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Abstract 

Osteoarthritis (OA) is the most common type of arthritis or degenerative disease and leads to 

chronic and functional disability affecting a patient’s quality of life. The etiology of OA is a 

heterogeneous multifactorial disease, with inflammatory, metabolic, and mechanical causes. 

Therefore, OA commonly affects a heterogeneous population, ranging widely from the middle-

aged and elderly populations, although younger people may be affected as a result of injury or 

overuse. Moreover, OA is characterized by loss of articular cartilage, changes in subchondral bone, 

synovium and supporting structures that ultimately affect all the tissues necessary for joint 

function. Despite an increasing awareness of OA as a medical problem, there is a surprising 

absence of effective medical treatments beyond pain control and surgery. The progressive 

understanding of the pathophysiology of OA leads to the perception that the disease is not purely 

mechanical or aging, and clarification of the signalling pathways and molecular mechanisms is 

necessary to the clinical application.  

Our lab has demonstrated the importance of Epidermal Growth Factor Receptor/Mitogen Inducible 

Gene 6 (EGFR/Mig-6) for joint development. I hypothesized that Mig-6 regulates cartilage 

homeostasis.  We first started investigating the role of Mig-6 in cartilage using cartilage-specific 

(Col2) overexpression of Mig-6 in a mouse model. Using histopathological assessment, 

histological and imaging techniques, we concluded that these animals showed significantly greater 

cartilage breakdown with aging, while younger Mig-6over/over mice resulted in healthy articular 

cartilage. Moreover, μCT analysis showed small but significant reductions in the size of long bones 

of Mig-6over/over mice compared to control group (wild type).  

To further analyze the in vivo animal model, we subsequently assessed Mig-6 in cartilage using 

skeleton (Prx1)-specific overexpression. I again evaluated the morphology of articular cartilage 

using histological techniques and long bones of these mice and concluded similar results from the 

previous study, I found that mice overexpressing Mig-6 displayed significantly cartilage damage.  

Subsequently, we compared the disease progression between mice with cartilage-specific (Col2) 

overexpression of Mig-6 and controls after destabilization of medial meniscus surgery (DMM) to 

induce post-traumatic osteoarthritis (PTOA). Mig-6over/over mice exhibited behavioural changes 
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(vertical activity count) and appeared to show accelerated cartilage breakdown in surgically 

induced OA. Collectively, these data demonstrate that Mig-6 plays an important mediating role in 

articular cartilage homeostasis and development of osteoarthritis. Overexpression of this protein 

compromises the joint’s homeostatic mechanisms, predisposing them to accelerated degeneration. 

Keywords 

Mitogen inducible gene-6, Epidermal growth factor receptor, Osteoarthritis, Sox9, MMP13, 

Lubricin (PRG4), Articular Cartilage, Joint Homeostasis, Transgenic Mice 
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Summary for Lay Audience 

 

Osteoarthritis (OA) is a slowly progressive degenerative joint disease characterized by loss of 

articular cartilage. Our current understanding of the pathophysiology of OA suggests that the 

disease is not purely caused by mechanical factors or aging, and clarification of the biochemical 

and inflammatory pathways involved is necessary to develop new therapies. The economic and 

social impact of OA due to direct medical costs, loss of work time and quality of life are 

considerable.  

Currently, there are no treatment options available to slow, stop or reverse the course of OA, and 

the etiology of the disease is poorly understood. Thus, additional work to reveal the underlying 

pathobiology is required if treatment options are to be developed. Therefore, our laboratory has 

focused on elucidating the molecular mechanism relevant to OA using animal models, cell and 

organ culture, and biochemical techniques.  

We have identified that the epidermal growth factor receptor (EGFR) signaling pathway is 

involved in regulating the health of cartilage and other joint structures. In particular, we are 

interested in a gene called mitogen-inducible gene 6 (Mig-6) that regulates EGFR signaling, and 

loss of this protein has been shown to lead to severe joint dysfunction in mice. Using genetically 

modified mice lacking Mig-6 in critical joint tissues our laboratory showed that deletion of Mig-6 

resulted in thicker articular cartilage with extra, abnormal cartilage surrounding the knee. My 

project focuses on whether overexpression of Mig-6 is enough to cause OA.  

Indeed, my work shows that higher levels of Mig-6 in cartilage and other joint tissues leads to 

faster and more severe OA both during aging and after injury. Altogether, these studies may 

indicate Mig-6 and EGFR as potential therapeutic targets in the treatment of osteoarthritis and 

similar diseases. 
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“Gratitude makes sense of our past, brings peace for today, and creates a vision 

for tomorrow.”          

              

  ― Melody Beattie 
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Chapter 1 

 Literature Review 

1.1  The Development of the Skeleton 

The skeletal system consists of approximately 206 bones in the adult human, including long bones 

(ex. femur), short bones (ex. carpal bone of the wrist), flat bones (ex. skull) and irregular bones 

(ex. vertebrae) (1). Bones  are responsible for different functions such as: providing support for 

muscle, ligament and tendons, permitting them to attach and allowing for free movement; 

protection of soft tissues such as brain, spinal cord, heart and lungs from insult and absorbing 

shock related to locomotion; and harboring of hematopoietic red bone marrow within the skeleton 

(2). Moreover, as an endocrine organ, bone plays a role in energy metabolism and mineral ion 

homeostasis due its function as reservoir for calcium and phosphate storage. Importantly, bones 

contain two types of skeletal tissue: cortical and trabecular bone. Roughly 80% of the bone is 

composed of the cortical compartment which can be found on the outermost surface at the 

diaphysis and metaphysis of long bones, as well as the outer surface of the irregular, short and flat 

bones. Cortical bone presents hard and dense tissue and is responsible for the strength of the 

skeleton. Trabecular bone comprises 20% of the bone mass, exhibits a spongy appearance and is 

situated at the end of long bones and in the inner vertebral space (3).  Different cell lineages 

contribute to the skeleton during development (4). The onset of skeletogenesis begins with 

condensation of mesenchymal cells that either differentiate into osteoblasts to generate bone or 

differentiate into chondrocytes to form cartilage templates (anlagen) of future bones (5). Mature 

bone is highly mineralized, with a composition of 70% calcium phosphate crystals (mostly 

hydroxyapatite [Ca10(PO4)6(OH)2]), 25% of collagenous proteins, cells and other macromolecules,  

and 5% of water (6).  During embryogenesis, bone tissue is formed via intramembranous bone 

formation or endochondral ossification. Intramembranous ossification occurs directly from 

precursor cells, when these cells differentiate into osteoblasts that synthesize bone without the 

cartilage phase. This process forms parts of the craniofacial skeleton and clavicle (7). In 

endochondral ossification, precursor cells differentiate into chondrocytes and produce cartilage 

matrix, before replacement of cartilage by bone tissue. This process guides the formation of the 
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appendicular and axial skeleton (8,9). Recent studies have shown that proper skeletal development 

relies on a variety of cells types and multiple signalling pathways influence bone homeostasis (10–

12). Bone is a highly organized and dynamic connective tissue which is constantly remodelled 

throughout life by two processes: bone formation and bone resorption (13).  Some bones such as 

the flat bones of the skull, shoulder, scapula, pelvis and sesamoid bones are formed by 

intramembranous ossification (IO). Mesenchymal cells differentiate into osteoblasts in a process 

involving transcription factors such as runt-related transcription factor 2 (RUNX2), Osterix (Osx) 

and ATF4 that are essential for osteoblast differentiation and maturation (10). The osteoblasts 

produce and secrete collagen type I and proteoglycans to synthesize an osteoid matrix, which is 

then calcified to form bone. Ultimately, the osteoblasts differentiate into osteocytes and become 

embedded within the formed bone matrix (14). Many different growth factors play a role in 

intramembranous ossifications, most notably members of the bone morphogenetic protein family 

(such as BMP2, BMP4, and BMP7). 

1.1.1 Endochondral Ossification  

The majority of our mammalian skeleton consists of bones originating from a cartilage template 

intermediate that is then replaced by bone (7,15). Endochondral ossification is initiated during 

embryogenesis, and continues until the end of puberty. During this process, condensation of 

embryonic mesenchymal stem cells forms the primary template of bone. After condensation, 

progenitor cells differentiate to immature chondrocytes that express the transcription factor SRY 

(sex determining region Y)-box 9 (SOX9), which is essential for chondrogenesis (16,17). Sox9 

has been extensively studied and works with two other members of the Sox family, Sox5 and Sox6,  

to constitute the “Sox Trio”(16,18). The Sox Trio activates the expression of aggrecan (Agc1) and 

collagen II (Col2a1) genes and thereby controls the synthesis of cartilage extracellular matrix 

(ECM) rich in aggrecan and collagen II (19,20). Following mesenchymal condensation and 

chondrocyte differentiation, the cells located at the periphery of the cartilage anlagen starts to 

flatten and elongate to form the perichondrium (21,22). Ultimately, the chondrocytes in the center 

region of the cartilage exit the cell cycle and terminally differentiate into hypertrophic 

chondrocytes (23,24). This event occurs around embryonic day 14.5 in mice (e.g., in the tibia). 

These hypertrophic cells increase their volume and express type X collagen and the transcription 

factor Runx2. Terminal hypertrophic chondrocytes also express molecular markers such as 
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metalloproteinase 13 (MMP13), vascular endothelial growth factor (VEGF) and secreted 

phosphoprotein 1 (osteopoitin) (25–27). Some of the cells in the perichondrium start to express 

osteoblastic genes such as type I collagen (Col1), alkaline phosphatase (Alp), Runx2, among 

others, and ECM secreted by these preosteoblast cells initiates ossification adjacent to the 

hypertrophic chondrocytes to form a collar of compact bone around the diaphysis of the cartilage 

(28,29). In addition, MMP9 is produced by osteoclasts which are activated by RANKL (receptor 

activator of NF-kB ligand) produced by hypertrophic chondrocytes (30,31).  

During the transition from hypertrophic cartilage to bone, a sequence of events occurs including 

mineralization of the cartilage matrix, hypertrophic chondrocyte apoptosis and/or 

transdifferentiation to osteoblasts, and the invasion of blood vessels that bring osteoblast, 

hematopoietic cells and osteoclasts. Collectively, these processes  remove the mineralized cartilage 

matrix and replace it with bone tissue (32). This results in the formation of primary ossification 

center (POC) of endochondral bone. Eventually, the production and maturation of chondrocytes is 

restricted to the end of the cartilage (epiphyses) at the growth plate, which is responsible for 

longitudinal bone growth in the body (33). At approximately postnatal day 5-7, the secondary 

ossification centers appear within the epiphysis in mice, separating the growth plate from the distal 

ends of the long bones (34). 

1.1.2 Epiphyseal growth plate development 

The growth plate forms during fetal developmental and the closure of the epiphyseal growth plate 

occurs in late puberty in humans, under the influence of of estrogen in both sexes (35–37). The 

elongation of the long bone is the main function of the growth plate (38). The growth plate is a 

thin layer composed of highly organized chondrocytes and can be divided into four distinct zones: 

proliferative, resting (reserve), hypertrophic and prehypertrophic chondrocytes is also shown in 

figure 1.1.  
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Figure 1.1 Schematic representation of the growth plate. The endochondral growth plate is 

composed of distinct cell zones of resting, proliferative, pre-hypertrophic and hypertrophic cells. 

A series of cellular differentiation stages occurs from resting cells to hypertrophy, resulting in 

longitudinal bone growth, largely because of the proliferation and enlargement of chondrocytes.  

 

 

 

 

 

 

 

 



5 

 

 

 

 

Figure 1.1 The Growth Plate 
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The resting or reserve zone contains small and round cells, with high volume of extracellular 

matrix but low metabolic activity (39,40). Moreover, a recent study has shown that the resting 

zone includes stem-like cells that will generate proliferative chondrocytes; deletion of  resting 

chondrocytes leads to growth plate senescence (41,42). The proliferative zone is composed of 

columnar chondrocytes which undergo rapid cellular division in direction towards the diaphysis 

which leads to longitudinal bone growth. These cells express Col2a1 and Aggrecan genes to 

synthesize the cartilage-specific matrix (43). When chondrocytes exit from the cell cycle, they start 

to increase their cell volume and enter first the prehypertrophic zone, and then the hypertrophic 

zone.  Hypertrophic chondrocytes express collagen, type X (Col10a1) (44). Late hypertrophic 

chondrocytes initiate expression of MMP13, VEGF, and alkaline phosphatase (45). Growth plate 

chondrocyte proliferation and maturation is regulated by systemic and local factors that include 

different hormones, growth factors, and multiple signaling pathways. For example, growth 

hormone (GH) induces the production of insulin-like growth factor I (IGF-1) which promotes 

chondrocyte proliferation and initiates chondrocyte hypertrophy (46). IGF-1 signaling also 

interacts with the Indian hedgehog (Ihh), parathyroid hormone related peptide (PTHrP), and Wnt/β 

-catenin pathways that are crucial during skeletal development (47–49). In addition, some studies 

have shown that thyroid hormone is essential for skeletal growth and that hypothyroidism leads to 

bone growth retardation, delayed bone age, and short stature (50,51). Taken together, a number of 

transcription factors and signaling pathways mediate the epiphyseal growth plate through the 

fascinating interaction between cell types which can help to elucidated human skeletal dysplasia’s 

involvement in this process. 

1.1.3 Secondary Ossification Center 

During early postnatal development the secondary ossification center (SOC) is formed and 

separates the growth plate from the articular cartilage (52,53). Differently from the POC, SOC 

formation is not preceded by the formation of hypertrophy and mineralization of cartilage or of a 

bony collar (54,55). The first event in secondary ossification is the vascular invasion of uncalcified 

hyaline cartilage of the epiphysis (perichondrium), enabling the infiltration of osteoclast and 

osteoblast cells (56,57). Studies have identified high expression levels of MMPs around forming 

blood vessels and at the borders of the marrow cavity, allowing for remodeling of the extracellular 
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matrix, which is necessary for ossification of the epiphysis (58). Accordingly, it has been also 

reported that VEGF is required for neovascularization of hypertrophic cartilage to enhance the 

vascular ingrowth of growth plate in this region (55). Interestingly, the last phase of the 

endochondral ossification is the mineralization process. Following the calcification of the 

extracellular matrix by hypertrophic chondrocytes and vascular invasion, osteoclasts break down 

cartilage (28). At the same time, osteoprogenitor cells are recruited and differentiate into 

osteoblasts that secrete osteoid, which forms the bone trabecula within the growth plate resulting 

in mature secondary ossification centers (59,60). Many signaling pathways interact with each other 

to regulate this process, such as WNT/ β-catenin signaling (61,62) and epidermal growth factor 

(EGFR) to fine tune bone development (63).  

1.1.4 Synovial Joint Development 

Joints are structures where adjacent bones are held together by connective tissue. Synarthroses 

(syn= together + arthrosis = articulation) can be divided into: 1) fibrous joints, in which skull 

bones from children and young adults are connected by layers of connective tissue; for example, 

sutures; 2) cartilaginous joints are found between bones that articulate against each other with a 

pad of fibrocartilage; for example, the intervertebral discs of the spinal column; 3) synovial joints, 

where the adjacent bones are in contact with each other within a sealed joint cavity that contains 

synovial fluid; for example, joints of knees, elbows or ankles (64,65). Synovial joints from mice 

are formed through a series of steps between E12.5 and E13.5 days. Growth/Differentiation factor 

5 (GDF5) is important in defining the interzone between adjacent cartilages (66,67). The interzone 

zone originates from condensed mesenchymal cells that express the “Sox trio”, Col2a1, and Agc1 

but also Wnt9a, Wnt4 and Noggin which are important anti-chondrogenic factors (19,68–73). The 

exact balance of these pro- and anti-chondrogenic factors is crucial for the formation of articular 

cartilage and non-cartilaginous joint structures (such as ligaments, synovial lining) (73). Cell 

apoptosis also contributes to formation of the joint area.  The joints from mice are completely 

formed by E16.5 days. Interestingly, mechanical stimuli through the movement of muscle 

contraction is an important factor for joint progenitor cells (74). Previous studies have shown that 

mechanical forces can contribute to the development of joint formation  as well as endochondral 

ossification (75).  
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Anatomically, the synovial joint is comprised of different tissues including articular cartilage, 

synovial membrane, subchondral bone, ligaments, tendons and meniscus (Fig. 1.2). Altogether 

theses tissues play a role in maintaining the homeostasis of the joint  (76,77). The main function 

of articular cartilage is to minimize friction upon joint movement and to distribute loads (78). The 

collagen network of the hyaline articular cartilage enables even distribution of the forces generated 

by mechanical compression (79). The joint cavity is enclosed by a specialized fibrous connective 

tissue including the synovial membrane that extends folds and villi into the joint cavity and secretes 

the lubricating synovial fluid (80). Synovial fluid is derived from blood plasm, but with a high 

concentration of hyaluronan (HA) produced by cells of the synovial membrane. Cells of the 

synovial membrane include macrophage-like synovial cells (type A cells) and fibroblastic synovial 

cells (type B cells) (81–83). Subchondral bone is the zone of epiphyseal bone underneath the 

articular cartilage and its main role is to form the “osteochondral junction”,  which is related to 

biomechanical and biochemical cross-talk between articular cartilage and underlying bone  

(84,85). Another supporting structure in the knee joint is the meniscus, which is a C-shaped 

fibrocartilaginous tissue between the tibia and femur. Knee meniscus is important to allow smooth 

load transfer from femur to tibia and for joint stability (86,87).  

Subchondral bone consists of two distinct structure: subchondral bone plate (SBP) and 

subchondral trabecular bone (STB), which form a unit that separates the articular cartilage from 

the bone marrow (88). The main functions of the subchondral bone are to dissipate forces and 

provide elasticity for shock absorption caused by repetitive loading such as locomotion. 

Furthermore, subchondral bone has an extensive local response to repetitive loading though the 

bone remodeling process (89). It has since been shown the subchondral bone is a highly 

vascularized, innervated and dynamic tissue which provides a connection between the uncalcified 

cartilage and the bone marrow space (90). In fact, many signaling mechanisms facilitate the 

communication between articular chondrocytes and subchondral bone cells (osteoblast, osteoclasts 

and osteocytes) (91). Another important function of subchondral bone is to deliver nutrition and 

oxygen supply to cartilage through the medullary cavity via channels that connect subchondral 

bone and cartilage (92).  

Moreover, synovial joints are reinforced by a number of extracapsular ligaments that are made 

from bands of dense regular connective tissue that connect bones to other bones (93). Skeletal 
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muscle mediates movement/locomotion and also helps to stabilize the joint. Every joint has 

nervous innervations related to nociception and neurogenic inflammation; sympathetic and 

sensory nerve fibers are present in synovium, subchondral bone, and periosteum (94,95).  

1.2 Cartilage  

1.2.1 Composition of Cartilage  

Cartilage is an avascular, aneural and alymphatic tissue that mainly consists of ECM and water, 

comprising more than 95% of tissue volume (96,97). There are three major types of cartilage: 

elastic cartilage, fibrocartilage and hyaline cartilage. Elastic cartilage is found in the epiglottis (part 

of the larynx) and the pinnae (external part of ear flaps) and is composed of collagen fibers and 

elastin protein (98,99). Fibrocartilage is found in the pubic symphysis, the annulus fibrosus of 

intervertebral discs, menisci and the temporal mandibular joint. Fibrocartilage is also largely 

composed by type I collagen (100,101). Hyaline cartilage can be found on many joints surfaces 

(ex. articular surfaces of long bones) as well as at the epiphyseal plate (growth plate) (102), as 

previously discussed. Histologically distinguishable from the other types of cartilage, the ECM of 

hyaline cartilage is mainly composed of collagen type II, proteoglycan, water and lesser amounts 

of other non-collagenous proteins and glycoproteins (103). More specifically, these proteoglycans 

consist of core protein (210-250 kDa), mostly aggrecan, that is the most abundant by weight and 

largest in size in the ECM of cartilage. Aggrecan has many glycosaminoglycan (GAG) side-chains 

and binds to hyaluronic acid (HA) polymers to form a large complex with negative charges, which 

contributes to its function (104). The GAG chains are composed of chondroitin-sulfate and keratan 

sulphate with a high water-binding capacity and provide osmotic properties to cartilage, which 

will ultimately contribute to retain water within the ECM (105,106). Moreover, the principal 

collagen in the ECM of articular cartilage is the type II collagen. Articular cartilage, collagen type 

II, provide tensile strength and physical properties of the mature matrix. Also, collagens IX and 

XI are responsible to stabilize and help in the organization of the collagen network.  

Together, these components and structures provide the cartilage function as a very resilient and 

highly specialized tissue that forms the smooth gliding surface of synovial joints, as well as, shear 

strength and self-lubrication (107). Articular cartilage has limited self-repairing capacity; the 

amount of cartilage ECM decreases with age and this has been attributed mainly to diminished 
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anabolic activity of cartilage cells (108). The cellular component of cartilage is made up by only 

one cell type, the chondrocytes which occupy about 2% of the volume of human cartilage (109). 

In healthy cartilage, chondrocytes produce proteolytic enzymes that act on collagen and 

proteoglycans, promoting localized and controlled tissue turnover and repair. The half-life of 

collagen is from several decades to up to 400 years for human femoral head cartilage, however, 

the average half-life of aggrecan is 25 years (110). The homeostasis of matrix turnover in articular 

cartilage will be explained later in this chapter but involves a dynamic equilibrium involving 

biochemical mediators including hormones, growth factors and cytokines as well as mechanical 

forces (111). 

1.2.2 Zones of Articular Cartilage 

Articular cartilage is composed of four different zones: superficial zone, middle zone, deep zone, 

and calcified zone. Within each zone, 3 different regions can be identified: the pericellular region, 

the territorial region, and the interterritorial region. The superficial zone (SZP) is the outermost 

layer of articular cartilage, protects deeper layers from shear stress, and makes up roughly 10% to 

20% of articular cartilage thickness (112). Collagen type II is aligned parallel to the articular 

surface, but there is less aggrecan in the SZP (113). This zone is in contact with synovial fluid and 

is responsible for most of the tensile and compressive stiffness of cartilage to resist shear forces 

during joint movement (114).  

In the superficial zone, the chondrocytes are smaller and flattened in morphology and have a 

greater density (115). Interestingly, mesenchymal stem cell markers have also been detected in the 

superficial zone of adult articular cartilage, suggesting a potential role in endogenous repair or 

cell-based therapy for treating some diseases such as osteoarthritis (OA) (116). However, more 

research is needed to elucidate the activity of these progenitor cells and the involvement of 

signalling pathways that regulate their functions. Importantly, the chondrocytes in this zone 

express several molecules such as superficial zone protein (SZP), also known as lubricin (PGR4) 

(117). Likewise, hyaluronan and surface-active phospholipids (SAPL) are involved as key 

boundary lubricants in cartilage (118). The middle (transitional) zone (MZ) is the largest zone that 

represents 40% to 60% of the total cartilage volume and acts as a first barrier in resisting the 

compressive loads between the superficial and deep zone, due to collagen fibrils organized 

obliquely from articular surface to subchondral bone (112,119). Recent studies have shown the 
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importance of the middle zone for the biomechanical resilience.  MZ chondrocytes are spherical 

and large cells, with a column-like stacked arrangement (119). Below the MZ is the deep zone 

(DZ) that comprises 30% of cartilage volume and also contributes to its compressive strength. The 

DZ is characterized by vertical and columnar type II collagen fibers and proteoglycan organized 

perpendicular to the articular surface (120). In this layer, the chondrocytes are rounded and 

arranged as vertical columns of cells (121,122). The final layer is the calcified zone of cartilage 

(CZC), the deepest zone characterized by a calcified cartilage matrix which ultimately contributes 

to dissipating shock absorbance and confers structural integrity between the tissues of cartilage 

and bone during loading. Moreover, the calcified zone contacts the underlying subchondral cortical 

bone, known as the articular cartilage end plate (123). The cells in this layer are hypertrophic 

chondrocytes producing type X collagen, and the cell density is relatively low compared to the 

other zones (124). The deep zone is separated from the other zones by an irregular thin cement line 

known as tidemark (125).  

1.2.3 Extracellular matrix and chondrocyte interaction  

The cartilage ECM contains proteoglycans, collagens, cell binding glycoproteins, non-collagen 

ECM proteins, and lipids (126,127).  The ECM can be divided into different regions such as: 

pericellular, territorial and interterritorial. The chondrocyte and its PCM environment is termed as 

chondron, which is surrounded by the territorial matrix including type XVI collagen (127). Type 

XVI collagen organize the ECM by anchoring and stabilizing collagen fibrils and sustaining 

microfibrils, intercepting intracellular signalling involved in proliferation and cell adhesion. The 

territorial matrix is made up of fine collagen fibrils containing types II and XI collagen is involved 

in the protection of chondrocytes from mechanical load and may facilitate the resiliency of articular 

cartilage to load bearing (126,128). The largest region is the interterritorial region that is composed 

mostly of proteoglycans and randomly oriented collagen fibrils which contribute to the 

biomechanical properties of articular cartilage (129).  
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1.2.4 Cartilage Molecular Mechanism of Cartilage Homeostasis: Catabolic and 

Anabolic Factors  

Joint movement and dynamic loading of articular cartilage play crucial roles in the joint 

homeostasis and the pathogenesis of OA. The process by which chondrocytes convert mechanical 

signals into biochemical responses is called chondrocyte mechanotransduction (130). During joint 

loading, the compression of cartilage results in altered matrix water content and osmotic pressure, 

complex changes in calcium concentration, and fluid shear stress (131). Moreover, excessive 

mechanical loading can also influence the physiological balance between catabolism and 

anabolism factors, resulting in the development of diseases such as OA (132). Many candidate 

mechanoreceptors have been identified in chondrocytes including integrins, stretch-activated or 

stretch-sensitive ion channel (SACs), connexins, and primary cilia (133). These mechanoreceptors 

initiate intracellular signaling cascades leading to articular cartilage remodeling (134). Under 

physiological loading, chondrocytes maintain homeostasis. Unphysiological stimulation, however, 

can lead to changes in the chondrocyte phenotype, such as de- differentiation to a fibroblast-like 

cell and decrease of production of cartilage specific makers including type II collagen and 

aggrecan, or the induction of chondrocyte hypertrophy and apoptosis (135).  

Healthy joint tissue under mechanical loading conditions has appropriate anabolic responses to 

antagonize the process of catabolic cytokines. One of the most important anabolic factors for 

articular cartilage, insulin-like growth factor-I (IGF-I), has been implicated in proteoglycan 

production. Many studies have demonstrated that IGF-I plays a role in chondrogenesis by 

enhancing proliferation and stimulating expression of collagen II and Sox9 (136). Furthermore, 

the TGF-β family members such as: bone morphogenetic proteins (BMPs), GDF5 and TGFβ itself 

(137). Members of the FGF family including FGF-10 and FGF-18 have anabolic effects on 

cartilage tissue at early stages of development (138). Interestingly, FGF-18 induces cartilage 

matrix production by activating the FGF receptor 3 (FGFR3) (139). As stated above, during life 

time, chondrocytes are responsible for the maintenance of the articular cartilage by regulating 

matrix metalloproteinases (MMPs) and A Disintegrin and Metalloproteinase with 

Thrombospondin Motif (ADAMTSs), collagen II and aggrecan networks surrounding them (140). 
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In summary, a variety of stimuli (chemical, inflammatory, growth factors and other signalling 

factors) can contribute to the anabolic and catabolic balance on cartilage and OA pathogenesis. 

Catabolic event is marked by cartilage matrix degradation markers, such as proinflammatory 

cytokines including interleukin-1-beta (IL-1β) and tumor necrosis factor-alpha (TNFα) (141). 

Evidence from in vitro and in vivo studies have demonstrated that TNFα and IL-1β contribute to 

ECM destruction and induce chondrocyte apoptosis (142). In addition, IL-1β can enhance 

expression of MMP-1, MMP-3 and MMP-13(143). Other inflammatory cytokines such as IL-4 

have been reported as well in human articular cartilage, and  IL-1, -6, -8 are increased in the 

osteoarthritic synovial lining (144). ADAMTS proteins are proteases that target aggrecan. IL-1β 

and TNF-α stimulate the production of ADAMTS-4 (145) through activation of the transcription 

factor NF-κB, as well as p38 and c-Jun N-terminal kinase (JNK) MAP kinases (146). 

1.3 Osteoarthritis 

Currently, there are more than 100 different forms of arthritis, and the most common form is 

osteoarthritis (OA). It has been estimated that currently 250 million people are affected by OA 

worldwide (147). The burden of OA is increasing substantially in Canada and the United States, 

including direct and indirect economic costs. More research is needed to enable a better 

understanding of the pathophysiology of OA, and clarification of the underlying signalling 

pathways and molecular mechanisms is necessary to direct the clinical approaches to disease 

management. 

1.3.1 Etiology of Osteoarthritis 

OA is a heterogeneous pathology characterized by many different factors involving metabolic, 

inflammatory, and mechanical causes. The classification of OA has traditionally been 

subcategorized into idiopathic (ie, primary) in nature, with no known specific cause, and secondary 

OA (148). Both primary and secondary OA involve the deterioration of cartilage in joints, and 

bones begin to rub against one another. However, primary and secondary OA have different 

triggers. For example, primary OA is affected by several factors including obesity, gender, age, 

and genetic factors that can lead to the development of OA (149). Contrarily, secondary OA or 

posttraumatic OA, is caused by trauma that directly damages joint tissues and destabilizes the joint 
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(i.e. meniscectomy or anterior cruciate ligament (ACL) tears). Abnormal anatomical stress such 

as femoroacetabular impingement (FAI), or malalignment of the tibia and femur of the knee 

resulting in ‘knock-kneed’ or  ‘bow-legged’ (valgus and varus, respectively) can contribute to OA 

susceptibility (150,151). 

1.3.2 Non-Modifiable Risk Factors For OA 

Although the cause of OA is still unclear, there are non-modifiable and modifiable risk factors for 

OA. Age is one of the greatest non-modifiable risk factors for the development of OA as a result 

of many biological age-related changes in the joint structures. In fact, 70% of women and 60% of 

men over the age of 65 years were diagnosed with radiographic signs of OA in one or more joints 

(108,152). Moreover, several studies have demonstrated that senescent chondrocytes are found in 

degenerated cartilage tissue and cartilage tissue from OA patients undergoing joint replacement 

surgery (153). Senescence of chondrocytes is associated with development or progression of OA, 

since the senescent cells show increased production of MMPs and catabolic degradation of type II 

collagen (154).  Several pathways such as p38 MAPK and PI3K/Akt are involved in the 

senescence-associated secretory phenotype (SASP) (155). Furthermore, OA chondrocytes display 

more production of reactive oxygen species (ROS) due the mitochondrial dysfunction, which may 

increase inflammation and catabolic responses mediated by NF-kB pathways (156). In vivo studies 

have also demonstrated that mechanical injury to cartilage can lead to senescence in the superficial 

zone in young animals and throughout cartilage in aged animals (157). In addition, with age, 

changes in other tissues such as subchondral bone changes, loss of muscle mass (sarcopenia), 

synovium and ligament changes, can contribute to the onset of OA development (158–160).  

According to World Health Organization (WHO) the prevalence of OA is higher in women (18%) 

than in men (9.8%), particularly in those above 60 years of age. Some studies have shown anatomic 

differences between women and men, with women showing significantly tibiofemoral cartilage 

defects and tibial and patella cartilage loss (161). Moreover, a study comparing the kinematic 

differences between male and female athletes demonstrated that women exhibited greater anterior 

and posterior shear forces, knee extension and valgus moments, which may also play a role in the 

development of knee OA in women (162,163). In vivo studies have suggested that sex hormone 

deficiency influence joint structure as shown in orchiectomized (ORX) male and ovariectomized 
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(OVX) female mice (164). As a result, intact male mice had more accelerated OA development 

than ORX male, however, OVX female mice had more severe OA than intact female. But the 

direct actions of estrogen or testosterone on cartilage are still unclear (165).  A large number of 

studies have shown the contribution of genetics and epigenetics in OA, which is estimated to be 

between 40% and 80%, and higher in hand and hips than for knee OA (166). An inherited 

predisposition to OA has been evidenced for many years from twin and sibling studies (167).  The 

past decade has identified a great number of candidate genes that confer susceptibility for OA 

disease. Previous findings using genome-wide associated studies (GWAS) have identified GDF5, 

COL2A1, TGFB1, Matrilin 3 (MATN3), IL1, and IL4R as contributors to OA risk in different 

joints (168–170).  

1.3.3 Modifiable Risk Factors For OA  

The most significant modifiable risk factor in OA is obesity, since weight loss in OA can benefit 

patient pain significantly and slow down progression of joint structural damage. Obesity affects 

the weight-bearing joint by altering joint kinematics and increasing ambulatory load (173). 

Interesting, there also is evidence that obese people are at increased risk for developing hand OA 

due the metabolic association between adipose tissue and OA (174). Adipokines such as leptin 

have been identified in articular cartilage and synovial fluid from knee or hip OA patients (175). 

Moreover, the systemic inflammatory effect of increased adipose tissue leads to 

“metainflammation” (inflammatory and metabolically active) involving proinflammatory 

cytokines that have a role in joint structural change and in the perception of pain, altogether 

contributing to a positive feedback loop of obesity and OA (176).  

Different tissue in the joint can be affected due to either a single episode of trauma or repetitive 

overuse. Studies have shown  structural damage resulting from mechanical forces from high-

impact exercise on cartilage tissue, which can lead to the incidence of secondary OA(177). 

Meniscal or anterior cruciate ligament (ACL) injury arise frequently from joint trauma (sports 

injuries, falls, occupational activity) and present a risk factor for OA (178). Joint trauma induces 

to a complex metabolic response that involves cell death, matrix degradation, release of oxidants 

and inflammatory cytokines, potentially causing further joint damage (179). A synovial 

inflammatory response is a regular consequence following injury. Moreover, mechanical 
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instability often results from joint injury (e.g. ACL rupture), leading to an unbalanced load 

distribution and cartilage degeneration (180). Thus, direct trauma to joint structures, an 

inflammatory response, and mechanical instability all contribute to the risk of post-traumatic OA. 

1.3.4 Pathobiology of Osteoarthritis  

OA is characterized by failure of the synovial joint organ as a result of dysfunction of one or more 

joint structure (as shown in Figure 1.2), resulting in joint pain and increasing disability. Indeed, 

subchondral bone, synovium, supportive ligaments and articular cartilage all play a role in 

progression of OA pathology. 
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Figure 1.2 Synovial joints in health and OA knees. The articular surfaces of bones within 

synovial joints are covered with a thin layer of hyaline cartilage that provides a smooth surface 

and reduces friction during movement. Moreover, articular cartilage enables the subchondral bone 

to absorb and dissipate impact energy during weight bearing. The fluid-filled joint cavity is 

enclosed by a fibrous joint capsule. The synovium (synovial membrane) lines the joint cavity and 

produces synovial fluid which provides nutrition and lubrication to the cartilage surfaces. In 

addition, other structures such as ligaments, tendons and muscle support stability and alignment 

of the joint. Menisci are responsible for the distribution of mechanical loading in the femorotibial 

joint. Figure courtesy of Ermina Hadzic. 
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Figure 1.2 Synovial joints in health and OA knees. 
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1.3.5 Cartilage Breakdown in OA 

As mentioned before, OA is not simply a disease of cartilage it is, rather, the irreversible 

destruction of cartilage which is attributed to OA. At the early stage of OA, articular cartilage loses 

its structure and composition due to decreasing proteoglycan content. Once collagen is degraded, 

it appears that a state is reached that cannot be reversed (149). Early degenerative changes happen 

in the SZP of articular cartilage after successive loads and contribute to the progressive cartilage 

destruction (181). Articular cartilage progressively undergoes fibrillation and erosion towards the 

calcified cartilage and extends into the mid and deep zone of cartilage (182). The continued 

deterioration of articular cartilage eventually exposes the underlying subchondral bone, resulting 

in a decrease in joint motion and increase of pain (183). During OA, changes in chondrocyte 

behaviour with disease advancement can be seen. Chondrocyte responses and expression profiles 

are altered during OA, for example, increased expression of degenerative enzymes (such as 

MMP13 and ADAMTS-5) (184). Overall, the alteration in chondrocyte phenotype leads to an 

imbalance in anabolic and catabolic processes in articular cartilage and ultimately in the 

progression of the disease.  

1.3.6 Subchondral Bone in Osteoarthritis 

As the disease progresses, not only articular cartilage is deteriorated, but changes in the underlying 

subchondral bone also play an important role in the onset of OA (185). The subchondral bone 

tissue is a biphasic material and is designed to support axial loads and respond to stresses placed 

across the joint structure. Mechanical properties can be associated with bone thickening, increased 

porosity, reduced density/elasticity and reduced capacity for shock absorption (89). Current 

evidence suggests that subchondral bone disease is part of OA pathogenesis. For example, patients 

with hip OA pathology showed an increased volume of trabecular bone as well as higher bone 

mineral density (BMD) (186). Moreover, using magnetic resonance imaging (MRI) bone marrow 

lesions (BML) (also called bone marrow edema or bone bruises) have been associated with knee 

malalignment and knee pain (187). BMLs are strongly associated with pain and related to the 

occurrence of subchondral microfractures (188).  In order to compensate the mechanical instability 

of the joint, osteophytes are formed at joint margins in a process similar to endochondral 

ossification, regulated by the actions of TGFβ and BMP2 (189,190). Subchondral bone sclerosis, 
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subchondral bone cysts formation, osteophytes, subluxation, narrowing of the joint space and intra-

articular or periarticular calcification are commonly seen radiographically in more chronic cases 

of OA (191).  

1.3.7 Changes in the Synovium  

Mounting evidence suggests that the synovium plays an important role as a driver of the OA 

process at early and late stages. Synovitis is a complex process and  can be induced by release of 

fragments from degraded hyaline cartilage as well bone (detritus) structures into the synovial 

cavity, which ultimately initiate synovial inflammation (192). Several studies have shown that 

synoviocytes produce pro-inflammatory factors that attract immune cells and inflammatory 

mediators such as macrophages and T-cell lymphocytes into the OA synovium (78). Cytokines 

and chemokines as well as their downstream signalling pathways have been extensively studied in 

the synovium, including TNFα, IL-1β, IL-6, IL-15, IL-17, and IL-18 that are up-regulated in OA 

synovial fluid and synovial membrane (SM) (193). Moreover, Toll-like receptors (TLRs) are 

expressed by macrophages found in SM in both OA and rheumatoid arthritis (RA) (194). TLRs 

activate nuclear-factor κB (NF-κB), resulting in the production of chemokines and cytokines such 

as IL-8, CCL5, and IL-6 and stimulation of macrophages, granulocytes, and lymphocytes (195). 

Aspects of synovitis in knee OA include thickened synovium, villous hyperplasia, increased 

synovial vascularity and vascular flow, infiltration of lymphocytes and macrophages, and fibrosis 

(196).  

1.3.8 Mechanism of OA Pain  

The perception of pain is the predominant and most disabling symptom of OA patients and those 

affected by pain usually report pain-related psychological distress, swelling, fatigue and morning 

stiffness (197). Peripheral mechanism can increase chronic pain and also contribute to hyperalgesia 

(enhanced pain response) or allodynia (pain in response to non-noxious stimuli) (198). Nociceptors 

(pain-sensing afferent neurons) and proprioceptors (afferent receptors for motor control) are 

present in tissues that are compromised by OA, including the periosteum and subchondral bone, 

soft tissues including ligament insertions, menisci, and synovium that ultimately leads to the 

feeling of joint pain (199). Therefore, OA pain is a complex process that involves nociceptive input 
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from the joint as well as in the peripheral and central nervous system. Under disease conditions, 

many inflammatory mediators are released within the joint to elicit pain (200). Synovium in OA 

patients has “macroscopic” inflammation that can corroborate to the pain within the joint, since 

cartilage debris can be phagocytosed by cells lining the synovium (201). Articular cartilage is 

anural and avascular, however, the degeneration in cartilage that leads to subchondral bone plate 

exposure is associated with prevalent and incident knee pain in patients with knee OA (202).  

Furthermore, there are many signaling pathways contributing to the mechanism underlying OA 

pain.  Chemotactic cytokine ligand 2 (CCL2) signalling has been identified as nociceptive 

stimulator in the development of pain in mice (203). Clinical and animal studies have targeted 

nerve growth factor (NGF) and inhibition of its receptor, tropomyosin receptor kinase A (TrkA), 

in OA pain. Interesting results have shown the efficacy of targeting NGF on reducing OA pain, as 

seen in patients that had treatment with the anti-NGF antibody tanezumab (204). However, more 

clinical and animal studies are required for understanding the role of the NGF/ TrkA pathway in 

OA to optimize therapeutic strategies for OA. 

1.3.9 Diagnosis and Treatments for OA  

OA commonly affects multiple joints such as hands, knee, hips and spine, and plain radiograph (x-

rays) or advanced imaging techniques including MRI or computed tomography (CT) can be also 

used for diagnosis of OA pathology (205). Radiography enables the visualization of marginal 

osteophytes, subchondral sclerosis and cysts, cortical alterations and alignment of the joint. Other 

joint structures such as articular cartilage, crucial or collateral ligaments, and menisci are more 

easily visualized by MRI (206). Furthermore, (CT arthrography (CTA) and MR-arthrography 

(MRA) can also identity articular cartilage, synovial inflammation, and osteophytes with high 

anatomic resolution (206). Additional guidelines to diagnose OA include: pain is enhanced with 

activity of daily living; morning stiffness with duration of less than 30 minutes; range of motion 

becomes limited with joint locking or joint instability; and patients older than 45 years (207,208). 

The treatment for OA patients is focused on relief of pain, and improvement/maintenance of 

quality of life. OA treatment can be divided in three categories: nonpharmacologic, pharmacologic 

and surgical management (207). In order to control pain, the use of nonsteroidal anti-inflammatory 

drugs (NSAIDs) is recommended, such as acetaminophen or cyclooxygenase-2 (COX-2) 

inhibitors (209). Moreover, intra-articular therapies can also be used for acute pain, such as 
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hyaluronic acid (HA) or corticosteroid (CSs) injections; however, variable and controversial 

results have been reported in clinical trials and meta-analysis (210,211).  Non-pharmacological 

management includes weight reduction and targeted exercise; for example, low-impact activities 

have shown improvements in pain and physical performance for OA patients (212,213).  The last 

option for OA treatment is total joint replacement; however, it is not a final resolution for OA 

disease, since most of the joint prostheses will function well for 15 to 20 years, not a life time 

(214). Complications post-surgery are not uncommon (215).   

Clearly there is a need for new OA treatments, in particular disease-modifying drugs that can slow 

stop, or reverse OA progression. For example, strategies aimed at synovial fluid (targeting 

activated macrophages), C reactive protein, cytokines and adipokines/hormones are under research 

for OA treatment (320,321). However, a more detailed understanding of the molecular 

mechanisms driving OA might identify more drug targets. 

1.4 Signaling Pathways in Osteoarthritis 

1.4.1 Receptor Tyrosine Kinase Signaling in Osteoarthritis 

Many different signal proteins act via receptor tyrosine kinases (RTK), such as epidermal growth 

factor (EGF) receptor, insulin receptor, insulin-like growth factor (IGF1) receptor, nerve growth 

factor receptor, vascular endothelial growth factor (VEGF) receptors, and others (218). In most 

cases, the activation of RTKs occurs through the binding of the signal protein to the ligand-binding 

domain on the extracellular side of the receptor. This results in dimerization, bringing the two 

cytoplasmic kinase domains together and allowing trans-autophosphorylation and activation. 

However, there are some important exceptions, for example EGFR.  

EGFR is a type 1 transmembrane glycoprotein that is a member of a family of 4 receptor tyrosine 

kinases (EGFR or ErbB1; Her2 or ErbB2; ErbB3; and ErbB4) ref. Several ligands can bind to 

EGFR with high affinity: epidermal growth factor (EGF), heparin-binding EGF-like growth factor 

(HB-EGF), transforming growth factor α (TGFα), and betacellulin (BTC). EGFR also has 3 low 

affinity ligands: epigen (EPGN), epiregulin (EREG), amphiregulin (AREG) (219–221). These 

ligands for EGFR are found as type 1 transmembrane pro-forms and are shed from cell surface 

(222–224). Together, EGFR can form either homo- or heterodimers with  other ERBB receptors, 



23 

 

 

especially ERBB2 (225).  ErbB2 and ErbB4 are capable of forming heterodimeric pairs with each 

other due their catalytic kinase domains. On the other hand, ErbB3 has an inactive kinase domain 

that can still pair with and activate the other ERBB receptors. Several studies have demonstrated 

that members of the ADAM (a disintegrin and metalloproteinase) family such as ADAM17 or 10 

can induce EGFR transactivation through shedding of the ligands from the membrane (226). Under 

unstimulated conditions, EGFR is found at the plasma membrane in an auto-inhibited state, 

however, ligand binding leads to receptor dimerization and activation of RTK activity. Ligand-

binding to the receptor causes a conformational change in its dimerization arm, which forms an 

asymmetric dimer. Thereby, this dimer phosphorylates multiple tyrosines in the C-terminal tails 

segments of both EGFR receptors (227). This triggers the assembly of an intracellular signaling 

complex that can activate many downstream pathways, including MAPK/ERK, PI3K/Akt, SRC, 

PLCγ/PKC, and JAK/STAT, as shown in Figure 1.3. The biology of ErbB receptors, including 

their structure, signaling, biochemistry, genetics, and their roles in development and disease have 

been studied extensively (228,229).  
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Figure 1. 3. Activation of Epidermal growth factor receptor and signaling pathways. 

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that signals via many 

downstream pathways. Activation of EGFR is triggered by several ligands. These ligands for 

EGFR family are found as type 1 transmembrane pro-forms and are shed from cell surface by 

members of the ADAM family such as ADAM17 or 10. Ligand binding results in either homo- or 

heterodimers of EGFR and activation of downstream pathways such as mitogen activated kinase 

(MAPK) cascades, JAK/STAT, Rho GTPases and various PKC family proteins,  P13K 

(phosphoinositide 3-kinase). EGFR activation of these pathways is cell type specific. Mig-6 is a 

transcriptionally feedback inhibitor and has crucial activity in regulating EGFR signaling through 

two different mechanisms: inhibiting the catalytic activity of EGFR by docking the kinase domain 

and driving EGFR into endocytosis. 
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Figure 1.3 Epidermal growth factor receptor activation and signalling pathways 
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Deregulation of receptor tyrosine kinase signalling leads to the development of a variety of human 

diseases including non-small cell lung cancer (NSCLC), squamous cell carcinoma (SCC), large 

cell carcinoma (LCC) and osteosarcomas (230,231). Studies have shown a dual role for EGFR 

signaling in OA context related to the development, protection and destruction of articular cartilage 

(232–237). Some studies have found that EGFR is an anabolic regulator of bone formation as it 

maintains mesenchymal stem cells and osteoprogenitors in bone (238). A previous study has 

shown that EGFR can activate the MAPK/ERK pathway to induce osteoprogenitor proliferation 

and survival, and therefore can promote bone formation (239). Cartilage-specific Egfr knockout 

mice showed elongated growth plate due to down-regulation of MMPs (9, 13 and 14) and RANKL 

in the growth plate and subsequent delays in the conversion of cartilage to bone (238). Another 

study showed that MMP9 and RANKL are upregulated by EGFR via  the canonical Wnt/β‐catenin 

pathway (240).  

Several studies have implicated EGFR and its ligands in OA. Previous studies have shown that 

EGF has been identified in rheumatoid arthritis (RA) and TGFα in the synovial fluid of OA patients 

(241,242). Interestingly, in vitro studies using chondrocytes treated with EGF showed chondrocyte 

phenotype alteration and up-regulation of inflammatory markers (242,243). In addition, heparin-

binding epidermal growth factor-like growth factor (HB-EGF )is highly increased (494%) in joints 

of 12 month-old mice that underwent DMM (destabilization of medial meniscus) surgery to induce 

post-traumatic OA (244).  Our lab has shown that TGFα mRNA and protein expression was 

increased in rats that underwent a surgical procedure to induce OA (transection of the anterior 

cruciate ligament with partial medial meniscectomy) (232). Moreover, TGFα supresses expression 

of anabolic genes such as Sox9, type II collagen and aggrecan, but induces MMP13 as well as 

TNFα in chondrocytes (233). Additional in vitro and ex vivo experiments using chondrocyte 

culture and osteochondral explants have demonstrated that activation of EGFR signalling in 

articular cartilage promotes cartilage degeneration and chondrocyte proliferation (245), and 

inhibits chondrogenesis (246).  Evidence of the importance of TGFα/EGFR in OA stems from 
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analyses of young Tgfa KO mice that are protected from developing OA after DMM surgery, but 

there was no protection when surgery was performed in older mice or during normal aging (247).  

Furthermore, pharmacologic inhibition of EGFR by AG1478 led to decreased progression of 

cartilage damage in a rat model of posttraumatic OA (248). Furthermore, the human  TGFA gene 

is also reported amongst the genetic loci most strongly linked with OA and cartilage thickness in 

two genome-wide association studies (GWAS) (171,249). On the other hand, EGFR signaling 

plays a crucial role in articular cartilage development and for maintaining proliferation and 

survival of superficial chondrocytes as well as mechanical strength of cartilage (237,250). Mice 

heterozygote for a dominant negative EGFR (EgfrWa5/+) showed accelerated OA at 12 weeks after 

DMM surgery with accelerated loss of cartilage and subchondral bone plate thickening, compared 

to their WT siblings. Also, WT 129S2 mice that received DMM surgery followed by gefitinib 

treatment (anti-EGFR antibody) showed milder OA damage in comparison to EgfrWa5/+ mice 

(251). Furthermore, cartilage-specific (Col2-Cre) Egfr KO mice developed spontaneous OA 

initiation with subchondral bone sclerosis at 12 months of age, earlier than WT mice (252). 

Moreover, EGFR signaling enhances expression of Prg4 and hyaluronic acid (HA) at the cartilage 

surface (250). Since both catabolic and anabolic activity of EGFR signaling in the joint has been 

reported, it is strongly suggested that EGFR effects in articular cartilage are dose-and/or context-

dependent, but the molecular mechanisms underlying these opposing roles are not understood.  

1.4.2 Mitogen-Inducible Gene Mig-6 in development and joint pathology 

First time described as a multi-hormonal inducible gene in 1985 by Kenney and colleagues, many 

different factors have been reported to be responsible for the induction of Mig-6 (mitogen-

inducible gene 6) gene expression including hormones (insulin, glucocorticoids), cyclic adenosine 

monophosphate (cAMP), phorbol esters and others (253). Moreover, growth factors (for example 

EGF, basic fibroblast growth factor (bFGF), hepatocyte growth factor/scatter factor (HGF/SF) and 

TGFα) and many stresses conditions such as joint mechanical impact, hypoxia, diabetic 

nephropathy, myocardial ischemic injury and infarction are also candidates to induce Mig-6 gene 

expression (254).  Mig-6 is a scaffolding adaptor protein involved in the regulation of the signaling 

by EGFR. Mig-6 is also known as Gene 33, ErbB receptor feedback inhibitor 1 (ERRFI1), or as 

receptor-associated late transducer (RALT) and is found in the cytosol of cells (255). Mig-6 is 
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highly conserved in species such as Xenopus, rodent, and humans, but not in less in  organisms 

like S. cerevisae, C. elegans, or Drosophila (256). Mig-6 is differentially expressed in different 

tissues and organs; for example, high levels of Mig-6 expression can be found in the liver and 

kidney, however expression is also found in the placenta, heart, brain, skeletal muscle, stomach 

and lung (257,258).Mig-6 gene has been linked to human lung cancer, such as in squamous cell 

carcinoma patients, and late-stage patients with non-small cell lung cancer (NSCLC) (259). 

Disruption of the MIG-6 gene can lead to bile duct, gastrointestinal (GI) tract, gallbladder, and 

skin cancer (231,260).   

Structurally, Mig-6 contains important protein-protein interactions domains/motifs, including a 

Cdc42/Rac-interaction domain (responsible for regulators of actin cytoskeleton remodeling and 

signal transduction) (256,261). The CRIB domain interacts with Cdc42, and the Src-homology-3 

(SH3) domain binding motif interacts with Grb2 and 14-3-3 protein binding motifs. The carboxyl 

terminus of Mig-6 has the ErbB-binding region (EBR) which connects to EGFR family receptors. 

The EBR domain shares a homology with a non-receptor protein tyrosine kinase Ack-1, another 

CRIB domain-containing protein that also interacts with EGFR (262–264). Mig-6 transcription is 

induced by EGFR signaling at the transcriptional level  (263,265). Mig-6 has been shown to block 

the activation of EGFR induced signaling modules, such as the RAS-ERK and PI3K/AKT 

pathways  (265,266), as shown in Figure 1.4. Mig-6 can bind to and inhibit EGFR through a two-

tiered mechanism: suppression of EGFR catalytic activity and receptor down-regulation (267).  
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Figure 1.4 Mitogen Inducible Gene 6 inhibits the activation of EGFR and RAS-ERK and 

PI3K/AKT pathways. Canonical signaling pathways including PI3K-AKT and Ras-Raf-MEK-

ERK that are involved in cell proliferation, gene expression and cell survival might be suppressed 

in part by Mig-6. 
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Figure 1.4 Mitogen Inducible Gene 6 inhibits the activation of EGFR and RAS-ERK and 

PI3K/AKT pathways. 
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The Mig-6 protein includes two PEST sequences that can be targeted by ubiquitination and 

degradation by the proteasome. Receptor endocytosis is an important mechanism by which 

activated EGFR can be internalized, degraded or recycled, causing attenuation of EGFR activation. 

Mig-6 can mediate this process. Moreover, Mig-6 binds to different proteins such as the cell 

division control protein 42 homolog (Cdc42) (268) and c-Abl (269), in addition to all 4 EGFR 

family receptors (ErbB1-4). Also, it is frequently suggested that Mig-6 is a part of a negative 

feedback loop that diminishes HGF/Met (or c-Met) signalling, a ubiquitous pathway which 

profoundly influences cell differentiation (64).  

Therefore, it is quite possible that Mig-6 might participate or fine tune signal transduction via 

different signaling pathways. Interestingly, various studies have reported that loss of Mig-6 

induces the onset of OA-like symptoms (260,271–275). Global Mig-6-deficient mice showed 

degradation of the articular cartilage and the formation of bony outgrowths due to proliferation of 

mesenchymal-like progenitor cells followed by differentiation into chondrocytes. The most 

affected joints are the knee, ankle and temporal-mandibular joints in which it is suggested that 

mechanical stress could initiate this phenotype (271). 

It has been shown that Mig-6 mRNA level were elevated in degenerating cartilage from a canine 

model of mechanical impact on cartilage explants, however, down regulation of Mig-6 were 

demonstrated followed induction of OA using a surgical rat model (272,276). The characterization 

of cartilage-specific (Col2-Cre) knockout of Mig-6 mice showed formation of chondro-osseous 

nodules, but also increased thickness of articular cartilage in the knee, ankle and elbow. Moreover, 

the cartilage thickness was less pronounced at 36 weeks than in 12 week-old mice (277). Also, 

limb mesenchyme-specific (Prx1-cre) knockout of Mig-6 resulted in a similar phenotype as that 

observed in cartilage-specific knockout mice (277). These phenotypes appeared to be caused by 

an increase in chondrocyte proliferation in articular cartilage, supported by increased expression 

of Sox9 and EGFR activation in cartilage (278). 

Recent studies by Staal et al (279) show that the deletion of Mig-6 results in the hyperactivation 

of EGFR and histopathologically the mice showed formation of osteophyte-like nodules, 

formation of subchondral cysts and cartilage degeneration in their knees. The overall effect of 

Mig-6 signaling on OA development is determined by the balance of these two opposite actions 
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of anabolic and catabolic effects and most likely is age‐, OA stage‐, and context‐dependent. 

Understanding how Mig-6 exerts its function under different physiological conditions will provide 

further insight into its potential roles in many cellular and biological processes, in particular in 

synovial joints and OA.   
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1.5 Overall Objectives and Hypotheses 

Mitogen Inducible Gene 6 (Mig-6) and Epidermal growth factor receptor (EGFR) signaling have 

been implicated in many different diseases such as cancer as well as osteoarthritis pathology. In 

vivo and in vitro studies have shown that Mig-6/EGFR signaling and its ligands (EGF or TGFα) 

play a dual role in cartilage homeostasis and degeneration. My general hypothesis is that regulation 

of Mig-6/ EGFR is crucial for articular cartilage health.  

1.5.1 Objective #1 

To characterize the effects of cartilage-specific Mig-6 overexpression in mice using a cartilage 

specific Mig-6 overexpressing mouse model. 

1.5.1.1 Rationale #1 

Previous research demonstrates that Mig-6 overexpression acts as a negative feedback regulator 

of EGFR signaling, but these studies did not yet analyze joint tissues. Since our previous studies 

suggest dosage- and/or context-specific roles of EGFR signalling in joint homeostasis and OA, we 

will now examine whether overexpression of Mig-6 alters these processes.  

1.5.1.2 Hypothesis #1 

Mig-6 overexpression will block EGFR signalling and thus lead to spontaneous cartilage 

breakdown and symptoms typical of OA.  

1.5.2 Objective #2  

To investigate the effects of skeletal-specific Mig-6 overexpression in the mouse limb 

mesenchyme on primary OA development. 

1.5.2.1 Rationale #2 

We propose to elucidate the role of EGFR in this model using the paired-related homeobox gene 

(Prx1) as Cre driver since it is more widely expressed in limb mesenchyme, including additional 
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joint structures other than cartilage. We will now address the function of Mig-6 overexpression 

mice in limb development and joint homeostasis in vivo. 

1.5.2.2 Hypothesis #2 

Mig-6 overexpression will decrease EGFR activity in the limb mesenchyme and will result in 

catabolic cartilage damage. 

1.5.3 Objective #3  

To determine the effects of Mig-6 overexpression on post-traumatic OA. 

1.5.3.1 Rationale #3 

Based on our in vivo data showing cartilage damage in aging Mig-6 overexpressing mice, we asked 

whether cartilage specific Mig-6 overexpression would protect or not from cartilage degeneration 

in osteoarthritis following surgical destabilization of medial meniscus (DMM), which is the most 

accepted surgical OA model in mice. 

1.5.3.2 Hypothesis #3 

Cartilage specific overexpression of Mig-6 will accelerate progression of post-traumatic OA. 
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2.1 Abstract 

Background: Osteoarthritis (OA) is the most common form of arthritis and characterised by 

degeneration of articular cartilage. Mitogen-inducible gene 6 (Mig-6) has been identified as a 

negative regulator of the Epidermal Growth Factor Receptor (EGFR). Cartilage-specific Mig-6 

knockout (KO) mice display increased EGFR signaling, an anabolic buildup of articular cartilage 

and formation of chondro-osseous nodules. Since our understanding of the EGFR/Mig-6 network 

in cartilage remains incomplete, we characterised mice with cartilage-specific overexpression of 

Mig-6 in this study.  

Methods: Utilizing knee joints from cartilage-specific Mig-6 overexpressing (Mig-6over/over) mice 

(at multiple time points), we evaluated the articular cartilage using histology, 

immunohistochemical staining and semi-quantitative OARSI scoring at multiple ages. MicroCT 

analysis was employed to examine skeletal morphometry, body composition, and bone mineral 

density. 

Results: Our data show that cartilage-specific Mig-6 overexpression did not cause any major 

developmental abnormalities in articular cartilage, although Mig-6over/over mice have slightly 

shorter long bones compared to the control group. Moreover, there was no significant difference 

in bone mineral density and body composition in any of the groups. However, our results indicate 

that Mig-6over/over male mice show accelerated cartilage degeneration at 12 and 18 months of age. 

Immunohistochemistry for SOX9 demonstrated that the number of positively stained cells in Mig-

6over/over mice decreased relative to controls. Immunostaining for MMP13 staining is increased in 

areas of cartilage degeneration in Mig-6over/over mice. Moreover, staining for phospho-EGFR (Tyr-

1173) and lubricin (PRG4) was decreased in the articular cartilage of Mig-6over/over mice.   

Conclusion: Overexpression of Mig-6 in articular cartilage causes no major developmental 

phenotype; however, these mice develop earlier OA during aging than control mice. These data 

demonstrate that Mig-6/EGFR pathways is critical for joint homeostasis and might present a 

promising therapeutic target for OA. 
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2.2 Introduction 

Osteoarthritis (OA), a chronic degenerative joint disease, is the most common form of arthritis. 

OA affects nearly five million Canadians currently (1), but that number will grow to more than 10 

million by 2040 (2). This statistic is alarming, considering the disability, the loss of quality of life, 

and the costs to the health system generated by OA. Currently, there are pharmacological 

treatments available to manage OA symptoms such as pain (3–5) as well as surgical joint 

replacement at the end stage of disease (6,7). Unfortunately, however, there is no known cure for 

OA. Progressive understanding of the pathophysiology of OA suggests that the disease is a 

heterogeneous condition, so further research is needed to direct the clinical approaches to disease 

management (8).       

Recent studies have shown that OA is a multifactorial disease of the whole joint, however its 

pathogenesis remains still poorly understood (9). Genetic, environmental, and biomechanical 

factors can accelerate the onset of OA (10). Articular cartilage is a highly specialized tissue that 

forms the smooth gliding surface of synovial joints, with  chondrocytes as the only cellular 

component of cartilage (11). The homeostasis of the cartilage  extracellular matrix (ECM) involves 

a dynamic equilibrium  between anabolic and catabolic pathways controlled by chondrocytes (12). 

The progression of OA is associated with dramatic alteration in the integrity of the cartilage ECM 

network formed by a large number of proteoglycans (mostly aggrecan), collagen II, and other non-

collagenous matrix proteins (13). In addition,  ECM synthesis is regulated by a number of 

transcriptional regulators involved in chondrogenesis, specifically Sex- determining- region-Y 

Box 9 (SOX9), L-SOX 5 and SOX6 that regulate type II collagen (Col2a1) and Aggrecan (Acan) 

gene expression (14). On the other hand, catabolic events are dominant in OA and cells are exposed 

to degenerative enzymes such as aggrecanases (e.g. ADAMTS-4, -5) (13,15), collagenases (e.g. 

MMP-1,-3, -8, -13) (16), and gelatinases (e.g.MMP-2, and MMP-9), all of which have implications 

in articular cartilage degeneration (17). A number of growth factors (18) play a role in OA 

pathology, such as  transforming growth factor-β (19), BMP-2 (20), Insulin growth factor 1 (IGF-

1) (21)  fibroblast growth factor (FGF) and others, but the exact regulation of chondrocyte 

physiology is still not completely understood.  
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Recent studies in our laboratory (22,23) have identified the epidermal growth factor receptor 

(EGFR) and its ligand transforming growth factor alpha (TGFα) as possible mediators of cartilage 

degeneration (24–26). The human TGFA gene locus was also strongly linked to hip OA and 

cartilage thickness in genome-wide association studies (27,28). TGFα stimulates EGFR signaling 

and activates various cell-signaling pathways in chondrocytes, including extracellular signal-

regulated kinase 1 and 2 (ERK1/2) and  P13K (phosphoinositide 3-kinase) (29). EGFR signaling 

plays important roles in endochondral ossification (30,31), growth plate development (30) and 

cartilage maintenance and homeostasis (32–34), but many aspects of its action in cartilage are still 

not well understood. However, both protective and catabolic effects of EGFR signaling in OA 

have been reported, suggesting context-specific roles of this pathway (35).  

Mitogen-inducible gene 6 (Mig-6) is also known as Gene 33, ErbB receptor feedback inhibitor 1 

(ERRFI1), or RALT, and is found in the cytosol (36). Mig-6 protein binds to and inhibits EGFR 

signaling through a two-tiered mechanism: suppression of EGFR catalytic activity and receptor 

down-regulation (37).  Interestingly, various studies have reported that loss of Mig-6 induces the 

onset of OA-like symptoms in mice (36,38–40). Cartilage-specific (Col2-Cre) knockout of Mig-6 

mice results in formation of chondro-osseous nodules in the knee, but also increased thickness of 

articular cartilage in the knee, ankle, and elbow (41). Prx1-cre-mediated knockout of Mig-6 results 

in a similar phenotype as that observed in cartilage-specific knockout mice(42). These phenotypes 

appeared to be caused by an increase in chondrocyte proliferation in articular cartilage, supported 

by increased expression of Sox9 and EGFR activation in cartilage (42). Since our studies suggest 

dosage- and/or context-specific roles of EGFR signaling in the process of cartilage degeneration 

in OA, in this study we used a Col2a1 promoter–driven Cre/lox system to examine effects of Mig-

6 overexpression specifically in articular cartilage. 

2.3 Materials and Methods  

2.3.1 Generation of Mig-6 overexpression mice  

Mig-6 overexpression animals on a mixed C57Bl/6 and agouti mouse background, with the 

overexpression cassette in the Rosa26 locus (43) and bred for 10 generations into a C57Bl/6 

background. Transcription of Mig-6 is under the control of a ubiquitously expressed chicken beta 

actin-cytomegalovirus hybrid (CAGGS) promoter, but blocked by a “Stop Cassette” flanked by 
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LoxP sites (LSL) (43).  Mig-6 overexpression mice were bred to mice carrying the Cre recombinase 

gene under the control of the Collagen 2 promoter (44), to induce recombination and removal of 

the STOP Cassette specifically in cartilage. Throughout the manuscript, animals for homozygote 

overexpression of Mig-6 from both alleles are termed Mig-6 over/over (Mig-6 over/overCol2a1-Cre+/-), 

while control mice are identical but without the Cre gene (noted as “control” in this manuscript for 

simplicity). Mice were group housed (at least 1 pair of littermate-matched control and 

overexpression animals), on a standard 12-hour light/dark cycle, without access to running wheels, 

and with free access to mouse chow and water. Animals were weighed prior to euthanization by 

asphyxiation with CO2. All animal experiments were done in accordance with the Animal Use 

Subcommittee at the University of Western Ontario and conducted in accordance with guidelines 

from the Canadian Council on Animal Care. 

2.3.2 Genotyping  

Genotype was determined by polymerase chain reaction (PCR) analysis using DNA processed 

from biopsy samples of ear tissue from mice surviving to at least 21 days of age. PCR strategy: 

Primer set P1 and P2 can amplify a 300 bp fragment from the wild-type allele, whereas P1 and P3 

can amplify a 450 bp fragment from the targeted ROSA26 locus allele (43) (Supp. Figure/Table 

1). 

2.3.3 RNA isolation and Quantitative real-time PCR 

Total RNA was isolated from post-natal day 0 (P0) mouse cartilage of Mig-6 over/over and control 

littermates using TRIzol® (Invitrogen) as per manufacturer’s instructions and as previously 

described (45). Complementary DNA (cDNA) was synthesized using the iScript cDNA Synthesis 

kit (Bio-Rad) with 1µg of RNA (Bio-Rad Laboratories), and combined with 300nM of forward 

and reverse primers (for primer sequences, please see Supplementary Table 1) as well as iQ™ 

SYBR® Green Supermix (Bio-Rad Laboratories) for PCR on a Bio-Rad CFX384 RT-PCR system. 

(Supp. Figure/Table 1).  Relative gene expression was normalized to the internal control 

Glyceraldehyde 3-phosphate dehydrogenase (Gapdh), calculated using the ΔΔCT method.   

2.3.4 Histopathology of the knee 

Limbs from Mig-6 over/over and control mice were harvested and fixed in 4% paraformaldehyde 
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(Sigma) for 24 hours and decalcified in ethylenediaminetetraacetic acid (5% EDTA in phosphate 

buffered saline (PBS), pH 7.0.  Joints were processed and embedded in paraffin in sagittal or 

frontal orientation, with serial sections taken at a thickness of 5 μm.  Sections were stained with 

Toluidine Blue (0.04% toluidine blue in 0.2M acetate buffer, pH 4.0, for 10 minutes) for 

glycosaminoglycan content and general evaluation of articular cartilage. All images were taken 

with a Leica DFC295 digital camera and a Leica DM1000 microscope. 

2.3.5 Thickness of proximal tibia growth plate 

For early developmental time points such as newborn (P0), sagittal knee sections stained with 

toluidine blue were used to measure the width of the zones of the epiphyseal growth plate in the 

proximal tibia. The average thickness of the resting and proliferative zones combined was 

evaluated by taking three separate measurements at approximately equal intervals across the width 

of the growth plate. The average hypertrophic zone thickness was also measured using 3 different 

measurements across the width of the growth plate, starting each measurement at the border of the 

proliferative and hypertrophic zones and ending at the subchondral bone interface. A third average 

measurement was then taken of the thickness of the entire growth plate. ImageJ Software (v.1.51) 

(46) was used for all measures, with the observer blinded to the genotype.  

2.3.6 Articular cartilage evaluation 

Articular cartilage thickness was measured from toluidine blue-stained frontal sections by a 

blinded observer. Articular cartilage thickness was measured separately for the non-calcified 

articular cartilage (measured from the superficial tangential zone to the tidemark) and the calcified 

articular cartilage (measured from the subchondral bone to the tidemark) across three evenly 

spaced points from all four quadrant of the joint (medial/lateral tibia and femur) in 4 sections 

spanning at least 500 μm. ImageJ Software (v.1.51) (46) was used to measure the thickness of 

articular cartilage.  

2.3.7 Micro-Computerized Tomography (μCT) 

Whole body scans were collected in 6 week-, 11 week-, 12 month-, and 18-month-old control and 

Mig-6 over/over male and female mice. Mice were euthanized and imaged using General Electric 

(GE) SpeCZT microCT machine (47) at a resolution of 50μm/voxel or 100μm/voxel.  GE 
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Healthcare MicroView software (v2.2) was used to generate 2D maximum intensity projection and 

3D isosurface images to evaluate skeletal morphology. MicroView was used to create a line 

measurement tool in order to calculate the bone lengths, femurs lengths were calculated from the 

proximal point of the greater trochanter to the base of the lateral femoral condyle. Tibiae lengths 

were measured from the midpoint medial plateau to the medial malleolus. Humerus lengths were 

measured from the midpoint of the greater tubercle to the center of the olecranon fossa.  

2.3.8 Body Composition Analysis  

MicroView software (GE Healthcare Biosciences) was used to analyse the microCT scans at the 

resolution of 100um/voxel. Briefly, the region of interest (ROI) was used to calculate the mean of 

air, water and an epoxy-based, cortical bone-mimicking calibrator (SB3; Gammex, Middleton, WI, 

USA) (1100mg/cm3) (48). A different set of global thresholds was applied to measure adipose, 

lean and skeletal mass (− 275, − 40 and 280 Hounsfield Units (HU), respectively). Moreover, bone 

mineral density (BMD) was acquired as the ratio of the average HU (from the value of skeletal 

region of interest ) in order to calculate HU value of the  SB3 calibrator, multiplied by the known 

density of the SB3 as described (47). 

2.3.9 OARSI histopathology scoring  

Serial sections through the entire knee joint were scored according to the OARSI histopathology 

scoring system (49) by two blinded observers on the four quadrants of the knee: lateral femoral 

condyle (LFC), lateral tibial plateau (LTP), medial femoral condyle (MFC), and medial tibial 

plateau (MTP). Histologic scoring from 0-6 represent the OA severity, from 0 (healthy cartilage) 

to 6 (erosion of more than 75% of articular cartilage).  Individual scores are averaged across 

observers and OA severity is shown as described for each graph. Scores were compared between 

male and female Mig-6 over/over and control mice at both 12 and 18 months of age. All images were 

taken with a Leica DFC295 digital camera and a Leica DM1000 microscope. 

2.3.10 Immunohistochemistry  

Frontal paraffin sections of knees were used to for immunohistochemical analysis, with slides with 

‘no primary antibody’ as control. All sections were deparaffinized and rehydrated as previously 

described (41,50). Subsequently, the sections were incubated in 3% H2O2 in methanol for 15 
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minutes to inhibit endogenous peroxidase activity. After rising with water, 5% goat or donkey 

serum in PBS was applied to reduce nonspecific background staining. Sections were incubated 

overnight at 4°C with primary antibodies against SOX9 (R&D Systems, AF3075), MMP13 

(Protein Tech, Chicago, IL, USA, 18165-1-AP), lubricin (Abcam, ab28484) and phospho-EGFR 

(phosphoTyr-1173; Cell Signaling Technology). After washing, sections were incubated with 

horseradish peroxidase (HRP)-conjugated donkey anti-goat or goat anti-rabbit secondary antibody 

(R&D system and Santa Cruz), before incubation with diaminobenzidine substrate as a chromogen 

(Dako, Canada). Finally, sections were counterstained with 0.5% methyl green (Sigma) and 

mounted. Cell density of articular cartilage chondrocytes from 6 and 11 weeks-old male mice was 

determined by counting all lacunae with evidence of nuclear staining in the lateral and medial 

femur/tibia using a centered region of interest measuring 200 μm wide and 70 μm deep from the 

articular surface by a blinded observer. For newborn (P0) animals the region of interest measured 

200 μm wide and 100 μm deep from the proliferative zone. 

2.3.11 Statistical Analysis 

All statistical analyses were performed using GraphPad Prism (v6.0). Differences between two 

groups were evaluated using Student's t-test, and Two-Way ANOVA was used to compare 4 

groups followed by a Bonferroni multiple comparisons test. All n values represent the number of 

mice used in each group/genotyping. 

2.4 Results 

2.4.1 Overexpression of Mig-6 has minor effects on skeletal phenotypes during 

development  

We bred mice for conditional overexpression of Mig-6 (43) to mice expressing Cre recombinase 

under control of the collagen II promoter. Homozygote mice overexpressed Mig-6 in all collagen 

II-producing cells (and their progeny) from both Rosa26 alleles and are referred to as Mig-6 over/over 

from here on.  Control mice do not express Cre. Genomic DNA was extracted from ear notches to 

identify homozygous mice Mig-6over/overusing standard PCR analysis. Overexpressing mice were 

obtained at the expected Mendelian ratios (data not shown). Male mutant gained weight at the 

same rate as controls over the examined at 10-week period, while female Mig-6over/over mice were 

slightly lighter than controls starting at 8 weeks of age (Fig. 2.1A, B). These differences persisted 
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at 12 months of age for female mice, while at 18 months both male and female mutant mice were 

lighter than their controls (Fig. 2.1C, D). Growth plates of post-natal day 0 (P0) Mig-6 over/over and 

control mice were analyzed by histology. No major differences in tibia growth plate architecture 

were seen between genotypes (Fig. 2.2A).  While the length of the total growth plate was slightly 

reduced in Mig-6 over/over mice, differences in lengths of either the combined resting/proliferative 

or hypertrophic zones were not statistically significant (Fig. 2.2B-D). 
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Figure 2.1 Body weight of control and Mig-6over/over male and female mice during growth.Body 

weight of male Mig-6 overexpression mice did not show any significant differences compared to 

control (A) Female Mig-6 overexpression mice showed statistically significant differences 

compared to control at 8w, 9w and 10w (B). Two-Way ANOVA was used with Bonferroni post 

hoc analysis (n=5/genotyping). Data are presented with mean and error ± SEM (P<0.05). Weights 

of 12 months old (C) and 18 months old (D) male and female cartilage specific Mig-6over/over mice 

and controls taken immediately prior to sacrifice. Individual data points presented with mean ± 

SEM (P<0.05). Data analyzed by two tailed student t-tests from 6-12 mice per group 

(age/genotyping). 
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Figure 2.1. Body weight of control and Mig-6over/over male and female mice during growth 
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Figure 2.2 Cartilage-specific Mig6-overexpressing mice display no major developmental 

phenotype.  Representative toluidine Blue staining on postnatal day 0 (P0) of Mig-6over/over (A) 

and control animals. Thickness of total proximal tibia growth plates in the mice containing 

articular cartilage specific mitogen inducible gene 6 overexpression (n=6), when compared to age 

matched controls (n=6) was significantly decreased when analyzed by two tailed student t-tests 

(B);  The average of hypertrophic zone thickness from postnatal day 0 in the mice containing 

articular cartilage specific mitogen inducible gene 6 overexpression had mean of 188.9 µm and 

control mice had mean of 184.4 µm (C).  The thickness of the combined resting and proliferative 

zones from the control had mean of 728 µm and Mig-6over/over 706.5 µm Mig-6over/over(D). 

Therefore, there was no significant differences within the groups. Individual data points presented 

with mean ± SEM analyzed by two tailed student t-tests; (P<0.05). 
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Figure 2.2 Cartilage-specific Mig6-overexpressing mice display no major developmental 

phenotype 
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2.4.2 Mice overexpressing Mig-6 have shorter long bones than control mice  

Skeletal morphology and bone length were examined by microCT mice at the ages of 6 and weeks, 

and 12 and 18 months. Scans of Mig-6 over/over male and female mice and their controls were used 

to generate 3D isosurface reconstructions of 100μm/voxel uCT scans, in order to measure long 

bones lengths (femurs, humeri, and tibiae) in GE MicroView v2.2 software.  Mutant bones were 

slightly shorter throughout life, with the exception of the male humeri at 12 months that did not 

show any statistically significant difference (Fig. 2.3). In contrast, male mice did not show any 

differences in bone mineral density at 11 weeks, 12 months, or 18 months, compared to controls 

(Suppl. Fig. 2). In addition, no differences in body mass composition were seen in male mutant 

and control mice at 11 weeks, 12 months, and 18 months of age (Suppl. Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 



69 

 

 

 

 

 

 

 

Figure 2.3 Long bone lengths of Mig-6 overexpression are significantly shorter than control 

long bone lengths during growth and aging. The lengths of right humeri, tibiae and femora were 

measured on microCT scan of mice in each different time-points of age using GE MicroView 

software. (A) 6 weeks-old male and female control and Mig-6 overexpressors. (B) 11 weeks-old 

male and female control and Mig-6 overexpressors. (C)  12 months-old male and female control 

and Mig-6 overexpressors. (D) 18 months-old male and female control and Mig-6 overexpressors. 

(A1) Representative 3D isosurface reconstructions of 100μm/voxel µCT scans. There were 

statistically significant differences among control and Mig-6over/over male and female groups. 

Individual data points presented with mean ± SEM (P<0.05). Data analyzed by two tailed student 

t-tests from 6-12 mice per group (age/gender).  
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Figure 2.3 Long bone lengths of Mig-6 overexpression are significantly shorter than control long 

bone lengths during growth and aging 



72 

 

 

2.4.3 Mig-6 overexpressing mice have healthy articular cartilage during skeletal 

maturity 

We next examined articular cartilage morphology in 11-week-old mutant and control mice using 

toluidine blue stained paraffin frontal knee sections (Fig. 2.4A-B). The average thickness of the 

calcified articular cartilage and non-calcified articular cartilage in the lateral femoral condyle 

(LFC), lateral tibial plateau (LTP), medial femoral condyle (MFC), and medial tibial plateau 

(MTP) from control and Mig-6 over/over male (Fig. 2.4C-D) and female (Suppl. Fig. 4A-D) mice 

did not show statistically significant differences.  Histological analyses of knee sections from male 

and female mice did not show any loss of proteoglycan, fibrillation or erosion in the articular 

cartilage of mutant mice. 
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Figure 2.4 Articular cartilage from 11 weeks-old Mig-6over/over male mice appeared healthy 

during skeletal maturity. Representative (n=5/group, toluidine blue) stained frontal sections of 

knee joints from 11-week-old control (A) and Mig-6over (B). Mig-6 overexpressors mice show 

similar articular cartilage thickness when compared to controls at 11 weeks-old male mice. The 

average thickness of the calcified articular cartilage (C) and non-calcified articular cartilage (D) 

in the lateral femoral condyle (LFC), lateral tibial plateau (LTP), medial femoral condyle (MFC), 

medial tibial plateau (MTP) was measured. Individual data points presented with mean ± SEM. 

Data analyzed by two-way ANOVA (95% CI) with Bonferroni post-hoc test. Scale bar = 100µm. 
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Figure 2.4 Articular cartilage from 11 weeks-old Mig-6over/over male mice appeared healthy 

during skeletal maturity 
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2.4.4 Overexpression of Mig-6 in cartilage induces an osteoarthritis-like 

phenotype in mice during aging 

Since aging is a primary risk factor in OA (51), we next examined knee joints in 12 and 18 month-

old control and Mig-6 over/over mice. Toluidine blue stained sections were evaluated by two blinded 

observers, using OARSI recommendations (49). At 12 month of age, male control mice showed 

minor signs of cartilage damage, such as loss of proteoglycan staining, but no significant structural 

degeneration (Fig. 2.5A). However, seven of nine Mig-6 over/over male mice showed more extensive 

cartilage damage in their medial side (erosion to the calcified layer lesion for 25% to 50% of the 

medial quadrant). OARSI scoring confirmed increased OA-like damage in mutant mice (Fig. 

2.5C). Similarly, at 18 months of age the male control group showed minimal cartilage 

degeneration in 3 of 6 mice (Fig. 2.6A). Mig-6 over/over male mice showed more severe cartilage 

erosion in the medial tibial plateau in 4/6 animals. This result was again supported by significantly 

increased OARSI cartilage damage scores (Fig. 2.6C). Moreover, for the female group at 12 

months, control mice did not show cartilage damage in any quadrant of the knee. Mig-6 over/over 

female mice showed sign of OA-like cartilage damage in 3/8 animals (Supplementary Fig. 5). In 

addition, at 18 months of age, female control mice showed healthy cartilage, and 4/8 Mig-6 over/over 

female mice showed some proteoglycan loss and cartilage degeneration on the medial side (Suppl. 

Fig. 6).  
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Figure 2.5 12 months old Mig-6over/over male mice develop OA-like cartilage degeneration.  

Representative images of Toluidine Blue stained sections of knee joints from 12-month male 

control (A) and male Mig-6 over (B) mice were evaluated for cartilage damage following OARSI 

histopathological scale on the two quadrants of the knee: MFC = medial femoral condyle, MTP = 

medial tibial plateau. OARSI based cartilage degeneration scores are significantly higher in the 

MFC and MTP of Mig-6 overexpressing mice, corresponding to the increased damage observed 

histologically (C). Data analyzed by two-way ANOVA with Bonferroni's multiple comparisons 

test. Individual data points presented with mean ± SEM. All scale bars =100 μm. N = 9 mice/group. 

 

 

 

 

 

 

 



77 

 

 

 

 

 

Figure 2.5 12 months old Mig-6over/over male mice develop OA-like cartilage degeneration 
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Figure 2.6 18 months old Mig-6over/over mice leads to advanced OA-like cartilage. 

Representative images of Toluidine Blue stained sections of knee joints from 18-month male 

control (A) and male Mig-6 over (B) mice were evaluated for cartilage damage following OARSI 

histopathological scale on the two quadrants of the knee: MFC = medial femoral condyle, MTP = 

medial tibial plateau. OARSI based cartilage degeneration scores are higher both in the MFC and 

MTP of Mig-6 overexpressing mice, corresponding to the increased damage observed 

histologically. (C) Data analyzed by two-way ANOVA with Bonferroni's multiple comparisons 

test. Individual data points presented with mean ± SEM. All scale bars =100 μm. N = 6 mice/group.  
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Figure 2.6 18 months old Mig-6over/over mice leads to advanced OA-like cartilage 
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2.4.5 Overexpression of Mig-6 decreases EGFR phosphorylation and Sox9 

expression 

Since Mig-6 negatively regulates EGFR signaling (32,33,41), immunohistochemistry was 

performed for phospho-EGFR (Tyr-1173) (pEGFR), with no primary antibody controls. Frontal 

knee sections from 11 weeks-old male Mig-6 over/over mice showed decreased pEGFR staining in 

the medial compartment in the knee joint (Fig.7), as expected upon Mig-6 overexpression. During 

chondrogenesis, the transcription factor SOX9 is required for cartilage formation and normal 

expression of collagen and aggrecan (52).  Sagittal and frontal sections of paraffin embedded knees 

from post-natal day 0 (P0), 6 weeks-old, 11 weeks-old, 12 months and 18 months male mice were 

used for SOX9 immunostaining. At P0, nuclear SOX9 expression was observed in the resting and 

proliferative zone of the growth plate in both genotypes (Fig. 2.8A, B). Cell density was not 

different between genotypes (Fig. 8C). In control mice, 78 % of chondrocytes were positive for 

SOX 9 immunostaining, while the proportion of positive cells was only 53 % in Mig-6 over/over mice 

(Fig 2.8D). In 6 and 11-weeks-old mice, SOX9 was present in the articular cartilage in all four 

quadrants (Fig. 2.9A, B). At 6 weeks-old the total cell number in control male and Mig-6over/over 

mice is similar (Fig. 2.9C), but the percentage of SOX9 positive cells was decreased in mutant 

mice (Fig 2.9D). A similar phenotype was present at 11 weeks (Supplementary Fig 7). At 12 

months of age, SOX9 is present more in the lateral side (LTP and LFC) than the medial side (MTP 

and MFC) in both strains, with a few positive cells present in the medial side of the control strain. 

On the other hand, Mig-6 over/over mice showed fewer SOX9-positive cells on the medial side due 

the articular cartilage damage (Fig 2.10). Similar results were found at 18 months of age in Mig-6 

over/over with decreased SOX9 immunostaining in their medial side compared to the control (data 

not shown).  For all ages, negative controls did not show staining in chondrocytes. 
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Figure 2.7 Phospho-EGFR staining is decreased in the articular cartilage of cartilage specific 

Mig-6 overexpressing mice at 11 weeks of age. Immunostaining of phosphorylated epidermal 

growth factor receptor (pEGFR; Tyr-1173) in the knee joints of 11-week-old Mig-6 over/overCol2a1-

Cre+/- (B) is decreased in response to increased Mig-6 levels. Frontal sections of mice articular 

cartilage, as negative control, exhibited no staining (C). Also, cartilage-specific deletion of Mig-

6, serving as positive control (D). N=5 mice/genotyping. MFC = medial femoral condyle and MTP 

= medial tibial plateau. Scale bar = 100µm. 
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Figure 2.7 Phospho-EGFR staining is decreased in the articular cartilage of cartilage specific 

Mig-6 overexpressing mice at 11 weeks of age 
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Figure 2.8 SOX9 immunostaining shows a decrease in Mig-6 overexpressors mice at post-

natal day 0 (p0). Ratio between the total cell number from control and Mig-6over/over (B). 

Ratio between the percentage of Sox9 positive cells from control and Mig-6over/over at p0 mice (C). 

Data analyzed by two tailed student t-tests from 5 mice per group. Individual data points presented 

with mean ± SEM (P<0.05). Scale bar = 100µm. 
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Figure 2.8 SOX9 immunostaining shows a decrease in Mig-6 overexpressors mice at post-natal 

day 0 (p0) 
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Figure 2.9 SOX9 immunostaining shows a decrease in Mig-6 overexpressors mice at 6 weeks-

old male mice control and Mig-6over/over. No primary antibody for SOX9 display no staining with 

methyl green counterstain in mice. Ratio between the total cell number from control and Mig-

6over/over at 6 weeks-old male mice (C). Ratio between the percentage of Sox9 positive cells from 

control and Mig-6over at 6 weeks-old male mice (D). Data analyzed by two-way ANOVA 

(95% CI) with Bonferroni post-hoc test. Individual data points presented with mean ± SEM; N= 5 

mice/genotyping. LFC = lateral femoral condyle, LTP = lateral tibial plateau, MFC = medial 

femoral condyle and MTP = medial tibial plateau. Scale bar = 100µm. 
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Figure 2.9 SOX9 immunostaining shows a decrease in Mig-6 overexpressors mice at 6 weeks-

old male mice control and Mig-6over/over 
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Figure 2.10 12-month-old cartilage specific Mig-6 overexpressing mice show decreased 

SOX9 immunostaining.  Representative SOX9 immunostained in male mice (n=5) in MFC and 

MTP show decreased staining intensity in Mig-6 over mice (B) when compared to control (A). No 

primary control for articular cartilage (C). LFC = lateral femoral condyle, LTP = lateral tibial 

plateau, MFC = medial femoral condyle and MTP = medial tibial plateau. Scale bar = 100µm. 
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Figure 2.10 12-month-old cartilage specific Mig-6 overexpressing mice show decreased SOX9 

immunostaining 
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2.4.6 Overexpression of Mig-6 decreases expression of lubricin 

Lubricin (aka PRG4/superficial zone protein) is a proteoglycan that plays an important role as 

lubricant in the joint (53). EGFR signaling is crucial for the cartilage lubrication function and 

regulates the induction of Prg4 expression which is necessary for smooth movement (33,54). 

Immunohistochemistry for Lubricin in 11-week-old and 12 months-old animals demonstrated less 

staining in the superficial zone of the medial side of Mig-6 over/over mice than in the control group 

(Fig. 2.11 and Fig. 2.12).   
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Figure 2.11 Lubricin immunostaining is slightly decreased in the articular cartilage of 

cartilage specific Mig-6 overexpressing mice at 11 weeks of age. Immunostaining of sections 

of the knee joint indicate the presence of Lubricin (PRG4) in the superficial zone chondrocytes. 

IHC reveals no staining for the negative control (C) and Mig-6 KO, serving as positive control 

(D). N=4-5 mice/genotyping. MFC = medial femoral condyle and MTP = medial tibial plateau. 

Scale bar = 100µm. 
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Figure 2.11 Lubricin immunostaining is slightly decreased in the articular cartilage of cartilage 

specific Mig-6 overexpressing mice at 11 weeks of age 
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Figure 2.12 Lubricin immunostaining is decreased in the articular cartilage of cartilage 

specific Mig-6 overexpressing mice at 12 months of age. Immunostaining of sections of the 

knee joint indicate the presence of Lubricin (PRG4) in the superficial zone chondrocytes. N=4-5 

mice/genotyping. MFC = medial femoral condyle and MTP = medial tibial plateau. Scale bar = 

100µm. 
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Figure 2.12 Lubricin immunostaining is decreased in the articular cartilage of cartilage specific 

Mig-6 overexpressing mice at 12 months of age 
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2.4.7 MMP13 immunostaining is increased in Mig-6-overexpressing and control 

mice 

Matrix metalloproteinase (MMP) 13 is highly expressed in OA (55,56). Frontal sections of knees 

from 12- and 18-month-old control and Mig-6 over/over male mice were used for MMP13 

immunohistochemistry. At 12 months, pericellular staining was observed in the lateral articular 

cartilage of male mice from both genotypes, along with the expected subchondral bone staining 

(Fig. 2.13). Immunostaining for MMP13 on serial sections of lesions revealed strong staining in 

the same areas of cartilage degeneration in mutant mice than control mice. Negative controls did 

not show staining in cartilage or subchondral bone. Articular cartilage from 18 months-old mice 

showed similar staining patterns and intensity of MMP13 immunostaining in the lateral side of 

both genotypes, however in the medial side of Mig-6 over/over  mice, MMP13 staining is seen on the 

cartilage surface (lesion sites) and also observed in the subchondral bone (data not shown).  
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Figure 2.13 12-month-old cartilage specific Mig-6 overexpressing mice show similar pattern 

of MMP13 as the control mice. Representative immunohistochemistry of matrix 

metalloproteinase 13 (MMP13) for Mig-6 overexpression mice at 12 months control (A) and 

cartilage specific Mig-6 overexpression (B). No primary control for articular cartilage (C). N=5 

mice/genotyping. LFC = lateral femoral condyle, LTP = lateral tibial plateau, MFC = medial 

femoral condyle and MTP = medial tibial plateau. Scale bar = 100µm.  
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Figure 2.13 12 month-old cartilage specific Mig-6 overexpressing mice show similar pattern of 

MMP13 as the control mice 
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2.5 Discussion 

The maintenance of articular cartilage homeostasis relies on a dynamic equilibrium involving 

growth factors (57), genetics (58), mechanical forces (59), obesity and injury, that all play a role 

in the onset of osteoarthritis (60). Better understanding of the underlying molecular mechanism is 

required to design therapies for preventing progression of OA. Recent studies from our laboratory 

and others have identified the epidermal growth factor receptor (EGFR) and Mig-6 as possible 

mediators of articular cartilage homeostasis (35,41,54,61). Mig-6 is a cytosolic protein and 

negative feedback regulator of EGFR signalling (62); thus, Mig-6 can be a potential tumor 

suppressor (43,63–66). In addition, whole body knockout of the  Mig-6 gene in mice results in 

degenerative joint disease (38). We also have shown previously that constitutive cartilage-specific 

deletion of Mig-6 (Mig-6 KO) results in increased articular cartilage thickness and cell density in 

the joints of 12 week-old mice (41). Cartilage-specific Mig-6 KO mice show the same anabolic 

effect in joint cartilage at 21 months of age (unpublished). 

Previous research demonstrates that Mig-6 overexpression acts as a negative feedback regulator 

of EGFR-ERK signalling (43), however these studies did not yet analyze joint tissues. Since our 

studies suggest dosage- and/or context-specific roles of EGFR signaling in joint homeostasis and 

OA (35), we now examined whether overexpression of Mig-6 alters these processes. Here, we 

report that cartilage-specific constitutive overexpression of Mig-6 did not cause cartilage 

degeneration in young mice, but early onset OA in middle aged mice. While we observed some 

effects of Mig-6 overexpression on bone length and weight, these effects were subtle and not 

accompanied by major morphological or histological changes in growth plate cartilage, overall 

skeletal morphology, or body composition.  A previous study showed that deletion of EGFR in 

bone tissue (Col1-Cre EgfrWa5/f ) resulted in shorter femurs compared to wild-type mice (67), 

consistent with our findings. The EGFR network is essential during long bone development, since 

previous studies have shown that EGFR- or TGF-deficient  mice exhibit a widened zone of 

hypertrophic chondrocytes (24,68). Moreover, Qin and colleagues have shown that administration 

of the EGFR inhibitor, gefitinib, into 1-monht-old rats results in an enlarged hypertrophic zone 

due down-regulation of MMP-9,-13 and -14 (31). Together these data suggest a critical role of 

EGFR during endochondral ossification and elucidate downstream mechanism of EGFR (69). 

Further research is required to provide more evidence of EGFR/Mig-6over/over signalling during 
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bone formation, but many of these effects are relatively subtle and transient, and likely unrelated 

to much more severe phenotypes observed later. 

Histologically, our findings showed that mice with cartilage-specific Mig-6 overexpressing 

showed healthy articular cartilage with no significant difference in articular cartilage thickness 

from control group at the ages of 6 weeks and 11 weeks. However, Mig-6 over/over mice developed 

severe degeneration of articular cartilage with aging. More prevalent, the knee joints of Mig-6 

over/over male mice showed significantly advanced cartilage degeneration. The same pattern but with 

more severe damage, was seen in 18-month-old mice. As previously described, sex hormones play 

a role in OA disease where male mice develop more severe OA (70). 

SOX9 is crucial in chondrogenesis during endochondral bone formation, articular cartilage 

development and cartilage homeostasis (52). Previous in vivo models using cartilage (Col2)-Cre 

or limb (Prx1)-Cre specific ablation of Mig-6 showed increased expression of SOX9 in the 

articular cartilage. Also, TGFα supresses expression of anabolic genes such as Sox9, type II 

collagen and aggrecan in primary chondrocytes (71). Interestingly, in the medial and lateral 

compartment of the knee joints of 6 and 11-week-old male Mig-6 over/over mice, the percentage of 

SOX9- positive chondrocytes was decreased compared to controls, despite the absence of 

histological defects in articular cartilage. These data suggest that reduced number of Sox9-

expressing cells precede the degeneration of articular chondrocytes in our mutant mice. The 

number of SOX9-expressing cells was also reduced in Mig-6 over/over mice at later ages. These data 

suggest that reduced numbers of Sox9-expressing cells could be one cause of the advanced OA in 

our mutant mice. In addition, we observed decreased expression of lubricin/PRG4 in these joints, 

which might also contribute to the observed joint pathologies. PRG4 has been shown to be 

regulated by EGFR signaling before (42,54), in support of our findings. 

While the EGFR is the best characterised substrate of Mig-6, other substrates have been described. 

Mig-6 binds to different proteins such as the cell division control protein 42 homolog (Cdc42) 

(72), c-Abl (73), and the hepatocyte growth factor receptor c-Met (74). While we cannot exclude 

that deregulation of these other substrates contributes to the observed phenotypes, the similarities 

of defects in our mice with those seen upon cartilage-specific deletion of EGFR suggest that 

decreased EGFR signaling is the main cause for the advanced OA observed in our mutant mice. 
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Nevertheless, it will be important to determine whether signaling through cMet and other pathways 

is altered as well. 

In conclusion, we show for the first time that cartilage-specific Mig-6 overexpression in mice 

results in reduced EGFR activity in chondrocytes, reduced SOX9 and PRG4 expression, and 

accelerated development of OA. These data highlight the important and context-specific role of 

the EGFR-Mig-6 signaling pathway in joint homeostasis and point towards potential targeting of 

this pathway for OA therapy.  
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2.7 Supplemental Figures 

 

 

 

 

 

Supplementary Figure 1) Construction of the targeting vectors and generation of Mig-

6over/over mice. Adapted from Kim, T. H. et al. Mig-6 suppresses endometrial cancer associated 

with pten deficiency and ERK activation. Cancer Res. 74, 7371–7382 (2014). (A) The 

overexpression of Mig-6 is accomplished by placing the transcription of Mig-6 under the control 

of a ubiquitously expressed promoter, the chicken b actin-cytomegalovirus hybrid (CAGGS) 

promoter. The construction also contained the “Stop Cassette” flanked by LoxP sites (LSL). (B) 

PCR strategy. P1 and P2 can amplify a 300 bp fragment from the wild-type allele, whereas P1 and 

P3 can amplify a 450 bp fragment from the targeted ROSA26 locus allele. (C) A representative 

agarose gel image of PCR genotyping, heterozygous (Het), wild-type (WT) and homozygous 

(Homo). (D) PCR primer sequence for wild type and Mig-6LSL allele. (E) RT- PCR primer 

sequence for Mig-6over/over. (F) Individual data points presented with mean ± SEM (P<0.05). Data 

analyzed by two tailed student t-tests from 11 mice per group.  
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Supplementary Figure 1) Construction of the targeting vectors and generation of Mig-6over/over 

mice 



102 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2) Bone mineral densities were measured from µCT scan volumes 

from control and Mig-6over/over male mice. (A) Mean bone mineral densities were 323.7 mg/cc 

(control) and 318.5 mg/cc (Mig-6over/over) at 11 weeks-old. Moreover, (B) At 12 months of age 

male Mig-6over/over mice had mean bone mineral density (342.9 mg/cc) and controls male mice 

(341.0 mg/cc). (C) At 18 months of age, there were no significance difference between the mean 

bone mineral density from control male mice (342.1 mg/cc) and male Mig-6over/over (333.2 mg/cc). 

There were not significantly different among 11 weeks-old, 12 and 18 months for bone mineral 

density for male control and Mig-6 overexpression mice. Individual data points presented with 

mean ± SEM (P<0.05). Data analyzed by two tailed student t-tests from 6-12 mice per group 

(age/gender).  
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Supplementary Figure 2) Bone mineral densities were measured from µCT scan volumes from 

control and Mig-6over/over male mice 
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Supplementary Figure 3) Body composition and body mass from growth and aging male 

control and Mig-6over/over. Body composition was calculated from control and Mig-6over/over male 

mice.  At 11 weeks-old (A1/A2), 12 months (B1/B2) and 18 months (C1/C2) neither the average 

lean mass percent nor mean body fat were statistically significant between genotypes. Individual 

data points presented with mean ± SEM (P<0.05). Data analyzed by two tailed student t-tests from 

6-12 mice per group (age/genotyping). 
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Supplementary Figure 3) Body composition and body mass from growth and aging male 

control and Mig-6over/over 
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Supplementary Figure 4) Articular cartilage from 11 weeks-old Mig-6over/over female mice 

appeared healthy during skeletal maturity. Representative (n=5/group, toluidine blue) stained 

frontal sections of knee joints from 11-week-old control (A) and Mig-6over/over (B). Mig-6 

overexpressors mice show similar articular cartilage thickness when compared to controls at 11 

weeks-old female mice. The average thickness of the calcified articular cartilage (C) and non-

calcified articular cartilage (D) in the lateral femoral condyle (LFC), lateral tibial plateau (LTP), 

medial femoral condyle (MFC), medial tibial plateau (MTP) was measured. Individual data points 

presented with mean ± SEM. Data analyzed by two-way ANOVA (95% CI) with Bonferroni post-

hoc test. Scale bar = 100µm. 
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Supplementary Figure 4) Articular cartilage from 11 weeks-old Mig-6over/over female mice 

appeared healthy during skeletal maturity 
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Supplementary Figure 5) 12-month-old Mig-6over/over female mice showed joint damage. 

Representative images of Toluidine Blue stained sections of knee joints from 12 month-old female 

control (A) and Mig-6over/over (B) mice were evaluated for cartilage damage following the OARSI 

histopathological scale on the four quadrants of the knee: LFC = lateral femoral condyle, LTP = 

lateral tibial plateau, MFC = medial femoral condyle and MTP = medial tibial plateau. OARSI 

based cartilage degeneration scores are higher both in the MFC and MTP of Mig-6 overexpressing 

mice, corresponding to the increased damage observed histologically (C). Data analyzed by two-

way ANOVA with Bonferroni’s multiple comparisons test. Individual data points presented with 

mean ± SEM. All scale bars =100 μm. N = 8 mice/group. Scale bar = 100µm. 
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Supplementary Figure 5) 12-month-old Mig-6over/over female mice showed joint damage 
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Supplementary Figure 6) 18 months-old Mig-6over/over female mice showed increased damage 

in the medial tibial plateau. Representative images of Toluidine Blue stained sections of knee 

joints from 18 month-old female control (A) and female Mig-6 over (B) mice were evaluated for 

cartilage damage following OARSI histopathological scale on the four quadrants of the knee: LFC 

= lateral femoral condyle, LTP = lateral tibial plateau, MFC = medial femoral condyle and MTP 

= medial tibial plateau. OARSI based cartilage degeneration scores are higher both in the MFC 

and MTP of Mig-6 overexpressing mice, corresponding to the increased damage observed 

histologically. (C). Data analyzed by two-way ANOVA with Bonferroni's multiple comparisons 

test. Individual data points presented with mean ± SEM. All scale bars =100 μm. N = 8 mice/group. 

Scale bar = 100µm. 
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Supplementary Figure 6) 18 months old Mig-6over/over female mice showed joint damage 
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Supplementary Figure 7) SOX9 immunostaining shows a decrease in Mig-6 overexpressors 

mice at 11 weeks-old male mice control and Mig-6over/over. No primary antibody staining. 

Ratio between the total cell number from control and Mig-6over at 11 weeks-old male mice (A). 

Ratio between the percentage of Sox9 positive cells from control and Mig-6over at 11 weeks-old 

male mice (B). Data analyzed by two-way ANOVA (95% CI) with Bonferroni post-hoc test. 

Individual data points presented with mean ± SEM; N= 5 mice/genotyping. LFC = lateral femoral 

condyle, LTP = lateral tibial plateau, MFC = medial femoral condyle and MTP = medial tibial 

plateau. Scale bar = 100µm. 
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Supplementary Figure 7) SOX9 immunostaining shows a decrease in Mig-6 overexpressors 

mice at 11 weeks-old male mice control and Mig-6over/over. 
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3.1 Abstract 

Background: Mitogen-inducible gene 6 (Mig-6) is a tumour suppressor gene that is also 

associated with the development of osteoarthritis (OA)-like disorder. Recent evidence from our 

lab and others showed that cartilage-specific Mig-6 knockout (KO) mice develop chondro-osseous 

nodules, along with increased articular cartilage thickness and enhanced EGFR signaling in the 

articular cartilage. Here, we evaluate the phenotype of  mice with skeletal-specific overexpression 

of Mig-6.   

Methods: Synovial joint tissues of the knee were assessed in 12 and 36 weeks-old skeleton-

specific Mig-6 overexpressing (Mig-6over/over) and control animals using histological stains, 

immunohistochemistry, semi-quantitative OARSI scoring, and microCT for skeletal 

morphometry. Measurement of articular cartilage and subchondral bone thickness were also 

performed using histomorphometry. 

Results: Our results show only subtle developmental effects of Mig-6 overexpression. However, 

male Mig-6over/over mice show accelerated cartilage degeneration at 36 weeks of age, in both medial 

and lateral compartments of the knee. Immunohistochemistry for SOX9 and PRG4 showed 

decreased staining in Mig-6over/over mice relative to controls, providing potential molecular 

mechanisms for the observed effects.          

Conclusion: Overexpression of Mig-6 in articular cartilage causes no major developmental 

phenotype but results in accelerated development of OA during aging. These data demonstrate that 

precise regulation of the Mig-6/EGFR pathway is critical for joint homeostasis. 
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3.2 Introduction 

Osteoarthritis (OA) is a failure of joint homeostasis and results in the whole-joint tissue 

degeneration (1). In fact, OA is a multifactorial disease affecting 630 million individuals 

worldwide, and the economic impact of OA treatment is estimated at 190 billion dollars in direct 

and indirect health care costs in North America  annually (2,3). OA patients experience limits in 

daily activities and often suffer from co-morbidities including mental health disorders (4). 

Treatment for pain and inflammation (analgesics, non-steroidal anti-inflammatory drugs 

(NSAIDS) and targeted physiotherapy (5) are commonly used to address patients’ symptoms, but 

no effective pharmacological therapy is currently available to delay disease progression. Future 

directions for effective OA management rely on better understanding of joint physiology and 

pathophysiological mechanism to develop disease-modifying therapies for OA patients.  

Risk factors including aging, genetics, obesity, and trauma contribute to the dysfunction of joint 

structures in OA. During the early stages of OA, alteration in chondrocyte physiology including 

cluster formation and changes in the composition of extracellular matrix (ECM) lead to altered 

cartilage function (6–8). Gradual degeneration of the articular cartilage, subchondral bone 

sclerosis, osteophyte development, and synovial inflammation/hyperplasia all contribute to joint 

degeneration in OA (9–11). Expression of matrix metalloproteinases (MMPs) (i.e., MMP-1 and 

MMP-13) and aggrecanases (disintegrin and metalloproteinase with a thrombospondin type 1 

motif (ADAMTS) (i.e., ADAMTS 1,4,5) is up-regulated in response to  inflammatory factors and 

other signals (12–14). Importantly, the tissues of the whole joint work together to maintain joint 

homeostasis. Therefore, failure in one joint structure might lead to failure of the whole organ, such 

as the knee joint (15).    

Over the past two decades, epidermal growth factor receptor (EGFR) signaling has been studied 

in several stages of cartilage development and homeostasis. These studies demonstrate both 

degenerative and protective roles of this pathway (16), with potential therapeutic implications  for 

OA (17–26). EGFR signaling modulates many canonical signaling pathways including MEK/ERK 

that have been implicated in cellular proliferation and growth in cartilage and bone, as well as Jun 

N-terminal kinases (JNKs), PLC-PKC signaling and others (24,27,28). Mitogen inducible gene 6 

(Mig-6) is well-known as a negative regulator for EGFR signaling (29). Two different mouse 
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strains with global deletion of Mig-6 demonstrated bone erosion and spontaneous development of 

OA-like phenotypes (30,31). Cartilage-specific Mig-6 KO mice display normal early bone 

development, but show anabolic buildup of articular cartilage, and formation of chondro-osseous 

nodules at 12 and 36 weeks of age (32) . Another study using limb mesenchyme-specific deletion 

of Mig-6 in mice (using the Prx1-cre driver line) demonstrated similar phenotypes as those 

observed in cartilage-specific knockout mice (33). Our laboratory has shown that cartilage-specific 

Mig-6 overexpression in mice results in no major developmental abnormalities in articular 

cartilage, however, during  aging  (12 and 18 months) Mig-6over/over mice show accelerated cartilage 

degeneration (34). To evaluate the contribution of Mig-6 in multiple joint tissues to joint 

homeostasis and OA pathogenesis, we used Prx1 promoter-driven Cre recombinase to selectively 

overexpress Mig-6 in all mesenchymal limb tissues in mice.  

3.3 Methods 

3.3.1 Animals 

All animals and procedures were approved by the Council for Animal Care (CCAC) at Western 

University-Canada (Animal use permit:2015-031). Mig-6 overexpression animals with the 

overexpression targeted to the Rosa26 locus (35) were backcrossed for 10 generations into a 

C57Bl/6 background. In these mice, transcription of Mig-6 is under the control of a ubiquitously 

expressed chicken beta actin-cytomegalovirus hybrid (CAGGS) promoter, but blocked by a “Stop 

Cassette” flanked by LoxP sites (LSL) (35).  Mig-6 overexpression mice were bred to mice 

carrying the Cre recombinase gene under the control of the Prx1-Cre transgene (36) to induce 

recombination and removal of the Stop Cassette  specifically in early limb bud mesenchyme. 

Animals with overexpression of Mig-6 from both alleles are termed Mig-6 over/over (Mig-6 

over/overPrx1-Cre+/-), while control mice are identical but without the Cre gene (denoted “control” 

for simplicity). Mice were group housed (2 or 4 mice per cage of littermate matched control and 

overexpression animals), on a standard 12 hour light/dark cycle, and with free access to mouse 

chow and water. Genotyping and assessment of genomic recombination was performed on DNA 

samples from ear tissue from mice surviving to at least 21 days of age. Standard polymerase chain 

reaction (PCR) was performed using primer set P1 and P2 can amplify a 300 bp fragment from the 

wild-type allele, whereas P1 and P3 can amplify a 450 bp fragment from the targeted ROSA26 

locus allele (35). 
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3.3.2 Histologic Assessment  

The knee joints of mice were dissected and fixed in 4% paraformaldehyde in phosphate buffered 

saline (PBS, pH 7.0) for 24 hours at room temperature. The intact joints were then decalcified in 

5% ethylenediaminetetraacetic acid (EDTA) in phosphate buffered saline (PBS), pH 7.0 for 10 – 

12 days at room temperature. All joints were processed and embedded in paraffin in sagittal or 

frontal orientation, with serial sections taken at a thickness of 5 μm.  Sections were stained with 

Toluidine Blue (0.04% toluidine blue in 0.2M acetate buffer, pH 4.0, for 10 minutes) for 

glycosaminoglycan content and general evaluation of articular cartilage.  

Immunohistochemistry was performed on frontal sections of paraffin embedded knee joints as 

previously described (32,37). Primary antibodies against SOX9 (R&D Systems, AF3075), 

MMP13 (Protein Tech, Chicago, IL, USA, 18165-1-AP), and lubricin (Abcam, ab28484) were 

used and slides without primary antibody were used as control. Sections were incubated with 

primary antibody overnight at 4°C. After washing, sections were incubated with horseradish 

peroxidase (HRP)-conjugated donkey anti-goat or goat anti-rabbit secondary antibody (R&D 

system and Santa Cruz), before incubation with diaminobenzidine substrate as a chromogen 

(Dako, Canada). Finally, sections were counterstained with 0.5% methyl green (Sigma) and 

dehydrated in graded series of 70-100% ethanol in water, followed by 100% xylene, and mounted 

using xylene-based mounting media. All images were taken using a Leica DM1000 microscope 

with attached Leica DFC295 digital camera. 

3.3.3 Histologic evaluation of articular cartilage and histopathology scoring 

Articular cartilage thickness was determined from toluidine blue-stained frontal sections of knee 

joints by a blinded observer with regard to the tissue source. ImageJ Software (v.1.51) (38) was 

used to measure the cartilage thickness separately for the non-calcified articular cartilage 

(measured from the superficial tangential zone to the tidemark) and the calcified articular cartilage 

(measured from the subchondral bone to the tidemark) across three evenly spaced points from all 

four quadrants of the joint (medial/lateral tibia and femur), in 4 sections spanning at least 500 μm. 

For OARSI scoring, Toluidine blue-stained sections were evaluated by one to two blinded 

observers (MB, MAP) on the four quadrants of the knee: lateral femoral condyle (LFC), lateral 

tibial plateau (LTP), medial femoral condyle (MFC), and medial tibial plateau (MTP), according 
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to the Osteoarthritis Research Society International (OARSI) histopathologic scale (39). 

Subchondral bone area from the tibial plateau was traced by one observer (MB) using the 

Osteomeasure analysis software (OsteoMetrics, Decatur, GA, USA) for histomorphometry 

measurements using three sections spanning at least 500 µm from each animal. 

3.3.4 Visualization of collagen fiber content  

In order to analyze the collagen fibril content and network, Picrosirius Red Staining (0.1% Sirius 

red in saturated picric acid solution for 60 minutes, with 0.5% acetic acid washes) was performed 

(32). Stains were imaged under polarized light microscopy to visualize the organization and size 

of collagen fibrils. Light intensity and tissue angle (45°) relative to polarizing filter (Leica no. 

11505087) and analyzer (Leica no. 11555045) were kept identical between samples as per (32) 

3.3.5 Micro-Computerized Tomography (μCT)  

Mice were euthanized and imaged using General Electric (GE) SpeCZT microCT machine (40) at 

a resolution of 50μm/voxel or 100μm/voxel in 12 and 36 week-old control and  Mig-6 over/over male 

and female mice. GE Healthcare MicroView software (v2.2) was used to generate 2D maximum 

intensity projection and 3D isosurface images to evaluate skeletal morphology (32,41). MicroView 

was used to create a line measurement tool in order to calculate the bone lengths; femurs lengths 

were calculated from the proximal point of the greater trochanter to the base of the lateral femoral 

condyle. Tibiae lengths were measured from the midpoint medial plateau to the medial malleolus. 

Humerus lengths were measured from the midpoint of the greater tubercle to the center of the 

olecranon fossa. 

3.3.6 Statistical Analysis 

All statistical analyses were performed using GraphPad Prism (v6.0). Differences between two 

groups were evaluated using Student's t-test, and Two-Way ANOVA was used to compare four 

groups followed by a Bonferroni multiple comparisons test. All n values represent the number of 

mice used in each group/genotyping. 
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3.4 Results 

3.4.1 Overexpression of Mig-6 has minor effects on body weight during 

development  

Mice with alleles for conditional overexpression of Mig-6 (35) were bred to mice expressing Cre 

recombinase under control of the Prx1 promoter, which is active in the mesenchyme of developing 

limb buds. Homozygote mice overexpressing Mig-6 in mesenchymal limb tissue from both Rosa26 

alleles are referred to as Mig-6 over/over from here on. Control mice do not express Cre recombinase. 

Overexpressing mice were obtained at the expected Mendelian ratios (data not shown). Animal 

weights were significantly lower at 7, 12, and 13 weeks after birth in male mutant mice compared 

to control mice (Fig. 3.1A), while female Mig-6over/over mice had similar weights as control mice 

(Fig. 3.1B). However, at 36 weeks of age mice there were no differences in weights of neither 

male nor female mutant mice compared to the control group (Fig. 3.1C, D). 

  



127 

 

 

 

 

 

 

 

Figure 3.1 Total body weight of male and female control and Mig-6over/over mice. Total body weight 

of 12-week-old male (A) and female (B) mice. Total body weights of 36-week-old male (C) and 

female (D) Mig-6over/over mice and controls did not show any statistically significant differences. 

Individual data points are presented with mean ± SEM (P<0.05). Data were analyzed by two tailed 

student t-tests from 8-10 mice per group (age/genotyping). 
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Figure 3.1 Total body weight of male and female control and Mig-6over/over mice 
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3.4.2 Mig-6 overexpressing mice show no differences in bone length  

Micro computed tomography (microCT) was used to investigate skeletal morphology and bone 

length. Whole body microCT scans of Mig-6 over/over male mice and their controls were taken post-

mortem at 12 and 36 weeks of age to generate 3D isosurface reconstructions of 50μm/voxel μCT 

scans, in order to measure long bones lengths (femurs, humeri, and tibiae) in GE MicroView v2.2 

software. Mutant male mice at 12 and 36 weeks did not show any difference in bone length 

compared to controls (Fig. 3.2A-B). Moreover, no differences in gross skeletal morphology were 

detected (Fig. 3.2C).  
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Figure 3.2 Mig-6 overexpression does not affect bone length. The lengths of right femora, tibiae 

and humeri were measured on microCT scans of mice at 12 (A) and 36 (B) weeks of age using GE 

MicroView software. There were no statistically significant differences in any bones at either age. 

Individual data points are presented with mean ± SEM (P<0.05). Data were analyzed by two tailed 

student t-tests from 8 mice per group (age/gender). (C) shows a representative 3D isosurface 

reconstruction of a 100μm/voxel µCT scan. 

  



131 

 

 

 

Figure 3.2 Mig-6 overexpression does not affect bone length 
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3.4.3 Specific overexpression of Mig-6 in limbs display healthy articular 

cartilage at skeletal mature   

Histological analysis of knee sections was performed on 12-week-old mutant and control male 

mice using toluidine blue stained paraffin frontal knee sections (Fig. 3.3A-B). No major 

differences in tissue architecture were seen between genotypes. However, the thickness of the 

calcified articular cartilage in the medial femoral condyle (MFC) and medial tibial plateau (MTP) 

of male Mig-6 over/over mice was statistically significantly lower than in controls. Uncalcified 

cartilage did not show any differences between genotypes. 
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Figure 3.3 12-week-old Mig-6over/over male mice show healthy articular cartilage.   

Representative (n=5) toluidine blue-stained frontal sections of knee joints from 12-week-old 

control (A, B) and Mig-6over/over (C, D) mice showed no apparent damage. Mig-6 overexpressing 

mice did show statistically significant differences in thickness of the calcified articular cartilage 

on the medial femoral condyle (MFC) and medial tibial plateau (MTP) (E) when compared to 

controls. However, no statistically significant differences were seen in the non-calcified articular 

cartilage (F). The lateral femoral condyle (LFC) and lateral tibial plateau (LTP) did not show any 

significant differences. Individual data points are presented with mean ± SEM.  Data were analyzed 

by two-way ANOVA (95% CI) with Bonferroni post-hoc test. Scale bar = 100µm. 
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Figure 3.3 12-week-old Mig-6over/over male mice show healthy articular cartilage 
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3.4.4 Mig-6 overexpressing male mice display articular cartilage damage at 36 

weeks of age  

We evaluated the knee joints of 36 weeks-old control and Mig-6 over/over male mice using toluidine 

blue staining and OARSI grading method (39). At this age, control mice exhibited little to no 

damage of articular cartilage (Fig. 3.4A). Conversely, three of seven Mig-6 over/over mice exhibited 

cartilage damage and erosion with significantly elevated scores in the medial compartment of the 

knee. Moreover, all seven Mig-6 over/over mice had OA in the lateral compartment of the knee (Fig. 

3.4B), with fibrillation and fissure formation. Furthermore, two of six Mig-6 over/over female mice 

showed mild cartilage degeneration of the medial compartment (Fig. 3.5B), in contrast to the 

control group where no cartilage damage was observed (Fig. 3.5A).  
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Figure 3.4 Cartilage damage in knee joints of 36-week-old male Mig-6 overexpressing mice. 

Toluidine blue staining demonstrated healthy knee joints and articular cartilage in all 36-week-old 

male control mice (A), while many Mig-6-overexpressing mice showed clear damage to the 

articular surface (B). OARSI histopathology scoring demonstrated that cartilage degeneration 

scores significantly increased in the MFC, MTP, LFC and LTP of Mig-6 overexpressing mice. (C) 

Data were analyzed by two-way ANOVA with Bonferroni's multiple comparisons test. Individual 

data points are presented with mean ± SEM. All scale bars =100 μm. N = 7 mice/group. 
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Figure 3.4 Cartilage damage in knee joints of 36 week-old male Mig-6 overexpressing mice 
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Figure 3.5 Minor damage in articular cartilage of 36-week-old female Mig-6 overexpressing 

mice. (A) Paraffin sections of knee joints from 36-week-old female control (A) and Mig-6 

overexpressing (B) mice demonstrated healthy joints in controls and minor cartilage damage in 

some mutant mice, which was confirmed by OARSI histopathology scoring (C). Data were 

analyzed by two-way ANOVA with Bonferroni's multiple comparisons test. Individual data points 

are presented with mean ± SEM. All scale bars =100 μm. N = 7 mice/group. 
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Figure 3.5 Minor damage in articular cartilage of 36-week-old female Mig-6 overexpressing 

mice 
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3.4.5 Specific overexpression of Mig-6 results in normal bone area 

Bone structural alteration is related to knee osteoarthritis as an adaptive response to the loading 

distribution across joints (42). Measurement of the subchondral bone area from Mig-6 over/over and 

controls male mice at 36 weeks-old across the entire joint did not reveal any significant differences 

between genotypes (Fig. 3.6A-B). Specific measurements of the lateral and medial tibia plateau 

did not show any significant differences either (data not shown). 
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Figure 3.6 No differences in the subchondral bone area upon overexpression of Mig-6. The 

subchondral bone area from 12-week-old male control and Mig-6 overexpressing (A) or 36-week-

old male control and Mig-6 overexpressing (B) mice are shown. Representative images of the 

subchondral area selected using the OsteoMeasure bone histomorphometry system are shown in 

(C). Individual data points are presented with mean ± SEM. Data were analyzed by one observer 

(MB). All scale bars =100 μm. N = 6-7 mice/group. 
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Figure 3.6 No differences in the subchondral bone area upon overexpression of Mig-6. 
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3.4.6 Mig-6 overexpressing mice display altered collagen fiber organization in 

articular cartilage 

Frontal sections from 36 weeks-old male mice were stained with Picrosirius red to visualize the 

collagen network under polarized light microscope. In the control male mice, the collagen fibers 

in the articular cartilage exhibit greenish/yellow birefringence in the superficial and transitional 

zones, resulting from thin collagen fibers in these regions. In the deep and calcified cartilage, and 

in bone, red birefringent fibers are visualized, indicating larger fiber diameter in these regions. The 

articular cartilage of Mig-6 over/over showed fewer green collagen fibers in the medial compartment 

of the knee, indicating a loss of normal collagen fibers (Fig. 3.7A-B).    
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Figure 3.7 Picrosirius Red Staining of control and Mig-6 overexpressing mice.    

Representative paraffin sections of the medial and lateral compartment in 36-week-old male 

control (A) and Mig-6 overexpressing mice (B) were stained with picrosirius red (fibrillar 

collagen) and analyzed under polarized light to evaluate the collagen tissue organization and 

orientation in the articular cartilage. Cartilage in the medial compartment of Mig-6over/over mice 

shows reduced collagen staining. N=5 mice/group; LFC = lateral femoral condyle, LTP = lateral 

tibial plateau, MFC = medial femoral condyle and MTP = medial tibial plateau. Scale bar = 100µm. 
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Figure 3.7 Picrosirius Red Staining of control and Mig-6 overexpressing mice 
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3.4.7 Overexpression of Mig-6 decreases Sox9 expression  

Studies have shown that expression of the transcription factor SRY (sex determining region Y)-

box 9 [SOX9] was increased in articular cartilage upon both Prx1-Cre 1(43) and Col2-Cre-driven 

(32) deletion of Mig-6. SOX9 is an essential regulator of chondrogenesis and the maintenance of 

a chondrocyte-like phenotype (44). Frontal sections of paraffin embedded knees from 12- and 36-

week-old male mice were used for SOX9 immunostaining. In 12-week-old control mice, nuclear 

SOX9 was abundantly present in the articular cartilage of the knee joints in all four quadrants. In 

contrast, Mig-6 over/over mice appear to have fewer cells staining positive in both lateral and medial 

compartments (Fig. 3.8A, B). 36-week-old Mig-6 over/over mice showed a further reduction in SOX9 

immunostaining in the lateral quadrant, while the loss of cartilage in the medial compartment led 

to an absence of SOX9 staining (Fig. 3.9A, B). For both ages, negative controls did not show 

staining in chondrocytes (data not shown). 
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Figure 3.8 Lower numbers of SOX9-positive cells in 12-week-old male Mig-6 overexpressing 

mice. Representative SOX9 immunostaining in knee joints of 12-week-old male control (A) or 

Mig-6 overexpressing (B) mice (n=5 mice/group). Ratio between the total cell number from 

control and Mig-6 over/over mice in 12-week-old male mice (C). Ratio between the percentage of 

Sox9 positive cells from control and Mig-6 over/over at 12-week-old male mice (D). Data analyzed 

by two-way ANOVA (95% CI) with Bonferroni post-hoc test. Individual data points presented 

with mean ± SEM; N= 5 mice/genotyping. LFC = lateral femoral condyle, LTP = lateral tibial 

plateau, MFC = medial femoral condyle and MTP = medial tibial plateau. Scale bar = 100µm. 
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Figure 3.8 Lower numbers of SOX9-positive cells in 12-week old male Mig-6 overexpressing 

mice. 
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Figure 3.9 Lower numbers of SOX9-positive cells in 36-week old male Mig-6 overexpressing 

mice.   Representative SOX9 immunostaining in knee joints of 36-week-old male control (A) or 

Mig-6 overexpressing (B) mice (n=5 mice/group). Overexpressing mice showed reduced numbers 

of positive cells in the medial and lateral compartments. LFC = lateral femoral condyle, LTP = 

lateral tibial plateau, MFC = medial femoral condyle and MTP = medial tibial plateau. Scale bar 

= 100µm. 
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Figure 3.9 Lower numbers of SOX9-positive cells in 36-week old male Mig-6 overexpressing 

mice 
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3.4.8 Lubricin/PGR4 is decreased upon Mig-6 overexpression 

Lubricin/proteoglycan 4  plays an important role as joint boundary lubricant and is produced by 

synoviocytes as well as superficial zone chondrocytes (45,46).  In 12-week-old Mig-6 over/over mice, 

lubricin was observed in superficial zone (SZ) and middle zone (MZ) chondrocytes, in a similar 

pattern as control mice, although intensity appeared reduced in Mig-6 over/over mice (Fig. 3.10 A-

C).  36-week-old control male mice show lubricin immunostaining in the SZ and MZ, however, 

less lubricin immunostaining is present in the SZ of the medial side of Mig-6 over/over mice. Negative 

controls did not show staining in chondrocytes or articular cartilage at either age (Fig. 3.10 A-C). 
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Figure 3.10 Lubricin immunostaining is slightly decreased in the articular cartilage of Mig-

6 overexpressing mice at 12 weeks of age. Immunostaining of sections of the knee joint indicate 

the presence of Lubricin (PRG4) in the superficial zone chondrocytes of 12-week-old male control 

mice (A), with apparently reduced staining in Mig-6 overexpressing mice (B). Ratio between 

the total cell number from control and Mig-6 over/over at 12-week-old male mice (C). Ratio between 

the percentage of Lubricin (PRG4) positive cells from control and Mig-6 over/over mice at 12 weeks 

of age (D). Data analyzed by two-way ANOVA (95% CI) with Bonferroni post-hoc test. Individual 

data points presented with mean ± SEM; N= 5 mice/genotyping. LFC = lateral femoral condyle, 

LTP = lateral tibial plateau, MFC = medial femoral condyle and MTP = medial tibial plateau. 

Scale bar = 100µm. 
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Figure 3.10 Lubricin immunostaining is decreased in the articular cartilage of Mig-6 

overexpressing mice at 12 weeks of age 
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3.4.9 MMP13 immunostaining is increased in Mig-6-overexpressing compared 

to control mice 

Previous studies have shown that matrix metalloproteinase (MMP) 13 is the main collagenase 

associated with type II collagen destruction in OA. Frontal sections of knees from 36-week-old 

control and Mig-6 over/over male mice were used for MMP13 immunohistochemistry. While some 

staining was seen in control mice, intensity of staining was increased in areas of damage on the 

medial side of Mig-6 over/over mice. Negative controls did not show staining in cartilage or 

subchondral bone (Fig. 3.11 A, B, and C). 
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Figure 3.11 36-week-old Mig-6 overexpressing mice show increased MMP13 staining in 

cartilage. Representative immunohistochemistry of matrix metalloproteinase 13 (MMP13) in 36-

week-old control (A) and Mig-6 overexpressing (B) mice show increased staining in the degrading 

cartilage of overexpressors. No primary antibody control is shown in (C). N=5 mice/genotyping. 

LFC = lateral femoral condyle, LTP = lateral tibial plateau, MFC = medial femoral condyle and 

MTP = medial tibial plateau. Scale bar = 100µm.  
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Figure 3.11 36-week-old Mig-6 overexpressing mice show increased MMP13 staining in 

cartilage 
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3.5 Discussion 

Mig-6 has been studied in a variety of human diseases, including cancer and more recently OA 

progression(16,31–33,47). Many studies, including from our lab, also identified TGFα /EGFR 

signaling as a regulator of OA progression and cartilage homeostasis (21,24,48). Interestingly,  

cartilage-specific (Col2-Cre)  deletion of Mig-6 (Mig-6 KO) (32) results in increased proliferation 

of chondrocytes and a thicker layer of cartilage while skeletal-specific (Prx1-Cre) deletion of Mig-

6 results in transient anabolic buildup of cartilage followed by catabolic events such as cartilage 

degeneration at 16 weeks of age (33). In fact, global deletion of Mig-6 in mice results in a complex 

set of phenotypes, including joint damage at relatively early time-points in a surgical mouse model 

(31,49,50). Previous research demonstrates that Mig-6 acts as a negative feedback inhibitor of 

EGFR signaling (51). Thus, Mig-6 has been suggested as a potential tumor suppressor, as a 

suppressor of  EGFR signaling in human carcinomas (35,52–55). Recent work has revealed that 

overexpression of Mig-6 acts as a negative regulator of EGFR-ERK signalling in mouse uterus 

(35). In our study, we set out to evaluate the role of Mig-6 in joint physiology by using skeletal-

specific constitutive overexpression of Mig-6. In this study, we show no major effects of Mig-6 

overexpression on bone length at the ages of 12 or 36 weeks. While male Mig-6over/over mice did 

show slightly reduced body weight up to 12 weeks after birth, these differences were no longer 

present at 36 weeks of age.  

Our results show that Mig-6over/over (Prx1-Cre) male mice developed cartilage lesions at 36 weeks 

of age, where control mice show healthy cartilage. OARSI scores of Mig-6over/over mice reveal 

significantly increased cartilage degeneration compared to control group. Surprisingly, it appeared 

that cartilage degeneration in Mig-6over/over mice was not accompanied by any obvious changes in 

subchondral bone. However, the thickness of the calcified articular cartilage in Mig-6over/over was 

significantly decreased at the 12-week time-point, at least in the medial compartment. It is 

currently unclear whether and how this is related to the subsequent degeneration of articular 

cartilage in these mice.      

SOX9 is a transcription factor that is necessary for the formation of mesenchymal condensations 

as well as chondrocyte differentiation and proliferation (56,57). Our data suggest a lower number 

of SOX9-positive cells at the 12-week time point in mutant mice, preceding cartilage damage. The 
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number of SOX9-expressing cells is further reduced in 36-week-old mutant mice, although this is 

partially due to the loss of cartilage and chondrocytes. In agreement with these data, mice with 

cartilage- or  limb mesenchyme-specific deletion of Mig-6 showed increased expression of SOX9 

in the articular cartilage (32,33).  

Lubricin/PRG4 is necessary for joint lubrication and to maintain healthy cartilage (58,59). Our 

results suggest a slight decrease in lubricin staining in 12 weeks-old male Mig-6 over/over mice, 

compared to the control group. We also observed the same trend towards decreased staining in 36 

weeks-old male Mig-6 over/over mice. Together, these data suggest that the decreased of SOX9 

and lubricin in the articular cartilage could contribute to cartilage degeneration in our mutant mice. 

We recently described mice with cartilage-specific (Col2-Cre-driven) overexpression of Mig-6 

(34). Despite the differences in recombination patterns conferred by the two different Cre drivers, 

overall the phenotypes observed upon Mig-6 overexpression are quite similar.  Both are 

characterised by no or only subtle developmental defects, followed by reduced SOX9 and lubricin 

expression, followed by cartilage degeneration. One unique feature of the Prx1-driven Mig6-

overexpression described here is the stronger OA phenotype in the lateral compartment of 36-

week-old mutant male mice. Future studies will need to investigate the underlying causes.  

While Mig-6 had been identified as a negative regulator of EGFR signaling, it also interacts with 

a number of other potential candidate proteins that may contribute to the phenotype described here, 

such as Cdc42 (60), c-Abl (61), and the hepatocyte growth factor receptor c-Met (62). Therefore, 

additional work is necessary to elucidate the potential role of these proteins in the phenotype 

presented. In conclusion, in this study using limb mesenchyme-specific Mig-6 overexpression we 

show a reduction of SOX9 and PRG4 expression, and accelerated cartilage damage. The data 

highlights the importance of more studies on the specific role of Mig-6 signaling in joint 

homeostasis and OA development. 
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Chapter 4 

 Cartilage-Specific Overexpression of Mig-6 Accelerates Post-

Traumatic Osteoarthritis in Mice 
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4.1 Abstract 

Background: Osteoarthritis (OA) is a chronic degenerative disease characterised by cartilage loss 

and changes in the whole joint (e.g. subchondral bone sclerosis, osteophyte formation, synovitis). 

Moreover, OA leads to pain, loss of joint function as well as a decrease in quality of life. Currently, 

there is no cure for OA. Several studies have shown that molecular derangement is involved in the 

disruption of joint homeostasis and imbalance between catabolic and anabolic signals. Mitogen-

inducible gene 6 (Mig-6) has been identified as a potential regulator of cartilage physiology. Our 

lab has demonstrated that cartilage-specific Mig-6 knockout (KO) mice develop osteophyte-like 

chondro-osseous nodules in the knee joints and anabolic increase in articular cartilage thickness. 

Recently, our previous study showed that cartilage- or limb mesenchyme-specific Mig-6 

overexpression in mice results in cartilage degeneration during aging. Here we examine the effects 

of cartilage-specific Mig-6 overexpression on post-traumatic OA in the DMM model. 

Methods: Cartilage-specific Mig-6 overexpressing (Mig-6over/over) and control mice underwent 

destabilization on medial meniscus (DMM) to induce PTOA at 16 weeks of age. Mice were 

sacrificed 8 weeks after surgery. Behavioural outcomes were analyzed through Open Field Testing 

prior to sacrifice. Joint pathology was examined using histopathological scoring (semi-quantitative 

OARSI scoring) using Toluidine Blue staining of paraffin sections of knee joints.  

Results: Mice undergoing DMM surgery exhibited behavioral changes (less movement and 

vertical activity) between genotypes. Control and Mig-6over/over DMM operated mice show 

significant cartilage degeneration compared to sham operated using OARSI scoring of cartilage. 

Conclusion: Surgical-induced OA mice with overexpression of Mig-6 in articular cartilage 

significantly aggravated the destruction of articular cartilage. However, Mig-6over/over did not 

significantly exhibited behaviour changes. These results suggested that Mig-6over/over indicate to 

alter disease progression of OA. 
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4.2 Introduction 

Mitogen-inducible gene 6 (Mig-6) has been implicated in a variety of human diseases such as lung 

cancer, including squamous cell carcinoma, non-small cell lung cancer, and osteoarthritis (1–5). 

Biochemically, Mig-6 has been identified as a negative regulator of Epidermal Growth Factor 

Receptor (EGFR) signaling (6–8), which regulates many aspects of cell physiology, such as 

proliferation and differentiation (9,10). Cartilage- or limb mesenchyme-specific Mig-6 

overexpression (in Mig-6 over/over mice) results in accelerated cartilage degeneration during aging  

(12 and 18 months) (11,12). In contrast, cartilage-specific Mig-6 knockout (KO) mice show 

increased articular cartilage thickness but also ectopic chondro-osseous nodules in their knee joints 

(13). Limb mesenchyme-specific Mig-6 deletion (using Prx1-cre) drive resulted in similar 

transient anabolic phenotype including cartilage thickening that was followed by catabolic effects 

such as matrix degradation (14).  However, global deletion of Mig-6 led to early-onset 

osteoarthritis (OA) such as formation of bone cysts and degradation of articular cartilage (2). 

Therefore, numerous studies have shown that Mig-6 plays an important role in articular cartilage 

homeostasis and maintenance. 

OA is the most highly prevalent degenerative joint disease in humans (15–17). OA pathogenesis 

is a complex process that leads to alteration in the whole joint and its different structures including 

articular cartilage, menisci, ligaments, subchondral bone, and synovium (18,19). OA has 

multifactorial causes including systemic and local factors such as genetic susceptibility, trauma 

(posttraumatic OA/PTOA), female sex, obesity, muscle weakness, all of which can lead to early-

onset OA (20). Currently the treatments options available for OA are pharmacological, non-

pharmacological, and alternative medicine, but none of these address the cause of the disease or 

slow disease progression (21). Furthermore, surgical OA treatment (e.g. joint replacement) is a last 

resort, based on OA stage, patient’s age and comorbidities, and physical examination/activity (22).  

In this study, we evaluated the effects of cartilage-specific Mig-6 overexpressing (Mig-6over/over) 

on the development of osteoarthritis following surgical destabilization of medical meniscus 

(DMM). DMM is a widely accepted and well validated model of posttraumatic OA (23). 
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4.3 Methods 

4.3.1 Animals 

All mice were bred and housed in accordance with Council for Animal Care (CCAC) guidelines 

at The University of Western Ontario. Male mice were group housed (2 or 4 mice per cage, 

matched control and overexpressing animals), on a standard 12 hour light/dark cycle, and with free 

access to mouse chow and water. Mice were separated to double housing post-surgery. To 

conditionally overexpress Mig-6 in chondrocytes, Mig-6 overexpression animals were bred with 

Col2-Cre mice as described (11,24). Genotyping was performed on DNA samples from ear tissue 

of mice at 21 days of age. Standard polymerase chain reaction (PCR) was performed using primer 

set P1 and P2 that amplify a 300 bp fragment from the wild-type allele, whereas P1 and P3 can 

amplify a 450 bp fragment from the targeted ROSA26 locus allele (24). 

Post-traumatic OA was induced at 16 weeks of age by performing DMM surgery on the right hind 

limb of male Mig-6 over/over and control littermates mice, as described  (23,25). DMM or Sham 

surgery was performed by Dr. Supinder K. Bali. 34 mice were used for this surgical trial, 16 control 

(9DMM, 7sham) and 18 Mig-6 over/over mice (9 DMM, 9 sham). Isofluorane was used as surgical 

anesthetic. Buprenorphine (dose: 1.0mg/ml) was administered subcutaneously as an analgesic, and 

ampicillin (dose: 0.1ml) was administered subcutaneously as a prophylactic antibiotic. 1 week 

after surgery, running wheels were added to the cages of all experimental animals, and they had 

free access for the remainder of the trial. All mice were sacrificed 8 weeks following surgery by 

CO2 asphyxiation and operated right limbs were harvested. 

4.3.2 Histologic Assessment   

Knee joints of mice were harvested 8 weeks following surgeries and fixed in 4% paraformaldehyde 

in phosphate buffered saline (PBS, pH 7.0) for 24 hours at room temperature. The intact joints 

were then decalcified in 5% ethylenediaminetetraacetic acid (EDTA) in phosphate buffered saline 

(PBS), pH 7.0 for 10 – 12 days at room temperature. All joints were processed and embedded in 

paraffin in sagittal or frontal orientation, with serial sections taken at a thickness of 5 μm.  Sections 

were stained with Toluidine Blue (0.04% toluidine blue in 0.2M acetate buffer, pH 4.0, for 10 

minutes) for glycosaminoglycan content and general evaluation of articular cartilage. Sections 

through the entire joint were scored according to the Osteoarthritis Research Society International 
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(OARSI) histopathologic scale (26) by one blinded observer. Scores from 0-6 represent OA 

severity, with 0 referring to healthy cartilage and 6 denoting erosion of more than 75% of articular 

cartilage. Individual scores are averaged across the four quadrants of the knee: lateral femoral 

condyle (LFC), lateral tibial plateau (LTP), medial femoral condyle (MFC), and medial tibial 

plateau (MTP) from each animal/group. 

4.3.3 Behavioural Testing   

Exploratory behaviour and motor activity in mice were assessed using mouse open field activity 

monitors (AccuScan Instruments, Omnitech Electronic, Columbus, OH) with a transparent 

Plexiglas cage (height = 40cm, width = 20cm, and length = 20cm). Mice were placed in an Open 

Field Tester for 30 minutes, prior to sacrifice. Rest, movement, ambulation, and vertical activity 

time and incidence were measured and analyzed using the Fusion Software provided by the 

manufacturer. 

4.3.4 Statistical Analysis 

All statistical analyses were performed using GraphPad Prism (v8.0). Behavioural measures were 

analyzed by two-way analysis of variance (ANOVA) followed by Turkey’s multiple comparisons 

test. OARSI scores were compared using a two-way ANOVA followed by Turkey’s multiple 

comparisons test. 

4.4 Results 

4.4.1 Overexpression of Mig-6 in cartilage increases severity of DMM-induced 

osteoarthritis  

Male Mig-6 over/over and control mice received either SHAM or DMM surgery. At 8 weeks post-

surgery, mice were euthanized, and their joints were harvested for histopathologic analyses to 

evaluate the effect of Mig-6 overexpression on the progression of OA. Serial frontal sections per 

mice were assessed semi-quantitatively by 1 blinded observer using the OARSI recommendation 

(26). SHAM-operated mice displayed healthy joints, as expected, with only very minor damage in 

a few cases. Histologically, varying degrees of cartilage damage in the medial compartment was 

seen in all 9 control and all 9 Mig-6 over/over DMM-operated animals. Four of nine control mice 

showed mild cartilage degeneration, with focal, full thickness cartilage lesions spanning limited 
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areas through the joint. One of nine control mice showed extensive cartilage erosion, spanning 50-

100% of the articular surface across the entire medial compartment. In Mig-6 over/over mice, five of 

nine DMM operated mice showed full thickness cartilage erosion spanning 75% to 50% of the 

articular surface across the entire width of the joint. However, four of nine DMM operated mice 

showed milder phenotypes, with cartilage erosion spanning 50% to 25% of the articular surface 

across the entire medial compartment (Fig 4.1A-B). Semi-quantitative OARSI scoring of the 

medial compartment confirmed that Mig-6 over/over mice had significantly higher damage after 

DMM surgery than control mice after the same surgery (Fig. 4.2A-B). As expected, lateral 

compartments showed very little damage and no significant differences between all groups (Fig. 

4.3A-B and Fig. 4.4A-B). 
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Figure 4.1 Overexpression of Mig-6 in cartilage increases severity of surgically induced 

osteoarthritis.  Male Mig-6 over/over and control mice received either SHAM or DMM surgery. 8 

weeks after surgery, animals were sacrificed, and OA was assessed by Toluidine Blue staining on 

serial frontal sections. SHAM operated control or mutant mice show healthy cartilage, subchondral 

bone and menisci (A). Control mice showed moderate cartilage damage after DMM surgery (B). 

However, Mig-6 over/over mice showed cartilage erosion and full thickness defects after DMM 

surgery. All scale bars =100 μm. N=7-9 per group. 
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Figure 4.1 Overexpression of Mig-6 in cartilage increases severity of surgically induced 

osteoarthritis 
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Figure 4.2 Semi-quantitative assessment of knee joint histopathology after surgical induction 

of PTOA.  Structural progression of OA was semi-quantitatively assessed via OARSI scoring for 

cartilage degeneration. Control SHAM operated mice show articular cartilage with regular 

proteoglycan staining (A). Mig-6 over/over DMM operated mice had significantly more cartilage 

damage in either quadrant of the medial side versus control DMM operated animals. N=7-9 per 

group, data shown are mean ± SEM, p<0.05. 
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Figure 4.2 Semi-quantitative assessment of knee joint histopathology after surgical induction of 

PTOA 
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Figure 4.3 Overexpression of Mig-6 in cartilage show healthy articular cartilage on lateral 

compartment of the knee.  SHAM control or mutant mice show healthy cartilage, subchondral 

bone and menisci (A). DMM control and mutant mice reveal little proteoglycan loss or articular 

cartilage damage in the lateral femoral condyle and lateral tibial plateau 8 weeks post-surgery (B). 

All scale bars =100 μm. N=7-9 per group. 
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Figure 4.3 Overexpression of Mig-6 in cartilage show healthy articular cartilage on lateral 

compartment of the knee 
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Figure 4.4 OARSI scoring does not indicate differences in lateral compartments of the knee 

after SHAM or DMM surgery.  OARSI scores of the Lateral Femoral Condyle and the Lateral 

Tibial Plateau indicate minimal damage to the articular surfaces across genotypes and surgical 

conditions of the lateral knee. N=7-9 per group, data shown are mean ± SEM, p≤0.05. 
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Figure 4.4 OARSI scoring does not indicate differences in lateral compartments of the knee after 

SHAM or DMM surgery 
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4.4.2 Mig-6 overexpressing male mice show minor alterations in behaviour post-

surgery 

To evaluate changes in behaviour that could be indicative of pain, mice were examined through 

Open Field Testing to measure changes in spontaneous locomotor activity. 8 weeks post-surgery, 

most parameters examined (including distance travelled, horizontal activity, rest time etc.) did not 

show any statistically significant differences in response to either DMM surgery or genotype.  

However, vertical activity count was reduced in Mig-6 over/over mice in both SHAM and DMM 

groups (Fig. 4.5).  

  



181 

 

 

 

 

 

 

 

 

Figure 4.5 Mig-6 overexpressing mice show reduced vertical activity. Open Field Testing 8 

weeks after DMM surgery demonstrates no changes in most spontaneous locomotor activities. 

However, Mig-6 overexpression reduces vertical activity count compared to control mice, 

independent of the type of surgery.  N=7-9 per group, data shown are mean ± 95%CI; p≤0.05. 
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Figure 4.5 Mig-6 overexpressing mice show reduced vertical activity. 
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4.5 Discussion 

Recently, we have shown that  cartilage-specific overexpression of the gene encoding Mitogen-

Inducible gene 6 (Mig-6) develop accelerated cartilage degeneration during aging (11). A similar 

phenotype was seen when Mig-6 was overexpressed using the limb mesenchyme-specific Prx1 

promoter (12). However, there is increasing evidence that OA is a heterogeneous disease, with 

multiple phenotypes potentially progressing through different processes (27–29). Therefore, 

results from our aging studies cannot be extrapolated to other forms of OA. Here, we analyze the 

role of Mig-6 in a mouse model of post-traumatic OA. Using mice with cartilage-specific 

constitutive overexpression of Mig-6, initially characterised by our lab (11), in comparison to 

control mice, we utilized DMM surgery to induce knee OA. Histological analysis and OARSI 

scores revealed that Mig-6 overexpression resulted in an increased catabolic response to DMM 

surgery at 8 weeks-post surgery. Damage was largely limited to the medial joint compartment, as 

is usually seen in the DMM model. Importantly, SHAM-operated mice showed little to no damage 

(with a few exceptions in both genotypes). Thus, Mig-6 overexpression does not induce cartilage 

damage on its own at the age of 6 months (the age of sacrifice for these mice), but accelerates 

development of post-traumatic damage. The combination of genetic manipulation and surgery-

induced mechanical stress appears to accelerate cartilage degeneration, in line with the reported 

upregulation of endogenous Mig-6 expression after cartilage impact in a dog model (30–32). 

In our previous study we had demonstrated accelerated OA in the same cartilage-specific Mig-6 

overexpressing mice at 12 months of age (11). In conjunction with the phenotypes of our SHAM-

operated mice described here, these data indicate that primary OA pathogenesis begins between 6 

and 12 months of age in these mice.  Future studies will need to address the molecular pathways 

involved; for example, our results (11) suggest that down-regulation of Sox9 expression precedes 

cartilage degeneration. This is, to our knowledge, the first study to analyze exploratory motor 

behaviour using open field testing in mice with induced post-traumatic knee OA. Our findings 

indicate that most parameters were not changed by either DMM surgery or Mig-6 overexpression.  

However, Mig-6 overexpression decreased vertical activity (rearing). Rearing had been shown to 

be affected by DMM surgery using the LABORAS behavioral platform (33), which appears logical 

since it involves increased loading on the hind limbs, including the DMM-operated knee. 

However, in our study, DMM surgery itself did not affect vertical activity in either genotype. 
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Instead, we found Mig-6 overexpression to decrease this activity both after SHAM and after DMM 

surgeries. The underlying cause is unclear at this point. It should be noted that changes in these 

open field tests are not necessarily related to OA pain, but could be caused by effects in other 

tissues (e.g. muscle weakness), or by anxiety or depression. Given that our animals are cartilage-

specific transgenic mice, and that there is no apparent histological defect in SHAM-operated 

animals (that demonstrate reduced vertical activity), such effects appear less likely, but cannot be 

ruled out completely. Direct analyses of pain, for example through von Frey filaments or hot plate 

assays, could provide a more direct readout of whether increased histological OA damage in Mig-

6-overexpressing mice correlates with increased pain. In addition, later time points after surgery 

could result in clearer effects on pain and activity.  A limitation of this study is the focus on male 

mice only. This was done since the DMM model progresses more rapid in males (23), and since 

Mig-6  overexpression had more severe effects during aging in males (11). Nevertheless, future 

studies should include female Mig-6-overexpressing mice.  Additional future studies should 

examine more time points (e.g. 4, 12, and possibly 16 weeks after surgery) as well as underlying 

molecular changes. 

Altogether, our studies indicate that Mig-6 overexpression not only accelerates the development 

of primary OA during aging, but may also worsen posttraumatic OA pathogenesis in the DMM 

model. Since Mig-6 primarily acts through down-regulation of EGFR activity, these data indicate 

a requirement for EGFR signaling in protecting from DMM-induced damage, in line with recent 

studies (34–36). This is in contrast to the protective effects observed upon genetic deletion of the 

gene for TGFα, an EGFR ligand, in the DMM model (37) and to the effects of a small molecule 

EGFR inhibitor in a rat model of PTOA (38). However, the context-specific roles of this pathway 

in OA have been recognized and discussed recently (39). This study provides further insight into 

the complex role of this pathway in OA.  
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Chapter 5 

 Discussion 

5.1 Overview 

The overall objective of my thesis was to examine the role of mitogen inducible gene 6 (Mig-6) 

in cartilage biology and osteoarthritis (OA). Initially, our laboratory identified transforming 

growth factor alpha (TGFα), which is a ligand for epidermal growth factor receptor (EGFR),  in 

microarray studies from cartilage isolated from a surgical rat model of OA (1,2). Our studies 

have shown that TGFα mRNA levels were almost 4-fold enhanced in the OA animals (2). 

Additional studies demonstrated that TGFα was amongst the genetic loci most strongly linked to 

hip OA and cartilage thickness in two genome-wide association studies (GWAS) (3,4). Based on 

these findings, our laboratory decided to investigate the role of  EGFR signaling in cartilage 

development, homeostasis, and disease in detail   (5–7). The next logical step was to investigate 

a negative regulator of EGFR signaling  named Mig-6 (encoded by the gene Errfi1) (8,9).  

Our and other previous data supports the hypothesis that Mig-6 plays a key role in cartilage 

homeostasis. Global Mig-6 mouse knockout (KO) lines had demonstrated progressive cartilage 

degeneration similar to that seen in OA (10,11). Furthermore, cartilage-specific deletion of Mig-

6 resulted in anabolic and catabolic phenotypes similar to previous studies using whole body 

Mig-6 KO models, such as increased articular cartilage thickness and formation of osteochondral 

nodules in their knee joints and spine (12).  Mig-6 KO mice demonstrated activation of EGFR 

and increased expression of SOX9 and PCNA, both  in nodule cells and in articular cartilage. 

Previous research demonstrates that Mig-6 overexpression acts as a negative feedback regulator 

of EGFR/ERK signaling (13), but these studies did not yet analyze joint tissues.  

The first study in my thesis, I generated mice with cartilage-specific Mig-6 overexpression (14). 

Mice with conditional (‘over’) Mig-6 alleles (Mig-6over/over) were bred to mice expressing Cre 

recombinase under the control of the Collagen 2 promoter and overexpressing mice were 

obtained at the expected Mendelian ratios. I began by examining Mig-6 over/over mice during early 

postnatal development and comparing them to control mice. I examined skeletal development 

and cartilage development at post-natal day 0 (P0), 6 weeks-old, 11 weeks-old, 12 and 18 months 
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of age and I observed no obvious gross malformations or growth plate alterations in Mig-6over/over 

mice at developmental stages. However, long bones of Mig-6over/over mice were significantly 

shorter than those of control mice at the ages of 6 and 11 weeks as well as at 12 and 18 months.  

Furthermore, articular cartilage from 6 and 11 weeks-old male and female mice appeared healthy 

during skeletal maturity. However, examination of the knee joints of Mig-6over/over did show 

increased cartilage loss relative to controls at the ages of 12 and 18 months.  

Therefore, overexpression of Mig-6 resulted in early OA-like pathology, in particular in male 

mice. Interestingly, immunostaining for SOX9, phosphoEGFR and lubricin (PRG4) was 

decreased in articular cartilage of Mig-6over/over mice whereas MMP13 staining was increased in 

areas of cartilage degeneration. Importantly, reduced SOX9 staining preceded histological 

cartilage degeneration, suggesting a potential mechanism for OA progression in our mutant mice.  

Taken together, this led me to conclude that Mig-6 plays an important role for initiating the OA-

phenotype onset, likely through the activation of the EGFR pathway. 

Second, we utilized Prx-1 Cre to drive the overexpression of Mig-6 in the entire limb 

mesenchyme with the same Mig-6over/over line (14) used in my previous study. My rationale was 

that overexpression in multiple joint tissues might have additional effects, in comparison to 

overexpression in cartilage only.  Mig-6over/over mice displayed minor differences in body weight 

in comparison to controls. Surprisingly, these mice showed similar bone length at 12 and 36 

weeks-old, despite earlier and more widespread Cre activity compared to the Col2 Cre driver. 

However, the thickness of the calcified articular cartilage in the medial femoral condyle (MFC) 

and medial tibial plateau (MTP) of male Mig-6 over/over mice was statistically significantly lower 

than in controls. I evaluated the knee joints of 36 weeks-old Mig-6 over/over male mice that 

displayed increased articular cartilage damage in comparison to the control group. Again, male 

mice showed a stronger and more consistent phenotype than the female group. Interestingly, use 

of the Prx-1 Cre resulted in more damage on the lateral side of the knee joint compared to Col2-

Cre, possibly due to overexpression of Mig-6 in additional joint structures. Measurement of the 

subchondral bone area in male Mig-6 over/over and control mice showed no differences. However, 

examination of picrosirius red staining under polarized light showed that the structure of the 

articular cartilage ECM in Mig-6 over/over was altered compared to that of control mice. The 

articular cartilage of control animals showed greenish/yellow birefringence, while that from Mig-
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6 over/over animals showed fewer green collagen fibers, indicating a loss of normal collagen fiber 

organization. The resulting collagen network alterations  may have an influence on the structural 

integrity of the cartilage and lead to degenerative pathologies (15). Immunohistochemistry for 

SOX9 and PRG4 showed decreased staining in Mig-6over/over mice relative to controls, providing 

potential molecular mechanisms for the observed effects. Moreover, MMP13 immunostaining 

appeared increased in Mig-6over/over mice in the areas of damage on the medial side.  

Lastly, we surgically induced OA in cartilage-specific Mig-6 overexpressing male mice at 16 

weeks of age through destabilization of medial meniscus surgery (DMM). This surgery is the 

most accepted and a widely surgical OA model in mice in order to induce secondary OA that 

develops gradually in the medial compartment (16). Our results showed that cartilage 

degeneration is more severe in Mig-6 overexpressing mice than in control littermates 8 weeks 

post surgery). Interestingly, while both surgery and Mig-6 overexpression did not affect most 

parameters assessed in Open Field testing, Mig-6 overexpression did reduce vertical activity 

(rearing) both after SHAM and DMM surgery.  

5.2 Contribution to the Field of Osteoarthritis  

Through this thesis, I characterise for the first time the role of Mig-6 overexpression on joint 

health. In Chapter 2 and 3, I present work where I discovered that Mig-6over/over mice did not have 

major effects on cartilage development and bone growth. However, Mig-6over/over disrupts normal 

cartilage maintenance and homeostasis. For both of these chapters, I employed an aging model 

of OA by analyzing spontaneous joint disease.  

In chapter 2, I used chondrocyte-specific overexpression of Mig-6. Prior to our investigation, 

systemic deletion of Mig-6 had been implicated in progressive joint disease with chondro-

osseous growths in the ankle, temporomandibular joint (TMJ) and knee (11,17). Moreover, 

studies utilizing Col2a1-Cre to drive deletion of Mig-6 in chondrocytes have shown increased 

articular cartilage thickness and invasive chondro-osseous nodules with overactive EGFR 

signaling and induction of SOX9 immunostaining (12,18). Additionally, in chapter 3, I 

investigate the role of Mig-6 overexpression utilizing Prx1-Cre to drive overexpression of Mig-

6 in the entire limb mesenchyme.  Furthermore, SOX9 and PRG4 immunostaining seems to be 
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decreased in articular cartilage of 12-week-old mice and even more in 36-week-old mice when 

cartilage shows signs of degeneration. Chapter 4 provides the first report on the effect of 

chondrocyte-specific overexpression of Mig-6 on post-traumatic OA. Our data demonstrated that 

Mig-6 overexpression worsened cartilage degeneration after DMM surgery. 

Collectively, my data provide strong evidence that Mig-6 overexpression accelerates OA both 

during aging (primary OA) and after injury (secondary/post-traumatic OA).  These effects are 

most likely due to decreased activation of EGFR signaling, as they resemble effects seen upon 

genetic inactivation of EGFR (19,20). Lastly, my findings from this thesis further emphasize that 

the Mig-6/EGFR network is a major regulator of cartilage homeostasis and OA, but many aspects 

of its action in cartilage are still not well understood (see next section).  

5.3 Limitations of Research 

5.3.1 Limitations of in-vivo models 

The use of small animal model such as rodent models gives us the opportunity to study the role of 

a protein/gene using transgenic and knockout strains in a disease model. While we can control 

many variables in these studies, some are outside our control such as litter size and certain aspects 

of behavior. I tried to minimize the effects of these variations and to keep transgenic mice and 

controls under identical conditions. For example, I co-housed the control animals with their 

respective Mig-6 overexpressing littermates wherever possible.  These models have allowed us to 

evaluate the function of Mig-6 in cartilage and the whole joint. In chapters 2 and 4, I used the 

collagen II promoter to drive Cr expression and activation of Mig-6 overexpression. This Cre line 

is not fully cartilage specific since recombination can occur in other joint cells as well as 

osteoblasts and osteocytes that develop from trans-differentiation of chondrocytes (21,22). In 

addition, this Cre driver becomes activated during development (before birth); thus, it can be 

difficult to distinguish developmental defects from OA-specific effects in adult articular cartilage. 

One way to overcome this in the future is the use of an inducible Cre-driver, such as the Aggrecan 

CreER and postnatal tamoxifen injection (23). Similar concerns and solutions apply to the Prx1 

Cre driver used in chapter 3.  
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Currently, studies in chapters 2 and 3 use partially different time points/ages for analyses.  For 

example, the eldest animals analyzed in chapter 2 were 18 months, while maximum age was 9 

months in chapter 3.  This limitation was due to different breeding schedules between the two 

lines, but future studies should aim to align time courses for both to allow direct comparison of the 

effects of the two different Cre drivers. Ideally, validation of results in a different genetic 

background would strengthen the conclusions.  For feasibility, PTOA studies in chapter 4 were 

only done in male mice; ideally these should be done in female mice.  Additional time points (4,12, 

and 16 weeks after surgery) should also be included into this study, as well as analyses of additional 

tissues (subchondral bone, synovium etc.).   

5.3.2 Limitations of outcome measures  

One major limitation of our analyses is the absence of a reliable Mig-6 antibody that would allow 

us to 1) quantify the level of Mig-6 protein overexpression; and 2) to localize where in the joint 

Mig-6 protein is expressed. However, none of the antibodies we tested were specific enough (e.g. 

they all gave strong signals from confirmed Mig-6 KO tissues).  Other molecular techniques 

including qPCR, Western Blotting, etc. also could be used in the future. to provide more insights 

into the molecular mechanisms mediating Mig-6 effects in cartilage and other joint tissues.  

Imaging modalities such as high resolution microCT could be included to allow more quantitative, 

three-dimensional analyses of bony changes in our animals. Mechanical testing, for example by 

atomic force microscopy, could provide another readout of high physiological relevance. Our 

Open Field studies demonstrated minimal changes between groups in chapter 4, and none that 

could be attributed to DMM surgery. Additional measures that more directly examine pain (such 

as von Frey filaments or hot/cold plate assays) could be considered in the future to establish a more 

direct link between structural damage and pain. 

5.4 Future Directions 

My results implicate the need for several follow-up studies.  In addition to those already 

mentioned in the last section (such as more time points and inclusion of female mice in DMM 

studies, additional molecular analyses and pain assays etc.), several larger questions should be 

tackled.  My studies demonstrated that overexpression of Mig-6 accelerates both primary and 
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secondary OA and implicated reduced EGFR signaling and downregulation of SOX9 expression 

as potential mechanisms. However, detailed mechanistic studies are required to characterise the 

molecular pathways involved. We have proposed that the phenotypes seen in our Mig-6 

overexpressing mice are due to reduced EGFR signaling. Downstream pathways mediating these 

activities, such as ERK1/2 or PI3K, should be investigated in detail using biochemical and cell 

biological assays. However, since Mig-6 interacts with a number of other potential candidates, 

e.g. the other EGFR family receptors (ErbB1-4), cMET, c-Abl and Cdc42 (24,25), we should 

also investigate whether any of these pathways are deregulated and contribute to the observed 

phenotypes.  This might include the generation of double mutant mice to determine whether 

manipulation of these factors can rescue the phenotypes of the Mig-6 overexpressing mice (or 

the Mig-6 KO mice). 

Aging-associated OA and post-traumatic OA are only two of several osteoarthritis subtypes.  Both 

Mig-6 KO and overexpressing mice should also be tested in models of metabolic OA (e.g. on a 

high fat or western diet), and overuse-induced OA (e.g. treadmill running), both of which are 

established in our laboratory. Moreover, Mig-6 function should be examined in human samples, 

through knockdown and/or overexpression studies in isolated joint cells. While there are currently 

no drugs that directly affect Mig-6 activity, genetic strategies to inhibit its expression (shRNA or 

CRISPR/Cas9) could be attempted in the future. Any such attempts would have to be very tightly 

controlled both spatially and temporarily, because of the dual catabolic and anabolic role of EGFR 

signaling in the joint (5). This dual role, where EGFR has been shown to both protect from and 

promote OA dependent on the context, remains poorly understood.  My studies clearly suggest a 

protective role of the pathway – if we inhibit EGFR signaling by overexpressing Mig-6, we see an 

acceleration in OA progression. However, strong evidence for a catabolic role of the same 

pathways has been provided by our lab and others (6,19,26–28). Understanding the basis of this 

dual role will likely require detailed mechanistic studies at the biochemical level, as well as more 

in vivo studies using crosses of multiple mouse lines, along with the use of tamoxifen-inducible 

Cre drivers that allow for precise activation or inactivation of genes.  



195 

 

 

5.5 References 

1. Appleton, C. T. G., Pitelka, V., Henry, J. & Beier, F. Global analyses of gene expression in 

early experimental osteoarthritis. Arthritis Rheum. 56, 1854–1868 (2007). 

2. Appleton, C. T. G., McErlain, D. D., Henry, J. L., Holdsworth, D. W. & Beier, F. Molecular 

and histological analysis of a new rat model of experimental knee osteoarthritis. Ann. N. Y. 

Acad. Sci. 1117, 165–174 (2007). 

3. Cui, G. et al. Association of Common Variants in TGFA with Increased Risk of Knee 

Osteoarthritis Susceptibility. Genet. Test. Mol. Biomarkers gtmb.2017.0045 (2017). 

doi:10.1089/gtmb.2017.0045 

4. Li, H. et al. Association between EN1 rs4144782 and susceptibility of knee osteoarthritis: A 

case-control study. (2017). at <www.impactjournals.com/oncotarget> 

5. Qin, L. & Beier, F. EGFR Signaling: Friend or Foe for Cartilage? JBMR Plus 3, e10177 

(2019). 

6. Sun, H. et al. Gefitinib for Epidermal Growth Factor Receptor Activated Osteoarthritis 

Subpopulation Treatment. EBioMedicine 32, 223–233 (2018). 

7. Jia, H. et al. EGFR signaling is critical for maintaining the superficial layer of articular 

cartilage and preventing osteoarthritis initiation. doi:10.1073/pnas.1608938113 

8. Hackel, P. O., Gishizky, M. & Ullrich, A. Mig-6 Is a Negative Regulator of the Epidermal 

Growth Factor Receptor Signal. Biol. Chem. 382, 1649–62 (2001). 

9. Jin, N. et al. Mig-6 is required for appropriate lung development and to ensure normal adult 

lung homeostasis. Development 136, 3347–56 (2009). 

10. Zhang, Y.-W. et al. Targeted disruption of Mig-6 in the mouse genome leads to early onset 

degenerative joint disease. Proc. Natl. Acad. Sci. U. S. A. 102, 11740–5 (2005). 

11. Jin, N., Gilbert, J. L., Broaddus, R. R., DeMayo, F. J. & Jeong, J.-W. Generation of aMig-6 

conditional null allele. genesis 45, 716–721 (2007). 

12. Pest, M. A., Russell, B. A., Zhang, Y.-W., Jeong, J.-W. & Beier, F. Disturbed cartilage and 

joint homeostasis resulting from a loss of mitogen-inducible gene 6 in a mouse model of 

joint dysfunction. Arthritis Rheumatol. (Hoboken, N.J.) 66, 2816–27 (2014). 

13. Kim, T. H. et al. Mig-6 suppresses endometrial cancer associated with pten deficiency and 

ERK activation. Cancer Res. 74, 7371–7382 (2014). 

14. Bellini, M., Pest, M. A., Miranda-Rodrigues, M., Jeong, J. & Beier, F. Overexpression of 

mig-6 in cartilage induces an osteoarthritis-like phenotype in mice. bioRxiv 764142 (2019). 

doi:10.1101/764142 



196 

 

 

15. Lattouf, R. et al. Picrosirius Red Staining. J. Histochem. Cytochem. 62, 751–758 (2014). 

16. Glasson, S. S., Blanchet, T. J. & Morris, E. A. The surgical destabilization of the medial 

meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr. Cartil. 15, 

1061–1069 (2007). 

17. Joiner, D. M. et al. Accelerated and increased joint damage in young mice with global 

inactivation of mitogen-inducible gene 6 after ligament and meniscus injury. Arthritis Res. 

Ther. 16, R81 (2014). 

18. Shepard, J. B., Jeong, J.-W., Maihle, N. J., O’Brien, S. & Dealy, C. N. Transient anabolic 

effects accompany epidermal growth factor receptor signal activation in articular cartilage 

in vivo. Arthritis Res. Ther. 15, R60 (2013). 

19. Jia, H. et al. EGFR signaling is critical for maintaining the superficial layer of articular 

cartilage and preventing osteoarthritis initiation. Proc. Natl. Acad. Sci. U. S. A. 201608938 

(2016). doi:10.1073/pnas.1608938113 

20. Zhang, X. et al. Reduced EGFR signaling enhances cartilage destruction in a mouse 

osteoarthritis model. Bone Res. 2, 14015 (2014). 

21. Pest, M. A. & Beier, F. Is there such a thing as a cartilage-specific knockout mouse? Nat. 

Rev. Rheumatol. 10, 702–704 (2014). 

22. Fosang, A. J., Golub, S. B., East, C. J. & Rogerson, F. M. Abundant LacZ activity in the 

absence of Cre expression in the normal and inflamed synovium of adult Col2a1-Cre; 

ROSA26RLacZ reporter mice. Osteoarthr. Cartil. 21, 401–404 (2013). 

23. Henry, S. P. et al. Generation of aggrecan-CreERT2 knockin mice for inducible Cre activity 

in adult cartilage. Genesis 47, 805–814 (2009). 

24. Zhang, Y.-W. & Vande Woude, G. F. Mig-6, Signal Transduction, Stress Response and 

Cancer. Cell Cycle 6, 507–513 (2007). 

25. Zhang, Y.-W. & Vande Woude, G. F. in Futur. Asp. Tumor Suppressor Gene (InTech, 2013). 

doi:10.5772/54393 

26. Appleton, C. T. G., Usmani, S. E., Mort, J. S. & Beier, F. Rho/ROCK and MEK/ERK 

activation by transforming growth factor-α induces articular cartilage degradation. Lab. 

Investig. 90, 20 (2009). 

27. Appleton, C. T. G., Usmani, S. E., Bernier, S. M., Aigner, T. & Beier, F. Transforming 

growth factor alpha suppression of articular chondrocyte phenotype and Sox9 expression in 

a rat model of osteoarthritis. Arthritis Rheum. 56, 3693–705 (2007). 

28. Zhang, X. et al. Epidermal Growth Factor Receptor (EGFR) Signaling Regulates Epiphyseal 

Cartilage Development through β-Catenin-dependent and -independent Pathways. J. Biol. 

Chem. 288, 32229–32240 (2013).  



197 

 

 

Appendices 

Appendix A: Animal Use Protocol 



198 

 

 

 

  



199 

 

 

Appendix B: Curriculum Vitae 

Melina Rodrigues Bellini 

Education:    

2015- Present: The University of Western Ontario 

 London, Ontario, Canada 

 Ph.D. Candidate 

2011 – 2013: University of Sao Paulo 

 Bauru, Sao Paulo, Brazil 

 M.Sc. in Oral Biology 

2007- 2010: University of Sagrado Coração 

 Bauru, Sao Paulo, Brazil 

 Biological Sciences (BSc.) 

Publications 

1. Bellini, M, Pest, MA, Miranda-Rodrigues, M, Jeong JW, Beier F. Overexpression of Mig-6 

in cartilage induces an osteoarthritis-like phenotype in mice. BioRxiv. 

https://doi.org/10.1101/764142. (in preparation). 

2. Bellini, M, Pest, MA, Jeong JW, Beier F. Overexpression of Mig-6 in Limb Mesenchyme 

Leads to Accelerated Osteoarthritis in Mice. BioRxiv https://doi.org/10.1101/871350. (in 

preparation). 

3. Bellini, M, Bali, SK, Pest, MA, Bryce, DM, Jeong JW, Beier F. Cartilage-Specific 

Overexpression of Mig-6 Accelerates Post-Traumatic Osteoarthritis in Mice. (in 

preparation). 

4. Pest MA, Pest CA, Bellini MR, Beier F. Deletion of Dual Specificity Phosphatase 1 Does 

Not Predispose Mice to Increased Spontaneous Osteoarthritis. PLOS ONE. 

 

 



200 

 

 

Honours and  Scholarships:    

• Science without Borders – Brazil (2015-2018): Full Ph.D. Scholarship at the Western 

University. Period: 2015- 2018 

• Research Internships Abroad (BEPE). Bauru School of Dentistry – University of Sao Paulo 

/ Schulich School of Medicine & Dentistry (Western University, Canada). Period: 2012-2013. 

• Graduate Student Research, Scholarship from the Sao Paulo Research Foundation 

(FAPESP). Brazil. Period: 2011 – 2013. 

• Undergraduate Student Research Scholarship, Scientific Initiation Program: 

Scholarship from the Sao Paulo Research Foundation (FAPESP). Brazil.  Period: 2009 – 

2010. 

Teaching and Supervision    

• Teaching Assistant – Physiology 4530: Skeletal Physiology 

• Jan. 2018 – April 2019 - Western University – Canada, London, Ont. 

o Training of one Undergraduate Honours Thesis Students, 2017-2018 

 

Presentations at Scientific Meetings 

2019 OARSI World Congress on Osteoarthritis, Toronto, Ontario, Canada 

2018 Canadian Connective Tissue Society, Toronto, Ontario Canada 

2018 3rd Biennial Canadian Bone and Joint Conference, London, Canada 

2018 OARSI World Congress on Osteoarthritis, Liverpool, United Kingdom 

2017 OARSI World Congress on Osteoarthritis, Las Vegas, NV, United States 


	Mitogen Inducible Gene-6 in Joint Health and Osteoarthritis
	Recommended Citation

	tmp.1583858772.pdf.CJB5A

