
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

2-20-2020 11:00 AM 

Experimental Investigation on the Impact of Wall Heating on Experimental Investigation on the Impact of Wall Heating on 

Mixed Convection Turbulent Boundary Layer Flow Structure Mixed Convection Turbulent Boundary Layer Flow Structure 

Kadeem Dennis, The University of Western Ontario 

Supervisor: Siddiqui, Kamran, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Mechanical and Materials Engineering 

© Kadeem Dennis 2020 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

Recommended Citation Recommended Citation 
Dennis, Kadeem, "Experimental Investigation on the Impact of Wall Heating on Mixed Convection 
Turbulent Boundary Layer Flow Structure" (2020). Electronic Thesis and Dissertation Repository. 6860. 
https://ir.lib.uwo.ca/etd/6860 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6860?utm_source=ir.lib.uwo.ca%2Fetd%2F6860&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract

The hydrodynamic and thermal boundary layers are known to be key regulators of the

interfacial transport of mass, momentum and heat, which are crucial in a wide range of en-

gineering and environmental applications. The boundary layers encountered in these appli-

cations are often turbulent in nature and characterized by the presence of three-dimensional

motion and non-linear dissipative phenomena. The presence of heat transfer between the

bulk fluid and the solid wall increases flow complexity due to the interaction of the buoyant

force with flow inertia and non-linear coupling between thermo-fluid variables. As a key

contributor to multiple engineering systems and environmental phenomena, advancement

of the current knowledge on turbulent boundary layer dynamical behaviors is crucial.

In the present study, turbulent boundary layer flow over a heated horizontal smooth wall

was investigated utilizing an experimental approach. The current state-of-the-art techniques

for 3D flow characterization are often limited in their broad applicability. The present

knowledge is improved upon with the development of a novel technique based on volu-

metric illumination with a multi-color pattern. In the absence of heat transfer, the turbulent

boundary layer is known to contain a wide range of dynamical phenomena whose behaviors

still lack a comprehensive understanding. The present study investigated the unheated tur-

bulent boundary layer utilizing a unique implementation of the Particle Image Velocimetry

(PIV) technique to characterize the three-dimensional (3D) nature of the flow and reported

new findings on near-wall turbulent flow behavior. In the presence of heat transfer, once

the buoyant force magnitude is sufficiently large, thermals detach and rise from the heated

wall. The characteristics of thermals in a heated turbulent boundary layer was investigated

in 3D utilizing PIV. A novel image processing algorithm was developed to detect thermals.

The modification to the turbulent boundary layer velocity field by wall heating was studied

utilizing PIV data. Results indicate that boundary layer behavior is influenced by the buoy-
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ant force via modification to the turbulent velocity field and associated velocity statistics.

This study provides multiple new contributions on flow characterization techniques and the

behaviors of the turbulent boundary layer in the presence and absence of heat transfer.

Keywords: turbulent boundary layer, particle image velocimetry, flow visualization, image

processing, statistics, turbulent flow, flow measurement, heat transfer
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Summary for Lay Audience

Fluid mechanics is one of the broadest areas of physics with a wide variety of practical

applications. Often topics of interest in fluid mechanics feature the interaction of fluid and

solid object where mass and energy are exchanged. As fluid passes over a solid, a thin

region of fluid adjacent to the solid forms known as the boundary layer. The most well-

known boundary layer is the atmospheric boundary layer (ABL) produced by air in the

Earth’s atmosphere passing over the Earth’s surface. Every form of life on Earth is influ-

enced by the behavior of the atmospheric boundary layer. The energy exchange between

the ABL and Earth’s surface governs the wind loading experienced by structures such as

buildings and bridges. Thermal energy, i.e. heat, and mass exchange (e.g. evaporation)

strongly influence the strength of tropical storms and winter blizzards. The distribution of

emissions, greenhouse gases, and particulate matter are all governed by ABL behaviors. In

light of the far-reaching impact and near ubiquity of boundary layer flows, many physical

processes that determine boundary layer behavior are unknown or not well-understood.

In the present study, boundary layer behavior in the presence of heating from the solid sur-

face was investigated. As boundary layer flow often features highly three- motion, a new

technique was developed to describe this fluid flow. Next, experiments were performed in

the boundary layer to investigate and characterize some boundary layer phenomena that

were not well-understood in the past. The findings of this study show that heat transfer

from the solid drives unique fluid phenomena that modify overall boundary layer behavior

in a non-linear manner. The conclusions of this study can be used by scientists and engi-

neers to improve engineering systems and produce more advanced predictive models of the

atmospheric boundary layer.
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Chapter 1

Introduction

In the field of fluid mechanics, one of the most frequently studied topics is the interaction

between fluid and solid. Often the motivation for studying this topic is to better understand

the exchange of mass and energy between fluid and solid. The energy exchange can take

the form of both mechanical energy, e.g. a hydroelectric turbine, and thermal energy, e.g.

a heat exchanger. The exchange of mass and energy between fluid and solid has a major

impact on multiple areas of engineering and environmental science.

As fluid passes over and around a solid body, the body experiences a drag force in the di-

rection parallel to the relative motion between the fluid and solid body. The drag force is a

manifestation of the mechanical energy exchange between solid and fluid. The drag force

is produced by two phenomena. First, the fluid must move to accommodate the solid’s

shape. This behavior manifests in the fluid as a non-uniform pressure distribution around

the solid generating “form drag”. The fluid must also stick to the solid surface due to

viscous effects, thus producing “friction drag”. Drag plays a major role in the operation

of numerous practical engineering applications, such as in transportation systems where it

is necessary to overcome drag via engine fuel consumption to either accelerate or main-

1
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tain constant velocity of the vehicle. Buildings and structures are subjected to complex

wind loads. The drag force generated by wind loading can lead to structural instability and

failure which has been observed in the past [1, 2]. As many engineering structures fea-

ture complex geometries such as bridges and power transmission towers, predicting drag

becomes challenging. A significant challenge in estimating drag on structures originates

from predictions of wind behavior in the atmosphere. It is thus desirable to improve the

current knowledge of atmospheric wind behavior to facilitate the development of improved

predictive wind models and drag reduction systems. These are two applications where drag

reduction is desirable. In contrast, there are applications where increased drag is beneficial

such as in aviation where flaps and spoilers are used to slow down aircraft before landing.

Generally, it is desirable to manipulate drag as needed for a specific application. To achieve

this goal there must be a comprehensive understanding of how drag is generated.

At a solid-fluid interface, there is often an exchange of thermal energy. This is frequently

utilized in heat exchangers where a working fluid undergoes a thermal energy transfer to

or from the adjacent solid boundary. In some applications, it is desirable to heat or cool

the solid surface. One application is in photovoltaic (PV) panels where it is desirable to

cool PV cells whose temperature increases when absorbing solar radiation. Increasing

PV cell temperature is undesirable as it decreases electrical conversion efficiency [3]. In

engineering systems that involve convective heat transfer, an improved understanding of

the near-interfacial fluid behavior is crucial to improve the thermal performance of these

systems.

In addition to the exchange of both mechanical and thermal energy across a solid-fluid

interface, mass and species transport is also encountered in a range of applications. The

interaction of the Earth’s surface and surrounding atmosphere is a major application of

the mass/species transport processes. As air passes over a body of water, mass exchange
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occurs via evaporation and species transport into the water body. Both water vapor in

the atmosphere, i.e. humidity, and the bulk water temperature in the body of water are

known to influence global and local weather patterns [4, 5]. Over land, a similar mass

exchange occurs where particulate matter and gaseous species are transported by fluid mo-

tion in the atmosphere. In all atmosphere-surface interactions, heat exchange may directly

impact local mass transfer via buoyancy-induced secondary flow. This behavior has been

observed over land in the modification of Radon gas transport into the atmosphere [6].

A better understanding fluid behavior in these solid-fluid interactions is important for im-

proved characterization and parameterization of various atmospheric phenomena, leading

to more advanced weather and species transport predictive models.

In applications dealing with solid-fluid interactions, often the bulk fluid passes over a solid

surface forming a region of fluid adjacent to the surface known as the boundary layer. The

boundary layer is often very thin relative to the solid object dimensions and exhibits a more

viscous behavior than the bulk fluid flow. The boundary layer is one of the major regulators

of interfacial energy and mass exchange. The importance of the boundary layer to these ex-

changes has led to the development of multiple correlations for the engineering parameters

that describe friction drag, convective heat transfer, and mass/species transfer [7–9]. Sev-

eral of these correlations are empirical in nature as the governing boundary layer phenom-

ena are not well understood. It is of interest to the engineering and scientific community

to advance the current knowledge on boundary layer dynamics to facilitate design and per-

formance improvements in multiple engineering systems and enhance predictive models in

the atmospheric and environmental sciences.
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1.1 The Boundary Layer

1.1.1 Historical Background

During the 19th century, fluid mechanics researchers were divided regarding how to pro-

ceed after the Navier-Stokes equations were established. The equations were well known,

but their complexity made them very difficult to utilize in describing viscous fluid flows.

As a result, fluids research began to split into two groups, one working on ideal fluids,

i.e. fluids with zero viscosity – inviscid fluids, and the other on viscous fluids [10]. Ideal

fluid theory could not explain concepts such as pipe losses, pressure loss as a fluid passes

through a pipe, and drag while viscous fluid work was highly empirical making it unsuit-

able for generalized studies [10]. There was no unifying technique to describe real fluids

through the Navier-Stokes equations.

At the turn of the century in 1904, Ludwig Prandtl published a work that for the first time

linked ideal and viscous fluid theory. He experimentally showed that as a fluid moved past

a solid body, a small region of fluid near the solid surface exhibited viscous behavior, while

the bulk fluid away from this region behaved in an inviscid manner. This is caused by the

physical phenomena where fluid directly in contact with a solid locally adheres to the solid

surface, later named the “no-slip” condition. This results in the adherent fluid moving with

the same velocity as the solid and a small viscous region where the fluid velocity gradually

changes between the solid’s velocity and the bulk fluid velocity. Originally named the

“frictional layer”, this small region is now known as the hydrodynamic boundary layer [10].

In the wake of Prandtl’s findings followed substantial developments in the budding field of

aerodynamics that could now better characterize flow over an airfoil [10].

Just before the start of the 20th century, Osborne Reynolds reported that bulk fluid flows can

transition from the orderly laminar flow regime to the disordered turbulent flow regime [10].
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As with the main body of a fluid flow, a boundary layer can also become turbulent. While

early boundary layer theory centered around laminar boundary layers, the contributions

of Reynolds and later Prandtl helped to extend the theory to describe turbulent boundary

layers [10]. Even today, a century after turbulent boundary layers were first characterized,

there are still many aspects of these boundary layers that remain unknown.

Turbulence is present in a majority of practical fluid dynamics problems, from the planetary

scale flow in the atmosphere to the millimeter scale flow of medicine through a needle.

Turbulence has been observed for hundreds of years. Some of the earliest sketches of the

phenomena were created by Leonardo da Vinci [11]. When Reynolds studied turbulence he

initially described it as “sinuous motion” suggesting that the flow path is highly curvilinear

[12]. Taylor devised a simple experiment in 1923 where flow between concentric cylinders

was analyzed [11]. The outer cylinder was fixed while the inner cylinder was rotating.

At low rotation speeds the resulting flow field was observed to be one dimensional and

followed the rotation of the inner cylinder. At high speeds, the flow formed what is now

known as turbulent Taylor vortices which generate a three dimensional flow field [11].

In this flow field, seemingly random motion of fluid particles was observed [11]. Indeed,

turbulence is generally a phenomena that produces three dimensional stochastic and chaotic

motion of fluid particles.

Building upon the works of Prandtl, Taylor and von Kármán further described turbulence a

phenomenon generated by friction forces in the boundary layer in 1937 [12]. The friction

forces in the boundary layer are produced by the fluid’s viscosity. If one vigorously mixes

fluid initially at rest then leaves it alone, turbulence will dissipate energy via viscous or

friction forces until the fluid returns to rest. As such turbulence is known to be a dissipative

phenomena [11]. Turbulence also has a highly complex nature. This can be observed by

performing repeated velocity measurements of a turbulent flow. Any minute variations in
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experimental conditions will lead to a substantial change in measured fluid velocity at a

given instant [11].

In turbulent boundary layers, complex turbulent motion greatly influences energy and mass

transfer [7, 10, 13]. The boundary layer acts as an energy transfer system, carrying me-

chanical energy, thermal energy, and mass/species between bulk fluid and solid. In the

classic experiment of flow over a stationary flat plate, the boundary layer is responsible for

transporting the flat plate’s momentum (zero in this case) to the fluid. Turbulence plays a

pivotal role in this process by strongly modifying fluid motion within the boundary layer,

making turbulence a major component of momentum transfer.

1.1.2 Laminar Boundary Layer Theory

Consider the flow of an ideal gas, such as air, toward and over a fixed perfectly smooth

horizontal flat plate. The flat plate is very thin, infinitely wide, and infinitely long. The

boundary layer that forms over the flat plate connects the undisturbed fluid moving at some

velocity to the fluid at rest on the plate’s surface due to the “no-slip” condition. Prandtl’s

streak photography in Figure 1.1 demonstrates the velocity change caused by the boundary

layer. Longer white streaks correspond to regions of high velocity while the short streaks

defining low velocity near the plate qualitatively show the effects of the boundary layer.

By examining the boundary layer at various points from the leading edge of the plate, one

finds that the boundary layer grows as the fluid travels down the plate. At a location near

the leading edge of the plate, streamlines in the boundary layer are parallel to each other,

much like a typical laminar flow. This behavior defines the laminar boundary layer. The

concept of boundary layer thickness or size, particularly in laminar boundary layers, is an

arbitrary measure often taken to be the distance from the surface to where the velocity is

99% of the undisturbed fluid velocity [10]. The boundary layer thickness is one of the key
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Figure 1.1: Streak photograph taken by Prandtl of flow past a horizontal flat plate. The

flow is seeded with reflective particles. Adapted from Schlicting [10].

characteristics that appears frequently in mathematical descriptions.

The well known work of Reynolds in 1883 was one of the first detailed descriptions of tur-

bulent flow in a channel [10]. His experiment involved seeding water with colored filaments

for visualization. The experiment showed that at low fluid velocities, the injected filaments

would follow the parallel streamlines of the laminar flow as shown in Figure 1.2a. When

the flow speed was increased the previously straight path of the filaments became complex

and three dimensional. The streak path in Figure 1.2b has been mixed in all directions by

turbulence while the dye continues to be carried through the channel.

Reynolds suggested that there is a non-dimensional group that defines the transition be-

tween laminar and turbulent flow [11]. Now known as the Reynolds number, it represents

the ratio of inertial and viscous forces in a fluid given by equation 1.1. Velocity, u, den-

sity, ρ, and a characteristic length scale, L, in the numerator represent fluid inertia while
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Figure 1.2: Photograph of channel flow taken by Reynolds during the colored filament

experiment. (a) Shows the path of the filaments laminar flow while (b) shows the evolution

of filaments in turbulent flow. The primary flow direction is indicated by the white arrow.

Adapted from Schlicting [10].

dynamic viscosity, µ, in the denominator represents the viscous force.

Re =
ρuL
µ

(1.1)

The transition of a laminar flow to turbulence is a process that centers around flow stability.

A flow is said to be stable if any disturbances induced in the flow are dampened, primarily

by viscosity. The ability of a flow to remain stable has been shown to be a function of

the Reynolds number [10]. As the Reynolds number increases, the inertial force grows

larger relative to the viscous force in a laminar flow. At some sufficiently high Reynolds

number, the molecular diffusion of momentum driven by the viscous force, is insufficient
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to dissipate flow instabilities whose magnitude increases with the inertial force. This leads

to local flow instability magnitudes growing and the bulk flow begins the transition to

turbulence. Increasing the Reynolds number further continues to amplify the magnitude of

flow instabilities leading to a fully established turbulent flow domain. The transition from

laminar to fully turbulent flow occurs over a range of Reynolds numbers. For simplified

calculations however, often a critical Reynolds number is utilized as an indicator of laminar

to turbulent transition. In typical smooth pipe and channel flows this critical value is about

2000, while in highly controlled experiments it has been shown that a pipe flow can be

laminar up to Re ≈ 40, 000 [10].

The Reynolds number can also be calculated for boundary layer flows. In the case of flow

over a flat plate, the characteristic length scale is given by the distance from the leading

edge of the plate. At locations near the leading edge, this length scale will be small. One

can conclude that for flow over a smooth horizontal flat plate, the boundary layer will

always be laminar near the leading edge. Moving further downstream on the plate will also

ensure that at some point the boundary layer becomes turbulent.The work of Dryden found

that there is a range of critical Reynolds numbers for a flat plate boundary layer to transition

to turbulence, generally between 105 and 106 [10]. Often a single number of 5 · 105 is used

as a guideline.

The mathematics to describe boundary layers of any kind begins with the governing equa-

tions of fluid mechanics. This derivation will be for flows whose velocity is much less than

the speed of sound and for flows that do not change in time – “steady flows”. This allows

fluid to be treated as incompressible, or having constant density, reducing the conservation

of mass to a statement of zero velocity divergence as shown in equation 1.2.
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~∇ · ~v = 0 (1.2)

u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= −
1
ρ

∂P
∂x

+ ν

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
(1.3)

u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= −
1
ρ

∂P
∂y

+ ν

(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)
(1.4)

u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= −
1
ρ

∂P
∂z

+ ν

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
(1.5)

Next is the conservation of momentum. The body forces are assumed to be zero and grav-

itational forces are negligible for small laboratory boundary layers. This produces the

Navier-Stokes equations in expanded form shown in 1.3 to 1.5 for a Newtonian fluid.

To consider boundary layer flow along an infinitely long and wide obstacle, the governing

equations will be limited to a two-dimensional analysis where the x-axis is parallel to the

axis of the object and the y-axis is normal to the object as illustrated in Figure 1.3. Due

to symmetry only the boundary layer above the obstacle is considered. The figure further

depicts, the variation of mean stream-wise velocity with distance from the wall, U(y), along

with a sketch of the developing boundary layer shape. Writing these out gives the system

of equations in 1.6 to 1.8. The third velocity component, w, is set to zero and all gradients

in the z direction are set to zero in this 2D analysis.
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Figure 1.3: Sketch of boundary layer flow over a horizontal flat plate.

∂u
∂x

+
∂v
∂y

= 0 (1.6)

u
∂u
∂x

+ v
∂u
∂y

= −
1
ρ

∂P
∂x

+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
(1.7)

u
∂v
∂x

+ v
∂v
∂y

= −
1
ρ

∂P
∂y

+ ν

(
∂2v
∂x2 +

∂2v
∂y2

)
(1.8)

This system of equations will now be non-dimensionalized using the length, time, and mass

scales of the flow, defined in 1.9 and 1.10. Spatial variables are scaled by the characteristic

dimension of the obstacle, L, velocities are scaled by the free stream velocity, U, the kine-

matic viscosity, ν, is normalized by both velocity and characteristic dimension to give the

Reynolds number, finally the pressure is normalized by density and velocity.

x̂ =
x
L

û =
u
U

1
Re

=
ν

UL
P̂ =

P
ρU2 (1.9)
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¯̄v = v̂
√

Re ¯̄y = ŷ
√

Re (1.10)

Inserting these into Eqns. 1.6 through 1.8, simplifying then performing an order of mag-

nitude analysis to eliminate the small magnitude variables produces the steady Prandtl

boundary-layer equations in Eqns. 1.11 to 1.13.

∂û
∂x̂

+
∂ ¯̄v
∂ ¯̄y

= 0 (1.11)

û
∂û
∂x̂

+ ¯̄v
∂û
∂ ¯̄y

= −
∂P̂
∂x̂

+
∂2û
∂ ¯̄y2

(1.12)

0 = −
∂P̂
∂ ¯̄y

(1.13)

The original system of three coupled non-linear partial differential equations in Eqns. 1.6

to 1.8 has been greatly simplified by this analysis. The greatest change occurred in the y-

momentum equation where all terms except pressure have vanished. This means pressure

does not change across the boundary layer, enabling the pressure of the free stream to

be imposed at all points in the boundary layer. This eliminates pressure as an unknown

in the boundary layer and the stream-wise pressure gradient is given by the free stream

flow behavior. This leaves only the two velocities to be solved. These equations have been

solved numerically and leads to a solution that is independent of the Reynolds number [10].

The simplifications used to derive the Prandtl boundary layer equations have been used to

provide an exact solution to the dimensional boundary layer equations. For laminar flow

over a horizontal flat plate, the Blasius solution is an exact solution that describes all parts
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of the boundary layer. Calculated in 1908, it is the first analytical solution of the boundary

layer equations.

Two key features of all boundary layers is the wall shear stress and the boundary layer

thickness. The boundary layer thickness from the Blasius solution is given by Eqn. 1.14

and the wall shear stress is given by Eqn. 1.15.

δ ≈ 5
√
νx
U

(1.14)

τW = 0.332µU

√
U
νx

(1.15)

These relations indicate that for a given fluid and free stream velocity, the boundary layer

thickness and wall shear stress are only functions of the stream-wise spatial coordinate

(x). This highlights one unique boundary layer behavior known as self-similarity. This

is observed where the shape of a given boundary layer’s velocity profile does not change

but simply scales according to the stream-wise spatial coordinate. Experimental data taken

over a range of Reynolds numbers has exhibited this behavior where all gathered velocity

profiles showed excellent agreement with the profile predicted by the Blasius solution [10].

The Blasius solution provides a complete description of laminar boundary layer flow over

a horizontal flat plate. The experimental works that set out to validate the Blasius solution

show very good agreement with theory with Reynolds numbers up to 105 provided the flow

is laminar in nature. If one attempts to use Eqn. 1.14 and 1.15 for a turbulent flow at

the same Reynolds number, a significant increase in wall shear stress and boundary layer

thickness will be observed. The difference in normalized wall shear stress, or skin friction

coefficient, C f , is shown in Figure 1.4. The change in C f is so large that it cannot possibly

be explained using the framework of the boundary layer equations.
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Figure 1.4: Plot of the skin friction coefficient vs Reynolds number showing the laminar

Blasius solution with experimental data of laminar and turbulent flows by Liepmann and

Dhawan. Adapted from Schlicting [10].

1.1.3 Turbulent Boundary Layer Theory

A new approach is required to mathematically describe a turbulent boundary layer. The

goal of this approach is to explain the substantial difference in boundary layer and gener-

ally all fluid characteristics, such as the skin friction coefficient when compared to laminar

flow. As the governing equations are known to accurately describe all fluid there must exist

some mathematical formulation to make the governing equations more suited to describing

turbulent flow. Reynolds decomposition is one well-known technique to characterize tur-

bulent flows. In this approach each fluid variable is split into it’s time-averaged component

and the amount of deviation about the time average, known as the fluctuating component.

This is shown in Eqn. 1.16 for the u velocity component where the time-averaged velocity

is u and the fluctuating velocity is u′.
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u = u + u′ (1.16)

By definition the time average of the fluctuating component is zero. This approach has the

advantage that laminar flow behavior is recovered when the fluctuating component is set

to zero. Physically, this approach describes a turbulent flow as a laminar flow (the time

average) with chaotic turbulent motion (the fluctuations) superimposed.

This decomposition is now applied to the continuity equation, Eqn. 1.6, and the Navier-

Stokes equations for an incompressible Newtonian fluid where only two-dimensional mo-

tion is considered, Eqn. 1.7 and 1.8. Starting with the continuity equation, replacing ve-

locity with the decomposed terms produces Eqn. 1.17 which expands to Eqn. 1.18. Taking

the time-average of this whole equation eliminates the fluctuating terms. The only terms

that remain are the steady terms leaving the continuity equation unchanged by Reynolds

decomposition as shown in Eqn. 1.19.

∂(u + u′)
∂x

+
∂(v + v′)
∂y

= 0 (1.17)

∂u
∂x

+
∂v
∂y

+
∂u′

∂x
+
∂v′

∂y
= 0 (1.18)

∂u
∂x

+
∂v
∂y

= 0 (1.19)

Performing the same substitution into the Navier-Stokes equations produces the following:
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(u + u′)
∂(u + u′)

∂x
+ (v + v′)

∂(u + u′)
∂y

= −
1
ρ

∂(P + P′)
∂x

+ ν

(
∂2(u + u′)

∂x2 +
∂2(u + u′)

∂y2

)
(u + u′)

∂(v + v′)
∂x

+ (v + v′)
∂(v + v′)
∂y

= −
1
ρ

∂(P + P′)
∂y

+ ν

(
∂2(v + v′)
∂x2 +

∂2(v + v′)
∂y2

)

Expanding and time-averaging these whole equations eliminates any terms containing an

isolated fluctuating term (u′, v′, or P′). However the product of fluctuating terms such as

u′u′ are non-zero when time-averaged and must remain. This results in the simplified 2D

Reynolds Averaged Navier-Stokes (RANS) equations 1.20 and 1.21.

u
∂u
∂x

+ v
∂u
∂y

= −
1
ρ

∂P
∂x

+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
−

(
∂u′u′

∂x
+
∂u′v′

∂y

)
(1.20)

u
∂v
∂x

+ v
∂v
∂y

= −
1
ρ

∂P
∂y

+ ν

(
∂2v
∂x2 +

∂2v
∂y2

)
−

(
∂u′v′

∂x
+
∂v′v′

∂y

)
(1.21)

The majority of the RANS equations are identical to their traditional Navier-Stokes coun-

terparts. There is however a new term present on the far right of the RANS equations. This

term contains only the product of fluctuating velocities and arises due to the non-linearity

of the advection term (spatial derivatives on the left hand side). This new term when mul-

tiplied by density has the same units as pressure and viscous stress, and it has been dubbed

the “turbulent stress” or the “Reynolds stress”. The Reynolds stress can be expressed in

general as a three-dimensional symmetric tensor shown in Eqn. 1.22.
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−ρ


u′u′ u′v′ u′w′

u′v′ v′v′ v′w′

u′w′ v′w′ w′w′

 (1.22)

The Reynolds stress highlights a method for turbulent velocity fluctuations to influence the

mean flow. Mathematically this formulation causes the turbulent velocity fluctuations to

manifest as a stress term and can therefore be described as increasing the total stress expe-

rienced by the mean fluid flow. However, the Reynolds stress is not a real stress and only a

product of this mathematical description. Therefore, it is referred to as an apparent stress

due to turbulent motion within a fluid. In turbulent flows the Reynolds stress magnitude

can easily surpass the viscous stress magnitude making it impossible to neglect the contri-

bution of this apparent stress. Within the turbulent boundary layer, the Reynolds stress is

only small relative to the viscous stress in the region extremely close to wall.

The Reynolds stress’ behavior and it’s influence on the mean fluid motion is a major part of

classical and on-going turbulence research. With a clearly quantified pathway for turbulent

fluctuations to influence the mean flow defined, it is of interest to characterize the nature

of the fluctuations. The relative magnitude of the turbulent velocity fluctuations is given

by the turbulent intensity defined in Eqn. 1.23 for the u velocity component measured

N times. This quantity is the standard deviation of the velocity normalized by the mean

velocity. The turbulent intensity is expected to be large in magnitude in flows where the

turbulent fluctuations are significant relative to the mean velocity.
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TI =
1
u

√√√√ N∑
i=1

(ui − u)2

N − 1
(1.23)

In addition to the relative magnitude of the turbulent motion, it is also possible to describe

the kinetic energy associated with turbulent fluctuations. This is known as the turbulent

kinetic energy (TKE), K, defined in Eqn. 1.24. The TKE has been used extensively for de-

scribing and modeling the behavior of turbulence in both experimental and computational

research.

K =
1
2

(u′2 + v′2 + w′2) (1.24)

A transport equation for the TKE has been developed to describe the mathematical and

physical transport processes governing this quantity. For an incompressible two-dimensional

steady flow with constant material properties the K-equation is defined in Eqn. 1.25 [10].

Overall, this equation states “the rate of change of turbulent kinetic energy equals the sum

of TKE diffused by viscosity, TKE production, turbulent transport of kinetic energy, and

energy dissipation”.
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ρ

(
u
∂K
∂x

+ v
∂K
∂y

)
= µ

∂2(K + u′2)
∂x2 +

∂2(K + v′2)
∂y2 + 2

∂2(u′v′)
∂x∂y


− ρ

(
u′2
∂u
∂x

+ u′v′
∂v
∂x

+ u′v′
∂u
∂y

+ v′2
∂v
∂y

)
−
∂(u′(P′ + ρK))

∂x
−
∂(v′(P′ + ρK))

∂y

− µ

2
(
∂u′

∂x

)2

+ 2
(
∂v′

∂y

)2

+

(
∂u′

∂y
+
∂v′

∂x

) (1.25)

The first term defines the rate of change of TKE due to advection, specifically TKE carried

by the mean flow. The second term which is multiplied by the dynamic viscosity is the vis-

cous diffusion term and describes turbulent energy transported by inter-molecular dynam-

ics. The turbulence production term is next whose elements are the product of a Reynolds

stress component and a mean velocity gradient. This indicates that turbulent kinetic energy

is generated by interaction of turbulent fluctuations and the mean flow. Next is the turbulent

transport term which indicates the sum of fluctuating pressure and TKE are both utilized.

Each element in this addition represents a different physical phenomena. The turbulent

velocity-pressure product represents energy lost due to work performed by the fluctuating

pressure. Similarly, the product of K and a fluctuating velocity represents turbulent ki-

netic energy transported by the velocity fluctuations, known as the triple-correlation. The

last term in the K-equation describes the dissipation of turbulent kinetic energy to internal

energy in the form of molecular motion quantified by the viscosity.

Multiple important processes can be identified from the turbulent kinetic energy equation.

The turbulent production term indicates that turbulence can extract energy from the mean

flow to supply the dissipative and diffusive processes. In some flow configurations, such

as a turbulent wall jet, it is possible for turbulent motion to supply the mean flow with

energy [10]. However in general, energy extracted from the mean flow and transformed
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into turbulent motion does not return to the mean flow. Turbulence can only be transported

until it eventually dissipates. This is consistent with the previously discussed observation

where fluid at rest is vigorously mixed then left alone. Turbulence extracts energy imparted

to the fluid by the mixer and dissipates energy until the fluid returns to rest. This behavior

highlights the significance of both the turbulent production and dissipation terms, as the

other processes outlined act to transport pre-existing turbulent motion.

For the conservation of energy, Reynolds decomposition can also be applied noting that the

fluctuating temperature (T ′) is defined with the same methodology as the turbulent velocity

and pressure fields. The Reynolds averaged conservation of energy is presented in Eqns.

1.26 for incompressible steady 2D flow with constant thermophysical properties [10].

ρCp

u∂T
∂x

+ v
∂T
∂y

 = k
∂2T
∂x2 +

∂2T
∂y2

 − ρCp

∂u′T ′

∂x
+
∂v′T ′

∂y


+ µ

2 (
∂u
∂x

)2

+ 2
(
∂v
∂y

)2

+

(
∂u
∂y

+
∂v
∂x

) + µ

2
(
∂u′

∂x

)2

+ 2
(
∂v′

∂y

)2

+

(
∂u′

∂y
+
∂v′

∂x

) (1.26)

This equation reads, “the rate of change of the mean temperature field is equal to the sum

of heat conduction, turbulent heat transport, direct energy dissipation, and turbulent energy

dissipation”. Going through each of the terms in this equation reveals interesting processes

present in turbulent flows. First, the advection term on the left of the equal sign denotes

thermal energy transported by the mean flow. The second term describes heat conducted

through the fluid given by Fourier’s law. The next term contains the product of fluctuating

velocity and temperature fields. Physically it represents temperature fluctuations associated

with turbulent velocity fluctuations. Known as the turbulent heat transfer it acts to modify

heat conduction as an apparent conduction, similar to the Reynolds stress as an apparent
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stress. The fourth term describes energy dissipated directly from the mean flow to internal

energy via viscous dissipation. The final term is the turbulent energy dissipation which

appeared in the K-equation.

From the Reynolds averaged conservation of energy, the Reynolds decomposition tech-

nique has presented two unique features of thermal energy transport. First is the turbulent

heat flux term, which manifests as a pathway for turbulent motion to influence heat transfer

in the mean flow. The second feature is the presence of multiple methods to dissipate en-

ergy. The first is directly from the mean flow and the second is from the turbulent motion,

which itself feeds on the mean flow.

The Reynolds averaging technique has identified key parameters and behaviors of interest.

All governing equations in Reynolds averaged form did not lose any mean flow terms,

ensuring the mean flow behaviors cannot be ignored. In the RANS and conservation of

energy equations, the newly generated Reynolds stress and turbulent heat flux terms both

appear to modify the fundamental fluid stress and heat conduction. The turbulent kinetic

energy transport equation expanded on the Reynolds stress by quantifying a mechanism

for kinetic energy transfer from mean flow to turbulent motion. Finally, both kinetic and

thermal energy are eventually dissipated by viscosity to internal energy. For characterizing

the turbulent boundary layer, it is of interest to describe the characteristics of these mean

flow and turbulent quantities.

Turbulent Boundary Layer Structure

Consider the flow of an incompressible Newtonian fluid over an infinite horizontal flat plate

as illustrated in Figure 1.3. There is no heat transfer between the plate and fluid. A laminar

boundary layer forms at the leading edge of the plate whose characteristics closely follow

the Blasius solution. At some position downstream the boundary layer will transition to
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turbulence. At a point further downstream the effects of transition have vanished and the

boundary layer is fully turbulent. To characterize the turbulent boundary layer, first, the

mean velocity profile is illustrated in Figure 1.5.

In this figure, the stream-wise velocity is normalized to produce u+ with a quantity known

as the “friction velocity” and the distance above the wall is normalized to give y+ using the

friction velocity and kinematic viscosity as shown in Eqn. 1.27. The friction velocity is

derived from the wall shear stress. Using the friction velocity and kinematic viscosity for

normalization produces inner-layer scaling as these quantities best describe the length and

time scales of the near-wall region in the turbulent boundary layer.

u+ =
u
ut

y+ =
yut

ν
where ut =

√
τW

ρ
(1.27)

The turbulent boundary layer is comprised of several sub-layers. Starting from the wall at

y+ = 0 and u+ = 0 and moving away from the wall, the viscous sublayer is encountered

first. In this layer, boundary layer flow is strongly governed by viscous forces while there

is little to no turbulent motion present. The relationship between u+ and y+ in this layer is

given by Eqn. 1.28. The edge of the viscous sublayer is located at y+ = 5. Above this point

the effects of turbulence become significant relative to viscous effects.

u+ = y+ Viscous Sublayer (1.28)

u+ = f (y+) Buffer Layer. Exact equation found by Gersten & Herwig [10] (1.29)

u+ =
1
κ

ln(y+) + C Logarithmic Layer (1.30)



Chapter 1. Introduction 23

Figure 1.5: Mean stream-wise velocity profile in inner-layer scaling. Circles are from ex-

perimental data by Klebanoff, dashed curve shows the Direct Numerical Simulation (DNS)

results by Spalart, dotted curve shows the DNS by Kim et. al., and the solid line is de-

rived from boundary layer theory. Each constituent sub-layer is indicated. Adapted from

Pope [14].

After the viscous sublayer is the buffer layer. This layer contains the inflection point of the

velocity profile at y+ ≈ 15. The exact relationship between u+ and y+ in this layer is far

more complex than the sublayer and has been calculated from fundamental theory [10, 14].

The buffer layer covers the region between 5 ≤ y+ ≤ 40 − 70 where the upper limit of this

layer covers a range of y+ values [10, 11, 14]. Next is the logarithmic layer where there is a

log-linear relationship between u+ and y+ as shown in Eqn. 1.30 where κ = 0.41 and C = 5.

In this layer turbulent effects are significant but comparatively weaker than the buffer layer.

The upper limit of the logarithmic layer is often not as clearly defined as the buffer layer

and viscous sublayer limits. Generally, the log-layer equation is valid provided y
δ
<∼ 0.2

corresponding to y+ ≈ 500−1000 [11, 14]. Finally, the wake region lies above the log-layer

and here the effects of boundary layer turbulence are weak.
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Figure 1.6: Profiles of the Reynolds stress components and turbulent kinetic energy in inner

layer scaling for (a) the whole boundary layer and (b) zoomed on a section of the near-wall

region. Adapted from Pope [14].

The behaviors of the Reynolds stress components and turbulent kinetic energy are now

investigated. These quantities are time-averaged and normalized in inner-layer scaling then

plotted against distance from the wall. First these profiles are observed over the whole

boundary layer as illustrated in Figure 1.6a. All profiles start from zero at the wall, reach a

peak at
y
δ
∼ 0.1 before gradually returning to zero at the upper edge of the boundary layer.

The stream-wise Reynolds stress, u′2
+

, shows the greatest magnitude at about 7 followed

by the span-wise stress and wall-normal stress, w′2
+

and v′2
+

. The shear stress, u′v′
+
, is

always negative with a peak magnitude of about unity. Due to the high magnitude of the

stream-wise stress, this term is dominant in the TKE calculation resulting in a TKE profile

that resembles the u′2
+

profile. The peak TKE is approximately four before decreasing

towards zero at the free-stream.

Zooming in on these profiles to a near-wall section of the boundary layer generates Figure

1.6b. Comparing this graph to the previously defined limits of each sub-layer indicates
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Figure 1.7: Contribution of each transport process to the total turbulent kinetic energy in

the near-wall region. Adapted from Schlicting [10].

that in the viscous sublayer, the Reynolds stresses and TKE all rapidly approach zero as

expected due to strong viscous effects. The peak stream-wise Reynolds stress and TKE

are found in the buffer layer, specifically at y+ ≈ 15 coinciding with the velocity profile’s

inflection point. Continuing towards the log layer shows all stresses and TKE start to

decrease with increasing y+. The peak value in the TKE profile is of interest as it defines

the buffer layer as the most energetic region in the boundary layer. It is likely then that

buffer layer behaviors are of great importance to the overall transportation of momentum,

heat, and mass/species. The physical processes defined by the K-equation are of interest

to determine which TKE transport process(es) is(are) responsible for producing the peak

TKE. The relative contribution of each process to the overall TKE budget is presented in

Figure 1.7.

In the left panel of the figure there are three profiles corresponding to production, diffusion

(combined viscous and turbulent), and dissipation in the near-wall region. In the viscous

sublayer it is expected to find terms strongly related to fluid viscosity, the terms containing
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dynamic viscosity in the K-equation, to be dominant and indeed this is true. The dissi-

pation and diffusion terms are dominant in magnitude for y+ ≤≈ 7. On the right panel,

the breakdown of total diffusion is presented and as expected viscous diffusion reaches it’s

peak within the viscous sublayer. Moving into the buffer layer shows a decrease in dissi-

pation and diffusion while the production reaches its’ peak at y+ ≈ 12 in good agreement

with the observed peak TKE. At this position above the wall, the total diffusion is negative

as both constituent diffusion terms are negative. Moving further away from the wall into

the log layer indicates that diffusion tends toward zero faster than both production and dis-

sipation. Once y+ is sufficiently large, turbulent kinetic energy production is balanced by

energy dissipation.

From these graphs it is clear that turbulent kinetic energy production and dissipation are

two highly important quantities. It has already been established that turbulent production

draws energy from the mean flow, however production is not significant when very close

to the wall. The energy supplied by the mean flow, i.e. the energy produced by inertia

within the fluid, is used for one of two purposes. In the very near-wall region, y+ < 11,

energy from the mean flow is primarily dissipated directly by viscous forces. This process

was observed in the conservation of energy, equation 1.26, as the direct dissipation term.

Further away from the wall however, viscous effects are weak therefore all energy flows

into producing turbulent motion and eventually that turbulent motion dissipates energy.

As the viscosity dominant region is very small relative to the boundary layer thickness,

it is of interest to describe the mechanisms governing how turbulent motion receives and

eventually dissipates energy from the mean flow.

The methods of characterizing turbulence presented thus far have been statistical in nature

as the focus has been on the mean velocity and deviations from the mean. Another approach

to characterizing turbulence is to calculate the frequency content of a turbulent velocity
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Figure 1.8: Velocity spectra of the turbulent boundary layer measured at three y-

coordinates. Adapted from Schlicting [10].

signal using the Fourier Transform. This approach facilitates the identification of low and

high frequency variations in fluid velocity. When the Fourier Transform of the turbulent

velocity is calculated, the distribution known as the velocity spectra is found. An example

of one such spectra in the turbulent boundary layer is presented in Figure 1.8.

The abscissa in this graph presents the wave number, a measure of spatial frequency, while

the ordinate presents the approximate power spectral density (PSD). This graph would ap-

pear the same if temporal data was used where the abscissa would present frequency. The

magnitude of energy (PSD) associated with each wave number is illustrated in this graph.
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From the detailed analysis of Kolmogorov and others in the mid 1900’s three key regions

of the velocity spectra can be identified as being critical to the behavior of turbulence [14].

First, the very low wave numbers represent the largest spatial scales, i.e. the integral scale,

or largest eddies in the turbulent flow. As the figure shows, these eddies contain the largest

magnitude in the power spectra and are named the “energy-containing eddies”. These

eddies are primarily responsible for extracting kinetic energy from the mean flow, i.e. tur-

bulence production. Due to their large size integral scale eddies are relatively unaffected

by viscous forces. Smaller eddies extract energy from the energy-containing eddies. These

eddies occupy the middle part of the spectra with a slope of ≈ −5
3 known as the “inertial

subrange”, which constitutes the second region. Continuing onward, even smaller eddies

extract energy from the eddies in the inertial subrange. These eddies are known as dissi-

pative eddies that produce the ≈ −7 slope of the dissipation range in the spectral at high

wave numbers. Dissipative eddies are extremely small and described using the Kolmogorov

length scale. At this length scale viscous forces are dominant causing kinetic energy to dis-

sipate through molecular or viscous dissipation. This behavior is reflected in the Reynolds

number which is known to be unity at this length scale, representing an equal magnitude of

flow inertia and viscous force.

Overall in turbulent flows energy enters the turbulent motions from the mean flow and takes

the form of large integral scale eddies. These eddies pass energy to a sequence of smaller

and smaller eddies until viscous dissipation can directly convert turbulent kinetic energy

into internal energy, i.e. molecular motion. This process is known as the energy cascade.

In 1922 before the work of Kolmogorov, Richardson provided a summary of the cascade

hypothesis:



Chapter 1. Introduction 29

Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity.

-Richardson

Classical turbulent boundary layer research established numerous key insights and math-

ematical descriptors. The processes of boundary layer formation, transition to turbulence,

interaction of turbulence with the mean flow, and turbulent characteristics were all derived

from theory or documented through experimental observations. However, not all classi-

cal research is entirely accurate. The energy cascade process is generally understood as

a well-organized sequence of eddies passing energy between each other. However there

are turbulent flow phenomena where this process does not occur and instead energy flows

from the small-scales towards the large scales or the smallest eddies directly extract energy

from much larger eddies [11]. This is one of many motivations for recent contemporary

research on the fundamental nature of turbulence eddies. A more thorough understanding

of turbulent boundary layer flow is needed.

1.2 Contemporary Boundary Layer Research

Classical work on the turbulent boundary layer established a fundamental understanding on

the interaction of turbulent motion and the mean flow. Recently however, the behavior of

turbulence in the boundary layer has been the focus of highly active and on-going research.

A hallmark of turbulence is the rotating, swirling or recirculating motion inside the fluid.

An eddy in a broad sense refers to any region of recirculating fluid. Eddies are known
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to occur over a range of length scales from as large as the flow itself to many orders of

magnitude smaller. Vorticity (Ω) is the curl of the velocity field given by Eqn. 1.31. An

eddy with non-zero vorticity is defined as a vortex.

~Ω =
1
2
~∇ × ~v (1.31)

A fluid flow with zero vorticity is said to be irrotational, however there are exceptional

cases where a fluid can appear to rotate while having zero vorticity [9]. As the velocity in

a fluid is continuous within the entire fluid domain, vorticity is therefore defined over the

same domain. This facilitates 2D and generally 3D continuous regions of non-zero vorticity

referred to as vortex lines in 2D or vortex tubes in 3D [11]. In any turbulent flow there exist

numerous vortex tubes with a wide range of dimensions. When vortex tubes organize into

a single group, it is said that a coherent structure has formed. Generally a region of fluid is

referred to as a coherent structure if its’ vortex lines can organize themselves, hold together

for a long time, and repeatedly appear in the flow [11]. The presence, characteristics, and

significance of coherent structures in all turbulent flows is a highly active research area.

In the turbulent boundary layer one typical coherent structure reported is the hairpin vortex.

It is formed when many vortex lines along the solid surface the boundary layer passes over

gather into a vortex tube. The tube can be deformed by any turbulent fluctuations in the

surroundings. It is possible then for the tube to deform into a curved shape as shown in

Figure 1.9 [11]. The flow field around the curved tube is very similar to a torus which can

advect itself forward. This leads to the tube rising upward from the surface and attempting

to stand vertically, with it’s highest point in the buffer layer or lower log layer as shown in

side view in Figure 1.9.
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Figure 1.9: Sequence of images showing formation of a hairpin vortex from vortex tubes.

Adapted from Davidson [11].

As the tube rises, the top experiences a higher surrounding velocity than the bottom [11].

This causes the tube to stretch into a hairpin like shape and reach equilibrium at roughly a

45 degree angle above the surface [11]. For the hairpin vortex to remain stable at this angle

the effects of shear due to the surrounding flow and vortex lift must balance [11]. Due to the

rotation direction of the hairpin vortex shown in the middle panel of Figure 1.9, the hairpin

tends to expel fluid in front of itself which opposes the mean flow. It is therefore expected

that there will be a stagnation point somewhere nearby the front of the hairpin vortex [15,

16]. This stagnation point will be on the left of the hairpin depicted in the right-most

panel of Figure 1.9. On all sides of the stagnation point a shear layer is expected to form.

These structures are three-dimensional and quite small in diameter, presenting challenges

to directly observe and identify hairpins. Experimental studies overcome this challenge by

utilizing the characteristic features such as the stagnation point as an identifying signature

[15].

This characteristic signature is only applicable to hairpin vortices with sufficient strength

relative to the surroundings to produce a stagnation point. This method cannot be broadly

applied to detect all coherent structures in a given turbulent flow. Several methods have

been developed to identify coherent structures. One of the simplest techniques is to use a

vorticity threshold. In this approach, all locally connected points in space whose vorticity
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exceeds a given threshold are said to be a coherent structure. This method performs poorly

in turbulent boundary layers and is sensitive to the selection of threshold [17].

Alternative methods have been developed that are based on the velocity gradient tensor

defined in Eqn. 1.32 using Cartesian coordinates. This tensor can be decomposed into a

symmetric part, known as the strain rate (~S ), and a skew-symmetric part, vorticity. Two

widely adopted techniques based on the velocity gradient tensor are the Q-criterion and

λ2-criterion [17–19].

∇~v =



∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z


= ~S + ~Ω (1.32)

The Q-criterion defines a vortex as a region where Q, the second invariant of the velocity

gradient tensor, is positive [18]. This invariant defined in Eqn. 1.33 is based on the trace

(tr) of the velocity gradient tensor which can be expressed in terms of the vorticity and

strain rate. From this definition, a vortex is said to exist where the vorticity magnitude

exceeds the strain rate magnitude.

Q =
1
2

[(tr(∇~v))2 − tr((∇~v)2)] =
1
2

(~Ω2 − ~S 2) (1.33)

The λ2-criterion similarly uses the strain rate and vorticity. For this approach, the eigenval-
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ues of Ω2 − S 2 are calculated and sorted in ascending order. A vortex is defined as regions

where the second eigenvalue is negative [19]. The Q-criterion and λ2-criterion have been

demonstrated to correctly identify identical structures in planar flows [17]. In addition, both

techniques have been successfully employed as tools more robust than a vorticity threshold

to detect coherent structure in the turbulent boundary layer [18, 20].

Proper Orthogonal Decomposition (POD) is a mathematical method for coherent structure

identification and decomposition. First used in turbulent flows by Lumley [21] in 1967 this

technique has been enhanced and applied to many other turbulence problems such as shear

layers, boundary layers, and mixed convection flow [22, 23]. The principle of POD is to

decompose a measured quantity into a linear combination of several eigenfunctions, known

as POD modes. The goal of this approach is to formulate the most accurate decomposition

by minimizing the difference between the measured quantity and the decomposition [21].

POD modes facilitate tracking of coherent structures through their kinetic energy. Previous

research has demonstrated that in certain flows only a few POD modes are required to

capture over half of the total kinetic energy [24]. By observing the spatial and temporal

evolution of POD modes and their energy, it is possible to identify coherent structures and

their characteristics in a turbulent flow [24]. There has been discussion on the significance

of POD modes as either mathematical artifacts or manifestations of fluid physics. Greig

et. al. [25] have summarized the work that demonstrated POD modes are descriptors of

physical flow structures.

1.2.1 Unheated Turbulent Boundary Layer

The first model for describing hairpin vortex formation and dynamics came in 1952 based

on an analysis of the Navier-Stokes equations [15, 26]. Other early works were able to

identify structures in the boundary layer, observe complex phenomena, and determine the
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turbulent boundary layer characteristics [26, 27]. These studies confirmed the presence

of three-dimensional coherent structures in the boundary layer, but there was no suitable

mathematical description of these phenomena [28].

Kline et. al. [27] used hydrogen bubbles to visualize streak structures in the viscous sub-

layer. Their pictures illustrated the 3D nature of turbulent boundary layers [26, 27]. Clas-

sical boundary layer theory states that the buffer layer has the largest value of turbulent

production. The hot-wire anemometry velocity data found in this study confirmed this

theory but did not provide a physical explanation [27].

A phenomenon known as “ejection” or “bursting” was identified by Runstadler et. al. [29]

as a process of turbulent production where the viscous sub-layer periodically shoots fluid

upward into the buffer and log layer [26]. The bursting phenomenon has been studied using

a technique, known as conditional sampling that classifies events into the four quadrants of

the Cartesian coordinate plane for two velocity components, u′ and v′ [26, 30, 31]. The two

negative Reynolds stress producing events are defined by quadrants II and IV. In quadrant

II, u′ is negative while v′ is positive. This indicates fluid at low speed is pulled upward in

a bursting or ejection event [31]. On the other hand, quadrant IV shows u′ positive and

v′ negative describing fluid with high speed rushing towards the wall in what is named

a sweeping event. Two positive Reynolds stress producing events were also observed.

Quadrant III, given by negative u′ and v′, defines slow fluid being pulled toward the wall.

Finally, quadrant I given by positive u′ and v′, occurs when high speed fluid is pulled away

from the wall [31].

Burst events were also found from time series data by performing the variable integral time

average (VITA) technique [32]. One study observed that in the buffer layer, a burst or

quadrant II event causes the Reynolds stress to reach nine times its local time-averaged

value clearly demonstrating the amount of turbulence that can be produced in this region
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[32, 33].

The concept of four unique events has been applied to hairpin vortices to define the char-

acteristic stagnation point and shear layer in front of them [16]. The motion associated

with these four classes of event have been found to affect coherent structures. Kim et.

al. [34, 35] detected hairpin like structures in the boundary layer through Large Eddy Sim-

ulation (LES) and DNS and reported their stretching in the presence of an ejection or burst

event [33]. They also found that structures in the shape of Ω can detach and create a ring

vortex. Lastly, their DNS was able to capture the near-wall streaky structures observed in

experiments [33, 35].

Further investigation of vortex dynamics involving the conditional sampling events were

documented by Jeong et. al. [20]. They used DNS database data to find stream-wise

streak structures in the buffer layer that were generally aligned with the mean flow. In

contrast to earlier studies, they did not find very long stream wise vortices nor did they

find a substantial number of hairpin vortices [20]. The stream-wise vortices they found

occurred in pairs and had a tendency to be slightly misaligned with the mean flow as well

as lifted slightly upward instead of being completely parallel to the bottom wall [20]. These

vortex pairs have been reported to produce velocity fluctuations that contribute significantly

toward the Reynolds stress [20, 33].

Head and Bandyopadhyay [36] through flow visualization observed several hairpin-like

structures in the boundary layer, which they termed as the “forest of hairpins” and were

conceptually proposed as the fundamental building blocks in the turbulent boundary layer

[33]. Similarly, a DNS study of a turbulent boundary layer confirmed that the “forest of

hairpins” exists for both transitional and fully turbulent flows [33, 37]. The findings of

these two studies continue to generate substantial controversy about the organization of

hairpins and questions on their importance in boundary layer processes [33, 38].
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The number of hairpin vortices in the turbulent boundary layer has been examined by

Schlatter et. al. [38] who reconfirmed the “forest of hairpins” via DNS at Reθ = 300 and

600 where θ is the momentum thickness. They argue that hairpin vortices are a remnant of

turbulent transition and in a fully developed turbulent boundary layer at higher Reynolds

numbers, they vanish. They report that, at Reθ = 1200, the hairpins account for only 6%

of all structures while at Reθ = 4300 they found only 2% of structures were hairpins [38].

The results of this study showed that while hairpins exist in abundance, their presence de-

pends on the flow conditions. Furthermore, in a fully developed turbulent boundary layer,

hairpin vortices are too rare to be considered a fundamental or representative structure of

turbulence.

Hairpin vortex formation was the focus of a study by Liu et. al. [39] who performed DNS

at Reθ = 1000 and used the λ2-criterion in conjunction with vortex filaments to identify

coherent structures. In contrast to the earlier reported studies, their findings show that

hairpin vortices are not produced by the deformation of the near wall structures known as

Λ vortices. Instead, hairpins are generated by shear layer instability over these Λ vortices

[39]. They proposed a model for turbulence generation where shear layer instability is

responsible for generating vortices of all length scales. Naming shear layers as the “mother

of turbulence”, they further assert that the smallest length scale is not the Kolmogorov scale

but the scale of smallest shear layer [39].

Experimentally, Adrian and co-workers [15] used Particle Image Velocimetry (PIV) to

study the boundary layer flow at Reθ = 930, 2370 and 6845. They identified regions of

interest in the flow using the vorticity and defined the characteristic 2D projection of a hair-

pin structure on a vector field. The projection has three key features that were predicted to

be hairpin vortex identifiers. The first is the vector field through the hairpin head whose

vectors are similar to the tangent lines on a circle. The second is the stagnation point and
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third is the shear layer that forms when fluid pushed from the center of the hairpin meets

the stream-wise mean flow.

From the vector fields obtained, the authors concluded that hairpin vortices tend to travel in

organized groups at the same relative speed. They further observed an abundance of these

structures in the boundary layer, in agreement with past experimental observations [36].

The authors proposed a mechanism that as hairpin groups travel they drive the momentum

transferring burst events [15]. While turbulence in the boundary layer is fundamentally

a three-dimensional phenomenon, this study was the first to experimentally identify and

quantify the presence and effects of hairpin vortices.

Conventional PIV is able to generate a two dimensional flow field with high accuracy

but it cannot determine all three velocity components simultaneously. The Stereoscopic

PIV (Stereo-PIV) technique computes all three components of velocity by using projection

frames from two cameras. This was used by Dennis and Nickels [40] to detect and mea-

sure coherent structures in a turbulent boundary layer [33]. Experiments were performed

at Reθ = 4700, and vortices were identified using a swirling strength condition that gives

nearly identical results to the λ2-criterion [41]. This study was able to identify and visualize

hairpin vortices that grew with distance from the wall. Detected vortices stood about 40

degrees up from the bottom wall in agreement with hairpin vortex theory. The results of

this study allowed the authors to conclude that these hairpin vortices are a good basis for

statistically characterizing the structures in the turbulent boundary layer [33].

Recently, an advanced technique based on PIV known as Tomographic PIV (Tomo-PIV)

has been applied to the turbulent boundary layer at Reθ = 1900 by Elsinga [42]. By iden-

tifying coherent structures with the Q-criterion, they detected hairpin vortices and found

their dynamics in good agreement with previous PIV studies.

The turbulent boundary layer contains numerous unique and dynamic phenomena such as
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coherent structures, near-wall streaks and bursting and sweeping events. The near-wall

region, specifically the buffer layer and adjacent portions of the viscous sublayer and log-

arithmic layer is of great interest as the phenomena in this region are known to influence

the formation of coherent structures. Recent work has investigated the presence and signif-

icance of large scale stream-wise streak structures found in the log layer [43, 44]. Closer to

the wall a process has been identified by both Waleffe and Kim [45, 46] and Jimenez [47]

where near wall streaks can self-sustain in a cyclical process. The process involves stream-

wise vortices that form the near-wall streaks which become unstable and reforms stream-

wise vortices. The impact of the large-scale log layer streak structures on the near-wall

cycle has been investigated by Hutchins [48] who reported that the large scale motions can

regulate the near-wall cycle.

1.2.2 Heated Turbulent Boundary Layer

Heat transfer between solid and fluid is a unique phenomena capable of inducing bulk

fluid motion via buoyancy. To better understand how this occurs and its applicability to

boundary layer flows, consider a smooth horizontal flat plate as illustrated in Figure 1.10

where an ideal gas is present above the plate. In this configuration there is initially no bulk

fluid motion and the fluid is at temperature T∞. The horizontal plate is heated and held at a

constant temperature Tw that is greater than the bulk fluid temperature.

Thermal energy exchange between fluid and solid begins extremely close to the heated wall

where inter-molecular energy transfer happens. Due to the no-slip condition there are fluid

molecules directly in contact with the wall. These molecules receive thermal energy from

the heated wall via conduction. In general, there exists a relatively thin conductive layer

where heat transfer is driven primarily by conduction.

As the fluid temperature rises, it’s temperature-dependent thermophysical properties change
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Figure 1.10: Sketch of heated horizontal wall with quiescent fluid above.

according to the equation of state. For ideal gases, the most often used equation of state is

the ideal gas law in Eqn. 1.34. In this thermofluid problem the fluid pressure at the wall is

exerted by the bulk fluid and remains constant. In the ideal gas law, R̄ is the specific gas

constant. Any increase in temperature must be offset by a decease in density to maintain

constant pressure. This generates a wall-normal density variation, ρ(y), within the fluid as

shown in the figure.

P = ρR̄T (1.34)

This conclusion is applicable to a broad range of fluids that exhibit the same behavior.

Raising the temperature of a fluid generally leads to a decrease in density. The lower

density fluid in the near wall region is influenced by the buoyant force which acts to lift

fluid upward. The viscous force opposes the buoyant force and attempts to prevent fluid
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motion. The competition between these two forces is quantified by the non-dimensional

group known as the Grashof number (Gr) in Eqn. 1.35 [8].

GrL =
gL3β∞∆T

ν2 (1.35)

The numerator of Gr describes the influence of buoyancy as it contains gravitational accel-

eration, the horizontal plate length (L), the temperature difference between wall and bulk

fluid (∆T ), and the coefficient of volumetric thermal expansion (β∞) calculated at the bulk

fluid temperature. This coefficient defined in Eqn. 1.36 is derived from the equation of

state and represents the propensity of a fluid to change density when heated. The viscous

force is represented in the denominator by the kinematic viscosity.

β∞ = −

[
1
ρ

∂ρ

∂T

]
∞

(1.36)

For small values of Gr, the buoyant force cannot overcome viscous resistance and no fluid

motion occurs. Increasing the relative strength of the buoyant force leads to the formation

of buoyancy driven fluid motion, known as natural convection. The behavior of fluids

in many natural convection problems is one of the fundamental topics of convective heat

transfer [8].

In the problem of fluid over a heated horizontal plate problem, natural convection produces

a unique fluid behavior visualized in Figure 1.11. In this image parcels of fluid known as

thermals are observed rising over a horizontal heated flat plate. Each thermal is a relatively

high temperature, low density, mass of fluid whose associated buoyant force has overcome
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Figure 1.11: Visualization of thermals rising from a heated horizontal flat plate. Adapted

from Sparrow [49].

the local viscous force. This allows each thermal to intermittently break away from the

wall and freely rise.

In this configuration, heat transfer from the horizontal wall generates a region of relatively

high temperature, low density fluid in the immediate vicinity of the wall. Further away

from the wall, fluid has a lower temperature with higher density. This places higher density

fluid above lower density fluid. As the gravitational force is larger on the high density fluid

compared to the low density fluid, this state is unstable and known as a thermally unstable

stratification. In contrast, a thermally stable stratification occurs when high density fluid

is below low density fluid. This state can be produced by cooling the horizontal plate to

below the bulk fluid temperature. In this case, fluid falls due to a stronger relative influence

of gravity.

The presence of heat transfer can generate bulk fluid motion in a previously quiescent

fluid due to temperature dependent changes in density that produce the buoyant force when
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heated or a stronger relative gravitational force when cooled. Often in practical applica-

tions, quiescent conditions are not present and some bulk fluid motion not driven by the

buoyant force exists. This leads to a boundary layer flow of bulk temperature T∞ over a

solid surface with temperature Tw , T∞. This temperature difference leads to the forma-

tion of another boundary layer known as the thermal boundary layer, where the temperature

gradients are significant. Depending on wall and bulk fluid temperatures it is possible to

achieve either a stable or unstable thermal stratification in the presence of a mean boundary

layer flow.

The behavior of both stable and unstably stratified turbulent boundary layers has been the

topic of many prior research studies. For a stable stratified turbulent boundary layer, it was

first hypothesized by Richardson that turbulence has to compete with gravity [50, 51]. This

led to the formulation of a dimensionless parameter now known as the Richardson number,

Ri, that describes the relative influence of buoyancy and flow inertia [50]. High Richardson

numbers, Ri � 1 in Eqn. 1.37, are associated with primarily buoyancy driven flows such

as natural convection with a very weak mean flow. Very low Richardson numbers, Ri � 1,

correspond to inertia dominant flows such as those found in forced convection. Finally the

mixed convection state occurs when Ri ≈ 1. Physically this means the buoyant force and

inertial force are of comparable magnitude. Generally, under stably stratified conditions

turbulence cannot sustain itself against gravity which leads to a significant decrease in

turbulent intensity [50]. In contrast, unstable stratification in the presence of a turbulent

boundary layer leads to the buoyant force interacting with inertia-driven turbulence.

Over the 60 years of research that has followed the first definition of the Richardson num-

ber, its formulation has varied among the research community. The Richardson number

can be defined locally in space and time leading to the “flux” Richardson number which

describes the relative contributions of turbulent shear production and buoyancy-driven pro-
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duction [50]. The “gradient” Richardson number is another local non-dimensional group

that describes the relative strength of mass transport due to buoyancy, represented by the

density gradient, and momentum transport, represented by the mean velocity gradient [50].

The Richardson number is more frequently defined as a global parameter to describe a

given flow. Some considerations of a global Ri adopt the convention where Ri > 0 refers

to stable stratification, Ri < 0 implies unstable stratification, and Ri = 0 is the unheated

case. Another frequently reported definition expresses the Richardson number as the ratio

of Grashof and Reynolds numbers as indicated in Eqn. 1.37. In this equation, L is the char-

acteristic length scale, U, the mean freestream velocity, g, gravitational acceleration, ∆T ,

the temperature difference between bulk fluid and solid, and β the coefficient of thermal

expansion [52]. This definition imposes the condition that Ri ≥ 0 as only the magnitude of

the temperature difference is considered. Stable or unstable stratification in these cases is

imposed by the experimental setup or computational domain. The literature review in this

chapter will present Ri as defined by the respective original authors and clearly identify

whether thermal stratification was stable or unstable.

RiL =
GrL

Re2
L

=
gLβ∆T

U2 (1.37)

Early studies of boundary layer flow with heat transfer sought to characterize the bulk be-

havior of the flow. Nicholl [50] experimentally studied unstable boundary layers in air.

With a temperature difference of 80 ◦C and Reδ∗ = 600 they were able to detect convec-

tive motion associated with natural convection competing with turbulence in the unstable

boundary layer. They proposed a flow structure of convective cells being superimposed on

the boundary layer flow [50]. This hypothesis was proven by Maughan et. al. [53] who
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visualized the secondary flow in a water tunnel. They argued that the secondary buoyancy-

driven flow causes hydrodynamic instability in the primary mean flow which begins turbu-

lent transition if the mean flow was laminar [53].

The effects of heat transfer on turbulent transition has been further studied experimentally.

Gilpin et. al. [54] demonstrated that thermal instability can cause boundary layer transition

at much lower Reynolds numbers than expected. The phenomena of buoyancy-affected

turbulent transition has also been seen at low Reynolds numbers. Gajusingh et. al. [55]

experimentally studied flow above a heated wall using PIV. Their results supported previous

research where buoyancy induces turbulence in an originally laminar flow [55].

The transportation processes that carry heat through the turbulent boundary layer have been

studied both numerically and experimentally. In order to analyze the transport phenomena

associated with coherent structures, Chen et. al. [56] used temperature as a passive scalar

to be carried through the flow. They performed experiments with a 12 ◦C temperature

difference at Reδ = 29, 000 and an estimated Riδ = 0.0017 using Eqn. 1.37 (i.e with very

weak buoyancy effects). In this study, temperature acted as a tracer facilitating coherent

structure tracking. The authors reported that regions of turbulence were associated with

warm fluid [56]. Burst events detected in the boundary layer were also found to happen

simultaneously with temperature changes, suggesting that the heat is transferred by this

process [56].

Numerically the same approach has been used by Araya and Castillo [57] who performed

a DNS study of the turbulent boundary layer at Reθ = 2300. They used temperature as a

passive scalar and performed visualization of streaky structures at y+ = 15. Their results

show that the velocity and temperature fluctuations are well correlated demonstrating that

turbulence helps to transport temperature, in agreement with prior experimental findings

[57].
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In addition to streaky structures, the “forest of hairpins” found by Wu and Moin [37] was

studied by the same authors in a passive scalar DNS study [58]. Using Reθ = 80 to 1950,

they allowed a turbulent boundary layer to develop and measured the transport of tempera-

ture. They found that regions of dense hairpin vortices correlate well with regions of high

temperature demonstrating that hairpin vortices are essential to turbulent transport [58].

It has been established that coherent structures play a key role in heat transport through

the turbulent boundary layer. The passive scalar and small temperature difference studies

neglected the effects of the buoyant force. The effect of buoyancy on turbulent fluid vari-

ables has been studied numerically and experimentally with emerging findings on coherent

structures that are modified by buoyancy.

Arya [59] performed wind tunnel experiments with stable and unstable boundary layers at

Reδ = 1 · 105 to 3.5 · 105. For the stable experiments, Riδ = 0.01 to 0.099 while for unstable

stratification tests Riδ = −0.05 to −0.326. The Richardson number defined in this study

is shown in Eqn. 1.38 where ∆T is the temperature difference across the boundary layer,

δ is the boundary layer thickness, U∞ is the mean free-stream velocity, T0 is the average

boundary layer temperature, and g is gravitational acceleration. Velocity and temperature

data were obtained via hot-wire probes. Detailed turbulent statistics were only computed

for the stable stratification experiments.

Ri =
gδ
T0

∆T

U2
∞

(1.38)

The velocity defect profile across the boundary layer is shown in Figure 1.12a and the

temperature defect curve is show in Figure 1.12b [59]. These plots indicate that the most

thermally stabilized boundary layer has the greatest momentum and thermal defects. This
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Figure 1.12: Velocity defect (a) and temperature defect (b) profiles across the boundary

layer adapted from Arya [59] for stable and unstable turbulent boundary layers.

marks a substantial reduction in boundary layer mixing, suggesting turbulence is reduced.

The profiles at the bottom of both plots are much flatter across the boundary layer showing

lower defects. This is indicative of increased near wall mixing driven by more near wall

turbulence. As the velocity and temperature are larger near the wall, the heat transfer rate

and skin friction coefficient were both reported to increase [59].

The turbulent intensity was also calculated for the vertical velocity component in the ther-

mally stable turbulent boundary layer. Results showed that increasing stability reduced

the wall normal turbulent intensity [59]. The same trend was seen in the stream wise and

span wise turbulent intensities showing that turbulence is reduced in all directions. These

results were used as a basis to describe a previously defined mechanism through which

buoyancy dampens turbulence in stable boundary layers. The buoyant force acts like a sink

and only influences the vertical velocity [59]. This causes both of the remaining fluctuating

velocities to decrease along with the velocity gradient, lowering the turbulence production

rate. Similar results were found in the cold plate analog where fluid passes below a cooler

horizontal plate and sinks [60].
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Elatar and Siddiqui [23, 61] performed experiments in a heated square channel where

ReD ≈ 350 to 750 and Gr
Re2 = 9 to 206, where (D) is the hydraulic diameter of the channel.

From PIV data, they used POD to identify coherent structures, specifically near wall con-

vective cells produced by the buoyant force. The POD results show alternating regions of

warm fluid moving upward and cool fluid moving downward [23]. From the PIV vector

field obtained near the heated wall, long streaky structures were identified. These structures

were associated with thermals rising from the surface [61].

Elatar and Siddiqui [62] sought to characterize the structures identified in mixed convection

at low Reynolds numbers. Their experimental setup used ReD = 350 to 750 and Gr
Re2 = 9 to

206. The Q-criterion was used to detect coherent structures from PIV vector fields in planes

normal and parallel to the heated wall. They found that far away from the wall, there were

few coherent structures but the ones identified had high kinetic energy. In contrast, coherent

structures near the wall were more numerous but generally carried less energy [62].

The number of coherent structures in an unstable boundary layer has been further assessed

by Hattori et. al. [63] who performed one of the first DNS studies of thermally stable and

unstable turbulent boundary layers including the effects of buoyancy. Their simulations

used Reθ = 1000 in air with Riθ = 0.01 defined according to Eqn. 1.37 where θ is the

momentum thickness of the boundary layer for both stable and unstable cases. In the stable

boundary layer, their results indicate that the near wall streaky structures tend to vanish.

In contrast, the unstable boundary layer shows an increased number of near wall structures

compared to the neutral boundary layer.

In addition to observing changes in the near wall structures, boundary layer stability also

affected the turbulent profiles. The Reynolds stress, turbulent heat flux and turbulent in-

tensity were all calculated and plotted in inner layer scaling as shown in Figure 1.13. The

Reynolds shear stress in the stable boundary layer was found to substantially decrease
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Figure 1.13: Profiles of four turbulent properties adapted from Hattori et. al [63]. (a)

Reynolds shear stress, (b) wall normal turbulent heat flux, (c) stream wise turbulent heat

flux, (d) wall normal turbulent intensity.

compared to the neutral boundary layer as shown in Figure 1.13a. In the unstable boundary

layer however, the Reynolds shear stress increased and the peak stress was found further

away from the wall compared to the neutral and stable boundary layers [63].

The stream wise and wall-normal turbulent heat fluxes were plotted in Figure 1.13b and

Figure 1.13c. The stream wise turbulent heat flux showed a small increase in peak value

for the stable boundary layer. Making the boundary layer unstable however did not substan-

tially change the heat flux compared to the neutral boundary layer [63]. The wall-normal

result however is completely different. The stable boundary layer shows a very clear de-

crease in heat flux. On the other hand, the unstable boundary layer has a clear increase
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in heat flux [63]. As with the Reynolds shear stress, the peak value of turbulent heat flux

in the unstable boundary layer occurs furthest away from the wall. In Figure 1.13d, the

wall-normal turbulent root-mean-square (RMS) velocity is graphed. The calculated RMS

velocity was not reported to change substantially in the stable boundary layer. In contrast,

the unstable boundary layer shows a significant increase in RMS velocity and has its peak

at a greater distance from the wall compared to the stable and neutral boundary layers [63].

These results are in agreement with past experiments that showed an increase in wall-

normal turbulent intensity [59]. Furthermore, a mechanism of producing these changes

in turbulent properties is discussed. Buoyancy in the unstable boundary layer increases

the wall-normal velocity fluctuations which enhances shear stress and wall-normal heat

flux [63]. A very similar mechanism has been described for the stable boundary layer

where buoyancy extracts energy from the wall-normal velocity component [59].

The effect of buoyancy on coherent structures was the focus of a DNS study by Li et.

al. [64]. They used a momentum thickness based Reθ = 1100 in air with Grθ = 13, 000,

corresponding to Riθ = 0.01 as per Eqn. 1.37 for the unstable boundary layer. Their results

showed similar trends in near wall turbulent properties as Hattori et. al.’s [63] simulation.

The iso-surfaces detected using the λ2-criterion show coherent structures that appear to

be stretched vertically, up to 1.6 times the unheated boundary layer thickness as shown

in Figure 1.14. Furthermore, they found that the buoyant force tends to align coherent

structures with the wall-normal vector [64]. In contrast, it was found that near wall streaks

were displaced closer to the wall. Hairpin vortex theory states that the head of the hairpin

sits at approximately 45 degrees to the bottom wall. Their results found that in the presence

of heat, hairpin vortex inclination rose to around 60 degrees and the size of detected vortices

decreased [64].
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Figure 1.14: Detected coherent structures in the turbulent boundary layer, (a) without the

buoyant force (b) with the buoyant force. Adapted from Li et. al. [64].

1.3 Experimental Measurement Techniques

Turbulent fluid flows are three-dimensional by nature and the behavior of these flows is key

to understanding the fundamental processes in many natural phenomena and engineering

systems. Solving the governing equations for turbulent flows is mathematically and com-

putationally challenging. As a result, research has been heavily reliant on experimental

tools and techniques to obtain deeper insight into the underlying dynamics and provide an

improved flow characterization. In order to obtain a complete description of a turbulent

flow, all three velocity components need to be captured simultaneously. This presents a

major on-going challenge in experimental research on turbulent flow. While many tech-

niques have been developed in the past to measure turbulent velocities and visualize flow

trajectories, each technique has its own benefits and limitations.

Hot-wire anemometry is a velocimetry technique where a thin heated wire is placed in a
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flow. As the fluid passes over the wire it cools via convection. The amount of heat required

to maintain a constant wire temperature is related to the local fluid velocity. The wire di-

ameter is typically kept very small, on the order of a few microns, to reduce thermal inertia

and response time, which allows measurements with very high time resolution, excellent

spatial resolution, and sampling rates on the order of MHz [65, 66]. With multiple hot

wires arranged in specific configurations, two or all three components of velocity can be

measured simultaneously.

Being a point-measurement technique, hot-wire anemometry has a limitation of measur-

ing velocity at one precisely defined location in space. Multiple hot wires or single hot

wire traversing could be used for mapping a flow field but this is often limited by avail-

able resources. Another challenge is the intrusive nature of the instrument, which limits

measurements and may face mounting issues. Hot-wire anemometry is successful when

data collection is only needed at a single well-defined point in space with high temporal

resolution to resolve a very wide range of turbulent time scales.

Optical techniques utilize light and often seed particles to measure the velocity field re-

motely, reducing intrusion upon the flow field. These techniques can be performed in a

wide range of geometries provided optical access is available. Laser Doppler Velocime-

try (LDV) is an alternative to hot-wire anemometry which uses the Doppler frequency

shift of light scattered by seed particles to measure one or more components of velocity

in a non-intrusive manner. This technique has been successfully applied to turbulent flows

measuring up to three velocity components [67, 68]. Like hot-wire anemometry however,

LDV is a point measurement technique.

In other optical techniques, cameras are used to capture images that are processed into de-

tailed two and three-dimensional flow fields. These techniques are also non-intrusive and

provide velocity data in both time and space. The spatial resolution (i.e. spatial sampling
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rate magnitude) of the velocity data is typically much higher than the temporal resolution

(i.e. temporal sampling rate magnitude), although with the advancement of illumination

and camera technologies, substantial improvements in both time and space resolution is

realizable. In addition, advancements in computing technology have also enabled fast pro-

cessing of large image data sets, making optical methods a common choice for turbulent

flow measurement and characterization.

Planar Particle Image Velocimetry is one optical measurement technique that utilizes a laser

light sheet and camera to measure two components of velocity in a plane. PIV first evolved

from speckle metrology or scattered light speckle metrology (SLS) before arriving at its

current form in 1991 [69–72]. Unlike single point techniques, PIV offers a complete two-

dimensional velocity field of a fluid and today remains among the best available techniques

of obtaining detailed velocity data.

The core elements of a modern digital PIV system include a digital camera, PC, laser, syn-

chronization unit, laser optics, and a suitable seed particle. The light beam exiting the laser

is focused using a spherical lens and formed into a thin laser light sheet with the cylindrical

lens. The camera is placed facing the light sheet with the camera lens focused on the sheet.

During experiments, as seed particles pass through the laser light sheet they reflect light

which is captured by the camera. The laser timing is controlled using a synchronization

unit to ensure each laser pulse occurs during the exposure time of each frame captured by

the camera. Images are recorded onto a PC for analysis. By varying the time between con-

secutive laser light pulses (∆t) and the camera’s frame rate, a wide range of fluid motion

time-scales can be captured.

PIV analysis is performed on consecutive pairs of images and comprised of multiple steps

to reduce error and improve velocity estimation accuracy. The primary component of PIV

image analysis is the cross-correlation. The first image in a given pair is split into many “in-
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terrogation windows” while the second image is split into many larger “search windows”.

Each interrogation window corresponds to a unique search window. A sample image pair

with one interrogation window and search window is shown in Figure 1.15.

In the figure, frame one is captured first and frame two is captured a short time, ∆t, after

frame one. The interrogation window is taken from frame one and the search window is

taken from frame two. The different sizes of the interrogation window and search window

enables the interrogation window to rigid translate within its corresponding search window

as shown in Figure 1.16. The 2D cross-correlation between interrogation window and

search window is calculated for all possible rigid translations (∆i,∆ j) of the interrogation

window within the search window.

The interrogation window translation that produces the largest cross-correlation magnitude

(∆iMax,∆ jMax) is taken as the interrogation window displacement. This defines the distance

that the interrogation window, specifically the seed particles pictured in the interrogation

window, translated during the time between each laser pulse i.e. each captured image in the

pair. The local planar velocity is estimated by dividing the calculated displacement by the

time between laser pulses shown in Eqn. 1.39. This process is applied to all interrogation

windows and search windows in an image pair to produce a two-dimensional velocity field.
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Figure 1.15: Sample PIV image pair (a) and (b) and one respective interrogation window

(c) and search window (d).

Figure 1.16: Rigid translation of the interrogation window (red) inside the corresponding

search window (blue) for an arbitrary translation ∆i,∆ j.
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(u, v) =

(
∆iMax

∆t
,
∆ jMax

∆t

)
(1.39)

One limitation of planar PIV is the ability to measure only two components of velocity.

While the laser sheet can be moved to provide velocity fields over several planes, the out

of plane velocity can never be measured simultaneously with the other two components.

A solution to this issue has been developed in the form of the Stereoscopic PIV tech-

nique that constructs a 3D velocity field by having two off-axis cameras recording parti-

cles’ movement within a laser sheet [73]. From the two images captured, all three veloc-

ity components are calculated. This technique has been successfully applied to turbulent

flows [40]. While the Stereoscopic PIV technique computes a 3D velocity field, the cal-

culations are based on mathematical projections of a planar light sheet (i.e. images of a

plane are used to determine motion within a volume). This has led to studies that have

found the out-of-plane velocity component is of questionable accuracy, which limits the

computations of, out-of-plane gradients [74, 75].

Tomographic PIV is recent advancement that employs four or more cameras at different

viewing angles to observe seed particles passing though a laser-illuminated volume. Images

from all cameras are used to reconstruct a 3D velocity field through one of many complex

calculation schemes [76–78]. The core of Tomo-PIV is to use several cameras to detect the

same particle from multiple angles which enables calculation of its exact coordinates. This

technique improves upon Stereoscopic PIV by calculating all three velocity components

and their gradients. Elsinga et. al. [42, 79] successfully applied Tomo-PIV to a turbulent

boundary layer and supersonic boundary layer to characterize three-dimensional coherent

structures.
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While capable of computing all three velocity components, Tomographic PIV is known

to produce errors in velocity measurement [80, 81]. This is due to the influence of ghost

particles, defined as false particles detected when identifying the same particle from multi-

ple perspectives. Ghost particles introduce velocity errors that have the tendency to smear

particle velocities over the measurement volume [80, 81]. As a result, velocity gradients

are under predicted. This effect is amplified in high shear flows such as near the wall

in a turbulent boundary layer [80–82]. Both Stereoscopic and Tomographic PIV utilize

multiple cameras that are expensive and require precise alignment. Alignment is of great

importance as the accuracy of the computed vector field depends on camera angle [74, 75].

Furthermore, the algorithms for velocity computation and image processing are relatively

complex.

To capture a three-dimensional flow field without using several cameras, multiple new ap-

proaches have been developed each utilizing color to represent out-of-plane motion. In this

approach, the white light emitted from a source is transformed into discrete color layers or

the continuous visible light spectrum, either by the use of grating or more complicated op-

tics [83, 84]. The generated multi-color illuminated volume is oriented such that the color

change of a particle is used to quantify the out-of-viewing-plane velocity component. A

liquid-crystal display (LCD) projector has been used to create up to six discrete color lay-

ers for PIV measurements which generated a three-dimensional flow field [85, 86]. LCD

projectors have also been used to generate an adjustable polychromatic spectrum for 3D

particle tracking velocimetry measurements that is easily adjustable [87]. LCD projectors

are easy to use and enable simple color distribution adjustment, making them suitable for

multi-color measurement techniques.

Recently, Rainbow Volumic Velocimetry (RVV) has emerged as a promising technique to

visualize and measure three-dimensional flow fields. The technique works by converting
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Figure 1.17: Image of particle trajectories where color corresponds to the depth position

found using the RVV technique. Adapted from Prenel [88].

white light into the polychromatic spectrum using blazed reflecting grating, producing a

multi-color illuminated volume [88, 89]. Particles in the seeded flow are then imaged as

they reflect light while passing through the volume. By tracking particle position, two

planar velocity components are computed while the third component is estimated by the

color change of reflected light. Colored streaks captured by Prenel et. al. [88] shown in

Figure 1.17 demonstrate three dimensional particle paths found with the RVV technique.

As the technique utilizes color variations in the plane perpendicular to the camera field

of view, the out-of-plane velocity component’s accuracy is strongly dependent upon and

known to decrease with increases in the each color’s beam [88]. To reduce the significance

of this effect the overall light beam width needs to be kept small, reducing the effective

measurement volume size. Recent works have improved upon RVV by utilizing specialized

camera optics to ensure the entire measurement volume is in focus on the camera and have

extended the volume depth through the use of multiple blazed gratings [90, 91]. These

advancements have greatly improved the broad applicability of RVV, however the volume

depths remain limited to approximately 50 mm without the use of more resource intensive

blazed grating configurations.
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There area multiple emerging techniques that utilize novel illumination methods to produce

data suitable for three-dimensional flow visualization and measurement. Dennis and Sid-

diqui have developed a multi-color grid technique for 3D flow characterization [92]. The

color grid pattern facilitated color changes to correspond to motion in two directions how-

ever their early results indicate the technique is of limited use due to interference between

the colors of adjacent grids and no practical analysis algorithm was presented. Park et. al.

improved the multi-color PIV technique by varying the color distribution in time to improve

out-of-plane spatial resolution and uncertainty in six color layer measurements [93]. This

technique however reduces temporal resolution to achieve this goal making it applicably

limited to flows with relatively weak out-of-plane motion.

1.4 Research Objectives

This literature review has established some fundamental boundary layer flow behaviors.

The boundary layers encountered in a majority of practical systems are turbulent and

feature some heat transfer. As a result these flows are characterized by stochastic three-

dimensional motion, turbulent structures, and complex dissipative processes. In addition,

heat transfer further increases complexity due to the presence of the buoyant force and

non-linear coupling of the thermofluid variables. The system of governing equations for

turbulent boundary layer flow, a system of non-linear coupled differential-algebraic equa-

tions, has no solution exact solution. A mathematical decomposition of these equations

however, provides several key insights into some turbulent flow behaviors, such as, the

presence of apparent fluid stress and heat conduction due to turbulent motion. Due to the

innate complexity of the governing equations and fundamental flow behaviors, experiments

are the primary avenue for advancing the current knowledge on turbulent boundary layer

flow behavior.
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1.4.1 Knowledge Gaps

Experimental Measurement Techniques

Presently most flow measurement techniques determine only one or two simultaneous ve-

locity components. Planar PIV has taken a leading role as a widely adopted experimen-

tal measurement technique due to its relative simplicity in implementation and a well-

established successful history of characterizing turbulent flows. As only two velocity com-

ponents are measured however, this limits the estimation and characterization of key quan-

tities such as the turbulent kinetic energy, which is a critical step towards an improved

understanding on the nature of turbulent flows. Stereoscopic PIV and Tomographic PIV

are resource intensive and have technical challenges in accurately measuring all three ve-

locity components. RVV is a promising alternative that could produce a 3D velocity field

from a single camera by utilizing color to define out-of-plane motion but is limited to small

volumes.

In recent years, there has been growing interest in the development of a 3D flow measure-

ment system that uses color to describe out-of-plane motion. These emerging methods

often provide both qualitative flow visualization and quantitative simultaneous estimates

of all three velocity components. However, many of these techniques are very early in

their respective developments and no single technique has demonstrated broad applicability

and acceptance. These emerging techniques require further development in data analysis

and implementation refinement before they are realized as widely acceptable for three-

dimensional flow characterization.

The objective for this part of the study is the following:

• Develop a volumetric illumination technique and associated data analysis algorithm

for three-dimensional flow characterization.
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Mixed Convection Turbulent Boundary Layer

Heat in the horizontal flat plate turbulent boundary layer is often treated as simply a passive

scalar that is carried by the fluid. This is a good description only if the buoyant force

is negligible compared to inertial forces in the boundary layer. When these forces are

comparable, as in the case of mixed convection, the buoyant force produced by heat transfer

has a significant effects on the boundary layer such as influencing turbulent transition and

enhancing or dampening turbulence.

The current body of literature has documented that the buoyant force has a profound in-

fluence on turbulent boundary layer dynamics. However, the process of how buoyancy

produces changes in boundary layer turbulence is not well understood. There is a lack of

work on characterizing thermals’ behavior as a secondary flow structure and the associated

influence on key turbulent quantities. Prior work on the dynamics of this flow often focus

on describing mixed convection turbulent boundary layer behaviors at only one Richardson

number.

The objectives for this part of the study are as follows:

• Determine the behavior of thermals in the mixed convection turbulent boundary layer

over a range of Richardson numbers.

• Identify and characterize the mechanism(s) responsible for the modification of tur-

bulent boundary layer structure over a range of Richardson numbers.

• Investigate and characterize the mechanism(s) that govern the modification to turbu-

lent statistics by wall heating within the mixed convection turbulent boundary layer.

The range of Richardson numbers tested must provide sufficient information to describe the

transition from buoyancy dominant to inertia dominant mixed convection turbulent bound-

ary layer flow. Therefore multiple flow conditions are tested in a range that includes buoy-
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ancy dominant, Ri > 1, inertia dominant, Ri < 1, and equal influences, Ri ≈ 1, of inertia

and the buoyant force on flow dynamics.

1.4.2 Thesis Layout

The content of this thesis is organized as follows:

• Chapter 1 discusses the significance boundary layer flow and the fundamentals of

boundary layer theory. A review of the classical and modern literature is presented

on turbulent boundary layers in the presence and absence of wall heating. A re-

view of state-of-the-art experimental fluid velocity measurement techniques is also

presented. The highly three-dimensional motion and complex dynamical nature of

mixed convection turbulent boundary layer flow requires a thorough investigation in

multiple topics.

• Chapter 2 details the development of a novel method for three-dimensional flow

characterization and details the developed data analysis algorithm. Presently, exper-

imental techniques are the primary method for performing measurement and char-

acterization of turbulent flows. The newly developed flow measurement technique

contributes and advances the body of literature on three-dimensional flow character-

ization. The developed technique is applicable to three-dimensional flows including

turbulent boundary layer flow.

• Chapter 3 reports on a three-dimensional investigation of near-wall unheated tur-

bulent boundary layer dynamics. In order to study the mixed convection turbulent

boundary layer, it is necessary to first produce a unheated turbulent boundary layer

flow. The experiments documented in this chapter are on the unheated turbulent

boundary layer which form a basis to compare findings from mixed convection turbu-

lent boundary layer experiments. This chapter presents new insights on the near-wall
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behaviors of the turbulent boundary layer.

• Chapter 4 presents a technique to detect thermals in flow visualization images and

characterizes the three-dimensional structure and characteristics of thermals in the

mixed convection turbulent boundary layer.

• Chapter 5 characterizes the modification of turbulence in the boundary layer by wall

heating. The thermal detection method described in the previous chapter is utilized in

this chapter to facilitate the characterization of the dynamic processes that govern the

modification of turbulent statistics by wall heating in the mixed convection turbulent

boundary layer.

• Chapter 6 summarizes this study, draws conclusions from presented findings, and

provides recommendations for future work.
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Chapter 2

A Color Permutation Algorithm for

Three-Dimensional Flow

Characterization

2.1 Introduction

The study of fluid flow behavior is one of the fundamental topics in engineering cover-

ing a wide range of applications. Numerous approaches have been adapted to investigate

and characterize the dynamical aspects of a given flow. Numerical approaches are used to

simulate fluid behavior through the governing fluid flow equations while experimentation

provides direct measurements and observation of real fluid flows. The experimental ap-

proach utilizes several tools to obtain both qualitative and quantitative description of fluid

phenomena.

A majority of fluid flow in practical engineering applications are three-dimensional and

turbulent in nature, thus characterized by highly complex motion governed by dissipative
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processes. One of the biggest challenges in experimentally characterizing turbulent flows

is to simultaneously detect and quantify three-dimensional motion in both time and space.

In the past, several techniques to perform 3D flow characterization have been developed.

These techniques quantify 3D motion via the complete velocity field. Due to recent ad-

vances in image processing and computing, optical techniques utilizing digital cameras

have grown in popularity. These methods rely upon the observation of tracer particles

moving with the fluid flow and use complex mathematical schemes to calculate fluid ve-

locity [1–4]. While these techniques have made major advancements, challenges remain

in fully-capturing three-dimensional flow velocity. Hence experimentalists often rely upon

visualization and relatively simple characterization techniques to gain insight into 3D flow

phenomena.

Rainbow Volumic Velocimetry (RVV) has been developed recently to visualize and mea-

sure three-dimensional flow fields. The technique utilizes the full polychromatic light spec-

trum by reflecting visible white light from blazed grating [5, 6]. This produces a multi-color

illuminated volume for seed particles to travel through and reflect light to a single camera.

The camera is positioned such that color changes in the volume occur normal to the cam-

era’s viewing plane. As a seed particle moves through the volume, its planar movement is

captured through the corresponding streak positioning in the viewing plane of the camera

whereas, its depth position is tracked through the changes in the color of the light reflected

by the particle. The 3D velocity field is estimated from color streak images using image

analysis.

The velocity component normal to the camera-viewing plane (i.e. the out-of-plane or depth-

wise component) in the RVV technique is known to be heavily influenced by the width

of the volume, hence each constituent color, in addition to the associated perspective ef-

fects [5]. To reduce these effects, the width of the measurement volume needs to be kept
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small, on the order of 10 mm [5]. To minimize the width of each color band, RVV utilizes

the maximum number of colors available, i.e. the continuous polychromatic spectrum.

When images are captured with a digital camera, the polychromatic spectrum is discretized

into the colors available in digital image processing. The distribution of colors in the poly-

chromatic spectrum produced by grating cannot be easily controlled. One alternative to

this approach is to use many adjacent monochromatic bars for illumination. However,

these discrete color volumes have visible gaps that limit spatial resolution in the out-of-

plane direction [5, 7]. Recently LCD projectors have been used for multi-color volumetric

illumination without gaps to characterize 3D flow fields [7–9].

As LCD projectors facilitate simple manipulation of the color distribution in the measure-

ment volume, one technique to help reduce uncertainty in measuring the third velocity

component is to change the color distribution in the measurement volume. By generating

multiple polychromatic spectra distributions, the width of each color band can be further

reduced for a given volume width. A similar technique involves changing the order of

the color bands in time, according to the refresh rate of the LCD projector. Both of these

techniques have been successfully implemented [7, 10]. However, repeating the polychro-

matic spectrum introduces ambiguity in seed particle position and changing the order of

the color bands in time limits temporal resolution. From the visualization aspect, these ad-

vancements make captured color images less intuitive as the observed color is not a simple

function of motion in the out-of-viewing plane direction.

A multi-color grid technique has been developed by the present authors for 3D flow char-

acterization [11]. The technique used a multi-color grid generated by an LCD projector

where beam color variations occurred in multiple planes relative to the camera field of

view. This enables color changes that correspond to motion in two directions. The results

demonstrated the possibility to capture 3D motion with this approach [11]. The results also
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show that by increasing the number and combination of colors in the grid, the spatial reso-

lution of the technique can be improved. However, the technique was found to be weak in

cases where detected tracer particle’s color deviates from the colors in the grid pattern due

to color interference between adjacent regions.

As the literature review shows, RVV is able to provide intuitive flow visualization and

enable three-dimensional velocity measurement through color encoding, however it is re-

stricted to small volumetric depths to minimize error. More recent color-encoding tech-

niques show promise for high quality 3D flow characterization as they all provide detailed

visualization images that contain sufficient information to extract 3D velocity data however

these methods require further development prior to being fully realized as velocimetry tech-

niques. At present these new techniques have limited spatial resolution, especially when

capturing out-of-plane motion. In addition, these methods face challenges in the associated

image analysis methods that are very early in their respective development.

In the present study, a three-dimensional flow characterization method is reported, which

is based on a novel approach of color-layer permutation to increase spatial resolution. An

image analysis algorithm is developed to implement this method. The paper first presents

and discusses the operating principle of the novel color permutation approach, then the

analysis algorithm is thoroughly described. Synthetic tests are performed to demonstrate

the viability of the method.

This chapter discusses multiple topics in image processing in detail. See Appendix B for

introductory material to image processing.
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2.2 The Color Permutation Method

The previously proposed multi-color grid technique by the present authors utilizes a grid

pattern to define several color-coded volumes [11]. Each color appears only once in every

row and column, which allows for color changes to describe motion in two directions. A

strength of this approach is that the multi-color grid can be made with a large number of

colors. The theoretical limit on this is the number of colors available in image processing

tools. However, the pixel shift is still required to resolve potential ambiguities based on

the color information alone. Modern digital cameras are capable of capturing images over

3000 × 3000 pixels, about 10 Megapixels, in size. Hence, there is no major need to use

color encoding to improve spatial resolution in camera’s viewing plane. In the out-of-plane

direction, the maximum number of colors is the continuous polychromatic spectrum, as

used in RVV. A digital approach to RVV is to use all colors available in image processing

in discrete color layers. This defines an upper limit on the number of discrete color layers

used.

The method of color permutations, as proposed in this paper by the authors, removes this

limit by permuting the colors used in the volume to extend the volume depth and keep the

width of each color small, reducing error in resolving the out-of-plane component of mo-

tion. The order of colors in a permutation is selected such that all colors in the volume have

unique neighboring colors i.e. two particular colors are adjacent to each other only once.

The number of possible permutations satisfying this condition for a given set of colors is a

combinatorics problem similar to the “dinner table” problem [12]. The color permutations

impose a condition on the measurement volume where once a particle changes color, its po-

sition in the out-of-plane direction becomes known. This resolves ambiguities in particle

position introduced when colors are repeated in the volume. Simultaneously, the in-plane

position of a particle is tracked using the pixel shift captured by the camera image, allowing
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tracking of the particle’s three-dimensional movement.

An example of the color permutation method using five colors is shown in Figure 2.1a. One

possible permutation of these five colors enables the creation of eleven discrete color layers

as shown in Figure 2.1b. This defines eleven discrete positions in the out-of-plane direction.

This approach discretizes the continuous variable describing the out-of-plane position into

eleven discrete positions. Hence smooth continuous out-of-plane motion is represented by

a digital “stair-case” approximating the true motion. As the number of discrete out-of-plane

positions increases, the associated discretization error tends to diminish.

Ideal illumination will produce a color discontinuity between adjacent color layers. How-

ever, when illumination is provided by a real source such as an LCD projector, a smooth

gradient exists between colors in adjacent color layers. This leads to the color interference

behavior previously seen by the authors [11]. In the present approach, this color gradient

that lies on the boundary between neighboring color layers, the so-called transition region,

has been utilized as a measurement position (see Figure 2.2). The region away from the

color interference (i.e. transition region), where the color distribution is near-uniform, can

be termed the core region. That is, the core region lies within a color layer and is neigh-

bored by a transition region (see Figure 2.2). The transition region can thus be defined as

the position halfway between neighboring color layers.

By definition, the transition region is where the color distribution is non-uniform and the

exact color distribution is unknown. As color is directly related to the depth position, it is

desirable to keep the transition region small to reduce uncertainty. This can be quantified

with the transition region size, T, relative to the core region size, C, for a given color

layer (see Figure 2.2). If T > C, then the particular color layer is expected to encounter

significant uncertainty in resolving depth position as the transition region and its associated

unknown color distribution is larger than the core region. To minimize such uncertainty, it is
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important to ensure that T � C. This will ensure that the majority of the color distribution

for the given color layer is known.

The division of the color layers into core and transition regions, result in a substantial

increase in the number of so-called depth positions in particle’s streak (i.e. the spatial

resolution in the out-of-plane direction). If n is the number of discrete color layers, then by

considering both core and transition regions, 2n−1 discrete depth positions can be defined.

For example, the five-color eleven-layer permutation shown in Figure 2.1b, results in 21

depth positions. Thus, increasing the number of colors in a given volume increases the

number of permutations (i.e. the color layers), enabling a larger number of depth positions.

(a) (b)

Figure 2.1: (a) Five discrete colors and (b) one possible permutation of them.

2.3 Three-Dimensional Streak Placement Algorithm

The analysis algorithm to convert multi-color streak images of seed particles into three-

dimensional trajectories has five main steps. The first step is to calibrate the illuminated

measurement volume using a sequence of images taken from two orthogonal directions.

These images are used to define a coordinate system for the volume and the distribution

of colors within the volume. Next, each captured image of particle streaks within the

given measurement volume is preprocessed with noise-removal, streak identification, and

streak discretization techniques. In a given streak, each color that appeared is then used
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Figure 2.2: Illustration of two discrete core regions and corresponding transition region.

to estimate the corresponding out-of-plane position. Three-dimensional reconstruction is

performed next based on the estimated out-of-plane positions. Finally, the reconstructed

streak trajectory is placed in physical space. This algorithm has been fully implemented

using MATLAB. The details of each step are presented and described in the following

subsections.

2.3.1 Calibration

The illuminated volume has known dimensions in physical 3D space hence, each single-

colored layer in the illuminated volume has known dimensions and position. The goal of

calibration is to define the illuminated volume as seen by the camera (i.e. the digital space),

and the transformation from digital space to physical space. For calibration, two orthogonal

views of the illuminated volume, free of tracer particles, are considered which are called

the measurement-view and the cross-view, as shown in Figure 2.3.
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The measurement-view represents the camera-viewing plane in the actual experiments (y-z

plane in the present case). The cross-view is perpendicular or out-of-plane with respect to

the measurement-view (x-y plane in the present case), where the x-axis corresponds to the

direction of color change. Calibration images in the cross-view capture the distribution of

colors, i.e. spatial coordinates and color values of each core and transition region, in the

measurement volume. It is important to note that the colors obtained during calibration

represent the width-averaged values (i.e. averaged along the z-axis). Images in both view-

ing planes of a fixed reference point are required to relate the spatial coordinates in both

planes.

For any sufficiently large finite depth, the perspective effects in the camera-viewing plane

become important, which can influence the true spatial position of a particle. For this

purpose, the images of a marked ruler at two depth locations (along x-axis at the boundaries

of the measurement volume) can be utilized. With the known depth, the perspective effect

can be quantified, and corrections are implemented in the final spatial conversion process.

To quantify the color observed in cross-view calibration images, the images are converted

to the Hue-Saturation-Value (HSV) color model. This model is used as an alternative to the

well-known Red-Green-Blue (RGB) model and has seen widespread adoption in the im-

age processing community [13]. The HSV model describes color using three independent

components; hue, saturation and value. The “hue” component expresses pure color such

as “red”, “green”, or “violet” in the range [0, 1] or [0, 360]. The “saturation” component

describes the intensity of color often quantified in the range [0, 1] or [0, 255]. Low values

of saturation indicate low intensity of the color and vice-versa. The “value” component

describes the brightness of the color and is also quantified over the range [0, 1] or [0, 255].

See Smith [13] for more details about the HSV model.

The cross-view calibration images captured by the camera are visually similar to the per-
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(a)

(b)

Figure 2.3: Schematics of the two planes used for the calibration of (a) cross view and (b)

measurement view. The light source in both views is oriented normal to the page.

muted color layers example shown in Figure 2.1b. Hence, the histogram of the hue data

in these calibration images shows a multi-modal distribution where each peak is associated

with one of the colors (hues) present. Each of these peaks is then fitted to a normal dis-

tribution. The resulting mean and standard deviation are then used to formally define the

core and transition regions (see Figure 2.2). A hue threshold is defined as three times the

standard deviation of the hue distribution. Thus, an interval based on the mean hue and the

hue threshold defines the boundaries of the core region. The region bounded between two

core regions is then defined as the transition region.

The x-coordinate of each core and transition region is defined at the center of each respec-
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tive region. The measurement-view and cross-view images of the fixed reference point

are used to relate the y-coordinates seen in each view using the control-point or landmark

registration technique, which is used to align two images based on specific common fea-

tures [14, 15].

The transformation from digital space to physical space is performed using the known spa-

tial coordinates of core and transition regions in addition to images of the ruler in both the

cross view and measurement view. From this information, digital dimensions are converted

into physical length dimensions and include perspective effects via linear regression.

2.3.2 Pre-processing of Particle Streak Images

Once the measurement volume is calibrated, color streak images corresponding to three-

dimensional seed particle motion in the real experiments are acquired. The background

subtraction is performed in the first step of the preprocessing algorithm to isolate colored

streaks on a dark background. In the next step, images are converted from RGB (as captured

by the camera) to the HSV color model. Each image is then segmented based on a user-

defined threshold on the value channel to identify and separate bright regions from the

background, resulting in a binary image.

Segmentation of the HSV converted image must also be performed using a user-defined

threshold on the saturation channel. This is needed due to a singularity in the HSV model,

where a zero value of saturation leads to erroneous results. Hence, saturation must be non-

zero. Segmentation using a non-zero saturation channel threshold produces another binary

image. These two binary images from segmentation on the value channel and saturation

channel respectively, are then combined using element-wise multiplication. This produces

a third binary image which corresponds to the streaks present in the given image. Noise

in the binary mask images is then filtered with a 3 × 3 local median filter. Next, the
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morphological operations of dilation, area thresholding and erosion are performed on the

mask images removing noise and improving streaks’ morphology.

The threshold segmentation technique used here only selects the region above the threshold.

Hence, streaks that pass in-front of or behind each other are identified as a single continuous

region and appear in the image as intersecting each other. An example of this behavior is

illustrated in Figure 2.4 where the intersection of two streaks appears as a single white

region. It is very likely that intersecting streaks have different color signatures which the

camera observes as a mixture of colors from each streak. This prevents the detection and

tracking of individual streaks within the overlapping (apparent intersection) region and

hence, the correct 3D placement.

Figure 2.4: Two intersecting streaks segmented as a single object in white.

To correct this behavior, the apparently intersecting streaks must be separated. This is

performed by first separating streaks into their respective ligaments using an approach de-

scribed by Soille [16] for separating overlapping fibers. This technique uses skeletonization

by influence zones (SKIZ) to separate fibers based on their respective image skeletons. Fig-

ure 2.5a shows the separated streak ligaments correspond to the two intersecting streaks in
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Figure 2.5b. Once the ligaments are separated, the overlapping region is then determined

as the convex polygon whose vertices are the points on the intersecting streak edges where

the streaks were separated into ligaments. This region is removed from the overlapping

streaks.

In the next step, an ellipse is fitted to the detected overlapping area such that the second

moment of area is preserved. The properties of the ellipse and its orientation with respect

to the horizontal are recorded and used for the 3D reconstruction at a later stage. In the

next step, any remnant noise in the images is removed by a filtering operation applied to

all detected objects in a given image. This filtering operation is based on the eccentricity,

solidity, and equivalent diameter of each object. The output at the end of this step is a

binary image containing detected streaks, in full length (non-overlapping) or sectional form

(overlapping).

(a) (b)

Figure 2.5: (a) Streaks separated into ligaments after using the fiber separating method. (b)

Detected overlapping region (white), the associated vertices (red), and detected intersection

point (blue).
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The discretization of the detected streaks (full length or sectional) is performed next. This

process converts each of the streaks (full or sectional) into a series of discrete segments.

The segment length, b, is a user-defined parameter, which determines the spatial resolution

of the reconstructed path of a given particle in 3D space.

The discretization process begins by determining one end point of the given streak along

the streak center-line, named the starting point. Next a series of points along the streak

center-line are selected such that the distance between consecutive points is b, as illustrated

in Figure 2.6. These points, including the starting point, are referred as streak segment

points. A binary image is then generated where each of the streak segment points is white

and the rest of the image is black. This image is used for watershed segmentation where

the calculated ridgelines are used to break the streak into many segments as illustrated in

the bottom panel of Figure 2.6.

For each streak segment, the median hue of the streak is then calculated and the information

is stored along with the coordinates of the corresponding segment point. This information

is later used for three-dimensional placement. The sensitivity of the segment length on

resulting discretization is detailed in section 2.5.
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(a)

(b)

Figure 2.6: Images of the discretization process. (a) Shows the selected streak start point

(green square), second streak and third segment points (red diamonds) and the distance

between streak segment points. (b) Illustrates the resulting streak segments after watershed

segmentation where each streak segment point is denoted with a red circle.

2.3.3 Depth Position Estimation

The median hue values of the discretized segments of a given streak are then used to esti-

mate the depth position of each corresponding segment. The depth position of each streak

segment is estimated by comparing the median hue of the given segment with the hue range

of the core region within each color layer. If the median hue falls within the hue range, then
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the given segment is affiliated with the corresponding color layer’s core region. If the me-

dian hue does not fall within the hue ranges for any of the color layers, then the segment

is considered to be within the transitional region i.e. the overlapping region between two

adjacent color layers. This information along with the streak segment points and median

hues are used for the three-dimensional reconstruction of the streak.

2.3.4 Three-Dimensional Reconstruction

A given image is expected to contain multiple particle streaks. From the camera’s viewing

perspective, some of these streaks appear to intersect each other at one or more points. In

an earlier section, the process of detecting the intersection points of such streaks is de-

scribed, in which the intersection region is removed resulting in broken streak ligaments.

The first step of the reconstruction process is to reconnect the corresponding broken liga-

ments of a given streak based on local geometric similarity around the intersection point.

In the neighborhood of the intersection point, two disconnected ligaments of a given streak

are not expected to undergo major directional changes with respect to the camera’s view-

ing plane. Thus, the slope of the streak ligaments in the camera’s viewing plane before

and after intersection should be approximately constant. This principle is adapted here to

reconnect the broken ligaments of a given streak around the intersection point. For this

purpose, the algorithm first detects the broken ends of each ligament in the vicinity of the

intersection area and computes the corresponding slopes. Two ligaments with the closest

slopes are assumed to be belonging to the same streak and hence connected linearly through

the intersection point.

The procedure is then repeated to connect all broken streaks in the image. Note that due

to color mixing in the overlap region, the coordinates of the intersection point are not

defined based on the hue value. In case of an odd number of broken ligaments in a given
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intersection region, the ligaments with closest slopes are paired and the remaining ligament

is considered as the end of the corresponding streak.

After all streaks are reconnected, it is necessary to detect whether there is a color change

within the streak or it is monochromatic over its entire length, and consequently reject

monochromatic streaks. This is because, a fully monochromatic streak cannot be placed

depth-wise (i.e. same color layer will appear multiple times due to color permutation).

Hence, the change in color of the streak implies the movement of the particle in the depth

(out-of-plane) direction. The hue variation over the streak length is determined based on

the median hue of a given segment and its neighbors.

The depth positions of the streak segments in transitional regions are determined. This is

achieved by comparing the estimated depth positions before and after transition. As con-

tinuity of streaks in camera’s viewing plane has already been verified via successful seg-

mentation, streak continuity in the depth direction must also be ensured. This is achieved

by imposing a condition that a given streak must undergo a hue change from at least one

discrete color layer to another adjacent discrete color layer.

As the color permutation method uses the same color multiple times in a given volume,

the hue value in a given streak segment that corresponds to a particular core region is not

sufficient to place that segment at the correct depth location. As the seed particle moves

from one core region to another core region, it passes through the transition region. Since

there is a unique color combination for two adjacent core regions and the corresponding

transition region, this information is used to place streak segments at the correct depth

locations. Discrete depth positions are assigned by incrementally labeling core regions with

odd numbers and transition regions with even numbers (each between two odd numbers).
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2.3.5 Final Spatial Conversion

The three-dimensional reconstruction of each streak as described in the previous section

provides coordinates of each segment in a given streak (i.e. their coordinates in the mea-

surement view plane), and the depth information in the form of the core or transition num-

ber in which that segment is located. The last procedure of the algorithm is to convert this

data into the real length units describing the positions of each streak’s 3D movement within

the measurement domain in physical space.

This process converts the layer number of each streak segment to a depth position in phys-

ical units based on the calibration information obtained through the cross-view calibration

image. As discussed earlier, the streak signatures in the depth (x) direction are influenced

by perspective effects as observed from the measurement view. Hence, at a given x loca-

tion, the perspective correction needs to be applied to find the true spatial position. The

linear regression discussed in the calibration section is used to correct for perspective ef-

fects and provides the conversion scale for streak segments’ positions in the measurement

plane from pixels to physical units.

2.4 Synthetic Image Results

To demonstrate the functionality and accuracy of the algorithm’s implementation, it is

tested with synthetic images. These images have streaks with predefined 3D positions

so that the path predicted by the algorithm can be compared to the true particle trajectory.

As previously mentioned, the continuous out-of-plane coordinate, x, is discretized into 21

unique positions as an implementation of this new color-layers permutation method. The

x-coordinate of the true streak trajectory in this synthetic testing has been discretized facil-

itating simple comparison of the results produced by the algorithm to the true trajectory.
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For all tests the streak segment length (b) was set to 20 pixels. The color distribution used in

these tests is the five-color, eleven-layer volume shown earlier in Figure 2.1b. To produce

smooth transitions between adjacent color layers, smoothing with a 2D Gaussian kernel

was performed where σ = 10. Two synthetic images were generated, one with a single

streak and the other with two streaks intersecting each other as shown in Figure 2.7. As the

figure shows, the streaks change colors rapidly corresponding to highly three-dimensional

motion.

(a)

(b)

Figure 2.7: Synthetic images tested with the color permutation algorithm. (a) Contains the

single streak image and (b) contains the intersecting streak image.



Color Permutation Algorithm 93

The early steps of the algorithm detects and discretizes the streak(s) present in a given im-

age. Figure 2.8 shows the single streak and intersecting streaks in their discretized form.

Three-dimensional reconstruction is performed next to place all streak segments into their

respective 3D positions. This produces the 3D trajectories of each streak. The 3D trajecto-

ries of the given streaks detected by the algorithm are compared with the true trajectories

of the corresponding synthetic streaks. The results are depicted in Figure 2.9.

(a)

(b)

Figure 2.8: Discretized streaks in the camera viewing plane. The single streak is shown in

(a). The intersecting streaks in (b) have already been reconnected.
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The results show a very good agreement between the 3D trajectory of each streak estimated

by the algorithm and its corresponding true path. Very few local differences are observed

between the estimated and true paths. For example, in Figure 2.9a, differences are observed

at y ≈ 800, x = 2 and y ≈ 500, x = 6, both of which are associated with transition

regions between two color layers. In Figure 2.9b, some differences are observed for streak

B around the intersection point at x = 14, y ≈ 600, which is likely due to the removal of

the intersecting region and approximations used to reconnect the streaks.

These observed differences were further investigated by comparing each segment’s 3D po-

sition to the true 3D position. For the single streak, 5 of 126 segments were not placed in

the correct depth position. For each of these segments, the true trajectory depth position

was in a transition region while the algorithm placed the corresponding segment in the ad-

joining core region. For the two intersecting streaks, streak A had 7 of 78 segments with

an incorrect depth position than the true trajectory while 6 of 82 segments in streak B were

incorrect. In streak A, the seven incorrect segments were all placed in core depth positions

while the true path was in the adjacent transition region. In streak B, two of the six incor-

rectly placed segments were located in core depth positions where the true trajectory was

in the adjacent transition. Consequently, four of six incorrect segments in streak B were

placed in transition while the true trajectory was in the adjacent core region. The distance

between calculated intersection point and the true intersection point was 15% (3 pixels) of

the streak segment length.
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(a)

(b)

Figure 2.9: Three-dimensional view of the exact and discretized streak trajectories for

(a) the single streak image and (b) the intersecting streak image. In both tests the streak

segment length (b) was 20 pixels.
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2.5 Effect of Streak Segment Length

The results presented thus far have demonstrated that the presented algorithm accurately de-

tects and tracks the trajectories of particle streaks that change colors due to 3D movement.

As several parameters are involved in the algorithm, the sensitivity of the key parameters

is investigated in this section.

The streak segment length parameter (b) controls the resolution of the streak discretiza-

tion, which controls the spatial resolution of the streak trajectory. As the technique must

resolve both streak shape and the hue evolution along the streak, it is of interest to inves-

tigate how b influences the accuracy of the trajectory estimation. Figure 2.10 shows the

estimated trajectories for three different values of b. The figure shows as expected, that the

length of the streak segments influences the accuracy of the trajectory detection. Longer

streak segment lengths i.e. lower discretization resolution (Figure 2.10a) may not be able

to accurately track sharp changes in the streak trajectory. Smaller streak segment lengths,

i.e. higher discretization resolution, allows accurate detection of these fine features in the

streak trajectory (Figure 2.10c).

To quantify the effect of streak segment length on shape resolving, the length of the dis-

cretized streak is approximated as the sum of the Euclidean distance between neighboring

streak segment points for all streak segments. The correct streak length is taken as the

length of the center-line through the streak. It was found that decreasing the streak segment

length reduces the error. At b = 178, the error was found to be 7%, which reduces to about

5% at b = 78 and less than 1% for b = 18.

The length of streak segments influences the associated hue value since the algorithm con-

siders the median hue value as the representative hue for the given streak segment. Figure

2.11 shows the median hue values of streak segments for b = 78 and b = 18. Results clearly
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demonstrate that the streak segment length has an impact on the segment hue values, which

in turn influence the placement of the segment in the color layer and hence, the accuracy of

the trajectory detection.

The influence of the streak segment length on the hue resolution was quantified by sub-

tracting the median hue of each segment from the corresponding hue distribution in that

segment. This was repeated for all segments and then the average was taken. This aver-

age indicates the mean error associated with the use of median hue to represent the hue

distribution in streak segments. It was found that the mean hue difference along the streak

decreases with decreasing streak segment length. At b = 78 the mean hue difference is

about 20 hues which decreased to 10 hues when the streak segment length is 18. The above

analysis indicate that smaller streak segments lead to better resolution of the hue distribu-

tion and properly captures the fine features of the streak, leading to the higher accuracy of

the streak trajectory detection.
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(a)

(b)

(c)

Figure 2.10: Original streak shape in white compared with discretized streak in red for

three streak segment lengths. (a) b = 178. (b) b = 78. (c) b = 18.
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(a)

(b)

Figure 2.11: Median hue reconstruction of discretized streaks for two streak segment

lengths (a) b = 78 and (b) b = 18.
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2.6 Discussion and Conclusions

An algorithm was developed and presented that utilizes a unique method of color permuta-

tions to track particle streaks in 3D space. As each layer has unique neighbors, a change in

color of the particle streak accurately identifies the corresponding position along the depth

(out-of-plane) coordinate.

One advantage of this algorithm is that it is designed to be implemented with one color

camera and one light source, reducing the material resources required for experimental

implementation. While the results presented here are from a MATLAB software imple-

mentation, this analysis algorithm can be written in other programming languages. The

color permutation method is designed to be scalable as the number of possible out-of-

camera-plane measurement positions varies strongly with the number of colors. Hence,

an experimenter can add or remove colors and permutations as needed to satisfy the re-

quirements of a given experiment (i.e. the depth spatial resolution). Hence, the proposed

color permutation method has an excellent potential for high resolution three-dimensional

measurement.

The algorithm has been validated against synthetic images, which demonstrated its accu-

racy in detecting streaks and predicting their trajectories in 3D space. However, it needs

to be tested using real experimentally acquired images of well-documented flow fields for

further verification and identification of any practical limits. It is expected that practical

limits will arise due to the finite depth of field of a camera lens, background noise, and

camera sensitivity. In addition, the process of selecting tracer particles must consider color

changes in reflected light due to scattering.

Theoretically, a very large number depth positions are possible with color permutations as

the number of depth position increases with the square of the number of colors present in
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the color permutation volume. However, it is anticipated that any practical implementation

will not realize the potentially large number of color permutations (i.e. depth positions)

due to the effects of color interference between adjacent color layers. The quality of light

source used in a given implementation is anticipated to be the greatest contributor to such

a limit.

The behavior of streaks in an experimental implementation of this method is important

to the success of this algorithm. Given the algorithm’s nature as a streak characterization

technique, a relatively low seed particle density is desirable. This is important due to the

process of reconnecting broken streak ligaments that heavily depends on the shapes of the

streaks that appear overlapping in the camera view, and hence could affect the accuracy of

connecting the correct ligaments.

The technique in its current form determines particles’ displacement in a 3D space. How-

ever, it cannot estimate the local velocities due to the lack of time stamping within a given

image. Future work should be focused on advancements to this algorithm to enable local

velocity estimations by implementing time signatures during the image exposure.
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Chapter 3

An Investigation of the Near-Wall

Multi-modal Turbulent Velocity

Behaviour in the Boundary Layer

3.1 Introduction

When fluid flows over a solid surface, a very thin layer of fluid adjacent to the surface forms

known as the hydrodynamic boundary layer. While the boundary layer is often very thin

relative to the object dimensions, the boundary layer strongly influences the transport of

momentum and scalars (i.e. heat, mass, and species) which are often the parameters of in-

terest. In many engineering and natural applications, the boundary layer encountered is tur-

bulent in nature, hence highly three-dimensional motion coupled with dissipative processes

greatly increase flow complexity. Advancements in the current understanding of boundary

layer transport processes has a major impact on multiple scientific and engineering fields

including drag reduction in various systems, heat exchanger design, and the atmospheric
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sciences [1]. While the impact of boundary layer transport processes is significant to nu-

merous fields, the underlying governing mechanisms in the turbulent boundary layer are

not well-understood. To advance the current knowledge on these transport processes, a

deeper insight into the dynamics of the turbulent boundary layer is vital.

The turbulent boundary layer is composed of several layers that govern overall flow dynam-

ics. The inner region consisting of the viscous sublayer, buffer layer, and logarithmic layer

plays a crucial role in the overall dynamics of the turbulent boundary layer. Within the in-

ner layer, dynamical turbulent phenomena that influence interfacial momentum and scalar

exchange have been the focus of several experimental and numerical studies [2–7]. The

buffer layer is known to be the region where turbulent production is strongest, therefore

the turbulent phenomena found in this layer are central for the understanding of interfa-

cial transport processes. Within the buffer layer, near-wall streaks have been previously

reported as stream-wise oriented regions of high and low magnitude u′, however, the phys-

ical process governing their behavior was not well-reported [5]. This led to several ex-

perimental investigations focused on characterizing the key turbulent statistics including

turbulent production and Reynolds stresses in this region. The often discussed “bursting”

and “sweeping” phenomena and their associated turbulent statistics have been the topic of

numerous studies as significant contributors towards the Reynolds stress [8–11]. The phys-

ical cause for the “bursting” motion was suggested to be near-wall streak structures based

on a quadrant analysis [12]. Recent computational research confirmed this conclusion via

investigation of the dynamics of near-wall streak structures in the buffer layer [4]. The

observed streaks were found to occur in pairs that were slightly misaligned with the mean

boundary layer flow and the streaks extended over a long stream-wise domain.

The probability density function (PDF) is one of the most well-known tools for basic sta-

tistical analysis. The PDFs of the turbulent velocity components provide useful graphical



Unheated Turbulent Boundary Layer 107

information on the velocity magnitudes, biases, and departures from the mean that are

quantified via low and high order statistical moments. In a typical homogeneous turbulent

flow, the turbulent velocity PDFs manifest as a normal or Gaussian distribution due to the

collective influence of a myriad of turbulent structures, a consequence of the Biot-Savart

law and central limit theorem [13]. However, the turbulent velocity PDF is not required to

be strictly Gaussian in nature. Indeed, non-Gaussian turbulent velocity and turbulent veloc-

ity gradient statistics have been reported in turbulent flows and their nature is an on-going

field of research [14–16]. Presently it is known that the intermittent nature of turbulence

produces non-Gaussian PDFs [14, 17–19].

The turbulent velocity PDFs and associated statistics have also been reported in the litera-

ture [16, 20–23]. Frenkiel and Klebanoff [16] measured the stream-wise turbulent veloci-

ties in the logarithmic layer and the outer region using the hot-wire probe. They specifically

discussed the results in the buffer layer (y+ ≈ 10) due to its unexpected result. The authors

anticipated non-Gaussian behavior in the PDF of the stream-wise turbulent velocity due

to strong intermittency, driven by the local turbulent phenomena. However, the resulting

PDF did not show evidence of such intermittency [16]. Andreopoulos et. al. [23] in a later

study reported the stream-wise turbulent velocity PDFs at multiple locations in the inner

region. From the PDFs, the higher order statistical moments, skewness (3rd order moment)

and kurtosis (4th order moment), were computed and reported to follow non-Gaussian be-

havior in the viscous sublayer and the buffer layer. However, these quantities tended to

become Gaussian as the measurement location moved from the buffer layer into the log-

arithmic layer [23]. They attributed the non-Gaussian behavior in the viscous and buffer

layers to velocity intermittency associated with turbulent phenomena such as “bursting”

and “sweeping” [23]. Similar trends of Gaussian versus non-Gaussian nature of skewness

and kurtosis as a function of the location above the wall in the boundary layer have been
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reported in other studies [20, 21].

In the log layer, the turbulent velocity PDF has been reported to exhibit an approximately

Gaussian behavior. Quantifying the deviations from Gaussian behavior has been the topic

of some research studies [16, 24–26]. These studies have described an approximation of the

turbulent velocity PDF using the Gram-Charlier expansion [16, 26]. There have been obser-

vations of PDFs with very similar skewness and kurtosis values at multiple y+ coordinates

primarily in the log layer [20, 21, 23]. This suggests a possible self-similarity in the under-

lying turbulent velocity PDFs. The significance and details of this apparent self-similarity

have been the topic of further investigation where the phenomenon was confirmed to occur

in the log layer [24].

Research on the near-wall region of the turbulent boundary layer has established the pres-

ence of highly three-dimensional dynamical phenomena. The buffer layer is well-known

for its role in the generation and propagation of turbulent structures, such as near wall

streaks, that greatly influence momentum and scalar transport. These strong turbulent phe-

nomena have been previously reported to generate intermittency in the local stream-wise

velocity signal, which leads to non-Gaussian velocity behavior. However, the present un-

derstanding of the turbulent stream-wise velocity PDF is provided primarily by it’s charac-

terization in the wall-normal direction, with specific focus on the logarithmic layer. This

approach assumes spatial uniformity of the stream-wise velocity in the stream-wise and

span-wise directions. In a carefully conducted experiment, this behavior is expected for

the mean flow, however, the instantaneous turbulent velocity is not expected to be spa-

tially uniform due to the spatio-temporal intermittency associated with turbulent structures

and events originating/occurring in the near-wall region. Previous reports on the turbulent

stream-wise velocity PDFs have neglected the significance of the spatially varying local

turbulent phenomena in the buffer layer, hence a comprehensive understanding of three-
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dimensional boundary layer dynamics in this region is presently lacking. Thus, there is a

need for a better characterization of the 3D spatial distribution of the turbulent velocity PDF

within the turbulent boundary layer to obtain a deeper insight into the underlying processes

and better understanding of turbulent boundary layer dynamics.

The objective of this study is to experimentally characterize the three-dimensional nature

of the turbulent velocity PDFs within the buffer layer of the turbulent boundary layer. The

multi-plane Particle Image Velocimetry (PIV) technique is utilized in the present study

to measure two-dimensional velocity vector fields with high spatial resolution over multi-

ple planes with respect to the mean flow direction [27–31]. From the computed velocity

fields, numerous turbulent velocity PDFs and turbulent vector fields are generated. Obser-

vations of the PDF behaviors are used to drive more advanced analysis, including Proper

Orthogonal Decomposition, to describe the governing physical processes manifested in the

observed PDFs.

3.2 Experimental Setup and Methods

A closed loop, low-disturbance wind tunnel was used to conduct experiments. Air was

driven by a variable-speed axial-flow fan able to produce speeds up to 60 m/s in the test

section with a background turbulence rating of 0.5–0.9% over the wind speed range of

3–60 m/s. The background turbulence was previously characterized using Laser Doppler

Velocimetry (LDV). The low background turbulence rating was achieved through several

flow conditioning screens upstream of the test section. The wind tunnel has an active

cooling system to maintain a test section air temperature of 20 °C.

A schematic of the wind tunnel test section is shown in Figure 3.1. The test section is 46

cm × 46 cm in cross-section and 114 cm long. The top and side walls of the test section
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were made of clear acrylic for optical access. The bottom wall of the test section was made

from aluminium coated in smooth matte black vinyl to reduce light reflection. A 6.3 mm ×

6.3 mm × 43 cm steel rod was placed at the entrance of the test section to act as a boundary

layer trip. Experiments were conducted at five free stream velocities of U = 1.0, 2.5, 4.5,

6.0 and 7.5 m/s. The corresponding Reynolds numbers based on the momentum thickness

are Reθ ≈ 280, 700, 1000, 1400 and 1700.

The multi-plane PIV technique was used to measure two-dimensional velocity fields within

the boundary layer formed over the bottom wall. PIV measurements were conducted in

multiple planes as depicted in Figure 3.1. All measurements and results are referenced

using the coordinate system defined in the figure. The vertical stream-wise plane of mea-

surements was centered in the wind tunnel at z ≈ 23 cm, measuring the u and v velocity

components in the x-y plane. To characterize the complex dynamics of flow in the near-

wall region, measurements in the horizontal plane were conducted at four heights from

the wall corresponding to y = 1.5, 3.5, 7.5, and 12.5 mm, each of which captured the u

Figure 3.1: Schematic of wind tunnel test section. The measurement planes are also illus-

trated.
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and w velocity components in the x-z plane. Lastly, the vertical cross-stream plane (y-z

plane) measurements were conducted at x ≈ 81 cm which measured the v and w velocity

components. Measurements in all planes were taken about 128 boundary layer trip heights

downstream to ensure there was no remnant signature of the trip bar in the measured flow

fields.

The PIV system used in experiments was comprised of a dual-cavity 120 mJ Nd:YAG

laser (120XT 532 nm, SoloPIV) producing laser illumination at 15 Hz per cavity. A 12-

Megapixel CMOS camera (Flare, IO Industries) recording with a resolution of 4096 × 3072

pixels was used to acquire images via an image acquisition system (DVR Express CORE,

IO Industries). Two camera lenses, 50 mm f/1.4 and 70-300 mm f/4 (Sigma Corp.) were

used in experiments. A set of optics was used to transform the laser light beam into a 1

mm thick light sheet. A four-channel pulse delay generator (555-4C, Berkeley Nucleonics)

synchronized with the camera was used to control the timing of the laser pulses. The air

in the wind tunnel was seeded with theatrical fog (Directors Choice, UltraTec) from a fog

machine. Fog was injected upstream of the test section and flow conditioning screens.

The fog was circulated throughout the wind tunnel for several minutes before PIV image

recording commenced to ensure uniform distribution of seed particle.

For all experiments, a minimum of 10,000 images were captured at 30 Hz, corresponding

to at least 5,000 instantaneous vector fields generated at 15 Hz. Recorded PIV images were

exported to a desktop computer for processing. The processing of image pairs was per-

formed using an in-house code written in MATLAB to obtain instantaneous velocity fields.

The code uses the Fast Fourier Transform (FFT) cross-correlation with 50% overlap and

utilizes square interrogation windows between 32 × 32 pixels and 64 × 64 pixels and corre-

sponding search windows between 64 × 64 pixels and 128 × 128 pixels respectively. This

produced a nominal spatial resolution between 0.4 mm/vector (vertical stream-wise plane)
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and 1.3 mm/vector (horizontal plane). A local median filter was used to identify and correct

outliers in the velocity vector fields. The number of detected and corrected spurious vectors

in each experiment was less than 1%. An Adaptive Gaussian Window (AGW) scheme was

implemented to interpolate the velocity vectors onto a regular grid. The uncertainty asso-

ciated with PIV velocity computation was estimated based on the errors associated with

particle size, AGW interpolation, velocity gradients, peak locking, image dynamic range,

and out-of-plane motion. The uncertainty estimation in the velocity was based on the ap-

proaches developed by Cowen and Monismith, and Prasad et. al. [32, 33]. Experiments

conducted at Reθ = 1700 were used to estimate uncertainty in this study as this experimen-

tal condition produced the largest magnitude of velocity gradients. The maximum velocity

measurement uncertainty was estimated to be ± 6.3 cm/s corresponding to 0.8% of the

free-stream velocity.

3.3 Results

3.3.1 Mean Statistics

To confirm the consistency of the turbulent boundary layer formed in the present study

using the given experimental setup and generated test conditions, key time-averaged quan-

tities such as the low-order turbulent statistics and mean stream-wise velocity profile were

compared with results reported in the literature. This comparison was performed using

the velocity data in the vertical stream-wise plane, which is the most frequently reported

orientation in the literature.

Figure 3.2 presents the mean stream-wise velocity profile in wall coordinates at various

Reynolds numbers that were considered in the vertical stream-wise plane. The friction ve-

locity in the experimental data was estimated using two distinct methods. The first method,
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provided by Clauser [34], determines the friction velocity from the mean stream-wise ve-

locity profile. By fitting the measured velocity profile to the log law of the wall, Eqn. 1.30,

the friction velocity is computed. The other estimate was from the turbulent velocity com-

ponents in the constant stress layer where the friction velocity is calculated according to

Eqn. 3.1 [35]. Due to the planar nature of the PIV technique used in this study, it was not

possible to simultaneously measure all three velocity components. To estimate the friction

velocity using this equation, the span-wise turbulent velocity component (w′) was assumed

to have the same magnitude as the wall-normal component (v′), producing Eqn. 3.2 after

simplification.

u∗ = (u′v′
2

+ u′w′
2
)

1
4 (3.1)

u∗ = (2u′v′
2
)

1
4 (3.2)

The friction velocity estimated from each method is presented in Table 3.1. As the results

show, at all tested Reθ, there was a minor difference in the computed friction velocity mag-

nitudes estimated form the two methods. The estimate provided by Eqn. 3.2 was equal to

or slightly (≈ 5%) greater than the estimate from the log layer slope. This comparison con-

firms the accuracy of the estimated friction velocity. The values of friction velocity from

the log layer slope method are used in subsequent analyses.

The mean stream-wise velocity profiles in Figure 3.2 indicate that the logarithmic layer

is fully resolved and the expected log-linear trend is also exhibited. At the two highest

Reynolds numbers, only a few points are present in the buffer layer. As the Reynolds num-

ber decreased, more points are captured in the buffer layer and as expected these velocity

profiles deflect downward from the log-law. The canonical Law of the Wall formulation for
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Reθ
Log Layer Slope

(cms−1)
Constant Stress

(cms−1)
280 5.3 5.4
700 13 13

1000 21 22
1400 28 30
1700 35 37

Table 3.1: Friction velocity (u∗) estimates from each technique.

the logarithmic layer and viscous sublayer (extended until it intersected the log-law) and

Direct Numerical Simulation (DNS) data by Wu and Moin [36] are also plotted in the fig-

ure as reference. The results show that the current mean velocity profiles agreed reasonably

well with the reference profiles. The shape factor, estimated from the stream-wise velocity

profile, was found to cover the range between 1.25 (at Reθ = 1700) and 1.55 (at Reθ = 280)

which is consistent with the shape factor reported in many previous low Reynolds number

turbulent boundary layer research studies (reviewed in [20].

The key turbulent statistics are presented in Figure 3.3 as average profiles of the planar

turbulent kinetic energy (TKE) (kxy
+
), stream-wise Reynolds stress (u′2

+

), wall-normal

Reynolds stress (v′2
+

), and Reynolds shear stress (u′u′
+
). The experimental TKE profiles

(Figure 3.3a) all reached a peak kxy
+

of about 3.5 in the buffer layer before decreasing.

Reθ = 280 shows a slightly smaller peak kxy
+

magnitude. As y+ increases, each kxy
+

curve

tends toward zero as expected. The DNS results in general were slightly higher in magni-

tudes, however Reθ = 1000 shows good agreement with the corresponding profile from the

current experiments. The results also show similar Reynolds number dependency in both

experimental and DNS results for y+ > 200. However, for y+ < 200, the Reynolds number

dependency was found to be weaker in DNS results.
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Figure 3.2: Mean stream-wise velocity profiles at different Reynolds numbers. Reference

DNS data of Wu and Moin [36] and the Law of the Wall formulation (u+ = 1
κ
lny+ + 5 and

u+ = y+) where κ = 0.41.

In low Reθ turbulent boundary layer flows, a similar Reθ-based variation of the Reynolds

stress and turbulent velocity profiles is a common observation in the literature [20]. The

mean stream-wise Reynolds stress profile (Figure 3.3b) shows relatively good agreement

between the DNS and current experimental profiles in the buffer and log layers, and more

closer agreement again at Reθ = 1000. The peak locations were also consistent between the

DNS and current experimental results, but the magnitudes of DNS profiles were relatively

higher. Figure 3.3c presents the wall-normal Reynolds stress profiles with similar trends

and similar peak locations of both DNS and current experimental profiles. The overall

magnitudes of wall-normal Reynolds stress profiles of both experimental and DNS were

found to be in a comparable range in the buffer and log layers. The profiles also show

similar Reynolds number dependency. The Reynolds shear stress profiles (Figure 3.3d)

also show relatively good agreement between the DNS and current experimental profiles
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(a)

(b)
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(c)

(d)

Figure 3.3: Mean profiles of (a) planar turbulent kinetic energy, (b) stream-wise Reynolds

stress, (c) wall-normal Reynolds stress (d) Reynolds shear stress for all tested Reθ. DNS

data from Wu and Moin provided as reference [36].
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with magnitudes in a comparable range in the buffer and log layers.

The above presented results indicate that the measured mean and turbulent flow behavior

in the present study is in good agreement with established theory and previous findings.

The results at Reθ = 280 exhibited the most different behavior compared to other higher

Reynolds number cases. This is likely due to the weak turbulence magnitude in the flow at

this Reynolds number. It has been discussed in the literature that the minimum Reynolds

number required to sustain boundary layer turbulence is on the order of Reθ = 300 [20].

As the experimental results at Reθ = 280 clearly presented the identifiable buffer and log-

arithmic layers, these results can be accepted while acknowledging weaker turbulence as

compared to that at higher Reθ. The overall good agreement between the results from the

present study and reported DNS data confirms that the measured flow fields in the turbulent

boundary layer are well-suited for more advanced flow analyses.

3.3.2 Statistical Description of Turbulent Flow Behavior

Due to the nature of the velocity measurement technique employed in this study, in a given

experimental run, only two velocity components were measured simultaneously. The ori-

entation of measurement planes in this study, horizontal, vertical cross-stream, and vertical

stream-wise, are mutually orthogonal. Therefore, any selection of two planes, such as one

horizontal plane and one vertical stream-wise plane, must intersect in a line. Along this

line, one measured velocity component is common to both intersecting planes. If this com-

mon velocity component measured along the intersection line of perpendicular measure-

ment planes is statistically similar to the velocity component over each entire measurement

plane, then it can be inferred that the statistical nature of this velocity component has weak

spatial dependency, in each plane, in directions perpendicular to the common axis. For

example, the vertical stream-wise plane (x-y plane) and vertical cross-stream plane (y-z
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plane) intersect in a line where the vertical (v) velocity component at the same location was

recorded in both sets of measurements. Weak spatial dependency of v in x is inferred if v

measured over the entire x-y plane is statistically similar to v measured in the intersection

line between the x-y plane and y-z plane.

Figure 3.4 illustrates the PDF (φ) of u′+ (i.e. stream-wise turbulent velocity, u′, normalized

by the friction velocity) at y = 3.5 mm and Reθ = 700 obtained from the common intersect-

ing line in the stream-wise vertical plane (common x-axis) and the entire horizontal plane

(x-z plane). The excellent agreement between the entire u′ field and the intersection line

indicates that the PDF of u′ is not strongly dependent in z-direction. This behavior was

observed over all horizontal planes considered in this study and at all tested Reynolds num-

bers. Through a similar analysis of the v′ and w′ velocity distributions in their respective

planes and intersecting lines, it was observed that v′ and w′ have no strong dependencies

in x and z-directions, respectively. As expected from boundary layer theory, the turbulent

velocities demonstrate the strongest variation in the wall-normal direction. This result af-

firms that all three turbulent velocity components do not possess strong spatial variations

in the x and z-directions.

As reported previously, the stream-wise fluctuating velocity (u′) is the greatest contributor

to the turbulent kinetic energy, Reynolds stresses, and turbulent production in the near-wall

region of the turbulent boundary layer [37]. To characterize the behavior of this important

velocity component in 3D, the horizontal plane measurements describing u′(x, z) at four

heights above the wall and the vertical stream-wise plane describing u′(x, y) were utilized.

The distribution of φ(u′) at a given height above the wall illustrates the cumulative effects

of multiple turbulent phenomena. Figure 3.5 depicts the φ(u′) distribution in the horizontal

plane at various heights from the bottom wall (right pane) and in the corresponding inter-

secting regions of the vertical stream-wise plane (left pane), at all Reynolds numbers used
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Figure 3.4: PDF of u′+ over the entire horizontal plane and in the line of intersection be-

tween horizontal plane and vertical stream-wise plane at Reθ = 700 and y = 3.5 mm.

in this study.

At y = 1.5 mm, both measurement planes show similar distributions. The lowest Reynolds

number, Reθ = 280, demonstrated the narrowest distribution of φ(u′) with a slightly nega-

tive peak. An increase in the Reynolds number led to φ(u′) flattening and forming multiple

peaks and valleys which are clearly visible in the horizontal plane graph and most promi-

nent at Reθ = 1700. The vertical stream-wise plane at this height did not show the same

prominent peaks and valleys. An increase in the distance from the wall (y = 3.5 mm) led

to a highly multi-modal distribution of φ(u′) in the horizontal plane. In this distribution,

the multi-modal behavior was strongest at the lower Reynolds numbers while the experi-

ment at Reθ = 1700 exhibited the weakest multi-modality. The vertical stream-wise plane

distribution of φ(u′) at y = 3.5 mm also exhibited a strong multi-modal behavior.

As the distance from the wall further increased to 7.5 mm and 12.5 mm, the φ(u′) dis-
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(a)

(b)



Unheated Turbulent Boundary Layer 122

(c)

(d)

Figure 3.5: PDFs of u′+ in the horizontal plane (right column) and corresponding inter-

secting region in the vertical stream-wise plane (left column) at various heights from the

bottom wall, (a) 1.5 mm, (b) 3.5 mm, (c) 7.5 mm, (d) 12.5 mm.



Unheated Turbulent Boundary Layer 123

tributions in both stream-wise vertical and horizontal planes still exhibited multi-modal

behavior. The results in Figure 3.5c and 3.5d however show that in the horizontal plane,

these distributions have weaker multi-modal behavior as compared to distributions closer

to the wall. The results also showed some Reynolds number dependency of the velocity

distribution. Specifically, at y = 7.5 mm, there is a single prominent peak in φ(u′) for Reθ >

1000 compared to relatively equal prominence peaks at y = 3.5 mm, while the two lowest

Reθ cases show a relatively strong multi-modality. A similar behavior was observed at y =

12.5 mm along with the gradual formation of a new peak at Reθ = 1700 associated with a

positive u′. The vertical stream-wise plane φ(u′) distribution at y = 7.5 mm and y = 12.5

mm did not demonstrate a similar organized behavior. Comparison with the distribution at

y = 3.5 mm in the vertical stream-wise plane indicates a weakening multi-modal behav-

ior at greater heights, as the peak near u′ ≈ 0 grew in magnitude while the other peaks

diminished and the whole family of curves became slightly narrower.

The behaviors observed in the φ(u′) distributions suggest that multiple phenomena govern

stream-wise turbulent velocity (u′) behavior. Table 3.2 shows the values of y+ that corre-

spond to various heights and Reynolds numbers considered in this study. At y = 1.5 mm,

the φ(u′) distribution at Reθ = 280 was smooth, which transformed into a multi-modal dis-

tribution with an increase in the Reynolds number. A plausible explanation of this behavior

could be the stronger influence of viscous shear at the lowest Reynolds number since the

height y = 1.5 mm corresponds to y+ ≈ 5 at Reθ =280, implying that the flow at this height

is strongly influenced by the adjacent viscous sublayer. With an increase in the Reynolds

number, this location shifted into the buffer layer as illustrated Table 3.2. Similarly, the

PDFs at y = 3.5 mm exhibited the strongest multi-modal behavior. This height was lo-

cated primarily in the buffer layer and started to shift towards the logarithmic layer with

an increase in the Reynolds number. The heights y ≥ 7.5 mm correspond to locations
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Reθ y = 1.5 mm y = 3.5 mm y = 7.5 mm
280 5 12 25
700 12 30 60

1000 20 45 100
1400 25 65 135
1700 35 80 170

Table 3.2: Normalized wall coordinates (y+) of horizontal planes.

in the logarithmic layer for Reθ ≥ 700, where the multi-modal behavior weakened in the

φ(u′) distribution. This is an expected behavior as φ(u′) begins to approximate a Gaussian

distribution in the logarithmic layer, which is consistent with previous findings [20, 21, 23].

While non-Gaussian behavior in the buffer layer was speculated in previous studies, it had

not been quantitatively reported in the literature. To the best of authors’ knowledge, the

present results for the first time, not only report the presence of non-Gaussian behavior in

the buffer layer, but also provide evidence of a multi-modal behavior. It is important to note

that the good agreement of the mean velocity and various turbulent characteristics between

present measurements and previous DNS and canonical results, as shown earlier, confirm

that the observed multi-modal trends are associated with the real physics of the flow rather

than an experimental artifact.

The present findings suggest that in the buffer layer, there are relatively few strong turbulent

structures that cause the departure from Gaussian behavior. It should be noted that the

distributions of φ(v′) and φ(w′) were investigated, and no multi-modality was found in

φ(v′) and φ(w′). As the multi-modal behavior was only observed in the φ(u′) distribution,

this indicates that the turbulent structures in the buffer layer have a specific orientation

biased towards the stream-wise direction. The identity and nature of these structures, and

the validity of this hypothesis, requires further investigation.

The prominent multi-modality in horizontal planes suggests that some span-wise phe-
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nomenon contributes to this behavior. In the current body of literature, the span-wise be-

havior of the turbulent boundary layer is not well-reported. It is of interest to thoroughly

characterize the nature and characteristics of this unique phenomenon. As the multi-modal

behavior of φ(u′) is strongest near the wall in the buffer layer, specifically at y = 1.5 mm

and y = 3.5 mm, these two heights are the focus of a more in-depth investigation.

3.3.3 Instantaneous Turbulent Velocity Field Analysis

The observed multi-modal behavior produced the strongest signature in the two measured

heights (i.e. y = 1.5 mm and y = 3.5 mm) located in the buffer layer. As measurements

in the horizontal plane provided the most prominent view of the multi-modal behavior

relative to the vertical stream-wise plane, the subsequent analyses are primarily focused on

characterizing flow behavior observed in the two horizontal planes mentioned above. The

turbulent flow structure in the buffer layer is illustrated via sample instantaneous turbulent

velocity fields at y = 1.5 mm and y = 3.5 mm in Figure 3.6 at Reθ = 280. These plots

provide insight into the differences observed in the φ(u′) distributions at these two heights

above the wall. Higher Reθ produced similar turbulent flow patterns as Reθ = 280, however,

due to the increased background turbulence, these patterns were more difficult to observe

clearly.

In the turbulent velocity vector fields presented in Figure 3.6, as per the sign convention

used, the upward pointing arrows represent positive stream-wise velocity fluctuations (u′ >

0) while the downward pointing arrows represent negative velocity fluctuations (u′ < 0).

The turbulent velocity field at y = 1.5 mm depicts several regions of large magnitude local

stream-wise positive fluctuation that appear occasionally throughout the vector field. In

contrast, the local negative fluctuations have a smaller magnitude but extended through a

large domain of the flow field. This behavior is consistent with the corresponding φ(u′)
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distribution. The strong infrequent positive fluctuations contribute to the long u′ > 0 tail in

φ(u′), while the weak negative fluctuations are spatially prevalent, hence the peak in φ(u′)

is slightly negative. At higher Reθ, more intense turbulent action appeared to strengthen

both positive and negative fluctuations evidenced by the broad distribution and weakly

multi-modal behavior as observed in the φ(u′) distributions at those Reynolds numbers.

The turbulent velocity vector field at Reθ = 280 and y = 3.5 mm depicts a significantly

different behavior than at y = 1.5 mm. Multiple positive and negative fluctuating stream-

wise velocity regions are present. As with y = 1.5 mm, the u′ < 0 regions span a large

stream-wise extent. The u′ > 0 regions have comparable magnitude to the u′ < 0 regions

and are more frequently observed at this height than at y = 1.5 mm. It was also observed

that the positive fluctuating regions feature a greater stream-wise length at this height than

at the lower height. There appears to be an alternating pattern of positive and negative

fluctuating regions in the span-wise direction. These regions are separated by areas with

very low u′ magnitudes. The spatial distribution and organization of these stream-wise

turbulent velocity regions depict a visual resemblance to the near-wall streak structures and

turbulent patterns documented in the literature [4, 38].

The investigation of the turbulent velocity field has shown near-wall stream-wise oriented

regions with strong u′ signatures. The magnitude of the u′ signature was found to increase

with an increase in distance from the wall i.e. from 1.5 mm to 3.5 mm. The strong multi-

modal distribution of φ(u′) is associated with these regions. It was noted earlier that the

multi-modal behavior in φ(u′) at y = 3.5 mm was weakest at Reθ = 1700. At this Reynolds

number, this height corresponds to y+ ≈ 80, which is in the lower logarithmic layer. This

behavior is consistent with previous studies that reported approximately Gaussian behavior

in the logarithmic layer [20, 21, 23]. It can be concluded that the multi-modal behavior of

φ(u′) is linked to turbulent phenomena found primarily in the buffer layer.
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(a)

(b)

Figure 3.6: Instantaneous turbulent velocity fields from the horizontal plane experiments at

Reθ = 280 located at (a) 1.5 mm and (b) 3.5 mm above the wall. Mean boundary layer flow

is in the positive x-direction.
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Near-wall streak structures are generally aligned with the mean flow that are found in the

buffer layer of the turbulent boundary layer. Stream-wise vortices and other vortical struc-

tures are also found in this layer. To investigate whether the observed multi-modal behavior

in the φ(u′) distribution is related to vortices, a vorticity threshold technique is used to de-

tect vortices.

The vorticity threshold was calculated utilizing a Gaussian weighted average filter over

each instantaneous turbulent vorticity field. This is a low-pass 2D Gaussian filter of size

(F) with standard deviation (σ) where both quantities were computed based on the dimen-

sions of the planar vorticity field (S = 256 vectors × 192 vectors) as shown in Eqns. 3.3

and 3.4. The output of this filter was multiplied by a constant of 0.7, manually selected

and optimized for high quality vortex detection. This operation produces a vorticity thresh-

old field that detects vortices when applied to the corresponding instantaneous turbulent

vorticity field.

σ = 2 floor
( S
16

)
+ 1 (3.3)

F = 2 ceil(2σ) + 1 (3.4)

A sample instantaneous turbulent vorticity field in the horizontal plane with the superim-

posed corresponding turbulent velocity vectors at Reθ = 280 and y = 3.5 mm is depicted in

Figure 3.7a. There are numerous regions of stream-wise oriented positive and negative fluc-

tuating vorticity that resemble stream-wise vortex signatures. Several of these regions are

adjacent to each other and have high vorticity magnitudes. The map of the corresponding

detected vortices based on the vorticity threshold are illustrated in Figure 3.7b.

As illustrated in the figure, the high vorticity regions are well captured and the detected

vortices are aligned primarily with the mean flow direction as expected. Next, u′ is ex-
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(a)

(b)

Figure 3.7: (a) Instantaneous turbulent vorticity field with superimposed turbulent velocity

vectors. (b) Detected vortices (white) for this vorticity field after vorticity threshold is

applied. Horizontal plane experiment at y = 3.5 mm and Reθ = 280. Mean boundary layer

flow is in the positive x-direction.
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Figure 3.8: PDFs of u′+ for detected vortices, non-vortices, and the overall distribution

based on applied vorticity threshold technique. The vortices and non-vortices PDFs are

normalized with the overall PDF.

tracted from the turbulent velocity fields within the detected vortex regions. The PDFs of

u′ were then calculated for the regions associated with detected vortices and non-vortices

as illustrated in Figure 3.8.

At the figure shows, at both y = 1.5 mm and y = 3.5 mm, the PDFs’ shape in both vortex and

non-vortex regions does not significantly change and both distributions show multi-modal

behavior. Similar trends are observed at all Reynolds numbers. The smaller magnitudes

present in the detected vortices distribution reflects only the fewer measurement points

present in this distribution relative to the non-vortices distribution and the overall PDF.

The presence of multi-modality in both vortical and non-vortical regions indicates that the

multi-modality in φ(u′) is not exclusive to vortices. This conclusion however does not

imply that there is no relationship between the streaks and stream-wise vortices. In fact,

the relationship between the two has been the topic of prior research where the streaks and
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stream-wise vortices participate in a cyclical exchange of energy [39, 40].

3.3.4 On the Mechanism of Multi-Modal φ(u′) Formation

Advanced mathematical analysis techniques have been applied to characterize the nature of

turbulent flows. One such technique is the Proper Orthogonal Decomposition (POD). The

POD technique decomposes a given quantity into several eigenfunctions, known as POD

modes (ψ j), each with an associated coefficient (a j) a function of the calculated eigenval-

ues, as shown in Eqn. 3.5 for u′. The eigenfunctions are found from solving the eigenvalue

problem in Eqn. 3.6 with eigenvalues λ j while the coefficients are calculated by projecting

the eigenfunctions onto the specified fluid quantity, see Eqn. 3.7 [41]. The objective of

POD is to generate a decomposition of the specified quantity with minimal difference be-

tween the quantity and its POD. It is important to note that each POD mode does not always

represent any real fluid quantity or behavior but rather flow energy patterns. However, there

have been numerous insights on real fluid behavior based on POD characteristics making

this technique suitable for the analysis of turbulent flow structure [41–44].

u′ =
∑

a jψ j (3.5)∫
〈u′(x, t)u′T (x, t)〉ψ j(x′)dx′ = λ jψ j(x) (3.6)

a j(t) =

∫
u′(x, t)ψ j(x)dx (3.7)

The behavior of multi-modal φ(u′) was further investigated using the Proper Orthogonal

Decomposition of the measured turbulent stream-wise velocity fields. In this investigation,

the method of snapshots was used on measured PIV data and the decomposition was cal-

culated using the open-source implementation in the OpenPIV toolbox [41, 45]. This tech-
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Figure 3.9: Stream-wise POD eigenspectra for all tested Reynolds numbers at 1.5 mm and

3.5 mm above the bottom wall.

nique generates one POD mode per instantaneous vector field measured in experiments,

therefore there are approximately 5000 POD modes computed per experimental run in the

present study. The energy associated with each POD mode is known as the eigenspectra

(Eλ
j ), which is a function of the eigenvalues calculated as shown in Eqn. 3.8. This quantity

defines the relative contribution of each POD mode to the original turbulent velocity fields.

The eigenspectra of u′ in the horizontal planes at heights of y = 1.5 mm and 3.5 mm are

plotted in Figure 3.9.

Eλ
j =

λ j∑
λ j
· 100% (3.8)

At both tested heights the same trend is observed where the most energetic POD modes

are the very low-order (< 10) modes, as expected. The most energetic mode, POD mode

1, contains between 1% and 2% of the total energy content in the decomposition at higher
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Figure 3.10: Stream-wise cumulative POD eigenspectra for all tested Reynolds numbers at

1.5 mm and 3.5 mm above the horizontal wall.

Reynolds numbers, while at Reθ = 280 the first POD mode contains between 3% and 4%.

Higher-order POD modes have a lower energy content per mode as both figures indicate

the respective eigenspectra decreases quickly in a non-linear fashion. At low Reynolds

numbers the eigenspectra decreases faster than at high Reynolds numbers producing an

intersection of the curves around POD mode 100. As the POD mode number increases

further, eventually the largest magnitude of Eλ
j for a given POD mode is found at Reθ =

1700.

The trends observed in the eigenspectra distribution indicate that a substantial amount of

energy is present within higher order POD modes especially at higher Reynolds numbers.

The cumulative eigenspectra (EX) describes the fraction of total energy contained within

the POD modes up to X% of the total energy, starting with mode 1. The cumulative energy

content corresponding to the data in Figure 3.9 is plotted in Figure 3.10, respectively.
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The two families of curves in the figure exhibit very similar behavior. At Reθ ≥ 1000,

approximately the first 100 POD modes are required to capture the first 40% of the total

energy content. Decreasing the Reynolds number indicates fewer POD modes are required

to reach this energy signal due to a larger Eλ
j . These graphs also exhibit the behavior

where the number of POD modes required to reach a specific total energy content generally

increases with Reynolds number. This is most clearly observed at y = 1.5 mm where 60%

of the total energy content requires ∼ 30 modes at Reθ = 280 and ∼ 350 modes at Reθ =

1700. These curves indicate that for Reθ ≥ 700, more than 100 POD modes cumulatively

contain 50% of the total energy.

The energy distribution in these POD modes is then utilized to investigate what quantity of

POD modes are needed to produce the observed multi-modal behavior in φ(u′). This will

establish the relative significance of each POD mode to the statistical behavior of u′. For

this purpose, u′ was reconstructed using the POD modes that constitute the 75th (E75), 85th

(E85), 95th (E95), and 100th (E100) percentile of the total energy content, i.e. the cumulative

energy up to that percentile. The φ(u′) distribution for these percentiles are illustrated in

Figure 3.11.

As observed in the figure, at y = 1.5 mm, the φ(u′) distribution corresponding to E75,

referred to as φ(u′75), shows a smooth uni-modal distribution. At the 85th percentile, φ(u′85),

the distribution remains uni-modal but becomes wider and flatter. Once 95% of the total

energy content is included (i.e. 95th percentile), a weak tri-modal distribution is observed in

φ(u′95). A full multi-modal distribution is established at the 100th percentile. This indicates

that the multi-modal behavior does not manifest in the φ(u′) distribution until a very large

fraction of the total u′ signal is included. A similar trend is observed at y = 3.5 mm,

where φ(u′75) begins as relatively narrow and uni-modal, then φ(u′85) is broader, and the

weak multi-modal behavior appears at φ(u′95). From these figures, it is clear the peaks
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Figure 3.11: PDFs of u′ at Reθ = 700 based on POD reconstructions using different per-

centiles of the total POD energy; E75 (blue), E85 (red), E95 (black), and E100 (green).

and valleys of the multi-modal φ(u′) distributions are formed by the contributions of the

higher order POD modes, i.e. POD modes located between E85 and E100. The percentiles

of u′ POD modes at which the multi-modal behaviors are observed at different Reynolds

numbers are summarized in Table 3.3.

As the results in the above table shows, at the lowest Reynolds number of 280, no multi-

modal behavior is observed at y = 1.5 mm but at y = 3.5 mm, Reθ = 280 exhibited a unique

tetra-modal behavior when 99% of the total POD energy is considered. All Reynolds num-

bers higher than 280 exhibited multi-modal behavior at both heights but at high percentiles

of POD modes. These results demonstrate that the multi-modal behavior in φ(u′) is a

higher-order phenomena that cannot be captured by low to middle order POD modes and

that the energy contributions from high order POD modes (top 5-15% modes) play a crucial

role in influencing the velocity distribution. As per Figure 3.10, depending on the Reynolds

number, between the first 100 to 1000 POD modes cumulatively constitute about 85% of
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Reθ y = 1.5 mm y = 3.5 mm

280
Bi-modal: 97%

Uni-modal only Tri-modal: 98%
Tetra-modal: 99%

700
Bi-modal: 97% Bi-modal: 88%
Tri-modal: 98% Tri-modal: 98%

1000
Bi-modal: 94% Bi-modal: 96%
Tri-modal: 98% Tri-modal: 99%

1400 Bi-modal: 97% Tri-modal: 85%

1700
Bi-modal: 96%

Bi-modal: 98%
Tri-modal: 99%

Table 3.3: Approximate percentiles of POD energy content required to manifest multi-

modality in φ(u′) distribution.

the total energy, while the remaining (over 4000) POD modes ( 15% of the total energy)

collectively contribute to the multi-modal φ(u′) behavior despite containing a relatively

small amount of energy per mode.

To further investigate, u′ was reconstructed using the POD modes from two separate en-

ergy regions, 0% to 85% and 85% to 100% of the cumulative eigenspectra. From the

reconstructed u′ fields, φ(u′) was then calculated for both cases and illustrated in Figure

3.12 at Reθ = 1000.

The φ(u′85) distribution shows a broad behavior indicating that a wide range of turbulent

velocity magnitudes are associated with these POD modes. The upper 15% of the cumula-

tive energy content, φ(u′85−100) shows a narrow distribution indicating a limited range of low

magnitude turbulent velocities associated with these POD modes. It is interesting to note

that neither the φ(u′85) distribution nor the φ(u′85−100) distribution are multi-modal but only

when the two distributions are combined, the multi-modality is realized. This behavior is

observed in all Reynolds numbers considered in this study, except Reθ = 280 at y = 1.5 mm

where no multi-modality was observed in the original φ(u′) distribution. The non-linearity
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Figure 3.12: PDFs of u′+ at Reθ = 1000 based on POD reconstructions of bottom 85% (0%

to 85%) and top 15% (85% to 100%) of the cumulative POD energy.
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observed in the eigenspectra is present in the POD coefficients, a j, providing a non-linear

weighting to each constituent POD mode of the reconstructed velocity field. The behavior

of these PDFs indicates that the upper 15% of POD modes according to the cumulative

energy distribution, characterize a process that preferentially selects certain u’ values to

produce the observed multi-modality.

One possible physical explanation for the formation of multiple modes in φ(u′) is due to

complex dissipative behavior. This hypothesis was tested by performing POD on the tur-

bulent kinetic energy dissipation rate calculated from the turbulent velocity field using the

method provided by Doron et. al. for planar PIV measurements as shown in Eqn. 3.9 [46].

The dissipation rate was separated based on the 85% POD energy threshold, that is the

dissipation rate associated with POD modes containing 0% to 85% of the total POD en-

ergy and the dissipation rate associated with POD modes containing 85% to 100% of the

total POD energy. The PDFs of the dissipation rate normalized by the friction velocity and

kinematic viscosity (ε+) are presented in Figure 3.13 for the two heights y = 1.5 mm and

3.5 mm at Reθ = 1000. The dissipation rate based on all POD modes is also presented for

comparison.

ε = 3
(∂u
∂x

)2

+

(
∂v
∂y

)2

+

(
∂u
∂y

)2

+

(
∂v
∂x

)2

+ 2
(
∂u
∂y
∂v
∂x

)
+

2
3

(
∂u
∂x
∂v
∂y

) (3.9)

The results show that the distribution of φ(ε+
85) has a significant overlap with the dissi-

pation rate based on all POD modes, indicating that the lower order POD modes well

resolve the bulk of the dissipation rate. The φ(ε+
85−100) distribution indicates that substan-

tially higher dissipation rates are associated with higher POD modes. The clear separation

of the high-magnitude dissipation rate PDF at higher POD modes (i.e. φ(ε+
85−100)) and
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Figure 3.13: PDFs of natural logarithm normalized dissipation based on reconstructions

of the POD of the estimated dissipation rate. The distributions are separated based on the

cumulative energy thresholds from the u′ POD.

the low-magnitude dissipation rate PDF at lower POD modes was observed at all tested

Reynolds numbers. This separation of dissipation rates based on the POD energy threshold

(i.e. 85%) that is originally associated with uni-modal and multi-modal φ(u′), suggests that

multi-modality in φ(u′) is influenced by the presence of strong dissipation at high POD

modes, which are associated with smaller scales of turbulent motion.

Further investigation into the nature of the reconstructed POD modes provides deeper in-

sight into the underlying flow dynamics. By reconstructing instantaneous turbulent velocity

fields from groups of POD modes, it is possible to observe the spatial distribution and in-

teraction of detected phenomena. The POD modes corresponding to the ranges: 0%-20%,

20%-40%, etc., up to 80%-100% of the cumulative energy in the POD of u′ were each

reconstructed with example turbulent velocity vector fields depicted in Figure 3.14. It is

observed that the 0%-20% POD reconstruction contained streak-like shapes separated by
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strong shear layers and occasional roll-ups. From 20%-40% up to 40%-60% several eddy-

like patterns were observed that were largest and most sparse at 20%-40% while smaller

and numerous at 40%-60%. At higher than approximately 80% cumulative energy, no clear

eddy patterns were observed, instead small-scale motion patterns with some stochastic sig-

nature were present.

One interesting behavior present in these POD reconstructed vector fields is the formation

of large eddy-like patterns at low order POD modes. These eddy-like features are likely

to have been generated by instability in the shear layer between adjacent streaks. As the

POD modes increase, the size of the observed eddy-like patterns was found to decrease

while, the number of those patterns increased. This process is reminiscent of the turbulent

energy cascade where vortices of decreasing size transport energy toward the dissipative

scale. The highest order POD modes appear to be corresponding to small scales of motion,

and as previous results have demonstrated, are associated with the strongest dissipation

magnitude, which is consistent with the energy cascade process. Similar patterns of the

reconstructed vector fields at different POD modes were also observed at other Reynolds

numbers.

Figure 3.14d shows that the reconstructed vector field of the top percentile of POD modes

is comprised of numerous, relatively small-scale turbulent patterns throughout the flow do-

main. As discussed earlier, the top 15 percentile of POD modes contribute to the multi-

modal behaviour (see Figure 3.11 and Table 3.3). This indicates that there must exist

a mechanism through which these small-scale turbulent features interact with the larger

scale eddy-like patterns to invoke the multi-modal behaviour. It can be hypothesized that at

certain scales, strong, nonlinear energy exchange occurs between these turbulent features,

which is not exclusive to vortices. This hypothesis is consistent with the near-wall cycle

process analytically proposed by Waleffe and Kim [39, 40] that describes a cyclical energy
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exchange where turbulent kinetic energy is transferred from the mean flow to stream-wise

vortices and then to streak structures. Some of this energy then returns to the stream-wise

vortices via non-linear streak instability while some energy is dissipated. They argued that

certain wavenumber conditions must be satisfied to support the cyclical energy transfer and

prevent viscous decay [39, 40]. The smallest scales of turbulence are not resolved in the

present study; hence, the computed dissipation rate is taken to approximate energy transfer

toward smaller scales. The high order POD modes and their associated small-scale turbu-

lent motions are not strictly dissipative in nature. As POD mode numbers are analogous

to wavenumbers, one physical interpretation of the observed multi-modal behaviour could

be part of the cyclical energy transfer where some energy from the small-scale turbulent

features is returned to the larger scale turbulent motions.
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(a)

(b)
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(c)

(d)

Figure 3.14: POD reconstruction of turbulent velocity vector fields from horizontal plane

experiments at Reθ = 1000 located 3.5 mm above the wall. Panel (a) contains the recon-

struction from E0−20, (b) E20−40, (c) E40−60, (d) E80−100. Mean boundary layer flow is in the

positive x-direction.
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3.4 Conclusions

In this study, the near-wall dynamics of the turbulent boundary layer were investigated

utilizing the multi-plane PIV technique. Planar velocity measurements over multiple or-

thogonal planes were successfully able to capture 3D turbulent phenomena suitable for a

comprehensive investigation. The stream-wise turbulent velocity PDF manifested multi-

modal behavior primarily within the buffer layer. These findings indicate that the often

used assumption of Gaussian turbulent statistics is not always true in the turbulent bound-

ary layer. The cause of the multi-modal φ(u′) distribution was investigated in the horizontal

plane where results indicated the multi-modal behavior was not induced by the strong lon-

gitudinal vortices present in the buffer layer. This necessitated a more advanced analysis

technique in the form of the Proper Orthogonal Decomposition to the characterize the ob-

served multi-modal behaviors of φ(u′).

The POD analysis of u′ presented multiple interesting results. First, the energy associated

with higher order modes was significant suggesting that these modes cannot be neglected.

This observation led to the demonstration that the upper 15% of the cumulative eigenspectra

was the contributor to the observed multi-modal behavior of φ(u′). It was found that these

high order POD modes correlate to a large magnitude of turbulent energy dissipation rate.

Observations of reconstructed turbulent velocity fields from the POD indicate the presence

of eddy-like turbulent patterns that progressively get smaller in size as the POD mode

number increases until manifestation of small-scale turbulent features at higher POD modes

constituting top 15% of the cumulative energy content. These results form the basis of

the hypothesis that the multi-modality observed in φ(u′) is driven by a complex energy

exchange process between large and small scale turbulent motion.
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Chapter 4

Visualization and Characterization of

Thermals in a Heated Turbulent

Boundary Layer

4.1 Introduction

The exchange of mass, momentum, and heat at a solid-fluid interface is one classical area

of study in fluid mechanics. The interfacial transport of these quantities is governed by

the behaviors of the developed hydrodynamic and thermal boundary layers. In numerous

engineering applications and environmental phenomena, the encountered boundary layer

is turbulent in nature and characterized by non-linear dynamical processes that create chal-

lenges for an in-depth investigation of the underlying flow phenomena. The presence of

heat transfer further increases flow complexity due to the non-linear coupling of the key

thermofluid variables. A better insight into turbulent boundary layer dynamics is necessary,

to improve the understanding of underlying processes that are important in a wide range
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of environmental and engineering fields, for example, the influence of atmospheric bound-

ary layer stratification on the dynamic wind loading on structures, transport of species and

weather patterns [1–5]. To facilitate the continued improvement of engineering systems

and design correlations, and our predictive models for natural phenomena, a more compre-

hensive understanding of turbulent boundary layer dynamics in the presence of heat transfer

is crucial.

In heated turbulent boundary layer flows, inertia, viscous shear, and buoyancy all interact to

govern overall flow behavior. The relative influence of the inertial force and buoyant force

is quantified by the bulk Richardson number (Ri) as defined in Eq. 4.1. In this equation,

U is the mean freestream velocity, ∆T is the temperature difference between bulk fluid and

solid, β is the coefficient of thermal expansion, g is gravitational acceleration, and L is the

characteristic length scale [6].

RiL =
GrL

Re2
L

=
gLβ∆T

U2 (4.1)

This parameter defines three broad categories of flow dynamics in the presence of heat.

When RiL � 1, flow inertia is dominant and the heat transfer mode is termed forced con-

vection. In the regime where Ri ≈ 1, the buoyant force is of comparable magnitude to flow

inertia leading to a mixed convection regime. When Ri � 1, the buoyant force dominates

the flow leading to the natural convection mode [7–9]. In this mode, when the Grashof

number is very low and the inertial effects are very weak, the convective motion is negligi-

ble and the heat from a horizontal flat plate is transported via conduction. While the inertial

effects are still weak, an increase in the Grashof number by increasing the wall temperature

leads to the buoyant force overcoming the viscous force and inducing the buoyancy-driven
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convective motion. In the presence of a relatively cooler horizontal plate placed at a certain

height above the heated plate, fluid cools at the cold plate, increases its density and sinks

down toward the hot plate, thus, forming a closed cyclical fluid flow pattern as the well-

known Benard convective cells. As the hot wall temperature continues to rise, the buoyant

force becomes significantly dominant compared to the viscous force, leading to the break-

down of convective cells and buoyant turbulence [10]. In the absence of a cold upper wall

however, the closed cycle convective cells do not form. In this configuration, parcels of

heated fluid known as thermals can detach and rise from the heated wall, which have been

observed and qualitatively visualized [9, 11].

The presence of buoyancy can have a significant effect on boundary layer dynamics, espe-

cially in mixed convection conditions where inertia and the buoyant force are of compa-

rable magnitude. The presence of a significant buoyant force has been reported to induce

an early laminar to turbulent transition within the boundary layer [12]. Computational

research studies often neglect the contributions of the buoyant force in the governing equa-

tions, opting to treat temperature as a passive scalar [13, 14]. While this treatment is valid

in the limit of Ri approaching zero (i.e. forced convection), in the mixed convection regime

such an assumption undermines the presence and impact of thermals. Previous computa-

tional research that included the buoyant force, rarely reported on the presence of thermals

and often presented findings at one Richardson number [13–16]. In some cases, this is due

to the research objective being focused on describing the inertia-driven turbulent phenom-

ena and not the buoyancy-driven hydrodynamics [15, 16]. Recently, the present authors

have reported on a 3D visualization of the heated turbulent boundary layer [17]. Several

behaviors were documented where buoyant thermal-like regions exhibited complex and

3D turbulent behaviors including the participation and generation of eddies while rising

through the boundary layer. The experimental findings reported there were qualitative in
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nature and the presented thermal detection technique was only useful in one reported ex-

perimental condition, limiting the technique’s broad applicability.

The presence of buoyancy driven secondary flow structures, such as thermals, can have

a significant impact on the overall boundary layer flow behaviour. However, the forma-

tion and dynamics of thermals rising from the heated wall through a boundary layer flow

is a complex process. Most of the current knowledge about this phenomenon originates

from flow visualization studies, which provide a qualitative description of this complex

process [6, 9, 18]. Thermals are known to be three-dimensional structures however there is

a scarcity of experimental work to characterize their 3D nature within the turbulent bound-

ary layer. In addition, there is a fundamental lack of knowledge on how buoyancy-driven

thermals within the turbulent boundary layer are influenced by the relative contributions of

buoyancy and bulk flow inertia.

The objective of the present study is to experimentally investigate and characterize the

three-dimensional behaviors of buoyant thermals in the turbulent boundary layer over a

range of Richardson numbers. This research builds upon the present authors’ previous

study by developing a robust technique to detect thermals that is effective over a wide

range of Richardson numbers. From the analysis of detected thermals, new insights are

presented on the behavior of thermals and their interactions with the surrounding boundary

layer flow including the size, spatial distribution, and motion of buoyant thermals.

4.2 Experimental Setup

Experiments were performed in a closed loop low-disturbance wind tunnel. Airflow was

driven by a variable-speed axial flow fan capable of producing 60 m/s velocity in the test

section. The background turbulence was previously investigated using Laser Doppler Ve-
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locimetry (LDV) was found to vary between 0.5–0.9 % for test section velocities between

3–60 m/s. The low turbulence rating was achieved by using several conditioning screens

upstream of the test section. An active cooling system integrated with the wind tunnel, was

used to maintain the air temperature at the inlet of the test section to within 1 °C of room

temperature. The test section in the wind tunnel has square cross section 46 cm on each

side and is 114 cm in length, as depicted in Figure 4.1. The sides of the test section were

made of clear acrylic for visualization while the bottom wall was made of black matte vinyl

coated aluminum. The boundary layer at the test section inlet was tripped using a 6.3 mm

× 6.3 mm × 43 cm steel rod.

The test section bottom wall was embedded with 16 T-type 36 AWG special limits of error

thermocouples (Omega Engineering) with an uncertainty of ± 0.5 °C. A 36 cm × 110 cm

240V, 3080W silicone surface heater (Zesta Engineering) was used to heat the entire bottom

wall where the wall temperature was controlled to within 0.5 °C of a given set temperature

with a PID controller (Zesta Engineering). Fibreglass and expanded polystyrene insulation

were placed underneath the heater to minimize convective heat loss from below.

During experiments, air flow was started in the wind tunnel first, then the surface heater

and active cooling unit were activated. The system was allowed to reach a steady state con-

dition before data collection began. Experiments were conducted at five bulk Richardson

numbers, 0.05, 0.1, 0.3, 1.0 and 2.0, where the characteristic length scale is the distance

downstream of the test section inlet. The tested Richardson numbers were achieved from

a selection of wall temperatures and momentum thickness-based Reynolds numbers, as

shown in Table 4.1.

The generated turbulent boundary layer flow was visualized utilizing the Particle Image

Velocimetry (PIV) technique applied over multiple orthogonal planes as shown in Figure

4.1 [19]. The vertical stream-wise plane visualized fluid motion in the x-y plane, the verti-
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Figure 4.1: Diagram of the experimental setup.

RiL

0.05 0.1 0.3 1.0 2.0
Reθ 1400 1000 700 280 280

TW (°C) 90 90 90 55 90
U (m/s) 6.0 4.0 2.5 1.0 1.0

Table 4.1: Summary of experimental conditions.
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cal cross-stream plane visualized the y-z plane, and each of the two considered horizontal

planes, located at y = 3.5 mm and 7.5 mm above the wall, captured motion in the x-z plane.

In all tests, the visualized field of view was ∼ 80 cm (128 trip heights) downstream of the

test section inlet to ensure the trip bar signature vanished at the measurement location.

A dual-cavity 120mJ Nd:YAG laser (120XT 532nm, SoloPIV) provided optical illumina-

tion by generating laser light beams at 15 Hz per cavity. A 12 Megapixel (4096 × 3072

pixels) CMOS camera (Flare, IO Industries) was used to capture images controlled by an

image acquisition system (DVR Express CORE, IO Industries). A 50 mm f/1.4 (Nikon) and

70-300 mm f/4 camera lens (Sigma Corp.) were used in experiments. Laser pulse timing

was synchronized to the camera via a four-channel pulse delay generator (555-4C, Berke-

ley Nucleonics). Theatrical fog seed particles (Directors Choice, Ultratec) were injected up

stream of the test section and flow conditioning screens by a fog machine. Before image

recording began in each experiment, the injected fog was allowed to circulate and disperse

within the wind tunnel for several minutes to ensure uniform distribution of seed particle.

Recorded images from each experiment were then exported to a workstation PC for image

processing and analysis. Each experiment comprised of at least 10,000 images and each

pair of images was captured at a rate of 15 Hz. It is important to note that in this study,

PIV images were used primarily for flow visualization and hence, the cross-correlation and

associated PIV image analyses for velocity computations were not performed except an

analysis to characterize thermal motion in the later part of the paper.

4.3 Visualization of Thermal-like Phenomena

Typical PIV images show uniform distribution of seed particles (once the particles are thor-

oughly mixed with the flow). In the present study, the images contained regions of uniform

particle distribution (brighter regions due to particles’ illumination) and dark regions with
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a very low seed particle density. As the seed particles were allowed to uniformly mix be-

fore measurements, the dark regions in images were not due to improper seed particles’

mixing. Furthermore, these dark regions were found to be the strongest near the heated

wall and their rising patterns suggest that they are associated with thermals produced from

the heated wall. The plausible reasons for them being associated with dark regions is the

rapid thermal expansion of air within these emerging structures and the evaporation of liq-

uid droplets due to higher temperature. This sharply decreased the seed particle density

causing these structures to appear dark. Figure 4.2 depicts the qualitative behaviors of

these presumed thermals in each considered measurement plane. The significant geometric

similarity of these “dark” structures with those of the thermals reported in the literature

supports this assertion [6, 9, 18].

In the left-most column of Figure 4.2, images from the vertical stream-wise plane depict

multiple interesting behaviors at three Richardson numbers. Starting in the top row at

RiL = 0.05, where the relative influence of buoyancy is weakest, a small and narrow dark

region at the bottom of the image is observed. This dark region adjacent to the bottom wall

is named the “production layer” and was found to be the origin of all thermals observed

rising through the boundary layer. In the center of this image, the thermals above the

production layer are found to be small and their presence is indicated by a slightly darker

region of the high seed density fluid. The observed thermal signature is faint due to the

relatively high magnitude of turbulent mixing that brought seed particle into each thermal.

Increasing the Richardson number to 0.3, constitutes a substantial increase in buoyancy

force magnitude quantified by the Grashof number. This manifested as an increase in the

size of both the production layer and the observed thermals (see middle image in the left

column). The thermals in the center of the image appear darker due to the lower seed

density present. The thermal on the left side of the image features a roll-up signature that
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could have been generated by the Kelvin-Helmholtz instability between the thermal and

the adjacent high seed density fluid. Increasing RiL to 2.0, where the buoyancy force is

dominant compared to the inertial force, the image in the bottom left column of Figure

4.2 depicts a large production layer that extends up and to the right forming thin bands

connecting to free floating thermals. The two relatively large “mushroom slice” shaped

thermals in this image show multiple roll-up signatures on each side of a central stem. The

large thermals and production layer observed in this image are evidence of the relatively

large buoyant force magnitude.

The center column of the figure contains images from the horizontal plane at a height of

3.5 mm from the heated wall, where due to the large viewable area, numerous large-scale

span-wise features are observed. The image in the top of the middle column corresponds

to the RiL = 0.05 case and depicts an abundance of relatively small-scale thermals visible

in different shades of gray, depending on the level of seed density, indicating different

levels of turbulent mixing. The observed thermals show some alignment with the mean

flow direction, while there is no clear organization in the span-wise direction. Increasing

the Richardson number to 0.3 (middle image), the thermals appear to be larger than those

observed at RiL = 0.05 and more clearly aligned with the stream-wise direction. The

relatively stronger buoyant force appears to resist turbulent mixing evidenced by a smaller

variation in the shades of gray present in the image. At RiL = 2.0 (bottom image in the

middle column), thermals are very large and well-aligned in the stream-wise direction.

These thermals also appear to be clearly separated from each other with little evidence of

the turbulent mixing due to the strong influence of the buoyant force.

The cross-stream plane provides a very unique perspective of processes in a heated turbu-

lent boundary layer. In this viewing plane, mean flow is coming out of the page toward

the observer, minimizing the influence of the stream-wise velocity on observed behaviors.
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Figure 4.2: A set of images depicting the formation of thermals in all three measured planes

at three Richardson numbers: 0.05 (top row); 0.3 (middle row); and 2.0 (bottom row). The

field of view in the vertical stream-wise plane is 6 cm by 4.5 cm; horizontal plane: 23 cm

by 17 cm; cross-stream plane: 8 cm by 5 cm.
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At RiL = 0.05 (top image in the right column), thermals are depicted as somewhat darker

regions near the wall. There is a substantial amount of seed particle present within these

thermals due to strong turbulent mixing acting to break apart the low seed density ther-

mals. As the Richardson number increased to 0.3, more visually apparent thermal signa-

tures emerged (see middle image in the right column). The image illustrates a pair of rising

thermals and a jet-like region of well-seeded fluid in between them that is rushing towards

the wall. This jet-like region is likely associated with a turbulent sweep event. The shear

between these thermals and the possible sweep event has deformed the rising thermals and

produced a roll-up like signature in the right side thermal. The thermal signatures become

stronger at RiL = 2.0 (bottom image in the right column), which shows relatively large

thermals rising with the right-most thermal being deformed due to the span-wise motion of

well-seeded fluid to the left. Towards the center of the image, a unique floating-like ther-

mal is visible that is fully detached from the bottom wall. The center of this free-floating

thermal shows a band of high seed density fluid indicating that the thermal is envelop-

ing surrounding fluid in the out of plane direction. On the left side of this image, a large

thermal is observed that is rising and extending to the top of the viewable area, similar to

the vertical stream-wise plane image (bottom image, left column). This thermal features

two interesting roll-up patterns where low seed density fluid appears to mix into the high

seed density region and vice-versa. These patterns are likely due to high seed density fluid

piercing into the thermal in a bursting process.

It was asserted that the dark regions observed in captured images were thermals and hence

associated with warm fluid. It is important to note however that this assertion is based

upon the visualized behaviors and not temperature measurements of the flow. While there

are many devices capable of measuring air temperature within a boundary layer, few are

capable of the high temporal resolution (on the order of 100Hz) required to capture the
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detailed temperature field of the observed thermal-like structures and their surroundings.

In the absence of such information, the thermal-like patterns reported in the present study

provide a unique perspective into interesting three-dimensional thermofluid phenomena.

Based on the earlier assertion and for clarity, the dark regions in the acquired images are

hereinafter referred to as “thermals”.

4.4 Thermal Detection Technique

The images presented in Figure 4.2 show a contrast between the dark low seed density

thermals and the well-seeded brighter regions of the background flow. To characterize the

behavior of the observed thermals, it is necessary to develop a robust image processing

technique to detect thermals within thousands of acquired images. The process and crite-

rion required to perform the task of classifying objects within an image is known as image

segmentation. Typically, image segmentation techniques are based on the gray-level distri-

bution within a given image and the technique seeks to determine a gray-level threshold to

segment all pixels within the image. One of the most well-known techniques to determine

this threshold is Otsu’s method [20]. This method determines the threshold that mini-

mizes the gray-level variance of the group above and below the threshold. Otsu’s method

performs the best when there is a clear distinction between the gray-levels within the back-

ground and the gray-levels within the objects to be segmented, i.e. a bi-modal histogram.

However, the images in the present cases, especially at low Ri, feature a uni-modal his-

togram and non-uniform background where there is significant gray-level overlap between

thermals and high seed density fluid. This makes Otsu’s method unsuitable for thermal

detection. An improved segmentation technique was developed by the present authors for

thermal detection that utilized a refined form of Otsu’s method [17]. In this technique,

20 thresholds were computed from the original image histogram and each of the resulting
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Figure 4.3: An image illustrating the thermal and the surrounding flow. Inset depicts the

difference in texture, quantified by local entropy, between high seed density background

flow and low seed density thermal regions.

21 segmented groups were filtered and reconstructed to detect thermals. While successful

at RiL > 0.3, it failed to adequately detect thermals at low Ri due to gray-level overlap

between thermals and the background.

In order to overcome the shortcomings of the previously described techniques, a more

robust thermal detection technique has been developed in this study. In the developed

technique, image texture is used as the segmentation criterion. The well-seeded region

observed in experimental images has a different texture than the low seed density thermal

region, as illustrated in the inset of Figure 4.3, where the thermal region appears “smooth”

while the well-seeded region appears “rough”.

The parameter used to quantify this visual difference is the signal entropy, which defines

the disorder present in a given signal [21, 22]. In image processing, the entropy (H) of an

M ×N image is defined based on the normalized histogram probability for the given image
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(pi, j) and is expressed in Eqn. 4.2, [22].

H = −

M∑
i=1

N∑
j=1

pi, jlog2 pi, j (4.2)

This definition can also be applied to a local region within a given image generating the

local image entropy. The bright, well-seeded region in the inset of Figure 4.3 contains

a high local entropy while the dark thermal region has a low local entropy. The high

entropy value in the bright region is due to the “rough” texture quantified by relatively

large magnitude local gray level fluctuations. The low local entropy in the thermal region is

caused by the more uniform gray level distribution. The difference in local entropy between

thermal and non-thermal regions is the primary segmentation criterion in the developed

technique.

The steps of newly developed texture-based thermal detection technique are described in

the following and sequentially illustrated in Figure 4.4. First, the local entropy in a user-

specified region of interest within a given raw image is calculated (Figure 4.4a) generating

the local entropy distribution (see Figure 4.4b). A Gaussian low-pass filter is then applied

to the entropy image to reduce noise (see Figure 4.4c). Next, a threshold image is com-

puted from the filtered entropy image utilizing a Gaussian weighted average filter (Figure

4.4d). The initial segmentation is then conducted pixel-by-pixel using the threshold image.

In this process, a given pixel in the segmented image is set to white if the gray level of

the corresponding pixel in the filtered entropy image exceeds the gray level of the corre-

sponding pixel in the threshold image, otherwise, it is set to black. The initial segmented

image is shown in Figure 4.4e. The last step is to filter any remnant noise by using a mini-

mum area threshold to produce the final segmented image that separates thermals from the



Characterization of Thermals 165

Figure 4.4: Illustration of the texture-based segmentation technique steps. Raw image is

from RiL = 2.0 horizontal plane experiment, 3.5 mm above the wall.

background flow (see Figure 4.4f). In the vertical and cross plane images, detected ther-

mal images were smoothed and nearby objects were connected together with an additional

Gaussian low-pass filter and minimum area threshold.

In an implementation of the texture segmentation technique, there are multiple user-defined

parameters including: the local entropy computation window (region of interest), minimum

area thresholds, and the details of the respective Gaussian filters. In the present implemen-

tation, each parameter was optimized at each tested Richardson number and visualization

plane to produce high-quality thermal detection. For images recorded in the vertical stream-

wise plane and cross-stream plane, the local entropy window was set to 9 × 9 for all RiL.

In the horizontal planes this window was also 9 × 9 except for RiL = 1.0 where it was 15 ×

15. The low-pass Gaussian filter corresponding to the step in Figure 4.4c was of size 33 ×

33 with a standard deviation of 8 for all experiments. The Gaussian weighted average filter
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used to compute the threshold image, is a low-pass 2D Gaussian filter with a size (F) and

standard deviation (σ) that varied with image dimensions (S ) as shown in Eqns. 4.3 and

4.4, respectively.

σ = 2 floor
( S
16

)
+ 1 (4.3)

F = 2 ceil(2σ) + 1 (4.4)

The output of this 2D filter was multiplied by a constant between 1.08 and 1.12 that was

optimized for each tested Richardson number and visualization plane to produce high qual-

ity segmentation. This constant influences the sensitivity of the initial segmentation (see

Figure 4.4e) where larger values lead to detected thermals larger than expected (i.e. over-

segmentation) and smaller values produce under-segmentation. The minimum area thresh-

old was set to 200 pixels in all experiments. For the vertical stream-wise plane and cross-

stream plane, additional filtering was performed using a 61 × 61 Gaussian low-pass filter

with a standard deviation of 15, then a secondary minimum area threshold of 1500 pixels

was applied to produce the final segmentation result.

4.4.1 Verification

The performance of the proposed texture-based segmentation technique was tested against

experimental images from all measurement planes covering the range of Richardson num-

bers. Figure 4.5 presents samples of a qualitative comparison between thermals detected by

the new technique versus those visually observed in the original images. The comparison

includes images from all orientations of the measurement planes at different Richardson

numbers.

The cross-stream plane images (right column) show good detection of the large thermals
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Figure 4.5: Sample images showing original images (top row) and segmented images from

the thermal detection technique (bottom row). Detected thermals are shown in black in

the segmented images. Vertical stream-wise plane images are from experiment performed

at RiL = 0.3, horizontal plane images from RiL = 1.0, and cross-stream images from

RiL = 2.0.
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at RiL = 2.0. The thermal on the right was well-resolved by the new technique however,

the thin band on the left side of this thermal was not detected. The free-floating thermal in

the center was also captured well and shows a white band corresponding to the well-seeded

region within this thermal. The left-most thermal was correctly segmented and the bursting

motion of high seed density fluid was separated from the adjacent thermal. The vertical

stream-wise plane case at a lower Richardson number showed that the production layer and

adjacent thermal were nicely resolved. The thermal above the production layer showed

some mixing with high-seed density fluid on the right side which led to a part of this region

being classified as non-thermal. This demonstrates the sensitivity of the detection scheme

to the local seed particle density. The horizontal plane image was from the experiment

at RiL = 1.0 where there are several stream-wise oriented bands of thermals, which are

captured quite well. The decrease in buoyant force relative to inertia does not appear to

negatively impact segmentation quality.

The observed sensitivity to local seed particle density is due to the nature of the image

entropy, which is the basis for segmentation in the developed technique. As the local

entropy increases in proportion to the local gray-level variations in a given region, any

change in the local seed particle density (i.e. number of bright spots in a given region)

causes a detectable change in local entropy. One advantage of using image entropy, or

any image texture descriptor, is a decrease in sensitivity to background non-uniformity.

This is clearly visible in Figure 4.4a and Figure 4.4b where the raw image shows a clear

non-uniformity in brightness within the high seed density fluid from left to right however,

the local entropy image is more uniform in these regions as only the local texture was

described.

The results in Figure 4.5 qualitatively demonstrate that the new texture-based thermal

detection technique properly detects thermals and captures their shapes reasonably well.
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However, a quantitative assessment of technique’s accuracy is necessary in order to use

segmented data to characterize detected thermals. For this purpose, a sample of images

were randomly selected from each experiment. In each sample, thermals were detected

using the following three segmentation techniques: Otsu’s method, the multi-threshold

technique, and the newly developed texture-based technique. The thermals in each of the

sample images were also manually identified and demarcated, which served as reference to

evaluate the detection accuracy of the three segmentation techniques mentioned above.

A quantitative assessment was conducted by comparing the fraction of the common area

(AC), false positive area (AFP), and false negative area (AFN) of each detected thermal. A

given segmented reference thermal such as the one depicted in the left panel of Figure 4.6

is compared to the segmentation produced by a given algorithm, outlined in the middle

pane of the figure. The common area is defined as the area of the reference thermal that is

correctly detected by the given segmentation technique illustrated in the right panel of the

figure. The area of a given reference thermal detected by the segmentation technique but

not detected in the reference thermal was taken as the false positive area (AFP). The false

negative area is the area of the reference thermal not detected by the given segmentation

technique (AFN). Each of the computed areas (i.e. common area, false positive area, and

false negative area) are normalized by the corresponding reference thermal area.

The common area, false positive area, and false negative area were computed and averaged

over all reference thermals identified in flow visualization images. The thermal detection

performance of each segmentation technique in the vertical stream-wise plane reported in

Table 4.2.

A high performing thermal detection algorithm will maximize the mean common detec-

tion area (AC) while simultaneously minimizing the mean false positive area (AFP) and

mean false negative area (AFN). From the results in the vertical stream-wise plane, Otsu’s
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Figure 4.6: Sequence of images showing the quantities used for thermal detection verifica-

tion.

Vertical Stream-Wise Plane
AC AFP AFN AC AFP AFN

RiL 2.0 2.0 2.0 0.3 0.3 0.3
Otsu’s

Method
98% 577% 2% 99% 1130% 0.1%

Multi-
threshold

80% 17% 20% 91% 36% 9%

Texture 79% 22% 22% 80% 27% 21%

Table 4.2: Performance of segmentation algorithms considered in the vertical stream-wise

plane.

method appears to detect thermals extremely well. However, the mean false positive area

provides the reason behind this high common area detection. In all tests the mean false

positive area for Otsu’s method exceeds 100% indicating that this technique is detecting

a region much larger than any reference thermal. This is an extreme case of undesirable

over-segmentation, illustrated in Figure 4.7c by the large black (thermal) regions that do

not correlate well to the reference thermal image (Figure 4.7b) . The mean false nega-

tive area, an indicator of under-segmentation, agrees with this over-segmentation behavior

where for Otsu’s method AFN is always less than 2%. Due to the poor performance of

Otsu’s method in all visualization planes and Richardson numbers, focus is now directed
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Figure 4.7: Comparison of the original image and manual segmentation to the tested ther-

mal detection techniques. These images are from the vertical plane experiment at RiL = 2.0.

toward the multi-threshold technique and texture-based technique.

The multi-threshold and texture segmentation techniques show comparable performance

in the vertical plane. The two techniques offer very similar performance at RiL = 2.0

evidenced by nearly the same AC, AFP, and AFN results. Figure 4.7d and e provide a

more qualitative comparison between the algorithms. Compared to the manual segmen-

tation result, the multi-threshold technique captures fewer details than the texture based

technique at RiL = 2.0. At RiL = 0.3, however the multi-threshold technique shows an

over-segmentation behavior as AC increases to 91% and AFP increases to 36% while AFN

decreases to 9%. In contrast the texture-based technique shows little change in performance

at RiL = 0.3.
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In the horizontal plane, the texture-based segmentation technique captures thermals with

AC of 92% and 82% at RiL = 2.0 and 0.3 respectively, see Table 4.3. This is very compara-

ble with the multi-threshold technique common detection area. The mean false positive and

mean false negative results show a clear advantage for the texture-based technique where

both quantities were lower or comparable to the multi-threshold technique’s results. This

represents an overall increase in segmentation quality when using the texture-based seg-

mentation technique over the multi-threshold segmentation technique. The improvement

in performance is visible in the left side of the images in Figure 4.8 where the original

image is relatively dark due to background non-uniformity. The multi-threshold technique

is sensitive to non-uniform backgrounds, evidenced by the over-segmentation (large black

thermal regions) on the left side of Figure 4.8c. The texture-based technique is less sensitive

to the background leading to thermal detection on the left side that more closely matches

the manual segmentation.

Horizontal Plane 3.5 mm
AC AFP AFN AC AFP AFN

RiL 2.0 2.0 2.0 0.3 0.3 0.3
Otsu’s

Method
99% 86% 0.2% 98% 160% 2%

Multi-
threshold

96% 29% 4% 79% 21% 21%

Texture 92% 19% 8% 82% 16% 18%

Table 4.3: Performance of segmentation algorithms considered in the horizontal plane 3.5

mm above the wall.

Out of all visualization planes tested, the cross-stream plane was the most challenging for

the tested detection algorithms. In the cross-stream plane, the multi-threshold technique

produced AC of 64% at RiL = 2.0 and 63% at RiL = 0.3, see Table 4.4. The multi-threshold

technique detected thermals with a significant under-segmentation behavior evidenced by

a large magnitude of AFN , about 37% at both tested RiL. This behavior is visible in Figure
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Figure 4.8: Comparison of the original image and manual segmentation to the multi-

threshold and texture-based thermal detection techniques. These images are from the hori-

zontal plane experiment at RiL = 0.3.
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4.9c where a piece of a thermal rising through the boundary layer in the center of the image

was not detected. This missed detection is likely due to relatively weak visual signature

of this thermal piece. The texture-based segmentation technique performed significantly

better in the cross plane where AC was 73% and 75% at RiL = 2.0 and RiL = 0.3 respec-

tively. The mean false positive area in both multi-threshold and texture-based techniques

were comparable. The under-segmentation behavior observed in the multi-threshold tech-

nique was significantly reduced when using the texture-based technique, demonstrated by

decreases in AFN .

Cross Plane
AC AFP AFN AC AFP AFN

RiL 2.0 2.0 2.0 0.3 0.3 0.3
Otsu’s

Method
94% 249% 6% 98% 573% 1%

Multi-
threshold

64% 6% 36% 63% 12% 38%

Texture 73% 11% 27% 75% 12% 25%

Table 4.4: Performance of segmentation algorithms considered in the cross stream plane.

The texture-based segmentation algorithm utilizes image texture, quantified by the local

entropy distribution to detect thermals from PIV-style images. This technique provided

the best thermal detection performance, consistently detecting thermals in all visualization

planes and all tested Ri. Otsu’s method was found to produce strong undesirable over-

segmentation. The multi-threshold technique, an advanced form of Otsu’s method, showed

strong performance however it is ineffective in images with non-uniform backgrounds and

weak thermal signatures. The texture-based technique offers the best performance that most

closely matches a manual segmentation, making it suitable for automatic thermal detection.
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Figure 4.9: Comparison of the original image and manual segmentation to the multi-

threshold and texture-based thermal detection techniques. These images are from the cross

plane experiment at RiL = 0.3.
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4.5 Characterization of Thermal Behaviors

In the experimental images presented in Figure 4.2, thermals appeared to change their size

and spatial distribution as the Richardson number varied. To provide quantitative insight

into these observed trends, the texture-based thermal detection algorithm was used to detect

thermals in the image dataset acquired at each case. From the image of detected thermals,

the size and spatial distribution of thermals were computed. Detected thermal images were

sampled such that any given thermal did not appear twice in consecutive images, ensuring

statistical independence of detected thermals and minimizing bias error.

The size distribution of thermals is quantified using the thermal area coverage (CT ) defined

as the ratio of the total area of all detected thermals in a given frame (AT ) to the field of view

area (AF), see Eq. 4.5. The thermal area coverage was averaged over all recorded images

generating the mean thermal area coverage (CT ) at a given Richardson number. Figure 4.10

contains the variation of (CT ) with RiL in all measurement planes considered.

CT =
AT

AF
(4.5)

The thermal area coverage was found to generally increase with Richardson number. Rel-

ative to the vertical stream-wise and cross-stream planes, in the two horizontal planes, the

magnitude of CT was larger by a factor of at least 2 for all RiL considered. In the cross-

stream and vertical stream-wise planes, CT was about 0.05 at RiL = 0.03 then increased

to just under 0.1 for RiL = 0.3. At a Richardson number of unity, a decrease in CT was

found before the thermal area coverage increased again at RiL = 2.0. The two considered

horizontal planes demonstrated the same behavior with thermal area coverage starting at

approximately 0.25 at low RiL before increasing up to 0.35 at RiL = 0.3 then increasing
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Figure 4.10: Mean thermal area coverage (CT ) versus Richardson number for all measure-

ment planes.

further to over 0.4 at y = 3.5 mm and decreasing slightly to 0.3 at y = 7.5 mm. A clear

decrease in CT in both horizontal planes was found at RiL = 1.0 as with the other two mea-

surement planes. This decrease in thermal area coverage is most likely due to the decrease

in buoyant force magnitude due the lower wall temperature used to achieve this Richardson

number compared to the other tested Richardson numbers. That is, at all other cases the

wall temperature was kept at 90 °C (i.e. a similar Grashof number), while the Reynolds

number was varied by changing the wind speed to achieve the desired Richardson numbers

(see Table 1). However, between the cases of RiL = 1 and 2, the Reynolds number was kept

constant and the lower Richardson number of unity was achieved by lowering the Grashof

number (see Table 1). The trend at RiL = 1 in Figure 4.10 indicates that the absolute mag-

nitude of buoyancy force plays an important role in the formation of thermals, in addition

to its magnitude relative to the inertial force.

The results in Figure 4.10 provide the estimates of fractional area coverage of thermals
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Figure 4.11: Plots of PT versus y for all RiL from experiments performed in the vertical

stream-wise plane. Inset contains the same profiles in a magnified view of the near-wall

region.

in the overall measurement field of view. The three-dimensional spatial distribution of

thermals was determined by considering each spatial location (i.e. each pixel in a given

image) that corresponds to the detected thermals in a given experiment. This quantity was

then spatially averaged in one direction to the given measurement plane to determine the

thermals presence in the corresponding orthogonal direction. The presence of thermals

is quantified as the probability of thermals’ occurrence at a given spatial position (PT ).

In the vertical stream-wise plane, this was calculated from the detected thermal images

and spatially averaged in the x-direction providing PT (y), which characterized the average

probability of thermals’ occurrence at a given y-location. The results are presented in

Figure 4.11 for all cases.

From the figure, each PT curve starts at its respective maximum value close to the wall

then rapidly decreases as y increases. In all profiles, PT starts at near unity indicating a
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very high chance of thermal detection in this region. However, PT decreases relatively

sharply with increases in y at all RiL and after y ≈ 0.5 cm, PT does not vary as strongly with

y. The qualitative observations at RiL = 2.0, found that thermals were large and observed

far away from the wall. This observation agrees with the PT distribution at RiL = 2.0 as

the curve shows the highest probability of thermals’ presence throughout the measurement

domain. Decreasing RiL shows a general decrease in PT as there are fewer thermals and the

chances of their occurrence decrease with an increase in the distance above the wall. The

inset of Figure 4.11 provides more detail on the near-wall region. Here the maxima in each

PT curve generally decreases with decreasing RiL. The RiL = 1.0 PT distribution features

a unique behavior where the curve intersects the RiL = 0.3 PT profile while decreasing

with increasing y to follow the RiL = 0.05 and 0.1 profiles. The curve corresponding to

RiL = 1.0 has nearly the same maxima as the PT curve for RiL = 0.3 and 2.0 near the wall,

but it quickly decreases and closely follows the RiL ≤ 0.1 curves for y > 0.5 cm. The

cause for this behavior is likely the lower buoyant force magnitude as discussed earlier.

The trend at RiL = 1.0 indicates that although the generation of thermals in the vicinity of

the heated wall is considerable but due to lower buoyant force magnitude, these thermals

did not sustain themselves further away from the wall.

One unique behavior observed in the qualitative results is the presence of a thermal produc-

tion layer that was observed in a majority of visualized images at high RiL. The transition

from frequently observed production layer detections to intermittent thermal detections is

the cause for the strong variations of PT with y in the near-wall region (y < 0.5 cm). From

the PT profiles, the mean production layer thickness (tp) was estimated based on the near-

wall inflection point in the PT distribution, results presented in Table 4.5.

As expected, the production layer thickness increases with RiL for all tested RiL. The 1.1

mm thick production layer at RiL = 1.0 is only slightly larger than tp at RiL = 0.3. As
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RiL tp (mm)
0.05 0.5
0.1 0.7
0.3 1.0
1.0 1.1
2.0 1.7

Table 4.5: Estimated production layer thickness from vertical stream-wise plane thermal

detection probability profiles.

mentioned earlier, the lower buoyant force magnitude relative to the other tested Richardson

numbers is likely the cause for this behavior.

Figure 4.12 shows the wall-normal probability distribution of detected thermals in the

cross-stream plane. Please note that unavoidable illumination artifacts in some regions of

the images introduced bias in the detections of thermals and hence, data from those regions

are excluded from the plot. The results show that close to the wall, the probability of ther-

mals’ occurrence is high, above 0.8 for RiL = 2.0 and about 0.6 for the lower Richardson

numbers. In comparison with the results in vertical stream-wise plane where PT > 0.8 for

all RiL, this suggests that the production layer does not extend uniformly in the span-wise

(z) direction.

Increasing distance from the wall shows a sharp decrease in PT , similar to the PT distribu-

tion in the vertical stream-wise plane. The RiL = 1.0 distribution decreases more sharply

with increasing y and tends to follow the PT curves for RiL ≤ 0.1, a behavior also observed

in the vertical stream-wise plane. At RiL = 2.0, PT decreases relatively weakly with y as

thermals are largest and most frequently observed at this flow condition, in agreement with

the qualitative assessment discussed earlier. At lower RiL thermals are less likely to be

detected more than 2 cm away from the hot wall.

In the horizontal planes, PT (z) describes the probability of thermals’ presence in the span-
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Figure 4.12: Wall-normal distribution of PT in the cross stream plane for all RiL considered.

wise direction and the results are illustrated in Figure 4.13. The field of view width in this

figure is smaller than the measurement field of view width to exclude the detection bias due

to illumination artifacts present near the right end of the measurement field of view. The PT

distribution in the horizontal plane at y = 3.5 mm (Figure 4.13a) shows a periodic behavior

with relatively large amplitude at higher Richardson numbers (RiL ≥ 1.0). This shows

that detected thermals have a propensity towards orientation in the stream-wise mean flow

direction, as PT (z) is averaged in the stream-wise direction and preferentially formed rows

distributed across the span of the boundary layer. The visualized images qualitatively show

this trend (see Figure 4.2 and Figure 4.5). The results however, does not show any phase

consistency in the span-wise peaks and valleys between the PT curves at RiL = 1.0 and 2.0.

At RiL values less than unity, the PT distributions are relatively flat and contain no clear

periodic behavior. This suggests that detected thermals are distributed more uniformly in

the span-wise direction (see Figure 4.2). The cause of this behavior is likely the strong

turbulent mixing acting to deform and redistribute thermals.
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At higher Richardson numbers, the buoyant force magnitude seems to be large enough to

resist turbulent mixing leading to the observed span-wise thermal self-organization. Note

that the height of y = 3.5 mm in the unheated boundary layer, corresponds to y+
noheat ≈ 15

which is located slightly above the mean thermal production layer at RiL ≥ 1.0, y = 1 − 2

mm (see Table 4.5). One possible explanation of this span-wise behavior is that buoyant

fluid is released from the local production layer producing the peaks in the span-wise PT

distribution while, due to mass conservation, relatively cooler fluid travels downward in

replenishing motions corresponding to the valleys in PT . This leads to alternating regions

of rising and falling fluid resembling convective cells organized in the span-wise direction

across the boundary layer. Due to the very weak near wall turbulence in the lower buffer

layer and viscous sublayer of the hydrodynamic boundary layer, this buoyancy driven mo-

tion is locally dominant. At low Richardson numbers, (RiL ≤ 0.3), however, stronger

turbulent boundary layer mixing breaks apart self-organizing buoyancy driven motion as

y = 3.5 mm is located in the upper buffer layer and lower logarithmic layer (y+
noheat ≈ 30 to

70) depending on the Richardson number.

In the horizontal plane at 7.5 mm above the wall, the PT (z) distribution (Figure 4.13b)

shows similar behavior as to that observed at y = 3.5 mm although the overall probabil-

ity of thermals’ occurrence slightly decreased, which is expected. At high Richardson

numbers (RiL ≥ 1.0), large amplitude oscillations are still present indicating a similar phys-

ical process is occurring. The standard deviation of PT at RiL ≥ 1.0 and y = 7.5 mm is

approximately 20% smaller than the standard deviation of PT at y = 3.5 mm, indicating

that the span-wise variations of PT are smaller at a greater distance from the wall. This

is an expected behavior as stronger turbulent mixing is present in the upper buffer layer

(y+
noheat ≈ 40). The profiles of PT at lower Richardson numbers (RiL ≤ 0.3) are relatively

flat and show a behavior similar to that at y = 3.5 mm.
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(a)

(b)

Figure 4.13: Plots of PT versus z for all RiL from experiments performed in the (a) y = 3.5

mm and (b) y = 7.5 mm horizontal plane.
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4.5.1 Thermal Motion

In the present study, PIV was used to visualize the heated boundary layer flow structure.

The PIV technique acquires images in the form of image pairs where the time difference

between the two images is short enough to capture the spatial shift in the seed particles’

motion. In the current case, due to the presence of thermal signatures in PIV dataset, the

image pairs also captured the spatial movement of thermals. Hence, this aspect was ex-

ploited to compute the advection velocity of thermals. It should be noted that this is a

non-trivial task since thermals have been observed in a wide variety of complex and irreg-

ular geometries over the range of Richardson numbers considered. Two such complex flow

patterns are the roll-up signatures likely associated with Kelvin-Helmholtz instability most

frequently observed in the vertical stream-wise plane and the mushroom slice shaped ris-

ing thermal pattern often observed in the cross-stream plane (see Figure 4.2). The shape of

thermals varies significantly in time as the thermals are influenced by dynamical phenom-

ena in their surroundings. However, for the very short time between each image in a given

PIV image pair, on the order of 100 µs, thermals have a limited shape change allowing for

local instantaneous velocity computation. From the visualized thermal images captured in

the present study, a preliminary approximation of the velocity magnitude associated with

thermal roll-up signatures and rising thermal signatures was computed from a sample of

PIV image pairs at RiL = 2.0. To the best of authors’ knowledge, this is the first reported

approximation of thermal’s advection velocity in a mixed convection turbulent boundary

flow in the scientific literature. Due to the inherent complexity of the problem only a ba-

sic velocity magnitude estimate is assessed, and the readers are expected to treat it as a

first-order approximation.

For roll-up signatures that are expected to feature both rotational and translational motion,

only the translational velocity was estimated. Rising thermal patterns often feature one
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or more roll-ups on both sides of a central stem. Only translational velocity at the top of

these rising thermals was approximated in this investigation. The velocities of both roll-up

signatures and rising thermal signatures were estimated by first manually identifying and

isolating each thermal signature from a pair of corresponding images as shown in the top

row of Figure 4.14. The texture-based thermal detection technique was then applied to each

image in the image pair. This generated two black and white binary images of the detected

thermal signature, each corresponding to an original image in the pair. The centroid of each

detected thermal was computed next. The translational motion of the detected thermal was

then calculated as the displacement of each detected thermal’s centroid. The bottom row of

Figure 4.14 illustrates the observed translational motion of the detected thermal signatures.

The black line corresponds to the outline of the detected thermal in the first frame of the

pair and the red line corresponds to the detected thermal outline in the second frame.

From the above figure, the detected thermals do show some shape change, which influ-

ences the location of thermal’s centroid and hence, introduces uncertainty in the velocity

estimation. To quantify this influence, the detected centroid of the thermal in the first binary

image was shifted towards the detected thermal centroid in the second binary image of the

pair based on the computed displacement from the two images. The two thermal centroids,

one based on the actual thermal shape in the second binary image and the other based on

the translational shift of the centroid from the first binary image were then compared. Any

discrepancy between these two centroids can be attributed to non-translational motion, in-

cluding shape changes, in the detected thermals. The testing was conducted for at least 10

samples and it was found that this discrepancy produced a mean velocity magnitude uncer-

tainty of ± 12.5 cm/s in the vertical stream-wise plane and ± 2.5 cm/s in the cross-stream

plane.

The approximate thermal velocity magnitude was then computed from the detected ther-
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Figure 4.14: Top row: Region of interest for velocity estimation in the original images of

(left) roll-up signature in the vertical stream-wise plane and (right) rising thermal signature

in the cross-stream plane. Bottom row: Detected thermal boundaries for each frame in the

corresponding image pairs.
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mal centroid displacement using the time between frames in the captured image pair. The

instantaneous velocity field in the high-seed density non-thermal region of a given image

pair was also computed using an in-house PIV code that utilized a 48 × 48 pixel square

interrogation window for the cross-correlation corresponding to a 96 × 96 pixel search

window. The instantaneous velocity field in the region surrounding of each detected ther-

mal was extracted from the computed PIV data and spatially-averaged. The relationship

between the estimated thermal advection resultant velocity magnitude (VT ) and the sur-

rounding spatially-averaged instantaneous resultant velocity magnitude (VS ) is presented

in Figure 4.15.

The distribution of VS versus VT for roll-up signatures in the vertical stream-wise plane at

RiL = 2.0 (Figure 4.15a) shows a wide range of approximate detected thermal velocities

between about 20 cm/s to 120 cm/s, while the corresponding surrounding instantaneous

velocity magnitude was in a relatively narrow range between 60 cm/s and 80 cm/s. This

indicates that the roll-up signatures in the thermals can travel at velocities substantially

different from their immediate surroundings. This implies that the detected roll-ups are not

simply advected by the local boundary layer flow but rather these phenomena can exhibit

their own unique motion.

The shape change in detected thermal signatures provides evidence that the detected ther-

mals evolve on a time-scale comparable to the surrounding boundary layer flow. Thermal

motion is observable over the 100 microsecond-scale time between consecutive PIV im-

ages in a pair. The fluid inside a detected thermal away from the edges is likely to influence

bulk motion in addition to shape changes and exhibit their own unique velocity. While fluid

inside a thermal cannot be directly analyzed with the techniques discussed in this study,

these rough velocity estimates suggest that detected roll-up signatures are fast-moving and

active participants in heated turbulent boundary layer dynamics.
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(a)

(b)

Figure 4.15: Estimated thermal velocity magnitude (VT ) versus the spatially-averaged sur-

rounding velocity magnitude (VS ) at RiL = 2.0 for (a) roll-up signatures in the vertical

stream-wise plane and (b) rising thermals in the cross-stream plane.
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The rising thermal signatures detected in the cross-stream plane at RiL = 2.0 were found to

have an estimated velocity magnitude between 3 cm/s and 8 cm/s (see Figure 4.15b) while,

the surrounding flow has a velocity magnitude from 5 cm/s to 17 cm/s. Similar to the roll-

up thermal signatures, the velocity of rising thermals is in some instances is found to be

substantially different from the local instantaneous velocity magnitude. Due to the unique

perspective offered by the cross-plane, this estimated velocity difference between detected

thermals and local instantaneous velocity is associated with wall-normal and span-wise

velocities (i.e. v and w) only. From the graph, it appears that the detected rising thermals

generally have a smaller estimated velocity magnitude than their respective surroundings.

This is consistent with the perspective that the thermals detected in the cross-plane are not

passive followers of turbulent boundary layer phenomena.

4.6 Conclusion

This research study performed PIV-styled visualization of heated turbulent boundary layer

flow. Images captured in multiple planes with respect to the mean flow direction depicted

dark, low-seed density regions close to the hot wall that are most likely thermals. These

dark regions facilitated visualization and qualitative assessment of the thermal distribu-

tion where numerous key phenomena were observed such as bursting and sweeping style

events, turbulent eddy patterns, and the presence of a production layer. A texture-based

thermal detection technique was developed in order to automatically detect dark thermals

over thousands of experimental images. From detected thermal images the thermal area

coverage was estimated, which was found to increase with increasing Richardson number,

as expected. The computed spatial distribution indicated that within 2 mm of the wall a

production layer was observed; thermals were most frequently detected close to the wall.

At high Richardson numbers, in the horizontal planes relatively closer to the wall, the
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detected thermals showed clear mean flow alignment and span-wise organization. These

results were used to hypothesize the presence of near-wall convective cell-like structures

of alternating rising and falling fluid that drive thermals which are deformed and mixed by

turbulence further away from the wall.

The detected thermal images were also utilized to generate a first-order approximation, for

the first time, of the advection velocity of observed roll-ups and mushroom-slice shaped ris-

ing thermal patterns in the vertical stream-wise plane and cross-stream plane, respectively,

at RiL = 2.0. While the presented results provide sufficient information to open discus-

sion on the motion of detected thermals, it does not address the fundamental complexity

of the problem in regard to fully-generalized motion tracking where rigid translation, rigid

rotation, and deformation are occurring simultaneously. Results indicate that detected ther-

mals can exhibit motion at a substantially different velocity from the surrounding fluid. It

is likely that the internal thermal structure driving the observed motion is a highly active

region of dynamic fluid phenomena.
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Chapter 5

The Influence of Unstable Thermal

Stratification on Near-Wall Turbulent

Boundary Layer Characteristics

5.1 Introduction

The behavior of numerous engineering systems and environmental phenomena are influ-

enced by the transport of heat, momentum, and constituent species through the hydrody-

namic and thermal boundary layers. The exchange of these quantities between bulk fluid

and solid wall is known to strongly influence several engineering parameters including the

induced friction drag, and heat and mass transfer rates. Often, it is desirable to optimize

these parameters in engineering systems and predictive models. In environmental engineer-

ing, momentum and mass transport in the atmospheric boundary layer is known to govern

the distribution of greenhouse gases, pollution dispersion as well as the wind loading on

structures [1, 2]. The performance of power generation systems, such as emerging pho-

194
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tovoltaic (PV) panels whose electrical conversion efficiency decreases above a given tem-

perature, is strongly influenced by the heat transport through the boundary layer between

bulk fluid and the PV panel surface [3]. To facilitate the proper operation of existing and

emerging engineering systems, and the advancement of current scientific knowledge on en-

vironmental phenomena, it is of interest to improve the present understanding of boundary

layer dynamics.

The boundary layer encountered in a majority of engineering and environmental appli-

cations is turbulent in nature and characterized by highly three-dimensional motion and

complex dissipative phenomena. The hydrodynamic turbulent boundary layer consists of

multiple layers. The inner region contains the viscous sub-layer, buffer layer, and loga-

rithmic layer and the dynamics of the inner region are known to heavily influence bulk

transport [4–6]. In this region, the unstable interactions between flow inertia and the vis-

cous shear force generate numerous unique turbulent phenomena and structures [7–9].

The characteristics, dynamics, and governing mechanisms of these phenomena has been

a highly active area of research [10–12]. Many practical applications of boundary layer

flow involve heat transfer from the solid wall. In this configuration, the buoyant force con-

tributes to overall flow dynamics, and heat transfer greatly increases the difficulty of flow

characterization due to non-linear coupling of the thermofluid variables. The relative mag-

nitude of the buoyant force to flow inertia is quantified using the bulk Richardson number

(RiL) as defined in Eq.5.1 where g is gravitational acceleration, L is a characteristic length

scale, β is the volumetric coefficient of thermal expansion, ∆T is the temperature difference

between bulk fluid and solid wall, and U is the free-stream velocity [13].

RiL =
GrL

Re2
L

=
gLβ∆T

U2 (5.1)
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The Richardson number defines three key cases of thermofluid interaction. When the mean

inertia-driven flow is weak, i.e. RiL � 1, the buoyant force dominates leading to natural

convection. The strong buoyant force leads to the formation of so-called thermals, which

are parcels of warm fluid that originate in the vicinity of the heated wall and rise in the

fluid domain. In contrast, forced convection occurs when inertia is much stronger than the

buoyant force, i.e. RiL � 1. Mixed convection flow is a unique state where the buoyant

force and flow inertia are of comparable magnitudes making RiL ∼ 1. The structure and dy-

namics of mixed convection boundary layer flow are governed by the interaction between

flow inertia and the buoyant force. Often in the literature, the Richardson number is defined

in the context of “stable” and “unstable” stratification. This refers to an alternative formu-

lation of Ri where Ri > 0 describes stable thermal stratification, where the positive density

gradient vector (i.e. direction of increasing density) is aligned with the gravitational force.

This places lower density fluid above higher density fluid, often encountered when fluid

passes over a relatively cool surface. In contrast, Ri < 0 describes unstable thermal strati-

fication. In this context, the positive density gradient vector is in the opposite direction of

the gravitational force (i.e. high density fluid above low density fluid) in an unstable state.

The mixed convection boundary layer flow structure has been studied experimentally in

a channel configuration where thermals were observed while being advected by the mean

flow [14, 15]. One study reported an earlier than anticipated laminar to turbulent transi-

tion in the presence of wall heating [16]. Computational research on the characteristics

of the heated turbulent boundary layer often excludes the effect of buoyancy by treating

temperature as a passive scalar [17, 18]. While this approach is valid for some forced

convection flows, it is not suitable for mixed convection due to the coupling between ther-

mofluid variables. The heat transfer rate, skin friction coefficient, and turbulent intensity

have all been experimentally investigated in stably stratified boundary layers utilizing hot-
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wire probes [19]. The magnitudes of turbulent parameters were reported to decrease as

stable thermal stratification increases [19]. This is attributed to the utilization of turbulent

energy in working against buoyancy forces [13].Recently, two DNS-based research studies

investigated the heated turbulent boundary layer in unstable thermal stratification over a

flat plate at Riθ = 0.01, where θ is the momentum thickness, and included the influence of

the buoyant force [20, 21]. One study documented an increase in turbulent stresses while

both studies reported the modification of turbulent coherent structures where logarithmic

layer structures were lifted away from the wall. A larger number of near-wall streak struc-

tures were also reported to be present above a heated wall [20, 21]. It was proposed that

buoyancy increases the wall-normal turbulent velocity component leading to an increase

in the Reynolds shear stress and wall-normal turbulent heat flux [20]. The present au-

thor experimentally characterized heated turbulent boundary layer structure over a range of

Richardson numbers between RiL = 0.05 and RiL = 2.0 in chapter 4. Thermals were ob-

served to rise through the boundary layer and participate in complex turbulent interactions

with the inertia-driven boundary layer flow. A method of detecting thermals was devel-

oped and applied to experimental images to detect and characterize thermals, however the

turbulent statistics in the boundary layer flow was not the focus of that study.

In the current state of knowledge, the behavior of turbulent boundary layer flow over a

smooth horizontal flat plate in the absence of wall heating is well-known as is the behavior

of natural convection over a heated horizontal wall. In unstable stratified mixed convec-

tion turbulent boundary layer flow however, the present understanding is quite limited. The

current knowledge on this flow is primarily based on a limited number of studies. From

the computational aspect, these studies neglect the buoyant force entirely or are limited to

one Richardson number. From the experimental aspect, present knowledge is often based

on flow visualization, bulk flow characterization, or work focused on stable stratification
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within the turbulent boundary layer. There is a need for comprehensive experimental re-

search that characterizes the modification of the three-dimensional turbulent boundary layer

dynamics by wall heating during unstable thermal stratification. The present study is fo-

cused on a detailed investigation of the three-dimensional mechanisms that govern mixed

convection turbulent boundary layer dynamics and characterize the modification of key

turbulent parameters by wall heating.

5.2 Experimental Setup

Mixed convection turbulent boundary layer experiments were performed in a closed loop

low-disturbance wind tunnel that featured a 46 cm × 46 cm square test section that is 1.14

m long, as illustrated in Figure 5.1. A variable frequency controller allowed variation of

the test section flow velocity which could reach up to 60 m/s with a background turbulence

between 0.5–0.9% in the range of wind speeds 3–60 m/s previously investigated using

Laser Doppler Velocimetry (LDV). This background turbulence rating was achieved via

several flow conditioning screens upstream of the test section. An active cooling system

was used to maintain air temperature to within ± 1 °C of room temperature.

The test section side walls were made of clear acrylic to facilitate visualization and the

bottom wall was made of aluminium coated with smooth black matte vinyl to reduce light

reflection. The aluminum wall was embedded with 16 T-type 36 AWG special limits of

error (SLE) thermocouples (± 0.5 °C uncertainty) to measure the wall temperature. A 36

cm × 110 cm 3080W, 240V silicone surface heater was fitted to the bottom wall to supply

wall heating. The heater was controlled by a PID controller (Zesta Engineering) which held

the wall temperature to within ± 0.5 °C of a given set temperature. Fibreglass and expanded

polystyrene were used to insulate the bottom wall assembly, minimizing heat loss.
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Figure 5.1: Diagram of the experimental setup.

RiL

0.01 0.03 0.05 0.1 0.3
Reθ 1700 1700 1400 1000 700

TW (°C) 45 90 90 90 90
U (m/s) 7.5 7.5 6.0 4.5 2.5

Table 5.1: Summary of experimental conditions.

The boundary layer was tripped using a 6.3 mm × 6.3 mm × 43 cm steel rod placed on

the bottom wall at the inlet to the test section. The turbulent boundary layer formed, then

passed over the heated wall. A combination of wall temperatures (TW) and free-stream

velocities (U) listed in Table 5.1 were used to achieve a range of Richardson numbers

between 0.01 and 0.3 corresponding to strongly inertia driven (RiL = 0.01) to weakly

inertia driven flow (RiL = 0.3).

Particle image velocimetry (PIV) was used over multiple planes with respect to the mean

flow direction to capture high-resolution 2D velocity fields. This technique has been uti-

lized by the present authors to successfully characterize turbulent boundary layer flows as

discussed in chapter 3 and 4. Figure 5.1 shows the measurement planes considered in the

present study where all measurement planes were located 80 cm downstream of the trip bar,
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ensuring no signature of the trip bar was present in the measurement region. The vertical

stream-wise plane captured two-dimensional velocity fields in the x-y plane and the cross-

stream plane resolved two-dimensional velocity fields in the y-z plane. The combination

of measurement in these planes, facilitated a detailed analysis of three-dimensional flow

phenomena.

Laser illumination was provided by a dual-cavity 120mJ Nd:YAG laser (SoloPIV 120XT

532nm) operating at 15Hz per cavity. A set of optics converted the laser beam into a 1 mm

thick light sheet. A 12 MegaPixel CMOS camera (Flare, IO Industries) was used to record

PIV images at a resolution of 4096 × 3072 pixels. A 50 mm f/1.4 (Nikon) and 70-300 mm

f/4 (Sigma Corp.) camera lens were used in experiments. PIV images were recorded via

a high-speed image recording system (DVR Express CORE, IO Industries). The laser and

camera were synchronized using a four-channel pulse delay generator (555-4C, Berkeley

Nucleonics). The seed particle used in experiments was theatrical fog (Directors Choice,

Ultratec) that was injected upstream of the test section by a fog machine. Seed particle

was allowed to disperse for several minutes inside the recirculating wind tunnel before data

acquisition began. At least 10,000 experimental images were captured at a rate of 30 Hz in

each test, corresponding to at least 5,000 velocity vector fields computed at 15 Hz.

From captured PIV images, velocity computation was performed using an in-house MAT-

LAB program. The software utilizes Fast Fourier Transform (FFT) based cross-correlation

with 50% overlap of square interrogation windows. The interrogation window sizes ranged

from 32 × 32 pixels to 64 × 64 pixels, corresponding to search windows between 64 × 64

pixels to 128 × 128 pixels, respectively. This produced instantaneous velocity vectors with

a spatial resolution between 0.4 mm/vector (vertical stream-wise plane) and 0.5 mm/vector

(cross-stream plane). Spurious vectors, which numbered less than 1% in all experiments,

were detected and corrected using a local median filter and Adaptive Gaussian Window
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(AGW) interpolation. The techniques of PIV uncertainty estimation developed by Prasad

et. al. 2000 [22] and Cowen and Monismith 1997 [23] were used to estimate uncertainty

based on the seed particle size, AGW interpolation, peak locking, out-of-plane motion, and

velocity gradients. Based on the experiments at RiL = 0.03 where the velocity gradients

and wall temperature were at their respective maxima, the maximum velocity measure-

ment uncertainty was estimated to be ± 6.3 cm/s corresponding to 0.8% of the free-stream

velocity.

5.3 Results

The captured experimental images often show regions of low seed particle density near to

the heated wall. This was caused by thermal expansion of air adjacent to wall as it was

heated, as well as, the evaporation of the fog solvent. The lack of seed particles prevented

velocity computation within these regions. These low-seed particles regions were clearly

visible in the PIV images and the comparison of their shape and dynamics with previ-

ous experimental studies, confirmed that these regions are most likely rising thermals as

discussed in chapter 4 [15, 24]. As the velocity field within these thermals could not be

computed due to the lack of seed particles, these thermal regions were detected using a

thermal detection technique developed in chapter 4, and subsequently removed from the

consideration of velocity fields. Thermals generated significant signatures in PIV images

for cases where RiL ≥ 0.05. Hence, the thermal detection technique was used to remove

vectors in computed vectors fields in experiments conducted at RiL ≥ 0.05 while at lower

tested RiL, no thermal detection was necessary.

Figure 2 depicts sample PIV images and the corresponding instantaneous turbulent velocity

vector field superimposed on the instantaneous planar turbulent kinetic energy (TKE) to

illustrate the presence of thermals and the treatment. The results are shown for the vertical
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stream-wise plane and cross stream plane at RiL = 0.3 and at RiL = 0.03. At RiL = 0.3,

the thermals in the vertical stream-wise plane PIV image show a complex structure with

multiple thermal ligaments, i.e. dark bands of fluid, near the bottom wall. This structure

was most likely produced by the interaction of stream-wise inertia-driven boundary layer

turbulence deforming and breaking apart buoyant thermals. Note that only the regions

with very strong thermal-dominant flow have a near-complete lack of seed particles. As a

thermal starts to interact with the surrounding seeded fluid and undergoes mixing, diffusion

and dispersion, it contains enough seed to allow velocity computation. In the corresponding

turbulent velocity field, the detected strong thermals have been removed. However, the

adjacent regions where the thermals have strong interactions with the surrounding inertia-

driven flow, the velocity fields were well-resolved and were found to be associated with

large magnitudes of turbulent kinetic energy (TKE), as expected in the buoyancy-driven

motion of thermals.

The cross-stream plane provides a unique perspective on boundary layer flow as the stream-

wise velocity is not present. The PIV image at RiL = 0.3 shows multiple thermal signatures

each rising from the hot wall with a mushroom cloud like shape, a typical feature of rising

thermals. In the turbulent vector field, each of the detected thermal signatures is adjacent

to upward directing velocity vectors and a relatively high TKE magnitude. On the left side

of the vector field, there is a large region of high TKE magnitude fluid bursting away from

the wall that extends up to y = 4 cm. This region features a large clock-wise rotating recir-

culation on the right side of the bursting event which appears to assist with channeling fluid

away from the wall. This region corresponds to the relatively faint thermal signature in the

PIV image. The weak thermal signature produced by the relatively high seed particle den-

sity within the thermal facilitated velocity computation and the detection of this turbulent

phenomena.
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At lower RiL, thermal signatures in PIV images are weak and fewer vectors are removed. It

was found that at RiL ≤ 0.03 no thermal detection was needed as the seed particle density

was sufficiently high within thermals for velocity computation. In the vertical stream-wise

plane PIV image in the lower panel of Figure 5.2, thermals are difficult to clearly identify

due to the amount of seed particle within them but are still present. The associated turbulent

velocity field shows several regions throughout the field of view associated with high TKE

magnitude. These high TKE regions are likely associated with thermals due to their be-

havior of generally moving away from the wall and traveling slower than the mean flow in

the stream-wise direction, consistent with observation at RiL = 0.3. While mixing and dif-

fusion has increased seed density within each thermal, the underlying thermal motion has

not significantly changed. In the cross-stream plane at RiL = 0.03, the PIV image shows

a visually weaker thermal signature compared to the PIV image taken at RiL = 0.3. The

turbulent velocity field however, contains a strong bursting phenomenon on the left side

that extends up to y = 3 cm. This phenomenon is associated with a higher TKE magnitude

than events observed in the cross-stream plane at RiL = 0.3. Simultaneously, on the right

side of the image, relatively small recirculation events are observed.

From the presented PIV images, thermals with a strong visual signature appear most often

adjacent to the heated wall. As large low-seed density thermal regions were removed from

the corresponding instantaneous vector fields, this reduced the number of velocity vectors

available to describe the velocity distribution in a meaningful way. The fraction of available

(i.e. non-removed) velocity vectors to the total number of possible velocity vectors (VA) at

each height above the wall (y) is presented in Figure 5.3. In experiments where no thermal

detection was required, i.e. RiL ≤ 0.03, VA = 1 for all values of y as all velocity vectors

available for computation were utilized. At higher RiL, some vectors were removed from

consideration via thermal detection causing VA to decrease.
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Figure 5.2: A set of PIV images (left column) and corresponding instantaneous turbulent

velocity vector field superimposed on a colormap of instantaneous planar turbulent kinetic

energy (right column). The top panel corresponds to RiL = 0.3 and the bottom panel

corresponds to RiL = 0.03. The top row in each panel is taken from the vertical stream-

wise plane where mean flow is from left to right. The bottom row in each panel is from the

cross-stream plane where mean flow is out of the page. All PIV images have been cropped

and brightness/contrast enhanced.

The plotted data for the cross-stream plane in Figure 5.3b has discontinuities, which are

due to artifacts present in experimental images that biased thermal detection, and hence

excluded. The results show that in both considered measurement planes, the presence of

low seed density thermals significantly reduces the number of available velocity vectors

in the region close to the heated wall (y < 1 cm). At the wall, VA in the vertical stream-

wise plane is between 0 and 0.1 for all Ri. Similarly, in the cross-stream plane VA ≈ 0.35

at y = 0. Increasing y leads to an rapid increase in VA in both measurement planes until

VA ≈ 0.8 to 0.9 which occurs at y ≈ 0.5 cm in the vertical stream-wise plane and y ≈ 1cm

in the cross-stream plane. At these respective locations VA begins to increase slowly with

increasing y. Further away from the wall (y ≥ 1.5 cm) VA tends towards unity indicting a

large majority vectors at these y-coordinates are available for computations.

At VA ≈ 0.8, VA stops increasing rapidly with increasing y due to a weakening presence of

low seed density thermals. It is expected then that for y-coordinates where VA ≤ 0.85, a

significant bias in the velocity signal will be present as a large quantity of vectors are not

considered. To minimize bias, all velocity data and turbulent statistics are only considered

for the region where VA ≥ 0.85. In the vertical stream-wise plane this corresponds to the

domain y ≥≈ 0.4 cm and in the cross-stream plane y ≥≈ 0.7 cm.
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(a)

(b)

Figure 5.3: Fraction of velocity vectors available for computation at different distances

above the wall for (a) vertical stream-wise plane and (b) cross-stream plane.
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5.3.1 Mean Turbulent Statistics

Vertical Stream-wise Plane

The mean stream-wise velocity profiles obtained in the vertical stream-wise plane are pre-

sented in Figure 5.4. The profiles are presented in dimensional form and grouped according

to Reθ, the Reynolds number based on the free-stream velocity and the momentum thick-

ness (see Table 5.1), to compare heated versus unheated flow behavior. The experimental

setup for the unheated wall tests was the same as the setup documented in this paper. The

details of the unheated wall experiments have been previously discussed in chapter 3. The

results show that the mean velocity profiles in the presence and absence of heating are very

similar in shape and magnitude in the log-linear region. Due to higher fraction of thermals

close to the heated wall, the lower portion of the log-linear region was not captured at low

Reθ.

Figure 5.5 shows the mean velocity profiles normalized by inner wall layer scaling, for

the heated wall cases. The friction velocity was computed from the slope of the dimen-

sional velocity profile in log-linear region and fluid properties were evaluated at the film

temperature. The measured velocity profiles show good agreement with the canonical log-

law of the wall for a smooth wall. Note that the log-law profile extends until it inter-

sects the viscous sublayer profile. These results indicate that wall heating over the range

0.01 ≤ RiL ≤ 0.3 does not cause a significant change in the mean stream-wise velocity

in the logarithmic layer. As the dimensional heated and unheated velocity profiles were

nearly the same, it follows that the computed friction velocities would be approximately

equal. It is important to note that while the friction velocity did not change significantly,

as the buffer layer and viscous sublayers are not captured in the present study, there is no

evidence to conclude that the wall shear stress is unchanged.
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Figure 5.4: Arrangement of the mean stream-wise velocity profiles in a 2 × 2 grid based on

Reθ.

Figure 5.5: Mean stream-wise velocity profiles only for the heated wall cases expressed in

inner layer coordinates.
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The mean Reynolds stress profiles computed are presented in Figure 5.6 for the stream-

wise Reynolds stress (u′u′) and wall-normal Reynolds stress (v′v′) and Figure 5.7 for the

Reynolds shear stress (u′v′). At Reθ = 700, the unheated wall case is compared to the heated

wall experiment conducted at RiL = 0.3. The full stress profile could not be computed due

the presence of thermals in the near-wall region. In the log layer however, a consistent

decrease in u′u′
+

is present. At Reθ = 1000 and 1400 for RiL = 0.1 and RiL = 0.05,

similar trends are observed where the mean stream-wise stress is larger in the absence of

wall heating. In these cases, the near-wall increase in u′u′
+

magnitude is not detected due

to thermals. At Reθ = 1700 for RiL ≤ 0.03, where no strong thermal signatures are found,

the near-wall u′u′
+

curves show little change compared to the unheated case. Further away

from the wall in the log layer, a decrease in u′u′
+

is present consistent with the other flow

conditions tested.

The right column of Figure 5.6 depicts the mean wall-normal Reynolds stress profile. At

Reθ = 700, there is a significant decrease in the stress magnitude in the presence of wall

heating at RiL = 0.3. The same behavior is observed at RiL = 0.1 where the peak v′v′
+

is

about 0.8 compared to the unheated case that had a peak near 1.1. At RiL = 0.05 however,

the heated and unheated profiles are very similar for y+ < 200. As y+ increased further,

v′v′
+

decreased compared to the unheated wall profile. At RiL ≤ 0.03, the peak v′v′
+

was

found to be larger in the presence of wall heating than the unheated wall case. Moving

away from the wall leads to a decrease in wall-normal Reynolds stress until the stress in

the heated wall cases becomes smaller in magnitude than v′v′
+

for the unheated case.

The mean Reynolds shear stress profiles presented in Figure 5.7 depict trends similar to

the stream-wise and wall-normal mean stresses. At RiL ≥ 0.1 the u′v′
+

magnitudes are

significantly lower in the presence of wall heating than the no heating cases. For RiL ≤ 0.03

however, the mean Reynolds shear stress profile show similar magnitudes to the unheated
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Figure 5.6: Vertical profiles of u′u′
+

(left column) and v′v′
+

(right column) in wall coordi-

nates for heated and unheated cases obtained in the vertical stream-wise plane. The plots

are grouped according to Reθ.
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Figure 5.7: Vertical profiles of u′v′
+

for heated and unheated cases, in the vertical stream-

wise plane, expressed in wall coordinates. Plots are grouped according to Reθ.

tests. Although, at y+ > 200, u′v′
+

magnitudes for the heated wall cases were slightly

smaller than that for the unheated case.

Cross Stream Plane

In the cross-stream plane, the mean stress profiles were computed for the wall-normal

Reynolds stress (v′v′) and the span-wise Reynolds stress (w′w′) and the results are pre-

sented in Figure 5.8. Note that the magnitude of v′w′ was found to be two orders of mag-

nitude smaller than v′v′ and w′w′, hence the contributions of v′w′ to overall flow behavior

are insignificant hence, this quantity is omitted from the presented results. The mean span-

wise Reynolds stress profile at Reθ = 700 in the unheated wall case shows a sharp increase

in magnitude near the wall, reaching a peak magnitude and then a gradual decrease in

magnitude with increasing distance from the wall. At RiL = 0.3, a decrease in w′w′
+

was

observed in the near-wall region, however the difference in stress magnitudes decreases as
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distance from the wall increased. At RiL = 0.1, the peak w′w′
+

was larger than the unheated

case. This was also observed at RiL = 0.05 where the difference between heated wall and

unheated wall peak w′w′
+

was larger than the difference at RiL = 0.1. In both of these cases

however, the near-wall behavior is not fully captured due to thermals’ data exclusion. At

RiL ≤ 0.03, the w′w′
+

magnitudes were significantly larger in the presence of wall heating.

However, w′w′
+

magnitudes decrease rapidly with increasing y+ leading to a lower stress

magnitude further away from the wall.

From the computed mean Reynolds stress profiles, each of the presented stresses have

demonstrated some change compared to the unheated case. The stream-wise turbulent

stress was found to decrease slightly in the log-layer at all tested RiL cases. The span-wise

Reynolds stress showed a consistent increase in peak stress in the presence of wall heating.

The wall-normal Reynolds stress demonstrated a similar increase in peak stress magnitude

in the cross-stream plane however this was only observed for RiL ≤ 0.03 in the vertical

stream-wise plane. It is expected however that in the presence of wall heating, v′ increases

which influences the other turbulent variables.

5.3.2 Modification to Wall-Normal Turbulent Velocity Component

In the vertical stream-wise plane, v′v′
+

showed the most significant change in the pres-

ence of wall heating by decreasing as RiL increased. This behavior is inconsistent with

previously reported findings [20, 21]. To determine the cause of this behavior, the vertical

stream-wise plane results become the focus of study.

To investigate the nature of the modification to v′ by wall heating, the probability density

function (PDF) of v′ (φ(v′+)) is calculated and presented in Figure 5.9 for all considered RiL

and the corresponding unheated cases. The results clearly show that in the presence of wall

heating φ(v′) becomes tri-modal. The plots also show an increase in the peak PDF value at
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Figure 5.8: Vertical profiles of w′w′
+

(left column) and v′v′
+

(right column) in wall coor-

dinates for heated and unheated cases obtained in the cross stream plane. The plots are

grouped according to Reθ.
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v′ ≈ 0 relative to the unheated cases, indicating that relatively small magnitudes of wall-

normal turbulent velocity are observed relatively more often in the presence of wall heating.

The approximately symmetric secondary mode in φ(v′) is likely due to the combined effects

of buoyant thermals rising from the wall and replenishing fluid sinking towards the wall.

The region in φ(v′) between the primary mode at v′ ≈ 0 and the buoyancy-driven secondary

mode is a relatively inactive region at v′+ ≈ ±1. Compared to the unheated case, there are

significantly fewer velocity vectors associated with this range of v′+ magnitudes. In the

region of relative inactivity (v′+ ≈ ±1), there are small peaks in φ(v′) which are most

prominent for RiL ≤ 0.1. These peaks may be attributed to a secondary phenomenon

associated with the buoyancy driven rising and falling motion.

The buoyancy-driven secondary mode in φ(v′) appears to increase in v′ magnitude as RiL

increases. At RiL = 0.01 the peak in the buoyant mode of φ(v′) was v′ ≈ ±2.0 while at

RiL = 0.3, the peak was approximately ± 3.5. This behavior is consistent with previous

reports of wall heating increasing the magnitude of v′. The observed tri-modal behavior in

v′ clearly defines one basic modification to the turbulent velocity field that influences the

other fluid variables. This change in φ(v′) also propagates through its gradients, defining

one pathway for wall heating to influence several key turbulent quantities that depends on

v and the gradients of v. However, this description does not explain the decrease in v′v′
+

(see Figure 5.6). This behavior can be explained through the time-history of v′ at RiL = 0.3

and RiL = 0.01 at a point far away from the wall (y = 4 cm) where no thermals were

detected as shown in Figure 5.10. In the velocity data obtained from each experiment,

many observations of the time history of v′ at various spatial positions were performed and

similar trends were observed. The velocity time histories presented are each a sample from

a given experiment illustrating the observed trends.

The time history signal at RiL = 0.3 shows that the magnitude of v′+ rarely exceeded ± 1,
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(a) (b)

(c) (d)

Figure 5.9: PDFs of v′ for heated and unheated cases obtained in the vertical stream-wise

plane. The plots are grouped according to Reθ.
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(a)

(b)

Figure 5.10: Time history of v′+ signal at a point 4 cm above the wall. (a) is from the

RiL = 0.3 case (Reθ = 700, TW = 90 °C) and (b.) is from the RiL = 0.01 case (Reθ = 1700,

TW = 45 °C) in the vertical stream-wise plane.
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however when a large fluctuation occurred it tended to produce v′+ ≈ 3.5. This agrees with

the φ(v′) distribution. The close clustering of v′+ about zero suggests that the standard de-

viation of v′+ is small while the large departures that are biased toward positive v′+ suggest

non-zero skewness and a large kurtosis in the underlying φ(v′) distribution. At RiL = 0.01,

the v′+ time history shows more frequent fluctuations with a magnitude greater than one

and a comparatively more symmetric distribution (see Figure 5.10b). Comparison with

the unheated wall experiments in Figure 5.11 show that at Reθ = 1700 v′+ there are fewer

excursions of |v′+| ≥ 2 relative to the observations at RiL = 0.01. This is evidence of a

decreased kurtosis in the absence of wall heating. The magnitudes of wall normal turbulent

velocity in the range −0.5 ≤ v′+ ≤ 0.5 is more populated at RiL = 0.01 than Reθ = 1700

suggesting a decrease in the standard deviation of v′. At Reθ = 700, the v′+ time history

shows a wider distribution of velocity fluctuations between −2 ≤ v′+ ≤ 2 compared to

RiL = 0.3. This is evidence of a larger magnitude of the standard deviation of v′ in the

absence of wall heating. The large departures from the mean that were present at RiL = 0.3

are absent at Reθ = 700 indicative of a smaller kurtosis.

From these time history plots it appears that at RiL = 0.3, v′+ is often small in magnitude

indicating fluid is traveling with the mean flow. Intermittently, a thermal bursts and rises

from the heated wall and its passage produces the large magnitude fluctuations of v′+. This

behavior is quantified with the mean inner layer normalized standard deviation (σ+) and

mean kurtosis (K) of v′ as shown in Table 5.2. The kurtosis is based on the fourth-order

statistical moment and standard deviation (σx) defined in Eqn. 5.2 for an arbitrary quantity

(x) observed N times.
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(a)

(b)

Figure 5.11: Time history of v′+ signal at a point 4 cm above the wall. (a) is from the

unheated Reθ = 700 case and (b.) is from the unheated Reθ = 1700 case in the vertical

stream-wise plane.
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RiL No heat
0.01 0.3 Reθ = 1700 Reθ = 700

σ+ 78% 51% 71% 76%
K 10 58 5.5 4.5

Table 5.2: Mean standard deviation and kurtosis of v′ for a selection of cases.

K =

1
N

N∑
i=1

(xi − x)4

σ4
x

(5.2)

From the table, wall heating in the RiL = 0.01 case causes a slight increase in the typical

wall-normal velocity fluctuation (σ+). Thermals and associated replenishing motions occur

but are relatively weak compared to higher RiL cases, leading to an increase in K at RiL =

0.01. At RiL = 0.3 however, wall heating produced a significant change in the higher order

v′ statistics. First, σ+ decreased from 76% to 51% indicating fluid is typically moving

less compared to the unheated case in the wall-normal direction with respect to the mean

flow. However, K increased by over an order of magnitude indicating that the wall-normal

flow behavior is relatively calm before suddenly bursting into action for a short time, likely

associated with the passage of a thermal, before returning to a relatively calm state.

These findings now provide a complete description for the observed behaviors in the wall-

normal Reynolds stress. At all RiL, the buoyant force drives wall-normal fluid motion

leading to the formation of the tri-modal φ(v′) distribution. At these low RiL, thermals are

rapidly mixed and diffused into the inertia driven flow. The resulting heat and momentum

transfer from buoyant thermal to inertia driven flow enhances the local v′ distribution. This

causes increases in the wall-normal Reynolds stress in the near-wall region. At higher

RiL, the buoyant force is sufficiently large in magnitude relative to inertia to resist inertia-



Mixed Convection Turbulent Boundary Layer Statistics 220

driven mixing and diffusion. This leads to large thermals that intermittently burst from the

production layer and rise through the turbulent boundary layer as discussed in chapter 4.

This behavior has been visualized by Sparrow [24] depicted in Figure 1.11. As a thermal

passes through the boundary layer, it entrains the surrounding fluid while also producing a

wake [13]. The entrainment process and intermittent thermal bursting process likely take

relatively high magnitude v′ fluid away from the boundary layer flow leaving fluid moving

at the local mean velocity and producing a decrease in v′v′
+
.

The observed behaviors of v′ confirm that the modification to u′v′
+

is caused by changes in

v′. This conclusion is further supported by the very small change in u′u′
+

with increasing

RiL. As φ(v′) is tri-modal, it is of interest to characterize the PDF of v′v′.

The PDF of v′v′+ at all considered RiL is bi-modal, containing the primary mode corre-

sponding to v′+ ≈ 0 and a secondary mode that agrees well with peaks observed in Figure

5.9. The symmetry of φ(v′) is clear in φ(v′v′+) as the multi-modality is preserved. The

secondary mode in φ(v′v′+) is most likely associated with buoyancy driven motion. The

peak in the secondary mode appears to increase with RiL. An interesting trend in these

PDFs is that the peak of the likely buoyancy driven secondary mode was found to occur at

an increasing value of φ(v′v′+) with RiL as shown in Table 5.3. This is an expected behav-

ior as the buoyant force becomes more dominant relative to flow inertia as the Richardson

number increases. The secondary peak Reynolds wall-normal stress magnitude (v′v′+S P) was

plotted against RiL in Figure 5.13.

These results indicate that v′v′+S P increases monotonically with RiL in a relationship that

appears log-linear in nature. It is important to note that except RiL = 0.01, the wall temper-

ature and hence the Rayleigh and Grashof numbers, were constant in all experiments (only

Reynolds number changed). Similarly, at RiL = 0.01 and 0.03, the Reynolds number was

constant. This indicates that Re, Ra, and Gr cannot capture the observed v′ behavior alone
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(a) (b)

(c) (d)

Figure 5.12: PDFs of v′v′+ for heated and unheated cases obtained in the vertical stream-

wise plane. The plots are grouped according to Reθ.

RiL v′v′+S P
0.01 3.7
0.03 4.4
0.05 5.9
0.1 11.5
0.3 11.7

Table 5.3: Secondary peak magnitude of v′v′+ at each Richardson number case.
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Figure 5.13: Plot of the secondary peak in φ(v′v′+) versus RiL.

and the contributions of both buoyancy and inertia must be present to characterize this flow

behavior. It is also important to note that the increase in v′v′+S P with increasing RiL is much

smaller from RiL = 0.1 to 0.3 compared to the other Richardson numbers. This is likely

due to the buoyant force magnitude becoming sufficiently large to alter flow structure as

thermals gradually become spatially dominant.

5.4 Conclusion

The objective of this study was to investigate and characterize the processes contributing

to the modification of turbulent fluid variables in the presence of wall heating in the ther-

mally unstable boundary layer. PIV experiments were performed on the turbulent boundary

layer passing over a heated wall over a range of Richardson numbers to characterize both

inertia dominant flow and weakly buoyancy influenced flow. Instantaneous velocity fields

captured over multiple planes illustrated energetic bursting and ejection phenomena. Mod-
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ifications to the turbulent stresses were reported including a dependence of v′v′
+

on RiL

likely associated with the intermittency of thermals bursting and rising through the bound-

ary layer. The PDF of v′ was found to be multi-modal in the presence of wall heating. The

associated wall-normal turbulent stress PDF was also multi-modal and featured a buoyancy

associated mode whose stress magnitude increased with Richardson number. The observed

multi-modality in φ(v′) influences the other flow variables through v and its gradients. The

energetic and intermittent thermal bursting phenomena driven by the buoyant force are

most likely responsible for modifications to the turbulent variables.
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Chapter 6

Conclusions

The hydrodynamic boundary layer is one of the classical problems in fluid mechanics. The

dynamics and processes present in the boundary layer govern the interaction between solid

and fluid which is critical to the continued operation and improvement of numerous engi-

neering systems and to advancing our understanding of many environmental phenomena.

A majority of the encountered boundary layer flows are turbulent and often involve heat

exchange between the fluid and the solid boundary. In heated boundary layer flows, inertia

interacts with the buoyant force and their interactions play a dominant role in regulating

energy and mass exchange between the fluid and the heated boundary. The mixed convec-

tion turbulent boundary layer is a challenging fluid problem due to its natural complexity,

however, it has great significance in a wide range of engineering and environmental fields.

New contributions to the knowledge advancement on mixed convection turbulent bound-

ary layer behavior are highly valuable to the fluid mechanics and broader engineering and

scientific community.

Due to the combined complexity of mixed convection turbulent boundary layer flow and the

governing equations, there is no analytical solution to this flow problem. While numerical

227
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solutions can be found utilizing DNS, this approach is very computationally expensive.

Furthermore, these numerical solutions often consider simplified assumptions that affect

the extent to which these solutions can capture the underlying physics. This makes the

experimental approach the most suitable for investigating this complex boundary layer flow

phenomena. In experimental investigations, measurements of the key fluid variables, often

velocity, temperature, and pressure, are recorded and analyzed to describe fluid phenomena.

One of the most important aspects of any fluid dynamics experiment is the technique used

to characterize flow behavior. The nature and structure of turbulent flows make it challeng-

ing for a measurement technique to characterize and describe the turbulent behavior over

all its length and time scales. The methods to analyze turbulent flow (e.g. Reynolds de-

composition, low and high order statistical analysis, and etc.) require simultaneous three-

dimensional flow velocity measurements for a comprehensive understanding of flow be-

havior. While point measurement techniques such as hot-wire anemometry and LDV can

successfully measure all velocity components, there is limited information available on the

spatial velocity distribution. Existing planar measurement techniques are highly effective

for measurement with high spatial resolution, however these techniques only provide two

velocity components. Three-dimensional flow measurement is a highly active area of re-

search and development. The recently proposed Rainbow Volumic Velocimetry technique

and other recent color-based techniques show promise for high quality three-dimensional

flow measurement, however these methods are often limited to small volume depths.F

To address knowledge gaps in the current scientific literature, the overall objectives of the

present thesis work are as follows:

• Develop a volumetric illumination technique and associated data analysis algorithm

for three-dimensional flow characterization.

• Determine the behavior of thermals in the mixed convection turbulent boundary layer
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over a range of Richardson numbers.

• Identify and characterize the mechanism(s) responsible for the modification of tur-

bulent boundary layer structure over a range of Richardson numbers.

• Investigate and characterize the mechanism(s) that govern the modification to turbu-

lent statistics by wall heating within the mixed convection turbulent boundary layer.

The chapter 2 was focused on the development of a volumetric illumination technique and

associated data analysis algorithm for three-dimensional flow characterization. The new

illumination technique known as the color permutation method leverages mathematical

combinatorics to greatly increase the out-of-plane spatial resolution for a limited number

of colors by permuting the colors in the out-of-plane direction. This facilitates an extension

of the volume dimensions such that larger volume depths can be measured. Similarly, an

increase in out-of-plane spatial resolution is realized in the color permutation method over

an illumination technique where no color permutation is utilized. A detailed algorithm was

presented that extensively employed image processing and analysis techniques to construct

three-dimensional trajectory fields from color streak images. The basic performance of

the algorithm was tested on several synthetic images and results indicated the developed

algorithm is feasible and suitable for further development. The newly developed technique

shows promise for high quality flow visualization and measurement of three-dimensional

flows such as the mixed convection turbulent boundary layer.

To characterize the mixed convection turbulent boundary layer, first it is necessary to in-

vestigate the behavior of unheated turbulent boundary layer flow. Experiments performed

with the unheated wall act primarily as a reference case for mixed convection turbulent

boundary layer experiments. However, despite over 100 years of turbulent boundary layer

research, there are still numerous phenomena related to the unheated boundary layer flow

where limited knowledge is available. One such area is on the turbulent statistics which are
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an under-reported quantity in the turbulent boundary layer. The objective of chapter 3 was

to characterize the spatial distribution of the turbulent velocity probability density function

in the unheated turbulent boundary layer. Planar PIV measurements gathered flow velocity

over multiple orthogonal planes with respect to the mean boundary layer flow direction.

From the computed velocity fields, a multi-modal behavior was found in the PDF of the

stream-wise turbulent velocity. The multi-modal signal was strongest in the buffer layer

and found to not be associated with stream-wise vortices. A POD analysis revealed the

multi-modality in the PDF was attributed to high order POD modes which are associated

with a high turbulent kinetic energy dissipation rate magnitude. Reconstructed turbulent

velocity fields from POD led to the hypothesis that the observed multi-modality is influ-

enced by an energy transfer mechanism between large and small scale turbulent motions.

The observations and conclusions of this study show similarity with the near-wall cycle

phenomena reported in the literature.

In mixed convection turbulent boundary layer flow investigations, the presence of buoyant

thermals was observed. Rarely in the current body of literature have thermals been doc-

umented in mixed convection turbulent boundary layer flow. There is very little available

knowledge on how the behavior of thermals changes in the mixed convection flow regime

as the relative contributions of inertia and buoyancy (i.e. Ri) are varied. The objective

of chapter 4 was to investigate the behavior of thermals in the mixed convection turbulent

boundary layer over a range of Richardson numbers. This research objective was achieved

through a PIV-based visualization of thermals in the mixed convection turbulent boundary

layer at Richardson numbers between 0.01 (inertia dominant flow) and 2.0 (buoyancy dom-

inant flow). Captured images showed buoyant thermals rising through the boundary layer

and multiple unique interactions between thermals and bulk boundary layer flow were ob-

served. A texture-based image processing algorithm was developed to detect thermals in
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experimental images. From images of detected thermals, the size and spatial distribution

of thermals in 3D was determined. These results were used to define a three-dimensional

mixed convection turbulent flow structure that featured near-wall convective cell-like be-

haviors. This thermal detection algorithm permitted, for the first time, the estimation of

thermals’ velocity and the velocity of “roll-ups” containing buoyant fluid.

The observed changes to the turbulent boundary layer structure reported in chapter 4 were

significant. The objectives of chapter 5 are to (1) identify and characterize the mecha-

nism(s) responsible for the modification of turbulent boundary layer structure over a range

of Richardson numbers and (2) investigate and characterize the mechanism(s) that govern

the modification to turbulent statistics by wall heating within the mixed convection tur-

bulent boundary layer. The first objective of this chapter explains which mechanism is

responsible for the change in turbulent boundary layer structure in mixed convection. The

second objective is to explain how and why the identified mechanism operates in the ob-

served manner. These objectives were achieved through multi-plane PIV experiments over

the range RiL = 0.01 to 0.3. Due to the low seed particle density of thermals, the velocity

field could not be computed inside thermals. The thermal detection algorithm was used to

remove thermals where no velocity could be calculated. From the computed velocity fields,

Reynolds decomposition was performed and the turbulent statistics calculated. Results in-

dicate that the wall-normal velocity, v, is strongly modified by the presence of wall heating.

The modification this velocity component is due to the buoyant force which drives the

observed convective cell-like behavior in the near-wall region and drives the intermittent

bursting action of thermals from the production layer. The PDF of v became multi-modal

at all Richardson numbers considered. This multi-modality propagated through v′ and the

spatial gradients of v which modifies multiple turbulent quantities including the Reynolds

stresses, turbulent production, and dissipation rate. The magnitude of the secondary mode



Chapter 6. Conclusions 232

in the PDF of v′2 was found to increase monotonically with Ri, however neither Re or Gr

showed the same trend. This indicates that inertia and buoyancy alone cannot describe

the modification to flow structure, and the relative contributions of these forces is a key

governing factor of mixed convection turbulent boundary layer flow behavior.

This study has thoroughly investigated mixed convection turbulent flow behavior. Multiple

knowledge gaps in the literature were addressed through research on flow measurement

techniques, unheated turbulent boundary layer investigations, and mixed convection turbu-

lent boundary layer investigations.

New Knowledge Generated

• A new technique for volumetric color illumination based on color permutations.

• Formation of multi-modality in the probability density function of u′ in the near-wall

region of the unheated turbulent boundary layer.

• Identification of a potential mechanism responsible for the multi-modal behavior in

the PDF of u′.

• Identification of key interactions between buoyant thermals and surrounding bound-

ary layer flow.

• Image processing algorithm to detect thermals in experimental images.

• Size and spatial distribution of thermals was reported in 3D which was used to define

the underlying mixed convection turbulent boundary layer flow structure.

• The velocity of buoyant thermals and vortex-like regions containing buoyant fluid

was estimated for the first time in the literature.

• Clear evidence on the mechanism of turbulence modification by wall heating in the
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turbulent boundary layer in the form of multi-modality in the PDF of v.

Each of the constituent research investigations performed in this study identified challenges

and limitations in addition to the new contributions to the body of knowledge, outlining the

direction of future research. Based on the findings of this study, the follow recommenda-

tions are made for future research.

Future Recommendations

• The newly developed color permutation method requires experimental implementa-

tion to identify practical limitations and integrate a technique for time-stamping to

facilitate high-quality three-dimensional velocity field computation.

• The image analysis algorithm for the color permutation method only produces streak

trajectories and must be modified to generate velocity fields using images of time-

stamped steak trajectories.

• A deeper investigation into the POD analysis of the multi-modal u′ PDF should be

performed to validate the energy transfer mechanism hypothesis.

• The detailed temperature field inside the mixed convection turbulent boundary layer

and associated thermals was not measured due to limitations in present temperature

measurement systems. Future work should be focused on advancing temperature

measurement techniques to capture these temperature fields, which are vital for fur-

ther advancement of knowledge.

• Perform high-speed visualization of thermals at high Ri to further investigate the

spatio-temporal dynamics of thermals and gain further insights into the interactions

between thermal and adjacent boundary layer flow.

• Perform high quality velocity measurements utilizing a technique that can determine
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flow velocity within thermals. This is crucial in order to characterize the turbulence

associated with thermals which is important to understanding their role and contri-

butions to the overall behavior in the turbulent boundary layer.



Appendix A

PIV Uncertainty

The uncertainty associated with PIV velocity computation was estimated based on the er-

rors associated with particle size, AGW interpolation, velocity gradients, peak locking,

image dynamic range, and out-of-plane motion [1]. The seed particle used in this study

was theatrical fog with a particle diameter much smaller than the size of a pixel on the

camera. Therefore, each particle is taken to occupy one pixel in the PIV image.

Uncertainty estimation in the computed PIV velocity fields was based on the approaches

developed by Cowen and Monismith, and Prasad et. al. [1, 2]. Experiments conducted at

Reθ = 1700 (unheated wall) and RiL = 0.03 (heated wall) were used to estimate uncertainty

in this study as these experimental conditions produced the largest magnitude of velocity

gradients. The procedure to compute the estimated PIV uncertainty is given below.

1. The mean values of the velocity gradients were computed in the stream-wise and

wall-normal directions from raw PIV data. The maximum mean velocity gradient

was in the stream-wise direction (∂u/∂y) at 4%.

2. Velocity gradient errors were estimated from Figure 5e in Cowen and Monismith [1].
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Taking the sum of mean and RMS errors produced the total error due to the velocity

gradient.

εVG = 0.04 pixels (A.1)

3. Given the fog seed particle is much smaller than pixel size thus we use a particle

diameter of 1 pixel and estimate the error due to particle diameter using Figure 5a in

Cowen and Monismith [1].

εS P = 0.0668 pixels (A.2)

4. Due to the small particle size additional error is introduced as discussed by Prasad et.

al. [2]. It was estimated that the error due to seed particle diameters approaching zero

is 40% larger than for a seed particle with 1 pixel diameter. The findings of Prasad

et. al. [2] are based on a center of mass interpolation scheme which is substantially

more likely to manifest peak-locking than the Gaussian scheme utilized in the present

study [1]. To better describe the interpolation scheme used in this study, the particle

size error was increased by 20%.

εS P = 0.08 pixels (A.3)

5. Error based on out-of-plane motion was estimated based on the magnitude of the

wall-normal velocity. The mean plus one standard deviation of the wall-normal ve-

locity was computed to correspond to a displacement of 12 µm. As this is much

smaller than the 1 mm thick light sheet used in this study, error due to out-of-plane

motion can be neglected.
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6. The adaptive Gaussian window interpolation scheme utilized in this study has a

known error found in Figure 5f of Cowen and Monismith [1]

εAGW = 0.08 pixels (A.4)

The total error in the stream-wise velocity is therefore

εAGW + εS P = 0.16 pixels (A.5)

When converted to velocity this corresponds to ≈ 6.3 cm/s. Taking the errors in the wall-

normal velocity to be the same as the errors in the stream-wise velocity leads to an overall

error magnitude of ≈ 8.9 cm/s.
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Appendix B

Introduction to Digital Image Processing

Traditionally photography and imaging utilize light sensitive material to capture light from

a given scene that would be carefully processed in a dark room into a photograph. In this

technique, the distribution of incident light on the light sensitive medium, i.e. camera film,

is a continuous function of the medium’s spatial coordinates. This is known as a continuous

tone image. In recent years the field of digital photography has developed where digital

photographs are captured.

A digital image is a matrix of size M × N whose elements represent visual information

[1]. Each matrix element is named a pixel, a portmanteau of “picture” and “element”.

The quantity stored in each pixel is known as a gray level which represents the pixel’s

brightness. The number of gray levels in a digital image is often power of 2. An image

with 256 gray levels is said to be an 8-bit image as 28 = 256. Here 8 refers to the number of

bits in the binary representation of the image. In an 8-bit image, the gray level of each pixel

has the domain [0, 255] and in general for an N-bit image this domain is [0, 2N − 1] [1].

Each possible gray level in an image corresponds to a brightness defined in a colormap.

The colormap specifies how to map each gray level to a brightness on a display. The
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conventional colormap defines the gray level zero to pure black and 2N − 1, e.g. 255 for an

8-bit image, to pure white with a linear scaling between the domain limits corresponding to

various shades of gray. This discussion is limited to only gray-scale images for simplicity

as the topics discussed here are applicable to color images.

Part of the goal of digital photography is to generate digital images that are indistinguish-

able from traditional photography. To this end, digital images must have sufficient spatial

resolution and brightness resolution to accurately describe the underlying continuous light

distribution. To achieve this goal, digital images often contain pixels that represent very

small spatial regions relative to the image size and a large range of available gray levels,

known as the dynamic range. Presently it is common to encounter digital images containing

millions of pixels and at least 256 gray levels.

In this chapter primarily 8-bit gray-scale images and 1-bit binary images that can only

represent black and white are covered. A sample 8-bit image is presented in B.1 where

i refers to the row and j refers to the column. The image presented, A, has dimensions

M = 3 and N = 3. When displayed using a colormap, pixel A(0, 0) = 0 corresponds to

pure black and pixel A(1, 1) = 255 is pure white. The whole image when viewed appears

as illustrated below.

A(i, j) =


0 125 245

24 255 199

210 125 75

 (B.1)

Visual representation of A.

As digital images contain many pixels each with a gray level in an expected range, often
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statistical approached are employed to describe digital images. One of the most well-

known statistical tools is the histogram which for digital images describes the number of

pixels associated with each gray level [1]. For the image corresponding to A there is one

pixel associated with each of the gray levels present in the image except gray level 125

which has two pixels, A(0, 1) and A(2, 1). For a larger image such as the Coins image, the

histogram is depicted in Figure B.1b.

(a)

(b)

Figure B.1: The Coins image (a) and its corresponding histogram (b).

From the image histogram, several image behaviors can be readily identified and quantified.

A mostly dark image will feature a histogram distribution strongly biased towards low gray

levels [1]. Similarly a mostly bright image will produce a histogram skewed toward high

gray levels. The term contrast refers to the amount of available dynamic range utilized by a

given image. In an image with low contrast, the histogram will appear very narrow. On the

other hand, a high contrast image is represented by a wide histogram that fills most to all of

the available dynamic range. For the Coins image histogram, good contrast is observed as

most of the dynamic range is utilized. The dark background occupies a large space in the

image and correspondingly the histogram depicts many pixels whose gray level is around
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75. The brighter coins produce the histogram signature near gray level 175.

When a digital image is captured there is often noise present in the generated image sig-

nal. Prior to extracting detailed information from images it is necessary to suppress noise.

Moreover, enhancing visual quality and specific image features such as edges is often de-

sirable. To achieve these goals the use of image filters are required.

There are two primary classes of image filters, spatial domain filters and frequency domain

filters [1]. Spatial filters operate directly on the pixels by considering a local neighbor-

hood around each pixel and modifying the central pixel according to a given equation or

condition. One of the most well known spatial filters is the 2D convolution operation. In

this process a given convolution kernel, a matrix of size K × L which is often square and

usually both K and L are odd numbers, is rotated by 180 degrees to produce a computa-

tional molecule (g). This then “slides” over the source image by visiting each pixel in A

according to the equation in B.2 to generate the filtered image C.

C = A ∗ g =
∑

p

∑
q

g(i − p, j − q)A(p, q) (B.2)

For this equation it is clear that the convolution is only defined for values of p and q that

produce a valid coordinate in C. However this means pixels near the image boundaries of

A will be ignored. To avoid this issue the size of A is increased often by adding zeros [1].

The result of this process is a filtered image where the gray level of each pixel was modified

based on the adjacent pixels according to the convolution kernel. The choice of convolution

kernel enables a wide range of outcomes for the convolution operation. This includes

arithmetic averaging also known as a low-pass filter, weighted averaging, and derivative

calculation. The averaging filters are often used for noise reduction and blurring while
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derivative filters are found in edge detection and image enhancement applications [1].

Order-statistic filters operate in a similar manner to the convolution filter. A user-defined

window, often a square region, is generated and this traverses the source image selecting

a local neighborhood around a central pixel. The pixels in each local neighborhood are

sorted according to gray level and a user-specified command is applied to the sorted pixels.

This command often selects the smallest, largest, or median gray level and stores this in the

corresponding central pixel in the output image. This process is repeated for all pixels in

the source image. When the median command is utilized this operation is named the local

median filter, one of the most powerful noise suppression filters available.

The second class of filters operate in the frequency domain. Before any filtering is per-

formed however, an image in the spatial domain must be transformed to the frequency

domain. This is achieved using the Fourier Transform, which in the 2D discrete image

context is the 2D Discrete Fourier Transform (DFT). Mathematically, the DFT takes the

form shown in B.3 for a source image, A, and DFT output, D̂ where both images are of size

M × N [1].

D̂(m, n) =
1
√

MN

M−1∑
p=0

N−1∑
q=0

A(p, q)e−2πi
(
m

p
M +n

q
N

)
(B.3)

In this definition the indices p and q refer to spatial positions in A while indices m and

n correspond to frequency coordinates in D̂. The exponential contains the imaginary unit

i =
√
−1. The DFT provides information on the frequency content of an image. In a noisy

image or an image with sudden changes in gray level, it is expected to find a significant

high frequency signature in the DFT. Similarly for images with low noise or very slow

variations in gray level the DFT will show a stronger low frequency signal.
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In the context of filtering, it is desirable to enhance or reduce certain frequencies found in

an image. A low-pass filter in the frequency domain acts to reduce the high-frequency mag-

nitude present in the DFT of a source image. Often this is for the purpose of suppressing

noise. Similarly, a high-pass filter can be used to reduce the low-frequency contribution in

an image. This is suitable for edge enhancement. Regardless of filter type used, the filter-

ing operation is achieved through functions such as the Gaussian or Butterworth filter [1].

After this function is applied to the DFT of the source image, the inverse DFT is calculated

producing the final output image.

Often in image processing, there are one or more objects of interest within a given image

that must be detected. These objects include but are not limited to letters, numbers, and

geometric shapes. It is necessary to develop a technique to separate the desirable regions of

an image from the undesirable noise and background signal. The process and methodology

of categorizing an image into one or more distinct groups is known as image segmentation

[1]. In most applications the goal is to separate desirable foreground objects from the

background, consequently there are only two distinct groups.

The most basic form of segmentation, known as manual segmentation, requires an external

observer to manually select which pixels of an image belong to each group. This technique

is highly sensitive to observer bias produced by the presence or absence of experience

and is an unsuitable approach for large quantities of images due to observer fatigue. Gray

level thresholding eliminates these problems and can easily applied to large collections of

images. In this technique, each pixel is classified based on whether it’s gray level is above

or below a user-defined threshold. This introduces the problem of selecting a suitable

threshold for a given image.

Consider the Coins image in Figure B.1a. It is desirable to determine the total amount of

money in the picture. To achieve this, it is necessary to segment the coins from the back-
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ground. From Figure B.1b, it is clear that the dark background and bright coins produce a

weakly bimodal histogram. In this case one obvious choice of threshold is a point between

the two histogram peaks. An arbitrarily selected gray level of 100 can be used to segment

the image to produce Figure B.2a.

(a) (b)

Figure B.2: The Coins image segmented via (a) gray level threshold at 100 and (b) seg-

mented using Otsu’s method where the calculated threshold was 126.

In this segmentation result white corresponds to regions above the threshold, in this case

detected coins, and black is the background. Comparing to the original Coins image shows

very good agreement with the actual coins. The choice of 100 as a gray level threshold

was arbitrary in this example. From the histogram it is possible to reasonably select any

gray level between ≈ 80 and ≈ 140. In general the histogram of an image is not clearly

bimodal, making threshold selection difficult. A more robust technique is therefore required

to determine a suitable gray-level threshold.

Otsu’s method [2] first developed in 1979 determines a threshold for segmenting an image

into two groups based on the histogram distribution for a given image. The technique

seeks to calculate the threshold for which the gray level variance of each segmented group
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is minimized. When Otsu’s method is applied to the Coins image, a threshold of 126 is

calculated leading to the segmentation result depicted in Figure B.2b.

Comparing the segmentation result by Otsu’s method to the manually selected threshold

find that overall th results are very similar. The coins were generally well detected in

both approaches. One coin towards the middle of the image was not well captured using

the threshold generated by Otsu’s method. Comparing with the source image reveals that

this particular coin has a darker surface finish making a large part of it incorrectly placed

in the background. In a practical application this issue can be resolved with subsequent

processing as the coin’s perimeter was well captured, sufficient to identify its value.

Gray level thresholding is the most basic technique of image segmentation. in the decades

since Otsu’s method there have been numerous newly developed segmentation techniques

based on a wide range of image criterion including histograms, higher order statistics,

geometry, and other advanced concepts [1].
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