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Abstract

Ultra-dense heterogeneous network (HetNet), in which densified small cells overlaying

the conventional macro-cells, is a promising technique for the fifth-generation (5G) mobile

network. The dense and multi-tier network architecture is able to support the extensive data

traffic and diverse quality of service (QoS) but meanwhile arises several challenges especially

on the interference coordination and resource management. In this thesis, three novel network

schemes are proposed to achieve intelligent and efficient operation based on the deep learning-

enabled network awareness. Both optimization and deep learning methods are developed to

achieve intelligent and efficient resource allocation in these proposed network schemes.

To improve the cost and energy efficiency of ultra-dense HetNets, a hotspot prediction

based virtual small cell (VSC) network is proposed. A VSC is formed only when the traffic

volume and user density are extremely high. We leverage the feature extraction capabilities

of deep learning techniques and exploit a long-short term memory (LSTM) neural network to

predict potential hotspots and form VSC. Large-scale antenna array enabled hybrid beamform-

ing is also adaptively adjusted for highly directional transmission to cover these VSCs. Within

each VSC, one user equipment (UE) is selected as a cell head (CH), which collects the intra-

cell traffic using the unlicensed band and relays the aggregated traffic to the macro-cell base

station (MBS) in the licensed band. The inter-cell interference can thus be reduced, and the

spectrum efficiency can be improved. Numerical results show that proposed VSCs can reduce

55% power consumption in comparison with traditional small cells.

In addition to the smart VSCs deployment, a novel multi-dimensional intelligent multiple

access (MD-IMA) scheme is also proposed to achieve stringent and diverse QoS of emerging

5G applications with disparate resource constraints. Multiple access (MA) schemes in multi-

dimensional resources are adaptively scheduled to accommodate dynamic QoS requirements

and network states. The MD-IMA learns the integrated-quality-of-system-experience (I-QoSE)

by monitoring and predicting QoS through LSTM neural network. The resource allocation

in the MD-IMA scheme is formulated as an optimization problem to maximize the I-QoSE

as well as minimize the non-orthogonality (NO) in view of implementation constraints. In

order to solve this problem, both model-based optimization algorithms and model-free deep

reinforcement learning (DRL) approaches are utilized. Simulation results demonstrate that the

ii



achievable I-QoSE gain of MD-IMA over traditional MA is 15% - 18%.

In the final part of the thesis, a Software-Defined Networking (SDN) enabled 5G-vehicle

ad hoc networks (VANET) is designed to support the growing vehicle-generated data traffic.

In this integrated architecture, to reduce the signaling overhead, vehicles are clustered under

the coordination of SDN and one vehicle in each cluster is selected as a gateway to aggregate

intra-cluster traffic. To ensure the capacity of the trunk-link between the gateway and macro

base station, a Non-orthogonal Multiplexed Modulation (NOMM) scheme is proposed to split

aggregated data stream into multi-layers and use sparse spreading code to partially superpose

the modulated symbols on several resource blocks. The simulation results show that the en-

ergy efficiency performance of proposed NOMM is around 1.5-2 times than that of the typical

orthogonal transmission scheme.

Keywords: Ultra-Dense Network, Heterogeneous Network, Machine Learning, Resource Al-
location, Virtual Small Cell, VANET
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Lay Summary

5G network becomes ultra-densified and heterogeneous to support the explosive data traffic

and diverse QoS requirements. However, the densified and multi-tier architectures bring new

challenges, especially on the interference coordination and resource management. In order

to address these challenges in 5G ultra-dense HetNets, three novel network schemes are pro-

posed to achieve intelligent and efficient operation based on the deep learning-enabled network

awareness and multi-dimensional resource allocation.

First of all, to improve the energy efficiency of ultra-dense HetNets, a hotspot prediction

based virtual small cell (VSC) operation scheme is proposed. The VSCs are formed only when

the areas are hotspots, which can be predicted through deep learning technology. Then, a large-

scale antenna array enabled highly directional beamforming scheme is adaptively designed to

cover these VSCs. Within each VSC, one user equipment is selected as a cell head to collect

the intra-cell information and relays the aggregated traffic to the macro-cell base station.

Moreover, in order to fully utilize the resource available in 5G ultra-dense networks, a novel

multi-dimensional intelligent multiple access (MD-IMA) technique is developed to adaptively

select the multiple access (MA) schemes. The proposed MD-IMA technique learns the overall

system requirements and then adaptively multiplexes co-existing devices in multi-dimensional

resources to meet the real-time QoS requirements. The resource allocation problem of the

MD-IMA system is formulated as an optimization problem to maximize the overall network

performance as well as to minimize receiver complexity. Both model-based optimization algo-

rithms and model-free deep reinforcement learning-enabled approaches are proposed to solve

this optimization problem.

Finally, to support growing vehicle-generated data traffic in 5G-vehicle ad hoc networks

(VANET), a Software-Defined Networking (SDN) enabled 5G-VANET is presented. In this

integrated architecture, SDN can provide a global view to adaptively cluster vehicles only when

needed. In order to reduce the signaling overhead, one vehicle in each cluster is selected as a

cell head to support the aggregated traffic. To ensure the capacity of the trunk link between the

gateway and base station, a new modulation scheme is also proposed to effectively aggregate

the trunk link traffic.
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Chapter 1

Introduction

1.1 Ultra-Dense Heterogeneous Networks in 5G

1.1.1 5th Generation Mobile Networks (5G)

The prosperity of wireless mobile networks, including the popularization of various smart ter-

minals and their emerging applications, leads to critical data storm challenge. The initial com-

mercial deployment of 5G wireless networks has started in 2019 following the completion of

the first full set of 5G standards. 5G wireless network marks the beginning of a truly digital

society. It is going to achieve significant breakthroughs in terms of latency, data rates, mobility

and number of connected devices in contrast to previous generations [1]. The global mobile

data traffic is predicted to grow 1000 times from 4G to 5G [2].

Driven by the exponentially increased data traffic, 5G networks become ultra-densified and

heterogeneous to improve the capacity [3]. By cooperating with other key technologies, the

5G ultra-dense heterogeneous network can further enhance the network capacity from three di-

rections: spectral efficiency, area reuse and new spectrum exploring [4], as shown in Fig. 1.1.

Massive multiple-input-multiple-output (MIMO) [5], high directional beamforming (BF) [6],

and non-orthogonal multiple access (NOMA) [7] [8] have been applied to increase spectral

efficiency. To improve area reuse factor, ultra-denese small cells [8], vehicular ad hoc net-

work (VANET) [9] and device-to-device (D2D) communications [10] have been investigated.

Meanwhile, technologies such as long term evolution (LTE) in the unlicensed band (LTE-U)

1
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[11], millimeter wave (mmWave) [12], Wi-Fi offloading and license shared access (LSA) were

developed to extend usable bandwidth.

Massive 
MIMO Millimeter 

Wave Band

Non-orthognal 
Multiple Access

Spectrum Efficiency

Area Reuse

Bandwidth 
Expansion

Ultra Dense 
Small Cells

Device-to-Device 
Communication
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Sharing

High Directional 
Beamforming
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Massive Machine 
Communication

Vehicular Ad Hoc 
Network (VANET)

Figure 1.1: Three dimensions for capacity enhancement for 5G networks.

1.1.2 Ultra-Dense Heterogeneous Networks (HetNet)

With the widespread use of mobile and smart devices as well as the associated bandwidth-

hungry applications, high data rate and low latency wireless services are in urgent need of the

mobile network operators. Traditional solutions may not be able to meet the growing data traf-

fic requirement as the spectral efficiency of present networks is approaching theoretical limits,

particularly in a low signal-to-interference-plus-noise ratio (SINR) conditions like the indoor

scenarios [13]. A promising solution is necessary to increase node deployment density to pro-

vide ubiquitous coverage and a larger data rate. Meanwhile, frequency bands between several

hundred MHz and a few GHz, which are most suitable for wireless communication, have been

almost entirely occupied by a variety of licensed or unlicensed networks [14]. New bandwidths
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and idle spectra thus need to be explored. As an undeveloped band that can be used for high-

speed wireless communications, millimeter-wave (mmWave) in the frequency range from 30

to 300 GHz can be exploited for the ultra-dense HetNets operation [15]. As a radio signal prop-

agates in the extremely high frequency (EHF) or very high frequency (VHF) bands, mmWaves

have high atmospheric attenuation. Hence, cell size in mmWave bands has to be small. These

small-cell mmWave networks of high node deployment density are then going to configure a

single holistic network of HetNet architecture [16]. High data rates can be supported by the

small cells operating at high frequencies, due to their high spectral and energy efficiency. In

Macro Base Station

Vehicular Ad-hoc 
Network

SBS

SBS

SBS

SBS

Massive MIMO 
Communication

Ultra-Dense Small Cells

Femto Network

Device-to-Device 
Communication

Massive Machine 
Communication

WiFi Network

Figure 1.2: Network architecture of 5G ultra-dense HetNet.

ultra-dense HetNets, as shown in Fig.1.2 a wide range of access points (APs) including the

traditional high-power macro cells, low-power small cells (i.e., pico, femto, and micro cells)

and other non-cellular heterogeneous communication systems (i.e., VANET, D2D, Low-Power

Wide-Area Network (LPWAN), etc.) are densified to meet the high capacity requirements in

various environments [17]. Due to the dense deployment of heterogeneous nodes, ultra-dense

HetNets would benefit from the increased spatial reuse of the scarce frequency resources and

deployment flexibility to enhance coverage and capacity, especially in hotspot and blind wire-
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less areas. Compared with traditional networks, prominent features of the ultra-dense HeteNet

include:

• Significant enhancement of performance gains: network coverage and area spectral effi-

ciency can be improved through network densification [18].

• Cell-less and user-centric: each user can be served by one or more APs flexibly through

dynamic beamforming or cell cooperation [18].

• Rich types of APs: Several different APs, such as base stations (BSs), small cell BSs,

relay nodes, radio remote heads (RRHs), D2D enabled users, roadside units (RSUs) in

the vehicle networks and machine-type communication cooperation devices, etc., coexist

in the wireless network [19].

1.2 Challenges of Ultra-dense Heterogeneous Networks

Ultra-dense HetNet is considered to be the main enabling technology for 5G and beyond 5G

wireless networks. Along with the advantages, ultra-dense deployment of small cells and

multi-tier architectures also arise new technical challenges, including complicated manage-

ment, severe interference problem, high power consumption, diverse quality-of-service (QoS)

requirements and spatio-temporal dynamics.

1.2.1 High Management Complexity

Network administration and service provisioning are challenging in this multi-tier model due

to the huge number of base stations, the complexity of network architecture and equipment

vendor-dependence. The resource allocation issues are always interpreted as highly complex

large-scale optimization problems, for which finding the optimal decision is extremely chal-

lenging in terms of the computational complexity. This is partly due to the vast degrees of

freedom and partly owing to that the allocation opportunities available exponentially increases

with network density and the combination of multi-dimensional resources [20]. In addition,

the information exchange among heterogeneous network infrastructures grows the complex-

ity of network management, which is further compounded by the vendor-specific equipment
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relying on different configuration interfaces [21]. It is also difficult to upgrade the informa-

tion exchange protocol due to the ossification of the network infrastructure [16]. All the paths

traversing the network have to be upgraded to make a new protocol available to applications.

Therefore, we need to explore effective algorithms with low complexity to efficiently manage

the resource in ultra-dense HetNet.

1.2.2 Severe Interference

In the ultra-dense HetNet, the interference within the multi-tier architecture becomes rather

serious and complicated as there are numerous heterogeneous interfering APs in the proximity.

The ultra-dense deployment shortens the distances between the users and the interfering APs,

which results in more and stronger interference sources when considering resource allocation

problems [22]. Moreover, along with resource multiplexing for more access opportunities,

resource allocation is coupled with multi-domain interference management performed in fre-

quency, time, space, caching and computing resource domains simultaneously [23]. Therefore,

how to balance interference with resource utilization is still an open issue for ultra-dense Het-

Nets.

1.2.3 High Power Consumption

As there are increasingly more small-cells deployed in the 5G cellular network, their power

consumption needs to be addressed. It was reported in [24] that the typical power consump-

tion is 10W for a small cell base station (SBS) and 930W for a macro-base station (MBS) in

European countries. As a result, the power consumption of 100 SBSs could be larger than that

of an MBS. Also, the MBS and the SBS are different in their power consumption rates with

their traffic loads [25]. The MBS’s power consumption increases exponentially with its traffic

load in terms of the number of users served given each user has a constant rate requirement,

while the SBS’s power consumption is almost independent of its load and even flat for any

load. The power consumption of macro-cells and small-cells thus needs to be jointly managed

for more energy-efficient operation with traffic sharing. Data offloading from the MBS to the

SBSs could save the MBS’s power consumption but inevitably requires more SBSs to be turned
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on, leading to high total power consumption [17]. The operator should be aware of the traffic

sharing among the macro- and small-cells and simultaneously consider the heterogeneity of

small-cells in location and user coverage. Therefore, it is a challenge for ultra-dense HetNet to

reduce the total power consumption while meeting all users’ service requirements.

1.2.4 Diverse and New QoS Requirements

Customers’ requests for experiences should never be underestimated and are promoted by the

merging of mobile networks and the Internet nowadays. Variety of emerging services like

virtual reality, user-centric computing, and telemedicine place high QoS demands of tactile

level latency, ultra-high reliability, security, and privacy, etc., which puts forward critical de-

mands for both the physical transportation and resource scheduling technologies [26]. As

such, QoS provisioning becomes essential in ultra-dense HetNet to allocate resources effi-

ciently so as to improve the user experience. Different applications could have different op-

erational constraints. Online gaming or multimedia are usually bandwidth aggressive, while

real-time video calls are delay-sensitive [27]. In the case of enterprise-level communication, it

could have extremely low-latency and high-security requirements. Cellular networks are thus

expected to provide ubiquitous and global connectivity for everything (users, devices, sensors,

machines) and also be competent for their applications of diverse demands. To this end, the

next-generation network should be adaptable to the diverse QoS requirements, traffic load sce-

narios and varying channel conditions.

1.2.5 Spatio-Temporal Dynamics

As there are numerous APs and users, the level of interference in ultra-dense HetNet could be

extraordinarily high but also present significant fluctuations. The spatial dynamics of interfer-

ence is thus no longer negligible in ultra-dense HetNet Meanwhile, temporal dynamics in the

network such as traffic load and users’ requests should also be taken into consideration [28].

The spatio-temporal dynamics, which is well known as an intricate issue in the traditional net-

works, are amplified in large-scale ultra-dense HetNets. In assisting the efficient operation of

5G networks, hidden patterns from the network traffic and user behavior have been proved to
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be effective [29]. Therefore, intelligent real-time network traffic-awareness discovery is worthy

of being investigated to treat the spatio-temporal dynamics in ultra-dense HetNet.

1.3 Research Objectives and Topics

In this thesis, we focus on solutions to these typical challenges in ultra-dense HetNets. The

fundamental design objective is to improve the cost-effectiveness and operational efficiency

of the service-oriented network operation, by learning the network situation through machine

learning and then operating traffic-aware virtual small cells and intelligently utilizing the multi-

dimensional resources.

In achieving this, we propose five novel technologies on the ultra-dense HetNet architec-

ture: virtual small cells (VSCs) to reduce interference and power consumption, deep learning

based network situation prediction, multi-dimensional intelligent multiple access techniques

for highly efficient radio resource utilization, deep reinforcement learning-based resource allo-

cation and non-orthogonal multiplexed modulation to improve the trunk-link capacity.

Cost-Effective Virtual Small Cell: The fixed deployment of a large number of small cells

in 5G HetNet is neither cost-effective nor energy-efficient. To support such ultra-dense small

cell networks, network architecture complexity, operational procedure and signaling overhead

will all be increased dramatically [20]. In order to reduce interference and power consump-

tion of ultra-dense HetNets, a dynamic small cell formation with adaptive operation could be

investigated.

The purpose of the dynamic small cell formation is to develop an adaptive wireless in-

frastructure, which can have an extremely high spectrum and cost efficiency and at the same

time support diverse service requirements from different UEs. The network real-time traffic

load can be analyzed and utilized by MBS to adaptively form and operate temporary VSCs.

Also, highly directional radio beams can be generated to effectively cover these VSCs. Instead

of installing fixed SBS, the cell head (CH) in each VSC, which is going to collect the intra-

cell traffic and relay to the MBS, can be adapted in real-time. In order to further reduce the

co-channel interference, the collaboration between the unlicensed and licensed bands can be
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developed. The intra-cell communication in each VSC and truck-link communication between

the CH and MBS could be assigned to the unlicensed and licensed bands, respectively.

In order to achieve the overall goal, we divide the topic into three key sub-topics as fol-

lows. Firstly, we focus on the enabling techniques for the adaptive virtual small cell formation

according to traffic conditions. Secondly, the protocol conversion for data transmission across

the licensed and unlicensed band at CHs is studied. As a result, the CHs would be able to

aggregate traffic from other devices in the unlicensed band and communicate with MBS in a

licensed band. Thirdly, we design adaptive hybrid beamforming (HBF) algorithm based on

the proposed VSCs system mode, which is going to guarantee that the virtual small cells with

changing location and radius can always be effectively covered.

Deep Learning based Network Situation Prediction: With dramatically increased device

density and network complexity, real-time operation of 5G HetNets becomes extremely chal-

lenging in meeting the stringent requirements of all devices with very limited radio resources

and hardware constraints. Accurate prediction of cellular traffic and user distribution would

facilitate carriers to schedule resources and cluster users, so as to ensure the overall quality of

service and network performance and reduce unnecessary operation cost by allocating energy

and bandwidth tightly based on the future traffic demand. Therefore, prediction of network

situations such as spectrum availability, mobility and QoS are also explored to facilitate the

real-time network operation of 5G HetNets.

Massive information collected from a large number of mobile devices, including user lo-

cation, traffic requirement and service type, can be utilized to analyze and predict network

dynamics. Deep neural network (DNN) that is able to capture temporal and spatial dependen-

cies in sequential data due to its multiple hidden layers and hierarchical feature extraction [30],

can be explored. Based on the analysis of the collected historical data, a machine-learning

model could be utilized to achieve traffic and radio resource consumption prediction. In this

theme, machine-learning models for network traffic/resource prediction are going to be devel-

oped. These predicted information of network situation can then be used to achieve situation-

dependent network operation, such as the VSC formation, as well as the resource allocation.
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Multi-Dimensional Intelligent Multiple Access: As addressed in the previous section, the

emerging applications to be supported by ultra-dense HetNet typically require highly dynamic

and have diverse requirements on various QoS like data rate, reliability, power consumption

and latency. Meanwhile, the base station and different terminals could experience very differ-

ent resource constraints in terms of power/battery supply and spectrum availability. In achiev-

ing diverse QoS with disparate resource constraints, intelligent and efficient multiple access

techniques, which are able to flexibly provision and orchestrate multi-dimensional resources to

continuously adapt to the current state and requirements of the wireless environment, need to

be investigated.

In order to keep up with the varying requirements and available resources, the overall net-

work experience requirements should be evaluated through real-time data analysis. A multi-

dimensional intelligent multiple access technique could be developed based on the situation-

aware discovery. It should be able to maximize the overall system requirements and minimize

the non-orthogonality of the user devices in the multi-dimensional domains because that higher

degree of non-orthogonality would directly incur higher signal processing burden to reconstruct

signal orthogonality at receivers.

Deep Reinforcement Learning-based Resource Allocation: Resource allocation is a typi-

cal optimization problem in ultra-dense HetNets. Most existing research relied on traditional

optimization methods, such as graph theory and optimization decomposition, to solve this opti-

mization problem. However, the traditional optimization techniques highly depend on tractable

mathematical models, which may not be able to capture the practical communication scenarios.

Meanwhile, the resource allocation problem in ultra-dense HetNet is quite complex, and so the

computational complexities of using traditional optimization algorithms would be extremely

high.

As a model-free technology, deep reinforcement learning (DRL) has been a promising

solution for optimizing the system performance of wireless communication networks. Also,

reinforcement learning can interact with an unknown environment through exploration and ex-

ploitation [31]. Appropriate DRL models could thus be selected for the resource allocation in

multi-dimensional multiple access operation, in order to further reduce the management com-
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plexity and operation latency of ultra-dense networks. The target of the DRL based resource

allocation scheme is to find the optimal resource allocation policy that can maximize long-term

rewards.

Capacity Enhancement of Trunk-Link: The truck-link quality between SBSs (including

both fixed SBSs and virtual SBS) and MBSs would impact the performance of the whole ultra-

dense HetNet directly. When a large number of user devices request a high data rate simul-

taneously, there will be a high capacity demand, leading to a huge burden on the trunk-link.

Therefore, an advanced transmission scheme for trunk-link should be designed to meet the data

traffic explosion of trunk-link by fully utilizing the dynamic multi-dimensional resources.

In achieving these goals, advanced spatial transmission techniques, including massive MIMO

can be explored in combination with NOMA. By using massive MIMO, a novel transmission

scheme can be used for trunk-link to achieve an extremely high data rate. As a benefit, many

users can share the same time-frequency radio resource by spatial separation, while the beam-

formed transmission would also minimize the potential co-channel inferences. In addition, the

principle of NOMA can be borrowed to aggregate the trunk-link traffic and further improve

network capacity. The parallel data streams of one user can be modulated simultaneously and

partially overlapped on a group of resource elements through a sparse spreading code.

1.4 Technical Contributions of the Thesis

The main contributions of this thesis are summarized below:

• To improve the spectrum and power efficiency of ultra-dense networks, a virtual small

cell (VSC) design for 5G and beyond networks is proposed in Chapter 3. Different from

the traditional small cell, there is no fixed small cell base station in VSC and the VSC

are formed adaptively according to traffic conditions and service requirements. In order

to reduce the signaling overhead, appropriate mobile devices in each cell are selected

as cell head (CH) candidates and serve as the virtual SBS in turn. The CH aggregates

intra-cell traffic in the unlicensed band and then relays the combined traffic to an MBS
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in the cellular band. By offloading user devices to the unlicensed band, VSC can re-

duce the co-channel interference. Furthermore, a hybrid beamforming (HBF) scheme

is designed to cover these VSCs based on massive MIMO technique with a large scale

antenna array. Meanwhile, the total power consumption is minimized under constraints

of maximum transmit power and the required throughput rate of each user. Both the

mathematical analysis and simulation results demonstrate that VSCs can increase 50%

power efficiency while providing flexibility and reduced cellular load, compared with

macrocell only deployment and traditional fixed small cells scenario.

• To further improve cost efficiency and reduce the network latency, one LSTM based

hotspot prediction method is proposed in Chapter 4. In the developed VSC, both cell

formation and beamforming design cause increased operational complexity and latency.

Therefore, we proposed one long short term memory (LSTM) based prediction method

to predetermine the location of hotspots in advance, so as to reduce the latency from sup-

porting cell formation and beamforming. More specifically, the historical location map

of users is divided into several two-dimensional (2D) zones into the spatial and temporal

domains. Different from several LSTM, in which every zone has its own LSTM, we used

all of these 2D zones to train the one LSTM neural networks to enhance the training sam-

ple diversity and reduce the overfitting. The output is the UE numbers of all grids and so

the hotspot can be determined by analyzing the predicted network-level UE density map.

The simulation results demonstrate that the accuracy of one LSTM is similar to that of

Convolutional LSTM with a simple structure.

• To realize efficient resource utilization, a novel multi-dimensional intelligent multiple

access (MD-IMA) scheme is proposed in Chapter 5. The proposed MD-IMA is achieved

by maximizing the separation distance among the multi-dimensional resource blocks al-

located to co-existing devices, which could be in frequency, time, space, power and code

domains. Different from the traditional orthogonal multiple access (OMA) and NOMA,

the proposed MD-IMA is able to simultaneously share resources in as many domains as

possible, while separate the co-existing devices with low interference cancellation. A

new concept named integrated-quality-of-system-experience (I-QoSE) is also proposed
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to integrate diverse QoS into one metric. It can be adaptively adjusted according to

diverse and time-varying services and applications and then used to evaluate the over-

all performance of the MD-IMA. In light of the implementation constraint, the mini-

mization of non-orthogonality transmission, which is ignored in the existing works, is

also imposed in MD-IMA resource allocation. The objective of the resource allocation

in MD-IMA is therefore to maximize the overall network performance but also min-

imize the non-orthogonality (NO) transmission under constraints of maximum power

consumption and the QoS of each user. Simulation results demonstrate that the proposed

achievable I-QoSE gain of MD-IMA over NOMA and OMA are approximate 15% and

18%, respectively.

• To further reduce the computational complexity in traditional optimization algorithms, a

model-free deep reinforcement learning (DRL) enabled method is proposed in chapter 6

to solve the resource allocation problems for MD-IMA. A pre-trained DRL is proposed to

orchestrate multi-dimensional resources to continuously adapt to the varying and diverse

state and requirements of the wireless environment. In the proposed scheme, the I-QoSE

that combining diverse QoS is going to be predicted through the LSTM neural network

based on the historically collected information. On the basis of the predicted I-QoSE,

the concrete DRL design is further introduced to solve resource allocation problems of

the MD-IMA system. Value-based and actor-critic-based algorithms, namely deep Q-

learning (DQL) and deep deterministic policy gradient (DDPG), respectively, are both

implemented. The simulation results illustrate that the proposed DDPG based power

allocation outperforms DQN and conventional model-based algorithms with lower time

consumption, such as fractional programming method. Specifically, the DDPG based

algorithm can improve around 17% and 35% WEE than that of WMMSE and FP, re-

spectively. The time cost of DRL based method is 10 times and 100 times faster than

that of FP and WMMSE.

• To improve energy efficiency and achieve green networking, a Software-Defined Net-

working (SDN) enabled 5G-Vehicular Ad Hoc Network (5G-VANET) is investigated in

Chapter 7, which couples the high data rates of VANET with the wide coverage area of
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5G. In this integrated architecture, SDN can provide a global view to adaptively cluster

vehicles only when needed. In order to reduce the signaling overhead, one vehicle in

each cluster is selected as a cell head to support aggregated traffic and another one vehi-

cle is selected as a backup to guarantee seamless communication. To ensure the capacity

of the trunk link between the gateway and base station, a novel transmission scheme,

Non-orthogonal Multiplexed Modulation (NOMM), is also proposed. In this scheme,

the aggregated data stream is divided into several multi-layers and use sparse spreading

code to partially superpose these modulated symbols on several resource blocks. The

simulation results show that the energy efficiency of the proposed NOMM is 1.3-2 times

than that of the traditional orthogonal transmission scheme by carefully designing the

sparse code of NOMM.

1.5 Thesis Outline

The rest of the thesis is organized as follows:

In Chapter 2, the research background, related to our topics, is briefly given, including the

key technologies of 5G, the literature survey of deep learning in wireless networking.

In Chapter 3, the cellular network assisted virtual small cell (VSC) is investigated for cost-

effective and reliable service provisioning in 5G ultra-dense networks. The overall system

model of the dynamic VSC design in 5G ultra-dense networks is given first. Based on the

network model, the K-means clustering based VSC forming algorithm is discussed and the

protocol conversion for traffic aggregation at CHs is introduced. The details of optimal HBF

design are also elaborated. Finally, link-level simulation is conducted in MATLAB to evaluate

the performance of the proposed VSCs architecture, including both cell formation collection

and beamforming design.

One LSTM based hotspot prediction method is studied in Chapter 4 to improve cost effi-

ciency and reduce the operation latency of ultra-dense HetNet. Firstly, the system model of the

hotspot prediction based VSCs is given. Afterward, the problem of hotspot prediction is for-

mulated to predict the UE numbers of each grid and then three different LSTM based hotspot

prediction methods are elaborated. A real dataset of telecommunication is used to evaluate the
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proposed LSTM based prediction method. Simulation results regarding the root mean square

error (RMSE) performance of one LSTM based network is compared with that of three bench-

marks. Finally, the system performance of VSCs based hotspot prediction is compared with

the traditional small cells and VSC with K-means scenarios.

The novel multi-dimensional intelligent multiple access (MD-IMA) scheme is presented in

Chapter 5, which fully utilizes the available resources in multi-domains to ensure the diverse

and varying QoS. The network architecture and system model of the proposed MD-IMA are

described firstly. Then, the resource allocation problem for achieving the balance between

overall network requirements and the receiver complexity is formulated as an optimization

problem. To reduce the computational complexity, it is converted into three sub-optimization

problems and jointly solved by using an alternative optimization algorithm. Finally, the I-

QoSE and NO performance of the proposed MD-IMA are compared with that of the OMA and

NOMA scenarios.

Based on the system architecture of MD-IMA proposed in Chapter 5, a DRL based power

allocation is further developed in Chapter 6. By using deep learning, the overall network re-

quirements can be predicted in advance and the complex resource allocation can be solved

without mathematical models and so reduce the computational complexity. A DRL enabled re-

source allocation system architecture is firstly developed, where the base station is treated as the

agent and the MD-IMA network is the environment. Then, the I-QoSE prediction is achieved

by using one LSTM to learn the network requirements. Based on the predicted I-QoSE, the

two different DRL based power allocation methods, DQN and DPPG, are elaborated. Finally,

the performance of the DRL-based power allocation methods is evaluated by comparing it with

that of traditional optimization-based algorithms.

In Chapter 7, SDN enabled 5G-VANET is studied to support the increasing vehicle traf-

fic and improve management. The overall network architecture of 5G-VANET is given first,

and then the adaptive vehicle clustering scheme and dual CH selection method are proposed

to reduce the signaling overhead and guarantee seamless communication, respectively. To fur-

ther improve the capacity of truck-link, non-orthogonal multiplexed modulation (NOMM) is

proposed. The energy efficiency for the traditional orthogonal transmission scheme and the

proposed NOMM are analyzed. Finally, the simulations are used to evaluate the proposed
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NOMM in terms of energy efficiency.

Lastly, all the contributions presented in the previous chapters are concluded in Chapter 8.

The plan for future research is discussed in this Chapter as well.



Chapter 2

Background on Enabling Technologies of

Ultra-Dense HetNets

The ultra-dense HetNet is presented as a new network paradigm evolution to the 5G wireless

networks to address the exponentially increasing traffic demands. However, the ultra-dense and

heterogeneous deployment introduces new technical challenges such as severe interference,

complicated radio resource allocation, significant signaling overhead, a significant increase in

energy consumption, and degraded QoS. To overcome these challenges and achieve the perfor-

mance requirements in future wireless networks, such as beyond 5G and 6G, there is a need

to combine ultra-dense HetNes with other 5G enabling technologies and artificial intelligent

(AI) technologies to design intelligent and efficient operation and management techniques for

better performance of the overall networks. Hence, in this chapter, a fundamental introduction

to 5G key technologies, including the Massive MIMO, NOMA, and MIMO-NOMA, are firstly

elucidated. Then we present a comprehensive survey on deep learning (DL) enabled network

prediction and resource allocation for wireless communication systems.

2.1 Key Technologies of 5G

To support the explosive proliferation of smart devices and drastically increased data traffic,

5G networks are expected to provide 1,000-fold capacity enhancement [32]. With constrained

radio resources, increasing user density and network complexity, the success of 5G networks

16
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relies on highly efficient technologies, including massive MIMO, highly directional beamform-

ing, NOMA and unlicensed band operation.

2.1.1 Massive MIMO

Massive MIMO is a promising technology of 5G that upgrading from MIMO technology. The

Massive MIMO is achieved by using a large scale antenna array with a few hundred antennas

simultaneously at the macro base station to exploit the spatial domain multiplexing gain [5].

In this way, Massive MIMO can support tens of user terminals (UEs) at the same time without

consuming extra scare resource of frequency, time and power [6]. Several studies illustrate that

the Massive MIMO can significantly improve spectrum efficiency, latency and reliability [33].

The specific advantages of Massive MIMO are listed below:

• Improve Spectrum Efficiency: The capacity of the Massive MIMO system is 10 or

more times than the traditional MIMO system due to the spatial multiplexing gain. In

fact, thanks to the large antenna array, highly direction beamforming ca be formed to

concentrate the energy into a small area to further improve the energy efficiency [34].

• Reduce Latency: Ultra-low latency is a critical requirement of the 5G networks. How-

ever the latency is inevitable if the received signal strength is not large enough. The

received signal attenuation mainly caused by both large-scale and small-scale fading.

If the receiver (UE) is caught in a fading dip, then it has to wait until the transmission

channel changed to good enough that can successfully receive the data. By using a large

number of antennas, Massive MIMO can form narrow beamforming for each UEs to

avoid fading dips and so reduce the latency.

2.1.2 NOMA

Non-orthogonal multiple access (NOMA), which shifts the multiple access from orthogonal to

non-orthogonal approaches, is one of the promising methodologies to support massive connec-

tivity in 5G networks [35]. Comparing with the traditional orthogonal multiple access tech-

nologies, NOMA can support many more users via partially superimposed multiple users on
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the same radio resource blocks, such as time slots, subcarriers or beams. Recently, several

NOMA schemes have attracted lots of attention, and we can generally divide them into two

categories: power domain multiplexing and code domain multiplexing.

• Power-domain NOMA

Power-domain NOMA was formally proposed by NTT DOCOMO in 2012 Aug. The

principle behind the power-domain NOMA is adding power domain multiplexing on the

transmitter side to multiple users and using successive interference cancellation on the re-

ceiver side to realize multi-user detection [36]. Although the receiver complexity will be

increased by adopting successive interference cancellation successive interference can-

cellation (SIC), the non-orthogonal transmission can increase spectrum efficiency.

SIC of UE 2 

signal

UE 1 signal 

decoding

UE 1 signal 

decoding

Power

UE 1 UE 2

Received SINR

High Low

Figure 2.1: Illustration of NOMA via power domain multiplexing

In power-domain NOMA, sub-channels are orthogonal and there is no interference be-

tween them, because orthogonal frequency-division multiplexing (OFDM) is still used

in sub-channels. However, each subchannel is no longer allocated by one user but shared

by multiple users. In the same sub-channel, different transmission power level allocates

to a different user. Therefore, inter-user interference is introduced and this is the reason

why SIC should be used at the receiver side. Fig. 2.1 shows that the receiver subtracts the

decoded stream from the received vector in every step of the decoding process. The de-
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tection order detects the symbols in order of decreasing signal strength. The system-level

simulation results show that both the capacity and cell-edge user throughput performance

of power-domain NOMA is improved, compared to that of OMA [35].

• Code-domain NOMA

Sparse code multiple access (SCMA) is a famous kind of code-domain NOMA. SCMA

directly maps different bit-streams to different sparse codewords, as illustrated in Fig.

2.2, where each user has a predefined codebook (there are 6 users and 4 orthogonal re-

sources). All codewords in the same codebook contain zeros in the same two dimensions,

and the positions of zeros in different codebooks are distinct to facilitate the collision

avoidance of any two users [37]. For each user, two bits are mapped to a complex code-

word. Codewords for all users are multiplexed over four shared orthogonal resources

(e.g., OFDM subcarriers).
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Figure 2.2: SCMA encoding and multiplexing.

SCMA is designed to generate codebooks, which brings the “shaping gain”. Here, “shap-

ing gain” is the gain in the average symbol energy when the shape of a constellation is

changed. In general, the shaping gain is higher when the shape of a constellation is
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closer to a sphere, and the maximum achievable shaping gain by the optimization of a

multi-dimensional constellation is 1.53 dB [38]. For the concatenated approach in high

modulation order, the multi-dimensional constellation can be optimized to obtain shap-

ing gain, and then codebooks are generated based on the multi-dimensional constellation.

The SCMA codebook design is a complicated problem since different layers are multi-

plexed with different codebooks [39]. As the appropriate design criterion and specific

solution to the multi-dimensional problem are still unknown, a multi-stage approach has

been proposed to realize a suboptimal solution. Specifically, an N-dimensional complex

constellation with M points (which is called the mother constellation) is first optimized

to improve the shaping gain, and then some codebook-specific operations are performed

to the mother constellation to generate the N-dimensional constellation for each code-

book. Three typical operations are phase rotation, complex conjugate, and dimensional

permutation of the constellation [36]. In the generated N-dimensional constellations af-

ter codebook-specific operations, each N-dimensional constellation point is multiplied

with a projection matrix to generate a K-dimensional codeword (K >> N), which has

N non-zero elements from the components of the N-dimensional constellation point. In

this way, codebooks with M codewords can be obtained.

2.1.3 Massive MIMO-NOMA

In order to further improve the system capacity and spectrum efficiency, multiple-input multiple-

output (MIMO) can be combined with NOMA. As illustrated in Fig. 2.3, multiple beams are

formed in the spatial domain by using multiple antennas at the transmitter and each beam

adopts basic NOMA. Receiver adopts two interference cancellation technologies to recover

signals: SIC is used to suppress the intra-beam interference and interference rejection combing

(IRC) is used to suppress the inter-beam interference. However, the performance of IRC is

impacted by the spatial correlation between the own and interference users. Thus, in order to

improve the spectrum efficiency, and appropriate user selection algorithm transmitter side is

required. Random beamforming and opportunistic beamforming (OBF) are proposed as pos-

sible solutions in [40] and [39] respectively. In [39], the evaluation results show that NOMA
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with OBF can improve system performance. Furthermore, the combination of NOMA with
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Figure 2.3: Structure of MIMO-NOMA

closed-loop (CL) single-user MIMO (SU-MIMO) is discussed in [37] and the combination of

NOMA with open-loop SU-MIMO is discussed in [41]. In [37] the system-level simulation

results show that both the average and cell-edge throughput performance of NOMA with CL

SU-MIMO is better than that for OMA. The performance of the SIC-based receiver is impacted

by error propagation. Therefore, how to model the error propagation for the SIC receiver is the

key factor. Three available model method of error propagation is proposed in [37].

The combination of NOMA and Massive MIMO brings several major technical challenges

for multi-dimensional resource allocation. Firstly, due to channel condition variation over

time and frequency, scheduling users into appropriate channels in time and frequency domains

highly improves the communication quality. Moreover, NOMA requires user pairing, where

typically one near user and one far user are scheduled as a user pair to achieve multiplexing

in power domain [42]. Another critical technique to operate the NOMA-enabled MIMO is to

select the best subset of antennas due to the limited number of available RF chains. Hence,

it is important to schedule users and select antennas jointly for multi-dimensional resource

allocation in a Massive MIMO-NOMA system.

There are a few recent studies on user scheduling and antenna selection in NOMA and

MIMO systems. In [43], user pairing algorithms are developed for two NOMA scenarios, with

only one frequency band is considered. The technique proposed in [44] schedules two users

with a large channel gain difference and high correlation as a user pair, with a focus on the
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NOMA user pairing mechanism. In [45], a joint antenna selection and user scheduling (JASUS)

algorithm is proposed. This algorithm finds the desired antenna and user subset by sequentially

excluding the antennas and users which generate a minimum contribution to the system per-

formance. A norm-based joint transmit and receive antenna selection (NBJTRAS) algorithm

is developed in [46]. It searches all candidate transmit and receive antennas exhaustively for a

subset with the largest channel norm. Nevertheless, these two joint antenna selection and user

scheduling algorithms have very high complexity and can only be applied to scenarios with

small numbers of candidate antennas and user sets. It is therefore difficult to apply the existing

techniques to a Massive MIMO-NOMA system for allocating multi-dimensional resources.

2.2 Deep Learning enabled Network Prediction and Control

The increasing diversity and complexity of mobile network architectures make it difficult to

monitor and manage a large number of network elements. Therefore, machine intelligence

is introduced into future mobile networks to predict the network situation and achieve intelli-

gent network management. ML can systematically mine valuable information from traffic data

and automatically discover correlations, otherwise the correlations may be too complicated

to be extracted by human experts [47]. As the flagship of machine learning, deep learning has

achieved excellent performance in areas such as computer vision and natural language process-

ing (NLP) [48]. Network researchers have also begun to recognize the power and importance

of deep learning and are exploring its potential to solve specific problems in the mobile network

field [49].

2.2.1 Deep Learning based Network Prediction

Recent years have witnessed a considerable amount of studies dedicated to mobility prediction

schemes. In [50], according to the statistics of user occurrence frequency, the most distinc-

tive sequential mobility pattern of users is extracted. However, this method fails to predict

changing sequential mobility patterns when the users changed their mobility routines. Another

popular method is using principal component analysis (PCA) and extracting eigenbehaviors

[51] or eigenplaces [52], which features a two-layer shallow structure. The eigenbehavior
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and eigenplaces of user’s mobility and traffic are determined to extract a common underlying

structure of users’ daily mobility patterns. Nevertheless, the limited number of eigenbehav-

ior and eigenplaces may not be sufficient to fully represent the mobility patterns of different

users. Therefore, a ‘deeper structure’, such as the structure of deep neural network, should be

used to address these challenges. By introducing multiple hidden layers between the input and

output layers, deep neural network (DNN) is more powerful and flexible to predict complex

mobility patterns due to the combined capability of multiple hidden layers [53]. In addition,

by employing hierarchical feature extraction, deep learning can capture temporal and spatial

dependencies in sequential data, while minimizing the data pre-processing effort [54]. Fur-

thermore, it makes possible for deep learning to make inferences within milliseconds by using

Graphic Processing Unit (GPU)-based parallel computing [55].

Therefore, the deep neural network is becoming a critical tool for user mobility analy-

sis. In [56], deep learning was adopted first to recover the social network representations of

users and then a basic recurrent neural network (RNN) and Gate Recurrent Unit (GRU) models

were employed to discover mobility patterns of the individual user at different levels. In[57],

an online learning scheme was proposed to train a hierarchical convolutional neural network

(CNN), which can process data stream parallelly. However, most of the previous works are

focused on predicting the individual trajectories instead of forecasting the network-level user

distribution, which is more valuable for network operation. Since fluctuation of user density

is influenced by short and long term behaviors, the long short term memory (LSTM) neural

network, a kind of deep RNN, is adopted to predict the number of UEs in every small zone due

to its excellent capability to memorize long-term dependencies. By using the LSTM neural

network, the proposed method can also overcome the gradient problem that plagues conven-

tional RNNs and captures long-short term temporal and spatial dependencies without suffering

from the optimization hurdles [58].

2.2.2 Deep Learning based Network Control

In recent years, deep learning has been a promising technology for optimizing the system per-

formance of wireless communication networks, due to its model-free and the nature of the com-
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plaint with optimizations in practical communication scenarios [59]. Furthermore, reinforce-

ment learning has received wide attention because it can interact with an unknown environment

by exploration and exploitation [47]. On the other hand, by introducing multiple hidden layers

between the input and output layers, deep neural network (DNN) is more powerful and flex-

ible to predict complex system performances, such as sum-rate and power consumption, due

to the combined capability of multiple hidden layers [53]. The objective of the resource allo-
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Figure 2.4: General structure of DRL based network control

cation optimization problem is to maximize the performance, including the sum-rate, energy

efficiency and power consumption. The optimization of resource allocation, such as power al-

location and subchannel assignment, is modeled as a deep reinforcement learning task, which

consists of an agent and environment interacting with each other, as shown in Fig.2.4. The

BS/AP can be regarded as the agent and the performance of the communication network is the

environment. We define the state space is S , action space is A and the reword function is R. At

time step t, based on the observed state st ∈ S of the environment, the agent takes an action

a from the action space S to allocate resource according to the resource allocation policy π,

where the policy is learned by an attention-based neural network. Then, the current reward rt

and the next state st+1 ∈ S are obtained from environment. The target of the network is to take

the optimal resource allocation and network control which can maximize the expected reword.
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2.3 Chapter Summary

In this chapter, the background concepts, key technologies and models used in the thesis are

reviewed. At the beginning of this chapter, a brief introduction of 5G key technologies is given,

emphasizing the Massive MIMO, NOMA and MIMO-NOMA. After that, the background and

literature review of deep learning-based network prediction and control are also presented.



Chapter 3

Cost-Effective Virtual Small Cell for Ultra

Dense HetNet

In order to exploit the potential capacity of 5G, the deployment of ultra-dense small cells is an

approach that can dramatically increase the radio resource reuse factor and network capacity.

However, network densification with a large number of small cells brings challenges due to in-

creased network complexity, deployment cost and inter-cell interference. In this chapter, a new

5G architecture with virtual small cells (VSCs), which are dynamically formed by grouping a

number of user devices in close proximity and adapted according to traffic condition, is pro-

posed to improve the cost and energy efficiency compared with the traditional fixed deployment

of small cells. In each virtual small cell, one mobile device is selected as a cell head (CH) to

aggregate intra-cell traffic using unlicensed band transmissions and then communicates with its

macro-cell base station in a licensed band through beamformed transmission, which reduces

the inter-cell interference and improves spectrum efficiency. In this chapter, a highly direc-

tional hybrid beamforming technique is employed to enable a dedicated inband fronthaul link

for VSC. Our work focuses on how to design adaptive beamforming to minimize the transmit

power under throughput requirements and power constraints. Both the mathematical analysis

and simulation results demonstrate that VSCs can increase power efficiency around 55% while

providing flexibility and reduced cellular load, compared with the traditional fixed small cells

scenario.

26
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3.1 Introduction

With the explosive proliferation of smart devices, the dramatic increase of mobile data traffic

and emerging applications particularly the Internet of things (IoT), the upgrading of cellular

networks and deployment of new infrastructures to support the needed data increase is in-

evitable in 5G networks [60]. As a result, heterogeneous networks (HetNet) with overlaid

densified small cells deployed on top of cellular networks are widely considered as a promis-

ing solution for 5G. In the meantime, the increasingly diversified network applications, such

as online games, connected vehicles and intelligent machines, requires both massive capacity

and diverse quality of service (QoS) provisioning [61].

Small cells (SCs) improve the overall network capacity by installing many small base sta-

tions with reduced cell sizes and transmission distance. However, fixed deployment of a large

number of small cells in 5G HetNet is neither cost-effective nor energy-efficient. To support

such ultra-dense small cell networks, direct connections between SCs and macro base sta-

tions (MBS) become more complicated due to the deployment of excessive optical fronthaul

and backhaul links [11]. Maintaining a large number of small cells also requires tremendous

computational resources and signaling overhead, which places a heavy burden on network

management [62]. In addition, dense SCs could introduce severe inter-cell interference due to

spectrum reuse, which is the key limiting factor of cellular network capacity [63]. Moreover,

diverse services will be supported by 5G and beyond networks with the co-existence of hetero-

geneous user devices (UEs). The wide variety of service types also require different delay QoS

provisioning[64].

Therefore, grouping multiple user devices to form flexible virtual small-cells within the

integral cellular network infrastructure is envisioned as a cost-effective alternative. In [65]

and [66], the authors proposed to use directive beams to support dense traffic areas adaptively.

However, users in each beam still communicate with MBS in the cellular band, which in-

troduces additional co-channel interference and signaling overhead. Therefore, we propose a

cellular network assisted virtual small cell (VSC) as a solution for cost-effective and reliable

service provisioning in 5G ultra-dense networks. Specifically, the VSCs are formed adaptively

under the coordination of cellular MBS when needed. Within the VSCs, appropriate mobile
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devices are selected as the cell head (CH) candidates and serve as virtual SBS such that the

installation cost of fixed SBSs could be reduced[67]. These CHs aggregate the intra-cell traffic

in the unlicensed band and then relay the combined traffic to the macro-cell base station (MBS)

through cellular band [3]. By utilizing different frequency bands, the inter-cell interference is

reduced dramatically with improved service quality at the same time.

Our overall objective of this topic is to develop an adaptive wireless infrastructure with

the extremely high spectrum and cost efficiency, while the diverse service requirements from

different UEs in terms of data rates and QoS can be met at the same time. In order to achieve the

overall goal, we divide the topic into three key sub-topics as follows. Firstly, we focus on how

to realize the adaptive virtual small cell formation according to traffic conditions and propose

a K-means clustering based VSC formation scheme. Secondly, as the CHs aggregate traffic

from other devices in the unlicensed band and communicate with MBS in a licensed band, the

protocol conversion for data transmission across the licensed and unlicensed band at CHs is

also studied for the realization of the VSC. Thirdly, we need to study how to realize the adaptive

hybrid beamforming (HBF) based on the proposed VSCs system model so that the virtual

small cells with changing location and radius are always effectively covered. Considering

that the limited battery capacity is a bottleneck of UE and the power efficiency is essential for

MBSs, the object of the beamforming design is to minimize the total power consumption under

constraints of maximum transmit power and the required throughput rate of each user.

Specifically, the contributions of this work are summarized as follows:

1. We propose virtual small cell (VSC) design for 5G and beyond networks in this topic to

reduce the co-channel interference by utilizing an unlicensed band within VSCs and

beamformed trunk link transmission between MBS and VSCs. Specifically, VSC is

formed adaptively according to traffic conditions and service requirements. A K-means

clustering based VSC formation scheme is proposed in this work, and the correspond-

ing protocol conversion for data transmission across unlicensed and licensed networks

at cell head (CH) is developed. Then, by using massive MIMO techniques, the large

scale antenna array is adaptively employed in this work for a highly directional beam

to cover VSCs adaptively. In each VSC, appropriate mobile devices are selected as cell

head (CH) candidates and serve as the CH in turn. The CH then aggregates intra-cell
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traffic in the unlicensed band and relays the combined traffic to an MBS in the cellular

band.

2. We propose an optimization-based beamforming scheme to adaptively cover the virtual

small cells with low latency. The key idea of the proposed solution is to minimize the

total power consumption under constraints of maximum transmit power and the required

throughput rate of each user. The problem above is further divided into two sub-optimal

problems to reduce the computational complexity of the proposed optimal method with

comparable performance.

3. We use hybrid beamforming (HBF) scheme, combing the digital and analog beamform-

ing, at the MBS to improve both cost and power efficiency of VSC. Based on the location

information of the predicted hotspots, highly directional beamforming can be designed

to cover these hotspots. Only digital beamforming scheme requires each antenna has its

own Radio Frequency (RF) chain. However, the cost-prohibitive and power-hungry make

it is not realistic for the massive MIMO system to implement full-digital beamforming.

In a hybrid beamforming scheme, one RF chain can connect with several antennas, which

will reduce the cost and circuit power consumption. The analog beamforming design

can be achieved by adjusting the phase shifter to harvest the large array gain in massive

MIMO systems.

The remainder of this chapter is organized as follows. Section 3.2 presents the system

model of the dynamic VSC design in 5G ultra-dense networks. Based on the network model,

the K-means clustering based VSC forming algorithm is then proposed and the protocol con-

version for traffic aggregation at CHs is given in Section 3.3. The details of HBF design are

elaborated in Section 3.4. Section 3.5 presents our main results regarding power consumption

and system performance evaluation of the proposed VSCs architecture, including cell forma-

tion and beamforming design. Finally, the conclusion is drawn in Section 3.6.
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3.2 System Model

3.2.1 Network Architecture

In order to support high system capacity with low deployment cost and signaling overhead,

VSC design is proposed in this chapter to realize cost-effective 5G networks. Regarding the

system model, we consider a heterogeneous network architecture consisting of one macro cell

and S virtual small cells, where K users are distributed in the coverage of the macro cell, as

shown in Fig. 3.1. The MBS decides to form VSCs when the target areas experience high

load or heavy user density. The signaling of the macro-cell load can be exchanged periodically

over the X2 interface between the MBSs. Moreover, the MBS is able to find remaining free

sub-channels by monitoring ongoing transmissions or by collecting reports from users [68].

This way, the MBS could make the decision of VSC formation for a temporary high load area,

and allocate available free sub-channels for intra-VSC transmission.

Internet

Massive MIMO 

Antennas

eNodeBeNodeBeNodeB

VSCs

VSCs

Cellular User

Cellular User

ulular Uulular

Cellular Userllulular Uulular

Cell Head

Cell Head Candidate

Content provider serverMME S-GW P-GW

Virtual small cell formation server

Figure 3.1: A two-tire network architecture consisting of one macro-cell and S virtual small
cells.

Noted that compared with traditional small cells, there is not fixed access point in VSC.

We assume that K users, equipped with NK antennas, are randomly distributed in the macro-

cell and one MBS, equipped with NBS antenna and NRF RF, is deployed at the center of the
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macro-cell. The number of MBS antennas is large enough to achieve the Massive MIMO,

which can be used to form a highly directional hybrid beamforming to cover the VSC. In each

VSC, several UEs with high battery level and good channel quality is selected as CH candidates

(colored in blue) and serve as the CH (colored in red) in turn. The CH should work as a flexible

SBS. It aggregates the information from member UEs (colored in black) in VSC by using the

unlicensed band and directly communicates with MBS through the beamformed fronthaul [67].

The UEs who have direct connection with MBS can be denoted by U = {1, ..., L}, while the

others who communicate with CHs are described as UC, where U ∪ UC = {1, ...,K}. There

are L data streams from MBS to CHs. Because the number of data streams represents a lower

bound on the number of RF chains, it is convenient to set NRF ≥ L.

3.2.2 Information Collection Procedure

The implementation and information collection procedure is described as a flowchart in Fig.

3.2. Note that in order to guarantee the quality of service (QoS) of user applications, the service

provisioning of UEs with high latency requirements, such as those that are sensitive to delay,

will be removed from VSCs and communicate with MBSs directly.

At the beginning of typical UE initiated HyperText Transfer Protocol (HTTP) data down-

loading, UEs send the requests to content provider servers through MBSs, and the HTTP re-

quests include the information data z of the mobile devices, where z consists of user location

information, which can be measured through available reference nodes [69], a charge per unit

for distributing data (if serve as CH), and energy levels of the UEs [70]. Content provider

server then collects the information of a set of mobile devices (preferably those requested sim-

ilar content) and sends to the VSC formation server. The VSC formation server then executes

K-means clustering-based algorithm to form the VSC using the location information and se-

lects the CH using channel and energy information. The UEs that are not clustered into any

virtual small cells will communicate with MBSs directly by themselves.

The content provider then sends requested contents to CHs directly and generates redirec-

tion meta-data packages to each intra-virtual small cell UEs. The meta-data package carries

the information of unlicensed sub-channel selections, address of CH and the credentials, login
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Figure 3.2: The implementation and information collection procedure for VSC formation.

ID/ password for other intra-virtual cell devices to access CH. Afterward, the CH updates its

member devices to the MBS and the MBS would only maintain a basic control channel with

the member devices to monitor the quality of service (QoS). Other mobile devices then request

data from CH and the CH would work as a relay for the VSC. As the CH aggregates traffic

in the unlicensed band and transmits high traffic volume with the MBS in a licensed band,

both the traffic aggregation procedure across UDN and the resource allocation among different

VSCs would be challenging. Therefore in the following sections, the protocol conversion at

CHs and the resource allocation scheme for VSC are analyzed and developed.
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3.2.3 Channel Model for Beamformed Fronthual

To keep up with the changes in the coverage and location of VSCs, the antenna radiation

pattern, including the beamwidth and steering of MBS, should be adjusted adaptively. This

adjustment of the antenna radiation pattern will result in channel variation for the beamformed

fronthual link. Therefore, the analysis of the antenna radiation pattern is necessary before the

discussion of the channel model for the beamformed fronthaul.

The VSC formation procedure defines the center and optimum radius of the virtual cells.

The procedure details of cell formation are given in [66] and this chapter mainly focuses on

adaptive beamforming design for VSC. Based on the location information of MBS and VSCs,

the vertical steering and the beamwidth of the MBS beamforming can be obtained [65]

θtilt = − tan−1(
hMBS

d
) (rad), (3.1)

θ3dB = 2
[
− tan−1

(
hMBS

d − r

)
− tan−1

(
hMBS

d + r

)]
(rad) ,

, where r represents the radius of VSC, d, denotes the distance from the MBS to the center of

VSC and hMBS is the antenna height of MBS. Similarly, the beam width and the steering of

beamforming in the horizontal plane can be obtained [65]

ϕtilt = − tan−1
(

y − y
′

x − x′

)
(rad) ,

ϕ3dB = 2
[
tan−1

( r
d

)]
(rad) ,

(3.2)

where (x, y) and (x
′

, y
′

) are coordinates of the center for MBS and VSC, respectively. By using

massive MIMO, 5G base stations will be able to steer its radiation pattern with increased spatial

selectivity both horizontally and vertically [71]:
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AH (ϕ) = −min
12

(
ϕtilt

ϕ3dB

)2

, 30
 dB,

AV (θ) = −min

12
(
θtilt −

π
2

θ3dB

)2

, 30

 dB.

(3.3)

Based on above analysis, the antenna radiation pattern of MBS is given by [71]

A (ϕ, θ) = −min {− (AH (ϕ) + AV (θ)) , 30} dB. (3.4)

The channel model hl ∈ C
1×NBS between UE l and MBS is given by [72]

hl = glRR
l

√
G · Al(ϕ, θ) · PL(dl) · Zl · αl︸                                ︷︷                                ︸

P̃G=propagation gain

, (3.5)

where gl ∼ CN (0, IN) are independent fast fading channel vectors and PG represents propaga-

tion gain consisting of the MBS antenna gain G, the antenna pattern Al(ϕ, θ) , path loss PLl,

the log-normal shadowing Zl and the small-scale fading αl. Using the physical channel model

in [73], channel covariance matrix RR
l =

[
A 0NBS×NBS−NP

]
∈ CNBS×NBS can be obtained, where

NP is the physical dimensions and the spatial correlation matrix A ∈ CNBS×NP is composed of

the steering vectors a(ϕ, θ) ∈ CNBS . Note that the channel model is related with antenna pattern

and steering, which might be adapting to the changes of VSCs.

3.3 VSC Formation and Protocol Conversion

3.3.1 K-means based VSC formation

K-means is one of the well-known learning algorithms for the clustering process [74]. As

shown in the Algorithm 1, the number of UEs K in the high load area, the user’s location

matrix µ, and the number of centers Kmax, will be collected at the VSC formation server in

advance. Then the iteration loops in the Algorithm 1 are adopted to determine the best clus-
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ter for each data point by finding the minimum mean squared distance. Finally, K UEs are

assigned to Kmax centers (K ≥ Kmax). From [74], the smoothed running time to the k-means

method is polynomially bounded in KKmax and hence the computational complexity of K-means

increased with the number of users. The performance of K-means is impacted by the number

of clustering. By observing the simulation results in Fig.5.9, the clustering number should be

set as 0.4K to minimize the non-orthogonality in the spatial domain.

Algorithm 1 K-means clustering based VSC formation
1: Require: K, µ, Kmax

2: for K = 1, 2, ...Kmax do
3: Generate random center matrix m
4: l = 0,ml

q = m,ml−1
q = 0

5: if ml
q , ml−1

q then
6: l = l + 1
7: Determine nearest cluster for each user K
8: for t = 1, 2, .....K do
9: Determine distance between a user and a cluster

10: for i = 1, 2, ...Kmax do
11: di =

√
(uty − mi(y))2 + (utx − mi(x))2

12: dmin = d1

13: if di ≤ dmin then
14: dmin = di, q = i
15: end if
16: end for
17: end for
18: end if
19: end for
20: Calculate the center for cluster q:
21: mq =

∑
µq/Kq: =0

3.3.2 Protocol Conversion for Traffic Aggregation

In the proposed dynamic VSC design, the CH first collects traffic from other member devices

using an unlicensed band, such as Wi-Fi, and then transmits the aggregated data traffic to MBS

in the licensed band. Due to the use of the unlicensed bands, such as Wi-Fi, within each VSC,

the protocol converter is adopted to achieve traffic transmission. However, the protocols of the

cellular network and Wi-Fi (e.g. 802.11) have fundamental differences at their media access

control (MAC) layers: cellular network usually has a frame-based and centrally coordinated
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MAC protocol, while 802.11 allows distributed control and a contention-based carrier-sense

multiple access with collision avoidance (CSMA/ CA) medium-access [75]. Therefore, the

protocol conversion and data packet re-capsulation across licensed and unlicensed bands are

needed for the purpose of inter-networking.

MBS
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Cell Head

ll ll
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Header
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Data 
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Data 
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Figure 3.3: Procedure of the protocol conversion and data packet re-capsulation at CH in VSC.

In the proposed solution, it is assumed that CHs have both Wi-Fi and cellular radio in-

terfaces. Take long term evolution (LTE) network as an example, the CH collects the traffic

from member devices using the Wi-Fi interface, de-capsulate them at the MAC layer, and then

re-pack them with LTE header and transmit to the MBS, as shown in Fig.3.3. From the view

of the MBS, there is no big difference between CHs and normal LTE users, which reduces the

complexity of VSC implementation.

The protocol conversion at the CH can be achieved at different layers of the protocol stack.

The easiest way is to get this done at the upper layer, where all the implementation can be

done in software. This will help to achieve flexibility and cost-effectiveness than hardware

implementation. However, more delay and jitter will be introduced. On the other hand, faster

protocol conversion is usually achieved at lower layers, which introduces more complexities.

As a tradeoff, application or MAC layers are two popular choices. In this work, we use the
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MAC layer for protocol conversion considering the stringent latency requirement of 5G appli-

cations.

Fig. 3.3 shows the protocol conversion and packet re-capsulate procedure in the VSC.

Use LTE network as an example, assume that the MBS uses OFDM in the physical layer and

fixed TDMA techniques to provide time slot sharing between normal cellular UEs and CHs

[10]. The CHs have two network interfaces, the LTE interface is to connect CHs with MBS

while the Wi-Fi interface is used to communicate with the VSC member devices. Note that

the resulting LTE and Wi-Fi data transfer operations are decoupled. For example, the legacy

acknowledgment/negative-acknowledgment (ACK/ NACK) scheme is used to secure all the

handled LTE traffic between CH and MBS, as if the exchanged LTE packets were all belonging

to the CH.
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cell devices
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Figure 3.4: The data aggregation processing among UEs of VSCs, CHs and MBSs.

The CHs need a protocol converter to convey the data from the access network to backhaul.

The protocol converter is designed to be comprised of traffic classifiers, scheduler and protocol

encapsulation/de-encapsulation. As shown in Fig. 3.4, the incurred traffic is first classified,

where local traffic is defined as the intra-VSC traffic, while other traffic goes from/to MBS.

Secondly, the traffic is scheduled into queues based on the traffic types, for example, in the

order of first-in-first-out (FIFO) or round-robin. Finally, the traffic that goes to/from MBS

needs to be converted. WiFi packets are encapsulated in the LTE frame for the uplink and vise

versa for the downlink traffic procedure.
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Take the uplink procedure as an example, the member devices send their scheduling request

(SR) to the CH to be forwarded to the MBS. The MBS then uses downlink control information

(DCI) to inform the member devices regarding their downlink and uplink resource allocation.

Since the CH might be the only member that is listening to the LTE channel, it receives the DCI

and updates the scheduling decision to its own member devices, using an 802.11 management

frame with the same subtype value used by the member devices to encapsulate SR messages in

the Wi-Fi frame.

For data packets, the scheduled member devices encapsulate the LTE packet data conver-

gence protocol (PDCP) PDUs in Wi-Fi frames and send them to the CH. The CH extracts the

PDCP PDUs by dispatching the payload directly and forwards them to the MBS in the des-

ignated slot. During the transmission between CHs to the MBS, the CH includes the UE’s

cell radio network temporary identifier (C-RNTI) address with the data packets to simplify the

identification of the source for returning packets.

Next, the CH encapsulates the LTE PDCP PDUs in regular Wi-Fi data frames and transmits

to its member devices in the unlicensed band according to the C-RNTI identification informa-

tion.

3.4 Adaptive Beamforming Design for VSC

In order to keep up with the changing location of the VSC, the hybrid beamforming at the MBS

should be designed adaptively to fully cover the potential moving VSC. The hybrid beamform-

ing design is achieved based on the channel information of trunk-link between the MBS and the

CH, described in subsection II-C. The hybrid beamforming scheme is described in subsection

IV-A and digital beamforming is formulated as an optimization problem in subsection IV-B.

The optimal and sub-optimal solutions are given in subsection IV-C and IV-D, respectively.

3.4.1 Hybrid Beamforming Scheme

The structure of the hybrid beamforming scheme is shown in Fig.3.5, which combines the digi-

tal baseband beamforming design W ∈ CNRF×NRF and the RF analog beamforming F ∈ CNBS×NRF .

In terms of the analog beamforming design, in order to harvest the large array gain in massive
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MIMO systems, the phase shifter can be adjusted to extract the phases of the conjugate trans-

pose of the downlink channel [76]. Fi, j is denoted as the element of F and the RF beamforming

can be obtained by

Fi, j =
1
√

NBS
eϕi, j , (3.6)

where ϕi, j is the phase of (i, j)th element the conjugate transpose of the downlink channel.

Note that the RF beamforming only impacts the phase and so the equivalent channel H = HoF,

which can be used to design the digital beamforming [77]. The design of digital BF is more

complex than RF BF design because the digital BF controls both the amplitudes and phase of

incoming complex symbols. We will discuss the digital BF design in the following subsections.

Figure 3.5: Structure of hybrid beamforming scheme for VSC.

3.4.2 Problem Formulation of Digital Beamforming

As the battery capacity is a bottleneck of the UE and power efficiency is essential for MBS,

we should analyze the total power before the discussion of digital beamforming design. The

total power consumption of per subcarrier is the sum of the power consumption, Ph, caused by

hardware and the power consumption, Pb, related to the beamforming design [78], as shown in
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(5.7)

Pb = ρ0

L∑
l=1

‖wl‖
2 ,

Ph =
ξ0

C
NBS +

ξRF

C
NRF +

S∑
j=1

ξ j

C
NCH,

Pt = Pb + Ph.

(3.7)

where 1/ρ0 denotes the power efficiency of amplifiers, ξ0 is the circuit power consumption of

each antenna at the MBS, ξRF is the circuit power consumption of each RF and ξ j is the circuit

power consumption of each antenna at the CH and C is the total number of subcarriers.

The downlink communication between the UEs and MBS is considered for the network

architecture, shown in Fig.3.1. We assume that all UEs share the same time and frequency

resource. The received signal yl at the user l ∈ {1, . . . , L} is given by

yl = hH
l

L∑
i=1

wisl + nl, (3.8)

where sl ∼ CN (0, 1) are the information symbols generated from the MBS, wi ∈ C
NRF×1

denotes the beamforming vectors and nl is the white additive Gaussian noise with zero-mean

and variance σ2
l ≤ 0. Considering single-user detection at the receiver side, the signal-to-

interference-and-noise ratio (SINR) of user l can be calculated by

S INRl =

∣∣∣hH
l wl

∣∣∣2∑L
i=1,i,l

∣∣∣hH
l wi

∣∣∣2 + σ2
l

. (3.9)

The
∑L

i=1,i,l

∣∣∣hH
l wi

∣∣∣2 represents the interference from other UEs who use the same channel

with UE l. The near-far problem can be fully addressed in our proposed system by using

beamforming for spatial separation of near-far users and control of transmission power at the

base station, as well as the use of successive interference cancellation (SIC) at the related
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mobile users for the complete removal of related interference. By using the unlicensed band

for intra-cell communication, the number of directed links between MBS and UE in VSC is

decreased dramatically. Therefore, the VSC has less co-channel interference than that of the

traditional small cell.

Our objective of adaptive beamforming design is to minimize the total power consumption

under the constraints of the transmitted power of the MBS and the rate requirement of each UE.

Therefore, the adaptive beamforming design of the VSCs can be expressed as an optimization

problem:

min
wl ∀ł

ρ0

L∑
l=1

‖wl‖
2 + Ph, (3.10)

subject to log2(1 +

∣∣∣hH
l wl

∣∣∣2∑L
i=1,i,l

∣∣∣hH
l wi

∣∣∣2 + σ2
l

) ≥ γl ∀ł,

L∑
l=1

wH
l wl ≤ Ptmax ∀ł,

where Ptmax is the maximum transmitted power of MBS. It is observed that the above problem

contains the quadratic constraints and so it is not convex. In general, it is difficult to solve the

non-convex optimization problems in polynomial time.

3.4.3 Semi-definite Relaxation

The non-convexity of the original problem is due to the quadratic form of wl in throughput rate

constraints. By defining correlation matrix Wl = wlwH
l , the original problem in Eq. (5.11) can

be rewritten as
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min
Wl ∀ł

ρ0

L∑
l=1

tr(Wl) + Ph, (3.11)

subject to hH
l

(1 +
1
γl

Wl

)
−

L∑
i=1,i,l

Wi

 hl ≥ σ
2
l ∀ł,

L∑
n=1

tr (Wl) ≤ Ptmax ∀ł,

Wl ≥ 0 ∀ł,

rank (Wl) = 1 ∀ł.

Due to rank-one constraint, optimization problem Eq. (5.13), which is equivalent to Eq.

(5.11), is not a convex optimization problem. By removing rank constraint rank (Wl) = 1, the

relaxed version of the original problem in Eq. (5.13) is convex, which can be solved by using

conventional alternative iteration method [79]. However, it is difficult to prove that there always

exist an optimal solution that satisfies the rank-one constraint in theory. An optimizer of the

relaxed version of Eq. (5.13), W?
l , l = 1, . . . , L, with rank(W?

l ) > 1, for any l, only provides

an upper bound on the optimal value of the optimization problem given by Eq. (5.11). To

guarantee the rank constraint, a diagonal matrix Bl ∈ C
NBS×NBS is introduced and the problem

of Eq. (5.13) can be reformulated

min
Wl ∀ł

ρ0

L∑
l=1

tr (BlWl) + Ph, (3.12)

subject to hH
l

(1 +
1
γl

Wl

)
−

L∑
i=1,i,l

Wi

 hl ≥ σ
2
l ∀ł,

L∑
n=1

tr (Wl) ≤ Ptmax ∀ł,

Wl ≥ 0 ∀ł.

where Bl = blINRF . The basic idea of the proposed method is to adjust Bl to make the solution

of rank-one. The problem of Eq. (5.17) is equivalent to the problem of Eq. (5.13) by setting
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bl = 1 at the beginning. If any rank of Wl is larger than one, the value of bl is increased

iteratively to reduce the entries of Wl. Because of the same constraints, the optimal solution of

Wl in Eq. (5.17) is suitable for Eq. (5.13). The process of the modified semi-definite relaxation

is provided in Algorithm 2.

Algorithm 2 Modified Semi-definite Relaxation Algorithm
1: input: NRF , Tb > 0, β > 1, hl and γl for all l ∈ L
2: Initialize bl = 1 for all l ∈ L
3: Set Bl ← blINRF

4: obtain the optimal W based on the traditional alternative iteration solution.
5: if the rank of all Wl is larger than one then
6: while bl < Tb do
7: Set bl ← βbl

8: end while
9: else

10: Exit
11: end if
12: output W =0

In Algorithm 2, β > 1 denotes the step size of iteration and Tb is the threshold. These

values should be selected carefully to find a trade-off between the number of iteration and the

effect of rank constraint.

3.4.4 Low Complexity Optimization Algorithm

It is noted that, the computational complexity of the optimization algorithm, semi-definite re-

laxation, of problem (5.11) is O(L4.5 log (1/ε)) [80] given a solution accuracy ε, which grows

significantly with the number users L. To reduce the complexity, we should divide the original

optimization problem into two parts and consider the constraint of throughput rate first. To ex-

tract the hidden convexity of throughput rate constraint, we assume that
√∣∣∣hH

l wl

∣∣∣2 = hH
l wl ≥ 0.

The constraint S INRl ≥ γ̃l, γ̃l = 2γl − 1 can be rewritten as [81]
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1
γ̃lσ

2
l

∣∣∣hH
l wl

∣∣∣2 ≥ L∑
i,l

1
σ2

l

|hlwi|
2 + 1,

1√
γ̃lσ

2
l

<
(
hH

l wl

)
≥

√√
L∑

i,l

1
σ2

l

|hlwi|
2 + 1.

(3.13)

The SINR constraint in Eq. (3.13) can be reformulated as a second-order cone constraint

and hence, strong duality and the Karush-Kuhn-Tucker (KKT) conditions can be used to solve

the optimal problem. The Lagrangian function associated with Eq. (5.11), only considering

the first constraint, is defined as

L(w1, · · ·wL, λ1, · · · , λL) =

L∑
l=1

‖wl‖
2 + Ph, (3.14)

+

L∑
l=1

λl

 L∑
i,l

1
σ2

l

∣∣∣hH
l wi

∣∣∣2 + 1 −
1

γ̃lσ
2
l

∣∣∣hH
l wl

∣∣∣2 ,
where λl ≥ 0 is the Lagrange multiplier vector. For a given optimal λ, the KKT conditions are

given by

wl +

L∑
i,l

λi

σ2
l

hihH
i wi −

λl

γ̃lσ
2
l

hlhH
l wl = 0, (3.15)

⇔ wl =

I +

L∑
i=l

λi

σ2
l

hihH
i

−1

hl
λl

σ2
l

(
1 +

1
γ̃l

)
hH

l wl︸                ︷︷                ︸
scalar

,

⇔ w∗l =
√

pl︸︷︷︸
=beamforming power

(
I +

∑L
i=l

λi
σ2

l
hihH

i

)−1
hl∥∥∥∥∥(I +

∑L
i=l

λi
σ2

l
hihH

i

)−1
hl

∥∥∥∥∥︸                         ︷︷                         ︸
=w̃∗l =beamforming direction

.

Eq. (3.15) is the first-order optimality conditions of beamforming, consisting of beamforming

power pl and beamforming direction w̃∗l . To reduce complexity, an equal power allocation

scheme can be used to find the beamforming direction first. Therefore, substituting λi = Ptmax
L
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into Eq. (3.15), the optimal beamforming direction can be obtained by

w̃l =

hl

(∑L
i=1

1
σ2

i
hihH

i + L
Ptmax

I
)−1

∥∥∥∥∥hl

(∑L
i=1

1
σ2

i
hihH

i + L
Ptmax

I
)−1∥∥∥∥∥ . (3.16)

The Eq. (3.16) illustrates that the optimal beamforming directions can be found by maxi-

mizing the ratio of the desired signal power to the noise power and minimizing the interference

caused by co-channel users. In fact, this is equal to the concept of maximizing signal-to-

leakage-and-noise ratio (Max-SLNR) beamforming, which is a kind of heuristic beamforming

method and is non-iterative [82]. Then, Eq. (5.11) can be rewritten as an optimization problem

of power allocation

min
pl ∀ł

ρ0

L∑
l=1

pl + Ph, (3.17)

subject to
L∑

l=1

pl ≤ Ptmax ∀ł,

pl

∣∣∣hH
l w̃∗l

∣∣∣2 (
1 +

1
γ̃l

)
−

L∑
i=1

pi

∣∣∣hH
l w̃∗l

∣∣∣2 ≥ σ2
l ∀ł.

Algorithm 3 Low-complexity Algorithm
1: input: NRF , hl and γ̃l for all l ∈ L
2: Initialize wl for all l ∈ L
3: Step 1:
4: for user form 1 to L do
5: based on the equal power allocation scheme, the optimal beamforming direction of each

user is calculated w̃l =
hl

(∑L
i=1

1
σ2

i
hihH

i + L
Ptmax

I
)−1

∥∥∥∥∥∥∥hl

(∑L
i=1

1
σ2

i
hihH

i + L
Ptmax

I
)−1

∥∥∥∥∥∥∥
6: end for
7: Step 2: Solve the convex optimization problem of (3.17) to obtain the optimal power

allocation p∗l .
8: Step 3: wl =

√
p∗l w̃l for all l ∈ L

9: output: w =0

The optimal power allocation p∗l can be obtained by solving the above convex optimization
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problem and should be sent to MBS to calculate the final optimal beamforming. The proposed

low-complexity algorithm is summarized in Algorithm 3.

3.5 Performance Evaluation

3.5.1 Simulation Parameters

A heterogeneous network, where five VSCs deployed in one macro-cell, is considered. There

are 30 users randomly distributed in the whole macro-cell. One CH, equipped with one an-

tenna, is deployed in each VSC and one MBS, equipped with 128 antennas and 60 RF, is

located at the center of macro-cell. Table 3.1 shows the main parameters, which are utilized to

calculate the power consumption and model the channel [83] and [84].

Table 3.1: Parameters of hardware and channel model for small cell and macro-cell.
Parameters Value

Carrier Frequency/No. of subcarriers 2GHz/600
Total bandwidth/Subcarrier bandwidth 10MHz/15kHz

Efficiency of power amplifier 0.38
Circuit power per antenna of MBS 160 mW
Circuit power per antenna of MBS 5.6 mW

Circuit power per RF 50 mW
Radius of small cell radius 50 m
Radius of macro cell radius 0.8 km

Standard deviation of log-normal shadowing 7 dB
Path and penetration loss for small cell 127 + 30log10(d) dB
Path and penetration loss for macro-cell 148.1 + 37.6log10(d) dB

Noise variance -127 dBm
Noise figure 5 dB

3.5.2 K-means based VSC Formation

Fig. 3.6 shows the virtual small cell formation using the clustering algorithm and the define of

the cell center/ radius. 100 users are generated randomly in an area, and the K-means clustering

algorithm is executed as an example for the virtual small cell clustering procedure [66]. It can

be seen in the figure that users are grouped as blue and red as the first step and the cell center
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Figure 3.6: Virtual small cell formation using K-MEANS clustering and far user removing.

is decided. Afterward, far users are removed from the virtual cells using average distance plus

standard deviation. In order to find the radius of virtual small cells, the transmission range of

IEEE 802.11p protocol is applied, and the smaller value between the transmission range and

average distance plus standard deviation would be the virtual small radius.

3.5.3 Power Consumption Performance of the Proposed VSC

Fig. 3.7 illustrates the total power consumption of three scenarios with the different numbers of

antennas (NBS and NCH), while the bit rates requirement of each user is 2 bits/s/Hz. The optimal

beamforming algorithm has been elaborated in Section 3.4.3 and the solution of the convex

optimization problem is obtained using the modeling language CVX in simulation[85]. In

terms of traditional small cell scenario, soft cell [86] is applied, where each user communicates

with any combination of transmitters (MBS and SCAs). As can be seen from Fig. 3.8, the

average total power consumption decrease dramatically with the increase in antenna numbers

at the MBS and CH. The reason is that the increase in the diversity gain outweighs the increase
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Figure 3.7: Total power consumption against the number of MBS antennas for macro-only,
traditional SCs and virtual SCs.

in the hardware cost Ph. This situation bottomed out at NBS = 40− 60 and the total power then

starts to increase slowly. Furthermore, the lowest power consumption of VSC reduced from

16.8 dBm (47.8 mW) to 15.8 dBm (38 mW) by increasing the antenna number at CH from 1

to 2. Moreover, with the same antenna numbers at MBS, the VSC saved around 50% and 66%

power consumption compared with that of macro-only and traditional small cell scenarios,

respectively.

In Fig. 3.8, total power consumption under different throughput rate constraints are sim-

ulated using 60 antennas at MBSs and two antennas at CHs/APs. The energy efficiency of

four scenarios are compared, including optimal beamforming without small cells discussed in

[78] , optimal soft cell proposed in [78], optimal VSCs (Algorithm 2) and sub-optimal VSCs

(Algorithm 3). It can be seen that higher rate requirements cause higher power consumption.

The total power consumption increased around 3 times when the QoS requirement rises from

2 bits/s/Hz to 4 bits/s/Hz. It is also clear that power consumption is saved by offloading users
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Figure 3.8: Total power consumption for different throughput rate constraints in three scenar-
ios.

from the macro cell to small cells because SCs reduce the communication distance. Com-

pared with soft small cells, with the same QoS requirement, the algorithms that utilize VSCs

reduced 55% power consumption due to less inter-cell interference. Moreover, the proposed

Max-SLNR beamforming scheme, discussed in Section 3.4.4, provides a similar performance

of optimal beamforming algorithm with lower complexity with the use of Massive MIMO.

Furthermore, there are two different beamforming schemes, hybrid beamforming and digital-

only beamforming, which are simulated in the situation of VSC. It can be seen that, to achieve

3 bps/s/Hz, the power consumption of digital beamforming in VSC is 18 dBm (63 mW), while

the power consumption of hybrid beamforming scheme in VS is 17 dBm (50 mW). Therefore,

the HBF can further save 16% power than that of DBF, because the hybrid beamforming can

decrease the number of RF.
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3.6 Chapter Summary

This section proposed virtual small cells as a flexible and cost-effective scheme to overcome

the deployment challenges of traditional small cells. VSCs are formed adaptively according

to dynamic traffic conditions, and one user device with better power and channel conditions is

selected as the CH to aggregate the intra-cell traffic in the unlicensed band and communicate

directly with the MBS in the cellular band. A K-means clustering based virtual small cell

formation scheme is proposed, and the protocol conversion for data transmission across an

unlicensed and licensed band at CHs is designed. Based on the proposed virtual small cell

network architecture, adaptive hybrid beamforming is also designed to support the high traffic

of the front-haul link. The objective of beamforming design is to minimize the total power

while guaranteeing the throughput rate requirement of users and transmit power constraints at

the MBS. This non-convex problem can be translated into a convex problem by using modified

semi-definite relaxation. To reduce the optimization complexity, beamforming direction can be

selected for equal power allocation first. After this step, the original optimization problem can

be reformulated as a simple convex optimization problem of power allocation. The optimal and

sub-optimal solutions of beamforming design are analyzed. Both mathematical and simulation

results demonstrate that compared with soft small cells, the proposed VSCs with the adaptive

HBF scheme can save 55% power consumption, due to better energy-focusing and less inter-

cell interference.



Chapter 4

Deep Learning Based Hotspot Prediction

for VSC in Ultra Dense HetNet

In this chapter, a hotspot prediction based virtual small cell (VSC) operation scheme is adopted

to improve both the cost efficiency and operational efficiency of 5G networks. This study fo-

cuses on how to predict hotspots by using deep learning. We first leverage the feature extraction

capabilities of deep learning and exploit the use of a long short term memory (LSTM) neural

network to achieve hotspot prediction for the potential formation of the VSCs. Specifically,

the location map of UEs is divided into several grids and the problem of hotspot prediction

is formulated to predict the UE numbers of each grid. Our simulation results illustrate that

the proposed LSTM based method can extract spatial and temporal traffic features of hotspot

with higher accuracy, compared with some existing deep and non-deep learning approaches.

Numerical results also show that VSCs with hotspot prediction and hybrid beamforming can

improve the energy efficiency dramatically with flexible deployment and low latency, compared

with the scenario of the convolutional fixed small cells.

4.1 Introduction

The proliferation of smart devices, forthcoming autonomous vehicles and dramatically growing

Internet of Things (IoT) applications are expected to bring significantly increased data traffic

to existing wireless infrastructures, which necessitates the research and development of 5th

51



52 Chapter 4. Deep Learning Based Hotspot Prediction for VSC in Ultra Dense HetNet

generation (5G) networks. As a result, ultra-dense network (UDN) has been considered as a

promising solution to cope with the explosive traffic growth and support high-speed services

through the deployment of the ultra-dense small base station (SBS) with reduced transmission

distance between users and access point [87]. However, the distribution of the 5G devices and

traffic can vary unevenly. Small areas with a large number of user equipment (UE) transmitting

within a short period, e.g. a crowded road intersection with vehicles, may introduce a heavy

burden on cellular networks, producing hotspots of varying size and duration in the serving

wireless networks [3]. Currently, the deployment of fixed wireless networks typically results

in an architecture that lacks the capability and cost-efficiency to deal with scenarios having

highly fluctuating network traffic variations due to user activity and mobility.

Unfortunately, the variation of user distribution in both temporal and spatial domains is

very common in current and future cellular networks. For example, user distribution can be

changed dramatically due to the different lifestyles and work habits of people[88]. Simply

deploying a large number of fixed small cell base stations (SBS) will not only increase the in-

frastructure cost but also waste network resources when network traffic is low [29]. To address

these challenges while fully utilizing the spatial and temporal patterns of user and traffic distri-

butions, cost-effective network deployment and traffic-aware allocation of network resources

are becoming essential. Hotspot location and prediction can provide very useful information

concerning highly loaded areas both in the temporal and spatial domains, which can serve as

the basis of traffic-aware network operation [89]. Achieving this requires understanding and

forecasting the network-level mobility patterns and distribution of UEs with high accuracy and

in a timely manner.

However, predicting large-scale and fine-grained user distribution can be extremely chal-

lenging because of the following three reasons: (i) due to the different lifestyle, mobility pat-

terns and user behavior of an individual user could vary widely ; (ii) the user spatial distribution

pattern within a region could be characterized and affected by both short and long term events

[90]; and (iii) some additional factors, e.g. festival events and extreme weather conditions,

may change the user distribution remarkably in temporal and spatial domain [28]. Therefore,

extracting and predicting useful mobility patterns from multi-source and rapidly changing net-

works remains a challenge.
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Recent years have witnessed a considerable amount of studies dedicated to mobility pre-

diction schemes. In [50], according to the statistics of user occurrence frequency, the most dis-

tinctive sequential mobility pattern of users is extracted. However, this method fails to predict

changing sequential mobility patterns when the users changed their mobility routines. Another

popular method is using principal component analysis (PCA) and extracting eigenbehaviors

[51] or eigenplaces [52], which features a two-layer shallow structure. The eigenbehavior

and eigenplaces of user’s mobility and traffic are determined to extract a common underlying

structure of users’ daily mobility patterns. Nevertheless, the limited number of eigenbehav-

ior and eigenplaces may not be sufficient to fully represent the mobility patterns of different

users. Therefore, a ‘deeper structure’, such as the structure of deep neural network, should be

used to address these challenges. By introducing multiple hidden layers between the input and

output layers, deep neural network (DNN) is more powerful and flexible to predict complex

mobility patterns due to the combined capability of multiple hidden layers [53]. In addition,

by employing hierarchical feature extraction, deep learning can capture temporal and spatial

dependencies in sequential data, while minimizing the data pre-processing effort [54]. Fur-

thermore, it makes possible for deep learning to make inferences within milliseconds by using

Graphic Processing Unit (GPU)-based parallel computing [55].

Therefore, the deep neural network is becoming a critical tool for user mobility analysis.

In [56], deep learning was adopted first to recover the social network representations of users

and then a basic recurrent neural network (RNN) and Gate Recurrent Unit (GRU) models

were employed to discover mobility patterns of the individual user at different levels. In[57],

an online learning scheme was proposed to train a hierarchical convolutional neural network

(CNN), which can process data stream parallelly. However, most of the previous works are

focused on predicting the individual trajectories instead of forecasting the network-level user

distribution, which is more valuable for network operation. Therefore, we directly predict the

network-level user density in the temporal and spatial domain through deep learning methods

in this chapter. Since fluctuation of user density is influenced by short and long term behaviors,

the long short term memory (LSTM) neural network, a kind of deep RNN, is adopted to predict

the number of UEs in every small zone due to its excellent capability to memorize long-term

dependencies. By using the LSTM neural network, the proposed method can also overcome
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the gradient problem that plagues conventional RNNs and captures long-short term temporal

and spatial dependencies without suffering from the optimization hurdles [58].

By analyzing the network-level UE distribution, it is possible to automatically predict

hotspots of the ultra-dense HeNet. Therefore, we proposed the machine learning based hotspot

prediction and combined with the concept of virtual small cell (VSC) proposed in the previ-

ous topic as a flexible and cost-effective scheme to reduce co-channel interference and handle

the latency requirement of cell formation. Specifically, We adopt the LSTM based hotspot

prediction method in VSC to improve cost efficiency and handle the latency requirement. In

our previous work [91], both the cell formation and beamforming design of VSC have to be

collected and determined using real-time feedbacks from UEs, leading to increased real-time

operational complexity and latency. In this chapter, the predicted location of hotspots can be

determined in advance to reduce the latency from supporting cell formation and beamforming.

In achieving the proposed one LSTM based prediction method, the historical location map of

UEs is divided into several zones in the spatial domain and each zone consists of the neigh-

boring grids. All of these two-dimensional zones are used to train one LSTM neural networks

to explore both spatial and temporal features of UE distribution. By analyzing the predicted

network-level UE density map, the hotspot can be detected.

The rest of this chapter is structured as follows. Section 4.2 introduces the system model

of the hotspot prediction based VSCs. In Section 4.3, the problem of hotspot prediction is

formulated to predict the UE numbers of each grid. The three different LSTM based hotspot

prediction methods are elaborated in Section 4.4. In Section 4.5, a real dataset of telecom-

munication is used to evaluate the proposed one LSTM based prediction method. Further,

performance evaluation is presented in Section 4.6. Simulation results regarding the root mean

square error (RMSE) performance of one LSTM based network is compared with that of three

benchmarks. The system performance of VSCs based hotspot prediction is compared with the

traditional small cells and VSC with K-means scenarios. Finally, the conclusions are provided

in Section 4.7.
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4.2 Overall Network Architecture

The overall network architecture of the proposed hotspot prediction based VSC, which consists

of a HetNet environment, as shown in Fig.4.1, is designed to reduce the deployment cost and

operational complexity. As shown in Fig. 4.1, based on the received historical data of UE

distribution, a deep learning model that may run on a cloud-based platform is utilized to achieve

the user distribution prediction. The pre-trained module is trained in advance according to

the long-term historical data of user distributions to determine the parameters of the LSTM

network. The recent short-term available data (few hours) can be used to update the trained

model online at each step. The predicted information of the hotspot is sent to the VSC server

to form VSC and design the hybrid beamforming.

Figure 4.1: Network architecture of hotspot prediction based VSC.

Regarding the architecture of the whole network, we consider a two-tier heterogeneous

network, where S VSCs are deployed in a macro-cell, as shown in Fig. 4.1. We assume that
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K users, equipped with NK antennas, are randomly distributed in the macro-cell and one MBS,

equipped with NBS antenna and NRF RF, is deployed at the center of the macro-cell. The number

of MBS antennas is large enough to achieve the Massive MIMO, which can be used to form

a highly directional hybrid beamforming to cover the VSC. In each VSC, several UEs with

high battery level and good channel quality is selected as CH candidates (colored in blue) and

serve as the CH (colored in red) in turn. The CH should work as a flexible SBS. It aggregates

the information from member UEs (colored in black) in VSC by using the unlicensed band

and directly communicates with MBS through the beamformed fronthaul [67]. The UEs who

have direct connection with MBS can be denoted by U = {1, ..., L}, while the others who

communicate with CHs are described as UC, where U ∪ UC = {1, ...,K}. There are L data

streams from MBS to CHs. Because the number of data streams represents a lower bound on

the number of RF chains, it is convenient to set NRF ≥ L.

4.3 Problem Formulation of Hotspot Prediction

Advances in wireless communication and Global Positioning System (GPS) technologies allow

timely collection of relevant information regarding the status and location of the active UEs.

As a result, the location map of UEs can be developed. As shown in Fig. 4.2, the map can be

divided into Ns × Ns grids.

Specifically, the hotspot prediction problem can be formulated as follows. Let xi
t denotes

the number of UEs in the ith grid at a given time t. Given a historical record of UE numbers

{xt−1, · · · , xt−d}, where xt−1 =

{
x1

t−1, . . . , x
N2

s
t−1

}
. The aim of this study is to predict hotspots by

predicting the UE numbers of every grid xt. In general, the total number of UEs in the network

is fairly constant, but the number of UEs in a given grid could vary dramatically over time.

The number of UEs in a given grid is essentially a time series, where the historical events have

an impact on the future evolution of the UE distribution in the time domain. Furthermore, the

predicted UE numbers of each given grid are also impacted by the neighboring grids in the

spatial domain.
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Figure 4.2: UE location map in temporal and spatial domain.

4.4 LSTM based User Distribution Prediction

The LSTM neural network is a special kind of deep RNNs that can capture the longer-term

temporal dependencies than traditional RNNs [92]. Therefore, in this work, the LSTM neural

network is adopted to predict the number of UEs in every grid, which is used to predict the final

user distribution. Specifically, the memory cell structure of LSTM is introduced in subsection

4.4.1, and one LSTM based prediction method is presented in subsection 4.4.2.
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Figure 4.3: Structure of LSTM memory cell.

4.4.1 Memory Cell Structure of LSTM

Each hidden node in LSTM network is regarded as a memory cell with three different gates,

which regulating the information and thus allowing to keep the past information [93]. The

structure of LSTM memory cell is shown in Fig. 4.3. At each time instant t, there are two

inputs for the LSTM memory cell: the historical UE numbers xt−1 and the previous state of

hidden layer hht−1. The output and update of the memory cell are determined by the cell state.

The forget gate determines what kind of information should be eliminated away from cell state

[94]. The output value of forget gate at tth time is :

ft = σ
(
W f · [hht−1, xt−1] + b f

)
, (4.1)

where W f and b f are the weight matrix and the bias factors of the forget gate, respectively. The

active function of forget gate is a sigmoid function σ ∈ [0, 1], where the value of 1 represents

passing information while a value 0 represents blocking information, respectively.

On the other hand, the input gate decides what kind of information should be stored in the
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cell state [94]. The output value of the input gate at tth time is:

it = σ (Wi · [hht−1, xt−1] + bi) , (4.2)

where Wi and bi are the weight matrix and the bias factors of the input gate, respectively. The

active function is also a sigmoid function σ ∈ [0, 1].

Then, a tanh function, tanh ∈ [0, 1], creates a vector of new candidate values of cell states:

c̆t = tanh (Wc · [hht−1, xt−1] + bc) . (4.3)

Based on the output values of input gate and forget gate, the cell state of the current memory

cell can be updated by the following formula:

ct = ft ◦ ct−1 + it ◦ c̆t, (4.4)

where ◦ denotes the Hadamard product. Finally, the current state of hidden layer hht is calcu-

lated based on the value of output gate and the cell states that are further filtered [92]:

hht = ot ◦ tanh (ct) , (4.5)

where ot is the value of output gate at tth time, which is generated by a sigmoid function

σ ∈ [0, 1]:

ot = σ (Wo · [hht−1, xt−1] + bo) , (4.6)

where Wo and bo denote the weight matrix and the bias factors of the output gate, respectively.
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4.4.2 User Distribution Prediction based on One LSTM

The historical location map should be divided into
(

Ns
Nc

)2
zones in spatial domain and each zone

has Nc × Nc grids at specific time t, as shown in the Fig.4.4. Note that the value of Nc should

ensure the zone number,
(

Ns
Nc

)2
, is an integer. The model of UE distribution prediction based on

one LSTM network is shown in Fig. 4.4. There are three layers in the proposed LSTM model:

the input layer, the hidden layer and the output layer.

Figure 4.4: Structure of one LSTM based UE distribution prediction method.

The input to the LSTM model is the historical UE numbers of all grids in jth zone:

{
x j

t−1, x
j
t−2, · · · , x

j
t−d

}
, (4.7)

where x j
t−1 =

{
x1, j

t−1, . . . , x
N2

c , j
t−1

}
. The output is the predicted UE numbers of all grids in jth

zone at time t, x j
t =

{
x1, j

t , . . . , xN2
c , j

t

}
. The number of memory cells is determined by the time

steps d. The hidden layer number in Fig. 4.4 is one, but it can be easily extended to several

layers according to the situation. In this way, the input of the proposed one LSTM based

method is the 2D (spatial and temporal domain) zones instead of the 1D (temporal domain)

grid. Therefore, the proposed one LSTM network can exploit both spatial and temporal features

of UE distribution. All of zones are should be used to train the same LSTM model to find the

relationship function f between the input and output:
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x j
t = f

(
x j

t−1, x
j
t−2, · · · , x

j
t−d

)
∀ j = 1, . . . ,

(
Ns

Nc

)2

. (4.8)

With this approach, the UE numbers of all small zones can be predicted and so the network-

lever user distribution in the temporal and spatial domain can be obtained.

4.5 Data Set

For data analysis with deep learning, it is essential to obtain a high-quality data set. In this

work, a publicly available real-world multi-source dataset released through Telecom Italia in

2015 is adopted [95]. The dataset is composed of telecommunications, weather, social net-

works and electricity data from the city of Milan and the Province of Trentino, collected be-

tween 1 Nov 2013 and 1 Jan 2014. In this work, we focus on telecommunication records from

Milan. These network activities are measured by using the terms of total call detail record

(CDR) data, which is generated when a user receives or sends SMS, call and Internet over

10-minute intervals.

Figure 4.5: Grid map and the CDR heat map of Milan.

For the convenience of CDR recording, the city of Millan is divided into 100 × 100 grids,

marked by a unique ID, as shown in Fig. 4.5. The size of each grid is 235 × 235 meters.

The CDR numbers can reflect the UE density, and so we can predict the hotspot by predicting
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the CDR numbers of every grid. By adding six-time intervals (10 minutes), the aggregated
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Figure 4.6: CDR distributions of Milan in the spatial domain and temporal domain.

CDR numbers of each grid in one hour are obtained. The CDR distributions of Milan in the

spatial and temporal domains are shown in Fig. 4.6. Form this figure, we can see that the CDR

number is continuous both in the spatial and temporal domains. Some heatmaps examples

at different times are given in Fig. 4.7. We noted that the active zones focus on the central

4040area (horizontal:40-80, vertical:30-70) with 1600 grids. Therefore, the data set of these

grids is used to evaluate the performance of all prediction methods in the next section.

4.6 Performance Evaluation

To evaluate the effectiveness of LSTM based prediction method, the experiments are conducted

on real-world data. The three baseline algorithms and simulation conditions are described in

subsection 4.6.1 and 4.6.2, respectively. Then, the filter is adopted to preprocessing the raw

data in subsection 4.6.3. In subsection 4.6.4, the proposed one LSTM based CDR numbers
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Figure 4.7: Heatmap examples of real CDR data for Milan.

forecasting is compared with three baseline methods. The accuracy evaluation of one LSTM

based hotspot prediction is provided in subsection 4.6.5. Finally, the power consumption of

VSCs with hotspot prediction is compared with the K-means in subsection 4.6.6.

4.6.1 Baseline Algorithms of Hotspot Prediction

To verify the accuracy of the proposed one LSTM based algorithm, three models, including

the autoregressive integrated moving average (ARIMA), several LSTM based algorithms and

Convolutional LSTM (ConvLSTM), are employed as baselines.

• ARIMA: It is a kind of non-deep learning method that captures a suite of different stan-

dard temporal structures in time series data. ARIMA models are known to be robust in

time series forecasting especially short-term prediction [96].

• Several LSTM based algorithm: Different with the proposed one LSTM method, every

zone of several LSTM based method requires its own LSTM and so there are
(

Ns
Nc

)2
LSTM
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in this scheme, as shown in Fig. 4.8.The input of the several LSTM networks is still

the 2 D (spatial and temporal domain) zones. Therefore, it can also exploit spatial and

temporal features at the same time of distribution prediction.

Historical UE numbers of 1st zone Training 1st LSTM Predicted UE numbers of 1st zone

Historical UE numbers of 2nd zone Training 2nd  LSTM Predicted UE numbers of 2nd  zone

Historical UE numbers of Nc2  zone Training Nc2  LSTM Predicted UE numbers of Nc2  zone

... ...

...

Figure 4.8: Structure of several LSTM based prediction method.

• ConvLSTM: By adding a convolutional layer to LSTMs, the ConvLSTM enables to cap-

ture spatio-temporal features of data for precipitation nowcasting [97]. The idea of con-

volutional LSTM models has been employed in many prediction studies. At the bottom

of the model, the convolutional neural network (CNN) automatically extracts the spatial

features which have embedded the information revealing the spatial correlations among

the different sites. On top of the CNN, an LSTM is built to capture the temporal depen-

dency among the spatial features, chronologically extracted by the CNN. The differences

between ConvLSTM and LSTM are that ConvLSTM changes the feedforward method

of LSTM from Hadamard product to convolution [98].

4.6.2 Simulation Conditions

LSTM models are trained on the first 1320 hours of data (first 55 days) and tested on the 24

hours (one day) of data. Their performances were evaluated by computing the RMSE (Root

Mean Square Error) value of ith grid [94]:
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RMS Ei =

√√
1
z

z∑
t=1

(
xi

t − x̂i
t

)2
, (4.9)

where x̂i
t and xi

t are the predicted CDR numbers of ith grid and the ground truth, respectively; z

is the number of all predicted values.

Table 4.1: The parameters of the LSTM and ConvLSTM for user density prediction.
Parameters LSTM ConvLSTM

hidden layer numbers 2 1 and 2
hidden nodes of the first layer 50 50

hidden nodes of the second layer 25 25
Batch Size 64 64
Time Steps 24 24

Training Steps 150 150
Grid numbers for each time step 5*5 and 2*2 2*2, 5*5 and 10*10

Kernel size N/A 2*2 and 5*5

ARIMA models are generally denoted ARIMA(p,d,q) where parameters p is the number

of autoregressive terms, d is the degree of differencing and q is the size of the moving average

window [96]. In our simulation, an ARIMA(2,2,0) is modeled by using the python statsmodels.

The LSTM and ConvLSTM are built by using Keras of Tensorflow. We use Adam optimizer

with learning rate=0.001, beta1=0.9, beta2=0.999 and epsilon=1e-08. In order to achieve the

best results, the hyperparameters of LSTM should be adjusted and the main parameters of the

LSTM and ConvLSTM neural network are shown in Table. 4.1 [96]. The time steps refer to

the length of the input series and the batch size denotes the data number of each batch. The

batch size should be selected carefully to find a tradeoff between the accuracy and the speed of

the training. The kernel size of ConvLSTM means the size of a convolution filter. We assume

that the CDR numbers of the given grid are impacted by the neighboring 5 × 5 grids or 2 × 2

grids. Therefore, the size of the 2D zones is (25,1320) or (4,1320).



66 Chapter 4. Deep Learning Based Hotspot Prediction for VSC in Ultra Dense HetNet

4.6.3 Data Preprocessing

In order to reduce the impact of noise on time series, wavelet-based filtering is used to smooth

the raw data. The performance of the wavelet filter on 20-th grid is shown in Fig. 4.9. Com-

pared with the original data, the processed data reduced the high-frequency noise with the same

shape.
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Figure 4.9: Evaluation of wavelet-based filter on 20th grid

4.6.4 CDR Numbers Forecasting Comparison

4.6.4.1 Compare one LSTM with ARIMA and several LSTM

This section provides the comparison among one LSTM, several LSTM and ARIMA methods.

The experiment is conducted on Milan downtown with about 1600 grids. Fig.4.10 and Fig.

4.11 demonstrate the distribution and cumulative distribution function (CDF) of forecasting

RMSE of three methods, respectively.

Compared with the ARIMA, deep learning approaches based on LSTM have much better

performance. The reason is that the LSTM can capture long-term dependencies due to its ro-
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Figure 4.10: Histogram Comparison among one LSTM, several LSTM and ARIMA methods
based user density prediction

bust nature and feedback connections. By comparing the two improved LSTM based scheme

with 5×5 zones, we can find that the 64 LSTM scheme has more grids whose RMSE< 10 than

that of one LSTM. There are 24 grids with several LSTM less than 5 RMSE and 2 grids less

than 5 RMSE by using one LSTM. In several LSTM based scheme, every LSTM is training

specifically for each grid and so it gets some higher accuracy results. However, due to overfit-

ting and lower diversity of samples, the overall performance of several LSTM based scheme

is worse than that of one LSTM based scheme. Specifically, there are 75% grids within 30

RMSE using one LSTM and 65% grids within 30 RMSE using several LSTM. Therefore, the

one LSTM based method is the best choice with higher RMSE performance and lower com-

plexity. What’s more, we also noted that the performance of the one LSTM based scheme can

be significantly improved around 12.5% by reducing the zone size from 5 × 5 to with 2 × 2.

There are two reasons. On the one hand, by adopting smaller zones, the number of samples,

which can be used to train the LSTM, is increased. On the other hand, it also proves that the

spatial correlation among neighboring 4 grids is larger than that of neighboring 25 grids. In
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Figure 4.11: CDF Comparison among one LSTM, several LSTM and ARIMA methods based
user density prediction

summary, the one LSTM whose input zone size is 2×2 has the best performance with low com-

plexity. Therefore, it can be selected as the candidate scheme to compare with the ConvLSTM

in the following part.

4.6.4.2 Compare one LSTM with ConvLSTM

This section provides the comparison between one LSTM and ConvLSTM methods. Fig.4.12

and Fig.4.13 demonstrate the distribution and cumulative distribution function (CDF) of fore-

casting RMSE of the two schemes for different conditions, respectively. As shown in Fig.4.12,

comparing with one LSTM with 2×2 zones, ConvLSTM with 2×2 kernel size and 2×2 zones

has more grids whose RMSE< 10 , because the convolution filter can further capture spatial-

domain features. However, the ConvLSTM whose zone size and kernel size are 2 × 2 has a

similar CDF performance with that of one LSTM based method. It means that our proposed

one LSTM based method enables to explore the temporal-spatial features for the small zone

(4 grids) without the Convolutional layer. Furthermore, with the same kernel size, the RMSE
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Figure 4.12: Histogram Comparison among one LSTM, several LSTM and ARIMA methods
based user density prediction

performance decreased around 15% with the zone size increase from 2 × 2 to 10 × 10 The

reason is that the larger zone size causes less training sample diversity in the spatial domain

and so reduce the prediction accuracy.

4.6.5 Accuracy Evaluation of Hotspot Prediction

Based on the predicted CDR numbers of each grid, the predicted user distribution can be ob-

tained to detect the hotspot. In Fig.4.14, by comparing the predicted heatmap using one LSTM

(2 × 2) with the real heatmap for two typical cases (7:00 am and 3:00 pm), it can be seen that

the predicted results have high reliability. For example, the hotspots of early morning 7:00 am

are around the (20,20) and (36,35) grids. The highest density area of predicted distribution is

also around these areas. Compared with the heatmap of ground truth at 3:00 pm, the predicted

heatmap has a similar distribution.
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Figure 4.13: CDF Comparison among one LSTM, several LSTM and ARIMA methods
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Figure 4.14: Heatmap comparison between ground truth and predicted values.
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4.6.6 Performance of Hotspot Prediction based VSC

Based on the hotspot prediction, the center and radius of a VSC can be obtained to facilitate

the beamforming design. In order to evaluate the performance of the hotspot prediction based

VSC, a link-level simulation is built. Similar to Chapter 3, a heterogeneous network, where

five VSCs deployed in one macro-cell, is considered. There are 30 users randomly distributed

in the whole macro-cell. One CH, equipped with one antenna, is deployed in each VSC and

one MBS, equipped with 128 antennas and 60 RF, is located at the center of macro-cell. The

main parameters are given in Table 3.1.
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Figure 4.15: Power consumption comparison between K-means based VSC and hotspot pre-
diction based VSC.

Fig. 4.15 compares the total power consumption of hotspot prediction based VSC and that

of K-means based VSC. The VSC by using K-means clustering has a little (around 5%)better

energy efficiency than that of VSC with hotspot prediction. The reason is that the radius of

hotspots by using LSTM is fixed whereas the radius of hotspots by using K-means clustering

is dynamic according to the perfect user distribution. However, the traditional clustering al-
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gorithm, such as K-means, requires the accurate real-time location of each user whereas the

proposed hotspot prediction only requires the historical records of UE numbers in each small

zone. On the other hand, the complexity of plain k-means is O(nkdi), where n is the number

of samples, k is the number of clusters, d is the dimensionality of the data and i the number

of iterations performed until convergence. It means that the total computational time increases

with the increase in UE numbers, which will introduce latency. As mentioned before, we use

off-line data to train the LSTM and hence the hotspots can be identified in advance to reduce

the latency caused by the traditional clustering algorithm. In summary, the proposed VSC op-

eration assisted with hotspot prediction can not only achieve comparable performance to that

of VSC with traditional clustering methods but also obtain the additional benefit of reduced

processing latency.

4.7 Chapter Summary

This chapter adopts a deep learning approach to forecast hotspot for supporting the operation

of VSCs with high-cost efficiency and low latency. This topic focuses on 1) how to predict the

hotspots by using deep learning, and then 2) demonstrates how the predictions can be leveraged

to support adaptive beamforming and VSC operation. We first leverage the feature extraction

capabilities of deep learning and exploit the use of a long short term memory (LSTM) neural

network to achieve hotspot prediction for the potential formation of the VSCs. Specifically,

the one LSTM neural network is unitized to predict the UE numbers of every grid due to

its capability of learning long-term dependencies. By analyzing the predicted network-level

user distribution, the hotspot can be detected to form the VSC in advance. By using a real

data set of telecommunication, the simulation results show that, compared with several LSTM

based method and ConvLSTM, one LSTM based method can predict the user distribution with

high accuracy by using a simple network architecture. Our simulation results also demonstrate

that compared with the scenario of VSC relying on traditional clustering, the proposed VSC

operation assisted with the hotspot prediction can achieve higher power efficiency as well as

lower processing latency.



Chapter 5

Multi-Dimensional Intelligent Multiple

Access for 5G Beyond Networks

The ever-growing wireless applications and their diverse Quality of Service (QoS) require-

ments bring the challenge of tailored QoS provisioning with limited radio resources in future

cellular networks. While resource constraint is ubiquitous, different communication equip-

ment in cellular networks could experience very different constraints in a multi-dimensional

resource domain. To achieve stringent yet diverse QoS with limited resources, a novel multi-

dimensional intelligent multiple access (MD-IMA) scheme is proposed in this chapter to ex-

ploit disparate resource constraints among heterogeneous equipment for 5G beyond and 6G

networks. With the assist of real-time data analysis, real-time QoS requirements and resource

availability of the related equipment are first determined in the proposed MD-IMA. Based on

this, multiple access (MA) scheme is then intelligently adapted accordingly for each equipment

in multi-dimensional resource domain to maximize the system requirement as well as minimize

the non-orthogonality with operation constraints. The resource allocation in the MD-IMA sys-

tem is further formulated as an optimization problem. To solve this non-convexity optimization

of high computational complexity, the overall optimization is divided into several sub-problems

and a joint optimization algorithm is adopted. Simulation results demonstrate the achievable

WEE gain of proposed MD-IMA over NOMA and OMA is approximately 15% and 18%,

respectively.

73
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5.1 Introduction

With the completion of 3GPP Release 15, 2019 has become the first year for the 5G commercialization[99].

While a number of new features have been included, the current 5G standard is still lack of criti-

cal solutions in supporting diverse Quality of Service (QoS) provisioning, particularly for mas-

sive machine-type communications (mMTC) and ultra-reliable low-latency communications

(uRLLC). With ever-growing data traffic, increasing of total connected devices and ongoing

convergence of wireless networks and vertical industry applications, critical design considera-

tions for future wireless networks, e.g. 5G and beyond as well as 6G, are focused on diverse

QoS provisioning techniques that can intelligently and efficiently utilize the constrained re-

sources to achieve stringently and customized QoS [100]. The future 6G network is expected

to be a multipurpose platform to enable a wide variety of applications and services, ranging

from extended reality services to autonomous driving, smart city, telemedicine, and smart in-

dustry [101].

Emerging applications to be supported by 6G typically require a very different set of QoS

parameters, including data rate, reliability, power consumption, latency, etc. For instance, aug-

mented reality (AR) service requires high-reliability, low latency with super-high data rates

[?], whereas smart wearable applications focus on low power consumption as well as potential

high deployment density [26]. On the other hand, different devices and base stations could

experience very different resource constraints in terms of power/battery supply and spectrum

availability. Furthermore, the use of mmWave band and expanded bandwidth also dramatically

increase resource heterogeneity in future wireless networks. In achieving diverse QoS with

disparate resource constraints, new multiple access techniques in spatial/temporal/frequency

domain should be proposed in the future wireless access networks. Consequently, more intelli-

gent resource allocation and multiple access techniques play extremely important roles in fully

utilizing situation-dependent multi-dimensional resources.

Under highly diverse and complex QoS requirements from the rich application domains,

6G will require an intelligent and efficient network fabric that flexibly utilizes and orchestrates

multi-dimensional resources to continuously adapt to the current state and requirements of

the wireless environment. In fact, several new radio access technologies, including massive
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multiple-input multiple-output (MIMO) and non-orthogonal multiple access (NOMA), have

been adopted in the 5G wireless network to improve the capacity and spectrum efficiency by

exploiting extra resource dimension and introducing the non-orthogonality [102]. Specifically,

NOMA can exploit the power and code domain resources to allow overlapped multiple user

signals on the same resource block (RB) [35]. However, simply utilizing the NOMA to replace

the conventional orthogonal multiple access (OMA) will not only increase the receiver com-

plexity but also waste resources in most low traffic scenarios. With the evolution of 5G into 6G,

there will be an urgent need for new intelligent multiple access (MA) techniques that can dy-

namically change the type of MA by unifying OMA, power-domain NOMA or spatial-domain

NOMA according to the application requirements and the network situation.

Furthermore, new access techniques are needed to fully explore the disparate resource con-

straints among devices and networks in 6G. We first realize that radio resources for wireless

communications can be divided into two categories: replenishable radio resource and non-

replenishable radio resources. The replenishable resources, including the transmission time,

frequency, code, and space, can be used over and over without any implication for future re-

source constraints, whereas the non-replenishable resources, such as transmission power, can-

not be regenerated once utilized. Therefore, the power resources are very precious, especially

for low-power devices. In addition, replenishable radio resources cannot be saved for future

use as well. Opportunistic use of these properties of radio resources also requires more so-

phisticated multiple access and radio resource utilization schemes. However, from a signal

processing point of view, NOMA techniques inevitably lead to extra power consumption at the

device terminal because of the interference cancellation requirement [103], [104]. In order to

reduce the power consumption caused by non-orthogonality, maximizing the separation dis-

tance among the resources allocated to the co-existing devices in the multi-dimension resource

domain should be considered as one of the main design objectives for 6G networks.

To address the above issues, we propose a new multi-dimensional intelligent multiple ac-

cess (MD-IMA) scheme that can adaptively multiplex co-existing devices in multi-dimensional

resources to maximize the overall QoS as well as minimize their mutual non-orthogonality. To

assist the operation of MD-IMA, the diverse set of QoS requirements will be determined by

monitoring the requirements of the application. In order to evaluate the overall performance
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of the MD-IMA, a new indicator of integrated-quality-of-system-experience (I-QoSE) is pro-

posed for MD-IMA to integrate diverse QoS, such as rate, power consumption, and latency

into one aggregated metric. Furthermore, the new I-QoSE metric could be adaptively adjusted

to meet the diverse and varying 6G services and applications.

Specifically, the proposed MD-IMA consists of two phases- the definition of I-QoSE and

multi-dimensional resource allocation for MD-IMA. In the first phase, a device-specific and

situation-dependent I-QoSE is determined by combing all relevant metrics (e.g. power con-

sumption, delay, and throughput) with different weights. The weight of each metric is deter-

mined by utilizing the closed-loop situation-awareness discovery through real-time data analyt-

ics [105], [106]. Then the following challenge of applying MD-IMA lies in resource allocation

is how to fully and efficiently coordinate the use of available multi-dimensional resources.

There are many researchers have devoted efforts to studying the resource allocation in the

NOMA, MIMO-NOMA, and hybrid NOMA systems. In [107], an optimal power allocation

algorithm is proposed for the NOMA system to maximize the throughput rate considering indi-

vidual QoS constraints. Wang et al. [108] developed a joint subchannel assignment and power

allocation algorithm to maximize the energy efficiency under the constraints of transmit power

and the required rate of each user. To further explore the spatial domain multiplexing, the re-

source allocation for 5G MIMO-NOMA is formulated in [109] as the max-sum-rate problem

and solve by beamforming and user selection process. In [110], a dynamic user clustering

algorithm is proposed firstly and then a joint channel assignment and power allocation opti-

mization are designed for multi-cell MIMO-NOMA networks. Furthermore, by combining the

NOMA with OMA, a novel concept of hybrid multiple access system was firstly introduced

in [111] and the simulation results illustrated that, compared with the NOMA and OMA, the

proposed hybrid NOMA has a better fairness performance. Energy-efficient power allocation

for the hybrid multiple access systems is further developed in [112]. Authors in [113] proposed

a joint resource allocation by using the heuristic optimization algorithm to achieve the trade-

off between the spectrum and energy efficiency for hybrid multiple access systems. We noted

that the objective of resource allocation in the NOMA related works almost utilized fixed single

metrics, such as power consumption and sum rate, which cannot meet the demands of changing

and diverse services in 6G networks. Most importantly, existing NOMA related works ignored
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the extra computational complexity and power consumption at the user terminal caused by the

interference cancellation due to the inherent non-orthogonality.

Motivated by the above observations, in the second stage of proposed MD-IMA, the goal of

our resource allocation problem of the MD-IMA system is to maximize the real-time I-QoSE as

well as minimize the non-orthogonality under constraints of power consumption and the QoS

requirement of each user. Then a joint resource allocation of the user clustering, subchannel

assignment and power allocation is proposed for the MD-IMA system.

The major contributions of this chapter are listed as follows:

1. A novel multi-dimensional intelligent multiple access (MD-IMA) scheme is proposed

to exploit disparate resource constraints among heterogeneous equipment for 5G beyond

and 6G networks. With the proposed MD-IMA, multi-dimensional resources can be fully

utilized in achieving application-specific real-time QoS requirements.

2. A new concept named I-QoSE is developed to quantify the overall communication per-

formance, which scales the different aspects of QoS with relevant weights. Moreover,

the I-QoSE can be adjusted by tuning the weight of each metric to dynamically follow

the changes in the service requirements.

3. In the resource allocation for MD-IMA, minimizing total non-orthogonality among con-

current users is imposed as one of the objectives, which is different from previous litera-

ture. The non-orthogonality in terms of spatial and power domain are modeled, respec-

tively. The spatial-domain non-orthogonality heavily depends on how the devices are

grouped. In this chapter, we adopt the K-means method to cluster users and choose the

cluster numbers by minimizing the non-orthogonality in the spatial domain. Then a sub-

optimal algorithm is proposed to jointly design subchannel and power allocation to find

the trade-off between I-QoSE and non-orthogonality by using an alternative optimization

algorithm.

4. While existing NOMA schemes use a single domain, the proposed MD-IMA can use as

many domains as possible at the same time. Therefore, it is possible for the proposed

MD-IMA to separate the co-existing devices by using low interference cancellation. The
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proposed MD-IMA is achieved through maximizing the separation distance among the

resource blocks allocated to co-existing devices in the multi-dimensional resources, in-

cluding frequency, time, space, power and code domains.

The rest of this chapter is structured as follows. Section 5.2 introduces the network architec-

ture of the proposed MD-IMA. In Section 5.3, the resource allocation problem for maximizing

I-QoSE and minimizing NO is formulated as an optimization problem. Then sub-optimal so-

lution is elaborated in Sections 5.4. Section 5.5 presents our simulation results regarding the

I-QoSE and NO performance of the proposed MD-IMA compared with the OMA-MIMO and

NOMA-MIMO scenarios. Finally, the conclusions are provided in Section 5.6.

5.2 System Model

The network architecture of the proposed intelligent and situation-awareness resource alloca-

tion for MD-IMA system is shown in Fig.5.1. The proposed MD-IMA can be achieved through

two stages. In the first stage, the real-time system requirement and the non-orthogonality

among UEs can be obtained by estimating the channel information and monitoring the net-

work situations. Then the UEs are adaptively multiplexed to multi-dimensional resources to

meet the diverse and varying requirements.

Specifically, the time division duplex (TDD) system is adopted in this work, and so we

can obtain the downlink channel state information (CSI) by measuring the uplink CSI due to

channel reciprocity [114]. According to the estimated downlink CSI, the non-orthogonality

among UEs in spatial domain and power domain can be calculated. Furthermore, in order to

jointly consider the diverse requirement, a new concept of I-QoSE is proposed in this chapter

to combine all relevant performance metrics together with a weight-based approach. To further

keep up with the changes of requirements and available resources, the weights of metrics are

adjusted adaptively according to the real-time network traffic-awareness. As shown in Fig.

5.1, the local database collects massive information, including UE information, requirements

and the available resources. Based on the collected real-time information, the kinds of metrics

and the weights of every metric can be determined. If the sum-rate (SR), power consumption

(PC) and delay (D) are considered as the three possible metrics, the mathematical expression
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of I-QoSE is:

I − QoS E = α1 × S R − α2 × PC − α3 × D, α1 + α2 + α3 = 1. (5.1)

Where α1, α2 and α3 represent the weight value of the throughput rate, power consump-

tion, and delay, respectively. These weight values are determined according to the real-time

QoS requirements and available resources. The higher weight means the corresponding metric

is more important. For example, if most devices are wearable sensors and the so minimiz-

ing power consumption is the most important objective of resource allocation and the weight

of power consumption metric should be the highest. Then the UEs are allocated to multi-

dimensional resources to maximize I-QoSE as well as minimize NO under several correspond-

ing constraints. In terms of the whole network architecture, we assume that there is one BS,
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Figure 5.1: Intelligent and situation-aware resource allocation in MD-IMA system.
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equipped with Nt transmit antennas at the center of the cell to serve K UEs, equipped with one

antenna and denoted as K = {1, . . . ,K}. From Fig. 5.1, we can see that K UEs are divided

into C clusters in spatial domain according to the geolocation information and the BS form

beamforming to cover these clusters. The UEs in each cluster are represented by {S1, . . . ,SC}

and we have
⋃C

c=1 Sc = K. We divided the total bandwidth B into M orthogonal subchannels

(SCs), which is defined asM = {1, . . . ,M}. In the same cluster, the UEs (colored blue) who

have large channel gain differences can be assigned in the same SC by using power-domain

NOMA and they can be distinguished at the receiver by adopting SIC. In different clusters, the

UEs (colored green) who have large non-orthogonality in the spatial domain can be allocated in

the same SC. The number of UEs which can be assigned on m-th SC is denoted by Lm,m ∈ M.

If Lm = 1, the m-th SC is regarded as a OMA-SC, whereas it is denoted as a NOMA-SC when

Lm > 1. According to the non-orthogonality among UEs and the available resource, K UEs

are adaptively assigned to M SCs in multi-dimension and each SC has different UE numbers.

In order to simplify the problem, each UE is only allowed to be allocated to one SC and we

assume K =
∑M

m=1 Lm. Motivated to meet vary diverse requirements, the power constraints of

each SC, denoted by {Pm,∀m ∈ M}, can be different.

5.3 Problem Formulation

In many existing publications [115]-[116], the resource allocation for NOMA related systems

is generally designed for maximizing the sum-rate, energy efficiency and spectral efficiency.

However, the fixed performance metric cannot meet the diverse and varying QoS requirements

of future networks. To solve this problem, a novel performance metric of I-QoSE, combing

several QoS aspects with different weights, can be adaptively obtained according to the col-

lected real-time information from UEs and the environment. Furthermore, most of the current

works only use single-domain NOMA and also ignored the decoding complexity caused by

non-orthogonality when using NOMA. In our proposed MD-IMA system, to fully utilize the

available resources, all the degrees of freedom in resource allocation are jointly considered.

The objective resource allocation of MD-IMA is to maximize the real-time overall system per-

formance (I-QoSE) and minimize the receiver complexity at the same time. To simplify the
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resource allocation problem, we only consider the sum-rate and power consumption firstly and

so the I-QoSE can be regarded as weighted energy efficiency (WEE) ηw
EE. Therefore, the ob-

jective of resource allocation is equivalent to maximize the WEE as well as minimize NO.

Before formulating the resource allocation problem, the achievable data rate, weighted energy

efficiency, and non-orthogonality are analyzed below.

5.3.1 Achievable Rate

The c-th cluster and its corresponding UEs Sc are adopted as an example to calculate the

signal-to-interference-plus-noise rate (SINR) and the achievable rate. The interference for the

received signals of the k-th UE on the n-th SC in cluster c consists of the intra-cluster in-

terferences, the inter-cluster interferences, and the noise. The intra-cluster interferences are

introduced by other UEs, whose channel gains are lower than that of k-th UE, in cluster c on

the n-th SC, while the inter-cluster interferences come from the UEs in neighboring clusters on

the n-th SC.

The principle behind the power-domain NOMA is adding power domain multiplexing on

transmitter side to overlap users on the same subchannel and using SIC on receiver side to

realize multi-user detection. Specifically, in the same subchannel, different transmitted power

level is allocated to different UEs according to their channel gains. The received symbols

should be detected in order of decreasing of channel gains. It means the UEs with poorer

channel conditions are decoded firstly and are subtracted one by one [117]. The vector of

the complex coefficients between the BS and UE k in c-th cluster on m-th SC is defined as

hk,m,c = gk,m,cPL−1(d) ∈ CNt×1, where gk,m,c follows the Rayleigh fading and PL−1(d) denotes

the path loss from the BS to the UE k [37]. Let wc ∈ C
Nt×Nt be the beamforming matrix from BS

to cluster c. We also define power allocation matrix P ∈ CK×M×C, where [P] = pk,m,c denotes

the downlink transmission power between BS and k-th UE on m-th subchannel in cluster c.

The subchannel assignment scheme is reflected by matrix S ∈ CK×M×C, where [S] = sk,m,c is

the subchannel indicator. We set sk,m,c = 1 when the m-th subchannel is occupied by the UE k

in cluster c, otherwise, sk,m,c = 0. The intra-cluster interference of UE k in c th cluster on m-th

subchannel can be given by:
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Iintra
k,m,c =

∣∣∣hH
k,m,cwc

∣∣∣2 ∑
i∈Sc,k

si,m,c pi,m,c, (5.2)

where Sc,k =
{
i|i ∈ Sc, hk,m,c > hi,m,c

}
denotes the set of UEs in Sc on SC n who have worse

channel than k-th UE. The inter-cluster interferences can be given by:

Iinter
k,m,c =

∣∣∣hH
k,m,c

∣∣∣2 C∑
i,c

K∑
j=1

s j,m,i p j,m,i |wi|
2 . (5.3)

Therefore, the SINR of the received signal from UE k on m-th subchannel in cluster c is

γk,m,c =
pk,m,c

∣∣∣hH
k,m,cwc

∣∣∣2
Iintra
k,m,c + Iinter

k,m,c + δ2
, (5.4)

where δ2 represents the variance of additive Gaussian noise, and so the data rate of UE k on

m-th subchannel in cluster c is

Rk,m,c =
B
M

log2
(
1 + γk,m,c

)
. (5.5)

5.3.2 Weighted Energy Efficiency

In this chapter, we adopt the weighted energy efficiency as the I-QoSE to achieve MD-IMA

system firstly and the weighted energy efficiency (WEE) is given by:

ηw
EE =

α1
∑K

k=1
∑M

m=1
∑C

c=1 sk,m,cRk,m,c

α2Ptotal
, (5.6)

where α1 and α2 are the weight values for sum-rate and total power consumption, respec-

tively. The varying WEE is achieved by dynamically tuning the weight values according to

the requirement of the system. Furthermore, Ptotal denotes the total power consumption of BS,

which is composed of the circuit power consumption, Ph, depending on the hardware design
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of BS and the transmit power Pb which is related to the power allocation [78]:

Pb =

K∑
k=1

M∑
m=1

C∑
c=1

sk,m,c pk,m,c,

Ph = ξ0Nt,

(5.7)

where, ξ0 represents the circuits power consumption of each antenna.

5.3.3 Non-orthogonality Calculation

The total non-orthogonality T NO is the summation of the total non-orthogonality in spatial

domain, representing by T NO
s , and the non-orthogonality in power domain, defining as T NO

p :

T NO = T NO
s + T NO

p . (5.8)

5.3.3.1 The Non-orthogonality in Space Domain

The non-orthogonality in the spatial domain is caused by UEs who are overlapped on the same

SC but belong to different clusters, which is defined as

T NO
s =

K∑
k=1

M∑
m=1

C∑
c=1

 K∑
i=k+1

C∑
j,c

∥∥∥sk,m,chk,m,c

∥∥∥ ∥∥∥si,m, jhi,m, j

∥∥∥∥∥∥∥sk,m,chk,m,c × si,m, jh∗i,m, j
∥∥∥∥
 . (5.9)

5.3.3.2 The Non-orthogonality in Power Domain

The non-orthogonality in power domain is introduced by UEs who are assigned on the same

SC and in the same cluster. The proposed SIC can successfully decoding the overlapped UEs

when their channel gains difference are significantly high. Therefore, the non-orthogonality in

power domain is depend on their channel gain difference, which is defined as:

T NO
p =

K∑
k=1

M∑
m=1

C∑
c=1

 1

1 − min(|sk,m,chk,m,c|,|
∑K

i,k si,m,chi,m,c|)
max(|sk,m,chk,m,c|,|

∑K
i,k si,m,chi,m,c|)

 . (5.10)
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5.3.4 Problem Formulation

The objective of the resource allocation of MD-IMA system is to maximize the WEE as well

as minimize the total NO, which can be formulated as an optimization problem (5.11). In this

problem, the constraint C1 ensures the maximum transmitted power can no be larger than P

and the constraint C2 is the minimum transmit power requirement which actually guarantees

the QoS requirement for each user. The constraints C3 and C4 represent that each UE can be

only allocated to one SC, while C5 denotes that maximum Lm UEs can be allowed to share one

SC.

P1 : {S∗,P∗} = arg max
{
ηw

EE
}

(5.11)

{S∗} = arg min
{
T NO = T NO

s + T NO
p

}
,

subject to: C1 :
K∑

k=1

M∑
m=1

C∑
c=1

sk,m,c pk,m,c ≤ P,

C2 :
M∑

m=1

C∑
c=1

sk,m,c pk,m,c ≥ Pmin
k ,∀k ∈ K

C3 : sk,m,c = {0, 1} ,∀m ∈ M,∀k ∈ K ,∀c ∈ C,

C4 :
∑
m∈M

sk,m,c = 1,∀k ∈ K ,∀c ∈ C,

C5 :
K∑

k=1

C∑
c=1

sk,m,c = Lm,∀m ∈ M.

5.4 Sub-optimal Solution

Due to the non-concavity and nonlinearity in the objective function and constraints, Problem

(P1) is a non-convex optimization problem, which is too complicated to solve. Therefore,

in order to reduce the complexity, the original problem (5.11) is divided into several sub-

optimization problems. Furthermore, we propose a sub-optimal resource allocation algorithm,

which is shown in Fig. 5.2, to jointly solve the sub-problems of user clustering, subchannel

assignment, and the power allocation. Firstly, the UEs are divided into M clusters in spatial

domain according to their locations by using K-means. Then, we achieve optimal subchannel

assignment with fixed power allocation through many to many matching algorithms to find
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the balance between weighted energy efficiency and the total non-orthogonality. Based on the

obtained subchannel allocation scheme, a dynamic power allocation algorithm is proposed to

maximize WEE. Finally, joint resource allocation of MD-IMA can be obtained by using an

alternative optimization algorithm.

UE clustering 

                     

Subchannel Assignment 
to find the trade-off 
between EE and RC

               

Power allocation to 
maximize the EE   

  

Joint Subchannel allocation and Power allocation 

Output
  and   

Figure 5.2: Block diagram of the proposed sub-optimal solution for resource allocation prob-
lem of MD-IMA network.

5.4.1 User Clustering in Spatial Domain by Using K-means

In this section, the classic K-means [74] is adopted to divide K UEs to C clusters (K ≥ C)

in spatial domain. As shown in Algorithm 4, each UE is allocated to the best cluster with the

minimum mean squared distance through iteration loops.

Algorithm 4 K-Means User Clustering

1: Input: user location matrix X =
{
x1, . . . , xk

}
and the number of clusters C

2: initialization: C cluster centroids µ1, . . . , µC randomly selected from X
3: repeat
4: Update cluster assignments
5: for i = 1, 2, . . . ,K do
6: cci = arg min j

∣∣∣xi − µ j
∣∣∣

7: end for
8: Update cluster centroids
9: for j = 1, 2, . . . ,C do

10: set Cluster j =
{
xi|cci = j

}
11: set µ j =

∑
xi∈Cluster j

xi

|Cluster j|
12: end for
13: until center centroids convergency
14: Output: cluster centroids µ1,...,l and cluster assignments cc =0

Noted that the cluster numbers will impact the performance of the K-means clustering algo-
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rithm and so the cluster number should be selected carefully to reduce the non-orthogonality in

the spatial domain. After clustering K UEs into C clusters, we can set subchannel assignment

indicators as:

sk,m,c = 0,∀k < Sc. (5.12)

5.4.2 Subchannel Assignment

In this section, we will study how to assign the set of UEs K = {1, 2, . . . ,K} to the set of sub-

channelsM = {1, 2, . . . ,M}. Given the clustering in spatial domain, the subchannel assignment

problem with fixed power allocation can be reduced from problem (5.11) to:

P2 : {S∗} = arg max
{
OE = ηw

EE − cT NO|P
}

(5.13)

subject to: C3 −C5.

Inspired by [41]-[36], the above subchannel assignment problem can be solved by using match-

ing theory. As mentioned before, each UEs only can be assigned to one subchannel and at most

Lm UEs can be multiplexed on the same subchannel. When the m-th subchannel (S Cm) is oc-

cupied by the k-th UE (UEk), we say the UEk and S Cm are matched with each other. Each UE

and subchannel have their own preference lists, which can be denoted by

PFUE = [PFUE (1) , . . . , PFUE(k), . . . , PFUE(K)] , (5.14)

PFS C = [PFS C (1) , . . . , PFS C(m), . . . , PFS C(M)] , (5.15)

where PFUE(k) denotes the preference lists of UEk and the PFS C(m) is the preference lists of

S Cm. The k-th UE prefers to be assigned to subchannel i over j if UEk with better channel

condition on S Ci than that on S C j, which is expressed as [36]:

S Ci(k) � S C j(k). (5.16)
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The order of preference lists for SC is based on the weighted energy efficiency and the total

non-orthogonality presented in the objective of P2. For example, we say S Cm prefers UE set

qi to q j, where qi and q j are denoted as potential UE subsets ofK on m-th subchannel, because

the former UE subset can provide higher WEE with lower NO. UE set K = {1, 2, ...,K} and

subchannel setM = {1, 2, ...,M} are two disjoint sets. P represents a two-sided matching map

from all UE subsets K into the set of subchannel M, where UEk ∈ K and S Cm ∈ M: (1)

P(UEk) ∈ M;

(2) P−1(S Cm) ⊆ K ;

(3) |P(UEk)| = 1, |P−1(S Cm)| = Lm;

(4) S Cm ∈ P(UEk)⇔ UEk ∈ P
−1(S Cm).

Condition 1) represents that each UE is matched with one subchannel and condition 2) implies

each subchannel is matched with a subset of UEs. The third condition means that the largest

size ofP(UEk) andP−1(S Cm) is one and Lm, respectively. Last condition states UEk and S Cm is

the matched pair, which is defined as: We assumed that UEk < P
−1(S Cm) and S Cm < P(UEk).

The UEk is a prefer to match with S Cm, if OEm(S new) > OEm(P−1(S Cm)) where S new ⊆ UEk∪S

and S = P−1(S Cm). S represents the UE set which is already allocated to S Cm and S new denote

the new UE set combing UEk and S . Based on the notation of preference lists, the two-sided

matching between UEs and subchannels can be defined as

According to the above definitions, the matching process between the UEs and the sub-

channels is described in Algorithm 5. To elaborate, each UE firstly selects the most preferred

subchannel m̂ based on its preference list. If the number of UEs assigned to the same sub-

channel is less than Ln, this request is accepted. Otherwise, selecting Lm UEs in {S Match(m̂), k},

which has the best OE. The rejected users on subchannel m̂ will be removed from their prefer-

ence list. The matching process will be terminated until all UEs are allocated with subchannels.
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Algorithm 5 Subchannel Assignment Algorithm with Fixed Power Allocation
1: Initialization:
2: 1) UEs are randomly assigned to subchannels, subjected to the conditions in Definition 1.
3: 2) Record UEs who matched with m-th sunchannel to the matched list S match(m) for all the

subchannels ∀m ∈ {1, 2, . . . ,M} and the unmacthed UEs to the unmatched list S unmatch.
4: 3) Obtain the preference lists PFUE(k), ∀k ∈ {1, 2, . . . ,K} and PFS C(m), ∀m ∈

{1, 2, . . . ,M}.
5: while S unmatch is not empty do
6: for k = 1, 2, . . . ,K do
7: UEk selects its mots preferred subchannel m̂ according to PFUE(k).
8: if |S Match(m̂)| < Lm then
9: Add UEk to S Match(m̂), and remove UEk from S unmatch.

10: else if |S Match(m̂)| = Lm then
11: 1) Lm UEs S qi who has better OE performance, OEm̂(qi) > OEm̂(q j), qi, q j ∈

{S Match(m̂), k} are selectd to match the m̂-th subchannel.
12: 2) The matched list of subchannel m̂ is set as S Match(m̂) = qi. Allocated UEs are

removed from S unmatch, whereas the unallocated user are added to S unmatch.
13: 3) Update the preference list of the rejected UEs by removing the subchannel m̂.
14: end if
15: end for
16: end while
17: for k = 1, . . . ,K do
18: for m = 1, . . . ,M do
19: for c = 1, . . . ,C do
20: if k ∈ S Match(m) and k ∈ Sc then
21: sk,m,c = 1.
22: else
23: sk,m,c = 0.
24: end if
25: end for
26: end for
27: end for=0
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5.4.3 Dynamic Power Allocation

Upon deriving the UE clustering and subchannel assignment results S∗, the power allocation

problem of MD-IMA is transformed to Problem (P3)

P3 : {P∗} = arg max
{
ηw

EE(P)|S∗
}

(5.17)

subject to:C1 −C2. (5.18)

As shown in Equation (4), we noted that the achievable rate of each user is a quasi-concave

function due to the quadratic form of channel. Hence, the objective function of Problem (P3) is

also non-concave, which includes the summation of the user’s data rate. To exploit the hidden

convexity of Problem (P3), the term of rate should be approximated by adopting an efficient

approximation method [118] as follows:

log2(1 + γk,m,c) ≥ ak,m,c log2(γk,m,c) + bk,m,c

 ak,m,c =
γ̄k,m,c

1+γ̄k,m,c

bk,m,c = log2(1 + γ̄k,m,c) −
γ̄k,m,c

1+γ̄k,m,c

(5.19)

where γk,m,c = 1 +
pk,m,c

∣∣∣∣hH
k,m,cwc

∣∣∣∣2
Iintra
k,m,c+Iinter

k,m,c+δ2 is the SINR and the lower bound is tight at γk,m,c = γ̄k,m,c when

the contens
{
ak,m,c, bk,m,c

}
are selected as above. Furthermore, a transformation qk,m,c = lnpk,m,c is

introduced and so the power allocation Problem (5.17) can be converted into:

P4 : {Q∗} = arg max
{
η̃w

EE =
α1

∑K
k=1

∑M
m=1

∑C
c=1 sk,m,cR̃k,m,c

α2
∑K

k=1
∑M

m=1
∑C

c=1 sk,m,ceqk,m,c + Ph
|S∗

}
(5.20)

subject to:
K∑

k=1

M∑
m=1

C∑
c=1

sk,m,ceqk,m,c ≤ P,

M∑
m=1

C∑
c=1

sk,m,ceqk,m,c ≥ P̂min
k ,∀k ∈ K .

Where Q is the sets of power allocation transformation qk,m,c and R̃k,m,c represents the lower
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bound of the throughput rate of UE k on SC m in the c-th cluster, which is

R̃k,m,c = ak,m,c
B
M

log2

1 +
eqk,m,c

∣∣∣hH
k,m,cwc

∣∣∣2
Iintra
k,m,c + Iinter

k,m,c + δ2

 + bk,m,c. (5.21)

We note that the sum rate in the objective function of Problem (5.20) is concave with the re-

spect to q, because the log-sum-exp is convex [119]. It also can be proved that the denominator

of WEE in P4 is convex due to the constraints, and so the transformed P4 is a concave-convex

fractional programming problem. As the numerator and denominator of WEE are differen-

tiable, the Problem (5.20) can be further proved to be a pseudo-concave optimization problem,

whose global optimal result is equal to the local optimization. This problem can be solved

by using the iterative algorithms and the optimal solutions to meet the Karush-Kuhn-Tucker

(KKT) condition.

To further decrease the computational complexity, Charnes-Cooper transformation (CCT)

[120], q̃k,m,c = ∅qk,m,c, is adopted to convert the Problem 5.20 to the following equivalent

problem:

P5 :
{
Q̃∗,∅∗

}
= arg max

Q̃,∅

∅
α1

K∑
k=1

M∑
m=1

C∑
c=1

sk,m,cR̃k,m,c(Q̃,∅)


 (5.22)

subject to:∅

α2

K∑
k=1

M∑
m=1

C∑
c=1

sk,m,ceqk,m,c/∅ + Ph

 ≤ 1,

∅

 K∑
k=1

M∑
m=1

C∑
c=1

sk,m,ceqk,m,c/∅ − P

 ≤ 0,

∅

P̃min
k −

M∑
m=1

C∑
c=1

eqk,m,c/∅

 ≤ 0,∀k ∈ K ,

where

R̃k,m,c(Q̃,∅) = ak,m,c
B
M

log2

1 +
eqk,m,c/∅

∣∣∣hH
k,m,cwc

∣∣∣2
Iintra
k,m,c + Iinter

k,m,c + δ2

 + bk,m,c. (5.23)

The transformed Problem (5.22) is a concave optimization problem because the objective

function of (5.22) is concave and the constraints of (5.22) is convex. Therefore, the optimal
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solutions of Problem (5.22), Q̃∗ and ∅∗, can be efficiently solved by using iterative algorithms,

and so the optimal solution of Problem (5.20) can be obtained through Q∗ = Q̃∗/∅∗.

According to the above analysis, the optimal solution of P3 can be obtained by iteratively

solving the P5, and the optimal power allocation with fixed subchannel assignment algorithm

is concluded in Algorithm 6.

Algorithm 6 Optimal Power Allocation Algorithm with Fixed Subchannel Assignment
1: Initialize parameters:

power allocation variables P0, iteration index i = 0, error tolerance ε > 0 and maximum
iteration number Imax

6 .
2: while i < Imax

6 and η̃(i) − η̃(i−1) > ε do
3: Compute γ̃(i)

k,m,c = γk,m,c(p(i−1)
k,m,c),∀k,m, c;

4: Compute
{
ai

k,m,c, b
i
k,m,c,∀k,m, c

}
according to Eq.(5.19);

5: Solve P5 and obtain the optimal variables:
Q̃i =

{
q̃(i)

k,m,c,∀k,m, c
}

and ∅(i);
6: Obtain the optimal solution of P4:

Qi = Qi =

{
qi

k,m,c =
q̃i

k,m,c

∅
,∀k,m, c

}
7: Solve P3 by updating P∗i(q(i));
8: Compute the ηw

EE with the P∗;
9: end while

10: Output: Optimal power allocation P∗ =0

5.4.4 Joint Resource Allocation

The original resource allocation problem P1 has been divided into three sub-problems: user

clustering, subchannel assignment and power allocation. The user clustering problem is solved

by using Algorithm 4 (K-means) firstly to maximize the non-orthogonality in the spatial do-

main. Based on the optimal device grouping scheme, the subcarrier assignment for fixed

power allocation is achieved by using Algorithm 5 (matching theory) to minimize the non-

orthogonality in the power domain as well as maximize WEE. Then the optimization power

allocation for fixed subchannel allocation is solved by Algorithm 6 to maximizing WEE.

However, these sub-problems only optimize one parameter and so the results are not opti-

mal to P1. Therefore, to obatin more optimal results, an alternative optimization algorithm [48]

is used to jointly optimize the clustering, subchannel assignment and power allocation, which

is summarized in Algorithm 7.
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Algorithm 7 Joint Resource Allocation Algorithm
1: Initialization: (1) Set iteration index z = 1, (2) Initialize power allocation variables P(1) =

P
K .

2: Cluster K UEs into C clusters in the spatial domain by using Algorithm 4.
3: repeat
4: For given P(z), solve the P2 through Algorithm 5 and obtain S(z).
5: With S(z), solve the P3 through Algorithm 6 and obtain P(z).
6: Update z = z + 1
7: untill P and S converge
8: Output: optimal power allocation P∗ and optimal subchannel allocation S∗ =0

5.4.5 Complexity Analysis

In this section, we analyze the complexity of the proposed joint resource allocation of Algo-

rithm 4 and the optimal exhaustive search method. The proposed Algorithm 4 needs to divide

K UEs to C clusters by using Algorithm 4 firstly. The complexity of k-means based Algo-

rithm 4 is O(KCI4), where K is the number of UEs, C is the number of clusters and I4 is

the number of iterations performed until convergence. Then the K UEs should be assigned

into M subchannels and each subchannel is allowed to share with at most Lm subchannels.

Each iteration of Algorithm 5 requires at most 1
2 MKLm swap matchings and so the complex-

ity of Algorithm 5 can be presented by O(I5MKLm) [37]. In power allocation part, shown

by Algorithm 6, the optimal power allocation scheme is achieved by using the interior point

method, which requires the complexity of O(I6K4δ) [121], where I6 is the iteration numbers of

Algorithm 6, K is the number of UEs and δ is the number of bits for representing the coeffi-

cients in the optimization problem. Therefore, the complexity upper bound of Algorithm 7 is

O(KCI4) + I7(O(I5MKLm) + O(I6K4δ)), where I7 is the iteration numbers of Algorithm 7 until

convergence.

For the optimal exhaustive search scheme, all of the clustering and subchannel combina-

tions should be considered. The complexity of exhaustive clustering method is 51 = CC
K .

For the exhaustive subchannel assignment, the matching times of user for each subchannel is

52 = C1
M + C2

M + · · ·+ CLm
M and so the total complexity is 5K

2 . Therefore, the overall complexity

of exhaustive search based resource allocation is 51 + I7(5K
2 + O(I6K4δ)). Compared with the

proposed Algorithm 7, the exhaustive search-based method has higher complexity especially

when the UE number K and the subchannel number M are large.
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5.5 Simulation Results

In this section, a range of numerical results is provided for evaluating the performance of the

MD-IMA system with the proposed resource allocation algorithms. In the simulations, we

assume that one BS deployed in the cell center and all UEs are randomly distributed in the cell.

The major parameters are given in Table 5.1:

Table 5.1: Simulation Parameters of MD-IMA networks
Parameters Value

Circuit power consumption of each antenna at BS 190 mW
Maximumu transmit power of BS 43 dBm

Cell radius 500 m
System bandwidth 20 MHz

Standard deviation of log-normal shadowing 7 dB
Path Loss Model at 2.4 GHz 17 + 37.6 log10(d) dB

Noise density -137 dBm/Hz
Noise figure 6 dB

5.5.1 The Deployment of the MD-IMA

Fig.5.3 shows the deployment of the proposed scheme for 12 UEs, where the cross represents

the OMA user and the circle means the NOMA user. Based on the K-means clustering method,

12 UEs are divided into three clusters in the spatial domain corresponding to red, green and blue

circles. We assumed that each subchannel can be allocated at most 3 UEs and then the matching

theory is used to assign the available subchannels to UEs. As shown in Fig. 5.3, in the same

cluster UEs with large different channel gains can be selected as power-domain NOMA pairs

(circle) and the UEs in the different clusters with large enough channel correlation coefficiency

can be chosen as code-domain NOMA pair (square).

5.5.2 Convergence and Optimality of the Proposed Algorithms

Fig. 5.4, Fig. 5.5 and Fig. 5.6 evaluate the convergence of the proposed subchannel assignment

with fixed power allocation (Algorithm 5), power allocation with the fixed subchannel assign-

ment (Algorithm 6) and the joint resource allocation (Algorithm 7) algorithms, respectively.
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Figure 5.3: Deployment of MD-IMA for 12 UEs.

We assume that weights of sum-rate and power are equal to 0.5. It can be seen that all of the pro-

posed algorithms have fast convergence speed. In order to evaluate the convergence of Algo-

rithm 5 and Algorithm 7 in terms of non-orthogonality performance, the min-max normalized

non-orthogonality is adopted. Therefore, the normalized total non-orthogonality of Algorithm

5 and Algorithm 7 for different UE numbers (from 10 to 50) are [0.006, 0.083, 0.267, 0.429, 1]

and [0, 0.069, 0.229, 0.382, 0.883], respectively. Specifically, Fig. 5.4 shows that the Algorithm

5 can achieve convergence within 20 iterations. The convergence speed of the Algorithm 5 de-

creases with the rise of UE numbers. Besides, Fig. 5.4 proves that the proposed Algorithm 6 is

capable of converging within 10 steps and the convergence speed becomes slower as the max-

imum transmit power Pb increases. Moreover, Fig. 5.6 illustrates the joint resource allocation

algorithm (Algorithm 7) is able to quickly convergent within 10 iterations and the convergence

speed is impacted by the user number K and maximum transmit power Pb.

Fig. 5.7 compares the WEE of the proposed algorithms with that of the near-optimal al-
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Figure 5.4: Convergence of Algorithm 5 with K = 10, M = 5 and [α1 = 0.5, α2 = 0.5].
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Figure 5.5: Convergence of Algorithm 6 with K = 10, M = 5 and [α1 = 0.5, α2 = 0.5].

gorithm by using the exhaustive searching method. Considering the high computational com-

plexity of the exhaustive searching method, we set UE number K = 10, subchannel number
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Figure 5.6: Convergence of Algorithm 7 with K = 10, M = 5 and [α1 = 0.5, α2 = 0.5].
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M = 5 and the weights of WEE [α1 = 0.5, α2 = 0.5]. First, Fig. 5.7 shows that the WEE firstly

increased as the total transmit power grows and then remains at the maximum value. When

the transmit power larger than a threshold (around 30 dBm), the sum rate can not be improved

due to the fact that interference signals become the dominant factor of the SINR. Second, the

Algorithm 7 can improve 12% and 8% WEE than that of Algorithm 5 and Algorithm 6, respec-

tively. The reason is that Algorithm 7 can alternatively optimize the subchannel assignment and

power allocation. Last, the exhaustive method only increases 2% WEE performance than that

of Algorithm 7. It means that the proposed Algorithm 7 has acceptable optimal performance

with lower computational complexity, as analysis in section IV-E.

5.5.3 Impact of the Weight Values on the WEE
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Figure 5.8: WEE of MD-IMA by using the Algorithm 7 in respect of transmit power for
different weights of WEE with K = 10, M = 5.

Fig.5.8 illustrates the WEE of Algorithm 7 in MD-IMA system for different weights with

K = 10, M = 5 and [α1 = 0.5, α2 = 0.5]. In order to quantify the overall communication per-
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formance, a new concept named I-QoSE is proposed in this chapter, which scales the different

aspects of QoS with relevant weights. The new I-QoSE metric could be adaptively adjusted

to meet the diverse and varying 6G services and applications by adjusting the weights. From

Fig. 5.8, we can see that the WEE of Algorithm 7 increases with the weight of the sum-rate

rise. The reason is that more power is allocated to meet the increased sum-rate requirements.

However, the increased speed of weighted EE becomes slower with the increase of the weight

value of the sum rate, due to the sum rate upper bound.

5.5.4 Impact of the Cluster Number on the Total Non-orthogonality
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Figure 5.9: Total spatial domain nonorthogonality with different cluster numbers.

The performance of the K-means based clustering algorithm is affected by the choice of

the number of the cluster. As shown in the Fig.5.9, an appropriate number of clusters should

be selected first to minimize the spatial domain non-orthogonality. For example, when the best

cluster number is 4 when there is 10 UEs. Furthermore, we can find a relationship between UE

numbers K and best cluster numbers C is that C = 0.4 × K.
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5.5.5 Comparison of the WEE Performance for Different MA Modes

Fig.5.10 shows the WEE of proposed MD-IMA, OMA, NOMA systems when UE number is

40 and the subchannel number is 20 with [α1 = 0.5,,α2 = 0.5]. As illustrated, the WEE per-

formance of the proposed MD-IMA system is better than that of OMA and NOMA systems,

because it is able to fully exploit the joint advantages of both OMA and NOMA. When the

transmit power is lower than 20 dBm, the OMA has better performance than that of NOMA.

The reason is that although NOMA enabling weak users and strong users simultaneously trans-

mit on the same subcarrier, it will introduce more inter-user interference. For the same level of

transmit power, the achievable WEE gain of MD-IMA over NOMA and OMA is approximate

15% and 18%, respectively. It implies that the proposed MD-IMA can combine the advantages

of OMA and NOMA by fully utilizing multi-dimensional resources.
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Figure 5.10: WEE of different MA models in respect of transmit power with K = 40, M = 20
and [α1 = 0.5, α2 = 0.5]
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5.6 Chapter Summary

In this chapter, an intelligent and efficient multiple access scheme, termed multi-dimensional

intelligent multiple access (MD-IMA), is proposed to support the diverse QoS with limited ra-

dio resources in future wireless networks. A novel concept of I-QoSE is proposed to quantify

the real-time overall system requirements. The I-QoSE combines the diverse QoS aspects with

different weights and tunes the weights according to the changes of the network situation. In

order to fully utilize the available resources, co-existing devices can be multiplexed in any com-

binations of multi-dimensional resources with any degree of non-orthogonality. The resource

allocation problem of the MD-IMA system is formulated as a multi-objective optimization

problem to maximize I-QoSE as well as minimize the non-orthogonality under constraints of

maximum power consumption and the QoS requirement of each user. In order to reduce the

computational complexity, the whole problem is divided into several sub-optimal problems

and then an alternative optimization algorithm is adopted to jointly achieve resource allocation

in the MD-IMA system. The simulation results illustrated that the proposed MD-IMA im-

prove 15% - 18 % WEE than that of traditional MA schemes. Furthermore, compared with the

exhaustive approach, the proposed joint resource allocation algorithm achieves considerable

performance with lower computational complexity.



Chapter 6

Deep Reinforcement Learning Based

Power Allocation for MD-IMA Networks

In this chapter, a multi-dimensional intelligent multiple access (MD-IMA) scheme is proposed

for beyond 5G wireless network to support the ever-increasing communication devices and

diverse requirements in real-time, by fully utilizing the available resources in multi-domains.

Based on the user clustering, the power allocation problem of MD-IMA is formulated as a

non-convex optimization problem. Nowadays, the data-driven model-free machine learning-

based approaches are rapidly developing in this field, and among them, the deep reinforcement

learning (DRL) is proved to be of great potential to solve such optimization problem. In this

chapter, a value-based deep Q-learning neural (DQN) network and actor-critic deep determin-

istic policy gradient (DDPG) algorithms are adopted to do power allocation. In order to make

sure of the maximum transmit power constraint, two possible methods are proposed. Fur-

thermore, three different state types are described. Simulation results demonstrate that the

proposed DDPG based power allocation outperforms DQN and conventional model-based al-

gorithms with lower time consumption, such as fractional programming method. Specifically,

the DDPG based algorithm can improve around 17% and 35% WEE than that of WMMSE and

FP, respectively. The time cost of DRL based method is 10 times and 100 times faster than that

of FP and WMMSE.

101
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6.1 Introduction

In my previous work, a novel multi-dimensional intelligent multiple access (MD-IMA) is con-

ceived to select multiple access (MA) in multi-dimension adaptively to accommodate the dy-

namic requirements by fully utilizing the closed-loop situation-awareness discovery through

real-time data analytic. To fully utilize the benefit of the MD-IMA, the key issue is to op-

timally perform joint channel assignment and power allocation with limited resources. Such

joint channel assignment and power allocation problem has been proven to be NP-hard in [48]

and so we proposed a heuristic approach to solve this problem.

However, the traditional optimization techniques highly depend on tractable mathematical

models, which may not be able to capture the real communication scenarios with specific user

distribution, geographical environment and complicated channel characteristics [49]. Mean-

while, the optimization problem of resource allocation for MD-IMA system is very complex,

nonlinear searching procedures are ineluctable and so the computational complexities of tra-

ditional optimization algorithms are high. In summary, conventional optimization approaches

are not efficient enough to obtain good channel assignment and power allocation for MD-IMA

system.

Furthermore, 5G and Beyond networks are foreseen to support diverse quality of service

(QoS) requirements [101]. For example, super-high throughput is the most important require-

ment for high-definition videos, whereas strict power constraints should be considered for

smart wearable devices [26]. Accordingly, the overall performance analysis of 5G and beyond

communication systems should integrate diverse performance metrics into a whole. Further-

more, different working habits and lifestyles of users can also cause a significant fluctuation

in QoS [55]. Simply utilizing the fixed and single system performance metric cannot meet

diverse and varying service requirements of 5G and beyond wireless networks, which thereby

stimulates the study of intelligent MA techniques.

In recent years, deep learning has been a promising technology for optimizing the sys-

tem performance of wireless communication networks, due to its model-free and the nature

of the complaint with optimizations in practical communication scenarios [59]. Furthermore,

reinforcement learning has received wide attention because it can interact with an unknown
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environment by exploration and exploitation [47]. On the other hand, by introducing multi-

ple hidden layers between the input and output layers, deep neural network (DNN) is more

powerful and flexible to predict complex system performances, such as sum-rate and power

consumption, due to the combined capability of multiple hidden layers [53]. In addition, by

employing hierarchical feature extraction, deep learning can capture temporal and spatial de-

pendencies in sequential data, while minimizing the data pre-processing effort [54].

Therefore, we proposed a deep neural network-based intelligent resource allocation scheme

for MD-IMA networks. In this scheme, a concept of integrated-quality-of-system-experience

(I-QoSE), combing several metrics (e.g. power consumption, delay, and throughput) with dif-

ferent weights, is introduced. The proposed intelligent resource allocation method consists of

two phases- the DNN based I-QoSE prediction and the deep reinforcement neural network-

based resource allocation. In the first phase, since fluctuation of user density is influenced by

short and long term behaviors, the long short term memory (LSTM) neural network, a kind

of deep RNN, is adopted to predict the performance metrics due to its excellent capability to

memorize long-term dependencies. According to these predicted results, the weight of each

metric for I-QoSE is determined. In the second phase, the predicted I-QoSE is regarded as

the rewards and the deep reinforcement learning (DRL) network is adopted to achieve optimal

power allocation. The value-based DRL algorithm derives optimal action by the action-state

value function, and deep Q learning (DQL), one of the most value-based DRL algorithms,

is adopted in this chapter to achieve power allocation for MD-IMA networks. However, the

main disadvantage of DQN is that the action space must be discrete. The discredited action

space not only brings quantization error for tasks with continuous action space but also leads

to an exponential increase in the number of action spaces. Therefore, to solve these problems,

the actor-critic based deep deterministic policy gradient (DDPG) algorithm, as a hybrid of the

value-based and policy-based methods, is further adopted in this topic to do power allocation,

because it can perform the continuous spaces.

The rest of this chapter is structured as follows. Section 6.2 introduces the network archi-

tecture of DRL enabled resource allocation for MD-IMA. In Section 6.3, the communication

model, including channel model, achievable rate and energy efficiency, are described. Then,

the power allocation problem for MD-IMA is formulated in Section 6.4 as a non-convex opti-
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mization problem to maximize the I-QoSE with several constraints. In Section 6.5, the I-QoSE

prediction is achieved by using one LSTM to learn the network requirements, such as through-

put rate and power consumption. Based on the predicted I-QoSE, the two different DRL based

power allocation methods, DQN and DPPG, are elaborated in Section 6.6. Section 6.7 presents

our simulation results regarding the I-QoSE performance of the proposed DRL based power

allocation methods. Finally, the conclusions are provided in Section 6.8.

6.2 Network Architecture

As illustrated in our previous proposed MD-IMA network, we adopted the K-means method to

cluster users and choose the cluster numbers by maximizing the total non-orthogonality. The

network architecture of deep neural network-based intelligent resource allocation scheme for

MD-IMA is illustrated in Fig. 6.1

Cloud

Agent: the Base Station

OMA UEs

Power-domain NOMA UEs

User Cluster
User Cluster

Subchannels

1 2 … M

Spatial-domain NOMA UEs

Environment: the performance of MD-IMA System 

State

Action

Long term historical data
(sum-rate, power and delay) 

Training LSTM 

Predicting network metrics

Training deep reinforce 
learning neural network

Determining real-time system 
satisfaction index (reward)

Figure 6.1: Deep learning based intelligent resource allocation of the MD-IMA Network

As shown in Fig. 6.1, based on the received historical data, including the sum-rate, power

consumption and delay requirements, a deep learning model, such as the LSTM neural net-
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work, that may run on a cloud-based platform is utilized to achieve the I-QoSE prediction.

The I-QoSE is determined as the sum of all the important metrics by using a weight-based

approach. If the sum-rate (SR), power consumption (PC) and delay (D) are considered as the

three possible metrics, the mathematical expression of I-QoSE is:

I − QoS E = α1 × S R − α2 × PC − α3 × D, α1 + α2 + α3 = 1, (6.1)

where α1, α2 and α3 represent the weight value of the throughput rate, power consumption, and

delay, respectively. These weight values are determined according to the predicted results by

using the LSTM. The higher weight means the corresponding metric is more important. For

example, if the sum-rate requirement is very low and the so minimizing power consumption

is the most important objective of resource allocation and the weight of power consumption

metric should be the highest.

The objective of the resource allocation optimization problem is to maximize the real-time

I-QoSE and so the I-QoSE is regarded as the reward of the MD-IMA network. The optimization

of resource allocation, such as power allocation and subchannel assignment, is modeled as a

deep reinforcement learning task, which consists of an agent and environment interacting with

each other, as shown in Fig.6.1. The base station is treated as the agent and the performance of

the MD-IMA network is the environment. We define the state space is S , action space is A and

the reword function is R. At time step t, based on the observed state st ∈ S of the environment,

the agent takes an action a from the action space S to allocate power to users according to the

power allocation policy π, where the policy is learned by an attention-based neural network.

Then, the current reward rt and the next state st+1 ∈ S are obtained from environment. The

target of the network is to take the optimal power allocation which can maximize the expected

reword.

6.3 Communication Model of MD-IMA Network

In terms of the MD-IMA network environment, we assume that BS, located at the center of

a single cell and equipped with Nt transmit antennas, serves K UEs, equipped with one an-
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tenna and denoted as K = {1, . . . ,K}. Based on the geolocation information, K UEs should

be divided into C clusters, which are covered by using beamforming in the spatial domain.

The UEs in each cluster are represented by {X1, . . . ,XC} and we have
⋃C

c=1Xc = K. We con-

sider that the total bandwidth B is divided into M orthogonal subchannels (SCs), denoted by

M = {1, . . . ,M}. In the same cluster, the UEs who have large channel gain differences can be

assigned in the same SC by using power-domain NOMA and they can be distinguished at the

receiver by adopting successive interference cancellation (SIC). In different clusters, the UEs

who have large non-orthogonality in the spatial domain can be allocated in the same SC and

they can be divided by using beamforming. The number of UEs which can be assigned on m-th

SC is denoted by Lm,m ∈ M. If Lm = 1, the m-th SC is regarded as a OMA-SC, whereas it is

denoted as a NOMA-SC when Lm > 1. According to the non-orthogonality among UEs and the

available resource, K UEs are adeptly assigned to M SCs in multi-dimension and each SC has

different UE numbers. In order to simplify the problem, each UE is only allowed to be assigned

to one SC and we assume K =
∑M

m=1 Lm. Motivated to meet vary diverse requirements of 5G

and beyond wireless network, the power constraints of every UE, denoted by {Pk,∀k ∈ K}, can

be different.

6.3.1 Channel Model

At time slot t, the vector of the complex coefficients between the BS and UE k in c-th cluster

on m-th SC is defined as:

hk,m,c(t) = gk,m,c(t)PL−1(d) ∈ CNt×1, (6.2)

where g(t)k,m,c is the Rayleigh fading channel gain and PL−1(d) denotes the path loss function

between the BS and the UE k at distance d [37]. In order to reflect the temporal-domain

correlation of each channel gain g(t)k,m,c, the Gaussian Markov block fading autoregreesive

model [122] is adopted:

gk,m,c(t) = ρkgk,m,c(t − 1) +

√
1 − ρ2

ke(t), (6.3)



6.3. CommunicationModel ofMD-IMA Network 107

where ρk denotes the channel gain correlation coefficient of k-th user between time slot t and

t − 1 and the error vector e(t) is the complex Gaussian. Specifically, the ρk is modeled by the

first kind zero-order Bessel function [122]:

ρk = J0(2π fd,kTs), (6.4)

where fd,k is the maximum Doppler frequency of user k and Ts is the length of time slot.

6.3.2 Achievable Rate

Let us take the c-th cluster and its corresponding UEs Xc as an example to analyze the inter-

ference conditions and the achievable rate. Without loss of generality, we assume k ∈ Xc. At

each time slot t, for the received signals of the k-th UE on the n-th SC in cluster c, the main in-

terference are composed of three parts: intra-cluster interference, inter-cluster interference and

additive noise. The intra-cluster interference are introduced by other UEs, whose channel gains

are lower than that of k-th UE, in cluster c on the n-th SC, while the inter-cluster interference

come from the UEs in neighboring clusters on the n-th SC.

The principle behind the power-domain NOMA is adding power domain multiplexing on

transmitter side to overlap users on the same subchannel and using SIC on receiver side to

realize multi-user detection. Specifically, in the same subchannel, different transmitted power

level is allocated to different UEs according to their channel gains. The received symbols

should be detected in order of decreasing of channel gains. It means the UEs with poorer

channel conditions are decoded firstly and are subtracted one by one. For UEs with better

channel conditions are regarded as noise [117]. Let wc(t) ∈ CNt×Nt be the beamforming matrix

from BS to cluster c at time slot t. We also define power allocation matrix P(t) ∈ CK×M×C,

where [P] = pk,m,c(t) denotes the downlink transmission power between BS and k-th UE on

m-th subchannel in cluster c at time slot t. The subchannel assignment scheme at time slot t is

reflected by matrix X(t) ∈ CK×M×C, where [X(t)] = xk,m,c(t) is the subchannel indicator. We set

xk,m,c(t) = 1 if the m-th subchannel is occupied by the UE k in cluster c at time slot t, otherwise,

xk,m,c(t) = 0. At each time slot t, the intra-cluster interference of UE k in c th cluster on m-th

subchannel can be given by:
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Iintra
k,m,c(t) =

∣∣∣hk,m,c(t)Hwc(t)
∣∣∣2 ∑

i∈Xc,k(t)

xi,m,c(t)pi,m,c(t), (6.5)

where Xc,k(t) =
{
i|i ∈ Xc(t), hk,m,c(t) > hi,m,c(t)

}
denotes the set of UEs in Xc(t) on SC n whose

channel conditions are worse than that of k-th UE. Then, the inter-cluster interference can be

given by:

Iinter
k,m,c(t) =

∣∣∣hk,m,c(t)H
∣∣∣2 C∑

i,c

K∑
j=1

x j,m,i(t)p j,m,i(t) |wi(t)|2 . (6.6)

Therefore,at time slot t, the signal-to-interference-plus-noise rate (SINR) of the received

signal form UE k on m-th subchannel in cluster c is:

γk,m,c(t) =
pk,m,c(t)

∣∣∣hk,m,c(t)Hwc(t)
∣∣∣2

Iintra
k,m,c(t) + Iinter

k,m,c(t) + δ(t)2
, (6.7)

where δ(t)2 is the variance of additive Gaussian noise. Therefore, the data rates Rk,m,c and

sum-rate Rtotal(t) is

Rk,m,c(t) =
B
M

log2
(
1 + γk,m,c(t)

)
, (6.8)

Rtotal(t) =

K∑
k=1

M∑
m=1

C∑
c=1

xk,m,c(t)Rk,m,c(t) (6.9)

6.3.3 Weighted energy efficiency

The weighted energy efficiency (WEE) is defined as the ratio of the achievable sum rate to the

total power consumption:

ηw
EE(t) =

α1(t)Rtotal(t)
α2(t)Ptotal(t)

, (6.10)

where α1(t) and α2(t) are the weights of the required sum rate and the power consumption,

respectively. The total power consumption Ptotal(t) of BS in Eq. (7.4) consists of two parts: the
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circuit power consumption, depending on the hardware design of BS and the transmit power,

which is related to the power allocation [78]:

Ptotal(t) =

K∑
k=1

M∑
m=1

C∑
c=1

xk,m,c(t)pk,m,c(t) + ξ0Nt, (6.11)

where, ξ0 represents the circuits power consumption of each antenna of BS.

6.4 Problem Formulation

As illustrated in our previous topic, we have utilized the K-means based clustering and match-

ing theory-based subchannel assignment algorithm with fixed power allocation to achieve the

balance between receiver complexity and the I-QoSE. Therefore, in this chapter, we only focus

on the power allocation problem of MD-IMA network.

Based on the optimal UE clustering, the objective of the power allocation problem for MD-

IMA system is to maximizing I-QoSE under the constraints of maximum transmit power and

minimum power requirements of each user. Based on the predicted system requirements of

LSTM, the I-QoSE can be calculated by (6.1). To simplify the I-QoSE, we only consider the

sum-rate and power consumption firstly and so the I-QoSE can be regarded as weighted energy

efficiency. The power allocation of the MD-IMA can be formulated as an optimization problem

to maximize the weighted energy efficiency with the constraints of maximum transmit power

and minimum user’s required QoS, which is defined as follows:

{P(t)∗} = arg max
{

I − QoS E(t) =
α1(t)Rtotal(t)
α2(t)Ptotal(t)

|X(t)∗
}

(6.12)

subject to: C1 :
K∑

k=1

M∑
m=1

C∑
c=1

xk,m,c(t)pk,m,c(t) ≤ Pmax,

C2 :
M∑

m=1

C∑
c=1

xk,m,c(t)pk,m,c(t) ≥ Pmin
k ,∀m ∈ M,∀c ∈ C,

where Pmax is the maximum transmit power of the BS and Pmin
k is the minimum required to

transmit power of user k. The constraint C1 ensures the maximum transmitted power con-

straint and C2 guarantees the QoS requirement for each user. Because of the non-concavity
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and nonlinearity in the objective function and constraints, problem (6.12) is a non-convex op-

timization problem, which is too complicated to solve. In our previous topic, the non-convex

problem is transformed into a convex problem first and then an iteration optimization algorithm

is used. However, the traditional optimization algorithm is based on the mathematical model,

which is not available for some practical scenarios. Therefore, the model-free DRL neural

network is adopted in this work to fit a more practical environment. Furthermore, in order to

reduce the time delay caused by power allocation, the I-QosE can be predicted by using LSTM

in advance to train the DRL. The specific principle of LSTM based I-QoSE prediction and

DRL based power allocation are given in the following sections.

6.5 I-QoSE Prediction based on One LSTM

We assumed that the I-QoSE consists of sum-rate and power allocation, and so the I-QoSE

is determined by the weight of the sum-rate. The higher sum-rate requirement corresponds

to higher weight value of sum-rate α1(t). Therefore, the weight value can be determined by

predicting the sum-rate requirement. The LSTM neural network is a special kind of deep RNNs

that can capture the longer-term temporal dependencies than traditional RNNs [92]. Each

hidden node in LSTM network is regarded as a memory cell with three different gates, which

regulating the information and thus allowing to keep the past information [93]. Therefore, in

this work, the LSTM neural network is adopted to predict the sum-rate in every grid, which is

used to predict the final I-QoSE.

The historical location map should be divided into
(

Ns
Nc

)2
zones in spatial domain and each

zone has Nc × Nc grids at specific time t, as shown in the Fig.6.2. Note that the value of

Nc should ensure the zone number,
(

Ns
Nc

)2
, is an integer. The model of sum rate requirement

prediction based on one LSTM network is shown in Fig. 6.2. There are three layers in the

proposed LSTM model: the input layer, the hidden layer and the output layer.

The input to the LSTM model is the historical sum-rate of all grids in jth zone:

{
sr j

t−1, sr j
t−2, · · · , sr j

t−d

}
, (6.13)
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Figure 6.2: Structure of one LSTM based sum-rate prediction method.

where sr j
t−1 =

{
sr1, j

t−1, . . . , srN2
c , j

t−1

}
. The output is the predicted sum-rate of all grids in jth zone at

time t, sr j
t =

{
sr1, j

t , . . . , srN2
c , j

t

}
. The number of memory cells is determined by the time steps

d. The hidden layer number in Fig. 6.2 is one, but it can be easily extended to several layers

according to the situation. In this way, the input of the proposed one LSTM based method is the

2D (spatial and temporal domain) zones instead of the 1D (temporal domain) grid. Therefore,

the proposed one LSTM network can exploit both spatial and temporal features of sum-rate.

All of zones are should be used to train the same LSTM model to find the relationship function

f between the input and output:

sr j
t = f

(
sr j

t−1, sr j
t−2, · · · , sr j

t−d

)
∀ j = 1, . . . ,

(
Ns

Nc

)2

. (6.14)

Bu using this method, sum-rate of i-th grid during T time steps can be obtained as sri
T ={

sri
1, . . . , sri

T

}
. Then the weights of sum-rate for the i-th grid can be calculated by using min-

max normalized. Finally, the predicted WEE can be defined as:
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EEw (t) =


Rtotal (t) α1 = 1

α1Rtotal(t)
(1−α1)Ptotal(t)

0 < α1 < 1

Ptotal (t) α1 = 0

(6.15)

6.6 Power Allocation based on DRL

A general reinforcement learning (RL) consists of three parts: the state space S , action space

A and the reword function is R. At time step t, based on the observed state st ∈ S of the

environment, the agent takes an action a from the action space S , which can maximize the

expected reword. Integrating RL with DNN, which can be categorized into three classifications:

value-based, policy-based and actor-critic methods.

• Value-based DRL:

The value-based DRL algorithm derives optimal action by the action-state value function,

and the most widely-used algorithms include deep Q learning (DQL) and Sarsa. In this

chapter, the DQN is adopted to achieve power allocation for MD-IMA networks. The

main idea is using a DNN network to approximate the Q-value function Q∗(st, at; θ),

where θ is the parameter of DQN. The optimal parameter is updated to minimizing the

difference between Q function value to the target value (expected reward). In this way,

learned DQN can select an optimal action for a given state.

However, the main disadvantage of DQN is that the action space must be discrete. The

discredited action space not only brings quantization error for tasks with continuous

action space but also leads to an exponential increase in the number of action spaces.

The reason is that the discretization of action-space may throw away some values which

might be the optimal solution for solving problems.

• Actor-Critic based DRL: Fortunately, the actor-critic algorithm, as a hybrid of the value-

based and policy-based methods, can perform the continuous spaces. A deep determinis-

tic policy gradient (DDPG) is one of the famous actor-critic DRL algorithms. It consists

of two components: an actor to generate policy and a critic to assess the policy. The
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critic estimates the value of the current policy by Q-learning and actor updates policy in

a direction that improves Q value. The specific DDPG algorithm will be described in the

following part.

6.6.1 Basic Model of Reinforcement Learning

The above power allocation problem of MD-IMA can be regarded as a sequential decision-

making process under a stochastic environment [47]. At each step, one power value is assigned

to a corresponding user according to the decision-making process. The process will be termi-

nated until all users are allocated with power. The objective is to find the optimal process that

maximizes the weighted energy efficiency.

The specific definition of state, action and reward in this system are described as:

• State: The DRL works as an estimator to predict the current energy efficiency of cor-

responding current partial channel information H(t) and so the channel information is

the most critical feature. However, according to [123], the performance of such DRL is

not good, since it is non-convex and the optimal point is hard to find. Therefore, more

auxiliary features can be introduced to help the DQN get closer to the optimum.

As mentioned in section III-A, the channel is modeled as a Markov process and corre-

lated in the time domain, and thus the last solutions can provide a better initialization for

this moment’s solve and interference information. Therefore, the last power allocation

P(t − 1) and the last WEE ηw
EE(t − 1) can be introduced as the assisted features. It means

there are three possible states can be considered, and they are written as:

s1
t = {H(t)} (6.16)

s2
t = {H(t),P(t − 1)} (6.17)

s3
t =

{
H(t),P(t − 1), ηw

EE(t − 1)
}

(6.18)

The performance of three states will be compared in the simulation section in terms of

WEE to find the appropriate states.
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• Action: The power allocation fo each UE is a continuous variable and is constrained by

maximum total transmitted power constraint Pmax and minimum required power for each

UE Pmin
k . The actor of DDPG can directly output a deterministic according to the trained

policy. In order to enforce the total power constraint at the output layer of DDPG, the

following normalized activation function for the output layer is used [124]:

Pk =
Pk∑K

k=1 Pk
Pmax (6.19)

The above equation guarantees that the total power constraint is satisfied.

However, the action space of DQN must be finite. The power allocation of each UE are

quantized as Np discretized power level from Pmin
k and Pmax and so there are maximum

NK
p power combinations for K UEs. We denote that an action corresponds to each com-

bination. Noted that some of the combinations will be discarded due to the maximal total

power constraint [125]. We assume that only Cp combinations meet the maximal power

constraint and so the output layer size of DQN is Cp.

• Reward: In Section III, the objective of power allocation for MD-IMA is to maximize

weighted energy efficiency. Therefore, the weighted energy efficiency represents the

immediate reward rt returned from environment after DRL selecting the action at based

on the state st

6.6.2 Q-Learning

Q-learning, as one of the most popular model-free reinforcement learning algorithms, can be

used to deal with such Markov decision process (MDP) problems [126]. The Q function of

the agent calculates the expected cumulative reward with an action a in state s under a certain

policy π, which is given by[127]

Qπ(s, a) = E

 ∞∑
t=0

λtr (st, π(st)) |st = s, at = a

 , (6.20)
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where λ ∈ [0, 1) is a discount factor. It means that the immediate reward is the most important

to Q function, and the importance of reward decreased over time. The aim of Q-learning is to

find a policy that maximizes the Q-function. According to [126], the maximization Q-function

is equivalent to the Bellman optimal equation:

Qπ(st, at) = rt+1 + λmax
at+1

Q(st+1, at+1),∀st, at (6.21)

As the agent explores the environment by applying actions and receiving rewards, it collects

and stores transitions (st, at, rt+1, st+1) in a growing batch. From the batch of transitions, a

training sequence of input-output pairs is formed and utilized to learn the Q-function. One of

the popular method is called one-step Q-learning approach, which is defined as:

Q (st, at)← Q (st, at) + α
(
Rt + λmax

a
Q(st+1, a) − Q (st, at)

)
, (6.22)

where α is the learning rate. The specific procedure of Q-learning is summarized in the Algo-

rithm 8 [128].

Algorithm 8 Q-learning
1: Initialize: Q(st, at) arbitrarily
2: for all episodes do
3: Initialize st

4: for all steps of episode do
5: Based on the policy, such as ξ-greedy algorithm, and the current state st, choose one

action at from action sets
6: Take action at, observe the reward Rt and the next state st+1

7: Update the Q:Q (st, at)← Q (st, at) + α (Rt + λmaxa Q(st+1, a) − Q (st, at))
8: st ← st+1

9: end for
10: end for=0

Noted that, ξ-greedy algorithm-based policy is generally adopted to balance the exploration

of the environment and the exploitation of the accumulated knowledge. In ξ-greedy algorithm,

the agent takes a random action with the probability ξ (exploration )and a policy action ,such

as maxa Q(st+1, a) , with probability 1 − ξ [127]. The value of ξ is gradually reduced over time

from ξmax to ξmin.
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6.6.3 Value-based DRL: DQN

However, since the dimensions of state and action are extremely high in our problem, it is

difficult to use such iteration method to find the optimal Q-values. In order to settle infinite

state and action space, deep Q-learning network (DQN), combing Q learning with a deep neural

network, can be adopted [129]. In DQN, the Q function is represented by a deep neural network

Q(s, a; θ) instead of Q(s, a). The parameter θ stands for the weights of the neural network and

the Q-network is trained by updating θ at each iteration to toward the optimal Q values [130].

Algorithm 9 Deep Q-learning with Experience Replay
1: Initialization: Initialize replay memoryD to capacity DN

2: for for all episode do
3: Initialize st

4: for all steps of episode do
5: with probability ξ select random action at

6: otherwise select at = maxa Q∗ (st, at; θ)
7: Take action at, observe the reward rt and the next state st+1

8: Store transition (st, at, rt, st+1) inD
9: Sample random mini-batch of transitions (s j, a j, r j, s j+1) fromD

10: Set y j = r j + λmaxa′ Q(s j+1, a
′

; θ) when s j+1 is non-terminal, otherwise y j = r j

11: Perform a gradient densent step on
(
y j − Q

(
s j, a j; θ

))2
according to Equation (8)

12: end for
13: end for=0

The deep Q-function is trained towards the target value by minimizing the loss function,

which is defined as the mean-squared error in Q-values [78]:

L (θ) = E
[
(yt − Q (st, at; θ))2

]
, (6.23)

where yt = rt + λmaxa Q(st+1, a; θ) is the Temporal Difference (TD) target. Then the grident of

the loss function can be expressed as:

∂L (θ)
∂θ

= E

[
(yt − Q (st, at; θ))

∂Q (st, at; θ)
∂θ

]
. (6.24)

Therefore, the parameter θ of the deep neural network can be updated by using stochastic
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gradient descent (SGD) [129];

θt+1 = θt + α (yt − Q (st, at; θt))OQ (st, at; θt) (6.25)

In order to make sure a stable solution of DQN, experience replay is used. At each time

instant t, the agent stores its interaction experience tuple,et = (st, at, rt), into a replay memory,

Dt = {e1, . . . , et}.Then the recorded batch data are randomly sampled from the replay memory

to train the DQN. The basic deep Q-learning with experience replay is shwon in Algorithm 10

[131]. Comparing the Algorithm 8, there are two main improvements in DQN Algorithm 10.

• Replacing Q function with multi-layer deep convolution networks. The hierarchical lay-

ers of tiled convolution filters can exploit the local spatial correlations, which makes it

possible to extract high-level features from raw input data.

• Utilizing experience replay. This allows the network to learn from more various past

experiences, and restrains the network from only focusing on what it is immediately

doing.

6.6.4 Actor-Critic based DRL: DDPG

As an actor-critic, model-free algorithm, the DDPG is achieved based on the deterministic pol-

icy gradient that can operate over continuous action spaces. As mentioned before, the DDPG

is consists of actor network and a critic network. With the input st, actor network π(st; θµ)

generates deterministic action at = π(st; θµ), where θa is the actor parameter. One advantage

of DDPG, off-policy, the exploration can be treated independently from the learning process.

Similar with ξ-greedy algorithm, we add noise to the original output action to balance the

exploration and the exploitation.

After generating action by actor network, the reward can be obtained from environment.

Based on action-station pairs, we use the critic network with weight θc to estimate the Q value

Q(st, at; θc) to evaluate the selected action at = π(st; θa). Similar to DQN, in order to get

uncorrelated tuples, the experience replay. The optimal parameter is also updated to minimize

the loss function, which is the mean square erro between the estimated Q value and the target
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value. [78]:

L (θ) = E
[
(yt − Q (st, at = π(st; θa); θc))2

]
, (6.26)

where yt = rt + λmaxa π(st; θa); θc) is the target Q value. Base on these Q values, the the

actor network update its weights in the direction of getting larger Q value according to the

deterministic policy gradient theorem, that is

5θa J(π) = E
[
5aQ(s, a; θc)|a=π(s;θa) 5θa π(s; θa)

]
≈

1
N
5a Q(s, a; θc)|s=st ,a=π(st;θa) 5θa π(s; θa)|s=st

(6.27)

The DDPG algorithm is shown in below

Algorithm 10 DDGP
1: Initialization: Initialize critic network, actor network and replay memory D to capacity

DN

2: for for all episode do
3: Initialize a random process noise for action exploration
4: Receive initial observation state s1

5: for all steps of episode do
6: otherwise select at = πst; θa + Nt according to current policy and exploration noise
7: Take action at, observe the reward rt and the next state st+1

8: Store transition (st, at, rt, st+1) inD
9: Sample random mini-batch of transitions (s j, a j, r j, s j+1) fromD

10: Set y j = r j + λmaxa π(s j+1; θa); θc) when s j+1 is non-terminal, otherwise y j = r j

11: Update critic parameter by minimizing the loss function L (θ) =

E
[
(yt − Q (st, at = π(st; θa); θc))2

]
12: Update actor policy by using the policy gradient in Eq.(25)
13: end for
14: end for=0

6.7 Simulation Results

6.7.1 Environment

We assumed that there are 50 UEs and the total bandwidth is 20 MHz. One BS, located at

the center of the cell. These UEs are located uniformly and randomly within the cell rang



6.7. Simulation Results 119

r ∈ [0.01km, 1km]. The small-scale fading is assumed to be Rayleigh distribution and modelled

by the Jakes model with Dpper frequency fd = 10Hz and time slot Ts = 10ms [126] According

to [132], the large scale is modeled as β = −120.9 − 37.6 log10(d) + 10log10(z), where d is

the transmitter-to-receiver distance and z is a log-normal random variable with standard devia-

tion being 8 dB. The AWGN power is −174dBm [47]. The power allocation objective of this

network is to maximize the total throughput rate under the constraint emitting power.

Table 6.1: Main Parameters of DRL enabled MD-IMA Network
Parameters Values

Macro cell radius 1 km
Total bandwidth 20 MHz

Maximum transmit power 40 W
Power level 10

Doppler frequency 10 Hz
Standard deviation of log-normal shadowing 8 dB

large scale fading β = −120.9 − 37.6 log10(d) + 10log10(z) dB
AWGN power -174 dBm

6.7.2 LSTM Parameters Setting

To evaluate the effectiveness of LSTM based prediction method, the experiments are conducted

on real-world data. The data sets, simulation conditions and two baseline algorithms are de-

scribed in this subsection.

• Data Set

For data analysis with deep learning, it is essential to obtain a high-quality data set. In

this work, a publicly available real-world multi-source dataset released through Telecom

Italia in 2015 is adopted [95]. The dataset is composed of telecommunications, weather,

social networks and electricity data from the city of Milan and the Province of Trentino,

collected between 1 Nov 2013 and 1 Jan 2014. In this work, we focus on telecommu-

nication records from Milan. This traffic is measured by using the terms of total call

detail record (CDR) data, which is generated when a user receives or sends SMS, call

and Internet over 10-minute intervals.

For the convenience of CDR recording, the city of Millan is divided into 100 × 100
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Figure 6.3: Grid map and the CDR heat map of Milan.

grids, marked by a unique ID, as shown in Fig. 6.3. The size of each grid is 235 × 235

meters. The CDR numbers can reflect the UE density, and so we can predict the hotspot

by predicting the CDR numbers of every grid. By adding six-time intervals (10 minutes),

the aggregated CDR numbers of each grid in one hour are obtained.

• Simulation Conditions

From Fig. 6.3, we noted that the active zones focus on the central 40 grids (horizontal:40-

80, vertical:30-70 ) with 1600 grids. Therefore, the data set of these grids is used to

evaluate the performance of all prediction methods. In order to reduce the impact of

noise on time series, wavelet-based filtering is used to smooth the raw data. All models

are trained on the first 1320 hours of data (first 55 days) and tested on the 24 hours (one

day) of data. Their performances were evaluated by computing the RMSE (Root Mean

Square Error) value of ith grid [94]:

RMS Ei =

√√
1
z

z∑
t=1

(
xi

t − x̂i
t

)2
, (6.28)

where x̂i
t and xi

t are the predicted CDR numbers of ith grid and the ground truth, respec-

tively; z is the number of all predicted values.
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Table 6.2: The parameters of the LSTM and ConvLSTM for sum-rate prediction.
Parameters LSTM ConvLSTM

hidden layer numbers 2 1 and 2
hidden nodes of the first layer 50 50

hidden nodes of the second layer 25 25
Batch Size 64 64
Time Steps 24 24

Training Steps 150 150
Grid numbers for each time step 5*5 and 2*2 2*2, 5*5 and 10*10

Kernel size N/A 2*2 and 5*5

To verify the accuracy of the proposed one LSTM based algorithm, three models, including

the auto-regressive integrated moving average (ARIMA), several LSTM based algorithms and

Convolutional LSTM (ConvLSTM), are employed as baselines. ARIMA models are generally

denoted ARIMA(p,d,q) where parameters p is the number of auto-regressive terms, d is the

degree of difference and q is the size of the moving average window [96]. In our simulation,

an ARIMA(2,2,0) is modeled by using the python stats models. The LSTM and ConvLSTM

are built by using Keras of Tensorflow. We use Adam optimizer with learning rate=0.001,

beta1=0.9, beta2=0.999 and epsilon=1e-08. In order to achieve the best results, the hyperpa-

rameters of LSTM should be adjusted and the main parameters of the LSTM and ConvLSTM

neural network are shown in Table. 6.2 [96].

6.7.3 DQN Parameters Setting

A four-layer feed-forward neural network is chosen as DQN. The rectified linear unit (ReLU)

is adopted in the two hidden layers and the neuron numbers of two hidden layers are 128 and

64, respectively [47]. The input of the DQN is the state. The output is the power allocation.

The power level is set as 10/5 and thus the output dimension is 10/5.

• Learning Rate: The Adam is adopted as the optimizer for DQN. The learning rate of

optimizers should be selected carefully. Specifically, the learning rate is a configurable

hyper-parameter used in the training of neural networks that has a small positive value,

often in the range between 0.0 and 1.0. The learning rate hyperparameter controls the

rate or speed at which the model learns. Fig. 6.4 compares the sum-rate performance for
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three different learning rate values. In order to simplify the simulation, the discounted

factor is set as 0 firstly. As shown in Fig. 6.4, the largest learning rate, allows the

model to learn faster, at the cost of arriving on a sub-optimal final set of weights. A

smaller learning rate allows the model to learn a more optimal set of weights but may

take significantly longer to train. In order to balance the performance and the training

cost, we set the learning rate as 0.01 in the following.
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Figure 6.4: WEE comparison of DQN based method with different learning rate values during
training period

• Discount Factor: The discount factor, 0 ≥ λ ≤ 1, essentially determines how much the

reinforcement learning agents care about rewards in the distant future relative to those

in the immediate future. If λ = 0, the agent will be completely myopic and only learn

about actions that produce an immediate reward. If λ = 1, the agent will evaluate each

of its actions based on the sum total of all of its future rewards. In this section, the EE

performance of different discount factors is studied. We set λ ∈ {0, 0.1, 0.3, 0.7, 0.9},

and the EE over the 1200 training episodes is shown Fig.6.5. At the same time slot,

the averaged EE performance with higher λ are worse than the rest with lower λ values.
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According to the simulation results, the discount factor value is set as 0.1 to achieve the

best WEE performance.
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Figure 6.5: WEE comparison of DQN based method with different discount factor values
during training period

• Training Episodes Number: At the beginning, the DQN is initialized randomly and

then trained epoch by epoch. In the exploration period, the ξ-greedy learning strategy

is adopted. The value of ξ is gradually reduced over time from 0.9 to 0.1 [127]. In

each episode, the large-scale fading is invariant and thus the total number of episodes

should be set large enough to overcome the generalization problem. The time slot per

episode could not be large to reduce over-fitting. In order to find the appreciate the

number of training episode, the EE performance with λ = 0.1 and 0.01 learning rate for

20000 training episode is shown in Fig. 6.6. We can see that the averaged EE becomes

relatively stable after 6000 training episode. Therefore, the training episodes number is

set as 8000 to ensure the performance of DQN.

In summary, we set training episodes number is 8000 and the time slots number is 50.

Furthermore the batch size of reply memory is 256 and the training interval is 10. It means that
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Figure 6.6: WEE performance of DQN based power allocation for training episodes with λ =

0.1

the DQN is trained with 256 random samples in the experience replay memory every 10 time

slots. The Adam is adopted as the optimizer for DQN with the learning rate of 0.01. All the

parameters related with DQN is illustrated in the Table 6.3.

6.7.4 DDPG Parameters Setting

The DDPG consists of two sub-networks: actor-network to select actions and critic network

to estimate Q values of the selected actions. Most parameters of DDPG are similar as that of

DQN. We mainly evaluate the choice of learning rate and the number of training episodes in

this subsection.

• Learning Rate: First, we evaluate the impact of the learning rate of DDPG on the WEE.

Fig. 6.7 and Fig. 6.8 compares the WEE of DDPG with a different learning rate of actor

and critic networks, respectively. It can be seen that the larger learning rate allows the

model to learn faster at the cost performance, while a smaller learning rate allows the

model to learn a more optimal performance but take longer to train. As a result, to offer

faster converge speed with competitive performance, we set the learning rate of actor and
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Table 6.3: The parameters of the DQN.
Parameters Value

Learning Rate 1e−2

Discount Factor 0.1
Exploration ξmax = 0.9, ξmax = 0.1

Output layer of DQN linear with 10 dimension
Input layer of DQN linear with 51/34/17 dimension

1st hidden layer of DQN ReLU,64
2nd hidden layer of DQN ReLU,128

Batch Size of Relay memory 256
Training Episodes Number 8000

Test Episodes Number 100
Time slots per Episodes 50

Training interval of time slot 10
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Figure 6.7: WEE comparison of DDPG based method with a different learning rate of the
actor-network.

critic as 1e − 4 and 1e − 3, respectively.

• Training Episodes Number: At the beginning, the DDPG is initialized randomly and

then trained episode by episode. From Fig.6.7, we can see that the WEE becomes rela-
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Figure 6.8: WEE comparison of DDPG based method with a different learning rate of the
critic-network.

tively stable after 300 training episode when the la = 1e − 4andlc = 1e − 3 and so the

training episodes number is set as 400 to ensure the performance of DDPG. Compared

with Fig.6.6, the DDPG can achieve convergence faster than that of DQN. In summary,

the specific parameter of DDPG is shown in Table 6.4

Table 6.4: The parameters of the DDPG.
Parameters Values of Actor Values of Critic

Learning Rate 1e−4 1e−3

Discount Factor NA 0.1
1st hidden layer ReLU,64 ReLU,64
2nd hidden layer ReLU,128 NA

Batch Size of Relay memory 256 256
Training Episodes Number 400 400

Test Episodes Number 100 100
Time slots per Episodes 50 50
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Figure 6.9: Histogram Comparison among one LSTM and three baselines based sum-rate pre-
diction.

6.7.5 Simulation Results

6.7.5.1 Accuracy of LSTM based WEE Prediction

The prediction accuracy of the proposed one LSTM based forecasting method is compared

with ARIMA, several LSTM and ConvLSTM methods. Fig. 6.9 and Fig. 6.10 demonstrate the

distribution and cumulative distribution function (CDF) of forecasting RMSE of four methods,

respectively.

Compared with the ARIMA, deep learning approaches based on LSTM have much better

performance, due to the robust nature and feedback connections of LSTM. By comparing the

two different LSTM based schemes with 5 × 5 zones, it can be seen that the several LSTM

based scheme has more grids whose RMSE<10 than that of one LSTM based method. In

several LSTM based scheme, every LSTM is training specifically for each grid and so it has

more high accuracy results (RMSE<5). However, due to overfitting and lower diversity of

samples, the overall performance of several LSTM based scheme is worse than that of one
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Figure 6.10: CDF Comparison among one LSTM and three baselines based sum-rate predic-
tion.

LSTM based scheme. We also noted that the performance of the one based LSTM scheme is

improved by reducing the zone size from 5 × 5 to 2 × 2. There are two reasons. On the one

hand, by adopting smaller zones, the number of training samples is increased. On the other

hand, it also proves that the spatial correlation among neighboring 4 grids is larger than that of

neighboring 25 grids.

The ConvLSTM, whose zone size and kernel size are 2 × 2, has a similar RMSE perfor-

mance with that of one LSTM based method. If the input zone size of ConvLSTM is the same,

the performance of ConvLSTM with 2 × 2 kernel has better RMSE performance. It also il-

lustrates that the neighboring 4 grids have a stronger spatial correlation. Furthermore, with

the same kernel size, the RMSE performance decreased with the rise of zone size by introduc-

ing more redundant information. In summary, our proposed one LSTM based method enables

to explore the temporal-spatial features for the small zone (4 grids) without the Convolutional

layer. There are 90% grids whose RMSE is smaller than 30 by using one LSTM based sum-rate

prediction.
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Figure 6.11: Compare the predicted weight with real weight of sum-rate for the 12th grid.

By using the proposed one LSTM, the sum-rate of all grids can be predicted and so the

weight of the sum-rate can be determined by normalized the predicted results. In order to

evaluate the predicted accuracy, we take α1 of 12th grid as an example. As shown in Fig. 6.11,

the predicted weight of the sum-rate can follow the real weight changes of the sum-rate.

6.7.5.2 WEE Performance of DQN with different States

As we described in VI-A, three states with different features are proposed. Specifically, state1

s1 only considers the channel information, state 2 s2 add last power allocation as the auxiliary

features and state 3 ss includes channel information, last power allocation and last WEE. The

WEE comparison of DQN with three states is shown in Fig.6.12. It can be seen that the

DQN with s3 has the best WEE performance and the WEE of DQN with s1 is the worst. By

introducing two more features, the EE performance can improve 17%. It means that the more

auxiliary features can help the DQN to get closer to the optimum. Therefore, we use s1 to do

the following simulations.
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Figure 6.12: WEE comparison of DQN with different states in test episodes for [α1 = 0.5, α2 =

0.5]

6.7.5.3 WEE Performance of DRL Based Power Allocation

In this section, the WEE comparison between DQN and DDPG based power allocation in

training episodes is shown in Fig.6.13. As shown in Fig. 6.13, the DDPG based method

outperforms than that of DQN based algorithm. Specifically, the EE gain of DDPG over DQN

with 5 levels and DQN with 10 power levels are 15% and 20%, respectively. The reason is

that the output decisions can only be discrete of DQN, which causes quantization error for

continuous action tasks (e.g. power allocation). We also notice that the performance of DQN

decline with the power level decrease from 10 to 5. Furthermore, the convergence of DDPG is

extremely faster than that of DRL, because the action space dimension of DRL is exponentially

increased with the power level.

Then, three advanced model-based optimization algorithms, namely fractional program-

ming (FP), weighted minimum mean squared error (WMMSE) and near-optimal solution (Al-

gorithm 6 in Chapter 5) are considered as benchmarks to evaluate our proposed DRL algo-

rithms. The WEE comparison between DRL based algorithm with model-based methods for
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Figure 6.13: WEE comparison between DQN and DDPG in training episodes for [α1 =

0.5, α2 = 0.5]

test episodes is shown in Fig. 6.14. We can see that the proposed DDPG achieves the highest

WEE, which is similar to the near-optimal solution. The DDPG based method outperforms

than that of the traditional optimization-based algorithms. Specifically, the DDPG based algo-

rithm can improve around 17% and 35% WEE than that of WMMSE and FP, respectively.

6.7.5.4 Time Cost

In terms of computation complexity, the time cost of DQN is in a linear relationship with layer

numbers, with the utilization of GPU. Meanwhile, both FP, WMMSE and near-optimal algo-

rithms are iterative algorithms, and thus the time cost is not constant, depending on the stopping

criterion condition, initialization and CSI. The time cost per test episode of our proposed DRL

based and model-based methods are listed in Table 6.5. It can be seen that the time cost of

DQN and DDPG are similar due to similar DNN models, and they are about 10, 100 and 500

times faster than FP, WMMSE and near-optimal methods, respectively. In summary, the pro-

posed DDPG can achieve the best WEE performance with the lowest computational time cost.
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Figure 6.14: WEE comparison among DDPG, DQN, FP, WMMSE and exhaustive optimal
solution in test episodes for [α1 = 0.5, α2 = 0.5]

Table 6.5: Average time cost per episode (sec) of DRL and optimization methods
Methods DDPG DQN FP WWMSE Near-Optimal

Time Cost 3.83e−4 3.28e−4 5.2 e−3 4.9 e−2 2.2 e−2

6.7.5.5 Imapct of the weights on the EE

The predicted weights of EE are varying and so the weighted EE of DDPG based power al-

location algorithms for different weights are evaluated in Fig.6.15. we can see that the WEE

is increased with the weight value of the sum rate. The reason is that more power is required

to meet the increased sum-rate requirements. However, the increased speed of weighted EE

becomes slower with the increase of the weight value of the sum rate. This is because when the

total transmits power P used exceeds a relatively large value, the sum rate can not be improved

due to the fact that interference signals become the dominant factor of the SINR.
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Figure 6.15: WEE comparison of DDPG based power allocation for different weights

6.8 Chapter Summary

In this chapter, we mainly study how to use DRL based methods to solve the optimization prob-

lem of resource allocation in the MD-IMA system. Compared with the traditional optimization

algorithms, DRL based resource allocation methods are more complaint with optimizations in

practical communication scenarios because of its model-free nature. In the proposed two-step

scheme, the one-LSTM neural network is adopted to predict the overall network requirements

(I-QoSE) and then DRL based power allocation algorithms are proposed to maximize the pre-

dicted I-QoSE under several practical constraints. Both valued-based DRL algorithms, such

as DQN, and the actor-critic based DDPG algorithm are adopted to do power allocation for

the MD-IMA system. The simulation results illustrate that DDPG performs the best in terms

of both I-QoSE performance convergence speed and time cost, compared with DQN based

method and traditional optimization-based algorithm. Specifically, the EE gain of DDPG based

method over DQN, FP and WMMSE are 15%, 17% and 35%, respectively. The time cost of

DRL based method is 10 times and 100 times faster than that of FP and WMMSE.



Chapter 7

Adaptive Vehicle Clustering and Data

Traffic Explosion in SDN Enabled

5G-VANET

With the anticipated arrival of autonomous vehicles, supporting vehicle generated data traffic

due to the dramatically increased use of in-vehicle mobile Internet access will become ex-

tremely challenging in 5G based vehicular networks. This is mainly due to the high mobility

of vehicles on the road and the high complexity of 5G heterogeneous networks (HetNet). In or-

der to support the increasing traffic and improve the HetNet management, a Software-Defined

Networking (SDN) enabled 5G-Vehicular Ad Hoc Network (5G-VANET) is proposed in this

article. In this integrated architecture, vehicles are clustered under the condition of SDN, and

one vehicle in each cluster is selected as a gateway to support aggregated traffic. To ensure

the capacity of the trunk link between the gateway and base station, a Non-orthogonal Mul-

tiplexed Modulation (NOMM) scheme is proposed in this chapter to effectively aggregate the

Vehicle-to-Infrastructure (V2I) traffic and further improve energy efficiency. NOMM splits the

data stream of each user into multi-layers and modulates them simultaneously. Sparse spread-

ing code is also applied in partially superposing the modulated symbols on several resource

blocks. Furthermore, we analyzed the energy efficiency of the proposed NOMM scheme and

the orthogonal transmission scheme theoretically. The simulation results show that the energy

efficiency performance of proposed NOMM is 1.3-2 times than that of traditional orthogonal

134
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transmission scheme, due to overlapping gain.

7.1 Introduction

With emerging of intelligent transportation applications, including traffic management and en-

tertainment, Vehicular Ad Hoc Network (VANET) has been widely considered as a promising

technology [133]. The VANETs not only provide Vehicle-to-vehicle (V2V) communication but

also Vehicle-to-Infrastructure (V2I) communication [134]. Due to the increased in-car mobile

data traffic and ubiquitous mobile access requirements of passengers, the large number of V2I

communications become a challenge for future 5G cellular networks. For example, resource

sharing between the potentially dense distributed vehicles from congested road dramatically

increase the energy and resource consumption of V2I communication. Therefore, energy and

resource efficiency would be the primary goal in the design of VANET-5G networks. Although

there have been some candidate techniques in reducing the radiated power and base station en-

ergy consumption for 5G networks, such as mmWave and Massive MIMO, their applications

to the high-density and fast-moving terminals of VANETs are constrained[135].

In order to improve the energy efficiency of vehicular communications, we propose a

Software-Defined Networking (SDN) enabled 5G-VANET with the capability of adaptive ve-

hicle clustering and beamformed transmission in supporting the aggregated traffic from the

cluster head. Through the separation of data plane and control plane [136], SDN enables the

5G-VANET management and facilitates centralized control over HetNets by providing a global

network view and a unified configuration interface despite of the underlying heterogeneous

networks involved. With its open and reconfigurable interface, SDN provides an enabling plat-

form to apply intelligence and consistent policy for 5G-VANET HetNets. In the proposed

5G-VANET, arriving road traffic will be predicted with the assist of SDN to achieve adaptive

vehicle clustering. Within each vehicle cluster, a cluster head (CH) is selected to aggregate

traffic from other vehicles and communicate with the cellular BS in order to reduce signaling

overhead. A dual CH design is then proposed to guarantee the robustness and seamless trunk

link communication.

The link quality between CHs and base stations would impact the performance of whole
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V2I communications directly. When a large number of vehicles all request a high data rate

at the same time, there will be high capacity demand and pose a huge burden on the trunk-

link. Therefore, enhanced V2I data aggregation is needed to increase the trunk-link capacity or

improve the energy and spectrum efficiency. Non-orthogonal multiple access (NOMA) [137]

techniques have been considered as a promising solution for improving the 5G spectrum effi-

ciency, capacity and network throughput. NOMA allows multiple users to share resources in

a non-orthogonal way, while code domain or power domain multiplexing is applied to distin-

guish different users [138].

However, the fast variation of vehicle position and channel condition makes it difficult for

NOMA to be deployed. Therefore in this chapter, we propose non-orthogonal multiplexed

modulation (NOMM), which aims at increasing the trunk-link capacity of 5G-VANET and

aggregated data traffic effectively. NOMM allows parallel data streams of one user to be mod-

ulated simultaneously and partially overlapped on a group of resource elements through sparse

spreading code. Compared with NOMA, the advantage of NOMM is that multiple data streams

belong to one user instead of multiple different users. This means that different data streams

of NOMM come from the same channel, which would reduce the distortion complexity intro-

duced by time-varying channels. Furthermore, NOMM is proved by theory and simulation that

despite the aforementioned improvement in data aggregation, it is also highly energy efficient.

The remainder of this chapter is organized as follows. Section 7.2 outlines the architecture

of the 5G-VANET integrated network. The system model for NOMM is presented in Section

7.3. Based on the network model, the proposed adaptive vehicle clustering and dual CH design

enabled by SDN are then elaborated in Section 7.4. The energy efficiency for traditional or-

thogonal transmission and proposed NOMM are analyzed in Section 7.5 while the simulation

results and conclusion are drawn in Section 7.6 and 7.7 respectively.
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7.2 SDN Enabled 5G-VANET Integrated Network Architec-

ture

As explained in the last section, energy efficiency is essential for vehicle communication net-

works. When all the vehicles communicate with cellular eNodeBs directly, massive number

of radio link connections are required and eNodeBs have to allocate channel resources to each

vehicle no matter how long they would be stay within the coverage of base station. Therefore,

in order to reduce power consumption and save spectrum resources, a cluster-based VANET-

5G heterogeneous network is introduced in this article. As shown in Fig. 7.1, the overall

network architecture of the proposed SDN enabled 5G-VANET, which consists of a HetNet

environment is designed to support adaptive vehicle clustering and trunk link traffic aggrega-

tion schemes. In our proposed SDN enabled 5G-VANET network, SDN is introduced in order

to enable the coordination and information sharing between heterogeneous networks, i.e., base

stations from different operators as shown in Fig. 1. SDN controller monitors and predicts

the location of vehicles, and then prepare the relevant cellular base stations before the vehicles

arrive to guarantee adaptive and efficient clustering. In Fig. 7.1, we can see that the vehicles

in the cluster get services from eNBs through the cluster head (CH), which reduce signaling

overhead during handover; moreover, communication between vehicles in clusters is through

IEEE 802.11p connection, which also relieves the cellular burden and saves licensed spectrum

resources. The back-up CH (i.e., yellow car in Fig. 7.1) records a copy of signaling message,

i.e., floating car data (FCD) [139] from the existing CH, and prepared for emergencies. In the

scenario that the existing CH leaves normally, back-up CH also works as CH immediately and

a new back-up CH would be selected according to the pre-specified algorithm.

Due to the high data rate of 5G communication, higher channel capacity is required, espe-

cially for large VANET. Therefore in this work, we further propose non-orthogonal multiplexed

modulation (NOMM) on top of the 5G-VANET structure in order to improve the trunk-link ca-

pacity and reduce the average transmit power. The data transmission processing of 5G-VANET

is shown in Fig. 7.2. At the cluster head side, before OFDM signal generation, the aggregated

data are divided into several layers, which are modulated and partially superposed. At the re-

ceiver side, after OFDM demodulation, channel information can be estimated to detect data.
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Figure 7.1: SDN enabled 5G-VANET integrated network architecture.

The specific system model of NOMM is presented in the next section.

7.3 Adaptive Clustering in SDN Enabled 5G-VANET

Due to the high mobility of vehicles and the restrictions in their range of motion, vehicle

clustering is seen as a promising solution in reducing the overhead of cellular networks and

providing better communication quality with a low relative speed among clustered vehicles. In

related studies, authors in [11] provide a multi-layer Cloud-RAN architecture in order to cluster

multi-domain resources for a group of vehicles as well as a single-vehicle. However, detailed
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algorithms are still yet to be designed under the soft-defined heterogeneous vehicular network

architecture. In [140], a dynamic clustering-based mobile gateway management mechanism is

proposed, which considers vehicle mobility and executes the clustering algorithm periodically.

However, how to decide this period still remains as an open problem, and the cluster mainte-

nance also dramatically increase the computing load of the cluster head. With a coexistence of

multiple HetNet infrastructures in the future 5G networks, it is also difficult for a single base

station to predict the arriving traffic and execute clustering algorithms adaptively due to the

limited resources.

In the proposed SDN enabled 5G-VANET, the controller’s global view over the HetNets

and the timely updating of road traffic topology provides a viable solution in addressing the

above challenges. As vehicles usually move fast and APs only have limited coverage, we con-

sider that APs only provide updated information of related vehicles and the clustered vehicles

would communicate with BSs through a selected vehicle, namely, cluster head (CH). Due to

the consistency of moving speed and direction of traveling vehicles, SDN controller will be

able to monitor and predict the location of arriving vehicles using different locations and data

analytics techniques, and then inform the relevant cellular BSs in advance to guarantee adap-

tive and efficient clustering, as shown in Fig. 7.1. Based on the high level “road topology”
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collected from heterogeneous BSs and APs of different infrastructures or operators, the pro-

posed clustering algorithm would be executed only when needed instead of periodically. We

can also define a traffic threshold and take the delay requirement and size of the upcoming

in-vehicle data traffic into consideration when making vehicle clustering decisions.

In Fig. 7.1, vehicles that are moving in two directions are grouped into different clus-

ters. The vehicles that have a cellular interface, i.e., yellow cars in Fig. 7.1, are defined as

mobile gateway candidates as they are able to communicate with cellular networks. A CH

is selected from the mobile gateway candidates and then all other vehicles in the same clus-

ter communicate with BS through the CH. Moreover, communication between CH and other

intra-cluster vehicles could be through different wireless protocols, e.g., IEEE 802.11p, to re-

lieve the cellular burden and save licensed spectrum resources. In order to guarantee seamless

communication, a back-up CH is also selected from the mobile gateway candidates to record

a copy of the signaling message, namely, floating car data (FCD), from the existing CH and

be prepared for emergencies. Note that in Fig. 7.1, the beamforming technique is applied to

focus the cellular signal at areas with concentrated vehicles. The vehicle cluster colored blue

illustrates the uplink traffic collection procedure, while the cluster colored orange shows the

downlink traffic distribution.

Next, we will elaborate on the SDN enabled adaptive vehicle clustering mechanism in 5G-

VANET. Specifically, SDN enabled adaptive clustering is realized under the collaboration of

cellular BS and mobile gateway candidates. There are three parameters utilized during the

clustering procedure: Angle of arrival (AoA) (θ), received signal strength (RSS), and inter-

vehicular distance (IVD). Below, the adaptive clustering procedure is divided into four steps:

1) Base station initialized grouping: With the road traffic topology provided by the SDN

controller, the BSs are aware of the arriving traffic and prepare themselves in advance. Once

the cell is overload and clustering conditions are met, the vehicles are roughly classified into

groups according to similar AoA and RSS, and the member information of each group is sent

back to the mobile gateway candidates in the group.

Assume that at BS side, the received signals from vehicles are classified into N equally

divided transmission angles of 360/N degrees, and the speed limit of the road is around VMAX.

We can define different vehicle groups by the combination of different transmission angles and
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RS S . Each group is then characterized by θx − θy ≤
360
N and RS S x − RS S y ≤ 1 − e−

∆V
a , where

x and y represents two vehicles, ∆V is the speed difference of two vehicles, and a is a constant

that defines the rate of variation of the 5G signal strength when the mobility speed increase or

decrease by a unit [140].

2) Vehicle clusters formation: After receiving the vehicle grouping list from the base sta-

tion, inter-vehicular distance (IVD) would be used by the mobile gateway candidates to refine

the group and form the final cluster. As the vehicle position information measured or pre-

dicted by base stations might not be accurate, the mobile gateway candidates use broadcasting

message (For example, IEEE 802.11p has a transmission range of around 250m) to verify the

neighbor vehicles and update the group member list. The inter-vehicle distance of the final

clusters is constrained by d ≤ Rt · (1 − ε), where Rt denotes the maximum transmission range

of IEEE 802.11p protocol and ε reflects the wireless channel fading conditions [141].

3) Dual cluster head selection: After the formation of the clusters, a CH would be selected

in each cluster in order to effectively relay the vehicle-related traffic to cellular networks. As-

sume that there are K vehicles in a cluster, the CH selection could be defined by a linear

optimization problem [141]. The objective of the CH selection is to maximize the throughput

rate of the trunk link under the constraint of channel quality and moving speed of the vehicle.

To be specific, the more closer the vehicle speed is to the average cluster speed, the longer

this CH candidate would be staying in this cluster, and the better it can serve as a cluster head.

Similarly, the better the channel quality between CH and BS, the more reliable the trunk link

transmission would be.

Note that the selected CH collects the status (position, velocity and heading direction) of

vehicles, i.e., floating car data (FCD) and reports to the BSs. This kind of data is characterized

as high frequency and small data size, which occupies cellular network resources frequently

and impair other applications. Through the clustering mechanism, FCD data is compressed and

only transmits through the CH. However, this design increases the vulnerability of the system

and poses a potential risk that the CH could be a single point of failure.

For this reason, we further propose a dual CH design in each cluster for SDN enabled

5G-VANET to improve network robustness and guarantee seamless communication during

CH handover. In this dual CH scheme, a backup CH is also selected according to the CH
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selection criteria. The existing CH always sends a copy of FCD data to the back-up CH,

as shown in Fig. 7.3. Once there is something wrong with the CH, such as an accident or

unpredictable emergencies, back-up CH could be prepared in advance and thus is able to take

over the responsibility seamlessly. Moreover, the back-up CH also works as a smooth transition

during a handover procedure to a new CH. As a result, under the scenario that the existing CH

leaves cluster normally, the back-up CH becomes CH immediately and a new back-up CH

would be selected, as we can see in Fig. 7.3. The dual CH design is especially beneficial for

5G latency-stringent applications with a reduced communication interruption probability.

Vehicles within a cluster 

communicate with 

BS through CH

CH lost?

Backup CH 

works as new CH

Yes

Select new CH

Transmitting the 

FCD data to new 

backup CH

Transmitting the 

aggregated 

traffic to BS

CHCH

NoSend a copy 

of FCD data 

to backup CH

Figure 7.3: The dual cluster head selection scheme.

4) Cluster maintenance and adaptation: Last but not the least, the clusters should be

maintained and updated due to frequent road traffic changes in VANET. In the proposed SDN

enabled adaptive clustering scheme, the base station would only inform the corresponding CH

if the new arriving vehicles will stay in the CH transmission area for a time period larger than

a threshold Tp. The predicted inhabitant time (PIT) is calculated using the angle of the new

arriving vehicle to the center of the cluster and the speed of the arriving vehicle [141]. After-

ward, the CH would then be prepared for the new traffic and execute the clustering algorithm
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only when needed.

On the other hand, if the aggregated amount of traffic exceeds the trunk-link capacity, the

communication quality would deteriorate and outage probability will increase. Under this sit-

uation, some vehicles with high traffic requirements should be removed from the cluster to

guarantee the communication Quality of Service (QoS). The cluster maintenance and adap-

tation should be monitored as an on-going procedure in terms of the communication quality

index, e.g., outage probability.

7.4 NOMM System Model

NOMM is proposed as a novel transmission method in SDN enabled VANET to improve the

capcity of trunk-link between CH and MBS. As shown in Fig. 7.4, an aggregated binary data

stream is first split into K parallel binary data streams 1 K. After forward error correction

(FEC) encoding, each layer k of the output is modulated into a set of QAM symbols xk ∈

χ =
{
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√
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+ i
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2
, 1
√

2
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2
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2
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√

2
,
}
. Next, the modulated symbols of each layer

are spread on to N orthogonal resource blocks, i.e., time slot or frequency sub-band, through

a sparse sequence
(
s1,k, · · · , sN,k

)
with

∣∣∣sn,k

∣∣∣ ∈ {0, 1} . Notice that only part of the resource

blocks carry information while the others don’t [142]. Finally, spread data of K layers are

partially overlapped on N resource blocks through a sparse signature matrix to obtain NOMM

codewords cn:



c1

c2
...

c3


=



s1,1 s1,2 · · · s1,K

s2,1 s2,1 · · · s2,K
...

...
. . .

...

sN,1 sN,2 · · · sN,K





x1

x2
...

xK


(7.1)

In this way, NOMM codewords are obtained. Each layer has its own pre-designed sparse

codebook and the zeros in different codebooks reduce the collision between layers.

After the Additive White Gaussian Noise (AWGN) channel, the received signal at eNodeB

can be derived as:
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Figure 7.4: Block diagram of a NOMM modulator.

(y1 · · · yN)T = h (c1 · · · cN)T + (n1 · · · nN)T , (7.2)

where h denotes the channel fading coefficient between users and eNodeBs and n is a complex

Gaussian noise vector with the normalized variance and zero mean. In order to recover the

received signal, maximum likelihood (ML) detection is adopted:

ĉ = argmax
c

Pr(y | c) = argmin
c
‖y − hc‖ (7.3)

Here y is the received signal, h is the estimated channel gain and c represents all possible

NOMM codewords. There is 4k the number of different NOMM codewords and we assume

that all codewords are selected with equal probability. The principle behind the ML detection

is to find the codeword that has minimum distance to the received signal.
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7.5 Energy Efficiency Analysis

In previous related works, energy efficiency (EE) is described as spectrum efficiency over the

total power consumption, however, the transmission errors in the practical scenarios are ig-

nored. Therefore in this chapter, we define EE as the successfully received bits over power

consumption [137], which can be expressed as:

EE =
bW(1 − ξ)

P
(7.4)

For traditional orthogonal transmission with M-QAM modulation, b = log2M denotes the

bits number of per symbol with M modulation order and ξ is the corresponding symbol error

rate (SER). For NOMM modulation, b = K log2M denotes the bits number per codeword with

M modulation order and K layers. ξ is the corresponding word error rate(WER).

Here P denotes the total power consumption for whole transmission. However, it is diffi-

cult to estimate the practical power consumption due to different hardware design. Therefore,

system power consumption is estimated by using a simplified model:

P = WPsta + Pt + PBS , (7.5)

where W is the overall transmission bandwidth and Psta represents the static power consump-

tion. The PBS and Pt are the power consumption at transmitter and receive side, respectively.

In fact, how to get the ξ is the key problem for EE analysis, and we will discuss it under two

scenarios: the proposed NOMM scheme and traditional orthogonal transmission (OT) scheme.

7.5.1 EE for NOMM

The WER upper bound of NOMM for ML detection can be obtained through distance enu-

merator function and the code distance. Therefore these two parameters need to be defined

first.

Definition 1: Distance between two SCDMA code words c c′ ∈ C is
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d(c, c
′

) =
∥∥∥c − c

′
∥∥∥ , (7.6)

where C is the NOMM code set.

Definition 2: Distance enumerator function for NOMM code with matrix S is used to cal-

culate an average distance spectrum for all codewords in the code set, the mathematical expres-

sion is:

A(S ,Z) =
1
|C|

∑
c

∑
c′ ,c,c′

Zd(C,C′ )) (7.7)

Here Z is a dummy variable and |C| = MK is the number of all possible code set with K

layers and M modulation order.

According to distance enumerator function and code distance, the WER ξNOMM of NOMM

using ML Detection is upper bounded by

Union Bound [142] :

ξNOMM ≤ A(0) +
∑
d>0

A(d)Q(
d
√

2N0
), (7.8)

where A(d) represents the average number of NOMM codeword pairs with distance d.

Therefore, re-investigating the EE of NOMM with the respect to the WER is :

EENOMM ≥
W K

N log2M

(
1 − A(0) −

∑
d>0 A(d)Q

(
d
√

2N0

))
WPsta + Pt + PBS

(7.9)

From the equation, it can be seen that the EE performance is directly influenced by two

factors: the total layer numbers K, the total orthogonal RB N and the NOMM distance d. In-

deed, the throughput is increased with higher layers but meanwhile, the WER is also increased

due to the inter-layer interference. Therefore, layer selection is applied to find the trade-off
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between throughput and WER. The code distance depends on the signature matrix design and

so we need to design NOMM code carefully in order to improve the EE performance.

7.5.2 EE for Traditional Orthogonal Transmission

In the orthogonal transmission (OT) scheme, M-QAM modulation is adopted and the modula-

tion symbols are allocated to orthogonal resource block withot and overlap. The SER of OT is

equal to the SER of M-QAM. In [143], the SER ξOT of lth user with M-QAM modulations:

ξOT = 2
(
1 −

1
√

2b

)
Q


√

3
2b − 1

·
εav

N0

 (7.10)

Here εav = |hk|
2 ptr represents the transmitted power for per received symbol. Since,

Q(x) =

∫ ∞

x

1
√

2π
exp(−

y2

2
)dy ≤

1
2

exp(−
x2

2
) (7.11)

The upper bound of SER is

ξOT ≤

(
1 −

1
√

2b

)
exp

(
−

3εav

2(2b − 1)N0

)
(7.12)

Finally, substituting (12) into (4), one can get the EE of traditional M-QAM:

EEOT ≥
WlogM

2

(
1 −

(
1 − 1

√
2b

)
exp

(
−

3εav
2(2b−1)N0

))
WPsta + Pt + PBS

(7.13)

Simply by comparing (13) and (9), it is hard to find out which modulation method provides

better EE. Therefore simulation is also set up and the performance is given in Section V.
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7.6 Simulations

7.6.1 NOMM Signature Design and Selection for Simulation

According to the analysis in section IV, the EE performance of NOMM is directly influenced

by the code distance d. Therefore, NOMM signature design and selection plays an important

role in EE performance simulation of NOMM. According to[142], there are two important

factors for NOMM signature design: the minimum euclidean distance and the girth. The larger

minimum euclidean distance, the better detection performance would be:

Pr
(∥∥∥y − hkc

′
∥∥∥ < ‖y − hkc‖

)
= Q

 |hk|
∥∥∥c − c′

∥∥∥
2N0

 (7.14)

∥∥∥c − c
′
∥∥∥ ↑⇒ Pr

(
c→ c

′
)
↓ (7.15)

On the other hand, girth is the minimum cycle length of the factor graph. The shorter the

minimum cycle length, the better the detection performance. The principle of optimal signature

design for a given factor graph is to find a trade-off between the minimum Euclidean distance

and the minimum cycle length:

S opt = argmaxdmin (S ) (7.16)

According this principle, some optimal signature matrix examples are given below:

Example 1 (An Optimal 8-Layers, 4 Resources NOMM Code):

S opt
4,8 =



1 0 eiθ2 0 eiθ4 0 0 0

0 eiθ1 0 eiθ3 0 eiθ5 0 0

0 0 eiθ2 0 0 eiθ3,6 eiθ6 0

0 0 0 eiθ3 eiθ4 0 0 eiθ7


(7.17)
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Where (θ1, · · · , θ7) = (0.2618π, 0.1435π, 0.1279π, 0.2297π, 0.3505π, 0.3935π, 0.361π) and θ3,6 =

0.2269π. Its the minimum code distance d is 0.83 and load ratio l is 2.

Example 2 (An Optimal 6-Layers, 4 Resources NOMM Code):

S opt
4,6 =



1 eiθ2 eiθ3 0 0 0

1 0 0 eiθ4 eiθ5 0

0 eiθ2 0 eiθ3,4 eiθ6

0 0 eiθ3 0 eiθ4,5 eiθ4,6


(7.18)

Where (θ2, · · · , θ6) = (0.1431π, 0.2021π, 0.3127π, 0.3765π, 0.2667π), θ3,4 = 0.5736π, θ4,5 =

0.3935π and θ4,6 = 0.3078π. Its minimum code distance d is 1.1658 and load ratio l is 1.5.

Example 3 (An Optimal 6-Layers, 4 Resources NOMM Code):

S opt
4,6 =



1 0 e
iπ
6 0 0 e

iπ
6

0 1 0 e
iπ
6 e

iπ
3 0

0 0 e
iπ
6 0 e

iπ
3 0

0 0 0 e
iπ
6 0 −1


(7.19)

The minimum code distance d is 1.2679 and load ratio l is 1.5. Compared with example 2, its

minimum code distance is larger and so the performance of ML detection is better.

Example 4(An Optimal 8-Layers, 6 Resources NOMM Code:

S opt
6,8 =



1 0 e
iπ
6 0 0 0 0 e

iπ
6

0 e
iπ
3 0 e

iπ
6 0 0 e

iπ
6 0

0 0 e
iπ
6 0 e

iπ
3 0 0 0

0 0 0 e
iπ
6 0 e

iπ
3 0 0

0 0 0 0 e
iπ
3 0 e

iπ
6 0

0 0 0 0 0 e
iπ
3 0 e

iπ
6


(7.20)

Its minimum code distance d is 1.412 and load ratio l is 1.33.
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7.6.2 Simulation Results

In this part, the EE performance of the NOMM and 4-QAM based integrated 5G V2I com-

munication are evaluated using MATLAB simulation. For NOMM scheme, QPSK modulation

combined with sparse spreading was used for each layer and ML detection was applied at the

receivers. Since 4-QAM and QPSK have the same modulation order, 4-QAM is selected in

orthogonal transmission (OT) to compare with NOMM. It is assumed that there are 10 vehi-

cles randomly distributed within a cluster and the traffic flow aggregated at the cluster head

is 100 kbps. Link level simulation is implemented including channel coding, modulation and

demodulation. Monte Carlo simulation is also given in order to verify the theoretical analysis.
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Figure 7.5: WER comparison among NOMM Example 2, 3 and 4.

Fig. 7.5 provides the WER performance comparison of the optimal 6-layers-4-resource
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and 8-layers-6-resource NOMM codes, defined by Example 2, 3 and 4. The solid curves are

simulation results and the dashed curves are the union bounds. It is also clear that the code

design from Example 4 has the best WER performance since it has the largest code distance

(d=1.41). Although the Example 2 and Example 3 have the same overlap factor, the code

obtained from Example 3 has more than 1 dB better performance gain over the optimal code

obtained in Example 2, due to the larger minimum code distance. Specifically, when the Eb
N0

,

the simulated WER of Example 4, 2 and 1 are 5 × 10−6, 3 × 10−5 and 2 × 10−4, respectively.

The simulation results illustrate that the WEE mainly impacted by the code distance, which is

consistent with the theory analysis in Eq. (7.8).
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Figure 7.6: EE comparison among NOMM examples and orthogonal transmission.

Fig. 7.6 illustrates the EE curves (dashed lines) and the union bounds (solid lines) for

K-Layers N-resources NOMM codes, obtained in Example 1,2,3,4, and orthogonal transmis-

sion with 4-QAM under ML detection. From the simulation results, we can see that: 1) The
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EE performance of proposed NOMM increased around 1.3-2 times than that of orthogonal

transmission, due to a higher load ratio. 2) All the simulations coincide well with their union

bound most of the time, except a little mismatch at the low Eb
N0

caused by noise. 3) The EE

performance is mainly influenced by the overlap ratio l and the NOMM distance d. Indeed,

the throughput increased with a higher overlap rate but meanwhile, the WER is also increased

due to the larger inter-layer interference. Therefore, overlap ratio selection should be careful

to find the trade-off between throughput and WER.

7.7 Chapter Summary

In order to support the increasing vehicle traffic and improve the management, an SDN enabled

5G-VANET is proposed in this chapter. SDN can provide a global view to adaptively cluster

vehicles only when needed. In order to reduce the signaling overhead, one vehicle in each

cluster is selected as a cell head to support aggregated traffic and another one vehicle is selected

as a backup to guarantee seamless communication. In order to meet the increased channel

capacity demand, NOMM is further proposed for aggregated V2I data transmission in this

integrated network. NOMM splits data into several layers, which are then multiplexed and

overlapped on some orthogonal resources after modulation and sparse spreading. Simulation

results show that the energy efficiency performance of proposed NOMM is 1.3-2 times than

that of traditional orthogonal transmission scheme, due to overlapping gain. Therefore, it can

be used as a promising energy-efficient approach for 5G-VANET network.
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Conclusion and Future Work

8.1 Conclusion

Densified multi-tier architectures bring new challenges, especially on resource management

and security provisioning, due to the lack of common interface and consistent policy across

HetNets. In this thesis, we aim to address the technical challenges through adaptively operat-

ing traffic-aware virtual small cells as well as intelligently utilizing the multi-dimensional radio

resource to achieve massive capacity with extremely high energy efficiencies. The contribu-

tions that have been made in this thesis and the conclusions drawn from these contributions can

be summarized as follows:

In Chapter 3, a novel virtual small cell operation is proposed as a flexible and cost-effective

scheme to overcome the deployment challenges of traditional small cells. VSCs have formed

adaptively according to dynamic traffic conditions, and one user device with better power and

channel conditions is selected as the CH to aggregate the intra-cell traffic in the unlicensed

band and communicate directly with the MBS in the cellular band. A K-means clustering

based virtual small cell formation scheme is proposed, and the protocol conversion for data

transmission across an unlicensed and licensed band at CHs is designed. Based on the pro-

posed virtual small cell network architecture, adaptive hybrid beamforming is also designed to

support the high traffic of the front-haul link. The objective of beamforming design is to mini-

mize the total power while guaranteeing the throughput rate requirement of users and transmit

power constraints at the MBS. This non-convex problem can be translated into a convex prob-

153
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lem by using modified semi-definite relaxation. To reduce the optimization complexity, beam-

forming direction can be selected for equal power allocation first. After this step, the original

optimization problem can be reformulated as a simple convex optimization problem of power

allocation. The optimal and sub-optimal solutions of beamforming design are analyzed. Both

mathematical and simulation results demonstrate that compared with traditional small cells,

the proposed VSCs with the adaptive HBF scheme can improve 55% energy efficiency with

better energy-focusing and less inter-cell interference.

To achieve an intelligent traffic-aware network with low latency, a long short term memory

(LSTM) neural network-based hotspot prediction is proposed in VSC based ultra-dense HetNet

for 5G and beyond. Specifically, the one LSTM neural network is unitized to predict the UE

numbers of every grid due to its capability of learning long-term dependencies. By analyzing

the predicted network-level user distribution, the hotspot can be detected to form the VSC in

advance. By using a real data set of telecommunications, the simulation results show that,

compared with several LSTM based methods and ConvLSTM, one LSTM based method can

predict the user distribution with high accuracy by using a simple network architecture. Our

simulation results also demonstrate that compared with the scenario of VSC relying on tradi-

tional clustering, the proposed VSC operation assisted with the hotspot prediction can achieve

higher power efficiency as well as lower processing latency.

In Chapter 5, we proposed a multi-dimensional intelligent multiple access (MD-IMA) to

optimize the network performance while minimizing receiver complexity (RC). By fully uti-

lizing the closed-loop situation-awareness discovery through real-time data analytics, the pro-

posed scheme will explore the dynamic and fast adaptation of multi-domain MA schemes. The

MD-IMA design is formulated as a MOO problem to maximizing I-QoSE while minimizing

the non-orthogonality (NO) under constraints of maximum power consumption and the QoS

of each user. In order to reduce the computational complexity at devices, we have proposed

an efficient method to jointly optimize the user clustering, channel assignment and power allo-

cation in NOMA systems by exploiting the matching algorithm along with the optimal power

allocation. The simulation results have shown that the proposed the achievable I-QoSE gain of

MD-IMA over NOMA and OMA are approximate 15% and 18%, respectively.

In order to reduce the computational complexity caused by traditional optimization algo-
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rithms, model-free deep reinforce learning (DRL) enabled resource allocation method is pro-

posed in chapter 6. In the proposed two-step scheme, one-LSTM neural network is adopted

to predict the overall network requirements (I-QoSE) and then DRL based power allocation

algorithms are proposed to maximize the predicted I-QoSE under several practical constraints.

Both valued-based DRL algorithm, such as DQN, and the actor-critic based DDPG algorithm

are adopted to do power alloctaion for MD-IMA system. The simulation results illustrate that

DDPG performs the best in terms of both I-QoSE performance and convergence because it can

eliminate quantization error. Specifically, the DDPG based algorithm can improve around 17%

and 35% WEE than that of WMMSE and FP, respectively. The time cost of DRL based method

is 10 times and 100 times faster than that of FP and WMMSE.

To evaluate the resource management schemes in a particular network, the traffic offloading

performance in 5G-VANET was studied in Chapter 7. In this chapter, we propose to integrate

SDN into 5G-VANET and thus provide a programmable platform in addressing the challenges

of dynamic vehicle communications. Through the proposed SDN-enabled adaptive vehicle

clustering and dual cluster head scheme, signaling overhead of VANET is significantly reduced

along with improved communication quality. To accommodate the varying traffic over the

trunk link and reduce the latency during traffic distribution, adaptive trunk link transmission

scheme and cooperative communication of mobile gateway candidates were proposed for the

aggregated V2I traffic transmission in this integrated network. The simulation results show

that the energy efficiency of proposed NOMM is 1.3-2 times than that of traditional orthogonal

transmission scheme by carefully designing the sparse code of NOMM.

In summary, three new network architectures are proposed in this thesis to adaptively form

virtual small cell, multiplex UEs and cluster vehicle networks based on the deep-learning en-

abled network awareness. Furthermore, both optimization and deep learning methods are used

to do resource allocation in these networks. With more efforts on user QoS and application-

specific performance enhancement, 5G and beyond networks are believed to be adaptable to

user demand and thus improve everyday life.
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8.2 Future Work

The contributions presented in this dissertation for 5G ultra-dense HetNets can be extended or

used to explore new research topics. In the future, some aspects of the proposed algorithms are

also worthwhile to be further investigated. Some potential research works are summarized as

follows:

8.2.1 Cellular Network Assisted Flying Ad Hoc Network

One target of the next-generation network architecture is to expand the breadth and depth of

communication coverage. Over the past decades, the unmanned aerial vehicle (UAV) has re-

ceived unprecedented attention and huge worldwide interests. It exhibits outstanding perfor-

mance and potential military and civilian applications, including surveillance, reconnaissance,

source seeking, target detection and disaster sensing [144]. Therefore, a UAV-based wireless

network is a potential integral component of the next-generation mobile communication sys-

tem. Considering the limitations of a single UAV, multiple UAVs are grouped as the flying ad

hoc network (FANET) to fulfill the tasks. The multiple UAVs relying on sophisticated sen-

sors can be coordinated by the ground station (GS) [145]. Besides, a huge amount of research

has been done in the communication of UAV networks. Although the extensive experimen-

tal studies confirm that Wi-Fi may indeed be used in communication between UAVs and GS,

several of its features would be suboptimal in aerial communication scenarios. In fact, the

features of Wi-Fi were designed for indoor wireless channels, which are characterized by rich

multipath scattering, whereas the air-to-ground (A2G) wireless channel is characterized by

sparse multipath scattering [146]. Furthermore, the A2G channel would have a strong line-of-

sight (LoS) component, whereas the indoor channel will not have a Los component in general

[147]. Therefore, compared with the Wi-Fi, the cellular network is more suitable to support

A2G communication since it has various outdoor wireless channel models. With respect to

the communication needs, the request for services including video live streaming, geo-location

or voice, issuing more and more stringent demands for communications resources. From this

perspective, telecommunication, such as 5G, is also a good technology to support the commu-

nication between UAVs and GS, thanks to its capability of providing high data rates and coping
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with a large number of users [148]. Furthermore, the key technologies of telecommunication,

including Massive MIMO, beamforming and OFDM, can be adapted to further improve the

quality of service (QoS) for the A2G communication.

However, if each UAV of the FANET is allowed to set up a direct communication link with

the GS, they would lead to low spectral efficiency and severe interference. Therefore, similar

to the basic idea of VSC, we can propose a cellular network assisted FANET (CNA-FANET).

Specifically, the FANETs are formed adaptively under the coordination of cellular temporary

base station (TBS) when needed. The TBS can be regarded as the GS. In each FANET, some

of the superior drones, who experience good channels with the GS and have sufficient power,

should be chosen as the head candidates and serve as the head in turn. The head then aggregates

intra-FANET traffic in the unlicensed band, such as WiFi, and relays the combined traffic to

a TBS in the cellular band. Using massive MIMO techniques, the large scale antenna array

is adaptively employed to form a highly directional beam to cover FANET. With spatially

confined transmission using cellular band radio resources, high throughput can be achieved on

the trunk link between the TBS and the UAV head.

Despite the many promising benefits, cellular network assisted FANET is also faced with

several new design challenges. First, as a new scenario for communication systems, UAV

moves in the three-dimensional (3D) space. Different from the normal channel models in ter-

restrial systems, the flight parameters such as height and moving directions have important

effects on the statistical characteristics of channel [149]. Therefore, we need to build a 3D

geometry-based UAV-MIMO channel models for A2G communication environments, which is

used to design the proposed CNA-FANET and evaluate the performance. Besides, the high

mobility environment of UAVs generally results in highly dynamic network topologies [150].

It means the coverage and location of FANETs are not fixed. Therefore, we focus this study on

how to realize the adaptive beamforming to keep up with the changes of the FANET. Another

main challenge stems from the size, weight, and power (SWAP) constraints of UAVs, which

could limit their communication, computation, and endurance capabilities [151]. To tackle

such issues, energy-aware FANET deployment and operation mechanisms are needed for in-

telligent energy usage and replenishment. An optimal beamforming design scheme is proposed

to minimize the total power consumption under constraints of maximum transmit power and
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required throughput rate of each UAV. Furthermore, the capacity requirement for the data links

critically depends on the applications, possibly ranging from several Kbps to dozens of Gbps

[?]. Therefore, to ensure the capacity of the trunk link between the UAV head and BS, a Non-

orthogonal Multiplexed Modulation (NOMM) scheme is proposed in this project to effectively

aggregate the intra-FANET traffic and further improve energy efficiency.

The future long-term goal of this topic is to design an intelligent and energy-aware commu-

nication scheme and operation mechanisms for CNA-FANET. Based on the above discussions,

the research directions that need to be seriously considered as follows:

• Modelling a 3D UAV-MIMO channel models for A2G communication environments to

design proposed CNA-FANET and evaluate the performance;

• Designing optimal beamforming to minimize power consumption under throughput re-

quirements;

• Developing beamforming tracking technique to deal with the rapid channel variation;

• Proposing a novel modulation scheme, named NOMM, to further improve the capacity

of the trunk link between the UAV head and BS. The basic networking architecture of

the proposed CNA-FANET, main channel characteristics and design considerations will

be presented in the following sections.

8.2.2 Distributed AI Enabled Resource Management

In our thesis, the DRL based resource allocation methods are proposed in Chapter 6. In this

topic, only one macro cell is considered and machine learning is run on the cloud platform.

Under this framework, the collected information, such as the channel state information, loca-

tion and throughput rate, are send to the cloud and then DRL allocates the resource for the

whole networks. However, several drawbacks are introduced by such centralized DRL enabled

resource management framework, especially for the multi-cell situations:

• Space Explosion: The size of the DRL input and output is proportional to the number of

pixels, and training such a DRL is very difficult because the state action space increases
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exponentially with the input and output size. In addition, the search efficiency in high-

dimensional space is low, so effective resource allocation may be impractical.

• Latency Pressure: The central agent needs all the information of the current time com-

munication network to train the DRL. When the number of cells is large, the sending

information to the central agent and the broadcast distribution scheme to each trans-

mitter will introduce a large waiting time. However, the performance of autonomous

applications (such as real-time navigation, collision avoidance and queuing) relies heav-

ily on the ability to communicate with extremely low errors and delays. In this regard,

for efficient radio resource management technologies, consideration should be given to

achieving ultra-reliable low-latency communication (URLLC).

Therefore, in order to speed up the learning speed and reduce the delay, the resource man-

agement framework supported by distributed AI will be developed in the future network. The

intelligent decision-making in this framework is made at the edge. For example, the power

distribution scheme of MD-IMA is decentralized, the transmitter of each link is regarded as an

edge device, and all AIs located at the edge of the communication network work in parallel

and distributed. In addition, in order to obtain a global view, a model can be trained at the edge

based on local sample patterns and sent to a centralized cloud for model averaging.
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