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Abstract 

Barn Swallows (Hirundo rustica), Cliff Swallows (Petrochelidon pyrrhonota) and Tree 

Swallows (Tachycineta bicolor) breed sympatrically in southern Ontario but it is unclear 

how these species differ ecologically, and their coexistence implies niche segregation. I 

investigated potential interspecific differences in nestling diet and post-fledging 

movements. Using DNA barcoding of nestling feces and stable isotope analysis (δ2H, 

δ13C, δ15N) of nestling feathers, I found evidence of differences in dietary sources of 

provisioned young. Barn Swallows showed evidence of provisioning more terrestrial-

based prey, Cliff Swallows provisioned an intermediate diet, and Tree Swallows the most 

aquatic-based diet. To determine post-fledging movements, fledglings were tracked using 

automated telemetry. Cliff Swallow fledglings differed from the other two species in their 

post-fledging residency time at the natal site. This information may help to identify 

potential factors contributing to differential declines operating on the breeding grounds. 

Keywords 

niche segregation, diet, stable-isotopes, DNA barcoding, aerial insectivore, Barn 

Swallow, Cliff Swallow, Tree Swallow, post-fledging movement, automated telemetry 
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Summary for Lay Audience 

Rehabilitating populations of threatened species often requires an understanding of the 

interactions of those species with others in the community. When closely related or 

similar species occupy the same habitat, it is expected they use resources in slightly 

different ways which reduces competition. Aerial insectivores are migratory birds which 

catch and eat flying insects. These birds’ populations have been declining throughout 

North America. Evidence suggests that the time from hatching until migration is a 

vulnerable period and might affect aerial insectivore population trends. My study 

investigated three species of aerial insectivores which can be found breeding in the same 

area in southern Ontario. Typically, Barn Swallows, Cliff Swallows, and Tree swallows 

can be found nesting in agricultural areas. Since these three species share their habitat 

and diet, I predicted there would be key differences among them which facilitated 

coexistence. I looked specifically at the diet of nestlings, as well as movements of young 

once they left the nest. This has been documented to be an important stage, and so any 

differences might give insights into differential population declines. Nestling diet was 

determined by extracting insect DNA from the nestlings’ feces and comparing the results 

to a DNA database. Stable-isotopes were also used to determine diet. Stable isotopes of 

an element have varying atomic mass, molecules containing heavier stable isotopes will 

move slower than their lighter counterpart. These isotopes vary across the environment in 

predictable ways and are integrated into animal tissues from their diet. I determined that 

the three species are feeding different prey to their young. I tracked movements of the 

young by outfitting them with a radio-transmitter which could be detected by automated 

receiving towers that are located across southern Ontario. I found that Cliff Swallows that 

hatch later in the season significantly decrease the time spent in their natal area compared 

to Barn and Tree swallows.  
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Chapter 1  

 General Introduction 

1.1 Community ecology 

Biological communities can be complex but studies of their structure and potential 

mechanisms allowing coexistence provides insight into their evolution and ultimate 

conservation. Rehabilitating populations of threatened species often requires an 

understanding of the interactions of that species with other sympatric species (Simberloff 

2004). Community ecology focuses on the abundance, diversity and interactions of 

species at a particular place. Species in communities may interact in numerous ways. 

However, consumer-resource relationships and competition are the focus of many 

community studies. Consumer-resource interactions typically benefit the consumer but 

can also negatively impact the resource. These interactions can include predation, 

parasitism, and herbivory. Competition, which results in both organisms being negatively 

impacted by each other, may take many different forms (Schoener 1983; Morin 2011). 

1.1.1 Species competition and coexistence 

Interspecific competition involves an interaction between two or more species wherein 

both can experience reduced fitness through lower fecundity and survivorship (Petchey et 

al. 2010; Morin 2011). These interactions typically involve closely related or similar 

species and can generally be grouped into interference or exploitative competition. 

Interference competition occurs when species interact in a way that negatively affects the 

competitors. These can include territorial interactions such as displacing competitors for 

reproductive territory. Exploitative competition occurs when species deplete a shared 

resource. For example, one species may consume the same food resource as another, 

making it scarcer (Schoener 1983; Morin 2011; Le Bourlot et al. 2014). Furthermore, 

indirect encounters when foraging between competitors may cause individuals to 

relocate, or to stop foraging altogether. This wastes time and energy that could be used 

for foraging or reproduction (Morin 2011). 
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The competitive exclusion principle states that species which occupy the same ecological 

niche are unable to coexist as one is bound to outcompete the other (Hardin 1960) except 

when resources are abundant (Hairston et al. 1960). When closely related species occupy 

the same habitat, it is expected that niche segregation allows for coexistence (Hutchinson 

1957). This has been expanded to more fully represent the complexity of species 

interactions in communities. In order for potential competitors to coexist, species 

population growth rates must be reduced more than they are able to reduce the population 

growth rates of potential competitors (Chesson 2000). This concept is linked to the 

realized niche, which is defined as the range of environmental conditions under which an 

organism can survive and reproduce after considering the constraints imposed by other 

species (Hutchinson 1957). The realized niche may encompass important ecological 

differences in spatial and temporal patterns, or resource use among competitors. Species 

may have different responses to the environment around them, resulting in spatiotemporal 

differences among potential competitors (Chesson 2000) that can change the local density 

of organisms competing for the same resources, thereby reducing potential encounters 

(Jeltsch et al. 2013). For competitors occurring sympatrically, coexistence may be 

facilitated by partitioning resources such as food or territory.  

1.2 Aerial insectivores 

Aerial insectivores are a guild of migratory birds which consume flying insects. These 

include swallows (Hirundinidae), swifts (Apodidae), and nightjars (Caprimulgidae). 

North American populations of these birds have experienced substantial declines since 

the 1980’s with the northeastern portion of North America having the greatest population 

reductions (Nebel et al. 2010). In addition, aerial insectivores in North America have 

been declining at different rates (Michel et al. 2016). There are many theories for these 

declines and several factors may be responsible such as climate change (Balbontín et al. 

2009), reductions in fledging success (Cox et al. 2018), habitat loss (Grüebler et al. 2010) 

and loss of high-quality prey (Benton et al. 2002; Twining et al. 2016; Spiller and 

Dettmers 2019).  

In southern Ontario, three aerial insectivore species - Barn Swallows (Hirundo rustica), 

Cliff Swallows (Petrochelidon pyrrhonota) and Tree Swallows (Tachycineta bicolor) 
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occur in sympatry during the breeding season, generally in agricultural areas. Barn and 

Cliff swallows are both long-distance migrants; these birds breed as far north as Alaska 

and winter as far south as Argentina (Brown et al. 2017; Brown and Brown 2019). In 

agricultural areas, Barn and Cliff swallows typically build mud nests inside barns or other 

human structures. Tree Swallows are short-distance migrants, they also breed as far north 

as Alaska, but overwinter as far south as the Gulf of Mexico. When breeding in 

agricultural areas, Tree Swallows nest in boxes provided by humans, or in natural cavities 

(Winkler et al. 2011). Barn, Cliff, and Tree swallows have similar clutch sizes; however, 

Barn Swallows may produce a second clutch, but this is rare for Cliff and Tree swallows 

(Winkler et al. 2011; Brown et al. 2017; Brown and Brown 2019). These three species 

are also declining at different rates. According to breeding bird survey data, in the lower 

Great Lakes region of Ontario, Barn Swallows have decreased 68%, Cliff Swallows 80% 

and Tree Swallows 56% from 1970 – 2017 (Smith et al. 2019). Differences in their life 

history may be key in determining potential causes of differential population declines.  

1.3 Diet 

Diet has a considerable impact on the life cycle of songbirds, including but not limited to 

reproductive success. These factors in turn can affect the population growth rates of aerial 

insectivores (Cox et al. 2018). Flying insects, the main source of diet for aerial 

insectivores, have been declining along with many other insect species (Hallmann et al. 

2017; reviewed in Sánchez-Bayo and Wyckhuys 2019). Recently, research has also found 

that the diet composition of aerial insectivores has been changing over the past several 

decades (Nocera et al. 2012; Pomfret et al. 2012), which has been suggested as a 

potential cause for population declines. Previous studies have found differences in the 

diets of sympatric aerial insectivores (Waugh 1978; Orłowski and Karg 2013; Orłowski 

et al. 2015). Reasons for these differences have been attributed to variance in foraging 

height, foraging location, and species morphology. The latter can directly influence 

which prey each bird is able to capture (Waugh 1978). Examining how similar species 

utilize different resources can give researchers insight on how competitors are able to 

coexist. In addition, this information may be a basis for future studies assessing 

differential declines as a function of differences in diet.  
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Early studies on avian diet were relatively invasive, these included ligatures being placed 

on nestlings to prevent them from swallowing so that food may be removed from the 

mouth (Waugh 1978). Adults were also captured to remove bolus from their mouths as 

they returned to feed their young (McCarty and Winkler 1999). More presently, non-

invasive techniques include opportunistic sampling of aerial insectivore gut contents 

post-mortem (Law et al. 2017), analyzing nestling fecal samples (Orlowski and Karg 

2011, 2013; Orlowski et al. 2015) and stable isotope analyses (Kusack 2018). 

1.3.1 Stable isotope analysis 

Isotopes of an element have the same number of protons but a different number of 

neutrons. This means that they will have varying atomic mass, which will cause them to 

behave differently kinetically whereby molecules containing heavier stable isotopes will 

move slower than their lighter counterpart. Ratios of heavy to light stable isotopes can be 

used to infer diets of organisms, as they move through the environment in predictable 

ways (Peterson and Fry 1987; Fry 2006; Inger and Bearhop 2008). The information 

provided by stable isotope analyses depends on the tissues sampled as well as the 

isotopes being analyzed. The tissues used will determine what timescale the analysis will 

reflect, as some tissues have faster or slower turnover rates. For example, liver or blood 

have a fast turnover rate and will represent short-term diet compared to bone collagen 

which has a slower turnover rate. Additionally, metabolically inert tissues such as 

feathers have no turnover, so they will represent assimilated diet of the period they were 

grown (Hobson and Clark 1992). Stable isotopes commonly used for food web analyses 

include 2H, 13C, and 15N. Stable isotope ratios are typically expressed in delta (δ) 

notation, as parts per thousand (‰) deviation from designated standards: 

δ𝐻𝑒𝑎𝑣𝑦X = [(
𝑅𝑆𝑎𝑚𝑝𝑙𝑒

𝑅𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
)− 1] × 1000 

Where R = Heavy X / Light X 

Stable hydrogen isotope ratios (δ2H) can be used to differentiate between aquatic and 

terrestrial sources of diet. Tissues from organisms feeding in terrestrial systems tend to be 

enriched in 2H when compared to aquatic food webs. Primary producers may influence 
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the δ2H values in terrestrial and aquatic food webs. Terrestrial plants undergo 

transpiration, which releases the lighter hydrogen isotope resulting in enrichment of 2H in 

terrestrial plants compared to aquatic plants (Wershaw et al. 1966; Doucett et al. 2007; 

Voigt et al. 2015). In addition, aquatic algae discriminate against the heavier isotope 

more so than terrestrial plants (Doucett et al. 2007). Stable hydrogen isotope ratios in 

aquatic food webs may be affected by evaporation as well as inflow to the system. 

Evaporating water vapor is depleted in 2H causing the remaining water to be more 

enriched, this process increases with increasing temperature and aridity (Ehhalt et al. 

1963). The amount of water inflow from other sources determines the influence 

evaporation has on 2H enrichment – systems with low inflow will be more influenced by 

evaporation than systems with high inflow (Gibson and Edwards 2002).  

Carbon stable isotope ratios are typically associated with primary producers in food 

webs. These can be influenced by different fractionation occurring in C3 or C4 

photosynthetic pathways (Bender 1968), resulting in C4 plants being more enriched in 

13C (average -14‰) than C3 plants (average -28‰) (O'Leary 1988). Carbon stable 

isotope ratios may also differ between freshwater and terrestrial environments, as plants 

and algae from freshwater sources may differ in their carbon uptake when compared to 

terrestrial counterparts (France 1995; Doucett et al. 1996). Differences between carbon 

stable isotope ratios in marine versus terrestrial systems occur because carbon enters 

terrestrial food chains from atmospheric CO2 with δ13C around -7‰, whereas dissolved 

carbonates enter marine food webs with δ13C around 0‰ (Hobson and Sealy 1991). 

Measurements of δ13C are often used in conjunction with those of δ15N in dietary studies 

of food webs.  

Nitrogen stable-isotope ratios (δ15N) are useful indicators of trophic position as they 

typically become more enriched with increasing trophic level (Hobson and Welch 1992; 

Hobson et al. 1994). However, agricultural practices involving the use of fertilizer can 

cause an enrichment in 15N that may alter the isotopic composition of the regional food 

web for decades (Szpak 2014). Manure-based fertilizer tends to be higher in 15N than 

synthetic fertilizer. Synthetic fertilizers typically have δ15N values of approximately 0‰ 

whereas manure-based fertilizers are 10-25‰ (Hebert and Wassenaar 2001). Once 
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fertilizer is applied, ammonia volatilization may cause nitrogen from the application to be 

lost into the environment (Ma et al. 2010). This reaction results in a loss of isotopically 

light ammonia gas, which leaves the remaining soils enriched in 15N (Hobson 1999; 

Pardo and Nadelhoffer 2010). Additionally, nitrogen concentrations in ground- and 

surface-waters have increased due to leaching, runoff, and atmospheric deposition from 

agricultural practices, as well as emissions from motor vehicles and industrial processes 

(Vitousek et al. 1997; Pardo and Nadelhoffer 2010). 

Similar to Hutchinson’s (1957) theory of an ecological niche being an n-dimensional 

space with axes that represent environmental components, isotopic data may also be 

presented in multivariate space, or δ-space, with axes representing isotopic values of 

tissues (Bearhop et al. 2004; Newsome et al. 2007; Jackson et al. 2011). This δ-space has 

been useful in conservation biology through identifying important habitat and diet 

resources, as well as detecting shifts in resource use resulting from disturbance 

(Newsome et al. 2007). However, isotopic data is limited as it cannot provide specific 

taxonomic information. For this reason, it is beneficial to combine stable isotope analyses 

with other approaches to gain more specific dietary information. 

1.3.2 Fecal analysis 

Fecal analysis is a useful tool in determining diet, as it is less invasive than some 

previously used methods and can give finer-scale taxonomic information. Fecal analyses 

can be done by inspecting the fragmented prey items in feces visually, or by using DNA 

barcoding. For DNA barcoding of aerial insectivore feces, a 157-base pair region of the 

mitochondrial cytochrome c oxidase subunit 1 (COI) gene (Hebert et al. 2003) is 

amplified using PCR. The COI gene is used because it shows relatively high interspecific 

variation, and relatively low intraspecific variation (Hebert et al. 2003). The 157 base-

pair region used is arthropod-specific and contains fragments that are expected to remain 

post-digestion (Zeale et al. 2011). This coupled with a reference database such as the 

Barcode of Life Database (BOLD Systems, www.boldsystems.org; Ratnasingham and 

Hebert 2007) is used in order to identify taxa.  
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Visual fecal analysis is typically limited by the ability to correctly identify remains of 

prey. As a result, fecal DNA analyses are able to identify prey items at lower taxonomic 

levels than visual analysis. Furthermore, when identifying prey of aerial insectivores, 

fecal DNA analyses are able to identify prey that may be visually unidentifiable post-

digestion (Zeale et al. 2011). DNA analyses have been successfully used to identify diet 

composition of avian species (Jedlicka et al. 2013; Galimberti et al. 2016; Moran et al. 

2019) including aerial insectivores (Kusack 2018; McClenaghan et al. 2019). However, 

more research on diet composition of aerial insectivores using DNA barcoding has been 

on bats (e.g. Zeale et al. 2011; Gonsalves et al. 2013; Long et al. 2013). Studying 

differences in the prey of these species could help understand if these sympatric swallows 

are partitioning their resources and potentially offer insight on differential declines that 

are being experienced amongst these species. 

1.4 Movement 

A notable movement difference among Barn, Cliff, and Tree swallows is their migration 

strategy. Tree Swallows typically migrate to southern USA or the Gulf of Mexico 

whereas Barn and Cliff swallows migrate as far south as Argentina. However, at finer 

scales, differences in movements are relatively unknown. These movements may lead 

them to make different pre-migratory decisions or make them susceptible to 

environmental factors which affect survival. Like many avian species, the post-fledging 

period plays an important role in population growth rates for aerial insectivores due to 

high mortality (Naef‐Daenzer et al. 2001; Cox et al. 2014; Cox et al. 2018; Evans et al. 

2019). Fledgling survival is the lowest immediately post-fledging (Evans et al. 2019). 

During this time young are extremely conspicuous, perching in exposed sites and making 

begging calls (Vitz and Rodewald 2010; Cox et al. 2014), making them vulnerable to 

predation. After this period, fledglings become independent and eventually disperse. This 

independent phase is also associated with high mortality as young must learn to navigate 

unknown landscapes, forage for themselves, and avoid predation (Grüebler and Naef-

Daenzer 2010). So, discerning differences in regional movements at this stage may serve 

as a starting point in conservation efforts.  
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Efforts to understand movements during the post-fledging period have yielded multiple 

hypotheses. First, the habitat optimization hypothesis typically refers to fine-scale 

movements made for food and shelter from predators (Brown and Taylor 2015). The 

migration hypothesis suggests that individuals make movements toward their migration 

route without entering a migratory physiological state (Rappole and Ballard 1987; 

Mitchell et al. 2010; Brown and Taylor 2015). Finally, the exploration hypothesis 

proposes that movements are made in order to gain cues for the following year. These 

include searching for future breeding habitats or searching for navigational landmarks to 

aid in returning during spring migration (Baker 1993; Brown and Taylor 2015; Cormier 

and Taylor 2019). Examining how movements differ between these three species could 

lend itself to better understanding the current incongruent population declines of aerial 

insectivores. 

Previous attempts to study movements of songbirds have been difficult, as common 

methodology involved banding and recapture, which may not be reliable if individuals 

disperse and are not recaptured (Cox et al. 2014). Rate of recapture is also an issue with 

geolocators, as these units need to be retrieved in order to acquire movement data. Other 

tracking technology, such as global positioning systems (GPS), are typically too 

cumbersome for small songbirds (Taylor et al. 2017). Instead, radio-tagging and tracking 

of individuals has proven to be a useful method for studying movements of songbirds. 

Modern versions of these units are light enough to be used on songbirds, and individuals 

do not need to be recaptured in order to attain the data. Typically, for radio telemetry, 

very high frequency (VHF) radio transmitters are attached to the organism of interest. 

These transmitters each emit a unique signal in the VHF range (30 – 300 MHz) which 

can then be detected by a radio antenna and receiver. However, this method historically 

required researchers to detect animals through homing in on their location, e.g. by foot or 

aircraft, all while cycling through frequencies in order to detect the transmitters (Withey 

et al. 2001). More recently, automated telemetry towers have facilitated research focusing 

on movements of songbirds. Similar to previous radio telemetry methods, automated 

telemetry uses antennae and receivers to detect radio signals. These are typically affixed 

to a tower, building, or other structure. Moreover, radio transmitters are now coded with a 

unique output on the same frequency, so manual and automated receivers are able to 
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detect more transmitters and log their detections when they are within range. (Taylor et 

al. 2017).  

The Motus Wildlife Tracking System (Motus) is a collaborative project which involves 

the use of automated telemetry towers to track small flying organisms (Taylor et al. 

2017). What makes Motus an especially powerful tool is the number of automated 

receivers in the array. The Motus array consisted of 394 automated receivers in 2018 

(Motus, wwww.motus.org) and continues to grow as new projects incorporate automated 

receiving towers into their research. Each tower is managed by its project owner. 

Nevertheless, transmitters may be detected on another projects’ tower, in which case each 

project receives information for their own transmitters from all automated receivers in the 

array. These towers are useful for studying broad-scale movements of both adult and 

juvenile songbirds and have been used to compare movement differences among groups. 

For example, Brown and Taylor (2015) examined differential movements between adult 

and juvenile Blackpoll Warblers (Setophaga striata) tagged on Bon Portage Island, NS, 

Canada, and found juveniles made indirect movements and travelled more distance than 

adults prior to migration. Cormier and Taylor (2019) followed up by comparing post-

fledging movements of Blackpoll Warblers to those of the Yellow-rumped Warbler 

(Myrtle subspecies; Dendroica coronata coronata) and found that fledglings of the two 

species showed differences in departure timing and movement patterns. Additionally, 

Evans (2018) used the Motus Wildlife Tracking System to evaluate the pre-migratory 

movements and survivorship of first- and second-brood Barn Swallow fledglings in 

southern Ontario. No evidence was found to suggest differences in survivorship between 

the two broods; however, second brood fledglings moved less distance and migrated 

younger than first brood fledglings. Determining the consequences of various human 

actions on biodiversity requires life history information at various spatial scales.  

Understanding post-fledging movements may give insight as to different spatiotemporal 

limitations being placed on the swallow species during this time.  

1.5 Objectives and hypotheses 

The objective of my thesis was to evaluate differences between three sympatric species of 

aerial insectivores in southern Ontario, specifically focusing on nestling diet and post-



10 

 

fledging movements. I tested the hypothesis that sympatric Barn Swallows, Cliff 

Swallows, and Tree Swallows would show differences in their behaviors on their 

breeding grounds. This research is divided into two chapters; in Chapter 2 I investigated 

whether Barn, Cliff, and Tree swallows showed evidence of partitioning of prey 

provisioned to nestlings. I tested the hypothesis that the three swallow species partition 

their resources, which may reduce interspecific competition during chick-rearing. In 

Chapter 3 I used the Motus Wildlife Tracking system to investigate if and how post-

fledging movements differed among the three species.  
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Chapter 2  

 Dietary differences among nestling Barn, Cliff, and Tree 
swallows 

2.1 Introduction 

The fundamental niche describes the range of environmental conditions required for an 

organism to survive and reproduce. However, this range may be influenced by 

interactions with conspecifics and other species (Hutchinson 1957). The competitive 

exclusion principle states that organisms which occupy the exact same ecological niche 

are unable to coexist as one is bound to outcompete the other (Hardin 1960), except when 

resources are abundant (Hairston et al. 1960). Therefore, when closely related species 

occupy the same habitat, it is expected that niche segregation allows coexistence 

(Hutchinson 1957). Resource partitioning can include both spatial and temporal 

components and is often associated with partitioning among diets. Partitioning can be 

dynamic and may be influenced by environmental limitations affecting resource 

availability at various stages, or by increased energy demands (e.g. chick rearing) that 

ultimately determines the level of competition. For example, Barger et al. (2016) found 

that Common Murres (Uria aalge) and Thick-billed Murres (Uria lomvia) on Bogoslof 

Island, Alaska USA, shared common food resources during incubation but during chick-

rearing their diets diverged.  

Barn Swallows (Hirundo rustica), Cliff Swallows (Petrochelidon pyrrhonata) and Tree 

Swallows (Tachycineta bicolor) are passerine birds which breed in sympatry in southern 

Ontario. On their breeding grounds, these three species of swallows may occur in 

agricultural areas. In such cases, Barn and Cliff swallows build their nests inside barns 

and other human structures, whereas Tree Swallows rely on nesting boxes provided by 

humans or natural cavities. These swallows also share a food source, as they are all aerial 

insectivores - a guild of migratory birds which catch and eat flying insects on the wing. 

North American populations of aerial insectivores have been experiencing substantial 

declines since the 1980’s (Nebel et al. 2010). Theories addressing this include climate 

change (Balbontín et al. 2009), land use and loss of insect prey due to pesticides (Benton 
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et al. 2002) among others. Swallow population declines are heaviest in the northeastern 

portion of North America, (Nebel et al. 2010), but are also inconsistent among species of 

aerial insectivores (Michel et al. 2016). 

Evidence suggests there has been changes in diet composition of aerial insectivore 

species over the past several decades (Nocera et al. 2012; Pomfret et al. 2012). Diet can 

impact many aspects of a species’ life cycle including fledging success and post-fledging 

survival, which are also key factors in aerial insectivore population growth rates (Cox et 

al. 2018). Poor diet has been attributed to poor nestling growth and body condition 

(Twining et al. 2016) which can lead to lower survival rate (Naef‐Daenzer et al. 2001; 

Evans et al. 2019). Such studies highlight the importance of research into potential 

resource partitioning amongst these sympatric swallow species to determine if there is a 

link to the differential declines of aerial insectivores.  

Previous studies have shown differences in nestling diet composition among sympatric 

aerial insectivore species. Orłowski and Karg (2013) found differences in diet diversity as 

well as weight of prey consumed, with some overlap in diet resulting from an overly 

abundant agricultural pest. Prey partitioning of sympatric aerial insectivores has been 

attributed to potential differences in foraging height (Samuel 1971; Orłowski et al. 2015) 

and body morphology. These include differences in bill shape which affect the ability to 

handle different prey sizes efficiently, as well as body, wing, and tail shape which 

influence flight maneuverability. These morphological adaptations, in turn, affect prey 

that can be captured while flying (Waugh 1978). Differences in diet composition have 

been linked to differential uptake of contaminants in aerial insectivorous bird species, 

which in turn can affect the rate at which toxicity may occur due to biomagnification 

along the food chain (Orłowski et al. 2015).  

 Early techniques for determining aerial insectivore diet have included using ligatures to 

prevent nestlings from swallowing prey items (Waugh 1978), or catching adults on their 

way to provision their young and removing prey from their mouth (McCarty and Winkler 

1999). While these studies provided useful, detailed information, these methods are 

avoided if possible due to their invasive nature. Instead, researchers may consider less 
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invasive methods. Stable isotope analyses and fecal analyses provide a less invasive 

alternative. DNA barcoding of nestling feces is a non-invasive method that has been 

successfully used to identify diet composition of avian species (Jedlicka et al. 2013; 

Galimberti et al. 2016; Moran et al. 2019) including aerial insectivores (Kusack 2018; 

McClenaghan et al. 2019). When identifying prey groups of aerial insectivores, fecal 

DNA analyses are able to overcome potential limitations of visual fecal analyses that 

result from differing digestion rates of parts from various prey groups. Generally, visual 

analysis has yielded varying results (Rosenberg and Cooper 1990; Tryjanowski et al. 

2003; Orłowski and Karg 2011). In comparison to visual fecal analysis, DNA barcoding 

is able to identify soft-bodied prey that may be visually unidentifiable post-digestion.  

Stable isotope analysis may also be used to infer diet (Peterson and Fry 1987; Fry 2006; 

Inger and Bearhop 2008) over various timescales (Hobson and Clark 1992). Specifically, 

stable-isotope ratios of hydrogen (δ2H) and carbon (δ13C) can been used to differentiate 

prey originating from aquatic vs. terrestrial sources (France 1995, Doucett et al. 1996; 

Doucett et al. 2007). Tissues from organisms feeding in aquatic systems tend to be 

depleted in 2H when compared to terrestrial food webs (Wershaw et al. 1966; Doucett et 

al. 2007; Voigt et al. 2015). Differences in δ2H signatures between aquatic and terrestrial 

sources may occur due to algae discriminating against the heavier isotope which results 

in depleted 2H, or due to isotopic fractionation that takes place during the transpiration of 

water from the leaves of terrestrial plants, resulting in enrichment of 2H (Wershaw et al. 

1966; Doucett et al. 2007; Voigt et al. 2015). Stable carbon isotope ratios may also 

differentiate between primary producers with C3, C4 or CAM photosynthetic pathways 

(Bender 1968). Nitrogen stable-isotope ratios (δ15N) are useful indicators of trophic 

position as they typically become more enriched with increasing trophic level (Hobson 

and Welch 1992; Hobson et al. 1994). Stable-nitrogen isotope values can also be 

influenced by variation in land-use practices and the use of fertilizers (Hobson 1999). 

Using a combination of stable isotope analyses, it is possible to construct an organism’s 

isotopic niche. An isotopic niche is isotopic data presented in multivariate space, or δ-

space, with axes representing isotopic values of tissues. This is comparable to 

Hutchinson’s (1957) idea of an ecological niche being an n-dimensional space with axes 

representing environmental components of the organism’s niche (Bearhop et al. 2004; 
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Newsome et al. 2007; Jackson et al. 2011). Determining the isotopic niche can show 

evidence of dietary overlap or partitioning among species. 

I aimed to evaluate the diets fed to nestlings of three sympatrically breeding birds of the 

same foraging guild in southern Ontario. I tested whether Barn, Cliff, and Tree swallows 

partition their dietary resources, which may reduce interspecific competition during 

chick-rearing. To test this hypothesis, I analyzed nestling fecal sacs for prey DNA, as 

well as stable isotope ratios (δ2H, δ13C, and δ15N) in nestling feathers for evidence of 

dietary segregation.  

2.2 Methods 

2.2.1 Study sites 

Fieldwork was conducted at nine farms from May-July 2018 within Wellington County, 

near Guelph, ON (43.55° N, 80.25° W) (Figure 2.1). These locations were grouped into 

seven sites since two farms were adjacent to each other and so considered the same site. 

Each of these sites had all three species of swallow breeding sympatrically (average 

clutch initiation was May 25, 2018 for Barn Swallows, May 29, 2018 for Cliff Swallows, 

and May 24, 2018 for Tree Swallows). However, Guelph Lake Conservation Area only 

had Tree Swallows. All Barn Swallow and Cliff Swallow colonies were located inside 

barns, whereas Tree Swallows were in nesting boxes outside.  
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Figure 2.1 The location of study sites (squares) in 2018 shown in (a) southern 

Ontario, and (b) Wellington County. 
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2.2.2 Nest monitoring and sampling 

Nest monitoring began in early May and involved visiting sites one to two times weekly 

to establish the approximate onset of laying; if eggs were present upon arrival, and clutch 

was not complete, it was assumed that one egg had been laid per day for all three species 

(Winkler et al. 2007; Brown et al. 2017; Brown & Brown 2019). Once clutch initiation 

date was approximated, nests were monitored at least twice per week to determine final 

clutch size and hatch date. Timing of hatching was predicted based on a 14-day 

incubation period after the penultimate egg was laid for Barn Swallows (Brown & Brown 

2019), Cliff Swallows (Brown et al. 2017) and Tree Swallows (Winkler et al. 2007). To 

determine hatch day as accurately as possible, nests were visited before predicted hatch 

day and every few days thereafter. Hatch Day was assigned based on evidence of 

hatching; this included eggshells present, unhatched eggs remaining, and nestlings still 

being wet. Hatch Day was considered Day Zero. For nests where hatch day could not be 

assigned, nestlings were aged by feather tract development (Stoner 1935; Stoner 1945; 

Marsh 1980). 

All nests were visited between Day Six and Ten after hatching, during which Tree 

Swallow and Barn Swallow nestlings were banded with a uniquely numbered United 

States Geological Survey (USGS) aluminum leg band. For each nestling, mass, age and 

length of wing at rest (length from the wrist joint to the longest primary) were 

documented. Fecal samples were collected by holding a clean piece of paper under the 

young as they were removed from their nest, these samples were grouped by nest. Cliff 

Swallow nestlings were not accessible for banding and therefore cardboard was placed 

beneath the nest for roughly 30 minutes to collect fecal samples while we processed other 

nestlings from the same site.  

Barn Swallow and Tree Swallow nests were ideally visited and measurements taken 

when the young were 15 days old (see Appendix A for measurements summary). It was 

not possible to visit all nests at Day 15 therefore some Tree Swallows were measured at 

day 16 and 17. At that time, feathers were taken from all but one nestling per nest for 

stable isotope analyses. Hatch-year Cliff Swallows were challenging to access due to 

their elongated mud entrance tube. Cliff Swallow nests were visited at roughly Day 20 



26 

 

and nests were examined using a flashlight and dental mirror. During inspection some 

nestlings may fledge the nest and so mistnets were put up to catch them. If the entrance to 

the nest was not elongated, nestlings could be removed from the nest. Otherwise, the 

entrance was manually shortened. At this point they were also banded, weighed, 

measured and had a central tail feather taken for stable isotope analyses, then returned to 

their nests. After sampling, young were expected to fledge within 1 - 7 days. Average 

fledging age is 19-20 days, 20-21 days, and 18-22 days for Barn Swallows (Brown and 

Brown 2019), Cliff Swallows (Brown et al. 2017), and Tree Swallows (Winkler et al. 

2007), respectively. Nests were ideally revisited within one week after the estimated 

fledging date to determine whether young had fledged. This was done by checking inside 

and beneath nests for any dead young.  

2.2.3 Stable isotope analyses 

Juvenile tail feathers were soaked with 2:1 chloroform:methanol overnight and left to dry 

in a fumehood at ambient temperature for 24 hrs. Samples analyzed for stable hydrogen 

(δ2H) isotopes were weighed out to 0.35mg in silver capsules using the feather barbs 

only. Capsules were compressed and submitted to Dr. Hobson for δ2H analyses at the 

LSIS-AFAR stable isotope facility at the University of Western Ontario. Samples were 

loaded into a Uni-prep carousel (Eurovector®, Milan, ITA) held at 60ºC, evacuated and 

flushed with dry helium and then combusted in a Eurovector 3000 elemental analyzer 

(Eurovector, Milan) pyrolytically on glassy carbon at 1350ºC. Separated H2 was analyzed 

using a Thermo Delta V Plus (Thermo scientific®, Bremen, DEU) continuous-flow 

isotope ratio mass spectrometer via a Conflo device (Thermo Scientific, Bremen, DEU). 

Sample results were expressed in the standard delta (δ) notation in parts per thousand 

(‰) deviation from the Vienna Standard Mean Ocean Water (VSMOW) standard. In-

house keratin standards (CBS: -197‰; KHS: -54.1‰) were used in order to derive the 

δ2H value of the non-exchangeable H fraction according to the comparative equilibration 

approach (Wassenaar and Hobson 2003). Based on within-run (n=5 each) keratin 

standards, measurement error was estimated to be ±2‰. 

Samples analyzed for stable carbon (δ13C) and nitrogen (δ15N) isotope values were 

weighed out to 1.0mg in tin capsules using feather barbs and part of the rachis with a high 
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precision balance (Mettler Toledo® XP6 Excellence Plus XP Micro Balance, Greifensee, 

CHE). The capsule was compressed and placed into numbered wells in a sample 

tray.  Feathers were assayed for δ13C and δ15N at the Environment and Climate Change 

Canada stable isotope laboratory in Saskatoon, SK. Samples were combusted at 1030°C 

in a Carlo Erba NA1500 (Thermo Scientific; Waltham, United States) or Eurovector 

3000 (Eurovector, Milan) elemental analyser. The resulting N2 and CO2 were separated 

chromatographically and introduced into an Elementar Isoprime (Elementar; 

Langenselbold, Germany) or a Nu Instruments Horizon (Nu Instruments Ltd.; Wrexham, 

United Kingdom) isotope ratio mass spectrometer. Sample results were expressed in the 

standard delta (δ) notation in parts per thousand (‰) deviation from international 

standards (Vienna Pee Dee Belemnite [VPDB] and AIR for δ13C and δ15N, respectively). 

Internal laboratory calibration standards were BWBIII keratin (δ13C = -20.18, δ15N = 

+14.31 ‰) and Pugel (δ13C = -13.64, δ15N= +5.07 ‰). Measurement precision was based 

on replicate (n = 5) within-run measurements of internal reference material and estimated 

to be ±0.1 ‰ for both δ13C and δ15N.  

2.2.4 Fecal DNA analyses 

Fecal samples were collected into scintillation vials which contained 95% ethanol. Upon 

returning from the field the samples were immediately frozen. Samples were processed at 

the Canadian Centre for DNA Barcoding (Guelph, Canada). Samples were amplified 

separately, using arthropod-specific primers targeting a 157 base pair region of the 

mitochondrial cytochrome c oxidase subunit 1 (COI) gene (Hebert et al. 2003). 

Amplified samples were pooled and sequenced using an Ion Torrent PGM high-

throughput sequencer (Thermo Fisher Scientific), trimmed to remove the primer, and 

filtered for a minimum size of 100 base pairs. Filtered reads were queried against the 

Barcode of Life Database (BOLD; www.boldsystems.org) reference using a basal local 

alignment search tool (BLAST) algorithm to assign taxonomic identity. Results were 

accepted to be true if they had a minimum of 50 reads that matched reference sequence 

with at least 95% identity across at least 100 base pairs.  
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2.2.5 Statistical analyses 

All statistical analyses were done using R Studio (Version 1.2.1335) and R (Version 

3.5.3; RStudio Team 2015; R Core Team 2019). To test for differences in the diets of 

nestling Barn, Cliff, and Tree swallows, I used three separate linear mixed-effects models 

(LMM) with the feather stable isotope values (δ2H, δ13C, δ15N) as response variables (R 

package nlme; Pinheiro et al. 2019). The global models for all three included species and 

sampling date as predictor variables, and site as a random effect. Sampling date was 

included to account for any seasonal variability in diet that might influence feather stable 

isotope ratios. To test for the effect of diet on growth of nestling Barn, Cliff, and Tree 

swallows, I used a linear mixed-effects model (LMM) with mass(g) / wing length (mm) 

as an index for condition at Day 15-20 as the response variable. The global model 

included species, hatch date (day of year), and feather stable isotope values (δ2H, δ13C, 

δ15N) as predictor variables, as well as site as a random effect. In each case the best 

model was determined through backward selection using the lowest Akaike information 

criterion for small sample size (AICc) value, except when ΔAICc < 2 in which case the 

simplest model was chosen (model selection tables are in Appendix B). 

To test whether short-term diet composition differed between nestling Barn, Cliff and 

Tree swallows, I used distance-based redundancy analysis (db-RDA; package ade4; Dray 

and Dufour 2007). Distance measures for the presence-absence family matrix were 

calculated using the Jaccard method (Jaccard 1912). Predictors in the global model 

included species, as well as date and site to account for any seasonal or site-specific 

effects on prey composition. Model selection was done using stepwise deletion of 

predictor variables determined by significance level. 

2.3 Results 

2.3.1 Stable isotopes 

Feather isotope values differed significantly for the three swallow species. One Tree 

Swallow sample was removed from all analyses as it was a significant outlier (δ2H =        

-112‰, δ13C = -27.1‰, δ15N = 12.49‰). Tree Swallow feathers showed the lowest δ2H 

values (-100‰ to -79‰), followed by Cliff Swallows (-96‰ to -75‰) and Barn 



29 

 

Swallows (-92‰ to -69‰) (Table 2.1). The best-fitting model indicated that feather δ2H 

values were best predicted by species (LMM; F2,63 = 23.56, p = < 0.0001) and date of 

sampling (LMM; F1,63 = 13.97, p = 0.0004) (Table 2.2; Figure 2.2). The species – date 

interaction was removed during model selection. There was a negative linear relationship 

between sampling date and feather δ2H values (-0.27 ± 0.072‰), indicating that values 

were more negative later in the season.  

 

 

Figure 2.2 Scatterplot of nestling Barn Swallow (n=28), Cliff Swallow (n=24), and 

Tree Swallow (n=21) feather δ2H values plotted by collection date (day of year). 

Feather samples were collected near Guelph, ON, in the breeding season of 2018. 
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Table 2.1 Species-specific summary for stable isotopes within nestling Barn, Cliff, 

and Tree swallow feathers. Stable isotope values are provided as mean isotope 

values ± standard deviation of raw values. 

 

Table 2.2 Post-hoc test results for linear mixed effect models of isotope values (δ2H, 

δ13C, δ15N) from Barn, Cliff, and Tree swallow nestling feathers collected near 

Guelph, ON, in the breeding season of 2018. 

Response Contrast n Estimate SE t p-value 

 

δ2H 

 

BARS - CLSW 

 

(28 – 24) 

 

6 

 

1.62 

 

3.415 

 

0.0032 

BARS - TRES (28 – 21) 11 1.66 6.676 < 0.0001 

CLSW - TRES (24 – 21) 6 1.91 2.895 0.0142 

 *Random ~ Site   3   

 *Residuals 

 

 
 

5 
  

δ13C BARS - CLSW (40 – 24) 0.7 0.12 5.697 < 0.0001 

BARS – TRES  (40 – 31) 1.3 0.12 10.788 < 0.0001 

CLSW – TRES  (24 – 31) 0.6 0.13 4.535 0.0001 

 *Random ~ Site   0.5   

 *Residuals   0.4   

 

δ15N 

 

BARS - CLSW 

 

(40 – 24) 

 

0.9 

 

0.13 

 

7.005 

 

< 0.0001 

BARS - TRES (40 – 31) 0.9 0.11 8.032 < 0.0001 

CLSW – TRES  (24 – 31) 0.02 0.13 - 0.119 0.9922 

 *Random ~ Site   0.6   

 *Residuals   0.4   

*These terms are expressed with standard deviation 

  

Species n  δ13C ± SD‰ n  δ2H ± SD‰ n δ15N ± SD‰ 

Barn Swallow 40 -23.0 ± 0.5 28 -78 ± 6 40 11.5 ± 0.7 

Cliff Swallow 24 -23.9 ± 0.5 24 -87 ± 6 24 10.0 ± 0.5 

Tree Swallow 31 -24.4 ± 0.7 21 -88 ± 6 31 10.5 ± 0.7 
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Tree Swallow feathers showed the lowest δ13C values (-25.9‰ to -22.7‰), followed by 

Cliff Swallows (-24.9‰ to -22.9‰) and Barn Swallows (-24.1‰ to -21.8‰) (Table 2.1). 

The species – date interaction, as well as date as a fixed effect were removed during 

model selection. The best-fitting model indicated that feather δ13C values were best 

predicted by species (LMM; F2,86 = 59.27, p = < 0.0001). Tukey’s post-hoc test indicated 

differences of feather δ13C values between all three swallow species (Table 2.2, Figure 

2.3). There was no evidence of a relationship between sampling date and feather δ13C 

values.  

 

 

Figure 2.3 Boxplot of nestling Barn Swallow (n=40), Cliff Swallow (n=24), and Tree 

Swallow (n=31) feather δ13C values. Feather samples were collected near Guelph, 

ON, in the breeding season of 2018. Boxes show the first quartile, median, and third 

quartile. Lines extending from boxes represent minimum and maximum. Points 

represent outliers.  
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The best-fitting model indicated that feather δ15N values were best predicted by species 

(LMM; F2,85 = 55.11, p = < 0.0001) and date of sampling (LMM; F1,85 = 11.24, p = 

0.001). There was a negative linear relationship between sampling date and feather δ15N 

values (-0.016 ± 0.005‰), indicating that values were lower later in the season. The 

species – date interaction was non-significant and therefore removed. Barn Swallow 

feather δ15N values (10.3‰ to 12.9‰) showed differences when compared to Cliff 

Swallows (9.1‰ to 11.1‰) and Tree Swallows (9.3‰ to 12.0‰). However, Cliff 

Swallows and Tree Swallows showed no differences in δ15N values (Table 2.2, Figure 

2.4).  

 

Figure 2.4 Scatterplot of nestling Barn Swallow (n=40), Cliff Swallow (n=24), and 

Tree Swallow (n=31) feather δ15N values plotted by collection date (day of year). 

Feather samples were collected near Guelph, ON, in the breeding season of 2018. 
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The best model for pre-fledging body condition [mass(g) / wing(mm)] included species, 

hatch date, and feather δ2H as predictor variables. The three swallow species differed 

significantly in their body condition index (Table 2.3), and there was a significant 

negative relationship between hatch date and body condition index. Feather δ2H was 

included in the best model (Figure 2.5) but was not significant. Mass and wing 

measurements for individuals included in this analysis are in Table 2.4, table including all 

measured individuals can be found in Appendix A. 

 

Figure 2.5 Scatter plot of nestling Barn Swallow (n=28), Cliff Swallow (n=24), and 

Tree Swallow (n=21) body condition index [mass(g)/wing(mm)] plotted by feather 

δ2H values. Lines represent predicted values based on median hatch date (June 8 

2018). 
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Table 2.3 Linear mixed effect model results for fledgling (Day 15 – 20) Barn 

Swallow (n = 28), Cliff Swallow (n = 24), and Tree Swallow (n = 21) mass. Fledglings 

were measured near Guelph, ON, in the breeding season of 2018. 

Mass/Wing ~ Species + Hatch Date + δ2H 

Terms df Estimate SE Likelihood Ratio p-value 

Species 2   21.837 <0.0001 

Hatch Date 1 -0.00092 0.0003 6.425 0.011 

δ2H 1 -0.00084 0.0005 2.531 0.112 

*Random~Site    0.014   

*Residuals   0.022   

*These terms are expressed with standard deviation 

 

 

Table 2.4 Species-specific summary for measurements taken during banding at Day 

15-20.  

   Mass (g) Wing (mm) 

Species n Mean SD Mean SD 

Barn Swallow 28 20.44 1.46 74.96 4.47 

Cliff Swallow 24 22.70 1.60 93.79 4.87 

Tree Swallow 21 20.54 1.96 76.76 5.47 
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2.3.2 Fecal DNA barcoding 

DNA was successfully extracted and amplified from 67 fecal samples out of 101 samples 

across three species (39 Barn Swallows, 14 Cliff Swallows, 14 Tree Swallows). Of these 

samples, 140 taxa were identified from seven Orders and 28 Families (See Appendix A). 

Dipterans made up the majority of short-term nestling diet for Barn Swallows, Cliff 

Swallows, and Tree Swallows (94%, 92% and 91%, respectively; Figure 2.6). One Barn 

Swallow sample was removed from the redundancy analysis for being an outlier, this was 

the only sample which did not contain any families within the order Diptera, and was also 

the only sample which had the family Ichneumonidae – a parasitoid wasp. As a result, it 

was a highly influential point in the ordination. Using stepwise deletion of predictor 

variables, site was removed from the model, as it was non-significant. The model did not 

adequately capture the differences in eigenvalues (constrained 0.11, unconstrained 0.91).1 

The best model included species (db-RDA; F2,62 = 2.23, p = 0.005) and date (db-RDA; 

F1,62 = 2.64, p = 0.005; Figure 2.7). 

 

1
 Negative eigenvalues account for 0.02 of the model proportion, this occurs due to Jaccard distance being 

used rather than distance being represented in Euclidean space 
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Figure 2.6 Pie charts showing orders of diets found from DNA sequencing of 

nestling fecal samples of Barn Swallows (n=38), Cliff Swallows (n=14), and Tree 

Swallows (n=14). Samples were collected during the breeding season of 2018, near 

Guelph, ON.  
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Figure 2.7 Biplot showing the diet of nestling Barn Swallows (n=38), Cliff Swallows 

(n=14), and Tree Swallows (n=14) based on prey family presence-absence data from 

DNA barcoding of nestling feces. Samples were collected near Guelph, ON, during 

the 2018 breeding season. 
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2.4 Discussion 

Using DNA analyses of nestling fecal samples as well as stable isotope analyses of 

nestling feathers I was able to evaluate the diet of swallows breeding in sympatry in 

southern Ontario. I tested whether Barn Swallows, Cliff Swallows, and Tree Swallows 

would partition their dietary resources. Other studies of aerial insectivores occurring in 

sympatry have found evidence of diet partitioning via foraging distance, airspace 

segregation as well as differential prey preference (Samuel 1971; Waugh 1978; Orłowski 

and Karg 2013; Orłowski et al. 2015). Nestling feather stable isotope ratios (δ13C, δ2H, 

and δ15N) showed differences among nestlings of the three swallow species. These results 

suggest Barn, Cliff and Tree swallows were provisioning different prey items or 

providing prey from different sources to their young. DNA barcoding of fecal matter 

showed potential differences between the swallow species, however the model failed to 

explain a majority of the variation in nestling diets. Overall, I found evidence that Barn, 

Cliff, and Tree swallow nestlings are likely being provisioned different diets, alluding to 

potential prey partitioning among species. This prey partitioning may facilitate 

coexistence between the three species on their breeding grounds.  

Stable-hydrogen isotope values differed among feathers of all three species, of which 

Barn Swallows were the most enriched in the heavier isotope and Tree Swallows were 

the most depleted. This indicates Barn Swallows are likely less reliant on aquatic 

emergent prey than the other two species. Barn Swallows typically forage close to their 

nests (Samuel 1971) and will even forego foraging on larger-sized prey for proximity 

(Waugh 1978) which results in a faster provisioning rate than Tree Swallows and Cliff 

Swallows (Ramstack et al. 1998). If Barn Swallows were preferentially foraging close to 

their nests, they may be encountering more prey of terrestrial origin. Furthermore, Cliff 

Swallows have been documented using highly variable food sources (Brown 1986; 

Brown and Brown 1996; Ramstack et al. 1998) and foraging over much larger areas than 

sympatric Barn Swallows (Samuel 1971). This variability potentially explains the 

intermediate δ2H values of nestling Cliff Swallow feathers. Tree Swallow feathers were 

the most depleted in 2H, indicating more reliance on aquatic emergent prey. These 

findings are similar to other studies which found aquatic organisms to be an important 
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dietary source for Tree Swallows (McCarty and Winkler 1999; Quinney and Ankney 

1985; Stanton et al. 2016). This also explains the individual Tree Swallow sample which 

needed to be removed from analyses - this individual was likely heavily reliant on aquatic 

prey, resulting in feather isotope values which were much lower in δ13C and δ2H when 

compared to other swallow feathers. For all three species, nestling feathers became more 

depleted of 2H later in the breeding season. This could be due to higher amounts of 

precipitation causing the food web to become more depleted in 2H, or due to shifts in diet 

toward more reliance on aquatic sources.  

As well as being enriched in 2H, Barn Swallow feathers were also the most enriched in 

13C. Differences in δ13C values are strongly associated with primary producers in food 

webs. Differences in tissue δ13C values may result from differences in photosynthetic 

pathways of the plants in the food web. In terrestrial food webs, C3 plants tend to be 

more depleted of 13C whereas C4 plants tend to be more enriched (Hobson 1999). Diets 

originating from aquatic sources may also cause lower feather δ13C values when 

compared to terrestrial food webs. These differences are highly site-specific (Peterson 

and Fry 1987; France 1995; Doucett et al. 1996; Doucett et al. 2007). However, δ2H 

values are generally more reliable at differentiating between aquatic and terrestrial 

sources of diet (Doucett et al. 2007; Voigt et al. 2015) and the feather δ2H and δ13C 

values for the three species show similar trends wherein Barn Swallow feathers are most 

enriched and Tree Swallow feathers are most depleted.  

Additionally, δ15N values of nestling Barn Swallow feathers were more enriched than the 

other two swallow species. Stable nitrogen isotope ratios increase with trophic level 

(Hobson and Welch 1992, Hobson et al. 1994). However, tissues can also become more 

enriched in 15N from agricultural land-use practices such as fertilizer application which 

increases environmental δ15N values, and from tillage which brings minerals to the soil 

surface to be taken up by plants (Hobson 1999; Szpak 2014). Nitrogen from fertilizer 

application may also be lost into the environment through ammonia volatilization (Ma et 

al. 2010). Ammonia volatilization results in a loss of isotopically light ammonia gas, 

leaving the remaining soils enriched in 15N. Barn Swallows typically forage close to their 

nests and as a result may consume organisms with higher δ15N values when nesting in 
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agricultural areas. Orlowski et al. (2015) found Barn Swallows consumed high biomass 

of coprophilous insects, this could increase δ15N values as the manure in which the 

insects thrive is enriched in 15N compared to non-agricultural environments (Szpak 

2014). Orlowski et al. (2015) also found that Barn Swallows took prey associated with 

crops which would likely have higher δ15N values due to fertilizer inputs. Cliff Swallow 

and Tree Swallow feathers showed no difference in δ15N values, this is likely the result of 

the two species foraging on different prey which have similar δ15N signatures. The exact 

source of δ15N signature is unknown. However, the differences in both δ13C and δ2H 

feather values between Cliff and Tree swallow nestlings indicate they are likely being 

provisioned different prey, or prey from different locations. Stable nitrogen isotopes of 

nestling feathers declined as the breeding season progressed for all three species. This 

may be due to timing of fertilization of agricultural lands contributing to higher δ15N 

values earlier in the season. 

There was a significant difference between the body condition index of the three swallow 

species. This was likely due to the different ages at which the swallows were sampled. 

Aerial insectivore nestling mass increases above adult mass and peaks at Day 12 - 15, 

then decreases prior to fledging (Stoner 1945; Ricklefs 1968). Barn and Tree swallows 

were measured at approximately peak mass, whereas Cliff Swallows were measured prior 

to fledging. Swallow nestling condition showed a negative relationship with hatch date as 

well as feather δ2H. Though not significant, the relationship between feather δ2H values 

and nestling condition may indicate potential benefits of aquatic prey provisioned to 

nestlings. Twinning et al. (2016) found that a more aquatic-based diet improved the 

growth and body condition of nestling Tree Swallows. 

Fecal DNA analysis indicated that there may be differences in prey composition between 

the three swallow species. However, the results are unreliable, as the model failed to 

capture the majority of the variation between samples. Dipterans were the most detected 

Order (>90%) for all three species. These findings are consistent with previous reports of 

nestling diet for swallows (Waugh 1978; McCarty and Winkler 1999; Kusack 2018; 

McClenaghan et al. 2019). However, most families occurred in five or less fecal samples, 

making comparisons of provisioned diet between swallow species difficult. In addition, 
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sample size was reduced as there were no prey detected for some fecal samples. Future 

analyses will involve analyzing nestling feces for dietary differences by splitting the prey 

families into functional groups, similar to previous studies of aerial insectivore diet 

(Orlowski and Karg 2013; Orlowski et al. 2015). I was unable to analyze diet beyond 

presence – absence data, as DNA barcoding does not give quantitative results for dietary 

analyses. Therefore, it is impossible to know whether any one of the swallow species is 

preferentially foraging on particular prey items.  

2.5 Conclusions 

My data suggest that Barn, Cliff and Tree swallows breeding in sympatry may be 

provisioning different prey to their young, alluding to resource partitioning. Partitioning 

may occur due to differences in foraging height (Brown et al. 2017; Brown and Brown 

2019), morphology (Waugh 1978), or foraging distance from the nest (Samuel 1971; 

Brown and Brown 1996; Ramstack et al. 1998). Partitioning of resources is thought to 

facilitate coexistence between ecologically similar species (Hutchinson 1957). 

Additionally, loss of prey is believed to be a driver for aerial insectivore declines (Benton 

et al. 2002; Twining et al. 2016). Previous studies on Tree Swallows have found that diet 

quantity has had no significant effect on nestling growth (Twinning et al. 2016; Imlay et 

al. 2017) but rather diet quality may play an important role. As Twinning et al. (2016) 

suggest, aquatic diets contribute to improved nestling growth and condition as they 

contain more omega-3 fatty acids. Nestlings in better condition are more likely to fledge 

successfully and survive post-fledging (Naef‐Daenzer et al. 2001; Evans et al. 2019), 

which is an important contributor to aerial insectivore population growth rates (Cox et al. 

2014, Cox et al. 2018). This study emphasizes the importance of determining whether 

differential population declines in Barn, Cliff, and Tree swallows may be linked to 

differences in prey quality provisioned to nestlings.
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Chapter 3  

 Post-fledging movements of juvenile Barn, Cliff and 
Tree swallows 

3.1. Introduction 

The post-fledging period is defined as the time when young have fledged but have not yet 

migrated and is considered one of the most critical life stages for migratory songbirds 

(Cox et al. 2014; Naef-Daenzer and Grüebler 2016; Evans et al. 2019). This period is 

important as juveniles must navigate unknown habitats, fuel for migration, and prospect 

for future breeding sites all while avoiding predation. Following fledging, young stay 

close to the nest as they are initially dependent on adults. The period immediately 

following fledging is a time of high mortality, when young are most conspicuous to 

predators possibly due to their begging calls (Vitz and Rodewald 2010; Cox et al. 2014; 

Evans et al. 2019). After this period, fledglings become independent and eventually 

disperse. This independent phase is also associated with high mortality as young must 

avoid predators while learning to forage for themselves and navigate unknown 

landscapes. Due to the vulnerable nature of the post-fledging period, researchers have 

sought to gain more understanding of this period by tracking small-scale movements, as 

well as larger, more unknown movements made by fledglings (e.g. Baker 1993; Kershner 

et al. 2004; Cormier and Taylor 2019). 

Fledglings may undertake extensive pre-migratory movements, for which there are many 

theories. These movements may occur when fledglings begin moving in the direction of 

their migratory path, without entering a migratory physiological state (Rappole and 

Ballard 1987; Mitchell et al. 2010; Brown and Taylor 2015) but have also been attributed 

to exploratory movements in order to search for future breeding sites (Rappole and 

Ballard 1987; Mitchell et al. 2010) or to find distinguishable landmarks, enabling them to 

relocate the natal region in the spring (Baker 1993; Mitchell et al. 2010; Brown and 

Taylor 2015; Cormier and Taylor 2019). Fledging success and fledgling survival are key 

factors in population growth rates of songbirds (Bonnot et al. 2013; Cox et al. 2014; Cox 
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et al. 2018). Beyond that, conservation of avian species as a whole is most effective with 

complete life history information. 

Since the 1980’s, aerial insectivores have been experiencing substantial population 

declines in North America (Nebel et al. 2010). These population declines differ among 

species and are the heaviest in the northeastern portion of North America (Nebel et al. 

2010; Michel et al. 2016). Cox et al. (2018) indicated that fledging success and juvenile 

recruitment were important factors in the variation of population growth rates in Tree 

Swallows (Tachycineta bicolor) and could be a potential cause for aerial insectivore 

declines. As a result, understanding the post-fledging period may be an important step 

toward understanding the population dynamics of aerial insectivores.  

Three avian aerial insectivore species—Barn Swallows (Hirundo rustica), Cliff Swallows 

(Petrochelidon pyrrhonata) and Tree Swallows —all share breeding grounds in southern 

Ontario. The most typical sites where all three species are found breeding in sympatry are 

agricultural areas. In these instances, Barn and Cliff swallows build their nests inside 

barns and other similar constructions, whereas Tree Swallows must find natural cavities 

or rely on nesting boxes provided by humans for their nests. These swallows also share a 

food source, as they are all aerial insectivores - a guild of migratory birds which catch 

and eat insects during flight. However, these species do not share all characteristics. 

Notably, Tree Swallows are short-distance migrants, unlike Barn and Cliff swallows 

which are long-distance migrants. In addition to this, a portion of Barn Swallows may 

nest twice during the breeding season, whereas Cliff and Tree swallows typically nest 

once.  

Previous attempts to understand post-fledging movements of passerines have been 

difficult, as banding and recapture of fledglings may not be reliable if juveniles disperse 

and are not recaptured (Cox et al. 2014). Instead, radio-tagging and tracking of 

individuals has proven to be a useful method for studying the post-fledging period. This 

method has been successfully used to determine fine-scale movements (Kershner et al. 

2004; Berkeley et al. 2007), as well as broad-scale movements (Brown and Taylor 2015; 

Cormier and Taylor 2019) in songbirds. The Motus Wildlife Tracking System is a 
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collaborative project which involves the use of automated telemetry towers to track small 

flying organisms (Taylor et al. 2017). These towers are useful for studying broad-scale 

movements of both adult and juvenile songbirds. Using this system, I aimed to evaluate 

the post-fledging movements of three sympatric avian aerial insectivores in southern 

Ontario. I examined whether sympatric Barn, Cliff, and Tree swallows show differences 

in their post-fledging movements. To do so, I radio-tagged nestlings of all three species 

and tracked their post-fledging movements using the Motus automated telemetry array.  

Differences among the three swallow species during the post-fledging period may be 

critical in understanding differential population declines. Due to high mortality, this 

period is thought to be a population bottleneck for aerial insectivore species (Cox et al. 

2018; Evans et al. 2019) as well as other songbirds (Naef-Daenzer and Gruebler 2016; 

Cox 2014). Longer parental care post-fledging has been associated with higher survival 

into the independent period (Grüebler and Naef‐Daenzer 2010). So, if the swallow 

species spend varying amounts of time in their natal area, it may be contributing to 

differential declines. In addition, any differential post-fledging movements that the 

juveniles make may expose them to different threats during this vulnerable life-stage. 

3.2. Methods 

Post-fledging movements of juvenile swallows were studied by radio tagging nestlings at 

9 farms from May-July 2018 within Wellington county, near Guelph, ON (43.55° N, 

80.25° W) (Figure 3.1). These locations were grouped into seven sites as some farms 

were adjacent to one another. Each of these sites had all three species of swallow 

breeding sympatrically (average clutch initiation was May 25 2018 for Barn Swallows, 

May 29 2018 for Cliff Swallows, and May 24 2018 for Tree Swallows). However, 

Guelph Lake Conservation Area only had Tree Swallows. All Barn and Cliff swallow 

colonies were located inside barns, whereas Tree Swallows were in nesting boxes 

outside.  
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Figure 3.1 The location of study sites (squares) and automated receiving towers 

(triangles) in (a) southern Ontario, and (b) Wellington County from May – 

September 2018.  
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3.2.1. Nest monitoring and radio tagging  

Nest monitoring began in early May and involved one to two visits weekly to establish 

approximate onset of laying. If eggs were present upon arrival, it was assumed one egg 

was laid every 24 hours for all three species (Brown and Brown 2019; Brown et al. 2017; 

Winkler et al. 2007). Once clutch initiation was approximated, nests were monitored at 

least twice per week to estimate clutch size and hatch date. Timing of hatching was 

predicted based on a 14-day incubation period after the penultimate egg was laid for Barn 

Swallows (Brown and Brown 2019), Cliff Swallows (Brown et al. 2017) and Tree 

Swallows (Winkler et al. 2007). To determine hatch day as accurately as possible, nests 

were visited before predicted hatch day as well as every few days thereafter. Hatch day 

was assigned based on evidence of hatching (eggshells present, unhatched eggs 

remaining, and nestlings still being wet). Hatch day was considered day zero. For nests 

where hatch day could not be assigned, nestlings were aged based on feather tract 

development (Marsh 1980; Stoner 1935, 1945). 

All nests were visited between Day Six and Ten after hatching, during which Barn and 

Tree swallow nestlings were banded with a uniquely numbered United States Geological 

Survey aluminum leg band. For each banded nestling, mass, age and length of wing at 

rest (from the wrist joint to the longest primary) were documented. Barn and Tree 

swallow nests were also ideally visited when the young were 15-days old, at which point 

the above-mentioned measurements were taken (see Appendix A for measurement 

summary). It was not possible to visit all nests at Day 15 therefore some Tree Swallows 

were measured on day 16 or 17. At this time, one nestling from each nest was outfitted 

with a radio transmitter. Hatch-year Cliff Swallows were challenging to access due to 

their elongated mud nest entrance-tube. Cliff Swallow nests were visited at roughly Day 

20 and nests were examined using a flashlight and mirror. During inspection some 

nestlings may fledge the nest, and so mistnets were erected to catch them. If the entrance 

to the nest was not elongated, nestlings could be removed from the nest. Otherwise, the 

entrance was manually shortened. At this point Cliff Swallows were banded, weighed, 

measured and were fitted with a radio transmitter before being returned to their nests. 

After tagging, young were expected to fledge within 1 - 7 days. Average fledging age is 
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19-20 days, 20-21 days, and 18-22 days for Barn Swallows (Brown and Brown 2019), 

Cliff Swallows (Brown et al. 2017), and Tree Swallows (Winkler et al. 2007) 

respectively. Nests were ideally revisited within one week after the estimated fledging 

date to determine whether young had fledged. This was done by checking inside and 

beneath nests for any dead young. Each radio transmitter (Lotek, model NTQB2-2) was 

programmed with a unique output which transmitted at a frequency of 166.38MHz every 

9.7 – 10.1 seconds, resulting in an estimated life span of approximately 60 days 

(www.lotek.com). Transmitters were fitted using a two leg-loop harness (Rappole and 

Tipton 1991), made from elastic string. 

3.2.2. Automated telemetry array 

To determine post-fledging movements of the three swallow species, radio tagged 

individuals were tracked using the Motus Wildlife Tracking System – an array of 

automated telemetry units (www.motus.org). Each automated telemetry unit has 1-4 

antennae which are connected to a SensorGnome receiver (Compudata, London Ontario). 

When a radio transmitter is within range, the SensorGnome will record the tag identity, 

which antennae it was detected on and signal strength, as well as GPS time and location. 

Antennae can detect a radio transmitter up to 15km (Taylor et al. 2017) depending on 

topography. The data output from each automated receiver in the Motus array is pooled 

together and contains information on each detection for every active tag. This 

information is filtered so each project receives information for their own transmitters 

from all automated receivers in the array. In 2018, our project included five automated 

receivers in the Wellington County region to increase detectability, Guelph Lake 

Conservation Area also has their own automated receiver (Figure 3.2). The Motus array 

consisted of 321 automated receivers from May – September 2018.  

3.2.3. Data analysis 

All data analysis was done using R Studio (Version 1.2.1335) and R (Version 3.5.3; 

RStudio Team 2015; R Core Team 2019). Data was checked for potential false detections 

by first removing those which had a run length of three (i.e. had only three bursts) or less 

due to the high probability of being false detections. Distance between towers as well as 
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time between subsequent detections was calculated in order to determine the speed at 

which individuals were travelling. Any detections showing swallows travelling above 

maximum flight speed were removed (Barn Swallows 20m/s (Liechti and Bruderer 

2002), Cliff Swallows 15.5m/s (Shelton et al. 2014), and Tree Swallows 10m/s (Bowlin 

and Winkler 2004)).  

To calculate cumulative distance, the sum of between-tower distances for sequential 

detections was calculated. Distances of <15km were not included, to account for the 

possibility that a bird is being detected at two towers simultaneously.  Cumulative 

distance is not an exact measure of distance, as individuals could be moving and not be 

detected by the array. To calculate distributions of the swallow species after they had 

dispersed from their natal site, first, daily centers of activity were calculated to account 

for differences in number of detections among individuals (package VTrack; Campbell et 

al. 2012). This is calculated as the mean of the receiver locations the individual is 

detected on, weighted by the number of detections on each receiver (Udyawer et al. 

2018). Using the daily centers of activity, a 75% kernel utilization distribution was 

estimated for each of the three species (package adehabitatHR; Calenge 2006). The 

estimates of utilization distributions were then used to determine the extent of overlap the 

three swallow species had during the post-fledging period.  

3.2.4. Statistical analyses 

Residency time at the natal site was analyzed using survival analysis (R package survival; 

Therneau 2015), the ‘event’ of interest was number of days until fledglings were first 

detected outside of their natal area. The timescale is the number of days past fledging 

age, as the young are unlikely to be detected outside of their natal area prior to fledging. 

Fledging age used was 19 days for Barn Swallows, 20 days for Cliff Swallows, and 18 

days for Tree Swallows, as this is likely the earliest they would be detected outside their 

natal area. This is an approximate residency time as the fledglings could be moving 

outside the natal area and not be detected. Using a Weibull accelerated failure time 

model, the number of days fledglings spent at the natal site was compared for Barn, Cliff 

and Tree swallows. The model included site, species, and hatch day as predictor 

variables. For movement analyses, the best model was determined with backward 
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selection using the lowest Akaike information criterion for small sample size (AICc) 

value, except if ΔAICc < 2 in which case the simplest model was chosen. 

3.3. Results 

Of the 165 swallows that were tagged (50 Barn, 60 Cliff, and 55 Tree Swallows), 116 

swallows were detected by the Motus automated telemetry array, these included 36 Barn 

Swallows, 51 Cliff Swallows, and 29 Tree swallows. Of these, 79 swallows were 

detected after dispersing from their natal area (21 Barn, 44 Cliff, and 14 Tree Swallows). 

The best-fitting survival model indicated an effect of site as well as an interaction 

between species and hatch date (Table 3.1; model selection in Appendix C). Regardless 

of hatch date, Barn Swallows and Tree Swallows showed no difference in the number of 

days spent in their natal area. In contrast, there was a significant negative relationship 

between hatch date and the number of days Cliff Swallow fledglings remained in their 

natal area, indicating that later-hatching Cliff Swallows left the natal area faster than 

early-hatching Cliff Swallows (Table 3.2). Early-hatching Cliff Swallows spent a similar 

amount of time in the natal area as Barn and Tree swallows. However, late-hatching Cliff 

Swallows were detected outside of their natal area at a younger age than Barn or Tree 

swallows (Figure 3.2).  
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Table 3.1 Results for significant terms of the Weibull survival analysis used to 

predict the number of days fledgling Barn Swallows (n = 36), Cliff Swallows (n = 

51), and Tree Swallows (n = 29) would remain in their natal area. Swallows were 

radio-tagged near Guelph, ON, in the breeding season of 2018. 

Terms df Deviance Resid. Df -2*LL Pr(>Chi) 

Species 2 9.00 114 531.77 0.011 

Hatch 1 9.98 112 522.78 0.0016 

Site 6 15.26 105 497.53 0.018 

Species : Hatch  2 0.439 103 484.72 0.0016 

 

Table 3.2 Post-hoc results for species-hatch day interaction of Weibull survival 

analysis, used to predict the number of days Barn Swallows (n = 36), Cliff Swallows 

(n = 51), and Tree Swallows (n = 29) would remain in their natal area. Swallows 

were radio-tagged near Guelph, ON, in the breeding season of 2018. 

 Estimate SE z p-value 

BARS:Hatch -0.013 0.024 -0.52 0.60 

CLSW:Hatch -0.15 0.032 -4.87 < 0.0001 

TRES:Hatch -0.041 0.049 -0.83 0.41 

Scale 0.428    
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Figure 3.2 Predicted probability for Barn Swallows (n = 36), Cliff Swallows (n = 

51), and Tree Swallows (n = 29) hatching on (a) 4 June 2018, (b) 14 June 2018, 

(c) 24 June 2018, to remain in their natal area dependent on age. Swallows were 

tagged near Guelph, ON, in the breeding season of 2018. 
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Barn Swallows (225.7 ± 216.1km), Cliff Swallows (287.3 ± 180.6km), and Tree 

Swallows (246.8 ± 157.2km) all showed substantial variation in cumulative distance 

travelled. Of the fledglings that were tracked until migration Barn Swallows travelled 

357.61 ± 224.63km, Cliff Swallows travelled 386.02 ± 253.08, and Tree Swallows 

travelled 287.34 ± 134.93km. All distances are mean ± standard deviation. There was 

also overlap in the distributions of the three species, once they had dispersed from their 

natal area (Figure 3.3). Based on a 75% kernel density contour for each of the three 

species’ daily centers of activity, Barn and Cliff swallows showed the most overlap 

(80.94%), followed by Barn and Tree swallows (63.18%), and finally Cliff and Tree 

swallows Showed the least overlap (58.21%).  
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Figure 3.3. Map of the 75% kernel utilization density contours for a) Barn (n = 21), 

b) Cliff (n = 41), and c) Tree Swallow (n = 14) fledglings once they have departed 

their natal site. Kernel density is estimated using daily center of activity estimates.  
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3.4. Discussion 

With the use of the Motus Wildlife Tracking System, I was able to evaluate the post-

fledging movements of sympatric swallows. Specifically, I tested whether sympatric 

Barn, Cliff, and Tree swallow fledglings showed differences in the time they spent at 

their natal site as well as the distance moved during the post-fledging period. Similar to 

other studies on migratory songbirds during the post-fledging period (Brown and Taylor 

2015; Cormier and Taylor 2019; Evans 2018), total distance travelled by Barn Swallows 

(357.61 ± 224.63km), Cliff Swallows (386.02 ± 253.08km), and Tree Swallows (287.34 

± 134.93km) that were tracked until migration suggested that fledglings may be making 

extensive exploratory movements (Figure 3.4), as opposed to movements strictly toward 

their migratory route as the locations typically used to migrate south from southern 

Ontario are approximately 115km – 250km from the study area.  
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Figure 3.4 Post-fledging movements made by a fledgling Cliff Swallow tagged in 

Wellington County (black square), in the breeding season of 2018. Open triangles 

represent automated receiving towers. Closed triangles are conservation areas 

frequented by the fledgling. 



64 

 

Cliff Swallow fledglings showed changes in their duration at the natal site depending on 

timing of hatch. Earlier hatching Cliff Swallows stayed in their natal area as long as Barn 

and Tree swallows. However, later hatching Cliff Swallows were detected outside of their 

natal area after fewer days post-fledging than the other two species. Barn and Tree 

swallows showed no difference in the number of days they remained in their natal site, 

regardless of hatch date. Cliff Swallows are colonial, as a result they are often seen 

migrating in groups numbering into the thousands (Brown et al. 2017). If Cliff Swallows 

fledge early, they may be afforded more time in the natal area if they are waiting for a 

group movement. If Cliff Swallows leave at approximately the same time, later-hatching 

Cliff Swallows will inevitably be migrating younger. In general, later-hatching 

individuals have shorter post-fledging period. These individuals have been found to 

accelerate development and disperse at a younger age (Styrsky et al. 2004; Evans 2018). 

Evans (2018) found that second brood Barn Swallow fledglings migrate at a younger age 

than first broods, so if Barn Swallows stay in the natal area for the same duration 

regardless of hatch date they may be shortening another stage of the post-fledging period. 

Additionally, the present study aimed to avoid radio-tagging second brood individuals, 

and so there may not have been enough difference between hatch dates to see a change in 

residency time in the natal area. Historically, Barn Swallows and Tree Swallows have 

been solitary nesters (Brown and Brown 2019; Winkler et al. 2011); as a result, 

individuals of these species may show staggered dispersal from the natal area.  

Detectability needs to be taken into consideration, as it may possibly affect total apparent 

distance travelled as well as the age in which fledglings are detected outside their natal 

site. Tree Swallows had much lower detectability than either Barn or Cliff Swallows, as 

only 14 of the 55 Tree Swallow fledglings were ever detected outside of their natal area. 

Also, adult Tree Swallows tagged in the same area had extremely low detection rates (M. 

Cadman, unpublished data). This could be occurring for multiple reasons. Low numbers 

of individuals being detected could be a result of tag loss, individual deaths, topography, 

or that the swallows are flying in a way that is not easily detected by automated towers. 

Cliff Swallows were detected the most, as 44 of the 60 individuals tagged were detected 

outside their natal area. These findings are consistent with Lenske and Nocera (2018) 



65 

 

who found that when comparing Cliff and Barn Swallows in an agricultural area near 

Peterborough, ON, Canada, Cliff Swallows tended to be detected more than Barn 

Swallows. This has been attributed to Cliff Swallows foraging at a higher elevation than 

Barn Swallows (Samuel 1971; Brown et al. 2017; Brown and Brown 2019).  

In addition, this research has highlighted some potentially significant habitats for Barn, 

Cliff, and Tree swallows. Once fledglings have left their natal area, they appear to be 

using habitats with open water features (Figure 3.5). This may be contributing to the 

considerable overlap in the distribution among fledgling Barn, Cliff, and Tree swallows 

once they have left their natal area. The use of communal roosting sites near open water 

by aerial insectivorous species has been previously documented (Kirby 1978; Winkler 

2006). However, the importance of these habitats has not been extensively explored in 

southern Ontario (but see Falconer et al. 2016). Sites with greater number of individuals 

detected include Luther Marsh Wildlife Management Area, Guelph Lake Conservation 

Area, Forks of the Credit Provincial Park, and Holiday Beach Conservation Area. A 

tower in Wellington County two kilometers from Belwood Lake Conservation Area also 

had a higher number of individuals detected. Though the towers can detect up to 15km 

(Taylor et al. 2017), it appears as though these habitats are attracting fledgling swallows. 
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Figure 3.5. Maps of southern Ontario showing the hourly detection locations of 

fledgling Barn, Cliff, and Tree swallows during the day time (6am – 8pm) and the 

evening time (9pm – 5am). Swallows were tagged in the breeding season of 2018 

near Guelph, ON.   
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3.5. Conclusions 

The differential detectability of Barn, Cliff and Tree swallows limited comparisons that 

could be made regarding their post-fledging movements. However, I found evidence that 

Cliff Swallow fledglings which hatched later in the season spent less time in their natal 

area. Brown and Brown (1996) found that later-hatching Cliff Swallows showed lower 

first-year survival. These individuals may experience negative effects due to accelerated 

development (Styrsky et al. 2004), or have a shorter dependent phase, which has been 

linked to lower survival (Grüebler and Naef‐Daenzer 2010). In addition, this study 

presents new information as to potential key habitats for fledgling swallows. Such 

information may be important for advising future conservation efforts of aerial 

insectivores by demonstrating the need for vital communal roosting sites.
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Chapter 4  

 General Discussion 

4.1 Key findings 

4.1.1 Nestling diet source 

This research suggests that sympatric Barn, Cliff, and Tree swallows are partitioning their 

resources by provisioning different prey items or providing prey from different sources to 

their young. Stable isotope analyses (δ2H, δ13C, and δ15N) of nestling feathers indicate 

Barn Swallows rely on a more terrestrial-based diet, Cliff Swallows an intermediate diet, 

and Tree Swallows the most aquatic-based diet. These results are similar to other studies 

of aerial insectivore diets. Aerial insectivores occurring in sympatry have previously been 

recorded partitioning diet resources (Samuel 1971; Waugh 1978; Orłowski and Karg 

2013; Orłowski et al. 2015). Barn Swallows typically forage close to their nests (Samuel 

1971; Waugh 1978), and as a result may encounter more terrestrial prey. Previous 

research in Ontario has shown Barn Swallows take prey commonly associated with 

agriculture (Kusack 2018; McClenaghan et al. 2019). Cliff Swallows will congregate in 

patches, depleting prey within 20-30 minutes before moving on to another patch, 

resulting in high spatiotemporal variability in foraging (Samuel 1971; Brown 1986; 

Brown and Brown 1996; Ramstack et al. 1998) this may explain the intermediate δ2H 

values of nestling feathers. Tree Swallows are known to take aquatic prey items (Quinney 

and Ankney 1985; McCarty and Winkler 1999; Mengelkoch et al. 2004; Stanton et al. 

2016), and have been thought to travel larger distances to forage than Barn Swallows 

(Ramstack et al. 1998). DNA barcoding of fecal matter showed the three swallow species 

take prey predominantly from the order Diptera. These findings are consistent with 

previous research on these swallow species (Waugh 1978; Brown and Brown 1996; 

McCarty and Winkler 1999; Mengelkoch et al. 2004; Kusack 2018; McClenaghan et al. 

2019). At the family level, DNA barcoding of nestling feces showed potential differences 

between the swallow species; however, the model failed to explain a majority of the 

variation in nestling diets, may be due to reduced sample sizes. Overall, I found evidence 



74 

 

that Barn, Cliff, and Tree swallow nestlings are likely being provisioned different diets, 

alluding to potential prey partitioning between species.  

4.1.2 Post fledging movements  

Barn, Cliff, and Tree swallows showed vast differences in their detectability by 

automated receiving towers. Of the nestlings that were radio tagged, 21 Barn Swallows, 

44 Cliff Swallows, and 14 Tree Swallows were detected outside of their natal area. 

Previous research on these species using automated telemetry has yielded similar results 

(Lenske and Nocera 2018; M.Cadman unpublished data). In terms of cumulative distance 

travelled, Barn Swallows (357.61 ± 224.63km), Cliff Swallows (386.02 ± 253.08), and 

Tree Swallows (287.34 ± 134.93km) that were tracked until migration showed evidence 

of making exploratory movements, as the locations typically used to migrate south from 

southern Ontario are approximately 115km – 250km from the study area. Other studies 

on migratory songbirds have also found fledglings make extensive exploratory 

movements (Brown and Taylor 2015; Cormier and Taylor 2019; Evans 2018). Cliff 

Swallow fledglings showed changes in their duration at the natal site depending on 

timing of hatch. Earlier hatching Cliff Swallows stayed in the natal area as long as Barn 

and Tree swallows. However, later hatching Cliff Swallows spent less time in their natal 

area than the other two species. Barn and Tree swallows showed no difference the 

amount of time they spent at their natal site, regardless of hatch date. Unlike Barn and 

Tree swallows, Cliff Swallows are highly colonial and often migrate in large groups 

(Brown and Brown 1996). This may result in fledglings leaving the natal area with the 

colony, regardless of age. Cliff Swallows had a higher detectability, and therefore 

perceived residency time was likely more accurate, as they were more likely to be 

detected once they left the natal area. Fledglings of the other species may have left the 

area and not been detected for days after they had left. In general, later-hatching 

individuals have a shorter post-fledging period, these individuals have been found to 

accelerate development and disperse at a younger age (Styrsky et al. 2004; Evans 2018). 

Evans (2018) found that second brood Barn Swallow fledglings left for migration at a 

younger age than first broods. The present study aimed to avoid radio-tagging second 

brood individuals, and so there may not have been enough difference between hatch dates 
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to see a change in residency time in the natal area. Overall, there was inadequate 

evidence to suggest differences in post-fledging movements among the three swallow 

species, as detectability among species limited the comparisons that could be made.  

4.2 Conservation implications 

Aerial insectivore populations have been declining in North America, especially in the 

northeastern regions (Michel et al. 2016). In Canada, Barn Swallows have declined at a 

higher rate than Cliff or Tree swallows (Smith et al. 2019). As a result, they have been 

listed as threatened since 2017, and are protected under the Species at Risk Act. 

However, according to breeding bird survey data for the lower Great Lakes region of 

Ontario, Canada, where this study was conducted, Barn Swallows have decreased by 

68%, Cliff Swallows by 80% and Tree Swallows by 56% from 1970 – 2017 (Smith et al. 

2019). The post-fledging period has been identified as an important determinant in 

songbird population trends (Cox et al. 2014; Cox et al. 2018). Survival during the post-

fledging period can be influenced by factors in the nest, such as pre-fledging condition 

resulting from diet (Twining et al. 2016; Twining et al. 2018; Evans et al. 2019). For 

these reasons, attaining information regarding the time from hatching to migration can 

contribute to future conservation efforts.  

This research suggests that swallow species are not provisioning the same prey to their 

young. Instead, they vary in their use of aquatic and terrestrial prey sources. Barn 

Swallows showed evidence of a more terrestrial-based diet, Cliff Swallows showed an 

intermediate diet, and Tree Swallows a more aquatic-based diet provisioned to young. 

More reliance on aquatic prey has been linked to improved nestling growth and condition 

as they contain more omega-3 fatty acids (Twining et al. 2016; Twining et al. 2018). 

There is likely no single cause for the decline of aerial insectivores, but these results 

show the importance of continued research comparing nestling condition and fledging 

success of aerial insectivores as a function of diet quality. In addition, this research has 

highlighted some potentially significant habitats for Barn, Cliff, and Tree swallows. Once 

fledglings have left their natal area, many are detected in natural areas with wetlands. 

Sites with increased number of individuals detected include Luther Marsh Wildlife 
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Management Area, Guelph Lake Conservation Area, Forks of the Credit Provincial Park, 

and Belwood Lake Conservation Area (Figure 4.1).  

 

 

Figure 4.1 Maps of southern Ontario showing conservation areas with wetland 

habitat near tagging locations (squares) used by fledgling Barn, Cliff, and Tree 

swallows. Swallows were tagged in the breeding season of 2018 near Guelph, ON.  
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4.3 Study assumptions and limitations 

In terms of diet analyses, it would have been beneficial to sample insects to determine 

their relative contributions of diet using stable isotope mixing models. However, due to 

many of the study sites being active farms, setting up malaise or conical traps daily would 

not have been feasible. Additionally, if swallows are foraging higher up in the air, or at 

greater distances from the nest, there are limitations as to the portion of their diet that 

would be represented by insects caught in these traps. The results from the isotope 

analyses suggested dietary differences among the three swallow species. These results 

could be expanded upon with fecal DNA analyses, however, reduced sample sizes limited 

the taxon-specific conclusions that could be made about nestling diet.  

The use of automated telemetry also comes with limitations. During this study period, 

two towers were vandalized, compromising potential additional detections had they been 

fully operational. First, the northern-most tower (43.49°N, 80.13°W) was found to be 

vandalized on June 8th, 2018, and was not put back online due to concerns about future 

vandalism. This tower could have been a valuable tool in determining residence time at a 

finer scale for the more northern sites in the study. However, the northern-most tower had 

relatively fewer detections than the others in the Guelph array (Dean Evans, pers. obs). 

The second tower that was vandalized during the study period was the tower located at 

the Guelph Lake Conservation Area (43.36°N, 80.16°W). The discovery of this 

vandalized tower was made on April 25th, and it was brought back online on June 4th, 

2018. No swallows were tagged before this tower was back online. 

Differences in the detection range of the towers also pose limitations on the study 

findings. The detectability of fledglings can vary from site to site; towers were arranged 

in the best possible way to allow for the best coverage, but still some sites experienced 

greater coverage than others. Location precision for detections is low, as the towers in the 

Motus array can detect at distances up to 15km (Taylor et al. 2017). The large tower 

coverage makes determining exact locations difficult, and because of this, the calculated 

distance moved is in fact minimum distance moved, as swallows can also be making 

movements that are not detected by the array. This issue is worsened by differences in 
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detectability among species. Tree Swallows were the least detected and Cliff Swallows 

were the most detected, meaning Tree Swallows are likely moving without being 

detected by the array and therefore their estimates of total movement may be 

underestimated and estimates of residency time may be overestimated. These differences 

limit the comparisons that can be made between the three species. In relation to this, 

calculating the home range at the individual level was not possible due to a low number 

of detections for many individuals.  

4.4 Future directions 

Future research on aerial insectivore diets should consider a more detailed assessment of 

diet quality and the impact it has on juvenile body condition and fledging success. This 

information would prove valuable for determining any effects that differences in nestling 

diet may be having on differential declines of aerial insectivore species. Attaining more 

fecal data could aid in determining taxon-specific information regarding the diet of the 

different swallow species. Additionally, future research sorting prey from fecal DNA 

results into functional groups (similar to Orłowski and Karg 2013; Orłowski et al. 2015) 

may simplify finding any associations of the swallow species with their prey. Information 

regarding functional prey groups can be used to compare specific diets relative to nestling 

body condition and fledging success amongst the species. 

Future studies should also investigate key areas used by juvenile aerial insectivores. 

Assessing habitat surrounding towers that prominently detect fledglings may be a first 

step in determining habitat requirements for aerial insectivores in one of their most 

vulnerable life stages (Cox et al. 2018). The data from the automated receivers can also 

be used to determine survivorship of fledgling swallows (e.g. Evans et al. 2019). Cliff 

Swallows showed relatively high detectability in comparison to the other two swallow 

species. Using this information to assess the survival of the Cliff Swallow fledglings may 

give some insight as to the steep Cliff Swallow population declines in this region (Smith 

et al. 2019). In addition, identifying potential sources of mortality for fledgling swallows 

would be imperative to determining the reasoning for any reductions in survivorship.  
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4.5 Conclusions 

The aim of this research was to assess differences between sympatric aerial insectivore 

species during a vulnerable life stage. The time from hatching until migration is thought 

to be critical for aerial insectivores. The post-fledging period is a key determinant in 

population growth rates (Cox et al. 2014; Cox et al. 2018). Diet quality of nestlings 

ultimately affects survival, as high-quality diets with more omega-3 fatty acids lead to 

increased growth and better body condition pre-fledging (Twining et al. 2016; Twining et 

al. 2018), which are key factors in fledging success and survival (Naef‐Daenzer et al. 

2001; Evans et al. 2019). I present evidence of dietary differences among Barn, Cliff and 

Tree swallow nestlings. Ultimately, this may contribute to future research focused on 

whether ecological differences between species during the first few months after hatching 

are contributing to differential population declines of aerial insectivores. In addition, I 

found little evidence to suggest differences in fledgling movements during the post-

fledging period. However, I present new information as to potential key habitats for 

fledgling swallows. Such information may be important for advising future conservation 

efforts of aerial insectivore post-fledging habitat.  
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Appendices 

Appendix A. Summary tables 

Table A.1. Species-specific summary for measurements taken during banding, as well as 

during collection of feathers and application of radio transmitter. 

   Mass (g) Wing (mm) 

Species Age (days) n Mean SD Mean SD 

BARS 6-10 436 16.86 3.22 36.26 9.03 

 15 

 

247 19.99 1.55 72.88 5.63 

CLSW ~20 

 

61 22.31 1.72 92.24 5.35 

TRES 6-10 141 18.12 3.79 35.39 10.57 

 15 138 20.23 2.49 73.21 7.36 
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Table A.2. Site-specific summary for stable isotopes within nestling Barn Swallow, Cliff Swallow, and Tree Swallow feathers. 

 

 

Site 

 

n 

Mean δ13C ± 

SD‰ 

Min 

δ13C‰ 

Max 

δ13C‰ 

 

n 

Mean δ2H ± 

SD‰ 

Min  

δ2H‰ 

Max 

δ2H‰ 

 

n 

Mean δ15N ± 

SD‰ 

Min  

δ15N‰ 

Max 

δ15N‰ 

CK 18 -23.9 ± 0.6 -24.8 -23.1 14 -87 ± 7 -96 -70 18 10.5 ± 0.8 9.2 11.7 

CT 5 -24.6 ± 1.3 -25.9 -22.6 4 -79 ± 6 -86 -71 5 10.5 ± 0.4 10.1 11.0 

GL 6 -24.4 ± 0.3 -24.9 -24.0 5 -92 ± 5 -100 -88 7 11.2 ± 1.0 9.3 12.5 

HI 9 -23.7 ± 0.8 -25.3 -23.0 4 -81 ± 6 -89 -75 9 11.7 ± 0.4 11.1 12.2 

HM 26 -23.9 ± 0.7 -25.5 -23.0 21 -83 ± 7 -91 -70 26 10.3 ± 0.6 9.1 11.2 

MF 11 -22.4 ± 0.4 -23.3 -21.8 7 -76 ± 6 -84 -69 11 12.4 ± 0.4 11.3 13.0 

NE 20 -23.7 ± 0.6 -25.1 -22.9 18 -85 ± 7 -100 -75 20 10.5 ± 0.5 9.6 11.8 
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Table A.3. Summary of all detected arthropod prey items, across all samples. Freq is the 

frequency of detection, Reads is the number of reads during sequencing 

Order Family Species Freq. Reads 

Coleoptera Carabidae Amara familiaris 1 150 

 Curculionidae Tychius picirostris 2 1500 

 Dermestidae Anthrenus scrophulariae 1 456 

Diptera Anthomyiidae Anthomyiinae sp. 1 99 

  Delia florilega 3 1152 

 Asilidae Eudioctria propinqua 6 19,949 

 Bibionidae Dilophus femoratus 2 427 

 Calliphoridae Pollenia sp. 2 102 

  Pollenia pediculata 7 3439 

 Carnidae Carnus hemapterus 1 83 

 Chironomidae Microtendipes pedellus 1 57 

 Culicidae Aedes provocans 2 381 

 Dolichopodidae Dolichopus sp. 1 109 

 Empididae Empididae sp. 1 178 

 Ephydridae Athyroglossa ordinata 1 74 

 Limoniidae Dicranomyia sp. 1 810 

  Euphylidorea platyphallus 1 2536 

  Limoniidae sp. 10 4415 

  Ormosia affinis 2 335 

  Rhipidia maculata 1 437 

 Muscidae Muscidae sp. 1 98 

 Psychodidae Psychodidae sp. 1 81 

 Sarcophagidae Boettcheria bisetosa 1 51 

  Sarcophaga aldrichi 1 724 

  Sarcophaga polistensis 1 74 

  Sarcophaga subvicina 9 5653 

 Scathophagidae Scathophaga stercoraria 1 258 

 Syrphidae Chalcosyrphus nemorum 1 65 

  Syrphus vitripennis 1 92 

 Tabanidae Hybomitra sp. 5 2520 

   Hybomitra lasiophthalma 2 272 

   Hybomitra zonalis 2 807 

 Tachinidae Belvosia sp.  1 84 

  Chrysoexorista 1 114 

  Dinera grisescens 2 683 



87 

 

  Exoristinae sp. 2 8941 

  Lydina americana 1 3239 

  Patelloa leucaniae 1 311 

  Platymya confusionis 2 3033 

  Tachinidae sp.  1 1637 

  Winthemia sp.  1 82 

  Winthemia rufopicta 5 2428 

   Winthemia sinuata 3 3905 

 Tephritidae Urophora cardui 1 147 

  Urophora cf. lopholomae 2 2457 

  Urophora ivannikovi 1 64 

 Tipulidae Angarotipula illustris 10 11,254 

  Angarotipula rubzovi 1 58 

  Nephrotoma ferruginea 6 3658 

  Tipula ignobilis 1 1005 

  Tipulidae sp.  2 236 

Hemiptera Miridae Lygus lineolaris 2 2144 

Hymenoptera Ichneumonidae Tryphon seminiger 1 131 

Lepidoptera Geometridae Trichodezia albovittata 1 479 

Orthoptera Acrididae Chorthippus curtipennis 1 175 

Plecoptera Chloroperlidae Sweltsa mediana 1 94 



88 

 

Table A.4. Detection summary for individual fledgling Barn, Cliff, and Tree swallows 

Species Tag Number of Detections Number of Receivers Days Detected 

BARS 306 234 3 15 

 307 61 2 7 

 321 1 1 1 

 323 311 7 37 

 329 2 2 2 

 330 3 2 2 

 334 25 3 5 

 339 13 3 7 

 344 39 2 7 

 347 211 5 16 

 361 10 5 3 

 363 102 1 7 

 367 4 3 3 

 372 10 2 5 

 380 3 2 2 

 383 30 1 6 

 388 11 3 2 

 392.1 42 2 14 

 393 70 1 7 

 396 13 1 2 

 398 20 1 3 

 399 25 4 8 

 401 122 3 11 

 407 1 1 1 

 408 156 2 12 

 412.1 117 1 12 

 413 18 1 3 

 413.1 319 7 19 

 417 167 7 28 

 419 1 1 1 

 422 168 4 24 

 425 48 1 7 

 426 30 2 8 

 427 1 1 1 

 429 161 5 18 

 430 43 2 7 

CLSW 296 7 2 4 

 298 2 1 2 

 300 4 3 3 

 308 2 2 2 

 312 15 2 7 
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CLSW 314 1 1 1 

 315 26 4 7 

 316 19 1 2 

 318 1 1 1 

 320 49 3 9 

 322 50 4 10 

 324 24 1 6 

 325 6 2 2 

 326 4 1 3 

 327 5 3 3 

 328 7 2 2 

 331 1 1 1 

 332 54 3 8 

 335 104 6 27 

 336 150 20 31 

 337 1 1 1 

 338 3 1 2 

 340 38 2 4 

 341 104 2 18 

 342 31 3 7 

 346 79 17 18 

 348 1 1 1 

 350 14 2 6 

 351 41 6 9 

 353 3 2 3 

 355 4 2 3 

 356 3 2 3 

 370 4 2 4 

 373 3 2 3 

 377.1 18 1 2 

 379.1 23 2 4 

 380.1 34 3 8 

 381.1 1 1 1 

 386.1 117 3 11 

 387.1 96 7 12 

 388.1 18 9 6 

 390.1 11 2 3 

 393.1 133 2 12 

 395.1 42 2 6 

 398.1 124 4 12 

 402.1 8 4 3 

 405.1 62 5 11 

 430.1 1 1 1 

 431.1 2 2 2 
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CLSW 432.1 1 1 1 

 433.1 46 1 6 

TRES 305 26 3 7 

 309 2 2 2 

 310 44 1 3 

 311 61 2 5 

 313 28 2 6 

 333 4 2 4 

 343 155 3 31 

 345 49 2 5 

 354 64 1 5 

 368 52 3 6 

 369 14 2 3 

 371 49 1 4 

 376 3 1 2 

 378.1 319 2 16 

 382.1 3 2 2 

 384.1 85 1 6 

 386 20 1 3 

 389.1 26 6 12 

 391 19 1 4 

 392 21 1 3 

 394 31 1 2 

 394.1 1 1 1 

 396.1 92 1 6 

 397 5 1 2 

 401.1 87 4 7 

 404 1 1 1 

 414 86 1 9 

 423 3 1 1 

 431 16 2 7 
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Appendix B. Chapter 2 model selection tables 

Table B.1. Model selection table for linear mixed effect models of isotope values (δ2H, 

δ13C, δ15N) from Barn, Cliff, and Tree swallow nestling feathers collected near Guelph, 

ON, in the breeding season of 2018. ΔAICc shown for most competitive models. 

Model df AICc ΔAICc 

δ2H ~ Species * Date (day of year) 8 461.982 - 

δ2H ~ Species + Date (day of year) 6 462.472 0.490 

δ2H ~ Species  5 473.503  

δ2H ~ Date (day of year) 4 495.378  

NULL Model (δ2H ~ Random Effect (Site)) 3 501.923 

 

 

δ13C ~ Species * Date (day of year) 8 144.290 - 

δ13C ~ Species + Date (day of year) 6 144.860 0.567 

δ13C ~ Species  5 142.595 2.265 

δ13C ~ Date (day of year) 4 218.978  

NULL Model (δ13C ~ Random Effect (Site)) 3 216.814 

 

 

δ15N ~ Species * Date (day of year) 8 126.386 - 

δ15N ~ Species + Date (day of year) 6 127.465 1.079 

δ15N ~ Species  5 135.963  

δ15N ~ Date (day of year) 4 188.055  

NULL Model (δ15N ~ Random Effect (Site)) 3 200.427 
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Table B.2. Model selection table for linear mixed effect models of Barn (n = 28), Cliff (n 

= 24), and Tree Swallow (n = 21) pre-fledging condition [mass(g)/wing(mm)]. Nestlings 

were measured and feathers collected near Guelph, ON, in the breeding season of 2018. 

(Only competitive models shown) 

 

Table B.3. Model selection table of distance-based redundancy analysis on the diet of 

nestling Barn Swallows (n=38), Cliff Swallows (n=14), and Tree Swallows (n=14) based 

on prey family presence-absence data from DNA barcoding of nestling feces. Samples 

were collected near Guelph, ON, during the 2018 breeding season. 

 Predictor df F Pr>F 

Species * Date + Site Species:Date 2 0.9065 0.575 

 Site 

 

7 1.283 0.205 

Species + Date + Site Species 2 1.7776 0.025 

 Date 1 2.0441 0.035 

 Site 

 

7 1.1501 0.175 

Species + Date Species 2 2.2308 0.005 

 Date 

 

1 2.6391 0.005 

Species Species 

 

2 2.5641 0.005 

Date Date 1 3.2762 0.005 

Predictors  df AICc ΔAICc 

Species +Hatch Date + δ2H 7 -326.757 - 

Species + Hatch Date +  6 -326.676 0.081 

Species + Hatch Date * δ2H 8 -326.080 0.677 

Species + Hatch Date + δ15N 7 -325.592 1.165 

Species + Hatch Date + δ2H + δ15N 8 -325.374 1.383 

Species + Hatch Date * δ2H + δ15N 9 -325.013 1.744 

Species  5 -324.831 1.926 

Species + Hatch Date + δ13C 7 -324.777 1.98 

NULL Model 3 -306.061 20.969 
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Appendix C. Chapter 3 model selection table 

Table C.1. Model selection table for the Weibull survival analysis used to predict the 

number of days fledgling Barn Swallows (n = 36), Cliff Swallows (n = 51), and Tree 

Swallows (n = 29) would remain in their natal area. Swallows were radio-tagged near 

Guelph, ON, in the breeding season of 2018. 

Predictors  df AICc ΔAICc 

Species * Hatch Date + Species * Site 25 522.153  

Species * Site + Hatch Date 23 525.602  

Species * Hatch Date + Site 13 514.296 5.823 

Species * Hatch Date  7 508.473 - 

Species + Hatch Date  5 523.339  

Species 4 531.136  

Hatch Date  3 534.037  

NULL Model  2 535.877  
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Appendix D. Animal use protocol approval 
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Appendix E. Sub-banding Permit 
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Appendix F. Scientific studies permit for the Grand River Conservation 

Authority 
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