherov, Laurent Noé, and Mikhail Roytberg. A unifying framework for seed
sensitivity and its application to subset seeds. Journal of bioinformatics and computa-
tional biology, 4(02):553–569, 2006.

[16] Iedera :: subset seed design tool. https://bioinfo.lifl.fr/yass/iedera.php.

[17] Gregory Kucherov, Laurent Noé, and Mikhail Roytberg. Subset seed automaton. In
International conference on implementation and application of automata, pages 180–
191. Springer, 2007.

[18] Dong Do Duc, Huy Q Dinh, Thanh Hai Dang, Kris Laukens, and Xuan Huan Hoang.
Acoseed: An ant colony optimization for finding optimal spaced seeds in biological
sequence search. In International Conference on Swarm Intelligence, pages 204–211.
Springer, 2012.

[19] Lars Hahn, Chris-André Leimeister, Rachid Ounit, Stefano Lonardi, and Burkhard Mor-
genstern. Rasbhari: Optimizing spaced seeds for database searching, read mapping and
alignment-free sequence comparison. PLoS computational biology, 12(10):e1005107,
2016.

[20] Michael Brudno. Sequence Alignment Notes (Needleman-Wunsch, Smith-Waterman).
https://www.cs.utoronto.ca/ brudno/bcb410/lec2notes.pdf.

[21] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix
trees with enhanced suffix arrays. Journal of discrete algorithms, 2(1):53–86, 2004.

[22] Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switch-
ing and Automata Theory (swat 1973), pages 1–11. IEEE, 1973.

[23] Edward M McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM (JACM), 23(2):262–272, 1976.

[24] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[25] Arthur L Delcher, Simon Kasif, Robert D Fleischmann, Jeremy Peterson, Owen White,
and Steven L Salzberg. Alignment of whole genomes. Nucleic acids research,
27(11):2369–2376, 1999.

[26] Dan Gusfield. Algorithms on strings, trees, and sequences: computer science and com-
putational biology. Cambridge university press, 1997.

[27] Ralf Himmelreich, Helga Plagens, Helmut Hilbert, Berta Reiner, and Richard Herrmann.
Comparative analysis of the genomes of the bacteria mycoplasma pneumoniae and my-
coplasma genitalium. Nucleic Acids Research, 25(4):701–712, 1997.

[28] Stefan Burkhardt, Andreas Crauser, Paolo Ferragina, Hans-Peter Lenhof, Eric Rivals, and
Martin Vingron. q-gram based database searching using a suffix array (quasar). 1998.

BIBLIOGRAPHY 47

[29] David J Lipman and William R Pearson. Rapid and sensitive protein similarity searches.
Science, 227(4693):1435–1441, 1985.

[30] Christiam Camacho, George Coulouris, Vahram Avagyan, Ning Ma, Jason Papadopou-
los, Kevin Bealer, and Thomas L Madden. Blast+: architecture and applications. BMC
bioinformatics, 10(1):421, 2009.

[31] Thomas L Madden, Roman L Tatusov, and Jinghui Zhang. Applications of network blast
server. In Methods in enzymology, volume 266, pages 131–141. Elsevier, 1996.

[32] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng
Zhang, Webb Miller, and David J Lipman. Gapped blast and psi-blast: a new generation
of protein database search programs. Nucleic acids research, 25(17):3389–3402, 1997.

[33] Aleksandr Morgulis, George Coulouris, Yan Raytselis, Thomas L Madden, Richa Agar-
wala, and Alejandro A Schäffer. Database indexing for production megablast searches.
Bioinformatics, 24(16):1757–1764, 2008.

[34] Marco Dorigo and Gianni Di Caro. Ant colony optimization: a new meta-heuristic.
In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No.
99TH8406), volume 2, pages 1470–1477. IEEE, 1999.

[35] Jeremy Buhler, Uri Keich, and Yanni Sun. Designing seeds for similarity search in ge-
nomic dna. Journal of Computer and System Sciences, 70(3):342–363, 2005.

[36] Lavinia Egidi and Giovanni Manzini. Multiple seeds sensitivity using a single seed with
threshold. Journal of bioinformatics and computational biology, 13(04):1550011, 2015.

[37] Matei David, Misko Dzamba, Dan Lister, Lucian Ilie, and Michael Brudno. Shrimp2:
sensitive yet practical short read mapping. Bioinformatics, 27(7):1011–1012, 2011.

[38] Nils Homer, Barry Merriman, and Stanley F Nelson. Bfast: an alignment tool for large
scale genome resequencing. PloS one, 4(11):e7767, 2009.

Appendix A

SpEED2 Seeds

A.1 SHRiMP Seeds

Similarity = 0.75
1111*1*11*111
111*1**11***1111
111*1*1***1**1**111
11*11****1****1***1*1*11

Sensitivity = 0.909680

Table A.1: SHRiMP seeds of weight 10 and homology length 50

Similarity = 0.8
111*11*11*111
111**1*1*1***1111
111*1*1***1****11*11
111***1**1**1****1*1*11

Sensitivity = 0.978584

Table A.2: SHRiMP seeds of weight 10 and homology length 50

Similarity = 0.85
111*11*11*111
1111***1*1*1**111
11*11****1***1*1*111
11*1*1****1**1**1***111

Sensitivity = 0.997624

Table A.3: SHRiMP seeds of weight 10 and homology length 50

48

A.1. SHRiMP Seeds 49

Similarity = 0.75
111*11*11**1111
1111***1*1*11**111
111*1*1**1****1**1*111
111***1**1***1****1*1*111

Sensitivity = 0.835077

Table A.4: SHRiMP seeds of weight 11 and homology length 50

Similarity = 0.8
111*11*11*1*111
111**1*1***11*1111
111*1***11**1**1*111
1111***1**1****1***1*111

Sensitivity = 0.950547

Table A.5: SHRiMP seeds of weight 11 and homology length 50

Similarity = 0.85
111*11*11*1*111
1111**1*1***11*111
111*1***1**1****1**1111
111*1****1****1****1***1*111

Sensitivity = 0.992510

Table A.6: SHRiMP seeds of weight 11 and homology length 50

50 Chapter A. SpEED2 Seeds

Similarity = 0.8
1111*1*11*11*111
111*1**11**1*1*1111
111*11***1****1**1**1111
1111**1*****1****1**1***1*111

Sensitivity = 0.906672

Table A.7: SHRiMP seeds of weight 12 and homology length 50

Similarity = 0.85
111*11*111*1*111
111*1**1**1*1**1*1111
111*11***1**1***1*1**111
1111**1****1***1*****1*1*111

Sensitivity = 0.981858

Table A.8: SHRiMP seeds of weight 12 and homology length 50

Similarity = 0.9
111*11*111*1111
1111**1*1**1**1*1111
111*1***1**1***1*1**1111
1111**1****1***1*****1***1*111

Sensitivity = 0.998872

Table A.9: SHRiMP seeds of weight 12 and homology length 50

A.1. SHRiMP Seeds 51

Similarity = 0.85
1111*11*11*111*1*1111
1111*1*1*1****111**11*1111
111*11*1***11**1****11*1*1111
11111****1**1**1***1*1****1**11111

Sensitivity = 0.849974

Table A.10: SHRiMP seeds of weight 16 and homology length 50

Similarity = 0.9
1111*1*11*11*111*1111
11111**11**1*1*11**1*1111
1111*1*1***11****1***11**11111
1111*11***1*****1**1***1****1*1*1111

Sensitivity = 0.975162

Table A.11: SHRiMP seeds of weight 16 and homology length 50

Similarity = 0.95
111*111*11*11*1*11111
111111***1**1**1*1***11*1111
1111***111*1**1***1***1**1*1111
1111*11****1***1*****1*1*****11*1*111

Sensitivity = 0.999453

Table A.12: SHRiMP seeds of weight 16 and homology length 50

52 Chapter A. SpEED2 Seeds

Similarity = 0.85
1111*111*1*111*11*11111
11111**11*111**1**1*1*11111
11111*1**1**1***111**1*1**11111
111111***11***1*1*****1***1**11*1111

Sensitivity = 0.732977

Table A.13: SHRiMP seeds of weight 18 and homology length 50

Similarity = 0.9
11111*1*11*111*111*1111
111*11*1*111****11*1**111111
1111*11*11****1***11**1*1*1*1111
11111*1***1***1**1***1***1**1*11*1111

Sensitivity = 0.937856

Table A.14: SHRiMP seeds of weight 18 and homology length 50

Similarity = 0.95
11111*1*11*11**111*11111
11111**11***1*1*1*11*1**11111
1111*1*1*1**1*11******111**11*111
1111*1*1**1**1*****11**1*****111*1111

Sensitivity = 0.997633

Table A.15: SHRiMP seeds of weight 18 and homology length 50

A.2. PatternHunter II Seeds 53

A.2 PatternHunter II Seeds

Similarity = 0.7
1111*1*111*111
11*11***1*11*1**111
11*11*11****1*1*111
111*1*1**1***1*11*11
11*1**1*1**11**1*1*11
11*1*1***11****1**1*111
111**11*****11***1**111
111****1*1*1***1***1111
11*1*1****1**1**1**1**111
11*11**1*****1***1**1*1*11
111**1***1****1*1****11*11
111*1*****1*1******11***111
11*1*1*****1**1*****1*****1*111
1111***1*******1***1*****1*1*11
111***1***1******1******1**1***111
111**1**1*******1**********1*1**111

Sensitivity = 0.934892

Table A.16: PatternHunter II seeds of weight 11 and homology length 64

54 Chapter A. SpEED2 Seeds

Similarity = 0.75
1111***1*11*11*11
111*11*1***11**111
11*11***11*1*1*1*11
11**1*1*1**11***1111
111*1**1*11******11*11
111***11**1***1*1**1*11
11*11*1*****1**1*1***111
111**1**1***1*****1*1*1*11
11*1*1*1******1**1***1**111
11*1**1**1****1***1***1*1**11
111*1***1***1*******1**1**111
111***1****1****1****1***1*111
111*1****1*****1***1****1**1*11
111**1***1****1********1*****1*111
111**1*****1******1********1**11**11
11*1**1******1******1*****1****1*111

Sensitivity = 0.987624

Table A.17: PatternHunter II seeds of weight 11 and homology length 64

Similarity = 0.8
111*111*1*11*11
111*1*1**1**111*11
111*11*11**1***111
111***11*1*1**1*111
11*11*1***111**1*11
111**1**11****11**111
1111**1****1*1***1*111
11*1***1*11******11*1*11
11*11****1*1****1**1*111
111***11****1**1***1*1*11
11*1**1*1*****1**1*1**111
111*1*****1***1*1*****11*11
11*1*1*1******1***1**1***111
11*1**1***1***1*****1***1*111
111**1***1**1****1***1***1*11
1111***1****1*********1****1*1*11

Sensitivity = 0.998910

Table A.18: PatternHunter II seeds of weight 11 and homology length 64

A.3. BFAST Seeds 55

A.3 BFAST Seeds

Similarity = 0.85
1111*11111*1111111*11*1111
1111111*111*11**1*11111*1111
1111*111*1*1**111*1111**1*11111
1111*11**11111*1*11***1*111*1111
11111*1*1*11*111****111**11**11111
11111*111****1***111*11*1*1*11*1111
1111**11**111*1**1**1*1*1**111**11111
1111*1**1*11***11*11****11*1*1*111111
1111*11*11*****11*1***11**1*11**11*1111
11111*11****11*1**1***1*1**1***11**111111

Sensitivity = 0.610326

Table A.19: BFAST seeds of weight 22 and homology length 50

Similarity = 0.9
1111*1111*111*111111*11111
1111111**11*111*11*1**111*1111
1111*1*11111*11**1*1*11**111111
11111*111**1*11*1*11*111***11111
1111*11**1*11****11111*11*11*1111
11111**11*1*1**111***1*1**11*111111
1111*11*1***111*1*1*1****111*1**11111
11111*11*1*11***1****11*11***1*11*1111
11111*1*1*11*****1*11*1*1**11***11*1111
1111*111****11*11**1***1*****1*1*1*111111

Sensitivity = 0.888499

Table A.20: BFAST seeds of weight 22 and homology length 50

56 Chapter A. SpEED2 Seeds

Similarity = 0.95
11111*11111*1111*111*11*111
1111*111**1*111*11*11111*1111
1111*11*1*111*111***111*111*111
11111*1*1111****1*11*11*1**1*11111
11111*1*1***11*1*11*1****1111*11111
1111**111*11**1**1***1*111*11**11111
1111*11**1*1**11111***11**1*1*1*1111
11111*11**1**11***1*1*11*1***1111*111
1111*1**1*1*1**1**111***1**11**1**111111
111111*1*1***11***1*****11**1**1*1**111111

Sensitivity = 0.994216

Table A.21: BFAST seeds of weight 22 and homology length 50

A.4. MegaBLAST Seeds 57

A.4 MegaBLAST Seeds

Seeds : 1
11111*1*111***11**11*11**11*1*11*1*11*11111

Estimated sensitivity = 0.69378

Table A.22: MegaBLAST seeds of weight 28, homology length 100 and sensitivity of 0.9

Seeds : 2
11111*1*11*111*1*111**11*111**1*11*11111
111111**11*11**1****11***1**1**1*1***1*1***11*1*1*11111

Estimated Sensitivity = 0.812266

Table A.23: MegaBLAST seeds of weight 28, homology length 100 and sensitivity of 0.9

Seeds : 4
1111*111*1111**1*11*111*11*1*111**11111
1111111**1***11*1*1**111***1*1*1**11*1*11*11111
11111*1*11***1*11**1****1*11**11****1*1**11**111*1111
11111*1*11*1*1***1****1**1**1***1****1***11*****11**1*11*11111

Estimated sensitivity = 0.895934

Table A.24: MegaBLAST seeds of weight 28, homology length 100 and sensitivity of 0.9

58 Chapter A. SpEED2 Seeds

Seeds : 8
1111*1*11111*111*111*11*11*111*11111
11111*111*11*1***11*1111*11**111**1*11111
1111111**11***11*1*1*11***1**1**1*1*111**111111
111111**11***1*11****1***1*11*1*1*1***11*1*1**111111
11111**1*1*1*1****1***111*1****11*1**1****111**111*1111
11111*11***1*11*1**11*1****11*******1*1*1*11**1**111*111
111*111***11*11**1**11*********11**1**11***1*1**1*11**1*1111
11111*11*1**1****11****1*1**1***1**1*****1***1***11****111*11111

Estimated Sensitivity = 0.947527

Table A.25: MegaBLAST seeds of weight 28, homology length 100 and sensitivity of 0.9

Seeds : 16
1111*111*1111*1111111*111*11*11111
11111*11**1*1111*1*1*111111*1111*1111
11111*1*111111**1*11**11**1111*1111111
111111*111**11*1*11111*1**1*11*1***111111
111111**11*1*1**11**1*11111*1*1**11*111111
111111*1*11***111***11*1*11***1*1**11**1111111
111111*11*1***1*1111****1***1**11**11*1*111*1111
11111*111**1*11******1*1*1*1**111****11*1*11*11111
111111*1**11*1**1*1**111****11****1*1**1*111**11111
11111*1*1**1**11**1**1****1*11*****11***111*1***11*11111
1111*111**111****1*1*1*1********1*1***111**1**1**11*11111
111*111**1*1*111*****1**1***1*11**11*******1*1*11*1**11111
11111**11*1***1*1**1**1***111**1******11*1*****1*1*11*11111
111*11*111******11***11***1**11****1**1*****1*11*11**1*1*1111
11111*1***111****11*1***1*1*******1*1*1****11**11***11*1*1111
1111*11*1**1**11***1***1***1**1***1***1**1***11****111***111111

Estimated sensitivity = 0.975533

Table A.26: MegaBLAST seeds of weight 28, homology length 100 and sensitivity of 0.9

Curriculum Vitae

Name: Arnab Mallik

Post-Secondary West Bengal University of Technology
Education and Kolkata, India
Degrees: 2011 - 2015 B.Tech.

University of Western Ontario
London, ON, CA
2018 - 2019 M.Sc.

Honours and Western Graduate Research Scholarship
Awards: 2018-2019

Related Work Teaching Assistant
Experience: The University of Western Ontario

2018 - 2019

Software Engineer
Infosys India Ltd.
2015 - 2018

59

	Computation of Sensitive Multiple Spaced Seeds
	Recommended Citation

	Abstract
	Lay Summary
	Acknowlegements
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Motivation
	Problem Statement
	Objective
	Thesis Contribution
	Thesis Outline

	Background
	Sequence Alignment
	Traditional Methods
	Needleman-Wunsch Algorithm
	Smith-Waterman Algorithm

	Heuristic Methods
	Suffix Tree Algorithms
	MUMmer
	Quasar

	Seeding Based Algorithms
	FASTA
	BLAST
	PatternHunter
	PatternHunter II

	Designing Multiple Spaced Seeds
	Iedera
	AcoSeeD
	rasbhari

	Methodology
	SpEED
	Sensitivity
	Overlap Complexity
	Iterative Hill Climbing with Random Starts
	Algorithm
	SpEED-Fast

	SpEED2
	Estimated Sensitivity
	Indel Optimization
	Adaptive Seed Length
	SpEED2 Algorithm
	Compute min & max seed lengths
	Compute all seed lengths
	Create homologous region
	Populate the seeds with default value
	Iterative hill climbing
	Adaptive seed lengths
	Indel optimization
	Calculate sensitivity

	Experimental Results
	Operation Environment
	Experimental Setup
	Performance Measurement Metric
	Experimental Results
	Comparison

	Conclusion and Future Works
	Summary
	Conclusion
	Future Works

	Bibliography
	SpEED2 Seeds
	SHRiMP Seeds
	PatternHunter II Seeds
	BFAST Seeds
	MegaBLAST Seeds

	Curriculum Vitae

