
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

2-27-2020 2:00 PM 

A Micromechanics-based Multiscale Approach toward A Micromechanics-based Multiscale Approach toward 

Continental Deformation, with Application to Ductile High-Strain Continental Deformation, with Application to Ductile High-Strain 

Zones and Quartz Flow Laws Zones and Quartz Flow Laws 

Xi Lu, The University of Western Ontario 

Supervisor: Jiang, Dazhi, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Geology 

© Xi Lu 2020 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Geology Commons, and the Tectonics and Structure Commons 

Recommended Citation Recommended Citation 
Lu, Xi, "A Micromechanics-based Multiscale Approach toward Continental Deformation, with Application 
to Ductile High-Strain Zones and Quartz Flow Laws" (2020). Electronic Thesis and Dissertation 
Repository. 6965. 
https://ir.lib.uwo.ca/etd/6965 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=ir.lib.uwo.ca%2Fetd%2F6965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/164?utm_source=ir.lib.uwo.ca%2Fetd%2F6965&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6965?utm_source=ir.lib.uwo.ca%2Fetd%2F6965&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ii 

 

Abstract 
Earth’s lithosphere may be regarded as a composite material made of rheologically 

heterogeneous elements. The presence of these heterogeneous elements causes flow 

partitioning, making the deformation of Earth’s lithosphere heterogeneous on all observation 

scales. Understanding the multiscale heterogeneous deformation and the overall rheology of 

the lithosphere is very important in structural geology and tectonics. The overall rheology of 

Earth’s lithosphere on a given observation scale must be obtained from the properties of all 

constituents and may evolve during the deformation due to the fabric development. Both the 

problem of flow partitioning and characterization of the overall rheology are closely related 

and require a fully mechanical multiscale approach.  

This thesis refines a micromechanics-based multiscale modeling approach called the self-

consistent MultiOrder Power Law Approach (MOPLA). MOPLA treats the heterogeneous 

rock mass as a continuum of rheologically distinct elements. The rheological properties and 

the mechanical fields of the constituent elements and those of the composite material are 

computed by solving partitioning and homogenization equations self-consistently. The 

algorithm of MOPLA has been refined and implemented in MATLAB for high-performance 

computing. The micromechanical approach is used to investigate the deformation of ductile 

high-strain zones, advancing previous work on this subject to a full mechanical level. 

This thesis considers a ductile high-strain zone as a flat heterogeneous inclusion embedded in 

the ductile lithosphere subjected to a tectonic deformation due to remote plate motion. The 

kinematic and the mechanical fields inside and outside the high-strain zone, including the 

finite strain accumulation in there, are solved by partitioning equations. The overall rheology 

of the high-strain zone is obtained by means of a self-consistent homogenization scheme.   

Understanding the continental rheology requires an accurate quartz dislocation creep flow 

law. Despite decades of experimental studies, there are considerable discrepancies in quartz 

flow law parameters. This thesis proposes that the discrepancies could be explained by 

considering both the pressure effect on the activation enthalpy and the slip system 

dependence of the stress exponent. Two distinct dislocation creep flow laws corresponding to 
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two dominant slip systems are determined based on the current dataset of the creep 

experiments on quartz samples. 
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Lay Summary  
The Earth is a dynamic planet, and various parts of Earth interact. In response to the 

application of the deforming forces, Earth’s lithosphere deforms by frictional slip along 

preexisting faults near the surface; at greater depth, it deforms predominantly by crystalline 

plasticity, leaving abundant geological records, like fabrics and structures during the 

geological history. Structural geology deals with the fabrics and structures from a regional to 

a submicroscopic scale to reconstruct the lithospheric deformation process and understand 

the mechanical properties (rheology) of the rocks in the lithosphere. 

Rock masses in Earth’s lithosphere are composed of many constituent elements, having 

distinct rheological properties. When the lithosphere is subjected to tectonic deformation, the 

mechanical and kinematic fields vary across the rheologically distinct elements because of 

the variations in rheology, leaving various fabrics and structures. The small-scale fabrics and 

structures can only relate to the relevant scale fields but not to the tectonic scale deformation 

process. In order to relate the small-scale features to the tectonic deformation, a multiscale 

approach is required. 

On the other hand, as Earth’s lithosphere is composed of many rheologically distinct 

elements, the overall rheology of the lithosphere must be obtained from the properties of all 

constituents. This process requires the knowledge of the rheological properties of all 

constituents, which are mainly based on high-temperature and high-pressure creep 

experiments on natural rocks or synthetic mineral aggregates, and a fully mechanical 

multiscale approach to help us obtain the overall rheology. 

In fact, the multiscale deformation in Earth’s lithosphere and the variation and evolution of 

the lithosphere rheology are closely related. Both require a fully mechanical multiscale 

approach combined with the observations from natural rocks and experiments. Recently a 

micromechanics-based self-consistent MultiOrder Power Law Approach (MOPLA) has been 

proposed to address the multiscale deformation in Earth’s lithosphere and simulate the 

mechanical behavior of the lithosphere. This thesis applied this fully mechanical multiscale 

approach together with the high-quality data of creep experiments on wet quartzites and the 

geological records in natural rocks to investigate the multiscale deformation in Earth’s 

lithosphere and the continental rheology. 
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Chapter 1  

1 General Introduction and Thesis Outline 
 Introduction 

The Earth is a dynamic planet. Various parts of Earth interact, producing earthquakes, 

volcanic eruptions and mountain building processes, etc. The rocks in Earth’s lithosphere 

respond to the application of deforming forces, leaving a great number of geological 

records, like fabrics and structures, during the geologic history (e.g., Hobbs et al., 1976; 

Twiss and Moores, 1992). Structural geology and tectonics deal with the fabrics and 

structures spanning a wide range of characteristic lengths, from crystal lattice spacing to 

the size of lithospheric plates, to unravel the processes of the lithospheric deformation 

(e.g., Hobbs et al., 1976; Twiss and Moores, 1992; Passchier and Trouw, 2005). 

However, our direct field observations are always limited on the most easily accessible 

scales, typically from outcrops to hand samples and under microscopes. There is a 

significant intrinsic scale gap between the direct field observations and the tectonic 

processes across plate boundaries or in a mountain belt. Since Ramsay (1967), the 

Continuum Mechanics approach has been commonly used to understand the fabrics and 

structures with limited range of characteristic length scales and directly relate them to 

tectonic processes (e.g., Hobbs et al., 1976; Twiss and Moores, 1992; Pollard and 

Fletcher, 2005). Over the past five decades, a large number of theoretical models based 

on the classic Continuum Mechanics have been developed for a lot of specific structures 

(see a review in Jiang, 2014): the single-layer and multilayer folding theories (Johnson 

and Fletcher, 1994; Schmalholz and Podladchikov, 2000; Hudleston and Treagus, 2010; 

Schmalholz and Schmid, 2012); theories for the formation of pinch-and-swell structures 

(Smith,1977; Schmalholz et al., 2008; Schmalholz and Fletcher, 2011); the 

geometrical/kinematic models for small ductile shear zones (Ramsay and Graham, 1970; 

Ramberg, 1975; see a review in Davis and Titus, 2011) and the mechanical model of 

Robin and Cruden (1994) for the tabular deformation zone; the Taylor-Bishop-Hill model 

(Lister and Paterson, 1979; Lister and Hobbs, 1980) and the viscoplastic self-consistent 

(VPSC) model (Molinari et al., 1987; Lebensohn and Tome, 1993) for the development 

of the crystallographic preferred orientation (CPO) fabrics in crystalline rocks. However, 
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each of the existing models can only deal with a specific structure with a certain 

characteristic length scale, because the classic Continuum Mechanics approach does not 

contain parameters with length scales to capture different characteristic scales. Rock 

masses in Earth’s lithosphere are composed of a large number of rheologically distinct 

elements over a wide range of characteristics of lengths. The presence of the 

rheologically distinct elements in Earth’s lithosphere commonly results in significant 

flow field partitioning (Lister and Williams, 1983). The partitioned stresses and strain 

rates vary across the heterogeneous elements, causing deformation pattern variations 

among heterogeneous elements (e.g., Lister and Williams, 1983; Ishii, 1992; Jiang, 1994 

a, b; Jiang and White, 1995; Jiang and Williams, 1999; Hudleston, 1999; Goodwin and 

Tikoff, 2002; Jones et al., 2005; Jiang and Bentley, 2012; Jiang, 2014). Therefore, the 

small-scale structural or fabric features observed in the field are relevant to the 

partitioned flows at the relevant scales but cannot be directly related to the tectonic-scale 

deformation and the tectonic process. Many geologists have realized this problem but, 

none of the existing single-scale models can effectively address the multiscale 

heterogeneous deformation in Earth’s lithosphere. A fully mechanical multiscale 

approach is necessary to relate the small-scale features in Earth’s lithosphere to the 

tectonic-scale deformation process.     

To apply a fully mechanical approach, we need to know the rheology of Earth’s 

lithosphere, which is a very important and long-standing problem in structural geology 

and tectonics. It is commonly accepted that the rocks in Earth’s lithosphere deform 

elastically and by frictional slip on preexisting fractures near the surface and 

predominantly by crystalline plasticity at greater depth (Nicolas and Poirier, 1976; 

Sibson, 1977; Brace and Kohlstedt, 1980; Kohlstedt et al., 1995; Mackwell et al., 1998; 

Jackson, 2002; Burov, 2011). So far, the current understanding of the rheology of the 

lithosphere at greater depth is mainly based on the laboratory high-temperature and high-

pressure creep experiments on natural rocks or synthetic silicate aggregates (e.g., Heard 

and Carter, 1968; Chopra and Paterson, 1981; Caristan, 1982; Kirby and Kronenberg, 

1984; Karato et al., 1986; Wilks and Carter, 1990; Luan and Paterson, 1992; Gleason and 

Tullis, 1995; Mackwell et al., 1998; Karato and Jung, 2003; Rybacki and Dresen, 2004; 

Rybacki et al., 2006;). The experimental data of stress, strain rate, grain size as well as 
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the deformation PT conditions are commonly fitted into flow laws (e.g., Dorn, 1955; 

Sherby and Burke, 1968; Sherby et al., 1970; Ashby, 1972; Kirby and Raleigh, 1973; 

Frost and Ashby, 1982; Ranalli, 1987). Since the 1970s, the concept of yield strength 

envelope (YSE), in which a vertical profile illustrates the maximum stress a rock can 

support with increasing depths according to the flow laws of the major rocks or mineral 

aggregates, has been extrapolated to represent the lithosphere strength (Fig.1.1; Goetze 

and Evans, 1979; Brace and Kohlstedt, 1980; Kirby, 1983; Kohlstedt et al., 1995; Burov, 

2011). In the upper crust, the continental lithosphere strength is commonly represented by 

the frictional strength by Byerlee’s law (≤ 15km) and the strength of wet quartzites 

(15km~30km) (Gleason and Tullis, 1995). The lower crust is represented by the dry 

diabase (Mackwell et al., 1998) or undried granulite (Wilks and Carter, 1990) and the 

mantle by dry or wet olivine (Chopra and Paterson, 1981) (Fig.1.1). Therefore, accurate 

flow laws for major rocks or mineral aggerates, such as quartzite, are critical for the 

understanding of the lithosphere rheology. A rather unfortunate and embarrassing 

situation is that the flow laws determined from different creep experiments on a similar 

type of rock disagree considerably, leaving earth scientists ample room for speculation on 

the strength of the lithosphere. Furthermore, Earth’s lithosphere is a heterogenous 

polyphase material that consists of a larger number of rheologically distinct elements. 

The overall rheology of the heterogenous polyphase rock masses in Earth’s lithosphere 

must be obtained from the rheological properties of the constituent elements, their 

concentrations, and the geometric arrangement of the elements (e.g., Voigt, 1887; Reuss, 

1929; Hill, 1963; Nemat-Nasser and Hori, 1999), all of which may evolve during the 

progressive deformation. It is perhaps oversimplified that using a simple flow law of a 

monophase mineral aggregate to represent the rheology of the lithosphere at a certain 

depth, like YSE. For instance, in the ductile continental crust, quartz is common and 

possibly strength-controlling mineral but the role of other phases like mica may also be 

significant (Kronenberg et al., 1990; Shea and Kronenberg, 1993; Tullis and Wenk, 1994; 

Tullis, 2002; Holyoke and Tullis, 2006; Montési, 2013).  

In fact, the heterogeneous multiscale deformation in Earth’s lithosphere and the overall 

rheology of Earth’s lithosphere are closely related. Variations in rheology among the 

constituent elements of Earth’s lithosphere cause significant flow partitioning and various 
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Figure 1.1 The strength of the continental lithosphere based on the Yield Strength 

Envelope (YSE)  

The upper crust is represented by frictional strength by Byerlee’s law in the brittle 

regime and wet quartz (Qtz) in the ductile regime. The lower crust is represented by 

dry diabase (MD) or undried granulite (WC). The mantle is represented by dry or 

wet olivine (Ol). The Moho is at 40 km, and the geothermal gradient corresponds to 

a surface heat flow of 60mWm-2. The representative strain rate is 15 -110 sε −=  . This 

figure is modified after Jackson (2002). 
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fabrics and structures in individual rheologically heterogeneous elements. The 

rheological properties of all constituent elements determine the overall rheology of 

Earth’s lithosphere. The fabric development in Earth’s lithosphere may also affect the 

rheology. The main objective of this thesis is to understand the heterogeneous multiscale 

deformation in Earth’s lithosphere and the overall rheology of Earth’s lithosphere. Both 

require a fully mechanical multiscale approach. Recently, a new micromechanics self-

consistent MultiOrder Power-Law Approach (MOPLA, Jiang and Bentley, 2012; Jiang, 

2014, 2016) is proposed to address the multiscale heterogeneous deformation in Earth’s 

lithosphere and mechanical evolution of Earth’s lithosphere during the progressive 

deformation. The backbone theory of MOPLA is the classic Eshelby (1957, 1959) 

inclusion problem, considering what is the elastic field inside an elastic inclusion 

embedded in an infinite homogeneous elastic matrix. Eshelby’s pioneering work has led 

to the solution of a general elastic inhomogeneity embedded a homogenous matrix 

(Fig.1.2) (Mura, 1987), and then has been extended to general nonlinear, like power-law, 

viscous materials (Molinari et al., 1987; Lebensohn and Tomé, 1993; Jiang and Bentley, 

2012; Jiang, 2013, 2014). Applying the extended Eshelby’s formalisms for general 

power-law viscous materials to the multiscale lithospheric deformation led to the 

MOPLA. In MOPLA, each rheologically distinct element (RDE) in Earth’s lithosphere is 

considered as an ellipsoidal inclusion embedded in a hypothetical Homogenous 

Equivalent Medium (HEM) subjected to the remote tectonic deformation (Fig.1.3a-d). 

The local mechanical fields, such as the stress, strain rate, and vorticity fields in each 

RDE, are partitioned from the far-field quantities caused by the tectonic-scale 

deformation. The partitioned mechanical fields, in turn, govern the small-scale fabric 

development in individual RDEs (Jiang, 2014) (Fig.1.3e-g). The macroscale mechanical 

fields in the lithosphere at every point are defined as the average of all local mechanical 

fields over a Representative Volume Element (RVE) that is a large enough volume, 

containing a representative assemblage of RDEs (Fig.1.3b, c). The overall rheology of 

Earth’s lithosphere is represented by the rheology of HEM. The latter one can be 

obtained by means of a self-consistent homogenization scheme (Molinari et al., 1987; 

Lebensohn and Tomé, 1993; Jing, 2014) from the rheological properties of the 

constituent RDEs (Fig.1.3c, d). The numerical simulation of this new micromechanics  
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Figure 1.2 An illustration of Eshelby inclusion problem of an ellipsoidal elastic 

inhomogeneity in an infinite homogenous elastic matrix 

e , ω , and σ  are the elastic strain, rotation, and Cauchy stress fields. C is the 4th 

order elastic stiffness tensor. The sub- or super-script “inh” and “M” stand for the 

properties in inhomogeneity and in matrix medium, respectively. 
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Figure 1.3 A schematic illustration of a multiscale approach to natural deformation  
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(a) The whole crustal deformation zone with a characteristic length of D and the 

boundary conditions fluctuated at a scale of λ. The macroscale deformation of the 

zone at point X is defined in terms of a Representative Volume Element (RVE), 

centered at X, with a characteristic length of D in (b). D must be much smaller than 

the D and the fluctuation length λ of the boundary loading. D≪ D and D≪ λ. (c) 

The RVE is a large enough volume element that contains a representative 

assemblage of all Rheologically Distinct Elements (RDEs). The mean size of the 

RDEs is denoted by d (d≪ D). The local fields are defined within individual RDEs. 

(d) Each RDE is considered as an ellipsoidal Eshelby inhomogeneity embedded in a 

hypothetic Homogeneous Equivalent Medium (HEM), whose rheological properties 

are represented by the homogenized properties over an RVE. The local fields in an 

RDE, called partitioned fields, govern (e) the structural and fabric elements 

observed on outcrops, (f) the microscopic shape fabrics, and (g) the lattice preferred 

orientation fabrics within the RDE. The structural or fabric feature has a 

characteristic length of δ (δ≪ d). The absolute size of these characteristic lengths 

and the scale gaps between them depend on the nature of the deformation. This 

figure is modified after Qu (2018). 
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approach (MOPLA) can be realized using MATLAB scripts (more details below). This 

new approach allows the simulation of the overall rheology of Earth’s lithosphere during 

the progressive deformation and the understanding of how the rheology variations in 

Earth’s lithosphere control the multi-scale heterogeneous deformation.  

Applying the micromechanical model to Earth’s lithosphere necessitates the geological 

records to constrain the model inputs and test the model predictions. The deformation of 

Earth’s lithosphere is characterized by localized deformation zones. Faults are commonly 

regarded as the expression of localized deformation in the brittle regime, whereas shear 

zones are the expression of localized strain in the ductile regime (e.g., Hobbs et al., 1976; 

Twiss and Moores, 1992). Localized deformation zones are fundamental structures in 

Earth’s lithosphere, and govern the lithospheric deformation patterns, the formation of 

tectonic plate boundaries, the evolution of plate tectonics as well as the mechanical 

evolution of continental lithosphere (e.g., Zoback et al., 1987; Flesh et al., 2000; Hamner, 

1988; Vauchez et al., 1998; Tommasi and Vauchez, 2001; Vauchez and Tommasi, 2003; 

Ben-Zion and Sammis, 2003; Gumiaux et al., 2004; Montési, 2013). Ancient ductile 

shear zones preserved abundant fabric data and petrological data on multiple scales; 

modern GPS data and geophysical data of active plate boundaries provide the information 

of plate motion, the velocity fields, the stress distribution, etc. These valuable data could 

help us to validate the new micromechanical model and understand the multi-scale 

deformation in Earth’s lithosphere and the continental lithosphere rheology.          

 Thesis outline 
This thesis aims to understand the heterogeneous multiscale deformation in Earth’s 

lithosphere and the continental lithosphere rheology by applying a micromechanics-based 

self-consistent MultiOrder Power-Law Approach (MOPLA, Jiang and Bentley, 2012; 

Jiang, 2014, 2016) together with the high-quality data of creep experiments on quartz 

aggregates and the geological data form both ancient ductile shear zones and active plate 

boundaries. In order to achieve this main objective, this thesis made contributions to the 

following three key problems. 

The theory and algorithm of MOPLA have been developed and well documented in Jiang 

(2014, 2016), and the algorithm has been written in the Mathcad package (Jiang, 2014). 
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However, the Mathcad package of MOPLA is not very efficient. MOPLA is a self-

consistent approach, which requires a great number of iterative calculations, and each of 

them involves a large number of evaluations of the Eshelby tensors, the most time-

consuming part of the whole calculation. Therefore, MOPLA requires a long computation 

time. Qu et al. (2016) developed an optimal scheme for numerical evaluations of Eshelby 

tensors. To improve the performance of the computation of MOPLA, Chapter 2 of this 

thesis refines the algorithm incorporating the work of Qu et al. (2016) and implements 

the algorithm in a MATLAB package. This effort will make it easier to widely apply 

MOPLA to various geological settings to address the multiscale deformation in Earth’s 

lithosphere and the rheology of the lithosphere. 

Crustal ductile high-strain zones accommodate most part of the tectonic deformation, 

leaving abundant fabrics in them and have a significant strong influence on the 

mechanical evolution of the continental lithosphere. In the past five decades, structural 

geologists dedicated to exploring the finite strain patterns inside a small-scale shear zone 

with clearly defined boundaries using single scale kinematic models (see reviews in Jiang 

and White, 1995; Jiang and Williams 1998; Davis and Titus 2011). Chapter 3 of this 

thesis takes a different approach to investigate the crustal-scale ductile high-strain zones. 

Chapter 3 considers a high-strain zone as a planar inhomogeneity embedded in the 

lithosphere undergoing tectonic-scale deformation and uses extended Eshelby’s 

formalism to investigate the mechanical and kinematic fields inside the high-strain zone 

including the finite strain accumulation there. Therefore, the flow inside a high-strain 

zone is not a prescribed one, but the partitioned flow from the far-field plate motion. 

Because this approach is a complete mechanical one, it can address the problems 

associated with the mechanics of the high-strain zone system, like the stress distribution 

within a high-strain zone and that in its vicinity and the rheology of the high-strain zone. 

Investigating these problems will contribute to the understanding of the mechanics of the 

lithospheric deformation and the rheology of the continental lithosphere. This model has 

been applied to selected ancient and active high-strain zones to test it. 

The dislocation flow law of wet quartzite is important to understand the rheology of the 

continental lithosphere as quartz is the most common and probably strength-controlling 
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mineral in the continental lithosphere. However, existing creep experiments have yielded 

very different quartz flow law parameters. Chapters 4 and 5 of this thesis demonstrate 

that the difference can be explained by considering the pressure effect on the activation 

enthalpy and the slip system dependence of the stress exponent. Two distinct dislocation 

creep flow laws for quartzites associated with different dominant slip systems are 

identified based on high-quality experimental data of wet quartzite together with related 

quartz c-axis fabrics. In both nature and experiments, the creep behavior of wet quartzite 

in the transitional regime, where both slip systems are significant, is common. Chapter 5 

proposes two simple homogenized flow laws and also uses a micromechanics-based self-

consistent homogenization approach (Jiang, 2014) to evaluate the bulk rheological 

properties in such a transitional flow regime.  
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Chapter 2  

2 A MATLAB Package of the Self-consistent MultiOrder 
Power-Law Approach 

 Introduction 
The Earth’s lithosphere has abundant structures and fabrics due to tectonic deformation. 

These structures and fabrics cover a vast range of scales, from the shape and 

crystallographic-preferred orientations of mineral crystals, which must be examined in 

thin sections, to outcrop larger scale features like faults, folds, and ductile high-strain 

zones (e.g., Twiss and Moores, 1992; Pollard and Fletcher, 2005; Passchier and Trouw, 

2006). Structural geologists study the structures and fabrics in order to reconstruct the 

lithospheric deformation processes and to understand the rheology of Earth’s lithosphere. 

The theoretical framework for this effort has been mainly on single-scale continuum 

mechanics (see Jiang 2014, 2016, for more discussion). However, Earth’s lithosphere is 

made of rheologically heterogeneous elements on any given scale, leading to significant 

flow field partitioning (Lister and Williams, 1983). The single-scale approach is 

incapable of making a rigorous connection between small-scale features with the 

tectonic-scale deformation boundary conditions. Many geologists have recognized that 

flow partitioning is the key to relate the heterogenous small-scale structures and fabrics to 

the tectonic deformations (e.g., Lister and Williams, 1983; Jiang, 1994a, b; Jiang and 

White, 1995; Jiang and Williams, 1999; Hudleston, 1999; Goodwin and Tikoff, 2002; 

Jones et al., 2005). In order to understand the deformation in rheologically heterogeneous 

elements, a multiscale approach is necessary, and such an approach must be based on 

complete mechanics principles (Jiang and Bentley, 2012; Jiang 2013, 2014, 2016).     

Recently, a micromechanics-based self-consistent MultiOrder Power-Law Approach 

(MOPLA, Jiang and Bentley, 2012; Jiang, 2014, 2016) has been developed to address the 

flow partitioning problem and then investigate the multiscale deformation and fabric 

development in the heterogeneous lithosphere. MultiOrder refers to the approach of 

embedding rheologically distinct higher-order elements in a lower-order element to 

simulate the multiscale nature of deformation, and Power-Law means that the rheology of 

all elements is power-law viscous (Jiang 2014). So far, MOPLA has been widely applied 
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to many geological settings to understand the development of small-scale ductile shear 

zones from rheologically weak domains (Xiang and Jiang, 2013), the lineation variation 

in Cascade Lake shear zone in the east Sierra Nevada of California (Jiang and Bentley, 

2012; Jiang, 2014), the formation of micafish porphyroclasts (Chen et al., 2014), the 

pressure variations among rheologically heterogeneous elements (Jiang and Bhandari, 

2018), and the formation of L-tectonite (Yang et al., 2019). 

The theory and algorithms of MOPLA have been well documented in Jiang (2014, 2016), 

and related computation is implemented in MathCad (Jiang, 2014). The MathCad 

application is user-friendly but at the cost of computational efficiency. In this work, I 

provide a more refined algorithm of MOPLA and implement it in MATLAB.  

Specifically, MOPLA is computationally intensive because it requires a large number of 

iterative calculations, and each iteration round involves a large number of evaluations of 

4th order Eshelby tensor, which is the most time-consuming part in the calculation. 

Therefore, the bottleneck of the MOPLA compotation boils down to the evaluation of 

Eshelby tensors. Qu et al. (2016) developed an optimal scheme to evaluate Eshelby 

tensors efficiently. In this work, I refined the algorithm of MOPLA by distinguishing the 

macroscale fields from the remote fields and developed the MATLAB package for 

MOPLA incorporating the work of Qu et al. (2016) and using the Parallel Computing 

Toolbox in MATLAB so that the computation of MOPLA becomes more efficient (more 

details see below). 

To facilitate the description of the new package, I first review the backbone theory of 

MOPLA and summarize the important equations used in this package. Then, I describe 

the structure of the MATLAB package. Finally, this package is validated by applying it to 

the Cascade Lake shear zone in the east Sierra Nevada of California (Jiang and Bentley, 

2012; Jiang, 2014). This application also serves as an example to show how to use the 

MATLAB package.   

 The classic Eshelby’s inclusion/inhomogeneity problem 
The backbone theory of MOPLA is the remarkable work of Eshelby’s (1957) inclusion 

solution. The classic Eshelby’s inclusion/inhomogeneity problem deals with an infinite 
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homogenous elastic solid with sub-volume Ω  in it (Fig.2.1a). The material inside Ω  is 

called inclusion if it has identical elastic properties as the surrounding material, or 

inhomogeneity if the domain has distinct elastic properties; The material outside Ω  is 

called matrix. The inclusion Ω  in the solid that undergoes a uniform strain field will 

cause stress and strain in the solid. Eshelby (1957,1959,1961) solved that the elastic 

fields both in the inclusion and matrix elegantly through a series of ‘virtual’ 

transformations (Fig.2.1). If we remove the inclusion Ω  from the surrounding matrix, the 

inclusion tends to deform to *Ω  and undergo a uniform strain *e , which is called 

eigenstrain, to reach a stress-free state (Fig.2.1b). The infinite solid with a hole remains 

stress and strain-free. Apply surface traction on *Ω  to deform it back to the original 

shape Ω , then place the inclusion back to the void and remove the surface traction. The 

interaction between the matrix and inclusion leads to the equilibrated constrained state of 

the inclusion, which differs from the initial state by a strain field ce  and a rotation field 
cω (Fig. 2.1c). If the inclusion is an ellipsoid, the constrained stress and elastic fields 

(strain and rotation) within the inclusion are uniform (Eshelby, 1957, p. 384, his Eq.3.5). 

The constrained strain field, ce , and rotation, cω  , in the ellipsoid are related to the 

eigenstrain *e  by two 4th order tensors: 

c *:=e S e ;    c *:=ω Π e                                                                                      (2.1)     

where S  and Π  are the symmetric and anti-symmetric Eshelby tensors for the interior 

points, respectively. The sign “:” stands for the double-index contraction of two tensors. 

As the elastic fields are uniform in an ellipsoidal inclusion, both S  and Π  for are 

constant quantities inside the inclusion. 

Now, let us consider an inhomogeneity having distinct elastic properties from the matrix 

embedded in an infinite matrix medium subjected to a uniform remote deformation. 

Eshelby (1957) proposed that an inhomogeneity can always be replaced by a unique 

‘equivalent inclusion’ with the proper eigenstrain field so that the stress state inside the 

inclusion is the same as when the inhomogeneity is present. Then the deformation inside 

an inhomogeneity is treated as a superposition of the applied remote deformation and a 

perturbation deformation caused by the equivalent inclusion. Eshelby’s approach enables 
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Figure 2.1 Eshelby’s solution of the classic inclusion/inhomogeneity problem 

illustrated by a series of “virtual” transformations  

(a) A homogeneous infinite elastic material with a region Ω, called inclusion, in it. If 

the inclusion were cut out, the matrix would remain stress and strain free. (b) 

Remove the inclusion from the matrix. The eigenstrain e* transforms Ω to Ω*. The 

transformed Ω* state with a strain of e* corresponds to the stress-free state of the 

inclusion. To fit back the inclusion to the matrix, surface traction is applied to Ω* to 

deform it back to the shape of Ω. Then place the inclusion back to the matrix with a 

void. (c) The final equilibrated state of the inclusion. Both inclusion and matrix will 

undergo an elastic field. The inclusion will deform and rotate to ΩC state. The strain 

and rotation within the inclusion are eC and ωC.       
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the flow fields inside a general elastic inhomogeneity to be related to the remote flow 

field (Mura, 1987) and has been formulated in Jiang (2013): 

( ) 1inh M 1
M inh: ,    :s s −
− = = + − e A e A J S C C J                                                 (2.2a)                                                           

( )inh M 1 M: : s−= + −ω ω Π S A J e                                                                        (2.2b)         

inh M 1
inh M: ,    : : −= =σ B σ B C A C                                                                      (2.2c)           

where e , ω , and σ  are the elastic strain, rotation, and Cauchy stress fields; C is the 4th 

order elastic stiffness tensor. The sub- or super-script ‘inh’ and ‘M’ stand for the 

properties in inhomogeneity and in matrix medium, respectively. A  and B  are 

respectively the 4th order strain partitioning and stress partition tensors. sJ is the 4th order 

symmetric identity tensor (more details see below). As the inhomogeneity is viewed as an 

equivalent inclusion, I will simply use ‘inclusions’ to represent both inhomogeneities or 

inclusions hereafter.  

Viscous materials are commonly assumed incompressible. In order to extend Eshelby’s 

formalism to incompressible viscous materials, one can either adopt a “penalty approach” 

(Lebensohn and Tome, 1993) or use the incompressibility as an additional kinematic 

condition. As the first approach has some major drawbacks as discussed in Jiang (2016), 

we follow the latter one. To do so, the Cauchy stress field must be decomposed into a 

deviatoric part and a pressure part (e.g., Spencer, 1980). The rheology equation of an 

incompressible viscous material is associated with the deviatoric stress only. In this 

situation, Eshelby’s solution for linear viscous materials is expressed as:  

( ) 11
M E: ,    : s −
− = = + − 

sε A E A J S C C J                                                        (2.3a) 

( )1: :−= + −w W Π S ε Ε                                                                                     (2.3b) 

1
E M: ,    : : −= =σ B Σ B C A C                                                                              (2.3c) 
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where ε , σ , and w  are respectively the strain rate, deviatoric stress, and vorticity inside 

the inclusion; the corresponding uppercase symbols E , Σ , and W  represent the 

equivalent quantities in the remote field. C with sub-script “M” and “E” stand for the 

viscous stiffness tensors in inclusion or in the matrix and A  is called the strain-rate 

partitioning tensor now.  

Clearly, Eshelby’s solution requires the evaluation of S  and Π . The expressions of S  

and Π  for isotropic elastic materials are expressed in terms of elliptical integrals 

(Eshelby, 1957; Mura, 1987, P.77-84). One can also use these expressions and set the 

Poisson’s ratio 0.5υ =  to get vS  and vΠ for isotropic viscous materials, which are 

commonly assumed incompressible (Bilby et al., 1975; Bilby and Kolbuszewski, 1977). 

In fact, vΠ  and 
0.5υ=

Π  are indeed equal, but vS  and 
0.5υ=

S  are equal for off-diagonal 

components only. The components of S and vS  are and those of Π  and vΠ  have the 

following relations (Jiang, 2016): 

( )11 22 33 0.50.5

1  (no sum)
3

v
ijkl ijkl ii ii iiS S S S S

υυ ==
= − + +                                          (2.4a)    

0.5

v
ijkl ijkl υ=

Π ≡ Π                                                                                                  (2.4b) 

where the superscript ‘v’ stands for incompressible viscous material. The evaluation of 

Eshelby tensors for isotropic materials is realized by the MATLAB files 

‘SnPI_poisson.m’ and ‘SnPI_vis.m’ (Appendix A). For general elastic or general 

incompressible viscous materials, S  and Π  or vS  and vΠ  are expressed in terms of a 

Green’s interaction 4th order tensor T or vT  (Jiang, 2013, 2014): 

: :s=S J T C ; : :a=Π J T C         (compressible materials)                                (2.5a) 

: :v d v=S J T C ; : :v a v=Π J T C   (incompressible materials)                           (2.5b)                                                                               

where sJ , aJ  and dJ  are 4th order symmetric identity, anti-symmetric identity, and 

deviatoric identity tensors defined in terms of the Kronecker delta 
1
0ij

i j
i j

δ
=

=  ≠
: 
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  ( ) ( )1 1 1,  ,  
2 2 3

s a d s
ijkl ik jl jk il ijkl ik jl jk il ijkl ijkl ij klJ J J Jδ δ δ δ δ δ δ δ δ δ= + = − = −                 (2.6) 

According to Eq.2.5, the evaluation of Eshelby tensors for general materials (S  and Π  or 
vS  and vΠ ) boils down to the calculation of T or vT , which can be expressed in 

following integrals (Lebensohn et al., 1998; Jiang, 2014, 2016): 

1 31 2 3

0 0

sin
2ijkl ik j l

a a aT A z z d d
π π

ρ φ φ θ
π

− −= ∫ ∫  (compressible materials)                           (2.7a) 



31 2 3

0 0

sin
2

v
ikijkl j l

a a aT A z z d d
π π

ρ φ φ θ
π

−= ∫ ∫   (incompressible materials)                      (2.7b) 

where ( )1,2,3ia i =  are the three semi-axes of the ellipsoidal inclusion, unit vector z is 

expressed in terms of spherical angles by 
cos sin
sin sin

cos

θ φ
θ φ
φ

 
 =  
 
 

z , 

( ) ( ) ( )2 2 2
1 1 2 2 3 3a z a z a zρ = + + , and M

ik ijkl j lA C z z=  is the Christoffel stiffness tensor (e.g., 

Barnett, 1972; Walker, 1993). ikA


 is constructed form ikA  as: 
1

0TT λ

−   
=   
  

A zA ζ
zζ



. 

Jiang (2014) in his Mathcad scripts used a product Gaussian quadrature to get the 

numerical integrations, which is very time-consuming, especially for the elongated or 

flattened ellipsoid. Qu et al., (2016) provided an optimal scheme to numerically evaluate 

the integral (Eq2.7b) using a product Gaussian quadrature or a Lebedev quadrature 

depending on the shape of the ellipsoid. In order to save computational time, part of the 

numerical integration of Eq.2.7b has been written in C language and compiled using 

MATLAB built-in mex function and the Microsoft C++ 2015 compiler by Qu et al. 

(2016). This package incorporated the work of Qu et al. (2016) and extended it to 

compressible material (Eq.2.7a). The numerical integrations for general 

compressible/incompressible materials (Eq.7) are realized in MATLAB files 

‘Tfunction.m’ and ‘Tfunction_AGLQ.m’ (Appendix A). Above Eshelby’s formalism is for 
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compressible materials, to get the corresponding equations for incompressible materials, 

one can replace S , Π  and sJ in Eqs.2.3 and 2.4 with vS , vΠ , and dJ . 

 Application of Eshelby’s solution to natural deformation 
in Earth’s lithosphere   

Earth’s lithosphere is made of a large number of rheologically distinct elements (RDEs). 

In Eshelby’s sense, each rheologically distinct element is regarded as an Eshelby 

inclusion. Applying Eshelby’s solution for the inclusion/inhomogeneity problem to 

natural deformation allows us to quantitively evaluate the partitioned flow fields inside 

each rheologically distinct element from the remote tectonic flow. The partitioned flow 

fields, in turn, can be used to investigate the small-scale structures and fabrics. This is the 

backbone of MOPLA. However, to apply the Eshelby’s solution (Eq.2.3) to 

heterogeneous Earth’s lithosphere the following aspects need to be addressed: first, the 

lithosphere is not an infinite medium; second, in nature, the rheologically distinct 

elements have irregular shapes, not perfect ellipsoids; third, the rock masses in Earth’s 

lithosphere are generally non-linear, and commonly considered as power-law materials; 

last, the rock masses are heterogenous poly-element materials. This section discusses the 

above problems one by one as well as the strategy to address the multiscale deformation. 

2.3.1 Scale separation 
As Earth’s lithosphere is not an infinite medium, but Eshelby’s solution is for the 

inclusions embedded in an infinite matrix. To apply Eshelby’s solution to Earth’s 

lithosphere, the condition of scale separation (Zaoui, 2002; Qu and Cherkaoui, 2006; 

Jiang, 2014) must be satisfied. Let us consider a crustal deformation caused by a tectonic 

loading (Fig.1.3) as an example to explain this concept. The whole crustal deformation 

zone has a characteristic length of D, and the remote tectonic loading has a fluctuation 

length of λ (Fig.1.3a). The statistically homogeneous macroscale fields (‘regional’ or 

‘bulk’ strain rate E , vorticity W , and stress Σ ) of the zone are defined in terms of a 

Representative Volume Element (RVE) at every point X, with a characteristic length of D 

(Fig.1.3b). The RVE is a large enough volume element containing a representative 

assemblage of all Rheologically Distinct Elements (RDEs) with an average size of d 

(Fig.1.3c). The partitioned fields (‘local’ strain rate ε , vorticity w  and stress σ ) are 



31 

 

defined within individual RDEs. The condition of scale separation requires that the mean 

size of RDEs must be much smaller than the size of RVE (d≪ D) which itself must be 

much smaller the size of the whole crustal deformation (D≪ D) and the fluctuation 

length of the boundary loading (D≪ λ). In such a case, the size of each RDE is 

inappreciable compared to its distance from the deformation boundary, so the boundary 

effects on RDEs can be ignored. With this condition, each RDE in Earth’s lithosphere can 

be regarded as an Eshelby inclusion embedded in an infinite matrix. Applying Eshelby’s 

solutions, the partitioned fields within an RDE can be solved. That, in turn, governs the 

smaller-scaled structural and fabric elements there, with a characteristic length of δ (δ≪ 

d). (Fig.1.3e-g). The scale separation must be satisfied; however, the absolute size of the 

characteristic lengths and the scale gaps between them depend on the nature of the 

deformation. 

2.3.2 Rheologically distinct elements with irregular shapes 
Eshelby approved that the stress and flow fields inside ellipsoidal inclusions are uniform; 

however, in nature, the rheologically distinct elements have irregular shapes. For the 

inclusions with irregular shapes, Eshelby’s solutions (Eqs.2.3) are considered as the 

approximations of average fields inside the inclusions. Although this a practical method, 

it seems working well. A larger member of works have been done to apply Eshelby’s 

solution to the real materials considered individual grains with irregular shapes in a 

polycrystalline material as ellipsoidal inclusions embedded in the polycrystalline medium 

(Budiansky and Mangasarian, 1960; Mura, 1987, p.421-433; Lebensohn and Tome, 1993; 

Molinari, 2002). In addition, the rigid or deformable clasts, dislocations, stacking faults, 

cracks, weakened zones, and other discontinuities can also be treated as ‘ellipsoids’ in the 

literature (e.g., Ramsay, 1967; Dunnet, 1969; Gay, 1968; Ghosh and Ramberg, 1976; 

Mura, 1987, p.15-20, 240-379; Rudnicki, 1977; Ježek et al., 1996; Healy et al., 2006; 

Exner and  Dabrowski, 2010). Therefore, in MOPLA, the rheologically distinct elements 

with irregular shapes are viewed as ellipsoidal inclusions. This assumption allows the 

application of Eshelby’s solutions to real materials. 
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2.3.3 Application to non-linear viscous materials  
The rock mass in Earth’s lithosphere is commonly regarded as a power-law viscous 

material, where the strain rate ε  is related to the deviatoric stress σ  to the power of n 

(>1), called the stress exponent (e.g., Kohlstedt et al., 1995; Tullis, 2002). The 

constitutive relation for a general non-linear material, including power-law material, can 

be written as: 

( )fij ij klσ ε=   or  ( )gij ij klε σ=                                                                           (2.8a)                   

or in pseudo-linear forms: 

sec=σ C ε    or  sec=ε M σ                                                                                     (2.8b)           

where secC  and secM  (inverse of each other) are respectively the 4th order secant stiffness 

(or viscosity) and secant compliance tensors. Both tensors depend on the current state of 

stress or strain rate. For non-linear viscous materials, there is no exact Eshelby’s solution, 

like Eqs.2.3. To extend the Eshelby’s solution to a non-linear material one needs to 

approximately express the constitutive equation for non-linear materials in a linear form 

by a variety of linearization approaches (e.g., Hutchinson, 1976; Molinari et al., 1987; 

Lebensohn and Tome, 1993; Masson et al., 2000; Lebensohn et al., 2003, 2004; Jiang, 

2014):  



0ε = M : σ + ε    or   

0σ = C : ε + σ                                                                         (2.9)                

where the C  and M  are respectively the linearized viscous stiffness and linearized 

viscous compliance; 0ε  and 0σ  are the pre-strain-rate and pre-stress terms. Then 

Eshelby’s formalism (Eq.2.3) can be rewritten as (Jiang, 2014):  

 

( ) ( )( ) :
k kk = +ε A E α ;                                                                                          (2.10a)   

( )( ) ( ) ( ) 1 ( ): :k k k k−= + −w W Π S ε Ε                                                                    (2.10b) 

 

( ) ( )( ) :
k kk = +σ B Σ β                                                                                            (2.10c)   
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In Eq.2.10,  
( )k

A  and 
( )k

α  are 4th-order and second-order strain-rate partitioning tensors, 



( )k
B  and 

( )k
β  4th-order and second-order stress partitioning tensors defined in terms of H  

and H : 

 ( ) ( )
1( ) ( )( ) ( )

M:
k kk k

−

= + +A H C H C ;   ( ) ( )
1( )( ) ( ) 0 0( ):

kk k k
−

= + −α H C Σ σ          (2.11a) 

  ( )  ( )1( ) ( ) ( ) ( )
M:

k k k k−

= + +B M H M H ;    ( ) ( )
1( )( ) ( ) 0 0( ):

kk k k
−

= + −β M H E ε       (2.11b) 

where  ( )1
M : s−= −H C S J  is called the Hill’s constraint tensor (Qu and Cherkaoui, 2006, 

p.90, 315) and  ( ) 

11
M:s −−= −H S J M , the inverse of H , is also known as the interaction 

tensor (Lenbensohn and Tomé, 1993). 

In this MATLAB Package, the well-known tangent linearization (Hutchinson, 1976; 

Molinari et al., 1987; Lebensohn and Tomé, 1993) is adopted: 

tan 0= +σ C ε σ ; tan 0= +ε M σ ε                                                                           (2.12a)    

tan secn=M M ; tan sec1
n

=C C                                                                              (2.12b)                                                                                                                                             

where tanC  and tanM  (inverse of each other) are respectively the tangent stiffness (or 

viscosity) and tangent compliance tensors, which linearly related the stress and strain rate 

in the vicinity of 0σ  and 0ε . 

2.3.4 Heterogeneous matrix and homogenization 
Earth’s lithosphere is made of a large number of constituents with distinct rheological 

properties, different shapes, and orientations, so Earth’s lithosphere is a heterogenous 

poly-element material. In order to apply the extended Eshelby formalisms to the 

heterogenous poly-element lithosphere, the concept of Homogenous Equivalent Medium 

(HEM) is applied. Consider a Representative Volume Element (RVE) composed of a 

large number of rheologically distinct elements (RDEs), then the macroscale field 
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properties (stress, strain-rate, and vorticity) at every point are defined as the average 

properties over the RVE. Each element is treated as an Eshelby inclusion embedded in an 

idealized HEM whose rheological properties are obtained from the overall rheological 

properties of the RVE (Fig.2.2e). In micromechanics, the procedure to evaluate the 

overall rheological properties of the composite material from the rheological properties of 

its constituent elements is called homogenization. Several efficient homogenization 

approaches are proposed (e.g., Mori and Tanaka, 1973; Molinari et al., 1987; Mura, 1987; 

Lebensohn and Tome, 1993; Nemat-Nasser and Hori, 1999; Qu and Cherkaoui, 2006).  

If the inclusions in the composite material (Fig.2.2b) are so far apart from each other that 

their interactions can be neglected, this system can be considered as dilute inclusions in a 

groundmass. The rheology of the HEM is simply represented by the matrix rheology. 

Given a remote loading ( = +L E W ), the macroscale stress in the matrix is calculated by 

the constitutive equation ( :m=Σ C E ). As the shapes, orientations, and the rheological 

properties of all inclusions are known, the partitioned flow and stress fields ( ( )kε , ( )kw  

and ( )kσ ) inside individual inclusions can be obtained by the Eshelby’s solution (Eqs.2.12 

and 2.13).  

As the inclusion volume fraction increases, the interaction among inclusions becomes 

significant. Consider a composite material with a large number of RDEs subjected to a 

strain rate E ; homogenization approach is required to find suitable choices of the 

homogeneous reference medium with macroscale response defined by:  

0:= +Σ C Ε Σ  or 0:= +Ε M Σ Ε                                                                      (2.13) 

where C  and M  are the macroscale linear-form of homogenized stiffness and 

compliance tensors defined at Ε ;  0Σ  and 0Ε  are the back-extrapolated terms. C , M ,
0Σ  and 0Ε  are uniform. 

The homogenization scheme is characterized by choice of the homogenous reference 

medium. Consider a composite material with RDEs embedded in a connected matrix 

(Fig.2.2c), Mori-Tanaka method (Mori and Tanaka, 1973; Molinari and Mercier, 2004; 

Mercier and Molinari, 2009) is adopted to capture the overall rheology. Each element is   
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Figure 2.2 A conceptual diagram to illustrate three different inclusion-matrix 

systems  

(a) An infinite composite medium subjected to a remote field (strain rate mE , 

vorticity mW  and deviatoric stress mΣ ) in the infinity. The corresponding 

macroscale fields ( E , W  and Σ ) at every point are defined over a Representative 

Volume Element (RVE) (b) The dilute situation where the volume fraction of the 

inclusion is low and the inclusions are far apart away from each other. In this 

scenario, the overall rheology is simply represented by the matrix rheology. (c) A 

composited material with more inclusions embedded in a connected matrix. The 

matrix phase ( 0C ) is adopted as a reference medium to solve the partitioned fields (

( )kε , ( )kw  and ( )kσ ) for individual inclusions. The overall rheology is obtained by the 

Mori-Tanaka approach. (d) A poly-element composite material without a distinct 

matrix phase in it. Each element is reviewed as an inclusion embedded in the rest of 

inclusions. In this scenario, Homogenous Equivalent Medium (HEM) in (e) is 

adopted as a reference medium, which has the macroscale response of the material (

E , W  and Σ ) and whose rheology is obtained by means of a self-consistent scheme 

from the properties of all the constituent elements in an RVE. This figure is 

modified after Qu et al. (2016). 
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considered as an inclusion surrounded by a reference medium, which is the matrix 

material with remaining inclusions in it. For a heterogeneous poly-phase aggregate 

without matrix (Fig.2.2d), the overall rheology can be obtained by the self-consistent 

scheme (Molinari et al., 1987; Lebensohn et al., 2003, 2004; Molinari and Mercier, 2004; 

Mercier and Molinari, 2009). In the self-consistent scheme, each element can be viewed 

as an inclusion embedded in the HEM made of the remaining RDEs. Although the 

choices of the reference medium in the two cases are different, in either case, each 

element is regarded as an inclusion embedded in the reference medium subjected at 

infinity to the remote strain rate mΕ  (a priori different with E ), which is the average 

strain rate in the reference medium. The macroscale response of the reference medium is 

represented by (Molinari, 2002): 

0:m m= +Σ C E Σ  , 0:= +Σ C E Σ                                                                       (2.14) 

where mΣ  is the average stress in the reference medium resulting from mΕ ; Σ  is the 

macroscale stress due to the applied strain rate E .  

Consider an RVE consist of N different elements labeled as k ( 0,1, ,k N=  ; 0k =  

represents the connected matrix phase if there is one). The average flow fields ( )kε , ( )kw  

and ( )kσ  in each element are related to remote flow fields mE , mW  and mΣ  in the matrix 

material by the following equations: 

 ( )( )( ) ( ):
kk k

m m− = − −ε E H σ Σ                                                                           (2.15a) 

( )( ) ( ) ( ) 1 ( ): :k k k k
m m

−− = −w W Π S ε E                                                                (2.15b) 

 ( )( ) 1( ) 1
M:

k k −−= − sH S J M                                                                                (2.15c) 

where H  is evaluated at mE , or by the strain rate and stress partitioning equations: 

 

( ) ( )( ) :
k kk

m= +ε A E α                                                                                        (2.16a)                                          
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 

( ) ( )( ) :
k kk

m= +σ B Σ β                                                                                        (2.16b) 

The macroscale field quantities at any point in the homogenous reference medium are 

defined as the volume average over the RVE:  

1( ) ( )
V

dV
V

= =∫Σ x σ x σ                                              (2.17a)  

1( ) ( )
V

dV
V

= =∫Ε x ε x ε        (2.17b)  

1( ) ( )
V

dV
V

= =∫W x w x w                   (2.17c)  

where V is the volume of the RVE and   stands for the volume averaging operation 

over the RVE. Imposing the consistency condition on Eq.2.15b and Eqs.2.16 gives: 

  

1 1( ) ( ) ( )
: :

k k k

m

− −

= −E A Ε A α                                                                (2.18a)                               

  

1 1( ) ( ) ( )
: :

k k k

m

− −

= −Σ B Σ B β                                                                 (2.18b) 

( )( ) ( ) 1: :k k
m m

−= − −W W Π S E E                                                                   (2.18c) 

Combining the nonlinear response of each element ( 

( )( ) ( ) 0( )kk k kσ = C : ε + σ ) with the 

strain-rate partitioning equation (Eq.2.16a) and imposing the stress consistency 

( )k =σ Σ  condition leads to    

( ) ( ) ( ) ( ) 0( ): : :
k k k k k

m= + +Σ C A E C α σ . Then substitute 

the matrix strain rate mΕ  with the applied strain rate Ε  using (Eq.2.18a), we have the 

following expressions for the linear-form of homogenized stiffness and back-extrapolated 

term: 
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  

     

1( ) ( ) ( )

1( ) ( ) ( ) ( )( ) ( )0 0( )

: :

: : : :

k k k

k k k kk kk

−

−

=

= + −

C C A A

Σ C α σ C A A α
                                (2.19) 

Similarly, combining the linearized response of each element ( 

( )( ) ( ) 0( )kk k kε = M : σ + ε ), 

with stress partitioning equation (Eq.2.16b) and imposing the strain rate consistency 

condition ( )k =ε Ε  yield    

( ) ( ) ( ) ( ) 0( ): : :
k k k k k

m= + +Ε M B Σ M β ε . Then substitute the 

matrix stress mΣ  with Σ  using (Eq.2.18b), we can obtain the following expressions for 

the linear-form of homogenized compliance and back-extrapolated term: 

  

     

1( ) ( ) ( )

1( ) ( ) ( ) ( )( ) ( )0 0( )

: :

: : : :

k k k

k k k kk kk

−

−

=

= + −

M M B B

E M β ε M B B β
                                 (2.20) 

Note, the above partitioning equations (Eqs.2.15 and 2.16) and homogenization equations 

(Eqs.2.19 and 2.20) are valid for both the Mori-Tanaka and the self-consistent schemes. 

These two schemes are distinguished by choice of the reference medium with a 

connected matrix in the Mori-Tanaka method and a conceptual Homogenous Equivalent 

Medium (HEM) in the Self-consistent approach. Nevertheless, they can be formulated in 

the same way. In MOPLA, the self-consistent approach is adopted. 

2.3.5 A multiscale strategy: inhomogeneities within 
inhomogeneities 

As discussed in the introduction, the observed small-scale structures and fabrics can only 

be related to the fields at the relevant scale but not the tectonic-scale deformation. To 

address the multiscale deformation, a concept of ‘inhomogeneities within 

inhomogeneities’ is proposed by Jiang and Bentley (2012) and Jiang (2014). Structural 

and fabric elements are considered as high-order (usually smaller size) RDEs within 

lower-order (usually larger size) RDEs (Jiang and Bentley, 2012). For a deformation 

process caused by tectonic loading or displacements, the tectonic-scale deformation is 

partitioned into lower-order RDEs. Then the partitioned fields in a lower-order RDE will 
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determine the fabric development and deformation pattern within it, which are commonly 

defined by the shapes and orientations of the higher-order RDEs in it. If the RDEs are 

treated as ellipsoidal inclusions, the extended Eshelby’s solutions can be used to 

construct the multiscale approach. Especially, let’s consider an RVE composed of a large 

number of lower-order RDEs, then each lower-order RDE is regarded as an Eshelby 

ellipsoidal inclusion embedded in the rest of lower-order RDEs. Within each lower-order 

RDE, there are a few dilute higher-order RDEs (structural and fabric elements) in a 

groundmass. First, one can solve the partitioned fields within each lower-order RDEs 

self-consistently using the partitioning (Eqs.2.15 and 2.16) and homogenization (Eqs.2.19 

or 2.20) equations. Then, the obtained fields in individual lower-order RDEs are used as 

boundary conditions to investigate the fields in each higher-order RDEs and the fabric 

development at the higher-order-RDE level by using the partitioning equations (Eq.2.10). 

By using this rather straightforward multiscale strategy, one can relate the structural and 

fabric elements to tectonic-scale deformation. So far, the backbone theory of MOPLA, 

Eshelby’s inclusion/inhomogeneity problem, and the major assumptions and strategies 

used to apply Eshelby’s solutions to heterogeneous multiscale deformation in Earth’s 

lithosphere are introduced. In the next section, I will describe the MATLAB package of 

MOPLA. 

 MATLAB package of MOPLA 
2.4.1 A brief summary of the algorithm for the self-consistent 

approach 
Once the imposed flow field and the initial setup of all lower-order RDEs, including the 

shape, the orientation, the rheological properties, are known, the instantaneous partitioned 

fields in individual lower-order RDEs can be solved self-consistently. The imposed flow 

is given by a velocity gradient tensor L, which can be decomposed into the strain rate 

tensor ( )1
2

T= +E L L , and the velocity tensor ( )1
2

T= −W L L . The initial state of an 

RDE at the initial time 0t  is defined by its shape, orientation, and rheological properties 

(the effective viscosity effη  and the stress exponent n ). Because of power-law rheology, 

the effective viscosity of an RDE must be defined at a reference strain-rate state, such as 
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the state of E  and updated in every incremental state. During the deformation, all RDEs 

may deform and rotate, so one also needs to update the shape and orientation of an RDE 

in every incremental state (more details see below). 

To get the instantaneous fields in an RDE from the remote fields using the partitioning 

equations, one must know the homogenized compliance (or stiffness) of HEM, which 

depends on the instantaneous rheological properties of the constituent RDEs. However, 

the homogenized compliance (or stiffness) of HEM is unknown until the partitioned 

stress (or strain rate) fields in all RDEs are known. Therefore, a self-consistent approach 

is necessary by which one can solve the partitioned fields in the constituent RDEs and the 

homogenized compliance (or stiffness) of HEM simultaneously. The self-consistent 

approach is achieved by two iterative loops (Jiang, 2014). Fig.2.3 briefly illustrates the 

procedures of the two iterative loops. Note, as discussed in section 2.4.3, the remote 

deviatoric stress field mΣ  resulting from mΕ  is different from the macroscale deviatoric 

stress Σ  due to the imposed Ε . The remote field properties and the macroscale field 

properties were not distinguished in Jiang (2014) but are distinguished in this MATLAB 

package. The outer iterative loop starts with the initial guesses of initialΜ , 0
initialE  and mΣ , 

assuming m =Σ Σ . Then for every RDE, the inner iterative loop is launched to calculate 

the partitioned fields ( ( )kσ  and ( )kε ) using the portioning equations (Eqs.2.15 and 2.16) 

and update the rheological properties until the output rheological properties coincide with 

the output ones within a specified tolerance. If this condition is satisfied, the partitioned 

stress of an RDE must satisfy: 
( ) ( )

( )
tolerance

k k
current last

k
last

−
<

σ σ

σ
. As the above computation 

repeats in every RDEs, to save computational time, these computations are carried out 

simultaneously in this package by using the MATLAB built-in Parallel Computing 

Toolbox. Then the instantaneous rheological properties of all RDEs can be used to update 

the homogenized properties of HEM Μ  and 0E  (Eq.2.20), the macroscale stress Σ , and 

the remote stress mΣ  (Eq.2.18b), which are used to execute the new round of outer 

iteration. The outer iterative loop terminates when the output Μ  and 0E  coincide with  
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Figure 2.3 A flowchart of the self-consistent MultiOrder Power-Law Approach 

(MOPLA) 
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the input ones within a tolerance: tolerance
current last

last

−
<

Μ Μ

Μ
, and the macroscale stress 

also satisfies: tolerancecurrent last

last

−
<

Σ Σ

Σ
. When both loops are complete, the self-

consistent computation for one computational step is done. 

2.4.2 A brief summary of the algorithm for the evolution of RDEs 
At the time t , the shape of an RDE is defined by the lengths of its 3 semi-axes (

1 2 3,  ,  and a a a ), which is expressed in a vector form: 
1

2

3

a
a
a

 
 

=  
 
 

a . The orientation is defined 

by a coordinate system 1 2 3x x x′ ′ ′  with 3 axes fixed to 3 semi-axes of the ellipsoid (Fig.2.4). 

Let the unit vectors parallel to the axes of the global coordinate 1 2 3x x x  be, respectively, 

1e , 2e , and 3e , and those parallel to the axes of the coordinate system 1 2 3x x x′ ′ ′  be 1′e , 2′e , 

and 3′e . Then the orientation is represented by a matrix, 

T
1

T
2

T
3

′ 
 ′=  
 ′ 

e
Q e

e
 in 1 2 3x x x  system, 

which can also be defined by a set of 3 spherical angles (Jiang, 2007a, b, 2012, 2013).  

Once the remote flow fields in the matrix ( mE  and mW ) known, the strain rate ε  and 

vorticity w  inside an RDE are calculated using Eqs.2.15. The shape and orientation 

evolution with time of an RDE is governed by the set of equations (Jiang, 2012): 

1

2

3

0 if  
ˆˆ ,   ( )   and    

if  ij ij
ij

a
i jd diag a
i jdt

a
ε ε

ε

 
≠  

= = = =  =  
 

a εa a                              (2.21a) 

d
dt

= −
Q ΘQ                     (2.21b) 
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In the above equation, Θ  represents the angular velocity, defined by (Jiang, 2007b, 2012, 

2013): 

'= −Θ w w                                             (2.22)  

where 'w  is the vorticity of the RDE measured relative to the reference tracking 

the RDE’s three semi-axes. The components of 'w  expressed in the RDE’s own 

coordinate axes are (Goddard and Miller, 1967; Bilby and Kolbuszewski, 1977; Jiang 

2012, 2013):  

2 2

2 2             
'

                       

i j
ij i j

i jij

ij i j

a a
a a

a aw
w a a

ε
 +

≠
−= 

 =

                              (2.23)  

The evolution of the shape and orientation of an RDE for one computational step 

(Eq.2.21) can be solved numerically using a combination of Runge-Kutta method and 

Rodrigues rotation approximation (Jiang, 2014). Repeating this procedure for as many 

steps as necessary, the history of the RDEs is completely tracked to any large finite 

strains.  

When the system achieves large finite strains, the RDEs may be too elongated or 

flattened so that boudinage may develop. To account for the development of boudinage, 

we set a threshold for the ratios of the lengths of the axes (long axis/intermediate axis and 

intermediate axis/short). Once the ratios of the lengths of the axes exceed the threshold, 

we will set the length of the longer axis to its half. 

2.4.3 Description of the MATLAB package 
The algorithm of MOPLA has been written in a MATLAB package generally. This 

package contains the following two main MATLAB functions called 

‘MOPLA_primary.m’ and ‘MOPLA_secondary.m’.  

‘MOPLA_primaty.m’ considers a poly-phase rock mass composed of N rheologically 

distinct elements (RDEs) subjected to tectonic displacement. This function is for the 

simulation of the overall mechanical behavior of the heterogeneous rock mass as well as  
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Figure 2.4 An illustration of an ellipsoid and two distinct coordinates  

The global coordinate 1 2 3x x x  with base unit vectors ie  and the coordinate system 

1 2 3x x x′ ′ ′  with base unit vectors i′e  parallel to the three semi axes of an ellipsoid. This 

figure is modified after Jiang (2012). 
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the shape and orientation evolution of all rheologically distinct elements. The input 

parameters are listed in Table 2.1: 

Table 2.1 The input parameters of MATLAB function “MOPLA_primary.m”  

L Imposed macroscale velocity gradient tensor, a 3-by-3 matrix. 

n The number of rheologically distinct elements (RDEs). 

a The initial three semi-axes of RDEs (a1>a2>a3; a3=1), a 3-by-3 matrix. 

q The initial orientations of RDEs as transformation matrix, a 3-by-3-by-n 

matrix.  

eta The effective viscosities of RDEs defined at the initial state, such as the 

imposed macroscale strain-rate state, a 1-by-n vector. 

Ne The stress exponents of RDEs, a 1-by-n vector. 

steps The total computational steps. 

tincr The time increment of each computational step; the choice of tincr must 

ensure that each computational step represents an infinitesimal deformation. 

 

The output variables are in Table 2.2: 

Table 2.2 The output variables of MATLAB function “MOPLA_primary.m” 

C_bar_evl The evolution with time of the homogeneous macroscale stiffness 

tensor of the heterogeneous rock mass, a 3-by-3-by-3-by-3-by-steps 

matrix. 

S_bar_evl The evolution with time of the macroscale deviatoric stress tensor due 

to the imposed macroscale strain rate, a 3-by-3-by-steps matrix. 

Q _evl The orientation evolution of all RDEs with time, a 3-by-3-by-n-by-

steps matrix. 

A_evl The shape evolution of all RDEs with time, a 3-by-n-by-steps matrix. 

 

‘MOPLA_secondary.m’ considers a poly-phase rock mass composed of N primary 

(lower-order) RDEs subjected to tectonic displacement. In each primary RDE, there are 



46 

 

some secondary (higher-order) inclusions, which are the observed structural and fabric 

elements in the geology scenario. I assume that each primary RDE is isotropic, and 

secondary inclusions are so far apart from each other that they are considered as dilute 

inclusions in a groundmass. This function allows us to simulate the overall mechanical 

behavior of the heterogeneous rock mass, and to track the shape and orientation evolution 

of all primary and secondary inclusions. Therefore, one can investigate the fabric 

development at the observed structural and fabric-element level. The input parameters are 

in Table 2.3: 

Table 2.3 The input parameters of MATLAB function “MOPLA_secondary.m” 

L Imposed macroscale velocity gradient tensor, a 3-by-3 matrix. 

n The number of primary RDEs.  

a The initial three semi-axes of primary RDEs (a1>a2>a3; a3=1), a 3-by-3 

matrix. 

q The initial orientations of primary RDEs, a 3-by-3-by-n matrix.  

eta The effective viscosities of primary RDEs defined at the initial state, such as 

the imposed macroscale strain-rate state, a 1-by-n vector. 

Ne The stress exponents of primary RDEs, a 1-by-n vector. 

ns The number of secondary inclusions in each primary RDE. 

ak The initial three semi-axes of secondary inclusions, a 3-by-n-by-ns matrix. 

qk The initial orientation of secondary inclusions, a 3-by-3-by-n-by-ns matrix 

etak The effective viscosities of secondary inclusions defined at the initial state, 

such as the imposed macroscale strain-rate state, a ns-by-n matrix. 

Nk The stress exponents of secondary inclusions, a ns-by-n matrix. 

steps The total computational steps. 

tincr The time increment of each computational step; the choice of tincr must 

ensure that each computational step represents an infinitesimal deformation. 

 

The output variables are in Table 2.4: 
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Table 2.4 The output variables of MATLAB function “MOPLA_secondary.m” 

C_bar_evl The evolution with time of the homogeneous macroscale stiffness 

tensor of the heterogeneous rock mass, a 3-by-3-by-3-by-3-by-steps 

matrix. 

S_bar_evl The evolution with time of the macroscale deviatoric stress tensor due 

to the imposed macroscale strain rate, a 3-by-3-by-steps matrix. 

Q _evl The orientation evolution of all primary RDEs with time, a 3-by-3-by-

n-by-steps matrix. 

A_evl The shape evolution of all primary RDEs with time, a 3-by-n-by-steps 

matrix. 

Qk _evl The orientation evolution of all secondary inclusions with time, a 3-

by-3-by-n-by-steps matrix. 

Ak_evl The shape evolution of all secondary inclusions with time, a 3-by-n-

by-steps matrix. 

 

Beside the two main functions, there is a folder called Routines. This folder 

contains the functions called in two main functions or the example that we will discuss 

later. Please add this folder and the subfolders within it to the MATLAB path before 

running the main functions. The functions in this folder could be divided into four 

groups: Common Tensor Operations, Eshelby Tensors and Green Interaction Tensor, 

Evolution of the Inhomogeneities, and Visualization. The subfolder ‘Common Tensor 

Operations’ contains the basic tensor operations which are involved in the calculation of 

MOPLA but not defined in MATLAB. The subfolder ‘Eshelby Tensors and Green 

Interaction Tensor’ contains the functions for the evaluation of Eshelby tensors for 

different kinds of materials, which is required in Eshelby’s solution. The subfolder ‘the 

Evolution of the Inhomogeneities’ contains the functions to generate the initial shape and 

orientation of the RDEs and track the shape and orientation evolution of RDEs. The 

‘Visualization’ subfolder contains the functions to plot the orientations of three semi-axes 

of an ellipsoidal in an equal area stereonet and plot the length of the three semi-axes of an 
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ellipsoidal in a Flinn diagram. The description of these functions in detail is in Appendix 

A. The MATLAB package is available in Appendix B. 

 Verification and example  
This MATLAB package is applied to fabric development in the Cascade Lake shear 

zone in the eastern Sierra Nevada of California (Jiang and Bentley, 2012; Jiang, 2014) as 

verification and an example as well, showing how to use this package. Please add the 

whole folder to the MATLAB path, and one can directly run the executable MATLAB 

file ‘Example.m’. 

The Cascade shear zone is a dextral transpressional deformation zone. Within the shear 

zone, a variation pattern in lineation plunge is observed on outcrops (Jiang and Bentley, 

2012; Jiang, 2014). The variation pattern in lineation plunge in Cascade Lake shear zone 

is interpreted as the result of flow partitioning (Jiang and Bentley, 2012). The lineations 

are regarded as microscale structures developed, responding to partitioned flows in many 

RDEs throughout the Cascade shear zone (Jiang and Bentley, 2012). The development of 

the lineations can be modeled by MOPLA. 

I use an RVE composed of 200 primary RDEs to represent the poly-phase rock masses in 

the Cascade Lake shear zone as Jiang (2014). At the initial state, the 200 RDEs are 

uniform randomly oriented with random shapes: (long axis: intermediate axis: short axis) 

10-1:10-1:1. This shape variability covers a wide variety of bodies from nearly spherical 

(1:1:1) to pancake-like (10:10:1) to cigar-like ones (10:1:1). In Cascade Lake shear zone, 

there are around 60% felsic metavolcanic rocks in volume. Hence 120 of the 200 RDEs 

are assigned a relative effective viscosity of 1 and the remaining 80 RDEs varying 

between 1 and 10 at the macroscale strain-rate state. All RDEs are assumed to be power-

law viscous and isotropic, with stress exponents between 2 and 4.  

In order to investigate the fabric development at the higher-order fabric-element level, 

two hypotheses are tested (Jiang, 2014): the lineations were either defined by the 

preferred orientations of deformable objects or reflected the geometry of the finite strain 

fields in RDEs. I put two randomly oriented secondary inclusions within each primary 

RDE to test these two hypotheses, respectively. I assume that each primary inclusion is 
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isotropic, and the secondary inclusions are regarded as dilute inclusions in a groundmass. 

To test the first hypothesis, the first secondary inclusion is set to be one time stronger 

than its hosting RDE because lineation is more likely to develop in a rheologically strong 

element under a macroscale simple-shear-dominated flow (Yang et al., 2019). This 

secondary inclusion is assumed to have the same shape variability. The stress exponent of 

this secondary inclusion is simply set to 3. Then the orientation of the long axes of the 

first secondary inclusion should represent the plunge of the lineation. To test the second 

hypothesis, the second secondary inclusion must have a spherical shape (1:1:1) and the 

same viscosity and stress exponent as its hosting RDE, so that the geometry of this 

secondary inclusion after deformation reflects the geometry of the finite strain field in its 

hosting RDE. Then the orientation of the long axes of the second secondary inclusion 

should represent the plunge of the lineation. 

For the macroscale flow field, a homogeneous kinematic model for an inclined 

tabular zone undergoing horizontal convergence but without along-strike stretching is 

used (Jiang, 2014). As shown in Fig.2.5, xyz  coordinate is used to define the macroscale 

flow field, where the x-axis is parallel to the strike of the shear zone, the y-axis 

perpendicular to the shear zone boundary with +y in the dip direction of the shear zone, 

and the z-axis is parallel to the dip line of the shear zone with +z pointing upward. The 

boundary convergence velocity v is oblique to the strike of the shear zone. α  is the 

convergence angle, which is measured from the +x direction to the oblique convergence 

velocity v. If the oblique convergence is sinistral, α is less than 90°; if the oblique 

convergence is dextral, α is more than 90° (Fig.2.5). β  the dip angle of the shear zone. 

In the coordinate shown in Fig. 2.5, the velocity gradient is expressed as: 

0 cos 0
0 sin sin 0
0 sin cos sin sin

v

α
α β ε
α β α β

− 
 = − 
 
 

L , where vε  is the average rate of deformation of the 

zone defined by the ratio of the convergence rate and the active zone thickness. As the 

fabric development is a final product of the progressive deformation and does not relate 

to the rate of the deformation, vε  can be simply set to 1. For the Cascade Lake shear 

zone, β  is set to 70°. The convergence angle α is varying from 0° to 30°. The time  
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Figure 2.5 The xyz coordinate and the inclined transpression model for the 

macroscale deformation of the Cascade Lake shear zone  

The x-axis is parallel to the strike of the shear zone, the y-axis perpendicular to the 

shear zone boundary with +y in the dip direction of the shear zone, and the z-axis is 

parallel to the dip line of the shear zone with +z pointing upward. β  the dip angle of 

the shear zone. α  is the convergence angle, which is measured from the +x direction 

to the oblique convergence velocity v. If the oblique convergence is sinistral (red 

line), α is less than 90°; if the oblique convergence is dextral (red dashed line), α is 

more than 90°. This figure is modified after Jiang (2014). 
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increment of each computational step is 0.01tδ =  to ensure that each computational step 

represents an infinitesimal deformation. Fig.2.6 shows the model predicted lineation 

pattern defined by the long axes of deformable fabric elements in RDEs for convergence 

angle varying from 0° to 30°. Fig.2.7 is the model predicted lineation pattern defined by 

the maximum principle finite strain axes in RDEs for convergence angle varying from 0° 

to 30°. Both are the equal-area lower hemisphere projection. This simulation reproduces 

the modeling results of Jiang (2014), suggesting that this MATLAB package is verified 

(Figs2.6 and 2.7). In Fig.2.6, at high convergence angle ( 15 30α = °− ° ) and high bulk 

strain (computational steps >500 steps), the lineations defined by the long axes of the 

deformable fabric elements are more concentrated near the z-axis than the prediction of 

Jiang (2014, Fig.10). In Fig.2.7, at a high convergence angle ( 20 30α = °− ° ), the 

lineations defined by the maximum principle finite strain axes are broader than the 

prediction of Jiang (2014, Fig.11). The slight differences are due to the following 

reasons: First, the initial states of the RDEs in Jiang (2014) and this study are randomly 

generated to ensure the variability of the RDEs. Although the initial states of the RDEs in 

the two studies were generated following the same procedure, they are not identical. 

Second, the remote field and the imposed macroscale field are distinguished in this 

package but not in Jiang (2014). Third, different quadrature methods are used in the two 

studies to numerically evaluate the Eshelby tensors. Jiang (2014) adopted the Gauss-

Legendre Quadrature with 20 nodes to calculate the Eshelby tensors, whereas an optimal 

scheme for numerical evaluation of Eshelby tensors, combining the Gauss-Legendre 

Quadrature and the Lebedev Quadrature (Qu et al., 2016), is used in this package.  

 Conclusions 
This work provides a more refined algorithm of MOPLA by distinguishing the remote 

flow fields and the macroscale flow fields and implements the algorithm in MATLAB, a 

powerful and popular software. This work also incorporates the optimal scheme of Qu et 

al. (2016) to evaluate the Eshelby tensors numerically and uses the MATLAB built-in 

Parallel Computing Toolbox for high-performance computing. The backbone theory of 

MOPLA and the important equations in the algorithm are well summarized in this work. 

Then I explained the structure of this MATLAB package and applied this package to  
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Figure 2.6 The model predicted “lineation pattern” defined by the long axes of 

deformable fabric elements in RDEs (equal-area lower hemisphere projection) 
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Figure 2.7 The model predicted lineation pattern defined by the maximum principal 

finite strain axes in RDEs (equal-area lower hemisphere projection) 
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fabric development in Cascade Lake shear zone as a verification. This application is also 

a sample to show how to use this MATLAB package. 
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Chapter 3  

3 A Fully Mechanical Approach Toward High-Strain Zone 
Modeling Using the Generalized Eshelby Formalism 

 Introduction 
The deformation of Earth’s lithosphere is characterized by localized high-strain zones, 

instead of distributed deformation (e.g., Twiss and Mooress, 1992; Poirier,1980). Ductile 

high-strain zones manifest themselves in multiple scales (Poirier, 1980), including small-

scale structures and tectonic-scale structures that form major tectonic boundaries 

(Hamner,1988; Vauchez and Tommasi, 2003; Gumiaux et al., 2004; Montési, 2013). 

Once the tectonic-scale ductile high-strain zones are established, they may remain for a 

long time and have a strong influence on the mechanical evolution of Earth’s continental 

lithosphere (Vauchez et al., 1998; Tommasi and Vauchez, 2001; Ben-Zion and Sammis, 

2003).  

In the past five decades, there have been a great number of kinematic models that relate 

the progressive deformation and finite strain pattern in a ductile high-strain zone to the 

movement of its boundaries (see reviews in Jiang and White, 1995; Jiang and Williams 

1998; Davis and Titus 2011). Ramsay and Graham (1970) presented the first kinematic 

shear zone model in terms of the finite strain approach, in which the shear zone is 

bounded by two parallel and rigid walls extending infinitely. The progressive 

deformation in the zone is simple shearing. Ramberg (1975) considered more general 

two-dimensional shear zone deformation as a combination of pure shearing and simple 

shearing using the rate of deformation approach. Sanderson and Marchini (1984, 

Fig.3.1a) considered a special type of three-dimensional deformation, which they referred 

to as transpression, in terms of finite strain formulation. Their model describes a vertical 

tabular zone bounded by two rigid walls obliquely converging toward each other. The 

convergent component is accommodated by a homogeneous and strike-length constant 

but vertically stretching pure shearing, whereas the strike-slip (or trans-) component is 

accommodated by a homogeneous simple shearing. The strain compatibility between the 

deforming zone and the country rocks is violated, and the boundaries of the zone are 

discontinuous (e.g., Schwerdtner, 1989). As pointed out by Robin and Cruden (1994), the 
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Figure 3.1 Three different previous shear zone models  

(a) The “transpression” kinematic model of Sanderson and Marchini (1984). This 

model describes a vertical tabular zone bounded by two obliquely converging rigid 

walls. The strike-length constant. The shortening across the zone is compensated by 

the vertical ticking to conserve volume. The material within the zone can freely slip 

along the two rigid walls. (b) The “triclinic” kinematic model (Lin et al., 1998; Jiang 

and Williams, 1998). In this model, the shearing direction for the trans-component 

is oblique to the principal stretching directions of the boundaries. (3) The 

mechanical model of “Robin and Cruden, 1994”. The deformation in this model is 

analyzed based on the extrusional flow of a Newtonian viscous fluid compressed 

between two rigid walls with a simple shearing motion parallel to the walls. 
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transpression in Sanderson and Marchini (1984) is different from the original meaning of 

the term coined by Harland (1971) which stands for the boundary condition of oblique 

convergence only (see Jiang and Williams, 1998; Yang et al., 2019 for more discussion 

on this). The oblique convergence between two parallel-sided blocks, the transpression in 

the sense of Harland (1970), is not necessarily accommodated by the homogeneous 

deformation in the sense of Sanderson and Marchini (1984).  

In the finite strain approach, it matters how the order of simple-shear and pure-shear 

components is applied. In reality, both simple and pure shearing act simultaneously, 

although with variable relative magnitudes if the progressive deformation is non-steady. 

Fossen and Tikoff (1993) and Tikoff and Teyssier (1994) reformulated Sanderson and 

Marchini’s model in terms of the rate of deformation following Ramberg’s approach. 

Other transpression models have also been published (e.g., Simpson and De Paor, 1993; 

Jones and Tanner, 1995; Krantz, 1995; Teyssier et al., 1995), some models have been 

extended to include all possible three-dimensional monoclinic deformation with an added 

component of extrusion (Jones et al., 1997; Fossen and Tikoff, 1998; Passchier, 1998). 

These models, like that of Sanderson and Marchini (1984), have a monoclinic symmetry 

where the shearing direction is parallel to one of the principal directions of the pure-

shearing component (Jiang and Williams, 1998). Monoclinic models predict either a 

strike-parallel or a dip-parallel lineation pattern. However, over time geologists 

recognized that lineations in sub-vertical shear zones might vary between strike-parallel 

or dip-parallel (e.g., Hudleston et al., 1988; Robin and Cruden, 1994; Goodwin and 

Williams, 1996; Lin et al., 1998), which cannot be explained by traditional monoclinic 

models. Lin et al. (1998; Fig.3.1b) first presented a triclinic kinematic model in terms of 

the rate of deformation. Jones and Holdsworth (1998) presented a similar model in the 

finite strain form. In such triclinic models, the shearing direction for the trans-component 

is oblique to the principal stretching directions of the boundaries. Despite the different 

deformation paths included in particular models, in essence, these kinematic models are 

generated in a similar way and can be summarized in a unified model of Jiang and 

Williams (1998). Fernández and Díaz-Azpiroz (2009) proposed the so-called more 

general model, which is the rotation of Jiang and Williams (1998).  
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Robin and Cruden (1994) took a different approach. They developed a mechanical model 

of transpression (Fig.3.1c) by combining Jaeger’s (1964, p.140-143) analytical solution 

for extrusional flow of a Newtonian viscous fluid compressed between two rigid parallel 

walls with a simple shearing motion parallel to the walls. Dutton (1997) investigated the 

finite strain geometry of Robin and Cruden’s model. So far, the series of work forms the 

basis to explore the finite strain patterns and the rotation and strain paths of fabrics in a 

shear zone.  

In all kinematic models, a homogeneous and constant flow field (or deformation path) 

must be defined a priori for the shear zone, so that the finite strain evolution with time 

can be solved. The latter is then compared with natural fabric geometries. This may be 

justified in small-scale (centimeters- to meters-scales) Ramsay-type shear zones in 

homogeneous rocks with clearly defined boundaries. In crustal-scale ductile high-strain 

zones, the rocks are heterogeneous and anisotropic due to the ongoing development of 

fabrics. More importantly, the high-strain zone rocks interact with the country rock. 

During the deformation, the high-strain zones may deform and rotate unless they are well 

developed and form the plate boundaries, then their shapes and orientations may remain 

unchanged. In the cause of a high-strain zone development, its orientation and geometry 

with respect to the geological setting and its rheological properties change with time. As 

a result, the flow field within the high-strain zone changes with time. It becomes 

impractical to assign a flow field for such a high-strain zone. 

This work takes a different approach in this paper. This work considers a high-strain zone 

as a planar heterogeneous inclusion embedded in the lithosphere undergoing tectonic-

scale deformation. This work uses Eshelby’s formulation to investigate the mechanical 

and kinematic fields inside the high-strain zone, including the finite strain accumulation 

there. Therefore, the flow inside a high-strain zone is the partitioned flow of the tectonic 

scale deformation due to far-field plate motion. Because our approach is a complete 

mechanical one, it can address the problems associated with the mechanics of the high-

strain zone system, such as the stress distribution and the rheology of the high-strain 

zone. As high-strain zones are rheologically weak and the fundamental structures that 

accommodate a large number of deformations within Earth’s lithosphere and, in turn, 
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influence the lithospheric deformation processes, the mechanical evolution of the 

lithosphere as well as the continental rheology. Therefore, investigating the mechanics of 

the high-strain zone system is crucial. It will help us to understand the mechanics of the 

lithospheric deformation and describe the rheology of the continental lithosphere.    

To constrain the model inputs and test the geometric results deduced by model, this work 

applies this model to an ancient crustal high-strain zone, the Shangdan Tectonic Zone in 

Qinling Orogenic Belt, where abundant fabrics are preserved. This work also discusses 

the stress distribution in the active deformation zone and its vicinity and the strength of 

the large-scale high-strain zone by applying this model to the San Andreas Fault in 

Central California and the strength of the high-strain zone by applying it to mylonite 

zones at the northwest margin of the Grenville Front Tectonic Zone. 

 A fully mechanical approach 

This work presents a new high-strain zone model based on the classical Eshelby inclusion 

problem. Eshelby (1957, 1959) provided an elegant approach to solve the elastic fields 

inside and outside an ellipsoidal inclusion embedded in an infinite homogenous elastic 

matrix. The Eshelby solutions have been extended to general nonlinear viscous materials 

with a linearization approach (Molinari et al., 1987; Lebensohn and Tomé, 1993; Jiang, 

2013, 2014, 2016; Fig.3.2). In this model, the ductile lithosphere subjected to plate 

motion is considered as an infinite power-law viscous material. A crustal ductile high-

strain zone is considered as a planar heterogeneous inclusion, with three semi-axes being 

1 2 3a a a> >>  embedded in the lithospheric matrix (Fig.3.3). An internal coordinate, 

' ' 'x y z , with three axes 'x , 'y  and 'z  respectively parallel to the three semi-axes 1a , 2a  

and 3a , is adopted (Fig.3.4). The mechanical and kinematic fields inside the high-strain 

zone are defined in the internal coordinate. While, the plate motion and the mechanical 

and kinematic fields outside and adjacent to the high-strain zone are defined in the 

external right-hand coordinate xyz , with the x-axis parallel to the strike of the high-strain 

zone and the z-axis  
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Figure 3.2 Eshelby inclusion problem of an ellipsoidal inclusion in the matrix 

0C  and 1C  are the 4th order viscous stiffnesses of the inclusion and the matrix. The 

lowercase uppercase letter E , Σ , and W  stand for the strain-rate, stress, and 

vorticity fields in the matrix. The constant fields inside an RDE are denoted by 

corresponding lowercase letters ε , σ , and w . The mechanical fields outside the 

inclusion vary with the position vector x and are expressed by ( )Eε x , ( )Ew x  and 

( )Eσ x . This figure is modified after Jiang and Bhandari (2018). 
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vertical (Fig.3.4). The kinematic and mechanical fields inside an inclusion are related to 

the far-field quantities by the following set of partitioning equations (Jiang 2014): 

( )11 1
0: :d −− − − = − − ε E J S C σ Σ                          (3.1a) 

( )1: :−− = −w W Π S ε E                                (3.1b) 

The lowercase letters ε , σ , and w  represent, respectively, the strain-rate, stress, and 

vorticity tensors inside an inclusion; uppercase E , Σ , and W  stand for the 

corresponding far-field quantities (Fig.3.2). 0C  is the 4th order viscous stiffnesses of the 

matrix. S  and Π  are 4th order Eshelby tensors for interior points with the former being 

symmetric and latter antisymmetric. dJ is the 4th order deviatoric identity tensor defined 

by the Kronecker delta
1
0ij

i j
i j

δ
=

=  ≠
 (Jiang, 2014): ( )1 1

2 3
d
ijkl ik jl jk il ij klJ δ δ δ δ δ δ= + −  . 

The far-field fields are determined by the plate motion. With known far-field fields, the 

partitioned fields inside the high-strain zone can be obtained by the numerical 

computation using Eq.3.1 (Jiang 2012, 2013, 2014). Then the finite strain pattern inside 

the high-strain zone can be investigated from the flow fields inside the high-strain zone 

using the relation between the flow and finite strain (Jiang, 2010): 

( ) ( )
1

(2) (1)

exp

( )

i i

t t
t t

t t

t δ δ

δ δ
   −   
   

=

= ⋅⋅⋅

F l

F F F F F
                                                                               (3.2) 

where iF and ( )i i i= +l ε w  are the incremental position gradient and the flow inside the 

high-strain zone for ith computational step. tδ  is incremental time for each computational 

step. ( )tF  is the position gradient for the deformation over a computation time of t.  

The kinematic fields outside the high-strain zone are given by following two partitioning 

equations (Jiang 2016): 
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Figure 3.3 A conceptual illustration of a crustal high-strain zone as a planar 

heterogeneous ellipsoidal inclusion embedded in a block of ductile lithosphere 
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Figure 3.4 A schematic diagram showing the shape and orientation of a planar 

ellipsoidal high-strain zone  

(a) A three-dimensional view of the planar high-strain zone with three semi-axes a1, 

a2, and a3. 1 2 3: : 100 : :1a a a R R= , where R is the shape parameter. A global 

coordinate xyz  and an internal coordinate, ' ' 'x y z , with three axes 'x , 'y  and 'z  

respectively parallel to the three semi-axes 1a , 2a  and 3a , are adopted. L is the far-

field flow due to the plate motion. α is the convergence angle. β is the dip angle of 

the high-strain zone. (b) The cross-section of yz-plane. (c) The cross-section of the 

xy-plane. 
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( )1( ) ( ) : :E E −= + −ε x E S x S ε Ε                                                                         (3.3a) 

( )1( ) ( ) : :E E −= + −w x W Π x S ε Ε                                                                     (3.3b)                       

where the superscript “E” stands for the exterior field quantities. ( )ES x  and ( )EΠ x  are 

the Eshelby tensors for exterior points, and both depend on location. Once the strain rate 

fields outside the high-strain zone are obtained, the corresponding stress fields can be 

calculated using the constitutive relation: 

0( ) : ( )E E=σ x C ε x                                                                                             (3.4)        

Earth’s lithosphere is a rheologically heterogeneous poly-element material. In order to 

apply the extended Eshelby’s solutions to Earth’s lithosphere, this work borrowed the 

concept of Homogeneous Equivalent Medium (HEM) (Molinari et al., 1987; Lebensohn 

and Tomé, 1993). The heterogeneous rock mass composed of a large number of 

“rheologically distinct elements” (RDEs) is replaced by a hypothetical HEM whose 

rheological properties are obtained by means of self-consistent homogenization from the 

effective properties of all RDEs contained in “Representative Volume Element” (RVE) 

(Molinari et al., 1987; Lebensohn and Tomé, 1993; Jiang, 2014) (Fig. 5.5). Therefore, the 

country rock (matrix) is regarded as an isotropic power-law viscous material with a stress 

exponent of 0n . The viscous stiffness tensor of country rock can be expressed in terms of 

the effective viscosity 0η : 

0 02 dη=C J                                                                     (3.5) 

Rock within the high-strain zone is also a power-law viscous material with a stress 

exponent of 1n . As foliation is well developed in the high-strain zone, the material inside 

high-strain zone is considered as a transversely isotropic material, having two distinct 

effective viscosities: 1
sη  being the viscosity for shearing along the foliation (parallel to 

the 1 2a a  plane of the inhomogeneity) and 1
nη  for shearing that does not activate the 

foliation slip. Clearly 1 1
s nη η<  and the degree of anisotropy for the material can be 

defined as (Chen et al., 2014): 
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Figure 3.5 A conceptual diagram showing the heterogeneous poly-element scenario 

and the self-consistent homogenization scheme 

(a) An infinite poly-element composite material subjected to the remote field with 

strain rate E, vorticity W, and the deviatoric stress Σ. The macroscale fields ( ε , w , 

and σ ) defined, at every point, in terms of the Representative Volume Element 

(RVE). (b) An RVE is a large enough element consisting of a representative 

assemblage of Rheologically Distinct Elements (RDEs). (c) Each RDE is reviewed as 

an ellipsoid embedded in a Homogeneous Equivalent Medium (HEM) whose 

rheology is the “average” from the rheological properties of all constituent elements 

in the RVE. The overall rheology of HEM is obtained by means of a self-consistent 

homogenization scheme from the properties of the constituents.    
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1

1

n

sm η
η

=                                                                                                                (3.6) 

The viscosity ratio between the viscosity of the matrix and that of the ellipsoid is defined 

as: 

1

0

n

r η
η

=                                                                                                                 (3.7)         

The anisotropic viscous stiffness tensor for the material inside the high-strain zone can be 

expressed in terms of the viscosity ratio r , the degree of anisotropy m  as well as the 

viscosity of matrix 0µ (Jiang, 2016): 

11 12 13

1
0 21 22 23

31 32 33

1

12

1 1

d d d
kl kl kl

d d d
ijkl kl kl kl

d d d
kl kl kl

J J J
m

r J J J
m

J J J
m m

η

 
 
 
 =  
 
  
 

C                                                             (3.8) 

where 1
ijklC  and d

ijklJ  represent, respectively, the components of the ellipsoid viscosity 

tensor 1C and the 4th order identity tensor dJ . 

Numerical calculation in this paper using Eqs.3.1-3, and the calculation of self-consistent 

homogenization are realized using MATLAB scripts, the algorithms for which are in the 

literature (Jiang, 2010; Jiang and Bentley, 2012; Jiang, 2014, 2016; Qu et al., 2016) and 

in Chapter 2 of this thesis. 

 Geometric simulation results and field observations 
Once the far-field flow, which is determined by the plate motion and the state of the high-

strain zone (the shape, orientation, and rheological properties) as well as the rheology of 

the country rock are known, the finite strain pattern and fabrics inside a high-strain zone 

can be obtained using Eq.3.1 and the method in Jiang (2010). Once the high-strain zone 

established, it retains its shape and orientation for a long time. This work assumes that the 

computation starts when the high-strain zone is already established, so the shape and 
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orientation of the high-strain zone remain unchanged during the computational time. As 

shown in Fig.3.4, the shape of the high-strain zone is defined as 1 2 3: : 100 : :1a a a R R= , 

where R is a shape parameter. The strike of the high-strain zone is parallel to x-axis and 

β  is the dip angle. Because only the viscosity ratio r between the country rocks and the 

high-strain zone influences the development of the fabrics, not the absolute viscosities, 

the viscosity of country rocks 0η  is simply set to 1. In a power-law material, the viscous 

stiffness tensor (or viscosity) is not a material constant but depends on the current strain 

rate (or stress) state. Therefore, the viscosity ratio r  between the power-law matrix 

(country rocks) and the power-law ellipsoid (high-strain zone) is not a constant either and 

changes during the deformation. For simplicity, the stress exponents for both country 

rocks 0n  and the high-strain zone 1n  are set to 1. Then the viscosity ratio r  is constant. 

This work considers a sinistral oblique converging plate motion in the reference model. 

In xyz  coordinate, as shown in Figs.5.3 and 5.4, the far-field flow derived from the plate 

motion is 
0 cos 0
0 sin 0
0 0 sin

vL
α
α ε

α

 
 = − 
 
 

, whereα  is the convergence angle, vε  the average 

rate of deformation of the high-strain zone. As the fabric formation is the final product of 

progressive deformation and irrelevant to the absolute deformation rate, vε  is simply set 

to 1. The reference model considers a high-strain zone with a shape parameter of 20R = , 

a viscosity ratio of 210r −= , and an anisotropy degree of 1m = , indicating the high-strain 

zone is isotropic. The time step for computation is 0.02tδ =  that ensure every step 

corresponds to an infinitesimal increment of deformation (Jiang, 2014). The total 

computational time is 100 steps. A series of simulation runs are performed varying 

convergence angle α  progressively from 0° to 90°, dip angle β  from 90° to 40°. Over a 

total computation time t , the finite strain patterns based on the reference model are 

shown in Fig.3.6. The lineations are represented by the maximum principal strain axes, 

and the poles to the foliations are represented by the minimum principal strain axes. As 

finite strain increases, the foliations converge to nearly parallel to the high-strain zone 

boundaries regardless of convergence angle and dip angle. For a vertical high-strain zone 

( 90β =  ), at large finite strains, the lineations are strike-parallel when α  is small 
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Figure 3.6 Equal-are lower hemisphere projections of the variation and evolution of 

the finite strain patterns in a sinistral transpressional zone 

The lineations are represented by the maximum principal strain axes (stars), and 

the poles to the foliations are represented by the minimum principal strain axes 

(triangles). As strain increases, the fabrics rotate along with the arrows. α  is the 

convergence angle and β  is the dip angle. The black line represents the high-strain 

zone boundary (see text for more details).  
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( 60α ≤  ) and vertical when α  is very large ( 60α >  ). For an oblique high-strain zone (

90β ≠  ), at large finite strains, the lineations are from the strike-parallel to nearly dip-

parallel as α  increasing progressively from 0° to 90°. Simulation runs with various shape 

parameters R, viscosity ratios r, and anisotropy degrees m are performed as well. The 

simulation results show that the finite strain pattern is insensitive to these parameters.  

This model has been applied to an ancient high-strain zone, Shangdan Tectonic Zone in 

Qinling Orogenic Belt. The Qinling Orogenic Belt extends nearly 2500 km from west to 

east across central China (Fig.3.7a; Dong et al., 2011). The Qinling Orogenic Belt is 

formed by the convergence and collision between north and south China blocks (e.g., 

Dong et al., 2011; Dong and Santosh, 2016). It is divided into the south Qinling and the 

north Qinling by Shangdan Suture Zone (or Shangdan Tectonic Zone) (Fig.3.7a; Meng 

and Zhang, 2000). The Shangdan Tectonic Zone is defined by the discontinuously 

exposed Danfeng Complex that consists of ophiolitic mélange (Dong et al., 2011; Dong 

and Santosh, 2016). From Danfeng area to Shangnan area, well-developed lineations, 

sub-vertical foliations, and sinistral shear-sense indicators are observed along the 

Shangdan Tectonic Zone (Figs.3.7c and d). The poles to the foliations and the lineations 

in this area are plotted in Fig.3.7b, and the average dip angle of the foliations is ~70°. In 

this area, the Shangdan Tectonic Zone is regarded as a highly flatten inclusion with a dip 

angle of 70° subjected to a sinistral oblique converging plate motion. The simulation 

results when 70β =   and 5 ~ 20α =   are consistent with the fabrics observed in the field 

(Fig.3.8). So, there must be a large component of shearing in this area, and the 

convergence angle α  of the plate motion is constrained between 5° to 20°. Comparing 

the geometric results deduced from the model and the field observations in Shangdan 

Tectonic Zone allows us to constrain the plate motion during the deformation time in this 

area and validate this model as well. 

 Stress distribution inside and outside the active high-
strain zone 

As this model is a complete mechanical one, it allows not only the simulation of the finite 

strain pattern within a high-strain zone but also the investigation of the stress distribution   
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Figure 3.7 A geological map and field observations of the Shangdan Tectonic Zone, 

Qinling Orogenic Belt, China 

(a) A geological map showing the location and the main structures and geological 

domains of the Qinling Orogenic Belt and its adjacent areas (modified after Dong 

and Santosh, 2016). (c) and (d) Field photos showing the well-developed lineations, 

sub-vertical foliations, and sinistral shear-sense indicators along the Shangdan 

Tectonic Zone from Danfeng area to Shangnan area. (b) Equal-area lower-

hemisphere plots of the fabric data in this area. Red triangles are the poles to the 

foliations and the blue dots are the lineations. 
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Figure 3.8 The comparison of geometric results and field observations  

(a) Equal-area lower-hemisphere plots of the fabric data collected along Shangdan 

Tectonic Zone from the Danfeng area to the Shangnan area. Red triangles represent 

the poles to the foliations and the blue dots stand for the lineations. (b) Equal-area 

lower-hemisphere plots of the variation and evolution of finite-strain-related 

lineations and poles to the foliations in a sinistral transpressional zone when dip 

angle β  70° and the convergence angle α  varies from 0° to 90°. The simulation 

results when 70β =   and 5 ~ 20α =   are consistent with the fabric observations.   
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inside and outside an active high-strain zone. The relative plate motion between the North 

American and Pacific Plates is N35°W at a rate of 48±1mm/yr (DeMets et al., 1990) that 

leads to dextral oblique converging. The San Andreas Fault (SAF) is a major fault in the 

plate boundary and in central California. The SAF is nearly vertical ( 90β =  ) and 

oriented at N40°W, giving a convergence angle 5α 

 . The SAF is a pure right-lateral 

strike-slip fault that accommodates hundreds of kilometers displacement along it (Zoback 

at al., 1987). The direction of maximum horizontal compression in the SAF is expected to 

be 30° to 45° from the vertical fault plane based on the traditional mechanical model 

(e.g., Jaeger and Cook, 1969). However, there is clear evidence that both the SAF and the 

adjacent diffused region (over 200km) together accommodated the plate motion (Teyssier 

et al., 1995; Titus et al. 2012). The orientation of young thrust faults and upright folds 

and borehole breakouts in the diffused zone suggests that the direction of the maximum 

principal deviatoric stress ( 1σ ) is between 78° to 84° to the SAF (Mount and Suppe, 

1987; Zoback et al., 1987; Jones, 1988; Townend and Zoback, 2004). It is a long-

standing geological problem of how the stress distributes in the vicinity of the SAF and 

how to account for the widespread thrust faults and upright folds perpendicular to the 

SAF. Zoback et al. (1987) used a simple model for elastic material to show that the fault 

normal stress field is consistent with the plate motion as long as the fault is extremely 

weak in the shear direction. They also suggested that through the entire lithosphere not 

only in brittle crust, localized high-strain zones and faults may reorient tectonic stresses 

that results in the thrust faults and upright folds perpendicular to the SAF. 

In order to investigate the stress distribution in the vicinity of SAF in the ductile region, 

we consider the SAF in the ductile region as a vertical highly flatten inclusion with a 

shape parameter of 20R = , subjected to a dextral oblique converging with a convergence 

angle of 5α =  . The stress distribution inside and adjacent to the SAF can be solved by 

Eshelby’s solutions for the interior and exterior fields (Eqs.3.1 and 3.2). The viscosity 

varies by two to three orders of magnitude over the western United States, with low 

viscosity along the SAF and high viscosity in the country rocks (Flesch et al., 2000). The 

SAF is weak with respect to strike-slip probably due to rheological anisotropy (Gilbert et 

al., 1994; Flesch et al., 2000). This work assumes that the stress exponents for the SAF 



82 

 

1n  and country rocks 0n  are 1, and the viscosity of country rocks 0η  is 1. The viscosity 

ratio between the SAF and the country rocks is set to 210r −=  and 310r −= . The 

anisotropy degree is set to 1m =  for isotropic situation, and 10m = , indicating that 1
sη  of 

the SAF is one order of magnitude lower than 1
nη .  

The orientations of the maximum principal deviatoric stress ( 1σ ) within the SAF and in 

its vicinity are plotted in Fig.3.9. When 210r −=  and 1m = , the exterior stresses do not 

rotate too much (Fig.3.9a). The exterior stress becomes nearly perpendicular to the SAF 

in its vicinity, if the viscosity ratio between the SAF and the country rocks is decreased 

by one order of magnitude (Fig.3.9c) or the anisotropy of the SAF is increased by one 

order of magnitude (Fig.3.9b) or both (Fig.3.9d). The results in Figs.3.9b and c are 

identical, indicating that the ratio between the viscosity of the SAF for shearing along the 

foliation 1
sη  and the viscosity of country rocks 0η  determines the orientation of the 

exterior stress. Simulation runs with varied shape parameter R are performed; the 

orientation of the exterior stress is insensitive to the shape parameter R as long as the 

three semi-axes satisfy 1 2 3a a a>> > . We also notice that although the exterior stress 

rotates to nearly perpendicular when the SAF is weak along the foliation, the exterior 

stress resumes about one characteristic length away from the SAF.  

To conclude, the plate motion ultimately determines the stress field and deformation 

pattern. The presence of the large weak zones, including faults in the brittle region and 

high-strain zones in the ductile region, alters the stress field and deformation pattern 

adjacent to the weak zones. However, in the ductile region, plate oblique convergence 

and the presence of the weak SAF can account for a narrow band of stress rotation; it 

cannot explain the widespread thrust faults and upright folds perpendicular to the SAF. 

Additional factors, including basal tractions and buoyancy forces due to horizontal 

variation in gravitational potential energy (GPE; Flesch et al., 2000), may affect the stress 

orientation in the western United States. 
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Figure 3.9 The orientation of the maximum principal deviatoric stress ( 1σ ) within 

the SAF and in its vicinity  

The red bar represents the interior stress field, and the blue bar is the exterior stress 

field. The simulation results when (a) 210r −=  and 1m = ; (b) 210r −=  and 10m = ; (c) 
310r −=  and 1m = ; (d) 310r −=  and 10m = . For more details, see the text. 
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 The strength of the large-scale high-strain zones 
As Earth’s deformation in the ductile region is characterized by localized high-strain 

zones (e.g., Poirier,1980; Twiss and Moores, 1992; Passchier and Trouw, 2005), the 

strength of the large-scale high-strain zone is the key to understand the continental 

strength. The strength of the quartz aggregates in a quartz-bearing mylonite zone has 

commonly been used to represent the strength of the mylonite zone and, in turn, to 

constrain the continental lithosphere strength (Behr & Platt, 2014; Kohlstedt et al., 1995). 

However, the roles of other minerals, like mica, and the anisotropy due to the 

development of fabrics have a strong influence in the strength of the high-strain zones 

(Kronenberg et al., 1990; Shea and Kronenberg, 1993; Tullis and Wenk, 1994; Tullis, 

2002; Holyoke and Tullis, 2006; Montési, 2013). It is oversimplified to use the strength 

of quartz aggregates to represent the high-strain zone strength. The large-scale high-strain 

zone is composed of a lot of rheologically distinct elements (Fig.3.10). Therefore, the 

overall strength of the high-strain zone must be obtained from the rheological properties 

of the constituents. To account distinct rheological properties and the preferred 

orientation development of the constituent elements, the self-consistent homogenization 

approach (Molinari et al., 1987; Lebensohn and Tomé, 1993; Jiang 2014, 2016; Fig.3.10) 

is required to obtain the overall rheology of the high-strain zone.  

I applied the self-consistent homogenization approach to the mylonite zones at the 

northwest margin of the Grenville Front Tectonic Zone to investigate the strength of the 

high-strain zone. The Grenville Front Tectonic Zone (GFTZ) is a NE-trending 

deformation belt at the northwest front of the Grenville Orogen (Wynne-Edwards, 1972; 

Davidson, 1984). GFTZ is a thrust zone formed during the Grenvillian Orogeny (LaTour 

1981; Haggart et al., 1993; Rivers, 2008). Compositional layering transposition 

foliations, lineations, and tight-to-isoclinal folds are observed in GFTZ (Li, 2012, Ph.D. 

thesis). At the northwest margin of the GFTZ, the NE-striking mylonite zones are well 

exposed (Fig.3.11b). In the banded mylonite zone (Fig.3.11c), rocks are highly deformed, 

and fabrics are characterized by NE-striking and steeply dipping transposition foliations 

and SE-plunging lineations (Fig.3.11e). Thin sections from the banded mylonite show 

that the rocks are metasediment, and the main minerals are quartz, mica and feldspar  
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Figure 3.10 A conceptual illustration of a planar heterogeneous poly-element high-

strain zone embedded in a block of the ductile lithosphere and the self-consistent 

homogenization scheme   
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Figure 3.11 Geological maps and field observations in the mylonite zone at the 

northwest margin of the Grenville Front Tectonic Zone  

(a) A regional geological map showing the location of the area in (b) with respect to 

the whole Grenville Province (modified after Li, 2012). The area in (c) is located at 

the northwest margin of the Grenville Front Tectonic Zone. The upper left part of 

this study area is covered by Mississagi metasandstone with sedimentary beds. The 

lower right part is highly deformed. NE-striking and steeply dipping transposition 

foliations, SE-plunging lineations, and tight-to-isoclinal folds are observed in the 

lower right part of the map. (d) A field photo showing the banded mylonite, 

mylonitic 1479 Ma granite, and the undeformed diabase, as well as the sample (S08, 

S11, GF19_3, and GF19_5) locations. (e) Equal-area lower-hemisphere projection of 

the fabric data in banded mylonite zone. Red triangles are the poles to the foliations 

and the green dots are the lineations.
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Figure 3.12 Photomicrographs of the mylonitic granite and the banded mylonite  

(a) Sample GF19_5: The mylonite 1479 Ma granite with feldspar porphyroclasts 

(bottom left) in quartz and mica grains. The quartz grains are deformed by SGR 

recrystallization. (b) Sample S08: Quartz ribbons with SGR recrystallized quartz 

grains. Feldspar porphyroclasts are surrounded by quartz grains. (c) Sample 

GF19_3: SGR recrystallized quartz grains. (a)-(c) are under cross-polarized light. 

(d) Sample S11: Microstructures in banded mylonite under plain polarized light 

showing C’-type shear band and C-foliation. This thin section is parallel to the 

stretching lineation and perpendicular to the foliation, viewed toward the northeast. 

It shows top-to-the-left shear sense. The light elongated grains are quartz grains, 

and the dark area is mica. (b)-(d) are all collected from banded mylonite with varied 

volume fractions of mica.   
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(Fig.3.12). Feldspar porphyroclasts are in a matrix of quartz and mica grains. Subgrain 

rotation recrystallization of quartz grains is observed in the thin sections, indicating the 

deformation temperature was between 400℃ to 500℃ (Stipp et al., 2002). Mica grains 

are aligned parallel to the foliation. The volume fraction of mica grains varies from 

sample to sample (Fig.3.12). As the feldspar porphyroclasts are far apart from each other 

and the volume fraction of feldspar is relatively low, this work simply assumes that the 

rheology of the high-strain zone is represented by the rheology of the quartz-mica 

aggregates.  

Consider an RVE composed of 500 quartz and mica grains (RDEs) with random shapes 

(Fig.3.10). The volume fractions of quartz grains and mica grains are denoted by qc  and 

mc , and 1q mc c+ = . This work further assumes that the quartz grains are rheologically 

isotropic, randomly orientated, and the mica grains are transversely isotropic with two 

distinct effective viscosities: s
micaη  being the viscosity for shearing along the basal 

cleavage and n
micaη  for shearing without the activation of basal slip. If the basal cleavage 

planes of mica grains are aligned parallel to the foliations of the high-strain zone, the 

high-strain zone is also transversely isotropic, having two distinct effective viscosities sη  

and nη . The effective viscosity of quartz quartzη  and the viscosity of mica for shearing 

along basal slip s
micaη  can be obtained using the flow laws (Kronenberg et al., 1990; Lu 

and Jiang, 2019) in terms of strain rate invariant and deviatoric stress invariant (Ranalli, 

1987, p.70) at a reference P-T condition and a reference strain rate. We obtained 
131.87 10 MPa squartzη = × ⋅  and 124.61 10 MPa ss

micaη = × ⋅  for a P-T condition of 450℃ and 

405 MPa and a strain rate of 12 -110 sε −= . If the anisotropic degree of mica is set to 

10
n
mica
s
mica

m η
η

= = , we have : : 4 :1:10s n
quartz mica micaη η η = .  

Fig.3.13 shows the homogenized rheological properties of the high-strain zone ( sη  and 
nη ), normalized to s

micaη , obtained by the self-consistent approach. If there is no mica  
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Figure 3.13 Plots of the homogenized viscosities of the quartz-mica aggerates versus 

the volume fraction of mica 

A reference P-T condition of 450℃ and 405 MPa and a reference strain rate of 
12 -110 sε −= are used. Quartz grains are isotropic and randomly orientated, and they 

follow the flow law of Lu and Jiang (2019). The mica grains are transversely 

anisotropic with an anisotropic degree of 10. The slip along the basal cleavage 

follows the flow law of Kronenberg et al. (1990). When mica grains are randomly 

orientated, the whole aggregates is also isotropic. The yellow line represents the 

homogenized viscosity η  of quartz-mica aggerates in this situation. There is another 

situation where the aggregates become anisotropic due to the development of 

foliation defined by the alignment of the mica basal cleavage planes. Then blue and 

red lines represent, respectively, the homogenized viscosity without active the slip 

along the foliation nη  and the one shearing along the foliation sη . mc is the volume 

fraction of mica grains.
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grain ( 0mc = ), the high-strain zone is isotropic, and the homogenized effective viscosity 

of the high-strain zone is equal to quartzη . As the volume fraction of mica mc  increases, the 

high-strain zone becomes anisotropic due to the development of foliation defined by the 

alignment of the mica basal cleavage planes and sη  decreases from 4 to 1 and sη  

increases from 4 to 10. If the mica grains are randomly orientated, then the high-strain 

zone is isotropic, and the homogenized effective viscosity of high-strain zone increases 

from 4 to 4.34 as mc  increases. Adding weak minerals, like mica, in the high-strain zone 

will decrease its strength. Especially, if the rocks in the high-strain zones are anisotropic 

due to the development of the foliation defined by the alignment of the anisotropic 

minerals, the high-strain zone becomes extremely weak with respect to shearing along the 

foliation plane. 

 Conclusions 
This work considers the large-scale high-strain zone as a heterogeneous and highly 

flattened inclusion embedded in the ductile lithosphere and applies the extended 

nonlinear Eshelby solutions to the continental lithosphere with self-consistent 

homogenization approach. 

The Eshelby’s solutions on inclusions for interior and exterior fields allow us to 

investigate the geometries inside the high-strain zone, the stress distribution within and in 

the vicinity of the high-strain zone. The self-consistent homogenization approach helps to 

obtain the overall strength of the high-strain zone from the properties of the constituents.  

This new micromechanical-based high-strain zone model has been applied to the 

Shangdan Tectonic Zone in Qinling Orogenic belt, where well-developed sub-vertical 

foliations, shallowing dipping lineations, and sinistral shear sense indicators are 

observed. Comparing the geometries deduced from this model with the field observation 

in Shangdan Tectonic Zone, we validify this model and constrain the convergence angle 

of the plate motion in this area to 5° ~ 20°. 
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The application to the San Andreas Fault in Central California helps to verify this model 

and to understand the stress distribution within and in the vicinity of a high-strain zone in 

the ductile region. The plate motion between the North America and Pacific Plates 

ultimately determines the stress field. The presence of the weak SAF in the ductile region 

can account for a narrow band of stress rotation; it cannot explain the widespread thrust 

faults and upright folds perpendicular to the SAF. Additional factors like the forces 

caused by horizontal variation in gravitational potential energy may affect the stress 

orientation in the western United States. 

The application to the mylonite zone in the Grenville Front Tectonic Zone quantitatively 

demonstrates that the presence of weak minerals, like mica, and the rheological 

anisotropy due to the development of fabrics in the high-strain zone significantly weaken 

the high-strain zone with respect to shearing along the foliation plane. Simply using the 

strength of the quartz aggregates to represent the high-strain zone strength or even to 

constrain the strength of the continental lithosphere is oversimplified. A more rigorous 

homogenization approach is required to obtain the overall rheology of the high-strain 

zone from the properties, concentrations, and the geometric arrangement of the 

constituents. 
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Chapter 4  

4 Quartz Flow Law Revisited: The Significance of 
Pressure Dependence of the Activation Enthalpy 

 Introduction 
Earth’s lithosphere deforms elastically and by frictional slip on preexisting fractures and 

discontinuities near the surface. At greater depth, with increasing temperature and 

pressure, the lithosphere deforms predominantly by crystalline plasticity (Nicolas and 

Poirier, 1976; Sibson, 1977; Brace and Kohlstedt, 1980; Kohlstedt et al., 1995; Mackwell 

et al., 1998; Jackson, 2002; Burov, 2011). Although still with a considerable degree of 

uncertainty, our current understanding of the rheology of the ductile lithosphere is based 

on laboratory high-temperature and high-pressure creep experiments on natural rocks or 

synthetic silicate aggregates (e.g., Heard and Carter, 1968; Chopra and Paterson, 1981; 

Shelton and Tullis, 1981; Caristan, 1982; Kirby and Kronenberg, 1984; Karato et al., 

1986; Wilks and Carter, 1990; Hirth and Tullis, 1992; Luan and Paterson, 1992; Gleason 

and Tullis, 1995; Mackwell et al., 1998; Karato and Jung, 2003; Rybacki and Dresen, 

2004; Rybacki et al., 2006). The experimental data are commonly fitted into a power-law 

relationship between strain rate and differential stress, referred to as a flow law (Dorn, 

1955; Sherby and Burke, 1968; Ashby, 1972; Kirby and Raleigh, 1973; Frost and Ashby, 

1982; Ranalli, 1987). For the dislocation creep of a polycrystal aggregate, the traditional 

flow law (referred to as flow law 1 below) is: 

𝜀𝜀̇ = 𝔸𝔸exp �− ℚ
𝑅𝑅𝑅𝑅

� 𝜎𝜎𝕟𝕟                                                                                           (4.1) 

where ε  is the strain rate, 𝔸𝔸 the pre-exponential parameter, ℚ the activation energy, R 

the universal gas constant, T the absolute temperature, σ the differential stress, and 𝕟𝕟 the 

stress exponent. The parameters (𝔸𝔸, ℚ, and 𝕟𝕟) are determined from laboratory 

deformation experiments. So far, great efforts have been made to determine flow law 

parameters for many rock types and monophase aggregates and the results have been 

used in the construction of the yield strength envelope (YSE) of the lithosphere (Brace 

and Kohlstedt, 1980; Kirby, 1983; Kohlstedt et al., 1995; Mackwell et al., 1998; Burov, 
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2011) and in geodynamic modeling on different scales and under different geological 

settings (e.g., Goetze and Evans, 1979; Ranalli, 1987; Beaumont et al., 2004; Jamieson et 

al., 2004; Wightman et al., 2006; Karato, 2008; Hudleston and Treagus, 2010; 

Schmalholz and Fletcher, 2011; Schmalholz and Schmid, 2012; Farla et al., 2013; 

Montési, 2013; Behr and Platt, 2014). Unfortunately, a major problem with using flow 

laws is that different experiments on a similar type of rock (such as quartzite) may yield 

significantly varied flow law parameters, leading to great uncertainties for the strength of 

the lithosphere based on that rock type (Burov and Diament, 1995; Maggi et al., 2000; 

Jackson, 2002; Watts and Burov, 2003; Burov and Watts, 2006). For instance, a flow law 

of quartz aggregates is commonly used to represent the rheology of the continental crust 

(Kohlstedt et al., 1995; Behr and Platt, 2014) in recognition that quartz is a common and 

possibly strength-controlling mineral, although the role of other phases like mica may 

also be significant (Kronenberg et al., 1990; Shea and Kronenberg, 1993; Tullis and 

Wenk, 1994; Tullis, 2002; Holyoke and Tullis, 2006; Montési, 2013). Fig.4.1 plots the 

YSE based on flow law 1 for quartz with parameters determined from different 

experiments. The crustal strength (differential stress) predicted by these quartz flow laws 

can vary by more than an order of magnitude. 

A major cause of the difference in quartz flow law parameters is recognized to be 

‘hydrolytic weakening’ (Griggs and Blacic,1964, 1965; Griggs, 1967). Hydrolytic 

weakening has also been firmly established for many other silicate minerals including 

olivine and feldspar (e.g., Tullis and Yund, 1980; Mei and Kohlstedt, 2000; Rybacki et 

al., 2006; Karato, 2008). But despite a large number of experiments, the precise 

mechanism of ‘hydrolytic weakening’ on quartz creep is still not fully understood (Jaoul 

et al., 1984; Kronenberg and Tullis, 1984; Ord and Hobbs, 1986; Koch et al., 1989; 

Paterson, 1989; Tullis and Yund, 1989; Kronenberg, 1994; Post et al., 1996; Chernak et 

al., 2009; Holyoke and Kronenberg, 2013). Progress has been made rather 

phenomenologically by incorporating a water fugacity term to flow law 1 to get the 

following expression (e.g., Paterson, 1989; Kohlstedt et al., 1995; Post et al., 1996) which 

will be referred to as flow law 2 in this chapter: 
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Figure 4.1 Yield Strength Envelopes (YSE) for a wet quartzite crust based on flow 

laws with parameters derived from various experiments  

A geothermal gradient of 20℃/km and a strain rate of  12 -110 s−  are used. G&T: 

Gleason and Tullis (1995), L&P: Luan and Paterson (1992), R&B: Rutter and 

Brodie (2004). Solid lines are based on flow law 1. Dashed lines are based on flow 

law 2. The Rev G&T and Rev L&P are based on Fukuda and Shimizu, (2017). 

Significant discrepancies exist among different experiments. 
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𝜀𝜀̇ = 𝔸𝔸′𝑓𝑓𝑤𝑤
𝕞𝕞exp �− ℚ

𝑅𝑅𝑅𝑅
� 𝜎𝜎𝕟𝕟                                                                                    (4.2) 

where wf  is the water fugacity and 𝕞𝕞 the water fugacity exponent. This approach simply 

replaces the pre-exponential term, 𝔸𝔸, in flow law 1, by a power-law term of the water 

fugacity, i.e. 𝔸𝔸 = 𝔸𝔸′𝑓𝑓𝑤𝑤
𝕞𝕞 (Kohlstedt et al., 1995; Rutter and Brodie, 2004; Fukuda and 

Shimizu, 2017). The water fugacity in an experimental run can be determined using the 

state equation of water (Pitzer and Sterner, 1994) when the partial pressure of water is 

known. Many attempts have been made to determine 𝕞𝕞 (Gleason and Tullis, 1995; 

Kohlstedt et al., 1995; Post et al., 1996; Chernak et al., 2009; Holyoke and Kronenberg, 

2013). Kohlstedt et al. (1995) argued that consideration of wf  with flow law 2 could 

explain the difference between the flow law of Gleason and Tullis (1995) for Black Hill 

quartzites and that of Luan and Paterson (1992) for silicic acid origin synthetic 

specimens. However, this argument is valid only if the effect on flow law due to ℚ 

difference between Gleason and Tullis (1995) and Luan and Paterson (1992) is 

insignificant compared to the effect of wf . This is not the case except for the high 

temperature conditions considered by Kohlstedt et al. (1995, their Fig.5). As Kohlstedt et 

al. themselves (1995, their Fig.9) showed, when extrapolated to lower temperature 

conditions, the difference between the flow laws of Gleason and Tullis (1995) and Luan 

and Paterson (1992) remains significant even when wf  is incorporated (Fig.4.2). This is 

because the exponential term in which ℚ occurs, exp
RT

 − 
 

 , has a big effect on the 

flow law. The effect due to a difference in ℚ can be expressed as 

exp

exp

RT
RT

RT

δ
δ

  −     = −
 − 
 





. At extremely high temperatures, such as that considered by  
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Figure 4.2 Plot of strain rate versus differential stress for wet quartzite  

a): The plot of Kohlstedt et al. (1995) at a temperature of 1000℃ and under 1500 

MPa confining pressure, showing ‘stunning’ consistency between Gleason and Tullis 

(1995) and Luan and Paterson (1992) in terms of flow law 2. A water fugacity 

exponent of 1 was used. b): The plot at a temperature of 300℃ under 1500 MPa. c): 

The same plot at 300℃ and 400 MPa. It is clear that the consistency between the 

two experiments disappears at low-temperature conditions. 
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Kohlstedt et al. (1995), 0
RT
δ

− →
  leading to 

exp
0

exp

RT

RT

δ   −     ≈
 − 
 




. At lower 

temperatures however,
RT
δ

 is larger and the difference 𝛿𝛿ℚ results in a more significant 

discrepancy in the flow laws with parameters derived from different experiments 

(Fig.4.1).  

The ℚ values determined from experiments are indeed quite different with ℚ = 152 

kJ/mol in Luan and Paterson (1992), ℚ = 223 kJ/mol in Gleason and Tullis (1995), and ℚ 

= 242 kJ/mol in Rutter and Brodie (2004). Fukuda and Shimizu (2017) attribute this 

difference to the activation of different dislocation slip systems. While it is plausible that 

each slip system has a unique activation energy, as many slip systems have been active in 

any one of these experiments the ℚ value in the flow law must be related to all active slip 

systems. As there is no evidence supporting any systematic difference in the activated 

slip systems among these experiments, we are unconvinced by the explanation of Fukuda 

and Shimizu (2017). The experimental runs of Gleason and Tullis (1995) were under 1.5 

GPa confining pressure, 1.2 GPa higher than the experimental runs of Luan and Paterson 

(1992) and Rutter and Brodie (2004). We suspect that the pressure effect through the 

activation volume may be responsible for the observed differences in ℚ and the 

variations in quartz flow law. To account for this effect, the appropriate flow law is of the 

following form (Sherby et al., 1970; Frost and Ashby, 1982), called flow law 3 in this 

paper: 

expm n
w

Q PVAf
RT

ε σ 
 
 

+= −                                                (4.3) 

where V, Q, P, are respectively the activation volume, the activation energy, and the 

pressure. The Q + PV term is collectively the activation enthalpy H (= Q + PV). Note the 

different fonts used in flow law 3 from those used in flow laws 1 and 2 are intentional, as 
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𝔸𝔸, ℚ, 𝕟𝕟, 𝔸𝔸′ and 𝕞𝕞 in flow laws 1 and 2, and A, Q, V, m, and n in flow law 3 may be 

distinct quantities (see below).  

It is commonly assumed that, for deformation in the crust, the PV term is negligible 

because the pressure is relatively low and hence Q ≈ H is justified (as in flow laws 1 and 

2). However, the big difference in confining pressure used in different experiments means 

that, even for a rather modest estimate of the activation volume, say V = 15 cm3/mol (for 

comparison, the activation volumes for olivine is 14 ~ 24 cm3/mol, Karato and Jung, 

2003, and 24 ~ 38 cm3/mol for anorthite, Rybacki et al., 2006), the PV term in flow law 3 

may account for over 10% variation in ℚ, which could already explain the difference in 

ℚ between Gleason and Tullis (1995) and Luan and Paterson (1992). 

In what follows, we critically re-examine published high-quality experimental data on 

quartz creep in terms of flow law 3 and refit the data from experimental runs that are 

interpreted to represent steady-state dislocation creep in regimes 2 and 3 (Hirth and 

Tullis, 1992). We obtain a consistent set of flow law parameters (A, Q, V, m, and n) and 

show that the apparent inconsistencies among existing experiments can be better 

explained. We compare our refined flow law with other studies and discuss its 

implications for continental lithosphere strength. 

 The choice of experimental data  
4.2.1 Criteria of experimental data 
There are many creep experiments on quartz aggregates. We mainly use the experimental 

data of Gleason and Tullis (1995) for Black Hill quartzite samples (the runs with no melt) 

and the data of Luan and Paterson (1992) for silicic acid origin synthetic specimens to 

constrain the parameters in terms of flow law 3. We also discuss the results of Rutter and 

Brodie (2004) for synthetic ultrafine-grained Brazilian quartzite. The reasons for our 

choice are as follows. First, the measurements of the differential stress must be accurate. 

Most experiments on quartz aggregates in the 1980s (Parrish et al., 1976; Kronenberg and 

Tullis, 1984; Koch et al., 1989) were carried out in Griggs-type deformation apparatus 

with solid-confining media. The strength of the solid-confining media used in these 
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experiments leads to overestimated strengths of quartz aggregates (Gleason and Tullis, 

1993, 1995; Holyoke and Kronenberg, 2010). Even with the correction proposed by 

Holyoke and Kronenberg (2010), the flow stress values still have significant errors (±30 

MPa). We also exclude the data of Stipp and Tullis (2003) because the flow stress, in 

their experiment, was taken as the average over a large strain interval and thus producing 

great errors (±16 ~ ±40 MPa). Second, for our purpose, we require that the data are 

collected in a steady-state creep regime. Phenomenologically, a steady-state creep regime 

must exhibit a flat stress-strain curve. In the dislocation climb accommodated regimes 

(regimes 2 and 3 of Hirth and Tullis, 1992), a steady-state flow is achieved by ~5% strain 

under experimental conditions; however, in recrystallization accommodated regime 

(regime 1 of Hirth and Tullis, 1992), a steady-state flow requires that a steady-state 

microstructure of dynamically recrystallized grains is established, which is realized only 

at large strains. We do not use experimental runs (Parrish et al., 1976; Shelton and Tullis, 

1981; Kronenberg and Tullis, 1984; Koch et al., 1989; Post et al., 1996; Holyoke and 

Kronenberg, 2013) which had not reached the steady-state flow by the end of 

deformation (some may even involve semi-brittle deformation). Finally, for the 

experimental runs that are used in this paper, we ensure that the samples were deformed 

by dislocation creep as much as we can possibly tell from the papers. Although other 

mechanisms are also important in nature, we are most concerned with a dislocation creep 

flow law that can be extrapolated to natural conditions. Stress-strain rate relations derived 

from mixed deformation mechanisms are more difficult to extrapolate to natural 

conditions. Experimental runs (e.g., silica gel origin specimens in Luan and Paterson, 

1992; Rutter and Brodie, 2004) that are believed to contain a significant component of 

grain boundary sliding and its accommodating mechanisms are not used, although the 

dominant deformation mechanism is still believed to be dislocation creep.  

4.2.2 Description of selected experiments 
Based on the criteria above, we mainly rely on Gleason and Tullis (1995), Luan and 

Paterson (1992), and Rutter and Brodie (2004). Each of these experiments is described 

briefly: Gleason and Tullis (1995) performed a creep experiment on the Black Hill 
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quartzites (BHQ) at ~ 1.5 GPa confining pressure in the Griggs-type apparatus with the 

molten salt cell (MSC). BHQ is a natural quartzite with an average grainsize of 100 µm. 

The authors reported results for regimes 2 and 3 dislocation creep, where the steady-state 

flow was achieved under experimental conditions. Fitting the data to flow law 1, they 

obtained 𝕟𝕟 = 4.0 ± 0.9, and ℚ = 223 ± 56 kJ/mol. Holyoke and Kronenberg (2010) 

pointed out that the measured differential stresses in Griggs-type apparatus with MSC 

were greater than those measured in gas apparatus and suggested a correction to the 

differential stresses of Gleason and Tullis (1995) using a simple linear calibration (

Gas apparatus GriggsMSC0.73 10MPaσ σ= × ± ). This correction does not change the values of 𝕟𝕟 

and ℚ significantly but does change the pre-exponential parameter 𝔸𝔸 from 1.1×10-4 MPa-

𝕟𝕟s-1 to 5.1×10-4 MPa-𝕟𝕟s-1 (Holyoke and Kronenberg, 2010). 

Luan and Paterson (1992) performed a creep experiment at 300 MPa confining pressure 

on three synthetic quartz aggregates made from hot-pressing techniques from natural 

quartz powder, precipitated silica gel, and silicic acid in gas-apparatus. Only data from 

their silicic acid origin specimens are used here because only these samples underwent 

steady-state dislocation creep. The silicic acid origin specimen has an average grainsize 

of around 20 ~ 30 µm. It contains a total water content less than 0.1 wt%, corresponding 

to a minimum specific volume of 0.004 m3kg-1, in an initial porosity of 1%, which gives a 

maximum pore pressure of around 150 MPa assuming the ideal-gas behavior of water. 

Considering that the porosity may have decreased during deformation due to the 

differential stress contribution to the pressure and the development of shape preferred 

orientations, the actual water pore pressure should be between 150 MPa and the ambient 

pressure. The microstructures show a strong crystallographic preferred orientation; 

however, the serrated grain boundaries and the recrystallized grains are rare. Therefore, 

we interpret the deformation mechanism to be dominated by regime 2 dislocation creep 

(Hirth and Tullis, 1992). The experimental runs on silicic acid origin specimens gave a 

value of 4.0 ± 0.8 for 𝕟𝕟, and 152 ± 71 kJ/mol for ℚ. For the stress exponent 𝕟𝕟, Luan and 

Paterson (1992) used data from ‘upward strain-rate stepping runs’ only, to ensure the use 

of steady-state results. Fukuda and Shimizu (2017) used all of Luan and Paterson (1992) 
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experimental runs (see Fukuda and Shimizu 2017, their Fig.A1) and obtained a lower 

value 𝕟𝕟 ≈ 3. In this paper, we adopt the value of 𝕟𝕟 = 4.0 ± 0.8 reported by Luan and 

Paterson (1992) and do not consider Fukuda and Shimizu’s (2017) recalculation because 

of concerns of their use of non-steady-state results. Results from natural quartz origin 

samples and silica gel origin samples in Luan and Paterson (1992) are not used because 

the natural quartz origin specimens deformed in a brittle-ductile transitional manner, 

characterized by the pronounced maximum in the stress-strain curve, or showed 

continuing strain hardening and the silica gel origin specimens contained a higher content 

of impurities and potential partial melting during the deformation, producing a great 

component of grain boundary sliding.  

Rutter and Brodie (2004) performed a creep experiment on the synthetic ultrafine-grained 

quartzite prepared from clear Brazilian quartz powder with added water. The samples 

displayed rapid grain-growth to 12 ~ 20 µm during hot-pressing at 1473 K and then were 

deformed in gas-apparatus at confining pressure of 300 MPa and temperature from 1273 

K to 1473 K. The authors estimated that the water pore pressure was up to 300 MPa 

during compaction (see their Fig.3), assuming 0.6 wt% water absorbed in a final porosity 

of 1.25%. Transmission electron image of the interior of the grain showing well-

developed dislocation creep microstructures indicates that the samples were deformed by 

intracrystalline dislocation creep. However, lower strain areas show rectangular grains 

with aligned grain boundaries suggesting an important component of grain boundary 

sliding although the deformation is dominated by intracrystalline dislocation creep. An 

empirical flow law was obtained with a lower value of 2.97 ± 0.29 for 𝕟𝕟, and a rather 

higher ℚ of 242 ± 24 kJ/mol. The authors also revised the pre-exponential parameter 

accordingly, using 𝔸𝔸 = 𝔸𝔸′𝑓𝑓𝑤𝑤
𝕞𝕞 and a value of 1 for 𝕞𝕞 following Kohlstedt et al. (1995) 

and Hirth et al. (2001). Because there may be a great component of grain boundary 

sliding in the experiment of Rutter and Brodie (2004), we do not use their data to 

determine the parameters in flow law 3. However, we will discuss their results in Section 

4.4. 
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The flow law parameters based on flow law 1 determined from these three sets of data are 

summarized in Table 4.1. 

Table 4.1 Experimentally determined flow law parameters reported by previous 

studies 

 𝕟𝕟 ℚ (kJ/mol) ln𝔸𝔸 (MPa-𝕞𝕞-𝕟𝕟s-1) 

Gleason and Tullis, (1995)  

(BHQ with no melt) 

4 ± 0.9 223 ± 56 -9.12 ± 4.61 

-7.58a 

Luan and Paterson, (1992)  

(Silicic Acid origin) 

4 ± 0.8 152 ± 71 -18.24b 

Rutter and Brodie, (2004) 

(Synthetic Ultrafine-grained 
quartzite) 

2.97 ± 0.29 242 ± 24 -5.64 ± 0.90 

-11.35c 

a The pre-exponential parameter is corrected following the calibration of Holyoke and 

Kronenberg (2010). 
b Luan and Paterson (1992) did not report the pre-exponential parameter. The pre-

exponential parameter is calculated by substituting their stress exponent and activation 

energy into flow law 1. The averaged value is used here.  
c The pre-exponential parameter is revised by assuming 𝔸𝔸 = 𝔸𝔸′𝑓𝑓𝑤𝑤

𝕞𝕞 and 𝕞𝕞 = 1. 

 

 The determination of flow law parameters based on 
flow law 3 

To determine n in flow law 3, constant T, P, and wf  tests are required because 

, ,

ln
ln T P f

n ε
σ

∂ =  ∂ 



. For the same set of samples used in a series of experimental runs, wf  

itself is a function of P and T only. Therefore, constant P and T also implies constant wf  
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(i.e., 
, , ,

ln ln
ln lnT P f T P

n ε ε
σ σ

∂ ∂   = =   ∂ ∂   

 

). As previous experiments were indeed carried out 

under constant T and P (Luan and Paterson, 1992; Gleason and Tullis, 1995), previously 

determined stress exponent 𝕟𝕟 is, therefore, still valid in flow law 3. We thus adopt the 

stress exponent 𝕟𝕟 = 4.0 ± 0.9 for the BHQ (Gleason and Tullis, 1995) and 𝕟𝕟 = 4.0 ± 0.8 

for the silicic acid origin sample (Luan and Paterson, 1992) because microstructures from 

these two sets of samples suggest they were deformed by steady-state regimes 2 and 3 

dislocation creep.  

To determine m, we first express m in terms of wf , σ and P by taking the natural 

logarithm of both sides of Eq.4.3 first and then taking the full derivative with respect to 

the variables wf , σ, and P to get: 

, ,

ln
ln lnw wT T

V Pm n
f RT f

ε ε

σ   ∂ ∂
= − +   ∂ ∂   

 

                                                               (4.4) 

Clearly, m and V are not independent. Because the evaluation of both 
,

ln
ln w T

f
ε

σ ∂
 ∂ 



 and 

,
ln w T

P
f

ε

 ∂
 ∂ 



 requires two experimental runs, a minimum of three sets of P and wf  

stepping experimental runs at constant ε  and T are required to solve m and V 

simultaneously with Eq.4.4. Because the experiments of Gleason and Tullis (1995) and 

Luan and Paterson (1992) were conducted under a constant P, and the data were collected 

over a wf  range too small to allow any accurate determination of m and V, we have to 

search for other P and wf  stepping experiments. We were able to identify three wf  

stepping experimental runs on novaculite samples of Kronenberg and Tullis (1984). 

Although these experimental runs do not satisfy all the above criteria stated in Section 

4.2, they are suitable for m and V determination as they were carried out under constant T 

and ε  and over a large P range, equivalent to a large wf  range. The experimental runs of 
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Kronenberg and Tullis (1984) were carried in Griggs-type apparatus with solid-confining 

media from 820 MPa to 1590 MPa (see their Fig.3). The flow stresses are determined at 

20% strain and have been corrected following the calibration of Holyoke and Kronenberg 

(2010) for solid salt (SSA) assemblies ( Gas apparatus GriggsSSA0.73 48 30MPa MPaσ σ= × − ± ). 

Other wf  stepping experimental runs (Chernak et al., 2009; Holyoke and Kronenberg, 

2013; Kronenberg and Tullis, 1984; Post et al., 1996) are excluded either because they 

involved semi-brittle deformation, or they did not achieve a steady-state flow by the end 

of the runs. We use the iterative linear regression method of Karato and Jung (2003) to 

solve for the values of m and V. The iteration starts with an initial guess of V. Plotting 

lnPV n
RT

σ − 
 

 versus ln wf  yields an initial m. By plotting ( )ln lnn m fwσ +  versus P, 

using the initial m, the slope then gives an updated V which is used for the next round of 

iteration. The iteration continues until the current V and m coincide with their values in 

last round within a specific tolerance. With the three sets of data, we obtain m = 2.7 and V 

= 35.3 cm3/mol (Fig.4.3). Because there are only three sets of data, the uncertainties with 

m and V cannot be determined. We will discuss this point in Section 4.4.  

Once V is determined, Q can be determined by obtaining H first, using constant σ, P, wf , 

and T stepping tests: 

( )
, ,

1 ln
1/

P f

H Q PV
R T

σ

ε ∂
= + =   ∂ 



                                                                        (4.5) 

As past experiments (Luan and Paterson, 1992; Gleason and Tullis, 1995) were 

performed under constant ε  and P and varying T conditions. σ and wf  were varied from 

one run to another with the varied T. To make use of the data collected from constant ε  

and P and T stepping runs, the constant-strain rate ( eε ) is converted to a reference strain 

rate ( rε ) corresponding to a common reference stress ( rσ ) and reference water fugacity (

rf ) using 
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Figure 4.3 Determination of the water fugacity exponent and the activation volume 

a): Plot of ln
PV

n RTeσ
− 

 
 

 versus ln wf . The slop gives m = 2.7. b): Plot of ( )ln n m
wfσ  

versus pressure. The slope gives the activation volume V = 35.3 cm3/mol. Data are 

from wet novaculite samples of Kronenberg and Tullis (1984). The m and V are 

determined by an iterative linear regression method (see text for more details).  
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σε ε
σ
   

=    
   

  , which is the form of flow law 3 normalized against a reference state. 

Plotting the natural logarithm of the reference strain rate ln rε  versus 1/T, the slope gives 

the value of H. 

Luan and Paterson (1992) reported an initial water pore pressure of 150 MPa 

corresponding to a wf  of 144 MPa at 1300 K. Considering that the porosity likely 

decreases during deformation, the actual water pore pressure may be up to 400 MPa, if 

the contribution of the deviatoric stress to the pressure is considered (with 
3
diff

conP P
σ

= +

). This implies that the maximum wf  may be up to 482 MPa at 1300 K. As no accurate 

measurement in water pore pressure is available, we use a water pore pressure of 275 ± 

125 MPa to calculate wf  for their test runs. Gleason and Tullis (1995) assumed that the 

water pore pressure is equal to the ambient pressure. We also make the correction to 

incorporate the deviatoric stress contribution to the ambient pressure. H is determined by 

linear regression for experimental results of Gleason and Tullis (1995) and Luan and 

Paterson (1992) (Fig.4.4). Assuming that the measurements in T and ε  in Gleason and 

Tullis (1995) and Luan and Paterson (1992) are accurate (no errors of these 

measurements were provided in their papers), the uncertainty in H arises from the 

uncertainties in n, σ, wf , and m, and can be expressed as 

ln lnn mH RT n f m f
f

δ σ δ δσ δ δ
σ

 
= ⋅ + ⋅ + ⋅ + ⋅ 

 
. Since mδ  is unknown, the errors thus 

represent a minimum estimate as ln n mH RT n f
f

δ σ δ δσ δ
σ

 
≥ ⋅ + ⋅ + ⋅ 

 
. Using V = 35.3 

cm3/mol determined above, we obtain Q = 127 kJ/mol for Gleason and Tullis (1995) and 

Q = 137 kJ/mol for Luan and Paterson (1992), or Q = 132 ± 5 kJ/mol. Substituting the 

parameters n, m, V and Q into flow law 3, the pre-exponential parameter A is determined.  
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Figure 4.4 Determination of the activation enthalpy 

Plot of ( )ln rε  versus 1/T to determine the activation enthalpy. a): Plot for data from 

samples W-611 and BA-96 of Gleason and Tullis (1995). The strain rates were 

calculated by converting experimental strain rates to those under a reference stress 

of 100 MPa and water fugacity of 5000 MPa using n = 4 and m = 2.7. The converted 

strain rates are then plotted versus inverse absolute temperatures. The averaged 

activation enthalpy is H =183 ± 46 kJ/mol. b): Plot for data from samples 5582 and 

5583 of Luan and Paterson (1992). The reference stress was 100 MPa and reference 

water fugacity 302 MPa (corresponding to a pore pressure of 275 MPa and 1300 K). 

Stress and water fugacity exponents are the same as above. The averaged activation 

enthalpy is H =151 ± 62 kJ/mol. The uncertainty in H represents a minimum 

estimate of Hδ , arising from the uncertainties in n, σ, and wf . 
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Using the data of Gleason and Tullis (1995) and Luan and Paterson (1992), we obtain the 

pre-exponential parameter 15 -n-m -1(6.0 5.0) 10  MPa sA −= ± × .To summarize, we obtain a 

consistent flow law of the following: 

15 2.7 4132000 35.3
6.0 10 expw

P
f

RT
ε σ− +
= × − 

 
 

                                (4.6)  

where the wf  , P and σ are in MPa. 

 Remarks on flow law parameters 
Gleason and Tullis (1995) and Luan and Paterson (1992) both obtained a similar stress 

exponent (𝕟𝕟 = 4.0 ± 0.9 and 𝕟𝕟 = 4.0 ± 0.8 respectively) for regimes 2 and 3 dislocation 

creep. We have adopted this result as we justified above. Rutter and Brodie (2004) 

obtained a lower value of 2.97 for the ultrafine-grained synthetic quartzite. Luan and 

Paterson (1992) also got a lower 𝕟𝕟 of 2.3 for their silica gel origin specimen. As Luan 

and Paterson (1992) and Rutter and Brodie (2004) both pointed out, these lower values 

are likely due to an important component of grain boundary sliding mechanism. Grain 

boundary sliding (GBS) must be associated with accommodating rate-controlling 

processes (Gifkins, 1976) including diffusion along grain boundaries (ε σ∝ , Frost and 

Ashby, 1982) and the dislocation movement localized near grain boundaries – the so-

called ‘mantle’( 2ε σ∝ , Mukherjee, 1971; Ashby and Verrall, 1973). Significant activity 

of such mechanisms is expected to cause a reduction of the overall stress exponent. As 

grain boundary sliding and its accommodating processes are sensitive to the grainsize, the 

above interpretation is consistent with the ultrafine-grained synthetic quartzite (12 ~ 20 

μm) of Rutter and Brodie (2004), for which a lower stress exponent (of 2.97) was 

obtained. However, the lower stress exponent (of 2.3) of Luan and Paterson (1992) was 

obtained for silica gel origin specimens with a larger average grainsize around 80 μm. 

Luan and Paterson (1992) attributed the lower stress exponent to the high impurity 

content in these specimens, which may have facilitated more grain boundary 

mechanisms.  
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Previous works (Gleason and Tullis, 1995; Kohlstedt et al., 1995; Post et al., 1996; 

Chernak et al., 2009; Holyoke and Kronenberg, 2013) have underestimated m because the 

activation volume V was not considered. Strictly speaking, m is not a constant as it also a 

continuous function of P and T (Eq.4.4). However, from 10 km depth to 30 km depth, the 

ln w

V P
RT f

 ∂
 ∂ 

 term decreases slightly from 1.95 to 1.79, assuming a thermal gradient of 

20℃/km and V = 35.3 cm3/mol. Thus, m is practically a constant under such crustal P-T 

conditions. 

We obtain V = 35.3 cm3/mol for wet quartzite based on three sets of experiment runs that 

are available. Future studies are needed to refine this value. However, this value is 

reasonable from a theoretical point of view. The rate of dislocation creep is ultimately 

diffusion controlled. The total activation volume is the sum of the activation volume for 

point defect formation ( fV ) and that for point defect migration ( mV ) corresponding 

locally to shearing or dilatation. They can be related to the pressure dependence of the 

melting temperature mT , the activation energy Q, the Young’s modulus E, bulk modulus 

K, and shear modulus G and their pressure sensitivity by (Béjina et al., 2003): 

m
f

m

dTQV
T dP

=  

1 1
m

dGV E
G dP K

 = − 
 

 or 1 1
m

dKV E
K dP K

 = − 
 

     

Using the pressure sensitivity of Tm for β-quartz given by Swamy et al. (1994) and Q = 

132 kJ/mol (this study), the activation volume for defect formation is estimated to be Vf ≈ 

18 cm3/mol. Using the elastic constants of natural quartz and their pressure derivatives of 

Heyliger et al. (2003), Ji et al. (2018), and Levy et al. (2000), Vm ≈ 1 ~ 7 cm3/mol. 

Therefore, the activation volume for dry quartzite is around V ≈ 19 ~ 25 cm3/mol. The 

activation volume for ‘wet’ quartzite is expected to be larger because of the contribution 

from the dissolution of OH in mineral structure (Karato and Jung, 2003). Thus, the 
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estimated V = 35.3 cm3/mol is reasonable for ‘wet’ quartzite. In addition, our estimate is 

also consistent with the activation volumes of other silicate minerals. Karato and Jung 

(2003) reported an activation volume of 14 cm3/mol and 24 cm3/mol for ‘dry’ and ‘wet’ 

olivine respectively; Rybacki et al. (2006) reported an activation volume of 24 cm3/mol 

and 38 cm3/mol for the anorthite under ‘dry’ and ‘wet’ conditions. The uncertainty in V 

will also lead to an uncertainty in m (Fig.4.5). For instance, an uncertainty of ±10 

cm3/mol in V will result in an uncertainty of ±0.5 in m. 

 Quartz flow law derived from natural strain rate and 
stress estimates 

The great difference among flow law parameters from different experiments has 

motivated Hirth et al. (2001) to obtain a “better” set of flow law parameters from natural 

quartz-rich mylonites from the Ruby Gap duplex in terms of flow law 2. As their 

empirical flow law continues to be applied in many recent studies (e.g., Behr and Platt, 

2011; 2014), we wish to comment on their approach.  

Hirth et al. (2001) adopted a stress exponent 𝕟𝕟 of 4. They regarded the difference in the 

pre-exponential term 𝔸𝔸 (Table 4.1) between Luan and Paterson (1992) and Gleason and 

Tullis (1995) as being solely due to wf  variation between the two experiments, as 

Kohlstedt et al. (1995) have proposed. They then proceeded to determine 𝕞𝕞 and 𝔸𝔸′. They 

disregarded experimentally-determined ℚ from Gleason and Tullis (1995) and Luan and 

Paterson (1992) and relied entirely on fitting strain rate and stress (ε  and σ) estimates 

from the Ruby Gap mylonites to determine ℚ. We show that the large uncertainties 

associated with such estimates mean that determining ℚ from them is not practical. Hirth 

et al. (2001) estimated ε  of the natural mylonites from the Ruby Gap duplex by two 

methods. The first was to use a very rough estimate of the finite strain (ε, Shimamoto and 

Ikeda, 1976; Fry, 1979) divided by the deformation time (t) estimated from 

geochronology. This ignored the significant role of vorticity (the rotational component of 

the velocity field) history which determines the efficiency of finite strain accumulation 

(e.g., Means et al., 1980; Jiang 2010; Kuiper and Jiang, 2010). The finite strains in no  
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Figure 4.5 Plot of water fugacity exponent versus activation volume  

V is parameterized in a range of 0 ~ 50 cm3/mol. m increases with increasing V. The 

dashed lines represent the uncertainties in m arising from the uncertainties in n and 

σ. The red star represents our result of m = 2.7 and V = 35.3 cm3/mol. 
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mylonites are known to have been produced by coaxial progressive deformations (zero 

vorticity) and assuming such a path will underestimate the strain rate by an unknown 

factor. The time t during which the mylonite zone was active is also hard to determine 

accurately as the authors themselves acknowledged. Based on geochronology, the Ruby 

Gap duplex deformation lasted ~30 Ma, but the mylonite zone might have been active 

only for a portion of the entire deformation history.  

The second method Hirth et al. (2001) used to estimate ε  was to use v
d

γ = , where γ  is 

the average shear strain rate, v the boundary displacement rate and d the active thickness 

of the shear zone (e.g., Sibson, 1977; White and Mawer, 1991). They adopted a v =1.5 

km/millions (1.5 mm/yr) which is an order of magnitude slower than other geological and 

current GPS observations on crustal scale zones (e.g., Sutherland et al., 2006; McGill et 

al., 2013 and below). They used the present total mylonite thickness (1~2km) for d. But it 

is possible that the thickness of active deformation at any moment in the lifespan of the 

shear zone might have been only a fraction of the final thickness. Hirth et al. (2001) 

obtained ε  of 15 14 -110 ~ 5 10 s− −×  for the Ruby Gap duplex. Considering the above 

arguments, their ε  is likely underestimated significantly. As we will show in the next 

section, many lines of evidence suggest that ε  for natural shear zones are most likely in 

the range between 1310−  to 11 -110 s−  and we believe the Ruby Gap duplex mylonites are 

not inconsistent with this range. 

The σ estimate in Earth’s lithosphere is also associated with large uncertainties. The 

recrystallized grainsize for the Ruby Gap duplex mylonites is between 20 and 40 µm. 

This corresponds to a range of σ between 60 to 100 MPa based on the piezometer of 

Twiss (1977) according to Hirth et al. (2001). The same grainsize range would 

correspond to σ of 26 to 46 MPa based on the piezometer of Stipp and Tullis (2003) with 

a systematic correction following Holyoke and Kronenberg (2010). If one considers other 

piezometric formulations (e.g., Austin and Evans, 2007, 2009; Shimizu, 2008, 2012), the 

stress range is even larger as we will discuss in the next section. 
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Hirth et al. (2001) obtained ℚ = 135 ± 15 kJ/mol. If we consider the above ranges in 

strain rate ( 13 11 -110 ~ 10 sε − −= ) and stress estimates ( 26 ~ 100MPaσ = ), assume that the 

values of 𝔸𝔸′ and 𝕞𝕞 determined by Hirth et al. (2001) are accurate, and ignore any error in 

the temperature estimate, the range for ℚ will be from 77 to 125 kJ/mol.  

The main point we try to make in this section is that estimates based on natural mylonites 

cannot be used to construct a more accurate flow law. Stress, strain rate, temperature and 

pressure conditions are far better constrained in high-quality experiments than in natural 

mylonites.  

We have used a different approach in this paper. We rely on well-selected experimental 

sets and seek to explain the large discrepancy among experiments on the basis of more 

established understanding of the pressure effect on the crystalline plasticity of silicates 

(Karato and Jung, 2003; Rybacki et al., 2006; Karato, 2008). It is important to note that 

although both wf  and PV affect the flow law significantly through pressure, their effects 

are in opposite directions. For a given ε , wf  increases with increasing pressure, thus 

causing a decrease in σ. In contrast, the term exp Q PV
RT
+ − 

 
 decreases with increasing 

pressure as V is always positive, which leads to an increase in σ. Therefore, both wf  and 

PV must be considered in a flow law (Eq.4.3). This leads to our flow law (Eq.4.6) which 

explains the large discrepancy in ℚ among experiments. Since the PV term is ignored in 

flow law 2, it is not possible to account for the observed differences in previous 

experiments by calibrating its parameters. 

 Quartz flow law and continental strength 
To use the flow law determined in this study to consider the continental strength, one 

must first select a bulk ε . We first follow up the discussion on strain rate in the last 

section and give a general ε  estimate based on natural data. Recent studies based on 

geology and GPS measurements have constrained the slip rate along the Alpine fault to 

be between 23 to 27 mm/yr (Norris and Cooper, 2000; Sutherland et al., 2006). The slip 
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rate along the San Andreas Fault is constrained between 5.7 to 35 mm/yr (Titus et al., 

2005; Fialko, 2006; van Der Woerd et al., 2006; McGill et al., 2013; Heermance and 

Yule, 2017). The thicknesses of exhumed mylonites vary from 0.2 km to more than 3.5 

km, but most mylonite zones are under 2 km (e.g., Davis et al., 1986; Schulz and Evans, 

2000; Norris and Cooper, 2003; Brown et al., 2012). It is unclear if this thickness range 

that we observe today can represent the active thickness at the time of deformation. If it 

does and with the assumption that the GPS slip rate data represent long-term rates, then it 

gives a ε  range for natural mylonites roughly between 1310−  to 11 -110 s− . The Global 

Strain Rate Map shows that the second invariants of ε  estimated from geodetically 

determined surface velocity fields along major fault systems are around 14 -110 s−  

(Kreemer et al., 2014), which is an estimate for the time-averaged bulk strain rate over an 

orogen. The ε  of a localized high-strain zone within the active thickness during the 

active time is certainly higher than average (Fagereng and Biggs, 2018). Therefore, we 

regard the range between 1310−  to 11 -110 s−  as a best representative of the strain rate in 

natural shear zones and will use 12 1 -110 s− ±  in our consideration of the continental strength 

below. 

The strength profiles based on the wet quartz flow law determined in this paper and those 

of previous works (Luan and Paterson, 1992; Gleason and Tullis, 1995; Rutter and 

Brodie, 2004) are plotted in Fig.4.6 for a geothermal gradient of 20℃/km and a 

representative strain rate of 12 -110 s− . We assume the water partial pressure equals to 

lithostatic pressure. The shaded region covers the strain rate range between 1310−  to 
11 -110 s−  for our flow law. Note the flow laws of Gleason and Tullis (1995) and Luan and 

Paterson (1992) are based on flow law 1 (Eq.4.1) without the fugacity term. We have also 

calculated the differential stresses, using various piezometers (Stipp and Tullis, 2003; 

Austin and Evans, 2007, 2009; Shimizu, 2008, 2012; Cross et al., 2017; Heilbronner and 

Kilian, 2017), for many natural zones using the data of Behr and Platt (2014) and Stipp et 

al. (2010) on quartz grainsize, deformation pressure and temperature. The stress estimates 

vary greatly depending on piezometers adopted (Fig.4.6). 
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Figure 4.6 The strength profile of our flow law compared with those based on other 

flow laws 

A geothermal gradient of 20℃/km and strain rate of 12 -110 s−  are used. The shaded 

region covers the strain rate range between 1310−  to 11 -110 s−  for our flow law. 

Estimated differential stresses and deformation pressure and temperature 

conditions of some natural mylonites are also plotted. The pressure and temperature 

data and the quartz grainsize distributions are from Behr and Platt (2014) and 

Stipp et al. (2010). We have calculated the differential stresses using different 

piezometric methods: (a) Stipp and Tullis (2003), (b) Cross et al. (2017), (c) 
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Heilbronner and Kilian (2017), (d) Shimizu (2008, 2012) with α- and β-quartz used 

respectively for low and high temperatures, (e) Shimizu (2008, 2012) for β-quartz, 

and (f) Austin and Evens (2007, 2009). 

The piezometric relation of Twiss (1977), sd B λσ −= , where ds is the average steady-state 

grainsize, B and λ are empirically determined based on creep experiments (e.g., Christie 

et al., 1980 ; Mercier et al., 1977) has been widely applied on natural mylonites to infer 

the paleostress (e.g., White, 1979; Ord and Christie, 1984; Dunlap et al., 1997; Zulauf, 

2001; Behr and Platt, 2011; Kidder et al., 2012). Stipp and Tullis (2003) did a careful 

laboratory calibration for this piezometric relation with coaxial compression experiments 

on BHQ in a Griggs apparatus with MSC. The grainsize was analyzed using computer 

integrated polarization microscopy. Cross et al. (2017) used electron backscatter 

diffraction (EBSD) image to separate recrystallized grains from relict grains and further 

refined the piezometer of Stipp and Tullis (2003). The stress estimates based on Stipp and 

Tullis (2003) are plotted in Fig.4.6a and those based on Cross et al. (2017) in Fig.4.6b. In 

both Figs.6a and b, we have corrected the stress term of Stipp and Tullis (2003) and 

Cross et al. (2017) to account for the frictional effect of the confining medium following 

Holyoke and Kronenberg (2010). Stress estimates from Cross et al (2017) are slightly 

lower than those from Stipp and Tullis (2003). Heilbronner and Kilian (2017) conducted 

non-coaxial (general shear) experiments on BHQ in a Griggs apparatus with a solid-

medium. They claimed that non-coaxial set up enabled accurate flow stress determination 

(Richter et al., 2016) and the EBSD imaging allowed more accurate recrystallized 

grainsize measurement. The piezometer of Heilbronner and Kilian (2017) yields 

significantly higher stresses than the piezometer of Stipp and Tullis (2003) (Fig.4.6c). 

Shimizu (2008, 2012) developed a piezometer for dynamically recrystallized grainsize 

achieved by subgrain rotation and grain boundary migration mechanisms. At higher 

temperatures where β-quartz is appropriate, the stress estimates based on Shimizu’s 

model agree well with the experiment data of Stipp and Tullis (2003). At lower 

temperatures where α-quartz is applied, Shimizu’s model yields considerably higher 
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stresses than the piezometer of Stipp and Tullis (2003). The stress estimates based on 

Shimizu (2008, 2012) with α- and β-quartz used respectively for low and high 

temperatures are plotted in Fig.4.6d. As the creep experiments used in this paper are all in 

the β-quartz stability field, our flow law and other flow laws used in Fig.4.6 are strictly 

applicable for β-quartz. Furthermore, quartz piezometers have not always distinguished 

α- and β-quartz. Therefore, there is additional uncertainty about how stress estimates 

based on Shimizu’s α-quartz model are interpreted. The stress estimates based on β-

quartz, regardless of temperature, are plotted in Fig.4.6e. 

Austin and Evans (2007, 2009) proposed the so-called “paleowattmeter” model, which 

considers the balance between grainsize reduction and grain growth. The grainsize 

reduction is driven by mechanical work done to the grain, and the rate of grain growth is 

assumed to follow the kinetic law of static grain growth. For quartz aggregates, the 

paleowattmeter predicts consistently lower stresses than other piezometers (Fig.4.6f). 

Note data associated with bulging recrystallization (BLG) are excluded in Figs.6d-f 

because the models of Shimizu (2008, 2012) and Austin and Evans (2007, 2009) do not 

apply to BLG.  

The difference in stress estimates based on these piezometers is significant (Fig.4.6). We 

believe the predictions of paleowattmeter are too low (Fig.4.6f). Coaxial experiment 

calibrations (Stipp and Tullis, 2003; Cross et al., 2017) (Figs.4.6a and b) appear to 

generate stresses below flow law predictions for temperature below 500℃. The reason 

for the great difference between coaxial experiment calibration (Figs.4.6a and b) and non-

coaxial (general shear) experiment calibration (Fig.4.6c) is yet to be clarified. It is 

possible the friction correction on stress for coaxial experiments is overdone. Stress 

estimates based on non-coaxial experiment calibrations (Heilbronner and Kilian, 2017) 

(Fig.4.6c) are in better agreement with our flow law prediction and also with the stress 

estimates based on Shimizu (2008, 2012) (Figs.4.6d and e). We are reluctant to draw any 

conclusion on the agreement between stress estimates and our flow law prediction in 

Figs.4.6c-e, because of uncertainties associated with piezometers and the choice of strain 
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rate. There are also uncertainties arising from the fact that natural samples were collected 

from regions with geothermal gradients varying from 10℃/km to 40℃/km or with 

unknown geothermal gradients. The geothermal gradient of 20℃/km used in Fig.4.6 is a 

simplification. Our purpose here is not to resolve the stress and strength of the crust, but 

to present our flow law in the context of current knowledge and uncertainties of 

continental strength in order to facilitate further investigation on the subject. 

Furthermore, it is perhaps also an oversimplification to use a simple flow law of wet 

quartzite to represent the rheology of the continental lithosphere as the latter is composed 

of polyphase rocks whose overall rheology depends on the rheological properties of the 

constituents, their concentrations, and their geometric arrangement, all of which change 

during progressive deformation (e.g., Tullis, 2002; Montési, 2013; Jiang, 2014, 2016). 

 Conclusions 
We have demonstrated that the pressure dependence of the activation enthalpy through 

the activation volume is the key to reconcile the great difference in flow laws derived 

from existing experiments. 

We critically evaluated existing high-quality experimental data on quartz creep and used 

them to obtain a best-fit flow law for quartz aggregates under regime 2 and regime 3 

dislocation creep: 15 2.7 4132000 35.3
6.0 10 expw

P
f

RT
ε σ− +
= × − 

 
 

 . The water fugacity 

exponent and the activation volume are interrelated. The errors associated with them are 

unknown due to limited experiment data. The obtained active volume is comparable with 

other silicate minerals and reasonable from theoretical arguments. The new flow law can 

well explain the difference between previous flow laws with parameters determined in 

Gleason and Tullis (1995) and Luan and Paterson (1992).  

Stress and strain rate estimates from natural mylonites have far greater uncertainties than 

well-controlled laboratory creep experiments. It is unrealistic to expect that such 

estimates can allow determination of flow law parameters better than well-controlled 

experiments.  
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Crustal scale ductile shear zones likely flow at a strain rate between 13 -110 s−  and 11 -110 s−  

based on exhumed mylonite zone thickness and slip rates derived from geological and 

modern GPS observations. This strain rate range corresponds to a lithosphere strength 

profile which, based on our flow law, is broadly consistent with piezometric data based 

on Heilbronner and Kilian (2017) and Shimizu (2008, 2012).  



131 

 

 

 

 References 
Ashby, M. F. (1972). A first report on deformation-mechanism maps. Acta 

Metallurgica, 20(7), 887-897. https://doi.org/10.1016/0001-6160(72)90082-X 

Ashby, M. F., & Verrall, R. A. (1973). Diffusion-accommodated flow and 

superplasticity. Acta Metallurgica, 21(2), 149–163. https://doi.org/10.1016/0001-

6160(73)90057-6 

Austin, N., & Evans, B. (2007). Paleowattmeters: A scaling relation for dynamically 

recrystallized grain size. Geology, 35(4), 343. https://doi.org/10.1130/G23244A.1 

Austin, N., & Evans, B. (2009). The kinetics of microstructural evolution during 

deformation of calcite. Journal of Geophysical Research: Solid Earth, 114(B9). 

https://doi.org/10.1029/2008JB006138 

Beaumont, C., Jamieson, R. A., Nguyen, M. H., & Medvedev, S. (2004). Crustal channel 

flows: 1. Numerical models with applications to the tectonics of the Himalayan-

Tibetan orogen. Journal of Geophysical Research: Solid Earth, 109(B6), 1–29. 

https://doi.org/10.1029/2003JB002809 

Behr, W. M., & Platt, J. P. (2011). A naturally constrained stress profile through the 

middle crust in an extensional terrane. Earth and Planetary Science Letters, 303(3–

4), 181–192. https://doi.org/10.1016/j.epsl.2010.11.044 

Behr, W. M., & Platt, J. P. (2014). Brittle faults are weak, yet the ductile middle crust is 

strong: Implications for lithospheric mechanics. Geophysical Research Letters, 

41(22), 8067–8075. https://doi.org/10.1002/2014GL061349 

Béjina, F., Jaoul, O., & Liebermann, R. C. (2003). Diffusion in minerals at high pressure: 

a review. Physics of the Earth and Planetary Interiors, 139(1–2), 3–20. 

https://doi.org/10.1016/S0031-9201(03)00140-7 

Brace, W. F., & Kohlstedt, D. L. (1980). Limits on lithospheric stress imposed by 

laboratory experiments. Journal of Geophysical Research: Solid Earth, 85(B11), 

https://doi.org/10.1016/0001-6160(72)90082-X


132 

 

 

 

6248–6252. https://doi.org/10.1029/JB085iB11p06248 

Brown, S. R., Gibson, H. D., Andrews, G. D. M., Thorkelson, D. J., Marshall, D. D., 

Vervoort, J. D., & Rayner, N. (2012). New constraints on Eocene extension within 

the Canadian Cordillera and identification of Phanerozoic protoliths for footwall 

gneisses of the Okanagan Valley shear zone. Lithosphere, 4(4), 354–377. 

https://doi.org/10.1130/L199.1 

Burov, E. B. (2011). Rheology and strength of the lithosphere. Marine and Petroleum 

Geology, 28(8), 1402–1443. https://doi.org/10.1016/j.marpetgeo.2011.05.008 

Burov, E. B., & Diament, M. (1995). The effective elastic thickness (Te) of continental 

lithosphere: What does it really mean? Journal of Geophysical Research: Solid 

Earth, 100(B3), 3905–3927. https://doi.org/10.1029/94JB02770 

Burov, E. B., & Watts, A. B. (2006). The long-term strength of continental lithosphere: 

“jelly sandwich” or “crème brûlée”? GSA Today, 16(1), 4. 

https://doi.org/10.1130/1052-5173(2006)016<4:TLTSOC>2.0.CO;2 

Caristan, Y. (1982). The transition from high temperature creep to fracture in Maryland 

diabase. Journal of Geophysical Research: Solid Earth, 87(B8), 6781–6790. 

https://doi.org/10.1029/JB087iB08p06781 

Chernak, L. J., Hirth, G., Selverstone, J., & Tullis, J. (2009). Effect of aqueous and 

carbonic fluids on the dislocation creep strength of quartz. Journal of Geophysical 

Research: Solid Earth, 114(B4). https://doi.org/10.1029/2008JB005884 

Christie, J. M., Ord, A., & Koch, P. S. (1980). Relationship between recrystallized grain 

size and flow stress in experimentally deformed quartzite. Eos, 61, 377. 

Chopra, P. N., & Paterson, M. S. (1981). The experimental deformation of dunite. 

Tectonophysics, 78(1–4), 453–473. https://doi.org/10.1016/0040-1951(81)90024-X 

Cross, A. J., Prior, D. J., Stipp, M., & Kidder, S. (2017). The recrystallized grain size 

piezometer for quartz: An EBSD‐based calibration. Geophysical Research 



133 

 

 

 

Letters, 44(13), 6667-6674. https://doi.org/10.1002/2017GL073836 

Davis, G. A., Lister, G. S., & Reynolds, S. J. (1986). Structural evolution of the Whipple 

and South mountains shear zones, southwestern United States. Geology, 14(1), 7–

10. https://doi.org/10.1130/0091-7613(1986)14<7:SEOTWA>2.0.CO;2 

Dorn, J. E. (1955). Some fundamental experiments on high temperature creep. Journal of 

the Mechanics and Physics of Solids, 3(2), 85–116. https://doi.org/10.1016/0022-

5096(55)90054-5 

Dunlap, W. J., Hirth, G., & Teyssier, C. (1997). Thermomechanical evolution of a ductile 

duplex. Tectonics, 16(6), 983-1000. https://doi.org/10.1029/97TC00614 

Fagereng, Å., & Biggs, J. (2018). New perspectives on ‘geological strain rates’ calculated 

from both naturally deformed and actively deforming rocks. Journal of Structural 

Geology. https://doi.org/10.1016/j.jsg.2018.10.004 

Farla, R. J. M., Karato, S. I., & Cai, Z. (2013). Role of orthopyroxene in rheological 

weakening of the lithosphere via dynamic recrystallization. Proceedings of the 

National Academy of Sciences, 110(41), 16355–16360. 

https://doi.org/10.1073/pnas.1218335110 

Fialko, Y. (2006). Interseismic strain accumulation and the earthquake potential on the 

southern San Andreas fault system. Nature, 441(7096), 968–971. 

https://doi.org/10.1038/nature04797 

Frost, H. J., & Ashby, M. F. (1982). Deformation mechanism maps: the plasticity and 

creep of metals and ceramics. Pergamon Press. 

Fry, N. (1979). Random point distributions and strain measurement in rocks. 

Tectonophysics, 60(1–2), 89–105. https://doi.org/10.1016/0040-1951(79)90135-5 

Fukuda, J., & Shimizu, I. (2017). Theoretical derivation of flow laws for quartz 

dislocation creep: Comparisons with experimental creep data and extrapolation to 

natural conditions using water fugacity corrections. Journal of Geophysical 

https://doi.org/10.1130/0091-7613(1986)14%3C7:SEOTWA%3E2.0.CO;2


134 

 

 

 

Research: Solid Earth, 122(8), 5956–5971. https://doi.org/10.1002/2016JB013798 

Gifkins, R. C. (1976). Grain-Boundary Sliding and its Accommodation During Creep and 

Superplasticity. Metallurgical Transactions A, 7A, 1225–1232. 

https://doi.org/10.1007/BF02656607 

Gleason, G. C., & Tullis, J. (1993). Improving flow laws and piezometers for quartz and 

feldspar aggregates. Geophysical Research Letters, 20(19), 2111–2114. 

https://doi.org/10.1029/93GL02236 

Gleason, G. C., & Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates 

determined with the molten salt cell. Tectonophysics, 247(1–4), 1–23. 

https://doi.org/10.1016/0040-1951(95)00011-B 

Goetze, C., & Evans, B. (1979). Stress and temperature in the bending lithosphere as 

constrained by experimental rock mechanics. Geophysical Journal 

International, 59(3), 463-478. https://doi.org/10.1111/j.1365-246X.1979.tb02567.x 

Griggs, D. (1967). Hydrolytic weakening of quartz and other silicates. Geophysical 

Journal International, 14(1‐4), 19-31. https://doi.org/10.1111/j.1365-

246X.1967.tb06218.x 

Griggs, D. T., & Blacic, J. D. (1964). The strength of quartz in the ductile regime. EOS. 

Trans. Am. Geophys.Union, 45, 102-103. 

Griggs, D. T., & Blacic, J. D. (1965). Quartz: Anomalous Weakness of Synthetic 

Crystals. Science, 147(3655), 292–295. 

https://doi.org/10.1126/science.147.3655.292 

Heard, H. C., & Carter, N. L. (1968). Experimentally induced “natural” intragranular 

flow in quartz and quartzite. American Journal of Science. 

https://doi.org/10.2475/ajs.266.1.1 

Heermance, R. V., & Yule, D. (2017). Holocene slip rates along the San Andreas Fault 

System in the San Gorgonio Pass and implications for large earthquakes in southern 

https://dx.doi.org/10.1007/BF02656607
https://dx.doi.org/10.1007/BF02656607
https://doi.org/10.1111/j.1365-246X.1979.tb02567.x


135 

 

 

 

California. Geophysical Research Letters, 44(11), 5391–5400. 

https://doi.org/10.1002/2017GL072612 

Heilbronner, R., & Kilian, R. (2017). The grain size (s) of Black Hills Quartzite deformed 

in the dislocation creep regime. Solid Earth, 8(6). https://doi.org/10.5194/se-8-1071-

2017 

Heyliger, P., Ledbetter, H., & Kim, S. (2003). Elastic constants of natural quartz. The 

Journal of the Acoustical Society of America, 114(2), 644–650. 

https://doi.org/10.1121/1.1593063 

Hirth, G., & Tullis, J. (1992). Dislocation creep regimes in quartz aggregates. Journal of 

Structural Geology, 14(2), 145–159. https://doi.org/10.1016/0191-8141(92)90053-Y 

Hirth, G., Teyssier, C., & Dunlap, J. W. (2001). An evaluation of quartzite flow laws 

based on comparisons between experimentally and naturally deformed 

rocks. International Journal of Earth Sciences, 90(1), 77-87. 

https://doi.org/10.1007/s005310000152 

Holyoke, C. W., & Kronenberg, A. K. (2010). Accurate differential stress measurement 

using the molten salt cell and solid salt assemblies in the Griggs apparatus with 

applications to strength, piezometers and rheology. Tectonophysics, 494(1–2), 17–

31. https://doi.org/10.1016/j.tecto.2010.08.001 

Holyoke, C. W., & Kronenberg, A. K. (2013). Reversible water weakening of quartz. 

Earth and Planetary Science Letters, 374, 185–190. 

https://doi.org/10.1016/j.epsl.2013.05.039 

Holyoke, C. W., & Tullis, J. (2006). Mechanisms of weak phase interconnection and the 

effects of phase strength contrast on fabric development. Journal of Structural 

Geology, 28(4), 621–640. https://doi.org/10.1016/j.jsg.2006.01.008 

Hudleston, P. J., & Treagus, S. H. (2010). Information from folds: a review. Journal of 

Structural Geology, 32(12), 2042-2071.https://doi.org/10.1016/j.jsg.2010.08.011 

https://doi.org/10.1016/0191-8141(92)90053-Y
https://dx.doi.org/10.1007/s005310000152


136 

 

 

 

Jackson, J. (2002). Strength of the continental lithosphere: Time to abandon the jelly 

sandwich? GSA Today, 12(9), 4. https://doi.org/10.1130/1052-

5173(2002)012<0004:SOTCLT>2.0.CO;2 

Jamieson, R. A., Beaumont, C., Medvedev, S., & Nguyen, M. H. (2004). Crustal channel 

flows: 2. Numerical models with implications for metamorphism in the Himalayan-

Tibetan orogen. Journal of Geophysical Research: Solid Earth, 109(B6), 1–24. 

https://doi.org/10.1029/2003JB002811 

Jaoul, O., Tullis, J., & Kronenberg, A. (1984). The effect of varying water contents on the 

creep behavior of Heavitree quartzite. Journal of Geophysical Research: Solid 

Earth, 89(B6), 4298–4312. https://doi.org/10.1029/JB089iB06p04298 

Ji, S., Li, L., Motra, H. B., Wuttke, F., Sun, S., Michibayashi, K., & Salisbury, M. H. 

(2018). Poisson’s Ratio and Auxetic Properties of Natural Rocks. Journal of 

Geophysical Research: Solid Earth, 123(2), 1161–1185. 

https://doi.org/10.1002/2017JB014606 

Jiang, D. (2010). Flow and finite deformation of surface elements in three dimensional 

homogeneous progressive deformations. Tectonophysics, 487(1–4), 85–99. 

https://doi.org/10.1016/j.tecto.2010.03.011 

Jiang, D. (2014). Structural geology meets micromechanics: A self-consistent model for 

the multiscale deformation and fabric development in Earth's ductile 

lithosphere. Journal of Structural Geology, 68, 247-272. 

https://doi.org/10.1016/j.jsg.2014.05.020 

Jiang, D. (2016). Viscous inclusions in anisotropic materials: Theoretical development 

and perspective applications. Tectonophysics, 693, 116-142. 

https://doi.org/10.1016/j.tecto.2016.10.012 

Karato, S. I., Paterson, M. S., & FitzGerald, J. D. (1986). Rheology of synthetic olivine 

aggregates: Influence of grain size and water. Journal of Geophysical Research: 

Solid Earth, 91(B8), 8151-8176. https://doi.org/10.1029/JB091iB08p08151 

https://doi.org/10.1016/j.jsg.2014.05.020
https://doi.org/10.1016/j.tecto.2016.10.0


137 

 

 

 

Karato, S. I., & Jung, H. (2003). Effects of pressure on high-temperature dislocation 

creep in olivine. Philosophical Magazine, 83(3), 401–414. 

https://doi.org/10.1080/0141861021000025829 

Karato, S. I. (2008). Deformation of Earth Materials: an introduction to the rheology of 

solid earth. Cambridge: Cambridge University Press. 

Kidder, S., Avouac, J. P., & Chan, Y. C. (2012). Constraints from rocks in the Taiwan 

orogen on crustal stress levels and rheology. Journal of Geophysical Research: Solid 

Earth, 117(B9). https://doi.org/10.1029/2012JB009303 

Kirby, S. H. (1983). Rheology of the lithosphere. Reviews of Geophysics, 21(6), 1458-

1487. https://doi.org/10.1029/RG021i006p01458 

Kirby, S. H., & Kronenberg, A. K. (1984). Deformation of clinopyroxenite: Evidence for 

a transition in flow mechanisms and semibrittle behavior. Journal of Geophysical 

Research:Solid Earth, 89(B5), 3177-3192. 

https://doi.org/10.1029/JB089iB05p03177 

Kirby, S. H., & Raleigh, C. B. (1973). Mechanisms of high-temperature, solid-state flow 

in minerals and ceramics and their bearing on the creep behavior of the mantle. 

Tectonophysics, 19(2), 165–194. https://doi.org/10.1016/0040-1951(73)90038-3 

Koch, P. S., Christie, J. M., Ord, A., & George, R. P. (1989). Effect of water on the 

rheology of experimentally deformed quartzite. Journal of Geophysical Research: 

Solid Earth, 94(B10), 13975–13996. https://doi.org/10.1029/JB094iB10p13975 

Kohlstedt, D. L., Evans, B., & Mackwell, S. J. (1995). Strength of the lithosphere: 

Constraints imposed by laboratory experiments. Journal of Geophysical Research: 

Solid Earth, 100(B9), 17587–17602. https://doi.org/10.1029/95JB01460 

Kreemer, C., Blewitt, G., & Klein, E. C. (2014). A geodetic plate motion and Global 

Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15(10), 3849-3889. 

https://doi.org/10.1002/2014GC005407 

https://doi.org/10.1029/RG021i006p01458


138 

 

 

 

Kronenberg, A. K. (1994). Hydrogen Speciation and Chemical Weakening of quartz. 

Reviews in Mineralogy and Geochemistry, 29(1), 123–176. 

Kronenberg, A. K., Kirby, S. H., & Pinkston, J. (1990). Basal slip and mechanical 

anisotropy of biotite. Journal of Geophysical Research: Solid Earth, 95(B12), 

19257-19278. https://doi.org/10.1029/JB095iB12p19257 

Kronenberg, A. K., & Tullis, J. (1984). Flow strengths of quartz aggregates: Grain size 

and pressure effects due to hydrolytic weakening. Journal of Geophysical Research: 

Solid Earth, 89(B6), 4281–4297. https://doi.org/10.1029/JB089iB06p04281 

Kuiper, Y. D., & Jiang, D. (2010). Kinematics of deformation constructed from deformed 

planar and linear elements: The method and its application. Tectonophysics, 492(1–

4), 175–191. https://doi.org/10.1016/j.tecto.2010.06.009 

Levy, M., Bass, H., & Stern, R. (2000). Handbook of Elastic Properties of Solids, 

Liquids, and Gases, Four Volume Set. Academic Press. 

Luan, F. C., & Paterson, M. S. (1992). Preparation and deformation of synthetic 

aggregates of quartz. Journal of Geophysical Research: Solid Earth, 97(B1), 301-

320. https://doi.org/10.1029/91JB01748 

Mackwell, S. J., Zimmerman, M. E., & Kohlstedt, D. L. (1998). High-temperature 

deformation of dry diabase with application to tectonics on Venus. Journal of 

Geophysical Research: Solid Earth, 103(B1), 975–984. 

https://doi.org/10.1029/97JB02671 

Maggi, A., Jackson, J. A., McKenzie, D., & Priestley, K. (2000). Earthquake focal 

depths,effective elastic thickness,and the strength of the continental lithosphere. 

Geology, 28(1990), 495–498. https://doi.org/10.1130/0091-7613(2000)28<495 

McGill, S. F., Owen, L. A., Weldon, R. J., & Kendrick, K. J. (2013). Latest Pleistocene 

and Holocene slip rate for the San Bernardino strand of the San Andreas fault, 

Plunge Creek, Southern California: Implications for strain partitioning within the 



139 

 

 

 

southern San Andreas fault system for the last ∼35 k.y. Geological Society of 

America Bulletin, 125(1–2), 48–72. https://doi.org/10.1130/B30647.1 

Means, W.D., Hobbs, B.E., Lister, G.S., Williams, P.F. (1980). Vorticity and non-

coaxiality in progressive deformation. Journal of Structural Geology, 2, 371-378. 

Mei, S., & Kohlstedt, D. L. (2000). Influence of water on plastic deformation of olivine 

aggregates: 2. Dislocation creep regime. Journal of Geophysical Research: Solid 

Earth, 105(B9), 21471–21481. https://doi.org/10.1029/2000JB900180 

Montési, L. G. J. (2013). Fabric development as the key for forming ductile shear zones 

and enabling plate tectonics. Journal of Structural Geology, 50, 254–266. 

https://doi.org/10.1016/j.jsg.2012.12.011 

Mercier, J. C. C., Anderson, D. A., & Carter, N. L. (1977). Pageoph, 115, 199-226. 

https://doi.org/10.1007/BF01637104 

Mukherjee, A. K. (1971). The rate controlling mechanism in superplasticity. Materials 

Science and Engineering, 8(2), 83–89. https://doi.org/10.1016/0025-5416(71)90085-

1 

Nicolas, A., & Poirier, J. P. (1976). Crystalline plasticity and solid state flow in 

metamorphic rocks. John Wiley & Sons. 

Norris, R. J., & Cooper, A. F. (2000). Late Quaternary slip rates and slip partitioning on 

the Alpine Fault, New Zealand. Journal of Structural Geology, 23(2–3), 507–520. 

https://doi.org/10.1016/S0191-8141(00)00122-X 

Norris, R. J., & Cooper, A. F. (2003). Very high strains recorded in mylonites along the 

Alpine Fault, New Zealand: implications for the deep structure of plate boundary 

faults. Journal of Structural Geology, 25(12), 2141–2157. 

https://doi.org/10.1016/S0191-8141(03)00045-2 

Ord, A., & Christie, J. M. (1984). Flow stresses from microstructures in mylonitic 

quartzites of the Moine Thrust zone, Assynt area, Scotland. Journal of Structural 



140 

 

 

 

Geology, 6(6), 639-654. https://doi.org/10.1016/0191-8141(84)90002-6 

Ord, A., & Hobbs, B. E. (1986). Experimental Control of the Water‐Weakening Effect in 

Quartz. Mineral and Rock Deformation: Laboratory Studies: The Paterson Volume, 

51-72. https://doi.org/10.1029/GM036p0051 

Parrish, D. K., Krivz, A. L., & Carter, N. L. (1976). Finite-element folds of similar 

geometry. Tectonophysics, 32(3–4), 183–207. https://doi.org/10.1016/0040-

1951(76)90062-7 

Paterson, M. S. (1989). The interaction of water with quartz and its influence in 

dislocation flow-an overview. In Rheology of Solids and of the Earth (pp. 107–142). 

Pitzer, K. S., & Sterner, S. M. (1994). Equations of state valid continuously from zero to 

extreme pressures for H2O and CO2. The Journal of Chemical Physics, 101(4), 

3111–3116. https://doi.org/10.1063/1.467624 

Post, A. D., Tullis, J., & Yund, R. A. (1996). Effects of chemical environment on 

dislocation creep of quartzite. Journal of Geophysical Research: Solid Earth, 

101(B10), 22143–22155. https://doi.org/10.1029/96JB01926 

Ranalli, G. (1987). Rheology of the Earth:Deformation and Flow Processes in 

Geophysics and Geodynamics. Boston: Allen & Unwin. 

Richter, B., Stünitz, H., & Heilbronner, R. (2016). Stresses and pressures at the quartz‐to‐

coesite phase transformation in shear deformation experiments. Journal of 

Geophysical Research: Solid Earth, 121(11), 8015-8033. 

https://doi.org/10.1002/2016JB013084 

Rutter, E. H., & Brodie, K. H. (2004). Experimental intracrystalline plastic flow in hot-

pressed synthetic quartzite prepared from Brazilian quartz crystals. Journal of 

Structural Geology, 26(2), 259-270. https://doi.org/10.1016/S0191-8141(03)00096-

8 

Rybacki, E., & Dresen, G. (2004). Deformation mechanism maps for feldspar rocks. 

https://doi.org/10.1029/GM036p0051
https://doi.org/10.1063/1.467624


141 

 

 

 

Tectonophysics, 382(3–4), 173–187. https://doi.org/10.1016/j.tecto.2004.01.006 

Rybacki, E., Gottschalk, M., Wirth, R., & Dresen, G. (2006). Influence of water fugacity 

and activation volume on the flow properties of fine-grained anorthite aggregates. 

Journal of Geophysical Research: Solid Earth, 111(B3). 

https://doi.org/10.1029/2005JB003663 

Schmalholz, S. M., & Fletcher, R. C. (2011). The exponential flow law applied to 

necking and folding of a ductile layer. Geophysical Journal International, 184(1), 

83–89. https://doi.org/10.1111/j.1365-246X.2010.04846.x 

Schmalholz, S. M., & Schmid, D. W. (2012). Folding in power-law viscous multi-

layers. Phil. Trans. R. Soc. A, 370(1965), 1798-

1826.https://doi.org/10.1098/rsta.2011.0421 

Schulz, S. E., & Evans, J. P. (2000). Mesoscopic structure of the Punchbowl Fault, 

Southern California and the geologic and geophysical structure of active strike-slip 

faults. Journal of Structural Geology, 22(7), 913–930. 

https://doi.org/10.1016/S0191-8141(00)00019-5 

Shea, W. T., & Kronenberg, A. K. (1993). Strength and anisotropy of foliated rocks with 

varied mica contents. Journal of Structural Geology, 15(9–10), 1097–1121. 

https://doi.org/10.1016/0191-8141(93)90158-7 

Shelton, G. L., & Tullis, J. (1981). Experimental flow laws for crustal rocks. Eos Trans. 

AGU, 62, 396. 

Sherby, O. D., & Burke, P. M. (1968). Mechanical behavior of crystalline solids at 

elevated temperature. Progress in Materials Science, 13, 323–390. 

https://doi.org/10.1016/0079-6425(68)90024-8 

Sherby, O. D., Robbins, J. L., & Goldberg, A. (1970). Calculation of activation volumes 

for self-diffusion and creep at high temperature. Journal of Applied Physics, 41(10), 

3961–3968. https://doi.org/10.1063/1.1658396 

https://doi.org/10.1063/1.1658396


142 

 

 

 

Shimamoto, T., & Ikeda, Y. (1976). A simple algebraic method for strain estimation from 

deformed ellipsoidal objects. 1. Basic theory. Tectonophysics, 36(4), 315–337. 

https://doi.org/10.1016/0040-1951(76)90107-4 

Shimizu, I. (2008). Theories and applicability of grain size piezometers: The role of 

dynamic recrystallization mechanisms. Journal of Structural Geology, 30(7), 899–

917. https://doi.org/10.1016/j.jsg.2008.03.004 

Shimizu, I. (2012). Steady-state grain size in dynamic recrystallization of minerals. 

In Recrystallization. InTech. 

Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological 

Society, 133(3), 191–213. https://doi.org/10.1144/gsjgs.133.3.0191 

Stipp, M., & Tullis, J. (2003). The recrystallized grain size piezometer for 

quartz. Geophysical Research Letters, 30(21). 

https://doi.org/10.1029/2003GL018444 

Stipp, M., Tullis, J., Scherwath, M., & Behrmann, J. H. (2010). A new perspective on 

paleopiezometry: Dynamically recrystallized grain size distributions indicate 

mechanism changes. Geology, 38(8), 759–762. https://doi.org/10.1130/G31162.1 

Sutherland, R., Berryman, K., & Norris, R. (2006). Quaternary slip rate and 

geomorphology of the Alpine fault: Implications for kinematics and seismic hazard 

in southwest New Zealand. Geological Society of America Bulletin, 118(3–4), 464–

474. https://doi.org/10.1130/B25627.1 

Swamy, V., Saxena, S. K., Sundman, B., & Zhang, J. (1994). A thermodynamic 

assessment of silica phase diagram. Journal of Geophysical Research: Solid Earth, 

99(B6), 11787–11794. https://doi.org/10.1029/93JB02968 

Titus, S. J., DeMets, C., & Tikoff, B. (2005). New slip rate estimates for the creeping 

segment of the San Andreas fault, California. Geology, 33(3), 205. 

https://doi.org/10.1130/G21107.1 



143 

 

 

 

Tullis, J. (2002). Deformation of Granitic Rocks: Experimental Studies and Natural 

Examples. Reviews in Mineralogy and Geochemistry, 51(1), 51–95. 

https://doi.org/10.2138/gsrmg.51.1.51 

Tullis, J., & Wenk, H. R. (1994). Effect of muscovite on the strength and lattice preferred 

orientations of experimentally deformed quartz aggregates. Materials Science and 

Engineering: A, 175(1-2), 209-220. https://doi.org/10.1016/0921-5093(94)91060-X 

Tullis, J., & Yund, R. A. (1980). Hydrolytic weakening of experimentally deformed 

Westerly granite and Hale albite rock. Journal of Structural Geology, 2(4), 439–451. 

https://doi.org/10.1016/0191-8141(80)90005-X 

Tullis, J., & Yund, R. A. (1989). Hydrolytic Weakening of Quartz Aggregates: The 

Effect of Water and Pressure on Recovery. Geophysical Research Letters, 16(11), 

1343–1346. 

Twiss, R. J. (1977). Theory and applicability of a recrystallized grain size 

paleopiezometer. In Stress in the Earth (pp. 227-244). Birkhäuser, Basel. 

https://doi.org/10.1007/BF01637105 

Watts, A. B., & Burov, E. B. (2003). Lithospheric strength and its relationship to the 

elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 

213(1–2), 113–131. https://doi.org/10.1016/S0012-821X(03)00289-9 

White, S. H. (1979). Difficulties associated with paleostress estimates. Bull. 

Mineral., 102, 210-215. 

White, J. C., & Mawer, C. K. (1991). Deep-crustal deformation textures along 

megathrusts from Newfoundland and Ontario: implications for microstructural 

preservation, strain rates, and the strength of the lithosphere. Can. J. Earth Sci., 29, 

328–337. https://doi.org/10.1139/e92-029 

Wightman, R. H., Prior, D. J., & Little, T. A. (2006). Quartz veins deformed by diffusion 

creep-accommodated grain boundary sliding during a transient, high strain-rate 

https://doi.org/10.1016/0921-5093(94)91060-X
https://doi.org/10.1139/e92-029


144 

 

 

 

event in the Southern Alps, New Zealand. Journal of Structural Geology, 28(5), 

902–918. https://doi.org/10.1016/j.jsg.2006.02.008 

Wilks, K. R., & Carter, N. L. (1990). Rheology of some continental lower crustal rocks. 

Tectonophysics, 182(1–2), 57–77. https://doi.org/10.1016/0040-1951(90)90342-6 

van Der Woerd, J., Klinger, Y., Sieh, K., Tapponnier, P., Ryerson, F. J., & Mériaux, A. S. 

(2006). Long‐term slip rate of the southern San Andreas fault from 10Be‐26Al 

surface exposure dating of an offset alluvial fan. Journal of Geophysical Research: 

Solid Earth, 111(B4). https://doi.org/10.1029/2004JB003559 

Zulauf, G. (2001). Structural style, deformation mechanisms and paleodifferential stress 

along an exposed crustal section: constraints on the rheology of quartzofeldspathic 

rocks at supra-and infrastructural levels (Bohemian Massif). Tectonophysics, 332(1-

2), 211-237. https://doi.org/10.1016/S0040-1951(00)00258-4 

 

 

https://doi.org/10.1029/2004JB003559


145 

 

 

 

Chapter 5  

5 Dislocation Creep Flow Laws of Wet Quartzite: The 
Significance of Pressure and Slip Systems 

 Introduction 
The creep behavior of quartzites is critical for the understanding of continental rheology 

(e.g., Kohlstedt et al., 1995; Ranalli, 1987). The dislocation creep of wet quartzites has 

been described by a flow law of the form expm n
w

QAf
RT

ε σ = − 
 

 , where ε  is the strain 

rate, A the pre-exponential parameter, wf  the water fugacity, m the water fugacity 

exponent, Q the activation energy, R the universal gas constant, T the absolute 

temperature, σ  the differential stress, and n the stress exponent. A large number of creep 

experiments on quartz samples have been conducted to determine the values of Q, n, m, 

and A (called flow law parameters hereafter). However, very different results are obtained 

with variations between 2 and 4 for n , 130 kJ/mol  and 240 kJ/mol  for Q, and 0.372 and 

2.8 for m  (e.g., Kronenberg and Tullis, 1984; Koch et al., 1989; Gleason and Tullis, 

1995; Luan and Paterson, 1992; Post et al., 1996; Rutter and Brodie, 2004; Chernak et al., 

2009; Holyoke and Kronenberg, 2013). The pre-exponential parameter A varies 

accordingly. The large variations in flow law parameters lead to very different 

predictions on the strength of the continent. 

We have suggested recently that the large difference in Q from experiments may be 

explained by considering the pressure dependence of the activation enthalpy (Lu and 

Jiang 2019). Although the pressure range in the continental lithosphere is relatively small, 

the creep experiments on wet quartzite were conducted in very different confining 

pressures from 0.3GPa (Luan and Paterson, 1992; Rutter and Brodie 2004) to more than 

1.5GPa (e.g., Gleason and Tullis, 1995). In order to account for this pressure effect, we 

used the following flow law (e.g., Karato and Jung, 2003):  
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exp expm n m n
w w

Q PV HAf Af
RT RT

ε σ σ+   = − = −   
   

                                            (5.1) 

where P is the pressure, V the activation volume, and H Q PV= +  the activation 

enthalpy. We used the flow law in Eq.5.1 to refit the experiments of Gleason and Tullis 

(1995) and Luan and Paterson (1992) that are thought to have undergone dominantly 

steady-state regimes 2 and 3 dislocation creep. The use of this flow law also implies that 

n, m, and V are no longer independent parameters, because (see Eq. 4, in Lu and Jiang, 

2019): 

, ,

ln
ln lnw wT T

V Pm n
f RT f

ε ε

σ   ∂ ∂
= − +   ∂ ∂   

 

                                                               (5.2) 

Using 4n =  for regimes 2 and 3 dislocation creep, based on Gleason and Tullis (1995) 

and Luan and Paterson (1992), and a set of 3 selected experimental data from Kronenberg 

and Tullis (1984), Lu and Jiang (2019) obtained 335.3 cm /molV =  and 2.7m = which in 

turn yielded 132 5 kJ/molQ = ±  for the experimental results of Gleason and Tullis (1995) 

and Luan and Paterson (1992).  

The flow law presented in Lu and Jiang (2019) is based on 4n = . However, other 

experiments (e.g., Kronenberg and Tullis, 1984; Koch et al., 1989; Gleason and Tullis, 

1995; Luan and Paterson, 1992; Rutter and Brodie, 2004) suggested that n varies between 

2 and 4. Goldsby and Kohlstedt (2001) and Hirth and Kohlstedt (2003) have suggested, 

for ice I and olivine respectively, that n may depend on the dominant slip system. Tokle 

et al. (2019) have shown that the value of n and quartz c-axis fabrics are correlated in the 

following manner: At higher temperatures and lower stresses where the experimental data 

yield 4n = , the deformed quartz samples show Y-max c-axis fabrics suggesting that the 

dominant slip system was prism <a> (Nachlas and Hirth, 2015; Richter et al., 2018). At 

lower temperatures and higher stresses where the experimental data yield 2.7n = , the 

samples exhibit c-axis fabrics suggesting the dominant basal <a> slip system (Tokle et 

al., 2013; Richter et al., 2018).  
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In this chapter, we examine the current database on quartz creep experiments by 

considering both the pressure effect on the activation enthalpy as in Lu and Jiang (2019) 

and the slip system dependence of the stress exponent as in Tokle et al. (2019). We 

demonstrate that the current experimental dataset is consistent with two dislocation creep 

flow laws, corresponding respectively to dominant prism <a> slip and dominant basal 

<a> slip, and transitional flow behaviors in between. Transitional flow behaviors are also 

common in nature. We regard the flow law in the transitional flow as a superposition of 

the two dislocation creep flow laws and discuss the significance and implications of 

multiple flow behaviors for continental strength. 

 Selection of experimental data 
As in Lu and Jiang (2019), we select quartz experimental data corresponding to steady-

state regimes 2 and 3 dislocation creep. A total of 20 creep experiments on quartz 

samples are analyzed in this paper, and they were deformed from 700 ℃ to 1200 ℃ 

(Appendix C). We have excluded experimental runs that involved semi-brittle 

deformation or exhibited microstructures indicating regime 1 dislocation creep. To 

minimize complications from the effect of water on quartz, we only include data from 

samples with 0.1-0.4 wt.% H2O added, following Tokle et al. (2019). With the exception 

of the ultrafine-grained quartzites of Rutter and Brodie (2004; 12-20 µm) and one sieved 

sample of Richter et al. (2018; 7-11 µm), all experiments we used in this paper were on 

samples with grainsize between 20-200 µm. The creep experiments were performed in 

either uniaxial compression or general shear experiments. For the general shear 

experiments, the shear stresses (τ) and the shear strain rates (γ ) were converted to von 

Mises equivalent stresses ( 3eqvσ τ= ) and equivalent strain rates (
3eqv
γε =


 ) so that the 

results could be directly compared with those from uniaxial compression experiments 

where the differential stresses and axial strain rates were used (Paterson and Olgaard, 

2000). Tokle et al. (2019) have shown that converting the shear stresses and shear strain 

rates to von Mises equivalent stresses and equivalent strain rates causes no systematic 

difference between the uniaxial compression experiments and general shear experiments. 
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The experiments we used in this paper were conducted in the Griggs-type apparatus with 

solid salt assemblies, molten salt, or gas confining media. The stress calibration of 

Holyoke and Kronenberg (2010) for Griggs apparatus with solid medium or molten-salt 

medium was not applied for the following 3 reasons: First, it is not clear yet if such stress 

calibration, which was determined under uniaxial compression experiments, is applicable 

to general shear experiments (Tokle et al., 2019). Second, Holyoke and Kronenberg 

(2010) pointed out that applying their calibration for molten-salt medium to the data of 

Gleason and Tullis (1995) only changed the fitting term A (form 4 -n -11.1 10 MPa s−×  to 
4 -n -15.1 10 MPa s−× ) but not the values of n or Q substantially. Third, some experimental 

studies suggested that this stress calibration might be overdone (Kidder et al., 2016; 

Richter et al., 2016), an observation consistent with our recent results (Lu and Jiang, 

2019). 

 Two dislocation creep flow laws 
To determine the flow law parameters in Eq.5.1 (n, m, V, Q, and A) we use the following 

iterative approach: Starting with an initial input of n, we solve for the values of m and V 

using Eq.5.2 based on a minimum of three sets of P and wf  stepping experimental data at 

constant ε  and T (Lu and Jiang, 2019). Once the values of n, m and V are determined, 

the activation energy Q can be obtained from T stepping experimental data using the 

following equation: ( ) ( ) ( ) ( )ln ln ln lnw
PV Qm f n A
RT RT

ε σ− − + = + . From each T 

stepping run, the T, P, ε , and σ  are known. The water fugacity wf  is determined using 

the state equation of water (Pitzer and Sterner, 1994), assuming the partial pressure of 

water is equal to the confining pressure. Plotting ( ) ( ) ( )ln ln lnw
PVm f n
RT

ε σ− − +  versus 

1
RT

, the value of Q is obtained by linear regression. With the obtained parameters (m, V, 

and Q), we normalize all data in Appendix C to a chosen reference P-T condition. To 

determine n, constant T, P, and wf  tests are required because 
, ,

ln
ln T P f

n ε
σ

∂ =  ∂ 



. As creep 
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experiments (Appendix C) were performed under different P-T conditions, we need to 

normalize the data to a chosen reference P-T condition and then plot the normalized 

strain rates versus normalized stresses. This, in turn, allows us to determine a new value 

of n by linear regression. A new round of iteration is initiated with the new n. The 

iteration continues until the output n is equal to the input n within a specific tolerance. 

The pre-exponential term A is a fitting parameter, which can be obtained once n, m, V, Q 

are determined. The final set of n, m, V, Q and A is then the best-fit flow law parameters 

for the data.  

As Tokle et al. (2019) have pointed out in their stress and strain rate plots (their Fig.1a), 

the high-temperature data and the low-temperature data follow two distinct trends. We 

consider the high-temperature data and low-temperature data separately to determine the 

flow law parameters. First, we consider the samples with large grainsize (20-200 µm) 

deformed at higher temperatures (900-1200℃) and lower stresses (Luan and Paterson, 

1992; Gleason and Tullis, 1995; Stipp and Tullis, 2003; Heilbronner and Tullis, 2006; 

Nachlas and Hirth, 2015; Kidder et al., 2016; Richter et al., 2018). Using the three sets of 

P and wf  stepping experimental data from 820 MPa to 1590 MPa (Kronenberg and 

Tullis, 1984) and the T stepping experimental data from 827 ℃ to 1050 ℃ (Luan and 

Paterson, 1992; Gleason and Tullis, 1995), the application of the iterative method 

described above yields a final set of 3.9 0.2n = ± , 2.6m = , 335.8 cm /molV = , 

132 19 kJ/molQ = ±  , and (14 0.4) -n-m -12.5 10 MPa sA − ±= × . The strain rate versus differential 

stress plot for all data in Appendix C at a reference P-T condition ( 900 CT = °  and 

1500 MPaP = ) using the final set of flow law parameters is shown in Fig.5.1a. Fig.5.2a 

shows how Q is determined based on the T stepping experimental data of Luan and 

Paterson (1992) and Gleason and Tullis (1995). If the data from Rutter and Brodie (2004) 

on ultrafine-grained quartzites are also included in the calculation, we got 3.7 0.2n = ±  

and (14 0.4) -n-m -15.0 10 MPa sA − ±= × . Therefore, the following flow law is applicable to these 

high-temperature data: 
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Figure 5.1 Plots of normalized strain rate versus normalized stress for quartz creep 

experiments and the dislocation creep flow laws  

The data in (a) and (b) are from the following 20 studies: Kronenberg and Tullis 

(1984), Koch et al. (1989), Luan and Paterson (1992), Hirth and Tullis (1992), Tullis 

and Wenk (1994), Gleason and Tullis (1995), Post et al. (1996), Heilbronner and 

Tullis (2002), Stipp and Tullis (2003), Rutter and Brodie (2004), Holyoke and Tullis 

(2006), Heilbronner and Tullis (2006), Stipp et al. (2006), Chernak et al. (2009), 

Holyoke and Kronenberg (2013), Kidder et al. (2016), Nachlas and Hirth (2015), 

Tokle et al. (2013), Richter et al. (2016), and Richter et al. (2018). The circles 

represent data collected from the axial compression experiments, and the diamonds 

represent data collected from the general shear experiments. All mechanical data 

are normalized to a reference condition of 900 CT = ° , 1500 MPaP = , and 

5030 MPawf = . The water fugacity is determined using the state equation of water 

(Pitzer and Sterner, 1994). (a). All data are normalized using the flow law 

parameters 2.6m = , 335.8 cm /molV = , and 132 kJ/molQ = . The dashed line 

represents the best fit line of the high-temperature experimental data (the solid 

circles and diamonds). 3.9 0.2n = ±  and 14 0.4 -n-m -12.5 10 MPa sA − ±= ×  are obtained by 

linear regression. (b) All data are normalized using 1.7m = , 323.1 cm /molV =  and 

126 kJ/molQ = . The dashed line represents the best fit line of the low-temperature 

experimental data (the solid circles and diamonds). 2.5 0.1n = ±  and 
12 0.3 -n-m -16.3 10 MPa sA − ±= ×  are obtained by linear regression. 
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Figure 5.2 Determination of the activation energy 

(a). The plot of ( ) ( ) ( )ln ln lnw
PVm f n
RT

ε σ− − +  versus 1
RT

−  for the T stepping data 

of Luan and Paterson (1992; sample 5582 and sample 5583) and Gleason and Tullis 

(1995; sample W611 and sample BA96) using 4n = , 2.6m = , and 335.8 cm /molV = , 

which yields 132 19 kJ/molQ = ±  by linear regression. (b) The plot of 

( ) ( ) ( )ln ln lnw
PVm f n
RT

ε σ− − +  versus 1
RT

−  for the T stepping data of Koch et al. 

(1989) using 2.5n = , 1.7m = , and 323.1 cm /molV = , which yields 

126 16 kJ/molQ = ±  by linear regression. 
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14 2.6 4132000 35.82.5 10 expw
Pf

RT
ε σ− + = × − 

 
                                                    (5.3) 

where σ  and P are in MPa.  

This flow law differs slightly from that in Lu and Jiang (2019) in m and V ( 2.7m = , 
335.3 cm /molV =  in Lu and Jiang, 2019) and more in A ( 156.0 10A −= ×  in Lu and Jiang  

2019). The difference is due to the fact that stress calibration based on Holyoke and 

Kronenberg (2010) was applied in Lu and Jiang (2019) but not here. This flow law is for 

wet quartzites deforming predominantly by prism <a> slip producing characteristic Y-

max c-axis fabrics (Fig.5.3).   

To consider the samples deformed at lower temperatures (700-900 ℃) and higher 

stresses (Kronenberg and Tullis, 1984; Koch et al., 1989; Post et al., 1996; Chernak et al., 

2009; Tokle et al., 2013; Richter et al., 2016; Richter et al., 2018), we used the three sets 

of P and wf  stepping experimental data from 820 MPa to 1590 MPa (Kronenberg and 

Tullis, 1984) and the T stepping experimental data of Koch et al. (1989) ranging from 

750 ℃ to 900 ℃. Application of the above iterative method, starting with an initial value 

of 2n = , yields a final set of 2.5n = , 1.7m = , 323.1 cm /molV = , 126 16 kJ/molQ = ±  , 

and (12 0.4) -n-m -16.3 10 MPa sA − ±= × . The strain rate versus differential stress plot at the 

reference P-T condition ( 900 CT = °  and 1500 MPaP = ) using the above flow law 

parameters is shown in Fig.5.1b. The plots of T stepping experimental data of Koch et al. 

(1989) to determine Q is shown in Fig.5.2b. The following flow law is applicable to the 

low-temperature data: 

12 1.7 2.5126000 23.16.3 10 expw
Pf

RT
ε σ− + = × − 

 
                                                   (5.4) 

This flow law is for wet quartzites deforming predominantly by basal <a> slip and 

producing a strong cluster of c-axes in the periphery (Fig.5.3). The parameters of the two 

dislocation creep flow laws determined in this paper are listed in Table 5.1. 
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Figure 5.3 Quartz c-axis fabrics and stress and strain rate data of eight general 

shear experimental runs  

The quartz c-axis patterns and experimental data are from the following five 

studies: Heilbronner and Tullis (2002, 875 ℃), Nachlas and Hirth (2015, 900 ℃), 

Heilbronner and Tullis (2006, 915 ℃), Tokle et al. (2013, 800 ℃), and Richter et al. 

(2018, 700 ℃, 800 ℃, 900 ℃, 1000 ℃). Two dislocation creep flow laws are also 

plotted. The strain rate and stress data are normalized to a reference condition 

900 CT = ° , 1500 MPaP = , and 5030 MPawf =  using the flow law in Eq.5.3 (for 

data 900 °C≥ ) and the flow law in Eq.5.4 (for data 900 °C< ). Transitional quartz 

c-axis fabrics are evident, from Y-max pattern indicating dominant prism <a> slip 

system at 1000 ℃ and 900 ℃, through a mixture of basal <a>, prism <a>, and 

rhomb <a> c-axis fabric pattern at 915 ~ 875 ℃, to a strong cluster of c-axes in the 

periphery reflecting dominant basal <a> slip system at 800 ℃ and 700 ℃. 
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Table 5.1 Parameters of two distinct dislocation creep flow laws for wet quartzites 

 n Q (kJ/mol) V (cm3/mol) M A (MPa-n-ms-1) 

dominant prism <a> 

slip (Eq.5.3) 

3.9 0.2±  132 19±   35.8 2.6 (14 0.4)2.5 10− ±×   

dominant basal <a> 

slip (Eq.5.4) 

2.5 0.1±   126 16±   23.1 1.7 (12 0.4)6.3 10− ±×   

 

One notes that the values of Q in two dislocation creep flow laws are similar ( 

132 19 kJ/molQ = ±  for flow law in Eq. 3 and 126 16 kJ/molQ = ±  for flow law in Eq. 

4). This can be understood by the fact that dislocation creeps, regardless of the dominant 

slip system, are ultimately accommodated by solid-state self-diffusion of vacancy defects 

(Dorn 1954; Sherby and Burke 1968; Freer, 1981). Different dominant slip systems 

correspond to distinct activation volumes and water fugacity exponents. As the activation 

volume is the sum of fV  for point defect formation and mV  for point defect migration 

(Béjina et al., 2003), we suspect that point defect migration associated with different 

dominant slip systems must be distinct, leading to distinct V in flow laws. The V values 

are reasonable both from a theoretical consideration (Lu and Jiang, 2019) and in 

comparison with the activation volumes of other silicates ( 314 ~ 24 cm /molV =  for 

olivine, Karato and Jung, 2003, and 324 ~ 38 cm /molV =  for anorthite, Rybacki et al., 

2006). The variation in the water fugacity exponent remains poorly understood. The 

original introduction of the water fugacity term into the flow law expression was 

essentially phenomenological (e.g., Kohlstedt et al., 1995). As Eq.5.2 shows explicitly, 

the value of m increases with V as 
ln w

P
f

∂
∂

 is always positive in both crustal and 

experimental P-T conditions. 
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 Homogenized creep behavior in the transitional regime 
We notice that the experimental data from the intermediate-temperature runs (~900-800 

℃; Hirth and Tullis, 1992; Tullis and Wenk, 1994; Holyoke and Tullis, 2006; 

Heilbronner and Tullis, 2002, 2006; Stipp et al., 2006; Holyoke and Kronenberg, 2013; 

Richter et al., 2018) do not perfectly follow either of the flow laws (Figs.5.1a and b). The 

corresponding quartz c-axis fabrics (Fig.5.3; Heilbronner and Tullis, 2002, 2006; Richter 

et al., 2018) also suggest that both prism <a> and basal <a> slip systems are significant. 

The data of Rutter and Brodie (2004) do not perfectly follow flow law in Eq.5.3 either. 

But because of the ultrafine grain size (12-20 μm) of their samples, it is not clear whether 

that is due to some contribution of grain boundary sliding mechanism (as discussed in Lu 

and Jiang, 2019) or activation of multiple slip systems or both. Mylonites from natural 

shear zones also have quartz c-axis fabrics suggesting a mixture of basal <a>, prism <a>, 

and rhomb <a> slip systems (Stipp et al., 2002; Law et al., 2010; Toy et al., 2010; Behr 

and Platt, 2011; Whitney et al., 2014).   

Although many mechanisms, including the contribution of grain boundary sliding, may 

lead to transitional flow behaviors of wet quartzites, we consider the simple situation of 

transitional flow behaviors as a result of the activation of prism <a> and basal <a> slip 

systems in this work. A significant concern in studies of multiple deformation 

mechanisms (or multiple slip systems) is to identify the dominant one in a specific 

condition. The dominant mechanism under a selected condition depends critically on the 

state variables, such as temperature, stress, strain rate, etc. A deformation mechanism 

map, which plots two of the state variables when the other variables remain constant, 

could help to determine distinct fields in each of which one mechanism (the fastest) 

dominates. Since Ashby (1972), the concept of deformation mechanism mapping has 

been applied to a large number of polycrystalline solids (e.g., Stocker and Ashby, 1973; 

Langdon and Mohamed, 1976; Frost and Ashby, 1982). Previous deformation mechanism 

maps generally include the following potential creep mechanisms: dislocation creep, 

Nabarro-Herring and Coble diffusion creep, as well as grain boundary sliding. These 

creep mechanisms may operate at the same time in adjacent grains or a single grain. The 
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total strain rate of a polycrystalline is given by the sum of all operating creep 

mechanisms: total creep GBS Coble Nabarro Herringε ε ε ε ε −= + + +     . At a given condition, one 

mechanism is commonly much faster (more than one order of magnitude faster) than the 

others according to deformation mechanism maps; therefore, the fastest strain rate can 

approximately represent the total strain rate.   

In the event two dislocation creeps (flow laws in Eq.5.3 and Eq.5.4) operate 

simultaneously in a quartzite, the two mechanisms are associated with different grains, 

leading to the partitioning of the deformation, and the combined flow law is a 

volumetrically homogenized flow that differs from the above relation. In this situation, 

quartzite can be represented by a two-phase composite material where both phases are 

uniformly mixed, randomly orientated, and rheologically isotropic. Phase 1 follows the 

flow law in Eq.5.3, and phase 2 follows the flow law in Eq.5.4. The bulk strain rate of 

quartzite is expressed as a volumetric average of strain rates of two phases: 

( )1 21ε αε α ε= + −   , where 1ε  is the strain rate of phase 1 and 2ε  the strain rate of phase 

2, α  and 1 α−  the relative molar proportions of phase 1 and phase 2. For mono-phase 

quartzites considered here, α  and 1 α−  are simply the volume fractions of the two 

phases. The bulk stress is a volumetric average of stresses of two phases: 

( )1 21σ ασ α σ= + − , where the 1σ  is the stress of phase 1 and 2σ  the stress of phase 2. 

To get the volumetrically homogenized flow law of a quartzite, one requires the 

knowledge of the strain rate and stress in each phase.  

Assuming the strain rate is uniform throughout a quartzite and combining two dislocation 

creep flow laws (Eqs.5.3 and 5.4) and the expression of bulk stress, we get the 

homogenized flow law under a uniform-strain-rate assumption: 

1 2

1 1 1 2 2 2

1 1 1 1

1 1 2 2

1 2

exp (1 ) exp
m m

n n n n n n

w w

Q PV Q PV
A f A f

n RT n RT
σ α ε α ε

− − − − − −+ +
= + −

   
   
   

                              (5.5)    
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Similarly, assuming the stress is uniform throughout a quartzite and combining two 

dislocation creep flow laws (Eqs.5.3 and 5.4) and the expression of bulk strain rate, we 

obtain the homogenized flow law under a uniform-stress assumption:         

1 1 2 21 1 2 2exp (1 ) expm n m n

w w

Q PV Q PV
Af Af

RT RT
ε α σ α σ

+ +
= − + − −   

   
   

                                 (5.6) 

Eq.5.5 and Eq.5.6 are the Voigt (887) average and the Reuss (1929) average, 

respectively. They are commonly regarded as the upper and lower limits (Nemat-Nasser 

& Hori, 1999). Under the uniform-stress assumption, we can construct a deformation 

mechanism map for wet quartzites using two dislocation creep flow laws (Eqs.5.3 and 

5.4) as a plot of differential stress versus temperature at constant pressure (Fig.5.4a). 

Fig.5.4a allows us to determine the strain rate of prism <a> slip ( 1ε ) and the strain rate of 

basal <a> slip ( 2ε ) at a temperature and stress. Similarly, we contract a deformation 

mechanism map for wet quartzites as a plot of strain rate against temperature at constant 

pressure (Fig.5.4b), assuming the strain rate is uniform. We can obtain the differential 

stress of prism <a> slip ( 1σ ) and the differential stress of basal <a> slip ( 2σ ) in Fig.5.4b 

at a temperature and strain rate. According to the deformation mechanism maps of 

quartzites (Fig.5.4), the strain rates/stresses of two slip systems are comparable (differ 

less than one order of magnitude), in most of the natural deformation conditions (t = 

300℃~700℃, 10MPa ~ 200MPaσ = , 13 1 11 110 s ~ 10 sε − − − −= ), which is consistent with the 

quartz c-axis from both natural mylonites or experimental samples.  

However, the Voigt average and Reuss average are too far away to allow accurate 

evaluations of bulk rheological properties. Furthermore, neither uniform-stress 

assumption nor uniform-strain-rate assumption is realistic. The partitioned strain rates 

and stresses in individual quartz grains depend on their shapes, orientations, rheological 

properties as well as preferred orientation development. Therefore, a more rigorous 

micromechanics-based self-consistent homogenization method (e.g., Jiang, 2014, 2016, 

and references therein) is required to evaluate the bulk rheology. In such a case, the  
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Figure 5.4 Deformation mechanism maps for quartzite  

(a) A plot of differential stress versus temperature at 400MPa. Two distinct fields 

are separated by a solid black line. On the solid black line, the strain rates of prism 

<a> and basal <a> slip systems are equal. The solid colored lines are the strain-rate 

contour lines (10-10 s-1, 10-11 s-1, 10-10 s-1, 10-10 s-1, and 10-10 s-1) of the dominant slip 

system; the dashed colored lines represent the strain-rate contour lines of the other 

slip system. On the dashed black line, prism <a> slip system is ten times faster than 

basal <a> slip system. On the dotted black line, basal <a> slip system is ten times 

faster than prism <a> slip system. (b) A plot of strain rate versus temperature at 

400MPa. Two distinct fields are separated by a solid black line. On the solid black 

line, the differential stresses of prism <a> and basal <a> slip systems are equal. The 

solid colored lines are the stress contour lines (10 MPa, 50 MPa, 100 MPa, 500 MPa, 

and 1000 MPa) of the dominant slip system; the dashed colored lines represent the 

stress contour lines of the other slip system. On the dashed black line, the 

differential stress of prism <a> slip system is ten times smaller than that of basal 

<a> slip system. 
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actual rheology of a polycrystalline aggregate is anisotropic and evolves with time. It 

cannot be expressed in a simple scalar equation like Eqs.5.5. Numerical calculations (e.g., 

Jiang, 2014) are required to obtain actual time-dependent rheological behaviors.  

In Micromechanics, the overall rheological property of a polyphase material is defined as 

the average property over a Representative Volume Element (RVE) (Fig.5.5), which 

contains a large number of constituent elements. Consider a quartzite made of N 

constituent elements, which are quartz grains, denoted by 1,2, ,k N=  . Applying the 

concept of the Homogenous Equivalent Medium (HEM) (e.g., Lebensohn and Tomé, 

1993; Jiang, 2014), each quartz grain is regarded as an ellipsoidal inclusion embedded in 

HEM (Fig.5.5), whose rheological properties are obtained from the overall rheological 

properties of the RVE. Known the shapes, orientations, and the rheological properties of 

all grains, the general Eshelby’s formalism (Jiang, 2014) allows the determination of 

partitioned strain rates and stresses in individual grains: 

( ) ( ) :k k=ε Α Ε ; ( ) ( ) :  k k=σ B Σ                                                                                         (5.7)                                                                                                   

In Eq.5.7, the sign “:” stands for the double-index contraction of two tensors. ( )kε  and 
( )kσ  are the partitioned strain rate and deviatoric stress tensors. The uppercase symbols 

E  and Σ  are the corresponding quantities at infinity. ( )kA  and ( )kΒ  are 4th order strain 

rate partitioning and stress partitioning tensors for each inclusion, and they are related to 

the inclusion shape and orientation and viscous stiffness (viscosity) of the matrix (HEM). 

The partitioned strain rates and deviatoric stresses, in turn, are used to evaluate the bulk 

rheology of the composite material (Lebensohn and Tomé, 1993; Jiang, 2014). These two 

opposite processes relied on the same equation (Eq.5.7), and they must be solved 

simultaneously, which is called self-consistent. Numerical calculations in this paper using 

Eq.5.7 are realized using MATLAB scripts, the algorithms for which are in the literature 

(Jiang, 2014, 2016; Qu et al., 2016) and Chapter 2.  

Here we consider a two-phase quartzite made of 500 ellipsoidal quartz grains with their 

shapes (long axis: intermediate axis: short axis): 1-10: 1-10: 1. We assume that all quartz  
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Figure 5.5 A conceptual diagram of the self-consistent homogenization approach  

A quartzite made of N constituent quartz grains, denoted by 1,2, ,k N=  . The 

overall rheological property of the quartzite is defined as the average property over 

a Representative Volume Element (RVE) (a), which contains a large number of 

quartz grains. Each quartz grain is regarded as an ellipsoidal inclusion embedded in 

the Homogenous Effective Medium (HEM) (b), whose rheological properties are 

obtained from the overall rheological properties of the RVE. To get the overall 

rheology from the constituents’ properties is called homogenization. ( )kε  and ( )kσ  

are the partitioned strain rate and deviatoric stress in a constituent grain. The 

uppercase symbols E  and Σ  are the corresponding bulk quantities in the matrix. 
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grains are isotropic and randomly distributed; therefore, the whole quartz aggregates is 

also isotropic. As the self-consistent homogenization method involves tensor 

calculations, like Eq.5.7, the tensor-form flow law of quartzite is required. In order to 

generalize the tensor-form equation, one needs to rewrite the flow laws in the form of 

Eq.5.1 in terms of second invariants of the deviatoric stress ( Eσ ) and strain rate ( Eε ) as 

expm n
E i w E

Q PVA f
RT

ε σ+ = − 
 

 , where 
( )1 /23

2

n

iA A
+

= (Ranalli, 1987, p.70). Then the 

tensor-form constitutive equation of isotropic materials is expressed as (Ranalli, 1987, 

p.70): 

2ij eff ijσ η ε=                                                                                                          (5.8a)                                 

1 11 exp
2

m n
eff i w E

Q PVA f
RT

η σ− − −+ =  
 

 or                                                                (5.8b)                                        

11 11 exp
2

m
nn n

eff i w E
Q PVA f

nRT
η ε

 −− −  
 + =  

 
                                                                   (5.8c)                             

where ijσ  and ijε  are the components of the deviatoric stress and strain rate tensors; effη  

is the effective viscosity defined at a given state of stress or strain rate. The effective 

viscosities of all quartz grains at a given state of stress or strain rate can be obtained using 

the parameters in Table 5.1. Then numerical simulations allow us to evaluate the bulk 

rheological properties of two-phase quartzite with varying contributions of dominant slip 

systems.  

In order to show the variation of strength predictions based on different quartz flow laws, 

we construct the strength profiles using two dislocation creep flow laws (Eqs.5.3 and 5.4) 

and the calculated bulk strengths with varying contributions of the prism <a> slip system 

in Fig.5.6. We used homogenized flow laws under uniform-strain-rates (Eq.5.5) and 

uniform-stress (Eq.5.6) conditions and the self-consistent homogenization approach to 

evaluate the bulk strengths. Note, we have converted Eq.5.5 and Eq.5.6 in terms of Eσ   
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Figure 5.6 The strength profiles of the continental lithosphere using the two 

dislocation creep flow laws and the calculated bulk strengths of quartzite with 

varying contributions of prism <a> slip system  

The bulk strengths of quartzite are evaluated using homogenized flow laws 

assuming uniform-strain-rate (dashed line) and uniform-stress (dashed-dotted line) 

and a self-consistent approach (solid line). The red line represents flow law in Eq.3, 

and the blue line represents flow law in Eq.4. A reference strain rate 12 -110 sEε
−=  

and a geothermal gradient of 20℃/km are used. The water partial pressure is 

assumed to equal to the lithostatic pressure. The contributions of prism <a> slip 

system are (a) 25%, (b) 50%, and (c) 75%. 
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and Eε in Fig.5.6 to keep consistency in all three calculations. A reference strain rate 

12 -110 sEε
−=  and a geothermal gradient of 20℃/km are used. The water partial pressure 

is assumed to equal to the lithostatic pressure. The strength of the wet quartzites 

deformed by creep in the transitional regime depends on the relative contribution of 

dominant slip systems. As the contribution of prism <a> slip decreases, the bulk strength 

of wet quartzites increases. Therefore, evaluating the relative significance of dominant 

slip systems using quartz c-axis fabrics is crucial to understand the rheology and strength 

information that mylonites may provide. Furthermore, the bulk strength of wet quartzites 

highly depends on the mixing models used for homogenization. The homogenized flow 

law under the iso-strain-rate assumption gives the highest estimation of bulk strength, 

followed by the self-consistent approach and then the homogenized flow law under the 

iso-stress assumption.   

 Discussions 
We have shown that existing experimental data as collected in Appendix C are consistent 

with the following creep behaviors for wet quartzites: When prism <a> is the dominant 

slip system with characteristic Y-max c-axis fabrics, wet quartzites flow according to 

Eq.5.3. When basal <a> is the dominant slip system with diagnostic strong clusters of c-

axes in the periphery, the dislocation creep of wet quartzites follows Eq.5.4. When both 

slip systems are significant, the transitional creep behavior can be approximated by the 

superposition of two dislocation creep behaviors. Our results are derived from fitting 

experimental data from well-controlled experiments iteratively into a flow law (Eq.5.1) 

that includes the dependence of the activation enthalpy on pressure (Lu and Jiang, 2019). 

Tokle et al. (2019) took a different approach. They also obtained two dislocation creep 

flow laws corresponding to dominant prism <a> and basal <a> slip systems respectively. 

First, they regarded the difference in flow law parameters from existing experiments as 

solely due to wf  variations as in Kohlstedt et al. (1995). Second, they used experimental 

data (their Appendix A) to obtain two “laboratory fit flow laws” and estimations of stress, 
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strain rate, and temperature from natural mylonite samples to determine two 

“extrapolated fit flow laws”. In the former, they obtained 4n = , 1m = , and 

140 15 kJ/molQ = ±  for prism <a> slip system and 2.7n = , 1.1m = , and 

105 15 kJ/molQ = ±  for basal <a> slip system. In the latter, they got 4n = , 1m = , and 

125 15 kJ/molQ = ±  for prism <a> slip system and 3n = , 1.2m = , and 

115 15 kJ/molQ = ±  for basal <a> slip system. 

We believe the pressure dependence of the activation enthalpy is significant, and 

considering wf  variation alone using the flow law expm n
w

QAf
RT

ε σ = − 
 

  cannot 

explain the difference between Luan and Paterson (1994) and Gleason and Tullis (1994) 

as we explained in Lu and Jiang (2019). When the effect of PV term is considered, the 

water fugacity exponent m is no longer an independent parameter (Eq.5.2) but must be 

determined self-consistently through an iterative approach. The effort of Tokle et al. 

(2019) to fit natural stress, strain rate, and temperature estimates is essential to determine 

the Q value. In doing so, they slightly adjusted the values of n and m determined for the 

“laboratory fit flow law” for basal <a> slip system to better fit the natural data. The new 

Q values are calculated by fitting stress and strain rate estimations from natural mylonite 

samples, disregarding Q values determined from experimental data. We have pointed out 

that stress and strain rate estimates from natural mylonite samples have uncertainties too 

great to allow reasonably accurate flow laws to be determined (Lu and Jiang, 2019). 

In the transitional flow regime, Tokle et al. (2019) attributed the creep qualitatively to the 

contribution of grain boundary sliding mechanism. Whereas grain boundary sliding may 

be more significant in the creep experiment dataset considered by Tokle et al. (2019) as 

they included ultrafine-grained samples (1.7-12μm; Fukuda et al., 2018; Richter et al., 

2018), the dataset we used this work (Appendix C) is mainly from samples with grainsize 

between 20-200 µm, where dislocation creep is likely the dominant deformation 

mechanism. This is supported by quartz c-axis fabrics suggesting the mixture of basal 

<a>, prism <a>, and rhomb <a> slips in both experiments (Fig.5.3) and nature. Grain 
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boundary sliding mechanism can only weaken preferred quartz c-axis fabrics produced 

by dislocation creeps and cannot produce new c-axis fabric patterns. We believe the creep 

of wet quartzites in such transitional regime may be caused by the activation of prism 

<a> and basal <a> slip systems. The bulk rheological properties of wet quartzites can be 

obtained using homogenized flow laws under uniform-strain-rate (Eqs.5.5) and uniform-

stress assumptions (Eqs.5.6), as well as a self-consistent approach. 

We wish to point out that a dislocation creep always requires activation of multiple slip 

systems, although one slip system may be dominant. The division of the flow behavior 

into end members and transitional behaviors are somewhat subjective. There is a 

continuous spectrum from dominant prism <a> slip to a mixture of prism <a> and basal 

<a> slip to dominant basal <a> slip. For convenience of description, we have regarded 

the flow behaviors where both prism <a> and basal <a> slip are significant as transitional 

flow. However, no clear boundaries are expected between them. This point is clear both 

from the observed quartz c-axis fabric patterns as well as the plots of stress versus strain 

rate of some experiments (Fig.5.3). 

 Conclusions 
We have determined wet quartzite flow laws based on carefully selected creep 

experiments believed to be in regimes 2 and 3 dislocation creep by considering both the 

pressure dependence of the activation enthalpy and slip system dependence of the stress 

exponent. Our approach to determine the flow law parameters is self-consistent and 

iterative, solely based on experimental data.  

The creep behavior of wet quartzites can be summarized as follows: At higher 

temperatures and lower stresses, they deform predominantly by prism <a> slip, producing 

characteristic Y-max c-axis fabrics, and follow Eq.5.3. At lower temperatures and higher 

stresses, where basal <a> is the dominant slip system with diagnostic strong clusters of c-

axes in the periphery, the dislocation creep of wet quartzites follows Eq.5.4. Quartz c-

axis fabrics from natural and experimental samples, and the study of the deformation 

mechanism map suggested that the activation of multiple slip systems is common. Where 
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dislocation creep through multiple slip systems is the main mechanism, the transitional 

flow behavior may be approximated by homogenized flow laws (Eq.5.5 and Eq.5.6) or a 

self-consistent approach. 
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Chapter 6  

6 Conclusions and Future Work 
 Conclusions 

This thesis makes contributions to the understanding of the continental rheology and how 

the variations in the continental rheology control the multiscale deformation patterns in 

Earth’s lithosphere by applying the micromechanics-based MultiOrder Power Law 

Approach together with high-quality experimental data of wet quartzites and geological 

records in natural rocks. 

The main contributions are summarized below: 

(1) This thesis briefly summarizes the backbone theory and the important equations 

of MOPLA for better reference and refines the algorithm of MOPLA in Jiang, 

(2014). Then, in order for the high-performance computing, the refined algorithm 

of MOPLA has been implemented in MATLAB, a powerful and popular 

software, incorporating the optimal scheme of Qu et al. (2016) to evaluate the 

Eshelby tensors efficiently and using the MATLAB built-in Parallel Computing 

Toolbox as well. The MATLAB package of MOPLA has been validated by 

applying it to the fabric development in Cascade Lake shear zone (Jiang, 2014). 

This work also provides a manual for the MOPLA MATLAB package and gives 

an example showing how to use it to investigate the multiscale lithospheric 

deformation. 

(2) A new micromechanics-based shear zone model has been proposed by 

considering the large-scale shear zone as a planar heterogeneous inclusion 

embedded in the ductile lithosphere subjected to the remote plat motion. The 

extended Eshelby’s solutions on inclusions for interior and exterior fields are used 

to investigate the partitioned kinematic and mechanical fields inside and outside 

the shear zone from the tectonic scale deformation due to the remote plate motion. 

The kinematic fields inside the shear zone govern the finite strain accumulation 
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there. This complete mechanical approach also allows the investigation of the 

stress distribution and the rheology of the shear zone. The overall strength of the 

heterogeneous poly-element shear zone can be obtained by means of a self-

consistent homogenization scheme from the properties of its constituent elements. 

(3) The geometric results deduced from this model are compared with the fabric data 

collected from Shangdan Tectonic Zone in Qinling Orogenic belt, which helps us 

to validate this model and constrain the convergence angle during the deformation 

time in this field area to 5° ~ 20°.  

(4) This model has been applied to the San Andreas Fault (SAF) in Central California 

to validify it and understand the stress distribution within and in the vicinity of 

SAF in the ductile region. The plate motion between the North America and 

Pacific Plates ultimately determines the stress field in this area. The presence of 

the weak SAF in the ductile region can account for a narrow band of stress 

rotation; however, it cannot explain the widespread thrust faults and upright folds 

perpendicular to the SAF. 

(5) The rheology of the large-scale shear zone is crucial to understand the continental 

rheology. This thesis discusses the strength of the large-scale shear zone by 

applying the self-consistent homogenization scheme to the mylonite zone in the 

Grenville Front Tectonic Zone. This work quantitatively demonstrates that the 

presence of weak minerals, like mica and the rheological anisotropy due to the 

development of fabrics in the shear zone significantly weaken the shear zone with 

respect to shearing along the foliation plane. It is oversimplified to use the 

strength of the quartz aggregates to represent the shear zone strength or even to 

constrain the continental strength. To understand the continental rheology, a more 

rigorous homogenization approach, like the self-consistent homogenization 

scheme, is necessary to account for the distinct rheological properties, shapes, and 

orientations of the constituents as well as the continental rheology evolution with 

time during the progressive deformation. 
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(6) This thesis has demonstrated that both the pressure dependence of the activation 

enthalpy through the activation volume and the slip system dependence of the 

stress exponent is the key to reconcile the great difference in quartz flow laws 

derived from existing experiments. By critically evaluating existing high-quality 

experimental data on quartz creep corresponding to steady-state regimes 2 and 3 

dislocation creep together with related quartz c-axis fabrics, the creep behaviors 

of wet quartzite are summarized as follows: At higher temperatures and lower 

stresses, wet quartzite deforms predominantly by prism <a> slip, producing 

characteristic Y-max c-axis fabrics, and follows 

14 2.6 4132000 35.82.5 10 expw
Pf

RT
ε σ− + = × − 

 
 . At lower temperatures and higher 

stresses, where basal <a> is the dominant slip system with diagnostic strong 

clusters of c-axes in the periphery, the dislocation creep of wet quartzite follows 

12 1.7 2.5126000 23.16.3 10 expw
Pf

RT
ε σ− + = × − 

 
 .  

(7) Transitional flow behaviors are common in nature and experiments. In the 

transitional flow regime where both slip systems are significant, the quartzites can 

be regarded as a two-phase composite material. Each phase follows one dislocation 

creep flow law. This work proposed two simple homogenized flow laws for wet 

quartzites using uniform stress and uniform strain, respectively. These two 

homogenized flow laws are the upper and lower bounds. The actual bulk strength 

is between the two bounds and must be obtained through a self-consistent 

approach. A strength profile using the two homogenized flow laws and the bulk 

strength obtained through a self-consistent homogenization scheme is constructed 

for the wet quartzites in a transitional flow regime. 

 Future Work 
Understanding the variations in rheology throughout the lithosphere is my main interest 

and the ultimate goal of my reach. This thesis provided a MOPLA MATLAB package, 

refined dislocation creep flow laws for wet quartzite, and a new micromechanics-based 
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shear zone model with a few field applications, giving a preliminary understanding of 

continental rheology. I believe that combing the theoretical works, the numerical 

modeling together with the abundant and valuable field data and mylonite samples from 

Grenville Front Tectonic Zone will give more insights into the variation and evolution of 

the continental rheology during the progressive lithospheric deformation process in my 

future work. 

In addition, the rheology of Earth’s lithosphere is highly sensitive to the rates and 

timescales of the deformation (Huntington and Klepeis, 2018). How the continental 

lithosphere responds to the relatively short-lived process, like earthquakes, the longer-

lived tectonic process or the transient process is the key to explore the variations in 

rheology throughout the lithosphere. In the future, I would like to focus on these 

interesting works associated with the continental rheology problem.   
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Appendices 
Appendix A The description of the functions in “Routines” in the MATLAB 

package of MOPLA 

Common Tensor Operations 

Contract.m is for the Double-index contraction between two 4th order tensors. The 

inputs are two 4th order tensors ijmnA   and mnklB  and the output is a 4th order tensor ijklC  : 

ijkl ijmn mnklC A B= .    

contract1.m is for the Double-index contraction between two 2nd order tensors. 

The inputs are two 2nd  order tensors ija   and ijb  and the output is a scalar α : ij ija bα = . 

Multiply.m is for Double-index contraction of a 4th order tensor and a 2nd order 

tensor. The inputs are a 4th order tensor ijklC   and a 2nd order tensor klε  and the output is a 

2nd order tensor ijσ  : ij ijkl klCσ ε= . The generalized Hook’s law is an example. 

FourIdentity.m is to generate the 4th order identities: , , ,d s a mJ J J J  according to 

Eq.2.6.  

Norm.m is for the norm of 4th order tensors. The input is a 4th order tensor ijklC  

and the output is a scalar indicating the magnitude of the 4th order tensor: 

23 3 3 3

1 1 1 1
ijkl

i j k l
C

= = = =

= ∑∑∑∑C . Note this function is different from the MATLAB built-in 

function “norm”. It is equivalent to the Frobenius norm for a 2nd order matrix.  
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Transform.m is for coordinate transformation of 4th order tensors. The inputs are a 

4th order tensor mnrsC  and a 2nd order transformation matrix Q between two coordinates, 

and the output is a 4th order tensor ijklC′  : 
3 3 3 3

1 1 1 1
ijkl im jn kr ls mnrs

m n r s
C Q Q Q Q C

= = = =

′ = ∑∑∑∑ . 

FourTensorInv.m is for the inversion of 4th order symmetry tensors for an 

incompressible material. The input is a 4th order symmetry tensor C . To calculate the 

inversion of C , we first express C  as a 2nd order tensor in an orthonormal basis of 2nd 

order symmetric tensors { }( ) , 1, ,6λ λ =b   (Lebensohn et al., 1998). Then calculate the 

inversion of the 2nd order tenors and convert it back to a 4th order tensor M  ( 1−=M C ). 

For an incompressible material, 5λ =  . 

For a compressible material, please run FourTensorInv_el.m, where 6λ = . 

Inva.m is for the second invariant of the 2nd deviatoric stress tensor or the strain-

rate tensor. The input is the deviatoric stress ijσ ′  or strain rate ijε , and the output is the 

second invariant Eσ  or Eε : ' '1 1; 
2 2E ij ij E ij ijσ σ σ ε ε ε= = . 

Eshelby Tensors and Green Interaction Tensor 

SnPI_poisson.m is for the evaluation of Eshelby tensors S  and Π  for isotropic 

elastic (compressible) materials according to the expressions of Mura (1987, P.77-84). 

The inputs are the three semi-axes (a) of an RDE and the Poisson ratio (v), and the 

outputs are S  and Π . 
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SnPI_vis.m is for the evaluation of Eshelby tensors vS  and vΠ  for isotropic 

incompressible materials by setting the Poisson ratio 0.5ν =  in the expressions of S  and 

Π  for isotropic elastic materials and using Eq.2.4. The input is the three semi-axes (a) of 

an RDE and the outputs are vS  and vΠ . 

Tfunction.m and Tfunction_AGLQ.m are for the calculation of Green interaction 

tensor ( T  or vT ) for general compressible/incompressible materials according to Eq.2.7, 

which is required in the evaluation of Eshelby tensors. Tfunction.m is using a 

combination of Gauss-Legendre Quadrature and Lebedev Quadrature (Qu et al., 2016) to 

evaluation T  or vT . Tfunction_AGLQ.m is using adaptive Gauss-Legendre Quadrature, 

in which the numerical integration will continue until a prescribing tolerance is reached. 

The default tolerance is 410− . These two functions are modified from the “TGreen.m” in 

Qu et al. (2016). The inputs of the two functions are the three semi-axes of an RDE (a), 

the stiffness tensors of the matrix (Cm), the notes and weights (Alp#, Bet#, ww#, p and 

ww) for the integration, and a variable “type”, indicating the material type. For 

compressible material set “type” to “1”; for incompressible material set “type” to “2”. 

The output of the two functions is T  or vT . In two main functions “MOPLA1.m” and 

“MOPLA2.m”, the default setting of “type” is “2”, the notes and weights are 

automatically generated before the loops. Note, part of the two functions are written in C 

language and compiled in MATLAB. Before running the two functions, please read the 

txt file “readme. txt” 

Evolution of the Inhomogeneities 
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RandAANG.m is to generate n uniformly distributed RDEs with random shapes. 

The inputs are the maximum length of the RDEs (a1) and the number of RDEs (n). The 

outputs are the semi-axes of n RDEs (a), which is a 3-by-n matrix, and the spherical 

angels of n RDEs (ang) which is a 3-by-n matrix.  

Q.m is for the calculation of the transformation matrix of an RDE between the 

coordinate fixed with the RDE’s three semi-axes and the global coordinate from the three 

spherical angles of the RDE. The input is ang (3-by-1 matrix), three spherical angels of 

an RDE. The output is Q (3-by-1 matrix), the transformation matrix of the RDE. Qvec.m 

is for the vectorized version of Q.m. Qvec.m could handle the calculation of the 

transformation matrixes for n RDEs from their spherical angels. The input is the ang (3-

by-n matrix), the spherical angels of n RDEs. The output is Q (3-by-n matrix), the 

transformation matrixes of n RDEs. 

Ed.m is for the Calculation of the strain rate inside an RDE. The inputs are power-

law stress exponent of the matrix (Nm) and that of RDE (Ne), the viscous stiffness 

tensors of the matrix (Cm) and that of RDE (Ce) at matrix strain rate, the viscosity ratio 

between the RDE and the matrix (r) at matrix strain rate, the Eshelby tensor (S) of RDE, 

the imposed strain rate in the matrix (E) expressed in RDE’s coordinate, the strain rate 

invariant at which the viscosity of RDE is defined (epsilonII) and the deviatoric identity 

tensor ( dJ ). The outputs are the strain rate inside the RDE (e) and the viscous stiffness 

tensors of RDE (C_clst) at the state of RDE’s strain rate.   
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Wd.m is for the Calculation of the vorticity inside an RDE referred to the frame 

tracking its semi-axes. The inputs are the three semi-axes of RDE (a), the vorticity (w) 

and the strain rate (e) inside an RDE. The output is the vorticity inside an RDE referred to 

the frame tracking its semi-axes (wp). 

RodrgRot.m for the Rodrigues’ rotation approximation. The input is a 3-by-3 

matrix A, and the output is a matrix after the rotation A′ . In the calculation of MOPLA, 

this function is used to update the orientation of an RDE defined by Q for a time 

increment (Eq.2.21b). 

Visualization 

Stereonet.m is for plotting the orientations of semi-axes of n RDEs in equal-area 

lower hemisphere stereonet projection. The input is Q (3-by-3-by-n matrix), the 

orientations of semi-axes of n RDEs. The outputs are three stereonet projections plotting 

respectively the orientations of the longest axes (a1) of n RDEs, the orientations of the 

intermediate axes (a2) of n RDEs and the orientations of the shortest axes (a3) of n 

RDEs.    

ConvertQ2Angs.m is for Converting the transformation matrix Q of RDEs to the 

spherical angles. This function is called in Stereonet.m. 

Flinn.m is Plotting the lengths of the semi-axes of n RDEs in a Flinn diagram. 

The input is a (3-by-n matrix), the lengths of semi-axes of n RDEs. The output is a Flinn 

diagram showing the shapes of n RDEs.  
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Appendix B Download link for the MATLAB package in Chapter 2.  

 

The MATLAB package can be download here: 

https://github.com/MOPLA/MOPLA/tree/master/MOPLA_MATLAB_package

https://github.com/MOPLA/MOPLA/tree/master/MOPLA_MATLAB_package
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Appendix C Dataset of 20 creep experiments on quartz samples  

Dislocation creep flow laws of quartzite: the significance of pressure and slip systems 
 

Below is a dataset of 20 creep experiments on quartz samples used in this paper. 
   

We list the sample description, sample ID, stress, strain rate, deformation temperature and confining pressure in the table.          

  Sample Sample 
ID 

Stress 
(MPa)   

Strain 
Rate (s-1) 

Tempera
ture (°C) 

Confining 
Pressure 
(GPa)  

Notes Apparatus 

Kronenberg & 
Tullis (1984) 

Arkansas 
Novaculite 1-
60µm 

NV-16 250 1.60E-06 800 1.59 0.4wt% 
water 
added, 
stress 
determine
d at 20% 
strain 

Griggs-type solid 
medium apparatus 

  NV-46 280 1.60E-06 800 1.22 (NaCl, CaCO3) 
    NV-36 330 1.60E-06 800 0.82 

 

Koch et al. 
(1989) 

Simpson 
Orthoquartzite 
0.21±0.01mm 

K874 582 1.52E-06 800 0.95 
 

Griggs-type solid 
medium apparatus  

K875a 445 1.52E-06 770 1.05 
  

  
K875b 1166 1.75E-05 770 1.03 

  
  

K875c 176 2.11E-07 770 1.04 
  

  
K875d 356 1.99E-06 770 1.03 

  
  

K903 338 1.81E-06 850 0.91 
  

  
K904a 595 1.61E-05 850 1.03 

  
  

K904b 155 2.05E-07 850 1.04 
  

  
K905 230 1.83E-06 850 1.07 

  
  

K908 500 2.20E-05 875 1.27 
  

  
K909 224 1.51E-06 900 1.16 
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K910 251 2.19E-06 900 1.16 

  
  

K911 871 1.59E-04 900 1.14 
  

  
K912a 87 1.48E-07 900 1.2 

  
  

K912c 291 1.63E-06 850 1.21 
  

  
K912d 155 2.17E-07 850 1.2 

  
  

K919a 421 1.64E-06 750 0.94 
  

  
K919b 212 1.87E-07 750 0.91 

  
  

K922a 326 1.64E-06 800 1.05 
  

  
K922b 117 1.25E-07 800 1.07 

  
  

K922C 1138 1.86E-05 800 1.07 
  

  
K923 472 1.82E-05 900 1.18 

  
  

K924 927 1.90E-05 800 1.2 
  

  
K929a 200 1.73E-06 900 1.2 

  
  

K929b 56 2.46E-07 900 1.2 
  

  
K929c 505 1.90E-05 900 1.2 

  
  

K932a 800 1.44E-04 900 1.25 
  

  
K932b 1326 1.64E-04 800 1.25 

  
  

K933a 530 1.65E-06 750 1.15 
  

  
K933b 225 1.57E-07 750 1.15 

  
  

K933c 1315 1.64E-05 750 1.13 
  

  
K934 180 1.80E-06 900 1.2 

  
  

K936 485 1.69E-05 850 1.24 
  

  
K938 416 1.74E-05 900 1.17 

  
  

K939 680 2.32E-05 850 1.15 
  

Luan & Paterson 
(1992) 

Silicic acid 20-
30µm 

5417a 350 6.00E-05 1027 0.3 
 

Griggs-type gas 
medium apparatus 

    5417b 500 3.00E-04 1027 0.3 
  

    5424 300 5.80E-05 1027 0.3 
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    5433a 360 7.50E-05 1027 0.3 
  

    5433b 290 3.50E-05 1027 0.3 
  

    5433c 544 3.50E-04 1027 0.3 
  

    5485a 380 5.10E-05 1027 0.3 
  

    5485b 182 1.00E-05 1027 0.3 
  

    5485c 350 1.00E-04 1027 0.3 
  

    5490a 423 5.30E-05 1027 0.3 
  

    5490b 130 5.00E-06 1027 0.3 
  

    5490c 180 1.00E-05 1027 0.3 
  

    5490d 220 2.00E-05 1027 0.3 
  

    5490e 260 4.00E-05 1027 0.3 
  

    5490f 300 8.00E-05 1027 0.3 
  

    5490g 380 2.20E-04 1027 0.3 
  

    5490h 445 4.00E-04 1027 0.3 
  

    5493 280 5.70E-05 1027 0.3 
  

    5568a 160 1.00E-05 1027 0.3 
  

    5568b 260 1.00E-04 1027 0.3 
  

    5568c 205 1.20E-05 927 0.3 
  

    5568d 320 1.10E-04 927 0.3 
  

    5574a 149 1.00E-05 1027 0.3 
  

    5574b 238 4.30E-05 1027 0.3 
  

    5574c 320 1.20E-04 1027 0.3 
  

    5575a 270 1.00E-05 927 0.3 
  

    5575b 150 1.00E-05 1027 0.3 
  

    5575c 450 1.00E-04 927 0.3 
  

    5575d 295 1.00E-04 1027 0.3 
  

    5577a 230 1.00E-05 1027 0.3 
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    5577b 420 1.00E-04 1027 0.3 
  

    5577c 320 5.00E-05 1027 0.3 
  

    5578a 168 1.00E-05 1027 0.3 
  

    5578b 270 1.00E-04 1027 0.3 
  

    5578c 348 2.00E-04 1027 0.3 
  

    5579a 200 1.00E-05 1027 0.3 
  

    5579b 420 1.00E-04 1027 0.3 
  

    5580a 320 1.00E-05 927 0.3 
  

    5580b 570 1.00E-04 927 0.3 
  

    5581a 400 1.00E-05 827 0.3 
  

    5581b 705 1.00E-04 827 0.3 
  

    5582a 185 1.00E-05 1027 0.3 
  

    5582b 280 1.00E-05 927 0.3 
  

    5582c 400 1.00E-05 827 0.3 
  

    5583a 270 5.00E-05 1027 0.3 
  

    5583b 380 5.00E-05 927 0.3 
  

    5583c 490 5.00E-05 827 0.3 
  

Hirth & Tullis 
(1992) 

Black Hills 
Quartzite 
100µm 

CQ-82 100 1.00E-06 900 1.5 
 

Griggs-type solid 
medium apparatus 

 
Heavitree 
Quartzite 
210µm 

W339 290 1.00E-06 800 1.5 
 

Griggs-type molten 
salt apparatus 

Tullis & Wenk 
(1994) 

Heavitree 
Quartzite 180-
200µm 

W-370 250 1.00E-06 800 1.2 
 

Griggs-type solid 
medium apparatus 
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  Black Hills 
Quartzite 100-
120µm 

W-502 125 1.00E-06 800 1.2 
 

Griggs-type molten 
salt apparatus 

Gleason & Tullis 
(1995) 

Black Hills 
Quartzite 
100µm 

W611a 84 6.31E-06 1050 1.5 samples 
with no 
melt 

Griggs-type molten 
salt apparatus 

  
W611b 100 6.31E-06 1000 1.45 

  
  

W611c 132 7.94E-06 950 1.44 
  

  
BA96a 43 1.58E-06 1050 1.56 

  
  

BA96b 61 1.58E-06 1000 1.54 
  

  
BA96c 68 1.58E-06 950 1.53 

  
  

BA96d 89 1.99E-06 900 1.5 
  

  
BA94a 76 1.58E-06 1000 1.56 

  
  

BA94b 109 6.31E-06 1000 1.56 
  

  
BA94c 141 2.00E-05 1000 1.59 

  
  

BA94d 228 7.94E-05 1000 1.6 
  

  
BA95a 74 1.58E-06 1100 1.68 

  
  

BA95b 110 6.31E-06 1100 1.68 
  

  
BA95c 142 2.00E-05 1100 1.7 

  
  

BA95d 225 7.94E-05 1100 1.7 
  

Post et al. (1996) Black Hills 
Quartzite 
100µm 

W614 290 1.00E-05 900 1.69 
 

Tullis-modified 
Griggs Apparatus 

    W625 310 1.00E-05 900 1.72 
  

    W728 330 1.00E-05 900 1.6 
  

Stipp & Tullis 
(2003) 

Black Hills 
Quartzite 
100µm 

W1030 207 2.00E-06 800 1.5 
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W1085 198 2.25E-06 850 1.5 

  
  

W1049 268 2.30E-05 900 1.5 
  

  
W1099 149 2.35E-06 900 1.5 

  
  

W1051 189 2.40E-05 1000 1.5 
  

  
W1024 102 2.05E-06 1000 1.5 

  
  

W1025 87 2.10E-06 1050 1.5 
  

  
W1119 257 2.10E-04 1100 1.5 

  
  

W1029 130 2.45E-05 1100 1.5 
  

  
W1022 130 6.00E-06 1100 1.5 

  
  

W1066 60 2.25E-06 1100 1.5 
  

  
W1126 34 2.20E-07 1100 1.5 

  

Rutter & Brodie 
(2004) 

Ultrafine-
graind 
quartzite 12-
20µm 

Q7a 167 5.00E-05 1200 0.3 
 

Griggs-type gas 
medium apparatus 

  Q7b 238 2.00E-04 1200 0.3 
  

    Q14a 365 3.80E-05 1100 0.3 
  

    Q16a 170 4.00E-05 1200 0.3 
  

    Q16b 160 7.00E-06 1100 0.3 
  

    Q16c 175 2.00E-05 1200 0.3 
  

    Q18 350 8.00E-05 1200 0.3 
  

    Q19 242 4.00E-05 1200 0.3 
  

    Q20 222 4.00E-05 1200 0.3 
  

    Q21a 180 7.00E-05 1200 0.3 
  

    Q21b 180 1.30E-05 1100 0.3 
  

    Q21c 180 1.00E-05 1100 0.3 
  

    Q21d 190 3.20E-06 1000 0.3 
  

    Q21e 130 3.20E-06 1200 0.3 
  

    Q30a 222 5.80E-05 1200 0.3 
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    Q30b 85 1.00E-06 1200 0.3 
  

    Q30c 66 1.10E-06 1200 0.3 
  

    Q30d 66 2.00E-07 1100 0.3 
  

    Q30e 422 2.00E-05 1100 0.3 
  

Stipp et al. 
(2006) 

Black Hills 
Quartzite 
100µm 

W1172 48 2.25E-06 1000 1.5 
 

Griggs-type molten 
salt apparatus 

  
W1142 66 2.00E-06 950 1.5 

  
  

W1081 139 2.30E-06 900 1.5 
  

  
W1089 177 2.40E-06 850 1.5 

  
  

W1082 168 2.40E-06 800 1.5 
  

  
W1140 156 2.25E-06 750 1.5 

  

Chernak et al. 
(2009) 

Black Hills 
Quartzite  

W1341 260 1.39E-05 900 1.5 
 

Griggs-type solid 
medium apparatus 

Holyoke & 
Kronenberg 
(2013) 

Black Hills 
Quartzite 
100µm 

TMQ - 7 162 1.60E-06 800 1.6 
 

Griggs-type solid 
medium apparatus 

  
  422 1.60E-06 800 0.85 

  
  

  175 1.60E-06 800 1.56 
  

Kidder et al. 
(2016) 

Black Hills 
Quartzite 
70µm 

W1341 242 2.17E-05 900 1.3 
 

Griggs-type solid 
medium apparatus 

    W1505 100 1.70E-06 900 1.3 
  

    W1509a 120 1.60E-06 900 1.3 
  

    W1510 87 2.27E-06 900 1.3 
  

    W1525a 94 1.69E-06 900 1.3 
  

    W1525b 192 4.50E-05 900 1.3 
  

    W1526a 337 1.68E-05 900 1.3 
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    W1526b 124 2.30E-06 900 1.3 
  

    W1518b 58 2.20E-06 900 1.3 
  

Heilbronner & 
Tullis (2002) 

Black Hills 
Quartzite 
100µm 

W872 310 1.50E-05 900 1.5 
 

Griggs-type solid 
medium apparatus 

  
W858 180 1.50E-06 900 1.5 

  
  

W946 364 1.73E-05 875 1.5 
  

  
W920 165 8.66E-06 900 1.5 

  
  

W935 182 1.73E-05 915 1.5 
  

Holyoke & 
Tullis (2006) 

Black Hills 
Quartzite 
100µm 

W1105 788 2.00E-05 800 1.5 minimum 
strength 
after 
yield 

Griggs-type solid 
medium apparatus 

    W1106 139 2.00E-06 800 1.5 
 

    W1153 346 2.00E-06 745 1.5 
  

Heilbronner & 
Tullis (2006) 

Black Hills 
Quartzite 
100µm 

W920 121 7.22E-06 900 1.5 
 

Griggs-type solid 
medium apparatus 

  
W1010 182 1.14E-05 915 1.55 

  
  

W935 208 1.14E-05 915 1.5 
  

  
W965 191 1.16E-05 915 1.55 

  

Nachlas & Hirth 
(2015) 

Silica gel (20-
40µm) 

W1674 242 2.89E-05 900 1 
 

Griggs-type solid 
medium apparatus 

    W1678 286 2.89E-05 900 1 
  

    W1680 251 2.89E-05 900 1 
  

    W1699 234 2.89E-05 900 1 
  

    W1700 225 2.89E-05 900 1 
  

    W1701 199 2.89E-05 900 1 
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Tokle et al. 
(2013) 

 
LT379 486 5.40E-06 800 1.5 

  

Richter et al. 
(2016) 

Crushed quartz 
crystal 
<100µm 

BR452 1329 1.56E-05 700 1.064 
 

Griggs-type solid 
medium apparatus 

Richter et al. 
(2018) 

Crushed quartz 
crystal 
<100µm 

BR383 940 1.62E-05 700 1.59 viscous 
regime 

Griggs-type solid 
medium apparatus 

  
Br388 685 1.62E-05 800 1.53 

  
  

Br445 268 1.73E-05 800 1.58 "sieved" 
7-11µm 

 

  
Br419 880 1.62E-05 800 1.56 

  
  

Br448 630 1.67E-05 800 1.07 
  

  
Br412 312 1.62E-05 900 1.53 

  
  

Br337 127 1.73E-05 1000 1.51 
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