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Abstract

Big Data applications, like traditional applications, serve end-user needs except that under-

lying the software system is Big Data which the system operates upon to improve or provide

different end-user experience with the application. In comparison to traditional software devel-

opment where the development processes are usually well-established, the development of Big

Data applications is - to our knowledge - not explored to any significant degree. With Big Data,

characterised by the well-known “V” attributes, questions arise as to how to elicit, specify, anal-

yse, and document system requirements. While requirements engineering (RE) has long been

recognised as critical for downstream development of computer systems, the field is currently

passive about how to deal with characteristics of data in the RE process in the development of

Big Data software applications. This problem is compounded by the fact that the RE field had

no domain model (until recently) for Big Data systems depicting the various artefacts, activ-

ities, and relationships amongst them that, in turn, can be used to support RE specifications,

product design, project decisions, and maintenance. In this thesis research, we investigated

empirically a number of issues in RE involving Big Data applications, leading to the following

research contributions: (i) knowledge concerning (a) the state of RE research involving Big

Data applications, and (b) RE practices on real-world Big Data applications projects; (ii) a

set of RE challenges in creating Big Data applications; (iii) a meta-model depicting the vari-

ous RE artefacts and their inter-relationships in the context of Big Data software development

projects; (iv) a goal-oriented approach (composed of a systematic process, requirements log-

ging templates, checklists, and a requirements language) for modelling quality requirements

for Big Data applications; and (v) a prototype tool that implements the proposed Big Data

goal-oriented requirements language. These results lay a foundation in RE research involving

Big Data applications development with anticipated impact in real-world projects and in RE

research.

Keywords: Big Data Software Applications, Big Data Artefact Model, Big Data Goal-

oriented Requirements Language, Modelling Approach, Quality Requirements, Requirements

Modelling Tool.
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Summary for Lay Audience

Big Data applications, like traditional applications, serve end-user needs except that under-

lying the software system is Big Data which the system operates upon to improve or provide

different end-user experience with the application. Big Data is a term applied to data sets

whose size or type is beyond the ability of traditional relational databases to capture, man-

age, and process the data. There is ample literature that suggests that the field of Big Data is

growing rapidly. Also, there is emerging literature on the need to create end-user Big Data

applications. However, just yet there is not a recognisable body of knowledge concerning the

development of such applications. This situation is also reflected in the field of Requirements

Engineering (RE). RE is the process of finding out, analysing, documenting and checking re-

quirements and its constraints for a particular project. It forms the ground for every software

project, defining what the stakeholders (e.g., users and customers) need from it, and what it

must do to satisfy that needs. Therefore, in this thesis, we investigated several aspects of RE

involving the development of Big Data applications leading to the following contributions: (i)

knowledge concerning (a) the state of RE research involving Big Data applications, and (b) RE

practices on a real-world Big Data application project; (ii) a set of RE challenges in creating

Big Data applications; (iii) a descriptive depicting the various RE artefacts (e.g., documents)

and their inter-relationships in the context of Big Data software development projects; (iv) an

approach for modelling quality requirements for Big Data applications; and (v) a prototype

tool that enables the use of the proposed approach.
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Chapter 1

Introduction

Requirements Engineering (RE) plays an essential role in the software engineering process,

being considered one of the most critical phases of the software development life-cycle [1]. It

forms the ground for every software project, defining what the stakeholders (e.g., users, cus-

tomers, developers, businesses, etc.) need from it, and what it must do to satisfy that needs.

Requirements engineering provides the appropriate mechanism for understanding what the cus-

tomer wants, assessing feasibility, negotiating a reasonable solution, specifying the solution

unambiguously, validating the specification, and managing the requirements [2].

As we might expect, then, Requirements Engineering would play a similar role in the de-

velopment of Big Data software applications. These applications, like traditional applications,

serve customers and end-user needs except that we expect improved, even different, experience

from the system as it leverages the underlying Big Data to provide responses [3].

A 2018 International Data Corporation (IDC) study [4] predicts that the collective sum of

the world’s data will grow from 33 zettabytes in 2018 to 175ZB by 2025, for a compounded

annual growth rate of 61%. In this context, the generation and consumption of data continues

to grow so fast that it presents companies with opportunities to invest in Big Data hardware,

software, and services in order to gain competitive advantage. In fact, another study from

IDC [5] predicts that, in aggregate, the Big Data technology and services market is estimated to

grow at a compound annual growth rate (CAGR) of 22.6% from 2015 to 2020 and reach $58.9

1
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billion in 2020. Revenue for Big Data infrastructure is estimated to grow at a CAGR of 20.3%

from 2015 to 2020 and reach $27.7 billion in 2020. Revenue for Big Data software is estimated

to grow at a CAGR of 25.7% from 2015 to 2020 and reach $15.9 billion in 2020. Revenue for

Big Data services, which consists of professional and support services, is estimated to grow at

a CAGR of 23.9% from 2015 to 2020 and reach $15.2 billion in 2020.

However, although scientific literature [6–8] and economic reports [5, 9] indicate that the

field of Big Data is growing rapidly, as yet there is no recognisable body of knowledge concern-

ing the development of Big Data software applications. In comparison to traditional software

development where the development processes are normally well-defined, the processes for the

development of applications involving Big Data are not clear just yet from the scientific liter-

ature [10] - That is not only because of the intrinsic characteristics of Data (such as volume,

velocity, variety, and veracity) and exponential growth of data sets and rates [11, 12], but also

due to the fact that Big Data applications are complex solutions with several dynamic com-

ponents, being distributed computation nodes, networks, databases, middleware, and business

intelligence layers [13].

The complexities arising from designing and engineering such complex applications lead

to project failures, money loss, schedule overruns, and low quality project outcomes. For

instance, a Gartner report from 2015 [14] predicted that, until 2017, 60% of Big Data projects

would have fail or would have not provide the expected benefits. Those projects would end

up not going beyond piloting and experimentation, thus, resulting in abandonment. However,

in November 2017, Nick Heudecker, a Gartner analyst, posted in his twitter account that his

company was too conservative. The Big Data project failure rate as of November 2017 was

now close to 85%. Then, an article from Infoworld [15] states that as of May 2019 the situation

is the same, nothing has changed, the failure rates are still high.

The reasons are not only related to technology itself [14]. It is a mix of environmental,

technological, and managerial problems. In fact, it is estimated that the lack of skills in or-

ganisations contributes 30% of the failure [16], for instance. Other reasons Big Data projects

fail are: At the project level [17, 18]: missing link to business objectives, lacking Big Data

skills, relying too much on the data, failing to convince executives, and poor planning; At the

technical level [10]: Rapid technology changes, difficulty in selecting Big Data technologies
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to address the systems and project requirements, complex integration between new and old

systems, computation of intensive analytics, and the necessity of high scalability, availability

and reliability, to name a few.

Further, as reported in [13] there was approximately a 80:20 split in the industry focus

in favor of algorithms for analytics and infrastructure, thereby shortchanging the aspects of

creating and evolving applications and services concerned with Big Data. This situation is also

reflected in the scientific community where not much of the attention has been given to RE in

the development of Big Data software applications. Since RE for Big Data applications is an

emerging area, a clearer understanding is needed, separating requirements for infrastructures,

analytic tools and techniques, and end-user applications [13].

1.1 Research Problem

The elicitation, specification, analysis, prioritisation and management of system requirements

for large projects are known to be challenging. It involves a number of diverse issues, such as:

different types of stakeholders and their needs, relevant application domains, knowing about

product and process technologies, regulatory issues, and applicable standards. The advent

of Big Data and, in turn, the need for software applications involving Big Data, has further

complicated Requirements Engineering. In part, this is due to the lack of clarity in the RE

literature and practices on developing Big Data software applications.

While Requirements Engineering has long been recognised as critical for downstream de-

velopment of computer systems, the entire field is basically passive about how to deal with

characteristics of data in the RE process in the development of Big Data software applications.

With Big Data, characterised by the well-known V attributes, questions arise as to how to elicit,

specify, analyse, and document system requirements. This problem is compounded by the fact

that the RE field had no domain model (until recently) for Big Data systems depicting the var-

ious artefacts, activities, and relationships amongst them that, in turn, can be used to support

RE specifications, product design, project decisions, and maintenance.

Therefore, the vision of this PhD thesis was to take a first step toward understanding RE
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involving Big Data software applications. In particular, we sought to investigate RE practices,

specifications, and artefact models in the context of such applications.

In the next sections, we further discuss the need for investigating RE involving Big Data

software applications (see Section 1.2). We compare Big Data applications with other tradi-

tional data-centric applications such as Business Intelligence and Decision Supporting systems

(see Section 1.3). Then, we overview the contributions of this thesis (see Section 1.4) and its

structure (see Section 1.5).

1.2 Why RE for Big Data Software Applications?

With the common and constant presence of new paradigms and technology domains (e.g.,

big data, IoT, blockchain, etc.) the disciplines in the Software Engineering process (e.g., Re-

quirements Engineering, Software Design, Software Testing, etc.) must evolve and improve

their approaches in order to support the development of applications operating upon these new

paradigms and technologies [12]. In the context of Big Data software application projects,

specific RE methods and approaches are needed due to the following reasons:

— Complexity: Big Data applications are complex solutions with several dynamic com-

ponents, being distributed computation nodes, networks, databases, middleware, and

business intelligence layers [13]. Therefore, traditional RE tools, techniques, gathering

artefacts and templates do not work very well for a Big Data projects [12].

— Big Data Characteristics and System’s Quality Requirements: The V characteristics

(e.g., Volume, Velocity, Veracity, and Variety) of Big Data pose significant challenges

to achieving high system quality standards for security, performance, scalability, privacy

and other quality requirements [19]. Example challenges are: (i) addressing system’s

scalability as data volume increases substantially [20]; (ii) addressing system’s perfor-

mance as the injection of real-time (velocity) data increases in a fast pace [10]; (iii)

guaranteeing high levels of privacy while capturing, processing, analysing and visual-

ising Big Data [21, 22]; and (iv) data governance and storage efficiency is affected due
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to the volume and temporal aspect of Big Data. Thus, it is essential that while spec-

ifying the scenarios of desirable system responses, the characteristics of Big Data are

represented in requirements notations so that software solution can be created to meet

the specification [13].

— Concept Drift and the Specification of Testable Big Data Requirements: The idea

of data analytics - when applying machine learning techniques for predictive analytics

- is to identify the likelihood of future outcomes based on historical data [23]. Since

programming models (e.g., machine learning algorithms) are built and trained based on

existing old data, they no longer reflect the distribution of the incoming data, calling

for constant updates to the model [24]. This is known, in statistics, as concept drift,

which means that statistical properties of the target variable, which the model is trying to

predict, change in unexpected ways, resulting in less accurate predictions [25]. This pose

critical challenges in specifying testable requirements for Big Data software applications.

— Myriad of Available Big Data technologies: Requirements Engineering is a multidisci-

plinary, cross-functional discipline. It provides support across all phases of the software

development process [26]. In supporting the design of Big Data applications, for in-

stance, when it comes to eliciting the appropriate technologies to address the Big Data

envisaged requirements, it is essential to consider how to select the existing technologies,

frameworks, and software resources as well as the extent to which they help in address-

ing those requirements, both system and software. Because there are a large number of

distributed systems frameworks and technologies available in the context of Big Data,

the efficient specification of requirements can lead to a more accurate selection of those

technologies and frameworks. The same holds true for the activity of selecting software

resources such as external services. Those software resources often refer to a large vari-

ety of outsourceable functions to the cloud usually accessible through APIs (application

programming interfaces) [27]. It can range from supply of data to the supply of analyti-

cal software tools [27, 28], for instance. Mapping of the features and advantages of Big

Data technologies and tools with the requirements of a big data system is fundamental to

the success of the project [8].
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1.3 Big Data Applications versus Traditional Data-centric
Applications

The crucial differences between Big Data software applications and traditional data-centric

applications (such as Business Intelligence - BI and Decision Support Systems-DSS) lie on

aspects related to the types of data, data characteristics, and use of data [29]. For example:

— Traditional data-centric solutions such as BI solutions, carry the data to the processing

functions [30] (e.g., the system employs a consistent set of metrics to measure both

past performance and guide business future planning [29]), whereas Big Data solutions

take the processing functions to the data (e.g., the system applies machine learning and

analytics techniques to uncover insights from the data) [30].

— Traditional data-centric solutions are designed from the ground up to work with data that

has previously been structured [31]. They are usually based on the principle of combin-

ing all business data sets into a central server. They have been traditional and successful

with data that is much less huge and less varied [29], whereas Big Data solutions can pro-

cess and analyze data in different formats, both structured and unstructured [32] stored

on a distributed file system.

— Traditional data-centric solutions (such as DSS) primarily accentuate access to and ma-

nipulation of a time series of internal company data [29] whereas Big Data solutions

emphasises on data from a variety sources.

— Big Data solutions can process historical and real-time data [32], whereas traditional

data-centric solutions focuses on historical data [30].

Therefore, it is not possible to use same technologies (from a DSS or BI environments, for

example) for data which is highly varied (from text, to logs, to multimedia), intensely complex,

huge in terms of volume (from GB to PB), and unstructured in nature [30]. In summary, when

traditional data-centric solutions are brought into the world of Big Data, they fail to perform as

they cannot deal with the massive increase in the data volume, the eruption of cardinality and

dimensions, and the large variety of data sources [33].



1.4. Research Contributions 7

1.4 Research Contributions

The contributions of this thesis are organized into four core studies that are structured into

four discrete chapters (chapters 3-6). Figure 1.1 depicts a profile of the contributions made in

this thesis and their corresponding chapters. The overarching contributions are new, empirical

knowledge on Requirements Engineering in the context of Big Data software applications. The

contributions are:

— Analysis and discussion of the state of Requirements Engineering Research involving

the development of Big Data software applications.

— Analysis and discussion of the results of a case study conducted within a Big Data soft-

ware development project aimed at determining the RE practices and challenges in this

type of projects.

— Identification and analysis of a set of RE challenges in creating and evolving Big Data

software applications.

— Identification of the project artefacts (e.g., Big Data Technological Requirements Spec-

ifications, Big Data Software Requirements Specifications, Big Data Scenarios, etc.),

organized into three groups of artefacts according to the Requirements Engineering Ref-

erence Model (Business Needs Artefacts, Systems Specification Artefacts, and Require-

ments Specification Artefacts) , and connected by six types of inter-relationships, such as

“Is-Composed-Of ”, “Is-derived-from”, “Is-part-of ”, “Assist-in”, “Contains”, and “Used-

In”.

— Construction and validation of a RE Artefact model in the context of Big Data software

development projects that depicts project artefacts and their inter-relationships based on

empirical findings and evaluation.

— Approach for modelling quality requirements for Big Data applications composed of (i)

a process, (ii) requirements logging templates, (iii) checklist, and (iv) a goal-oriented

requirements modelling language.
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— Modelling tool that implements the proposed goal-oriented requirements modelling lan-

guage enabling end-users to model Big Data quality requirements.

Figure 1.1: Thesis Contributions by Chapter

This figure depicts the core chapters of this thesis (on the left) and their associated contributions (on the right).
The contributions are connected to their corresponding chapters by a simple association line. One chapter can be
associated with one or more contributions.

1.5 Thesis Structure

This thesis is structured in the integrated article format. It is composed of eight discrete chap-

ters. Figure 1.2 presents graphically the structure of this thesis and shows how each chapter

relates to one another.
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Figure 1.2: Thesis Structure

This figure depicts the overall structure of this thesis. It also shows how each chapter is related to one another.
The chapters are represented by a regular shape with rounded corners. They are organized into three groups:
theoretical foundation, main body, and conclusion. The core chapters of this thesis are represented with darker
borders. The rectangular shapes coloured in grey represent clarification notes that have been provided to help
better understand the structure provided in this figure.
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With reference to Figure 1.2, we briefly overview the chapters composing this thesis:

Chapters 1 and 2 together form the theoretical foundation of this thesis . Chapter 1 intro-

duces the topic as well as the research problem addressed in this thesis. Chapter 2 describes

the background concepts. Chapter 3 describes the results of a SLR conducted with the aim to

identify the current state of the Requirements Engineering research in the context of Big Data

software applications as well as the existing research challenges and opportunities in this field.

Chapter 4 describes the results of an exploratory case study conducted within a large scale

Big Data applications development project in the Oil&Gas domain with the aim to determine

the current RE practices and challenges in such projects, currently bereft in the scientific liter-

ature.

In Chapter 5, we identify and characterise the several types of artefacts and their inter-

relationships that exist in Big Data software applications projects. Based on this identification,

we developed an artefact-model that depicts such characterisations. The model was first cre-

ated based on knowledge from the scientific literature (chapters 2 and 3) and further validated

internationally by practitioners working on Big Data Software projects in industry.

Chapter 6 described our proposed requirements approach modelling quality requirements

for Big Data applications. The approach is composed of (i) a process, (ii) requirements log-

ging template, (iii) checklist; (iv) a Big Data goal-oriented requirements language; and (v) a

prototype tool that implements our proposed language. We further validate and illustrate the

feasibility of this approach by modelling requirements collected from real Big Data applica-

tions development projects.

In Chapter 7, we discuss the implications the results of this research have in industrial

practice, academic research, and tool support. We further discuss some of the contributions

made in this thesis focusing on their limitations and potential for improvement and adaptability

to other project settings and domains. Finally, Chapter 8 describes the conclusions drawn from

the studies discussed in this thesis and identifies directions for future work.

With the exception of Chapters 1, 2, and 7, all the core chapters of this thesis have been pub-

lished or submitted for publication in international scientific venues (e.g., conferences, work-

shops, and journals). Table 1.1 depicts the chapters of this thesis and their corresponding

published/submitted articles.
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Table 1.1: Core chapters and their associated submitted or published articles

Chapters Associated Publications
Chapter 3: State of Require-
ments Engineering Research in
the Context of Big Data Appli-
cations

— D. Arruda and N. H. Madhavji, “State of requirements
engineering research in the context of bigdata applica-
tions”, in Requirements Engineering: Foundation for Soft-
ware Quality, E. Kamsties, J. Horkoff, and F. Dalpiaz, Eds.
Cham: Springer International Publishing, pp. 307 - 323,
2018.

Chapter 4: Requirements En-
gineering Practices and Chal-
lenges in the Context of a
Big Data Software Development
Project: Insights from a Case
Study

— Submitted: Journal of Software and Systems (Elsevier).

Chapter 5: Empirically Derived
RE artefact Model in the Con-
text of Big Data Systems Devel-
opment Projects

— D. Arruda, N. H. Madhavji, and I. Noorwali, “A Valida-
tion Study of a Requirements Engineering Artefact Model
for Big Data Software Development Projects” in Proceed-
ings of ICSOFT - International Conference on Software
Technologies, pp. 106 - 116, 2019.

— D. Arruda and N. H. Madhavji, “Towards a Requirements
Engineering Artefact Model in the context of Big Data
Software Development Projects” in Proceedings of the
IEEE International Conference on Big Data, pp. 2232 -
2237, 2017.

Chapter 6: An Approach for
Modelling Quality Require-
ments for Big Data Software
Applications

— Under Review: Information and Software Technology
Journal (Elsevier).

— D. Arruda, and N. H. Madhavji, “QualiBD : A tool for
modelling Quality Requirements for Big Data Applica-
tions” in Proceedings of the IEEE International Confer-
ence on Big Data, 2019.

— D. Arruda, QualiBD tool: Implementation details,
CoRR, vol. abs/1912.03866, 2019.[Online]. Available:
http://arxiv.org/abs/1912.03866
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Chapter 2

Background

This chapter presents background concepts used in this thesis organised into three sections.

The first section provides an introduction to the field of Requirements Engineering and the re-

maining sections provide an overview regarding Big Data and Big Data Software Engineering,

respectively.

2.1 Requirements Engineering

Requirements Engineering (RE) is the process of finding out, analysing, documenting and

checking requirements and its constraints for a particular project [1]. It forms the ground

for every software project, defining what the stakeholders need from it, and what it must do

to satisfy that needs. In general, requirements offer support to (i) project planning, (ii) risk

management, (iii) acceptance testing, and (iv) changing control [2]. However, practicing Re-

quirements Engineering is a challenging and complex task. It involves (i) stakeholders with

diverse backgrounds and levels of knowledge, (ii) different application domains, (iii) it is ex-

pensive and error-prone, (iv) it should be aligned with the business goals, to name a few [3]. In

this section, we present the basic concepts and activities involved in Requirements Engineering

process in the software development life-cycle.

15
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2.1.1 Requirements Levels of Description

Some of the problems that arise during the requirements engineering process are a result of

failing to make a clear separation between the various levels of description [1]. To deal with

the diversity of software requirements, Sommerville [1] suggests organising them into two

levels of description: (i) user requirements and (ii) systems requirements, described below. An

illustrative example is provided in Figure 2.1 (extracted from Sommerville [1], p.84).

Figure 2.1: Example of User and Systems Requirements.

— User requirements: user requirements are statements (usually in a combination of nat-

ural language, UML-like diagrams, and mock outputs) of the services the system is ex-

pected to provide to system users and the constraints under which it must operate. User

requirements for a system should describe the functional and non-functional require-

ments so that they are understandable by system users who dont have detailed technical

knowledge [1]. Laplante [4] states that in many cases user stories can play the role of

user requirements.

— Systems requirements: system requirements are more detailed descriptions of the soft-

ware systems functions, services, and operational constraints. The system requirements
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document should define exactly what is to be implemented [1]. These requirements are

derived from analysis of the user requirements [4].

2.1.2 Types of Requirements

The requirements are analysed and described as functional requirements or non-functional re-

quirements.

— Functional Requirements: describe what the system should do, how the system should

react to particular inputs, and how the system should behave in particular situations [1].

Functional requirements are sometimes called behavioural or operational requirements

because they specify the inputs (stimuli) to the system, the outputs (responses) from the

system, and behavioural relationships between them [5].

— Non-Functional Requirements/Quality Requirements: these are constraints on the

services or functions offered by the system. They include timing constraints, constraints

on the development process, and constraints imposed by standards. Non-functional re-

quirements often apply to the system as a whole, rather than individual system features

or services [1].

2.1.3 Requirements Engineering Activities

The Requirements Engineering process is composed of the following activities: (i) require-

ments elicitation, (ii) requirements analysis and negotiation, (iii) requirements specification

and modelling, (v) requirements validation and (vi) requirements management. In the follow-

ing subsections, we briefly describe each of these activities.

Elicitation

Requirements elicitation, also known as requirements discovery, is one of the crucial tasks

of the requirements engineering process, as it allows one to discover which requirements the

users want to see incorporated into the system to be developed [6]. The requirements elicitation
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process incorporates the following fundamental steps: (1) study the domain, (2) identify the

requirements sources, (3) consult and engage the stakeholders, (4) select the techniques to be

adopted (e.g., brainstorms, interview, questionnaire, scenarios, document analysis, etc.), and

(5) elicit the requirements from the stakeholders and other identified sources.

Analysis

Requirements analysis is defined as the activity related to the refinement of stakeholders needs

into formal product specifications [3]. Also, this activity aims to make informed decisions

about concerns and issues raised in the elicitation process [7]. Issues and concerns with re-

quirements include (i) they dont always make sense, (ii) they may be inconsistent, incomplete

and vague, (iv) there may be unclear dependencies between requirements, to name a few [4].

Important to notice that many of the elicitation techniques (e.g., brainstorms, interview, ques-

tionnaire, scenarios, document analysis, etc.) are intended to avoid or alleviate these problems.

Specification and Modelling

Requirements specification is the process of writing down the user and system requirements

in a requirements document. Ideally, the user and system requirements should be clear, unam-

biguous, easy to understand, complete, and consistent [1]. The input of the specification is a set

of agreed statements of different types (e.g., general objectives, systems requirements, user re-

quirements, relevant domain properties, etc.). The output of the specification is the first version

of the requirements document [7]. Software requirements can be specified in natural language

and modelled using diagrams and visualisations, for example. Proper requirements representa-

tion facilitates communication of requirements and translation into system’s design [4].

Validation

Laplante [4] defines the requirements validation activity as the process of determining if the

specification is a correct representation of the customers needs. The purpose of this activity is

quality assurance [7]. Sommerville [1] explains that requirements validation usually overlaps
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with analysis as it is concerned with finding problems with the defined requirements. Require-

ments validation is an important activity because errors in requirements documents can lead

to a considerable amount of rework costs when these problems are discovered during develop-

ment or after the system is in production [1, 7]. The techniques used to support requirements

validation can include requirements review, prototyping and tests cases, and they can be used

in conjunction with one another [1].

Management

The requirements management involves managing the realities of changing requirements over

time [4]. It is to manage all of projects or products requirements post - elicitation, and to

identify inconsistencies between those requirements and the project plan or work products [3].

It is important to keep track of individual requirements and maintain links between dependent

requirements so that one can assess the impact of requirements changes in the software project.

Also, its necessary to define a formal process for making change proposals and linking these

to system requirements. The formal process of requirements management should start as soon

as a draft version of the requirements document is available [1].

Negotiation and Prioritisation

Negotiation is, in its essence, a process of decision-making carried out in a context of strate-

gic interaction or inter-dependency in the project [6]. Requirements negotiation should not be

considered as a one-time task in a software project, but should be used early on and repeated

in later stages. It contributes to the goal of defining feasible and mutually satisfactory require-

ments that accommodate all stakeholder goals and expectations [8]. In addition, in a software

project, it is important to define the set of candidate requirements (i.e., the requirements that

are susceptible to be incorporated in the system, due to their relevance from the onset). Then,

the subset that includes the most important requirements must be selected. Requirements pri-

oritization is a technique that aids in identifying those important requirements and that can be

viewed as the process that sorts a set of requirements, according to various criteria defined by

the project [6].
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2.2 Goal-Oriented Requirements Engineering

Goal-oriented requirements engineering (GORE) is concerned with the use of goals for elicit-

ing, elaborating, structuring, specifying, analysing, negotiating, documenting, and modifying

requirements [9]. Yu and Mylopoulos [10] state that the notion of goals is increasingly being

used in the field of RE. They further explain that goals are used to address various purposes

(e.g., requirements acquisition, relating requirements to organizational and business context,

clarifying requirements, dealing with conflicts, driving design, etc.) [9]. In essence, goals cap-

ture, at distinct levels of abstraction, the several objectives that the system under consideration

should accomplish. The most common goal-oriented requirements approaches and frameworks

are i* [11], Kaos [12], and NFR framework [13]. These are general purpose frameworks that

throughout the years have been either extended or served as foundation for the development of

domain specific goal-oriented requirements approaches.

2.3 Big Data

In the past couple of years Big Data has caught the attention of industry interested in the high

potential of Big Data, and many government agencies announced major plans to accelerate

Big Data research and applications [14]. In a study conducted by CSC in 2014 with more

than 300 IT employees revealed that approximately 52% of the respondents were involved in

a Big Data project. Also, IDG Enterprise study presented by Columbus [15] reveals that 36%

of the participated companies have plans to increase their budgets for data-driven initiatives

within the organization. As the top priority, 61% of the respondents stated that the main goal

in investing in data-driven initiatives within the organization is to improve the quality of the

decision making as they considered Big Data Analytics as an important tool to accelerate and

gain important business insight and value from data.
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2.3.1 Defining Big Data

There has been a considerable effort towards the definition for the term “Big Data”, and ac-

cording to Chen et al., [14], the effort arises from both industry and academia. The truth is

that to date, there is no standard definition for the term “Big Data”. The existing Big Data

definitions differ across different context and perspectives of use [16]. For example, in the con-

text of infrastructure, Big Data can be defined as data with high volume, velocity, and variety,

and unpredictability that require a scalable architecture for efficient storage, manipulation, and

analysis [17]. Big data does not only cover huge data-sets themselves, but also space problems,

technologies and opportunities to create business value [18]. In the analytics context, Otero and

Peter [16] define Big Data as data so large that contains significant low probability events that

would be absent from traditional statistical sampling methods. In the application’s perspec-

tive, it can be defined as any regular application that serve end-users except that underlying the

software system is Big Data which the system operates upon [19]. Finally, from a business’s

perspective, Big Data represents opportunities for achieving competitive advantage by making

improved decisions [20].

2.3.2 Characterising Big Data

Big Data is characterised by the “V” attributes. The most common are volume, velocity, ve-

racity and variety. Volume is related to the generation and collection of masses of data [20].

For instance, a study conducted by the International Data Corporation (IDC) predicts that 40

zettabytes (43 trillion gigabytes) of data will be generated by 2020 [21]. This represents an

increase of approximately 300 times on the amount of data in 2005 [22]. Velocity means that

the speed of growth and transfer of data are fast, and comes from different sources such as

sensors, mobile devices, social media, to name a few [23].Veracity is related to how accurate

the data is for use, free of biases, noise and abnormalities [23]. Variety is related to the several

different types of data, which can be structured, semi-structured and unstructured data [14].

More recently, other “V” attributes have been added to the Big Data domain such as (i)

value: Substantial value can be found in processing Big Data, including understanding cus-

tomers needs, targeting them accordingly, optimising processes, and improving machine or
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business performances [24]; (ii) variability: In the context of Big Data, it can refer either

the number of inconsistencies in the data (usually found by anomaly and outlier detection

methods) or the multitude of data dimensions resulting from multiple disparate types data and

sources [24]; (iii) Visualisation: It allows for a comprehensible visual representation of data

patterns, enabling users to easily gather insights from Big Data [25]; (iv) Validity: Similar to

veracity, validity refers to how accurate and correct the data is for its intended use [24]; (v)

Volatility: refers to the time of validity of Big Data as well as the time the data should be stored

and considered relevant for use [24, 26].

2.4 Software Engineering for Big Data Applications

The Systems and software engineering vocabulary described within the ISO/IEC/IEEE 24765

standard [27] Software Engineering (SE) as the “systematic application of scientific and tech-

nological knowledge, methods, and experience to the design, implementation, testing, and doc-

umentation of software systems”. As the field of SE has matured, it has developed a number

of approaches to areas such as software requirements, design, testing, and maintenance [28].

Moreover, software development processes and methodologies such as waterfall, incremental

development, spiral, and agile, for instance, have been successfully applied to produce quality

software on time and within budget [28].

However, as new technologies domains and paradigms (e.g., IoT, Big Data, Artificial in-

telligence, etc.) gain popularity and are enabled by recent technological advances, the field

of software engineering has to reinvent itself in order to adapt or define approaches and pro-

cesses to support the engineering of applications underlying such paradigms. In the context of

Big Data, for example, the Big Data systems development - also known as Big Data software

engineering [29] - has a relatively short history, starting a trend in 2011 when the term was

presented by IBM [14] with the years of 2013 and 2014 being then, the years of Big Data ex-

perimentation [14]. Big Data Software Engineering refers to the development of systems that

incorporate Big Data in serving the end-users, for example, through features with which users

interact [29]. However, engineering such applications pose significant challenges to the field of
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software engineering (as described in the Introduction of this thesis) that must be investigated

in order to advance this field of SE for Big Data applications.

2.5 Summary

In this chapter, we described some of the background concepts relevant to the research reported

in this thesis. We first discussed the RE process, classification of requirements, and its associ-

ated activities. We further described some of the most common approaches, more specifically

the goal-oriented requirements engineering approaches, used in the field of RE engineering

to support the modelling and specification of systems requirements. Then, we provided an

overview of Big Data, and its several definitions and characteristics. Finally, we provided a

brief description of Software Engineering for applications that operates upon Big Data.
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Chapter 3

State of Requirements Engineering
Research in the Context of Big Data
Software Applications

3.1 Introduction

Big Data application systems, like traditional applications, serve end-user needs except that un-

derlying the software system is Big Data which the system operates upon. In comparison to tra-

ditional software development where the development processes are usually well-established,

the processes for the development of applications involving Big Data are not clear just yet from

the scientific literature given the nature of computing involved and data characteristics such as

volume, variety, veracity, and velocity. In exploring the scientific literature on Big Data Soft-

ware Engineering, it is difficult to fail to notice that not much attention has been given to RE

in the development of Big Data applications. This situation motivated us to formally conduct

a systematic literature review (SLR) [1] of RE research in the context of Big Data applications

and synthesise any insight for further research in this domain.

Following deliberations, we arrived at the following core points to be used in this inves-

tigation: (i) types of requirements and (ii) activities of the RE process addressed in Big Data

RE research; (iii) RE research challenges identified in the literature; (iv) application domains

26
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covered; and (v) any advances made in the area (e.g., RE solutions proposed in the develop-

ment of Big Data applications). The types of requirements would give an insight into where

the emphasis lies (e.g., functionality, quality, data, etc.). The activities would give an idea of

the extent of coverage of the RE process. The RE challenges highlight the documented dark

alleys of this emerging field. The application domains give an insight into practical areas of

foray with Big Data and RE. Finally, advances describe the knowledge and technology gains

made to date by the research community. While one may find complementary points to add to

this core, in this investigation we felt that the listed set of core points cover a significant ground

in the RE field. The implications of the results of this study are anticipated for research as the

gained knowledge will be a step forward to a better understanding of the actual state of the RE

research involving Big Data applications.

This rest of this chapter is organised as follows: Section 3.2 discusses the research method-

ology. Section 3.3 presents the descriptive data. The results are discussed in Section 3.4.

Section 3.5 provides some recommendations for further research. Section 3.6 discuss threats

to validity of this study. Section 3.7 summarises this chapter. Finally, section 3.8 provides an

addendum to this chapter in order to present some of the papers identified from 2018 to 2019

which is the period after this chapter has been published.

3.2 Research Methodology

In this section, we present the methodological procedures followed in this study. We adapted

and followed the steps for conducting a SLR proposed in [1]. The following are described: (i)

research questions, (ii) search strategy, (iii) selection criteria, (iv) data extraction and, (v) the

selection process.

3.2.1 Research Questions

We ask the following main research question: What are the early signs of the ways Big

Data applications are treated in Requirements Engineering (RE)? As described in the In-

troduction section, informal observations and exploration of the literature made it compelling
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to investigate further the state of RE research in this domain. We thus decomposed the overall

question into the following constituent questions:

— Q1. What are the activities in the RE process, types of requirements and application

domains targeted by the identified RE research involving the development Big Data ap-

plications?

— Q2. What are the RE research challenges in the context of Big Data applications?

— Q3. What solutions have been proposed in the domain of RE and Big Data applications?

In section 3.4, the chapter explores the answers to each of these questions.

3.2.2 Search Strategy

This study focused mainly on searches in electronic databases such as ACM Digital Library,

Science Direct, IEEE Xplore and Scopus as they index a considerable amount of papers pub-

lished in conferences, journals and workshops proceedings - including the Big Data and RE

conferences (e.g., IEEE Big Data, Big Data Congress, RE conference, etc.).

In order to use the electronic databases in a way they would return relevant results we de-

fined and used the search terms (e.g., Big Data, requirements engineering, elicitation, analysis,

specification, validation, negotiation, prioritization, management) related to the research topic

of this chapter. We performed various searches using different combinations of search terms

before deciding upon a final version of the search string. We observed that, when using the

search string without the word requirements preceding each term, the number of irrelevant pa-

pers were greater. For example, many papers related to Big Data but not to Big Data software

and requirements engineering, used terms such as analysis, validation and negotiation to con-

vey different ideas (e.g., data analysis, Big Data negotiation, etc.) from the focus of this study

- the Requirements Engineering aspect of it.

To ensure that the literature review adheres to the topic of this study Requirements Engi-

neering for Big Data Applications, we decided to add the term requirements preceding each

search term in our search string. The final version of the search string used for this review is:
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( “Big Data” AND (“Requirements Engineering” OR “Requirements Elicitation” OR “Re-

quirements Specification” OR “Requirements Analysis” OR “Requirements Validation” OR

“Requirements Negotiation” OR “Requirements Prioritization” OR “Requirements Manage-

ment”))

Moreover, while performing the search for relevant papers using the databases commented

above, we kept (manually) searching for scientific works in specific Big Data and Software En-

gineering conferences proceedings (such as International Conference on Software Engineering,

RE International conference) and journals (such as IEEE Transactions on Software Engineer-

ing, Empirical Software Engineering, Journal of Systems and Software, IEEE Transactions on

Big Data, Journal of Big Data, Big Data Research, The Services Transactions on Big Data

and the Requirements Engineering Journal). The manual search consisted of accessing specific

journals and conferences proceedings so as to search for relevant results. If the venue (journal

or conference) website provides a search engine, we then searched for specific terms such as

Big Data in order to identify possible results. Otherwise, we checked the Table of Contents

and abstracts with the aim to identify relevant papers.

3.2.3 Selection Criteria

For this review, we set the following selection criteria: (i) studies must be in paper/article/chap-

ter formats, (ii) must be written in English, and, (iii) must address any aspect of RE in the

context of Big Data software applications.

3.2.4 Selection Process

The selection process - adapted from [1] - used in this study is composed of three steps. In

step 1, the results were filtered by their title and abstract. The papers considered relevant for

this study were selected, and in step 2 analysed by reading their introduction and conclusion

sections. The papers deemed pertinent to the context of this research were potentially chosen
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for the next step (step 3), which consisted of reading the entire paper. Then, a final list of

selected papers was created, and all the relevant information was logged into the appropriate

data extraction documents.

3.2.5 Data Extraction

In order to better organise the selected papers included into the SLR, a document composed

of the following attributes was used: study id, title, authors, source, year of publication, full

reference and the designated questions they address as well as important statements to help to

answer the defined questions. Also, we created and used a spreadsheet to log important infor-

mation (such as types of requirements, type of research, contributions, venues of publication,

etc.) that helped in the descriptive analysis.

3.3 Descriptive Data and Analysis

During the automatic search, a total of 311 papers were identified. However, it is important

to note that, as also pointed out by Kitchenham and Charters [1], initial SLR searches tend

to result in many irrelevant papers. For example, in this study, numerous papers appeared

in the search results because these papers contained terms such as Requirements Engineering

or Big Data but they did not actually address any aspect of RE in the context of Big Data

applications. After applying the selection criteria and reading the title and abstract (in step

1 see subsection 3.2.4 for the three-step process), only 24 papers were considered relevant.

In step 2, the resultant papers were examined by reading their introduction and conclusion;

thirteen papers were deemed relevant. Note that in these steps, if the cumulative information

analysed till then in a paper was not decisive as for relevance, we then scanned internal sections

of the paper to determine whether or not it addressed the topic of this SLR. Thus, we anticipate

minimal false negative cases in the selection process. Additionally, a total of five papers were

selected during the manual search based on the selection criteria as well. These papers were

carried out to the final step in the selection process (step 3) which consists of reading the entire

paper. In the end of the selection process, 14 papers [2–15], were considered relevant to be
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used in our investigation. Figure 3.1 presents the selection process and the number of results

for each step.

Figure 3.1: Distribution of papers identified and selected distributed by phased of the selection
process

Figure 3.2 shows the number of selected papers by venue of publication. Table 3.1 shows

their distribution by year. Most of the selected papers were published in 2015. Together, 2014

and 2016 represent six of the published papers. The years of 2013 and 2017, are represented

by one and two papers, respectively. Regarding the venue of publication, the majority of the

papers were published in workshops and conferences proceedings (four papers in each venue).

Two studies were published as chapters in books and two other papers were published in jour-

nals. One study was published in a magazine (RE magazine by the International Requirements

Engineering Board - IREB) [4] and another study was published online in a report format by

the NIST Big Data Public Working Group [11]. The complete list of the venues of publication

is presented in Table 3.2.

Table 3.1: Number of Papers by Year

2013 2014
1 (7%) 3 (21%)
2015 2016
5 (37%) 3 (21%)
2017
2 (14%)
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Figure 3.2: Distribution of papers by venue of publication

Table 3.2: Publication Venue and Number of Papers from each Venue

Publication Venue Issue, Volume or
Year

Paper
Count

Conferences
IEEE International Congress on Big Data 2013 1
International Conference on Data and Software Engineering 2014 1
International Conference on Cloud Computing, Data Science & Engi-
neering

2017 1

IEEE International Conference on Big Data 2017 1
Workshops
IEEE/ACM International Workshop on Big Data Software Engineering 2015

2016
2
1

International Workshop on Quality-Aware DevOps 2016 1
Journals
International Journal of Ambient Systems and Applications Vol. 2, No. 2/

2014
1

IEEE Intelligent Systems Vol. 30/ 2015 1
Books and Magazines
Studies in Big Data Springer Vol. 05/ 2014 1
New Trends in Databases and Information Systems - Springer Vol. 539/ 2015 1
Requirements Engineering Magazine Issue 2016-01 1
Other (Online Publications)
NIST Special Publication Vol. 3/ 2015 1
Total 14
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The papers selected were also classified with respect the type of research they present. For

such classification, we used the classification for RE research proposed by Wieringa et al. [16]

which consists of the following classes of papers:

— Evaluation Research: refers to the investigation of a RE problem or the implementation

of a RE technique in practice. In this case, the novelty of the technique is not a criterion

by which the paper should be evaluated.

— Proposal of Solution: refers to the proposal of solution technique that argues for its

relevance, but without being validated.

— Validation Research: in this type of research the properties of a solution that has not been

implemented in practice is investigated and analysed.

— Philosophical Papers: presents a new way of looking at existing things, a new conceptual

framework, etc.

— Opinion papers: These types of papers present the authors opinions regarding an existing

problem/issue.

— Personal Experience Papers: in these types of research, the emphasis is on what and may

concern to multiple projects. It also must be the authors personal experience.It is also

important that the paper provides the reader with a set of lessons learnt by the authors

from their experience.

The overall distribution of papers by type of research and their contribution is presented in

Tables 3.3 and Table 3.4. Also, we analysed the selected papers with respect to their contribu-

tion and research type organised by the RE activities they addressed (see Figure 3.3).
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Table 3.3: Overall distribution of papers by type of research

Type of Research Paper Citation Paper
Count

Evaluation Research [2, 6, 14] 3
Proposal Solution [8–11, 13, 15] 6

Validation Research [5, 7] 2
Philosophical Papers [3–5] 3

Opinion Papers – –
Experience Papers – –

Table 3.4: Overall distribution of papers by research contribution

Type of Contribution Paper Citation Paper
Count

Method/Approach [2, 7, 8] 3
Model [14, 15] 2
Tool [5, 10] 2

Framework/Architecture [6, 9, 11, 13] 4
Processes/Methodologies – –

State-of-the-art [3, 4, 12] 3

3.3.1 Discussion

One observation from the results of this study is that, surprisingly, the RE conferences such

as the RE Conference and the International Working conference on Requirements Engineer-

ing: Foundations for Software Quality (REFSQ) and the Requirements Engineering Journal

have not yet published papers on aspects of RE in context of the development of Big Data

applications.

For instance, in conducting manual searches for Big Data related publications in the Re-

quirements Engineering Journal, we found only one result matching with the term Big Data.

However, the resultant paper does not deal with RE for Big Data applications; it simply used

the term Big Data within the paper. In regard to the searches of the RE and REFSQ confer-

ences, we analysed proceedings (title and abstract) from 2009 to 2017, since Big Data was not

widely known in previous years.

Regarding the REFSQ proceedings, we did not find any papers discussing Big Data. For

the RE Conference proceedings, we found one talk abstract from 2016, as well as a paper

from 2017. However, the paper does not address any aspect of RE for the development of Big
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Figure 3.3: Papers by contribution and type of research organised according to the RE activities
they address

Data applications. Instead, as is the case with the RE Journal resultant paper, it used the term

Big Data within the text. Thus, no papers were selected from these sources to be used in this

SLR. It is important to note that (repeated from section 3.3 for convenience), if the information

analysed (title and abstract) in a paper was not decisive as for relevance, we then scanned

internal sections of the paper to determine whether it should be included in this study.

Next section presents the results and discussion of this investigation.

3.4 Results and Discussion

Research aimed at addressing RE in the context of Big Data applications is currently at an early

stage. In this section, we discuss the results of this study with the aim to provide the state of

the art of RE research in the context of Big Data applications. To answer to the main question

of this chapter, we have taken a close look at the selected papers with respect to the secondary
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research questions represented by the following core points (repeated from subsection 3.2.1 for

convenience): (i) types of requirements, activities in the RE process and application domains

they address, (ii) RE research challenges, and (iii) RE solutions that have been proposed in the

context of Big Data applications. The subsections that follow discuss these core points.

3.4.1 (Q1) What are the activities in the RE process, types of require-
ments and application domains targeted by the identified RE re-
search involving the development of Big Data Applications?

As presented in Table 3.5, with regards to the activities in the RE process they discuss, most

of the papers selected discussed either the analysis (three papers) or specification (four papers)

phases. Elicitation, modelling and validation were discussed by only one study each. No papers

were found discussing requirements negotiation, prioritization and management in the context

of Big Data applications. Also, our analysis shows that the RE research involving Big Data

applications fell into one of the following application domains: Healthcare, Biomedical Re-

search, Government, Marketing, IT/Telecom, Astronomy and Physics, Earth, Environmental

and Polar Science, Defense, commercial, and Social Media.

Unfortunately, none of the selected papers actually discusses the applicability or details on

how to deal with Big Data requirements for a specific domain. However, in [11], use case

descriptions were collected from various contributors within different application domains and

used to derive a set of generic requirements for Big Data applications. Overall, the selected

papers discussed - to some extent - functional, quality and data requirements. Important to note

that one paper could have discussed one or more types of requirements. Therefore, the sum of

the papers presented in Table 3.5 can be greater than the total number of papers selected in this

review.

Functional Requirements. As well-known in the literature, functional requirements (FR)

describe what the system should do, how the system should react to particular inputs, and

how the system should behave in particular situations [17]. That wouldnt be different in the

RE research involving Big Data software applications. From our analysis, the selected papers

discussed the importance of addressing functional requirements for Big Data software appli-
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Table 3.5: Types of Requirements, Activities of the RE process targeted by available RE and
Big Data Research

RE Activities Citation Requirements Type Citation
Elicitation [6] Functional Requirements [3, 6, 12, 14, 15]
Analysis [2, 7, 10] Quality Requirements [3, 5–8, 10, 12–

15]
Specification [3, 8, 9, 12] Data Requirements [9, 11]
Modelling [14] Architecturally Significant Re-

quirements
[2]

Validation [5] Not Specified [4]

cations. However, very few studies (two papers) actually provided examples of functional

requirements. Also, these examples relate to generic functional requirements any Big Data

application should address. For instance, extracted from [11] and [14]: (i) database capacity;

(ii) data properties (e.g., system should check the completeness and accuracy of the data); (iii)

backup routines; (iv) domain specific FRs (not discussed in detail); (v) data transformation

(e.g., Needs to support batch and real-time analytic processing), (vi) data source (e.g., Needs

to support slow, bursty, and high-throughput data transmission between data sources and com-

puting clusters).

Quality Requirements. Basically, the selected papers discuss the following quality at-

tributes a Big Data system must address: privacy and security [10, 11, 14] performance [7, 14];

availability [2, 8]; scalability, consistency, elasticity and low latency [2]. While some papers

(10 papers) discuss the quality attributes for Big Data applications and others propose solutions

to deal with quality requirements in the development of Big Data applications only one study

actually gave examples (e.g., Req1: System needs to protect and preserve security and privacy

of sensitive data) of security and privacy requirements [11].

Data Requirements. Having the right specification of data requirements is important for

defining some of the systems functional requirements (e.g., systems needs to support diversified

output file formats for visualization, rendering, and reporting; systems needs to support legacy,

large, and advanced distributed data storage [11], etc.). In our investigation, only two papers

[4, 9] discussed the necessity of selecting the right type of data as well as the data properties

that must be taken into consideration when eliciting and specifying data requirements (e.g.,

data size, data types, file formats, rate of growth, at rest or in motion). However, none of
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them actually provided concrete examples of what a data requirement looks like. In [4], two

different templates that can be used to support the definition of data requirements are presented:

(a) template for sourcing the data and, (b) a template to match the business problems with

the data. In [9], a requirements specification framework for Big Data collection is proposed

(section 3.4.3).

In the next section, we present and discuss some of the RE research challenges identified

in this review.

3.4.2 (Q2) What are the Requirements Engineering Challenges in the
context of Big Data Applications?

Four papers were the source of the research challenges in the context of Big Data applications

[3, 8, 12, 14]. Basically, the challenges identified in this review are related to the necessity to

understand and take the Big Data specific characteristics (such as volume, velocity, variety, etc.)

into consideration while dealing with the systems requirements. Examples of the challenges

are presented below.

Big Data Characteristics: The need to properly address the Big Data V-characteristics in

the definition, analysis and specification of both functional and quality requirements [3, 8, 14].

It is essential that while eliciting the scenarios of desirable system responses, the characteristics

of Big Data are represented in requirements notations so that solution design can be created to

meet the specifications [3]. Notwithstanding, it is also important that these data characteristics

are defined along with the systems quality attributes (in the specification of quality require-

ments) as it is believed to be complementary set of properties. For example [8]: the system

shall use a stream-processing engine with a latency of 0.5 2.0 seconds (e.g., Storm, S4, Spark

or Samza) to process data in real-time between global earthquake sensors and the data cen-

tre. This requirement addresses both velocity (data characteristic) and performance (quality

attribute); two commonly discussed issues in the context of Big Data systems.

Writing verifiable requirements: The need to specify verifiable requirements. In [12], it

is explained that Big Data Analytics applications faces concept drift, which means that statis-

tical properties of the target variable, which the model is trying to predict, change over time in
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unforeseen ways, thus causing predictions to become less accurate as time passes. Therefore,

one of RE problems for Big Data Analytics applications is to be able to define and specify

verifiable (testable) requirements [12].

Intuitively, it appears that there are more challenges and issues related to the RE activities

involving the development of Big Data applications than what might appear from our review.

Further empirical studies are clearly needed to uncover more facts.

3.4.3 (Q3) What Solutions have been proposed in the domain of RE and
Big Data Applications?

The technical solutions identified in our investigation are presented in Table 3.6 and discussed

below. These solutions are organised into three groups: (a) Approaches, Methods and Models,

(b) Architectures and Frameworks and, (c) tools.

Table 3.6: Overview of the solutions proposed in RE and Big Data Research
Solutions Proposed Citation

Approaches, Methods and Models
Big Data System Design method Chen et al., [2]
Approach for handling non-functional requirements for Big Data
projects in scrum

Sachdeva and Chung [7]

Approach for analysing and specifying Quality Requirements Noorwali et al., [8]
RE Generic model based on I* and KAOS Eridaputra et al., [14]
RE Artefact Model in the Context of Big Data Software Projects Arruda and Madhajvi [15]
Architectures and Frameworks

Descriptive Architecture for Big Data Requirements Elicitation Lau et al., [6]
Requirements Specification framework for Big Data Collection Al-Najran and Dahanayake [9]
NIST Interoperability Framework* NIST [11]
Framework with security constraints Youssef [13]
Tools

Verification Tool Bersanini et al., [5]
UML extension for privacy requirements analysis Jutla et al., [10]

With reference to Table 3.6, we present an overview of the solutions identified in this study:

Methods, Models, and Approaches. In [2], a Big Data System design method is proposed

- an attempt to systematically combine architecture design with data modelling approaches

in development of Big Data Systems. Even though this method is not specific for RE but

for system design, it incorporates a RE step for requirements analysis which is composed of

the following activities: (i) identification of business goals, (ii) identification of constraints,
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concerns and drivers, (iii) identification of quality attribute scenarios and, (iv) definition of

Big Data architecture scenarios based on the quality attributes scenarios identified. Also, this

method suggested a Big Data template for logging data information (e.g., data source qual-

ity, data variety, data volume, velocity, read/write frequency, time to live, queries, etc.). The

resultant requirements should be used to drive the design of Big Data systems.

In [7], an approach composed of two processes for dealing with both privacy and perfor-

mance requirements for IoT and Big Data projects in scrum is proposed. In the security side,

the problems with dealing with security requirements is that they are commonly treated as soft

goals and thereby theres no clear way of defining if they are met or not. In the performance

side, the authors argue that the problem of handling performance requirements for IoT and Big

Data applications is that it is treated as a qualitative measure rather than a quantitative one. To

solve both problems, the use clear user stories acceptance criteria in scrum is proposed. The

authors argue that this approach helped to introduce the quality requirements such as security

and performance in early stage of the software development process and help to define clear

parameters for the measurement of both security and performance requirements.

In [8] an approach for analysing and specifying quality requirements for Big Data Applica-

tions is proposed. The main idea is to intersect a Big Data characteristic with a quality attribute

(e.g., variety security). This approach incorporates three elements - Big Data characteristic,

quality attributes, and quality requirement description and helps to ensure that the Big Data

characteristics are addressed in the specification of quality requirements.

A Requirements specification generic model using i* framework and KAOS approach was

described in [14]. In this work, the authors tried to elicit generic requirements for Big Data

based on the data characteristics (e.g., Volume demands improved storage capacity; Velocity

demands Database tools with high performance, etc.). Then, the elicited requirements were

modelled using i* framework and the KAOS approach. The models resulting from i* and

KAOS tools can then be used as references in the modelling of both functional and quality

requirements for Big Data applications. These models were applied to a case study conducted

at the Indonesians government agency for development planning of West Java and, according

to the authors, the results demonstrated that the models can be used to create valid software

requirements specifications for Big Data applications.
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In [15], a Requirements Engineering artefact model in the context of Big Data Software

development projects is proposed. The model depicts the RE artefacts and inter-relationships

involved in the development of Big Data Software applications. It is argued that this type

of model can be used as a reference for the design of project-specific processes, software

maintenance, and for supporting project decisions throughout the entire product life-cycle,

currently bereft in the Big Data RE research.

Architectures and Frameworks. In [6], a conceptual descriptive architecture to help un-

derstand the user requirements and system characteristics of Big Data Analytics software is

proposed. This architecture was developed as a high-level specification of how the numerous

tools might work together in a Big Data Analytics platform. To develop this conceptual ar-

chitecture, the authors applied sense-making models (e.g., iterative cognitive process that the

human performs to build up a representation of an information space that is useful to achieve a

goal) for Big Data analysis to help understand the cognitive complexity of Big Data Analytics

as it is believed to consist of components that exploit both machine capability and human intel-

ligence. In this work, the authors also presented two instantiations of the generic architecture

of two use cases (social media and biomedical research domains) to provide examples of Big

Data solutions related to situations in a specific organisation.

In [9] a requirements specification framework is proposed with the focus of identifying Big

Data specific scenarios to be used in the data collection phase in the development of Big Data

Analytics applications. In this framework, the scenario description governs the data collection

process. Once the Big Data scenarios are elicited, they should be analysed with respect to:

(i) the purpose (why, whereto, for when, for which reason); (ii) the sources (data provider,

consumer, etc.); (iii) search patterns (determines which phrases and keywords correspond to

the scenario at hand and must be contained within the data to be used); and (iv) the value

(saving time by not collecting garbage but only needed data that is ready to use for more

accurate real-time analysis). The authors claim that it helps to accelerate the analysis time by

focusing on retrieving data from the source that meets the scenarios, thus improving the current

processes of Big Data collection.

In [11] The NIST Big Data Interoperability Framework provides a discussion on security

and privacy requirements with focus on the fundamental concepts needed to understand the
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new paradigm for data applications, collectively known as Big Data, and the analytic processes

collectively known as data science, and listed requirements extracted and summarised from 51

different use cases. These requirements are classified into seven different groups (e.g., data

source requirements, data transformation requirements, etc.). Similarly, in [13] a framework

based on Big Data Analytics in mobile cloud computing environments that applies security

constraints and access control mechanisms that guarantee integrity, confidentiality and privacy

in Big Data healthcare systems is presented.

Tools. In [5], a software verification tool called DICE Verification Tool (D-VerT), - is

proposed with the aim to allow designers to evaluate the system design against safety properties

such as reachability of undesired configurations of the system. For example, this tool checks if

a given topology reaches an unwanted configuration (e.g., whether it allows for bad executions

that do not conform to some non-functional requirements). The verification is performed on

annotated UML models which contain all the necessary information related to a topology.

This tool supports two different types of verification based on logical formalisms: bounded

satisfiability checking and the reachability checking. The bounded satisfiability checking has a

topology property as input and checks whether there is an execution that violates this property.

In the reachability checking type of verification, the topology is defined through an array-based

system that undergoes verification of a safety problem. This approach uses a set of system

transitions, an initial configuration and, a formula that defines the set of unsafe states. The

result of this analysis is either safe or unsafe.

In [10], the authors proposed privacy extensions to UML use cases diagrams to help soft-

ware engineers to visualize privacy requirements as well as to design privacy into Big Data

applications. This solution is implemented as MS Visio extension ribbon in Visual Studio. The

authors argued that these extensions to UML help software engineers to visually and quickly

model privacy requirements in the analysis phase of the RE process. As a proof of concept, a

prototype was created to show the usefulness of the extension and how it can be used to model

the privacy requirements for Big Data systems in the domain of healthcare.
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3.5 Recommendations for Further Research

In the RE area involving Big Data applications, as stated in [3], a clearer understanding is

needed, separating requirements for infrastructures, analytic tools and techniques, and end-user

applications. Some papers in RE for Big Data applications describe either the challenges posed

by the Big Data paradigm to Software Engineering (Section 3.4.2) or the quality attributes

such a Big Data Software might address (e.g., security, performance, data consistency, etc.)

(Section 3.4.1). Also, we note that these traditional quality attributes are orthogonal to the

V-characteristics of Big Data. Thus, one of the research challenges is to be able to integrate

these complementary set of attributes in the specification of system requirements. Moreover

- from our analysis we observe that, thus far, little scientific research has focused on RE in

the context of Big Data applications and, no research was found addressing RE methods, tools

and processes, for negotiation, validation, prioritization and management in the context of Big

Data.

Finally, we noticed that little empirical studies have been conducted in this topic (section

3.3). While some papers [8–10,15] have proposed solutions, they lack validation just yet. Only

five papers [2, 5–7, 14] actually have their proposals validated through empirical studies (e.g.,

case studies in industry). Therefore, it is important that more empirical studies in industry are

performed to obtain an improved understanding of the RE activities in the development of Big

Data applications. Also, empirical studies would add significantly to the meagre knowledge

base on RE involving Big Data applications, which can improve processes and technologies

and uncover more facts that could lead to further research in this area.

3.6 Threats to Validity

Concerning the threats to validity, the following threats were assessed.
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3.6.1 Construct Validity

Regarding the search string used in this study, we used the terms we considered most suitable to

make the string as comprehensive as possible to capture the relevant literature. We performed

various searches using the identified terms (e.g., search strings with different combinations of

terms) (section 3.2.2) to decide upon the final version. Thus, we anticipate that this threat can

be considered contained.

3.6.2 Internal Validity

Two major implications to be discussed are: (i) there might be bias in paper selection and

(ii) the fact that we conducted manual searches. These issues were addressed by defining the

steps for selecting the potential papers and establishing the selection criteria (sections 3.2.3 and

3.2.4). In addition, with respect to the manual searches, it is important to note that they were

performed only in a limited set of sources (e.g., specific journals and conference proceedings).

3.6.3 External Validity

This threat is not considered relevant in this study because unlike in a case study or a scien-

tific experiment where environment scopes (e.g., projects) are bounded, the scope of literature

review data (selected papers) is universal.

3.6.4 Conclusion Validity

All the conclusions drawn in this chapter are shown to have been rooted in specific core sections

of it thus there is traceability.

3.7 Summary

This chapter describes the results of a systematic literature review on RE research involving

Big Data applications. This review was conducted with the aim to answer the overall research
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question defined in this study (What are the early signs of the ways Big Data applications are

treated in RE? See section 3.2.1 where sub-questions Q1-Q3 are also described). The selection

process used in this review was composed of three steps (section 3.2.4). At the end of the

selection process, 14 papers were deemed relevant for this review (section 3.3).

Our findings are: (i) 11 papers discussed and proposed solutions (section 3.4.3) to address

specific areas of the RE process for Big Data applications (e.g., elicitation, specification and

analysis of Big Data requirements). These solutions vary from RE methods, models and ap-

proaches to frameworks and architectures (see Table 3.6). Moreover, some of the selected

papers [3, 8, 12, 14] also discussed RE research challenges in the context of Big Data (section

3.4.2). From our analysis, we also noted the type of requirements and the activities in the RE

process that are discussed in the papers selected for this study (section 3.4.1). While the find-

ings may not be surprising to the esoteric few, the value of this chapter to the wider audience

is in setting the current baseline.

3.8 Chapter Addendum

Requirements Engineering involving Big Data software applications is an emerging area. The

SLR reported in this chapter covers only works published until June 2017. Therefore, it is

expected that new contributions appeared from July 2017 to December 2019 (time of thesis

submission). Thus, we re-executed the searches (both automatic and manual) in order to un-

cover new research items that could be relevant to this chapter. Following the same selection

process, criteria and steps, we came up with a list of additional papers to be included in this

SLR addendum. Figure 3.8 depicts in updated distribution of papers by contribution and type

of research organised according to the RE activities they address. This distribution first ap-

peared in Figure 3.3. Table 3.7 summarises the included papers and characterises them with

respect to their research type, contributions, and year of publication.
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Figure 3.4: Updated distribution of Papers by contribution and type of research organised
according to the RE activities they address

Table 3.7: Additions to the SLR results reported in this chapter

Paper Title Research Type Contribution Type Year Ref.
Ask the Right Questions: Requirements
Engineering for the Execution of Big Data
Projects

Proposal of Solution Process Model 2017 [18]

A Requirements Engineering Model for
Big Data Software

Proposal of Solution Model 2017 [19]

User Requirements Based Service Identifi-
cation for Big Data

Proposal of Solution Algorithm 2017 [20]

Eliciting Big Data Requirement from Big
Data Itself: A Task-Directed Approach

Proposal of Solution Approach 2017 [21]

Quality profile-based cloud service selec-
tion for fulfilling Big Data processing re-
quirements

Proposal of Solution Approach 2017 [22]

A Collection of Software Engineering
Challenges for Big Data System Develop-
ment

Philosophical Paper State-of-the-art 2018 [23]

A Validation Study of a Requirements En-
gineering Artefact Model for Big Data
Software Development Projects

Proposal of Solution Model 2019 [24]

QualiBD: A Tool for Modelling Quality
Requirements for Big Data Applications

Proposal of Solution Tool 2019 [25]
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In this SLR study, we also investigated some of the RE challenges in the context of Big

Data systems. Table 3.8 depicts a set of new RE challenges identified from the works included

in this addendum.

Table 3.8: Additions to the RE Research Challenges discussed in this chapter

RE Challenges Citation
Selection of services and software components to fulfill requirements for Big Data systems [21, 22]
Unclear Requirements Specifications [23]
Integration between hardware and software components [23]
Emergence of new requirements from Big Data [23]
Trade-offs between quality and performance given the complexity of Big Data software ap-
plications

[23]

Lack of RE specific approaches, tools and techniques for Big Data Systems [21]

3.8.1 Summary

In this chapter addendum, we introduced new research contributions that were identified after

this chapter has been published in 2018. The up to date numbers are as follows:

— 22 papers were reported in this chapter.

— Most of the reported papers were published in 2015 and 2017. The distribution is as

follows: (i) 2013: one paper; (ii) 2014: three papers; (iii) 2015: five papers; (iv) 2016:

three papers; (v) 2017: 7 papers; (vi) 2018: one paper; and (vii) 2019: two papers.

— 18 out of 22 proposed some sort of RE solution as follows: (i) Approaches, methods,

and models: nine papers; (ii) Architecture and Frameworks: two papers; (iii) Tools: four

papers; and (iv) Model Process: one paper.

— Eight RE challenges in creating/evolving Big Data applications.
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Chapter 4

Requirements Engineering Practices and
Challenges in the Context of a Big Data
Software Development Project: Insights
from a Case Study

4.1 Introduction

On one hand, literature on Big Data mainly focuses on the development of algorithm and

machine learning techniques to process large amounts of data [1], and extract value out of it [2].

On the other hand, on a smaller proportion, there is literature [3–11] that focus on understating

the processes of engineering applications that operate upon Big Data - the so-called Big Data

applications.

Just yet, there is not much “empirically grounded knowledge” on the complexities arising

from engineering such applications. The engineering of Big Data is a quite troublesome task.

For instance [3, 4, 6, 9], it is known that the massive Volumes of data require distributed and

parallel processing that traditional database technologies are not designed for; the Variety of

data demands specific structure modeling and data management; the Velocity of Big Data re-

quires data processing speeds that vary from real-time to batch windows which would adapt

to different requirements for the system; the Veracity poses challenges for data validation and

50



4.1. Introduction 51

governance.

The complexities involved in engineering such applications have implications in all activ-

ities of the software engineering process. Thus, analogously to the research reported in our

previous study [6] (see Chapter 3) - where the focus was to map what have been reported in

the scientific literature in terms of types of requirements, activities, challenges, and solution

proposals - in this chapter, then, with the focus on the RE field, we aimed at investigating

(empirically) the practices and challenges in the context of Big Data software applications

development projects.

To this end, we conducted an exploratory case study on a Big Data software development

project in the Oil & Gas domain. The investigation reported in this chapter was driven by the

following core points: (i) the way systems requirements are elicited, specified, analysed and

prioritised in such projects; (ii) the sources for identification of Big Data related systems re-

quirements and their proportion in relation to the approximate total number of requirements in

the projects; (iii) the role of Big Data characteristics and technologies in the RE and systems

design; and (iv) challenges faced throughout the RE process when engineering Big Data ap-

plications. Understanding the way systems requirements are elicited, specified, analysed, and

prioritised would provide insights on the RE practices in such projects. The sources would

provide an idea of where Big Data-related systems requirements are mostly likely to be identi-

fied. The role of Big Data characteristics and technologies would give an idea of the extent to

which they are explicitly addressed in the solution design. Research challenges would uncover

challenges and issues in creating and evolving Big Data software applications.

Questions represented by the aforementioned core points, do not have responses grounded

in empirical theory to date [6]. Therefore, the results reported in this chapter have implications

in academia as it is new concrete knowledge that adds to the current scarce RE knowledge base

in the context of Big Data applications, thus, promoting further research in this area.

The rest of this chapter is organised as follows: Section 4.2 depicts the research methodol-

ogy, goal, questions, and methods defined for this study. Section 4.3 described the case under

analysis. Section 4.4 explores the results of this study. Section 4.5 provides some directions

for further research. Section 4.6 discusses the threats to validity and their associated mitigation

strategies, and finally, Section 4.7 summarises this chapter.
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4.2 Research Design

According to Wohlin et al., [12] there are two types of research paradigms that have different

approaches to empirical studies in Software Engineering: (i) exploratory and (ii) explanatory.

Exploratory research is concerned with the analysis of a not well-explored phenomena with the

aim to seek insights and new ideas that would promulgate new research opportunities, whereas

explanatory research focuses on seeking explanations for a situation or a problem [13]. In this

chapter, we describe an exploratory case study whose scope is depicted in Figure 4.1.

Figure 4.1: Scope of the exploratory case study depicting its context, case, and unit of analysis.

The next sections describe the research goal, research questions, and procedures for data

collection and analysis followed in this study.

4.2.1 Research Goal

With the focus on the field of RE, we establish this chapter’s research goal using the goal

definition template - provided by the GQM (goal-question-metric) approach [14] - as described

in Table 4.1.
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Table 4.1: Definition of Research Goal
Analyse RE process
For the Purpose of Determining
With respect to Practices and challenges
From the viewpoint of Project’s internal stakeholder
In the context of Big Data software development projects

4.2.2 Research Questions

Based on the described research goal, we defined the following main research question to guide

our investigation: RQ - What are the RE practices and challenges identified in the Big Data

software development project under analysis? This question aims to determine the practices

to elicit, specify, analyse, and prioritise systems’ requirements in the project as well as identify

the possible challenges encountered while practicing RE in such projects. Given the “broad”

nature of this question, we thus decomposed it into the following constituent sub-questions

focused on “how” and “what” (as depicted in Table 4.2).

Table 4.2: Decomposed Research Questions

Core Research Questions
Q1 - What are the sources for elicitation of Big Data-related software and non-software require-
ments? What is the proportion of the Big Data-related requirements in relation to the total number
of requirements in the project?

Q2 - How are the systems requirements (specifically the Big Data-related ones) elicited, docu-
mented, analysed, and prioritised within the project?

Q3 - What is the role of Big Data technologies and characteristics in Requirements Engineering?

Q4 - What are the challenges in eliciting, documenting, and analysing systems’ requirements while
engineering Big Data software applications?

Although one may find complementary points to add to this core, in this investigation we

believe that the described decomposed research questions cover a significant spectrum of the

RE field involving Big Data applications.

4.2.3 Data Collection

The data gathering process was driven directly by the investigative research questions defined

in this chapter. For such, we used the following data gathering tools:
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(a) Questionnaire: we defined a semi-structured instrument composed of 26 questions

distributed as follows: (i) Five background questions; (ii) One software development process-

related question; and (iii) 20 requirements engineering focused questions. The reason being is

that questionnaires are effective tools for gathering relevant and specific data in an organised

manner [15], which in turn, aids in faster data analysis;

(b) Communication with a project stakeholder: A need for in-depth information or even

clarifications would arise from the analysis of the gathered data. Whenever that was the case,

follow-up conversations with a project representative were held.

4.2.4 Data Analysis

Coding and Categorisation [16, 17] techniques were used to analyse the data originated from

open-ended type of questions. Coding provides a good way of indexing or categorizing pieces

of text in order to establish a framework of thematic ideas, thus, facilitating the analysis of

qualitative data [17]. During the analysis process, tags (e.g., challenge, practice, context, so-

lution description, quality attribute, etc.) were create to group the answers according to a set

of characteristics they represent. For instance, consider a piece of information that describes

the challenges in eliciting Big Data requirements. This piece of text would receive two types

of tags: challenge and elicitation. The first tag is used to characterise the nature of the in-

formation, and the second one is used to described where in the RE process that information

occur. The coding and categorisation was done manually by one researcher (first author) and

reviewed by another researcher (second author). That was possible because the analysis was

performed on questionnaire data, which is more focused and to the point, thus, facilitating the

overall analysis process. Important to notice that the data was gathered in both English and

Portuguese languages. Figure 4.2 shows an example of a script extracted from an answer given

to an open-ended question and their associated tags.
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Figure 4.2: Example of tags used in coding and categorising the gathered data.

In the next section, we describe the (i) case explored in this chapter; (ii) context and moti-

vation for the establishment of the project; (iii) Big Data solution, and (iv) organisation of the

project and its development methodologies.

4.3 The Case

The case is concerned with a Big Data software development project in the Oil&Gas domain

within a mid-size non-profit organization, that primarily conducts research and technology

development with industrial partners and government institutions.

4.3.1 Context

From project documentation: “Cases of fuel theft in (removed for privacy reasons) pipelines

have increased exponentially in recent years, with the states of (removed for privacy reasons)

and (removed for privacy reasons) being the most affected ones. Data from Public Prosecution

Services show that approximately 14.2 million liters of fuel are stolen annually from (removed

for privacy reasons) oil pipelines, a subsidiary of (removed for privacy reasons) responsible
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for fuel transportation and supply logistics. Investigations point to specialized gangs, covering

a whole chain of crimes with a high degree of organization and sophistication, ranging from

irregular pipeline drilling and tanker truck transportation to illegal refineries to resale. This

type of criminal action has already become a national security issue. The biggest concern,

however, is the risks to people and the environment in the event of explosions, fires and leaks

caused by clandestine shunts. For instance, in December 2018, an attempted theft caused the

leak of 60,000 liters of oil in (removed for privacy reasons). In April 2019, an attempted theft

of a gas pipeline in the municipality of (removed for privacy reasons) caused a leak, injuring

five people and causing the death of a nine-year-old child.”.

The described situation led the company to improve and intensify the pipeline network

protection infrastructure it currently operates. For that purpose, it has established a partnership

with the aforementioned non-profit organisation with the aim to develop a technological solu-

tion (described in the next subsection) composed of a web system - which is integrated with

several other existing systems and information sources - and a mobile application to facilitate

the activities of in-field agents.

4.3.2 The Big Data Software Solution

As previously mentioned, the project was responsible for the development of a mission-critical

large scale Big Data solution. The solution is composed of a (i) web system, and (ii) mo-

bile application. On one hand, the web system features modules responsible for the real-time

planning and monitoring of vehicles and people circulating over the pipeline tracks. It also

features an alert centre that concentrates all suspicions and allegations of illegal pipeline ac-

tivities. On the other hand, the mobile app serves in-field agents not only in capturing audio

records, videos, photos, positioning data, and alerts that are sent to the data platform but also

in retrieving information from the back-end of the system with the aim to provide insights to

support the operations of the in-field agents.

Given the possibility for high volumes of data, the system was designed with a microser-

vice architecture and features scalable Big Data technologies (as described in Table 4.3). The

following quality attributes drove the definition of system’s architecture: scalability (given the
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expected volumes of data), availability (given the mission-critical nature of the system and the

need to run 24x7), completeness (given the expected volumes of structured and unstructured

data) resilience (given the mission-critical nature of the system), maintainability (given the

complexity in this type of applications, easy maintainability is important), performance (given

the nature of real-time data being injecting and retrived from the application), and modularity

(given the progressive and structured development methodology).

Table 4.3: Technologies adopted according to the Big Data Pipeline

Collection and Transmission Web Sockets
Storage and Management MongoDB (for media, KML (geographic files), and ordi-

nary data), Cassandra (for real-time streaming and posi-
tioning data from mobile apps), and H2 (for positioning
data extracted from geographic files)

Processing Flink (which will be replaced by a custom tailored solu-
tion currently under development)

Visualisation Google Maps (for building KMLs), web-sockets, and
leaflet (for visualising data on maps)

4.3.3 The Big Data Software Development Project

In this section, we describe some of the characteristics of the software development project

such as team formation and their respective roles in the project, development methodology and

process, and RE process.

Distribution of Team Members and Roles

The Big Data software project is composed of 10 members organised according to the fol-

lowing roles: three developers focused on the the development of the web application; three

developers focused on the development of the mobile application; one of the developers also

played the role of data engineer and software architect; two business analysts (a.k.a require-

ments analysts); and two project managers.
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Software Development Methodology and RE Process

The project uses a mix software development methodology. Sprints (from agile) [18] are used

for the planning of the development activities. The software development itself follows a logi-

cal sequence characterised by a progressive and structured development process, which in turn,

enables the implementation and integration of features in an incrementally and evolutionarily

manner. With regards to the RE process, it follows a very standard structure of activities as

follows: Elicitation, Specification and Modelling, Analysis, and Prioritisation.

4.4 Results

This section discusses the results obtained for each research questions defined in Section 4.2.2.

4.4.1 (Q1) - What are the sources for elicitation of Big Data-related soft-
ware and non-software requirements? What is the proportion of
the Big Data-related requirements in relation to the total number
of requirements in the project?

With this research question, we aimed at determining the source from which Big Data-related

requirements are primarily identified.

Big Data-related requirements refer to the software and systems requirement intrinsically

related to Big Data. In other words, those requirements that are directly related to Big Data

itself or those requirements that trigger Big Data and analytics. For instance, a non-big data re-

lated requirements would look like “the system shall support the registration of new users with

either email address and social media credentials”. This requirements does not relate with Big

Data nor triggers any Big Data analytics in the back-end of the system. On the other hand,

some examples of Big Data related requirements are [19, 20]: (i) Big Data processing require-

ments (e.g., the system shall support real-time analytics), (ii) Big Data consumer requirements

(e.g.,the system shall display all information of user’s interest as layers in a georeferenced

interface.), (iii) Big Data Infrastructure Requirements (e.g., the system shall support large dis-

tributed data storage); and (iv) Big Data source requirements(e.g., the data format of a given
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API must comply to a previously agreed specified interface).

Approximately 40% of the total number of requirements in the project is considered Big

Data-related requirements. These requirements are identified from the internal and external

sources to the project. Roughly 25% of the Big Data requirements are identified from exter-

nal sources (e.g. end-users) whereas the remaining 75% are identified in-house (e.g., customer

stakeholders, project stakeholders, contractual documentations, etc.). Finally, When it comes to

the elicitation of Big Data requirements, roughly 65% are identified upfront while establishing

the project whereas around 35% are identified later in downstream processes (e.g., design/cod-

ing/testing). We provide a more detailed analysis and discussion concerning this distribution

in Section 4.4.5.

4.4.2 (Q2) - How are the systems requirements (specifically the Big Data-
related ones) elicited, documented, analysed, and prioritised within
the project?

In this section, we describe the results concerned with the “how” type of question. Following

the RE activities performed in the project, we identified ten RE practices and their associated

supporting tool (when needed) as described in Table 4.4.
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Table 4.4: RE practices and Supporting Tools/Techniques

RE Activities Practices Tool/Technique
Support

Elicitation 1. Analysis of contractual documents. ——
2. Meetings with customer stakeholders.
3.Requirements conceptual models to support the elicita-
tion process.

Specification
& Modelling

4. Architecture, data flows, and conceptual data structure
are specified through modelling.

Google Draw for
documenting the
architecture.

5. User interface and data visualisation requirements are
specified as mock-up screens.

Visual Paradigm for
data flow and data
models.

6. Requirements (funcional and non-functional) are spec-
ified through use cases

7. Big Data Characteristics are implicit assumed in the
project’s use cases and explicitly noted trough sticky
notes on screen mock-ups, data flows, and other models.

Balsamiq for screen
mock-ups.

Analysis 8. Requirements are analysed in order to determine the
extent to which they address customers’ expectations and
needs.

Manual and Visual
Inspection.

9. Requirements analysis are also shown to project man-
agers.

10.Updates on requirements, screen mock-ups, and mod-
els are made based on analysis results.

Prioritisation 11. Prioritisation is driven by functionality and its impor-
tance to the end-user and customers.

——

With reference to Table 4.4:

Elicitation. Requirements elicitation, also known as requirements discovery, is one of

the crucial tasks of the requirements engineering process, enabling the discover of which re-

quirements the users want to see incorporated into the system under development [21]. The

requirements elicitation in the project under analysis was primarily driven by holding frequent

meetings with customer stakeholders and representatives as well as performing the analysis of

contractual documents. To support the requirements identification task, the project’s business

analysts defined a requirements model depicting the various system’s components and their

interactions with other systems, data sources, and users.

Analysis. The requirements analysis activity relates to the refinement of stakeholders needs

into formal product specifications [22]. The analysis of systems requirements in the project
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follows a very standard approach, where the requirements are analysed by the business analyst

with the aim to determine whether the documented requirements reflect user’s expectations.

Then, the analysis is also presented to the project managers in order to keep them up to date

with the latest version and correct state of the project. For such, manual and visual inspections

are performed. If any changes are required to the front-end developers regarding the systems’

user-interface, the mock-up screens and their associated requirements are also updated.

Specification and Modelling. Once the requirements are elicited, they are expressed in

form of use cases for textual description. Additionally, some of the requirements in the project

are documented in a graphical manner. For example, while modelling data flows, data model,

and creating conceptual models, and architecture of the application under development, the Vi-

sual Paradigm - a UML CASE Tool supporting UML, SysML, and Business Process Modeling

Notation - is used. As for the user-interface and presentation layer requirements, mock-up tools

are used to create ta prototype or a model that provides an idea about how the final product,

once done, will be.

Prioritisation. Requirements prioritization is the activity that aids in identifying the subset

of important requirements (e.g., the requirements that are susceptible to be incorporated in the

system, due to their relevance from the onset), according to various criteria defined by the

project [21, 23]. In the project under analysis, the systems requirements are mostly prioritised

based on the importance (to the customer and end-users) of a given functionality present in

the system rather than the existence of specific data characteristics or quality attributes within

the system. Of course that one could argue that the data characteristics and quality attributes

(expressed as quality requirements) defined for the system would be prioritised in the design

of the solution as the system’s architecture is highly dependable on those attributes. We further

discuss the role of data characteristics and technologies in the RE process in the project in

Section 4.4.3.
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4.4.3 (Q3) - What is the role of Big Data technologies and characteristics
in Requirements Engineering?

Several reported studies acknowledge the importance of addressing the Big Data characteris-

tics (also known as “V” attributes) in the solution requirements [3, 5, 6, 9, 24] and system’s

design [3, 4, 25]. Likewise, when it comes to the definition of the system’s architecture, the

“V” characteristics are of extremely importance assisting in selecting the appropriated set of

technologies to compose the architecture [4].

With this in mind, in this study (because RE is a cross-functional discipline and provides

support to all phases in the software development process), we investigated the extent to which

the “V” attributes and Big Data technologies are explicitly addressed in the project require-

ments and design documents. To this end, we asked questions such as “Are Big Data tech-

nologies considered or identified at the stage of identifying system’s requirements or are these

decided upon later in the process?” and “Are the Big Data characteristics expressed in re-

quirements notations along side with the traditional quality attributes?”

In this section, we first comment on whether the V characteristics of Big Data are expressed

explicitly, in the requirements documentation. We then discuss the role of data characteristics

and technologies in the definition of systems architecture and requirements satisfaction.

As for the explicit specification of Big Data characteristics in the project’s requirements

descriptions within the project documentation, our analysis demonstrated that those character-

istics are no explicit described in textual forms on the use cases defined for the project. Instead,

they are implicitly understood. For example, in the project’s use cases there would be men-

tions such as (i) “large amounts of real-time data”, and (ii) “Audio records, videos, and photos

will be sent to the data platform”. If we mapped the first occurrence to their corresponding

“V” characteristics, then “large amounts” would refer to volume whereas “real-time streaming

data” would refer to the velocity of Big Data. Following the same premise, “audio records,

videos, and photos” would refer to the variety of Big Data.

Additionally, at some point, where graphical notations are used, notes on Big Data Char-

acteristics are provided (e.g., a mock-up screen depicting the user-interface of the system that

would display the results of the data being analysed in real-time, would have a “stick note”

attached to it mentioned the V attribute. In this case, for example, “V” characteristic would be



4.4. Results 63

Visualisation of Big Data).

As for the impact of V characteristics of Big Data in solution design and technological re-

quirements satisfaction, in the project under analysis, some of the Big Data technologies were

identified at the stage of identifying systems requirements during the elicitation process. That

was possible given the defined goals for the project. For instance, during the definition of the

project, it was already expected that the system would handle and store large amounts (Volume)

of real-time positioning data (Velocity). Given this, Apache Cassandra was selected as database

management system given its ability to support the fast ingestion of data and horizontal scala-

bility. Following the same idea, Flink was chosen as the technology to handle the processing

of real-time data. Moreover, thinking about the performance of the system, H2 was chose to

store positioning data extracted from geographic files, the reason being is that H2 provides the

real-time processing of events and features cache domain info that supports real-time decision-

making in real-time processing environments. That helps avoiding requesting data from APIs,

which could be slow and hard to aggregate with real-time streams. Moreover, it is important to

notice that the main “criteria” used in selecting the Big Data technologies - besides the intrinsic

quality requirements of the application - was the better trade-off between cost and benefit in

terms of ease maintenance and high levels of performance.

4.4.4 (Q4) - What are the challenges in eliciting, documenting, and analysing
systems’ requirements while engineering Big Data software appli-
cations?

Analysis of gathered data led us to the identification of a set of RE challenges in the context of

the studied Big Data application development project. The identified challenges are organised

based on the activities in the RE process they relate to, and presented in Table 4.5 and described

in the following paragraphs.

Choosing the best fit technology to meet users’ needs and structural quality of the

application: During the system design phase, when it comes to selecting the appropriate tech-

nologies to address the Big Data envisaged requirements, it is important to consider how to

select technologies and software resources to be used in the project as well as the extent to
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Table 4.5: RE challenges in creating Big Data Applications

Requirements Engineering Challenges

Elicitation
1. Selection of appropriate Big Data Technologies to meet users’ needs and requirements,
and structural quality of the application.

Specification & Modelling
2. Lack of specific modelling tools for Big Data requirements.
3. Lack of specification techniques for Big Data specifying system’s requirements.

Analysis
4. Lack of appropriate knowledge concerning Big Data architectures and technologies.
5. Lack of industrial patterns and specifications for Big Data architecture and requirements

which the existing technologies and frameworks help in addressing the Big Data requirements,

both system and software. The large number of distributed systems frameworks and technolo-

gies available in the context of Big Data, introduces challenges and time constraints to the

project that imply in short window for experimentation. The same holds true for the activity

of selecting software resources (e.g., external services) [26, 27]. Those software resources or

services often refer to a large variety of outsourceable functions to the cloud usually accessible

through APIs. It can range from supply of data to the supply of analytical software tools [26],

for instance.

Lack of specific modelling tools and specification techniques. As we described in early

sections of the chapter, Big Data applications are complex solutions composed of several com-

ponents. The current existing tools for modelling and specifying Big Data system requirements

do not support some of the common concepts underlying Big Data (e.g., data characteris-

tics, processing techniques, visualisation, services, data flow, etc.). This results in incomplete

requirements specifications that introduce misconceptions over the Big Data-related require-

ments to be met by the system, thus, affecting negatively the project as whole.

Lack of industrial patterns or specifications for architecture and requirements. The

lack of solution patterns for requirements, data, and architecture introduces important chal-

lenges. For instance, each modelled element must be explained to the audience prior to pre-

senting the architecture. Otherwise, the architecture design won’t be clearly understood by all

project stakeholders.
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Lack of in-depth knowledge about Big Data technologies and reference architectures.

The lack of adequate knowledge concerning Big Data technologies and references architecture

pose significant challenges to engineering Big Data applications. For instance, in the context

of the studied project, for enabling an intensive push of positioning data to the browser, at first,

the project stakeholders did not know they had to rely on using Web sockets technology. This

was communicated to them from a senior developer from other project within the organisa-

tion. The lack of knowledge limits the productivity of the team, contributes to the unclear and

inconsistent requirements specifications, thus, resulting in re-work.

4.4.5 Discussion

RE Practices

While the RE practices and support tools reported in Section 4.4.2 of this chapter might appear

expected, the value of this study to the wider audience is in providing empirical evidence of

“how” Big Data and its related requirements are handled in development of Big Data software

applications. Moreover, one may argue whether specific RE approaches and tools are really

necessary for Big Data software projects (as argued by [3–6]) since the results reported in this

chapter depicts activities being performed using existing general purpose tools. That is due to

the fact that the field of RE in the context of Big Data applications is still not well developed.

Thus, practitioners must use the available tools (even if they are not ideal) to support their

activities. For instance, we identified that due to the lack of modelling tools and industrial

patterns for Big Data applications, the project members had to use Google Drawing (which is

not a software engineering supporting tool) to graphically “model” the system’s architecture.

It was even mentioned to us that project’s architect had to “use boxes and lines to indicate

services and data flow, respectively”. This provides opportunites for work in this area of RE as

described in Section 4.5.
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Distribution of Requirements

Recall that in RQ1 reported in Section 4.4.1, we identified that around 35% of the system’s re-

quirements were identified in downstream processes (such as design, coding, implementation,

testing, etc.)? The statement raises important questions regarding (i) the extent the architecture

of the system is stable e resilient; (ii) the extent of re-work performed in later phases of the

project; (iii) money loss; (iv) schedule overruns, to name a few.

When questioned about this intriguing situation, the project representative provided us with

some context: This phenomena happened mainly due to the lack of deep knowledge about Big

Data and Big Data technologies, and the fact that there are way too many available Big Data

frameworks and technologies, which in turn, makes it difficult to map systems requirements

with the technologies that would potentially address those requirements.

For instance, recall that in Section 4.3.2, one of the quality requirements that drove the defi-

nition of systems architecture is related to maintainability? In this context, conscious decisions

have been made by adopting Flink as the real-time processing engine. That is because Flink

has complex maintenance procedures (maintenance risks related to changing source code and

complex deployment procedures). At this moment, the project is investigating and implement-

ing a custom tailored solution to substitute Flink. Likewise, the design of some microservices

have been shown to be troublesome. For instance, some of them could have been merged into

on unique service, thus, decreasing complexity in system’s design, implementation, and oper-

ation. Also, some problems with the deployment of solution occurred. For example, Docker

incurred in a effort that were not accounted for. While Dock is not a complex technology, the

learning curve to effectively master it requires a considerable amount time.

Finally, the unclear specifications of requirements or the lack of requirements identified

upfront in the process, also led in wrong definition of data models, resulting in re-work. The

project representative stated that data models will be reviewed when establishing a new contract

for the implementation of future versions of the Big Data solution.
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RE Challenges

In a previous study [6], reported in Chapter 3, we described a few RE challenges in creating and

evolving Big Data applications. Because RE involving Big Data applications is an emerging

area, we stated that, intuitively, there would be more challenges and issues related to the RE

activities in the development of such applications than it has appeared from that study. The

case study reported in this chapter, then, confirms our statement. We identified five more

challenges faced while engineering applications that operate upon Big Data (see Section 4.4.4).

Collectively, the challenges open up new venues for research exploration in the field of RE

involving Big Data applications.

4.5 Directions for Further Research

The results reported in this chapter can lead to several opportunities for further research. These

opportunities are mainly on the scope of the RE challenges described in Section 4.4.4, and

can be focused either on specific RE processes and tools (e.g., conflict management, mod-

elling tools, specification techniques and tools, etc.) or specific approaches and methods for

requirements specifications, modelling, management, and requirements conflict, for instance.

Example research questions are: (i) How to systematically map and select the available

Big Data technologies to fulfil system’s requirements? (ii) How to specify Big Data quality

requirements that incorporate both Big Data characteristics and quality attributes? (this specific

question is explored in chapter 6 of this thesis); (iii) How to represent semantic properties and

patterns of Big Data in requirements notations?; (iv) How to manage the complexities arising

from engineering Big Data applications?

Finally, empirical studies are a great way to generate knowledge and contribute to the sci-

entific knowledge base of the field under analysis. Therefore, additional empirical studies in

industry (like the one reported in this chapter) must be conducted in order to obtain an im-

proved understanding of the RE practices concerning Big Data software development projects,

which in turn, can aid in process and technology improvement, and uncover more facts that

could promote further research.
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4.6 Threats to Validity

This section overviews the threats to validity identified in this study. We followed the guide-

lines proposed by Runeson and Host [13] which describe four main types of threats to validity

for case studies within the software engineering field: reliability, construct, internal, and ex-

ternal validity. To this set of threats, we add conclusion validity [12]. Considering that in this

research we did not aim at establishing any types of causal relationships, we did not consider

the interval validity as a threat in this study [13] [12] .

4.6.1 Reliability Validity

Reliability validity is concerned with the extent to which the data and the analysis are dependent

on the specific researchers [13]. In other words, it is concerned with the replicability of the

study.

Regarding the reliability of data gathering, we based our process on a semi-structured ques-

tionnaire. One could argue that questionnaires questions could introduce validity threats if the

designed questions are not clear or are not aligned with the research’s main objective. Thus,

the instrument for data collection used in this study was created by the first author and vali-

dated thoroughly by the second author through several iterations. This helped to minimise any

possible threats to reliability of the instrument used in this study.

As for the analysis of the data gathered, one researcher (the first author) was at the core

throughout the data analysis process. One researcher (the third author), reviewed the results of

the analysis drawn by the first author, thereby mitigating researcher bias.

4.6.2 Construct Validity

Construct Validity is concerned with the extent to which the operational measures represent

what is being investigated in the study [13]. Two threats to construct validity are identified:

The quantitative information provided as part of the answer to Research Question 2 de-

scribed in Section 4.4.2, were approximate numbers based on the experience of the project

representative. They do not represent the exact numbers of requirements in the project. Thus,
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this remains a threat in this study. However, it is worth mentioning that the project represen-

tative played the roles of developer, systems architect, and data engineering, thus, holding a

significant amount of knowledge concern the project and its characteristics.

The fact that we used questionnaires as the instrument for data collection could introduce

threats to construct validity if the defined questions were not interpreted in the same way by

the researcher and the respondent [13]. In order to minimise this threat, as explained in Section

4.2.3, we had follow-up conversations with a project representative whenever unclear state-

ments were identified. Moreover, the use of coding and categorising technique [16] (see Sec-

tion 4.2.4) helped prevent the personal biases of the researchers and overcome the deficiencies

intrinsic to the study, thereby mitigating researcher bias as well.

4.6.3 External Validity

External Validity is concerned with the generalisability of the results to other contexts [13].

As described by Wohlin et al., [12], normally, generalisability from case studies is weaker due

to the lack of control, low replicability, and the fact that there is no population from which a

statistically representative sample could be drawn [12]. In the context of the research reported

in this chapter, the reported RE practices and challenges might differ from organisation to

organisation or project to project. This implies that the disclosed results (see Section 4.4) are

not immediately generalisable to other contexts. However, despite this obvious limitation, the

results account for an important data-point for improving the scientific knowledge base in field

of RE involving Big Data applications.

4.6.4 Conclusion Validity

The conclusion validity is concerned with the relationship between the treatment and the re-

sults. It concerns whether conclusions are traceable to the findings [12]. All the conclusions

drawn in this chapter are shown to have been rooted in specific core sections of this chapter

thus there is traceability. However, should any assumptions underlying the case study not be

valid then the validity of the results and, consequently, of the conclusion drawn, would be
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threatened.

4.7 Summary

In this chapter, we reported on the results of an exploratory case study conducted on a Big Data

applications project within the Oil&Gas domain with the goal to determine the RE practices

and challenges in such projects. This research provided preliminary but important results in

the context of Big Data software development projects.

Ten RE practices were identified and organised according to the RE process (see Section

4.4.2). We also analysed the role Big Data characteristics and technologies play in defining

systems requirements and architecture (see Section 4.4.3). Moreover, five challenges in cre-

ating Big Data applications were identified (see Section 4.4.4. Even though the goal of this

study was not focused in defining causal-relationships, we could not fail to notice that these

challenges, specifically, led to we-work and unstable definition of system’s architecture in the

project. Finally, these challenges present the research community with opportunities for further

research in this area of RE concerning the development of Big Data applications.
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Chapter 5

An Empirically Derived Requirements
Engineering Artefact Model in the
Context of Big Data Software
Development Projects

5.1 Introduction

Predominantly, the current focus in the field of Big Data software is on data analytics and the

development of algorithms and techniques to process and extract value from huge amounts of

data [1]. In contrast, little research or industry practices focus on software applications and

services that utilise the underlying Big Data to enhance the functionality and services provided

to the end-users [2, 3].

While scientific literature [1, 4, 5] and economic outlook [6, 7] suggest that the field of Big

Data is growing exponentially, there is no recognisable body of knowledge on the develop-

ment of applications and services that utilise Big Data. Consequently, end-users are potentially

missing out on the anticipated benefits of innovative applications and services that could pro-

vide enhanced results, experience, or value. This void is also reflected in the field of Require-

ments Engineering (RE) where current RE practices (such as elicitation, specification, analysis,

etc.) [8] do not prescribe how to treat Big Data and the V characteristics in the development of
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Big Data software applications. The current difficulties in the RE process for Big Data applica-

tions is compounded by the lack of suitable domain or artefact models, considered important in

RE [9]. A solid foundation for creating sound applications is a thorough the understanding of

the domain and models that embody the various artefacts, activities, and relationships involved

in the RE process [10, 11].

In order to ameliorate the current situation, we attempt to throw some light on different

types of artefacts and inter-relationships involved in Big Data software development projects,

with particular focus on Requirements Engineering. This is a foundational phase for every

large software project. It deals with what the customer wants, and how the system should

behave during usage [12], [8]. The detailed artefacts and inter-relationships are embodied in a

model, called a Requirements Engineering Artefact Model (REAM) in the context of Big Data

software projects (BD-REAM) [13]. This model was subsequently assessed for qualities such

as accuracy, completeness, usefulness, and generalisability by ten practitioners from Big Data

software projects in industry. This validation study is also described in this chapter including

the resultant improved artefact model. Thus, the contribution of this chapter, firstly, is the

improved artefact model. Further, this chapter creates a stronger baseline for the RE artefact

model for Big Data software systems upon which can depend new applications development,

RE technology development, and further empirical studies.

The remainder of the chapter is organised as follows: Section 5.2 describes the model

creation process. Section 5.3 d presents the pre-validation version of the proposed artefact

model. Section 5.4 presents the model validation procedure and the methodology used in the

validation study. Section 5.5 describes the assessment results. Section 5.6 compares the old

and the new versions of the artefact model as well as introduces the post-validation version of

the RE artefact model in the context of Big Data Software Developments Projects. Section 5.7

describes threats to validity and the respective mitigation strategies. Section 5.8 summarises

this chapter. Finally, Section 5.9 describes an addendum for this chapter.
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5.2 Model Creation Process

This section the describes model creation process we followed in order to define the first version

of the BD-REAM. For that, we used the 4-step process proposed by Berenbach [9]. To this

process, we added one more step called “Artefact Model Evaluation”, and organised all the

activities into three distinctive phases with its own inputs and outputs - as depicted in Figure

5.1.

Figure 5.1: Model Creation Process

With reference to Figure 5.1, in the subsequent subsections, we briefly discuss each activity

depicted in the model creation process.

Identification of Elements and Concepts

A Systematic Literature Review (SLR) (reported in chapter 3 of this thesis) was conducted

on Requirements Engineering involving Big Data Applications [3]. In total, 311 papers were

identified and, after methodical selection, 14 papers were deemed relevant to be used in our

review. In addition to the results of the SLR, we also selected traditional software and RE

literature [8, 9, 12]. The selected papers and traditional software and requirements engineering

literature were then analysed and the model elements (artefacts) identified, from which a glos-

sary of terms was created. However, it is important to notice that the main of the SLR study

was not to identify RE artefacts but to understand and map the state of the art of RE involving

Big Data software systems. The definition of each element was extracted either from the results

of our SLR or traditional Requirements and Software Engineering literature.
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Definition of the Artefact Relationships

Using the glossary of artefacts and interpreting the domain knowledge from the scientific lit-

erature, we created a table of artefacts and their inter-relationships refereed as to the Relation

Cardinality Document.

Definition of Cardinalities

Using the basic table of artefacts and inter-relationships (Relation Cardinality Document) and

interpreting the domain knowledge from the scientific literature, a Relation Cardinality Docu-

ment was updated.

Synthesising the Artefact Model

Using fragments of artefacts, their inter-relationships, and cardinality information, they were

inter-connected iteratively, respecting RE domain knowledge, eventually resulting in the arte-

fact model as shown in Figures 5.3.

Evaluation of the Artefact Model

In this step of our research, we performed the evaluation of the proposed artefact model. This

step is composed of its own process and methodology presented and discussed in Section ??

of this chapter.

5.3 Pre-validation version of the RE Artefact Model in the
context of Big Data Software Development Projects

The completion of the activities in the Design and Construction phase of the model creation

process (depicted in Figure 5.1) resulted in the first version of the Big Data Requirements

Engineering Artefact Model (BD-REAM) [13], referred as to, in this chapter, the pre-validation

version of the BD-REAM.

The pre-validation version of the BD-REAM is composed of three basic elements:
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— Artefact: a rectangular shape (UML Class) identified with the name of the artefact it

represents;

— Association: a line connecting two artefacts. Each association is labelled to indicate the

type of relationship between the artefacts;

— Cardinality: it indicates quantity. If the cardinality is not expressed in the association

line, it means that it is has a value of 1.

The following relationships are represented in the model: Is-derived-from, Is-identified-

from, is-part-of, Contains, and Used-in.

This version of the model is composed of 21 elements of which six are Big Data specific ele-

ments and numerous relationships. Example elements are [14]: Data-Capability Requirements

(typically infrastructure related):the system shall support legacy, large distributed data storage;

Data-Source Requirements (e.g.,the system shall support high-throughput data transmission

between data sources and computing clusters); Data-Transformation Requirements (typically

processing related): the system shall support batch and real-time analytics; Data-Consumer

Requirements (e.g., the system shall support diverse output file formats for visualisation).

Figure 5.3 depicts the pre-validation version of the requirements engineering artefact model

in the context of Big Data system development projects.

Please note: To avoid repetition, in this subsection, we will not describe in details the enti-

ties in the model nor their respective inter-relationships and cardinalities. This information will

be provided later in this chapter in Section 5.6 when we discuss the post-validation (improved

and up to date) version of the BD-REAM.
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Figure 5.2: Pre-validation Big Data RE artefact model [13]

This model depicts 21 elements. The entities coloured in “green” are Big Data elements. The entities coloured
in “purple” represent the traditional RE artefacts. The entities coloured in “yellow” represent the business needs
artefacts. The entities coloured in “orange” and “grey” represent the project constraints and application domain
knowledge, respectively. Finally, the entity coloured in “blue” represents the test cases artefact that is defined
based on systems requirements If the cardinality is not expressed in the association line, it means that it is
has a value of 1..

5.4 Model Evaluation Study

In [15], Shaw describes several types of validation in software engineering research: (a) by

analysis; (b) by experience; (c) by example; (d) by evaluation; (e) by persuasion; and (f) by

blatant assertion. Shaw also explains that the validation type needs to be appropriate for the

type of research contribution (e.g., validation by experience would be suitable for research

results that have been used in practice by someone other than researcher).

For the descriptive model that we describe in this chapter, the appropriate validation proce-

dure is evaluation: to assess whether the proposed model satisfactorily describes the phenom-
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ena of interest, in our case, development of Big Data software applications.

For the purpose of validation, we created an instrument (questionnaire) for gathering data,

composed of 15 questions organised as follows: (i) background questions; (ii) technical vali-

dation questions concerned with completeness and accuracy of the elements and relationships

depicted in the proposed model; and (iii) validation questions concerned with usefulness and

generalisability of the proposed model. On the one hand, the technical validation questions

refer to the types of questions focused on the technical elements of the model. For example,

“Is the naming structure technically sound?”, “Do the model express the common spectrum

of Big Data requirements?”, “Is there any Big Data element missing in the model?”. On the

other hand, the general validation questions refers to the participants’ opinions regarding the

applicability, usefulness, and generalisability of the model in an industry setting.

The questions in the instrument had multiple-choice responses; used the 5-point Likert

scale [16] (strongly agree to strongly disagree); and a few open-ended questions concerning the

artefact model. Thirteen practitioners in Big Data software development projects were invited

of which ten 10 agreed to participate in the study. Three declined due to business constraints.

5.4.1 Model Evaluation Process

This section depicts the qualitative research methodology [17] composed of a 4-phase research

process as depicted in Figure 5.3.

Figure 5.3: Model Validation Process
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With reference to Figure 5.3:

— Phase 1: Define Instrument for Data Collection and Identify Industry Practitioners.

This phase consisted of defining an instrument for data collection to be used in the model

evaluation study as well as identifying practitioners from Big Data software development

projects. As outputs, we have an evaluation questionnaire (see appendix C) and a list of

industry practitioners.

— Phase 2: Perform Evaluation of the Artefact Model. This phase consisted of the

assessment of the pre-validation version of the artefact model. Having the evaluation

questionnaire and the preliminary version of the model as an input, we invited practi-

tioners from industry to participate in this study (convenience sampling). As output, we

received filled questionnaires with feedback from the participant practitioners.

— Phase 3: Qualitative Analysis of Feedback and Data from Real-world Industry

Projects. This phase consisted of the Qualitative analysis (thematic coding [17] of feed-

back from Phase 2) and data from industry projects (re. artefacts); Indexing/categorising

text; Grouping artefact-types and information as per the RE reference model [18]: (i)

business needs, (ii) requirements specifications, and (iii) systems specifications (see Sec-

tion 5). Because we used a semi-structured questionnaire in the validation process, the

data was captured in an organised and structured manner, facilitating the data analysis

process. As output, we had a document of identified improvements to be made to the

model.

— Phase 4: Improve Artefact Model. This phase consisted of improving the pre-validation

version of the artefact model based on output from Phase 3, maintaining the model prim-

itives as described in the model creation process [9]:(i) artefacts, (ii) relationships, and

(iii) cardinalities. The output of this phase is the improved version of the artefact model.

5.4.2 Descriptive Statistics

Table 5.1 gives descriptive statistics of the participants. The subsections describe the results of

the study.
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Table 5.1: Descriptive statistics of the study participants.

Practitioner Roles Application Do-
mains

Experience with
Requirements and
RE

Experience with Big
Data

1 Business Analyst
Developer
Researcher

Marketing
IT/Telecom

informal 5+ years

2 Requirements
Analyst
Developer
Architect

IT/Telecom 1-4 years 3-5 years

3 Business Analyst
Developer

IT/Telecom 1-4 years 1-2 years

4 Requirements
Analyst
Developer
Architect
Manager
Consultant
researcher

IT/Telecom
Marketing

11-15 years years 5+ years years

5 Architect
Developer
Researcher

Marketing
IT/Telecom
Healthcare
Defense/Military
Commercial
Cyber Security

1-4 years 5+ years

6 Requirements
Analyst
Developer
Manager

Government
Transport
Manufacturing

1-4 years years 1-2 years years

7 Consultant
Developer
researcher

Geo-spatial data pro-
cessing

1-4 years years 1-2 years years

8 Requirements
Analyst
Architect
Developer

Government
IT/Telecom

16+ years years 3-5 years years

9 Developer Marketing
IT/Telecom
Geo-spatial Data
Processing

1-4 years years 3-5 years years

10 Requirements Ana-
lyst

Quality Assur-
ance Engineer
IT/Telecom
Transport
Mobile

1-4 years years 1-2 years years
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5.5 Evaluation Results

The following subsections discuss the validation results from specific angles: (i) accuracy and

completeness of the model; and (ii) usefulness and generalisability of the model.

5.5.1 Accuracy and Completeness

The questions formulated to assess the accuracy and completeness of the model were divided

into four Likert scale type of questions and one polar (yes-no) question followed by an open

text-field.

Table 5.2 lists the four questions and practitioners responses. The responses fall predom-

inantly within the “Strongly Agree” and “Agree” options for all the questions. When asked

about the neutral choice made, practitioner #5 replied that some element names (e.g., data

transformation requirements) could change depending on the project. Also, he indicated that

not all projects follow the naming proposed by NIST [14], e.g., the term “data capability re-

quirements” could be referred to as “platform requirements”. Likewise, practitioner #10 replied

that “the relationships are okay and represent the way most of the applications are developed,

but some other projects could have some different relationship labels”.

Following the Likert scale questions, we asked: Do you think any elements are missing

from the proposed artefact model? Two practitioners (#2 and #9) answered “no”; whereas,

the remaining eight participants answered “yes”. The suggestions from the “yes” respondents,

were as follows: Practitioner #1 – non-functional requirements such as privacy and security

should be depicted in the model. Practitioner #3 – the non-functional requirements related

to the process (e.g., documentation quality and template patterns) could be introduced in the

model. (We feel that the types and instances of non-functional requirements would likely

differ from project to project). For example, some projects could have a catalogue of non-

functional requirements focused on privacy and security whereas others could have a catalogue

of non-functional requirements focused on performance and reliability. Thus, we decided not

to include them explicitly in the model (for simplicity reasons). However, they can be consid-

ered as contained inside the “Non-functional Requirements Specifications” artefact, which is
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represented in the model.

Practitioner #4 – the “data analytics” type of requirements was missing. We clarified that

these types of requirements were indeed represented in the model as “data transformation re-

quirements” as classified by NIST (2015). Practitioners #1, #3, #4 and #10 – to include ele-

ments related to the artefacts for technological requirements for the project, e.g., those elicited

concerning the data pipeline: data collection, storage, processing, visualisation, and manage-

ment. (We agreed with the suggestion, thus adding the technological requirements related

entities to the post-validation version of the model).

Practitioners #5 and #8 – to include a note or a specific element addressing the application

type based on the nature of data processing, whether it would be batch or streaming. (The type

of application based on the nature of data processing would play an important role in defining

the systems requirements, however, it would not change the types of artefacts in the project.

Adding the type of application as an entity would add complexity to the model. Thus, we

decided to include an explanatory note linked to the entities denoting “Big Data Scenarios”

and “Quality Attributes Scenario” since they would cover information regarding the type of

application being dealt with in the project).

Finally, Practitioner #7 – to better represent the entity denoting “Big Data scenarios”.

Specifically, this label could be misleading because the scenarios are domain specific and do

not describe only the data specific characteristics. (We agree with this recommendation. Thus,

we added an explanatory note linked to the entities named “Big Data Scenarios” and “Quality

Attributes scenarios”).

Improvements made to the model in response to the assessment, as well as the supporting

rationale can be seen in Table 5.7.
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Table 5.2: Results of the accuracy and completeness questions.

Questions Strongly
Agree

Agree Neither
agree nor
disagree

Disagree Strongly
Disagree

1. To what extent do you agree
that the schematic model reflects
the type of RE artefacts in the de-
velopment of Big Data applications
in industry?

Practitioners
7 and 8

Practitioners
1, 2, 3, 4, 5, 6,
8, 9 and 10

2. To what extent do you agree that
the names of the artefacts depicted
in the proposed artefact model are
appropriate?

Practitioners
3, 4, 6, 7, and
9

Practitioners
1, 2, 8 and 10

Practitioner 5

3. To what extent do you agree that
the labels of the relationships in the
artefact-model are appropriate?

Practitioners
3, 4, 6, 7, 9

Practitioners1,
2, 5, 8.

Practitioner
10

4. To what extent do you agree
that the elements in the artefact
model named: data-capability re-
quirements, data-source require-
ments, data transformation require-
ments and data-consumer require-
ments represent the whole spec-
trum of the types of Big Data re-
quirements?

Practitioners
7, 8 and 9

Practitioners1,
2, 3, 4, 6 and
10

Practitioner
5

5.5.2 Usefulness and Generalisibility

For assessing the usefulness of the artefact model, we asked the following question: To what

extent do you agree that artefact model is useful in practice? Table 5.3 depicts that most of the

participants agree or strongly agree that the model is useful in practice.

Table 5.3: Results of the usefulness question

Likert Items Practitioner #
Strongly agree 3, 6, 7 and 8
Agree 2, 4, 9 and 10
Neither agree nor disagree 1 and 5
Disagree –
Strongly disagree –

Further, we asked the participants to give their opinion on the purposes the artefact-model

would be useful for. Some example variety of answers we received are: Practitioner #2 – “to

aid in requirements gathering and initial architecture design.” Also, “as a guiding template for

customer and executive level presentations.” Practitioner #3 – “with a clear artefact model, it is
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easier to go through all field/checklist that need to be considered in RE and in architecture de-

sign.” Practitioner #4 – “to support the development of specifications for Big Data applications,

development of test cases based on the requirements, traceability of requirements through the

development cycle” as well as for “getting a big picture view of the project and how it fits into

the organisation.” Practitioner #6 – “used as a reference to support the review and elaboration

of development processes and policies in companies that work with data-centric applications.”

Practitioner #7 – “This work (the proposed artefact-model) is a first step in providing a solid

set of artefacts for supporting practitioners to reason about RE in Big Data Apps.” Practitioner

#8 – “the design of a Big Data application involves a series of requirements artefacts that, in

my opinion, are captured by the proposed model.” Also, “support the specification, validation,

and test of Big Data applications.” This view is also echoed by Practitioner #9. Practitioner

#10 – “good start to help in the elicitation process. The requirements analyst could use it to

guide in the interviews, focus groups and workshops with stakeholders in order to identify the

most important or relevant requirements.” Finally, Practitioners #1 and #5 did not provide any

opinion on usefulness.

Table 5.4 depicts a synthesis of categorised reasons and participants based on the analysis

of total feedback received on usefulness.

Table 5.4: Reasons for usefulness of the model juxtaposed by participant groups

Reasons for usefulness of the model Practitioner #
Reason 1: provide a big picture of requirements artefacts used/created
in the project

4, 6, 7, 9 and 10

Reason 2: aid in requirements elicitation. 2, 3, 4, 6 and 10
Reason 3: aid in the definition of specific RE processes. 6, 9, and 10
Reason 4: aid in the specification, validation and testing of Big Data
software applications.

4 and 8

Reason 5: aid in the architecture design; serving as template for execu-
tive presentations.

3 and 2

When asked: “To what extent do you agree that the artefact model is generic enough to be

used in different Big Data software development projects (with few modifications)?”, most of

the answers fell within the “agree” (six answers) and “strongly agree” (three answers) options

(see Table 5.5). Thus, there is a consensus amongst the practitioners regarding the applicability

of the artefact model in different projects, regardless of their unique characteristics.
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Table 5.5: Results of the generalisability question

Likert Items Practitioner #
Strongly agree 6, 9, and 10.
Agree 1, 2, 3, 5, 7, and 8.
Neither agree nor disagree 4
Disagree –
Strongly disagree –

5.5.3 Comparison between the proposed and improved versions of arte-
fact model

In this section, we present and discuss the improvements made to the pre-validation version of

the model in response to the feedback obtained in the validation study as well as present the

post-validation version of the RE artefact model.

Table 5.6 shows that the model has changed drastically (in the total number of entities) –

doubled – from 21 to 43 entities and tripled in terms of Big Data specific elements (from 6 to

18). Changes are due to missing elements in the pre-validation model (e.g., technological re-

quirements, external interface requirements, data requirements) or implicit representation in the

graphical nodes of the model (e.g., functional specifications contain functional requirements).

Also, two new relationship types were added to the post-validation model (e.g., “assist-in” and

“is-composed-of”). Additions, changes, and removals made to the original model are described

in Table 5.7.

Table 5.6: Comparative statistics between the pre- and post-validation artefact models.

Likert Items Pre-validation Post-validation
Number of Elements 21 43
Number of Relationship types 5 6
Number of Big Data specific elements 6 18
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Table 5.7: Model changes

Entities Added Rationale
Technological Requirements Speci-
fications

Big Data technologies play a critical role in storing, processing, and man-
aging data. Early decisions in technology selection can help simplify de-
velopment and aid in the definition of systems architecture.

System Architecture, Design Com-
ponents, and Abstractions

These artefacts are influenced by requirements specifications and so their
depiction in the artefact model renders the model more explicit.

External interface specifications External interface specifications denote that the Big Data system will com-
municate with external components.

Data Requirements Data Requirements are an inherent part of any Big Data system.
Relationships Added Rationale
“Assist-in” This relationship was added to represent the situation when one or more

artefacts assist in the creation of one or more other artefacts (e.g., system
requirements in the creation of system architecture).

“Is-composed-of ” This relationship denotes the “grouping” of artefacts (e.g., requirements
specifications composed of functional and non-functional requirements).

Relationships Removed Rationale
Is-identified-from In improving the artefact model, this type of relationship was no longer

needed.
Labels changed Rationale
Data Capability Requirements (is
changed to) Infrastructure Require-
ments

These labels (promoted by NIST [14]) were changed based on recommen-
dations from the practitioners.

Data Transformation Requirements
(is changed to) Data Processing Re-
quirements

These labels (promoted by NIST [14]) were changed based on recommen-
dations from the practitioners.

5.6 Post-validation version of the RE Artefact Model in the
context of Big Data Software Development Projects

As a result of the validation study reported in this chapter, a new version of the BD-REAM was

created (see Figure 5.4). The post-validation version of the artefact model depicts 43 entities

(artefacts), six types of relationships, and several inter-connections. The entities are grouped

into the following three categories extracted from the Requirements Engineering Reference

Model [18]:

— (1) Business needs artefacts: These specify customer and strategic requirements, in-

cluding product and business goals of the system under development [18]. In the post-

validation version of the artefact model, seven entities fall in this group of artefacts (see

pink-coloured nodes in Figure 5.4 ).

— (2) Requirements specification artefacts: These contain functional and non-functional
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requirements. They are analysed and modelled from the customer and user perspectives

and derived from (and justified by) the business needs [18]. In the post-validation version

of the artefact model, 15 entities fall in this group of artefacts (see green-coloured nodes

in Figure 5.4 ).

— (3) Systems specification artefacts: These contain a definition of the functional system

concept; the required behaviour and its integration into the overall system and environ-

ment. It defines constraints on the design and realisation of the system [18]. In the

post-validation version of the artefact model, 21 entities fall in this group of artefacts

(see blue-coloured nodes in Figure 5.4 ).

The Big Data specific entities (artefacts) are: Big Data Requirements Specifications; Data

Processing; Requirements Specifications; Data Consumer Requirements specifications; Data

Source Requirements Specifications; Data Requirements Specifications; Big Data Scenarios;

Technological Requirements Specifications; and their contained artefacts (e.g., Data require-

ments specifications contain data requirements and data modelling and linking details). These

entities are depicted in the post-validation version of the artefact model in a rectangular shape

with bold (darker) borders and integrated with the traditional entities (such as Systems Re-

quirements Specifications, System Architecture, Design Components, and Abstractions, etc.)

by the types of relationships depicted in the model and described in Table 5.8. Additionally,

in Table 5.9, we provide definitions for the main entities depicted in the model presented in

Figure 5.4.
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Table 5.8: Descriptions of artefacts inter-relationships

Relationships Descriptions
Is-derived-from Two or more artefacts are said to be associated by “is-derived-from” relationship when from

one artefact (e.g., Big Data scenarios) one or more artefacts can be derived and specified
(e.g., Non-Software Requirements Specification Is-derived-from Big Data Scenarios)

Is-part-of Two or more artefacts are said to be associated by a “is-part-of” relationship when one or
more artefacts are part of one or more major artefacts (e.g., functional requirement Is-part-
of software requirements);

Is-composed-of Two or more artefacts are said to be associated by a “Is-composed-of” relationship when
one or more artefacts are composed of one or more other artefacts (e.g., Software Require-
ments Specification Is-composed-of Functional Requirements Specifications)

Contains Two or more artefacts are said to be associated by a “Contains” relationship when one or
more artefacts have or hold information from another artefact within (e.g., software require-
ments Contains analysed requirements)

Used-in Two or more artefacts are said to be associated by a “Used in” relationship when one or
more artefacts can be used to guide in the definition of one or more artefacts (e.g., Con-
straints are Used-in Big Data Requirements Specifications)

Assist-in Two or more artefacts are said to be associated by a “Assist-in” relationship when one or
more artefacts assist in the definition of one or more artefacts (e.g., Software Requirements
Specifications Assist-in the definition of Systems Architecture)

Table 5.9: Main Artefact Descriptions

Entitiy (Artefact) Description
Business Case Captures the reasoning for initiating a project. It is often presented in a well-structured

written document. The logic of the business case is that, whenever resources such as money
or effort are consumed, they should be in support of a specific business need [19].

Business Goals Describe what a company expects to accomplish over a specific period of time. In software
engineering, organisational goals drive the conception, creation, and evolution of software
systems [20]. They are associated with the needs of the organization rather than the needs
of the customers [9].

Business Models Specifies the framework for finding a systematic way to uncover long-term value for an
organisation while delivering value to customers and capturing value through monetisation
strategies [21].

Business Plan Provides a description of the business’s future, specifying what to do and how to do [22].
Customer and Stake-
holders Needs

A customer can be internal or external to the organization [23]. Customers are stakeholders
of the project and as such their ideas, needs and wishes are central to the project [8]. Cos-
tumers needs describe their expectations regarding the product to be developed. It represent
the views of those at the business or enterprise operations levelthat is, of users, acquirers,
customers, and other stakeholders as they relate to the problem (or opportunity), as a set
of requirements for a solution that can provide the services needed by the stakeholders in a
defined environment [24].

Project Definition Specifies project relevant information. It must fully document objectives and deliverables.
Must be aligned to business objectives, address the needs of stakeholders and customers,
and properly set the project team’s expectations [25].

Big Data Scenarios Scenarios capture the system, as viewed from the outside (e.g., by a user, business, us-
ing specific examples) [26]. Big Data Scenarios are scenarios that incorporate Big Data
characteristics in their descriptions (e.g., volume, velocity, variety, veracity, etc.)

Quality Attribute Sce-
narios

Scenarios that describe the usage of the software with respect to the quality attributes it
might address (e.g., performance, privacy, etc.). A quality attribute scenario helps to derive
quality-attribute-specific requirements applicable to the system [27].
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Application Domain
Knowledge and
Models

Valid knowledge used to refer to an area of human endeavour, an autonomous computer
activity, or other specialized discipline [28].

Constraints Specify the restrictions or dictates the actions of the project team [29] (e.g., Scope, sched-
ule, budget, quality, resources, limited software licenses, etc.) [26].

Technological Re-
quirements Specifica-
tions

Specifies the technological requirements for the Big Data systems. Usually, the speci-
fication follows the Big Data analytics pipeline: Data Collection , Data Storage , Data
Processing , Data Visualization, and Data Management

Integration Plan specifies the process of incorporating smaller sub-systems into one larger system to ensure
they all work together [30]

Non-software Re-
quirements Specifica-
tions

In the context of this research, it represents all requirements specifications that are not
related to the software itself (e.g., infrastructure requirements, project requirements, etc.).

Data Modelling and
Linking Details

Specifies an abstract model that organizes elements of data and standardizes how they relate
to one another and to the properties of real-world entities [31].

Data Requirements Specifies directives or consensual agreements that define the content and/or structure that
constitute high quality data instances and values [32].

Data Source Require-
ments

Refer to the set of requirements the system should address to support or deal with the
different characteristics of the data sources (e.g., data size, file formats, rate of growth, at
rest or in motion, etc.) [14].

Infrastructure Re-
quirements

Specifies Big Data infrastructure details (e.g., need to support legacy and advanced soft-
ware packages, legacy and advanced computing platforms, data storage and elastic data
transmission, hardware, networking [14]).

External Interface Re-
quirements

Specifies hardware, software, and database elements with which a system or component
must interface [33]

System Architecture
and Design compo-
nents and abstractions

Specifies the conceptual model that defines the structure, behavior, and more views of a
system. An architecture description is a formal description and representation of a system,
organized in a way that supports reasoning about the structures and behaviors of the system
[27].

Software Require-
ments Specifications

Prescriptive statement to be enforced by the software to be developed and formulated in
terms of phenomena shared between the software and the environment [28].

System Requirements
Specifications

Specify all the requirements necessary for build the whole system and that includes hard-
ware requirements, infrastructure requirements, project requirements, software require-
ments, for example.

Functional Require-
ments

Specifies a function that a system or system component must be able to perform [23].
Describes what the system should do, how the system should react to particular inputs, and
how the system should behave in particular situations [8].

Non-functional Re-
quirements

Specifies quality-related properties (e.g., performance, security, etc.) that the functional
effects of the software should have [8].

Big Data Software Re-
quirements Specifica-
tions

In the context of the BD-REAM, it is the artefact that contains the Big Data specific soft-
ware requirements (e.g.,Big Data processing requirements).

Data Processing Re-
quirements

Specifies the types of requirement that relate to data analytics, data fusion and data pro-
cessing requirements [14]

Data Consumer Re-
quirements

Specifies the set of requirements related to the presentation of the processed results of Big
Data to the users (e.g., processed results in text, table, visual, and other formats) [14].
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Figure 5.4: Graphical Representation of the Post-validation version of the Big Data RE artefact
model (BD-REAM).

This model depicts nodes of three types: (i) Business Needs, (ii) Requirements Specification, and (iii)
Systems Specification. The rectangles with heavy border-lines are Big Data elements. The two blue
rectangles labelled ADM and Constraints at the bottom of the figure are Used in every rectangle en-
capsulated inside the red boundary. They have been factored out to simplify the diagram. If the
cardinality is not expressed in the association line, it means that it is has a value of 1. For a
tabular representation of the artefact model with all cardinalities expressed please refer to Table 5.11
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5.7 Threats to Validity

We use Runeson and Hosts [34] guidelines to discuss the threats to validity and limitations of

this research, and our approaches to mitigate them.

5.7.1 Construct Validity

Construct validity is concerned with the extent the studied constructs represent their real-life

meanings [34]. Given the large number of artefacts and relationships (i.e., constructs) in the

artefact model, construct validity takes heightened importance. One threat to construct validity

is in the model assessment. It is possible that the participants misunderstood our intent. To

mitigate this threat, we provided the artefact model along with a definition of the elements and

relationships in the instrument. We also briefed the model individually prior to assessment and

were available for clarification during the study. There were no clarification incidents.

5.7.2 Internal Validity

Threats to internal validity are concerned with confounding factors that may have influenced

causal relationships in the study. Because our study does not involve causal relationships, this

threat does not arise in the study.

5.7.3 External Validity

External validity is concerned with generalisability of the artefact model. Of course, with ten

participants, we cannot claim strong generalisability across a large body of Big Data software

development projects. However, the varied sources from which we have constructed the model

(i.e., literature, expert opinion, and Big Data projects) give a first solid basis for applicability

of the model in other projects. Regardless, the user is recommended to exercise caution when

using the model in a real-life project.
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5.7.4 Reliability

Reliability is concerned with whether the study can be repeated by other researchers and lead

to the same results. This threat does exist for several reasons. For example, the participants

background and experience would likely differ in another study and hence may induce variation

in the results. Also, the questions in the instrument may be interpreted with variability. This

threat was mitigated by using guidelines for instrument creation [35]. Also, the instrument was

reviewed by all the three authors independently and any differences were resolved in consensus

meetings over several iterations to ensure clarity and correctness. Another threat to reliability

can result from the researchers subjective interpretation of the gathered data, leading to a biased

artefact model. We addressed this threat by ensuring that all the artefact model elements are

rooted in the scientific literature and data from actual Big Data projects. Also, we used thematic

coding, an established process for qualitative research.

5.7.5 Selection Bias

Selection bias is a possible threat in this study due to the use of convenience sampling for

selecting participants. Such bias can skew the resultant artefact model. However, practitioner

knowledge and experience from diverse real-world Big Data projects helps to mitigate this

threat.

5.7.6 Experience bias

Experience bias exists towards early period (1-4 years) of the participants in Big Data systems

in industry. This threat remains at the early stage of the field of Big Data, but we hope that

participants in the future studies on the artefact-model will have gained further experience to

minimise this type of bias.
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5.7.7 Conclusion Validity

Threats to conclusion validity are concerned with whether conclusions are traceable to the

findings [34]. This threat is considered contained since all the conclusions presented are shown

to have been rooted in specific sections of this chapter.

5.8 Summary

Whereas much attention has been given to analytics concerning Big Data, little amount of atten-

tion has been invested in the development of software applications and services leveraging Big

Data. This situation is also reflected in the field of RE where domain models, processes, meth-

ods, techniques and tools have not yet embraced Big Data in a significant way. To ameliorate

this situation, in 2017, we had created a preliminary RE artefact model to aid the development

of Big Data software applications [13].

In this chapter, we describe how we have taken the early result to the next level by having

the model validated by ten third-party practitioners from diverse Big Data software develop-

ment projects. Specifically, the model was validated on its qualities such as: accuracy, com-

pleteness, usefulness, and generalisability (see Section 4). This chapter gives details of the

validation study, such as descriptive statistics of the study participants and application domains

in industry (see Subsection 4.1); data gathered and analysed (see Subsection 4.2); and the re-

sultant, improved, artefact model (see Figure 2, Section 5). The validation results indicate

that the model captures the key RE artefacts and relationships of a Big Data software develop-

ment project, currently lacking in the literature. The validation results also confirm consensus

amongst the study participants regarding the usefulness and applicability of the model in prac-

tice (see Table 5, section 4).

5.9 Chapter Addendum

In this chapter addendum, we describe some additional items:
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— In section 5.4.1 of this chapter, we described the model evaluation process composed

of four phases. Phase 3 consisted of the Qualitative analysis - thematic coding [17] -

of feedback from Phase 2 and data from industry projects (requirements artefacts). In

this addendum, We then, present some of the descriptive information (see Table 5.10)

concerning the Big Data industry projects and examples of artefacts that were used to

guide the model improvement process.

— In addition to the graphical representation of the Big Data Requirements Engineering

Artefact Model (BD-REAM), we also represent it in a tabular form as described in Table

5.11.

Table 5.10: Descriptions of artefacts inter-relationships

Project 1: Big Data Grapes
Description: The Big Data Grapes project aims to develop and demonstrate powerful data pro-
cessing technologies that will increase the efficiency of companies that need to take important
business decisions dependent on access to vast and complex amounts of data. To catalyse
the creation of a data ecosystem and economy that will increase the competitive advantage of
companies that serve with IT solutions these sectors. It specifically tries to help companies
across the grapevine-powered value chain ride the Big Data wave, supporting business decisions
with real time and cross-stream analysis of very large, diverse and multimodal data sources.

Example of Artefacts of this project: D2.1: Use Cases & Technical Requirements Specifica-
tion; D2.3: BigDataGrapes Software Stack Design; D3.1: Data Modelling and Linking Components;
D3.2: Data Ingestion and Integration Components; D6.1: Integrated Software Stack and APIs.
The complete list of artefact can be seen at: http://www.bigdatagrapes.eu/deliverables

Project 2: Big Data Stack
Description: The Big Data Stack project aim to deliver an infrastructure manage-
ment system for the holistic management of computing, storage and networking re-
sources, encompassing techniques for runtime adaptations of all BigDataStack operations.

Example of Artefacts of this project: D2.4 - A conceptual model and refer-
ence architecture in BigDataStack; D2.2 - Requirements & State of the Art Analy-
sis II; D5.1 - Dimensioning, Modelling And Interaction Services Of BigDataStack.
The complete list of artefact can be seen at: https://bigdatastack.eu/deliverables

Project 3: Big Data Ocean

http://www.bigdatagrapes.eu/deliverables
https://bigdatastack.eu/deliverables
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Description: The BigDataOcean project strives to capitalize on modern technological innovations, utiliz-
ing them to revolutionize the way maritime-related industries work. The maritime sector, which is quite
traditional and slow-moving, and has historically been unorganized and fragmented, is ripe for the intro-
duction of innovations such as the big-data-driven economy, interrelated data streams from diverse sec-
tors and languages, and cross-technology innovations that deliver data in several different formats (such
as structured and unstructured, or real-time and in batches). These innovations will enable the creation
of an entirely new value-chain, which will lead to great economic, societal, and environmental impact.

Example of Artefacts of this project: D2.1 Analysis Report on Big Data Components, Tools
and Methodologies; D4.1 BigDataOcean Technology Requirements and User Stories; D4.4 Big-
DataOcean Platform Architecture, Components Design and APIs v3.00; D4.5 BigDataOcean
Final Platform Architecture, Components Design and APIs; D7.3 BigDataOcean Business Cases;
D3.3 BigDataOcean Cross- Sector Semantics,Analytics and Business Intelligence Algorithms.
The complete list of artefact can be seen at: http://www.bigdataocean.eu/site/deliverables/

Project 4: Big Data Special
Description:The SPECIAL project is motivated from the need for a simplified personal data
management that complies with the General Data Protection Regulation (GDPR). The SPECIAL
project addresses the contradiction between Big Data innovation and privacy-aware data pro-
tection by proposing a technical solution that makes both of these goals realistic. SPECIAL
allows citizens and organisations to share more data, while guaranteeing data protection com-
pliance, thus enabling both trust and the creation of valuable new insights from shared data.

Example of Artefacts of this project: D1.1 Use case scenarios V1 (M5); D1.2 Le-
gal requirements for a privacy enhancing Big Data V1 (M6); D1.4 Technical re-
quirements V1 (M8); D3.5 Scalability and Robustness testing report V2 (M27).
The complete list of artefact can be seen at: https://www.specialprivacy.eu/publications/public-
deliverables

Project 5: Big Data Europe
Description:Big Data Europe will undertake the foundational work for enabling European companies
to build innovative multilingual products and services based on semantically interoperable, large-scale,
multi-lingual data assets and knowledge, available under a variety of licenses and business models.

Example of Artefacts of this project: 3.2: Technical Requirements Specifications
Big Data Integrator Architectural Design I; 3.3:Big Data Integrator Deployment
and Component Interface Specification; 3.5: Big Data Platform Requirements, Ar-
chitecture and Usage; 5.2: Domain-Specific Big Data Integrator Instances I.
The complete list of artefact can be seen at: https://www.big-data-europe.eu/results/

http://www.bigdataocean.eu/site/deliverables/
https://www.specialprivacy.eu/publications/public-deliverables
https://www.specialprivacy.eu/publications/public-deliverables
https://www.big-data-europe.eu/results/


Table 5.11: Tabular Representation of the Post-validation version of the BD-REAM 
 
Artefact Relation  Cardinality Artefact 
Business Case Is-composed-of 1..* Business Goals 

Business Models 
Business Plan 
Consumer Needs 
Stakeholders Needs 
Project Definition 

Software Requirements Specifications Is-Composed-of 1..* Functional Requirements Specifications 
Non-functional requirements Specifications 
Big Data Requirements Specifications 

Big Data Requirements Specifications Is-Composed-of 1..* Big Data Processing Requirements 
Specifications 
Big Data Consumer Requirements 
Specifications 

Non-software Requirements Specifications Is-Composed-of 1..* Data Requirements Specifications 
Big Data Source Requirements Specifications 
Infrastructure Requirements Specifications 
External Interface Requirements 
Specifications 

Systems Requirements Specifications Contains 1..* Analysed Requirements 
Prioritised Requirements 
Negotiated Requirements 

Data Requirements Specifications Contains 1..* Data Requirements 
Data Modelling and Linking Details 

Infrastructure Requirements Specifications Contains 1..* Infrastructure Requirements 
External Interface Requirements 
Specifications 

Contains 1..* External Interface Requirements 

Technological Requirements Specifications Contains 1..* Data Collection Technological Requirements 
Data Storage Technological Requirements 
Data Processing Technological Requirements 
Data Visualization Technological 
Requirements 
Data Management Technological 
Requirements 
Integration Plan 

Functional Requirements Specifications Contains 1..* Functional Requirements 
Non-functional Requirements 
Specifications 

Contains 1..* Non-Functional Requirements 

Big Data Processing Requirements 
Specifications 

Contains 1..* Big Data Processing Requirements 

Big Data Consumer Requirements 
Specifications 

Contains 1..* Big Data Consumer Requirements 

Software Requirements Specifications Is-Part-Of 1..1 Systems Requirements Specifications 
Non-Software Requirements Specifications Is-Part-Of 1..1 Systems Requirements Specifications 
Software Requirements Specifications Assist-In 1..1 Systems Architecture and Design 

Components Abstractions 
Non-Software Requirements Specifications Assist-In 1..1 Systems Architecture and Design 

Components and Abstractions 
Non-Software Requirements Specifications Is-derived-from 1..* Big Data Scenarios 
Non-Software Requirements Specifications Is-derived-from 1..* Quality Attributes Scenarios 
Software Requirements Specifications Is-derived-from 1..* Big Data Scenarios 

Software Requirements Specifications Is-derived-from 1..* Quality Attributes Scenarios 
Application Domain Knowledge Used-in 1..1 All entities within the red boundary (see 

Figure 5.4) 
Constraints Used-in 1..1 All entities within the red boundary (see 

Figure 5.4) 
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Chapter 6

An Approach for Modelling Quality
Requirements for Big Data Applications

6.1 Introduction

Requirements Engineering (RE) is considered to be of foundational importance in software

development [1]. RE provides ways for understanding the needs and desires of the customers

and users, for assessing the feasibility of a project, for negotiating solutions, for analysing

and specifying the requirements of the proposed solution, for prioritising among the require-

ments for implementation, for validating the requirements, and for managing the requirements

throughout the systems life-cycle [2].

Now that Big Data is on the scene, one can argue that, due to added complexity, the role of

RE is even more critical in the creation and evolution of Big Data-oriented applications. These

applications, like traditional applications, serve customers and end-user needs except that we

expect improved, even different, experience from the system as it leverages the underlying Big

Data to provide responses. However, as yet there is no recognisable body of RE knowledge

concerning the development of such hybrid applications. Moreover, quality demands in the de-

sign of such applications are higher than in traditional software applications [3] design due to

not only the specific data characteristics (also known as the V characteristics: volume, velocity,

101
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veracity, and variety) and the exponential increase of data sets and data rates but also due to the

fact that Big Data applications are complex solutions composed of dynamic components such

as distributed computation nodes, networks, databases, middleware, and business intelligence

layer [4]. Not surprisingly, some researchers have discussed quality attributes such as perfor-

mance, security, privacy, scalability, portability, and reliability [5] in the context of Big Data

applications whereas some others have highlighted challenges posed by Big Data in the de-

velopment of software applications, e.g.: data inconsistency, inadequate resources, scalability

constraints [6]; security risks and predicting threat sources in real-time [7]; transparency and

individual consent [8] dynamic changes in requirements [9], verifiability of Big Data systems

requirements [10] to name a few. Quality demands are represented in form of quality require-

ments (also known as non-functional requirements) which can be specified in natural language

and modelled using diagrams and visualisations techniques.

Problem Statement and Principal Idea. The Big Data characteristics pose serious chal-

lenges to achieving high system quality standards for security, performance, scalability, privacy

and other quality requirements [11]. However, while requirements engineering (RE) has long

been recognised as critical for downstream development of computer systems [12], the entire

field is basically passive about how to deal with characteristics of data in the RE process in

the development of Big Data software applications [11]. This raises the question as to the

extent to which the Big Data challenges are addressed in the solution design. Thus, in this

chapter, we describe a goal-oriented approach for modelling quality requirements for Big Data

applications that incorporates both Big Data characteristics (e.g., volume, velocity, veracity,

and variety) and traditional systems quality attributes (e.g., scalability, performance, security,

etc.) (see Section 6.3). The proposed approach is composed of five systematic steps organized

into two phases: (i) Pre-modelling which consists of analysing requirements statements from

several requirements sources (e.g., stakeholders, workshops, scenarios, etc.) with the aim to

extract requirements relevant information (e.g., goals, quality attributes, data characteristics,

etc.); and the (ii) modelling phase which consists of using the extracted information to build

the goal models.

As proof of concept, we utilised requirements descriptions from real-world Big Data soft-

ware development projects to demonstrate the feasibility of the proposed approach (see section
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6.5). Our feasibility analysis indicates that it is possible to specify - through modelling - qual-

ity requirements that integrate both Big Data characteristics and traditional systems quality

attributes, aiding in more complete requirements specifications which, in turn, may assist in

creating quality Big Data software applications.

Significance of Research and Contributions. Requirements specifications are critical for

downstream software development [12]. Proper requirements representation facilitates com-

munication of requirements and translation into systems design [13]. However, concrete ways

of specifying quality requirements for Big Data software applications are still lacking [9, 11].

The proposed approach is unique and, thus, should add to current RE knowledge base in the

context of Big Data applications.

The contributions of this chapter are fivefold: (i) systematic process for specifying quality

requirements for Big Data applications; (ii) a template for logging requirements information;

(iii) checklists; (iv) a Big Data goal-oriented requirements language; and (v) a prototype tool

that implements the proposed Big Data requirements language;

Chapter Structure. Section 6.2 discusses the related work. Section 6.3 described the

QualiBD approach. Section 6.4 described the prototype tool. Section 6.5 presents the feasibil-

ity analysis of the proposed QualiBD approach. Finally, Section 6.6 summarises the chapter

and provides recommendations for further work.

6.2 Related Work

Scientific research aimed at understanding the elicitation, specification, modelling, analysis,

prioritisation and management of Big Data system requirements (both functional and non-

functional) is still in its early stages. However, there has been an emerging effort to further

contribute to the process of engineering Big Data Software Applications.

Some researchers have focused on discussing the characteristics and requirements of Big

Data Analytics applications focusing on data acquisition, preservation, pre-processing, pro-

cessing and visualization [14] as well as requirements engineering challenges in the context

of Big Data systems [4, 10, 15, 16]; whereas some other researchers have focused on defining
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RE collaboration process models [17]; data-mining approaches for semi-automatic require-

ments elicitation for data analytics [18]; user requirements based service identification [19];

RE artefact-models for Big Data software development projects [20, 21]; and processes for

handling both privacy and performance requirements in user stories for Big Data projects in

scrum [22].

Alternatively, some research has focused on the specification and modelling of Big Data

systems requirements. For example, in [11], it is introduced the idea of intersecting a Big Data

characteristic (e.g., volume, velocity, etc.) with a quality attribute (e.g., security, performance)

in the requirements description, thus, guaranteeing that Big Data characteristics are addressed

in the specification of quality requirements.

In [23], while no specific domain language was proposed, the authors defined four gen-

eral requirements for Big Data systems (e.g., huge databases capacity, fine database perfor-

mance, quality and structure of the data, and privacy and security) and modelled them using

i* and KAOS, which are general-purpose modelling languages. However, we found that the

four generic requirements defined in this paper do not represent the spectrum of general Big

Data systems requirements. Big Data systems are complex systems composed of distributed

computation nodes, networks, processing models, analytics models, middleware, and business

intelligence layers [4,15]. Their requirements go beyond database related quality requirements.

Moreover, the authors claimed that the resultant models can then be used as references in the

modelling of both generic functional and quality requirements for Big Data software systems.

Still, there is no empirical evidence regarding the usefulness and generalisability of the mod-

elled requirements.

In [24], privacy extensions to UML use cases diagrams to help software engineers to visu-

alize privacy requirements as well as to design privacy into Big Data applications is proposed.

This solution is implemented as MS Visio extension ribbon in Visual Studio. The authors

argued that these extensions to UML help software engineers to visually and quickly model

privacy requirements in the analysis phase of the RE process. As a proof of concept, a proto-

type was created to show the usefulness of the extension and how it can be used to model the

privacy requirements for Big Data systems in the domain of healthcare. However, while the

tool proposed in [24] provides a step towards incorporating privacy annotations in the UML
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use case diagrams, it does not provide information about the requirements themselves in the

context of Big Data.

6.2.1 Discussion

Finally, the approach proposed in this chapter and described in the following sections differs

from the works described in this related work analysis in four ways:

— We provide a systematic way for specifying Big Data quality requirements that incorpo-

rate Big Data characteristics and traditional systems quality attributes, resulting in more

complete requirement specifications.

— The proposed approach also enables the identification of possible solution alternatives to

address the identified quality requirements.

— We propose a Big Data domain specific goal-oriented modelling language the allows the

representation the systems quality requirements easily in a graphical manner.

— We created a prototype tool that implements the proposed requirements language realis-

ing the use of the proposed approach.

6.3 The QualiBD Approach

In this section, we describe QualiBD, an approach that enables the specification, through mod-

elling, of Big Data quality requirements that incorporate traditional systems quality attributes

(such as latency, scalability, and confidentiality) and Big Data characteristics (such as volume,

velocity, variety, and veracity) on the same requirement representation.

The QualiBD approach is composed of a systematic process, requirement logging tem-

plate, checklist, Big Data requirements language, and prototype tool. Also, it is organised into

two phases: (i) pre-modelling (one focuses on the identification and specification (in natu-

ral language) of systems quality requirements), and (ii) modelling (one focuses on modelling

the encoded quality requirement from the pre-modelling phase). The requirements language
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proposed as part of the QualiBD Approach was built upon the concepts of the Softgoal in-

terdependency (SIG) graph of the NFR framework [25]. It was intentionally designed to be

simple and easy-to-use. Thus, supporting the basic elements necessary to address the main

goal of this research which is to specify quality requirements for Big Data applications that

incorporate both data characteristics and systems quality attributes in the same requirement

representation.

6.3.1 Concepts and Assumptions

In this subsection, we describe the concepts and assumptions underlying the QualiBD ap-

proach.

Goals. Goals are statements of intentions and desired outcomes of a system under consid-

eration [26]. Goals can be considered as functional and non-functional (usually representing

functional and non-functional requirements, respectively). In the QualiBD approach, we use

goals as the main guiding concept in defining specifications of Big Data quality requirements

and their associated solution alternatives.

Permutations and Permutations Attributes. Permutation is the conjunction of one or

more Big Data characteristic (e.g., volume, velocity, etc.) with one or more quality attributes

(e.g., performance, scalability, privacy, etc.) [11]. Examples of permutations are: Velocity

x Latency; Volume x Scalability; Veracity x Security x Performance. In such permutations

are attributes with specific values. Example values are: Data format (e.g., unstructured data,

structured data, and Semi-structured data) and quantitative information (response time of 1.5

seconds, latency of 0.5-2.0 seconds, and throughput of 1TB of data per 30 minutes). The pur-

pose of such a permutation in RE is to capture both Big Data attribute (s) and traditional quality

attribute (s) in one requirement. It is possible that a Big Data characteristic may intersect with

more than one quality attribute (e.g., veracity x security x performance), as multiple quality at-

tributes can impinge on a given system component. This facilitates capturing of more complex

conditions of quality/data.

Assumptions. The QualiBD approach was designed underlying the following assumptions:

— The approach requires the user (e.g., requirements analyst, business analyst, solutions
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architect, etc.) to have knowledge about the application domain, Big Data and technolo-

gies.

— Big Data characteristics are treated as attributes that along with traditional quality at-

tributes pose constraints to the operation of the system.

— The Big Data system project is characterised by at least one Big Data characteristic and

a set of quality attributes to be addressed in the design of the solution, allowing for the

creation of attributes permutations, the main concept introduced in this approach.

In section 6.3.2, we first describe the overall process of the QualiBD approach. Then, in

Section 6.3.4, we describe our its proposed goal-oriented requirements language.

6.3.2 Overall process of the QualiBD Approach

The QualiBD approach, goal-oriented, is composed of five steps organised into two phases:

(1) pre-modelling phase, which comprises a systematic process for reasoning about Big Data

quality requirements that incorporate both data characteristics and quality attributes in order

to determine the candidate solutions to fulfil a given requirement; and (2) modelling phase,

which consists of an easy-to-use goal-oriented modelling language to support the graphical

representation of the identified requirements. Figure 6.1 depicts the process.

Figure 6.1: Process overview of the proposed approach

With reference to figure 6.1:
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— Step 1: Analyse initial system requirements statements and identify goal(s): consists

of the analysis of initial systems behavioural descriptions from different sources (e.g.,

scenarios, systems vision, domain properties, interviews, etc. [2]) in order to identify

requirements statements and their associated goals, Big Data characteristics and quality

attributes.

— Step 2: Define permutations of attributes: consists of defining the permutations based

on the defined goal and its associated Big Data characteristic (s) and quality attribute

(s). Referred to in this chapter as Data Characteristic and Quality attributes permutation.

While identifying the permutations, it is important to make sure that the permutations

relate to the requirement description and goal identified in Step 1.

— Step 3: Identify solution alternatives followed by rationale: brainstorming and definition

of possible solution alternatives based on the analysis of the requirement description, its

associated goal (s), and permutations. A rationale should follow each identified solution

alternative.

— Step 4: Encode the requirements specification using the proposed templates: consists of

formalising the information analysed so far using the proposed requirements specifica-

tion template (as depicted in Figure 3) that will later be used as input in the modelling

phase.

— Step 5:Model the specified requirements using the goal-oriented modelling language:

this step consists of translating the encoded Big Data quality requirements (from step 4

of the pre-modelling phase) into goal model elements.

6.3.3 Checking for consistency while transitioning between phases

In order to minimise errors while identifying and logging the requirements information (e.g.,

goal, permutations, permutation attributes, etc.) needed for use in the modelling phase, we pro-

pose a checklist to be used within the process described in Section 6.3.2. In RE, checklists are

powerful tools that assist in understanding various RE sub-processes and activities. In eliciting
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and documenting systems requirements, checklists can be used to measure the completeness,

accuracy, and efficiency of such requirements specifications [27]. In Figure 6.2, we describe

the checklist for checking the completes and accuracy of the encoded quality requirements.

This checklist is to be used at the end of Step 4 in the Pre-modelling Phase.

Figure 6.2: Checklist for the completeness and accuracy of the encoded quality requirement

6.3.4 The Big Data Goal-oriented Requirements Language

In the following subsequent sections, we describe the proposed Big Data goal-oriented re-

quirements language (part of the QualiBD Approach) to translate the encoded Big Data quality

requirements (from step 4 of the pre-modelling phase) into model elements.
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The Model Elements

The proposed Big Data goal-oriented requirements language consists of the following mod-

elling elements: Goal, NFR Soft-goal, Big Data Characteristic, Permutation, Permutation At-

tributes, Operationalising Soft-goal, Claim Soft-goal, Association Link, Permutation Link, Op-

erationalisation Link, Argumentation Link, Decomposition Links, and Contribution Links. The

aforementioned elements are further described in Figure 6.3.

Figure 6.3: Model Elements Description and Graphical Notation

The modelling elements described in Figure 6.3, interact to one another in the following

ways:
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— Goals are associated with one or more NFR Soft-goals and one or more Big Data Char-

acteristics.

— Refinements from Goals to NFR Soft-goals and Big Data Characteristics are done by an

Association Link.

— NFR Soft-goals and Big Data Characteristics are refined into a Permutation Container

by a Permutation Link.

— Permutation Containers can have zero or more Permutation Attributes. They are used to

further characterise the defined permutations.

— Refinement links are also used to connect the lower level (Operationalising Soft-goals)

nodes that represent solution alternatives to their parent node (Permutation Container or

refined NFR Soft-goal) through what we call a Decomposition link.

— Decomposition Links can also be used to decompose Operationalising Soft-goals into

more concrete Operationalising Soft-goals. For instance, an Operationalising Soft-goal

labeled encryption at rest can be refined by a Decomposition Link into more concrete

Operationalising Soft-goals such as (i) FFE File and Folder Encryption and (ii) VTE -

Vormetric Transparent Encryption.

— When possible, Operationalising Soft-goals should be accompanied by a Claim Soft-

goal, i.e., a short statement provided to support the solution alternative proposed in the

model (connected through an Argumentation Link).

— Once Operationalising Soft-goals are identified, then contribution links can be used to

express the contribution of one Operationalising Soft-goal to other nodes (such as NFR

Soft-goals or Permutation Containers).

How are the modelling elements graphically organised?

The modelling elements described in the previous section are graphically represented in levels

of abstraction as follows (see Figure 6.4 for reference):
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— Goal Level: The Goal element is represented.

— Big Data Characteristic and Quality Attribute Level: We represent the Goals associated

Big Data characteristics and NFR Soft-goals elements that allows for the definition of

permutations of data characteristic and quality attributes.

— Permutation Level: all the possible permutations identified are expressed in this level.

— Operationalisation Level: Operationalising Soft-goal refinements that represent require-

ments solutions are expressed in this level. They are derived either from an NFR Soft-

goal (when there is no permutation with a Big Data characteristics) or from the Permu-

tation Container (when there is a permutation of a Big Data characteristic with a quality

attribute).

Illustrative Example

In this section, we describe a scenario requirement and its corresponding modelled quality

requirement to illustrate the usage of the QualiBD approach.

Consider the following scenario (adapted from [11]): “Project A aims to develop a Big

Data-based earthquake real-time monitoring application. The solution should be able to dis-

tinguish natural from induced seismicity and measure the impact of detected seismicity via real-

time ground motion measurements. The software application shall use a stream-processing

engine with a latency of 0.5 2.0 seconds to respond to data in real-time between global earth-

quake sensors and the data centre. The application shall be able to deal with unstructured

data (such as sensor and program logs). It is expected that the monitoring results would be

displayed in a real-time dashboard that allows for different types of data visualisation...”

From the analysis of this information, we derive the following requirement information:

— Requirement Description: The system shall use a stream-processing engine with a la-

tency of 0.5 - 2.0 seconds to respond to data in real-time between global earthquake

sensors and the data centre.

— Goal: To process sensor data in real-time.



6.3. The QualiBD Approach 113

— Big Data characteristic: Velocity.

— Quality Attribute: Latency.

— Permutation: Velocity x Latency.

— Permutation Attributes: Streaming of unstructured data; Latency of 0.5-2.0 seconds.

Based on the derived requirements information, one identifies solution alternatives (Oper-

ationalising Soft-goals) and their corresponding rationale (Claim Soft-goals), e.g.: (i) Samza,

(ii) Storm), and (iii) Spark. This information would then be used to model the requirement, as

depicted in Figure 6.4.

Figure 6.4: Example of a Big Data quality requirement modelled using the proposed QualiBD
approach.

Depicted in this Figure: On the left, the requirement specified in natural language and encoded using the template
proposed in this chapter. On the right, the same quality requirement modelled using the described Big Data goal-
oriented modelling language organised by levels of description.
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Considerations for using the QualiBD Approach

— The approach can be used to model either individual requirements or multiple require-

ments if the aim is to create a catalogue of quality requirements for the project.

— The modelling of multiple requirements on the same diagram could result in a large

diagram with several connections that, in turn, would add complexity to the final speci-

fication.

— To avoid repetition of elements in the diagram - when modelling multiple quality require-

ments - one Big Data Characteristic and one NFR Soft-goal can be associated to one or

more parent nodes (Goal).

— Identified solutions alternatives (Operationalising Soft-goals) are better defined if ac-

companied by a rationale (Claim Soft-goal).

— The modelling of requirements with multiple permutations allows for the analysis of the

impact of one operationalisation on different parenting nodes (permutations).

— Please note that, in this chapter we use scenarios to illustrate our approach. However,

the necessary modelling information (extracted using the process proposed in the pre-

modelling phase in Section 6.3.2) can be identified from several sources (e.g., use-cases,

interviews with stakeholders, workshops, etc.) at the discretion of the project.

6.4 Tool Support

In this section, we describe QualiBD, a modelling tool that implements the described goal-

oriented requirements language (see Section 6.3.4). We first present features supported by the

proposed modelling tool, and then we briefly discuss the technologies and frameworks used in

the tool definition.
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6.4.1 Tool Features

The modelling tool facilitates graphical modelling of Big Data application requirements in the

style of WYSIWYG paradigm [28]. This includes drag and drop features and editing of entities

and relationships in the model. Automatic labelling of a permutation containers (based on

parent node labelling) simplifies model creation. In addition, currently, there are rudimentary

analysis capabilities such as raising caution when there are: missing or duplicate relations in

the model; missing labels; and permutation containers without permutation attributes.

6.4.2 Tool Implementation

The implementation of the QualiBD tool consisted of two phases: (i) modelling and code

generation; and (ii) graphical editor definition. For the former, we used the Eclipse Modelling

Framework (EMF), a modeling framework for building tools and applications based on a struc-

tured data model [29]. For the graphical modelling definition, we used Sirius [30], an Eclipse

project that enables the creation of graphical modelling workbenches by leveraging the Eclipse

Modelling technologies. Figure 6.5 depicts the frameworks used in this chapter and shows how

they interact with one another.

Figure 6.5: Overview of the frameworks used in the prototype tool creation



116 Chapter 6. The QualiBD Approach

With reference to Figure 6.5: On the EMF side, we define the domain model (lower

left quadrant of the figure) and create a concrete instance of that model that is dynamically

interpreted using the runtime system within the Eclipse IDE environment (lower right quadrant

of the figure). On the Sirius side, we design the modelling tool (top left quadrant of the figure)

by defining all modelling elements, behaviour attributes, java services, validation expressions,

navigation tools, and the graphical attributes of the model. The modelling tool references the

domain model defined in EMF. The Graphical representation (top right quadrant of the figure)

of the model is created using the defined modelling tool. The graphical representation is the

modelled quality requirement in the QualiBD tool. It represents the data (lower right quadrant

of the figure) that is the concrete instance of the defined domain model. Finally, the data

conforms with the domain model defined in EMF.

The graphical user interface of the QualiBD tool is depicted in Figure 6.6. Further details

on the implementation of the QualiBD tool can be found in Appendix D.

Figure 6.6: QualiBD Tool Graphical User-Interface

This figure depicts: A) Sirius Design project where the nodes, tools, and behaviour attributes of the modelling
tool are defined; B) Eclipse project that creates a concrete instance of the defined Ecore domain-model; C) Tool
canvas where models can be created, edited and deleted; D) Portion of the palette tool that allows end-users
to create instances of model elements; E) Portion of the palette tool that allows end-users to add permutation
attributes to permutation containers; F) and G) Portions of the palette tool that allow end-users to define the types
of refinements (relations) supported by the QualiBD tool.
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6.5 Validation Case Studies

In [31], Shaw describes several types of validation in software engineering research: (a) by

analysis; (b) by experience; (c) by example; (d) by evaluation; (e) by persuasion; and (f) by

blatant assertion. Shaw also explains that the type of validation needs to be appropriate for the

type of research contribution. For instance, validation by experience would be suitable for re-

search results that have been used in practice by someone other than researcher. Likewise, for

the specification approach and modelling tool that we describe in this chapter, one appropriate

validation procedure is by example which aims to exemplify the use of the proposed approach

in a “slice of life” example based on real system projects [31]. We then used fragments of sce-

narios and requirements adapted from real-world Big Data applications development projects

to demonstrate the feasibility of the QualiBD approach and described in the subsequent sub-

sections.

6.5.1 Case 1

Consider the following short scenario adapted from [32]: “Project A aims to develop and de-

liver a complete high-performant stack of technologies addressing the emerging needs of data

operations and applications. The stack must be based on an infrastructure management system

that drives decisions according to data aspects thus being fully scalable, runtime adaptable and

performant for Big Data operations and data-intensive applications. The distributed storage of

the platform must scale according to the usage in terms of volumes of data. The systems shall

be able to store structured and non-structured data captured from different data sources...”

Based on the scenario, one derives the requirement description and its associated Goal, Big

Data characteristic (s), and Quality Attribute (s). Based on the derived information, one defines

the possible permutations of Big Data characteristic (s) and Quality Attribute (s) and their cor-

responding Permutation Attributes. Then, solution alternatives (Operationalising Soft-goals)

and their corresponding rationales (Claim Soft-goals) are identified as depicted in Figure 6.7.

The logged requirement information would then be used as an input to model the requirement

using the QualiBD Tool, as depicted in Figure 6.8.
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Figure 6.7: Big Data quality requirement encoded using the QualiBD Approach and its corre-
sponding checklist document (Case 1).

Figure 6.8: Big Data quality requirement modelled using the QualiBD Tool (Case 1).
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6.5.2 Case 2

Consider the following scenario adapted from [33]:

“Project B aims to develop technology that supports the acquisition of user consent that

caters for privacy-aware, security workflows to provide a dashboard with feedback and control

features. The idea is to allow citizens and organisations to share more data, while guaranteeing

data protection compliance, thus enabling both trust and creation of valuable new insights from

shared data. The solution must be performant and scalable, this means, it must be capable of

handling a vast amount of data, while keeping response times within a reasonable time range.

Acceptable response time would be between 0.5 and 1 seconds. Additionally, mechanisms will

be implemented to limit the amount of data displayed. This contributes to the usability of the

dashboard, and indirectly, to the performance of the solution in terms of response time. The

system must also guarantee a high level of confidentiality (security) since it is used to access

its users sensitive personal data...”

From this scenario, one derives the requirements descriptions and their associated Goal

(s), Big Data characteristic (s), and Quality Attribute (s). Based on the derived information,

one defines the possible permutations of Big Data characteristic (s) and Quality Attribute (s)

and their corresponding Permutation Attributes. Then, solution alternatives (Operationalising

Soft-goals) and their corresponding rationales (Claim Soft-goals) are identified.

In the context of the aforementioned scenario, several requirements could be identified,

from which two are described in this section. The first quality requirement (depicted in Fig-

ures 6.9 for the specification in natural language and 6.11 for the modelled requirement) is

characterised by the following attributes: response time, usability and volume of unstructured

data. The second quality requirement (depicted in Figures 6.10 for the specification in natural

language and 6.12 for the modelled requirement) is characterised by the following attributes:

confidentiality and volume of unstructured data.

Further analysis performed on the described scenario led us to the identification of three

different types permutations for the first quality requirements (Volume x Response Time [ap-

plication]; Volume x Response Time [storage]; and Volume x Usability [application]) and one

permutation (Volume x Confidentiality) for the second quality requirement.
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Figure 6.9: Big Data quality requirement encoded using the QualiBD Approach and its corre-
sponding checklist document (Case 2 -Requirement 1 )

Figure 6.10: Big Data quality requirement encoded using the QualiBD Approach and its cor-
responding checklist document (Requirement 2 - Case 2).
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Figure 6.11: Big Data quality requirement modelled using the QualiBD Tool (Case 2 - Re-
quirement 1).
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Figure 6.12: Big Data quality requirement modelled using the QualiBD Tool (Case 2 - Re-
quirement 2).

6.6 Summary

The basic premise of this emerging work is that traditional software applications can leverage

Big Data to enhance user experience with the systems responses. Currently, there is dearth

of work done in such hybrid systems. This chapter attempts to address this issue and focuses

on the what and the how of requirements for such applications. We described the QualiBD

approach (see Section 6.3) for modelling quality requirements for Big Data software applica-

tions. The proposed approach was built upon the concepts of the Softgoal interdependency

(SIG) graph of the NFR framework [25]. This allows us to bring existing theory and analysis

techniques to the domain of RE involving Big Data applications, thus, adding scientific rigour

to the approach.
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The QualiBD approach is composed of a systematic process, checklist, requirements infor-

mation logging template, a requirements language, and a modelling tool. It is organised into

two phases: (i) pre-modelling (one focuses on the identification and specification (in natural

language) of systems quality requirements), and (ii) modelling (one focuses on modelling the

encoded quality requirement from the pre-modelling phase.

To determine the feasibility of the proposed approach as a proof of concept - we have

used a set of systems scenarios descriptions extracted from real-world Big Data applications

projects structured as two case studies (see Section 4). Our feasibility analysis demonstrates

that it is possible to model Big Data quality requirements that integrate both Big Data charac-

teristics and traditional systems quality attributes, thus, aiding in more complete requirements

specifications.
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Chapter 7

Implications and Discussion

This chapter describes the implications and provides a discussion of the research reported in

this thesis. In Section 7.1, we describe the implications of the results of the chapters of this

thesis. Then, in Section 7.2, we discuss important complementary points concerning some of

the research contributions.

7.1 Implications

The research presented in this thesis has various implications for industrial practice, academic

research, and tool support. We briefly explain them as follows:

Industrial practice

— The proposed Big Data Artefact Model (BD-REAM) can aid in the: (i) definition of

project-specific RE processes; (ii) requirements elicitation; (iii) architecture design, serv-

ing as template for executive presentations; (iv) specification, validation and testing of

Big Data software applications; and (v) organisation of RE projects by providing a well-

defined structure of RE artefacts and relationships.

— The QualiBD approach would enable practitioners to decisively construct quality re-
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quirements using Big Data characteristics.

— The QualiBD tool would help in the specification of Big Data quality requirements

through modelling which, in turn, may aid in creating quality Big Data software ap-

plications.

— The resultant modelled quality requirements would allow practitioners to easily visualise

the identified solution alternatives to those requirements, that in turn, would aid in the

decision making process of the project and architectural design.

Academic Research

— Researchers can explore the identified RE challenges in creating and evolving Big Data

software applications with the aim to derive new research results addressing these chal-

lenges.

— The resultant Big Data RE Artefact model - with detailed elements and inter-relationships

- is new knowledge that adds significantly to the current RE knowledge base involving

the development of Big Data software applications.

— The proposed QualiBD Approach is novel and unique, thus, should also add to RE theory.

— Researchers can further validate the proposed Big Data RE Artefact model by performing

further empirical studies in industrial settings (and in different application domains).

Tool Support

— The proposed Big Data RE Artefact model (with detailed elements and inter-relationships)

can aid in creating traceability tools linking the artefacts.
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7.2 Discussion

Some of the chapters reported in this thesis have solution proposals as their core contributions.

In Chapter 5, for instance, we described a RE artefact model in the context of Big Data soft-

ware development projects. In Chapter 6, we proposed a systematic approach and a tool for

modelling quality requirements for Big Data applications. In this section, we assess these core

contributions, focusing mainly on their limitations and potential for improvement and applica-

bility to other project settings.

7.2.1 Big Data Requirements Engineering Artefact Model - BD-REAM

Applying the Artefact Model to Agile Projects

Because the BD-REAM is process agnostic and was defined in higher level of abstraction, the

artefact model can be easily refactored to serve projects that operate on an agile environment.

For instance, in agile projects, requirements are often expressed as user stories [1]. If you take

a close look at the BD-REAM, we have several entities (referred as to artefacts) that represent

the types of requirements within a Big Data project. Most types of requirements, regardless the

software development methodology, will occur in any project (e.g., systems architectural re-

quirements, infrastructure requirements, functional requirements, non-functional requirements,

etc.), whether they are well documented or not. In other words, the BD-REAM has a strong

focus on “what” and not on “how”. Thus, instead having an entity titled “Big Data Processing

Requirements Specification”, we could have (in an agile environments), “Big Data Processing

User Stories”. Instead of having “Business Case”, we would have “product vision statement”,

and so on. Then, other agile-related artefacts (such as product backlog, spring backlog, product

road-map) that have direct connection with RE would be added in the model, and new relation-

ships would be created, thus, resulting in an agile version of the Big Data RE artefact model.

This would be a much simpler process than defining the agile Big Data RE artefact model from

scratch.
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Defining Specific RE Process

In Chapter 5, Section 5.5.2, we stated that one of the advantages of having an RE artefact model

defined for the project is that it enables the definition and tailoring of specific RE processes.

For that purpose, one may add, for example, artefacts that represent completion status, decision

gates, checklists, and activities [2, 3]. The idea is that, in early phases of the project or during

the definition of the project, a draft of the artefact mode is created and used to define the

product life-cycle processes. As the project and product mature, the artefact model and defined

processes are constantly updated. Berench [2] proposes a set of activities that could be followed

in order to define RE specific processes from an artefact model as depicted in Figure 7.2.1 (for

reference only).

Figure 7.1: RE Activities for Process Creation (Adapted from [2])



7.2. Discussion 131

Analysing the Cost for Adopting the Artefact Model in Industry

While we did not perform any cost analysis of the adoption of the artefact model in industry

projects, we believe that the costs of adopting the model would be higher in cases where there

is already an established project, given that some re-work would be necessary to reorganise

the project artefacts according to the model’s structure. In cases where the project is in the

definition stage, the artefact model would be a valuable (and low cost) tool for guiding the

requirements elicitation process and providing a well defined structure of artefacts that would

aid in the overall organisation of the RE process within the project. Finally, Berenbach [2]

states that, in his experience, while the upfront costs of creating a model may appear high, it

was actually a very fast and cost-effective activity. Additionally, having project stakeholders

think about downstream artefacts, quality gates, and approval checklists can result in significant

improvements in the project [2].

Generalising the Artefact Model

One obvious limitation of artefact models is that one size does not fit all [2]. Although the

model proposed in Chapter 5 has been internationally validated by ten practitioners working

on ten different Big Data software projects, and further improved based on their feedback and

analysis of project data from seven additional Big Data software projects, it is still not widely

generalisable. For instance, an entity (artefact) depicted in the model, could be mandatory

on a large project with a more traditional software development process, but optional on a

medium-sized project, and not used at all on a small project [2]. However, given the validation

results and model improvement process, we are optimistic that the artefact model proposed in

this thesis would fit a wide range of projects with few modifications as described in Chapter

5, Section 5.5.2. Regardless, we recognise the need for additional empirical studies to further

determine the generalisability of the model (see recommendations for future work in Chapter

8, Section 8.2).
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7.2.2 The QualiBD Approach and Tool

Refining the Approach

The pre-modelling phase (see Chapter 6, Section 6.3.3) of the proposed approach currently

provides a relatively high-level guidance as to how to ensure that the necessary requirements

information to be used as input in the modelling phase is complete and accurate. At the mo-

ment, the approach handles this problem by providing a comprehensive checklist to be used

after or while logging the required information (e.g., goals, data characteristics, quality at-

tributes, etc.). In the future, automatic ways (e.g., natural language processing, machine learn-

ing techniques, etc.) for identifying the aforementioned information should be implemented

along with more sophisticated techniques for checking the completeness and accuracy of the

logged information.

Identifying Solution Alternatives

The identification of operationalising Soft-goals (used in the proposed QualiBD approach to

represent solution alternatives to fulfil a given requirement) depend very much on the domain

knowledge of the person performing the requirements specifications. Because of that, the qual-

ity and the extent to which the identified solution alternatives will in fact fulfil the requirement

might differ depending on the person performing the activity. It is important to note that this

is a “weak” point in most of the goal-oriented requirements engineering approaches. For in-

stance, the NFR framework [4] (framework QualiBD approach is based upon), recognises that

there is a gap between the NFR soft-goals and their associated solutions alternatives. Chung

et al., [4] further explains that in order to bridge this gap, one must perform analysis and deal

with a variety of factors (e.g, ambiguities, priorities, organisational needs, domain knowledge,

and technologies, to name a few). In other words, comprehensive domain knowledge is key for

the successful application of the approach. Nevertheless, in the future, we envision this process

being supported by a semi-automatic tool (with an ontology library and automatic reasoning,

for instance) that would help adding rigour to the approach as a whole.
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Why identifying solution alternatives while modelling quality requirements?

“The complexity of a software system is determined partly by its functionality i. e.,

what the system does - and partly by global requirements on its development or

operational costs, performance, reliability, maintainability, portability, robustness

and the like. These non-functional requirements (or NFRs) play a critical role dur-

ing system development, serving as selection criteria for choosing among myriads

of alternative designs and ultimate implementations. Errors of omission or com-

mission in laying down and taking properly into account such requirements are

generally acknowledged to be among the most expensive and difficult to correct

once a software system has been implemented”(Chung et al., [4]).

Stakeholders benefitting with the approach

As discussed in Chapter 6, the proposed approach supports the refinement of elements until an

operationalisation level is achieved. Operationalisation level elements can be represented by

several types of elements (representing design solutions, implementation ideas, patterns, etc.),

and serve as selection criteria for choosing among myriads of alternative designs, technologies

and ultimate implementations [4].

At a glance, the proposed approach can directly benefit two types of internal stakeholders

in the project: software architects, and developers. For software architects, the resultant graph

facilitates systems design through refinement lower levels (operationalising soft-goals) when

defining design solutions, often related to technological requirements. Likewise, for develop-

ers, the resultant graph facilitates the implementation phase through refinement lower levels

(operationalising soft-goals) when implementation elements are defined.

Using the Tool

Once the pre-modelling phase is completed and all required information is logged, one can

use it to model the requirement through the QualiBD Tool. Currently, this process is done

manually, which adds time to the process. In the future, we expect that the tool will have

a feature to read structured requirements information documents (using the template provided
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with our approach) to partially generate the requirements models, thus, speeding up the process

and mitigating possible user induced errors.

7.3 Summary

In this section, we described the implications that the results reported in this thesis have on

industrial practice, academic research, and tool support. Then, focusing on limitations and the

possibility of improvement and applicability to other project settings, we assessed the solutions

(e.g., the Big Data RE artefact model, and the QualiBD approach and tool) proposed in this

thesis. Although there are some definite limitations, the results of the research presented in this

thesis provide empirical evidence and help to form the foundation of RE involving Big Data

applications currently not thoroughly explored in the scientific literature.
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Chapter 8

Conclusions and Future Work

In this section, we present the conclusions and future work of this thesis. Subsection 8.1

presents our conclusions drawn based on the reflections of the empirical studies reported in

this thesis. Subsection 8.2 overviews directions for possible future work.

8.1 Conclusions

Practising Requirements Engineering (RE) is a complex and challenging task. It involves stake-

holders with diverse backgrounds and levels of knowledge, different application and technol-

ogy domains, it is expensive and error-prone, to name a few [1]. Recently, the emergence of

software applications operating upon Big Data (the so-called Big Data applications) has in-

troduced further complexities in the RE process. That is due to the fact that Big Data applica-

tions are complex solutions composed of dynamic components such as distributed computation

nodes, networks, databases, middleware, and business intelligence layers [2], and in part, due

to the lack of clarity in the RE literature and practices on how to treat Big Data and the “V”

characteristics (e.g., volume, velocity, variety, veracity, etc.) in the development of Big Data

applications.

As previously stated in this thesis, most of the focus in the field of Big Data software is on

data analytics and the development of algorithms and techniques to process and extract value
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from huge amounts of data [3]. In contrast, little research or industry practices focus on soft-

ware applications and services that utilise the underlying Big Data to enhance the functionality

and services provided to the end-users [2, 4]. In order to ameliorate the current situation, in

this thesis, we investigated a number of issues (such as RE research, challenges, practices, do-

main models, and requirements specification approaches) in RE involving Big Data software

applications.

In chapter 3, we reported on the results of Systematic Literature Review (SLR) conducted

with the aim to setting the current baseline in RE research involving Big Data Applications.

We ask three key questions represented by the following core points:

— (RQ1) activities in the RE process, types of requirements, and application domains;

— (RQ2) RE challenges;

— (RQ3) RE solutions.

The key findings relate to the following:

— (RQ1) RE activities, types of requirements (see Table 3.5), and application domains

targeted by the current state of the RE research involving Big Data applications (see

section 3.4.1)

— (RQ2) Eight RE challenges in creating/evolving Big Data software applications (see Sec-

tion 3.4.2 and Table 3.8 for details);

— (RQ3) Eighteen RE solutions identified (e.g., models, algorithms, tools, and processes)(See

Tables 3.6 and 3.7 for details).

The SLR results demonstrates that there has been little scientific research aimed at under-

standing the RE in the development of Big Data applications. An important observation, and

conclusion, made is that, currently, there is not a significant amount of research addressing RE

methods, tools, and processes for elicitation, negotiation, analysis, validation, prioritization

and management of requirements in the context of Big Data application development projects.

This, presents the scientific community with opportunities to conduct further research in this

topic (see Sections 3.5 and 3.7 for details).
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In chapter 4, we described an exploratory case study on a large-scale Big Data application

development project in Oil&Gas domain within a non-profit organisation with the aim to un-

derstand the current RE practices and challenges in such projects. We defined four research

questions represented by the following core points:

— (RQ1) Sources and Proportion of Big Data Requirements;

— (RQ2) RE practices and supporting tools for eliciting, documenting, analysing, and pri-

oritising systems requirements;

— (RQ3) The role of Big Data Characteristics and Technologies;

— (RQ4) RE challenges in creating Big Data applications.

The key findings relate to the following:

— (RQ1) 40% of the system’s requirements are considered Big Data-related from which

75% are identified from internal sources;

— (RQ2) 11 RE practices for elicitation, specification and modelling, analysis, and priori-

tisation of requirements;

— (RQ3) Big Data characteristics and technologies support the definition of system’s archi-

tecture;

— (RQ4) Five challenges in eliciting, documenting, and analysing Big Data related require-

ments were identified.

The results of the reported case study demonstrates that there is a lack of RE supporting

tools, RE patterns, and specific processes to support the engineering of Big Data applications.

Despite this limitation, practitioners try to adapt existing SE tools and methods to the needs

of such unique projects. However, this is not ideal. Thus, several research opportunities are

envisaged and described in Section 8.2.

In chapter 5, we attempted to shed some light on different types of artefacts and inter-

relationships involved in Big Data applications development projects, with particular focus on
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Requirements Engineering. This type of model can be used as a reference for the design of

project-specific processes [1, 5], software maintenance [1], and for supporting project deci-

sions throughout the entire product life-cycle [5]. The investigation was centered around the

following core points (CP):

— (CP1) Types of RE artefacts existing in Big Data applications development projects.

— (CP2) Inter-relationships that exist amongst the several types of RE artefacts in Big Data

applications development projects.

The key findings relate to the following:

— (CP1) 43 different types of RE artefacts identified from which 18 are Big Data related.

— (CP2) Six different types of inter-relationships and several cardinality characteristics

were identified.

Based on the analysed artefacts and their inter-relationships, we introduced a preliminary

version of a Big Data Requirements Engineering Artefact Model - BDREAM (see Figure 5.2

for details). The described BDREAM was validated internationally by 10 practitioners from

10 different Big Data applications development projects in industry (see Subsection 5.4.1 for

details). Following the validation study, and the analysis of data (artefacts) from Big Data appli-

cations projects in industry (see Table 5.10), we created an improved version of the BDREAM

(see Figure 5.4 for details). The BDREAM depicts artefacts grouped into three groups [6]: (i)

Business Needs artefacts; (ii) Requirements Specification artefacts; and (iii) Systems Specifica-

tion artefacts (see Section 5.6 for details). Based on the validation results, we conclude that the

proposed BDREAM captures the key RE artefacts and relationships of a Big Data applications

development project, currently lacking in the scientific literature. The validation results also

confirm consensus amongst the study participants regarding the usefulness and applicability of

the model in practice (see Table 5.4, Subsection 5.5.2).

Finally, in chapter 6, we explored requirements specifications in the context of Big Data

software applications. In particular, we investigated ways of specifying Big Data quality re-

quirements that integrate Big Data characteristics (such as volume, velocity, variety, and ve-
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racity) and systems’ quality attributes (such as scalability, performance, security, privacy, etc)

in the same requirement specification.

As a result of our investigation, we described an approach for specifying quality require-

ments for Big Data applications. The proposed approach is composed of a systematic process,

requirements logging templates, checklists, Big Data goal-oriented requirements language, and

a supporting tool. Our feasibility analysis (shown through the cases studies on three real-world

Big Data software projects, presented in Section 6.5) demonstrates that it is possible to specify

- through modelling - quality requirements that integrate both big data characteristics and tradi-

tional systems’ quality attributes, aiding in more complete requirements specifications which,

in turn, may assist in creating quality Big Data software applications.

8.2 Future Work

The empirical studies presented in this thesis provide important but preliminary knowledge

on RE involving Big Data applications development projects. Given the exploratory nature

of these studies, they opened up new avenues of scientific knowledge rather than confirming

any previous hypothesis or theories. Thus, there are several opportunities for future work. In

the following paragraphs, we describe these opportunities organised by the major contributions

made in this thesis.

— Empirical knowledge on RE practices in real-world Big Data Software Systems Projects:

it is important that additional empirical studies in industry are performed to obtain an

improved understanding of the RE activities in the development of Big Data applications.

Empirical studies would add significantly to the meagre knowledge base on RE involving

Big Data applications, which can improve processes and technologies and uncover more

facts that could lead to further research in this area.

— The Big Data RE Artefact Model (BD-REAM): (i) enhancement of the model embracing

new application domains, such as IoT (internet of things); (ii) empirical studies of the

application of the model in Big Data projects to further assess the models adaptability
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and generalisability; and (iii) cost analysis of adopting the artefact model in industry

projects.

— QualiBD Approach:(i) perform empirical evaluations within different Big Data applica-

tions domain projects in order to evaluate the generalisability of the proposed approach;

(ii) expand our feasibility analysis in order to determine whether the modelling rep-

resenting the permutation among multiple Big Data characteristics and various quality

attributes is viable; and (iii) define ways to semi-automate the steps involved in the pro-

posed approach (e.g., transformation of textual requirement descriptions into model ele-

ments).

— Big Data Requirements Modelling Language: (i) formal definition of the requirements

modelling language which, in turn, should help in the verification of the models gener-

ated using the QualiBD Tool.

— QualiBD Tool: (i) tool enhancement and use in practical projects; (ii) automatic gener-

ation of goal models from textual description of requirements; and (iii) scalability tests

(controlled experiments) in order to evaluate the proposed requirements language with

respect to the total number of goal elements supported by our modelling tool. [7]
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Appendix A

Instrument for Data Collection: Case
Study Questionnaire

In chapter 4, we reported on the results of an exploratory case study conducted on a large scale

Big Data application development project within the Oil&Gas domain. In this appendix, we

describe the instrument for data collection defined for this investigation. The semi-structured

questionnaire (presented in the next page) is composed of 26 questions organised into (a)

background, and (b) RE related questions. The later was designed according the the activities

in the RE process (e.g., Elicitation, Specification and Modelling, Analysis, and Prioritisation).
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Instrument for Data Collection 
Created by Darlan Arruda  

Reviewed by Nazim H. Madhavji 
Last version date: Nov 12nd, 2019. 

 

Background Questions 
 

About the companies and projects 
1. Number of employees in the company  
2. What is the core business of the company? 
3. What was the size of the project (in terms of team members)?  
4. How is it distributed? 

# of developers: 
# of requirements analysts/business analysts: 
# of data scientists: 
# of sw architect: 
# of data engineers: 
# of testers: 

5. What was your role in that project? 
 
About the software development process 

6. What development methodologies are used in the project (e.g., agile, spiral, waterfall, RUP, 
Iterative, prototype, mix of methodologies, etc.)? 

 
Requirements Engineering Related Questions 
Overall Requirements related Questions 

7. What are the types of big data-related requirements (e.g., infrastructure/platform 
requirements, data source requirements, data analytics requirements, data processing, 
technological requirements, data requirements, etc.) involved in your project?  

8. Typically, what proportion of all identified requirements are big data-related requirements? 
(answer to the best of your ability) 

1. 0-20% 
2. 21-40% 
3. 41-60% 
4. 61-80% 
5. 80%+ 

 
Requirements Elicitation related Questions 

9.  To what extent do you identify the big data-related requirements from external sources 
(answer to the best of your ability)? 

a) Not at all (0%) 
b) To a small extent (up to 25%) 
c) To a moderate extent (from 26% to 50%) 
d) To a great extent (from 51% to 75%) 
e)  To a very great extent (>75%) 
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10. To what extent are the big data-related requirements gathered from internally sources 
(answer to the best of your ability)?   

a) Not at all (0%) 
b) To a small extent (up to 25%) 
c) To a moderate extent (from 26% to 50%) 
d) To a great extent (from 51% to 75%) 
e) To a very great extent (>75%) 

11. Are big data technologies (e.g., tools for processing data, platforms, etc.) considered or 
identified at the stage of identifying systems requirements or are these decided upon later 
in the process? 

12. Please indicate the % of requirements identified upfront in the RE process and the % of 
requirements identified downstream during design/coding/testing. 

13. What, if any, are the challenges encountered in identifying big data-related requirements?  
 
Requirements Specification related Questions 

14. Do you specify (document) the software requirements? If so, do you also document Big 
data-related requirements in your project and, if so, please describe their format, standards 
followed (if any), support tools used, etc.?  

15. With respect to non-functional requirements (i.e., those describing system qualities, e.g., 
performance, reliability, usability, etc.), do you document the characteristics of Big Data 
(e.g, velocity, volume, variety, etc.) along with system quality attributes in the same 
requirement description?  

16. Please kindly give examples of such big data-related requirements. 
17. What challenges, if any, are encountered in specifying (documenting) big data related 

requirements? Note; whereas Q13 is focused on “identifying”, here the focus is on 
“specifying” (or documenting) the requirements. 
 

Requirements Modelling related Questions 
18. Do you “model” the identified Big Data requirements (e.g., UML or other notations)? If 

so, please comment on the tools and modelling techniques used for this purpose. 
19. What, if any, are the challenges encountered in modelling the big data-related 

requirements? 
 
Requirements Analysis related Questions 

20. What, if any, kind of analysis is done on the documented requirements? 
21. Which methods or standard, if any, are followed for analysing the requirements? 
22. What, if any, are the challenges encountered in analysing the big data related requirements? 

 
Requirements Prioritisation related Questions 

23. What factors are considered in prioritising big data-related requirements? 
24. Which method, technique, tools, or standard, if any, are followed for prioritizing the 

requirements? 
25. What, if any, are the challenges encountered in prioritizing big data related requirements? 

 
Architecturally Significant Requirements 

26. To what extent are Big Data requirements architecturally significant? 
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Appendix B

Instrument for Data Collection: Artefact
Model Validation

This document depicts an Artefact-model (a model showing artefacts and interlinkages) in the

field of Requirements Engineering (RE) in conjunction with Big Data software applications.

Literature indicates that among the many uses of the artefact model are: (i) support in the

definition of domain specific RE models, (ii) system life-cycle processes and, (iii) artefact

centred processes.

— The depicted model was created from extensive analysis of the scientific literature and

has been evaluated internationally by ten practitioners working in Big Data Software

Projects. It is shown and explained in Section 2 of this document.

— The purpose of this document is to further validate this model with perspectives from the

field of practice such that an improved model would be shared in the public domain for

others to use in both research and practice.

— You are approached because of your background and expertise in the fields of RE, soft-

ware development, Big Data, and related topics. Your input would help at this formative

stage to create a foundationally strong model that both practitioners and researchers can

depend upon.
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This document is composed of the following sections:  

o Section 1: Background Questions; 
o Section 2: Overview of the Artefact model; 
o Section 3: Technical Validation Questions; 
o Section 4: General Validation Questions; and 
o Section 5: Suggestions for Improvement. 

 
Section 1: Background Questions 
 
Name (optional): 
 
Email address (optional): 
 
Affiliation (optional):  
 
Please note that we’d be glad to send you the final report for free if we have your contact details. The 
contact details, if provided, will NOT be used for any other purpose than to send you the final report. You 
need *not* provide us with any contact details but your input would be greatly appreciated. 
 
1. Type of organisation you have worked in for 6 months or more (please choose one or 
more): 
 
 Industry       
 Governmental organization     
 Academic institution   
 Other (Please specify):  
 
2. Key roles played in your career (please choose one or more): 
 
    Manager (project/product/release/process/etc.) 
    Requirements Analyst/Engineer 
    Business Analyst 
    Developer 
    Architect 
    Quality assurance/engineer 
    Quality control (inspection/testing/internal audits/etc.) 
    Researcher 
    College/University Professor 
    Consultant 
    Customer relationship and product marketing roles 
    Other (Please, specify): 
 
3. Number of years of work experience with Requirements Engineering (RE): 
      None         1-4 years        5-10 years       11-15 years      16+ years 
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4. Number of years of work experience at senior levels in the organisation: 

None         1-4 years        5-10 years       11-15 years      16+ years 
 
5. Number of years of work experience in the Big Data field 

None       1-2 years        3-5 years       5+ years 
 
6. Please indicate your years of experience with the following RE projects: 
 

 None 1-2 years 3-5 years 5+ years 
RE in industry -- traditional (non-Big Data) 
applications development. 

    

RE in academia (research and/or teaching) -- traditional 
(non-Big Data) applications development. 

    

RE in industry –  Big Data Analytics projects (e.g., in 
the development and use of tools for data analytics, 
machine learning algorithms, etc.). 

    

RE in academia (research and/or teaching) –  Big Data 
Analytics projects (e.g., in the development and use of 
tools for data analytics, machine learning algorithms, 
etc.). 

    

RE in industry -- Big Data-centric applications 
development (NOT Data Analytics projects) 

    

RE in academia (research and/or teaching) -- Big Data 
applications development (NOT Data Analytics 
projects) 

    

 
7. In which application domain(s) do you work or have you worked? Please choose all that apply. 
 

Healthcare 
Biomedical Research 
Government 
Marketing 
IT/Telecom 
Astronomy and Physics 
Environmental and Polar Science 
Defense/Military 
Commercial 
Social Media 
Retail  
Tourism 
Transport 
Geospatial Data Processing/Geographic Information Systems 
Manufacturing 
Cyber Physical Systems 
Agriculture 
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Banking and Financial Industry 
Aviation Industry 
National Security 
Other (please indicate):  

 
 
Section 2: Overview of the Artefact model 
 
Extracted from: 
 
D. Arruda and N. H. Madhavji, "Towards a Requirements Engineering Artefact Model in the Context of Big Data Sftware 
Development Projects: Research in Progress," 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 
2017, pp. 2314-2319. doi: 10.1109/BigData.2017.8258185  

 
The RE artefact model depicted below, in the context of Big Data software development projects, 
comprises 21 elements and numerous relationships – identified from the scientific literature. The 
following relationships are represented in the model:  
 

(i) Is-derived-from represents the relationship between the artefacts when from one artefact (e.g., 
Big Data scenarios) one or more artefacts can be derived and specified (e.g., quality 
requirements are derived from Big Data scenarios);  
 

(ii) Is-identified-from represents the relationships when from one artefact (e.g., organisational 
goals) one or more artefacts (e.g., Big Data Scenarios, Constraints and Concerns, etc.) are 
identified;  
 

(iii) Is-part-of relationship represents aggregation and it is illustrated when one or more artefacts 
are part of one or more major artefacts (e.g., functional requirement is part of software 
requirements);  
 

(iv) Contains relationship is used when one or more artefacts have or hold information from 
another artefact within (e.g., software requirements contain analysed requirements); and  
 

(v) Used-in relationship means that one artefact can be used to guide in the definition of other 
artefacts (e.g., project constraints are used in Big Data scenarios). 
 

The following Big Data elements are represented in the model:   
 
- Big Data Scenarios: They incorporate Big Data characteristics in their descriptions (e.g., volume, 

velocity, variety, veracity, etc.). 
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- Data-Capability Requirements: They deal with infrastructure issues such as: the need to support 
legacy and advanced software packages, legacy and advanced computing platforms, data storage 
and elastic data transmission, and hardware. 
 

- Data-Source Requirements: They refer to the requirements that deal with different characteristics 
of data sources (e.g., data size, file formats, rate of growth, at rest or in motion, etc.) [  
 

- Data-Transformation Requirements: They refer to the requirements that relate to data analytics, 
data fusion and data processing. 
 

- Data-Consumer Requirements: They refer to the requirements that relate to the presentation of 
the processed results of Big Data to the users (e.g., processed results in text, table, visual, and other 
formats).  

 

 
 
 
Section 3: Technical Validation Questions  
 
8. To what extent do you agree that the schematic model in Section 2 reflects the type of RE 

artefacts in the development of Big Data applications in industry? 
 

Strongly agree   
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Agree   
Neither agree nor disagree    
Disagree 
Strongly disagree 

 
Please give a short rationale for your opinion: 
 
 
 
 

 
9. Do you think that there are any elements that are missing from the schematic model depicted in 

section 2?  
 
   Yes. Please list the missing elements and give a short rational for each element identified. 
 
 
 
 
   Rationale:   
 
 
    
 
 
    No. 
    No opinion. 
 
10.  To what extent do you agree that the names of the artefacts depicted in the model in Section 2 

are appropriate? 
 

Strongly agree   
Agree   
Neither agree nor disagree    
Disagree 
Strongly disagree 

 
Please give a short rationale for your opinion: 
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11. To what extent do you agree that the labels of the relationships in the model depicted in Section 
2 are appropriate? 

 
Strongly agree   
Agree   
Neither agree nor disagree    
Disagree 
Strongly disagree 

 
Please give a short rationale for your opinion: 
 
 
 
 
 
12.  With reference to the artefact model in Section 2, to what extent do you agree that the elements 

in the model named: data-capability requirements, data-source requirements, data-
transformation requirements and data-consumer requirements – represent the whole spectrum 
of the types of big data requirements? 

 
Strongly agree   
Agree   
Neither agree nor disagree    
Disagree 
Strongly disagree 

 
Please give a short rationale for your opinion: 
 
 
 
 
 
Section 4: General Validation Questions  
 
 
13.  To what extent do you agree that artefact model is useful for practice? 
 

Strongly agree   
Agree   
Neither agree nor disagree    
Disagree 
Strongly disagree 

 
Please give a short rationale for your opinion: 
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14. For what purposes is the model considered useful? 
 
 
 
 
 
 
 
 
15. To what extent do you agree that the artefact model is generic enough to be applicable to 

different types of Big Data projects, possibly with few modifications? 
 

Strongly agree   
Agree   
Neither agree nor disagree    
Disagree 
Strongly disagree 

 
Please give a short rationale for your opinion:  
 
 
 
 
Improvement Suggestions 
 
Please kindly provide any other recommendations below for improving of the artefact model. 
 
 

1. 
2. 
3. 
4 
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Appendix C

QualiBD Tool: End-user Interface and
Features

In this appendix, we describe the graphical user-interface and some of the features supported

by the QualiBD Tool.

— The modelling tool facilitates graphical modelling of Big Data application requirements

in the style of WYSIWYG (what you see is what you get) paradigm. This includes drag

and drop features, and editing of entities and relationships in the model.

— Automatic labelling of a permutation containers (based on parent node labelling) simpli-

fies model creation.

— Rudimentary analysis capabilities such as raising caution when there are: (i) missing

or duplicate relations in the model; (ii) missing labels; and (iii) permutation containers

without permutation attributes.

The following Figures depicts the graphical user-interface and the validation features of the

QualiBD Tool.
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Figure C.1: Graphical User-Interface of the QualiBD Tool

Depicted in this Figure: A) Design project where the nodes, tools, and behaviour attributes of the modelling tool
are defined; B) Eclipse project that creates a concrete instance (data) of the defined domain-model; C) Tool canvas
where models can be created, edited and deleted; D) Portion of the palette tool that enables end-users to create
instances of model elements; E) Portion of the palette tool that enables end-users to add permutation attributes
to permutation containers; F) and G) Portions of the palette tool that enables end-users to define the types of
refinements (relations) supported by the QualiBD tool.
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Figure C.2: Validation of model elements added without a label or description

This figure depicts a quality requirement modelled using the QualiBD Tool. In this requirement, two nodes were
added to the tool canvas without a label or description. They are: Big Data Characteristic and Claim Soft-goal.
By running the diagram validation feature, we invoke a defined AQL expression (AQL expression are described in
Appendix E) that checks the existence of empty labels/descriptions and display warning messages if the expression
returns true.
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Figure C.3: Validation of missing refinements amongst model elements

This figure depicts a quality requirement modelled using the QualiBD Tool. In this requirement, two nodes were
added to the tool canvas without a refinement. They are: Goal and Big Data Characteristic. By running the
diagram validation feature, we invoke some defined Java methods (Java methods are described in Appendix D)
that check for missing refinements amongst model elements and display warning messages if missing refinements
are identified.



Appendix D

QualiBD Tool: Implementation Details

In this appendix, then, we describe the technologies and frameworks used in the implementa-

tion of the QualiBD Tool. It is organised as follows: next section overviews the tool imple-

mentation process. Section 3 presents the QualiBD Tool graphical user interface and warning

messages. Finally, Section 4 summaries this appendix.

D.1 Tool Implementation

The implementation of the QualiBD tool consisted of two major steps: (i) modelling and code

generation; and (ii) graphical editor definition. For the modelling and code generation, we

used the Eclipse Modelling Framework (EMF), a modelling framework and code generation

facility for building tools and applications based on a structured data model [1]. For the graph-

ical portion of the tool, we used Sirius [2], an Eclipse project that allows for the creation of

graphical modelling tools by leveraging the Eclipse modelling technologies such as EMF and

the Graphical ModellingFramework (GMF).

On the EMF side, we define the domain model and create a concrete instance of that model

that is dynamically interpreted using a runtime within the Eclipse IDE environment. On the

Sirius side (on the Sirius Specification Editor), we define the modelling tool - composed of all

modelling elements, behaviour, java services, expressions, and navigation tools. The modelling
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tool references domain model defined in EMF. The Graphical representation of the model is

created using the defined modelling tool. The graphical representation represents the concrete

instance of the defined domain model. The concrete instance of the domain model conforms

with the domain model defined in EMF.

D.1.1 Modelling and Code Generation

The implementation of the QualiBD tool started with the definition of a domain model that

describes the modelling elements using the EMF. The model used to represent models in EMF

is called Ecore [1]. An Ecore can be considered a subset of a UML class diagram [3]. EMF

allows for the modelling of meta-class (EClass), packages, and several different types of ref-

erences (EReferences) such as compositions and inheritance. An EClass can contain different

attributes and operations. An attribute (EAttribute) has a data type (EDataType) which can be

primitive (e.g., int, float, boolean,) or object type (e.g., a class) [1]. Figure D.1 depicts the

Ecore meta-model of the QualiBD Tool.

Figure D.1: Ecore Meta-model of the QualiBD Tool.
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D.1.2 Graphics Editor

For the definition of the graphical portion of the QualiBD tool, we used Eclipse Sirius. The

Sirius official documentation [2] states that a modelling workbench created with Sirius is com-

posed of a set of Eclipse editors (such as diagrams, tables and trees) which enables users to

create, edit and visualise EMF models. The editor which summarizes the complete structure of

the modelling workbench, its behaviour, and all the edition and navigation tools is dynamically

interpreted by a runtime within the Eclipse environment [2]. Before diving into the steps taken

during the definition of the graphical portion of the QualiBD Tool, let’s discuss some of the

concepts underlying Eclispe Sirius [2].

The main concepts in Sirius are (based on the official Sirius documentation [2]) are (i)

Viewpoint: represents a set of representation specifications and extensions. It is considered one

of the core elements of Sirius; (ii) Representation: set of graphical elements that represent the

domain data, in other words, the concrete instance of the Ecore metamodel; (iii) Mappings:

identifies the sub-set of semantic model elements that would appear in the representation. It

is also used to indicate how they should be represented; (iv) Styles: used to customize the

appearance of the defined elements; (v) Tools: used to add edition capabilities to the graphical

editor allowing end-users to create, edit, and delete model elements.

Additionally, when defining model elements, edges and tools in Sirius, we will be using

some required interpreted expressions to configure them. These can be queries to select ele-

ments or more general-purpose expression to compute a value, for instance [2]. The recom-

mended language for writing queries and expressions in Sirius is the Acceleo Query Language

(AQL). It is also used to navigate and query an Ecore model defined in EMF [4]. However,

Sirius also supports other common expression interpreters such as (i) Var: provides direct ac-

cess to the value of a named variable; (ii) Feature: offers direct access to a named feature of

the current element. For example, instead of aql:self.name, the equivalent using the Feature

interpreter would be feature:name; and (iii) Service: can used to invoke a service method (e.g.,

Java services) on the current element.

In the next subsections, we describe the steps followed in order to defined the graphical

editor portion of the QualiBD Tool in Sirius (as depicted in Figure D.2). The steps represented
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within the “Design and Construction” phase are defined in the Sirius Specification Editor as

described in the beginning of Section 2.

Figure D.2: Steps taken in the definition of the graphical editor portion of the QualiBD Tool.

Defining Node Elements

When creating a node, we must describe which model element will be displayed by the mod-

elling tool. A model element can be displayed via either an image or a geometric shape. For

that, we must specify the following properties:

— ID: this is the unique identifier of the element we are defining.

— Domain class: defines the type of element represented by the node we are creating. For

instance, consider: bigDataModelling::Goal where bigDataModelling is the namespace

(NS) prefix, in other words, the name of the Ecore meta-model and Goal is the name

of the element (Eclass) in that meta-model. Specifying the NS is important to prevent

eventual conflicts with another metamodel that could define a class of the same name.

— Semantic candidate expression: Restricts to the list of elements to consider before

creating the graphical elements. If not set, then all semantic models in session will be

browsed and any element of the given type validating the precondition expression will

cause the creation of the element. If we set this attribute then, only the elements returned

by the expression will be considered. For instance, in the case of our modelling tool, we

feature the modelelements abstract class where it is the class that extends the goal class

and other elements specified in this modelling language.
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Defining Element-based Edges

Edges in Sirius can be defined as relation-based or element-based [2]. Relation-based edges

are used to represent a relation between model elements such as containment or references

whereas element-based edges are used when a semantic model element exists to represent the

relation itself [2]. Since all the relationships in the QualiBD tool are represented semantically

through classes in the Ecore model, we only used element-based edges. Figure D.3 depicts the

properties defined to create the Permutation Link element-based edge.

Figure D.3: Properties of an element-based relation for the Permutation Link element in Sirius.

With reference to Figure D.3:

— ID: this is the unique identifier of the element we are defining.

— Domain Class: the name of the domain class that triggers the creation of the new edge.

In the context of Figure 2, the Permutation Link class within the bigDataModelling meta-

model. Again (repeated for convenience), the specification of the NS is important to

prevent eventual conflicts with another metamodel that could define a class of the same

name.

— Source Mapping: maps the element from where the edge should start.

— Source Finder Expression and Target Finder Expression: will be evaluated in the

context of the semantic element of the edge. It should return the actual elements that the

edge connects.
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— Target mapping: maps the element from which the edge should end.

— Semantic candidate expression: Restricts to the list of elements to consider before

creating the graphical elements. We use an AQL expression that points the to the Re-

lationships abstract class defined in the QualiBD Ecore meta-model. Only the elements

returned by the expression will be considered. Example of an AQL expression used:

aql:self.modelelements.relationships.

Defining Tools and Operations

Once all the elements (nodes and edges) are defined, we can establish the tools that will be dis-

played in the palette of Eclipse, that turn, will allow the end-user to create and edit new model

elements onto the tool container (canvas). Without tools, the models would be “visualisations

only”, without any edition capabilities [2].

In the QualiBD Tool, the following types of tools were defined (i) Element Creation; and

(ii) Element Edition. The former, enables the creation of instances of model elements. The

later, adds editing capabilities in the QualiBD Tool. Example of editing capabilities supported

by the QualiBD tool are: (a) Direct Edit Label that allows for the modification a graphical

object label (e.g, name of a goal model element) direct from the graphical diagram; and (b)

Reconnect Edges that allows end-users to change the source and/or target of an edge by moving

the corresponding end onto another graphical model element [2].

As an example, Figure D.4 depicts the properties - of the Element Creation Tool - defined

to create the edge tool Permutation Link. Please note that the procedure for creating node tools

is similar to edge tools, thus, only one example will be provided.
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Figure D.4: Properties of an edge creation tool in Sirius for the Permutation Link element.

With reference to Figure D.4:

— The Begin element has no property. It serves as an entry point to the specification of the

behavior of our tool.

— Within the Begin element, we define the Change Context operation, which serves to

changes the context to a new element and executes any contained sub-operations [5]. We

also define the Create Instance operation that is used to create new semantic elements

to be added into the end-users model. For that, we must specify the Type Name (using

the same syntax as for Domain Class properties) of the new object to be created and the

Reference Name through which the created element will be attached to [5].

— For edge tools (in the context of QualiBD tool), we also specify the Set operation that,

as the name says, is used to set the value of a feature. It can be an attribute or a reference

of the current element. In the case of the Permutation Link edge tool, the source and

the destination of the relation defined in our Ecore metamodel (in our case the relations

From and To).

— Additionally, we can define some operations to control the behaviour of the tool being

created. In the context of the all relation-based elements (such as association, permu-

tation, decomposition, argumentation, and contribution links) defined in the QualiBD
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tool, we set an operation to prevent the user to establish duplicated connections amongst

model elements. For that, we used the If operation that evaluates its Condition Ex-

pression. An example of a condition expression in AQL used by the If operation is:

aql:self.from.relationships->select(g|g.to=self.to)->size()>1.

If the expression (interpreted as a boolean) returns “false”, If does nothing. If it returns

“true”, then it executes any sub-operations defined under the If operation in the order of

definition [5]. In the case of the QualiBD tool, it “cancels” (unsets) the creation of edges

between two nodes when the relation already exists in the representation.

Define Validation Rules

In order to allow the QualiBD tool to function properly and minimise possible user induced

errors, we specified some rudimentary validation features focused on the completeness and

accuracy of the models created The validation features are briefly described as follows:

— Empty Labels: This rule checks for the existence of model elements with empty labels.

For that, we specified a semantic validation rule. Eclipse Sirius offers three levels of

semantic validation rules: Message, Warning, and Error. The semantic validation rule is

characterised by an audit expression. If the audit expression returns True, then nothing

happens. If the audit expression returns False, then a validation issue will be pointed

out (e.g., a warning message to be displayed to the end-user in the Problems view of

Eclipse). An example of an audit expression used is aql:self.name<>null.

— Model Elements with Empty Connections: This rule checks for the existence of model

elements with empty connections (refinements). For that, we define the same proce-

dures described in the “Empty Labels Validation”. However, for this one specifically,

instead of using an AQL expression in the audit expression definition, we used a Java

service method that navigates the existing model elements on the tool canvas, and checks

whether there are established connections amongst them. If empty connections are

found, it returns the validation warning message. Otherwise, it returns null.
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D.2 Summary

In this paper, we described the implementation of the QualiBD, a tool for modelling quality

requirements for Big Data Software applications. The definition of our tool is comprised of

two steps: (i) domain model definition and code generation, and(ii) graphical editor definition.

For that, we used eclipse modelling and Sirius Frameworks, respectively. On the EMF side,

we defined the tool’s structured data model. On the Sirius side, we defined the graphical editor

behaviour. The graphical editor portion of the tool was defined in four incremental steps:

(i) definition of node elements, (ii) definition of edge elements, (iii) definition of tools and

operations, and (iv) definition of validations rules.

NOTE:

The documents containing the Java services methods and AQL expressions used in the

definition of QualiBD Tool can be seen in Appendices E and F, respectively.
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Appendix E

QualiBD Tool: Java Methods

In this appendix, we describe some of the java methods used in the implementation of the

validation procedures (with regards to model refinement completeness and accuracy) of the

QualiBD tool.

public String CheckGoalElementRefinement(GoalModel element) {

String output = "";

for(ModelElements node : ((GoalModel) element).getModelelements()) {

if(node instanceof Goal) {

Goal goal= (Goal) node;

if(goal.getRelationships().isEmpty()) {

output += "One or more Goal Elements are missing the following

↪→ refinement: Association Link";

}

}

}

return output;

}

Listing E.1: Method for checking Goal elements empty refinements
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public String CheckNFRGoalElementRefinement(GoalModel element) {

String output = "";

for(ModelElements node : ((GoalModel) element).getModelelements()) {

if(node instanceof NFRSoftGoal) {

NFRSoftGoal NFRgoal= (NFRSoftGoal) node;

if(NFRgoal.getRelationships().isEmpty()) {

output += "One or more NFR Soft-Goal Elements are missing the

↪→ following refinement: Association Link";

}

}

}

return output;

}

Listing E.2: Method for checking NFR Soft-Goal elements empty refinements

public String CheckBigDataElementRefinement(GoalModel element) {

String output = "";

for(ModelElements node : ((GoalModel) element).getModelelements()) {

if(node instanceof BDCharacteristic) {

BDCharacteristic bigdata= (BDCharacteristic) node;

if(bigdata.getRelationships().isEmpty()) {

output += "One or more BigData Characteristic Elements are missing

↪→ the following refinement: Association Link";

}

}

}

return output;

}

Listing E.3: Method for checking Big Data Characteristic elements empty refinements
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public String CheckPermutationElementRefinement(GoalModel element) {

String output = "";

for(ModelElements node : ((GoalModel) element).getModelelements()) {

if(node instanceof Permutation) {

Permutation permutation= (Permutation) node;

if(permutation.getRelationships().isEmpty()) {

output += "One or more Permutation Container Elements are missing the

↪→ following refinement: Decomposition Link";

}

}

}

return output;

}

Listing E.4: Method for checking Permutation Container elements empty refinements

public String CheckClaimElementRefinement(GoalModel element) {

String output = "";

for(ModelElements node : ((GoalModel) element).getModelelements()) {

if(node instanceof ClaimSoftGoal) {

ClaimSoftGoal claim= (ClaimSoftGoal) node;

if(claim.getRelationships().isEmpty()) {

output += "One or more Claim Soft-Goal Elements are missing the

↪→ following refinement: Argumentation Link";

}

}

}

return output;

}

Listing E.5: Method for checking Claim Soft-goal elements empty refinements
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QualiBD Tool: AQL Expressions

Below, we describe some examples of AQL expressions used in the definition of the model el-

ements (e.g., Goal, NFR Soft-goal, Permutation Container, Refinement Links, Decomposition

Links, etc.) of the graphical portion of the QualiBD Tool.

//Expression that points to the Relationships class defined in the

↪→ Ecore meta-model.

aql:self.modelelements.relationships

Listing F.1: AQL Expression 1

//Expression used to validate if a model element is connected to

↪→ another model element or itself.

aql:self.from.relationships->first()<>self and self.from.relationships

↪→ ->select(g|g.to=self.to)->size()>1

Listing F.2: AQL Expression 2
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//Expression that calls the CheckNFRGoalElementRefinement() method to

↪→ check if there are model element (in this example, NFR Soft-goals

↪→ ) with missing refinements.

aql:self.CheckNFRGoalElementRefinement().toString().size()=0

Listing F.3: AQL Expression 3

//Expression used to check if there are model elements added to the

↪→ tool canvas without a description (in the case of Claim Soft-

↪→ goals) or labels (in the case of all other model elements).

aql:self.name <> null

aql:self.description <> null

Listing F.4: AQL Expression 4

//Expression used to define a structured naming format for the element

↪→ Permutation Container

aql:’Permutation: ’+ self.name

Listing F.5: AQL Expression 5
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