
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

3-26-2020 10:00 AM 

Hyperspectral Image Classification for Remote Sensing Hyperspectral Image Classification for Remote Sensing 

Hadis Madani, The University of Western Ontario 

Supervisor: McIsaac, Kenneth, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Electrical and Computer Engineering 

© Hadis Madani 2020 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Other Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Madani, Hadis, "Hyperspectral Image Classification for Remote Sensing" (2020). Electronic Thesis and 
Dissertation Repository. 6940. 
https://ir.lib.uwo.ca/etd/6940 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6940&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ir.lib.uwo.ca%2Fetd%2F6940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6940?utm_source=ir.lib.uwo.ca%2Fetd%2F6940&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract

This thesis is focused on deep learning-based, pixel-wise classification of hyperspectral

images (HSI) in the field of remote sensing. Although presence of many spectral bands in

an HSI provides a valuable source of features which favors classification methods, dimen-

sionality reduction is often performed in the pre-processing step to reduce the correlation

between bands and spectral dimension of the input HSI. Most of the deep learning-based

classification algorithms use unsupervised dimensionality reduction methods such as prin-

cipal component analysis (PCA) which does not consider class labels. In this thesis, in

order to take advantage of class discriminatory information in the dimensionality reduc-

tion step as well as the power of deep neural network in extracting abstract, deep features

of HSI datasets, we propose a new method that combines a supervised dimensionality

reduction technique, principal component discriminant analysis (PCDA) and deep learn-

ing. One common problem in remote sensing HSI classification is the lack of enough

reliable ground truth samples. One solution to this dilemma can be data augmentation

where virtual samples are generated from the ground truth examples. In this thesis,

we propose a simple spectral perturbation method to augment the number of available

training samples and improve the classification results.

Since combining spatial and spectral information for classifying hyperspectral images

can dramatically improve the performance, in this thesis we also propose a new spectral-

spatial feature vector. In our feature vector, based on their proximity to the dominant

edges in the HSI, neighbors of a target pixel have different contributions in forming

the spatial information. To obtain such a proximity measure, we propose a method to

compute the distance transform image of the input HSI. We then improved the spatial

feature vector by adding extended multi attribute profile (EMAP) features to it. Clas-

sification accuracies demonstrate the effectiveness of our proposed method in generating

a powerful, expressive spectral-spatial feature vector.

Keywords: Remote sensing, hyperspectral image (HSI) classification, machine learn-

ing, stacked autoencoder (SAE), deep learning, supervised dimensionality reduction,

i



spectral-spatial features, data augmentation, distance transform, extended multi-attribute

profile (EMAP), neural network (NN).

ii



Summary for Lay Audience

In this thesis, we propose a few approaches to perform hyperspectral image (HSI) clas-

sification in the field of remote sensing. As opposed to the regular RGB images which

consist of three channels of red, green, and blue, an HSI is composed of a series of images

each taken at a specific wavelength. In the field of remote sensing, hyperspectral images

are collected by the imaging sensors on board of an airplane or a satellite and due to

the valuable information that they can provide about the objects and phenomena on our

planet, they are employed in many applications.

One common practice in HSI processing is the classification of each individual pixel

in the image. In other words, in many applications we are interested in assigning each

pixel to a specific category. This kind of classification has been an active research area for

years for which different approaches have been proposed. Recently, deep learning-based

methods have attracted a lot of attention from the research community because of their

superior performance compared to the conventional methods. Therefore, in this thesis,

we used one of the deep learning frameworks, stacked autoencoder (SAE) to perform the

pixel-wise HSI classification task.

As our first contribution, we combined SAE with a supervised dimensionality reduc-

tion (DR) technique where labels of the samples are used during the DR step. Second, as

one of the common issues in processing the remote sensing hyperspectral datasets is the

lack of enough labeled data, we proposed a method to generate virtual samples using the

available ground truth data. Since combining spectral and spatial information in an HSI,

can dramatically improve classification accuracies as our third contribution, in this thesis

project we proposed a new method including a novel spectral-spatial feature vector. In

our spatial feature vector, effective pixels have different contributions based on an edge

proximity measure obtained from the distance transform image of the input HSI. We ap-

plied our methods on several remote sensing hyperspectral datasets and evaluated their

performance using various accuracy metrics. Classification results show the superiority

of our methods compared to several conventional and deep learning-based approaches.

iii



Dedication

To my parents,

and my husband,

for their endless love and generous support.

iv



Acknowledgments

I would like to express my sincere gratitude to Dr. Kennth McIsaac for his excellent su-

pervision, immense knowledge, and continuous encouragement throughout the course of this

research. It has been a great privilege and honor to pursue my higher education under his

supervision.

I would like also to acknowledge Prof. J. Wang and Dr. B. Feng for providing us the Surrey

dataset along with the ground truth image.

Thanks as well to the team members of the research group for their kindness, valuable

feedback and helpful discussions.

v



Contents

Abstract i

Summary for Lay Audience iii

Dedication iii

Acknowledgments v

List of Figures ix

List of Tables xiii

List of Acronyms xv

1 Introduction 1

1.1 Remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Definition and applications . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Remote sensing mission examples . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Hyperspectral image classification . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and Literature Review 9

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Machine learning and image processing . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Linear Discriminant Analysis (LDA) . . . . . . . . . . . . . . . . . . . . 22

vi



2.3.2.1 Two-classes case . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2.2 C-classes case . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Artificial neural networks (ANN) . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3.1 Single layer neural network (perceptron) . . . . . . . . . . . . 28

2.3.3.2 Multi layer neural network . . . . . . . . . . . . . . . . . . . . 30

2.3.4 Deep neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.4.1 Stacked autoencoder . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.4.2 Sparse autoencoder . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.4.3 Convolutional neural network . . . . . . . . . . . . . . . . . . . 37

2.3.4.4 Deep belief network . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.4.5 Recurrent neural network . . . . . . . . . . . . . . . . . . . . . 40

2.3.5 Extended multi-attribute profile . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.5.1 Morphological profiles . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.5.2 Extended morphological profiles (EMP) . . . . . . . . . . . . . 43

2.3.5.3 Attribute profiles . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.5.4 Max-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.5.5 Extended attribute profiles . . . . . . . . . . . . . . . . . . . . 48

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Hyperspectral Image Classification Using PCDA and SAE 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Proposed framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Principal component discriminant analysis . . . . . . . . . . . . . . . . . 56

3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Distance transform based spectral-spatial feature vector for HSI classifica-

tion with SAE 74

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vii



4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 HYPERSPECTRAL DATASETS . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1.1 Salinas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1.2 University of Pavia . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1.3 Surrey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.2 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.2.1 Number of retained PCs and size of the neighborhood . . . . . 85

4.3.2.2 Size of the hidden layers . . . . . . . . . . . . . . . . . . . . . 88

4.3.2.3 Required threshold parameters . . . . . . . . . . . . . . . . . . 88

4.3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.3.1 Effect of using supervised dimensionality reduction . . . . . . 89

4.3.3.2 Comparison with other methods . . . . . . . . . . . . . . . . . 91

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Spectral perturbation method for deep learning-based classification of re-

mote sensing hyperspectral images 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusion 110

Bibliography 114

Curriculum Vitae 123

viii



List of Figures

1.1 Two main types of remote sensing. (a) Airborne and (b) space-borne remote

sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Active versus passive remote sensor. In passive remote sensing, Sun is often the

source of energy whereas in active remote sensing, the airplane/satellite carries

the energy source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 A sample hyperspectral image. This hyperspectral database was taken with

Reflective Optics System Imaging Spectrometer (ROSIS) during a flight over

Pavia University, in northern Italy. . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Electromagnetic spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Concept of hyperspectral imaging. A large area on the ground is being imaged by

an airborne/spaceborne imaging device covering a wide range of electromagnetic

spectrum. Different reflectance values for the three sample materials in the scene

depicts how different classes can be identified using their reflectance values. . . 11

2.3 A toy example showing the directions of maximum variance in the data obtained

by the PCA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 A toy example showing the best projection directions suggested by PCA and

LDA algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Graphical representation of a single layer NN with only one hidden neuron which

functions similar to a perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Several activation functions. (a) Sigmoid, (b) tanh, (c) ReLU. . . . . . . . . . . 29

2.7 Schematic of a sample multilayer neural network with input data with three

features, one hidden layer with four hidden units, and the output layer with

three nodes corresponding to a three-class classification problem. . . . . . . . . . 31

2.8 Block diagram of (a) a sample auto-encoder and (b) stacked autoencoder . . . . 33

ix



2.9 (a) A sample convolutional neural network with two convolution, two pooling,

and three fully connected layers (b) convolution kernel. . . . . . . . . . . . . . . 37

2.10 A sample RBM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.11 (a) Schematic of an RNN (b) unfolded network shown in (a). . . . . . . . . . . . 40

2.12 RNN (a) One to many and (b) many to one architectures. . . . . . . . . . . . . 41

2.13 Max -tree representation. (a) a synthetic gray-scale image and (b) max-tree

structure of image in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.14 Process of obtaining the extended attribute profile from an HSI input where k

principal components are preserved in the PCA dimensionality reduction step. . 49

2.15 Schematic of the step by step process of building the EMAP structure by keeping

the first k PCs and using n attribute filters. . . . . . . . . . . . . . . . . . . . . . 50

3.1 Steps of applying PCA on an HSI. (a) Unfolding the input HSI and computing

the λ eigenvectors (loading vectors). (b) Multiplying the unfolded HSI by the

first k loading vectors and folding the result back in the form of a cube. . . . . . 53

3.2 Block diagram of the proposed method. PCDA is employed to capture spatial

information of each target pixel which then will be stacked with the spectrum of

the target pixel to form the input of the SAE network. This network is composed

of multiple sparse autoencoders. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Indian Pines dataset. (a) False color image and (b) pseudo ground truth image. 59

3.4 University of Pavia dataset. (a) True color image and (b) pseudo ground truth

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Distribution of the OA obtained by our method with different values for the n1
and n2 for Indian Pines dataset using neighborhood sizes of (a) 3× 3, (b) 5× 5,

and (c) 7× 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Distribution of the OA obtained by our method with different values for the n1
and n2 for University of Pavia dataset using neighborhood sizes of (a) 3× 3, (b)

5× 5, and (c) 7× 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Distribution of the OA obtained by our method using different values for the n1
and n2 for (a) Indian Pines and (b) University of Pavia datasets. . . . . . . . . 65

3.8 Distribution of the OA of our method vs different values of the number of hidden

units for (a) Indian Pines and (b) University of Pavia datasets. . . . . . . . . . 66

x



3.9 Distribution of the OA obtained by DAE-LR using different values for n1 and

the neighborhood size for the Indian Pines dataset. . . . . . . . . . . . . . . . . 66

3.10 Distribution of the OA obtained by DAE-LR using different values for n1 and

the neighborhood size for the University of Pavia dataset. . . . . . . . . . . . . . 67

3.11 Indian Pines.(a) Ground truth and classification maps obtained from different

methods using 20% of labeled data for training. (b)RBF-SVM, (c) PCDA-

SVM, (d) DAE-LR, (e) EMAP-SVM, (f) CNN-PPF-LR, (g) EMAP-SAE, and

(h) PCDA-SAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.12 University of Pavia.(a) Ground truth and classification maps obtained from dif-

ferent methods using 10% of labeled data for training. (b)RBF-SVM, (c) PCDA-

SVM, (d) DAE-LR, (e) EMAP-SVM, (f) CNN-PPF-LR, (g) EMAP-SAE, and

(h) PCDA-SAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Schematic of the justification of using the distance transform in the spatial

feature vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Steps of obtaining the distance transform image of the Salinas hyperspectral

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Block diagram of our proposed method. The cube shown in the top row depicts

only a neighborhood region around the blue pixel. Also, the spectral dimen-

sionality of the input HSI (not shown in this figure) is reduced using the PCA

method and as an example 3 PCs are retained. . . . . . . . . . . . . . . . . . . 79

4.4 Block diagram of the proposed feature vector obtained by PCDA and distance

transform values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Salinas dataset. (a) False color image. (b) Pseudo ground truth image. . . . . . 83

4.6 University of Pavia dataset. (a) True color image. (b) Pseudo ground truth

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Surrey dataset. (a) False color image. (b) Pseudo ground truth image. . . . . . 86

4.8 OA obtained by our primary spatial feature vector (Proposed-P) vs n and s for

(a) Salinas, (b) University of Pavia, and (c) Surrey datasets. . . . . . . . . . . . 87

4.9 OA versus number of hidden units in each layer for the three hyperspectral

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xi



4.10 OA obtained by the Proposed-P feature vector vs parameters T1 and T2 for (a)

Salinas, (b) University of Pavia, and (c) Surrey datasets. . . . . . . . . . . . . . 90

4.11 Salinas (a) ground truth, (b)-(i) classification maps resulting from different

methods. (b) Linear SVM, (c) kernel SVM, (d) EMAP, (e) DAE, (f) PPF-CNN,

(g) EMAP-SAE, (h) Proposed-P, and (i) Proposed-S . . . . . . . . . . . . . . . 96

4.12 University of Pavia (a) ground truth, (b)-(i) classification maps resulting from

different methods. (b) Linear SVM, (c) kernel SVM, (d) EMAP, (e) DAE, (f)

PPF-CNN, (g) EMAP-SAE, (h) Proposed-P, and (i) Proposed-S . . . . . . . . 97

4.13 Surrey. (a) ground truth, (b)-(i) classification maps resulting from different

methods. (b) Linear SVM, (c) kernel SVM, (d) EMAP, (e) DAE, (f) PPF-CNN,

(g) EMAP-SAE, (h) Proposed-P, and (i) Proposed-S . . . . . . . . . . . . . . . 98

5.1 Spectra of some of the classes in the Indian Pines dataset. (a) Alfalfa, (b)

Grass-pasture, (c) Grass-pasture-mowed, (d) Oats, (e) Soybean-clean, and (f)

Wheat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 (a) Original spectra of class Alfalfa of the Indian Pines dataset and (b) aug-

mented spectra of the same class. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Indian Pines dataset. (Left) Image of band 110 and (right) ground truth image. 104

5.4 Classification maps resulting from different methods. (a) Gaussian RBF-SVM,

(b) EMAP, (c) spectral-DAE, (d) PPF-CNN, (e) spectral-EMAP-SAE, and (f)

proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xii



List of Tables

3.1 Number of labeled samples for the different sixteen classes of the Indian Pines

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Number of labeled samples for the different nine classes of the university of Pavia

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Best values for the parameters of the SVM classifiers used in this study after

performing 10-fold cross validation. . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Classification accuracies (%) of different methods for Indian Pines dataset using

50% of the training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Classification accuracies (%) of different methods for University of Pavia dataset

using 50% of the training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Classification accuracies (%) and the test time (s) of the different methods on

Indian Pines dataset using 20% of the labeled samples for training. . . . . . . . 70

3.7 Classification accuracies (%) and the test time (s) of the different methods on

University of Pavia dataset using 10% of the labeled samples for training. . . . . 71

4.1 Number of labeled samples for the different sixteen classes of the Salinas dataset

along with the number of train and test samples used in this chapter. . . . . . . 84

4.2 Number of labeled samples for the different nine classes of the University of

Pavia dataset along with the number of train and test samples used in this

chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Number of labeled samples for the different five classes of the Surrey dataset

along with the number of train and test samples used in this chapter. . . . . . . 87

4.4 Classification accuracies (%) and test time (s) of different methods for Salinas

dataset using 10% of the training data. . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Classification accuracies (%) and test time (s) of different methods for University

of Pavia dataset using 10% of the training data. . . . . . . . . . . . . . . . . . . 92

xiii



4.6 Classification accuracies (%) and test time (s) of different methods for Surrey

dataset using 10% of the training data. . . . . . . . . . . . . . . . . . . . . . . . 92

4.7 Classification accuracies (%) obtained from the last set of experiment, using

PCDA dimensionality reduction method and our primary proposed feature vec-

tor, for the three HSI datasets using 10% of the training data. . . . . . . . . . . 93

5.1 Number of labeled samples, train, and test pixels for the sixteen classes in the

Indian Pines dateset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Class-specific accuracies, OA (%), AA (%), Kappa coefficient, and the test time

(s) of the different methods on Indian Pines dataset using 20% of the labeled

samples for training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Classification accuracy and running time of the proposed and 3D-CNN methods. 107

xiv



List of Abbreviations

AA Average accuracy

AE Autoencoder

AI Artificial intelligence

ANN Artificial neural network

AP Attribute profile

ASTER Advanced spaceborne thermal emission and reflection radiometer

AVIRIS Airborne visible infrared imaging spectrometer

BP Backpropagation

CC Connected component

CK Composite kernel

CNN Convolutional neural network

DAE Deep autoencoder

DBN Deep belief network

DR Dimensionality reduction

ELM Extreme learning machine

EM Electromagnetic

EMAP Extended multi-attribute profile

EMP Extended morphological profiles

FC Fully connected

GBN Group belief network

GD Gradient descent

GPU Graphical processing unit

HAB Harmful algal bloom

HISUI Hyperspectral imager suite

HSI Hyperspectral imaging

HyspIRI Hyperspectral infrared imager

ISS International space station

JPL Jet propulsion laboratory

xv



KNN K-nearest neighborhood

Landsat Land remote sensing satellite

LDA Linear discriminant analysis

LSTM Long short term memory

METI Ministry of economy, trade, and industry

MLR Multinomial logistic regression

MP Morphological profile

MSE Mean squared error

MSI Multispectral imaging

NN Neural network

OA Overall accuracy

PC Principal component

PCA Principal component analysis

PCDA Principal component discriminant analysis

RBF Radial basis function

RBM Restricted Boltzmann machine

ReLU Rectified linear unit

RNN Recurrent neural network

ROSIS Reflective optics system imaging spectrometer

SAE Stacked autoencoder

SE Structuring element

SGD Stochastic gradient descent

SVM Support vector machine

SWIR Shortwave infrared

TIR Thermal infrared

VHR Very high resolution

VSWIR Visible to short wave infrared

xvi



Chapter 1

Introduction

This work presents new approaches in the field of remote sensing image analysis. Remote

sensors provide a global perspective and a tremendous amount of valuable data about the

Earth that could hardly been collected otherwise. The availability of such information

lets scientists study the state of our planet and therefore make knowledge-based deci-

sions. Powerful analysis of remote sensing data requires new techniques and approaches

that produce meaningful results giving a comprehensive understanding of the objects

and phenomenon on Earth. In this study, we address the problem of remote sensing

hyperspectral image (HSI) classification using deep learning-based approaches that au-

tomatically produce feature representation of the hyperspectral datasets and boost the

classification accuracies.

1.1 Remote sensing

1.1.1 Definition and applications

Remote sensing is the data acquisition process of a target or phenomenon in the absence

of actual physical contact and allows us to acquire data from inaccessible and possibly

1



Chapter 1 2

(a) (b)

Figure 1.1: Two main types of remote sensing. (a) Airborne and (b) space-borne remote
sensing.

unsafe regions. It is used in most earth observation areas where it generally refers to

the utilization of satellite- or aircraft-based sensor technologies to detect and classify

objects on Earth. Therefore, the two main types of remote sensing includes airborne

and space-borne remote sensing as shown in Figure 1.1. As can be seen from this figure,

in the former, remote sensing data is obtained using the remote sensor on board of an

airplane while in the latter, a satellite carries the imaging equipment. A remote sensor is

an equipment that detects electromagnetic energy, measures it, and usually register it in

an analogue or digital way. Remote sensors can be divided into two categories: passive

and active. Figure 1.2 shows the schematic of these two types of remote sensors.

Passive remote sensors measure the energy that is naturally available. In the earth

observation applications, the majority of the passive remote sensors detect the solar

energy reflected back from the scene while the others measure the earth’s emitted energy.

There are caveats related to these two types of passive sensors. Solar energy dependent-

sensors fail to operate at conditions where there is not enough or is no sunlight such as

night times, in regions of the world permanently covered under the clouds or parts of the

globe where sun’s elevation is very low for most of the seasons resulting in unfavorable

long shadows. On the other hand, the second type of passive sensors have difficulties



Chapter 1 3

detecting earth’s emitted energy since this energy corresponds to the low frequency-

waves carrying low energies which makes them hard to be detected. A camera which is

used to take pictures in the sunlight (i.e., flash of the camera is not used) is a simple

example of a passive sensor.

Figure 1.2: Active versus passive remote sensor. In passive remote sensing, Sun is often
the source of energy whereas in active remote sensing, the airplane/satellite carries the
energy source.

Different from the passive sensors, active sensors use their own source of energy for

illuminating the object or scene of interest. In this case, electromagnetic energy is emit-

ted through an energy source inside an airplane or a satellite and reflected radiation is

measured by the sensor. Active sensors can then be used in both day and night, do not

depend much on the weather conditions and provide a controlled light signal. Moreover,

active sensors are used to measure the reflectance at the wavelengths that are not ad-

equately provided by the sun such as microwaves. A common camera which is used in

a relatively dark room and uses its own flash (energy source) to illuminate the scene

is a simple example of an active sensor. The most commonly used active sensors for

collecting data in the earth observation domain (geospatial data) include radar [1], laser

fluorosensor and a synthetic aperture radar (SAR).

Examples of remote sensing applications include military surveillance, deforestation

observation [2–4], glacier change monitoring [5,6], agriculture [7], waste management [8],

etc. The following are few specific examples of the usage of remotely sensed images of

Earth [9]:



Chapter 1 4

• Huge forest fires can be viewed from the space which enables rangers to see a bigger

portion of the ground under the fire; so, making more effective plans compared to

when the fire is observed only from the ground.

• Weather forecasting by the means of cloud tracking

• Watching for the erupting volcanoes

• City growth monitoring and tracking the changes in certain farmlands for years or

even decades

• Ocean floor mapping

• Counting polar bears in satellite images to ensure sustainable population levels

• Marine life preservation by detection of the oil spills and predicting their movement

directions.

1.1.2 Remote sensing mission examples

A lot of effort have been made in the last two decades to collect remote sensing data widely

used in the Earth science applications. Hyperspectral infrared imager, HyspIRI, mission

conducted by NASA (2007-present) for instance, studies the existing ecosystems on our

planet and provides with precious information about ecosystem changes and natural

catastrophes such as volcanoes, wildfires, and drought [10]. In order to meet its goals,

the HyspIRI data acquisition system is equipped with a visible-to-short-wave-infrared

(VSWIR) imaging spectrometer with the spectral range of 380-2510 nm with 10-nm

spectral resolution and a multispectral imager ranging from 3-13 µm containing 8 discrete

bands covering the mid and thermal infrared (TIR) part of the electromagnetic (EM)

spectrum. According to its final report in 2018, there are many potential applications

related to the hyper and multi-spectral data obtained from the HyspIRI including but

not limited to the following:



Chapter 1 5

Catastrophes: Quantifying the possible dangers caused by volcanoes and wildfires

using the data collected by the TIR sensor. Since the TIR instrument works at the range

of 3-13 µm and because of the fact that very hot objects emit energy at the wavelength

of 4µm and thanks to the high spatial resolution of the TIR sensor, it is easy to detect

pixels that correspond to active lavas or active fire burns (e.g. wildfires). Moreover, due

to the capability of this sensor to measure a wide range of energy intensities, it would be

possible to identify the most active lavas/fires.

Water Quality: The HyspIRI mission provides the hyperspectral images ranging

from the visible to shortwave infrared and multispectral thermal data that provides a

valuable source of information enhancing the water quality monitoring. Observation of

the optical characteristics of water by employing the hyperspectral imaging can be a

powerful mean for water quality assessments especially for the water bodies that have

been exposed to contaminants such as harmful algal blooms (HABs) [11] over the years.

As a specific example of this application, we can name the HAB monitoring on the Great

Lakes which is the largest source of freshwater worldwide and provides the drinking water

for 40 million residents of the U.S. and Canada. The characteristics of the HyspIRI system

(visible-shortwave infrared and thermal wavelengths) help improve the identification of

the toxic bacteria related to HABs and also their spatial distributions through the Great

Lakes’ surface water.

Another example of the missions with the goal of collecting hyperspectral data from

the Earth is the hyperspectral imager suite (HISUI) mission [12]. HISUI is a spaceborne

hyperspectral imaging system which has been established by the Japanese ministry of

economy, trade, and industry (METI) as its forth spaceborne optical imaging project

beginning in the year 2006 and scheduled to be launched for January 2020 through

SpaceX’s Falcon-9 1 (SpX-20) to be deployed on the international space station (ISS). One

of the mentioned potential functionality of the manufactured instrument (hyperspectral

imager) will be applications such as oil resource exploration. The imaging system of

1Falcon 9 is a two-stage-to-orbit medium lift launch vehicle designed and manufactured by SpaceX
in the United States.



Chapter 1 6

HISUI includes a reflective telescope and two spectrometers working in the near infrared

and shortwave infrared (SWIR) regions of the EM.

HyspIRI and HISUI missions are just two examples of the many projects carried out

in the area of remote sensing hyperspectral imaging. More projects are expected to be

planned for the future due to the need of the human being to have more information

about the phenomena occuring on our planet by the means of the irreplaceable data that

spaceborne or airborne hyperspectral imaging systems can provide. The effort and cost of

the missions such as HyspIRI and HISUI delivering the valuable source of information is

well appreciated only in the presence of powerful hyperspectral and multispectral image

analysis approaches. Currently, deep-learning based methods are the state of the art

algorithms for classification of such data and even though there have been a large number

of researches in this realm, there is still a lot to be explored.

1.2 Research problem

Motivated by the countless number of applications related to remote sensing hyperspec-

tral images and the applicability of the artificial intelligence (AI) in processing hyperspec-

tral data, In this study, we performed experiments on four hyperspectral image databases

and proposed three new deep-learning based methods to carry out pixel-wise classification

of these datasets.

1.2.1 Hyperspectral image classification

A typical hyperspectral image is composed of many images each taken at a specific

wavelength. So, it can be imagined as a cube where the length and width of the cube

corresponds to the spatial extent (number of pixels) of the 2-d image at each wavelength

while its depth represents the number of spectral bands of the hyperspectral image. A

typical hyperspectral dataset is shown in Figure 1.3. In HSI, imaging and spectroscopy



Chapter 1 7

Figure 1.3: A sample hyperspectral image. This hyperspectral database was taken with
Reflective Optics System Imaging Spectrometer (ROSIS) during a flight over Pavia Uni-
versity, in northern Italy.

are combined to obtain a great source of spectral and spatial information of the scene.

Because of the fact that different material own different spectral signatures, in an HSI,

the type of the objects at each pixel can be identified using the spectral information while

the spatial data provides their spatial distribution in the image. Hyperspectral imaging

is explained in more detail in Section 2.1.

There are problems associated with hyperspectral image classification especially using

deep neural networks: The large spectral size of the database which introduces a lot of

tunable parameters to the model and the unavailability of adequate ground truth data to

train the model effectively. Performing dimensionality reduction and data augmentation

are two category of approaches to reduce the effect of these bottlenecks. In Chapters 3

and 5, we will propose two methods to deal with these problems. Moreover, since one

important factor in HSI classification is to use the spatial information as effectively as

possible, in Chapter 4, we propose a novel approach to extract spatial information to

boost the classification accuracies.

The conventional and new approaches in hyperspectral image classification are de-

scribed in Section 2.2.



Chapter 1 8

1.3 Research contributions

This thesis is divided in six chapters and includes the following contributions:

• A new technique for hyperspectral image classification based on a combination of

a supervised data dimensionality reduction method and a deep learning framework

is proposed which results in high classification accuracies and smaller testing time.

• A new deep learning-based technique to perform pixel-wise classification of remote

sensing hyperspectral scenes based on a novel spatial feature representation is pro-

posed. We applied this proposed method on a new hyperspectral dataset, Surrey.

This method improves the classification accuracies and the test time.

• A new approach for computing the distance transform image from an input hyper-

spectral image is proposed.

• A simple new technique for augmenting the available ground truth data using a

spectral perturbation method is proposed.

• A through search in the models’ hyperparameter space was performed to find the

optimum values for these quantities.



Chapter 2

Background and Literature Review

2.1 Background

Spectral imaging for remote sensing of the ground’s objects and features have become

an active field of study among researchers. This technology as an alternative to the

high-spatial resolution, large aperture satellite imaging systems has brought ease and

convenience in the remote sensing domain. To have a better understanding of this tech-

nology lets first see what the electromagnetic (EM) spectrum is.

EM spectrum is the term that describes the whole range of EM radiation. EM

radiation can be represented by the means of waves or photons. Based on the wave

theory, unless influenced by an outside object, light travels in a straight line and the

energy it carries oscillates in a wave fashion. The two oscillating components of light

include electrical energy and magnetic energy. A schematic of the EM spectrum is shown

in Figure 2.1. As can be seen from this figure, EM spectrum is composed of different

types of EM radiation including radio waves, microwaves, infrared light, visible light,

ultraviolet light, X-rays and gamma-rays. In fact, visible light is the only part of the EM

spectrum which can be sensed by human eyes and it only covers the small wavelength

range between about 400 nm to 750 nm.

9



Chapter 2 10

Visible spectrum

�-rays X-rays UV IR Microwave Radio waves

Wavelength (m)

400 500 600 700

Wavelength (nm)

Figure 2.1: Electromagnetic spectrum

In the early applications of spectral imaging, only a small number of selected bands

in the visible and infrared regions of the electromagnetic spectrum was used which in this

case, it was called multi spectral imaging (MSI). Advanced spaceborne thermal emission

and reflection radiometer (ASTER) [13] and land remote sensing satellite (Landsat) [14]

are two of the most well-known MSI systems. In the newer version, HSI, hundreds of

contiguous spectral bands are employed to identify various natural and human manu-

factured materials. Visible light and infrared radiation are the most commonly used

regions of EM spectrum in remote sensing applications. Airborne visible/infrared imag-

ing spectrometer (AVIRIS) [15], designed by NASA at jet propulsion laboratory (JPL)

in 1980s, is an excellent instance of an HSI system. Because of the valuable amount of

information that HSI datasets can provide, they are used in many areas such as remote

sensing [16–19], agriculture [20], food processing [21–23], face recognition [24], etc.

The concept of hyperspectral imaging is that for different materials the value of

radiation that is reflected, absorbed, or emitted is a function of the wavelength. In

hyperspectral imaging sensors, for each square pixel area in the scene composing of

various materials and for a large number of consecutive spectral bands, the amount of

the radiance is measured. Figure 2.2, shows the concept of hyperspectral imaging. Four

major components of any remote sensing hyperspectral imaging system includes: the



Chapter 2 11

Figure 2.2: Concept of hyperspectral imaging. A large area on the ground is being im-
aged by an airborne/spaceborne imaging device covering a wide range of electromagnetic
spectrum. Different reflectance values for the three sample materials in the scene depicts
how different classes can be identified using their reflectance values.

radiation (or illuminating) source, the atmospheric path, the imaged surface, and the

sensor [25]. In passive remote sensing, where the sun is often the main illumination

source, what is measured by the sensor is the solar energy that has emitted from the

sun, traveled through the atmosphere, interacted with materials on the earth’s surface

and reflected back to the sensor. At this point, this measured energy is transformed into

a digital form for further processing. The reflectance spectrum, or spectral signature of

any material, is a function of the wavelength λ and is defined by (2.1)

reflectance spectrum (λ) =
reflected radiation at band (λ)

incident radiation at band (λ)
(2.1)

where the numerator is the reflected energy by the material and the denominator repre-

sents the incident energy (energy received by the material) at different wavelengths [25].

It should be noted that solar energy is absorbed by the oxygen and water vapor in the at-

mosphere at some specific wavelengths, called absorption bands, owning very poor signal

to noise ratio. Therefore, in real applications, these bands are discarded.

Although we do not need hundreds of spectral bands spread over a wide range of



Chapter 2 12

electromagnetic wave to detect a single material uniquely, in real conditions where that

single material is combined with other materials on the earth surface and being imaged

through severe changeable atmosphere, it would be better to have many bands (features)

than a few. In fact, having a large number of spectral bands makes it possible to apply

statistical methods on the data composing of pixels each containing various material

components [26].

2.2 Literature review

Since remotely sensed hyperspectral images can cover wide areas on the ground as well

as provide reflection information at so many spectral bands, they provide a wealth of

data for researchers and scientists. A lot of effort have been made to utilize the informa-

tion hidden in remote sensing hyperspectral images as effectively as possible employing

machine learning-based techniques. Traditional classifiers such as support vector ma-

chine (SVM) classified each pixel using only its spectral information [27–29]. In other

words in these methods, spectrum of each pixel was given to the classifier as the input

feature vector. K-nearest neighborhood (KNN) and its variations are another types of

HSI classification methods using only spectral information as the pixels’ features [30].

Researches depict that spectral information provide a useful source of information to

perform the classification task with reasonable amount of accuracy. However, since the

adjacent pixels in an HSI share similar spectral characteristics, combining the spectral

and contextual spatial information help classify pixels with higher degrees of accuracy.

Early works on combining spectral and spatial information to classify spectral imagery

data was devoted to multispectral images [31, 32]. Later, Pesaresi et al proposed a new

method to incorporate spatial information using morphological profiles (MPs) [33]. MPs

of a gray-level image are obtained by applying a set of morphological operations called

opening and closing by reconstruction by a structuring element (SE) of fixed shape and

increasing size on the image such that some spatial details in the image are weakened while



Chapter 2 13

some other are maintained. An extension of the MP called extended morphological profile

(EMP) was proposed by Benediktsson et al [34] and Fauvel et al [35] to generalize the

idea to multi/hyper spectral images. In EMP, first principal component analysis (PCA)

is applied on the input hyperspectral image to reduce the dimensionality of the data as

well as band correlations. Then the MP method is applied on the first few principal

components (PCs). Eventually, the MPs of all PCs are stacked together forming the

final EMP structure. Definition of PCA, MP, and EMP are presented in Section 2.3.1,

2.3.5.1, and 2.3.5.2, respectively.

Although EMP could successfully model spatial information of a hyperspectral image,

it had some drawbacks such as inability to model various spatial information due to the

fixed shape of the SE in obtaining the MPs. Attribute profiles (APs) as an improvement

to MPs was proposed by Dalla Mura et al [36] in 2010. APs of an image are a set of

profiles obtained by applying some attribute filters on the image. These attribute filters

process the input image at different levels and by removing connected components (CCs)

that do not satisfy a criterion related to the attribute. An attribute in that sense can be

any measure computable on the connected components of the image. For example, the

size of the connected components can be an attribute. APs are more powerful than the

MPs in modeling the spatial information of an image since they process the input based

on different attributes flexible in their definitions. Similar to EMP, the extension of APs

was proposed by Dalla Mura et al [37] called extended attribute profile (EAP) to make

it applicable on hyperspectral datasets. In the case of employing multiple attributes the

structure is called extended multi attribute profile (EMAP) [37]. Explanation of AP,

EAP, and EMAP are given in Sections 2.3.5.3, 2.3.5.4, and 2.3.5.5, respectively.

Another class of techniques which combines spectral and spatial information together

are composite kernel (CK) methods. In this type of methods, spectral and spatial in-

formation of a target pixel are combined through kernel functions. In [38], authors

considered some statistical measurements of the neighboring pixels of a target pixel such

as their mean or standard deviation values at each spectral band as its spatial infor-

mation. Then, they combined spectral and spatial data by the means of a family of



Chapter 2 14

CKs satisfying the Mercer’s conditions and used SVM classifier on top to perform the

classification. A new set of generalized CKs was proposed in [39] to combine spectral

and spatial information together with no weight parameters. In order to compute the

spatial feature vector prior to apply the kernel function, the authors used EMAP data

structure and finally used the multinomial logistic regression (MLR) classifier to perform

the classification. In [40], CKs along with extreme learning machine (ELM) is used to

perform classification of HSI datasets employing joint spectral-spatial features.

Although all of the mentioned spectral-spatial feature extraction techniques could

successfully deliver a representation of the two kinds of information existing in the hy-

perspectral datasets, they are extremely hand-crafted. For example, in EMAP method,

user needs to identify what type of attributes he wants to use. Neural network (NN)

has found its way to solve regression or classification problems in many areas specifically

image classification where HSI classification was no exception. In fact, a lot of researches

in recent years concentrated on employing NN as an automatic feature representation

technique in classification of hyperspectral images. To speak more specifically, it is deep

neural network (DNN) that has been considered as the most popular technique for HSI

classification (or any type of image classification in general) in the past few years thank

to the development of powerful graphical processing units (GPUs) and the availability

of more training data. Recently, several studies in the remote sensing field have used

deep learning models in order to perform hyperspectral image classification [41–48]. Re-

sults of these studies demonstrated superior performance of deep learning methods in

hyperspectral image classification compared to the conventional approaches.

In [41] and [49], for the first time the concept of deep learning was used for hyper-

spectral image classification. In [41], stacked autoencoder (SAE) was used as the deep

network to extract deep features of each training and test pixel in the hyperspectral im-

age. Three kinds of features were extracted and used for classification: spectral features,

spatial-dominated features, and joint spectral-spatial features. In the case of spectral

features, spectrum of each pixel is given to the network as input. In order to extract

spatial-dominated features, first, PCA is applied on the whole hypercube to reduce the



Chapter 2 15

spectral dimensionality. Then, a neighborhood around each pixel is determined and is

converted in the form of a 1-D vector which will be the input of the network. Finally

in the last case, spatial-dominated information of each pixel are concatenated to the

spectrum of the pixel to form the joint spectral-spatial feature vector which is fed to the

network. Having pre-trained the all layers in the SAE, in order to perform fine-tuning

and classification, all layers are connected and a logistic regression classifier is put on

the top of the network. The output results revealed that the proposed approach outper-

formed the state of the art methods used for HSI classification. Motivated by [41], in [44],

a new feature learning method, called contextual deep learning (CDL) is proposed. Sim-

ilar to [41], spectral and spatial features are extracted before classification. However,

unlike [41], this method reduces the features’ spectral dimensionality and extracts the

spatial features at the same time. In order to perform classification, MLR was used.

In [43], in order to extract deep spectral-spatial information, an improved version

of SAE called spatially updated deep auto-encoder was introduced. The first contribu-

tion of this study was altering the energy function of each auto-encoder to ensure that

correlation between samples is preserved while encoding them. Next, in order to take

spatial information into account, a feature updated layer is embedded after the hidden

layer which replaces each feature with an average value of the features extracted from the

pixels in the neighborhood of the target pixel. In order to deal with not having enough

training samples and also smooth the classification result, the authors introduce collab-

orative representation based classification approach [50] into HSI classification domain

to obtain an output vector (whose size equals to the number of classes) for each target

pixel whose elements express the probability of belonging the pixel to each category. The

final smoothed classification map was obtained by solving maximum a posteriori (MAP)

probability segmentation problem [51]. In [48], EMAP features with sparse autoencoder

are used to classify three very high resolution (VHR) multispectral datasets. They have

used a one layer SAE and employed area (a) and the standard deviations of the pixels in-

side the connected components (s) as the attribute filters. Also, they used two threshold

values for each attribute.



Chapter 2 16

In [42, 46, 52], the task of hyperspectral image classification is performed using deep

belief network (DBN) where restricted Boltzmann machine (RBM) is employed as the

building block of the DBN. In [52], a DBN (with two hidden layers) extracts spectral-

spatial features of the pixels in the hypercube such that first, the spectral dimensionality

of the hypercube is reduced using PCA and only first three principal components are

retained. Next, a 3D patch of size 7x7x3 around each training sample (pixel) is formed

which was later vectorized and was given to the the network as input. Just like SAE,

DBN is trained in a layer-wise manner. The final layer of the DBN consisted of a logistic

regression (LR) classifier. In 2017, the concept of using grouped features was proposed by

Zhou et al. [46]. Their method, called group belief network (GBN), adaptively diminishes

the weights of the connections which correspond to the irrelevant spectral bands. Similar

to DBN, the proposed GBN is constructed of stacked RBMs; however, the bottom layer

of the DBN is replaced by a modified version of an RBM named as Group-RBM (GRBM).

The GRBM has the capability of managing grouped features. Proposed GBN-based HSI

classification method has been applied on three HSI datasets and compared to DBN the

segmentation results have been slightly improved.

Some recent studies have used convolutional neural network (CNN) as the deep net-

work structure in order to extract spectral and spatial information both in supervised

and unsupervised manners [45,47,53–58]. [53] considers each sample vector (sample spec-

tra) as a 2D image; therefore, the input of the network is the spectral signature of each

pixel. Structure of the CNN used in this study consists of a convolutional layer (C1), a

max-pooling layer (M2), a fully connected layer (F3), and the output layer. Although

the resulting classification accuracies showed the capability of the CNN in hyperspectral

image classification, maximum overall accuracy of 92.6% implies that results could be

further improved. Unlike [53] which does not use spatial correlation between samples for

classification of the hyperspectral data, in [45], Zhao et al. proposed spectral-spatial fea-

tures by employing balanced local discriminant embedding (BLDE), an extension of LDE

algorithm introduced in [59], for reducing the spectral dimension of the input data and a

CNN for spatial feature extraction. In order to extract spatial features of pixels, first, the



Chapter 2 17

dimension of the original data (hypercube) is reduced along the spectral dimension using

BLDE and only first few principal bands are kept. Next, a squared patch around each

training pixel is formed. These patches are used as training data set for training the CNN

in a supervised manner. The features in the last layer of the CNN framework are flat-

tened and form the spatial feature vectors. By denoting zi as the spectral feature and oi
as the spatial feature of the unknown test sample xi where the former feature is obtained

using the BLDE method and the latter feature is computed by the trained CNN (on the

training patches), the final feature for the test sample is obtained by concatenating these

features as [zi,oi]. In 2017, Li et al. dealt with the small number of training samples

by building a Pixel-Pair model using available training samples [47]. The procedure is

as follows: having M training samples of C different classes and expressing each training

sample as {xi, yi} where xi is the training sample and yi is its corresponding label, for

increasing the number of labeled training samples any combination of two samples of all

classes is randomly chosen and is called Sij where Sij = [xi xj ]. If the two samples are

drawn from the same class, Sij will also have the same class label as theirs. However, if

they belong to different classes, the label of 0 will be assigned to Sij . [47] resembles the

approach proposed in [45] in that they both take advantage of spatial features as well

as spectral information of the pixels. However, in [47] the incorporation of the spatial

information is done in the test phase through introducing the ”Joint Classification With

Voting Strategy”. This voting strategy is based on the fact that neighboring pixels belong

to the same class with a high probability. In the test step, each test sample is also com-

bined with its neighbors to form pixel-pair samples and the target pixel will be assigned

to the class to which the majority of its neighbors belong to.

In [54], in order to exploit spectral and spatial information, a 3D-CNN has been

designed. This architecture can extract both spectral and spatial information simul-

taneously because it forms a small 3D window (patch) around the target pixel in the

hypercube and feeds as input this 3D patch to the network. After several convolutional

and pooling layers the extracted features will be in the form of a vector which contains

deep spectral and spatial information of the target pixel. This network can have fewer



Chapter 2 18

trainable parameters but the computation cost is highly increased due to the convolution

along spectral bands. The approach used in [55] for extracting the spectral and spatial

information simultaneously from the data hypercube is similar to [54]. In other words, a

3D patch (tensor) around each target pixel is formed which contains both spectral and

spatial information. However, unlike [54] which feeds these 3D tensors to the CNN as

input directly, in [55] Randomized PCA (R-PCA) is applied on each 3D tensor in order

to reduce the dimensionality of the input data. The proposed CNN also differs from the

CNN used in [54] and also from a conventional CNN in that there is no pooling layer in

the structure of the CNN.

2.3 Machine learning and image processing

Machine learning as one of the sub-categories of artificial intelligence (AI), is the science of

automatically finding the hidden patterns in the data without human interventions. The

fundamental requirement for developing a machine learning-based model is some sample

data called training data used to train the model. After the model is trained using the

the training data, it will be able to make predictions or decisions on the new unseen

data called testing data. The important concept of machine learning is that computers

are not programmed explicitly to perform a task, rather are taught to learn for them-

selves and make decisions from what they have already seen (training data). Machine

learning algorithms falls within the two main categories of supervised and unsupervised

methods [60]. In supervised methods, training data includes data points with their la-

bels while in unsupervised approaches labels are not given to the model during training.

In the following subsections, we introduce some of the machine learning methods from

both categories which we will refer to later in this thesis. Furthermore, in Section 2.3.5

we describe a morphological-based image processing technique used to extract spatial

information from input images.



Chapter 2 19

-3 -2 -1 0 1 2 3

X1

-3

-2

-1

0

1

2

3

X
2

a1a2

Figure 2.3: A toy example showing the directions of maximum variance in the data
obtained by the PCA algorithm

2.3.1 Principal Component Analysis

PCA as a popular dimensionality reduction (DR) method has been introduced by Karl

Pearson in 1901 [61] and has been used frequently in the literature in many fields ever

since. This method searches for the most accurate data representation in a lower dimen-

sional subspace composed of the uncorrelated linear combinations of the original variables

called principal components. What PCA does is in fact, mapping the input data to the

dimensions along which data vary the most; so, preserving the largest variances in the

data. A toy example of applying the PCA algorithm on a sample of 2 dimensional points

is shown in figure 2.3. As can be seen from this figure, a1 and a2 point to the directions

of the largest and the second largest variances in the dataset, respectively.

Suppose we have a data set composed of N , p dimensional samples. We can show the

aforementioned efficient linear combinations of the original variables (PCs) as follows



Chapter 2 20

Z1 = a11X1 + a12X2 + ...+ a1pXp = aT1X

Z2 = a21X1 + a22X2 + ...+ a2pXp = aT2X

...

Zp = ap1X1 + ap2X2 + ...+ appXp = aTpX

(2.2)

where Zi is the ith principal component, ai represents the ith loading vector. Also, X

is a p-dimensional vector representing a point in a p-dimensional space. In the PCA

algorithm, these PCs are computed through the following process:

Define the first principal component of the sample X = (X1, ..., Xp) by the linear

transformation

Z1 = aT1X =

p∑
i=1

a1iXi (2.3)

where the vector a1 is chosen such that var (Z1) is maximized.

Similarly define the kth PC of X according to (2.4)

Zk = aTkX =

p∑
i=1

aikXi k = 1, .., p (2.4)

where vector ak is chosen such that the following conditions are met:

1. var (Zk) is maximized

2. cov[Zk, Zl] = 0 for k > l ≥ 1

3. aTkak = 1

The above conditions leads to following properties of PCA:

• var(Z1) ≥ var(Z2) ≥ ... ≥ var(Zp) ≥ 0

• Uncorrelated PCs and orthogonal loading vectors, ak:



Chapter 2 21

cov[Zl, Zm] = 0 and aTl am = 0 for l 6= m

• Preservation of the total variance:∑p
i=1 var(Zi) =

∑p
i=1 var(Xi)

The last property notes that there are the same amount of variance (information)

in the whole set of PCs as there are in the original set of data. However, since we are

interested in reducing the dimensionality of the input data, we only keep the first few

PCs which contain the most information of the original data. It has been mathematically

proven that the loading vectors that meet above requirements are in fact, the eigenvectors

of the covariance matrix of the original points in the dataset [62].

Let’s show the eigenvalues and the corresponding eigenvectors of such a covariance

matrix with λi and ei, respectively, where i is the index of these eigenvalues/vectors.

Considering equation (2.2) and the fact that the desired loading vectors in this equation

are the eigenvectors ei, we can rewrite them as follows:

Z1 = e11X1 + e12X2 + ...+ e1pXp = eT1X

Z2 = e21X1 + e22X2 + ...+ e2pXp = eT2X

...

Zp = ep1X1 + ep2X2 + ...+ eppXp = eTpX

(2.5)

Also, it can be proven that for each Zk:

var(Zk) = λk = eTkSek (2.6)

where S is the covariance matrix of the variables of the original dataset. In other words,

the kth largest eigenvalue of S is the variance of the kth PC and the kth largest fraction of

the variation in the points of our dataset is preserved by this PC. It should be noted that

in many applications, the true covariance matrix is not available so, what S represents

in these equations is the sample covariance matrix of the set of given data points formed



Chapter 2 22

in an N × p matrix. In equation (2.5), Z1 to Zp are the p PCs of one observation in the

dataset (one row of the matrix of the input data of size N × p). Equation (2.7) can be

used to compute the PCs for all N observations in the dataset:

ZN×p = XN×pEp×p (2.7)

where each row of matrix X is an observation of size 1 × p, E is a p × p matrix whose

columns contain the p (normalized) eigenvectors of the covariance matrix S, and Z is

the PC matrix whose jth row contain the PCs of the jth observation in X.

2.3.2 Linear Discriminant Analysis (LDA)

The most common usage of LDA is dimensionality reduction. This method was first

introduced by Ronald A. Fisher in 1936 [63] as the feature extraction step for discrimi-

nating between two classes of flowers. In 1948, a generalized version of this method called

multi-class ”Linear Discriminant Analysis” or ”Multiple Discriminant Analysis” was in-

troduced by C. R. Rao for a multiple class problem [64]. Although this DR method is

very similar to the PCA algorithm, LDA is a supervised approach. In other words, we use

class labels while reducing the dimension of the data and try to preserve as much of the

class discriminatory information as possible. In that sense, the main objective of LDA

method is projecting data into a lower dimensional subspace such that class-separability

gets maximized. Figure 2.4 shows a toy example of the difference between PCA and

LDA algorithm for two-dimensional data divided into two classes. As can be seen from

this figure, PCA projects data into the direction of the maximum variance in the data

regardless of their labels wheres LDA tries to find direction of the most variation of the

data points while maintaining class separability at the same time.

Considering X as a dataset consisting of N p-dimensional samples with Ni samples

in each of the C classes each denoted by wi, LDA searches for a transformation function

that maps data in X to a C − 1 dimensional subspace y while keeping the most possible



Chapter 2 23

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

PCA

LDA

Figure 2.4: A toy example showing the best projection directions suggested by PCA and
LDA algorithms.

class discriminatory information of the data. Let’s start with the two class problem and

then generalize it to the C-classes case.

2.3.2.1 Two-classes case

Let’s say we have a database of p-dimensional samples x = [x1, x2, ..., xp]
T , where N1

and N2 of those samples belong to classes w1 and w2, respectively. The objective is to

find the transformation a in (2.8) that maps data from the original space x into the

lower-dimensional subspace y while preserving the maximum class separability in this

new subspace.

y = aTx (2.8)

where a = [a1, a2, ..., ap]
T .

Since we have a two-class problem (i.e., C=2), y will be a one-dimensional space,

so, each original vector x will be mapped to a scalar. In order to find a, we need to

specify a separability measure between the projected samples. The approach proposed by

Fisher [63] was to maximize the ratio of the difference of the two classes’ means (between-

class variance) normalized by a term which is a function of the within-class variation,



Chapter 2 24

called scatter according to 2.9

J(a) =
|µ̃1 − µ̃2|2

s̃21 + s̃22
(2.9)

where µ̃i and s̃i
2 are the mean and the within-class variation of the samples of class wi

having been mapped to the new subspace y, respectively. µ̃i can be calculated according

to (2.10)

µ̃i =
1

Ni

∑
y∈wi

y =
1

Ni

∑
x∈wi

aTx =
aT

Ni

∑
x∈wi

x = aTµi (2.10)

where µi is the mean of samples in class wi in the original p-dimensional space. In

fact, the numerator in (2.9), states how far the mean of the projected samples in the

two classes are from each other. The equation for each class’s scatter is the same as its

variance

s̃i
2 =

∑
y∈wi

(y − µ̃i)2 . (2.11)

We can define s̃12 + s̃2
2 as a measure of the within-class variation of the projected

samples and it is called the within-class scatter of the projected samples.

The objective now is to maximize the energy function in (2.9). In other words, we

would like to obtain a projection where samples of the same class are as close as possible

to each other while as further apart as possible from samples of the other class. To

find the optimal transformation that maximizes the energy function, we need to rewrite

equation (2.9) as a function of a. Substituting equation (2.10) into the numerator of the

energy function results in

(µ̃1 − µ̃2)
2 =

(
aTµ1 − aTµ2

)2
= aT (µ1 − µ2) (µ1 − µ2)

T a

= aTSBa = S̃B

(2.12)

where SB is a matrix and is called the between-class scatter of the samples in the original

feature space and S̃B is the projected samples’ between-class scatter matrix.



Chapter 2 25

To have the within-class scatter matrix of the projected samples in terms of a as well,

we can use equation (2.11) as follows

s̃i
2 =

∑
y∈wi

(y − µ̃i)2 =
∑
x∈wi

(
aTx− aTµi

)2
=
∑
x∈wi

aT (x− µi) (x− µi)
T a

= aTSia

(2.13)

where Si is a measure of the variation of original samples in class wi. We can rewrite

the denominator of the energy function in (2.9) (which is in fact the within-class scatter

of the projected samples) as follows

s̃21 + s̃22 = aTS1a+ aTS2a = aT (S1 + S2)a = aTSWa = S̃W (2.14)

Finally, equation (2.9) can be reformulated as a function of the transformation vector

a, SB, and SW :

J(a) =
|µ̃1 − µ̃2|2

s̃21 + s̃22
=
aTSBa

aTSWa
(2.15)

The transformation vector that maximizes J(a), a∗ is called Fisher’s linear discrimi-

nant and it turns out that it is in fact the eigenvector of the following matrix [63]:

SX = S−1W SB (2.16)

2.3.2.2 C-classes case

In the case of having C classes, the maximum dimension of the projected samples can

be C − 1. So in this case, our objective will be to find the C − 1 projection vectors

that result in the maximum between class and minimum within-class variances. Let’s

populate these projection vectors in a matrix of size p × (C − 1) called A. We use

equation (2.17) to project the entire samples in the original p-dimensional space to the



Chapter 2 26

new (C − 1)-dimensional feature space.

Y = ATX (2.17)

where X is a p × N matrix including the original dataset and Y is a matrix of size

(C − 1)×N consisting of the projected samples in the lower dimensional space.

To find the within-class variance for the C classes case, similar to the previous case

we need to add the scatter matrices of all the C classes:

SW =
C∑
i=1

Si =
C∑
i=1

∑
x∈wi

(x− µi) (x− µi)
T (2.18)

where µi is the mean of the original samples in class wi.

To find the between-class scatter of original samples, SB, we use the mean of all

samples in the dataset, µ according to (2.19):

SB =
C∑
i=1

Ni (µi − µ) (µi − µ)T (2.19)

Similarly, the within and between- class scatter matrices for the projected samples

(S̃W and S̃B, respectively) can be expressed in equations (2.20) and (2.21), receptively.

S̃W =
C∑
i=1

S̃i =
C∑
i=1

∑
y∈wi

(y − µ̃i) (y − µ̃i)
T (2.20)

S̃B =
C∑
i=1

Ni (µ̃i − µ̃) (µ̃i − µ̃)T (2.21)

where µ̃i and µ̃ are the mean of projected samples of class wi and the mean of all

projected samples, respectively.



Chapter 2 27

It should be noted that equations (2.12) and (2.14) hold for the C-classes case as well.

Since in the case of having more than two classes, S̃W and S̃B are matrices rather than

scalar values, we use their determinant value in the equation of the energy function.

J(A) =

∣∣∣S̃B∣∣∣∣∣∣S̃W ∣∣∣ =

∣∣ATSBA
∣∣∣∣ATSWA
∣∣ (2.22)

The desired matrix, A∗, is the one that maximizes the energy function in (2.22). It

can be mathematically proven that similar to the two-classes case, such A∗ matrix is

composed of the eigenvectors of the following matrix

SX = S−1W SB. (2.23)

A∗ is a p×(C−1) matrix whose columns are the eigenvectors of matrix SX in equation

(2.23) and are located in an descending order such that the jth column corresponds to

the jth largest eigenvalue of SX .

2.3.3 Artificial neural networks (ANN)

Artificial neural networks are machine learning based classifiers whose architecture is

inspired by the way human brain works. An ANN is composed of connected units called

artificial neurons which are similar (but not the same) as human biological brain neurons.

Each neuron has some main components: cell body, dendrites, and axon. Cell body is the

main computational unit of a neuron. Dendrites act as input wires which receive input

data from other neurons. Each neuron may own thousands of these input receivers which

are usually short in length. Axons, as opposed the dendrites, are the neuron’s output

wires which send information signals to other neurons and can break into thousands of

branches at the end called axon terminals. Axons own a single long shape which can be

up to one meter in length.



Chapter 2 28

2.3.3.1 Single layer neural network (perceptron)

In an ANN, instead of a neural signal, what each neuron receives is a sum of weighted

numbers/inputs. This sum will then go through a non-linear function to provide the

neuron’s output. Figure 2.5 shows a graphical representation of a single layer neural

network including only one hidden neuron. In fact, such a network performs like a

perceptron, a binary linear classifier. The output of a single layer NN can be formulated

as (2.24):

y = f

(
p∑
j=1

wjxj + b

)
(2.24)

where xj is the jth element of the input vector x and wj is the corresponding weight

between that input and the hidden neuron. Also, b represents a bias value. f is the

neuron’s non-linear activation function.

Activation functions introduce nonlinear properties to our model and let the network

learn complex mappings from the input to the output. In fact, we can consider ANN

as universal function approximator which is capable of learning any function provided

that it contains nonlinear activation function. A neural network without activation func-

tion resembles a linear regression model which is not capable of modeling real complex

nonlinear relationships between the input and output of the network, so, fails to perform

properly in real applications. Besides the nonlinear property, an activation function must

be differentiable. The need for this property will be explained in Section 2.3.3.2. Figure

2.6 shows the most commonly used activation functions: sigmoid or logistic, tangent

hyperbolic (tanh), and rectified linear unit (ReLU). What follows is a brief description

of these functions.

Sigmoid or logistic activation function: This function is defined by (2.25)

σ(z) =
1

1 + e−z
(2.25)

where z is the function’s input. So, the output of a neuron with input X = [x1, x2, ..., xp],



Chapter 2 29

x2

x3

xp

x1

...

1

w1

w2

w3

wp
b

y

Figure 2.5: Graphical representation of a single layer NN with only one hidden neuron
which functions similar to a perceptron.

-8 -6 -4 -2 0 2 4 6 8

z

0

0.5

1

 (
z
)

(a)

-3 -2 -1 0 1 2 3

z

-1

0

1

ta
n
h
(z

)

(b)

-8 -6 -4 -2 0 2 4 6 8

z

0

2

4

6

8

R
e
L
U

(z
)

(c)

Figure 2.6: Several activation functions. (a) Sigmoid, (b) tanh, (c) ReLU.

the corresponding weights W = [w1, w2, ..., wp], bias value b, and the sigmoid activation

function can be represented as (2.26)

σ(z) =
1

1 + e−(
∑p
i=1 xiwi+b)

. (2.26)

As can be seen from Figure 2.6a the output of the sigmoid function is bounded

between 0 and 1 which makes it especially useful when we expect our model to predict

the probability of a class (or event) to happen. This function is differentiable at all

points which is one of the reasons behind its popularity in ANN applications. However,

the drawback of using this sigmoid function is that since for the majority of the x domain

its derivative has a very small value close to zero it can lead to the vanishing gradient

dilemma [65].



Chapter 2 30

Tanh activation function: This function is the ratio between the hyperbolic sine

and the cosine functions and is defined as

tanh(z) =
ez − e−z

ez + e−z
(2.27)

where z is the weighted sum of inputs to the neuron. The shape of this function is quite

similar to the sigmoid function (see Figure 2.6b) but it is bounded between -1 and 1.

Similar to the sigmoid function, tanh is differentiable at all points.

ReLU activation function: This activation function has become popular recently

especially in CNN applications. Considering z as the input and f(z) as the output of

this function, the relationship between these two can be formulated as (2.28)

f(z) =

z if z ≥ 0

0 otherwise.
(2.28)

As can be seen from Figure (2.6c), it is differentiable at all points. Also, since the

gradient of this function is equal to one for the positive inputs, it solves the vanishing

gradient problem making it a popular activation function. Nonetheless, ReLU has some

drawbacks as well. First, it should only be used in hidden layers of a NN and for a

classification problem, in the output layer, Softmax function must be employed. Second,

using the ReLU function, all the negative values as inputs of the function will be mapped

to zero immediately which decreases the ability of the model to fit or train from the data

properly.

2.3.3.2 Multi layer neural network

To obtain a more powerful classifier than a perceptron with more complex decision bound-

aries, multiple perceptrons are combined and function together. They are arranged in

layers such that each neuron takes the sum of its weighted inputs, apply the activation



Chapter 2 31

x2

x3

x1

Layer 1

Input layer

Layer 2

Hidden layer

Layer 3

Output layer

h1

h2

h3

h4

y1

y2

y3

Figure 2.7: Schematic of a sample multilayer neural network with input data with three
features, one hidden layer with four hidden units, and the output layer with three nodes
corresponding to a three-class classification problem.

function on it, then transmits the output to the neurons in the next layer. Such an archi-

tecture is called multilayer neural network. Schematic of a simple multilayer NN is shown

in 2.7. The first layer in the network is called input layer and accepts the input data.

The middle layer called hidden layer is composed of hidden units or hidden nodes and

the third layer is called output layer whose number of nodes for a classification problem

is equal to the number of classes in the dataset. It should be noted that the network

in Figure 2.7 is only an example and in general, according to the specifications of the

problem at hand, a multilayer NN can have as many input, hidden, and output nodes

and also hidden layers as needed. For the general case of having inputs with p features,

n hidden units, L hidden layers and c classes, the following equations can be established:

hlj = f1

(
p∑
i=1

wlijxj + blj

)
for l = 1, ..., L and j = 1, ..., n (2.29)

yk = f2

(
n∑
j=1

wojkh
L
j

)
for k = 1, ..., c (2.30)

where wlij and wojk refer to the weights of the lth hidden layer and the output layer of

the network. f1 and f2 are the activation functions of the hidden layer(s) and the output

layer, respectively (sometimes the same activation function is used for both).



Chapter 2 32

Like any other classifier, ANN needs to be trained by the means of training exam-

ples and updates its parameters. These trainable parameters in an ANN include the

connections’ weights and biases of different layers of the network. During the training

stage of an NN, training examples are given to the network and network assigns a label

to each one. The discrepancy between the desired output and the network output is in

fact a function of the weights of the network and is called loss function. The objective of

training a NN is to find weights and biases which minimize this loss function. Gradient

descent (GD) [65] or its variations like stochastic gradient descent (SGD) are the most

commonly used optimization algorithms to achieve this goal. To find the optimal values

for the network’s parameters, GD starts by initializing the weights randomly. Then at

each time step t, takes a step (by updating the weights and biases) on the loss function

surface in the multi-dimensional space in the direction of decreasing gradient aiming at

gradually reaching the global minimum of the loss. It can be mathematically proven that

the partial derivative of the loss function with respect to the weights of the network is a

function of the neurons’ activation function. Therefore, in order to be able to compute

these partial derivatives, the activation function needs to be differentiable. The equations

for updating the weights and biases of a network using GD are given by (2.31) and (2.32)

wt+1
k = wtk − α

∂L

∂wk
(2.31)

bt+1
k = btk − α

∂L

∂bk
(2.32)

where wt+1
k (bt+1

k ) and wtk (btk) are the value of the kth weight (bias) of the network at

time steps t + 1 and t, respectively and ∂(.) represents the partial derivative. Also, α is

a preset value and is called learning rate which is related to the speed of the convergence

of the optimization process.

In order to compute the gradient of the loss function with respect to the different

parameters of the network, an algorithm called backpropagation (BP) [66] is used. This

method is widely used in supervised machine learning, specifically deep learning for

training neural networks. The term BP and its application in neural networks was



Chapter 2 33

x h y

Input
data

Reconstructed
data

...

...

(a)

Classification
layer

layer 1 layer 2 layer 3

Input layer

...

...

...

...

(b)

Figure 2.8: Block diagram of (a) a sample auto-encoder and (b) stacked autoencoder

introduced by Rumelhart et al in 1986 [67] where it was used in multiple neural networks

showing its faster performance compared to its preceding learning approaches. For a

comprehensive explanation of this algorithm please see Chapter 2 of [65].

2.3.4 Deep neural network

A deep learning model, also called deep neural network, is composed of a neural network

with typically more than three layers. In a deep learning model abstract features which

are associated with higher layers are learned from simple, low level features from previous

layers in the network. In fact, the goal of all deep learning methods is to learn represen-

tative, abstract, and discriminative features from the input data, automatically. Deep

learning has been successfully employed in many areas such as speech recognition [68]

and face recognition [69,70]. A deep network can be trained either in a supervised or an

unsupervised manner. Common deep network architectures include stacked autoencoder,

deep belief network, recurrent neural network (RNN), and convolutional neural network.

2.3.4.1 Stacked autoencoder

Figure2.8b shows a sample SAE network. SAE is composed of layers of autoencoders. An

autoencoder (AE) is composed of an input, hidden, and output layers with dimensions

d, h, and d, respectively where usually h < d. There are weighted connections between

units in the input and hidden layers as well as hidden and the output layers. Figure 2.8a



Chapter 2 34

shows a typical AE. Training an AE consists of two steps: encoding and reconstruction.

During the encoding phase, data in the input layer is mapped (encoded) to a new feature

space (hidden layer). Reconstruction phase (decoding) aims to reconstruct the original

data from the mapped features. These two steps can be written as (2.33) and (2.34),

respectively.

h = f(W hx+ bh) (2.33)

y = g(W yh+ by) (2.34)

where W h is the weights of the connections between input units to the hidden units and

W y is the weights of the connections between the hidden units and the output units. bh
and by stand for the biases of the hidden and output units, respectively. Also, f and g

are the activation functions of the neurons in the hidden and output layers, respectively

(for more information about the activation functions see Section 2.3.3.1) and in practice,

in most of the cases these two functions are set to be the same. Training an AE aims to

find features that represent the input data in the best way such that the reconstruction

error is minimized. In fact, these features are obtained during an optimization process

which minimizes a cost function representing the difference between the output (which is

a reconstructed version of the input data) and the input data itself according to (2.35):

θ = arg min
W,b

M∑
i=1

C (xi, x̃i) (2.35)

where C(.) is the cost function. M and θ are the total number of training examples and

the best set of parameters found during the optimization process, respectively.

There are some different variations for AEs including sparse and denoising AE [66].

Since in this thesis we employed sparse AE in our deep learning framework, the following

subsection presents an introduction to this model.



Chapter 2 35

2.3.4.2 Sparse autoencoder

A sparse AE is a model whose training loss function involves a sparsity regularization

term. This regularization term imposes the sparsity constraint on the output of the AE’s

hidden layer and is a function of the mean of the output value of the hidden layer’s

neurons [71]. This mean value can be represented as (2.36):

ρ̂j =
1

M

M∑
i=1

f (W jxi + bj) (2.36)

where W j and bj are the vector of weights and the bias value of the jth neuron, respec-

tively. A neuron is activated if its activation value is high enough. Having a low value

for ρ̂j means that neuron j responses only to a small subset of training data having dis-

tinct features. Adding a term to the loss function that measures the difference between

the ρ̂j and the desired neuron’s output value, called sparsity regularization, makes each

neuron master learning features belonging to only a small portion of training samples.

Kullback-Leibler divergence [72] can be considered as such sparsity regularization term:

γsparsity =
N∑
j=1

KL (ρ||ρ̂j) =

N∑
j=1

ρ log

(
ρ

ρ̂j

)
+ (1− ρ) log

(
1− ρ
1− ρ̂j

) (2.37)

where N and ρ are the number of neurons in the hidden layer and the desired value for

the average activation of each neuron, respectively.

One drawback of having such a sparsity regularization term in the cost function is that

during the training process, high values may be assigned to the weights of the network

in order to maximize ρ̂j. To prevent this case to happen, a weight regularization term

should be added to the AE’s cost function as shown in (2.38)



Chapter 2 36

γweights =
1

2

∑
‖W ‖22 (2.38)

where ‖W ‖2 is the L2 norm of the AE’s weight matrix. Finally, the cost function of the

sparse AE can be expressed as (2.39):

J =
1

M

M∑
i=1

(xi − x̃i)2 + (λ× γweights) + (β × γsparsity) (2.39)

where λ and β are the L2weight regularization and sparsity regularization coefficients,

respectively.

Arranging AEs one after another such that the hidden layer of one AE becomes the

input layer of the next, constructs a SAE. This arrangement aims to extract deep features

at higher layers. Training a SAE consists of two phases: pre-training and fine-tuning.

In the pre-training phase, each AE is trained in an unsupervised manner. In other

words, labels of the input samples are not used during pre-training. For each AE, hav-

ing found the weights and biases that minimize the cost function, reconstruction layer

together with its weights and biases are removed. Hidden layer’s features are stored and

given to the next AE as input while its weights and biases are saved to be used in the

next step.

In the fine-tuning phase, all layers are connected forming a unified network and the

input of the network will be the original input data as well as their labels. Also, putting

a classification layer on top the network provides the supervised training. The important

characteristic of this phase is that parameters of the network are not initialized randomly

at the beginning of the optimization process, rather this initialization is done using the

weights and biases which have been already obtained and saved in the pre-training phase.

In fact, after adding the classification layer and training the whole network to find the

final optimal weights and biases, they only slightly change about the values already

obtained in the pre-training stage [73]. In other words, compared to the extracted deep

features in the pre-training step, class labels provide limited information which is used



Chapter 2 37

(a)

k1 k2 k3

k4 k5 k6

k7 k8 k9

(b)

Figure 2.9: (a) A sample convolutional neural network with two convolution, two pooling,
and three fully connected layers (b) convolution kernel.

only for marginally adjusting the weights and biases of the network about their initial

values [73].

2.3.4.3 Convolutional neural network

The first research on modern CNN was carried out by LeCun et al., in 1998 [74] to perform

handwritten character recognition. The special architecture of CNNs make them well-

suited for image classification. The reason behind the name “convolutional” is the usage

of the linear mathematical operation called “convolution” by the network. To put it

simply, CNNs are neural networks that replace matrix multiplication with convolution

at least in one of their layers [66]. Figure 2.9a shows a sample convolutional neural

network. As can be seen from this figure, a CNN is typically composed of convolutional,

pooling, and fully connected (FC) layers where the FC layers are usually placed on the

top of the network. The feature maps in this figure are either results of the convolution

or the pooling operations. In the convolution, the input image (or previous feature

maps) are convolved with a kernel (filter) of size n × n. Figure 2.9b shows a sample

convolution kernel of size 3 × 3. In practice, we use multiple of these kernels in each of



Chapter 2 38

convolution layers each producing a separate feature map. In CNNs, a pooling layer is

usually placed right after a convolution layer to simplify the information in the output

from the convolutional layer. The most common type of pooling in CNNs is max-pooling

where in the small window (e.g. 2 × 2) in different locations of the feature map the

maximum value is found and replaces the whole window. Two important characteristics

of CNNs are local connectivity and shared weights.

2.3.4.4 Deep belief network

A DBN is another type of DNN and is constructed of layers of RBM. An RBM is a two

layer network composing of visible (v) and hidden (h) layers. Diagram of a sample RBM

is shown in Figure 2.10. The energy of the joint configuration of the units is defined as

(2.40)

E(v,h) = −aTh− bTv − vTWh (2.40)

where v and h are the visible and hidden vectors which we would like to compute the

energy for, a and b are the biases of the hidden and visible layers, respectively, and W

is the matrix of the weights between the two layers of the network. The joint proba-

bility distribution of the visible and hidden vectors is a function of the energy of their

configuration defined in (2.40) and is defined as

P (v,h) =
1

Z
e−E(v,h) (2.41)

where Z is the normalizing constant and is defined as

Z =
∑
v

∑
h

e−E(v,h). (2.42)

The probability that the network assigns to a visible vector, v, is given by summing



Chapter 2 39

Visible layer

Hidden layer

v

h

Figure 2.10: A sample RBM.

over all possible hidden vectors:

p(v) =
1

Z

∑
h

e−E(v,h). (2.43)

The conditional distributions of hidden unit hj is given by logistic function

p(hj = 1|v) = σ(
D∑
i=1

wi,jvi + aj) (2.44)

where D is the dimension of the visible vector and σ represents the sigmoid function

defined in (2.25). What (2.44) means is in fact the probability of the hidden unit hj to

be set to 1 provided that the given visible vector is v. We can have similar equation

for the conditional distributions of the visible units. However, since most of the time

visible (input) vectors are real valued data (not binary), we assume that the visible units,

conditioned on the hidden layer, are independent gaussian random variables defined as

p(vi|h) = N(
F∑
j=1

wi,jhj + bi) (2.45)

where F is the size of the hidden layer and N(.) stands for the gaussian function.

The goal of training each RBM is to maximize the likelihood of all training exam-

ples and as suggested in [75], parameters of the network can be adjusted by applying a

stochastic gradient descent on the log likelihood of all training samples. In other words,



Chapter 2 40

H

xt

ht

ht-1

(a)

H

Xt-1

ht-1

xt

H

ht

xt+1

H

ht+1

... ...

(b)

Figure 2.11: (a) Schematic of an RNN (b) unfolded network shown in (a).

the optimal weights and biases of an RBM can be calculated as

θ = arg min
W,b

(
−
∑
m

log(p(vm))

)
= arg min

W,b

(
−
∑
m

log
∑
h

e−E(vm,hm)

)
. (2.46)

Having obtained the optimal parameters for each RBM, several of these machines can

be stacked together and form a DBN such that the hidden layer of one RBM becomes

the visible layer of the next. Similar to SAE, training process of a DBN consists of the

two steps of pre-training and fine-tuning. Therefore, the optimal parameters of each

individual RBM is used as the initial values for the fine-tuning step.

2.3.4.5 Recurrent neural network

RNN is another type of deep neural networks which is used for processing dynamic data

such as video or sequences of text. The main difference between RNN and a conventional

feed forward neural network is that in an RNN, the output of each hidden neuron is fed

back to itself as input introducing the concept of time to the network. Figure 2.11 is

a schematic of an RNN. The black square in the left subfigure indicates the time delay

by one step and means that the output of each hidden neuron at time step t is given

back to the neuron as an extra input at time step t+ 1. Figure 2.11b shows an unfolded

version of the network shown in Figure 2.11a. As can be seen from this figure at each

time step t, a combination of the input at that step xt and the output of the previous

time step ht−1 is given to the hidden neuron as input. Like any other type of NN, RNN



Chapter 2 41

H

Xt-1

ht-1

H

ht

H

ht+1

...

(a)

H

Xt-1 xt

H

xt+1

H

ht+1

...

(b)

Figure 2.12: RNN (a) One to many and (b) many to one architectures.

also includes weights and biases. But, the important thing is that these parameters are

shared with different time steps in the network. In other words, there is not a different

set of parameters for each time step. Outputs at each time step t are produced by the

means of the same parameters’ update rule [66].

RNNs own flexible architecture. In fact the one shown in Figure 2.11b is only one of

them called many to many model where many inputs {...,xt−1,xt,xt+1, ...} are mapped

to many outputs {...,ht−1,ht,ht+1, ...}. Two other architectures include one to many

and many to one models which are shown in Figures 2.12a and 2.12b, respectively.

The common problem with vanilla RNN is the vanishing (or rarely exploding) gradient

problem. Ideally, we would like to figure out the relationship of data at many time steps

even if there are far from each other. However, The more time steps in the network means

the more gradient multiplications during the backpropagation process. Considering the

sigmoid function as the neurons’ activation function whose gradient is small (close to zero)

for the majority of the inputs, multiplying such small values (whose number increase with

the number of time steps in our RNN) will result in very small amount of update for

weights during the training time. So, RNNs in their basic format do not perform well

in many real applications. The most effective approach to reduce the vanishing gradient

problem in RNNs so far is using long short term memory (LSTM) cells. To read more

about the architecture of the LSTM cell please read [66].

Since RNN is used for processing sequential data where there is different input/output

at each time step, it is not suitable for our purpose since in this project, we deal with



Chapter 2 42

processing static hyperspectral datasets.

2.3.5 Extended multi-attribute profile

Attribute profiles are obtained by applying morphological attribute filters on an image.

Compared to conventional morphological profiles [76], they extract more powerful spatial

features representing important spatial information from the input image. Morphological

attribute filters allow us to process the input images with less computational cost and

extract various types of features corresponding to both scale and texture. Moreover, the

definition of the attributes are more flexible in this method compared to MP where the

shape of the SE is fixed. To have a better understanding of APs let’s first describe MPs.

2.3.5.1 Morphological profiles

Morphological profiles are obtained by applying morphological operators of opening and

closing by reconstruction on an input image [33]. The definitions of opening and closing

by reconstruction are given by (2.47) and (2.48), respectively.

γiR(I) = Rδ
I(ε

i(I)) (2.47)

ϕiR(I) = Rε
I(δ

i(I)) (2.48)

where I is an input image, γR and ϕR are opening and closing by reconstruction, δi and

εi represent dilation and erosion operations with a SE of size i, and Rδ
I and Rε

I are the

geodesic reconstruction by dilation and erosion, respectively.

We can obtain opening and closing profiles by applying (2.47) and (2.48), respectively

on an input image with SE of fixed shape and increasing size. Finally, the MP is obtained



Chapter 2 43

by stacking closing and opening profiles according to (2.49) [36]:

MP(I) = IIi :

IIi = IIγλ with λ = (i− n− 1), ∀i ∈ [n+ 1, 2n+ 1]

IIi = IIϕλ with λ = (n− i+ 1), ∀i ∈ [1, n]

(2.49)

where IIγλ is the concatenation of opening profile obtained by the SEs of increasing size

(from 0 to n, where opening profile with SE of size zero corresponds to the original image)

and IIϕλ represents the closing profile obtained by the SEs of decreasing size (from n to

1). Finally, MP(I) is the concatenation of these two profiles.

2.3.5.2 Extended morphological profiles (EMP)

MP with its definition in (2.49) can only be applied on one-band images. Therefore, in

order to be able to extract MPs of multi-band images (e.g., multi spectral or hyperspec-

tral), this method needed to be further explored. In [34], Benediktsson et al performed

some modifications on the MP algorithm [33], and successfully applied it on hyperspectral

datasets. The new algorithm called extended morphological profile (EMP) is explained

below.

First PCA is applied on the hyperspectral image along its spectral dimension and

the first few PCs including the most variation in the dataset is kept. Then, MP of each

retained PC image is computed according to (2.49). Finally, the EMP of the input HSI,

is obtained by stacking the MPs of the preserved PCs according to (2.50)

EMP(I) = {MP(PC1(I)),MP(PC2(I)), ...,MP(PCk(I))} (2.50)

where I and PCi(I) are the input HSI and the ith retained PC of it, respectively.

EMP has been successfully applied to extract spatial information of images. However,

there are some problems associated with it: 1. High computational complexity. 2. only

analysis of the scale is included in the processing. 3. The limitation of the extracted



Chapter 2 44

spatial features due to the usage of fixed- shaped SE. Attribute profiles as a solution

for these drawbacks have been proposed in 2010 by Dalla Mura et al [36]. Attribute

profiles are obtained by applying morphological attribute filters on an image. Next

section presents a description of these filters and how they are employed to build attribute

profiles.

2.3.5.3 Attribute profiles

Various structural information in an image can be modeled by subsequently applying

morphological attribute filters on the image leading to morphological attribute profiles.

Attribute filters are in fact morphological attribute opening and attribute thinning de-

veloped by Breen et al [77] in 1996. An attribute can be considered as any measure

which can be computed on the connected components of an image. Examples of such

attributes include area and length of the perimeter of the connected component (size-

related attributes), standard deviation of the pixels in each connected component (tex-

tural attribute), length of the diagonal of the bounding box of the connected component

(shape-related attribute), etc. Attribute filters are connected component transformations

and since are quite similar to the morphological opening and closing by reconstruction.

A common property of operators by reconstruction and attribute filters is that they do

not produce new edges to the image since they either entirely remove or keep a struc-

ture from the input image. However, they perform differently considering the fact that

the former transforms the input image based on the size of a fixed-shape SE while the

latter performs transformation based on different attributes computed on the connected

components which do not necessarily reveal information about the size of the structures.

To understand how these attribute operators work let’s first consider the case when the

input is a binary image.

Binary attribute filters: The first step to apply these operators on a binary image

is to detect connected components (CCs) in the image. Then, for each CC, different

criteria are evaluated and if it meets the criterion T , the CC is preserved otherwise is



Chapter 2 45

removed from the image (i.e. its pixels are set to zero). These criteria may be increasing

such as area, size of the bounding box, volume1, etc. or non-increasing like of the shape

factors2. If the former, we call the operation attribute opening, if the latter we call it

attribute thinning [77]. Binary attribute opening on image I can be defined by (2.51):

ΓT (I) =
⋃
x∈I

ΓT (Γx(I)) (2.51)

where x is any pixel in I and Γx(I) is called binary connected opening and returns the

CC including pixel x. ΓT (.) is called binary trivial opening and is defined by (2.52)

ΓT (C) =

C, if C meets the criterion T

0, otherwise.
(2.52)

where C is a connected component. Finally, the binary attribute opening of image I

(ΓT (I)) is obtained by the union of the results of applying binary trivial opening with

the criterion T on each connected component of the I.

Analogously, binary attribute thinning can be defined by (2.53):

Γ̂T (I) =
⋃
x∈I

Γ̂T (Γx(I)). (2.53)

The above definitions and equations can be extended to define the dual transforma-

tions binary attribute closing ϕT (I) and binary attribute thickening ϕ̂T (I).

Grayscale attribute filters: Binary attribute operators defined for binary images

can be generalized to the grayscale case. One of the approaches to do this generalization

is by using threshold decomposition method [76]. In this method, K binary images are

produced from the gray image I where K is the number gray levels presented in the

1Volume of a CC is the sum of the gray level values of all pixels inside the connected component.
2Shape factors of a region is independent of its size and are computed from some features such as the

diameter, area, and perimeter of the region.



Chapter 2 46

image. Each of these binary images can be defined by (2.54)

Ii(x) =

1, if I(x) ≥ i

0, otherwise
(2.54)

where x is any pixel in image I and i is one of the K gray levels existing in image I.

Having decomposed the gray image to a stack of binary images, binary attribute opening

(thinning) is applied on each one. Finally, the value of each pixel at the output image

will be the maximum graylevel of the results of the filtering for each pixel.

Although the approach that has been described is doable, it is not computationally

very efficient. Instead one can use the max-tree representation of a grayscale image

introduced by Salembier et al. [78] to efficiently perform the attribute opening/thinning

filtering on grayscale images. The next section explains the structure of a Max-tree and

how it is used in performing attribute opening/thinning.

2.3.5.4 Max-Tree

Performing attribute filtering on grayscale images using the max-tree representation,

includes the following steps:

• Max-tree creation: In this step, the image is represented in a tree structure with

different levels where each level corresponds to a gray level present in the image and

the number of nodes in each level is equal to the number of connected components

at that gray level. The root of the tree is associated with the lowest gray level in

the image. Also, a node at gray level i+1, ni+1, is connected to a node at gray level

i, ni, if ni corresponds to a connected component that contains the one associated

with ni+1. In this case, ni and ni+1 are called parent and child nodes, respectively.

A synthetic gray-level image and its corresponding max-tree structure is shown in

Figure 2.13.



Chapter 2 47

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 2 2 3 3 3 1 0 0 0 0 0

0 2 2 1 1 1 1 0

0 0 2 0

0 0 2 2 3 1 1 2 2 1

0 0 2 2 3 3 1 2 2 1

0 0 1 1 1

0 0 2 1 1 2 2 2 1

0 0 0 2 2 3 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

00 0 0 0 0

0

1

0

0

00 0 0

0

0 0 00

0

0

1

0

0

(a)

0

0
C

0

1
C

1

1
C

0

2
C

1

2
C

2

2
C

0

3
C

1

3
C

(b)

Figure 2.13: Max -tree representation. (a) a synthetic gray-scale image and (b) max-tree
structure of image in (a).

• Attribute calculation: At this step, for each node in the tree which is in fact a

connected component, the value of attribute A is computed (e.g. the area of the

connected component).

• Filtering: At the filtering step, a criterion T is evaluated for each node. In other

words, at each node the value of attribute A is evaluated with respect to a threshold

value and the tree is pruned by removing the nodes that do not meet the evaluated

criterion.

• Image restitution: Finally, to have the result of applying attribute filter in the

form of a gray-scale image again, the pruned tree structure is transformed back in

the format of an image.

The restored image represents the output of filtering the original image by the attribute

filter A. For example if the computed attribute is the area of the connected components

and if the evaluation criterion is being grater than the threshold λ = 10000, in the

output filtered image, regions whose area are less than 10000 pixels are removed leaving

the input image with larger structures. The max-tree representation of an image is

suitable for opening and thinning transformations. For closing and thickening, the min-



Chapter 2 48

tree structure is used that can be easily obtained by building the max-tree representation

of the input image’s complement.

Similar to the definition of morphological profiles in (2.49), attribute profiles can be

defined as (2.55)

AP(I) = IIk :

IIk = IIT
′
λ
γ with λ = (k − n− 1), ∀k ∈ [n+ 1, 2n+ 1]

IIk = IIT
′
λ
ϕ with λ = (n− k + 1), ∀k ∈ [1, n]

(2.55)

where IIk is a concatenation of thinning (IIγ) and thickening (IIϕ) profiles and T
′ is a

set of ordered criteria. The choice of the attribute filter results in modeling different

kinds of features from the image. For example, if we consider the size of the connected

components as the attribute, similar to the morphological opening by reconstruction, a

multi-scale processing of the input image is performed since we gradually erase bigger

structures from the input image. However, if we consider the length of the diagonal of

the bounding box of each connected component as the attribute, we are able to compare

them with respect to their global extension and this is kind of information that cannot be

modeled by morphological filters. Furthermore, if the homogeneity of the pixels in each

region is considered as the attribute by computing the pixels’ standard deviations, we

will be able to perform a multilevel analysis based on the gray level values of the pixels

not their size or shapes. In fact, any measure that can be computed for the connected

components inside an image may be considered as a morphological attribute. In practice,

often two or more of these attributes are combined leading to extract all sorts of useful

spatial information from the input image which in this case we call the resulting profile

multi-attribute profile (MAP).

2.3.5.5 Extended attribute profiles

Computing the APs explained in Section 2.3.5.4, is applicable only on one band (binary or

gray-scale) images. An extension of this algorithm called extended attribute profile was



Chapter 2 49

PC1

PC2

PCk

AP1

AP2

APk

PCA

Input HSI

EAP

..
. ..
.

Attribute

Filtering

Attribute

Filtering

Attribute

Filtering

Figure 2.14: Process of obtaining the extended attribute profile from an HSI input where
k principal components are preserved in the PCA dimensionality reduction step.

proposed by Dalla Mura et al. as a generalized form suitable for multi or hyperspectral

images [37]. In their algorithm, similar to the case of EMP, PCA is applied on the input

hyperspectral image and the first few PCs are preserved. Then, attribute filters are

applied on each PC image separately and the resulting APs are stacked to form the final

attribute profile according to (2.56)

EAP = {AP (PC1), AP (PC2), ..., AP (PCk)} (2.56)

where EAP is an extended attribute profile obtained using only one attribute (e.g. area).

Figure 2.14 shows a schematic representation of obtaining the EAP from an HSI input.

As it was mentioned earlier at the end of Section 2.3.5.4, usually in practical applica-

tions the goal is to extract spatial features from the input scene using multiple attributes



Chapter 2 50

PC1

PCk

PCA

Input HSI
..

.

an

an

EAP’an
EAPa1

a1

a1

EAP’a2

..
.

..
.

...

a2

a2

EMAP

..
.

..
. ..
.

Figure 2.15: Schematic of the step by step process of building the EMAP structure by
keeping the first k PCs and using n attribute filters.

filters. In the case of having an HSI as the input image, it can be done by computing

extended multi-attribute profiles as is defined in (2.57)

EMAP =
{
EAPa1 , EAP

′

a2
, ..., EAP

′

an

}
(2.57)

where ai represents each of the n attributes used to compute the EMAP data structure.

The prime sign indicates the exclusion of the original PC score image in forming the

corresponding EAP to avoid the presence of each PC image multiple times in the final

EMAP structure. Figure 2.15 shows the process of obtaining the EMAP from an input

HSI using k PCs and n attribute filters. Notice that each EAPai structure is obtained

using the process shown in Figure 2.14. EMAP is a useful method to extract spatial in-

formation of remote sensing scenes which usually include structures with different shape,

size, and textures. In fact, computing EMAPs of remote sensing scenes gives us im-

portant features that helps discriminate between the different classes existing in such

scenes.



Chapter 2 51

2.4 Summary

In this chapter, we first presented an introduction on hyperspectral imaging systems.

Then, we talked about conventional and the state of the art HSI classification methods.

Finally, the last section of this chapter covered some machine learning and image process-

ing methods which we either mentioned in Section 2.2 or will be using in the following

chapters.



Chapter 3

Hyperspectral Image Classification

Using PCDA and SAE

3.1 Introduction

Deep learning has attracted a lot of attention in the area of image processing recently.

Specifically, in the domain of HSI classification, deep learning has shown promising re-

sults. One common issue in classification of hyperspectral datasets using deep neural

networks is overfitting due to existence of many spectral bands and lack of abundant

training samples. To deal with this problem, one common approach is to apply dimen-

sionality reduction methods on hyperspectral datasets [79–82]. DR methods map the

input data into a lower dimensional subspace in order to eliminate information redun-

dancy existing in the spectral bands. PCA has been extensively used in the literature

as the DR method for HSI classification [41, 42, 45, 54, 57]. For instance in [41] and [42],

PCA has been applied to the hypercube before extracting the spatial information of a

target pixel. In [45], the input of the CNN is patches extracted from the first few PCs of

the original data. Applying PCA on an HSI can be divided into two parts as is depicted

in Figures 3.1a and 3.1b. In the first part, the input HSI of size m× n× λ is converted

52



Chapter 3 53

Input HSI

HSI

flattening

�

mxn

...

...

...

(mxn) x �

�

PCA

� x �

Unfolded HSI

Matrix of loading

vectors

(a)

...

...

...

(mxn) x �

�

X

Unfolded HSI

Matrix of the first

k loading vectors

=

� x k

...

...

(mxn) x k

k

Scores

...

Refolding

the

scores

k

mxn

Refolded score

matrix

(b)

Figure 3.1: Steps of applying PCA on an HSI. (a) Unfolding the input HSI and computing
the λ eigenvectors (loading vectors). (b) Multiplying the unfolded HSI by the first k
loading vectors and folding the result back in the form of a cube.



Chapter 3 54

(unfolded) to a 2-D matrix of size (m × n) × λ where m, n, and λ are the number of

rows, columns, and spectral bands of the HSI, respectively. Then, PCA is applied on

the unfolded HSI which results in a matrix of size λ× λ (and also λ eigenvalues which is

not shown in the figure) whose columns contain the ordered eigenvectors of its covariance

matrix . In the second part, the first k eigenvectors (first k columns of the loading vectors

matrix) are retained and the resulting matrix is multiplied by the unfolded HSI. Output

of this multiplication will be a matrix of size (m× n)× k whose rows are the projections

of the spectra of the pixels in the input HSI to the directions of the k first eigenvectors.

Finally, in order to have the output in the form of a cube again, this matrix is refolded

to a 3-D matrix of size m× n× k.

Despite its popularity, PCA is an unsupervised DR method. In other words, it does

not take into account the class information when mapping original data into a lower

dimensional space. Using supervised DR methods such as LDA can possibly improve

the classification results. In 2014, Imani et al. [83] proposed a new feature extraction

method called principal component discriminant analysis (PCDA) to take into account

class information while reducing the dimension of the input data. Their results showed

that their approach outperformed both PCA and LDA methods. We will describe PCDA

method in Section 3.2.2.

In this study, in order to take advantage of both class discriminatory information

while performing DR as well as extracting deep spectral-spatial features of the input

data, we combined PCDA and deep autoencoder (DAE) [41] methods and we called our

method PCDA-SAE. We also performed a thorough search in the hyperparameter space

to find the optimal values for the existing hyperparameters. Experimental results on the

Indian Pines and University of Pavia datasets demonstrate that our method outperforms

both PCDA and DAE methods as well as some of the state of the arts methods even

if only a small portion of the data is used for training. Specially, our method improves

class-specific accuracies of the classes with very limited training samples.

The rest of this chapter is organized as follows. Section 3.2 presents our proposed



Chapter 3 55

framework for hyperspectral image classification. In Section 3.3 experimental results

on the two well-known hyperspectral datasets along with result analysis are presented.

Section 3.4 concludes this chapter.

3.2 Method

3.2.1 Proposed framework

The framework of our proposed method, PCDA-SAE, is shown in Figure 3.2. In our

method, in order to extract and use deep spectral-spatial features for classification, the

information of the neighbors of each target pixel is stacked to its spectrum as suggested

in [41]. However, unlike [41] and the majority of the deep learning-based hyperspectral

image classification algorithms which use unsupervised dimensionality reduction methods

such as PCA, we took advantage of the PCDA method in order to incorporate class infor-

mation while reducing the dimensionality of the input hyperspectral image. The reason

for such a replacement is the fact that PCA maps the input data on the dimensions along

which data vary the most without considering class information. In other words, PCA

is planned for accurate data representation and not necessarily for data classification.

Considering this fact, by obtaining the spatial information by the means of the PCDA

method we deliver more representative feature vectors to the SAE network which results

in higher classification accuracies as is shown in the next section. Our input feature

vector, F , to the SAE is then as follows:

F =
[
P Y PCDA

]
(3.1)

where P represents the spectrum vector of each pixel and Y PCDA is the feature vector

obtained from the PCDA method. To obtain Y PCDA, first the dimension of the input

HSI is reduced by applying the PCDA method, then a neighborhood area around each

target pixel is considered (e.g., a 5x5 square neighborhood as is shown in Figure 3.2).



Chapter 3 56

P
ix

e
l 

S
p

e
c
tr

u
m

Input hypercube

S
p

a
ti

a
l 

D
a
ta

SAE Classifier

Deep spectral-

spatial feature

vector

Figure 3.2: Block diagram of the proposed method. PCDA is employed to capture
spatial information of each target pixel which then will be stacked with the spectrum
of the target pixel to form the input of the SAE network. This network is composed of
multiple sparse autoencoders.

Next, the PCDA values of the neighbors are flattened to form the spatial feature vector

of the target pixel. To extract deep spectral-spatial features, we employed a deep SAE

with sparse autoencoders in its layers. Please refer to Figure 2.8 for a sample AE and

SAE. In the following subsection, we explain how the PCDA method works.

3.2.2 Principal component discriminant analysis

PCDA is a combination of PCA and LDA methods [83]. They both are amongst the best

well-known DR approaches. However, unlike PCA which is an unsupervised method,

LDA considers class information for finding the best subspace for the projection of the

input data. The main objective of PCDA is to use PCA components with smaller power

as well as the ones with the most variance and utilize possible class discriminatory infor-

mation of these components by applying LDA on them.

Considering X as the original input of size d×N where d is the dimension and N is

the number of input vectors, PCDA method consists of four major steps: In the first step,



Chapter 3 57

having applied PCA on X and keeping the first n1 eigenvectors, input data is mapped

along these components as follows:

Y 1 = U 1X and U 1 =


u1

u2

...

un1

 (3.2)

where U 1 is an n1 × d matrix containing the first n1 eigenvectors corresponding to the

n1 largest eigenvalues obtained from the input data. Also, Y 1 is the input data mapped

to the direction of the n1 principal components and it is of size n1 × N . Unlike PCA

method, in PCDA, components with smaller variances are not discarded. Considering

U 2 as a (d−n1)× d matrix whose rows contain the PCs with smaller variances than the

first n1 eigenvectors, in the second step, original data is mapped along the U 2 matrix:

Y 2 = U 2X and U 2 =


un1+1

un1+2

...

ud

 (3.3)

where, Y 2 is a (d− n1)×N matrix containing the data mapped in the direction of the

(d− n1) less powerful eigenvectors. Next, LDA is applied on Y 2 in order to capture the

useful class information in the data mapped to the direction of the eigenvectors with less

variance. To do so, the n2 first eigenvectors of the S−1w Sb matrix is chosen and stored in

matrix U 3. Where Sw and Sb are the within and between-class scatter matrices of Y 2.

Finally, Y 3 is calculated as follows:

Y 3 = U 3Y 2 and U 3 =


u1

u2

...

un2

 (3.4)



Chapter 3 58

where U 3 is an n2×(d− n1) matrix whose rows are the first n2 eigenvectors of the S−1W SB
associated with the n2 largest eigenvalues. Also, Y 3 is an n2 ×N matrix containing Y 2

mapped along these n2 components. The importance of this step is to utilize discrimi-

nation information existing in the PCA components with less variance by applying LDA

on Y 2. PCDA features are built by stacking features obtained in steps one and three as

follows

Y PCDA =

Y 1

Y 3

 (3.5)

where Y PCDA is an (n1 + n2) × N matrix and each column of it contains the PCDA

features of each input vector. n1 and n2 which represent number of retained components

in the PCA and LDA steps pf the PCDA method are two hyperparameters of the model

that need to be determined. We will show in Section 3.3.2 how we choose these values.

In the next section, we will see how combining features obtained by (3.5) with the SAE

network improves classification accuracies.

3.3 Experimental results

In this section, we evaluate the performance of our method and compare it to several

hyperspectral image classification algorithms. The metrics used for the performance

evaluation are class-specific accuracy, overall accuracy (OA), average accuracy (AA), and

Kappa coefficient. We have used two well-known online HSI datasets including Indian

Pines and University of Pavia scenes1. All experiments are performed using Matlab

R2017a on a desktop with an Intel Core i5 2.7GHz cpu and 8GB RAM.

3.3.1 Data description

1) Indian Pines: This dataset has been collected by an airborne visible/infrared imaging

spectrometer (AVIRIS) sensor over the Indian Pines site in North-western Indiana, USA.
1http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes


Chapter 3 59

(a) (b)

Alfalfa

Corn-notill

Corn-mintill

Corn

Grass-pasture

Grass-trees

Grass-pasture-mowed

Hay-windrowed

Oats

Soybean-notill

Soybean-mintill

Soybean-clean

Wheat

Woods

Buildings-Grass

Stone-Steel

Figure 3.3: Indian Pines dataset. (a) False color image and (b) pseudo ground truth
image.

The wavelength range of this hyperspectral database is 0.4-2.5µm. There are 224 spectral

bands in this HSI and each band contains a 145×145 image. Having removed water

absorption bands, number of spectral bands was reduced to 200. A false color image and

the ground truth map of the Indian Pines dataset containing 16 different classes is shown

in Figure 3.3. Also, Table 3.1 lists the number of labeled samples for each class in this

dataset.

2) University of Pavia: This database has been collected by a reflective optics system

imaging spectrometer (ROSIS) sensor over Pavia, northern Italy. University of Pavia hy-

perspectral dataset has 103 spectral bands in the wavelength range of 0.43-0.86 µm with

each band having the spatial extent of 610×340 pixels. Ground truth of this database

contains 9 different classes. True color image, ground truth map, and number of labeled

samples of this HSI are shown in Figures 3.4a, 3.4b, and Table 3.2, respectively.



Chapter 3 60

Table 3.1: Number of labeled samples for the different sixteen classes of the Indian Pines
dataset

No Class Available data
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

(a) (b)

Asphalt

Meadows

Gravel

Trees

Painted metal

sheets

Bare soil

Bitumen

Self-blocking

bricks

Shadows

Figure 3.4: University of Pavia dataset. (a) True color image and (b) pseudo ground
truth image.



Chapter 3 61

Table 3.2: Number of labeled samples for the different nine classes of the university of
Pavia dataset

No Class Available data
1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Tress 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

3.3.2 Parameter tuning

Although the network’s weights are learned during the training, there are hyperparam-

eters in our method that need to be carefully tuned. These hyperparameters include:

spatial extent of the neighborhood area of the target pixel when extracting the spatial

information (neighborhood size), number of retained principal components in PCA and

LDA steps of the PCDA method, (n1 and n2, respectively), and number of neurons in

each autoencoder (number of hidden units). We used a SAE with two hidden layers

in its architecture. The reason behind employing only two hidden layers is to keep the

number of trainable parameters low and prevent our deep learning model to overfit to

the available training data.

To see how changing the mentioned hyperparameters affects the OA, we tried different

values and trained the network for each combination on the training set and evaluated

the trained network on the test set. Since a deep neural network requires many training

samples to be trained effectively, in this set of experiments, in order to let the SAE be

trained with sufficient training data, we used 50% of the data for training and 50% for

the test. So, we split the labeled samples randomly into two sets of training and test

with the ratio of 1:1. All sets of experiments are repeated ten times using randomly

selected labeled samples and the average value of each accuracy metric alongside with



Chapter 3 62

the corresponding standard deviation is reported. Considering the spatial resolution of

the datasets used in this chapter, we used three different values for the neighborhood

region size including 3×3, 5×5, and 7×7 pixels. These values are consistent with the

neighborhood sizes normally used in the literature to extract the spatial information

of a target pixel. Although one can use regions greater than 7×7 pixels, it may not

be very suitable particularly for classes that own small patches of pixels in the image.

Considering a large square neighborhood area around a target pixel in such patches results

in incorporating spectral information of the neighbors that do not necessarily share the

same class label as the target pixel. Although using larger values for the neighborhood

size can still be beneficial for the classes that are represented with large and wide patches

in the image, limiting this quantity to the value of 7, increases the generalization power

of our model.
Since in PCA and LDA methods the first few components preserve the most variations

in the dataset, we used 5 different values (1 to 5) for the n1 and n2 hyperparameters. We

trained the SAE for 75 (3×5×5) different combinations of these three hyperparameters.

For this set of experiments, we used a two-layer SAE with 60 hidden units in the first

and 30 units in the second sparse AE.

Distribution of the OA obtained by our method on Indian Pines and University of

Pavia datasets using different values for the three hyperparameters are shown in Figures

3.5 and 3.6, respectively. Also, Figures 3.7 (a) and (b) demonstrate the distribution of

the OA using different values for the n1 and n2 and the neighborhood size of 7 × 7.

As can be seen from Figures 3.5 and 3.6, a larger neighborhood size results in higher

classification accuracies for both datasets. Also in general, higher values for the n1 and

n2 increases the OA. For example, for the two datasets, keeping 5 components in the LDA

step of the PCDA method (i.e., n2 = 5) results in higher classification accuracies and

this is because of the fact that retaining more components enhances the spatial feature

vector. Another common observation is the increase in OA with the increase in the

number of components in the PCDA method. We also observed that for the University

of Pavia dataset, for a fixed number of retained components, keeping more components



Chapter 3 63

(a) (b)

(c)

Figure 3.5: Distribution of the OA obtained by our method with different values for the
n1 and n2 for Indian Pines dataset using neighborhood sizes of (a) 3× 3, (b) 5× 5, and
(c) 7× 7.

in the LDA step, than PCA step results in better OAs . On the one hand, keeping more

components results in higher accuracies. On the other hand, it increases the size of the

input of the deep network and consequently rises computational cost. Therefore, to have

a trade off between the accuracy and computational cost we have chosen n1 = 3 and

n2 = 4 for the Indian Pines and n1 = 2 and n2 = 3 for the University of Pavia datasets,

respectively. Also, for both datasets neighborhood size is chosen to be 7× 7 pixels. For

the number of hidden units for each AE, we tried 50-120 units and 40-110 units with the

steps of 10 for the Indian Pines and University of Pavia datasets, respectively. Figures



Chapter 3 64

(a) (b)

(c)

Figure 3.6: Distribution of the OA obtained by our method with different values for the
n1 and n2 for University of Pavia dataset using neighborhood sizes of (a) 3×3, (b) 5×5,
and (c) 7× 7.

3.8 (a) and (b) show the distribution of the OA for the different number of hidden units

for the two datasets. As can be seen from these figures, as the number of hidden units

increases, the OA also generally increases. However, since the performance seems to be

very close for the different values of this hyperparameter, we chose hidden unit number

of 80 for both datasets.



Chapter 3 65

1 2 3 4 5

n1

90

91

92

93

94

95

96

97

98

O
v
e

ra
ll 

A
c
c
u

ra
c
y
 (

%
)

n2=1

n2=2

n2=3

n2=4

n2=5

(a)

1 2 3 4 5

n1

93

94

95

96

97

98

99

100

O
v
e

ra
ll 

A
c
c
u

ra
c
y
 (

%
)

n2=1

n2=2

n2=3

n2=4

n2=5

(b)

Figure 3.7: Distribution of the OA obtained by our method using different values for the
n1 and n2 for (a) Indian Pines and (b) University of Pavia datasets.

3.3.3 Performance evaluation

To check the effectiveness of our proposed approach, we compared it with several classi-

fication methods such as support vector machine (SVM), principal component discrim-

inant analysis (PCDA) [83], deep auto-encoder (DAE) with joint features [41], EMAP,

CNN-PPF [47], and EMAP-SAE [48]. We implemented both linear and kernel SVM

using libsvm library [84] and used gaussian radial basis function (RBF) kernel for the

non-linear SVM. In the experiments, the input of the SVM classifier is the spectrum of

each pixel. Also, we have used RBF SVM with the PCDA and EMAP feature extraction

methods. To find the best values for the parameters of the SVM classifier wherever it is

employed in this chapter, we performed 10-fold cross validation and the optimal values

are listed in Table 3.3 for both datasets. For the DAE, EMAP-SAE, CNN-PPF, and our

method LR classifier with the softmax activation is used.

PCDA is implemented based on [83] and n1 and n2 are set to 8. For the DAE, similar

to PCDA-SAE, we employed 3×3, 5×5, and 7×7 for the neighborhood size. However,

since the only dimensionality reduction method used in DAE is PCA, 10 values (1 to



Chapter 3 66

50 60 70 80 90 100 110 120

Number of hidden units

95

95.5

96

96.5

97

97.5

98

O
A

 (
%

)

(a)

40 50 60 70 80 90 100 110

Number of hidden units

97

97.2

97.4

97.6

97.8

98

98.2

98.4

98.6

98.8

99

O
A

 (
%

)

(b)

Figure 3.8: Distribution of the OA of our method vs different values of the number of
hidden units for (a) Indian Pines and (b) University of Pavia datasets.

Figure 3.9: Distribution of the OA obtained by DAE-LR using different values for n1 and
the neighborhood size for the Indian Pines dataset.

10) is used for the n1 hyperparameter which in this case represents number of retained

components in the PCA step. Figures 3.9 and 3.10 show the OA obtained by DAE-

LR method on the Indian Pines and University of Pavia datasets for different values of

neighborhood size and n1. As can be seen from Figure 3.9, increasing n1 form 1 to 6

results in improving the OA. However, increasing this parameter after 6 has an opposite



Chapter 3 67

Table 3.3: Best values for the parameters of the SVM classifiers used in this study after
performing 10-fold cross validation.

Databases

Methods Indian pines University of Pavia

Linear SVM c = 102 c = 101

RBF SVM c = 102, g =1 c = 103, g = 0.1

PCDA-RBF SVM c = 105, g =0.1 c = 106, g = 0.01

EMAP RBF SVM c = 102, g =0.1 c = 104, g = 0.001

Figure 3.10: Distribution of the OA obtained by DAE-LR using different values for n1

and the neighborhood size for the University of Pavia dataset.

effect. So, n1=6 is chosen to be the optimal value for the Indian Pines dataset. For the

University of Pavia dataset, this parameter is chosen to be 5 to be consistent with the

total number of components used in PCDA-SAE. Also, for both datasets, neighborhood

size of 7× 7 is used.

Class-specific accuracies, OA, AA, and Kappa coefficient obtained by all the methods

experimented in this chapter and for the two hyperspectral datasets are listed in Tables

3.4 and 3.5. In this set of experiments 50% of the samples are used for training. As can

be seen from these tables, PCDA-SAE outperforms all other methods in terms of the all

accuracy metrics. For example according to Table 3.4, the OA obtained by our method is



Chapter 3 68

Table 3.4: Classification accuracies (%) of different methods for Indian Pines dataset
using 50% of the training data.

Class Linear SVM RBF SVM PCDA-SVM EMAP-SVM DAE-LR EMAP-SAE PCDA-SAE

1 79.32 83.48 83.48 90.87 87.46 82.61 97.75

2 82.69 86.61 85.71 84.37 93.14 94.06 95.76

3 70.21 81.71 71.83 94.51 92.74 92.82 96.50

4 64.21 78.99 74.79 96.72 85.20 92.35 95.58

5 94.96 95.87 93.10 94.01 96.33 94.92 98.57

6 97.97 97.62 96.74 98.25 99.29 99.09 99.60

7 75.14 86.43 84.29 87.86 86.94 80.71 96.27

8 98.92 98.70 98.12 100 99.41 99.54 99.91

9 75.68 75.00 79.00 90.00 94.61 80.00 96.18

10 72.59 87.00 80.60 78.85 93.72 92.28 95.67

11 79.38 90.59 86.79 97.63 94.96 95.88 96.04

12 78.16 87.27 82.79 94.07 90.26 91.72 96.87

13 98.54 98.83 98.35 97.96 98.04 98.93 99.79

14 94.35 96.70 96.90 99.62 98.30 98.44 99.55

15 71.48 71.81 66.63 99.74 93.24 94.66 96.24

16 93.25 95.11 91.28 97.87 98.79 90.64 98.21

OA 82.99±0.60 89.82±0.40 86.59±0.49 93.77±0.18 94.87±0.70 95.22±0.32 97.12±0.43

AA 82.93±1.83 88.23±0.98 85.65±1.44 93.90±1.26 93.90±1.06 92.42±1.38 97.41±0.66

Kappa 0.81±0.01 0.88±0.005 0.85±0.006 0.93±0.002 0.94±0.008 0.94±0.004 0.97±0.005

Table 3.5: Classification accuracies (%) of different methods for University of Pavia
dataset using 50% of the training data

Class Linear SVM RBF SVM PCDA-SVM EMAP-SVM DAE-LR EMAP-SAE PCDA-SAE

1 90.42 91.88 94.12 98.34 96.78 97.29 98.76

2 95.97 97.28 97.71 99.64 99.32 98.80 99.84

3 71.11 75.96 72.57 98.91 87.22 93.01 93.80

4 91.62 93.90 93.04 90.37 98.30 97.75 99.17

5 99.85 99.88 99.85 99.45 99.85 99.67 99.91

6 56.67 79.06 90.02 98.78 95.67 95.52 99.42

7 78.00 82.90 85.20 97.61 84.23 93.65 96.00

8 81.65 83.51 90.17 95.78 94.43 94.46 96.10

9 94.10 96.27 99.79 71.6 99.40 99.86 99.77

OA 87.26±0.19 91.44±0.10 93.76±0.10 97.61±0.41 96.96±0.58 97.34±0.11 98.84±0.15

AA 84.38±0.27 88.96±0.29 91.39±0.23 94.49±0.32 95.02±0.96 96.67±0.21 98.09±0.25

Kappa 0.83±0.002 0.88±0.001 0.92±0.001 0.96±0.002 0.96±0.008 0.96±0.002 0.98±0.002



Chapter 3 69

by 2.25% and 1.90% higher than those obtained by DAE-LR and EMAP-SAE methods,

respectively. Also, for the University of Pavia dataset the OA obtained by our method

is superior to DAE-LR and EMAP-SAE by 1.88% and 1.50%, respectively. Moreover,

according to these tables our method results in lower variance in class-specific accuracies

for both datasets. In other words, our method delivers high classification accuracies

for all classes in the dataset. For example, based on the last column of Table 3.4, the

minimum and maximum class-specific accuracies obtained by our method and EMAP-

SAE are [95.58%, 99.91%] and [80.00%, 99.54%], respectively. The difference of these

limits for our method is 4.33% which is remarkably lower than the 19.54% difference

obtained by EMAP-SAE method. Similar argument can be made for the University of

Pavia dataset as well.

Insufficiency of the labeled data to train a classifier is a common issue in the domain

of remote sensing hyperspectral image classification. Therefore, it is important to check

the robustness of a classifier with respect to the size of the training data. Therefore, we

also trained our model with a different ratio of train and test samples. For the Indian

Pines dataset, we randomly chose 20% of each class for training and the remaining 80%

for the test. However, this dataset contains classes with very few labeled samples such as

Alfalfa, Grass-pasture-mowed, Oats, and Stone-Steel-Towers compared to other classes.

Therefore, in order to reduce the effect of having an unbalanced dataset in the results,

in this case, we used half of the data for training and the rest half for the test.

For the University of Pavia dataset 10% of the labeled samples of each class is used

for training and the rest 90% for the test. Details of the number of train and test samples

for each dataset are given in Tables 3.6 and 3.7. To make fair comparisons, the same

amount of data is used in order to train the other models as well. As can be seen from

these tables, PCDA-SAE outperforms other methods in terms of OA, AA, and Kappa

coefficient, and class-specific accuracies for the majority of classes. The last row of Tables

3.6 and 3.7 lists the required test times for the different methods. As can be seen, the test

time of our method is relatively lower than the other methods which makes it a suitable

choice for possible real time applications.



Chapter 3 70

Table 3.6: Classification accuracies (%) and the test time (s) of the different methods on
Indian Pines dataset using 20% of the labeled samples for training.

No. of samples Methods

Class Train Test SVM PCDA-
SVM DAE-LR EMAP-

SVM
CNN-PPF
LR

EMAP-
SAE

PCDA-
SAE

1 23 23 84.35 84.78 91.74 92.17 90.43 80.87 98.26
2 286 1142 81.50 82.86 83.91 79.84 91.30 88.04 87.59
3 166 664 75.83 68.64 82.86 91.39 83.73 87.86 90.69
4 47 190 65.42 61.89 76.58 92.05 84.05 87.37 84.63
5 97 386 92.62 90.41 94.35 84.66 93.70 92.77 96.27
6 146 584 96.37 94.59 98.34 96.46 99.67 97.58 99.49
7 14 14 88.57 87.86 89.29 90.71 84.28 87.86 95.00
8 96 382 96.52 95.31 98.69 99.87 99.45 96.23 99.79
9 10 10 79.00 74.00 95.00 97.00 68.00 87.00 100
10 194 778 81.23 75.12 87.04 74.88 87.18 87.39 89.37
11 491 1964 86.25 85.01 89.45 96.69 93.66 93.95 91.22
12 119 474 80.78 74.83 74.18 91.81 90.67 84.77 92.87
13 41 164 97.80 94.09 98.41 97.87 98.29 96.28 99.57
14 253 1012 96.13 96.17 96.15 98.85 97.74 97.67 98.22
15 77 309 60.45 54.50 85.60 97.96 71.59 91.84 91.84
16 46 47 94.04 94.04 99.36 100 99.57 90.63 98.51

OA 2106 8143 85.47
±0.34

83.18
±0.53

88.96
±0.50

91.32
±0.60

91.95
±0.98

91.97
±0.53

92.81
±0.12

AA 84.80
±1.08

82.13
±1.26

90.06
±0.96

92.64
±0.93

89.58
±0.93

90.51
±1.11

94.58
±0.16

Kappa 0.83
±0.004

0.81
±0.006

0.87
±0.006

0.90
±0.007

0.91
±0.011

0.91
±0.006

0.92
±0.001

Test
time

3.20 0.49 0.12 1.14 2.41 0.86 0.11

Classification maps obtained by the methods investigated in this chapter are illus-

trated in Figures 3.11 and 3.12 using 20% and 10% training data for the Indian Pines

and University of Pavia datasets, respectively. As can be seen from these figures con-

sistent with the results presented in Tables 3.6 and 3.7, our method produces smoother

output maps which for the majority of classes include fewer misclassified pixels.



Chapter 3 71

Table 3.7: Classification accuracies (%) and the test time (s) of the different methods on
University of Pavia dataset using 10% of the labeled samples for training.

No. of samples Methods

Class Train Test SVM PCDA-
SVM

DAE-
LR

EMAP-
SVM

CNN-PPF
LR

EMAP-
SAE

PCDA-
SAE

1 663 5968 89.17 93.09 94.07 90.08 98.82 95.32 96.63
2 1865 16784 96.32 97.25 98.70 97.85 99.28 97.64 99.55
3 210 1889 71.97 70.96 84.43 93.75 82.30 92.79 85.61
4 306 2758 92.32 91.07 95.92 96.36 93.22 94.76 97.68
5 134 1211 99.47 99.71 99.45 99.31 99.73 99.30 99.20
6 503 4526 72.67 86.00 89.69 91.07 95.42 91.38 98.42
7 133 1197 75.23 82.68 82.53 89.66 87.05 89.49 89.90
8 368 3314 75.98 88.89 90.06 94.51 92.58 91.40 90.62
9 95 852 94.84 99.68 98.23 77.89 99.42 99.29 99.55

OA/Total 4277 38499 88.61
±0.17

92.51
±0.12

94.79
±0.43

94.60
±0.07

96.55
±0.32

95.40
±0.30

97.07
±0.16

AA 85.33
±0.45

89.93
±0.16

92.56
±0.64

92.28
±0.26

94.20
±1.10

94.60
±0.46

95.24
±0.24

Kappa 0.85
±0.002

0.90
±0.002

0.93
±0.006

0.93
±0.001

0.95
±0.004

0.94
±0.004

0.96
±0.002

Test
time

10.09 1.80 0.36 5.09 8.02 0.46 0.34

3.4 Conclusion

In this chapter, a method for classification of hyperspectral images is proposed. In order

to exploit useful class information while performing dimensionality reduction as well as

deep spectral-spatial features of the input data, PCDA and DAE methods are combined.

In our model, SAE is composed of layers of sparse autoencoders. The resulting method,

called PCDA-SAE, is applied on the Indian Pines and University of Pavia datasets.

In the experiments, we used two different ratios of training and test samples and four

accuracy metrics OA, AA, kappa coefficient, and class-specific accuracy. In order to

find the best values for the hyperparameters of our model we did a thorough search in

the model’s hyperparameter space and through extensive experiments trained over one

hundred networks for each of the two datasets used in this study. The experimental

results demonstrated that PCDA-SAE improves the classification results of the PCDA



Chapter 3 72

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3.11: Indian Pines.(a) Ground truth and classification maps obtained from differ-
ent methods using 20% of labeled data for training. (b)RBF-SVM, (c) PCDA-SVM, (d)
DAE-LR, (e) EMAP-SVM, (f) CNN-PPF-LR, (g) EMAP-SAE, and (h) PCDA-SAE.

and DAE methods as well as some conventional and recent deep-learning based HSI

classification algorithms in terms of all the accuracy metrics used even if only 10% or

20% of the labeled data is used for training. Moreover, the test time associated with our

proposed method is less than those of the other methods which makes our method more

suitable for real-time remote sensing applications.



Chapter 3 73

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.12: University of Pavia.(a) Ground truth and classification maps obtained from
different methods using 10% of labeled data for training. (b)RBF-SVM, (c) PCDA-SVM,
(d) DAE-LR, (e) EMAP-SVM, (f) CNN-PPF-LR, (g) EMAP-SAE, and (h) PCDA-SAE.



Chapter 4

Distance transform based

spectral-spatial feature vector for

HSI classification with SAE

4.1 Introduction

Pixel-wise classification of hyperspectral images is a common practice in the remote sens-

ing domain. Recently, deep learning based approaches have attracted a lot of attention

among researchers. One of the significant factors to enhance the classification accuracy

of remote sensing hyperspectral image datasets is to effectively combine spectral and

spatial information to form the input feature vector to the deep network. In fact, in

addition to the spectral data, spatial location of the pixels provide a valuable source of

information which improves the classification results. Exploiting the spatial contextual

information from an HSI is generally done by two types of methods: In the first type,

spatial information are stacked to the spectrum of each pixel and a unified joint feature

vector is fed to the network [41, 42, 48]. In the other kind, however, spatial information

are used during the test phase to reduce the noise and smooth the primary classification

74



Chapter 4 75

map [47].

In both types of approaches, pixels are not considered as individual samples, but

their location in the image and the surrounding neighbors help identify their labels. But

should all the neighbors contribute the same when collecting the spatial information of

the target pixels? In this chapter, we propose a joint spectral-spatial feature extraction

method that assigns different weights to the neighboring pixels depending on how far

they are from the edges in the image. In other words, the location of pixels with respect

to the edges in the HSI determines how much they contribute in forming the spatial

feature vector. To obtain such a distance measure, having calculated the gradient image

of the input HSI, we measured the distance transform of all pixels with respect to the

dominant edge pixels in the image. These distance transform values are obtained by the

means of our proposed method for finding a distance transform image from an input

HSI. These values are then serve as extra features to each pixel’s spatial feature vector.

Furthermore, in order to add geometric attributes, we also integrated EMAP features [37]

to the spatial feature vector. The joint spectral-spatial feature vector is given to a two

layer stacked autoencoder including a sparse AE in each layer. Finally, in order to see

the effect of using class discriminatory information, we reduced the spectral dimension of

the input HSI datasets with the PCDA [83] method as discussed in Chapter 3 as well as

PCA approach and applied our proposed distance transform-based spatial feature vector

on the resulting hyprecube. We performed extensive experiments on three hyperspectral

datasets (Salinas, University of Pavia, and Surrey) and results show that our proposed

method achieves higher classification accuracies compared to some traditional as well as

recent deep learning based algorithms.

This chapter is organized as follows: Section 4.2 presents our proposed feature ex-

traction and classification framework. Experimental results are presented in Section 4.3

and Section 4.4 concludes this chapter.



Chapter 4 76

(a) (b)

Figure 4.1: Schematic of the justification of using the distance transform in the spatial
feature vector.

4.2 Methodology

The idea behind using spatial information as well as spectral information in classification

of hyperspectral images is the fact that in an HSI, adjacent pixels belong to the same

class with a high probability [43]. This makes sense if these neighboring pixels are far

from the edges in the image. As we get closer to an edge the probability that adjacent

pixels belong to different classes increases. Consider cases shown in Figure 4.1. In Figure

4.1a, the orange border encompasses group of pixels that all belong to the same class.

The blue square is a pixel located not close nor on the border of the area outlined with

the orange line. Green squares depict the neighborhood area around the blue pixel. Due

to the spatial location of the blue pixel, it sounds reasonable to assume that this pixel

and its neighbors belong to the same class, so when forming the feature vector of the

blue pixel, we consider the spectral values of the green region as features of the blue pixel

(since they all have a same label).

Lets consider another case when the target pixel is close or on the border. Such a pixel

along with its neighborhood are depicted as red and pink in Figure 4.1b, respectively.

In this case, not all neighbors belong to the same class as the red pixel, so, the distance



Chapter 4 77

of pixels to the border seems to be important. We would like to decrease the effect

of the neighbors in the target pixel’s spatial feature if they are close or on an edge.

Therefore, we present the value of each neighbor along with its distance transform value.

The further the neighbor is located with respect to an edge the larger its corresponding

distance transform value becomes and vice versa. In order to find the distance transform

image from an HSI cube, we propose the following procedure: First, to remove noise, we

applied Gaussian smoothing filter on each band of the input HSI. Then, we calculated

the gradient image by employing the method described in [85] as follows:

• First, for each spectral band, we computed the image gradients at the four major

directions using Sobel filters [86] according to (4.1). These directions are the ones

corresponding to horizontal edges (0°), vertical edges (90°), and the two diagonal

edges (45°and 135°).

Gij = Ij ∗ hi

s.t i ∈ {0, 45, 90, 135} and j = 1, 2, ..., N
(4.1)

where Ij is the image at band j, hi is the Sobel filter at one of the four specified

directions, and Gij is the gradient image of band j obtained from the ith Sobel

filter. Also, ∗ represents the convolution operation.

• Next, in order to obtain the single image gradient for each direction, the corre-

sponding gradients of all bands are added together

Gi =
N∑
j=1

Gij (4.2)

where Gi is the gradient image at direction i.

• Finally, to compute the final gradient image of the whole HSI cube, the average of

the four directional image gradients is computed

G = (1/4)×
4∑
i=1

Gi (4.3)



Chapter 4 78

where G is the output gradient image of the input HSI.

HSI Cube Gradient

Image
Binary

Mask

Morphological

Opening

Distance

Transform Image

Figure 4.2: Steps of obtaining the distance transform image of the Salinas hyperspectral
dataset.

Having calculated the gradient image in order to extract strong edges, we thresholded

the gradient image. To remove small connected components in the thresholded image,

morphological opening is applied on the resulting image. Finally, in order to find the

distance of the pixels in the original image to the foreground (edge) pixels, we used

distance transform [87] with euclidean distance metric

Deuc =

√
(x1 − x2)2 + (y1 − y2)2 (4.4)

where (x1, y1) and (x2, y2) represent two pixels’ locations in the image. In the resulting

distance transform image, the darker the pixel is, it is closer to an edge and vice versa.

Figure 4.2 shows the steps of obtaining the distance transform image of the Salinas

hyperspectral dataset as an example.

Having calculated the distance transform values, we included them in the spatial

feature vector as is shown in the block diagram of our proposed method in Figure 4.3. In

order to find the spatial features of the pixels in the HSI, we first reduced the dimension

of the data along its spectral axis using the PCA method. For each target pixel (blue

square), a surrounding neighborhood area (green region) is considered. Then, to form our



Chapter 4 79

PC1

+

PC1-1 PC1-2 PC1-3 D1 PC2-1 PC2-2 PC2-3 D2 …. PC8-1 PC8-2 PC8-3 D8

Distance

Transform Values

Spatial Feature

Vector

+ EMAP Features

EAPdEAPa

N6

D1 D2 D3

D4 D5

D6 D7 D8

Stacked Auto-encoder

PC Score

Values

N1 N2 N3

N4 N5

N7 N8

PC2

PC3

N6

Figure 4.3: Block diagram of our proposed method. The cube shown in the top row de-
picts only a neighborhood region around the blue pixel. Also, the spectral dimensionality
of the input HSI (not shown in this figure) is reduced using the PCA method and as an
example 3 PCs are retained.

primary spatial feature vector, PC values of the neighbors and distance transform values

from the corresponding distance transform image (Figure 4.2) are combined according to

(4.5)

Szp = horzcat(PCi, Dxi)

s.t i = 1, ..., p
(4.5)

where Szp and xi represent the primary spatial feature vector associated with the target

pixel z and the ith pixel in the neighborhood region around this pixel, respectively. PCi

and Dxi represent a vector containing the PC score values and the distance transform

value (scalar) associated with pixel xi, respectively. Also, horzcat(.) indicates horizontal

concatenation. The closer the neighbor is to an edge, the lower its corresponding distance

value is; so, we want that neighbor to have less contribution in adding spatial information

to the target pixel. In other words, we do not want all neighbors to contribute the same

in adding spatial information to the target pixel.

To extract even more spatial information by adding geometric attributes to the pri-

mary spatial feature vector similar to [48], we incorporated EMAP features (equation



Chapter 4 80

4.7) to Szp and formed our secondary spatial feature vector

Szs = [Szp, EMAP ] (4.6)

where

EMAP =
{
EAPa1 , EAP

′

a2
, ..., EAP

′

an

}
(4.7)

In equation (4.7), each EAP is computed according to (4.8). (For a full explanation

of the structure of EMAP features please refer to Section 2.3.5)

EAP = {AP (PC1), AP (PC2), ..., AP (PCk)} (4.8)

Finally, the pixel’s spectrum is added to the proposed spatial feature vector to form

the input data to the stacked autoencoder.

In Section 4.3, we carry out extensive experiments to show the effectiveness of our

proposed method in classification of remote sensing hyperspectral scenes. In fact, we

performed three sets of experiments using different kinds of spatial feature vectors com-

bined with the spectrum of each sample. We itemized the three proposed spatial feature

vectors in this chapter as follows:

• First, we used PCA dimensionality reduction method and our primary proposed

feature vector, called Proposed-P (the one without the EMAP features).

• Next set of experiments was done using PCA and our second feature vector includ-

ing EMAP features, called Proposed-S.

• Finally, we used PCDA [83] DR method to reduce the spectral dimension of the

input HSI and combined it with our primary feature vector to form a new type

of spatial features. Process of forming this final type of spatial feature vector and

its employment in the classification problem is shown in Figure 4.4. This set of

experiments was performed to investigate the effect of using class labels in the DR



Chapter 4 81

C1

+

Distance 

transform values

N6

D1 D2 D3

D4 D5

D6 D7 D8

Stacked Auto-encoder

PCDA score 

values

N1 N2 N3

N4 N5

N7 N8

C2

C3

N6

PCDA

C1-1

C1-2

C1-3

D1

C2-1

C2-2

C2-3

D2

C8-1

C8-2

C8-3

D8

Distance 

Tranform 

Spectrum +

 spatial feature vector

Spatial feature vector

Figure 4.4: Block diagram of the proposed feature vector obtained by PCDA and distance
transform values.

step prior to form our first proposed spatial feature vector on classification results.

4.3 Experimental Results

To check the effectiveness of our proposed method we applied it on three hyperspectral

datasets listed in Section 4.3.1. The metrics used for the performance evaluation are class-

specific accuracy, overall accuracy (OA), average accuracy (AA), and Kappa coefficient.

In remote sensing HSI applications, there is normally a limited number of available ground

truth pixels. Consequently, training a deep learning model becomes problematic due to

the need of many ground truth samples to train a deep neural network whose architecture

has many trainable parameters. As a result, it is important to check the reliability of a

deep learning-based classifier versus using only a small portion of available labeled pixels

for training. Therefore, in the experiments we used only 10% of the labeled samples

for training and the rest 90% for testing. We repeated each experiment 10 times and

reported the mean value along with standard deviation of the accuracy metrics. It should



Chapter 4 82

be noted that in each of these 10 iterations, training samples are picked randomly.

4.3.1 HYPERSPECTRAL DATASETS

4.3.1.1 Salinas

This dataset was collected by the means of AVIRIS in 1998 over Salinas Valley, California.

Salinas hyperspectral dataset originally included 224 spectral bands. However, having

removed the 20 water absorption bands, it is left with 204 bands. This database contains

an image of size 512 × 217 pixels in each band and has the high spatial resolution of

3.7 meters. The ground truth of the Salinas scene covers 16 classes including vegetables,

bare soil, and vineyard fields. Figure 4.5 shows the false color image of this dataset along

with its pseudo color ground truth. Number of available labeled, train, and test samples

used in this chapter are listed in Table 4.1.

4.3.1.2 University of Pavia

This database has been gathered by a ROSIS over the University of Pavia, northern Italy.

University of Pavia dataset has 103 spectral bands in the wavelength range of 0.43-0.86

µm. The spatial extent of each band is 610×340 pixels. The ground truth image contains

9 different classes. False color image of this dataset and its corresponding pseudo color

ground truth are shown in Figure 4.6. Number of available samples for the University of

Pavia dataset and the number of train and test samples used in this chapter are listed in

Table 4.2.

4.3.1.3 Surrey

This dataset is a small subscene of the hyperspectral image captured by the airborne

CASI-1500 sensor over the city of Surrey, BC, Canada in April 2013. This HSI includes



Chapter 4 83

(a) (b)

Brocoli_green_

weeds_1

Brocoli_green_

weeds_2

Fallow

Fallow_rough_plow

Fallow_smooth

Stubble

Celery

Grapes_untrained

Soil_vinyard_develop

Corn_senesced_green_

weeds

Lettuce_romaine_4wk

Lettuce_romaine_5wk

Lettuce_romaine_6wk

Lettuce_romaine_7wk

Vinyard_untrained

Vinyard_vertical_trellis

Figure 4.5: Salinas dataset. (a) False color image. (b) Pseudo ground truth image.

72 spectral bands in the range of 0.36-1.05µm with the spectral resolution of 9.6 nm and

the high spatial resolution of 1 m. The available ground truth includes 5 different classes.

The false color and the pseudo color ground truth images are shown in Figure 4.7. Table

4.3 lists number of available samples, train and test ratios used in this chapter for the

Surrey dataset.



Chapter 4 84

Table 4.1: Number of labeled samples for the different sixteen classes of the Salinas
dataset along with the number of train and test samples used in this chapter.

No Class Num. of samples Train Test
1 Brocoli-green-weeds-1 2009 201 1808
2 Brocoli-green-weeds-2 3726 373 3353
3 Fallow 1976 198 1778
4 Fallow-rough-plow 1394 139 1255
5 Fallow smooth 2678 268 2410
6 Stubble 3959 396 3563
7 Celery 3579 358 3221
8 Grapes-untrained 11271 1127 10144
9 Soil vineyard develop 6203 620 5583
10 Corn-senesced-green-weeds 3278 328 2950
11 Lettuce-romaine-4wk 1068 107 961
12 Lettuce-romaine-5wk 1927 193 1734
13 Lettuce-romaine-6wk 916 92 824
14 Lettuce-romaine-7wk 1070 107 963
15 Vineyard-untrained 7268 727 6541
16 Vineyard-vertical-trellis 1807 181 1626

Total 54129 5415 48714

4.3.2 Parameter Tuning

Even though network’s parameters are tuned during the training step, there are hyper-

parameters in the model that need to be carefully set. These hyperparameters include

the number of retained PCs during the dimensionality reduction step, n, size of the

neighborhood region around each target pixel, s, number of the neurons in each layer

of the network, and the required threshold parameters in the distance transform image

acquisition process, T1 and T2.



Chapter 4 85

(a) (b)

Asphalt

Meadows

Gravel

Trees

Painted metal

sheets

Bare soil

Bitumen

Self-blocking

bricks

Shadows

Figure 4.6: University of Pavia dataset. (a) True color image. (b) Pseudo ground truth
image.

4.3.2.1 Number of retained PCs and size of the neighborhood

In this set of experiments, we used our primary spatial feature vector and tried to find

the best values for n and s hyperparameters. We considered keeping 1 to 10 PCs during

the dimensionality reduction step. For the neighborhood size, we examined the follow-

ing window sizes: 3 × 3, 5 × 5, 7 × 7, and 9 × 9. Distribution of the OA these two

hyperparameters are depicted in Figure 4.8 for the three hyperspectral datasets.

As Figure 4.8a shows there is a general increase in the OA versus n especially for s =

3, 5, and 7. Increasing the size of the neighborhood area has a positive effect on the OA



Chapter 4 86

Table 4.2: Number of labeled samples for the different nine classes of the University of
Pavia dataset along with the number of train and test samples used in this chapter.

No Class Num. of samples Train Test
1 Asphalt 6631 663 5968
2 Meadows 18649 1865 16784
3 Gravel 2099 210 1889
4 Tress 3064 306 2758
5 Painted metal sheets 1345 135 1210
6 Bare Soil 5029 503 4526
7 Bitumen 1330 133 1197
8 Self-Blocking Bricks 3682 368 3314
9 Shadows 947 95 852

Total 42776 4278 38498

(a) (b)

Tree Grass Asphalt Concrete Roof

Figure 4.7: Surrey dataset. (a) False color image. (b) Pseudo ground truth image.

as well. However, in the case of s = 9, for some values of n OA drops compared to some

of its corresponding values for s = 7. To have a trade off between the model complexity

and the accuracy, for n and s we chose values of 5 and 7, respectively. According to

Figure 4.8b, OA generally increases with the increase of n. However, to have a trade off

between the accuracy and the complexity of the feature vector, the value of 5 was chosen

for this hyperparameter. Also, neighborhood window is chosen to be 7×7 since it results

in the best OA when n is set to 5.



Chapter 4 87

Table 4.3: Number of labeled samples for the different five classes of the Surrey dataset
along with the number of train and test samples used in this chapter.

No Class Num. of samples Train Test
1 Tree 4121 412 3709
2 Grass 1847 185 1662
3 Asphalt 4375 438 3937
4 Concrete 1241 124 1117
5 Roof 2151 215 1936

Total 13735 1374 12361

(a) (b)

(c)

Figure 4.8: OA obtained by our primary spatial feature vector (Proposed-P) vs n and s
for (a) Salinas, (b) University of Pavia, and (c) Surrey datasets.

For the Surrey dataset, we observed a general increase in the OA with the size of the

neighborhood (Figure 4.8c). Increasing the value of parameter n results in a generally

higher OA up to n = 8. To have an agreement between the accuracy and the size of the

feature vector, similar to the case of University of Pavia, parameters s and n are chosen



Chapter 4 88

40 50 60 70 80 90 100 110

Number of hidden units

90

92

94

96

98

100

O
A

(%
)

Salinas

Pavia

Surrey

Figure 4.9: OA versus number of hidden units in each layer for the three hyperspectral
datasets.

to be 7 and 5, respectively.

4.3.2.2 Size of the hidden layers

One of the hyperparameters that need to be set, is number of neurons in each layer. We

tried eight values for this parameter for the three databases. Figure 4.9 shows the OA

versus the size of the hidden layers for the three HSI databases. As can be seen from

this figure, number of hidden units does not have much effect on th OA. So, in order to

have an optimized number of trainable parameters in the network we chose the value of

60 for this hyperparameter for the three datasets.

4.3.2.3 Required threshold parameters

In our method, there are two thresholds in the process of obtaining the distance transform

image of each dataset: A threshold above which pixels in the gradient image are con-



Chapter 4 89

sidered strong edges T1, and a threshold for removing the connected components having

fewer than P pixels in the binary mask image (see Figure 4.2) T2. We tried five different

values for T1 and T2 for all three datasets in this study. Figure 4.10 shows the distribution

of the OA versus the five values for these two parameters. For the Salinas dataset, T1
and T2 equal to 0.08 and 14 gave the highest OA. For the University of Pavia dataset,

values of 0.31 and 50 for the T1 and T2 resulted in the highest OA. Also, for the Surrey

dataset, T1 and T2 equal to 0.2 and 28 led to the best OA. Class specific accuracies, OA,

AA, and the kappa coefficient corresponding to these values are listed in the second last

column of Tables 4.4-4.6.

4.3.3 Performance Evaluation

4.3.3.1 Effect of using supervised dimensionality reduction

To see whether using class labels in the DR step has any effect on the classification results,

we used PCDA method to reduce the spectral dimension of the input HSI datasets as

shown in Figure 4.4. This block digram is similar to the one shown in Figure 4.3.

However, PCDA is employed instead of PCA. Also, here, we did not incorporate EMAP

features in the spatial feature vector. In this experiments, for parameters s, T1, T2, and

size of the hidden layers we used the optimal values that have been obtained in the

parameter tuning step presented in Section 4.3.2. As was mentioned in Section 3.3.2,

PCDA method includes two parameters, n1 and n2. In order to be able to have a fair

comparison between the results of this section and the ones obtained using the first type

of features mentioned at the end of Section 4.2, we chose n1 and n2 such that their total

equals to the value of parameter n chosen in Section 4.3.2.1. Since we observed that for a

fixed value of n, n2 > n1 results in better accuracies, the values of n1 = 1 and n2 = 4 have

been chosen for the three HSI datasets. Results of applying the method described in this

subsection are shown in Table 4.7 for the three datasets. Comparing accuracies shown in

this table to the result obtained from our primary feature vector shows an improvement

in the reported accuracy values and proves the benefit of using a supervised DR method



Chapter 4 90

(a) (b)

(c)

Figure 4.10: OA obtained by the Proposed-P feature vector vs parameters T1 and T2 for
(a) Salinas, (b) University of Pavia, and (c) Surrey datasets.

prior to form the proposed spatial feature vector.



Chapter 4 91

Table 4.4: Classification accuracies (%) and test time (s) of different methods for Salinas
dataset using 10% of the training data.

No L-SVM K-SVM EMAP DAE PPF-CNN EMAP-SAE Proposed-P Proposed-S

1 99.39 99.60 100 99.61 99.17 99.87 100 99.90

2 99.70 99.69 99.95 99.70 99.66 99.70 99.94 99.85

3 99.58 99.63 99.84 98.49 98.38 99.35 100 99.30

4 99.44 99.39 15.68 99.02 99.28 98.88 98.88 99.58

5 98.87 98.93 98.40 98.01 98.56 98.76 99.46 98.68

6 99.88 99.74 99.84 99.75 99.83 99.72 99.99 99.94

7 99.75 99.58 99.86 99.24 99.81 99.47 99.86 99.63

8 88.40 88.39 87.92 91.17 94.58 89.72 93.34 95.46

9 99.81 99.80 99.84 99.74 99.82 99.73 99.91 99.83

10 97.48 97.37 96.68 97.09 96.28 96.51 98.59 98.47

11 98.71 98.93 97.63 97.13 96.34 97.61 97.92 99.17

12 99.79 99.92 94.51 99.92 99.81 99.44 99.85 100

13 99.11 99.61 29.70 99.42 98.54 97.63 99.27 99.94

14 97.32 97.79 95.12 98.68 96.36 95.53 98.18 99.47

15 65.03 74.94 62.74 88.17 82.12 82.87 91.25 94.00

16 98.73 98.71 99.83 97.79 97.79 99.25 99.75 98.86

OA 92.42
±0.12

93.75
±0.13

88.45
±0.19

95.92
±0.22

95.75
± 0.69

94.90
±0.12

97.17
±0.17

97.93
±0.15

AA 96.31
±0.11

97.00
±0.08

86.10
±0.12

97.68
± 0.22

97.27
±0.46

97.13
±0.21

98.51
±0.11

98.88
±0.08

Kappa 0.91
±0.001

0.93
± 0.001

0.87
±0.002

0.95
±0.002

0.95
±0.008

0.94
±0.001

0.97
±0.002

0.98
±0.002

Test time (s) 14.10 12.32 7.03 0.48 10.36 0.59 0.08 0.09

4.3.3.2 Comparison with other methods

In order to check the effectiveness of our proposed method, we compared it with some

traditional and recent hyperspectral image classification methods. These methods include

linear SVM, RBF SVM, EMAP, DAE [41], PPF-CNN [47], and EMAP-SAE [48].

For the linear and RBF SVM, we performed 10-fold cross validation to find the best

values for the regularization parameter C and the width of the gaussian kernel gamma.

For the Salinas database, value of 103 for C in case of linear SVM and values of 103 and 1

for C and gamma parameters of the gaussian SVM resulted in the best performance. For

the University of Pavia dataset, C equal to 10 for the linear SVM and in case of the RBF

SVM values of 103 and 0.1 for C and gamma outperformed the other values. For the



Chapter 4 92

Table 4.5: Classification accuracies (%) and test time (s) of different methods for Uni-
versity of Pavia dataset using 10% of the training data.

No L-SVM K-SVM EMAP DAE PPF-CNN EMAP-SAE Proposed-P Proposed-S

1 85.04 89.17 90.08 94.45 98.82 98.20 97.29 99.29

2 95.11 96.32 97.85 98.68 99.28 99.31 99.86 99.87

3 68.05 71.97 93.75 86.26 82.30 94.13 96.87 99.09

4 89.93 92.32 96.36 95.73 93.22 95.74 97.72 97.69

5 99.62 99.47 99.31 99.64 99.73 99.02 99.83 99.61

6 55.31 72.67 91.07 89.94 95.42 97.86 99.05 98.99

7 72.79 75.23 89.66 85.03 87.05 98.43 97.31 99.72

8 72.06 75.98 94.51 90.68 92.58 95.99 96.61 98.52

9 93.84 94.84 77.89 99.21 99.42 99.35 99.39 99.17

OA 84.61
±0.23

88.61
± 0.17

94.60
±0.07

95.11
±0.46

96.55
±0.32

98.13
±0.44

98.70
±0.10

99.34
±0.11

AA 81.31
± 0.35

85.33
±0.45

92.28
±0.26

93.29
± 0.62

94.20
±1.10

97.56
±0.46

98.21
±0.12

99.11
±0.18

Kappa 0.79
±0.003

0.85
±0.002

0.93
±0.001

0.93
±0.006

0.95
±0.004

0.97
±0.004

0.98
±0.001

0.99
±0.001

Test time (s) 11.01 10.02 4.07 0.25 7.03 0.35 0.06 0.07

Table 4.6: Classification accuracies (%) and test time (s) of different methods for Surrey
dataset using 10% of the training data.

No L-SVM K-SVM EMAP DAE PPF-CNN EMAP-SAE Proposed-P Proposed-S

1 88.60 90.06 88.42 92.95 95.11 91.69 95.25 94.15

2 68.40 73.11 83.92 83.69 75.92 82.66 90.55 88.58

3 88.80 89.57 93.50 90.65 92.50 93.65 93.76 96.19

4 91.54 91.20 98.38 90.68 96.72 92.45 94.28 96.49

5 76.70 76.86 87.50 84.54 86.46 91.39 89.74 94.48

OA 84.35
±0.43

85.66
±0.49

90.19
± 0.46

89.45
±0.54

90.49
±0.47

91.12
±0.63

93.19
±0.27

94.31
±0.25

AA 82.81
± 0.65

84.16
±0.81

90.34
±0.52

88.51
±0.66

89.34
±0.59

90.37
±0.75

92.72
±0.35

93.98
±0.24

Kappa 0.79
±0.006

0.81
±0.007

0.87
±0.006

0.86
± 0.007

0.87
±0.006

0.88
±0.008

0.91
±0.003

0.92
±0.003

Test time (s) 9.03 7.12 3.81 0.18 6.91 0.24 0.05 0.06

Surrey dataset, these values have been obtained as 103, 105, and 0.01, respectively. We

used the RBF SVM classifier with the EMAP method and found the fowling values for

the gaussian SVM’s parameters for the three datasets: Salinas: C=106 and gamma=0.1,

University of Pavia: C=104 and gamma=0.001, and Surrey: C=103 and gamma=0.01.

With all other methods we used logistic regression (LR) classifier with softmax activation

function.



Chapter 4 93

Table 4.7: Classification accuracies (%) obtained from the last set of experiment, using
PCDA dimensionality reduction method and our primary proposed feature vector, for
the three HSI datasets using 10% of the training data.

No Salinas Pavia university Surrey
1 99.80 98.78 95.21
2 99.94 99.94 89.36
3 99.80 99.27 95.71
4 99.16 98.62 97.84
5 99.54 99.40 92.27
6 99.96 99.66 -
7 99.78 97.99 -
8 95.81 98.25 -
9 99.91 99.46 -
10 98.99 - -
11 99.17 - -
12 99.99 - -
13 99.30 - -
14 99.15 - -
15 93.56 - -
16 99.38 - -
OA 98.04±0.09 99.37±0.07 94.36±0.14
AA 98.95 ±0.10 99.04± 0.14 94.08±0.27

Kappa 0.98± 0.001 0.99 ±0.0 0.92±0.004

Tables 4.4-4.6 compare the result of our proposed method with the other methods ex-

perimented in this study. As can be seen from these tables, adding the distance transform

value to the feature vector and combining it with EMAP features improves the accuracy

metrics. For the Salinas dataset in terms of OA, adding distance transform features

improves the result by 2.27% compared to the EMAP-SAE method. For the University

of Pavia and Surrey datasets, the corresponding increase in the OA is 0.57% and 2.07%,

respectively. Also, the increase in the AA compared to the EMAP-SAE method for the

three datasets have been observed as 1.38 %, 0.65%, and 2.35%, respectively.



Chapter 4 94

The last column of these tables lists our results using our secondary proposed feature

vector. For the Salinas database, the OA, AA, and the kappa coefficient increased by

0.76%, 0.37%, and 1%, respectively compared with employing only the primary spatial

feature vector. The corresponding values for the second database are 0.64%, 0.9%, and

1%. Finally, for the Surrey dataset, these accuracy metrics increased by 1.12%, 1.26%,

and 1%, respectively.

Figures 4.11-4.13 show the classification maps obtained from the different methods

explored in this study. As can be seen from these maps, there are fewer misclassified

pixels in our results which is consistent with the accuracies shown in Tables 4.4-4.6. For

instance, according to Figure 4.11 (i) (and also Table 4.4), our proposed secondary spatial

feature vector especially improves the classification accuracies of classes 8 and 15 of the

Salinas dataset. As Figure 4.12 (i) shows, the proposed-S feature vector improves the

classification accuracy of class 3 of the University of Pavia dataset significantly compared

to other methods.

4.4 Conclusion

In this chapter, we proposed a new method for the HSI classification problem. In an

HSI, pixels inside a neighborhood have the same class label with a high probability.

Therefore, it seems reasonable to use information of the neighbors of a target pixel as

its spatial features. However, the idea behind our method is that spatial location of the

pixel in the HSI matters and not all neighbors should contribute the same in forming

target pixel’s spatial feature vector. To accomplish this, we introduced a new distance

transform-based spatial feature vector which considers the distance of pixels with respect

to the edges in the image as new features. To find such distance values we proposed a

method to compute the distance transform image of an input hyperspectral image.

We employed a two-layer stacked autoencoder consisting of a sparse autoencoder in

each layer as the deep learning framework. In order to find the best values for param-



Chapter 4 95

eters of our method, we performed extensive experiments in the hyperparameter space.

Furthermore, to add more spatial information, we incorporated EMAP features to our

proposed spatial feature vector as well. Finally, to examine whether using class labels in

the DR step has any effect on the classification results, we used PCDA method to reduce

the spectral dimension of the input HSI datasets. To evaluate the effectiveness of our

proposed method, we applied it on three HSI datasets, Salinas, University of Pavia, and

Surrey and performed three sets of experiments.

In the first set, we employed PCA to reduce the spectral dimension of the HSI and

used our proposed distance transform-based spatial feature vector. In the second set, we

add EMAP features as well. Third set includes using PCDA and distance transform-

based spatial feature vector. According to the results of the first set, including distance

features improved the classification accuracies proving the effectiveness of our proposed

approach in contributing the neighbors spatial information with different weights. The

improvements in the classification accuracies obtained from the second set (compared to

the first set) demonstrates the power of EMAP features in modeling spatial information

and the benefit of using them in our proposed spatial feature vector. Results of the third

set revealed that although using PCDA and the proposed distance transform features

improve the classification accuracies compared to the first set, they are quite close the

results of the second set.

Comparing classification results of these three sets with some conventional methods

and some recent deep learning-based approaches shows the superiority of our approach

in classification of remote sensing hyperspectral scenes.



Chapter 4 96

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4.11: Salinas (a) ground truth, (b)-(i) classification maps resulting from different
methods. (b) Linear SVM, (c) kernel SVM, (d) EMAP, (e) DAE, (f) PPF-CNN, (g)
EMAP-SAE, (h) Proposed-P, and (i) Proposed-S



Chapter 4 97

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12: University of Pavia (a) ground truth, (b)-(i) classification maps resulting
from different methods. (b) Linear SVM, (c) kernel SVM, (d) EMAP, (e) DAE, (f)
PPF-CNN, (g) EMAP-SAE, (h) Proposed-P, and (i) Proposed-S



Chapter 4 98

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.13: Surrey. (a) ground truth, (b)-(i) classification maps resulting from different
methods. (b) Linear SVM, (c) kernel SVM, (d) EMAP, (e) DAE, (f) PPF-CNN, (g)
EMAP-SAE, (h) Proposed-P, and (i) Proposed-S



Chapter 5

Spectral perturbation method for

deep learning-based classification of

remote sensing hyperspectral images

5.1 Introduction

Deep learning-based hyperspectral image classification has become very popular recently.

It has been widely used in the domain of classification of remote sensing hyperspectral

images and has shown encouraging results. Although presence of many spectral bands in

a hyperspectral image provides valuable features for the classification purposes, lack of

adequate training samples makes training a deep learning model a challenging task. One

solution that has been used in the literature to mitigate this problem is data augmentation

[47,54].

In this chapter, we employed stacked auto-encoder (SAE) as the deep learning archi-

tecture to extract deep spectral features of the input data and to address the problem of

absence of enough training samples, we propose a simple yet effective data augmentation

approach to boost the number of training data. Also, in order to alleviate the noise in

99



Chapter 5 100

the output image, we used the majority voting strategy to smooth the final classifica-

tion map. We applied our method on the Indian Pines hyperspectral dataset including

very few training examples. Experimental results show the superiority of our method

compared to some conventional and recent HSI classification methods.

The rest of this chapter is organized as follows: Section 5.2 presents our proposed

algorithm. Database description and the experimental results are presented in Section

5.3 and Section 5.4 concludes this chapter.

5.2 Method

In [47], original data is augmented to train a CNN and in the test phase majority voting

is applied on the output to smooth the primary classification map. Similarly, in this

chapter to overcome the problem of insufficiency of training samples to train our SAE,

we propose a simple data augmentation method. Also, in the test step to incorporate

the spatial information, we smoothed the classification map using the information of the

neighboring pixels of each test pixel by the means of majority voting technique. Our

proposed algorithm consists of the following steps:

First, the available labeled samples are divided into two sets of train and test. Then

training samples are augmented using our proposed data augmentation technique. Next,

in the training phase, the original and augmented training data are used to train a SAE

network. In the test phase, test samples are given to the trained SAE and an initial

classification map is produced. So far we have only used spectral information. So, in

order to incorporate the spatial information, similar to the algorithm in [47], we used

majority voting strategy to smooth the output classification map at the test phase.

Spectra of some of the classes in the Indian Pines dataset is shown in Figure. 5.1.

As can be seen from this figure (and also Table. 5.1), some of the classes have very few

training samples. The idea behind our augmentation approach is that any spectrum with



Chapter 5 101

0 100 200

0

1000

2000

3000

4000

5000

6000

7000

8000

(a)
0 100 200

0

1000

2000

3000

4000

5000

6000

7000

8000

(b)
0 100 200

0

1000

2000

3000

4000

5000

6000

7000

8000

(c)

0 100 200

0

1000

2000

3000

4000

5000

6000

7000

8000

(d) (e)
0 100 200

0

1000

2000

3000

4000

5000

6000

7000

8000

(f)

Figure 5.1: Spectra of some of the classes in the Indian Pines dataset. (a) Alfalfa, (b)
Grass-pasture, (c) Grass-pasture-mowed, (d) Oats, (e) Soybean-clean, and (f) Wheat.

the similar pattern to the samples of class k that falls within the reflectance range covered

by these samples can be considered as an imaginary sample of this class as well. That

being said, we created n samples out of each original sample in each class. Each new

sample is created by shifting the original spectrum up or down within a specific range

(shift range) such that the generated spectra fall within the reflectance range overlaid by

the original samples. Process of generating n virtual spectra of the ith original sample

of class k, xi, can be formulated as follows:

xi,j = xi +Rj , j = 1, 2, ..., n. (5.1)

whereRj is a vector with the same size as xi and its elements are a random integer drawn

from the discrete uniform distribution on the interval [−S + S] where S indicates the

desired shift range in the reflectance domain. As an example, Figure 5.2 shows the

original and the augmented spectra of class Alfalfa with n and shift range equal to 100

and 150, respectively. In other words, we created 100 new spectra of each original sample

of this class by linearly shifting the input up or down within the reflectance range of -150



Chapter 5 102

0 100 200

0

1000

2000

3000

4000

5000

6000

7000

8000

(a) (b)

Figure 5.2: (a) Original spectra of class Alfalfa of the Indian Pines dataset and (b)
augmented spectra of the same class.

and 150.

In order to smooth the classification map, we performed majority voting strategy [47].

Since in a remote sensing HSI, neighboring pixels belong to the same class with a high

probability, after obtaining the classification map, for each test pixel, we consider a k×k

neighborhood area around it and assign the test pixel to the class the majority of its

neighbors belong to. This process can be formulated as (5.2)

L (xi) = Mode (L(xj)|xj ∈ Nxi) , (5.2)

where L stands for label, xi and Nxi indicate the ith test sample and its neighborhood

area, respectively.

5.3 Experimental Results

In this section, we evaluate the performance of our proposed method on the well-known

online hyperspectral database, Indian Pines. In the experiments, we used 20% of the

labeled samples for training and the remaining 80% for testing except for the classes

with less than 100 samples where we used half of the data for training and the rest



Chapter 5 103

Table 5.1: Number of labeled samples, train, and test pixels for the sixteen classes in the
Indian Pines dateset.

No Class Available data Train Test
1 Alfalfa 46 23 23
2 Corn-notill 1428 286 1142
3 Corn-mintill 830 166 664
4 Corn 237 47 190
5 Grass-pasture 483 97 386
6 Grass-trees 730 146 584
7 Grass-pasture-mowed 28 14 14
8 Hay-windrowed 478 96 382
9 Oats 20 10 10
10 Soybean-notill 972 194 778
11 Soybean-mintill 2455 491 1964
12 Soybean-clean 593 119 474
13 Wheat 205 41 164
14 Woods 1265 253 1012
15 Buildings-Grass-Trees-Drives 386 77 309
16 Stone-Steel-Towers 93 46 47

for testing. In order to compare the performance of different methods, we used three

accuracy metrics: OA, AA, and kappa coefficient. All experiments were repeated 10

times and the mean value for each accuracy metric as well as its standard deviation are

reported. Experiments are performed using Matlab R2017a on a desktop with an Intel

Core i7 3.7 GHz cpu and an NVIDIA GeForce GTX 1080 Ti gpu.

5.3.1 Data Description

Indian Pines hyperspectral dataset is collected over the Indian Pines site in north-western

Indiana, USA. AVIRIS with the wavelength range of 0.4-2.5 µm, 224 spectral bands, and

image size of 145×145 has been used to gather this dataset. Having removed the 24

water absorption bands, it leaves us with 200 bands in total. Ground truth image of this

dataset includes 16 different land cover classes. Figure 5.3 shows the image of band 110



Chapter 5 104

Alfalfa

Corn-notill

Corn-mintill

Corn

Grass-pasture

Grass-trees

Grass-pasture-mowed

Hay-windrowed

Oats

Soybean-notill

Soybean-mintill

Soybean-clean

Wheat

Woods

Buildings-Grass

Stone-Steel

Figure 5.3: Indian Pines dataset. (Left) Image of band 110 and (right) ground truth
image.

and the ground truth image of this database.

5.3.2 Performance Evaluation

Usually with increasing the number of training data (original plus virtual samples in

our case) classification accuracy increases as well. However, more training data results

in longer training time. With creating only 10 virtual samples of each original sample,

total number of augmented samples will be 10 times more than the number of original

samples. Therefore, high computational resources will be needed to train the classifier

using this large number of training data. In our experiments we tried different values

for parameter n and to have a trade off between the training time and the accuracy we



Chapter 5 105

chose n=50. For the parameter shift range, we need to limit the value of this quantity

such that for all classes in the dataset, the virtual samples more or less cover the same

reflectance range as the corresponding original samples do. We tested different values for

this parameter and experiments showed that value of 100 gives the best amount of shift

range for all classes in the dataset. For the deep learning framework we used a three-layer

SAE consisting of a sparse autoencoder in each layer with 80 hidden neurons. We used

LR classifier which uses softmax function in its output layer activation. This function

can be defined as (5.3)

S(ok) =
exp(ok)∑C
j=1 exp(oj)

(5.3)

where o and S(ok) are input vector and the kth element of the output vector of the

softmax function. C is the size of the output vector which for a classification problem is

equal to the total number of classes. The reason behind using soft-max function is that it

guarantees that the sum of all the C entries of the output vector sums to 1, therefore, we

can consider the output as a set of conditional probabilities. For example, considering F

as an output vector of the last AE in our model and W and b as the weights and biases

of the LR layer, conditional probability that vector F belongs to class c is defined as

P (y = c|F ,W , b) = S(FW + b) =
exp(FW c + bc)∑C
j=1 exp(FW j + bj)

(5.4)

where the left hand side of the equation represents the probability that feature vector F

belongs to class c.

For training each individual AE, we used mean squared error (MSE) loss function with

the sparsity and weight regularization terms. For the fine tuning of our SAE network,

we used cross-entropy loss function as defined in (5.5)

loss = −
M∑
i=1

C∑
j=1

tijlog(yij) (5.5)



Chapter 5 106

where M and C are the total number of training samples and classes, respectively. yij is

the output of the network for the ith training sample for class j, and tij represents the

jth element of the target vector for ith training sample. To test the effectiveness of our

Table 5.2: Class-specific accuracies, OA (%), AA (%), Kappa coefficient, and the test
time (s) of the different methods on Indian Pines dataset using 20% of the labeled samples
for training.

Class
index

RBF SVM EMAP Spectral-DAE PPF-CNN EMAP-SAE Proposed
method

1 84.35 92.17 80.00 90.43 93.04 99.57

2 81.50 79.84 80.99 91.30 89.04 96.32

3 75.83 91.39 75.20 83.73 90.29 92.33

4 65.42 92.05 64.53 84.05 87.79 93.79

5 92.62 84.66 87.51 93.70 92.93 95.91

6 96.37 96.46 94.28 99.67 97.77 99.64

7 88.57 90.71 77.86 84.28 90.71 100

8 96.52 99.87 95.99 99.45 98.87 99.90

9 79.00 97.00 64.00 68.00 77.00 92.00

10 81.23 74.88 79.41 87.18 89.46 95.75

11 86.25 96.69 83.26 93.66 95.03 97.38

12 80.78 91.81 75.49 90.67 88.06 94.64

13 97.80 97.87 96.22 98.29 96.58 99.63

14 96.13 98.85 92.83 97.74 98.19 99.39

15 60.45 97.96 65.21 71.58 92.56 83.01

16 94.04 100 92.98 99.57 97.44 97.02

OA 85.47±0.34 91.32±0.60 83.39±1.20 91.95 ±0.98 93.28 ±0.45 96.38±0.64

AA 84.80±1.08 92.64±0.93 81.61±2.99 89.58 ± 0.93 92.17 ±1.28 96.02±0.96

Kappa 0.83±0.004 0.90±0.007 0.81±0.014 0.91 ± 0.011 0.92± 0.005 0.96±0.007

Test time(s) 3.20 1.14 0.070 2.41 0.088 0.068

proposed method, we compared it with the following HSI classification methods: RBF

SVM, EMAP [37], DAE with spectral features [41], pixel-pair features PPF-CNN [47],

EMAP-SAE [48], and 3D-CNN [54]. For the SVM classifier, having performed the 10-fold

cross validation to find the best values for the regularization parameter c, and the width



Chapter 5 107

of the Gaussian kernel g, they were obtained as 100 and 1, respectively. With EMAP,

we used RBF SVM classifier with c and g equal to 100 and 0.1, respectively. Also, for

spectral-DAE, PPF-CNN, and EMAP-SAE methods, we used LR classifier with softmax

activation as well.

Table. 5.2 lists the classification accuracies and the test time of these methods. The

number of train and the test samples for these methods are the same as our proposed

method. As can be seen from this table, our approach outperforms the others in terms

of OA, AA, and Kappa coefficient. More specifically, the values obtained for these three

metrics using the proposed method are by 3.10%, 3.38%, and 4% higher than the cor-

responding second highest values in the table. From the class-specific accuracies it can

be seen that the proposed method is capable of delivering high classification accuracies

for all of the classes and for the majority of them it outperforms the other methods.

Also, by comparing our method with 3D-CNN [54] which also uses data augmentation,

we observed although this method achieves higher classification accuracies than ours,

due to the convolution along spectral bands the computation time is quite high. Table

5.3 compares accuracies and the train and test times of our proposed and the 3D-CNN

methods. As can be seen from the table, although 3D-CNN outperforms our method

Table 5.3: Classification accuracy and running time of the proposed and 3D-CNN meth-
ods.

Method 3D-CNN Proposed method

OA(%) 98.53±0.29 96.38±0.64

AA(%) 99.50±0.08 96.02±0.26

Kappa 0.98±0.003 0.96±0.004

Train time (min) 27.04 16.52

Test time (min) 0.88 0.001

in terms of accuracy metrics, it demands relatively longer training and test times. It

should be noted that their reported train time is before incorporating virtual samples for

training their model.



Chapter 5 108

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Classification maps resulting from different methods. (a) Gaussian RBF-
SVM, (b) EMAP, (c) spectral-DAE, (d) PPF-CNN, (e) spectral-EMAP-SAE, and (f)
proposed method.

Fig. 5.4 shows the classification maps resulting from the methods experimented in this

study. As this figure depicts, our method results in a smoother classification map (i.e.,

our classification map is less noisy). For example, it can be seen especially for classes

Corn-notill and Soybean-notill, there are far less misclassified pixels in our method’s

classification map compared to other methods’.



Chapter 5 109

5.4 Conclusion

In this chapter to extract deep spectral features of the Indian Pines hyperspectral dataset,

we used a SAE with three layers of sparse AE as the deep learning model. Because of

the fact that deep learning models require many training data to be trained effectively

and since there are few training samples in the Indian Pines dataset, we proposed a data

augmentation method to increase the number of training samples by carefully conserving

both the trends of the original samples in each class and the reflectance region covered

by them. In our method, new samples are generated out of original data by shifting the

spectrum up and down within a reasonable reflectance range. Finally, in order to smooth

the output classification map, we used the spatial information of the neighbors of the

test pixels in the test step.

Because of its simplicity, our data augmentation method demands a low computa-

tional cost. Classification accuracies presented in the experimental results section show

the effectiveness of our proposed algorithm and its potential usage in augmenting the

remote sensing HSI training samples used for training deep learning models. Also, our

algorithm is very fast at the test time which makes it suitable for real time remote sensing

HSI classification applications.



Chapter 6

Conclusion

Remote sensing impacts and improves our daily lives in many ways. The diverse data

acquisition methods used in this field provide valuable source of information about the

objects and phenomena on earth that could hardly been supplied without them. In the

past few decades, there have been numerous number of researches working on interpreting

the information obtained from remote sensing as accurately as possible to maximize the

scientific returns which makes this science to continue and advance. This research work

studies the problem of pixel-wise hyperspectral image classification in the remote sensing

field.

As the outcome of the most recent type of imaging, hyperspectral images measure

the energy of light reflected back from the scene at many contiguous spectral bands

providing favorable features for image classification tasks. In an HSI, the type of the

objects at different pixels can be determined by analysis of the spectra while spatial

information depicts their distribution in the image. Therefore, combining spectral and

contextual information can improve the performance of hyperspectral image classifiers.

In this thesis, we proposed two frameworks of modeling spectral information together

with spatial contextual information to generate spatial-spectral features and employed

stacked autoencoder with sparse AEs in its layers to extract deep features of the input

110



Chapter 6 111

data. A common problem in HSI classification field is the inadequacy of ground truth

samples required for training. This problem can be solved to some extent by performing

data augmentation. In Chapter 5, we proposed a simple data argumentation technique

to boost number of training samples.

Most of the deep learning-based HSI classification approaches use unsupervised di-

mensionality reduction techniques such as PCA in their pre-processing step. In order to

see the effect of using class labels on classification accuracies in the presence of a deep

network in the model, in Chapter 3, we proposed a method which combines principal

component discriminant analysis (PCDA), a supervised DR technique, with SAE. Such

an algorithm exploits class-discriminatory information and the power of a deep neural

network in extracting deep features, simultaneously. Results of applying our method,

PCDA-SAE on the Indian Pines and University of Pavia hyperspectral datasets demon-

strate that it outperforms both PCDA and SAE methods and justifies our intent to such

a combination. Also, comparisons with some conventional and recent HSI classification

algorithms shows the superiority of our algorithm.

In Chapter 4, we proposed a new distance transform-based spatial feature vector

which considers the distance of pixels with respect to the edges in the image as a new

feature with the goal of assigning different weights to the adjacent pixels of a target sam-

ple. To accomplish this goal, a method to generate the distance transform image of an

input HSI is proposed. Furthermore, in order to incorporate more spatial information, we

enhanced our spatial feature vector with EMAP features as well. Finally to use class la-

bels in the pre-processing phase, PCDA method was employed prior to form our distance

transform-based spatial feature vector. We performed extensive experiments searching in

our model’s hyperparameter space to find the best values. Having applied our method on

three hyerspectral datasets, we came up with the following conclusions: First, assigning

different weights to the adjacent pixels according to their proximity to the edges in the

image improved classification accuracies. Such an improvement sounds logical because

of the fact that not all neighboring pixels belong to the target pixel’s category with the



Chapter 6 112

same probability. Next, incorporation of the EMAP features in the spatial feature vector

increased the accuracy of classification as well which verified the power of such features in

modeling spatial information in hyperspectral images. Finally, as was expected a super-

vised dimensionality reduction method together with our proposed spatial feature vector

enhanced classification accuracies as well. Experimental results also showed that the pro-

posed spectral-spatial feature vectors outperformed some conventional and recent deep

learning based HSI classification approaches in terms of accuracy of the segmentation.

Due to the need of deep learning models for enough training data and the challenges

in obtaining ground truth images of remote sensing HSI datasets, in Chapter 5, we

proposed a data augmentation method to increase the number of labeled samples of each

class in the database. Our method generates virtual samples by keeping the pattern of

the ground truth samples and the reflectance range covered by them. In this method,

we incorporated the spatial contextual information in the test phase. The simplicity

of the proposed data augmentation method lets it demand a low computational cost.

Classification accuracies obtained by our model show its effectiveness in boosting the

training data used for HSI classification purposes.

To summarize, one problem in the field of remote sensing, hyperspectral image clas-

sification has been well addressed. however, there are still a lot of work to be done in the

future. For example, techniques for spectral-spatial feature generation and data augmen-

tation should be improved and examined on more hyperspectral datasets. Moreover, a

simultaneous search in the hyperparameter space should be done with the help of super

powerful GPUs. In other words, we should be able to see the effect of each possible

combination of the tested values for the model’s hyperparameters simultaneously on the

classification accuracy.

We can name two potential future applications of the methods proposed in this the-

sis. First, the proposed approaches can be used in tree type classification of HSI images

obtained from remote forests. Furthermore, with some adjustments, they may be appli-

cable for object classification on the surface of other planets rather than earth provided



Chapter 6 113

that ground truth images are available.



Bibliography

[1] K. Tempfli, G. Huurneman, W. Bakker, L. Janssen, W. Feringa, A. Gieske, K. Grab-

maier, C. Hecker, J. Horn, N. Kerle, F. van der Meer, G. Parodi, C. Pohl, C. Reeves,

F. van Ruitenbeek, E. Schetselaar, M. Weir, E. Westinga, and T. Woldai, Principles

of remote sensing : an introductory textbook. ITC Educational Textbook Series,

Netherlands: International Institute for Geo-Information Science and Earth Obser-

vation, 2009.

[2] Z. A. Latif, H. M. Zaqwan, M. Saufi, N. A. Adnan, and H. Omar, “Deforestation

and carbon loss estimation at tropical forest using multispectral remote sensing:

Case study of besul tambahan permanent forest reserve,” in 2015 International

Conference on Space Science and Communication (IconSpace), pp. 348–351, Aug

2015.

[3] E. Roitberg, V. Barraza, F. Grings, M. Salvia, P. Perna, and M. Barber, “Near

real time multisensor algorithm for deforestation alert over the dry chaco forest,” in

IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Sympo-

sium, pp. 818–821, July 2018.

[4] G. Katarki, H. Ranmale, I. Bidari, and S. Chickerur, “Estimating change detection

of forest area using satellite imagery,” in 2019 International Conference on Data

Science and Communication (IconDSC), pp. 1–8, March 2019.

[5] L. Yue, H. Shen, W. Yu, and L. Zhang, “Monitoring of historical glacier recession in

yulong mountain by the integration of multisource remote sensing data,” IEEE Jour-

114



BIBLIOGRAPHY 115

nal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11,

pp. 388–400, Feb 2018.

[6] Y. Sun, L. Jiang, L. Liu, Q. Sun, H. Wang, and H. Hsu, “Mapping glacier elevations

and their changes in the western qilian mountains, northern tibetan plateau, by

bistatic insar,” IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, vol. 11, pp. 68–78, Jan 2018.

[7] C. Zhou, G. Yang, D. Liang, X. Yang, and B. Xu, “An integrated skeleton extraction

and pruning method for spatial recognition of maize seedlings in mgv and uav remote

images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, pp. 4618–

4632, Aug 2018.

[8] A. Singh, “Remote sensing and gis applications for municipal waste management,”

Journal of Environmental Management, vol. 243, pp. 22 – 29, 2019.

[9] Available at https://www.usgs.gov/faqs/what-remote-sensing-and-what-it-used.

[10] “HyspIRI mission.” https://hyspiri.jpl.nasa.gov/.

[11] B. A. Stauffer, H. A. Bowers, E. Buckley, T. W. Davis, T. H. Johengen, R. Kudela,

M. A. McManus, H. Purcell, G. J. Smith, A. Vander Woude, and M. N. Tamburri,

“Considerations in harmful algal bloom research and monitoring: Perspectives from

a consensus-building workshop and technology testing,” Frontiers in Marine Science,

vol. 6, p. 399, 2019.

[12] “HISUI mission.” https://ssl.jspacesystems.or.jp/en_project_hisui/.

[13] “Advanced spaceborne thermal emission and reflection radiometer.” https://

asterweb.jpl.nasa.gov.

[14] “Landsat.” https://landsat.usgs.gov.

[15] “Airborne visible/infrared imaging spectrometer.” https://aviris.jpl.nasa.gov.

https://hyspiri.jpl.nasa.gov/
https://ssl.jspacesystems.or.jp/en_project_hisui/
https://asterweb.jpl.nasa.gov
https://asterweb.jpl.nasa.gov
https://landsat.usgs.gov
https://aviris.jpl.nasa.gov


BIBLIOGRAPHY 116

[16] I. Dumke, S. M. Nornes, A. Purser, Y. Marcon, M. Ludvigsen, S. L. Ellefmo,

G. Johnsen, and F. SÃÿreide, “First hyperspectral imaging survey of the deep

seafloor: High-resolution mapping of manganese nodules,” Remote Sensing of Envi-

ronment, vol. 209, pp. 19 – 30, 2018.

[17] M. Jiang, F. Cao, and Y. Lu, “Extreme learning machine with enhanced composite

feature for spectral-spatial hyperspectral image classification,” IEEE Access, vol. 6,

pp. 22645–22654, 2018.

[18] Y. Guo, H. Cao, S. Han, Y. Sun, and Y. Bai, “SpectralâĂŞspatial hyperspectral-

image classification with k-nearest neighbor and guided filter,” IEEE Access, vol. 6,

pp. 18582–18591, 2018.

[19] F. Li, P. Zhang, and L. Huchuan, “Unsupervised band selection of hyperspectral

images via multi-dictionary sparse representation,” IEEE Access, vol. 6, pp. 71632–

71643, 2018.

[20] K. Zhou, T. Cheng, X. Deng, X. Yao, Y. Tian, Y. Zhu, and W. Cao, “Assessment

of spectral variation between rice canopy components using spectral feature analysis

of near-ground hyperspectral imaging data,” in 2016 8th Workshop on Hyperspectral

Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4,

Aug 2016.

[21] A. Xie, D.-W. Sun, Z. Xu, and Z. Zhu, “Rapid detection of frozen pork quality

without thawing by visâĂŞnir hyperspectral imaging technique,” Talanta, vol. 139,

pp. 208 – 215, 2015.

[22] S. Munera, C. Besada, N. Aleixos, P. Talens, A. Salvador, D.-W. Sun, S. Cubero,

and J. Blasco, “Non-destructive assessment of the internal quality of intact persim-

mon using colour and vis/nir hyperspectral imaging,” {LWT} - Food Science and

Technology, vol. 77, pp. 241 – 248, 2017.



BIBLIOGRAPHY 117

[23] C. zhang, C. Guo, F. Liu, W. Kong, Y. He, and B. Lou, “Hyperspectral imaging

analysis for ripeness evaluation of strawberry with support vector machine,” Journal

of Food Engineering, vol. 179, pp. 11 – 18, 2016.

[24] W. Di, L. Zhang, D. Zhang, and Q. Pan, “Studies on hyperspectral face recognition

in visible spectrum with feature band selection,” IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans, vol. 40, pp. 1354–1361, Nov

2010.

[25] D. Manolakis, D. Marden, and G. Shaw, “Hyperspectral image processing for auto-

matic target detection applications,” Lincoln Lab J, vol. 14, 01 2003.

[26] A. F. Goetz, “Three decades of hyperspectral remote sensing of the earth: A personal

view,” Remote Sensing of Environment, vol. 113, pp. S5 – S16, 2009. Imaging

Spectroscopy Special Issue.

[27] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing im-

ages with support vector machines,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 42, pp. 1778–1790, Aug 2004.

[28] F. Melgani and L. Bruzzone, “Support vector machines for classification of hy-

perspectral remote-sensing images,” in IEEE International Geoscience and Remote

Sensing Symposium, vol. 1, pp. 506–508 vol.1, June 2002.

[29] G. H. Halldorsson, J. A. Benediktsson, and J. R. Sveinsson, “Source based feature

extraction for support vector machines in hyperspectral classification,” in IGARSS

2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, vol. 1,

p. 539, Sep. 2004.

[30] L. Ma, M. M. Crawford, and J. Tian, “Local manifold learning-basedk-nearest-

neighbor for hyperspectral image classification,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 48, pp. 4099–4109, Nov 2010.

[31] R. M. Haralick and K. Shanmugam, “Combined spectral and spatial processing of

erts imagery data,” Remote Sensing of Environment, vol. 3, no. 1, pp. 3 – 13, 1974.



BIBLIOGRAPHY 118

[32] P. H. Swain, S. B. Vardeman, and J. C. Tilton, “Contextual classification of multi-

spectral image data,” Pattern Recognition, vol. 13, no. 6, pp. 429 – 441, 1981.

[33] M. Pesaresi and J. Benediktsson, “A new approach for the morphological segmen-

tation of high-resolution satellite imagery,” Geoscience and Remote Sensing, IEEE

Transactions on, vol. 39, pp. 309 – 320, 03 2001.

[34] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification of hyper-

spectral data from urban areas based on extended morphological profiles,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 43, pp. 480–491, March 2005.

[35] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spectral and

spatial classification of hyperspectral data using svms and morphological profiles,”

IEEE Transactions on Geoscience and Remote Sensing, vol. 46, pp. 3804–3814, Nov

2008.

[36] M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Morphological

attribute profiles for the analysis of very high resolution images,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 48, pp. 3747–3762, Oct 2010.

[37] M. D. Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Extended profiles with

morphological attribute filters for the analysis of hyperspectral data,” International

Journal of Remote Sensing, vol. 31, no. 22, pp. 5975–5991, 2010.

[38] G. Camps-Valls, L. Gomez-Chova, J. MuÃśoz-MarÃŋ, J. Vila-FrancÃľs, and

J. Calpe-Maravilla, “Composite kernels for hyperspectral image classification,” IEEE

Geoscience and Remote Sensing Letters, vol. 3, no. 1, pp. 93–97, 2006.

[39] J. Li, P. R. Marpu, A. Plaza, J. M. Bioucas-Dias, and J. A. Benediktsson, “Gen-

eralized composite kernel framework for hyperspectral image classification,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 51, pp. 4816–4829, Sep. 2013.

[40] G. Camps-Valls, L. Gomez-Chova, J. MuÃśoz-MarÃŋ, J. Vila-FrancÃľs, and

J. Calpe-Maravilla, “Composite kernels for hyperspectral image classification,” IEEE

Geoscience and Remote Sensing Letters, vol. 3, no. 1, pp. 93–97, 2006.



BIBLIOGRAPHY 119

[41] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based classification of

hyperspectral data,” IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, vol. 7, pp. 2094–2107, June 2014.

[42] Y. Chen, X. Zhao, and X. Jia, “Spectral-spatial classification of hyperspectral data

based on deep belief network,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 8, pp. 2381–2392, June 2015.

[43] X. Ma, H. Wang, and J. Geng, “Spectral-spatial classification of hyperspectral image

based on deep auto-encoder,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 9, pp. 4073–4085, Sept 2016.

[44] X. Ma, J. Geng, and H. Wang, “Hyperspectral image classification via contextual

deep learning,” EURASIP Journal on Image and Video Processing, vol. 2015, no. 1,

p. 20, 2015.

[45] W. Zhao and S. Du, “Spectral-spatial feature extraction for hyperspectral image

classification: A dimension reduction and deep learning approach,” IEEE Transac-

tions on Geoscience and Remote Sensing, vol. 54, pp. 4544–4554, Aug 2016.

[46] X. Zhou, S. Li, F. Tang, K. Qin, S. Hu, and S. Liu, “Deep learning with grouped

features for spatial spectral classification of hyperspectral images,” IEEE Geoscience

and Remote Sensing Letters, vol. 14, pp. 97–101, Jan 2017.

[47] W. Li, G. Wu, F. Zhang, and Q. Du, “Hyperspectral image classification using deep

pixel-pair features,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55,

pp. 844–853, Feb 2017.

[48] H. Teffahi, H. Yao, S. Chaib, and N. Belabid, “A novel spectral-spatial classification

technique for multispectral images using extended multi-attribute profiles and sparse

autoencoder,” Remote Sensing Letters, vol. 10, no. 1, pp. 30–38, 2019.

[49] Z. Lin, Y. Chen, X. Zhao, and G. Wang, “Spectral-spatial classification of hyper-

spectral image using autoencoders,” in 2013 9th International Conference on Infor-

mation, Communications Signal Processing, pp. 1–5, Dec 2013.



BIBLIOGRAPHY 120

[50] L. Zhang, M. Yang, and X. Feng, “Sparse representation or collaborative representa-

tion: Which helps face recognition?,” in 2011 International Conference on Computer

Vision, pp. 471–478, Nov 2011.

[51] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Hyperspectral image segmentation using

a new bayesian approach with active learning,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 49, pp. 3947–3960, Oct 2011.

[52] T. Li, J. Zhang, X. Zhao, and Y. Zhang, “Classification of hyperspectral image

based on deep belief networks,” in 2014 IEEE International Conference on Image

Processing (ICIP),, pp. 1–5, Oct 2014.

[53] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural net-

works for hyperspectral image classification,” Journal of Sensors, vol. 2015, no. 3,

p. 12pages, 2015.

[54] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction and

classification of hyperspectral images based on convolutional neural networks,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 54, pp. 6232–6251, Oct 2016.

[55] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, “Deep super-

vised learning for hyperspectral data classification through convolutional neural

networks,” in 2015 IEEE International Geoscience and Remote Sensing Symposium

(IGARSS), pp. 4959–4962, July 2015.

[56] A. Romero, C. Gatta, and G. Camps-Valls, “Unsupervised deep feature extraction

for remote sensing image classification,” IEEE Transactions on Geoscience and Re-

mote Sensing, vol. 54, pp. 1349–1362, March 2016.

[57] B. Pan, Z. Shi, and X. Xu, “R-vcanet: A new deep-learning-based hyperspectral

image classification method,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 10, pp. 1975–1986, May 2017.



BIBLIOGRAPHY 121

[58] L. Shu, K. McIsaac, and G. R. Osinski, “Hyperspectral image classification with

stacking spectral patches and convolutional neural networks,” IEEE Transactions

on Geoscience and Remote Sensing, pp. 1–10, 2018.

[59] H. T. Chen, H. W. Chang, and T. L. Liu, “Local discriminant embedding and its

variants,” in 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), vol. 2, pp. 846–853 vol. 2, June 2005.

[60] M. Mohammed, M. B. Khan, and E. B. M. Bashier, Machine Learning Algorithms

and Applications. Taylor and Francis Group, 2017.

[61] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of points in space,”

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

vol. 2, no. 11, pp. 559–572, 1901.

[62] I. Jolliffe, Principal Component Analysis, pp. 1094–1096. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011.

[63] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals

Eugenics, vol. 7, pp. 179–188, 1936.

[64] C. R. Rao, “The utilization of multiple measurements in problems of biological

classification,” Journal of the Royal Statistical Society: Series B (Methodological),

vol. 10, pp. 159–193, jul 1948.

[65] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.

http://neuralnetworksanddeeplearning.com/.

[66] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[67] D. E. Rumelhart, G. E. Hinton, and R. Williams, “Learning representations by

back-propagating errors,” Nature, vol. 323, pp. 533–536, Oct 1986.

[68] B. Wu, K. Li, F. Ge, Z. Huang, M. Yang, S. M. Siniscalchi, and C. H. Lee, “An end-

to-end deep learning approach to simultaneous speech dereverberation and acoustic

http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org
http://www.deeplearningbook.org


BIBLIOGRAPHY 122

modeling for robust speech recognition,” IEEE Journal of Selected Topics in Signal

Processing, vol. 11, pp. 1289–1300, Dec 2017.

[69] S. Gao, Y. Zhang, K. Jia, J. Lu, and Y. Zhang, “Single sample face recognition via

learning deep supervised autoencoders,” IEEE Transactions on Information Foren-

sics and Security, vol. 10, pp. 2108–2118, Oct 2015.

[70] S. Nagpal, M. Singh, R. Singh, and M. Vatsa, “Regularized deep learning for face

recognition with weight variations,” IEEE Access, vol. 3, pp. 3010–3018, 2015.

[71] “Sparse autoencoder.” https://www.mathworks.com/help/deeplearning/ref/

trainautoencoder.html;jsessionid=4d6dead5aac0b2f61758450f8fc6.

[72] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: A

strategy employed by v1?,” Vision Research, vol. 37, no. 23, pp. 3311 – 3325, 1997.

[73] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural

networks,” Science, vol. 313, pp. 504–507, Jul 2006.

[74] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, Nov 1998.

[75] G. Hinton, “A practical guide to training restricted boltzmann machines (version

1),” 08 2010.

[76] P. Soille, Morphological Image Analysis- Principles and Applications. Springer, 2003.

[77] E. J. Breen and R. Jones, “Attribute openings, thinnings, and granulometries,”

Computer Vision and Image Understanding, vol. 64, no. 3, pp. 377 – 389, 1996.

[78] P. Salembier, A. Oliveras, and L. Garrido, “Antiextensive connected operators for

image and sequence processing,” IEEE Transactions on Image Processing, vol. 7,

pp. 555–570, April 1998.

[79] C. Lee and D. A. Landgrebe, “Analyzing high-dimensional multispectral data,”

IEEE Transactions on Geoscience and Remote Sensing, vol. 31, pp. 792–800, Jul

1993.

https://www.mathworks.com/help/deeplearning/ref/trainautoencoder.html;jsessionid=4d6dead5aac0b2f61758450f8fc6
https://www.mathworks.com/help/deeplearning/ref/trainautoencoder.html;jsessionid=4d6dead5aac0b2f61758450f8fc6


BIBLIOGRAPHY 123

[80] C.-I. Chang, Q. Du, T.-L. Sun, and M. L. G. Althouse, “A joint band prioritization

and band-decorrelation approach to band selection for hyperspectral image classifi-

cation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, pp. 2631–

2641, Nov 1999.

[81] L. O. Jimenez and D. A. Landgrebe, “Hyperspectral data analysis and supervised

feature reduction via projection pursuit,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 37, pp. 2653–2667, Nov 1999.

[82] L. M. Bruce, C. H. Koger, and J. Li, “Dimensionality reduction of hyperspectral

data using discrete wavelet transform feature extraction,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 40, pp. 2331–2338, Oct 2002.

[83] M. Imani and H. Ghassemian, “Principal component discriminant analysis for fea-

ture extraction and classification of hyperspectral images,” in 2014 Iranian Confer-

ence on Intelligent Systems (ICIS), pp. 1–5, Feb 2014.

[84] Available at https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/.

[85] Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, “Svm- and mrf-

based method for accurate classification of hyperspectral images,” IEEE Geoscience

and Remote Sensing Letters, vol. 7, pp. 736–740, Oct 2010.

[86] R. C. Gonzalez and R. E. Woods, Digital image processing. Upper Saddle River,

N.J.: Prentice Hall, 2008.

[87] C. R. Maurer, Rensheng Qi, and V. Raghavan, “A linear time algorithm for comput-

ing exact euclidean distance transforms of binary images in arbitrary dimensions,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, pp. 265–

270, Feb 2003.



Curriculum Vitae

Name: Hadis Madani

Post-Secondary The University of Western Ontario
Education and London, ON, Canada
Degrees: 2015 - 2020, PhD in Electrical Engineering

University of Guilan
Rasht, Guilan, Iran
2010 - 2013, M.Sc. in Electrical Engineering

University of Guilan
Rasht, Guilan, Iran
2004 - 2009, B.Sc. in Electrical Engineering

Honors and Western Graduate Research Scholarship
Awards: 2015-2019

Related Work Research and Teaching Assistant
Experience: The University of Western Ontario

2015 - 2019

Publications:

• Madani, H., and K. McIsaac. Spectral perturbation method for deep learning-

based classification of remote sensing hyperspectral images. In Image and Signal

Processing for Remote Sensing XXV, vol. 11155, pp.260−269, International Society

for Optics and Photonics, SPIE, 2019.

• Madani, H., and McIsaac, K. Distance transform based spectral-spatial feature vec-

124



BIBLIOGRAPHY 125

tor for hyperspectral image classification with stacked autoencoder. IEEE Access.

Under review.

• Madani, H., and McIsaac, K. Hyperspectral Image Classification Using PCDA and

SAE. Computers & Geosciences. Under review.


	Hyperspectral Image Classification for Remote Sensing
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Dedication
	Acknowledgments
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Remote sensing
	Definition and applications
	Remote sensing mission examples

	Research problem
	Hyperspectral image classification

	Research contributions

	Background and Literature Review
	Background
	Literature review
	Machine learning and image processing
	Principal Component Analysis
	Linear Discriminant Analysis (LDA)
	Two-classes case
	C-classes case

	Artificial neural networks (ANN)
	Single layer neural network (perceptron)
	Multi layer neural network

	Deep neural network
	Stacked autoencoder
	Sparse autoencoder
	Convolutional neural network
	Deep belief network
	Recurrent neural network

	Extended multi-attribute profile
	Morphological profiles
	Extended morphological profiles (EMP)
	Attribute profiles
	Max-Tree
	Extended attribute profiles


	Summary

	Hyperspectral Image Classification Using PCDA and SAE
	Introduction
	Method
	Proposed framework
	Principal component discriminant analysis 

	Experimental results
	Data description
	Parameter tuning
	Performance evaluation

	Conclusion

	Distance transform based spectral-spatial feature vector for HSI classification with SAE 
	Introduction
	Methodology
	Experimental Results
	HYPERSPECTRAL DATASETS
	Salinas
	University of Pavia
	Surrey

	Parameter Tuning
	Number of retained PCs and size of the neighborhood
	Size of the hidden layers
	Required threshold parameters

	Performance Evaluation
	Effect of using supervised dimensionality reduction
	Comparison with other methods


	Conclusion

	Spectral perturbation method for deep learning-based classification of remote sensing hyperspectral images
	Introduction
	Method
	Experimental Results
	Data Description
	Performance Evaluation

	Conclusion

	Conclusion
	Bibliography
	Curriculum Vitae

