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Abstract 
 

Failure to repair injured sarcolemmal membranes leads to muscular dystrophy, a 

degenerative disorder that results in increasing weakness and gradual wasting of skeletal 

muscles. Mutations in the gene encoding dysferlin are causative for limb girdle muscular 

dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM) forms of the disease. 

Dysferlin is a Ca2+-sensitive membrane repair protein involved in trafficking of proteins 

and vesicles around injured membranes in skeletal muscle cells. It is a cytosolic-facing, 

membrane bound protein composed of seven intermittently spaced C2 domains (C2A-

C2G). Dysferlin activity is mediated by the Ca2+-dependent actions of the C2 domains. The 

main goals of this thesis were to characterize the structure, dynamics and Ca2+-binding 

mechanisms of the C2 domains, and assess the impact of pathogenic substitutions on the 

C2 domains. 

 

First, the dynamics of the C2A domain in both Ca2+-free and Ca2+-bound state was 

comprehensively probed using NMR spectroscopy, which revealed a remarkable flexibility 

change in the loop region upon Ca2+ binding. The Ca2+-binding properties of the C2A 

domain was studied on the basis of the crystal structure of the Ca2+-bound C2A, which 

determined the stoichiometry, binding sites and affinities. Further, mutagenesis study 

revealed the important role of the electrostatic potential contributed by non-Ca2+-

coordinating residues, which provides novel insights into the mechanism of Ca2+ binding 

to the dysferlin C2A domain as a link for membrane repair. 
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To understand the consequences of pathogenic mutations, three substituted C2A proteins 

were generated and analyzed. It was demonstrated that there is dramatic decrease in 

stability resulted from the substitutions. The unfolding or improper folding of the 

substituted C2A domain is predicted to be responsible for impaired dysferlin function in 

the membrane repair process, and consequently the wasting of skeletal muscles in muscular 

dystrophy patients.  

 

Finally, proteins encompassing the C2B and C2C domains of dysferlin were designed and 

generated using a combination of computational and experimental methods. The precise 

domain boundaries of the C2B and C2C domains were determined, which will provide 

useful information for the further characterization of dysferlin structure. 

 

 

 

 

 

 

 

 

Keywords: calcium signaling, calcium-binding protein, dysferlin, C2 domain, membrane 

repair, muscular dystrophy, nuclear magnetic resonance (NMR), protein structure, protein 

dynamics, protein-protein interaction  
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Summary for Lay Audience 
 
 
The cell membrane separates the interior of cells from the outside environment and helps 

maintain the well-being of cells. However, when cells are subject to physical tearing (which 

happens frequently), the membrane can be damaged, leading to the damage of the 

equilibrium of cell. This is why a membrane repair system mediated by proteins is required 

for cell survival. Proteins are biological molecules that can perform an array of functions 

within living organisms. Each protein has its specific three-dimensional structure, and the 

function is directly related to the structure.  

 

One protein that regulates cell membrane repair is dysferlin. Abnormalities of dysferlin 

caused by gene mutations lead to muscle diseases with detrimental consequences. In cells, 

dysferlin functions with the help of calcium ions. Calcium ions play a vital role in the 

physiological processes of organisms and cells, usually by selectively and reversibly 

binding to partner proteins. This binding causes changes of the protein structure, thereby 

activating the protein function. Thus, knowing when and how calcium ions bind to 

dysferlin is important to the understanding of its functions, and the mechanisms of inherited 

muscle diseases. 

 

In this thesis, the 3-D structure of a calcium-binding region in dysferlin was determined by 

biophysical techniques. Not only the calcium-binding sites within this region were clearly 

observed at atomic level, how calcium changes the dysferlin structure was also elucidated. 

It was discovered that this structural change is directly related to the function of dysferlin 
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in membrane repair. Furthermore, we were able to artificially generate the abnormal forms 

of dysferlin protein when gene mutation occurs. We found that some properties of dysferlin 

were altered. This helps the analysis for the cause of function loss in membrane repair, that 

subsequently leads to muscle diseases. Finally, an additional region of dysferlin was 

explored, which may have a distinct role in regulating the function of dysferlin. 

 

This work represents an important step forward in fully explaining the mechanisms of 

membrane repair by dysferlin. The structural and biochemical study here will have a 

significant impact on the understanding of related diseases and the development of drug 

therapeutics in the future. 
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Chapter 1 
 

Introduction and Background 

 

 

1.1 Calcium signaling in cells 
 
Historically, calcium was first found to be essential for heart contraction by Sydney Ringer 

in 1883 (Ringer, 1883). An inadvertent use of tap water led to the astonishing finding that 

isolated rat hearts contracted perfectly in tap water, but failed to beat in distilled water. 

Ringer quickly realized that the contraction was attributed to residual calcium ions (Ca2+), 

which was present at 38.3 parts per million, in the tap water supplied by London New River 

Water Company,. Although calcium was already known to be one of the most abundant 

elements in the skeleton and teeth, this unexpected finding recognized the important role 

of calcium as a fundamental carrier of chemical signals. In the 1940s, the concept of 

“calcium signaling” became prevalent, when Heilbrunn (Heilbrunn, 1940) and Bailey 

(Bailey, 1942) found that Ca2+ ions caused contraction of frog muscles and stimulated the 

ATPase activity of myosin. Since then, calcium has been identified to be involved in nearly 

every aspect of body activities. 

 

The calcium signaling system operates in a variety of ways to regulate cellular processes 

that function over a wide dynamic range. In cells, a 20,000-fold gradient is maintained 

between the intracellular (~100 nM) and extracellular (mM) concentrations (Clapham, 

2007; Tsien, 1981). The flow of Ca2+ in and out of the cells has to be precisely controlled 
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by specialized calcium pumps and channels at any moment in time. The internal stores of 

Ca2+ reside within the membrane systems of the endoplasmic reticulum (ER) or the 

sarcoplasmic reticulum (SR) of muscle cells. Cytosolic Ca2+ ions act as “secondary 

messengers” combined with a variety of effectors to stimulate and mediate numerous Ca2+-

dependent cellular processes including exocytosis, metabolism, transcription and 

proliferation. Berridge et al. divided the calcium signalling network into four functional 

steps (Berridge et al., 2000) (Figure 1.1):  

1) Signalling is triggered by a stimulus that generates various Ca2+-mobilizing signals. 

The stimuli bind to a variety of cell-surface receptors, such as G-protein-linked 

receptors and receptor tyrosine kinases (RTK), and generate signals, including 

inositol-1,4,5-trisphosphate (IP3), cyclic ADP ribose (cADPR) and nicotinic acid 

dinucleotide phosphate (NAADP). These signals determine whether Ca2+ can 

activate channels on the plasma membrane and intracellular organelles.  

2) The signals activate the ON mechanisms that feed Ca2+ into the cytoplasm. The ON 

mechanisms depend on Ca2+ channels that control the entry of external Ca2+ or the 

release of Ca2+ from internal stores. Ca2+ channels include voltage-gated Ca2+ 

channel (CaV) and ligand-gated channel (TRP) located on the plasma membrane, 

and IP3R channel spanning on the membrane of ER. 

3) Ca2+ functions as a messenger to stimulate various Ca2+-sensitive processes. A wide 

variety of Ca2+ binding proteins respond to the Ca2+ release into the cytoplasm and 

activate numerous cellular processes.  

4) Finally, the OFF mechanisms, composed of pumps and exchangers, remove Ca2+ 

from the cytoplasm to restore the resting state. OFF mechanisms pump Ca2+ out of  
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Figure 1. 1 Ca2+ signaling in cells. 

A 20,000-fold gradient is maintained between the intracellular (~100 nM) and extracellular 
(mM) concentrations. Ca2+-mobilizing signals (blue), including IP3, cADPR and NAADP, 
are generated by stimuli acting through cell-surface receptors. ON mechanisms (green) 
include Ca2+ channels on plasma membrane and ER/SR, which control the entry of external 
Ca2+ or the release of Ca2+ from internal stores. The Ca2+ released into the cytoplasm by 
these ON mechanisms activates different Ca2+ binding proteins, which augment a wide 
range of cellular processes. A uniporter transmembrane complex transports Ca2+  into 
mitochondria. OFF mechanisms (grey) pump Ca2+ out of the cytoplasm: the Na+/ Ca2+ 
exchanger and PMCA pump Ca2+ out of the cell, and the SERCA pumps it back into the 
ER/SR. 
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the cytoplasm once Ca2+ carried out its signaling functions. The plasma membrane 

Ca2+-ATPase (PMCA) pumps and Na+/Ca2+ exchangers extrude Ca2+ out of the cell 

and the sarco-endoplasmic reticulum ATPase (SERCA) pumps return Ca2+ back 

into the internal stores. 

 

In the third step, calcium takes on the role of a near universal signaling molecule recognized 

by numerous calcium-binding proteins in eukaryotes, prokaryotes and even viruses 

(Permyakov, 2009; Permyakov and Kretsinger, 2011; Zhou et al., 2009).The  calcium  ion, 

with an ionic radius of 0.99 Å, can accommodate  4 - 12  oxygen atoms  in  its  primary  

coordination  sphere,  with  6 - 8 being most common (Clapham, 2007). Calcium binding 

proteins use the oxygen atoms of carboxyl and carbonyl groups to coordinate binding to 

Ca2+. The majority of calcium-binding sites in proteins consist of seven oxygen atoms 

surround Ca2+ at ~2.5 Å  in a pentagonal bipyramid configuration (Strynadka and James, 

1989) (Figure 1.2). It is worth mentioning that not all oxygen ligands in the Ca2+ 

coordination sphere are provided by amino acid residue side chains; main-chain carbonyl 

oxygen atoms and water molecules also participate (Katz et al., 1996). Hundreds of cellular 

proteins have adapted to selectively and reversibly bind Ca2+ through specific motifs. The 

binding occurs over a million-fold range of affinities (nM to mM) and the distinctive nature 

of each Ca2+-mediated pathway is closely associated with this broad range of affinities. 

Substitutions or abnormalities in proteins involved in Ca2+ signaling can lead to a diverse 

array of diseases, including muscular dystrophy, congestive heart failure, diabetes, 

hypertension, maniac depression, cancers, and neurodegenerative diseases including 

Alzheimer’s disease and amyotrophic lateral sclerosis (ALS) (Brini et al., 2014; Missiaen   
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Figure 1. 2 Ca2+ coordination sphere. 

Ca2+ is normally coordinated by seven oxygen atoms (five in the plane of the green 
pentagon and two perpendicular to the plane, thus forming a bipyramidal pentagon). All 
oxygen ligands in the Ca2 coordination sphere are provided by amino acid residue side-
chain and main-chain oxygen atoms, as well as water molecules. 
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et al., 2000; Stewart et al., 2015). For example, disruption of the gene for calpain III, a 

calcium-dependent protease, causes limb girdle muscular distrophy type 2A; Defects in the 

genes for the PMCA pumps have been found to lead to hearing deficits (Carafoli, 2002). 

 

Two major calcium binding motifs within cellular proteins have been extensively studied: 

EF-hand (eg. calmodulin, S100 family) and C2 domains (eg. synaptotagmin, PKC, ferlin 

family). Both mediate intracellular Ca2+ signals and direct diverse physiological events. 

The EF-hand motif is the most common Ca2+-binding motif found in proteins. The EF-

hand motif usually consists of 30 amino acids that fold into a helix-loop-helix structure. Its 

structure resembles a right hand fist, with the index finger and thumb extended. The loop 

between the helices comprises ~12 conserved residues that can coordinate a Ca2+ ion. 

Binding of calcium to this globular domain leads to a dramatic conformational change from 

“closed” to “open,” exposing a hydrophobic surface that permits the interaction with target 

proteins in a Ca2+-regulated manner. Calmodulin is the best known EF-hand protein: it has 

four EF-hand binding motifs, and the molecular mechanism by which it decodes the Ca2+ 

signal has been clarified. It interacts with hundreds of proteins in the cell, and acts as a 

regulator or an effector molecule in a wide variety of cellular functions (Ikura, 1996).  

 

 

1.2 C2 domains 
 
The C2 domain was originally discovered as the second of two conserved domains in 

classical protein kinase C (PKCs) responsible for calcium-dependent membrane binding. 

The C2 domain was proposed to be responsible for Ca2+ regulation of PKC, on the basis of 
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the finding that the kinase activity and phospholipid binding of PKC were known to be 

Ca2+ dependent, whereas the isoform lacking the C2 domain failed to exhibit Ca2+ 

dependent activities (Ono et al., 1989). Subsequent studies have revealed the existence of 

homologous C2 domains in a large number of proteins, which are widely distributed in all 

cell types in eukaryotes. Identification of the C2 domain in synaptotagmin (Perin et al., 

1990) and cytosolic phospholipase A2 (cPLA2) (Clark et al., 1991) found that they both 

bind to phospholipids and natural cell membranes in a Ca2+-dependent manner, which is 

also a shared feature of protein kinase C (Bazzi and Nelsestuen, 1987, 1990; Brose et al., 

1992). These findings led to the belief that the C2 domain was involved in Ca2+-dependent 

membrane binding. Moving forward, a number of C2 domains within different proteins 

have been isolated and structurally characterized. Most of them are involved in signal 

transduction, lipid modification, membrane trafficking, activation of GTPases, and control 

of protein phosphorylation (Zhang and Aravind, 2010), including synaptotagmins 

(Fernandez et al., 2001; Shao et al., 1998), rabphilin-3A (Biadene et al., 2006), cPLA2 

(Perisic et al., 1998a) and so on.  

 

To date, more than 100 structures of C2 domains have been solved by NMR (nuclear 

magnetic resonance) spectroscopy and X-ray crystallography. Characterization of the 

structures has confirmed that the C2 domain is an independently folded module of about 

130 residues, and revealed a common fold that C2 domains share: an eight-stranded 

antiparallel b-sandwich consisting of a pair of four-stranded b-sheets connected by highly 

variable loops (Rizo and Südhof, 1998). Two types of topology are found in C2 domains: 

(i) the synaptotagmin-like variants also referred to as the type I topology and (ii) the PLC-
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like variants, also known as the type II topology. The arrangement of b-strands in C2 

domains of type II topology constitutes a circular permutation of type I C2 domains. Strand 

1 of the type I C2 domains occupies the same position as the eighth strand of the type II 

C2 domains. In Figure 1.3, the N and C termini are at the top of the C2 domain in the type 

I topology but at the bottom of the type II topology. Having one or the other topology does 

not appear to be a determinant for the domain’s function and it is unclear why C2 domains 

occur in two topologies (Corbalan-Garcia and Gómez-Fernández, 2014). 

 
 

1.3 Ca2+ binding properties of C2 domains  
 
The Ca2+-binding sites of canonical C2 domains are composed of three variable loops 

located at one side of the domain (top) (Figure 1.3). Both side chains and the backbones 

of the loop residues are involved in coordination of multiple Ca2+ ions. The Ca2+-binding 

sites are formed primarily by conserved aspartate residues and the carboxylate or carbonyl 

groups of other residues. Up to four Ca2+-binding sites were identified to be possible in a 

C2 domain depending on the residues that are present on the loop (Ubach et al., 1998). In 

most cases, five highly conserved aspartate residues coordinate two or three Ca2+ ions. 

Taking the C2A domain of synaptotagmin as an example, there are five aspartate residues 

(D172, D178, D230, D232 and D238) in loops 1-3 that contribute to the coordination 

spheres of three Ca2+ ions via their carboxylate groups. Four of these residues (D172, D230, 

D232 and D238) simultaneously coordinate more than one Ca2+ ion. Additional residues 

on the loops also provide ligands for Ca2+ coordination, including the side chain of S235 

and main chain oxygen of L171 and F231(Ubach et al., 1998). It is not clear why a C2 

domain binds to multiple Ca2+ ions. One hypothesis is that multiple binding sites could be  
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Figure 1. 2 Two topologies of C2 domain. 

Cartoon diagrams of the structure of the type I and type II topology of C2 domains [left: 
synaptotagmin 5 C2A domain, PDB: 5H4Y; right: cytosolic phospholipase A2 (cPLA2) C2 
domain, PDB: 1RLW]. Bound Ca2+ ions are shown as yellow spheres and the localization 
of the three Ca2+ binding loops (Loop 1-3) are marked. Note that due to the circular 
permutation, the β1 strand in topology I overlaps with β8 strand in topology II, leaving the 
N- and C-terminals near the top of the domain in type I and at the bottom in type II. 
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advantageous by providing positive cooperativity to facilitate the Ca2+ binding, thereby 

generating a narrower activation threshold as observed for cooperative Ca2+ binding to 

many proteins of the EF-hand class (Linse and Forsén, 1995).  

 

Although C2 domains share a high degree of structural homology and conserved residues 

for Ca2+ coordination (Figure 1.4), the Ca2+ binding mode varies from one C2 domain to 

another, in terms of binding stoichiometry and affinities. First, different numbers of  Ca2+ 

ions have been found to occupy the Ca2+-binding sites in different C2 domains, ranging 

from zero to four. For instance, the C2A domains of otoferlin (Helfmann et al., 2011) is 

unable to bind Ca2+ for having an unconventional loop 1, which is significantly shorter and 

flatter compared to the Ca2+ binding C2 domains. The C2 domain of protein kinase C-delta 

(PKCδ) (Pappa et al., 1998) has also been shown to be Ca2+ insensitive, due to lack of 

conserved aspartate residues necessary for Ca2+ coordination. In contrast, two Ca2+ ions 

bind to the cPLA2 C2 (Perisic et al., 1998a), synaptotagmin-7 C2A (Voleti et al., 2017) and 

myoferlin C2A domains (Harsini et al., 2019) and three Ca2+ ions bind to synaptotagmin 1 

C2B (Cheng et al., 2004) and phospholipase C-δ1 C2 domain (Essen et al., 1997). Four 

Ca2+ ions are observed to bind to the loop regions in the crystal structure of the C2 domain 

of perforin (Yagi et al., 2015) (Figure 1.5). Secondly, Ca2+ exhibits a wide range of binding 

affinities to different binding sites in C2 domains. Taking synaptotagmin 1 C2B domain as 

an example, the dissociation constants (Kd) measured for the three Ca2+ binding sites are 

54 μM, 530 μM and >2 mM by NMR spectroscopy (Fernández-Chacón et al., 2001), and 

119 μM, 465 μM and 1.7 mM by ITC (Radhakrishnan et al., 2009). In comparison, the C2 

domain of plant phospholipase Db shows a single high affinity site with a Kd of 0.8 μM   
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Figure 1. 3 Sequence alignments of selected C2 domains.  

(A) Alignment of type I topology C2 domains. (B) Alignment of C2 domains that have 
type II topology. Residues that very highly conserved are highlighted in white with a red 
background. Residues that appear to be partially but still highly conserved are highlighted 
in white with a blue background. Hydrophobic residues are highlighted in yellow. The 
secondary structure domains (b-sheets and Ca2+-binding loops) are indicated on the top of 
the sequences. 
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  Figure 1. 4 Comparison of the Ca2+ binding modes of C2 domains. 

(A) Two Ca2+ ions are bound to cPLA2 C2 domain (cyan) (PDB: 1RLW). (B) Three Ca2+ ions bind to 
synaptotagmin 1 C2B domain (blue) (PDB: 1UOV) . (C) Four Ca2+ ions are identified to bind to the loops of 
perforin C2 domain (pink) (PDB: 4Y1T). Bound Ca2+ ions are shown as yellow spheres and Ca2+ binding loops 
(Loop 1-3) are marked. Side chains and main chains of residues involved in Ca2+ coordination, contributing with 
oxygen atoms (red) are represented by sticks.  
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(Zheng et al., 2000). Moreover, C2 domains also demonstrate different Ca2+ dependencies 

for binding to phospholipids and other proteins, even for the same family of C2-containing 

proteins. All of the C2A-domains from the synaptotagmin proteins interact with syntaxin 

1 in a Ca2+ dependent manner but synaptotagmins 1, 2, and 5 require Ca2+ concentrations 

of >0.2 mM, whereas synaptotagmins 3 and 7 bind at <1 μM Ca2+ (Li et al., 1995).  

 

It is also worth mentioning that, it is not totally reliable to predict the Ca2+ binding manner 

of a C2 domain solely based on the sequence analysis. The position of variable loops, which 

provides the proper spatial orientation of residues for Ca2+ binding, is difficult to predict 

due to the high dynamics of the region. Secondly, Ca2+-binding sites cannot simply be 

located from the sequence because the coordination of Ca2+ ions is also dictated by 

backbone carbonyl groups and water molecules. Therefore, direct structural 

characterization of C2 domains is of great significance on defining the Ca2+ binding 

mechanisms at the atomic level. 

 

How does Ca2+ binding modulate the structure and activity of C2 domains? Unlike the 

Ca2+-induced large structural rearrangement in EF-hand proteins (Ikura, 1996), Ca2+ 

binding does not seem to introduce big conformational changes of the C2 domain backbone: 

subtle rotations of some side chains upon Ca2+ coordination were witnessed in a number of 

studies (Grobler et al., 1996; Shao et al., 1996, 1998; Verdaguer et al., 1999). For example, 

as a consequence of  Ca2+ binding to PLC- δ1, the only structural change occurs in the 

carboxylate oxygens of Asp 653 and Asp 708 at the binding sites, which move closer to 

each other by 0.8 Å. Binding of Ca2+ also has been shown to structurally stabilize the 



 

 14 

secondary structure of C2 domains, and this is characterized by a variety of techniques, 

such as differential scanning calorimetry (DSC), infrared spectroscopy and thermal 

denaturation (García-García et al., 1999; Torrecillas et al., 2003, 2004).  

 

Most importantly, it is broadly considered that the key role of Ca2+ binding to C2 domains 

is the electrostatic switch that changes the electrostatic potential of the loop region for 

favorable interaction with membranes. This model was initially proposed for the C2A 

domain of synaptotagmin 1 (Shao et al., 1997): upon Ca2+ binding, the zwitterionic 

environment of the loop region drastically changes, becoming largely positive, thereby 

triggering synaptic vesicle exocytosis. Later, electrostatic potential calculations of different 

C2 domains showed that Ca2+ markedly changes the potential of the loop regions, thereby 

facilitating the association to negatively charged or zwitterionic membranes (Murray and 

Honig, 2002).  

 

 

1.4 Membrane binding properties of C2 domains  
 
As mentioned above, one major function of proteins that contain C2 domains is targeting 

membrane surfaces as a consequence of Ca2+-binding. A number of studies have 

demonstrated that C2 domains display different phospholipid selectivity. For example, the 

C2 domains of synaptotagmins and protein kinases C (PKC) family bind to acidic 

phospholipids such as phosphatidylserine (PS) and phosphatidylinositol (PI) (Corbalán-

García et al., 1999; Fernandez et al., 2001; Fukuda et al., 1996; Medkova and Cho, 1998), 

whereas the C2 domains of cPLA2α  and plant phospholipase D target neutral 
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phosphatidylcholine (PC) (Nalefski et al., 1998, 2001; Stahelin et al., 2003; Zheng et al., 

2000). Furthermore, C2 domains also exhibit lipid specificity in a Ca2+-dependent manner: 

studies have shown that at a Ca2+ concentration required for transmitter release (~100 μM) , 

the C2B domain of synaptotagmin 1 switches the specificity of binding from 

phosphatidylinositol-3,4,5-trisphosphate to phosphatidylinositol-4,5-bisphosphate 

(Schiavo et al., 1996). This lipid selectivity property may have a direct relation with the 

specific function a C2 domain carries as cell membranes present various and dynamic 

composition of lipids (Tucker et al., 2004). 

 

To further explain these diverse lipid binding features of C2 domains, the binding 

mechanisms have to be elucidated. Effort by extensive studies has established the 

consensus that C2 domain binding to the membrane uses a combination of electrostatic and 

hydrophobic interaction. For a majority of membrane-binding C2 domains, the 

phospholipid binding site is related to the Ca2+-binding region, and the residues on the 

surface of the Ca2+ -binding loops likely determine their lipid-binding manners. First, some 

C2 domains have been shown to bind anionic lipids via the cationic residues present on the 

loop region through non-specific electrostatic interaction irrespective of the presence of 

Ca2+ (Davletov and Sudhof, 1993; Fukuda et al., 1994). In contrast, a number of other C2 

domains bind to their target phospholipids in a Ca2+-dependent manner. As described 

earlier, Ca2+ binding changes the electrostatic potential of the loop region of many C2 

domains and the resulting positively charged surface drives the interaction with anionic 

phospholipids, exemplified by the synaptotagmin C2A domain and PKCb C2 domain 

(Murray and Honig, 2002; Striegel et al., 2012).  
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Structural characterization of the lipid binding sites of C2 domains has provided more 

insights on the binding mechanisms. An early determination of the three-dimensional  

structure of the C2 domain of PKCα in complex with Ca2+ and 1,2-dicaproyl-sn-

phosphatidylserine (DCPS) showed that the phosphoryl group of the phosphoserine 

completes the coordination sphere of  a Ca2+ ion (Verdaguer et al., 1999). In this case, Ca2+ 

acts as a bridge tethering the C2 domain and phospholipid (Figure 1.6 A - B). Additional 

binding sites were identified in the following ternary complex of Ca2+-bound PKCα with 

either 1,2-diacetyl-sn-phosphatidyl-L-serine (DAPS) or 1,2-dicaproyl-sn-phos-phatidic 

acid (DCPA). The glycerol moiety of the phospholipid is hydrogen-bonded with residues 

Arg216 and Arg249 in loop 1; the serine head group interacts with Pro188 and Asn189 in 

loop 1 (Ochoa et al., 2002). This interplay between Ca2+ ions, phospholipid molecules and 

residues in C2 domains was subsequently supported  by  a number of studies on other C2 

domains (Bittova et al., 1999; Hirano et al., 2019; Malmberg et al., 2003). 

 

More recently, the X-ray crystal structure of cytosolic PLA2α (cPLA2α) C2 domain bound 

to 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) was solved in the presence of 

Ca2+ (Hirano et al., 2019). In contrast to the two bound Ca2+ ions reported in the lipid-free 

structure (Dessen et al., 1999; Perisic et al., 1998a), an additional Ca2+ ion was observed to 

coordinate in the PC-bound structural complex by bridging residue N65 and the DHPC 

phosphoryl group. This finding expanded our views on the Ca2+-dependent lipid binding 

mechanism of C2 domains. Indeed, most of the structural characterizations of C2 domains 

with Ca2+ are conducted in the lipid-free condition. It is possible that there is participation  
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Figure 1. 5 Two lipid binding modes of C2 domain. 

(A) Overall structure of the C2 domain of PKCα in complex with Ca2+ and DCPS (PDB: 
1DSY) showing the lipid binding site overlaps with the Ca2+-binding region. Bound Ca2+ 

ions are shown as yellow spheres. (B) Close-up view of the lipid binding site demonstrating 
the phosphoryl group completes the coordination sphere of  a Ca2+ ion (Ca1). (C) The 
rabphilin 3A C2A-PI(4,5)P2 complex (PDB: 4NS0), showing the β sheet groove interacts 
with the phospholipid. (D) Close-up view of the β3–β4 groove, indicating the interactions 
between the C2A domain and the PI(4,5)P2 ligand. The C2 domain contacting residues and 
the corresponding ligands are represented in sticks and explicitly labeled. Bonds are shown 
as dashed lines in black. 
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of extra Ca2+ ions when C2 domains target membranes, which might help explain the 

existence of unoccupied Ca2+-binding sites in many C2 domains.  

 

Moreover, the crystal structures of PKCα with DAPS and DCPA showed the presence of 

a second binding site for phospholipids in the vicinity of the lysine-rich cluster from the b3 

and b4 strands. The concave surface with positive charges suited to interact with the 

anionic lipids (Ochoa et al., 2002). This interaction was further confirmed by the crystal 

structure of PKCα C2 domain in complex with Ca2+ and PtdIns(4,5)P2, where PtdIns(4,5)P2 

binds specifically to the b3-b4 groove, forming direction interactions with four lysines as 

well as two aromatic residues. Mutations of these residues were shown to cause severely 

impaired plasma membrane localization of PKCα. Structure-based sequence alignment has 

revealed high conservation of aromatic and cationic residues in the b3-b4 among many C2 

domains, including synaptotagmins 1, 4, 7 and 13, rapbhilin 3A, PI3K-C2α, piccolo and 

RIM1, 2 (Corbalan-Garcia and Gómez-Fernández, 2014). This model was further 

supported by the crystal structures of the C2A domain of rabphilin 3A and synaptotagmin 

1 in complex with PtdIns(4,5)P2 and IP3, which show that a collection of residues 

surrounding the polybasic cluster are essential to hold the phosphoinositide in order to 

induce Ca2+-dependent vesicle clustering (Guillen et al., 2013) (Figure 1.6 C - D). The 

finding that phospholipids specifically interact with the lysine-rich cluster in addition to 

the Ca2+ binding region, suggests that C2 domain may be regulated by a dual-target 

mechanism. However, how these two targets combine in nature is not clear yet. 
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1.5 Ca2+-mediated membrane repair 
 
Eukaryotic cells are not protected by a hardened and impermeant cell wall like bacterial 

cells. The loss of a cell wall leads to an unprotected lipid bilayer membrane, which is more 

vulnerable to mechanical and chemical stress. Consequently, plasma membrane disruption 

occurs frequently especially in mechanically active tissues, such as skeletal and cardiac 

muscles and skins (Clarke Mark S. F. et al., 1995; McNeil and Ito, 1990; McNeil and 

Khakee, 1992). By using histochemical techniques to detect membrane damage in rat 

muscle fibers, it was shown that membrane wounding occurs far more frequently after 

eccentric exercise than the unexercised rat (McNeil and Khakee, 1992). Fortunately, 

membrane repair mechanisms have evolved in eukaryotic cells to reseal membrane 

breaches. The wounded cell is able to survive when an effective repair response is triggered 

that restores membrane integrity.  

 

In fact, early in the 1920s, studies on the embryonic fate of egg fragments already 

demonstrated that metazoan cells could survive rupture of their surface membranes 

(Wilson, 1925). Several decades later, Chambers & Chambers and Heilbrunn discovered 

that healing of injured cells required the presence of physiological levels of Ca2+ 

(Chambers and Chambers, 1961; Heilbrunn, 2013). They observed that, in the presence of 

Ca2+, cells displayed a rapid (seconds) reaction to a wound. This consisted of the 

disappearance of certain cytoplasmic vesicles at the disruption site and the simultaneous 

appearance there of an enlarged vesicle population. They also inferred that cytoplasm 

would begin and continue to spill out of the wounded cell in the absence of Ca2+. In the 

presence of Ca2+, the wounded cell clearly recovered. The critical role of Ca2+ as an 
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activating trigger for membrane repair has been universally accepted since then and 

evidently supported by a myriad of other studies. 

 

Pioneering studies of cell membrane repair mainly were performed on sea urchin eggs and 

revealed that repair of the disruptions is mediated by Ca2+-regulated exocytosis. Using 

confocal microscopy, researchers visualized Ca2+-dependent exocytosis during membrane 

resealing by a mechanism similar to neurotransmitter release: when a sea urchin egg was 

wounded with a laser beam, rapid and localized exocytosis followed Ca2+ influx at the 

wound site (Bi et al., 1995; Steinhardt et al., 1994).  It was then proposed that exposure of 

cytoplasm to high Ca2+ caused by a puncture of the fibroblast or sea urchin egg surface 

results in massive fusion of internal vesicles with each other and with the plasma membrane. 

These fusion reactions proceed rapidly until a patch of membrane continuous with the 

plasma membrane has formed, preventing further Ca2+ entry (Terasaki et al., 1997). 

Subsequent studies identified lysosomes as the Ca2+-regulated exocytic compartments 

responsible for plasma membrane repair based on the observation of specific markers of 

lysosomes aggregating on the surface of injured epithelial and myoblasts cells (Reddy et 

al., 2001; Rodríguez et al., 1997). Instead of the traditional view that lysosomes are the 

final sites of accumulation of internalized macromolecules, it is believed now that 

lysosomes also behave as secretory vesicles, fusing with the plasma membrane in response 

to Ca2+ entry (Andrews, 2000). Ca2+-dependent lysosomal exocytosis was later shown to 

occur in injured muscle fibers (Corrotte et al., 2013; Lennon et al., 2003). 
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All these findings together have established a broadly accepted mechanism to explain cell 

membrane repair - the “lipid patch” model. This model proposes that, a disrupted 

membrane causes diffusion of Ca2+ from the extracellular space and creates a zone of high 

Ca2+ around the disruption site. In response to the Ca2+ influx, protein-carrying repair 

vesicles (lysosomes) are targeted to the disruption site, where they accumulate and fuse 

with one another and the plasma membrane. Fusion of the repair vesicles with the plasma 

membrane puts a membrane patch across the membrane disruption, thereby resealing the 

disrupted plasma membrane (Figure 1.7).  

 

Consistent with the critical role of Ca2+ in cell membrane repair, a number of Ca2+-sensor 

proteins have been identified to be involved in resealing in various cell types, including 

SNARE proteins, synaptotagmins, S100A10, annexins, calpains and Ferlins. Most Ca2+ 

sensor proteins contain one or more Ca2+-binding domains, such as a C2 domain or an EF-

hand motif. Taking synaptotagmins for example, as mentioned above, synaptotagmins are 

a group of transmembrane proteins that contain two C2 domains in their cytosolic regions 

(Davletov and Sudhof, 1993). Synaptotagmins 1 and 2  are conventionally known for 

triggering the Ca2+-activated fusion of neurotransmitter-containing vesicles through 

interaction with SNARE machinery in neural synaptic vesicle exocytosis (Bommert et al., 

1993; Brose et al., 1992; Elferink et al., 1993; Schiavo et al., 1997). Later, synaptotagmin 

1 was shown to be  required for membrane repair in severed axons of squid and crayfish 

giant axons (Detrait et al., 2000). In addition, synaptotagmin 7, ubiquitously expressed in 

mammalian cells, was found to be critical for membrane resealing in embryonic fibroblasts 

(Chakrabarti et al., 2003). Fibroblasts taken from synaptotagmin 7-deficient mice  
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Figure 1. 6 Schematic diagram of the lipid patch model of plasma membrane repair. 

(A) A disrupted membrane causes diffusion of Ca2+ from the extracellular space and creates 
a zone of Ca2+ calcium around the disruption site. (B) Ca2+ activates repair proteins and 
protein-carrying repair vesicles are targeted to the disruption site, where they accumulate 
and fuse with one another and the plasma membrane in the presence of localized high levels 
of Ca2+. (C) Fusion of the repair vesicles with plasma membrane puts a membrane patch 
across the membrane disruption and thereby reseals the disrupted plasma membrane and 
prevents further Ca2+ entry. 
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demonstrated defective lysosomal exocytosis and decreased capacity to reseal their plasma 

membrane, resulting in extensive fibrosis in the skin and skeletal muscle.  

 

Similar to synaptotagmins, a variety of proteins have been shown to be part of the 

membrane repair components, aside from the traditionally recognized functions of theirs, 

such as S100A10, annexins, and MG53 (Cai et al., 2009a; Koerdt and Gerke, 2017; 

Rezvanpour et al., 2011). Are there any proteins that have been identified to be specific 

and exclusive for membrane repair-based fusion events? Dysferlin seems to be the one.  

 

 

1.6 Dysferlin and muscular dystrophy 
 
In 1998, a novel gene was identified in skeletal muscle cell as the cause of two forms of 

inherited muscular dystrophy (Bashir et al., 1998; Liu et al., 1998). This gene shows 

homology to the Caenorhabditis elegans (C. elegans) spermatogenesis factor fer-1. The 

proposed name “dysferlin” combines the role of the gene in producing muscular dystrophy 

with its C. elegans homology. Fer-1 is a spermatogenesis factor that is specifically 

expressed in primary spermatocytes of C. elegans. In spermatids, mutations in fer-1 cause 

infertility by impairing the fusion of large vesicles with the plasma membrane (Achanzar 

and Ward, 1997; Ward et al., 1981). Given the structural and sequence homology between 

dysferlin and fer-1, it was postulated that dysferlin might also be a vesicle-associated 

membrane protein involved in the docking and fusion of vesicles in the skeletal muscle 

cells. Soon after the identification of dysferlin, several new genes showing protein structure 

and sequence similarity to dysferlin were identified, including myoferlin and otoferlin 
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(Britton et al., 2000; Yasunaga et al., 1999). Therefore, a new family of mammalian 

proteins was discovered and named “Ferlin”. All ferlin proteins, including dysferlin, 

contain a variable number of C2 domains, accessory domains and a single C-terminal 

transmembrane spanning helix domain (Peulen et al., 2019). 

 

In 2003, Bansal et al. made the fundamental discovery that dysferlin played an essential 

role in Ca2+-dependent sarcolemma resealing. They showed that dysferlin-null mice 

developed a progressive muscular dystrophy, compared to the normal muscle cells, where 

membrane patches enriched in dysferlin can be detected in response to injuries. Further, 

increased entry of fluorescence dye into the muscle cells after a laser-induced disruption at 

plasma membrane was observed for the wounded muscle in the absence of Ca2+, and 

dysferlin-null muscle, indicating disruptive muscle fibers could not be resealed without 

participation of Ca2+ or dysferlin (Bansal et al., 2003). Subsequently, the role of dysferlin 

in membrane repair was confirmed and extended by several other groups. For example, 

fusion and accumulation of dysferlin-containing vesicles and with lysosomes in response 

to muscle cell wounding was detected by live-cell imaging (McDade and Michele, 2014), 

supporting the “lipid patch” hypothesis for membrane repair mechanism described above.  

 

However, the exact mechanism of dysferlin-mediated membrane repair is still unclear, and 

many steps involved in this process are unknown. One major mystery is the unique domain 

organization of dysferlin. Dysferlin is a 230 kD cytosolic-facing, membrane bound protein, 

which contains seven tandem C2 domains (C2A-C2G), two Fer domains (FerA and FerB) 

and a DysF domain (Sula et al., 2014) (Figure 1.8 A). Regarding the C2 domains of 
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dysferlin, it seems that they have distinct functions. For instance, the C2A domain was 

identified to bind phospholipids in a Ca2+-dependent fashion, whereas other C2 domains 

showed weak and Ca2+-independent binding (Therrien et al., 2009). It has been reported 

that the dysferlin C2A domain mediates the fusion of lysosomes with the plasma membrane 

(Han et al., 2012), and that it is also required for MG53-dependent accumulation of 

dysferlin at damage sites (Matsuda et al., 2012) (Figure 1.8 B). One study demonstrated 

that all seven dysferlin C2 domains interact with Ca2+ with various binding affinities 

ranging from micromolar to millimolar, and with different stoichiometry (Abdullah et al., 

2014). Additionally, the C2B-C2C motif was proposed to mediate dysferlin expression at 

the plasma membrane, as well as its endocytic rate (Evesson et al., 2010). However, only 

the structure of the C2A domain of dysferlin has been reported (Fuson et al., 2014). There 

is very limited data regarding the structure and detailed Ca2+ binding mechanisms of other 

C2 domains. On the other hand, functions of Fer and DysF domains as well as the linker 

regions are also unidentified.  

 

As mentioned, in humans, mutations in dysferlin are linked to two types of muscular 

dystrophy diseases: limb-girdle muscular dystrophy 2B (LGMD2B), a autosomal recessive 

degenerative myopathy, and Miyoshi muscular dystrophy (MM), a late-onset muscular 

dystrophy. Muscular dystrophy is a diverse group of inherited myogenic disorders, 

characterized by progressive loss of skeletal muscle strength and integrity, causing muscle 

weakness and wasting. Clinically, these diseases can present at any age from birth to middle 

years, resulting in severe morbidity and disability (Laval and Bushby, 2004). At the level 

of muscle pathology, muscular dystrophies are characterized by necrotic and regenerating  
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Figure 1. 7 Dysferlin domain organization and dysferlin-mediated membrane repair 

model.  

(A) Domain organization for human dysferlin showing the seven C2 domains, two Fer 
domains, one DysF domain and a C-terminal transmembrane domain (red), connected by 
linker regions (grey). (B) Dysferlin is localized by its C-terminal transmembrane domain 
to cytoplasmic vesicles and the plasma membrane. On injury of the membrane, Ca2+ influx 
(green) raises the intracellular Ca2+ concentration locally, triggering the dysferlin-mediated 
patch repair response by binding to the C2 domains of dysferlin. Dysferlin molecules 
present on repair vesicles and the plasma membrane mediate docking and fusion of the 
patch, sealing the membrane breach, and preventing further influx of Ca2+ ions.  
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fibres, increase in fibre size variation, fibre splitting and centrally located myonuclei. 

Successive rounds of degeneration and regeneration of muscle fibres eventually result in 

necrosis and replacement of muscle with fatty and fibrous tissue (Laval and Bushby, 2004). 

Its most common form in children, Duchenne muscular dystrophy, affects approximately 

1 in every 3,500 to 6,000 male births each year in the United States. To date, there are more 

than 30 forms of clinically distinctive muscular dystrophies, classified by the distribution 

of muscle degeneration, age of onset, rate of progression, severity of symptoms, and family 

history.  

 

LGMD2B and Miyoshi myopathy (MM) are two autosomal recessive muscle diseases. 

LGMD2B is a predominantly proximal muscular dystrophy affecting the voluntary 

muscles, such as the arms, legs, fingers, toes, and facial muscles. The patients show normal 

mobility in childhood with a slowly progressive muscle weakness and wasting (Prelle et 

al., 2003). By contrast, Miyoshi myopathy is a predominantly distal muscular dystrophy 

with early involvement of muscles that are located away from the center of the body, such 

as those in the legs (Flachenecker et al., 1996). 

 

More than 100 pathogenic mutations have been identified throughout the entire dysferlin 

gene including all seven C2 domains (Krahn et al., 2009). Clinical data have reported that 

the pathogenic dysferlin mutations affect the protein expression level in skeletal muscle, 

characterized by severely decreased  or absence of dysferlin expression (Krahn et al., 2009; 

Nguyen et al., 2005). An amount of dysferlin £ 20% has been shown to be  pathogenic and 

always caused by primary dysferlin gene mutations (Cacciottolo et al., 2011). The V67D 
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substitution on the C2A domain was shown to impede the membrane repair process by 

diminishing phospholipid binding (Davis et al., 2002). Another substitution on the C2A 

domain, W52R, leading to Miyoshi myopathy (MM) (De Luna et al., 2007) inhibits the 

association with MG53 (Matsuda et al., 2012). The L344P substitution occurs within the 

linker between dysferlin C2B and C2C domains was demonstrated to change the tertiary 

conformation of C2B-C2C module (Woolger et al., 2017). Nevertheless, how these 

substitutions affect dysferlin expression and activities on the molecular basis still remains 

largely unknown. 

 

Last but not least, in vivo studies (co-immunoprecipitation, pull-down assays, 

immunofluorescence, etc.) have made progress on identifying proteins that cooperate with 

dysferlin to regulate membrane fusion and provided new mechanistic insights into dysferlin 

function. For instance, dysferlin associates with annexins A1 and A2 in a Ca2+-dependent 

and membrane injury dependent manner (Lennon et al., 2003); Caveolin-3 and calpain-3, 

two muscle specific proteins that are responsible for distinct forms of muscular dystrophy, 

have  also  been  found  to  interact  with  dysferlin (Matsuda et al., 2001; Anderson et al., 

2000).  Patients  deficient  in  caveolin-3  have  been  reported  to exhibit  a reduction or 

mislocalization of dysferlin, and patients deficient in dysferlin have reduced levels of 

calpain-3 (Anderson et al., 2000; Capanni et al., 2003). Dysferlin binding to SNAREs was 

identified in myoblast cell, revealing a function for dysferlin as a Ca2+ sensing SNARE-

mediated membrane fusion events (Codding et al., 2016). Futhermore, dysferlin was shown 

to bind to AHNAK, a previously reported marker of enlargeosomes (Cocucci et al., 2004), 

through the C2A domain (Huang et al., 2007). AHNAK has also been reported to 
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participate in a ternary membrane repair complex with S100A10 and annexin A2 (Dempsey 

et al., 2012; Rezvanpour et al., 2011). Dysferlin with MG53 and caveolin-3 were shown to 

made up an essential component of the membrane repair machinery in striated muscle (Cai 

et al., 2009b). Additionally, the C2A domain of dysferlin was identified to be important for 

association with MG53. All these findings combined with multiple proteomic studies have 

suggested a multiprotein complex that includes dysferlin, AHNAK, annexin, S100A10, 

and MG53, and the C2A domain seems to play a critical role in interacting with other 

proteins (Leung et al., 2011; Morrée et al., 2010; Park et al., 2010). Thus, to uncover the 

mechanisms of membrane repair and related disorders, it is important to understand how 

the dysferlin-mediated membrane repair complex is assembled and how Ca2+ may play a 

regulatory role.  

 

 

1.7 Scope of thesis 
 
Dysferlin plays an essential role in muscle cell membrane resealing and abnormality of it 

leads to serious muscular dystrophy diseases. However, lack of information on the 

structures and Ca2+-binding modes of the C2 domains of dysferlin does not allow a full 

understanding of the mechanisms of membrane repair. Although a crystal structure of the 

C2A domain was reported prior to the thesis (Fuson et al., 2014), it is unclear how the 

domain interacts with Ca2+. The Ca2+-binding site of the C2A domain is yet to be unveiled. 

Further, identification of other C2 domains in dysferlin remains ambiguous with respect to 

the domain boundaries and structural characterization. Limited data exists about the 

possible interdomain interaction and the modular topology of dysferlin. In addition, how 
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pathogenic substitutions affect the activities of dysferlin on the molecular basis still 

remains largely unknown.  

 

Consequently, further biochemical and structural studies will be needed to answer the 

above questions. The objectives of this thesis were:  

1) Determine the structure of the dysferlin C2A domain in the Ca2+-free and Ca2+-bound 

state. Assess the dynamics of the protein in the two states. (Chapter 2 – 3) 

2) Investigate how calcium binds and modulates the dysferlin C2A domain in details. 

Compare the calcium binding mode with that of other C2 domain containing proteins. 

(Chapter 3) 

3) Assess how some pathogenic substitutions in dysferlin C2 domains affect the domain 

structure and activity. (Chapter 4) 

4) Characterize other C2 domains in dysferlin such as C2B and C2C domains and 

determine the precise domain boundaries. Explore the possible interdomain 

interactions. (Chapter 5) 

 

To address these goals, a variety of biophysical and thermodynamic techniques were 

undertaken. Nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography 

were used to determine the structures of dysferlin C2A domain. The dynamic properties of 

the C2A domain were probed by  NMR spectroscopy and circular dichroism (CD) 

spectropolarimetry, which revealed the flexibility of the dysferlin C2A domain as its 

unique feature. Isothermal titration calorimetry (ITC) was carried out to measure the 

thermodynamic properties of Ca2+ binding to the C2A domain. Based on the solved 
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structures and established Ca2+ binding properties of the C2A domain, impact of 

pathogenic mutations was then assessed on the molecular basis. Finally, to design and 

generate recombinant dysferlin C2B and C2C domains, a combination of biological and 

computational analyses were used. Together, these studies expand our knowledge of the 

Ca2+ signaling in dysferlin-mediated membrane repair, and pathogenesis of related diseases. 

The work also helps guide future strategies for investigating the tertiary folding of dysferlin. 
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Chapter 2 
 
Structure and Dynamics of Dysferlin C2A Domain in the 

Apo-state 

 

 

2.1 Introduction 
 
Dysferlin is a 230 kD cytosolic-facing, membrane bound protein that is a member of the 

Ferlin family. All Ferlin proteins, including dysferlin, contain a variable number of C2 

domains, accessory domains and a single C-terminal transmembrane spanning helix 

domain (Peulen et al., 2019). For example, dysferlin includes seven C2 domains (C2A-

C2G), three Fer domains (FerA, FerB, and FerI) and two DysF domains (Sula et al., 2014). 

Of these, the N-terminal C2A domain appears to be the most important for membrane 

repair and is also the location of several substitutions that cause limb-girdle muscular 

dystrophy type 2B (LGMD2B) or Miyoshi myopathy (MM) (Krahn et al., 2009). The C2A 

domain demonstrates the strongest interaction with phosphoinositide and 

phosphotidylserine membrane surfaces and is the only C2 domain in dysferlin that does so 

in a calcium-dependent manner (Therrien et al., 2009) . Further, the C2A domain in 

dysferlin has been identified as the main domain responsible for  interaction with other 

proteins (eg. MG53, AHNAK) in response to calcium ion influx to mediate membrane 

repair (Huang et al., 2007, 2007; Matsuda et al., 2012). 
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The three-dimensional structure of the calcium-free dysferlin C2A was determined by 

NMR spectroscopy by previous members of the Shaw lab (Dr. Liliana Santamaria-Kisiel, 

Dr. Pascal Mercier and Chantal Forristal). The structure displayed an anti-parallel β-

sandwich arrangement connected by loops on the top typical of the C2 domain fold (Figure 

2.1 A). However, the top loops of C2A show remarkably greater flexibility than any other 

C2 domain that have been structurally characterized (Figure 2.1 B). A previously reported 

crystal structure of the dysferlin C2A domain has shown the similar fold with less 

flexibility (Fuson et al., 2014) (Figure 2.1 C). In this crystal structure, only one of the six 

molecules in the asymmetric unit coordinated a single divalent cation that was modeled 

and refined it as a calcium ion. Thus, we consider this structure as apo state. By overlapping 

the six molecules in a asymmetric unit, variations in positions of loop 1 and 3 were 

observed (Figure 2.1 D). This raised our interest in investigating the difference between 

the NMR and crystal structures of the C2A domain by probing its dynamics in solution. 

Although structures of many C2 domains in the apo and calcium bound state have been 

determined, little is known about the dynamics of these proteins. It is also not clear how 

calcium-binding to the dysferlin C2A domain alters the structure of this protein and how 

this might affect its interaction with the inner membrane surface or accessory proteins. In 

this chapter, I pursued a detailed analysis of the backbone flexibility and dynamics of the 

dysferlin C2A domain in the calcium-free and calcium-saturated states and the effect of 

calcium coordination. A combination of methods was applied, including NMR-based 

heteronuclear NOE and T2 relaxation measurements, and thermal unfolding by circular 

dichroism. The work provides novel insights into the flexible properties of the dysferlin 

C2A domain that may be key to its functions in calcium binding and membrane repair.  
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Figure 2. 1 NMR and crystal structures of the C2A domain in the apo state.  

(A) Ribbon diagrams of the representative structures of apo-C2A domain of dysferlin show 
the eight-strand antiparallel β-sandwich assembly in magenta (β1-β8) and single α-helix in 
cyan. The top loops are shown in gray and labelled by numbers. (B) The superposition of 
the 20 lowest energy structures for the apo-C2A showing the flexibility of the loop region 
(grey). (C) The crystal structure of dysferlin C2A domain (Fuson et al., 2014) (PDB: 4IHB). 
The eight β sheets are shown in blue, α-helix in orange, and loops in grey. (D) The 
superposition of the structures of the six C2A molecules in a asymmetric unit showing the 
variation in positions of loop 1 and 3 (grey).  
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2.2 Materials and Methods 
 
 

2.2.1 Expression and purification of dysferlin C2A domain 

The dysferlin C2A construct was cloned by Chantal Forristal prior to this project. The 

construct contained dysferlin (DYSF) residues 1-130 and a seven-residue linker 

(GSGGGGG) at the N-terminus that remained after cleavage of the affinity tag. Unlabeled 

and uniformly 15N, 13C-labeled wild-type C2A domain of human dysferlin (residues 1-130) 

were overexpressed in the BL21-CodonPlus (DE3) Escherichia coli (E. coli ) strain in LB 

or M9 minimal medium supplemented with 30 μg/mL kanamycin and 30 μg/mL 

chloramphenicol. 15NH4Cl (1 g/L) and 13C6-glucose (2 g/L) were used as the sole nitrogen 

and carbon sources in the M9 minimal media. The cultures were grown at 37 ºC until an 

optical density at 600 nm (OD600) of 0.6 was reached at which point cells were cooled to 

16 °C and induced with 0.5 mM IPTG for 16 hours. Cells were harvested by centrifugation 

at 6,000 rpm for 15 min and resuspended in lysis buffer (25mM Tris, 300 mM NaCl, 10 

mM imidazole, pH 7.5). Cells were lysed by EmulsiFlex-C5 homogenizer (Avestin) and 

ultracentrifuged at 38,000 rpm for 90 min. The supernatant was filtered through 0.45 

micron low protein binding syringe filters (Millipore) and subsequently applied to a 5 mL 

HisTrap FF column on an AKTA FPLC (GE Healthcare) pre-equilibrated in lysis buffer. 

The column was washed with lysis buffer plus 50 mM imidazole until the OD280 returned 

to baseline. Bound protein was then eluted with a 250-500 mM imidazole in the elution 

buffer (25mM Tris, 300 mM NaCl, 250-500 mM imidazole, pH 7.5). Fractions containing 

the protein were pooled and TEV protease was added to cleave the His6 tag (~1:50 ratio 
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protease:protein) and dialyzed against cleavage buffer (25 mM Tris, 300 mM NaCl, pH 

7.5) overnight at 4 ºC with gentle agitation. Cleaved protein was purified on a 5 mL 

HisTrap FF column, again in lysis buffer, and flow through was collected containing the 

protein. A final purification step by size exclusion chromatography was performed on a 

HiLoad Superdex75 pre-equilibrated with appropriate buffers. Fractions containing the 

protein were pooled and stored at -80 ºC.  

2.2.2 Analytical ultracentrifugation 

Sedimentation velocity studies were carried out using a Beckman Optima XL-A Analytical 

Ultracentrifuge. Two protein samples at 20 μM each were analyzed: apo-C2A in 25 mM 

MES (pH 7.5), 300 mM NaCl, 3 mM EDTA, and Ca2+-C2A in 25 mM MES (pH 7.5), 300 

mM NaCl, 3 mM Ca2+. Samples and matching buffer blanks were prepared in a double 

sector cell (1.2 cm) with quartz windows. An An60Ti rotor and double-sector cells with 

Epon charcoal centerpieces were used. Centrifugation was carried out at 4 °C. 60 

absorbance measurements at 280 nm were collected at 5-min intervals, in 0.002 cm radial 

steps. A rotor speed of 50,000 rpm was used. Data were analyzed using non-linear 

regression in SEDFIT software and fit to a c(s) distribution (Schuck, 2000), to determine 

sedimentation coefficients corrected to 20 °C in H2O (S20,w). 

2.2.3 NMR spectroscopy 

All NMR experiments were collected at 25 ˚C on a Varian Inova 600 MHz NMR 

spectrometer equipped with a triple resonance cryogenic probe and z-field gradients (the 

Biomolecular NMR Facility, Department of Biochemistry in the Schulich School of 
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Medicine, The University of Western Ontario). All data were processed using NMRPipe 

(Delaglio et al., 1995) and analyzed using NMRViewJ (Johnson and Blevins, 1994). 

 

2.2.4 Backbone Chemical Shift Assignment of apo-C2A 

The apo-C2A sample was prepared at a concentration of 600 μM in 25 mM MES (pH 4.5), 

150 mM NaCl, 1 mM DTT, 5 mM EDTA containing 10% D2O, 200 μM DSS as an internal 

reference, and 200 μM imidazole as an internal pH indicator (Baryshnikova et al., 2008). 

Data for the backbone assignments were obtained from HNCACB (Wittekind and Mueller, 

1993) , CBCA(CO)NH (Grzesiek and Bax, 1992) and 1H-15N HSQC experiments. The 1H 

spectral window was 7000 Hz centered on 4.785 ppm. The 15N spectral window was 1944 

Hz centered on 116.191 ppm and The 13C spectral window was 8443 Hz centered on 46.000 

ppm. 

2.2.5 Heteronuclear NOE measurements of apo- and Ca2+-C2A 

Heteronuclear NOE experiments (Farrow et al., 1994a) were performed for both apo- and 

Ca2+-C2A. The 15N-labelled apo-C2A sample was prepared at 700 μM in 25 mM MES (pH 

4.5), 150 mM NaCl, 1 mM DTT, 5 mM EDTA and the 15N-labelled Ca2+-C2A was also 

700 μM  in 25 mM HEPES (pH 7.0), 150 mM NaCl, 250 μM TECP, 10 mM CaCl2. To 

avoid protein precipitation over time, identical fresh sample was used for each experiment. 

Spectra were collected first with a recovery delay of 6-s (non-saturated spectrum) and 

second with a recovery delay of 3-s of proton saturation (saturated spectrum). The 1H-15N 

NOE value for each residue was calculated as the ratio of the cross-peak intensity 

(saturated/non-saturated), and error was estimated from the baseline noise in the two 
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spectra. Both saturated and non-saturated experiments were conducted in duplicate with 

fresh protein samples. 

 

2.2.6 T2 relaxation experiment of apo-C2A 

T2 relaxation (Bloembergen et al., 1948) data for 15N-labelled apo-C2A (pH 4.5) was 

collected at a concentration of 170 μM using a 3-s delay. Two dimensional 1H-15N HSQC 

spectra were recorded with seven different relaxation times: relaxT = 0.01-s, 0.03-s, 0.05-

s, 0.07-s, 0.09-s, 0.11-s and 0.15-s. T2 values were determined by fitting the measured peak 

heights to a two-parameter single-exponential decay function of the form: 

 

!(#) = 	 !!exp	(− "
#!
)                       (Equation 1) 

 

where I(t) is the intensity after a delay of time t and I0 is the intensity at time t = 0. 

 

2.2.7 Circular dichroism 

Folding and stability of all proteins was monitored by circular dichroism 

spectropolarimetry using a Jasco J-810 instrument (Biomolecular Interactions and 

Conformations Facility, The University of Western Ontario). All proteins were extensively 

dialyzed in the CD buffer for at least one day with stirring. Samples comprised 20 μM 

protein in 10 mM MOPS (pH 7.5), 50 mM NaCl, 1 mM EDTA for apo-C2A and 20 mM 

CaCl2 for Ca2+-C2A. For each protein, 15 scans from 250-200 nm (80 nm/min with 
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increment of 1 nm) were recorded using a 1 mm path-length cell at 20 °C, averaged and 

the buffer background was subtracted.  

 

Thermal denaturation studies were performed by exposing the protein to different 

temperatures within the range of 5-95 °C (1 °C/min with increments of 0.5 °C) by 

monitoring changes in the ellipticity at 215 nm. A 1 mM path length cuvette was used. The 

ellipticity was normalized between 0-1 using the function: 

                                        

Y'= (Y-Ymax)/(Ymax-Ymin)              (Equation 2) 

 

where Y is the observed CD signal at 215 nm, Ymax is the signal for the folded protein 

and Ymin is the signal for the unfolded protein. 

 

 

2.3 Results 
 

2.3.1 Optimized purification of the dysferlin C2A domain 

In order to obtain His6-tagged recombinant C2A protein, the supernatant containing the 

protein was loaded onto a Ni2+-charged IMAC (HisTrap FF column) following bacterial 

overexpression and cell lysis. A concentration of 10 mM imidazole was added to both 

binding and wash buffers to interfere with the weak binding of other proteins. The C2A 

protein was then eluted with a higher concentration of imidazole. A Coomassie-stained 

SDS-PAGE gel of the fractions is presented in Figure 2.2 A showing that the His6-tagged   
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Figure 2. 2 Purification of the dysferlin C2A domain. 

(A) Purification of His6-tagged C2A by HisTrap FF chromatography monitored by SDS-
PAGE stained with Coomassie blue. Cell lysate was obtained following cell lysis and 
ultracentrifugation and loaded onto HisTrap FF column. His6-tagged C2A was then eluted 
by increasing the level of imidazole in the elution buffer (black arrow). (B) Purification of 
cleaved C2A by HisTrap FF chromatography. The eluted His6-tagged C2A was cleaved by 
TEV protease and loaded onto HisTrap FF column again. Cleaved C2A was eluted in the 
flow-through fractions (black arrow). (C) Mass spectrum confirming the molecular weight 
of C2A. MWcalculated: 14805 Da. 
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C2A protein was successfully purified from the cell lysate. After the first purification step 

and His6 tag cleavage by TEV protease, a previous method of C2A purification in the lab 

utilized ion exchange chromatography. This required lower pH conditions (~5.5) and led 

to significant precipitation of the protein. To solve this issue, nickel affinity purification 

using a HisTrap FF column was applied again in the second step after cleavage of the His6 

tag so that the pH was kept at 7.5 to avoid precipitation. This was followed by gel filtration 

chromatography. No significant precipitation was observed during this step and the protein 

yield was greatly increased. The protein was produced at levels of 25-50 mg per liter 

medium. Figure 2.2 B shows successful TEV cleavage and elution of C2A protein from 

the second HisTrap FF. A sample from one of the fractions was sent for electrospray 

ionization mass spectrometry (ESI-MS). The mass spectrum clearly shows one main 

species corresponding to the mass of C2A of 14.8 kDa (Figure 2.2 C).  

 

To identify the dimerization/oligomerization state of C2A, analytical ultracentrifugation 

was used to study its overall shape in solution. Both apo- and Ca2+-C2A samples were 

analyzed and results showed that, in the absence (+EDTA) and presence of calcium, C2A 

sediments as a monodisperse sample, fitting well to a single species/peak, corresponding 

to molecular weights of ~14 kDa and sedimentation coefficients of 1.5 S20,w (Figure 2.3). 

This confirms that C2A is monomeric in both apo- and Ca2+-state with homogeneous 

conformation in solution.  
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Figure 2. 3 Sedimentation velocity studies of the C2A domain. 

Sedimentation velocity experiments of apo-C2A (red) and Ca2+-C2A (black). All data were 
analyzed using the Lamm equation and fit to a c(s) distribution. Sedimentation coefficients, 
corrected to 20 °C and in H2O (S20,w), were determined to be 1.472 S for apo-C2A, and 
1.493 S for Ca2+-C2A. Fitted molecular weights were calculated to be 14.0 kDa for apo-
C2A, and 14.5 kDa for Ca2+-C2A. 
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2.3.2 Assignment of the NMR spectrum of apo-C2A 

Previous work on dysferlin C2A in the lab has solved the solution NMR structure of its 

calcium free state at pH 7.5. Figure 2.1 B shows the superposition of 20 structures with the 

lowest combined NOE and dihedral energies as representative of the calculation. The 

backbone assignment of apo-C2A was also performed by NMR under pH 7.5. However, 

due to the amide exchange with the bulk H2O solvent, a large number of amide resonances 

from the loop regions of the protein were missing. For example, under pH 7.5, many amide 

resonances from loops L1 (E10, N11, V12, H13, T14, D18, S20, D21, A22, Y23, C24), L2 

(T35, K36, V37, S41, V42), L3 (D71, H72, E73, T74, M75, R77, R79) were absent in the 

1H-15N HSQC spectra, which became an obstacle for further investigation of the protein 

properties. 

It was reported previously that the amide hydrogen exchange in proteins is pH-dependent: 

at pH 4.5, amide hydrogen exchange rate is slowed by ~1000 fold compared to pH 7.5 

(Matthew and Richards, 1983). Thus, the 1H-15N HSQC spectrum of apo-C2A at pH 4.5 

was obtained and compared with that at pH 7.5. Many more peaks were observed at lower 

pH while all the peaks remained well-dispersed, indicating the protein is still properly 

folded and the amide exchange was significantly slowed (Figure 2.4). The backbone 

assignment (1H, 15N, and 13C) of the apo-C2A was further completed at pH 4.5 using 

standard heteronuclear multiple dimensional NMR spectroscopy including 1H-15N HSQC, 

HNCACB (Wittekind and Mueller, 1993) and CBCA(CO)NH (Grzesiek and Bax, 1992) 

(Figure 2.5 and Table 2.1). Figure 2.6 shows the 1H-15N HSQC spectrum of apo-C2A (pH 

4.5) labeled with newly assigned residues.  
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Figure 2. 4 Overlaid 1H-15N HSQC spectra of apo-C2A at pH 4.5 and 7.5. 

600 MHz 1H-15N HSQC spectra for the dysferlin C2A in the apo-state at pH 4.5 (red) and 
7.5 (black) are shown. Peaks that only appeared at pH 4.5 are indicated in dashed boxes. 
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Figure 2. 5 Selected region of sequential backbone assignment of apo-C2A. 

The spectra illustrate 15N planes for sequential assignment of residues E51-L54 of the apo-
C2A at pH 4.5. For each pair of planes, the CBCA(CO)NH is shown on the left and the 
HNCACB on the right where the x-axis is the amide proton chemical shift and the y-axis 
is the 13C plane of the three-dimensional experiments. The Cα and Cβ for the intraresidues 
(indicated as i) are shown on the HNCACB spectra and the corresponding Cα and Cβ for 
the previous residues (i-1) are shown in the CBCA(CO)NH.   



 

 57 

 
 

 
 
 

 
 
 

 

 

 

Figure 2. 6 Backbone amide assignments of apo-C2A (pH 4.5). 

1H-15N HSQC spectrum of 600 μM uniformly 15N, 13C-labelled apo-C2A in 25 mM MES 
(pH 4.5), 150 mM NaCl, 1 mM DTT, 5 mM EDTA containing 10% D2O. The spectrum 
was acquired on a Varian INOVA 600 MHz spectrometer. Assigned backbone amide cross 
peaks are indicated with their one letter amino acid code and number. Pairs of resonances 
for sidechain amide cross peaks are connected by horizontal lines. 
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Under pH 4.5, some new signals appeared and were assigned including several in loops 

L1-L3: E10, N11, V12 and T14 in loop L1, T35, K36, V37, S41 and V42 in loop L2, and 

T74, M75, R77 in loop L3. This indicates that residues in these loops are exposed to solvent, 

do not participate in any hydrogen bonding interactions and are subject to amide exchange 

with the bulk H2O solvent. It is also worth mentioning that several other residues including 

A9, H13, D21 and A22 in loop L1, G49 in loop L2, and R79, F80, L81 and G82 in loop 

L3 were still absent from the 1H-15N HSQC at pH 4.5, suggesting these regions of the apo-

C2A structure may undergo conformational exchange. 

2.3.3 pH-dependent dynamics of apo-C2A  

The structure of the dysferlin C2A domain in the calcium-free (apo-C2A) state was 

determined using NMR by previous students. The apo-C2A structure shows anti-parallel 

β-sandwich arrangement that contains a single short α-helix typical of the C2 domain fold 

in a classic type II C2 topology. Notably, the loops that connect the β-sheets show very 

poor definition with large variations in the positions, suggesting that loops L1-L3 are 

flexible in solution in the absence of calcium (Figure 2.1 B). To verify this, various 

methods were used and the results are stated as follows.  

 

As mentioned above, amide hydrogen exchange in proteins is pH-dependent and the 1H-

15N HSQC spectra of apo-C2A at pH 4.5 and 7.5 showed large differences in the number 

and position of the peaks. Theoretically, amide protons that undergo faster exchange with 

the solvent give rise to weaker or unobservable signals from the NMR spectra. Thus, the 

peak intensities were measured for both pH’s and the peak intensity ratios of each residue 

at pH 7.5 and 4.5 (I7.5/I4.5) were calculated. As shown in Figure 2.7 A, residues from 
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Figure 2. 7 pH-dependent dynamics of apo-C2A.  

(A) The residues that were absent in the 1H-15N HSQC spectrum at pH 7.5 but present at 
pH 4.5 are shown on the cartoon structure of the apo-C2A structure (red). (B) Plot of 1H-
15N HSQC peak intensities (top) and their ratio (bottom). 1H-15N HSQC peak intensities of 
each residue of apo-C2A at pH 4.5 (red bars) and pH 7.5 (black bars), and ratio of peak 
intensities at pH 7.5 and pH 4.5 (I7.5/I4.5). A linear schematic of apo-C2A secondary 
structure is indicated on the top of the figure. 
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different regions of the protein showed striking differences in peak intensity ratios. Some 

residues on loops L1 and L2 had the greatest changes including D16, T17, I19, I38, K39, 

as indicated by the smaller peak intensity ratios at pH 7.5 and pH 4.5 (I7.5/I4.5). Some other 

residues on loop L1-L3 were absent at pH 7.5 (N11, V12, T14, Y23, C24, T35, K36, V37, 

S41, V42, T74, M75, G76 and R77), shown by blank I7.5/I4.5. By contrast, peak intensity 

within the β-sheet regions showed no major changes with larger I7.5/I4.5 values (~1) (Figure 

2.7 B). These observations indicate that residues on the loop L1-L3 undergo fast amide 

solvent exchange at physiological pH (7.5), which results in the dramatic flexibility of this 

region that can be reduced by lowering the pH. 

2.3.4 Dynamic properties of C2A monitored by heteronuclear NOE and T2 

relaxation 

The amide assignments of the apo-C2A at pH 4.5 were used to measure 1H-15N 

heteronuclear NOE for each residue, which provide valuable information on flexibility and 

dynamics of the protein backbone (Farrow et al., 1994b). In these experiments, two 1H-

15N-correlated spectra are collected where one experiment contains a 3 second proton 

saturation period prior to the pulse sequence and the other spectrum contains a delay of 

equivalent length. Amides that undergo fast timescale motions (ps - ns) show decreased 

signal intensity in the proton-saturated spectrum. In this experiment, the heteronuclear 

NOE values were measured across the backbone of apo-C2A (pH 4.5) and Ca2+-C2A (pH 

7.5). As shown in Figure 2.8, in these cases the average observed NOE values were near 

0.8, close to that expected for a 15 kDa protein with little flexibility. Close examination 

reveals that different regions in apo-C2A exhibited different NOE values: loops L1-L3,  
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Figure 2. 8 Dynamic properties of C2A measured by heteronuclear NOE. 

Heteronuclear NOE analysis of apo-C2A (black) and Ca2+-C2A (red). The values plotted 
are an average of two independent experiments at 600 MHz. Only assigned resonances in 
the 1H-15N HSQC spectra were selected for analysis. The secondary structure domains are 
indicated on the top of the figure. Resonances that showed decreased NOE values in the 
apo-state (loops L1-L3) are highlighted in orange.  
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and the bottom loops that connect β4 - β5, β6 - β7 showed decreased NOE intensities than 

the rest parts of the protein, indicative of greater flexibility in these regions. Upon calcium 

addition, little difference for the β-sheet regions for β1-β5 and β7-β8 exists in apo- and 

Ca2+-C2A domains suggesting the structures and motions of these regions of the protein 

are similar. In contrast, several residues in loops L1-L3 (D16, T17, D18, I19, S20, V37, 

S41, K70, T74, M75, R77) and β6 (E83) had smaller NOE values in apo-C2A compared 

to Ca2+-C2A suggesting these regions in apo-C2A are more flexible than in the calcium-

bound state. It is worth mentioning that to measure the NOEs for apo-C2A, pH 4.5 was 

chosen where the largest number of signals can be observed on the spectra, although some 

signals are still missing (shown by the gaps between data points in Figure 2.8). Based on 

the previous finding that the protein’s motion is restricted at lower pH, it can be predicted 

that apo-C2A under higher pH would show more significant change in flexibility compared 

to the calcium-bound state.   

 

In the T2 relaxation experiments, a series of 1H-15N HSQC spectra of apo-C2A were 

recorded using seven relaxation periods: 0.01-s, 0.03-s, 0.05-s, 0.07-s, 0.09-s, 0.11-s and 

0.15-s. As expected, the overall resonance intensity showed a progressive decrease when 

T2 relaxation time was increased, resulting in broadened spectra (Figure 2.9 A) The 

corresponding peak intensities of each resonance were fit with a two-parameter exponential 

function to obtain the T2 values. Shown in Figure 2.8 B, data for most residues could be 

well fit with small SD error and showed an average T2 value of around 0.086-s. Notably, 

E10, S20, L92 and several C-terminal residues exhibited significantly larger T2 values than 

the average, indicative of faster molecular tumbling of these residues. In the 3D structure,   



 

 63 

 
 
 

 
 

 

Figure 2. 9 T2 measurements of apo-C2A.  

1H-15N NMR T2 relaxation data of 170 μM apo-C2A. (A) 1H-15N HSQC spectra recorded 
with relaxation delay of 0.01-s, 0.07-s and 0.15-s, showing the decrease in signal intensities. 
(B) Plot of peak intensities of I38, H66 and K70 as a function of relaxation delays. The 
curves represent the non-linear fits of the data using an exponential decay function. T2 data 
for all the resonances were fitted using the same method. (C) Fitted values of T2 as a 
function of residue number are shown. Residues that were calculated to have larger T2 
values are indicated by one-letter residue code and number. The standard deviation error 
bars from the fit are also indicated. 
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Table 2. 1 Summary of chemical shifts, 15N T2 relaxation times, heteronuclear NOE 

values of the backbone amides in apo-C2A. 

 

Residue 1H (ppm) 15N (ppm) NOE600  T2 (s) 

M1 8.61 120.1 0.865 ± 0.062 0.0698 ± 0.027 

L2 9.03 127.3 0.851 ± 0.026 0.0822 ± 0.0052 

R3 9.39 127.4 0.885 ± 0.025 0.0819 ± 0.0029 

V4 8.98 123.6 0.874 ± 0.006 0.0869 ± 0.0038 

F5 9.71 129.8 0.927 ± 0.054 0.0753 ± 0.004 

I6 8.98 127.8 0.909 ± 0.032 0.0666 ± 0.0023 

L7 8.29 128.1 0.911 ± 0.045 0.0817 ± 0.0045 

Y8 7.24 112.2 0.902 ± 0.029 0.0565 ± 0.0025 

E10 8.76 115.9  0.4295 ± 0.0482 

N11 8.71 118.2 0.905 ± 0.003 0.078 ± 0.0038 

V12 9.06 118.2 0.854 ± 0.049 0.0774 ± 0.0035 

T14 8.52 117 0.879 ± 0.007 0.0906 ± 0.0043 

D16 8.38 115.7 0.83 ± 0.042 0.0639 ± 0.0019 

T17 7.86 112.4 0.867 ± 0.047 0.0706 ± 0.0007 

D18 8.33 120.9 0.833 ± 0.044 0.0775 ± 0.005 

I19 7.92 119.2 0.812 ± 0.024 0.0607 ± 0.0021 

S20 8.13 120 0.736 ± 0.011 0.2112 ± 0.0363 

Y23 9.13 117.1 0.959 ± 0.105 0.0729 ± 0.007 

C24 8.13 116.7 0.857 ± 0.117 0.0618 ± 0.0047 

S25 9.25 119.5 0.882 ± 0.059 0.0608 ± 0.0044 

A26 9.18 127.3 0.878 ± 0.041 0.0724 ± 0.003 

V27 8.92 120.9 0.878 ± 0.013 0.0838 ± 0.0035 

F28 7.9 127.1 0.929 ± 0.052 0.0838 ± 0.0045 

A29 8.16 129.8 0.867 ± 0.042 0.0793 ± 0.0039 

G30 8.24 134.5 0.871 ± 0.021 0.0881 ± 0.0056 

V31 8.21 123.5 0.858 ± 0.015 0.0829 ± 0.0034 

K32 8.91 131.5 0.912 ± 0.006 0.0732 ± 0.0033 

K33 9.15 125.9 0.82 ± 0.057 0.0919 ± 0.0034 

R34 8.26 117.9 0.835 ± 0.04 0.0817 ± 0.0013 

T35 8.55 111.6 0.976 ± 0.004 0.0637 ± 0.0047 

K36 9.6 119  0.0497 ± 0.0046 

V37 8.25 120.1 0.775 ± 0.015 0.0645 ± 0.0028 

I38 9.51 130 0.941 ± 0.025 0.0831 ± 0.0044 

K39 8.54 126.9 0.902 ± 0.03 0.0669 ± 0.0056 

S41 8.29 113.5 0.807 ± 0.031 0.0601 ± 0.0028 
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V42 8.31 121.3 0.89 ± 0.064 0.0583 ± 0.0034 

N43 7.84 117.7 0.903 ± 0.02 0.076 ± 0.0033 

V45 7.25 120.2 0.927 ± 0.007 0.059 ± 0.0019 

W46 8.38 124.6 0.949 ± 0.082 0.0864 ± 0.003 

N47 9.09 120.4 0.965 ± 0.075 0.074 ± 0.0048 

E48 7.98 117.9 0.902 ± 0.012 0.0708 ± 0.0016 

F50 8.87 118.6 0.934 ± 0.008 0.0827 ± 0.0051 

E51 8.35 119.3 0.907 ± 0.087 0.0809 ± 0.0025 

W52 10.02 128.9 0.843 ± 0.001 0.1044 ± 0.0063 

D53 8.65 123.5 0.866 ± 0.052 0.0893 ± 0.0054 

L54 8.5 126.3 0.839 ± 0.039 0.0885 ± 0.0061 

K55 8.84 119.7 0.817 ± 0.004 0.0622 ± 0.0029 

G56 8.93 108.8 0.776 ± 0.019 0.0639 ± 0.0025 

I57 7.77 122.8 0.824 ± 0.008 0.0878 ± 0.0035 

L59 7.34 121 0.764 ± 0.033 0.0807 ± 0.0055 

D60 8.6 121.6 0.853 ± 0.002 0.0513 ± 0.0025 

Q61 8.59 118.9 0.82 ± 0.022 0.0748 ± 0.0026 

G62 8.8 107.8 0.834 ± 0.047 0.075 ± 0.0032 

S63 7.73 117.4 0.892 ± 0.023 0.0789 ± 0.0024 

E64 8.88 122.6 0.891 ± 0.017 0.0926 ± 0.0025 

L65 8.42 123.1 0.896 ± 0.017 0.0902 ± 0.0035 

H66 8.53 125.3 0.928 ± 0.011 0.0867 ± 0.0047 

D67 9.06 122.9 0.897 ± 0.01 0.0734 ± 0.0038 

V68 9 125.2 0.896 ± 0.002 0.0746 ± 0.0021 

K70 8.1 117.3 0.78 ± 0.06 0.0797 ± 0.0035 

T74 8.07 112.5 0.786 ± 0.123 0.0527 ± 0.0081 

M75 8.5 117.9 0.726 ± 0.084 0.0373 ± 0.0115 

G76 8.37 108.1 0.907 ± 0.004 0.0794 ± 0.0037 

R77 7.51 120.6 0.77 ± 0.087 0.0829 ± 0.003 

E83 9.54 119.3 0.819 ± 0.074 0.031 ± 0.0172 

A84 9.3 124.3 0.94 ± 0.018 0.0649 ± 0.0049 

K85 8.73 121.3 0.882 ± 0.035 0.0864 ± 0.005 

V86 8.82 124.7 0.846 ± 0.009 0.0906 ± 0.0081 

L88 8.08 124.3 0.87 ± 0.01 0.0592 ± 0.0043 

R89 8.73 120.2 0.85 ± 0.013 0.0706 ± 0.0036 

V91 7.49 117.7 0.864 ± 0.021 0.0846 ± 0.0076 

L92 7.25 116.1  0.1941 ± 0.0221 

A93 7.2 118.3 0.852 ± 0.038 0.072 ± 0.0028 

T94 7.4 111.5 0.852 ± 0.015 0.1068 ± 0.007 

S96 7.95 109.9 0.817 ± 0.045 0.0635 ± 0.0015 
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L97 8.27 121.2 0.885 ± 0.001 0.0706 ± 0.0019 

S98 7.58 110.3 0.975 ± 0.013 0.0148 

A99 9.07 125.3 0.892 ± 0.006 0.0653 ± 0.004 

S100 8.2 115.5 0.89 ± 0.012 0.0905 ± 0.0044 

F101 9.16 120.9 0.919 ± 0.021 0.0775 ± 0.0038 

N102 8.63 122.4 0.827 ± 0.031 0.0834 ± 0.0042 

A103 9.31 128.4 0.886 ± 0.045 0.0931 ± 0.0029 

L105 8.09 121.2 0.937 ± 0.003 0.0727 ± 0.0043 

L106 9.58 124.9 1.012 ± 0.035 0.0718 ± 0.0081 

D107 8.97 119.3 0.91 ± 0.032 0.0681 ± 0.0035 

T108 8.12 109.1 0.866 ± 0.03 0.0731 ± 0.0023 

K109 8.29 122.2 0.847 ± 0.076 0.083 ± 0.0037 

K110 8.19 113.2 0.882 ± 0.03 0.0815 ± 0.0061 

Q111 8.64 119.4 0.868 ± 0.019 0.0782 ± 0.0036 

T113 8.5 113.9 1.021 ± 0.091 0.0747 ± 0.0038 

G114 9.06 112.2 0.97 ± 0.009 0.0737 ± 0.0045 

A115 8.02 124.5 0.989 ± 0.045 0.0772 ± 0.0054 

S116 8.52 115.4 0.894 ± 0.012 0.085 ± 0.0056 

V118 8.88 127.5 0.964 ± 0.034 0.0791 ± 0.0025 

L119 8.74 123.7 0.884 ± 0.078 0.079 ± 0.0025 

Q120 9.35 121.1 0.87 ± 0.087 0.0754 ± 0.0041 

V121 9.22 124.6 0.846 ± 0.027 0.0732 ± 0.0045 

S122 9.47 119.9 0.852 ± 0.059 0.0702 ± 0.0031 

Y123 8.91 125.2 0.821 ± 0.015 0.0844 ± 0.0035 

T124 8.7 124.7 0.911 ± 0.066 0.0768 ± 0.0052 

L126 8.15 121.9 0.798 ± 0.02 0.0912 ± 0.0044 

G128 8.45 110 0.61 ± 0.006 0.1222 ± 0.0047 

A129 7.98 123.6 0.071 ± 0.004 0.2341 ± 0.0089 

V130 8.18 120.2  0.2539 ± 0.0107 

L131 8.03 131.3  0.2826 ± 0.0122  
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E10 and S20 are located in loop 1, and L92 in the bottom loop between β6 and β7 

suggesting increased flexibilities and faster dynamics occur within these regions. Moreover, 

the C-terminus of the protein, which is a short random coil, also showed greater flexibility.  

 

The heteronuclear NOE and T2 relaxation data of the apo-C2A showed some agreement: 

the loop 1 region and bottom loop that connects β6 and β7 of the protein exhibit greater 

flexibilities in both experiments. However, the NOE data also showed the similar increased 

dynamics in loop 2 and 3 and the bottom loop between β4 and β5, whereas in T2 relaxation 

experiment these regions showed little deviation from the average.  

2.3.5 Thermal stability study of C2A by circular dichroism 

Next, the secondary structure and thermal stability of apo- and Ca2+-C2A were studied by 

circular dichroism (CD). Far-UV CD spectra from 200-250 nm for C2A in the two states 

showed they both had a similar spectral signature with a minimum observed around 215 

nm, characteristic of a typical β-sheet structure (Figure 2.10 A). The spectra between 200-

205 nm became noisy and turbulent due to the high tension voltage beyond 600 V. The 

thermal unfolding experiment was performed over a temperature range of 20-95 °C at a 

wavelength of 215 nm. It can be clearly observed that Ca2+-C2A had a higher melting 

temperature than apo-C2A with an almost 10 °C difference, suggesting the addition of 

calcium stabilizes the protein structure (Figure 2.10 B).  
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Figure 2. 10 Change in stability of C2A monitored by circular dichroism. 

(A) Circular dichroism spectra of apo-C2A (black) and Ca-C2A (red) from 250 – 200 nm. 
The measurements were taken at 25 °C. The buffer background was subtracted. (B) 
Thermal denaturation apo-C2A (black) and Ca-C2A (red) monitored by circular dichroism 
within the range of 40 – 90°C in 0.5 °C increments. The unfolding profile as a function of 
temperature is shown by CD ellipticity at 215 nm. 
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2.4 Discussion 

 

2.4.1 Flexibility as a novel feature of the dysferlin C2A domain 

The structure of dysferlin C2A domain was previously reported with a single Ca2+ 

coordinated to one of the six molecules in the asymmetric unit determined by X-ray 

crystallography (Fuson et al., 2014) (Figure 2.11 B). It is ambiguous from the structure 

whether the protein is apo or Ca2+-bound. Our work in this chapter focused on the C2A 

domain in the calcium free state by adding abundant EDTA into the sample solution to 

completely remove the calcium. Unexpectedly, many resonances corresponding to the 

residues within the loop region were missing in the 1H-15N HSQC spectra due to fast 

exchange of hydrogens between backbone amides and the solvent. Upon solving this 

solution structure,  apo-C2A exhibited shorter β-sheets and more flexible loops compared 

to the crystal structure (Figure 2.11 A). Similar findings were also reported in studies by 

NMR spectroscopy on the C2 domain of MFG-E (Ye et al., 2013)  and synaptotagmin I 

(Shao et al., 1998). In these cases, several amide resonances of residues in the loop region 

were missing in the 1H-15N HSQC spectrum, and a considerable number of long-range 

NOEs between protons in loop region that were observed for the Ca2+-bound form had 

substantially smaller intensities or were absent in the data obtained for the Ca2+-free C2A 

domain. All these data combined with ours suggest a state of Ca2+-free C2 domain with 

greater flexibility and dynamics in the loops that NMR is competent to probe over X-ray 

crystallography. This advantage of NMR has also been indicated in studies on other 

proteins. For instance, the difference between the crystal and solution NMR structures of 

Ca2+-calmodulin indicates considerable backbone plasticity within the domains of 
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calmodulin, which is critical to their ability to bind a wide range of targets (Chou et al., 

2001). 

 

Our work also applied a combination of useful tools to comprehensively examine the 

protein dynamic behavior including pH titration, heteronuclear NOE, T2 relaxation and 

thermal denaturation experiments. These experiments confirmed the increased dynamics 

of Ca2+-free C2A loop region that can be stabilized and rigidified upon calcium binding. 

Several studies have suggested the similar idea for other C2 domains by using alternative 

methods including hydrogen/deuterium exchange by mass spectrometry (Hsu et al., 2008), 

molecular dynamics simulations (Banci et al., 2002) and Carr-Purcell-Meiboom-Gill 

(CPMG) NMR experiment (Morales et al., 2016). For example, the C2 domain protein 

kinase Cα showed a similar magnitude of difference with our data in heteronuclear NOE 

values in response to calcium binding within the loop region (Morales et al., 2016).  

 

However, compared to all the Ca2+-free C2 domains solved by NMR and X-ray 

crystallography, none of them shows the same level of flexibility as dysferlin C2A domain 

does. For example, one of the few NMR structures of Ca2+-free C2 domains, piccolo C2A 

domain, was shown to have a much more rigid structure with longer β-sheets and more 

refined loops compared to dysferlin C2A (Garcia et al., 2004) (Figure 2.11 C). The 

difference can also be observed from the structure of synaptotagmin I C2A domain in Ca2+-

free state (Shao et al., 1998) (Figure 2.11 D). Furthermore, the high number of missing 

amide resonances in the NMR spectra also seems to be an exclusive feature of dysferlin 

C2A, which does not appear in the cases of other C2 domains such as synaptotagmin I C2A   
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Figure 2. 11 Comparison of C2 domain structures in the calcium free state. 

(A) The solution NMR structure of dysferlin C2A domain (solved by Dr. Liliana 
Santamaria-Kisiel, Dr. Pascal Mercier and Chantal Forristal). (B) The crystal structure of 
dysferlin C2A domain (Fuson et al., 2014) (PDB: 4IHB). (C) The solution NMR structure 
of calcium free piccolo C2A domain (Garcia et al., 2004) (PDB: 1RH8). (D) The solution 
NMR structure of calcium free synaptotagmin I C2A domain. (PDB data missing, figure 
was taken from the original publication) (Shao et al., 1998). 
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domain (Ubach et al., 2001) and perforin C2 domain (Yagi et al., 2015). Taken together, 

our work reveals the flexibility of dysferlin C2A domain in the apo-state as a distinctive 

characteristic over other C2 domains. 

2.4.2 Significance of the flexibility of C2A in calcium and membrane binding 

One major function of C2 domains is targeting membrane surfaces as a consequence of 

calcium binding and specific C2 domains have different phospholipid selectivity. For 

example, the C2 domains of protein kinase C-α and -ε and synaptotagmins bind to the 

anionic head group of phosphatidylserine (Corbalán-García et al., 1999; Davletov and 

Sudhof, 1993; Fukuda et al., 1996; Medkova and Cho, 1998) while the C2 domain of 

cPLA2 binds to neutral phosphatidylcholine (Nalefski et al., 1998, 2001). It is widely 

believed that the lipid binding sites of C2 domains are located in the top loops. The 

dysferlin C2A domain has been identified to bind specifically to phosphoinositide and 

phosphotidylserine in a calcium-dependent fashione (Therrien et al., 2009). With a low 

intracellular concentration of [Ca2+] (100 nM) in the resting state of a cell, the dysferlin 

C2A domain can be considered largely in the apo-state. The high flexible property of C2A 

may help it avoid the binding to the lipid membrane. Since our work suggests the role of 

calcium to stabilize the structure of dysferlin C2A, we hypothesize that upon the influx of 

calcium from the extracellular space due to membrane disruption, the C2A domain adapts 

a more ordered and rigid conformation, triggering membrane repair through lipid binding. 

This can also explain why dysferlin-mediated membrane repair is calcium-dependent 

(Bansal et al., 2003; Han and Campbell, 2007). However, studies of dysferlin’s interactions 

with other proteins indicate a more complicated picture. C2A was shown to associate with 

MG53 dimers in a Ca2+-dependent manner (Matsuda et al., 2012) but also have calcium-
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independent interaction with AHNAK (Huang et al., 2007). It is not clear whether these 

interactions are linked with the flexibility and dynamics of the protein, which would be an 

interesting area to explore in the future. 
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Chapter 3 
 

Dissecting the Calcium Binding Mechanisms of the 

Dysferlin C2A Domain 

 

3.1 Introduction 
  
As a calcium binding module, it has been shown that many activities of the dysferlin C2A 

domain are regulated by calcium. Most importantly, the dysferlin C2A domain targets 

several phospholipids in a calcium-dependent manner, which is consistent with its role in 

skeletal muscle membrane repair (Bansal et al., 2003; Han and Campbell, 2007; Therrien 

et al., 2009). Dysferlin rapidly responds to plasma membrane injury by sensing Ca2+ influx 

at the site of damage, and then facilitates Ca2+-dependent patch repair (Davenport et al., 

2016). How calcium binds to dysferlin to alter its structure and regulate this process is not 

known.  

 

To date, more than 100 unique structures of C2 domains have been solved by NMR 

spectroscopy and X-ray crystallography. The variable loops at the top of the domains are 

involved in the coordination of Ca2+ ions. The Ca2+-binding sites are formed primarily by 

conserved aspartate residues and the carboxylate or carbonyl group of other residues. Up 

to four Ca2+-binding sites are possible in a C2 domain depending on the residues that are 

present on the loops. Although C2 domains share a high degree of structural similarity, the 

Ca2+ binding modes differ significantly, and it is not clear how Ca2+ binding affects protein 

activity (Corbalan-Garcia and Gómez-Fernández, 2014).  
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Earlier, we solved the crystal structure of the Ca2+-C2A domain which shows two bound 

calcium ions (Ca1, Ca2) coordinating to residues in loops L1, L2 and L3. One calcium ion 

(Ca1) is coordinated by side chain oxygen atoms of residues D18, D21 (bidentate) and N40, 

the backbone carbonyl of I19 and two water molecules. The second ion (Ca2) uses D18, 

D21, D71 (bidentate) and E73 side chains, the backbone carbonyl from H72 and a single 

water molecule. Residues D18 and D21 bisect the positions of the two calcium ions and 

use side chain oxygen atoms to ligate both Ca1 and Ca2 simultaneously (Figure 3.1).  

 

In this chapter, we characterized the binding order and affinities of the two Ca2+ ions, and 

investigated the detailed binding mode of dysferlin C2A by using a combination of 

methods including NMR spectroscopy, ITC, site-directed mutagenesis and circular 

dichroism spectropolarimetry. The models we proposed provide useful understanding for 

expanding our knowledge of the calcium and membrane binding mechanisms of C2 

domains. 

 

 

3.2 Materials and Methods 

 

3.2.1 Site-directed mutagenesis of the dysferlin C2A domain  

QuikChange site-directed mutagenesis (Wang and Malcolm, 1999) was performed to 

introduce the following mutations on the dysferlin C2A plasmid: C2AD16K, C2AD18N, 

C2AD18K, C2AD21N, C2AD21K, C2AN40A, C2AD71N, C2AD71K. The primers used for making  
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Figure 3. 1 Ca2+-bound and apo Structure of dysferlin C2A domain and the calcium 

binding site. 

(A) Cartoon of the crystal structure of Ca2+-bound C2A. Bound two Ca2+ ions are shown 
as orange spheres. (B) The solution NMR structure of apo-C2A. β-sheets are depicted in 
light blue and loops in gray, labelled by numbers. (C) Close-up view of the calcium binding 
site showing the binding residues D18, I19, D21, N40, D71, H72 and E73. Oxygen atoms 
are in red and nitrogen atoms in blue.  
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the mutations are shown in Table 3.1. The wild-type C2A plasmid was isolated from 

harvested BL21 E. coli cells using a Bio Basic Inc. EZ-10 spin column miniprep kit. Base 

pair mutations were incorporated into DNA using the QuikChange Site-Directed 

Mutagenesis protocol (Agilent) and polymerase chain reaction (PCR). Methylated parental 

strands that remained in the PCR reaction were digested by Dpn1 overnight at 37°C. The 

following day, plasmid DNA was purified using a PCR clean-up kit (BioBasic Inc). All 

PCR products were transformed into competent MM294 cells and incubated on antibiotic-

treated LB-agar plates overnight at 37 °C. Multiple colonies were picked and grown in LB. 

Plasmids were isolated from harvested cells using a Bio Basic Inc. EZ-10 spin column 

miniprep kit and were sequenced (London Regional Genomics Centre, Canada) to verify 

that the correct mutations were incorporated. All the substituted proteins were expressed 

and purified using the same protocol described in Chapter 2.2.1. 

 

3.2.2 Ca2+ and La3+ titrations monitored by NMR Spectroscopy 

All NMR experiments were collected at 25˚C on a Varian Inova 600 MHz NMR 

spectrometer equipped with a triple resonance cryogenic probe and z-field gradients. All 

data were processed using NMRPipe (Delaglio et al., 1995) and analyzed using 

NMRViewJ (Johnson and Blevins, 1994). NMR titration experiments were conducted in 

25 mM HEPES, 150 mM NaCl, 250 μM TCEP, pH 7.5 with 10% D2O, 200 μM DSS as an 

internal reference, and 200 μM imidazole as an internal pH indicator. Uniformly 15N-

labeled C2A protein and substituted proteins were incubated with Chelex-100 (Bio-Rad) 

for 1h to remove residual Ca2+ ions before acquiring initial 1H-15N HSQC spectra by the 

NMR spectrometer. Protein concentrations were determined from triplicate amino acid   
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Table 3. 1 Primers used for dysferlin C2A mutagenesis. 

 

Construct Primer Sequence 
 

D16N Forward: 5’- CCACACACCCAACACCGACATCAG -3’ 
Reverse: 5’- CTGATGTCGGTGTTGGGTGTGTGG-3’ 

 
D16K Forward: 5’- CCACACACCCAAAACCGACATCAG -3’ 

Reverse: 5’- CTGATGTCGGTTTTGGGTGTGTGG -3’ 
 

D18N Forward: 5’- CACACCCGACACCAACATCAGCG -3’ 
Reverse: 5’- CGCTGATGTTGGTGTCGGGTGTG -3’ 

 
D18K Forward: 5’- CACACCCGACACCAAAATCAGCG -3’ 

Reverse: 5’- CGCTGATTTTGGTGTCGGGTGTG -3’ 
 

D21N Forward: 5’- CACCGACATCAGCAACGCCTACTGCTCCGC -3’ 
Reverse: 5’- GCGGAGCAGTAGGCGTTGCTGATGTCGGTG -3’ 

 
D21K Forward: 5’- CACCGACATCAGCAAAGCCTACTGCTCCGC -3’ 

Reverse: 5’- GCGGAGCAGTAGGCTTTGCTGATGTCGGTG -3’ 
 

N40A Forward: 5’- CATCAAGGCCAGCGTGAAC -3’ 
Reverse: 5’- GTTCACGCTGGCCTTGATG -3’ 

 
D71N Forward: 5’- GGTGGTCAAAAACCATGAGACG -3’ 

Reverse: 5’- CGTCTCATGGTTTTTGACCACC -3’ 
 

D71K Forward: 5’- GGTGGTCAAAAAACATGAGACG -3’ 
Reverse: 5’- CGTCTCATGTTTTTTGACCACC -3’ 
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analysis (Amino Acid Analysis Facility, Hospital for Sick Children, Toronto). The stock 

solution of CaCl2 was analyzed by deductively coupled plasma - mass spectrometry (ICP-

MS) to obtain the accurate concentration (Biotron, Western University). 1-2 μL CaCl2 

solution of desired concentration, diluted from the stock CaCl2 solution, was added to the 

NMR sample at each titration point by a 10 μL Hamilton syringe followed and 1H-15N 

HSQC spectrum were recorded following each addition at different [Ca2+]. Table 3.2 

shows a list of the calcium additions made for the Ca2+ titration experiment of the C2A 

domain. A La3+ titration was performed under the same conditions. The stock La3+ solution 

was made by dissolving lanthanum(III) chloride heptahydrate (LaCl3 · 7H2O) (Sigma-

Aldrich) with the NMR buffer. The Ca2+ titration was also performed by monitoring the 

1H-13C HSQC spectra of C2A using uniformly 15N, 13C -labeled protein under the same 

conditions. A total number of 19 titration points were added to 15N, 13C-labeled apo-C2A 

at a concentration of 675 μM. The final concentration of Ca2+ added was 22 mM. 

 

The chemical shift change (∆δ) or intensity change	(∆I) of selected peaks were measured 

in the 1H dimension at each titration point. The dissociation constant was obtained by fitting 

the data in GraphPad Prism according to the following equation: 

 

∆δ	(∆I) = N (%"&	("&)#)	+,(%"&	("&-#)!+.%"("
/%"

							(Equation 1) 

 

where P0  is the total C2A concentration, L0  is the total Ca2+ concentration at a given 

titration point, Kd is the dissociation constant, and N is the maximum chemical shift  
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Table 3. 2 A quantitative demonstration of the NMR titration experiment. 

2 μL Ca2+ from six different concentrations of stock solutions was added at each titration 
point to a 600 μL solution containing 432 μM C2A. The titration was completed with the 
addition of 25 equivalents of Ca2+. 
 

 
Titration 

point 

 
Volume of 

CaCl2 added 
(μL) 

 
Final volume of 

the sample 
(μL) 

 
[Ca2+] 
added 
(mM) 

 
Final 

[Ca2+] (μM) 

 
 

[Ca2+]/[C2A] 

 
0 

 
0 

 
600 

 
0 

 
0 

 
0 

 
1 

 
2 

 
602 

 
26 

 
86 

 
0.2 

 
2 

 
2 

 
604 

 
26 

 
172 

 
0.4 

 
3 

 
2 

 
606 

 
26 

 
257 

 
0.6 

 
4 

 
2 

 
608 

 
26 

 
342 

 
0.8 

 
5 

 
2 

 
610 

 
26 

 
426 

 
1.0 

 
6 

 
2 

 
612 

 
26 

 
510 

 
1.2 

 
7 

 
2 

 
614 

 
26 

 
593 

 
1.37 

 
8 

 
2 

 
616 

 
26 

 
675 

 
1.56 

 
9 

 
2 

 
618 

 
26 

 
757 

 
1.75 

 
10 

 
2 

 
620 

 
26 

 
839 

 
1.94 

 
11 

 
2 

 
622 

 
26 

 
919 

 
2.12 

 
12 

 
2 

 
624 

 
26 

 
998 

 
2.31 

 
13 

 
2 

 
626 

 
26 

 
1080 

 
2.5 

 
14 

 
2 

 
628 

 
55 

 
1253 

 
2.9 

 
15 

 
2 

 
630 

 
124 

 
1642 

 
3.8 

 
16 

 
2 

 
632 

 
139 

 
2073 

 
4.8 

 
17 

 
2 

 
634 

 
139 

 
2506 

 
5.8 

 
18 

 
2 

 
636 

 
538 

 
4190 

 
9.7 

 
19 

 
2 

 
638 

 
2113 

 
10800 

 
25 
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change	(∆δ)  or peak intensity change (∆I) that would occur upon saturation of C2A by 

Ca2+.  

 

3.2.3 Line-shape simulation 

The 1H cross-section of selected peaks from the 1H, 15N-HSQC calcium titration spectra 

were processed for line shape analysis. The 1H dimension traces through peaks at each 

titration point were extracted using NMRPipe and plotted as the experimental data. The 

LineShapeKin program was then applied for line-shape simulation 

(http://lineshapekin.net/index.htm).  B model (two site binding to one receptor molecule) 

was chosen for the simulation. In this model, binding involves two steps with one ligand 

molecule binding at a time. The conventional description of this model is as follows: 

 

                                 P	 + L		
	-$%			2⎯⎯4
	1!$%	
5⎯⎯6	PL	 + L	

		-$!		2⎯⎯4
	1!$!	
5⎯⎯6	PL/                              (Equation 2) 

 

where P is the C2A concentration, L is the Ca2+ concentration at a given titration point. The 

association constants (K) and off-rate constants (k) are macroscopic constants. The two-

site-binding model can also be interpreted at the molecular-level with a more detailed 

scheme of binding reactions making use of microscopic constants as follows (Cantor and 

Schimmel, 1980): 
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Also, the binding of a second L molecule may have lower or higher affinity due to negative 

or positive cooperativity between the two binding sites, allowing direct evaluation of 

allosteric effects between the sites. The microscopic model was used in the LineShapeKin 

program. Relationships between the micro- and macroscopic association constants (K) in 

these two schemes are as follows: 

	K23			 =	 	K234 +	 	K235                          (Equation 4) 

!
		#!"		

=	 !
		#!"$		

	+ !
		#!"%		

	                      (Equation 5) 

 

The off-rate constants (k) are also related below: 

 

	k$%! =	 	#!&$	&"!&$'	#!&%	&"!&%	#!&			
                     (Equation 6) 

	k/2/ =	 	k/2/4 + 	k/2/5                                  (Equation 7) 

 

The simulation was performed in MATLAB Version 9.5. The chemical shifts of peaks, 

line-widths, LP ratios, rate constants and relaxation rates were adjusted iteratively to 

achieve consistency with the experimental data and simulated simultaneously for selected 

L4P + 	L 
				-$

%'		
				

2⎯⎯⎯
⎯⎯4

				1!
$%'

				5⎯⎯⎯
⎯⎯6

 

P + 	L PL/ 

PL5 + 	L 

				-$!'						
2⎯⎯⎯⎯⎯4				1!$!'				

5⎯⎯⎯⎯⎯6  

				-$%(						
2⎯⎯⎯⎯⎯4				1!$%(				

5⎯⎯⎯⎯⎯6  
				-$!(

					

2⎯⎯⎯⎯4

				1!$!
(				5⎯⎯⎯⎯⎯
6 

(Equation 3) 
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peaks. The yielded microscopic association constants and off-rates were then converted to 

macroscopic constants using Equation 3 – 6. The dissociation constants (Kd) can be 

obtained using its relationship with association constants (Ka) as follows: 

	K( = !
#'

                                        (Equation 8) 

 

3.2.4 Isothermal titration calorimetry 

All calorimetry experiments were performed using a NanoITC (TA Instruments) at 25°C. 

All experiments were completed 2–3 times using freshly prepared proteins extensively 

dialyzed in 25 mM HEPES, 150 mM NaCl, 250 μM TECP, pH 7.5 and pretreated with 

Chelex-100 (Bio-Rad) to remove residual Ca2+ ions for one hour. The optimal 

concentrations of protein in the experiments were determined to be: 4.75 mM Ca2+ titrated 

into 155 μM wild-type C2A, 35 mM Ca2+ titrated into 350 μM C2AD16N, 8 mM Ca2+ titrated 

into 87 μM C2AD16K, 70 mM Ca2+ titrated into 350 μM C2AD18N, 20 mM Ca2+ titrated into 

142 μM C2AD18K, 10 mM Ca2+ titrated into 346 μM C2AD21K, 35 mM Ca2+ titrated into 525 

μM C2AD21N, 20 mM Ca2+ titrated into 182 μM C2AN40A, 60 mM Ca2+ titrated into 635 μM 

C2AD71N, 35 mM Ca2+ titrated into 400 μM C2AD71K. Proteins and Ca2+ solutions were 

degassed under vacuum prior to each titration. Titrations consisted of 25 injections of 2 μL 

Ca2+ solution into a 146 μL cell containing the proteins with constant stirring. Heats of 

dilution were measured in a separate experiment in which Ca2+ solution was injected into 

the buffer alone. Ca2+ titration to wild-type C2A and C2AD16N were analysed using 

sequential-two-binding-site model in NanoAnalyze v3.1.2 (TA instruments) to determine 

best fit values for KA, ΔH and N. ΔS was calculated according to Equation 9. 
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ΔG = –RTlnKA = ΔH – TΔS 

                                                      ΔS = RlnKA + (ΔH/T)                                (Equation 9) 

 

3.2.5 Circular dichroism  

Folding of all proteins were monitored by circular dichroism spectropolarimetry using a 

Jasco J-810 instrument (Biomolecular Interactions and Conformations Facility, University 

of Western Ontario). All proteins were extensively dialyzed in the CD buffer for at least 

one day with stirring. For proteins in the calcium-free state, samples comprised 20 μM 

protein were prepared in 20 mM KH2PO4 (pH 7.5) in the presence of 1mM EDTA. For 

Ca2+-bound samples, buffer containing 10 mM MOPS (pH 7.5) and 20 mM CaCl2 was used 

to avoid precipitation of calcium phosphate. For each sample, 15 scans from 250 –200 nm 

(80 nm/min with increment of 1 nm) were recorded using a 1 mm path-length cell at 20 °C, 

averaged, and the buffer background was subtracted. Thermal denaturation studies were 

performed by exposing the protein to different temperatures within the range of 5 – 95 °C 

(1 °C/min with increments of 0.5°C) by monitoring changes in the ellipticity at 215 nm. A 

1 mM path length cuvette was used. The ellipticity was normalized between 0-1 using the 

function: 

                                            Y'= (Y-Ymax)/(Ymax-Ymin)                        (Equation 10) 
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3.3 Results 
 

3.3.1 Dysferlin C2A contains two classes of calcium-binding sites 

3.3.1.1 Crystal structure of Ca2+-C2A 
 
Purified dysferlin C2A protein (5 mg/ml) was crystalized in the presence of 20 mM calcium 

by my colleague Dr. Roya Tadayon and the structure of the C2A domain in the calcium-

bound (Ca2+-C2A) state was determined using X-ray crystallography. The structure of the 

Ca2+-bound dysferlin C2A domain was solved to 2.0 Å resolution and contained four 

molecules in the asymmetric unit with near identical conformations. The Ca2+-C2A 

structures shows an anti-parallel β-sandwich arrangement that contains a single short α-

helix (Figure 3.1 A), similar with the apo-C2A structure. The eight β-strands (β1-β8) are 

connected by four loops emerging at the top of the structures (L1-L4) where calcium is 

coordinated (Figure 3.1 A). A short α-helix containing residues L88 and V91 packs tightly 

against residues in the β7 (A99, F101) and β8 (V121) strands. There are significant 

differences in the lengths of the β-sheets between the apo-C2A and Ca2+-C2A structure, 

although the arrangement of the β-sheets remains nearly identical. Specifically, the β-sheets 

for the apo-C2A domain are all 3-5 residues shorter than observed in the Ca2+-C2A 

structure. In all cases, the loss of β-sheet structure in the apo-C2A domain occurs at the 

ends of the sheets closest to the calcium-binding loops (Figure 3.1 A - B). The loops have 

very poor definition in apo-C2A structure, as described in Chapter 2, whereas the loops in 

the Ca2+-C2A structure are well-ordered. These observations indicate that calcium 

rigidifies the Ca2+-C2A structure and stabilizes the β-sheet regions compared to the apo-

C2A domain in the NMR structures, which are in good agreement with our results in 

Chapter 2. 
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The C2A domain in the presence of calcium showed electron density for two calcium ions 

per molecule for all molecules in the asymmetric unit. Inspection of the structures shows 

that both calcium ions exhibit classic pentagonal bipyramidal coordination and regular Ca-

O distances (2.2-2.7 Å). One calcium ion (Ca1) is coordinated by side chain oxygen atoms 

of residues D18, D21 (bidentate) and N40, the backbone carbonyl of I19 and two water 

molecules. The second ion (Ca2) uses D18, D21, D71 (bidentate) and E73 side chains, the 

backbone carbonyl from H72 and a single water molecule. Residues D18 and D21 bisect 

the positions of the two calcium ions (Ca1-Ca2 distance 4.3 Å) and use side chain oxygen 

atoms to ligate both Ca1 and Ca2 simultaneously.  

 

3.3.1.2 Ca2+ titration to the C2A domain by ITC 
 
To further characterize the detailed calcium-binding properties, a combination of calcium 

titration experiments was used by isothermal titration calorimetry (ITC) and NMR 

spectroscopy. The calcium titration experiment by ITC showed a hook shaped curve with 

endothermic reaction in the beginning at lower [Ca2+]/[C2A] ratio with positive entropy 

change (102 J/mol°K) and exothermic at high [Ca2+]/[C2A] ratio with small negative 

entropy change (-8.6 J/mol°K), indicative of two distinct modes of Ca2+ binding (Figure 

3.2). Data was fitted using a sequential-two-binding-site model which yielded two 

dissociation constants (Kd) of 32 and 300 μM. The positive entropy change (ΔS) in the 

initial step signifies binding of first calcium ion is driven by an increase in disorder in the  

system, which may result from release of water molecules that surround calcium ions and 

rearrangement of the loops upon coordinating to C2A (Jelesarov and Bosshard, 1999). 

Binding of the second calcium gave rise to a fairly small entropy change indicating minimal  



 

 90 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2 Ca2+ titration to dysferlin C2A by ITC. 

(A) ITC analysis of calcium binding to the wild-type C2A domain. The data was fit with a 
sequential two-site binding model that yielded Kd values of 32 μM and 300 μM. Data was 
collected at 25 °C with 25 mM HEPES, 150 mM NaCl, 250 μM TCEP, pH 7.5 buffer 
conditions. (B) Bar graph showing the thermodynamic properties for the calcium binding 
to C2A. The data show the first binding is driven by entropy changes (ΔS), indicative of a 
Ca2+-induced conformational change, while the second binding step gave rise to a small 
ΔS indicating little overall structural change in C2A. 
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overall structural change in the C2A structure. This loss in entropy can be attributed to the 

increased Ca2+-induced conformational rigidity of the loops. Together, the ITC data 

suggests that the C2A domain contains one tight and one weak calcium-binding site with 

about 10 times difference in binding affinity. The first binding event has a bigger impact 

on the reaction system likely through bond breaking and conformational change, whereas 

the global structure of C2A may remain largely unchanged upon binding to the second 

calcium. 

 

Some earlier studies have reported the Kd values for the calcium binding sites of the 

dysferlin C2A measured by ITC (Abdullah et al., 2014; Fuson et al., 2014; Harsini et al., 

2019) (Table 3.3), which showed similarities but also significant variations compared to 

our results. All three ITC data sets demonstrated a two-stage profile containing 

endothermic and exothermic reaction with a transition point. The transition point in our 

data agrees with one of studies at a [Ca2+]/[C2A] ratio of 2 (Fuson et al., 2014), whereas 

the other study shows the transition happened earlier when [Ca2+]/[C2A] ratio is less than 

one(Abdullah et al., 2014). The thermodynamic parameters (Kd, ΔH, and ΔS) yielded also 

differ from one to another. For example, the Kd1 and Kd2 values measured in our study are 

larger than those in the other two studies. Our Kd1 value is about 10 and 5000 times larger 

than the other two studies respectively, and the Kd2 is a little closer which is 4 and 6 times 

bigger. These differences may result from different models used to fit the data. One study 

used a multiple-site model which predicted 5 binding sites (Fuson et al., 2014), whereas 

we chose a sequential-two-binding-site model based on the two calcium ions observed in 

our crystal structure.  
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3.3.1.3 Ca2+ titration to the C2A domain monitored by 1H-15N HSQC  
 
In the calcium titration experiment by NMR spectroscopy monitored by 1H-15N HSQC, a 

total number of 19 titration points were conducted until no further chemical shift changes 

were observed in the spectra. As noted in Figure 3.3, many resonances for calcium-

coordinating residues in the loop regions L1-L3 were absent in spectra of the apo-C2A 

domain and could not be followed during calcium titrations. Nevertheless, the addition of 

calcium to the apo-C2A domain resulted in many changes in the 1H-15N HSQC spectra, 

including the appearance of all L1-L3 signals absent in apo-C2A spectra including E10, 

N11, D16, Y23, T35, S41, R77, D71, H72, A115, etc. (Figure 3.3 B). Further, the NMR 

titration data showed calcium-induced chemical shift changes that occurred in both the 

slow and fast chemical shift exchange regimes. Several signals including those for loop 

residues T17, I19, I38 and V45 showed the largest changes and exhibited slow exchange 

behavior while other residues (L7, F28, W52, A103, T113) showed faster exchange 

(Figure 3.3 A).  

 

Due to the complexity of changes in the 1H-15N HSQC spectra, multiple methods were 

applied to further understand the detailed binding properties. For peaks that underwent 

slow exchange (T17, I19, I38 and V45), the peak intensities of both free and bound peaks 

throughout the process of titration were plotted. As shown in Figure 3.4 A, the peaks 

corresponding to T17 and V45 of Ca2+-free state gradually decreased in intensities with the 

addition of Ca2+ (black panels), and meanwhile a separate signal for Ca2+-bound state 

appeared and intensified (purple panels). The free-state peaks completely disappeared 

when [Ca2+]/[C2A] ≈ 2 (Figure 3.4 B), suggesting the first Ca2+-binding site was mostly   
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Figure 3. 3 Ca2+ titration to dysferlin C2A monitored by 1H-15N HSQC NMR. 

(A) Overlay of 1H-15N HSQC spectra of 432 μM 15N-labeled C2A recorded with increasing 
[Ca2+]. Slow exchange and fast intermediate exchange were observed during titration and 
are labeled with black and red arrows respectively. The appearance of new peaks is shown 
by the grey dashed boxes. (B) The residues that showed the largest calcium-induced 
chemical shifts (blue) and those that appear upon Ca2+ binding (magenta) are shown on the 
cartoon structure of the Ca2+-bound dysferlin C2A structure. Most residues reside in loop 
L1- L3. Calcium ions are shown as orange spheres. 
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Figure 3. 4 Data analysis from Ca2+ titration to dysferlin C2A by NMR. 

(A) Track record of the free and Ca2+-bound peaks for T17 and V45 along the titration 
process. (B) Plot of intensities of free peaks corresponding to residues T17, I19, K39 and 
V45 on 1H dimension at each titration point as a function of [Ca2+]/[C2A] ratio. The curves 
represent the fits of the data to 2:1 binding model. (C) Plot of intensities of Ca2+-bound 
peaks corresponding to residues T17, I19, K39 and V45. The curves represent the fits of 
the data to Hill function. (D) Plot of chemical shift change of W52 peak showing 
unsuccessful fitting with Equation 1. (E) Plot of intensities of four new peaks that 
appeared upon Ca2+ addition. Intensities of peaks of D16 and S41 increased within the 
addition of two equivalents of Ca2+, whereas D71 and H72 showed no obvious change in 
intensities. 



 

 95 

saturated at this point. Interestingly, with the addition of more Ca2+, intensities of the 

bound-state peaks continued increasing and reached a plateau when [Ca2+]/[C2A] ≈ 10. 

The plotting showed a hyperbolic binding curve (Figure 3.4 C), indicating a second Ca2+ 

ion binds to the protein during this stage, and it has largely rigidified the structure of the 

C2A domain because the final intensities of the bound-state peaks were remarkably higher 

than the starting free-state peaks. The data set of the free-state peak intensities were fitted 

with two-site binding model (Equation 1) considering the influence of the second binding 

(Figure 2B) and a Kd of 46 μM was obtained, which is close to the Kd measured by ITC. 

Unfortunately, it was difficult to measure the Kd of the second binding site from the bound-

peak data due to the complexity of the data and lack of suitable model. Another attempt 

was to obtain Kd from peaks that showed faster exchange by measuring the chemical shift 

change during the titration. The W52 cross peak was chosen but the data was also difficult 

to fit using Equation 1 (Figure 3.4 D) likely because W52 exhibited a combination of fast 

and intermediate exchange regime. Indeed, all the above results may not be reliable because 

the model chosen is best used for pure slow/fast exchange, whereas the NMR signals from 

our experiments showed significant broadening during the calcium titration and in some 

cases signals appeared to contain both slow and fast exchange components.  

 

The NMR titration also provides valuable information on the binding order of two calcium 

ions. During the titration, many resonances that were missing in the apo-C2A spectrum 

appeared upon the Ca2+ addition due to the restriction of amide exchange with the H2O 

solvent. By plotting the intensities of the new peaks, we found that residues in loop 1 and 

2 (D16, S41) showed a faster increase in intensities than residues in loop 3 (D71, H72) 
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(Figure 3.4 E), suggesting the Ca2+ ion that only binds to residues in loop 1 and 2 may be 

the first binding Ca2+ with a higher binding affinity. In fact, D71 and H72 did not show 

obvious resonances in the spectra until more than 2 equivalents of calcium was titrated, 

suggesting that they were not affected by the first Ca2+ ion. Thus, the other Ca2+ ion in the 

crystal structure that coordinates D71 and E73 in loop 3 may be the second binding Ca2+ 

with a lower affinity. 

 

3.3.1.4 Line shape analysis 
 
To further obtain more accurate information of the calcium binding mode, we applied an 

on-line program called “LineShapeKin” (http://lineshapekin.net/index.htm) which 

performs simulation of NMR line shapes for multi-site exchange models. A kinetic model 

describing a two-site binding mechanism was used (Equation 1). Two examples of this 

are shown for F28 in β-sheet β2 that shows fast intermediate exchange (Figure 3.5 A, B) 

and N40 in loop L2 that shows slow intermediate exchange (Figure 3.5 D, E). The 

chemical shifts of peaks, line-widths, LP ratios, rate constants and relaxation rates were 

adjusted iteratively to achieve consistency with the experimental data and simulated 

simultaneously for the F28 and N40 peak. The final simulated data were shown in Figure 

3.5 C, F and four association constants (KA) were yielded from the program: KA1a = 

2.00*104 M-1, KA1b = 1.00*104 M-1, KA2a = 3.00*103 M-1, KA2b = 6.00*103 M-1. Using 

Equation 3, 4 and 7, the disassociation constants (Kd) were calculated (Kd1 = 33 μM, Kd2 

= 500 μM), which showed very good agreement with results from our ITC data (Kd1 = 32 

μM, Kd2 = 300 μM) confirming the presence of a tight and a weak binding site. The 

simulation also yielded microscopic off-rate constants (k): k2A1a = 4 s-1, k2A1b = 4 s-1, k2A2a  
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Figure 3. 5 Line-shape simulation of F28 and N40 peaks. 

(A, D) Overlays of regions of the 1H-15N HSQC spectra from the Ca2+ titration into C2A. 
In (A), Phe28 undergoes fast intermediate exchange change, where the peak changes in 
chemical shift during the titration and broadens without completely disappearing. In (D), 
Asn40 is an example of slow intermediate exchange, where the peak broadens during the 
titration and reappears in a new position. In both cases the arrow indicates the direction of 
peak movement at increasing Ca2+ concentration. (B, E) Experimental data showing one-
dimensional 1H traces through the Phe28 and Asn40 peaks at each titration point. (C, F) 
Line-shape simulation using a two-site binding model with LineShapeKin software for F28 
and N40 peaks using Kd1 = 33 μM, koff,1 = 4 s-1; Kd2 = 500 μM, koff,2 = 8 s-1. 
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= 4 s-1, k2A2b = 4 s-1, which could be then converted to macroscopic constants using 

Equation 5, 6. This gave rise to koff,1 = 4 s-1, koff,2 = 8 s-1 for the two calcium binding event. 

The small koff observed for both sites rationalizes the lack of pure fast exchange changes 

in the NMR spectra which would only be observed for minute chemical shift changes (ie. 

<< 4 Hz) upon calcium binding and the more apparent slow exchange component for 

signals that undergo larger changes (i.e. F28, N40 in Figure 3.5).  

 

3.3.1.5 Ca2+ titration to the C2A domain monitored by 1H-13C HSQC  

 
Calcium titration experiments were also conducted using NMR spectroscopy monitored by 

1H-13C HSQC. Using the same method as 1H-15N HSQC, a total number of 19 titration 

points were added to 15N, 13C-labeled apo-C2A at a concentration of 675 μM. The titration 

data showed similar calcium-induced chemical shift changes as 1H-15N HSQC. Both slow 

and fast chemical shift exchange regimes were observed during the titration (Figure 3.6 

A). Expectedly, no new peaks appeared in the 13C-HSQC titration because aliphatic protons 

are not affected by amide exchange with the H2O solvent. As shown in Figure 3.6 A, the 

cross peaks corresponding to the γ and δ carbon of residue I19 (I19.CG and I19. CD) 

exhibited slow exchange, and the intensities their free and bound peaks were plotted against 

the [Ca2+]/[C2A] ratio shown in Figure 3.6 B - C. The trends of the plotted data highly 

resemble the features of the plots for residues undergoing slow exchange in the 1H-15N 

HSQC titration data (Figure 3.4 B, C), where the free-state peaks completely disappeared 

when [Ca2+]/[C2A] ≈ 2,while intensities of the bound-state peaks continued increasing and 

reached a plateau when [Ca2+]/[C2A] ≈ 10. Thus, our 1H-13C HSQC titration data showed 

good consistency with 1H-15N HSQC data.  
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Figure 3. 6 Ca2+ titration to dysferlin C2A monitored by 1H-13C HSQC NMR. 

(A) Overlay of region of 1H-13C HSQC spectra of 675 μM 13C-labeled C2A recorded with 
increasing [Ca2+]. Slow exchange of the cross peaks corresponding to the γ and δ carbon 
of residue I19 (I19.CG and I19. CD) are labelled. (B) Plot of intensities of free peaks of 
I19.CG and I19. CD on 1H dimension at each titration point as a function of [Ca2+]/[C2A] 
ratio. (C) Plot of intensities of Ca2+-bound peaks of I19.CG and I19. CD on 1H dimension 
at each titration point. 
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3.3.1.6 La3+ titration to the C2A domain  
 
Lanthanide ions have ionic radii close to that of Ca2+ and are widely used as surrogate of 

Ca2+ as they bind to Ca2+-binding sites in proteins (Dudev et al., 2005). To further probe 

the Ca2+-binding sites in C2A, La3+ titration experiment was performed by NMR 

spectroscopy. The exchange rate between La3+-free and bound state of the resonances were 

found generally faster compared to those in Ca2+ titration. Some of the peaks that showed 

slow exchange in the Ca2+ titration exhibited fast exchange in the La3+ titration, including 

Y8, K39, V45, K110 and T113 (Figure 3.7 A). By superimposing the final La3+- and Ca2+-

bound spectrum, the peaks were largely overlapped, which suggests that La3+ binding 

brings very similar conformational change as the results from Ca2+ binding to the same 

sites. Notably, movement of some resonances (K39, V45) produced nonlinear curves with 

a transition point at 742 μM [La3+] (orange peaks in Figure 3.7 B, C). This is a sign of two-

state binding interaction, as the secondary interaction has a different effect on the chemical 

shifts than the primary interaction. This finding further verified the conclusion in the Ca2+ 

titration experiment that the C2A domain contains two classes of Ca2+-binding sites. The 

fact that nonlinear chemical shift changes only appeared in La3+ titration may ascribe to the 

different binding affinities of La3+ compared to Ca2+.  

 

Taken together, by combining a variety of methods including X-ray crystallography, ITC, 

NMR spectroscopy, and line-shape simulation, we characterized two classes of calcium-

binding sites in the dysferlin C2A domain and determined the binding affinities with Kds 

of ~30 μM and 300-500 μM, respectively. 
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Figure 3. 7 La3+ titration to dysferlin C2A by NMR spectroscopy. 

(A) Superimposed 1H-15N HSQC spectra of 487 μM 15N-labeled C2A titrated with La3+. 
Peaks that showed remarkable chemical shift are labeled on the spectra. (B, C) Close-up 
views of the spectra showing the nonlinear movement of the peaks corresponding to 
residues V45 and K39 upon La3+ addition. 
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3.3.1.7 The C2A domain does not bind to Mg2+ 
 

Some Ca2+-binding proteins are shown to bind to Mg2+, such as parvalbumin (Cates et al., 

2002). We queried whether the dysferlin C2A domain also binds to Mg2+ by monitoring 

1H-15N HSQC spectra of apo-C2A and the same sample added with MgCl2 of 66 times the 

protein concentration. The two 1H-15N HSQC spectra perfectly superimpose (Figure 3.8). 

This indicates that under the conditions used, C2A domain of dysferlin does not interact 

with the Mg2+. 

 

3.3.2 Calcium binding to dysferlin C2A domain is tightly coupled 

In order to further explore the detailed binding mode, site-directed mutagenesis was 

conducted to the calcium-coordinating residues in the calcium-binding loops L1 (D18,  

D21), L2 (N40) and L3 (D71). First, substitution to asparagine was made for D18, D21 and 

D71 (C2AD18N, C2AD21N, and C2AD71N), predicting that the Ca2+ binding could still be 

maintained but weakened. There are multiple other C2 domain structures from cPLA2, 

perforin and myoferlin (PDB: 1RLW (Perisic et al., 1998), 4Y1T (Yagi et al., 2015), 6EEL 

(Harsini et al., 2019)) which show that asparagine is an effective residue to coordinate 

calcium. We repeated the calcium titration experiments by NMR and ITC for the 

substituted proteins, and in all cases 1H-15N HSQC spectra showed the proteins were 

properly folded with little perturbation of the calcium-free structures. Calcium titration 

experiments followed by NMR spectroscopy or ITC both showed that calcium binding was 

completely eliminated for the C2AD18N, C2AD21N and C2AD71N substitutions (Figure 3.9 - 

3.10). In the calcium-bound structure of the C2A domain, D18 and D21 provide ligands 

for both Ca1 and Ca2 ions (Figure 3.1 C). However, it was surprising that replacement to  
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Figure 3. 8 Mg2+ titration to dysferlin C2A by NMR spectroscopy. 

Superimposed 1H-15N HSQC spectra of  300 μM 15N-labeled apo-C2A (black) and C2A 
mixed with 20 mM Mg2+ (orange). No chemical shift change was observed. Data was 
collected at 25 °C with 25 mM HEPES, 150 mM NaCl, 250 μM TCEP, pH 7.5 buffer 
conditions. 
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Figure 3. 9 Calcium binding to two sites in the C2A domain is tightly coupled.  

Overlay of a portion of 1H-15N HSQC spectra of 15N-labeled C2A, C2AD18N, C2AD21N, 
C2AN40A and C2AD71N recorded with increasing [Ca2+] showing resonances of residues Y8 
and V45. Resonances of residues Y8 and V45 exhibited slow exchange in the titration of 
wild-type C2A (shown as black arrows), but very little or no chemical shift in C2AD18N, 
C2AD21N, C2AN40A and C2AD71N indicative of abolished calcium binding. 
  



 

 105 

 

 

 

 

 

 

Figure 3. 10 ITC data of Ca2+ binding to C2A mutants.  

Isotherm graphs of calcium binding to the mutants C2A domain including D18N, D18K, 
N40A, D21N, D21K, and D71N. All of them showed strongly disrupted Ca2+ binding. Data 
was collected at 25 °C with 25 mM HEPES, 150 mM NaCl, 250 μM TCEP, pH 7.5 buffer 
conditions. 
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an  asparagine in either D18 or D21 eliminated  all calcium  binding. In the  NMR titration 

data, compared to the wild-type C2A where peaks Y8 and V45 exhibited slow chemical 

shift exchange upon calcium addition, the same peaks barely showed any chemical shift 

changes in the case of C2AD18N, C2AD21N (Figure 3.9). The ITC data agreed with the NMR 

results, shown by the minute heat change upon titration of large amount of calcium (Figure 

3.10). To further validate our findings, we substituted the D18 and D21 positions with 

lysine. The resulting proteins (C2AD18K, C2AD21K) showed negligible calcium binding 

(Figure 3.10).  These observations suggest that binding of each calcium ion by the dysferlin 

C2A domain is dependent on the binding of its partner calcium ion.  

 

To test this idea we examined substitutions at N40 and D71 (C2AN40A, C2AD71N). Unlike 

D18 and D21, these two residues each contribute to the binding of a single calcium ion. 

N40 in L2 contributes an oxygen ligand to Ca1, while D71 in L3 contributes two oxygen 

ligands to Ca12 (Figure 3.1 C). N40 was substituted to alanine (C2AN40A) and D71 was 

mutated to asparagine (C2AD71N). Again, substitution of either of these positions completed 

abolished calcium binding at both sites, shown by the undetectable chemical shift change 

in NMR and negligible heat change in ITC (Figure 3.9 – 3.10). These results support the 

idea that binding of two Ca2+ ions to C2A domain is tightly coupled, and loss of Ca2+ 

binding to one site causes concomitant disruption of the second Ca2+ binding site.  

3.3.3 Calcium binding is affected by multiple factors 

Prior to our crystal structure, it was reported that substitution of residue D16 (C2AD16A) in 

the L1 loop impairs calcium binding (Abdullah et al., 2014). Yet this residue does not 

coordinate either of the Ca2+ ions in the crystal structure, and the oxygens of its side chain 
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are 7.6 Å away from the Ca2+ ions, beyond the maximum 

possible distance between ligand oxygen atoms and the calcium ion (~3.5 Å) (Figure 3.11 

D). Thus, we intended to discover how the calcium binding to C2A protein is affected by 

residue D16. First, substitution to an asparagine (C2AD16N) was made followed by titration 

experiments by ITC and NMR. The ITC experiments show that C2AD16N maintained the 

calcium binding property with a similar ITC profile (Figure 3.11 B) as the wild-type C2A 

(Figure 3.2 A) indicating two classes of binding sites. Surprisingly, fitting the data using 

sequential-two-binding-site model yielded two dissociation constants (Kd) of 550 μM and 

4.3 mM, suggesting that the binding affinities are about 10 times weaker than the wild type 

C2A domain. This result was validated from NMR-based calcium titration experiments 

that showed some resonances that underwent slow exchange binding kinetics for wild-type 

C2A converted to fast or fast-intermediate exchange kinetics for C2AD16N, as exemplified 

by Y8 and V45 (Figure 3.11 C). D16 was then substituted to a positively charged lysine 

(C2AD16K) and the isotherm showed no evidence of binding (Figure 3.11 A). This indicates 

that replacement of a non-calcium coordinating residue in the loop regions of the C2A 

domain alters its ability to bind calcium, which agreed with an earlier study that showed 

the same result with the mutation of C2AD16A (Abdullah et al., 2014). This unexpected 

finding suggests that Ca2+ binding to the C2A domain is not determined solely by the 

ligands that bind Ca2+ ions, but is also affected by non-coordinating residues. We 

hypothesized that the overall electrostatic potential of the loop regions in the C2A domain 

plays an important role to recruit calcium ions prior to coordination by specific residues. 

In the apo-state the overall negative charge is dispersed by the flexibility of the loops as 

shown in our NMR structure, where aspartic (D16, D18, D21, D71) and glutamic acid    



 

 108 

 
 
 

 
 
 
 

Figure 3. 11 D16 mediates Ca2+ binding to dysferlin C2A.  

(A) Cartoon of crystal structure of Ca2+-C2A showing the position of D16 and the distance 
between side chain oxygens and the two calcium ions. (B, C) ITC analysis of Ca2+ binding 
to C2AD16K and C2AD16N mutants. Titration to C2AD16K shows abolished Ca2+ binding 
while C2AD16N shows a similar binding curve as wild-type C2A but with binding affinities 
~10 times lower (0.55 mM and 4.32 mM). (D) Overlay of a portion of 1H-15N HSQC 
spectra of 15N-labeled C2AD16N with increasing [Ca2+] showing resonances of residues Y8 
and V45 which exhibited fast intermediate exchange during the titration. (E) The 
electrostatic surface potential representation of apo-C2A loop region generated by  the 
APBS electrostatic function in PyMOL. (F) The electrostatic surface potential 
representation of C2AD16K loop region showing an electrostatic-switch from negative to 
positive. The mutation of C2AD16K was modeled using the mutagenesis function in PyMOL. 
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Table 3. 3 Summary of Ca2+ binding parameters for the C2A domain 

 

Protein (method) 
Kd1 

(μM) 
ΔH1 

(KJ/mol) 
ΔS1 

(J/mol°K) 
Kd2 

(μM) 
ΔH2 

(J/mol) 
ΔS2 

(J/mol°K) 

C2A (ITC) 32 4.661 102.3 300 -44.15 -8.58 

C2A (Line shape analysis) 33 - - 500 - - 

C2A (ITC) (Abdullah et al., 2014)  3.7 0.67 104.25 80 -7.53 52.75 

C2A (ITC) (Fuson et al., 2014)* 0.006 -1.8 36.09 53.2 -19.25 3.54 

C2AD16N (ITC) 553 10.13 9.634 4328 -47.79 -115 
 

* A multiple-site model was used in this study which predicted 5 binding sites (Fuson et 
al., 2014). 
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residues (E73) repel each other. Our model suggests that loss of negative charge of any 

aspartate in the loops will change the electrostatic potential, making calcium recruitment 

and coordination less favorable. This idea was also proposed in a study of synaptotagmin 

C2A Domain, where electrostatic repulsion in the Ca2+ binding pocket was shown to be 

important for preventing interactions between the C2 domain and the negatively charged 

membrane (Striegel et al., 2012). To illustrate this, the electrostatic potential surface of 

wide-type apo-C2A and C2AD16K was calculated and the loop regions were displayed in 

Figure 3.11 E – F. It is shown that substitution of D16K causes visually dramatic effect 

on the electrostatic  potential of the loops, resulting in a switch from a negative to positive 

potential, which is a similar effect caused by calcium binding suggested by many studies  

(Murray and Honig, 2002; Ubach et al., 1998). 

 

Another interesting finding when we examined the 1H-15N HSQC spectra of calcium-free 

C2AD71N was that it revealed significant differences in the positions and number of 

resonances compared to the wild-type protein under identical experimental conditions. 

There were a few new peaks showing up as well as chemical shift changes of some peaks 

in the spectrum of C2AD71N (Figure 3.12 A). Substitution of D71 to a positively charged 

lysine (C2AD71K) gave rise to similar changes shown in Figure 3.12 B. The spectrum of 

the calcium-free C2AD71N and C2AD71K contained many new resonances that could mostly 

be attributed to residues in the loops that are missing in spectra of the wild-type protein 

based on our observation in Chapter 2. This increased number of resonances in 1H-15N 

HSQC spectra can be caused by decreased flexibility of the protein structure, so we 

hypothesized that that replacement of an acidic calcium-binding residue with a  basic or   
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Figure 3. 12 NMR spectra of C2AD71N and C2AD71K compared to wild-type C2A. 

Overlaid 1H-15N HSQC spectrum of C2AD71N (red) and apo-C2A (black) (A), C2AD71K 
(orange) and apo-C2A (black) (B). New peaks that appeared in the spectra of C2AD71N and 
C2AD71K are labelled in dashed boxes. 
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neutral residue might stabilize the loop region through neutralizing one of the calcium sites 

in the same manner as the calcium does. To test this, we further studied the C2AD71K 

substituted protein as D71 coordinates a single calcium ion (Ca2) using its carboxyl group. 

As expected, calcium binding to the C2AD71K protein was abolished based on the ITC data 

(Figure 3.13 A). Further, examination of the calcium-free C2AD71K spectrum showed that 

many of the new signals were located very close to signals in the calcium-bound C2A 

spectrum. (Figure 3.13 B), indicating C2AD71K and calcium-bound C2A may share 

structural similarities. To examine this possibility, we measured the thermal stability of 

apo- and Ca2+-C2A domains and compared these to C2AD71K using circular dichroism 

(Figure 3.13 C).  

  

As expected, calcium binding to the apo-C2A domain increased the thermal melting 

midpoint by about 10˚C, which confirms the stabilizing effect of calcium binding. In 

comparison, the calcium-free C2AD71K domain had a melting temperature that was very 

similar to Ca2+-C2A. This observation is consistent with a significant stabilizing effect of 

the D71K substitution that is similar to calcium binding. 

 

Next, we were curious if mutations of other aspartate residues in the loops would have the 

same effect as D71K. We examined the 1H-15N HSQC spectra and thermal stability of 

C2AD18K, C2AD21K, and C2AD16K. As mentioned above, calcium binding is abolished for 

all these three mutants. Comparisons of the 1H-15N HSQC spectra to the wild-type apo-

C2A showed that there were several new resonances appearing in the spectra of C2AD18K 

and C2AD21K, whereas the spectrum of C2AD16K was almost identical with the wild-type  
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Figure 3. 13 D71K disrupts Ca2+ binding to dysferlin C2A.  

(A) ITC analysis of Ca2+ binding to C2AD71K mutant showed no binding. (B) Selected 
region of overlaid 1H-15N HSQC spectrum of C2AD71K (blue) and Ca-C2A (red). Peaks of 
D71K and Ca-C2A in close positions are labelled in dashed boxes and residue numbers. 
(C) Thermal denaturation of C2AD71K (blue), apo-C2A (black), Ca-C2A (red) monitored 
by circular dichroism.  
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(Figure 3.14). The thermal denaturation experiments showed that only the C2AD18K 

increased the thermal melting midpoint by about 5˚C compared to the apo-C2A, while 

C2AD21K and C2AD16K had a melting temperature that was almost the same as apo-C2A 

(Figure 3.14). The above observations indicate that C2AD18K likely has an effect of 

stabilizing the protein in the same manner as C2AD71K does. 

 

We attribute this observation to the ability of the K71/K18 side chain to occupy a similar 

position as a calcium ion observed in the crystal structure putting the ε-NH3+ group near 

the negatively charged side chains for calcium-binding residues. In the case of C2AD71K, 

the ε-NH3+ group of K71 interacts closely with the side chains of D18, D21 and E73, and 

for C2AD18k, K18 is positioned near D21, D71 and E73 (Figure 3.15). This proposal 

indicates that C2AD71K /C2AD18k may mimic the calcium-bound state (at least for Ca2) and 

have increased stability compared to the wild-type C2A domain and disruption of the 

flexibility in the loops disables the recruitment and coordination of calcium. Taken together,  

by examining the impact of substitutions of D16, D18 and D71 on the structure, calcium 

binding and stability of the C2A protein, we propose that the calcium binding is not solely 

determined by the coordinating ligands, it can also be affected by other factors including 

electrostatic potential and flexibility. 
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Figure 3. 14 Effects of D18K, D21K and D16K mutations on C2A. 

Left panel, 1H-15N HSQC spectrum of C2AD18N (orange) (A), C2AD21N (green) (B), 
C2AD16N (blue) (C) superimposed with apo-C2A (black). Right panel, thermal denaturation 
results of C2AD18N, C2AD21N and C2AD16N compared to apo-C2A (black) and Ca-C2A (red) 
monitored by circular dichroism.  
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Figure 3. 15 Proposed model of the loop region for C2AD71k and C2AD18k. 

3D model of C2AD71k (A) and C2AD18k (B)  showing both K71 and K18 side chain occupies 
a similar position as a calcium ion (Ca2) putting the ε-NH3+ group near the negatively 
charged side chains for calcium-binding residues (D18, D21 and E73 for C2AD71k; D21, 
D71 and E73 for C2AD18k.) The mutagenesis of D71 and D18 was performed in PyMOL.  
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3.4 Discussion 

3.4.1 Calcium binding sites in dysferlin C2A  

In this chapter, determination of the structure of dysferlin C2A domain in Ca2+-bound state 

revealed the β-strands arrangement referred as type II topology that many other C2 domains 

comprise such as PLC δ1 C2 domain (Essen et al., 1997). More importantly, the Ca2+ 

binding sites are clearly identified from the crystal structure, which are formed primarily 

by aspartate side chains that serve as bidentate ligands for two Ca2+ ions. As previously 

proposed, a C2 domain has a total of four potential Ca2+ binding sites and the occupation 

of Ca2+ ions depends on the side chains present in loops L1-L3 (Rizo and Südhof, 1998). 

In dysferlin C2A domain, we identified three aspartates coordinating two Ca2+ ions in a 

cooperative manner, as well as four other residues binding via side chain or main chain. 

Figure 3.16 shows a structure and sequence comparison of dysferlin C2A with two C2 

domains, PLC-δ1 C2 (PDB: 1DJI) and synaptotagmin I C2B (PDB:1UOV), both of which 

contain two Ca2+ ions occupying in the same positions as that in dysferlin C2A. The 

structure alignment of PLC-δ1 C2 and dysferlin C2A shows the binding residues in each 

protein are almost identical in positions, except that dysferlin C2A provides one more 

aspartate (D18) in loop 1. The positions of loop L1-L3 are also very similar, resulting in 

the same Ca2+ occupation manner for the two proteins (Figure 3.16 A). The comparison 

between dysferlin C2A and synaptotagmin I C2B, on the other hand, also shows similar 

binding sites for the two overlapped Ca2+ ions. However, synaptotagmin I C2B provides 

ligands for an additional Ca2+ ion using the side chain of D365 in loop 3 and main chain of 

M302 in loop 1 (Figure 3.16 B). A close examination of the sequence alignment reveals 

that dysferlin C2A has a few more residues before the first conserved aspartate (D18)  
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Figure 3. 16 Structure and sequence alignments of C2A with PLC-δ1 C2 and 

synaptotagmin I C2B.  

 
(A) Structural alignment of Ca2+-bound dysferlin C2A (green) and PLC-δ1 C2 (orange) 
showing the Ca2+ binding residues in loop region. (B) Structural alignment of Ca2+-bound 
dysferlin C2A (green) and synaptotagmin I C2B (magenta). The spheres correspond to the 
bound Ca2+ ions found in the crystal structures. The residue numbers of dysferlin C2A are 
labeled near each residue and the residue numbers of PLC-δ1 C2 and synaptotagmin I C2B 
are in brackets. (C) Sequence alignment of dysferlin C2A versus PLC-δ1 C2 and 
synaptotagmin I C2B. The arrows above the sequence correspond to residues that possess 
β strand secondary structure, whereas the lines correspond to the loop region. The Ca2+ 
binding residues are highlight in yellow. 
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compared to synaptotagmin I C2B (Figure 3.15 C). As a result, the first half part of loop  

1 in dysferlin C2A projects away from the calcium binding center, whereas that of 

synaptotagmin I C2B is in closer contact with other loops thus forming an additional Ca2+ 

binding site. The same difference can also be seen between synaptotagmin I C2B and PLC-

δ1 C2. The above observations indicate Ca2+ occupation in C2 domains is not only 

determined by the ligands present in loops, subtle difference in the position of loops can 

also contribute to the different binding manners.  

 

3.4.2 Comparison of calcium binding affinity and binding mode with other 

C2 domains 

Traditional methods such as NMR spectroscopy, ITC, and fluorescence assays are 

normally used to determine the intrinsic affinity of the Ca2+ binding sites for C2 domains. 

However, accurate measurement has been challenging for researchers due to the natural 

difficulty in obtaining Kds from multiple binding-site data. For example, fitting the ITC 

data for synaptotagmin-7 C2B domain yielded results that are ambiguous or even 

contradictive with the crystal structure, and reliable Kds cannot be obtained because the 

values are depended strongly on the position chosen for the zero baseline (Voleti et al., 

2017). Measurements of binding affinity by NMR spectroscopy for synaptotagmin-7 C2A 

also only gave an approximate estimate of the affinities (Maximov et al., 2008). Indeed, 

we experienced the similar obstacle on the analysis of NMR titration data that were mainly 

composed of intermediate chemical exchange, in which conventional analysis methods 

have trouble fitting. That is why a combination of other methods were applied in our study 
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including ITC and line shape simulation, which gave us more reliable results compared to 

studies that use a single method.  

 

Further, C2-containing proteins bind to calcium with different dissociation constants 

ranging from nanomolar (nM) to millimolar (mM). In this study, we find dysferlin C2A 

domain contains two Ca2+ binding sites with “middle range” affinities (Kd1 = 32 μM, Kd2 

= 300 μM). Unlike many other C2 domains that have Ca2+ binding sites with quite low 

affinity such as the weakest site of perforin C2 Domain (Kd > 5 mM) (Yagi et al., 2015) 

and synaptotagmin 1 C2A (Kd  > 20 mM) (Fernández-Chacón et al., 2001),  dysferlin C2A 

domain does not seem to contain such a weak binding site based on our results. However, 

why these C2 domains exhibit different intrinsic Ca2+ affinities is not well understood.  

 

Another interesting finding in our work is the coupled binding mode of the two Ca2+ 

binding sites where residue D18 and D21 coordinate both Ca2+ ions simultaneously. This 

sharing of ligating residues in the dysferlin C2A domain is similar to that observed in 

structures of rabphilin-3A C2B domain (Montaville et al., 2007), cytosolic phospholipase 

A2 (cPLA2) C2 domain (Perisic et al., 1998) and synaptotagmin-7 C2B domain (Voleti et 

al., 2017). Mutagenesis of important ligating residues revealed that binding of each calcium 

ion by the dysferlin C2A domain is dependent on the binding of its partner calcium ion. 

Similar finding has also been shown in several studies on other C2 domains. For example, 

a positive cooperativity binding mode was proposed for cPLA2 C2 domain that the first 

calcium ion binds to site I, which preorders the side chains of coordinating Asp residues, 

and partially or fully deprotonates them (Malmberg et al., 2004). The initial binding event 



 

 121 

prepares the conformation and protonation state of the remaining site for calcium binding, 

enabling the second calcium ion to bind with higher affinity than the first as required for 

positive cooperativity (Malmberg et al., 2004). Also, a study on synaptotagmin 1 C2B 

domain showed that mutating an Asp residue that coordinates a single calcium ion results 

in concomitant disruption of the other binding site, suggesting calcium binding to the first 

site stabilizes the structure of the domain, facilitating calcium binding to the other site 

(Fernandez et al., 2001). This aligns with the observation of the D71 and N40 mutations in 

our study.    

 

Our work has also assessed the importance of a non-coordinating residue, D16, on the 

calcium binding of the C2A protein, which may have been omitted by prior studies. This 

novel finding suggests the calcium binding of C2A is affected by multiple factors other 

than the ligands present in the loops. Disruption of the negative electrostatic environment 

and flexibility of the loops can have a significant influence on its calcium or membrane 

binding properties. The similar idea has also been proposed in several studies on 

synaptotagmin C2A domain, where electrostatic repulsion in the loops was shown to be 

crucial for Ca2+ binding and D/N substitutions that disrupt Ca2+ binding restored membrane 

fusion in a manner that the mutations partially mimicked Ca2+ binding by decreasing the 

negative charge of the pocket (Stevens and Sullivan, 2003; Striegel et al., 2012; Yoshihara 

et al., 2010). Indeed, this idea was further validated by our observation that C2AD71K shares 

structural similarities with wild-type Ca2+-C2A judging by their NMR spectra and the 

model we proposed (Figure 3.14).  It would be interesting to probe the lipid binding 

properties of wild-type C2A in both apo and Ca2+-bound state as well as C2AD71K, as we 
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predict that C2AD71K would be able to bind negatively charged phospholipids in a similar 

manner as Ca2+-C2A. 

 

3.4.3 Hypothesis of the membrane binding mechanisms 

One important function of C2 domains is targeting membrane, as a result of calcium 

binding. A number of studies have demonstrated that C2 domains bind to the target 

membranes by using a combination of electrostatic and hydrophobic interactions, and they 

display different phospholipid selectivity. The dysferlin C2A domain has been shown to 

selectively bind to phosphatidylserine (PS) and phosphatidylcholine (PC) in the presence 

of Ca2+ (Therrien et al., 2009). Our work has also suggested that, the switch in electrostatic 

potential of the top loops from negative to positive upon calcium binding may facilitate the 

interaction with the phospholipids. A detailed mechanism was proposed in the structural 

characterization of the C2 domain of PKCα in complex with Ca2+ and 1,2-dicaproyl-sn-

phosphatidylserine (DCPS) that the phosphoryl group of the phosphoserine completes the 

coordination sphere of  a calcium ion (Verdaguer et al., 1999). In the crystal structure of 

Ca2+-bound dysferlin C2A, the coordination sphere for both calcium ions are incomplete 

as one calcium ion (Ca1) binds to two water molecules and the second ion (Ca2) 

coordinates one water molecule. Thus, we hypothesize that Ca2+ acts as a bridge connecting 

the C2A protein and the phospholipids in the membrane, as the phospholipids fill the 

incomplete coordination sphere of the Ca2+ bound to the domain by replacing the water 

molecules with phosphoryl groups. 
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Recently, the X-ray crystal structure of cytosolic PLA2α (cPLA2α) C2 domain bound to 

1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) was solved (Hirano et al., 2019). In 

contrast to the two bound Ca2+ ions reported in the lipid-free structure (Dessen et al., 1999; 

Perisic et al., 1998), an additional Ca2+ ion was observed to coordinate in the PC-bound 

structural complex by bridging residue N65 and the DHPC phosphoryl group. This finding 

provides novel insights for the possible lipid binding mode of dysferlin C2A as two Ca2+ 

ions occupy in the same positions of the two proteins using many conserved residues as 

their ligands. Specifically, residue N65 in cPLA2α C2 corresponds to N40 in dysferlin C2A, 

which may recruit an additional Ca2+ ion when binding to phospholipids in the similar 

manner. We hypothesize that there may be participation of extra Ca2+ ions when dysferlin 

C2A targets phospholipids, possibly by providing bridging interactions between the C2A 

domain and the phosphate group, which also interacts directly with N40 or other residues 

in the loop region.  
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Chapter 4 
 

Impacts of Muscular Dystrophy Causing Mutations on 

Dysferlin C2 Domains 

 

 

4.1 Introduction 
 
Muscular dystrophy is a degenerative genetic disorder that results in increasing weakness 

and gradual wasting of skeletal muscles. This muscle wasting occurs because the skeletal 

muscle cells have weakened plasma or sarcolemma membranes. Muscular dystrophy 

encompasses a large number of disorders that can be divided into two classes: those caused 

by defective membrane structure, and those resulting from impaired membrane repair 

(Rahimov and Kunkel, 2013). Here, emphasis will be placed on the proteins involved in 

membrane repair deficient muscular dystrophies. Mutations in the dysferlin gene are linked 

to two clinically distinct muscle diseases, limb-girdle muscular dystrophy type 2B 

(LGMD2B) and Miyoshi myopathy (MM), but the mechanism that leads to muscle 

degeneration is unknown (Bashir et al., 1998; Liu et al., 1998). The C2A domain is the 

major portion of the dysferlin protein responsible for responding to calcium ion influx upon 

membrane damage and the activation of dysferlin (Matsuda et al., 2012; Therrien et al., 

2009). The importance of the C2A domain in dysferlin has been emphasized from a clinical 

standpoint as substitutions in this region of the protein cause illness.  
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One mutation, resulting in the substitution of valine for aspartic acid at residue number 67 

(V67D) in the C2A domain, has been correlated with two forms of muscular dystrophy 

(Illarioshkin et al., 2000). The first type, limb-girdle muscular dystrophy type 2B 

(LGMD2B), affects proximal skeletal muscles, while the second type, Miyoshi myopathy 

(MM), affects distal skeletal muscles. The dysferlin V67D substitution impedes the 

membrane repair process because it diminishes calcium-dependent phospholipid binding 

(Davis et al., 2002). Furthermore, wild-type dysferlin usually binds to and stabilizes 

AHNAK, a large protein also implicated in membrane repair, but the V67D mutation 

prevents this interaction (Huang et al., 2007). Another substitution on the C2A domain, 

W52R, leads to Miyoshi myopathy (MM) (De Luna et al., 2007) and also inhibits the 

association with MG53 (Matsuda et al., 2012). Furthermore, pathogenic mutations have 

been identified throughout the dysferlin gene including all the other C2 domains (Krahn et 

al., 2009). For example, seven mutations (G234E, R253W, L266P, I284T, G299R, S340R, 

L344P) have been characterized on the C2B domain leading to muscular dystrophy 

diseases. Therefore, an understanding of the effects of these substitutions on the structure 

of the C2 domain may provide insight into how and why these mutations disrupt the protein 

activities and ultimately inhibit membrane repair. In this chapter the impacts of several 

pathogenic substitution on the structure, stability and calcium binding ability of the C2A 

domain were investigated. The work provides important evidence that explains the 

mechanisms of some inherited muscular dystrophy diseases. 
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4.2 Materials and Methods 

4.2.1 Site-directed mutagenesis of the dysferlin C2A domain  

QuikChange site-directed mutagenesis (Wang and Malcolm, 1999) was performed to 

introduce the following mutations on the dysferlin C2A plasmid: C2AW52R, C2AW52A, 

C2AW52M, C2AW52T, C2AK36W and C2AK36A. The primers used for making the mutations 

are shown in Table 4.1.  The mutagenesis was performed using the same protocol describe 

in Chapter 3.2.1. The mutagenesis of C2AV67D, C2AV67A, C2AV67T, and C2AV67N was made 

by previous students. 

4.2.2 Test expression of the pathogenic mutants of C2A 

Small-scale test expression experiments were performed for the following C2A mutants: 

C2AV67D, C2AV67A, C2AV67T, C2AV67N, C2AW52R, C2AW52A, C2AW52M, C2AW52T C2AK36W 

and C2AK36A. Plasmids containing the mutant DNA were transformed BL21-CodonPlus 

(DE3) E. coli strain. Isolated colonies were picked and grown in 5 mL LB overnight as 

starters. The following day 250 μL starters were inoculated into 25 ml LB with 30 μg/mL 

kanamycin and 30 μg/mL chloramphenicol. The cultures were grown at 37 ºC until an 

OD600 of 0.6 was reached at which point cells were cooled to 16 °C and induced with 0.5 

mM IPTG for 16 hours. Cells were harvested by centrifugation at 4,000 rpm for 20 min 

and resuspended in lysis buffer (25mM Tris, 300 mM NaCl, pH 7.5). Cells were lysed by 

EmulsiFlex-C5 homogenizer (Avestin). Gel sample was taken at this point as total protein 

(i.e. 30 μL + 15 μL 3 × SDS loading buffer). Then 1 mL cell lysate was centrifuged for 10 

- 15 minutes at 14,000 rpm in tabletop centrifuge. The supernatant was taken as gel sample 

(soluble fraction). Cell pellet was resuspended in 1 ml of 2% SDS with vortexing and taken   
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Table 4. 1 Primers used for dysferlin C2A mutagenesis. 

 

Construct Primer Sequence 

 

K36W Forward: 5’- GTGAAGAAGAGAACCTGGGTCATCAAGAAC -3’ 
Reverse: 5’- GTTCTTGATGACCCAGGTTCTCTTCTTCAC -3’ 
 

K36A Forward: 5’- GTGAAGAAGAGAACCGCAGTCATCAAGAAC -3’ 
Reverse: 5’- GTTCTTGATGACTGCGGTTCTCTTCTTCAC -3’ 
 

W52R Forward: 5’- GGATTTGAACGTGACCTCAAGG -3’ 
Reverse: 5’- CCTTGAGGTCACGTTCAAATCC -3’ 
 

W52A Forward: 5’- GAGGGATTTGAAGCGGACCTCAAGGGC -3’ 
Reverse: 5’- GCCCTTGAGGTCCGCTTCAAATCCCTC -3’ 
 

W52M Forward: 5’- GAGGGATTTGAAATGGACCTCAAGGGC -3’ 
Reverse: 5’- GCCCTTGAGGTCCATTTCAAATCCCTC -3’ 
 

W52T Forward: 5’- GAGGGATTTGAAACCGACCTCAAGGGC -3’ 
Reverse: 5’- GCCCTTGAGGTCGGTTTCAAATCCCTC -3’ 
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as gel sample (insoluble fraction). The total protein, soluble and insoluble fractions were 

checked by SDS-PAGE. All the mutant proteins were expressed and purified using the 

same protocol described in Chapter 2.2.1. 

 

4.2.3 Circular dichroism 

Folding of all proteins were monitored by circular dichroism spectropolarimetry using a 

Jasco J-810 instrument (Biomolecular Interactions and Conformations Facility, University 

of Western Ontario). All proteins were extensively dialyzed in the CD buffer for at least 

one day with stirring. For proteins in the calcium-free state, samples comprised 20 μM 

protein were prepared in 20 mM KH2PO4 (pH 7.5) in the presence of 1mM EDTA. For 

Ca2+-bound samples, buffer containing 10 mM MOPS (pH 7.5) and 20 mM CaCl2 was used 

to avoid precipitation of calcium phosphate. For each sample, 15 scans from 250 –200 nm 

(80 nm/min with increment of 1 nm) were recorded using a 1 mm path-length cell at 20 °C, 

averaged and the buffer background was subtracted. 

 

Thermal denaturation studies were performed by exposing the protein to different 

temperatures within the range of 5 – 95 °C (1 °C/min with increments of 0.5°C) by 

monitoring changes in the ellipticity at 215 nm. A 1 mM path length cuvette was used. The 

ellipticity was normalized between 0 - 1 using the function: 

 

                               Y'= (Y-Ymax)/(Ymax-Ymin)                      (Equation 1) 

 



 

 132 

where Y is the observed CD signal at 215 nm, Ymax is the signal for the folded protein and 

Ymin is the signal for the unfolded protein. A two-state unfolding curve was used to fit the 

data as a function of temperature and fitting for the melting point transition (Tm) and the 

enthalpy (ΔHm) according to Equation 2. During the fitting process a heat capacity (ΔCp) 

of 0 kJ/(mol K) was used. 

 

∆9 = ∆:6 ;1 − #
#)
= + ∆>7(? − ?6) − ?@A ; #

#)
=    (Equation 2) 

 

The differences in stability (ΔΔG) between substituted dysferlin proteins and the wild-type 

protein were calculated using ΔHm(wt), Tm(wt), and the differences in melting temperatures 

(ΔTm) between the wild type and the appropriate substituted proteins according to 

Equation 3: 

 

∆∆9 = ∆?6 ;∆9)(:")#)(:")
=																		(Equation 3) 

4.2.4 Isothermal titration calorimetry 

All calorimetry experiments were performed using a NanoITC (TA Instruments) at 25°C. 

All experiments were completed 2–3 times using freshly prepared proteins extensively 

dialyzed in 25 mM HEPES, 150 mM NaCl, 250 μM TECP, pH 7.5 and pretreated with 

Chelex-100 (Bio-Rad) to remove residual Ca2+ ions for one hour. The optimal 

concentrations of protein in the experiments were determined to be: 5 mM Ca2+ titrated into 

85 μM C2AV67A, 3 mM Ca2+ titrated into 52 μM C2AW52M, 3 mM Ca2+ titrated into 77 μM 

C2AK36W . Proteins and Ca2+ solutions were degassed under vacuum prior to each titration. 
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Titrations consisted of 25 injections of 2 μL Ca2+ solution into a 146 μL cell containing the 

proteins with constant stirring. Heats of dilution were measured in a separate experiment 

in which Ca2+ solution was injected into the buffer alone. The titration data were analysed 

using sequential-two-binding-site model in NanoAnalyze v3.1.2 (TA instruments) to 

determine best fit values for KA, ΔH and N. ΔS was calculated according to Equation 4. 

ΔG = –RTlnKA = ΔH – TΔS 

                                                      ΔS = RlnKA + (ΔH/T)                                (Equation 4) 

4.2.5 NMR spectroscopy 

All NMR experiments were collected at 25˚C on a Varian Inova 600 MHz NMR 

spectrometer equipped with a triple resonance cryogenic probe and z-field gradients. All 

data were processed using NMRPipe (Delaglio et al., 1995) and analyzed using 

NMRViewJ (Johnson and Blevins, 1994). The 1H, 15N-HSQC NMR experiments were 

conducted in 25 mM HEPES, 150 mM NaCl, 250 μM TECP, pH 7.5 with 10% D2O, 200 

μM DSS as an internal reference, and 200 μM imidazole as an internal pH indicator. A 

sample of 200 μM uniformly 15N-labeled C2AV67A protein was incubated with Chelex-100 

(Bio-Rad) for one hour to remove residual Ca2+ ions before acquiring the 1H-15N HSQC 

spectra by the NMR spectrometer. Subsequently, 2 μL CaCl2 solution was added to the 

sample to make a final [Ca2+] of 20 mM and 1H15N-HSQC spectrum was recorded again 

using the same method. The stock solution of CaCl2 was analyzed by Inductively Coupled 

Plasma - Mass Spectrometry (ICP-MS) to obtain the precise concentration (Biotron, 

Western University).  
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4.3 Results 
 

4.3.1 Mapping pathogenic mutations in the C2A domain 

The point substitutions C2AV67D and C2AW52R in the dysferlin C2A domain are associated 

with the development of Limb Girdle muscular dystrophy 2B (LGMD2B) and Miyoshi 

myopathy (MM) (Krahn et al., 2009).  In the structure of the C2A domain V67 lies on sheet 

β5 tucked between two alanine residues (A26, A84) on β2 and β6 and across from a series 

of hydrophobic residues on β1 (V4, I6) and β8 (L117, L119). The W52 residue is located 

on sheet β4, the side chain of which is buried inside the β sheet sandwich, projecting 

towards  β2 and β3 (Figure 4.1). Sequence comparison of other C2A domain proteins show 

that despite the fact that V67 and W52 are not well-conserved residues there is a strong 

preference for hydrophobic amino acids at these two positions. 

 

Since the seven C2 domains of dysferlin are expected to share similar β -sandwich 

structures, pathogenic substitutions on other C2 domains can be theoretically mapped to 

the C2A domain through structural and sequence alignments. For example, the C2B 

domain carries a more extensive distribution of substitutions, with seven substitutions 

(G234E, R253W, L266P, I284T, G299R, S340R, L344P) identified and located on five 

different β sheets and two loops. By substituting the corresponding residues in the C2A 

domain, it will be possible to characterize how those substitutions might affect the 

conformation and activity of the other C2 domains. This will help understand how 

pathogenic mechanisms of substitutions that cause dysferlinopathy. Since the C2AV67D and 

C2AW52R substitutions in the C2A domain are both located in the β sheets, we also 
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Figure 4. 1 Pathogenic mutations in dysferlin C2A and C2B domain. 

(A) Sequence alignment of dysferlin C2A and C2B domain. The arrows above the sequence 
correspond to residues that possess β strand secondary structure, whereas the lines 
corresponds to the loop region. Pathogenic mutated residue V67 and W52 in C2A and R253 
in C2B are highlighted in red and the corresponding conserved residue in the other C2 are 
highlighted in yellow. (B) Cartoon of the crystal structure of Ca2+-bound C2A showing the 
location of mutated residue V67, W52 and K36. Residue V67 and W52 both lie on β sheet 
and K36 is on one of the loops. The binding Ca2+ ions are shown by orange spheres. 
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attempted to investigate a pathogenic substitution in the loop region. Based on the sequence 

alignment of the C2A and C2B domains, we found the substitution at R253 in C2B could 

be mapped to K36 in C2A as the two basic residues in loop 2 are highly conserved between 

two hydrophobic residues (Figure 4.1 A). Making a substitution at K36 in C2A will mimic 

the effect of R253W in C2B, hence we will be able to assess the impact of this substitution 

on the structure and function of the C2 domain.      

 

4.3.2 Impact of pathogenic mutations on the expression and solubility  

The mutations of C2AV67D, C2AW52R and C2AK36W were initially generated to assess the 

impact of substitutions on protein folding and stability. In the test expression experiments, 

E. coli cells containing C2AV67D, C2AW52R and C2AK36W plasmids were grown and induced 

in the same conditions used for the wild type C2A. However, unlike wild type C2A domain 

that was found mostly in the soluble fraction on the gel, C2AV67D and C2AW52R were almost 

completely located in inclusion bodies, and a majority of C2AK36W protein was in the 

precipitate as well (Figure 4.2). Repeated attempts to refold the proteins were unsuccessful 

indicating that these substitutions in the dysferlin C2A domain cause instability or 

misfolding in the domain leading to aggregation. Examining the position of each residue 

in the structure of C2A has helped us understand how the aggregation happened. The 

central location of V67 puts it in a hydrophobic environment at the core of the protein. The 

region surrounding the V67 residue is composed entirely of hydrophobic residues. On the 

same β-sheet, the highly conserved residues, L65 and V69, are also pointed inward 

enhancing the hydrophobic environment at the core of the protein. Additionally, two 

residues on adjacent β-sheets, A26 and A85 are in close distance with V67 (Figure 4.3 A).   
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Figure 4. 2 Test expression of C2A mutants. 

Wild-type C2A, C2AV67D, C2AV67A, C2AV67T, C2AV67N, C2AW52R, C2AW52A, C2AW52M, 
C2AW52T C2AK36W and C2AK36A were expressed in E. coli cells and the total protein (W), 
supernatant (S) and pellet (P) were checked by SDS-PAGE gel. 
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Figure 4. 3 Close-up views of the location of residue V67, W52 and K36 in the C2A 

structure. 

Residue V67 (A), W52 (B),  and K36 (C) as well as their neighbouring residues are shown 
in sticks and labeled by residue numbers in the cartoon structure of Ca2+-bound C2A. 
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Once again the neighbouring residues are all hydrophobic, which suggests that 

hydrophobic interactions may play a role in the structure’s stability in this region and that 

maintenance of hydrophobicity at residue number 67 could be crucial for protein stability. 

The introduction of a charged acidic residue in this position is a energetically costly event 

and likely disrupts the hydrophobic interactions forming the core of the protein. A similar 

structural environment can be seen for W52, as it directs inward at the core of the β-sheet 

sandwich likewise, together with two neighbouring hydrophobic residues, F50 on the same 

β-sheet and L2 on adjacent β-sheet. Further, a basic residue K33 on the opposite side is 

also within close distance, pointing inward between the side chains of W52 and F50 

(Figure 4.3 B). Substitution of W52 to an arginine would likely trigger a charge-charge 

repelling effect with K33, resulting in the disruption of the protein conformation. For K36, 

which is located at one end of loop 2, we found it points towards β4, bonding with E48 on 

β4 via electrostatic interaction (Figure 4.3 C). This interaction may be important for 

bringing the two sides of the protein together, thus substitution to a hydrophobic residue 

causes a destabilization effect.  

 

In an attempt to better characterize the mechanism of this instability we incorporated 

several other substitutions at V67, W52 and K36. For V67, we introduced two less 

hydrophobic substitutions (C2AV67A, C2AV67T) and a less acidic one (C2AV67N). In the test 

expression, C2AV67N was found completely in inclusion bodies. Although a large amount 

of C2AV67A and C2AV67T were still located in the insoluble fraction, some protein was found 

in the soluble fractions. For W52, two less hydrophobic substitutions (C2AW52A, C2AW52M), 

and a polar one with a methyl group (C2AW52T) were generated. However, all of them 
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showed serious aggregation on the test expression gel so we chose C2AW52M as the subject 

for the following studies. For K36, we incorporated a less hydrophobic substitution 

(C2AK36A) and C2AK36A showed increased level of solubility than C2AK36W (Figure 4.2). 

In general, the levels of protein expression and solubility for all these proteins were much 

lower compared to wild type dysferlin C2A. However, sufficient amounts of C2AV67A, 

C2AV67T, C2AW52M and C2AK36A proteins were obtained to compare their stabilities to the 

wild-type protein. 

 

4.3.3 Protein purification 

Using the same protocol described in Chapter 2.2.1, the C2AV67A, C2AV67T, C2AW52M , 

C2AK36W and C2AK36A mutant proteins were purified using nickel-charged HisTrap FF 

column followed by gel filtration chromatography. Coomassie-stained SDS-PAGE gels of 

the fractions for each protein are presented in Figure 4.4 and show the expected band of 

molecular weight around 14 kDa for the C2AV67A, C2AV67T, C2AK36W and C2AK36A 

proteins following His6-tagged cleavage by TEV protease. For the C2AW52M protein, in 

particular, the His6-tagged was kept due to the serious precipitation of the protein. The 

SDS-PAGE gel of C2AW52M shows bands of around 19 kDa, corresponding to the 

calculated molecular weight of the His6-C2AW52M protein. 15N-labelled C2AV67A used for 

NMR studies was purified using the same method. For each experiment, the proteins were 

freshly made. 

 

 
 
 



 

 141 

 
 
 

 
 

 

 

 

 

 

Figure 4. 4 Purification of the C2AV67A, C2AV67T, C2AW52M , C2AK36A and C2AK36W 

mutant proteins. 

Purification of C2A mutants by HisTrap FF chromatography monitored by SDS-PAGE 
stained with Coomassie blue. Cleaved C2AV67A and C2AV67T (A),  C2AK36A and C2AK36W 
(C) and His6-tagged C2AW52M (B) are indicated by black arrows. 
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4.3.4 Pathogenic substitutions cause loss of stability for the C2A domain 

The secondary structure and thermal stability of each substituted protein was studied by 

circular dichroism (CD) as a comparison to the wild-type C2A. First, the secondary 

structure for each protein was examined without attempts to control the levels of calcium. 

That being said, the proteins used were obtained directly from the purification of E.coli 

cells with no manipulation of Ca2+ ions. As mentioned in Chapter 2.3.4, the CD spectrum 

of the dysferlin C2A domain at 25 ˚C had a negative band near 215 nm consistent with the 

well-defined antiparallel β-sheet structure of the protein. As presented in Figure 4.5 A, 4.6 

A, and 4.7 A, the CD spectra of C2AV67A, C2AV67T C2AW52M, C2AK36W, and C2AK36A all 

showed a similar profile, indicating that most of the β-sheet structure is preserved with 

these substitutions. However, the spectra of the substituted proteins (especially C2AW52M) 

were fairly noisy between 200 – 210 nm due to the high tension voltage beyond 600 V. 

This might be a consequence of the  protein aggregation at 25 ˚C although very low 

concentration (20 μM) was used. 

 

Thermal denaturation experiments measured by CD spectropolarimetry examined changes  

in molar ellipticity at 215 nm as a function of temperature (5 - 95 ˚C). The melting curve 

for native C2A in apo and Ca2+-bound state both showed a smooth sigmoidal transition 

between folded and unfolded species that follows a two-state unfolding pathway (Freire, 

1995), with a melting temperate (Tm) at 61 ˚C and 73 ˚C, and enthalpy change (ΔHm) of 

147 and 236 KJ/mol, respectively (Figure 4.5 A, Table 4.2).  
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Figure 4. 5 Folding and thermal stability of C2AV67A and C2AV67T monitored by 

circular dichroism. 

(A) Circular dichroism spectra of wild type C2A (black), C2AV67A (red) and C2AV67T (blue) 
from 250 – 195 nm. The measurements were taken at 25 °C. The buffer background was 
subtracted. (B) (C) Thermal denaturation of C2A (black), C2AV67A (red) and C2AV67T (blue) 
in apo- and Ca2+-bound state within the range of 5 – 95°C in 0.5 °C increments. The 
unfolding profile as a function of temperature is shown by CD ellipticity at 215 nm. The 
relative change in ellipticity at 215 nm was plotted as a fraction unfolded and fitted 
according to Equation 2-3 in experimental section. 
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For C2AV67A and C2AV67T, the unfolding curves shifted to lower transition temperatures in 

apo and Ca2+-bound state. The unfolding profiles of C2AV67A and C2AV67T almost 

completely overlapped, indicating two proteins underwent similar unfolding process. The 

melting temperate (Tm) for apo-C2AV67A (49.67 ˚C) and apo-C2AV67T (48.2 ˚C)  was over 

10˚C lower than the native apo-C2A. Also Ca2+-C2AV67A and Ca2+-C2AV67T had a Tm that 

is 7˚C lower than the wild-type Ca2+-C2A (Figure 4.5 B – C, Table 4.2). Notably, C2AV67A 

and C2AV67T showed a further gradual transition following melting perhaps indicative of a 

less cooperative unfolding process or the presence of aggregated species in solution. 

Further, denaturation of both C2AV67A and  C2AV67T yielded smaller enthalpy change (ΔHm) 

compared to the wild-type, which resulted from decreased thermal stabilities. These results 

suggest that substitution of V67 causes large instabilities in the C2A domain and that the 

V67D substitution likely causes its unfolding and aggregation. 

 

Fitting of the unfolding data of apo-C2AW52M yielded a higher melting temperate (Tm) 

(79˚C) than the wild-type apo-C2A (Table 4.2). however, the slope of the plot of apo-

C2AW52M was remarkably decreased compared to that of the native C2A, resulting in an 

exceptionally smaller enthalpy change (ΔHm) (Figure 4. 6 B, Table 4.2). The unfolding 

profile of apo-C2AW52M showed a non-cooperative unfolding manner, indicative of 

significant accumulation of intermediates likely due to the protein aggregation. In the case 

of Ca2+-C2AW52M, the unfolding curves showed a melting temperature almost 18˚C lower 

than the native Ca2+-C2A, accompanied with a decreased slope and smaller enthalpy 

change (ΔHm) (Figure 4.6 C, Table 4.2). All these observations suggest that substitution 

of W52 causes even more significant instabilities than V67 that leads to severe aggregation.  
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Figure 4. 6 Folding and thermal stability of C2AW52M monitored by circular dichroism. 

(A) Circular dichroism spectra of wild type C2A (black) and C2AW52M (green) from 250 – 
195 nm. The measurements were taken at 25 °C. The buffer background was subtracted. 
(B) (C) Thermal denaturation of C2A (black) and C2AW52M (green)  in apo- and Ca2+-
bound state within the range of 5 – 95°C in 0.5 °C increments. The unfolding profile as a 
function of temperature is shown by CD ellipticity at 215 nm. The relative change in 
ellipticity at 215 nm was plotted as a fraction unfolded and fitted according to Equation 

2-3 in experimental section. 
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Figure 4. 7 Folding and thermal stability of C2AK36A and C2AK36W monitored by 

circular dichroism. 

(A) Circular dichroism spectra of wild type C2A (black), C2AK36A (pink) and C2AK36W 
(orange) from 250 – 195 nm. The measurements were taken at 25 °C. The buffer 
background was subtracted. (B) (C) Thermal denaturation of C2A (black), C2AK36A (pink) 
and C2AK36W (orange) within the range of 5 – 95°C in 0.5 °C increments. The unfolding 
profile as a function of temperature is shown by CD ellipticity at 215 nm. The relative 
change in ellipticity at 215 nm was plotted as a fraction unfolded and fitted according to 
Equation 2-3 in experimental section. 
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Table 4. 2 Summary of parameters calculated for the thermal unfolding of the C2A 

domain and its substitutions. 

 

 

Protein Tm (°C) ΔHm (KJ/mol) 

apo-C2A 61.31 147 

Ca2+-C2A 73.08 236.1 

apo-V67A 49.67 72.86 

Ca2+-V67A 66.03 78.18 

apo-V67T 48.2 66.95 

Ca2+-V67T 66.04 57.6 

apo-W52M 79.09 18 

Ca2+-W52M 54.73 28.79 

K36W 56.37 56.2 

K36A 60.33 155.3 
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Furthermore, the C2AK36A mutant showed almost the same unfolding profile as wild-type 

C2A with similar Tm and ΔHm, while C2AK36W had a melting temperature about 5 ˚C  lower 

with a slightly reduced slope and much lower Tm (Figure 4.7 B – C, Table 4.2). These 

results indicate that substitution of K36 with an alanine does not seem to affect the folding 

and stability of the protein, whereas a tryptophan causes destabilization likely due to its 

hydrophobic exposure effect. 

 

Taken together, although V67D and W52R proteins were unobtainable, we were able to 

assess the importance and function of residue V67 and W52 by introducing other 

substitutions at these positions. We found disruption of hydrophobic properties at these 

positions causes severe instabilities to the overall structure of C2A domain leading to 

aggregation. Substitution of K36W causes similar destabilization effect, but possibly 

through introducing hydrophobic residue to the loop region where is more exposed to the 

solvent, resulting in misfolding of the domain. 

4.3.5 Impact of pathogenic mutations on the calcium binding 

Next,  calcium titration experiments by ITC were conducted to probe the calcium binding 

properties of each protein. As shown in Figure 4.8, the ITC data of C2AV67A, C2AW52M, 

and C2AK36W all demonstrated endothermic reactions in the beginning and exothermic 

binding after the mole ratio of [Ca2+]/[C2A] reached 2, indicative of two distinct Ca2+ 

binding modes. This two-stage titration profile resembles that of wild-type C2A observed 

in Chapter 3.3.1 (Figure 3.2), indicating the Ca2+ binding property of C2A domain is 

maintained for the mutants. Data was fitted using sequential-two-binding-site model and   
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Figure 4. 8 ITC data of Ca2+ binding to C2AV67A, C2AW52M, and C2AK36W. 

Isotherm graphs of calcium binding to the mutants C2AV67A, C2AW52M, and C2AK36W. Data were collected at 25 °C with 
25 mM HEPES, 150 mM NaCl, 250 μM TCEP, pH 7.5 buffer conditions. The data were all fitted with a sequential two-
site binding model and the yielded thermodynamic parameters are shown in Table 4.2. 
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Table 4. 3 Summary of Ca2+ binding parameters for the C2A domain and its 
substitutions measured by ITC. 

 

Protein  
Kd1  
(μM) 

ΔH1 
(KJ/mol) 

ΔS1 

(J/mol°K) 
Kd2  
(μM) 

ΔH2 
(J/mol) 

ΔS2 

(J/mol°K) 
C2A  32 4.661 102.3 300 -44.15 -8.58 
C2AV67A  19 10.78 126.7 342 -35.58 -5.30 
C2AW52M 5.4 0.664 103.1 1082 -41.68 -8.30 
C2AK36W 27 0.045 8.761 335 -16.54 1.10 
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thermodynamic parameters yielded are shown in Table 4.3. Firstly, the Kd values for the 

two binding sites of C2AV67A and C2AK36W are within the same order of magnitude as those 

for the wild-type C2A. The Kd2 values, particularly, are all about 300 μM, suggesting these 

substitutions barely affect the Ca2+ binding affinities of the domain. The C2AW52M protein 

showed a little divergent Ca2+ binding affinities with a smaller KD1 and larger KD2 compared 

to the others. However, it is difficult to assess the accuracy of the ITC data for a large 

amount of precipitate was observed during the titration which might affect the result. 

Secondly, by examining the ΔH and ΔS values, all of them show large positive entropy 

change in the initial step (ΔS1) and a fairly small entropy change (ΔS2) for the second 

binding step, indicating binding of the first calcium ion results in larger overall structural 

change of the domain than the second calcium ion. Taken together, the ITC titrations for 

the C2AV67A, C2AW52M, and C2AK36W proteins demonstrate that substitutions at position 

V67, W52 and K36 do not affect the Ca2+ binding property of the C2A domain.  

 

4.3.6 NMR studies  

To further examine the impact of the substitutions on protein folding, NMR spectroscopy 

was used. Due to severe precipitation of the mutant protein, only adequate C2AV67A protein 

was obtained to for NMR studies. The 1H-15N-HSQC spectra of apo-C2AV67A compared to 

wild-type apo-C2A showed apo-C2AV67A displayed a population of well-dispersed peaks 

and the two spectra demonstrated significant overlap (Figure 4.9 A), indicating the V67A 

substitution does not change the fold and the secondary structure of C2A domain in the 

apo-state. Subsequently, a large amount of Ca2+ was added into the sample and 1H-15N-

HSQC spectra was recorded using the identical parameters. However, the spectrum of 
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C2AV67A protein in Ca2+-bound state showed large variations in peak number and positions 

compared to the wild-type Ca2+-C2A (Figure 4.9 B). It can be observed from the 

superposition of the two spectra that there was an increased number of signals in the 

C2AV67A domain, including a series of signals between 8.0 – 9.0 ppm in 1H dimension and 

115 – 120 ppm in 15N dimension. This might result from proteolysis and degradation of the 

protein. Further, the two spectra do not show high level of overlap regarding peak positions, 

indicating the Ca2+-C2AV67A takes on a conformation different than the wild-type. In 

addition, based on the fact that the signals of Ca2+-C2AV67A are significantly weaker than 

the apo-C2A and large amount of precipitate was observed in the final sample, we conclude 

that protein aggregation occurred during spectral acquisition at room temperature. It is 

difficult to confirm whether this aggregation resulted from Ca2+ binding or the long period 

of time (more than 8 hours) near room temperature. According to the ITC result that 

C2AV67A has very similar Ca2+ binding properties to the wild-type C2A, it is speculated that 

the different spectrum of Ca2+-C2AV67A is likely a consequence of protein proteolysis and 

aggregation, suggesting V67 substitution impairs the long term stability of the C2A domain 

at room temperature, which further agrees with our previous results.  
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Figure 4. 9 NMR spectra of C2AV67A overlapped with wild-type C2A. 

Overlaid 1H-15N HSQC spectrum of apo-C2AV67A (red) and apo-C2A (black) (A), Ca2+-
C2AV67A (blue) and Ca2+-C2A (black) (B).  
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4.4 Discussion 
 
In dysferlin, about half of the missense mutations leading to muscular dystrophy are found 

within the C2 or the DysF domains. Most of the C2 domain substitutions are found within 

the predicted β sheet structures and only rarely in the intervening loops. Missense 

mutations often affect those structures as well as residues that were highly conserved in the 

C2 domains (Therrien et al., 2006). This can also be seen from the sequence alignment of 

C2A and C2B domain, where W52 and V67 on C2A and K36 on C2B are all highly 

conserved residues (Figure 4.1 A). We were able to investigate the impact of a pathogenic 

mutation in the loop region through mapping it from C2B (R253) to C2A (K36) domain 

based on the sequence homology. This method can be useful to predict the possible 

consequences of affected residues in different regions of other C2 domains might have on 

the structure or function of the dysferlin protein. 

 

Clinical data have reported that the pathogenic dysferlin mutations affect the protein 

expression level in skeletal muscle, characterized by severely decreased  or absence of 

dysferlin expression (Krahn et al., 2009; Nguyen et al., 2005). An amount of dysferlin £ 

20% has been shown to be  pathogenic and always caused by primary dysferlin gene 

mutations (Cacciottolo et al., 2011). Further characterization of dysferlin on a molecular 

level is needed to better understand the structure and the function of this protein in normal 

and pathological conditions. Our work investigated three pathogenic mutations on C2A 

domain that cause limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi 

myopathy (MM) and show all three substitutions significantly decrease the stability of the 

C2A domain. In the previous chapter we have shown that wild-type dysferlin C2A domain 
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takes on an eight β-sheet structure, with multiple calcium- and phospholipid-binding sites. 

Maintenance of this structure is essential for dysferlin to function in the membrane repair 

process and V67, W52 and K36 are identified to be structurally important. Unfolding or 

improper folding of the C2A domain of dysferlin encompassing the V67D, W52R and 

K36W substitutions is predicted to be responsible for impaired dysferlin function in the 

membrane repair process, and consequently the wasting of skeletal muscles in muscular 

dystrophy patients.  
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Chapter 5 
 

Design and Characterization of Dysferlin C2B and C2C 

Domain 

 

5.1 Introduction 
 
Dysferlin is a large protein containing 2080 amino acids with a short C-terminal 

transmembrane domain. Within the cytosolic region of dysferlin, it possess a rare feature 

consisting of seven tandem C2 domains (C2A – C2G) separated by linkers, together with 

two Fer domains and one DysF domain. The tertiary structure of dysferlin has not been 

characterized, only DysF domains has been solved by crystallography (Sula et al., 2014), 

and the C2A domain has been comprehensively investigated in the previous chapters of 

this thesis. Dysferlinopathy is characterized by absence or marked reduction of dysferlin 

protein, with 43% of reported pathogenic variants being missense mutations that span the 

length of the dysferlin protein including all the C2 domains (Cacciottolo et al., 2011; Krahn 

et al., 2009). This suggests that all seven C2 domains are structurally or functionally 

important for maintaining dysferlin’s activities. Although it was previously predicted that 

the C2A, C2B, and C2E domains adopted the type II topology, whereas the remainder of 

the C2 domains were expected to adopt the type I topology (Therrien et al., 2006), it is still 

unclear what the specific structure and role of each C2 domain is and the interplay between 

them and other domains.  
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A limited number of studies have focused on the C2 domains of dysferlin individually. By 

using isolated proteins, one study demonstrated that all seven dysferlin C2 domains interact 

with Ca2+ with various binding affinities ranging from micromolar (C2A and C2C) to 

millimolar (C2D), as well as with different stoichiometry (Abdullah et al., 2014). A lipid 

binding assay showed that the C2A domains of dysferlin exhibited binding to 

phosphatidylserine (PS) and several phosphoinositides in a Ca2+-dependent manner, 

whereas all of the other dysferlin C2 domains exhibited weaker and Ca2+-independent 

binding to PS and no detectable binding to phosphoinositides. Although these studies laid 

some ground for investigations into dysferlin C2 domains, some issues are implicit in them. 

Firstly, different studies have used constructs of C2 domains that include different regions 

of the protein, which vary considerably in some cases: the domain boundaries have not 

been defined clearly yet. Secondly, the secondary structure of each C2 domain was almost 

never analyzed to confirm the proper folding of the domains, which could be problematic 

when drawing conclusions regarding any features of the C2 domains. To address the above 

issue, I pursued my studies on characterizing the C2B and C2C domains of dysferlin. The 

work in this chapter aimed to define the accurate domain boundaries of the two domains 

and to investigate the structural properties of them. 

 

5.2 Materials and Methods 
 

5.2.1 Restriction-free (RF) cloning of the dysferlin C2B and C2C domain  

All the dysferlin C2B and C2C constructs were cloned using restriction-free cloning 

technique (van den Ent and Löwe, 2006). Plasmid encoding the full length human dysferlin 
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gene (DYSF) was purchased from Addgene plasmid repository (#60216). DNA fragments 

encoding C2B and C2C domains from the full length DYSF gene were inserted into the 

following vectors containing different affinity tags: pET28a (His6 tag), pET-SUMO (His-

SUMO tag), pGEX (GST tag). Primers were designed using the online program 

(https://www.rf-cloning.org) and are shown in Table 5.1. The DYSF plasmid was isolated 

from harvested MM294 E. coli cells using the Bio Basic Inc. EZ-10 spin column miniprep 

kit. The restriction-free cloning was conducted using Polymerase chain reaction (PCR). 

Methylated parental strands that remained in the PCR reaction were digested by Dpn1 

overnight at 37°C. The following day, plasmid DNA was purified using a PCR clean-up 

kit (BioBasic Inc). All PCR products were transformed into competent MM294 cells and 

incubated on antibiotic-treated LB-agar plates overnight at 37 °C. Multiple colonies were 

picked and grown in LB. Plasmids were isolated from harvested cells using the Bio Basic 

Inc. EZ-10 spin column miniprep kit and were sequenced (London Regional Genomics 

Centre, Canada) to verify that the correct mutations were incorporated. 

 

5.2.2 Test expression and solubility test  

Small-scale test expression experiment was performed for the following constructs: His-

C2B, His-SUMO-C2B, GST-C2B, His-C2C, His-SUMO-C2C, GST-C2C, His-C2BC, 

His-SUMO-C2BC, GST-C2BC, His-C2BC-DysF, His-SUMO-C2BC-DysF, GST-C2BC-

DysF (also shown in Figure 5.3 B). Plasmids containing the DNA were transformed BL21-

CodonPlus (DE3) E. coli strain. Isolated colonies were picked and grown in 5 mL LB/DYT 

overnight as starters. The following day 250 μL starters were inoculated into 25 ml 

LB/DYT with appropriate antibiotics. The cultures were grown at 37 ºC until an OD600 of  
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Table 5. 1 Primers used for restriction-free cloning for generating dysferlin C2B and 
C2C constructs. 

 
Construct Primer Sequence 

 
His-C2B Forward: 5’- AGGATCCGGCGGCGGCGGCGGCAAACCGCAGGATTTCCAGA -3’ 

Reverse: 5’- AGTGGTGGTGGTGGTGGTGCTAGTCCCCAGGCCCCAGCAC -3’ 
 

His-SUMO-C2B Forward: 5’- GGCTCACAGAGAACAGATTGGTGGTAAACCGCAGGATTTCCAGATCA -3’ 
Reverse: 5’- CGCCGAATAAATACCTAAGCTTGTCTCTAGTCCCCAGGCCCCAGCAC -3’ 
 

GST-C2B Forward: 5’- GTTCCAGGGGCCCCTGGGATCCAAACCGCAGGATTTCCAGA -3’ 
Reverse: 5’- CACGATGCGGCCGCTCGAGTCAGTCCCCAGGCCCCAGCAC -3’ 
 

His-C2C Forward: 5’- AGGATCCGGCGGCGGCGGCGGCGGAGCCCACTTCTGCCTGAAGG -3’ 
Reverse: 5’- CAGTGGTGGTGGTGGTGGTGCTAACTGCCATAGAGGTTGATGTAGC -3’ 
 

His-SUMO-C2C Forward: 5’- GGCTCACAGAGAACAGATTGGTGGTGGAGCCCACTTCTGCCTGAAG -3’ 
Reverse: 5’- CGAATAAATACCTAAGCTTGTCTCTAACTGCCATAGAGGTTGATGTAGC -3’ 
 

GST-C2C Forward: 5’- GTTCCAGGGGCCCCTGGGATCCGGAGCCCACTTCTGCCTGAAG -3’ 
Reverse: 5’- CACGATGCGGCCGCTCGAGTCAACTGCCATAGAGGTTGATGTAGC -3’ 
 

His-C2BC Forward: 5’- CAAGGATCCGGCGGCGGCGGCGGCAAACCGCAGGATTTCCAGATC -3’ 
Reverse: 5’- GTGGTGGTGGTGGTGGTGCTAACTGCCATAGAGGTTGATGTAGC -3’ 
 

His-SUMO-C2BC Forward: 5’- GGCTCACAGAGAACAGATTGGTGGTAAACCGCAGGATTTCCAGATC -3’ 
Reverse: 5’- CGAATAAATACCTAAGCTTGTCTCTAACTGCCATAGAGGTTGATGTAGC -3’ 
 

GST-C2BC Forward: 5’- GTTCCAGGGGCCCCTGGGATCCAAACCGCAGGATTTCCAGATC -3’ 
Reverse: 5’- CACGATGCGGCCGCTCGAGTCAACTGCCATAGAGGTTGATGTAGC -3’ 
 

His-C2BC-DysF Forward: 5’- CAAGGATCCGGCGGCGGCGGCGGCAAACCGCAGGATTTCCAGATC -3’ 
Reverse: 5’- CTCAGTGGTGGTGGTGGTGGTGCTACTCGCCCTCCGCCTCCGCC -3’ 
 

His-SUMO-
C2BC-DysF 

Forward: 5’- CCTCCCCACTTTTGGGCCCTGCACTAAGTTGGCCCTTGTTGG -3’ 
Reverse: 5’- GTGGTGGTGGTGGTGGTGCTACTCGCCCTCCGCCTCCGCCTGC -3’ 
 

GST-C2BC-DysF Forward: 5’- GTTCCAGGGGCCCCTGGGATCCAAACCGCAGGATTTCCAGATC -3’ 
Reverse: 5’- GTCACGATGCGGCCGCTCGAGTCACTCGCCCTCCGCCTCCGCC -3’ 
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0.6 was reached and were induced with 0.05 – 0.5 mM IPTG, followed by continued 

growth at 37 ˚C for 5 hours or at 16 ˚C for 20 hours. Cells were harvested by centrifugation 

at 4,000 rpm for 20 min and resuspended in various lysis buffers. Cells were lysed by 

EmulsiFlex-C5 homogenizer (Avestin). Gel sample was taken at this point as total protein 

(i.e. 30 μL + 15 μL 3 × SDS loading buffer). Then 1 mL cell lysate was centrifuged for 10 

- 15 minutes at 14,000 rpm in tabletop centrifuge. The supernatant was taken as gel sample 

(soluble fraction). Cell pellet was resuspended in 1 ml of 2% SDS with vortexing and taken 

as gel sample (insoluble fraction). The total protein (W), soluble (S) and insoluble fractions 

(P) were checked by SDS-PAGE along with the relevant negative and positive controls. 

5.2.3 Expression and purification of His-SUMO-C2B and His-SUMO 

The dysferlin C2B domain (residues 216-348) that was inserted into a pET SUMO 

expression system vector (Invitrogen) is referred to as His-SUMO-C2B. Unlabeled or 

uniformly 15N-labeled His-SUMO-C2B were overexpressed in the BL21-CodonPlus (DE3) 

E. coli strain in LB or M9 minimal medium supplemented with 30 μg/mL kanamycin and 

30 μg/mL chloramphenicol. 15NH4Cl (1 g/L) and 13C6-glucose (2 g/L) were used as the sole 

nitrogen and carbon sources in the M9 minimal media. The cultures were grown at 37 ºC 

until an OD600 of 0.6 was reached at which point cells were cooled to 16 °C and induced 

with 0.5 mM IPTG for 20 hours. Cells were harvested by centrifugation at 6,000 rpm for 

15 min and resuspended in lysis buffer (50 mM Tris, 300 mM NaCl, 10 mM imidazole, 

0.1 % Triton X-100, 5% glycerol, pH 9.5). Cells were lysed by EmulsiFlex-C5 

homogenizer (Avestin) and centrifuged at 20,000 g for 40 min. The supernatant was filtered 

through 0.45 micron low protein binding Millipore syringe filters and subsequently applied 
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to a 5 mL HisTrap FF column on an AKTA FPLC (GE Healthcare) pre-equilibrated in 

binding buffer (50 mM Tris, 300 mM NaCl, 10 mM imidazole, 0.1 % Triton X-100, 5% 

glycerol, pH 7.5). The column was washed with the binding buffer with 50 mM imidazole 

until the OD280 returned to baseline. Bound protein was then eluted with a 250-500 mM 

imidazole in the elution buffer (50 mM Tris, 300 mM NaCl, 250-500 mM imidazole, 0.1 % 

Triton X-100, 5% glycerol, pH 7.5). A final purification step by gel filtration was 

performed on a HiLoad Superdex75 pre-equilibrated with appropriate buffers. Fractions 

containing the protein were pooled and stored at -80 ºC.  

 

Uniformly 15N-labeled His-SUMO (Invitrogen) was overexpressed in the BL21-CodonPlus 

(DE3) E. coli strain in M9 minimal medium supplemented with 30 μg/mL kanamycin. The 

cultures were grown at 37 ºC until an OD600 of 0.6 was reached at which point cells were 

cooled to 16 °C and induced with 0.5 mM IPTG for 20 hours. Cells were harvested by 

centrifugation at 6,000 rpm for 15 min and resuspended in lysis buffer (25 mM Tris, 300 

mM NaCl, 10 mM imidazole, pH 7.5). Cells were lysed by EmulsiFlex-C5 homogenizer 

(Avestin) and centrifuged at 38,000 rpm for 90 min. The supernatant was filtered through 

0.45 micron low protein binding Millipore syringe filters and subsequently applied to a 5 

mL HisTrap FF column on an AKTA FPLC (GE Healthcare) pre-equilibrated in lysis 

buffer. The column was washed with the binding buffer with 50 mM imidazole until the 

OD280 returned to baseline. Bound protein was then eluted with a 250-500 mM imidazole 

in the elution buffer (25 mM Tris, 300 mM NaCl, 250-500 mM imidazole, pH 7.5). 

Fractions containing the His-SUMO protein were verified by SDS-PAGE. 
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5.2.3 Expression and purification of GST-C2BC-DysF 

The dysferlin C2BC domain (216-521) and DysF domain (886-1067) were linked together 

by cloning and incorporated into the pGEX (GST tag) expression vector (referred to as 

GST-C2BC-DysF). Unlabeled GST-C2BC-DysF was over-expressed in the BL21 (DE3) 

Codon Plus E. coli strain. The cultures were grown at 37 ºC in the presence of ampicillin 

(50 μg/mL) to a density of (A600) 0.6 AU, then induced by adding 0.5 mM IPTG. Induction 

continued for another 20 h with constant shaking at 16 ºC. Cells were harvested by 

centrifugation at 6,000 rpm for 15 min and resuspended in PBS buffer (140 mM NaCl, 2.7 

mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.3). Cells were lysed by EmulsiFlex-

C5 homogenizer (Avestin) and centrifuged at 30,000 rpm for 90 min. All fractionation 

steps were performed at 4 °C. The supernatant was applied to a 5 mL glutathione-linked 

sepharose column (GSTrap FF) on an AKTA FPLC (GE Healthcare) pre-equilibrated in 

PBS buffer. The column was then washed with the PBS buffer until the OD280 returned 

to baseline. The bound GST-C2BC-DysF protein was eluted in elution buffer (50 mM Tris-

HCl, 20 mM reduced glutathione, , pH 8.0). Fractions containing the GST-C2BC-DysF 

protein were verified by SDS-PAGE. 

 

5.2.4 NMR spectroscopy 

All NMR experiments were collected at 25˚C on a Varian Inova 600 MHz NMR 

spectrometer equipped with a triple resonance cryogenic probe and z-field gradients. All 

data were processed using NMRPipe (Delaglio et al., 1995) and analyzed using 

NMRViewJ (Johnson and Blevins, 1994). The 1H-15N HSQC NMR experiments were 

conducted in 25 mM HEPES, 150 mM NaCl, 250 μM TECP, pH 7.5 with 10% D2O, 200 
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μM DSS as an internal reference, and 200 μM imidazole as an internal pH indicator. The 

1H-15N HSQC NMR spectra was collected using a sample of 200 μM uniformly 15N-labeled 

His-SUMO, and a sample of 150 μM 15N-labeled His-SUMO-C2B. Spectral windows were 

7000.0 Hz centered on 4.773 ppm for 1H and 1944.3 Hz centered on 121.2 ppm for 15N.  

For the interaction study of dysferlin C2A and C2B domain, the apo and Ca2+-bound 15N-

labeled C2A samples were prepared as described in Chapter 3.3.2, with a concentration 

of 200 μM. A 1H-15N HSQC NMR spectrum was recorded for each. Then 100 μM 

unlabeled His-SUMO-C2B was added into the sample followed by collection of another 

1H-15N HSQC spectrum. 

5.2.5 Circular dichroism 

Folding of all proteins were monitored by circular dichroism spectropolarimetry using a 

Jasco J-810 instrument (Biomolecular Interactions and Conformations Facility, University 

of Western Ontario). Proteins were extensively dialyzed in the CD buffer (20 mM KH2PO4, 

pH 7.5) for at least one day with stirring. For each sample, 15 scans from 250 –200 nm (80 

nm/min with increment of 1 nm) were recorded using a 1 mm path-length cell at 20 °C and 

95 °C, averaged and the buffer background was subtracted.  

5.2.6 Isothermal titration calorimetry 

All calorimetry experiments were performed using a NanoITC (TA Instruments) at 25°C. 

All experiments were completed 2–3 times using freshly prepared proteins extensively 

dialyzed in 25 mM HEPES, 150 mM NaCl, 250 μM TECP, pH 7.5 and pretreated with 

Chelex-100 (Bio-Rad) to remove residual Ca2+ ions for one hour. The optimal 

concentrations of protein and Ca2+ in the experiments were determined to be: 1.5 mM Ca2+ 
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titrated into 57 μM His-SUMO-C2B. Protein and Ca2+ solution were degassed under 

vacuum prior to each titration. Titrations consisted of 25 injections of 2 μL Ca2+ solution 

into a 146 μL cell containing the proteins with constant stirring. Heats of dilution were 

measured in a separate experiment in which Ca2+ solution was injected into the buffer alone.  

 

 

5.3 Results 
 
 

5.3.1 Design of the dysferlin C2B and C2C constructs  

As mentioned earlier, dysferlin has been identified to possess a unique structure consisting 

of seven tandem cytosolic C2 domains (C2A – C2G) separated by linkers, together with 

two Fer domains and one DysF domain in the middle of the protein (Figure 5.3 A). 

However, in the existing studies on dysferlin, different domain boundaries have been 

predicted. For example, three dysferlin studies were conducted using the C2C domain 

spanning three different regions (residue 345 – 574, 378 – 528 and 366 – 515, respectively 

(Abdullah et al., 2014; Llanga et al., 2017; Therrien et al., 2009). For our study which 

requires properly folded protein and pursues structural characterization, accurate boundary 

identification of dysferlin C2 domains is needed. 

 

First, we carried out secondary structure prediction and sequence alignment. We used the 

online program JPred (http://www.compbio.dundee.ac.uk/jpred4) and YASPIN 

(http://www.ibi.vu.nl/programs/yaspinwww) for secondary structure predication of the 

dysferlin C2B and C2C domains. In the prediction for C2B domain from residue K216 to 
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D348, the first six β strands were predicted by the two programs consistently and the β-

strands were shown to be connected by random coils (Figure 5.1 A). In contrast, in the 

prediction by YASPIN, there were sequence preferences for one more β strand element at 

the end of the sequence and three α helix structures between β4 -5 and β6 -7. In the 

prediction of C2C domain from residue G378 to C521, there were also six β strands 

predicted by both programs and YASPIN identified two more β strands. Further, two 

programs each predicted one α helix in different positions (Figure 5.1 B). In principle, the 

C2 domains are expected to present eight β sheets, so the predictions do not give high 

reliabilities. Nonetheless, the above results helped us to locate the approximate segments 

of the C2B and C2C domains. Meanwhile, a sequence alignment of the C2B and C2C 

domains was performed along with secondary structure information obtained from 

dysferlin C2A and PLC-δ1 (Essen et al., 1997) crystal structures to map the putative 

calcium binding residues and structurally conserved residues. Residues important for the 

structure of β-strands and intervening loops of the domains were aligned according to an 

amino acid consensus obtained from the structural alignment of dysferlin C2A and PLC-

δ1. As shown in Figure 5.1 C, there is a lot of sequence conservativity within the region 

encompassing the first six β strands. For example, a number of hydrophobic residues were 

aligned well in the β sheet regions and several aspartate and asparagine residues were 

indicated to be analogous in loop 1 – 3 which likely correspond to the calcium binding sites. 

In comparison, the regions after β6 showed weaker sequence preservation with fewer 

conserved amino acid residues. This aligns closely with the secondary structure prediction 

results that these regions demonstrated prominent structural discrepancy in the two  

 



 

 168 

 

 
Figure 5. 1 Secondary structure prediction and sequence alignment of dysferlin C2B 
and C2C domain. 

(A) (B) Secondary structure prediction of amino acid sequences corresponding to dysferlin 
C2B (A)  and C2C (B) domain using online prediction program Jpred 
(http://www.compbio.dundee.ac.uk/jpred/) and Yaspin 
(http://www.ibi.vu.nl/programs/yaspinwww/). The secondary structure elements are 
shown: H, α helix; E, β sheet; -, disorder/loop. Putative β sheets are marked on the top of 
the sequences. (C) Alignment of dysferlin C2B and C2C domain with C2A and PLC-δ1C2 
domain. Hydrophobic residues that are highly conserved in β sheet regions are highlighted 
in yellow. Conserved residues in the loop regions are highlighted in white with a blue 
background. The arrows above the sequence correspond to residues that possess β strand 
secondary structure, whereas the lines correspond to the loop region.  
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programs (Figure 5.1 A - B). We suspect that there might be larger structural variations 

between the C2 domains’ sequences within this region, which causes difficulty to identify 

the accurate boundaries. 

 

To attain more insights into designing the C2B and C2C constructs, we combined the above 

results with a computational model performed by our collaborator (Dr. Lance Stewart and 

Dr. David Baker, University of Washington, U.S.). The model simulated the 3D structure 

of the entire dysferlin protein. The C2B and C2C domains modeled both show an anti-

parallel β-sandwich arrangement connected by four loops at the top of the structures, 

typical of the C2 domain fold (Figure 5.2 A - B). The domain boundaries are identified to 

be K216 to D348, and G378 to C521, respectively. Of note, the C2C domain model 

demonstrates a much longer loop region comprising an α-helix fold. This explains the extra 

residues in the C2C loop 1 observed in the sequence alignment (Figure 5.1 C). Together, 

the starting residue of the C2B and C2C domains align perfectly in the three methods 

described above, and the computational simulation helped us determining the end points 

of the domains. 

 

More importantly, the simulated model also shows that C2B and C2C domain together 

adopt an arched-shaped arrangement joined by a linker sequence that forms an α-helix and 

packs against the two domains. The N and C termini of both domains are located at the 

bottom of the overall structure, whereas the putative calcium binding loops on the top 

(Figure 5.2 C). This proposed model is supported by a few studies. In a limited proteolysis 

study on dysferlin, C2B-C2C was found to be excised as an intact module and exist in a  
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Figure 5. 2 Modeling of dysferlin C2B, C2C, and DysF domains.  

Predicted structures of dysferlin C2B domain (A) and C2C domain (B) by collaborator’s 
modeling. The N- and C-terminal residues are labeled red dots and residue numbers. (C) 
Modeling of the C2B-C2C module showing C2B and C2C domains together adopt an 
arched-shaped arrangement joined by a linker sequence (gray) that forms an α-helix and 
packs against the two domains. (D) Modeled DysF domain, containing a β-sheet motif 
encompassing residue W926 to E1067 (orange) with an extension of a second “DysF” like 
domain from T886 to T925 (red). 
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closed conformation (Woolger et al., 2017), consistent with the cellular function of the 

C2B-C2C motif in regulating dysferlin plasma membrane expression (Evesson et al., 2010). 

Further, the modeled C2B-C2C conformation is similar in structure to the tandem C2 

domains (C2A-C2B) of extended synaptotagmin (Schauder et al., 2014; Xu et al., 2014), 

which is evolutionarily conserved to dysferlin. Thus, C2B-C2C could be regarded as a 

single domain and the folding of each domain may be dependent on the other. 

 

Additionally, the DysF domain, encompassing residue W926 to E1067, was predicted to 

be associated with the C2B-C2C module by our collaborator. It is proposed that the DysF 

domain resembles the SMP domain of extended synaptotagmin that makes contact with the 

C2A-C2B motif and mediates lipid binding. The crystal structure of DysF domain shows 

it consists of two long antiparallel β-strands, one at each terminus, connected with a long 

loop (Sula et al., 2014) (Figure 5.2 D), which is similar to parts of the β-barrel structure of 

the SMP domain of extended synaptotagmin (Schauder et al., 2014). It is also suggested 

that the fragment covering residue T886 – T925 could be an extension of the structure of 

DysF domain or a second “DysF” like domain, and interacts with C2B-C2C module 

together with DysF domain (Figure 5.2 D).  

 

On the basis of all the above information, by utilizing restriction-free cloning method using 

the full-length DYSF gene and vectors containing different affinity tags, the following 

constructs were generated (Figure 5.3 B):  

(i) C2B domain (216 - 348). 

(ii) C2C domain (378 - 521). 
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Figure 5. 3 Overview of dysferlin C2B and C2C constructs generated by RF cloning. 

(A) Domain architecture of full-length dysferlin demonstrating the domain boundaries of 
C2B, C2C and DysF domains. (B) Schematic representation of the constructs generated in 
this study. Three different affinity tags were incorporated at N terminus for each construct, 
including His6 tag, His-SUMO (small ubiquitin-like modifying protein) tag and GST 
(Glutathione S-transferase) tag.  
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(iii) C2BC (216 - 521).  

(iv) C2BC-DysF (216 - 521+ 886 - 1067).  

For each fragment, three different affinity tags were incorporated at N terminus, including 

His6 tag, His-SUMO (small ubiquitin-like modifying protein) tag and GST (Glutathione S-

transferase) tag. All twelve constructs were successfully cloned and transformed into 

BL21-CodonPlus (DE3) E. coli expressing cell line.  

 

5.3.2 Dysferlin C2B and C2C domains show low solubilities 

Initially, all the constructs were tested for expression and solubility using the same 

conditions for the wild-type C2A domain described in Chapter 2.2.1. However, though 

expressed well, all proteins were found to be completely insoluble. Therefore, small-scale 

expression screening was performed for each construct by varying multiple conditions as 

follows: 

(i) Culture condition: LB and DYT medium were used as the culture for cell growth. 

(ii) Induction condition: Different concentrations of IPTG (0.05 to 0.5 mM) were used to 

induce protein expression.  

(iii) Growth temperature: Cells were grown at 37 ˚C and 16 ˚C following IPTG induction 

for 5 hours and 20 hours, respectively.  

(iv) Buffer conditions: Buffers containing different salt concentrations, w/o addition of 

detergents, and at different pH were used to resuspend the harvested cells prior to lysis. 

 

The cell lysate was separated, by centrifugation, into soluble fractions (supernatant) and 

insoluble fractions (pellet). Some test results are presented in Figure 5.4, including His-  
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Figure 5. 4 Representative experiments of test expression and soluble expression 
showing insolubility of the dysferlin C2B and C2C domains. 

His-C2B, His-C2C and His-C2BC were expressed in E. coli cells and the total protein (W), 
supernatant (S) and pellet (P) were checked by SDS-PAGE gel. For each protein, variable 
conditions were tested. (A) Different buffer conditions: (1) 25 mM Tris, 1 mM DTT, 5 mM 
NaCl, pH 7.5. (2) 25 mM Tris, 1 mM DTT, 3 mM CaCl2, pH 7.5. (3) 25 mM Tris, 1 mM 
DTT, 100 mM NaCl, 5% glycerol, pH 7.5.  (4) 25 mM Tris, 1 mM DTT, 100 mM NaCl, 
2% Triton X-100, pH 7.5. (B) Different growth temperatures: (1) 37 ˚C following IPTG 
induction for 5 hours. (2) 16 ̊ C following IPTG induction for 20 hours. (C) Different IPTG 
concentrations: (1) Induced by 0.5 mM ITPG. (2) Induced by 1 mM IPTG. All of them 
showed great degree of insolubility. 
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C2B, His-C2C and His-C2BC. Figure 5.4 A shows results of four buffer conditions tested 

for His-C2B consisted of various NaCl concentrations added with different types of 

detergents (e.g. Triton X-100). The SDS-PAGE gels of His-C2C and His-C2BC 

demonstrate the expression and solubility of the proteins grown under different 

temperatures and induced by different concentrations of IPTG, respectively (Figure 5.4 B 

- C). It can be clearly seen that all the three proteins showed high levels of overexpression 

with heavy bands of expected molecular weight (MW) on SDS-PAGE gels. However, none 

of the constructs produced soluble protein, as almost the entire portion was found to 

precipitate in the cell pellet as insoluble fractions, and we barely detected any protein in 

the supernatant.  

 

Extensive tests were also carried out for the same proteins employed with SUMO and GST 

tag, as well as all the other constructs including C2BC-DysF. Unfortunately, most of the 

constructs exhibited severe insolubility issue similar to the ones discussed above, which 

hindered further purification. Nonetheless, by performing expression screening, two 

candidates, His-SUMO-C2B and GST-C2BC-DysF, showed promising possibilities for 

solubilization among the twelve, which are described below. 

 

5.3.3 Solubilization and purification of His-SUMO-C2B 

In attempt to test the expression and solubility of His-SUMO-C2B, we discovered that the 

pH of lysis buffer had a significant influence on the protein solubility. Using a buffer at 

physiological pH  (7.5), no evident protein could be observed in the supernatant. In contrast, 

by increasing the pH (9.5), a clearly visible band corresponding to the expected MW 
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appeared in the soluble fraction (Figure 5.5 A). Next, LB and M9 minimal medium were 

tested as the growth culture using the buffer condition at pH 9.5. Both beautifully showed 

specific bands in the soluble fractions, suggesting that it is promising in attaining labeled 

His-SUMO-C2B protein from minimal media for NMR studies (Figure 5.5 B). 

Interestingly, we also discovered that once the protein has been partially solubilized from 

the cell lysate using higher pH buffer, it stays soluble safely at pH 7.5 in the subsequent 

purification steps. To explain this, we reasoned that as a putative membrane binding protein, 

C2B domain associates with the bacterial cell membrane, thus precipitates along with the 

membrane as the cell debris by centrifugation. High pH contributes to the disruption of the 

association and extraction the protein off the membrane. This strategy has also been 

suggested by past studies (Smith, 2011). 

 

In order to obtain His-tagged recombinant His-SUMO-C2B protein, the supernatant 

containing the protein was loaded onto a Ni2+-charged IMAC (HisTrap FF column) 

following bacterial overexpression and cell lysis. A concentration of 10 mM imidazole was 

added to both binding and wash buffers to interfere with the weak binding of other proteins. 

Before elution, wash with a gradient concentration of imidazole was conducted to remove 

more background impurity. The His-SUMO-C2B protein was then eluted with a higher 

concentration of imidazole. A Coomassie-stained SDS-PAGE gel of the fractions is 

presented in Figure 5.5 C showing that the His-SUMO-C2B protein was successfully 

isolated from the cell lysate with high purity.  
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Figure 5. 5 Solubilization and purification of His-SUMO-C2B 

(A) Test expression of His-SUMO-C2B and the total protein (W), supernatant (S) were 
checked by SDS-PAGE gel. Buffers containing 50 mM Tris, 300 mM NaCl, 10 mM 
imidazole, 0.1 % Triton X-100, 5% glycerol at pH 7.5 and 9.5 were respectively used. A 
visible band corresponding to the expected MW appeared in the soluble fraction at pH 9.5. 
(B) LB and M9 minimal medium were tested as the growth culture using the buffer 
condition at pH 9.5. (C) Purification of His-SUMO-C2B by HisTrap FF chromatography 
monitored by SDSPAGE stained with Coomassie blue. Cell lysate was obtained following 
cell lysis and ultracentrifugation and loaded onto HisTrap FF column. His-SUMO-C2B 
was then eluted by increasing the level of imidazole in the elution buffer (black arrow). 
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After the first purification step, Ulp1 protease was added attempting to cleave the SUMO 

tag. Ulp1 is known as SUMO protease, highly specific for the SUMO protein fusion, 

recognizing the tertiary structure of SUMO and removing it from recombinant proteins. 

Severe precipitation was seen immediately after the addition of Ulp1 protease. The 

precipitate was discarded following centrifugation and the supernatant was analyzed by 

SDS-PAGE. As shown Figure 5.6 A, before centrifugation, three main bands could be 

recognized which presumably correspond to Ulp1, His-SUMO and C2B, indicating the 

SUMO-tag was successfully cleaved by Ulp1. After the elimination of insoluble fraction, 

the lowest band disappeared from the supernatant due to precipitation. A HisTrap FF 

column was then applied and two proteins were eluted by imidazole (Figure 5.6 A). Since 

the molecular weights of SUMO tag and C2B are fairly close (13.3 and 14.9 kDa), a sample 

from one of the elution fractions was sent for electrospray ionization mass spectrometry 

(ESI-MS). The mass spectrum showed the main species corresponds to the mass of His-

SUMO tag (13.3 kDa); no peak indicative of cleaved C2B protein was found in the 

spectrum (Figure 5.6 B). Different buffer conditions were tested for the cleavage reaction, 

however, no soluble C2B protein could be attained. This issue is seemingly due to the fact 

that the protein is either not properly folded or exists as soluble aggregates in partially 

folded forms (Raran-Kurussi and Waugh, 2016). Therefore, the SUMO tag was kept for 

the subsequent experiments.  

5.3.3 Folding of dysferlin C2B domain  

To examine the folding of His-SUMO-C2B, the 1H15N-HSQC spectrum was recorded by 

NMR spectroscopy. Large spectral dispersion is expected for a well-folded protein. The  
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Figure 5. 6 Ulp1 cleavage of His-SUMO-C2B. 

(A) Ulp1 protease was added to purified His-SUMO-C2B (first lane) and the precipitate 
was discarded following centrifugation and the supernatant was analyzed (second lane). A 
HisTrap FF column was then applied and two proteins were eluted by imidazole. Fraction 
5 was taken for mass spectrometry. (B) Mass spectrum showing the main species 
corresponds to the mass of His-SUMO tag (13.3 kDa). 
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spectrum of His-SUMO-C2B demonstrated a mixture of well-dispersed strong signals and 

resonances with very low intensities (Figure 5.7 A).  Then His-SUMO empty vector was 

expressed and uniformly 15N-labeled. The 15N-labeled His-SUMO protein was purified and 

1H15N-HSQC spectrum was collected. By superimposing the spectrum of His-SUMO-C2B 

and His-SUMO,  it can be clearly seen that a majority of strong signals from His-SUMO-

C2B overlapped with those of His-SUMO (Figure 5.7 A), indicating the SUMO tag is 

properly folded with no structural change linked with C2B domain. On the other hand, a 

few resonances can be observed in the spectrum of His-SUMO-C2B that do not derive 

from His-SUMO. These signals are centralized from 7.00 to 8.25 ppm over 1H dimension 

and the signal intensities are strikingly lower than those of His-SUMO. In addition, the 

number of resonances in the spectrum (~30) is much smaller than the number of amides in 

the C2B domain (133 residues). These observations suggest that the C2B domain may be 

largely unfolded or aggregated without stable secondary structures.  

 

The folding state of His-SUMO-C2B was also checked by circular dichroism. Unlike the 

CD spectra of dysferlin C2A domain that exhibits a prominent negative peak at 215 nm, 

indicative of β sheet structure, the spectra of His-SUMO-C2B showed maximal negative 

signal around 205 nm (Figure 5.8 A). SUMO contains secondary structures of β strands 

and α helices, which likely contribute to the small negative peak at 225 nm. Therefore, the 

negative peak at 205 nm represents predominant existence of unstructured components 

which presumably belongs to the C2B domain. The CD data demonstrates good agreement 

with the NMR results, as well as the fact that C2B domain precipitates after the cleavage 

of His-SUMO tag. As described in Chapter 5.3.1, the dysferlin C2B and C2C domains are   
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Figure 5. 7 1H-15N HSQC spectra of His-SUMO-C2B and His-SUMO. 

(A) 1H-15N HSQC spectrum of uniformly 15N-labeled His-SUMO-C2B. (B) Overlaid 
HSQC spectra of His-SUMO-C2B (black) and His-SUMO (cyan). The buffer conditions 
are: 25 mM HEPES, 150 mM NaCl, 250 μM TECP, pH 7.5.  
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Figure 5. 8 Secondary structure and Ca2+-binding of His-SUMO-C2B. 

(A) Circular dichroism spectra of His-SUMO-C2B (black) and dysferlin C2A domain (red) 
from 250 – 200 nm. The measurements were taken at 25 °C in the buffer conditions of 20 
mM KH2PO4, pH 7.5. The buffer background was subtracted. (B) ITC analysis of Ca2+ 

binding to His-SUMO-C2B showing no binding. Data was collected at 25 °C with 25 mM 
HEPES, 150 mM NaCl, 250 μM TCEP, pH 7.5 buffer conditions. 
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predicted to adopt an arched-shaped arrangement as an intact module through interdomain 

interactions (Figure 5.2 C). Thus, we reasoned that folding of the C2B domain might 

require connection with C2C domain or other binding partners within dysferlin.  

 

Previous study reported that dysferlin C2B domain binds to one Ca2+ ion (Abdullah et al., 

2014). Here Ca2+ titration to His-SUMO-C2B was performed by ITC. The ITC data showed 

minute heat change upon titration of large amount of calcium (Figure 5.8 B), suggesting 

His-SUMO-C2B is Ca2+ insensitive. Nevertheless, this result should be considered with 

caution for the unfolded state of C2B domain might affect its Ca2+ binding property. 

 

5.3.4 Interaction study between dysferlin C2A and C2B domain  

Interaction between C2 domains has been revealed for the C2A and C2B domain of 

synaptotagmin 1 and the association was shown to play an important role in regulating 

exocytosis (Evans et al., 2016; Fuson et al., 2007). Till now, cooperation between dysferlin 

C2 domains has not been examined yet. We queried whether there is interdomain 

interaction between the C2A and C2B domain of dysferlin since both domains have been 

generated. Although the C2B domain was found to remain largely unfolded, it is possible 

that it folds upon association with its binding partner, which is a common feature of many 

intrinsically disordered proteins (Wright and Dyson, 2009). 

 

A preliminary interaction study was performed by NMR spectroscopy. First, 1H15N-HSQC 

spectra of 15N-labeled apo-C2A alone, and apo-C2A in the presence of 0.5 equivalents of 

unlabeled His-SUMO-C2B were collected. Upon addition of His-SUMO-C2B, chemical 
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shift changes were clearly seen for peaks corresponding to residues T14, I19, A26 and K32, 

while most of other peaks remained unchanged (Figure 5.9). Subsequently, 1H15N-HSQC 

spectra of 15N-labeled Ca2+-C2A in the absence and presence of 0.5 equivalents of 

unlabeled His-SUMO-C2B were recorded. Superimposition of two spectra showed 

changes of many peaks, including chemical shift change of I19, H72, R77, R79, K32, T35 

and K36 (Figure 5.10). Moreover, some peaks in the spectrum of Ca2+-C2A disappeared, 

accompanied with appearance of new peaks upon addition of His-SUMO-C2B. All these 

findings suggest that His-SUMO-C2B interacts with the C2A domain in both apo and Ca2+-

bound state. By mapping the residues that showed the largest chemical shift changes on the 

structure of dysferlin C2A domain, it was found that almost all the residues are located on 

the one side of the β sandwich (Figure 5.11). Specifically, the β sheet groove formed by 

β2, 3, and 5, and the Ca2+-binding loops (loop 1-3) are where these residues lay on and are 

likely to be the binding interface. Therefore, it is tempting to propose that His-SUMO-C2B 

binds to C2A domain and the binding results in conformational changes of the β strands on 

one side, as well as the Ca2+-binding loops.  

 

Again, these results should be interpreted with caution for two reasons: (1) Although there 

is no evidence showing interaction between C2 domains and SUMO protein, this 

possibility cannot be ruled out. A control experiment examining interaction between the 

SUMO tag and C2A domain is necessary. (2) In our study, only 0.5 equivalents of His-

SUMO-C2B was added into the C2A sample due to the difficulty of obtaining concentrated 

C2B protein. The chemical shift changes of peaks were putatively identified based on their  
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Figure 5. 9 NMR spectra showing interaction of apo-C2A with SUMO-C2B. 

Overlaid 1H-15N HSQC spectrum of apo-C2A (black) and apo-C2A mixed with His-
SUMO-C2B (orange). Chemical shift changes of peaks corresponding to T14, I19, A26 
and K32 are indicated with arrows. 
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Figure 5. 10 NMR spectra showing interaction of Ca2+-C2A with SUMO-C2B. 

Overlaid 1H-15N HSQC spectrum of Ca2+-C2A (black) and Ca2+-C2A mixed with His-
SUMO-C2B (pink). Chemical shift changes of peaks corresponding to I19, K32, T35, K36, 
H72, R77 and R79 are indicated with arrows. Peaks that disappeared upon addition of His-
SUMO-C2B are labeled in dashed boxes (V69, V27 and K33). New peaks that are yet to 
be identified are labeled in black boxes. 
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Figure 5. 11 Identification of the His-SUMO-C2B binding region on dysferlin C2A.  

Residues experiencing significant chemical shift changes in the NMR spectra upon His-
SUMO-C2B binding are mapped on the C2A domain structure, and represented in sticks 
and explicitly labeled. All the residues are located on the one side of the β sandwich. In 
particular, A26, V27, K32, K33, and V69 are on the β sheet groove formed by β2, 3, and 
5. The other residues are in the Ca2+-binding loops (loop 1-3). 
 
  



 

 188 

 
positions (Figure 5.9 - 5.10). In the future, a titration experiment needs to be performed 

which allows us to follow the peak movements for pursuing accurate results.  

 

5.3.5 Expression and purification of GST-C2BC-DysF 

Extensive test expression was carried out for GST-C2BC-DysF, and growth at 37 ˚C and 

16 ˚C following IPTG induction was found to yield most soluble protein. Different buffer 

conditions were also tested and one example is demonstrated in Figure 5.12 A. Generally, 

at physiological pH (7.5), although a large portion of the protein precipitated, some could 

be seen in the soluble fraction. The solubility of GST-C2BC-DysF does not seem to be 

salt-dependent, the amounts of soluble protein were similar on SDS-PAGE gel in all the 

buffer conditions. PBS buffer was then used as the lysis buffer for protein purification.  

 

In the large-scale purification, using a glutathione-linked sepharose column (GSTrap FF), 

one protein showing a molecular weight approximate to GST-C2BC-DysF (82 kDa) was 

eluted (Figure 5.12 B). To examine whether it was the desired protein, Prescission protease 

was added to the eluted protein. Prescission protease is widely used for specifically 

cleavage of GST tag. Results are shown in Figure 5.12 C: In addition to the bands 

indicative of GST-C2BC-DysF (82 kDa) and Prescission protease (50 kDa), two new bands 

were shown on the gel, corresponding to the molecular weight of C2BC-DysF (56 kDa) 

and GST tag (26 kDa). These preliminary tests indicate that GST-C2BC-DysF could be 

successfully purified and cleaved.  
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Figure 5. 12 Solubilization and purification of GST-C2BC-DysF 

(A) Test expression of GST-C2BC-DysF in different buffer conditions. The cells were 
grown at 37 ˚C and 16 ˚C following IPTG induction. The total protein (W), supernatant (S) 
were checked by SDS-PAGE gel. The buffer used are as follows: (1) 20 mM KH2PO4, pH 
7.5. (2) 25 mM HEPES, 150 mM NaCl, pH 7.5. (3) 25 mM Tris, 300 mM NaCl, pH 7.5. 
(4) PBS (140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.3). Band 
corresponding to the expected MW (82 kDa) is indicated with the black arrow. (B) 
Purification of GST-C2BC-DysF using a glutathione-linked sepharose column (GSTrap 
FF). One protein showing a molecular weight approximate to GST-C2BC-DysF was eluted. 
(C) Prescission protease cleavage of GST-C2BC-DysF showing the protein was mostly 
cleaved. Bands indicative of uncleaved GST-C2BC-DysF (82 kDa), Prescission protease 
(50 kDa), C2BC-DysF (56 kDa) and GST tag (26 kDa) are labeled on the right. 
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However, a workable concentration of C2BC-DysF has not been attained yet, as the protein 

precipitated at much low concentrations. Further optimization for more production needs 

to be done in the future. 

 

 

5.4 Discussion 
 

5.4.1 Insolubility issue of C2B and C2C domains 

In this chapter, I pursued study on the dysferlin C2B and C2C domains by combining 

experimental and computational approaches. A considerable amount of effort was made 

and the major bottleneck this study encountered was the insolubility of the proteins. As a 

structure predominantly composed of β sheets with hydrophobic residues, it is not 

surprising for a C2 domain to be insoluble in solution. In addition, the lipid binding 

properties of C2 domains can possibly drive association with E. coli membranes during 

protein expression, causing difficulty in extracting the protein. Although we were not able 

to produce enough soluble proteins required for structural characterization, this work 

represents an important step forward in designing the C2B and C2C proteins with more 

precise domain boundaries. The two workable constructs that were generated, His-SUMO-

C2B and GST-C2BC-DysF, looked promising for future study if optimization is made.  

 

Further directions are suggested as follows: (1) In the process of protein purification, 

unfolding and subsequent refolding could be carried out. For example, previous studies on 
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the C2 domains of cytosolic phospholipase A2 (cPLA2) and plant phospholipase D (PLD) 

used 6 M guanidine HCl (GndHCl) and 8 M urea to successfully extract the proteins from 

inclusion bodies and refolded the proteins with gel filtration column (Nalefski et al., 1998; 

Zheng et al., 2000). Mild denaturation is also recommended (e.g. extreme pH, low 

concentrations of GndHCl or urea), as we noticed significantly increased solubility of C2B 

and C2C domains under pH 11 (data not shown). (2) Methods to disrupt the association of 

C2 domains with E. coli membranes could be developed. In our work, we found that a 

combination of detergent and high pH led to release of the C2B domain from the bacterial 

membrane. A study on perforin C2 domain obtained properly folded protein by mutating 

four hydrophobic aromatic residues in the loops (Trp427, Tyr430, Tyr486, and Trp488) 

that were assumed to contribute to the interaction with E. coli membranes (Yagi et al., 

2015). The computational models of dysferlin C2B and C2C domains both show the 

presence of hydrophobic aromatic residues on the loops. Thus, the above approach could 

be worthwhile to conduct in the future. 

 

5.4.2 Interplay between C2 domains 

In addition to the Ca2+ and lipid binding properties, there has been a number of studies 

providing evidence for the interdomain interactions between C2 domains, such as the C2A 

and C2B domain of synaptotagmin 1 (Evans et al., 2016; Fuson et al., 2007). Besides, the 

C2 domains dimerization has been reported for RIM1α C2B domain (Guan et al., 2007), 

Munc 13-1 C2A domain (Lu et al., 2006), and dysferlin C2 domains (Xu et al., 2011).  
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Our preliminary NMR data suggested a possible interaction between the dysferlin C2A and 

C2B domains and identified the binding region on the C2A domain (Figure 5.11). 

Interestingly, the binding site on dysferlin C2A domain shows high resemblance to that of 

the Munc 13-1 C2A homodimer (Lu et al., 2006). The Munc13–1 C2A domain forms a 

stable homodimer and the X-ray crystal structure shows that the dimerization is mediated 

by the concave surfaces of the β-sheets formed by strands 3, 2, 5, and 6 of each monomer. 

These surfaces pack in an antiparallel orientation, twisting around each other. The binding 

interface arises from the formation of multiple hydrophobic, ionic, and hydrogen-bonding 

interactions between side chains of both monomers (Figure 5.13 A). By overlapping the 

structures of Munc13–1 C2A monomer with the dysferlin C2A domain, the binding sites 

on the two domains were found in the same region: the concave surfaces formed by β2, 3, 

5 and 6 (Figure 5.13 B). More particularly, some residues on the dysferlin C2A domain, 

that were identified to be important for binding to the C2B domain, aligned well with the 

binding residues in Munc13–1 C2A homodimer. This finding indicates that the ability of 

the C2 domains to homodimerize/heterodimerize is possibly shared in a wide variety of 

proteins. We hypothesize that the dysferlin C2A domain dimerizes with C2B domain in a 

Ca2+-independent manner. The functional significance of this dimerization is not clear. One 

guess is that it may compete with the C2B-C2C module in response to Ca2+ , or with other 

protein interactions of the C2A domain. Also, the concave surfaces formed by β2, 3, 5 and 

6  may serve as the target site for protein interactions.  
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Figure 5. 13 Munc 13-1 C2A homodimer and superposition of Munc 13-1 C2A 
monomer and dysferlin C2A domain. 

(A) Ribbon diagram of the Munc13–1 C2A domain homodimer formed by two monomers 
(blue and orange) showing a top view of the β-barrel like structure. The β-strands are 
labeled with numbers, and the N- and C-termini are indicated with N and C, respectively. 
(PDB: 2CJT) (B) Superposition of the structures of Munc 13-1 C2A monomer (orange) 
and dysferlin C2A domain (green). The side chains of residues involved in intermolecular 
contacts of Munc13–1 C2A domain homodimerization and dysferlin C2A-C2B interaction  
are shown as sticks. 
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Chapter 6 
 

Summary 

 

6.1 Background  
 

Dysferlin is a 230 kDa cytosolic-facing, membrane bound protein that includes seven C2 

domains (C2A-C2G), three Fer domains (FerA, FerB, and FerI) and two DysF domains 

(Sula et al., 2014). It is a membrane repair protein involved in the trafficking of proteins 

and vesicles around injured membranes in skeletal muscle cells. Failure to repair injured 

sarcolemmal membranes leads to muscular dystrophy, a degenerative disorder that results 

in increasing weakness and gradual wasting of skeletal muscles.  

 

The N-terminal C2A domain of dysferlin appears to be the major portion responsible for 

responding to calcium influx upon membrane damage and the activation of dysferlin. The 

C2A domain was identified to bind phospholipids in a Ca2+-dependent fashion, mediating 

the fusion of lysosomes with the plasma membrane (Han et al., 2012; Therrien et al., 2009). 

The C2A domain also plays a regulatory role in interaction with other membrane repair 

proteins, such as AHNAK and MG53 (Huang et al., 2007; Matsuda et al., 2012). A crystal 

structure of the C2A domain was reported (Figure 2.11 B) (Fuson et al., 2014), yet there 

is much to be learned about the Ca2+ binding properties of the domain. Further, the 

importance of the C2A domain in dysferlin has been emphasized from a clinical standpoint 

as substitutions (e.g. W52R, V67D) in this region lead to limb-girdle muscular dystrophy 



 

 198 

type 2B (LGMD2B) or Miyoshi myopathy (MM) (Krahn et al., 2009). However the 

molecular basis of pathogenic mechanisms still remains unclear.  

 

Additionally, little information is available about the other C2 domains of dysferlin as well 

as the interdomain interactions. A limited proteolysis study suggested that C2B-C2C may 

function as an intact module and exist in a closed conformation (Woolger et al., 2017), 

consistent with the cellular function of the C2B-C2C motif in regulating dysferlin plasma 

membrane expression (Evesson et al., 2010). Another study demonstrated that all seven 

dysferlin C2 domains interact with Ca2+ with various binding affinities and stoichiometries 

(Abdullah et al., 2014). However, a comprehensive study on the structures and interactions 

of the other C2 domains with precise domain boundary determination is required .  

 

6.2 New insights into dynamics and Ca2+ binding of the dysferlin 

C2A domain 

In chapter 2, the work focused on the dynamics of the C2A domain on the basis of its NMR 

structure in the Ca2+-free state. By employing a series of NMR methods, high flexibility 

within the loop region was identified to be a remarkable feature of the dysferlin C2A 

domain, which is rarely seen in other C2 domain containing proteins. A comparison is 

shown in Figure 2.11, which also highlights the powerful applications of NMR 

spectroscopy over other methods in probing protein dynamics. It was also proved that a 

striking decrease in the flexibility occurs upon calcium binding, in line with the finding 

that calcium stabilizes the structure of the C2A domain. 
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For EF-hand proteins, binding of calcium leads to a dramatic conformational change from 

“closed” to “open” (Ikura, 1996). In comparison, the mechanism of Ca2+ binding to C2 

domains has for long been recognized to be different. Ca2+ immobilizes the structure of C2 

domains but does not produce a significant structural change from a well-defined 

conformation to another (Shao et al., 1998). The main effect of Ca2+ binding on the C2 

domain is to change the electrostatic potential of loop region rather than its structure. Our 

data further confirmed this knowledge and also suggested new pictures of calcium-

dependent membrane repair process. The high flexibility in the apo-state may be 

functionally significant considering the major function of the C2A domain, which is 

calcium-sensitive membrane binding (Bansal et al., 2003; Han and Campbell, 2007). In the 

resting state of a cell when the dysferlin C2A domain is Ca2+-free, the dynamics of the C2A 

domain may prevent it from binding to the lipid membrane. Unlike exocytosis, which 

occurs when the local [Ca2+] rises into the 10-100 μM range (Hille et al., 1999), membrane 

repair process is activated at a higher [Ca2+] concentration due to the millimolar range of 

[Ca2+] in the extracellular space. The remarkable flexible property of dysferlin C2A may 

be important for maintaining its exclusive function of membrane repair, so that it is not as 

readily triggered by low [Ca2+] as proteins involved in exocytosis (e.g. synaptotagmin). It 

is hypothesized that only upon the influx of calcium from the extracellular space as a result 

of membrane disruption, the C2A domain binds calcium and adapts a more ordered and 

rigid conformation, triggering membrane repair through lipid binding.  

 

In chapter 3, the detailed Ca2+ binding properties of the dysferlin C2A domain was studied. 

Comparison of the binding sites, affinities and binding modes with other C2 domains was 
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discussed in Chapter 3.4. It is indeed fascinating that C2 domains exhibit a diverse array 

of Ca2+ binding properties that serve for the specific biological function. This work pursued 

a thorough characterization on the molecular mechanisms of Ca2+ binding to the C2A 

domain. Here, I would like to expand the discussion on the two striking findings. 

 

In the previous crystal structure of the C2A domain (Fuson et al., 2014), there is a single 

Ca2+ coordinated to one of the six domains in the asymmetric unit and D16 was modeled 

to be a coordinating residue for another Ca2+ ion. Further, an ITC study showed that D16A 

substitution caused elimination of Ca2+ binding (Abdullah et al., 2014), which seems to 

support the postulation that D16 is a ligand for Ca2+-binding. However, in our crystal 

structure of the Ca2+-bound dysferlin C2A domain which contained four molecules in the 

asymmetric unit with two Ca2+ ion bound to each molecule, D16 does not bind to either of 

the Ca2+ ion. The oxygens of its side chain are beyond the maximum possible distance 

between ligand oxygen atoms and the calcium ion (Figure 3.11 A). This work for the first 

time identified the importance of the non-coordinating residue of C2 domains. Subsequent 

mutagenesis study showed consistent results with the previous literature. We attributed this 

observation to the change of the electrostatic potential of the loop region (Figure 3.11 E - 

F). By examining the sequence of dysferlin C2A with other C2 domain, it can be seen that 

the dysferlin C2A domain contains an additional aspartic acid in loop 1 compared to most 

of other C2 domains (D16, D18 and D21) (Figure 1.4). Our work has helped clarify the 

contribution of each aspartic acid and recognized “electrostatic potential” as a critical factor 

for calcium binding. 
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Another interesting finding was how substitution of a single residue can mimic the effect 

of Ca2+ ion. This was validated by our observation that C2AD71K shares structural 

similarities with wild-type Ca2+-C2A judging by their NMR spectra and the model we 

proposed (Figure 3.14). In fact, several previous studies on synaptotagmin have suggested 

the similar idea by testing the protein function in synaptic transmission (Stevens and 

Sullivan, 2003; Striegel et al., 2012; Yoshihara et al., 2010). Our work here provides strong 

supporting evidence for this idea on the molecular basis. It would be interesting to probe                                                                                                                                           

the lipid binding properties of wild-type C2A in both apo and Ca2+-bound state as well as 

C2AD71K, C2AD18K, C2AD21K and C2AD16K. We predict that some of the substituted proteins 

would have the ability to bind negatively charged phospholipids in a similar manner as 

Ca2+-C2A. Moreover, for some substitutions, the membrane repair activity of dysferlin 

might be preserved even the Ca2+-binding for the C2A domain is abolished.                                                                                                                                                                                                                                

                                                                                                                              

In summary, our work has provided novel insights for understanding the mechanisms of 

dysferlin-mediated membrane repair. In the resting state when the intracellular Ca2+ 

concentration is extremely low, the electrostatic repulsion caused by negative charged 

residues in the loops (D16, D18, D21, D71 and E73) inhibits the interaction between the 

C2A domain and membrane. Ca2+ influx due to membrane disruption results in an 

electrostatic switch of the loops from negative to positive, targeting the protein to the 

membrane, thus facilitates membrane fusion.                                                             
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6.3 The tertiary folding of dysferlin C2A, C2B and C2C domains 
 
In chapter 5, the research delved into the other parts of dysferlin attempting to characterize 

the structure and folding of the C2B and C2C domain. Unlike most of the C2 domain-

containing proteins usually consist of one or two C2 domains such as synaptotagmins, the 

ferlin family proteins harbour five to seven C2 domains (Peulen et al., 2019). The tertiary 

folding of these domains is poorly understood: whether they are in linear arrangement or 

folded together through interdomain interactions?  

 

Our NMR data provided the first evidence for the possible interaction between the C2A 

and C2B domain (Figure 5.9 – 5.11). Interestingly, the binding region on the dysferlin 

C2A domain was found to highly overlap with the binding interface of the Munc 13-1 C2A 

homodimer (Lu et al., 2006). Furthermore, although we have not been able to generate 

workable C2B-C2C construct, the computational model performed by our collaborator 

simulated the 3D structure of the C2B-C2C module on the basis of the C2A-C2B structure 

of extended synaptotagmin (Figure 5.2) (Schauder et al., 2014). The simulated model 

shows that C2B and C2C domain together adopt an arched-shaped arrangement joined by 

a linker sequence that forms an α-helix and packs against the two domains. The N and C 

termini of both domains are located at the bottom of the overall structure, whereas the 

putative calcium binding loops on the top. This C2B-C2C module was additionally 

supported by a limited proteolysis study on dysferlin, where C2B-C2C was found to exist 

in a closed conformation (Woolger et al., 2017).  
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Based on all the above knowledge, a model that depicts the tertiary folding and interdomain 

association between C2A, C2B and C2C domain is proposed. In this model, the crystal 

structure of dysferlin C2A domain was aligned with one of the monomer in the Munc 13-

1 C2A homodimer. The dysferlin C2B-C2C structure was taken from the computational 

simulation and the C2B domain was aligned with the other monomer of the Munc 13-1 

C2A homodimer. Figure 6.1 demonstrates the result generated by PyMOL, showing the 

tertiary folding of the C2A, C2B and C2C domain. The C2A domain forms a heterodimer 

with C2B and the dimerization is mediated by the concave surfaces of the β-sheets of each 

domain. The two domains pack in an antiparallel orientation, twisting around each other. 

In this way, the C2A domain falls into the groove formed by the C2B-C2C module with 

the Ca2+-binding loops faced inward to the bottom of the groove. Figure 6.1 B clearly 

shows that the three C2 domains overall adopt a compact closed conformation.  

 

The closed conformation formed by the C2A, C2B and C2C domains indicates that the 

three domains may function in an autoinhibitory manner. Autoinhibition of protein 

activities mediated by C2 domains have been identified in some proteins including Nedd4, 

protein kinase C (PKC), and Smurf2 (Antal et al., 2015; Wang et al., 2010; Wiesner et al., 

2007). For example, it was shown that the C2 domain mediates the autoinhibition of 

Nedd4-1 and Nedd4-2 through association with the HECT domain. Calcium disrupts 

binding of the C2 domain to the HECT domain and activates the E3 ubiquitin ligase activity 

of Nedd4 by releasing the autoinhibition. Here, we hypothesize that in the resting state of 

a cell when dysferlin is Ca2+-free, the C2A, C2B and C2C domains form a closed 

conformation that autoinhibits the activity of C2A. This autoinhibition prevents the C2A  
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Figure 6. 1 Proposed model of the tertiary folding of the C2A, C2B and C2C domains 
of dysferlin.  

(A) Cartoon representation of the tertiary structure formed by the dysferlin C2A (red), C2B 
(blue), and C2C (cyan) domain. The bound Ca2+ ions of the C2A domain are shown as 
green spheres. The linker between the C2A and C2B domain is not shown in the figure. 
The C2B and C2C domain is joined by a linker sequence shown in grey. (B) Surface 
representation of the structure demonstrating a closed conformation. 
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domain from binding to the lipid membrane. When cell membrane disruption occurs with 

Ca2+ entry into the cytoplasm, the C2A, C2B and C2C domains changes the conformation 

from “closed” to “open”, releasing the C2A domain. Meanwhile, Ca2+ binding to the C2A 

domain targets it to the membrane of the cell or repair vesicles. Membrane anchoring in 

both N- and C-terminus of dysferlin “drags” the lipids close to each other, thereby 

mediating membrane fusion between vesicles as well as with plasma membrane (Figure 

6.2). Additionally, since the apo-C2A is highly flexible and more unstructured, the 

autoinhibition mechanism may also protect it from degradation in cells. This model 

revealed an activation mechanism of dysferlin and established a connection of intracellular 

calcium signaling to regulation of membrane repair. Hopefully the model could be further 

examined by more experiments in the future in both molecular and cellular levels. 

 

6.4 Conclusion 
 
The work in this thesis has greatly achieved the four objectives raised in Chapter 1.7 and 

contributed valuable information regarding the membrane repair mechanisms mediated by 

dysferlin. The calcium binding of the dysferlin C2A domain and the details on the 

stoichiometry, affinities, binding mode as well as structural information provided novel 

insights into the Ca2+ binding of C2 domains. Assessment of dysferlin C2A domain under 

pathological conditions has helped better understand the pathogenesis of muscular 

dystrophy on a molecular level. Finally, investigation of the C2B and C2C domains laid 

important groundwork for the subsequent studies of dysferlin structure and its function. In 

all, structural and mechanistic research here will have a significant impact on the 

understanding of related diseases and the development of drug therapeutics in the future. 
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Figure 6. 2 Proposed model for autoinhibition and activation of dysferlin through 
releasing the C2A domain from C2B-C2C domain.  

 
Dysferlin is localized by its C-terminal transmembrane domain to cytoplasmic vesicles and 
the plasma membrane. In the resting state of a cell when dysferlin is Ca2+-free, the C2A 
(red), C2B (blue) and C2C (cyan) domains form a closed conformation which prevents the 
C2A domain from binding to the membrane. On injury of the membrane, Ca2+ influx raises 
the intracellular Ca2+ concentration, which leads to a conformational change from “closed” 
to “open”, releasing the C2A domain. Ca2+-binding to the C2A domain targets it to the lipid 
membrane, thereby “dragging” lipids together and ultimately mediating membrane fusion. 
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