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Abstract 

Instrumented implants provide the potential to measure the in vivo tibiofemoral forces that 

are transmitted through total knee replacements (TKR). The continuous feedback from 

instrumented implants can be used to objectively justify actions to reduce the risk of implant 

failure. The main obstacle in developing “smart implants” is reliably powering such devices. 

Energy harvesting mechanisms, such as the triboelectric effect, can be leveraged to produce 

usable electricity and measure the transmitted loads in TKRs. A compliant package that 

interlocks with commercially available TKR components was designed to house triboelectric 

generators (TEG). Prototypes were more compliant than what was expected from the 

computational models. During fatigue testing, the prototype failed prematurely due to 

inherent issues with additive manufacturing. However, these issues can be mitigated with 

improved post-processing techniques. This package serves as a novel approach to integrating 

self-powering load sensors in currently available knee implants. 
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Summary for Lay Audience 

Osteoarthritis (OA), or the cartilage degradation in joints, can lead to pain and joint 

dysfunction. In severe cases of OA, the diseased joint may need to be reconstructed. Knee 

implants, consisting of metal components resurfacing the shin bone and thigh bone with a 

plastic insert in-between, replace the diseased bone, relieve pain and restore function. Over 

time, knee implants can fail for several reasons, such as implant loosening from the 

surrounding bone and abnormal motion between the thigh bone and the shinbone. Devices 

that measure forces transmitted through knee implants can improve our understanding of 

what a knee implant undergoes daily, thus providing information on how to prevent implant 

failure.  

Currently, devices that monitor a patient’s knee loads are unavailable. The main reason for 

this is because of the difficulty of powering these devices. Sensors that can generate power 

from human motion can be used to measure the loads acting on knee implants. Load sensors 

have been developed to generate power from static electricity. These sensors require a 

compliant package to cushion the forces acting on them when placed within a knee implant.  

This thesis outlines the design of such a package. The package was designed using computer 

simulations and then its performance was measured through lab experiments. Prototypes of 

the package design were made with 3D printed titanium. In one lab experiment where the 

applied load was intentionally shifted from one side of the package to the other, the prototype 

predictably deformed more in the location where forces were concentrated. However, the 3D 

printed package was softer than what was predicted in the computer simulations. During 

durability testing, the package prototype underwent loading that simulates walking. Implant 

components should last for millions of cycles, but the current prototype failed prematurely. 

3D printed titanium parts may have internal holes and defects that reduce the longevity of the 

parts. The fatigue strength of the package could be improved with heat treatment and 

removal of surface defects. The use of this package with embedded load sensors is a novel 

perspective on measuring the forces that act on knee implants. 
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Chapter 1  

1 Introduction 

In this chapter, aspects of how the bones and soft tissue of the human knee joint achieve 

motion will be described. Diseases such as osteoarthritis (OA) can hinder joint function 

by affecting the structure and stability of the joint. Severe cases of OA can necessitate 

surgical treatments such as total knee replacements (TKR). Despite the restoration of 

joint function and reduction in joint pain due to TKR, complications can arise thus 

rendering the implant dysfunctional. Instrumented implants can provide quantitative 

feedback that can be used to direct actions towards the improvement of implant longevity 

and patient outcomes. The thesis rationale and research objectives will be outlined after 

an overview of the anatomy of the knee, TKR  failure modes, current smart implant 

technologies, and how energy harvesting mechanisms, particularly the triboelectric 

effect, can be leveraged in measuring the loads transmitted in a total knee replacement. 

1.1 Anatomical Movement Descriptors 

1.1.1 Anatomical Terms Used to Describe Relative Position or 
Direction 

The terms that are used to describe relative anatomical positions or directions are 

reviewed here. The term medial refers to a position relatively close to the midline of the 

body or a movement that moves toward the midline. Conversely, the term lateral refers to 

a position relatively far from the midline or a movement away from the midline. The term 

proximal refers to a position that is closer relative to a reference point, whereas the term 

distal refers to a position that is farther from a reference point. A segment or anatomical 

landmark is termed superior if it is above a reference point. If a segment or anatomical 

landmark is below a reference point, the segment or anatomical landmark is inferior. The 

position of an object or a movement that is relative to the front or back is anterior or 

posterior, respectively (Hamill and Knutzen, 2014). 
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1.1.2 Basic Movements 

Flexion occurs when the relative angle of a joint between two adjacent segments 

decreases. Extension is the increase of the relative angle of a joint between two adjacent 

segments. Abduction is when a segment’s movement is away from the midline. 

Adduction is the movement of a segment towards the midline. Internal and external 

rotations rotate about a vertical axis running through the segment. Internal rotation is the 

rotation directed toward the midline. External rotation is the rotation directed away from 

the midline (Hamill and Knutzen, 2014). Flexion/extension and internal/external rotation 

of the knee are illustrated in Figure 1-1. 

 

Figure 1-1- Primary movements of the knee (tibia with respect to the femur). 
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1.1.3 Cardinal Planes of the Body 

Three cardinal planes intersect at the centre of mass of the body (Figure 1-2). The sagittal 

plane bisects the left and right sides of the body. The coronal or frontal plane bisects the 

body to create front and back halves. The transverse plane bisects the body to create top 

and bottom halves (Hamill and Knutzen, 2014). 

 

Figure 1-2-Cardinal Planes of the Human Body 

1.2 Knee Anatomy 

The knee primarily flexes and extends. Flexion is accompanied with a small, but 

significant amount of rotation. The knee is a mobile joint that is stabilized passively by 
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the ligaments, joint geometry, the active muscles, and the compressive forces pushing the 

bones together (Hamill and Knutzen, 2014). Joint function and stability are directly 

affected by the degeneration of the articulating surfaces of the joint, bones, ligaments, 

and the muscles. An overview of the aforementioned components of the knee will be 

discussed further in this chapter. 

1.2.1 Osseous Anatomy of the Knee 

The human knee joint is comprised of three articulating surfaces. They include the 

tibiofemoral joint, the patellofemoral joint, and the tibiofibular joint. Although all three 

of these articulations play a role in the kinematics and kinetics of the human knee joint, 

the tibiofemoral articulation will be emphasized. It is the largest articulation that 

transmits the largest loads. Therefore, the effects of musculoskeletal diseases in this 

articulation can be the most detrimental. 

Tibiofemoral Joint 

The tibiofemoral joint, as the name suggests, is where the tibia and the femur meet. On 

the distal femur, there are two large convex surfaces, the medial and lateral condyles. The 

medial and lateral condyles are separated by the intercondylar notch in the posterior 

region of the distal femur, whereas the patellar or trochlear groove is the anterior 

separation between the condyles (Hamill and Knutzen, 2014). 

The features that differentiate the lateral condyle from its medial counterpart are the 

larger surface area, the flatter surface and the more prominent anterior extension (Hamill 

and Knutzen, 2014). The epicondyles, located above the condyles, serve as attachment 

points for ligaments, muscles and capsule. The condyles on the distal femur rest on the 

tibial plateau of the proximal tibia. The tibial plateau is separated into two regions: the 

medial and lateral tibial plateau. The oval-shaped, concave shape of the medial plateau 

articulates with the convex shape of the medial condyle. The shape of the lateral condyle 

can be described as circular and slightly convex. The surfaces of the medial compartment 

have a convex-concave relationship, whereas both articulating surfaces in the lateral 
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compartment are convex (Hamill and Knutzen, 2014). The osseous structure of the knee 

is shown in Figure 1-3. The geometric differences between the compartments allow the 

lateral condyle to translate along the anteroposterior direction during flexion and 

extension; this accommodates femoral roll-back during flexion and the screw-home 

mechanism during extension.  

 

Figure 1-3- Osseous Anatomy of the Knee 

 

1.2.2 Soft Tissue Anatomy of the Knee 

The soft tissues, such as capsules, muscles and ligaments, are responsible for maintaining 

mechanical stability in the joint. 

1.2.2.1 Knee Ligaments 

The cruciate and collateral ligaments of the knee serve as passive restraints along the 

transverse and coronal planes (Figure 1-4). The patellar ligament connects the patella and 
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the tibia at the tibial tuberosity. This ligament is essential for the extensor mechanism to 

function properly (Hamill and Knutzen, 2014). 

Cruciate Ligaments 

There are two cruciate ligaments that are in the intercondylar space. The anterior cruciate 

ligament (ACL) restrains anterior translation of the femur relative to the tibia and 

internal-external rotation. The posterior cruciate ligament (PCL) restrains posterior 

translation of the femur relative to the tibia and internal rotation. The length of the PCL 

remains constant in external rotation (Hamill and Knutzen, 2014). 

Collateral Ligaments 

The collateral ligaments, located on the sides of the knee joint, restrain varus-valgus 

torques and provide some restraint to internal-external rotation. The medial collateral 

ligament (MCL) resists against valgus moments, or forces that act in the medial direction 

on the lateral side of the knee. The lateral collateral ligament (LCL) supports the knee 

against varus moments, or forces that are directed laterally on the medial side of the joint 

(Hamill and Knutzen, 2014). 
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Figure 1-4- Cruciate and Collateral Ligaments 

 

1.2.2.2 Muscles 

The muscles surrounding the knee joint act as secondary stabilizers and produce motion 

(Figure 1-5). The quadriceps femoris, composed of the vastus lateralis, rectus femoris, 

vastus medialis and vastus intermedius, is connected to the patellar tendon. Extension is 

achieved from the contraction of these muscles. The biceps femoris, semimembranosus 

and semitendinosus make up the hamstrings. The hamstrings are responsible for knee 

flexion (Hamill and Knutzen, 2014). 
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Figure 1-5- (a) Quadriceps: vastus lateralis, rectus femoris, vastus medialis and 

vastus intermedius (under rectus femoris) (Anterior View of the Knee), and (b) 

Hamstrings: biceps femoris, semimembranosus and semitendinosus (Posterior View 

of the Knee) 

1.3 Knee Osteoarthritis 

Osteoarthritis (OA) is a joint disease characterized by the degeneration of the articular 

cartilage covering the bones. Cartilage loss leads to pain and reduced joint function. This 

joint disease is usually understood to result from aging and wear-and-tear. However, the 

onset of arthritis is multifactorial. Although mechanical loading is one of the main 

factors, joint integrity, genetic predisposition, local inflammation, and cellular and 

biochemical processes contribute to the severity of OA (Lespasio et al., 2017).  

There are signs and symptoms that are indicative of OA. Pain in the affected joint can 

vary from being dull, sharp, constant, and intermittent. In addition to this pain, the range 

of motion of the joint can be limited, and movement may not be smooth as a result of an 

absence of articular cartilage and the presence of osteophytes, or bone spurs. This, in 

turn, affects joint function. Radiographic images may be used to classify the severity of a 

patient’s OA based on the identification of osteophytes, and joint space narrowing (JSN) 

(Figure 1-6). The presence of JSN is a prime indicator of an absence of articular cartilage. 
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The severity of OA can be graded using the Kellgren-Lawrence scale (KELLGREN and 

LAWRENCE, 1957). The grading scale ranges from 1 to 4. Kellgren and Lawrence 

grades from 1 to 3 can be treated with non-operative treatments such as weight loss, 

assistive devices, medications, and intra-articular knee injections. For Grade 4 OA, 

surgical options need to be considered. OA at this state has large osteophytes, marked 

JSN, severe sclerosis, and definite bone deformity (Lespasio et al., 2017). Joint 

reconstruction can restore joint function, alleviate pain, and improve quality of life. 

 

Figure 1-6- (A) The joint space narrowing and osteophyte formation in the anterior-

posterior radiograph are indicative of bilateral medial osteoarthritis where joint 

space narrowing is greater in the right knee. (B) A magnified view of the right knee.    

(Braun and Gold, 2012) (Image use permitted by Elsevier) 

 

1.3.1 Prevalence of Knee Osteoarthritis 

The knee is the most susceptible joint to OA (Bliddal and Christensen, 2009). Knee OA 

is more prevalent in the older population and in individuals with a higher body mass 

index (BMI). Increased joint loading due to obesity is not the only factor that contributes 

to the onset of OA in weight-bearing joints. Changes in body composition, negative 
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effects related to inflammation, the decrease of physical activity, and resulting loss of 

muscle strength from a sedentary lifestyle increase the risk of OA (Wluka et al., 2013). 

Obesity rates are expected to increase thereby increasing the incidence of knee OA and 

the need for knee arthroplasty (Bryan et al., 2013). 

1.4 Total Knee Replacements 

For Grade 4 OA, based on the Kellgren-Lawrence scale, total knee replacements (TKR) 

remains the most viable option for restoring joint function and pain relief. Implant 

designs can vary based on the required constraint. However, a TKR generally consists of 

a cobalt-chromium femoral component, a titanium tibial tray, and an ultra-high molecular 

weight polyethylene (UHMWPE) bearing (Figure 1-7). Most TKRs function with the 

removal of the ACL, but on rare occasions, it is not removed when a bi-cruciate retaining 

implant is used. The PCL is removed about half of the time. Therefore, there are different 

implant designs that compensate for the contributions of the removed ligaments. TKR 

does not solely remove the diseased tissue, but it also realigns the mechanical axes of the 

femur and the tibia in a way that replicates the load distribution in a healthy joint. The 

alignment and fixation of the TKR is imperative for implant longevity and ensuring 

patient satisfaction (Sikorski, 2008). 

Material strength and durability of implants should be high enough to prevent yielding 

and fatigue failure from the stresses transmitted through the knee during activities of 

daily living (ADL). Knee implants, generally, should be durable enough to last about 15- 

20 years (Rönn et al., 2011).  
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Figure 1-7- Total Knee Replacement Components 

1.4.1 Prevalence of Total Knee Replacements 

TKR cases are expected to increase in the next decade. In Canada, based on the Canadian 

Joint Registry, there has been a 17.0% increase in the TKR procedure volume from 2012 

to 2017 (Canadian Institute for Health Information, 2018). In the United States, 

procedural volume for all total joint arthroplasties (TJA) rose by 38% between 2016 and 

2017 (American Joint Replacement Registry, 2018). In both the United States and 

Canada, TKRs represents about 60% of all TJA procedures.  Kurtz et al. projected a 

673% increase in TKRs by 2030 when compared to the annual number of procedures in 

2005. Based on their projection methodology, in 2030, 3.48 million procedures can be 

expected in the United States (Kurtz et al., 2007). In more recent studies, the projected 

increase in the number of TKRs is not as high. Sloan et al. projected that TKR procedures 
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in 2030 will be about half of what was envisioned by Kurtz et al.; 1.26 million procedures 

are expected based on a linear estimate (Sloan et al., 2018). Nevertheless, TKR 

procedures are expected to be in high demand in the future. 

There are several factors that are contributing to the increase of TKR procedures. With 

medical and technological improvements, life expectancies have increased in developed 

countries. In countries such as the UK, Japan, Canada, and Australia, life expectancies 

are 80 and 83 years for men and women, respectively (Hamilton et al., 2015). Another 

trend that may be connected to the increase in TKR procedures is the increasing 

incidence in active, younger adults (Weinstein et al., 2013). Another risk factor that is 

contributing to the projected increase in TKR is the higher prevalence of obesity. Obesity 

has been associated with earlier cases of moderate to severe OA (Coggon et al., 2001; 

Doherty, 2001; Gillespie and Porteous, 2007; Harms et al., 2007; Vasarhelyi and 

MacDonald, 2012). In Canada and the United States, from the late 1980s to 2009, there 

was approximately a 10% increase in the prevalence of obesity (Shields et al., 2011; 

Vasarhelyi and MacDonald, 2012). Factors such as longer life expectancies, obesity and 

TKR performed earlier in life can result in not only in an increase in primary TKR 

procedures, but can warrant the need for a revision, and possibly a re-revision surgery, as 

patients outlive their knee prostheses. 

1.4.2 Complications in Total Knee Arthoplasty 

Despite the success of the majority of primary TKRs, some patients may experience pain, 

stiffness, and instability. In some cases, based on clinical diagnoses, revision surgery may 

be considered. Infection, instability, and loosening have been the most common reasons 

for revision surgery (Gaizo et al., 2011; Vince et al., 2006; Wilson et al., 2017). Joint 

instability and aseptic loosening are both mechanical in nature and are both sensitive to 

implant design and surgical technique.  

Instability can result from muscle weakness, improper implant sizing, and ligament 

imbalance which can alter the loading of components (Abdel and Haas, 2014; Petrie and 
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Haidukewych, 2016; Vince et al., 2006). Changes to the loading pattern of implant 

components can lead to excessive stress and motion which can lead to component 

damage. Osteolysis can affect the integrity of the surrounding bone structures which can 

lead to implant loosening. Misalignment of TKR components resulting from surgical 

error can contribute to physiologically incorrect loading thus introducing high stresses 

that can lead to the mechanical failure of implant components. Abnormal loading patterns 

and biological changes can affect a TKR’s articulation which may result in premature 

prosthesis failure (Gaizo et al., 2011; Vince et al., 2006; Wilson et al., 2017). 

1.4.2.1 Instability 

Instability consistently remains one of the most common modes of implant failure 

(Dalury et al., 2013; Sharkey et al., 2014; Vince et al., 2006; Wilson et al., 2017). 

Instability accounts for 10 to 22% of revisions (Abdel and Haas, 2014; Callaghan et al., 

2004; Parratte and Pagnano, 2008; Vince, 2003; Yercan et al., 2005a, 2005b). A 

reconstructed knee is unstable when the implant and surrounding tissue do not provide 

sufficient restraint against the secondary joint motion when compared to a healthy, intact 

joint. The lack of restraint can lead to excessive relative motion between the articulating 

surfaces of the knee. Obvious visual signs of dislocation are indicative of instability. 

Dislocations can take the form of varus, valgus, or recurvatum deformities. Symptoms of 

instability include pain, recurrent knee effusion, restricted motion, giving-way, a sense of 

rubbing between the components, or ‘‘locking’’ of the knee (Yercan et al., 2005b).  

Component loosening, prosthetic breakage, component size or position, fracture, 

polyethylene bearing wear, and collateral ligament failure can lead to instability (Vince et 

al., 2006). There are three types of instability proposed by Parratte and Pagnano: 

extension instability, flexion instability, and genu recurvatum (Chang et al., 2014; 

Parratte and Pagnano, 2008). When soft tissue balancing is performed, the objective is to 

balance the tibial forces along the mediolateral and anteroposterior axes while not over 

constraining the joint. 
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1.4.2.2 Aseptic Loosening 

Successful prostheses have a solid fixation, and thus no relative motion between the 

implant and bone they are implanted in. The infection of surrounding tissues in a TKR 

can cause components to loosen by weakening the periprosthetic bond at the implant-

bone interface. However, aseptic loosening can arise when the implant-bone fixation is 

weakened, not from necrotic tissue, but what is commonly believed to result from wear-

induced osteolysis. In TKRs, particulate debris usually originates from the UHMWPE 

bearing. The presence of wear debris elicits a foreign-body reaction. Wear debris triggers 

the creation of cytokines. The higher concentration of cytokines promotes osteoclast 

differentiation and activity thus perpetuating bone resorption. Additionally, wear debris 

inhibits bone formation by affecting osteoblast progenitor cells (Jiang et al., 2013; Saleh 

et al., 2004). This leads to periprosthetic bone loss or osteolysis. However, in recent 

years, the technological advancements in the design and manufacturing of highly 

crosslinked UHMWPE have reduced the degradation and wear of UHMWPE bearings, 

but fatigue remains a concern (Collier et al., 2005; Medel et al., 2009). Signs, or the 

presence, of aseptic loosening, can be identified as radiolucent zones at the implant-bone 

interface (Rosenthall, 1997) (Figure 1-8). 
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Figure 1-8-Radiolucent Lines Surrounding the Tibial Stem (Kutzner et al., 2018) 

(Image use permitted by Taylor and Francis) 

Aseptic loosening is not always associated with osteolysis. Micromotion can lead to 

insufficient primary fixation or impede osseointegration. Large micromotion can lead to 

fibrous tissue formation in the implant-bone interface. Increased relative motion between 

the implant and bone can enlarge the effective joint space and increase the amount of 

cement and metal wear particles. Stress shielding, high fluid pressure due to the 

inflammatory response, materials of articulating surfaces, and individual variations can 

also contribute to aseptic loosening (Sundfeldt et al., 2006). Continuous measurement of 

the tibial forces can detect the effect of load imbalances have on bone remodeling and the 

progression of failure modes such as instability and aseptic loosening.  

1.4.3 Revision Total Knee Arthoplasty 

The revision burden for TKR, in 2017, was 6.9% and 5% in Canada and the United 

States, respectively (American Joint Replacement Registry, 2018; Canadian Institute for 

Health Information, 2018). Revision burden is the proportion of revision surgeries 

performed out of all TKR. The revision burden in both countries has remained constant 
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from 2012 to 2017. With the increasing prevalence of TKR, an increase in the procedure 

volume of revision TKR will be expected despite the consistent revision burden in recent 

years. 

Reiterating the impact associated with obesity on OA, obesity can lead to complications 

that can affect the outcome of a primary TKR procedure. Obese patients, younger than 60 

years of age, are more likely to undergo a revision TKR procedure. Heavier, active 

patients tend to have decreased implant survivorship (Foran et al., 2004; Vazquez-Vela 

Johnson et al., 2003). Overall, the increased joint loading in obese patients can decrease 

the success of a TKR procedure thus warranting revision TKRs. 

Based on the prevalence of obesity, the projected increase in TKR procedures, an aging 

population, and younger individuals requiring a TKR, revision TKR will become more 

prevalent. Revision TKR is more complex than a primary TKR. It is a more costly and 

complex procedure (Kurtz et al., 2005). Revision TKR presents challenges that can 

adversely affect the outcome of the surgery. Detailed planning based on the implant 

failure mode determined from clinical history, examination, analysis of radiographs and 

laboratory tests must be undertaken (Hamilton et al., 2015). Removal of the primary TKR 

components can be challenging if there isn’t adequate exposure. Long stems, augments, 

and osseous-integrative materials are commonly used to compensate for tissue loss when 

the primary TKR is removed (Dennis et al., 2018; Mason and Fehring, 2006). Due to the 

challenges associated with revision TKR, revision TKR do not replicate the same implant 

survival rates and patient outcomes as the primary TKR.  

Based on the undesirable aspects of revision surgeries, the ability to acquire quantitative 

feedback of the forces transmitted through a load-sensing implant can possibly mitigate 

implant failures that are mechanical in nature such as instability and aseptic loosening. 

By understanding the in vivo tibial forces, suitable interventions that restore the load 

distribution within the knee to an established, objective target, can be implemented to 

improve implant survivorship, thus reducing the procedure volume of revision surgeries. 
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1.5 Instrumented Implants 

In order to address the complications that occur with TKR, instrumented implants can be 

utilized to better understand the etiology of implant failure. Implants equipped with load 

sensors can provide quantitative data that can be used to corroborate a patient’s history 

when issues arise, or more importantly, predict precursors of implant failure. 

Instrumented implants have a potential of supplementing current diagnostic tools such as 

radiographic images and laboratory tests.  

1.5.1 Intraoperative Load Sensors 

Soft tissue imbalances in TKR can be detrimental to implant survivorship and patient 

outcomes (Babazadeh et al., 2009; Parratte and Pagnano, 2008; Sharkey et al., 2014; 

Unitt et al., 2008; Whiteside, 2002). Inadequate soft tissue balance can be the precursor to 

instability, premature implant wear, and aseptic loosening. Required bone resections, 

ligament releases, and rotations are judged based on the subjective tactile assessment of 

the surgeon  (Gustke et al., 2014a). Despite the importance of a correctly aligned and 

well-balanced TKR, a quantitative standard that defines a well-balanced knee has not 

been established (Gustke et al., 2014b). 

The Verasense Knee System (Orthosensor, Dania FL) was developed for the purpose of 

measuring the forces transmitted in the medial and lateral compartments of the joint 

during the preliminary sizing and positioning of components during TKR surgery. This 

instrumented tibial tray insert trial provides real-time force feedback and the locations of 

peak tibiofemoral forces throughout the knee’s full range of motion. With the quantitative 

feedback of the mediolateral force distribution, soft tissue balancing can be evaluated and 

corrected accordingly based on an objective basis. 
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Figure 1-9- Verasense Display (Manning et al., 2018) (Image use permitted by Creative 

Commons (https://creativecommons.org/licenses/by/4.0/)) 

Measuring the intercompartmental loads using the Verasense Knee System, for acquiring 

a desired mediolateral load distribution, has shown favourable short-term outcomes (Cho 

et al., 2018; Elmallah et al., 2016; Gustke et al., 2014b; Gustke et al., 2014; Meneghini et 

al., 2016a; Risitano et al., 2017a). The Western Ontario and McMaster Universities 

Arthritis Index (WOMAC) (Bellamy et al., 1988) and the American Knee Society 

Scoring System (KSS) (Noble et al., 2012; Scuderi et al., 2012) have been commonly 

used to measure patient reported outcome measures (PROMs) before and after TKR. 

Both scoring systems evaluate pain, stiffness, and physical function. A higher WOMAC 

score indicates worse pain, stiffness, and functional limitations, whereas a higher KSS 

score reflects improvement. Gustke et al. observed that KSS and WOMAC scores 

indicated better improvement in the quantifiably balanced (intercompartmental load 

difference of < 15 lbs) group versus the quantifiably unbalanced group six months post-

operatively. The improvements in the PROMs of the balanced group are reflected by the 

increased activity levels. This may be the result of better performance in post-operative 

physiotherapy from the more favourable biomechanics stemming from the intraoperative 
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compartmental measurements (Gustke et al., 2014b). However, the course of healing can 

change over time, and because of the lack of in vivo load measurements, the objective 

targets used in soft tissue balancing with the aid of an intraoperative sensor like the 

Verasense cannot be validated. 

Intraoperative sensors, in conjunction with an established objective load target, may be 

beneficial in preventing instability, loosening, and implant wear in the short term. 

However, the load balance, even when determined objectively with an intraoperative 

sensor, may change over the course of healing. Successfully achieving the optimal 

intercompartmental load distribution intraoperatively does not guarantee immunity from 

complications. Embedded sensors in TKR components can monitor patients’ activity 

levels and improve our understanding of in vivo knee mechanics. With instrumented 

implants, quantitative evidence of patient outcomes can possibly support how 

intraoperative sensors are used for TKR.  

1.5.2 Postoperative Load Sensors 

Load sensors have been used to measure forces and moments in the shoulder, hip, knee, 

and spine. Due to the scope of this project, relevant work related to the instrumentation of 

knee implants measuring tibial forces will be outlined.  

The first instrumented knee implant that was used to measure forces in vivo was 

developed by D’Lima et al (Figure 1-10). Four transducers were placed at the four 

corners of the tibial tray in order to measure the total axial force and determining the 

center of pressure. The microtransmitter, power induction coil, and antenna were housed 

within the stem of the tibial component. During use, inductive coupling was used to 

power the transducers and telemetry system wirelessly. The participant was instructed to 

perform a set of activities of daily living including gait, stair ascent, stair descent, sit-

stand, stand-sit, and cycling, during which knee loads were recorded (D’lima et al., 

2005a).  
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Figure 1-10- Instrumented implant developed by D’Lima et al. with four 

transducers located at the four corners of the tibial tray (D’lima et al., 2005b) (Image 

use permitted by Elsevier) 

Kirking et al. developed an instrumented implant capable of measuring all six load 

components (Kirking et al., 2006). The telemetry system, and mechanism for powering 

the microtransmitter and load cells used an identical set-up as D’Lima et al (D’lima et al., 

2005a). The instrumented design was accurate with a highly linear response (R2 > 0.997) 

when comparing the measured loads of the instrumented implant and the applied external 

loads. Power was consistently supplied at approximately 40 mW via induction coupling. 

The net signal integrity, of the wireless transmission of all components of loading, was 

greater than 98%. Overall, this instrumented implant design was able to wirelessly 

transmit accurate load data based on the applied uniaxial loading along each axis, and 

during a sinusoidal dynamic loading scenario.  
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Figure 1-11- (a) Tibial tray with telemetry system, (b) magnified view of the 

microprocessor and the internal power induction coil, (c) patient with external coil 

for powering the onboard electronics and telemetry system. (Kirking et al., 2006) 

(Image use permitted by Elsevier) 

Another design by Bergmann et al., similar to what was developed by Kirking et al., was 

tested in vivo. Strain gauges were embedded in a tibial component that transmitted load 

data using an inductively powered telemetry system. The design of their instrumented 

tibial component was able to measure the six load components.  

Although powering strain gauges and telemetry systems using induction coupling has 

proved to be an effective means of measuring and transmitting tibiofemoral contact 

forces accurately and reliably, this method of power transmission is inherently 

cumbersome. An external coil must be donned by the individual. Therefore, powering the 

electronics for smart implants remains a limiting factor. With the advancements in micro-

electromechanical and nano-electromechanical systems (MEMS and NEMS, 
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respectively), more compact methods of measurement, and power generation can be 

developed. Energy harvesting mechanisms can be used for load acquisition and power 

generation. 

In recent years, piezoelectric transduction has been a mechanism that has been explored.  

Safaei et al. conceptualized the idea of embedding piezoelectric transducers (PZT) in the 

polyethylene insert. By locating transducers in the anteromedial, anterolateral, 

posteromedial, and posterolateral regions of the polyethylene bearing, the center of 

pressure can be determined on the tibiofemoral joint. Safaei et al. performed preliminary 

testing with a simplified model of this concept by embedding a single PZT in a 

polyethylene disk (Safaei et al., 2017). The vertical component of the gait cycle was 

applied to this simplified prototype. Biomechanical modeling, finite element analysis and 

electromechanical modeling were conducted in the design phase preceding the 

experiments (Safaei et al., 2018). 

Platt et al. were the first to place piezoelectric ceramics in an altered tibial tray. PZTs 

were placed in the anterior, posteromedial, and posterolateral locations of the tibial 

plateau. The prototype was able to generate 850 μW of continuous regulated power. The 

PZT elements were deemed to have the longevity required in TKR applications. A single 

PZT element was axially compressed with an ISO knee load profile for up to 20 million 

cycles. A 17% decrease in power output was measured when compared to the initial 

power output. Therefore, the use of PZT elements integrated into TKR components in the 

hopes of powering low power microprocessors and sensors has shown some promise 

(Platt et al., 2005).  

Almouahed et al. developed a concept that echoes aspects of Safei et al. and Platt et al’s 

work. The prototype had four PZT placed in the four corners of a custom-made tibial 

component, instead of the PE bearing. This design also measured the COP of the applied 

axial load. In previous iterations of this prototype, there were some drawbacks present. 

The top layer of the PZTs was torn off due to shear forces. Power generation was not 

optimized due to the geometry of the PZTs. The power generated was proportional to the 
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height, and inversely proportional to the surface area (Almouahed et al., 2017). One 

limitation in Platt et al.’s design was the overall thickness of the tibial baseplate that 

measured at least 22 mm in height. Almouahed et al reduced the thickness of the 

baseplate with the PZTs to 6.65 mm in their design. Removing a large amount of bone 

during TKR would jeopardize the success of possible revision TKRs (Almouahed et al., 

2011). 

Electromagnetic induction was another method used for energy harvesting purposes. 

Luciano et al.’s design consisted of an altered rotating hinge TKR. A coil of wire was 

spooled around the hinge of the TKR. In order to leverage Faraday’s law of induction, 

magnets were embedded in a femoral component. During the swing phase, the femoral 

component would translate along a curvilinear path during flexion and extension. This 

design could generate 1.7 mW of power every 7.6 s (Luciano et al., 2014). The main 

limitations are the feasibility of making the necessary changes to the TKR components to 

recreate this design and the use of an overly constrained TKR system that is generally 

used for revision surgeries.   

1.5.3 Triboelectric Effect 

Another mechanism that can be utilized in energy harvesting is the triboelectric effect. 

The triboelectric effect is electrification induced by contact and friction between two 

interfacing materials (Wang, 2013). This phenomenon can be used for energy harvesting 

and load sensing applications (F.-R. R. Fan et al., 2012; Lin et al., 2013; Zhang et al., 

2014). For the purposes of measuring loads in a TKR, a design that utilizes the contact-

separation between a metal and a dielectric is the most suitable for harvesting energy 

while measuring in vivo loads during activities of daily living.  

The contact-separation mode operates based on the cyclic compression applied to the 

triboelectric generator (TEG). Stacked structures are generally used for this 

triboelectrification modality. Materials selected for the stacked structure is an important 

consideration. A larger disparity in the polarities between the contacting materials 
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increases the charge transferred in the TEG (Wang, 2013). In other words, contacting 

materials with opposite polarities on the triboelectric series will generate more power. 

The top and bottom layers of the stacked structure act as electrodes. The material of 

choice for the electrodes tends towards a positive polarity like aluminum, for instance. A 

material with a negative polarity, like polydimethylsiloxane (PDMS), is secured to the 

top surface of the bottom electrode (F.-R. R. Fan et al., 2012; Wang, 2013, 2014). 

Therefore, the top layer comes into contact with the dielectric when the TEG is loaded, 

and separation between the layers occurs when the TEG is unloaded. 

The contact and separation of the metal and dielectric layers allow the electron transfer 

between the electrodes. As the metal layer comes into contact with the dielectric, 

electrons from the metal layer are transferred to the dielectric layer. At full compression 

of the layers, the metal layer is positively charged whereas the bottom layer becomes 

negatively charged. As the metal layer separates from the dielectric, electrons transfer 

back to the positively charged metal layer. At full separation, the TEG is restored to a 

neutral state as the triboelectric and electrostatic charges equalize. The cyclic change of 

electron flow direction creates an alternating current (Figure 1-12) (Ibrahim et al., 2019a; 

Wang, 2013).  

 

Figure 1-12- Triboelectric Working Mechanism (Ibrahim et al., 2019a) (Image use 

permitted by IOP Publishing) 
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In addition to using a metal-to-dielectric surface interface with materials on the opposite 

end of the triboelectric scale, the volumetric charge density can also be enhanced by 

changing the geometry of the contacting surfaces. Micro- and nano-patterns on the 

contacting surfaces can increase the surface area thus improving triboelectrification (F.-

R. Fan et al., 2012; Wang, 2013). 

Ibrahim et al. developed a TEG with the intention of instrumenting a TKR (Ibrahim et al., 

2019a, 2019b, 2018). Material selection and patterns of the contacting surfaces were 

considered to maximize the electric charge between a metal-to-dielectric interface in a 

vertical contact-separation mode-based TEG. Titanium and PDMS were used in the TEG 

due to the opposite polarities of the said materials on the triboelectric series. As a means 

of increasing the contact surface area, matching saw-tooth ridges were fabricated on the 

contacting surfaces of the titanium and PDMS layers (Figure 1-13) (Ibrahim et al., 

2019a). However, these TEGs require a relatively large compression distance (0.2 mm) to 

be able to operate, therefore a compliant package is needed to integrate the TEGs with a 

TKR. 

 

Figure 1-13- Saw-tooth ridges of metal and dielectric layers (Ibrahim et al., 2019a) 

(Image use permitted by IOP Publishing) 
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1.6 Thesis Rationale 

Currently, there are no commercially available means of continuously monitoring load 

transfer through TKR knees. Energy harvesting mechanisms can be of utility in powering 

instrumented knee implants. The triboelectric effect is the energy harvesting mechanism 

investigated by our group for the purpose of measuring tibiofemoral contact forces. 

Measuring these forces in uninhibited ADL can provide valuable quantitative feedback 

on the condition of a patient’s knee years after a TKR procedure. There are several 

benefits of acquiring the in vivo loads postoperatively. The load data can be used to refine 

surgical techniques, such as soft-tissue balancing and implant alignment, which is critical 

to a well-functioning TKR. By monitoring patient activity levels, patients, therapists, and 

surgeons can be alerted of problems that can possibly be addressed early to avoid a 

revision surgery. With a better understanding of the loads and demands placed on 

implants, future implant designs can be improved. Therefore, there is a need for self-

powering systems capable of quantifying tibiofemoral forces after TKR procedures. 

Theoretically, TEGs in an instrumented knee implant has shown promise. However, there 

is still a need for further development before these devices can be integrated into 

commercially available TKR systems. The shear forces in ADL can damage the 

contacting surfaces of the TEGs. The TEGs are capable of generating electricity only 

when cyclic contact and full separation between the contacting layers occurs. A 

compliant durable package, designed to interlock between the UHMWPE bearing and 

tibial tray, can ensure the contact and separation of the TEG layers during the cyclic 

loading in ADL. In this thesis, the design and the analysis of the mechanical behaviour of 

a 3D printed titanium package prototype is outlined.  

1.7 Research Objectives 

The objectives of this study were: 

1. Design a compliant package that houses the TEGs, and interlocks with a commercially 

available polyethylene insert and tibial tray. 
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2. Characterize and validate the stiffness of the compliant package when subjected to gait 

loading. The package’s resistance to shear forces was measured. 

3. Assess possible damage in the energy harvester package resulting from durability 

testing under simulated gait. 

4. Develop computational models of the package that quantify its sensitivity to different 

size PE bearing thicknesses. Differences in the deflection and peak stresses were also 

measured between loading scenarios that account for all six components of loading and 

uniaxial loading. 
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Chapter 2  

2 Tuning of a 3D Printed Energy Harvester Package 
Design 

Overview: In this chapter, the design of a compliant package prototype will be 

discussed. The triboelectric generators were designed to generate electricity based on the 

cyclic contact and separation of two components. These generators harness the electron 

exchange resulting from the triboelectric effect. The TEGs, in their role of measuring 

loads in TKRs, require a package that ensures gap closure which is proportional to the 

amount of load transferred. The package was designed to achieve an axial force-

displacement relationship that is compatible with the maximum allowable compression of 

the triboelectric generators while minimizing shear displacements resulting from shear 

forces during gait, which can otherwise cause TEG damage.  

2.1 Introduction 

Despite the satisfactory success rate of modern TKR systems, implant failure still poses a 

problem (Baker et al., 2013; Mannion et al., 2009; Scott et al., 2010; Toms et al., 2009). 

Complications can be mitigated intraoperatively by ensuring optimal implant alignment 

and soft tissue balancing. Intraoperative tools such as the Verasense (Orthosensor, Inc., 

Dania Beach, FL) have proved to be an effective tool in soft tissue balancing during 

surgery. Some instrumented implants have been used in small cohorts of patients for 

research, however, clinically available instrumented implants are non-existent. 

Instrumented implants have the potential for providing important feedback in determining 

causes of implant failure which is unique to individual TKR recipients (Almouahed et al., 

2017).  

D’Lima et al. were the first to report the in vivo loads in a knee implant. In their first 

design iteration, a modified tibial tray with load cells located at the four corners of the 

tibial plateau, a power coil, a microtransmitter with an antenna were used to measure and 

relay the total force, anteroposterior and mediolateral load distribution, and the center of 
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pressure in the joint (D’lima et al., 2005a). The next iteration was capable of accurately 

measuring all six force components (Kirking et al., 2006). Bergmann et al. used a similar 

modified tibial tray as Kirking et al. to measure in vivo loads that may serve as a more 

accurate alternative to previously established standardized loads for pre-clinical testing of 

TKR such as ISO 14243 (Bergmann et al., 2014).  

The main challenge of developing an instrumented implant is reliably powering these 

devices for their entire lifetime. The limitation of inductive coupling is the use of an 

external coil that is wrapped around the patient’s knee. The presence of an external coil 

can impede mobility and thus alter patient biomechanics. In response to the need for a 

reliable, compact method of powering instrumented implants, the application of energy 

harvesting mechanisms has been investigated. Piezoelectric transducers have been 

embedded in UHMWPE bearings and tibial trays (Almouahed et al., 2017; Platt et al., 

2005; Safaei et al., 2017). Luciano et al. presented work that uses an electromagnetic 

generator (Luciano et al., 2014). The alternative energy harvesting mechanisms, for load 

sensing applications in orthopaedic implants, have not been investigated thoroughly yet.  

The triboelectric generator (TEG) developed by Ibrahim et al. is a novel approach in 

measuring tibial forces and harvesting energy from activities of daily living (Ibrahim et 

al., 2019a). Ibrahim et al. developed an energy harvesting system that uses the 

phenomenon known as the triboelectric effect. The TEGs are composed of specially 

designed contact interfaces that slide with respect to one another. The contact and 

separation between these interfacing surfaces create an electric charge that can be turned 

into usable electricity.  

The objective of this study is to design a compliant interpositional device that interlocks 

between the UHMWPE bearing and the tibial tray, which can house the TEG components 

and elastically deform under physiological loading to provide an ideal amount of TEG 

contact and separation. Furthermore, the package must resist shear forces that can lead to 

permanent damage of the TEGs. 
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2.2 Materials and Methods 

 

Figure 2-1-Design Process Flowchart 

The overall design process is outlined in Figure 2-1. An analytical model was initially 

used to determine spring dimensions for the package design. Design iterations of the 

spring structures were performed with computer aided design (CAD) modelling and finite 

element analysis (FEA) on simplified models. The spring design that had the deflection 

and stress response was exported to a tibial tray shaped part. This part underwent 

subsequent design iterations to adjust the stiffness in different locations of the package 

design by altering the spring thickness. 

2.2.1 Dimensions of Elastic Bodies 

The geometry of a size 7 Triathlon tibial tray (Stryker, Kalamazoo, MI) was used for the 

prototype design. The geometries of the implant components were provided in the form 
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of polygonal surface models in the standard tessellation language (STL) file format. The 

inferior and superior geometry of the package was designed to interface with the existing 

locking mechanism between the PE bearing and tibial tray. The perimeter shape of the 

package was recreated based on that of the tibial tray and the PE insert. Based on the 

operating conditions of the TEGs, the package was designed to achieve a vertical 

displacement of 0.2 mm at the maximum vertical load of 2600 N as defined in ISO 14243 

(ISO, 2009) while having a linear-elastic behavior across the entire force range. Elastic 

bodies were located along the periphery of the package to ensure an internal void to 

accommodate the 3 mm thick TEGs and the accompanying electronics. 

2.2.2 Analytical Model Design 

 

Figure 2-2- CAD model of the preliminary prototype concept design that feature 

elastic bodies along the periphery: (a) superior view, (b) isometric view, (c) posterior 

view, (d) section view that shows the internal void for TEG 

For this prototype, a series of stacked beam structures were placed along the periphery. 

The design of the beam structures in the prototype can be calculated using the known 
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perimeter of the tibial tray and the length of the beams (Figure 2-2). The force per beam 

structure can be calculated based on the number of beams that can fit within the finite 

perimeter of the package. If the theoretical amount of load transmitted in each beam 

structure is known, the moment of inertia can be altered to yield a desired deflection 

within the elastic region.  

A net deflection of 0.2 mm was desired at a force of 2600 N, approximately equaling the 

maximum vertical contact force during gait. Ti6Al4V was the material used for the 

design due to its biocompatibility and the availability of selective laser melting for future 

manufacturing. 

 

Figure 2-3- A magnified view of the beam structures located on the posterior of the 

package design. Length, height and fillet radius of the beams are denoted by L, h 

and r, respectively. Note: The base (b) is orthogonal to h and L. 

A preliminary analytical solution was used to determine appropriate beam dimensions for 

the length (L), base (b), height (h), and fillet radii (r) (Figure 2-3). Equations 1 served as 

a starting point for calculating the moment of inertia (I) of a rectangular cross-sectional 
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area. Equations 1 calculate the height (h) in a beam fixed at both ends with a prescribed 

transverse displacement, Δ. Since two beams were stacked to decrease the strain of 

individual beams in the elastic bodies, a prescribed displacement of 0.1 mm was used in 

the calculations. Combinations of b, h, and L that resulted in calculated bending stresses 

and shear stresses less than the fatigue strength of Ti6Al4V (550 MPa) were considered 

in the design. Raw data and calculations of h are available in the Appendix. 

ℎ = √(
2𝐹𝐿3

𝐸𝑏∆
)

3
 Equation 1 

 

2.2.3 Computational Model Design 

Simplified models were constructed using CAD software (Solidworks, Dassault 

Systemes, Vélizy-Villacoublay, France). The simplified models consisted of two parallel, 

rectangular plates with elastic beam structures along two opposing sides (Figure 2-4). 

The stacked beam structures were modelled with the b, h, and L dimensions from the 

analytical solution.  
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Figure 2-4- Simplified, rectangular model used for further computational model 

iterations on the beam design. (a) isometric view, (b) front view 

 FEA was conducted on the simplified models using Solidworks Simulation. A static 

study where one of the corners on the bottom plate was fully restrained, and the bottom 

surface had a roller/slider constraint was performed. A compressive force equal to the 

theoretical magnitude which, based on the analytical model, would lead to the model 

deflecting 0.2 mm was applied to the top surface of the model (Figure 2-5). 
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Figure 2-5- Boundary and Loading Conditions: (a) Fixed restraint on corner on 

bottom surface, (b) Roller/slider on bottom surface, (c) Force applied on top surface 

Tetrahedral elements with a global mesh size of 1 mm were used for the analyses. An h-

adaptive solution method was used for local mesh refinement in high stress regions in the 

model. H-adaptive meshing iteratively alters the mesh density in consecutive loops. In 

this study, the maximum number of 5 loops was used in the analysis. Convergence was 

achieved when the strain energy between subsequent loops yielded a 1% difference.  The 

elastic modulus (E) was set to 128 GPa, yield strength (σy) equal to 1000 MPa (Renishaw 

plc, 2017) and the Poisson’s ratio (ν) was defined as 0.31 (AZoMaterials, n.d.). Stacked 

beam structure dimensions (base (b), length (L), height (h), and fillet radii (r)) from the 

analytical model that yielded the target response values closest to the desired values (σvm 

= 550 ±100 MPa, d = 0.2 ± 0.05 mm) were considered for further iterations.  

The One-Factor-at-a-Time (OFAT) method was used to determine suitable dimensions 

for decreasing the midsection thickness of the beam using Bezier curves. The dimensions 

that were altered were a and hmiddle (Figure 2-6). Reducing the thickness of the beam’s 

midsection increased the compliance of the model. The dimensions that provided the 

desired deflection of 0.2 mm at the maximum load determined from the analytical model 

while having peak stresses below the fatigue strength of Ti6Al4V (550 MPa) were used 

in the final prototype design.  
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Figure 2-6- Bezier Curve Dimensions 

2.2.4 Placement of Elastic Bodies in Package Prototype 

Using the acquired STL file of a size 7 Triathlon tibial tray and the Scanto3D add-in in 

Solidworks, the surface mesh of the tibial tray’s perimeter shape was used to create a 5 

mm thick solid geometry of the prototype base. For this prototype, there would be 

anticipated prohibitively high stresses in the elastic bodies if they contoured the posterior 

notch of the tibial tray. Therefore, this prototype disregards the posterior notch and as a 

result, the prototype is limited to the use for TKRs that resect the cruciate ligaments 

(cruciate sacrificing designs). The geometry of the elastic bodies, determined by the 

OFAT method in the simplified models, were sketched along the periphery of the base 

and were extruded to an initial thickness of 3 mm. The base of the package was 

reproduced on the top of the elastic bodies to create a top plate (Figure 2-7).  
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Figure 2-7- CAD Progression of Package Prototype: (a) STL file of tibial tray, (b) 

base of prototype, (c) extrusion of elastic bodies along periphery, (d) prototype with 

top plate 

 

2.2.5 Spring Thickness Adjustment 

In the following computational models used for the spring thickness adjustment, the 

model consisted of the package design from the previous section and a defeatured 

UHMWPE bearing. The UHMWPE bearing was modeled by sketching the perimeter 

shape of the tibial tray and extruding the resulting sketch by 6.25 mm— the thickness of 

a 9 mm thick UHMWPE bearing at its lowest point. The UHMWPE bearing model was 

mated to the superior surface of the top plate to create an assembly. This assembly was 

used in subsequent FEA. The CAD model of the package and UHMWPE bearing 

assembly was exported, as a .STEP file, to FEA software (Abaqus, Simulia, Johnston, RI) 

for further elastic body design iterations. A tie constraint was defined to connect the 

package prototype and the UHMWPE bearing instances. Two reference points were 

created: one was placed inferior of the assembly, and the other one was placed superior to 

the package offset from the sagittal plane in order to simulate a 60:40 medial load bias, 

and above the lowest points of the UHMWPE bearing (Figure 2-8). The inferior reference 

point was rigidly connected to the inferior surface of the package and fully restrained 

using an Encastre boundary condition. The superior reference point was rigidly connected 

to the superior surface of the UHMWPE bearing. Loads were applied to the superior 

reference point. The global mesh size for the package prototype was 0.7 mm, whereas the 

UHMWPE bearing had a global mesh size of 6.3 mm. Tetrahedral elements were used for 
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both components. The Ti6Al4V package had the following material properties: 

E = 130 000 MPa, and ν = 0.31. The UHMWPE bearing component was assigned 

E = 830 MPa, and ν = 0.42. 

 

Figure 2-8-A posterior view of the package-PE bearing assembly. Reference point, 

RP-1, was placed inferior to the assembly. Reference point, RP-2, was placed 

superior to the assembly and offset medially to replicate a 60:40 (medial:lateral)  

load bias. 

A vertical compressive load of 2600 N, the maximum load in gait based on ISO 14243, 

was applied to the superior reference point. At this point, the thickness of the elastic 

bodies had a thickness of 3 mm along the entire periphery of the package. Due to the 

asymmetric geometry along the anteroposterior axis and the load being applied in the 

posterior part of the package, the thicknesses of the elastic bodies were altered in regions 

along the package to ensure a uniform deflection of 0.2 mm was achieved. Deflections 

that exceed 0.2 mm could exceed the gap distance of the TEGs thus possibly resulting in 



49 

 

 

 

damage to the TEGs’ contacting surfaces. To compound the effect of an uneven 

deflection behaviour, the improper vertical alignment of the sawtooth ridges of the TEG 

interfacing surfaces can also contribute to TEG damage. Another reason for having the 

package deflect uniformly along the anteroposterior axis is to maximize the contact 

between the TEG surfaces which in turn maximizes the energy harvested.  

If the target deflection behaviour was not achieved, the thickness of the package was 

altered to adjust the localized stiffness in different regions in the package. After elastic 

body adjustments were performed in Solidworks, FEA was conducted using the same 

parameters in the compression simulation. The elastic body thickness underwent further 

iterations until a uniform deflection of 0.2 mm was achieved. 

As eluded previously, the TEG contacting surfaces are susceptible to damage from shear 

displacements and operate solely from contact and separation in the vertical direction. 

Therefore, the package must be able to eliminate shear displacements. The package’s 

resistance to shear forces in gait was analyzed by applying a posteriorly-directed load of 

265 N and an internal torque of 6 Nm from ISO 14243 to the superior rigid point to 

calculate the shear displacements in separate simulations. Compression was not 

superimposed on the shear forces. 

2.2.6 Reverse Engineering Interlocking Mechanism of TKR 
Components 

In order to install the TEGs inside the package, the package was separated into a bottom 

and top part with an interlocking geometry to resist relative transverse motion. To secure 

the two parts together, three M3 x 0.5mm, 6 mm flat head screws were located in threads 

created in the medial, lateral, and posterior regions of the prototype.  

On the superior surface of the top plate, the interlocking geometry of the tibial tray was 

created using manufactured-provided surface mesh data. On the inferior surface of the 

bottom plate, the interlocking geometry of a UHMWPE bearing was replicated using the 
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mesh data. Therefore, the package prototype was designed to fit in-between the tibial tray 

and UHMWPE bearing of a size 7 Stryker Triathlon system. 

2.3 Results 

2.3.1 Analytical Model Design 

Based on the analytical model of a single beam, the σb (bending stress) decreased as the 

length and base of the beams increased. Contrarily, the calculated height, which would 

result in the desired deflection of 0.1 mm, exhibited a proportional relationship with σb 

(Figure 2-9 and Figure 2-10).   

Due to the volumetric constraints of the package where the overall thickness should be 

minimized and the internal volume should be maximized, some dimensions for L, b and h 

were not considered. The gap distance between the top and bottom plates of the package 

was limited to a maximum of 6 mm. Enough vertical space should be reserved for the 

deflection of the beams. Also, having a small gap between beams would lead to sharp 

reentrant edges that can serve as stress concentrations. In this design, enough space was 

desired to relieve stress concentrations with fillets at the corners. In regards to the internal 

volume, encroachment of the elastic bodies towards the interior of the package was 

minimized by minimizing b of the beams. 
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Figure 2-9- Effects of length and base parameters on the bending stress. 
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Figure 2-10- Effect of length and base on the height 

2.3.2 Computational Model Design 

2.3.2.1 Simplified Design Simulations 

The computational models that simulate compression of the simplified designs did not 

demonstrate a close agreement with the analytical model. The computational models had 

larger stresses and deflections that were calculated in the analytical model, as 

summarized in Table 2-1. A variable that was overlooked in the analytical model was the 

influence the fillet radii had on the stresses and deflections. When comparing test runs 3 

and 4 in Table 2-1, there was approximately a 600 MPa decrease in σvm,max and a 

0.04 mm decrease in the vertical displacement when the fillet radius was increased by 

0.25 mm. The peak stresses were located at the base of the beams in the computational 
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model (Figure 2-11). The exclusion of considering the effects of including the fillets in 

the analytical led to an underestimation of the expected stresses and deflections.  

Table 2-1-Stress and deflection comparison between computational and analytical 

model. The computational models presented in this table had dimensions similar to 

what was used in the analytical model. 

 

 

Figure 2-11- An isometric view of the FE model for Test Run 2 (Table 2-1). Peak 

stress locations were located at the base of the beams (denoted by red arrow). 
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Combinations of dimensions were not limited to what was determined from the analytical 

model especially in light of the discrepancies that it had with the aforementioned 

computational models presented in Table 2-2. The shorter length beams, despite having 

lower stresses, were too stiff. The opposite was observed for longer beams. The stiffness 

was proportional to the height. The peak stresses and deflections occurred with the longer 

slender beams (i.e. Test Run 3 in Table 2-2). For the prototype design, Test 16 was used 

for further iterations in acquiring the desired mechanical response. These dimensions had 
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response values close to the target values; the stiffness and the stress could be reduced by 

reducing the thickness of the beam’s midsection. 

Table 2-2- Stress and deflections resulting from dimensions altered using the One-

Factor-at-a-Time method. 

 

2.3.2.2 Tuning of Midsection Thickness  

After selecting the dimensions from Test Run 16 in Table 2-2, Bezier curves were used to 

create a tapered midsection in the beams. Thinning the midsection increased the 

compliance and reduced the stresses when compared to a beam with a uniform cross-

section. After several changes to the altered parameters, the dimensions from Test Run 8, 

in Table 2-3, were exported to the tibial tray shaped prototype since it had a peak von 

Mises stress less than 550 MPa and the resultant force from a prescribed vertical 
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displacement of 0.2 mm that was close to the theoretical target compressive load. The 

progressive beam dimension changes are outlined below in Table 2-3. 

Table 2-3- Summary of stresses and resultant vertical force after altering beam 

midsection thickness using Bezier curves. 

 

2.3.3 Simulation Results of Prototype Design 

From the vertical load simulation, stresses were generally below the 550 MPa threshold. 

The highest stresses were located at the base of the beams, where bending moments 

would dominate, in the medial and lateral regions of the package. The high stresses 

exceeded the fatigue strength of Ti6Al4V in a small region (about 5.7% of the beam’s 

volume) (Figure 2-12). The peak stress was 857 MPa located in the anteromedial portion 

of the package. The deflection of the top plate with respect to the bottom plate was 0.22 

mm, slightly greater than the target of 0.2 mm (Figure 2-13). 
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Figure 2-12- Stress Plot from Maximum Axial Load 

 

Figure 2-13- Vertical Displacement Plot from Maximum Axial Load 

From the posteriorly directed load of 265 N, the shear displacements of the top plate with 

respect to the bottom plate and the stresses were negligible. Similar stresses and 

displacements were calculated when an internal torque of 6 Nm was applied to the 

computational model. The maximum stresses and displacements from the ISO 14243 

loads are outlined in Table 2-4. In Figure 2-14, the maximum shear displacements from 

the shear loads are shown. 
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Figure 2-14- Shear displacements due to maximum posteriorly directed force (Fy) 

and internal moment (Mz) in ISO 14243 

Table 2-4- Maximum Stress and Displacements from Maximum Loads in ISO 14243 

 

2.3.4 Dimensions of Elastic Bodies 

The dimensions of the stacked beam structures for the compliant package are outlined in 

(Figure 2-15). The thickness of the elastic bodies was altered because of the larger load 

distribution in the posterior of the package. Therefore, beam thickness gradually 

increased from the anterior to the posterior. This gradual change in the thickness is 

illustrated in Figure 2-16. 
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Figure 2-15-Dimensions of stacked beam structure 

 

Figure 2-16- Cross-sectional view of the elastic bodies. The prototype was 

symmetrical along the sagittal plane, therefore dimensions were denoted only on one 

side. 
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2.4 Discussion 

In this current study, a compliant, linearly elastic package was designed for housing the 

TEGs developed by Ibrahim et al (Ibrahim et al., 2019a). Springs were positioned along 

the periphery of a tibial tray shaped package to achieve a maximum deflection of 0.2 mm 

(gap distance between the TEG layers) under the maximum vertical load according to 

ISO 14243. The package had peak stresses that surpassed the fatigue strength of Ti6Al4V 

but were lower than the yield strength.  

The beam dimensions, initially determined using an analytical model, were used for 

creating rectangular, simplified designs that underwent simulated compression. The 

computational models calculated the peak stress and stiffness of the elastic body design 

iterations. Modifications were made to the dimensions of the springs until the target stress 

and deflection were achieved. The springs that had the desired mechanical response from 

the computational models of the simplified designs were exported along the periphery of 

a tibial tray shaped package. Further tuning was done to this model by varying the 

thickness of the beams until a uniform vertical displacement was calculated. After 

applying the shear forces occurring during gait, the package was verified to have a 

negligible amount of shear displacement.   

The reason behind using a large TKR was to maximize the surface area of the TEGs. The 

TEG’s energy harvesting capability is partly limited to the surface area. An increase of 

the surface area would increase the area for contact and separation between the 

interfacing surfaces thus increasing the power generated. Another benefit to deriving a 

design from a larger tibial tray is that the volume available for a compliant geometry 

within the package would be maximized. The technique used in this chapter can be 

implemented in all other implant sizes and different designs. 

The dimensions of the current design may not be the optimal dimensions that would 

result in the desired stress and deflections. There may be other combinations not 

considered that may be more suitable. Localized changes to all the dimensions may be 
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better suited in different areas of the package as opposed to altering the base (b) of the 

beams where force distributions differ. The rationale behind changing only the base of 

the beams was the efficiency to update the model and undergo further design iterations.  

Higher stresses were calculated in the tibial tray shaped prototype when compared to the 

simplified model. This is a limitation of projecting an idealized beam structure onto a 

curved profile. After projecting the sketch and extruding the beams towards the interior 

of the package, the beams do not maintain the length that was tested in the simplified 

models. This led to increased stress magnitudes in sections of the beams adjacent to the 

internal void. The primary objective was to create a prototype with the desired stiffness. 

By limiting the elastic bodies along the periphery, the beams did not maintain the 

geometry that was used in the simplified models thus resulting in stresses and stiffness 

that differ from the simplified models.  

High stresses resulting from the projection of the beam structure to the package periphery 

explains the absence of the posterior notch. The idealized beam structure was not 

replicated along the posterior notch. The shorter beams of the projected beam structure 

increased the stresses. With the means of reducing the stress and maximizing the internal 

surface area for the TEGs, the notch was disregarded in this initial prototype. Although 

some TKR designs require the resection of the cruciate ligaments, cruciate retaining (CR) 

designs will require the PCL. Future design iterations will require the need to include the 

posterior notch while possessing the mechanical properties to allow the TEGs to operate 

optimally. 

The height (h) would have a more profound effect on the stresses in the package because 

of its cubic relationship with the moment of inertia (I). In addition, b could be reduced as 

h increases thus further maximizing the internal volume. The localized tuning of h can 

optimize the stiffness and reduce the stress. However, altering the projected elastic body 

sketch along the tibial tray shaped periphery proved to be difficult. Varying even just a 

single beam parameter would require changes to the sketch originating from the 

simplified design. Performing this for all elastic body units of the package design would 
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be time consuming and arduous. For future consideration, the use of a tibial tray shaped 

prototype with elastic bodies with parameters that can be readily changed can facilitate 

localized tuning. 

Longer beams in the analytical model resulted in lower calculated stresses while 

achieving the desired stiffness. The main limitation behind designing beams that are 

longer than what was used is that the required beam height h was limited by the height of 

the internal void. In other words, the longer beams could not be accommodated in a void 

with a 6 mm vertical height. 

There are inherent limitations associated with using OFAT in designing the compliant 

package. OFAT can be an inefficient method in design optimization. It can require more 

time, experiments and resources (Telford, 2007). The estimates of each factor that 

explains the response aren’t always precise. The main effects can be determined from 

OFAT, but the effects of interactions between input variables cannot be quantified. For 

instance, using OFAT, the effect of simultaneously changing the L and b on the 

deflection cannot be estimated. Since OFAT consists largely on “trial and error”, the 

entire factor space is not considered thus increasing the possibility of false optimal 

conditions (Antony et al., 2003). Design of experiments (DOE) is a more efficient 

method of quantifying the sensitivity of the input variables and it provides a 

mathematical model that accounts for the estimation of main effects and interactions 

(Antony et al., 2003; Czitrom, 1999; Telford, 2007; Wahid and Nadir, 2013). 

The peak stresses in the package design were below the yield strength of Ti6Al4V, but 

higher than the fatigue strength. For this prototype, a package with a linearly elastic 

behaviour was prioritized over the fatigue behaviour. The multi-objective nature of this 

application can prove to be difficult to satisfy all the desired engineering constraints, but 

this package had a stiffness that has the potential to work with the TEGs, maximized the 

space for the TEGs, and the package remained in the elastic region under 2600 N of 

compression. 
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Another limitation to this study is that other motions like jogging were not tested. Ideally, 

the package should be designed to withstand physiological loading with the largest 

magnitudes. For the case of preliminary evaluation, gait loading from ISO 14243 was 

assumed to be acceptable. 

The modular design of the package provides surgeons intraoperative choices regarding 

component thickness and implant constraint. Another advantage of using modular 

components is that a worn PE bearing can be replaced without affecting the bony fixation 

of the tibial component during a revision procedure (Barrack, 1994). However, the 

modularity of implant components can be problematic. Wear and tribocorrosion can 

occur between interfacing surfaces thus resulting in wear induced synovitis, osteolysis or 

adverse local soft tissue reactions (ALTRs) (Berry et al., 2014; Jacobs et al., 2009). The 

PE bearing-package and package-tibial tray interfaces can elicit an increase in wear 

particles. 

The micromotion between the underside of the PE bearing and the top plate of the 

package can lead to larger amounts of polyethylene wear and debris particles (Li et al., 

2002; Sisko et al., 2017; Wasielewski et al., 1997). Two factors that greatly affect this PE 

backside wear are the surface finish of the tibial tray and the interlocking mechanism 

(Rao et al., 2002; Sisko et al., 2017). The use of TKR systems with highly polished tibial 

tray surfaces can reduce backside damage and linear wear (Berry et al., 2012; Teeter et 

al., 2015). A robust interlocking mechanism that restricts tibial tray motion also 

contributes to PE bearing longevity (Conditt et al., 2004; Jayabalan et al., 2007). The 

current prototype’s design is derived from the Stryker Triathlon TKR system. The 

Triathlon interlocking mechanism, which features a central anti-rotational island to the 

peripheral capture, limits PE backside motion (Sisko et al., 2017). Despite the Triathlon 

interlocking mechanism’s effectiveness in reducing PE backside wear, future iterations of 

this package design can limit PE damage by polishing the package surfaces.  

The package-tibial tray interface may be more concerning than the PE bearing-package 

interface. This metal-on-metal interface can introduce metal ions which can lead to 



64 

 

 

 

synovitis and local soft tissue reactions (Berry et al., 2014; Jacobs et al., 2009). The wear 

and tribocorrosion at this interface can be exacerbated by the rough surfaces of both 

components. Future designs should ensure minimal relative micromotion between these 

surfaces. A high tolerance press-fit of the package and the tibial tray may be a viable 

option in reducing the micromotion. Otherwise, a custom tibial component with the 

integrated package may be required to eliminate the metal-on-metal surface interaction. 

Overall, when considering a package design that is compatible with other TKR systems, 

surface finish and the interlocking mechanism are still of a concern in terms of mitigating 

implant failure. 

Future research can be done to optimize the design of the elastic bodies. DOE and 

topological optimization may provide other geometric alternatives that will provide the 

desired stiffness and reduce the peak stresses. This current study only considered the 

loads in ISO 14243. In future iterations, the stiffness and stresses should be tuned with 

consideration of other ADL such as jogging, stair ascent and stair descent where higher 

magnitude loads can be transmitted through the package. 

2.5 Conclusion 

In this chapter, the process of designing a compliant package intended for the integration 

of TEGS was outlined. The deflection of the package was slightly larger than the target of 

0.2 mm at a compressive load of 2600 N. The package, based on the computational 

models, was able to resist shear forces that can lead to permanent damage of the TEGs. 

The calculated peak stresses exceeded the fatigue strength but remained within the elastic 

region of Ti6Al4V. This suggests that failure is possible due to fatigue. The following 

chapters will examine a 3D printed prototype where the stiffness of the prototype will be 

compared with the computational results and the fatigue life of the package will be 

quantified. 
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Chapter 3  

3 Experimental Validation and Load Imbalance 
Measurements of a Compliant Package Design 

Overview: The stiffness of the package was determined from axial compressive loads 

applied to the package. The package also underwent simulated load imbalances to 

measure differences between the medial and lateral compartmental forces measured by 

surrogate sensors. 

3.1 Introduction 

Proper implant alignment and soft tissue balancing are imperative for favourable patient 

outcomes and implant longevity. Intraoperative sensors have been used to objectively 

ensure that implant components are positioned correctly, and as a useful tool for ligament 

balancing by providing real-time quantitative feedback (Cho et al., 2018; Elmallah et al., 

2016; Kenneth A Gustke et al., 2014; Kenneth A. Gustke et al., 2014). All possible 

preemptive measures can be taken to minimize future implant failures intraoperatively, 

but the condition of an implant can change over the course of healing. Currently, there is 

no quantitative method of monitoring the postoperative loads transmitted in one’s 

prosthetic knee available for routine clinical use.  

The benefit of instrumented implants is the ability to better understand the in vivo 

mechanics of a patient’s TKR. The ability to measure tibial forces can help identify signs 

of instability, and aseptic loosening. Measured loads can be used to corroborate patient 

histories so that the most suitable actions can be made to improve implant longevity.  

The triboelectric effect can be used for both load sensing and energy harvesting 

applications. TEGs developed by Ibrahim et al. are designed to operate between the 

UHMWPE bearing and tibial tray. The motivation behind the design of the compliant 

package described in Chapter 2 was to integrate the TEG in a commercially available 

TKR system.  
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This objective of this chapter is the experimental validation of the computational model 

presented in Chapter 2, and to measure the effect of intentional load imbalances on the 

deflection of a package prototype. A manufactured prototype underwent uniaxial 

compression testing to determine the stiffness of the prototype and how this value 

deviates from the stiffness determined from the computational model. In addition, several 

simplified structures underwent compression testing. The stiffness of the manufactured 

simplified structures was also compared to their corresponding computational models. 

Using embedded load sensors, the medial and lateral compartment forces were measured 

as the mediolateral load distribution oscillated between a medial and a lateral load bias 

during simulated abduction/adduction. 

3.2 Materials and Methods 

3.2.1 Manufactured Prototype 

Alterations were made to the prototype CAD model in Chapter 2 prior to manufacturing 

and mechanical testing. Since the package was intended to accommodate the TEGs, 

access to the interior of the package was achieved by printing the prototype into two 

interlocking, separate parts. The interlocking geometry between the parts provides 

resistance to relative transverse displacements. Additionally, using the acquired STL file 

of a size 7 Triathlon tibial tray and PE bearing, the Scanto3D add-in in Solidworks was 

used to recreate the interlocking geometry of the TKR components on the top and bottom 

surfaces of the package. The parts were fastened together using three M3 x 0.05 6mm 

long flat head screws to prevent removal of the top plate. Threaded holes were located at 

the medial, lateral and posterior locations of the prototype. Once these alterations were 

completed, the prototype was manufactured using selective laser melting (Figure 3-1). 

The printing parameters are outlined in Table 3-1. The resulting prototype assembly was 

used in the subsequent experiments. 
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Table 3-1- Selective Laser Melting Parameters 
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Figure 3-1- Package Prototype: (a) top view, (b) isometric view, (c) front view, (d) 

bottom view, (e) back view and (f) disassembled prototype. 

3.2.2 Axial Loading of Package Prototype 

In order to compare the stiffness of the computational model and the manufactured 

prototype, an Instron 8874 mechanical testing machine (Instron, Norwood, MA) 

equipped with a 5 kN load cell was used to measure the stiffness of the prototype. The 

prototype was placed along the vertical axis of the actuator on a metal stand used to raise 

the specimen within the actuator’s line of travel. The actuator was translated downwards 

in displacement until in contact with the prototype, as indicated by changes in force 
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measured by the load cell in series with the prototype. In force control, contact between 

the load cell and the prototype was initially set by applying 500 N of compression. The 

further axial compressive load was then applied at a rate of 26 N/s up to a maximum of 

1800 N. The displacement of the crosshead was acquired at a sampling rate of 

1000 samples/s. Afterwards, the stiffness of the stand and load frame was acquired by 

performing the same loading protocol that was applied to the prototype with the only 

exception of swapping the prototype with a rigid, metal block. In order to correct for the 

compliance of the experimental set-up, the compliance of the prototype was isolated by 

subtracting the compliance determined from compressing the rigid block from the system 

that contained the prototype. The stiffness of the prototype was compared to the stiffness 

of the computational model presented in the previous chapter to quantify if there is 

agreement between the experimental and computational models. 

3.2.3 Imbalance Testing   

Compression and simulated load imbalances were applied using a VIVO joint motion 

simulator (Advanced Mechanical Technology, Inc, Watertown, MA) capable of applying 

loads and displacements in all 6 degrees-of-freedom (DOF). A Triathlon Knee System 

(Stryker, Kalamazoo, MI) was used for the design and testing of the package. The 

femoral component was cemented on a femoral component holder secured to the 

abduction arm of the VIVO using polymethylmethacrylate (PMMA) bone cement 

(Bosworth Fastray, Keystone Industries, Myerstown, PA). While the abduction arm of 

the VIVO was positioned at 0° of abduction/adduction and with the femoral component 

holder attached to the abduction arm, a sagittal plane defined midway between the 

femoral component’s condyles was positioned to intersect the origin of the flexion and 

abduction arm along the mediolateral axis (Figure 3-2). On the lower actuator of the 

VIVO, the tibial tray was cemented on a custom fixture using dental cement (Dentstone, 

Kulzer, LLC, South Bend, IN).  
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Figure 3-2- The VIVO joint simulator operates in six degrees of freedom. There are 

three translational (medial/lateral, anterior/posterior, superior/inferior) and three 

rotational degrees of freedom (internal/external, abduction/adduction, 

flexion/extension). 
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Figure 3-3- Experimental set-up (the implant flexed about 60° for clarity)  

At the time of the experiment, suitably capable TEG components were not available for 

experimental testing. Thus, ultra-thin Flexiforce sensors (Tekscan, Boston, MA), rated 

for up to 111 N (25 lbs.), were employed.  Castable silicone (Amazing Remelt, Alumilite 

Corporation, Kalamazoo, MI) with the shape of the sensing element of the Flexiforce 

sensors was used to occupy the excess vertical space within the package and transmit 

loads through the Flexiforce sensors. The height of the silicone spacers was made to have 

a height slightly greater than the height of the internal void. This was done to ensure 
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contact between the Flexiforce sensors and the top plate. Based on the Shore A hardness 

of the silicone, provided by the manufacturer’s specifications, the stiffness of a silicone 

spacer was calculated to be 43 N/mm. With the stiffness of the package determined from 

the computational model in Chapter 2 (11 818 N/mm) and the calculated silicone 

stiffness, the approximate amount of load that would be transmitted through the 

Flexiforce sensors at the maximum load of 2600 N was determined. Assuming equal 

loading is applied between the compartments, approximately 10 N would be transmitted 

through one of the Flexiforce sensors. The package transmits the majority of the load 

since it is stiffer than the silicone. The 111 N (25 lbs.) sensors were chosen because the 

low-load (4.4 N) rated sensors would most likely be saturated whereas the resolution may 

be too large with the high-load (445 N) rated sensors at the expected load of 10 N.  

3.2.3.1 Flexiforce Sensor Calibration 

Calibration of the Fexiforce sensors was performed using weights ranging from 0.45 kg 

(1 lbs.) to 5 kg (11 lbs.). The maximum test weight of 5 kg, which would exceed the 

expected Flexiforce load of 10 N, was selected to avoid possible output voltage 

saturation. A data acquisition (DAQ) card (National Instruments Corporation, Austin, 

TX) that was connected to the output voltage terminal of a Flexiforce Quickstart Board 

(Tekscan, Boston, MA) and a custom Labview (National Instruments Corporation, 

Austin, TX) program were used to acquire the output voltage from the Quickstart Board. 

Power to the Flexiforce Quickstart Board was supplied by a 9 V battery connected to the 

positive and negative input terminals. With a 111 N (25 lbs.) rated Flexiforce sensor 

connected to the Flexiforce Quickstart Board, the largest weight of 5 kg was placed on 

the Flexiforce’s sensing element. The feedback resistance was adjusted with the 

potentiometer located on the Flexiforce Quickstart Board until the output voltage was 

80% to 90% of the 5 V maximum output voltage. Afterwards, the full test weight was 

removed. The corresponding output voltages for 0.45, 0.9, 1.36 and 2.26 kg weights were 

acquired. A linear plot of the voltage-force relationship and the resulting line of best fit 

was acquired for subsequent experiments. The same calibration procedure was conducted 

with another 111 N (25 lbs.) rated Flexiforce sensor. 
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Figure 3-4- Package Prototype with Embedded Flexiforce Sensors in the Medial and 

Lateral Compartments 

3.2.3.2 Experimental Set-Up 

The vertical displacement from the VIVO joint simulator during axial loading was used 

to measure the deflection of the prototype. However, machine and fixture compliance are 

expected during testing. In order to eliminate the effects of the machine and fixture 

compliance, the TKR was tested with and without the prototype. By knowing the 

stiffness of both test configurations, the stiffness of the prototype could be isolated. The 

force and kinematic data from the VIVO were acquired at a rate of 100 Hz. The actuator 

position resolution is ±0.1 mm. 
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Figure 3-5- Experimental set-up configurations: a) TKR mounted on VIVO joint 

simulator and b) TKR mounted on VIVO joint simulator with package prototype 

embedded with Flexiforce sensors. 

In both testing configurations, the initial pose of the experimental set-up was determined 

by reducing the joint with a 50 N compressive load, while maintaining 0 N of force (or 

0 Nm of torque) for all other remaining DOFs other than flexion. Flexion was set to 0º, or 

full extension. Once the initial position of the joint was defined, a sinusoidal compressive 

load ranging from 50 N to 2600 N was applied at 0.5 Hz. The stiffness of the 

experimental set-ups with and without the package prototype were calculated using the 

vertical displacement acquired from the VIVO and the applied force. The stiffness of the 

package was then calculated by subtracting the stiffness of the experimental set-up 

without the package from the stiffness of the TKR with the package. In addition to the 

prototype’s deflection measured by the VIVO, the Flexiforce sensors measured the 

compartmental loads.  
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A static compressive load of 2600 N was applied to the Flexiforce embedded prototype. 

Loading perturbations were superimposed atop the 2600 N compressive load. To simulate 

a load imbalance along the coronal plane, a sinusoidal abduction-adduction (AA) load of 

±20 Nm was applied. Using the medial force ratio distribution reported by Halder et al 

and Kutzner et al (Halder et al., 2014; Kutzner et al., 2013), 20 Nm of tibial adduction 

and an axial load of 2600 N, 65% of the total axial load would be transmitted through the 

medial compartment. An abduction moment of 20 Nm would shift the majority of the 

axial load laterally in which the medial compartment carries 35% of the mediolateral 

force distribution. All remaining DOF in each loading scenario maintained 0 N of force, 

or 0 Nm of torque. The cyclic loads were applied at a frequency of 0.5 Hz. Loads 

measured by the Flexiforce sensors and the VIVO joint simulator were recorded during 

loading. 

3.3 Results 

3.3.1 11Axial Loading of Package Prototype 

During the cyclic compression testing, using the VIVO, the package had a stiffness of 

4555 N/mm. With the Instron, the stiffness of the test fixture was 8712 N/mm. The 

fixture with the prototype mounted had a stiffness of 2615 N/mm (Figure 3-6). In order to 

nullify the stiffness of the test fixture, it was assumed the test fixture and the prototype 

were compressed in series. The prototype’s stiffness was calculated to be 3190 N/mm. 

This is 8628 N/mm, or 73%, less than what was predicted by the computational model in 

Chapter 2. 
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Figure 3-6- Force vs. displacement plot of package prototype subjected to uniaxial 

vertical loading. 

3.3.2 Imbalance Testing 

During simulated coronal imbalance testing, as expected, the Flexiforce sensors showed 

opposite responses to the AA moment, however the magnitudes were not identical. This 

was probably due to the geometric and positional variance of the silicone spacers beneath 

the Flexiforce sensors. When a 20 Nm adduction moment was applied, the medial 

compartment force sensor experienced a 23% load increase versus a 33% decrease at the 

lateral compartment force sensor with respect to the static 2600 N compression. When a 

20 Nm abduction moment was applied, the medial compartment load decreased by 8%, 

while the lateral compartment load increased by 8%.  
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Figure 3-7- Flexiforce measurements during cyclic abduction/adduction. 

3.4 Discussion 

3.4.1 Stiffness of Additively Manufactured Parts 

In this study, the stiffness of an additively manufactured prototype was experimentally 

determined for the purpose of measuring the difference with respect to the stiffness 

calculated in the computational model presented in the previous chapter. The prototype’s 

stiffness, under axial loading, was 73% less than what was predicted in the computational 

model.  

Additively manufactured structures have been shown to have stiffness that vary greatly 

from the stiffness determined from computational models which may be due to geometric 

discrepancies. The internal porosity, unfused material, and surface roughness can reduce 

the effective cross-sectional area of the 3D printed prototypes. As a result, additively 

manufactured parts may not possess the stiffness suggested by their respective 
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computational models. In some cases, computational models can have stiffness values 

that are greater than additively manufactured structures by a factor of 4 (Harrysson et al., 

2008). Additional manufactured simplified designs with a similar elastic body structure 

underwent uniaxial vertical loading. Discrepancies between the computational and 

experimental models were observed with these simplified designs. These results are 

outlined in Appendix C. Despite the difference between the computational and 

experimental models, it can be valuable to understand the implications of considering 

SLM Ti6Al4V as a manufacturing method. 

3.4.2 Intercompartmental Load Measurements 

The prototype was also subjected to cyclic AA loading to quantify differences in the 

package’s deflection as the tibiofemoral load distribution changes. During AA testing, 

compartmental loads from the Flexiforce sensors did indicate a shift in the load along the 

mediolateral axis. However, the measured loads at peak abduction and adduction did not 

show a symmetric response. The medial compartment measured 64% and 46% of the 

total load in full adduction and abduction, respectively. The measured compartmental 

loads did not display a symmetrical force response at the maximum and minimum loads, 

or displacements, of the perturbed loading scenarios. This may be attributed to the load 

sensor calibration, inconsistent silicone fill levels, and the placement of the load sensors 

within the package. 

The ability to measure the tibiofemoral forces about the anteroposterior axis can help 

detect signs of future implant complications such as malalignment. Large abduction or 

adduction angles, greater than 3°, has been shown to increase the intercompartmental 

load difference (Bäthis et al., 2004; Halder et al., 2014). Higher AA moments may entail 

increased stresses in the surrounding implant components and underlying bones, PE 

bearing wear (Collier et al., 2007; Srivastava et al., 2012) and aseptic loosening (Gromov 

et al., 2014; Ritter et al., 2011). Kutzner et al. have demonstrated a correlation between 

tibiofemoral alignment and mediolateral force distribution where varus alignment leads to 

increased medial compartment loads. Medial force ratios of 70% to 80% can be expected 
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with a knee that is 3° varus (Kutzner et al., 2017). The prototype with embedded 

Flexiforce sensors has demonstrated the ability to measure the compartmental loads 

during the application of a cyclic AA moment. The package was compliant enough in the 

medial and lateral compartments to measure loads as the AA angle oscillated between 

±2° during AA loading. The package most likely will be able to detect the increased 

coronal planeload imbalances associated with AA angles greater than 3° which can be 

beneficial in restoring a more even mediolateral load distribution through interventions 

such as soft tissue balancing.  

A limitation to this study is that the performance of the TEGs, with this current package 

design, was not quantified. In spite of this, thin Flexiforce sensors were used in lieu of the 

TEGs due to their unavailability at the time of testing. Silicone spacers were placed 

underneath the sensors. Silicone was selected because of its low stiffness relative to the 

stiffness of the package. The low stiffness silicone reduced the interference the spacers 

had on the force transmitted through the package. However, silicone may not have been 

an ideal choice. Visual signs of plastic deformation, or indentations of the Flexiforce 

sensors, were seen on the silicone spacers after testing. This means that the measured 

loads acquired by the Flexiforce sensors may be inaccurate since a portion of the load 

was transmitted to the silicone that was not covered by the sensing element of the 

Flexiforce sensors. 

Future testing can be performed to quantify the measured compartmental loads and power 

generated by the TEGs embedded in the package. Further tuning of the package may 

need to be done to maximize the electricity generated.  

3.5 Conclusion 

From uniaxial compression testing of the prototype, the AM Ti6Al4V components were 

more compliant as determined from their corresponding computational models. Despite 

this stiffness discrepancy between the experimental and computational models, the 

prototype deflected proportionally to shifts in the mediolateral load distribution. The 
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compartmental loads measured with this package design in conjunction with embedded 

sensors can be a means of better understanding the effects of surgical technique and 

implant design on stability after implantation. 
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Chapter 4  

4 Durability Testing of Energy Harvester Package 

Overview: The fatigue strength is an important mechanical property to consider in 

implant design. Ideally, TKRs should withstand repetitive physiological loading for up to 

several decades of use. In this chapter, the fatigue life of the package prototype was 

quantified when subjected to a sinusoidal vertical load with maximum and minimum 

loads that correspond with ISO 14243. 

4.1 Introduction 

Ti6Al4V is a common material used for orthopaedic applications because of its high 

yield strength, low stiffness relative to other metal alloys, biocompatibility, and high 

fatigue strength. One of the main requirements the compliant package must satisfy is that 

it must be durable enough to withstand the repetitive loading of activities of daily living. 

The failure of the package will not only render the energy harvester damaged and 

unusable, but this can also lead to an introduction of foreign wear particles, and affect the 

stresses transmitted to the surrounding implant components that may elicit a biological 

response.  

Complex geometries can be manufactured through additive manufacturing (AM) methods 

such as selective laser melting (SLM). The mechanical properties of AM Ti6Al4V are 

comparable to its wrought form (Baufeld et al., 2011; Brandl et al., 2010; Chan et al., 

2013; Facchini et al., 2010; Koike et al., 2011; Leuders et al., 2013; Murr et al., 2009; 

Qiu et al., 2013), but AM Ti6Al4V may possess anisotropic microstructure and properties 

due to the directional nature of AM (Baufeld et al., 2011; Harrysson et al., 2008). 

However, the fatigue performance of AM Ti6Al4V is adversely affected by its inherent 

internal porosity, residual stress, build orientation and surface condition (Baufeld et al., 

2011; Brandl et al., 2010; Chan et al., 2013; Edwards and Ramulu, 2014; Ghouse et al., 

2018; Leuders et al., 2013; Shiomi et al., 2004; Sterling et al., 2015). The poor notch 

sensitivity of Ti6Al4V makes AM parts susceptible to defects and stress concentrations 
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(Ahmadi et al., 2018; Hrabe et al., 2011). Internal pores and surface defects can become 

potential sites for crack initiation and propagation (Ghouse et al., 2018; Yadollahi and 

Shamsaei, 2017).   

Despite the poor fatigue performance of AM Ti6Al4V compared to its wrought form, the 

post processing performed can improve the fatigue strength by relieving residual stress, 

improving the microstructure and surface finish (Edwards and Ramulu, 2014; Ghouse et 

al., 2018; Yadollahi and Shamsaei, 2017). Heat treatment and hot isostatic pressing (HIP) 

have been shown to homogenize the microstructure through recrystallizing the material, 

relieving residual stress and fusing un-melted particles (Edwards and Ramulu, 2014; 

Wycisk et al., 2015; Yadollahi and Shamsaei, 2017). Machined or polished surfaces of 

specimens that have underwent heat treatment or HIP have increased the fatigue 

performance by mitigating crack initiation due to surface defects (Edwards and Ramulu, 

2014; Wycisk et al., 2015).  

As an initial attempt at quantifying the fatigue performance of the compliant package 

design, two prototypes underwent cyclic axial loading at the maximum vertical load as 

per ISO 14243 and a reduced vertical load determined from the computational model. 

Visual indications of fatigue failure were compared to high stress locations in the 

computational model presented in Chapter 2. AM Ti6Al4V has been observed to have a 

brittle failure mode as a porous material because of its poor notch sensitivity (Ahmadi et 

al., 2018; Ghouse et al., 2018; Hrabe et al., 2011). Therefore, cracks may initiate and 

propagate in the high stress areas indicated in the computational model. 

4.2 Materials and Methods 

4.2.1 Experimental Set-Up 

The same prototype that was used in Chapter 3 underwent fatigue testing (Figure 3-1). A 

similar experimental set-up as in Chapter 3 was used, however a different joint simulator 

was utilized for fatigue testing. The Boston joint simulator (AMTI, Watertown, MA) was 

used to apply a sinusoidal, vertical load to the package prototype. The AMTI Boston 
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operates in 4 DOF. The vertical actuator of the AMTI Boston operates only in force 

control. The AP, IE and flexion DOFs operate in displacement control. The remaining 

DOF, AA and ML, are left unconstrained or constrained. The femoral component was 

cemented, using PMMA, on a femoral component holder designed to interface with the 

AMTI Boston. Dentstone cemented the tibial tray on a custom fixture positioned on the 

lower actuator of the test station. Flexion, AP, and IE DOF were set to zero displacement. 

The ML DOF was left to translate freely along its axis. The flexion angle was set to 0º 

(Figure 4-1).  

 

Figure 4-1-Experimental Set-up for Fatigue Testing on AMTI Boston: (a) Medial 

View, (b) Anteromedial View  
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4.2.2 Loading Scenario at Maximum Vertical Load 

The amplitude of the load waveform was based on the maximum and minimum vertical 

forces in ISO 14243. The minimum compressive load was 265 N, and the maximum 

compressive load was 2600 N (ISO, 2009). The sinusoidal load was applied at a rate of 2 

Hz. Load and displacement data, from the AMTI Boston, were acquired every 10 000 

cycles for 2.5 s at a sampling rate of 200 samples/second. The Boston joint simulator was 

set to perform a total of 5M cycles in 500k cycle intervals. Because of the brittle fatigue 

failure of AM Ti6Al4V (Ahmadi et al., 2018; Ghouse et al., 2018; Hrabe et al., 2011), the 

beams on the prototype were assessed for cracks after removal every 500k cycles. 

However, the prototype was periodically monitored for cracks during testing. Further 

fatigue testing was terminated if cracks were detected. The loading scenario used is 

assumed to be an approximation of the “double-humped”, gait waveform in ISO 14243 at 

1 Hz. Because the vertical force in gait has the largest component, and the energy 

harvester’s electrification mechanism is dependent on the vertical displacement of the 

package, the shear forces in ISO 14243 were neglected. Furthermore, when the shear 

forces were considered along with the maximum vertical load in the gait cycle, the shear 

forces had little effect on the calculated stresses (Figure 4-2). The vertical position of the 

lower actuator, at the maximum load, was analyzed for changes in the displacement of 

the package, or for the permanent collapse of the package. The vertical actuator of the 

AMTI Boston has a resolution of 0.025 mm. 
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Figure 4-2- von Mises Stress Plots of Maximum Load in Gait Cycle: a) Vertical 

Load of 2600 N, and b) Vertical Load of 2600 N Superimposed with Corresponding 

Shear Forces in Percent Gait Cycle (Anteriorly Directed Load of 109 N and Internal 

Torque of 0.9 Nm). 

4.2.3 Reduced Vertical Load 

In the computational model of the prototype presented in Chapter 2, the peak stresses 

were about 800 MPa at the maximum vertical load of 2600 N. Considering that this stress 

exceeded the fatigue threshold of 550 MPa, an additional prototype was subjected to the 

same cyclical experiment as the previous prototype but at a reduced load. Additionally, 

load and displacement data were acquired every 2k cycles.  The maximum load was 

reduced to 1400 N where the peak von Mises stresses did not exceed 500 MPa based on 

the computational model (Figure 4-3).  
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Figure 4-3- Stress plot of the package at a reduced compressive load of 1400 N. The 

peak stress was below 550 MPa. The red arrow denotes the location of the peak 

stress. 

4.3 Results 

4.3.1 Maximum Vertical Load 

Fatigue testing was terminated after 140 000 cycles. Cracks were visible at the medial 

and lateral locations of the package (Figure 4-4). The vertical position of the lower 

actuator is relative to the flexion axis of the AMTI Boston’s upper actuator. Therefore, a 

decrease in the vertical position at the maximum load indicates the lower actuator 

translated to a more proximal position relative to the upper actuator. The vertical 

position, at the maximum applied load, of the lower actuator, decreased by 0.1 mm at 30k 

cycles.  This is assumed to be when the cracks developed (Figure 4-5). The gradual 

decrease prior to 30k cycles may be due to creep deformation of the PE bearing and 

plastic deformation of the prototype. 
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Figure 4-4- Locations of cracks on the lateral side of the prototype after fatigue 

testing was terminated. Cracks were located in the same locations on the medial 

side. 
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Figure 4-5- Vertical position of lower actuator at the maximum applied load of 

2600 N in 10 000 cycle intervals. 

4.3.2 Reduced Vertical Load 

Despite the reduction in the vertical load, failure occurred around 70k cycles based on the 

decrease in the vertical position of the actuator’s position (Figure 4-6). Cracks were 

located at the anteromedial and anterolateral regions where the peak stresses were 

calculated in the computational model (Figure 4-3). 
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Figure 4-6- Vertical position of lower actuator at the maximum applied load of 

1400 N in 2000 cycle intervals. A decrease in the actuator position becomes 

consistent after 70 000 cycles. 

4.4 Discussion 

In this study, the fatigue performance of the prototype was quantified at the maximum 

vertical load of the gait cycle and at a load below the fatigue threshold of 550 MPa. When 

the prototype was subjected to the maximum axial load of 2600 N, cracks propagated in 

the high stress areas of the computational model in Chapter 2 at 30k cycles (Figure 4-7). 

At the decreased compressive load of 1400 N, a consistent decrease in the actuator 

position occurred at 70k cycles. Although the fatigue life was extended by decreasing the 

applied force, the fatigue strength of the prototype appears to be less than 550 MPa. 

However, there is a lack of knowledge of the fatigue performance of small beam 

structures similar to what was employed in this package design. The fatigue strength of a 
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material is determined experimentally and dependent on the parameters related to the 

applied load. For instance, a beam undergoing reversed bending will have a different 

fatigue strength as when the same part is subjected to unidirectional bending. The 

previously assumed fatigue strength of 550 MPa may not be applicable. Although the 

computational and experimental models lack absolute agreement, the patterns and crack 

locations are useful to know. 

 

Figure 4-7- Comparison between the Results from Fatigue Testing and the FE 

Model 
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In its solid form, Ti6Al4V has a high fatigue strength thereby making it a popular 

material for implants. However, there can be a decrease in fatigue strength of Ti6Al4V 

when additively manufactured. The premature failure of the prototype may be attributed 

to factors inherent to AM Ti6Al4V. The internal porosity, the presence of unfused 

material, residual stresses, sensitivity to defects and the microstructure can impact the 

fatigue performance of AM Ti6Al4V (Ghouse et al., 2018; Sterling et al., 2015; Wycisk 

et al., 2015; Yadollahi and Shamsaei, 2017).   

Parameters in the AM process, such as alloy used and scanning parameters, can be 

optimized to improve the fatigue performance of the prototype. Ghouse et al. compared 

the fatigue strength differences between commercially-pure titanium (CP-Ti), Ti6Al4V, 

tantalum (Ta), and TiTa. Ti6Al4V had the lowest fatigue strength: modulus ratio when 

compared to the other aforementioned alloys. Ta and TiTa had fatigue strength: modulus 

ratios 8% greater than CP-Ti, and 19% greater than Ti6Al4V (Ghouse et al., 2018). The 

laser parameters and scanning strategies can be considered for the fatigue strength 

optimization of Ti6Al4V. Ghouse et al. observed that a low laser power of 50 W 

increased the fatigue strength of Ti6Al4V by 7% when compared to samples 

manufactured using a high laser power of 200 W. A contour scan strategy improved the 

fatigue strength of Ti6Al4V samples by 8% compared to samples manufactured using 

points or pulsed scanning strategies (Ghouse et al., 2018).  

Post processing of the AM Ti6Al4V can increase the fatigue strength. Post-process heat 

treatment has proven to increase the fatigue strength of Ti6Al4V by eliminating or 

minimizing the residual stresses and porosity (Edwards and Ramulu, 2014; Nicoletto et 

al., 2017; Wycisk et al., 2015). However, the temperature, time, and pressure for both 

annealing and cooling can greatly affect the fatigue strength of the sample. HIP has also 

shown to eliminate internal voids, homogenize the microstructure and relieving residual 

stresses thus improving the fatigue strength of AM Ti6Al4V (Kasperovich and 

Hausmann, 2015; Leuders et al., 2015). In addition to heat treatment, a smooth surface 

finish, achieved by machining or polishing, can mitigate the detrimental effects of surface 
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defects that can be sites for stress concentrations, and crack development (Sterling et al., 

2015; Yadollahi and Shamsaei, 2017). By considering the alloy used, laser parameters, 

scanning strategies, surface finish, and heat treatment, the adverse effects of the inherent 

anisotropic mechanical properties of as-built SLM Ti6Al4V can be mitigated. 

Nicoletto et al. were able to achieve fatigue strengths of AM Ti6Al4V that were 

comparable to its wrought form. By heat treating the specimen at a temperature of 740°C 

for more than an hour, followed by a period of vacuum cooling at 530°C for an additional 

hour and cooling to room temperature in argon, and subsequent surface machining had a 

fatigue strength of 500 MPa at 107 cycles (Nicoletto et al., 2017). The heat treatment used 

by Nicoletto et al. vary from what was used in the fabrication of the current prototype. 

HIP or a heat treatment procedure employed by Nicoletto et al. can improve the fatigue 

strength of future package designs. However, depending on the complexity of the 

geometry being additively manufactured, surface machining may not be feasible thus 

rendering the structure susceptible to crack initiation from surface defects. Surface 

machining of the current package design may not be feasible with the thin gaps between 

the beams.  

There are discrepancies between the computational and the experimental model, mainly 

in the geometry. There were defects in the beams that were not present in the 

computational model. For instance, some of the beams were distorted from the 

manufacturing process (Figure 4-8e) and layers may have shifted during printing (Figure 

4-9). The defects can introduce stress concentrations and alter the load transmission 

through the elastic bodies. These differences can introduce stresses in the experimental 

model that may not be accounted for in the computational model. 
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Figure 4-8- Posterior view of the computational model and a prototype that 

illustrate the distortion that was present in some of the elastic bodies: a) the area of 

interest is highlighted in the red circle, b) magnified view of computational model, 

and c) magnified view of prototype. 
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Figure 4-9- Example of a shift in the printing layers: a) posteromedial view of 

computational model, b) magnified view of computational model, and c) magnified 

view of prototype. 

4.5 Conclusion 

The current prototype may not have the fatigue strength to withstand high cycle fatigue 

(>106 cycles). However, this can be attributed to the inherent porosity, surface defects, 

and unfused material in AM Ti6Al4V. There are several factors that can address the 

microstructure of the material and AM Ti6Al4V’s poor notch sensitivity. The choice of 

alloy, heat treatment, laser parameters, scanning strategies, and surface finish are 

variables that can be optimized to improve fatigue strength immensely. In this study, the 
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high stress areas in the computational models corresponded with where cracks were 

initiated. 
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Chapter 5  

5 Sensitivity Analysis of Polyethylene Thickness and the 
Effect of Physiological Loading Assumptions 

Overview: In the operating room, the TKR components used are modular in design to 

ensure correct sizing, and joint stability. With this in mind, the influence of different 

implant sizes on the mechanical behaviour of the package should be considered. This 

chapter quantifies the package’s sensitivity to PE insert thickness. In addition to 

considerations behind PE insert thickness, the assumption that the tibiofemoral forces in 

the gait cycle can be accurately approximated with a vertical compression loading 

scenario will be examined.  

5.1 Introduction 

Implant sizing is an important factor that is considered to ensure stability of a TKR 

procedure. Different PE bearing thicknesses need to be considered to restore the joint line 

and equalizing the extension and flexion gaps. If the proximal tibia was excessively 

resected during the TKR procedure, which affects the flexion and extension gaps, a 

thicker PE bearing can restore the joint line (Abdel and Haas, 2014). Therefore, the 

package’s mechanical behaviour and stress from physiological loading should not be 

adversely affected by the PE bearing thickness deemed suitable by the surgeon.  

In the previous studies in this thesis, it was assumed that the consideration of the vertical 

load of the gait cycle would be sufficient for analyzing the stresses and mechanical 

behaviour of the package design. This was assumed because the vertical component 

contributes the largest proportion of force relative to the other components in the gait 

cycle. This assumption overlooks the significance of the other components of loading 

thus overlooking how they affect the stresses in the package. Simulations or experiments 

that only consider vertical loading may underestimate the stresses an instrumented 

implant would actually be subjected to under physiological loading.  
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In this chapter, computational modeling was performed to elucidate the effects PE 

bearing thickness and multiaxial loading have on the current package design. The effect 

of the PE bearing thickness on the mechanical behaviour in the package were quantified. 

In other words, the changes in the stresses and displacements in the package were 

calculated when the PE bearing thickness was altered during loading. Furthermore, 

considering that the vertical component is the largest contributor to the resultant force in 

gait, the viability of assuming a vertical compression loading scenario is representative of 

a loading scenario that considers all load components was examined. 

5.2 Materials and Methods 

Finite element analysis was conducted using Abaqus. A defeatured version of the 

prototype was used for analysis. Simulations with loads based on Orthoload were applied 

to the model (Bergmann et al., 2014). A rigidly connected reference point was defined 

inferiorly to the bottom surface of the package. An Encastre boundary condition fully 

restrained this reference point. The thickness of the lowest points of a 9 mm and 11 mm 

size 7 Stryker Triathlon Cruciate Retaining (CR) UHMWPE bearing were measured for 

the purpose of determining the position of the reference point where loads were resolved 

in the computational model to replicate the coordinate system used in (Kutzner et al., 

2010). The Ti6Al4V package had the following material properties E = 130 000 MPa 

(Renishaw plc, 2017) and ν = 0.31 (AZoMaterials, n.d.). The package was meshed with a 

global mesh size of 1 mm. Tetrahedral elements were used to mesh the part. For all 

simulations, a self-contact interaction, nonlinear effects of large deformations and 

displacements were defined. 

The Orthoload dataset for AVER75 in the gait cycle was used in the analyses (Bergmann 

et al., 2014). All six components of force were applied to models simulating a 9 mm and 

11 mm thick PE bearing in 1% gait cycle intervals. In two separate models that replicate 

a 9 mm and 11 mm PE bearing, the maximum vertical load in AVER75 of 1960 N was 

applied in 0.01 step increments. Stresses and displacements were analyzed to quantify the 

differences when the shear forces, moments, and the PE insert thickness are considered.  
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5.3 Results 

5.3.1 Axial Force Only versus Six Component Loading 

The deflection and stress were different between the two loading scenarios. The six 

component loading scenario had a larger peak stress than the uniaxial compressive 

scenario (851 MPa and 733 MPa, respectively). Although, the peak stresses occurred at 

48% in the gait cycle, or at the time maximum loads were applied to the package. 

Throughout the stance phase, the stress was greater in the six component loading than the 

vertical loading scenario (Figure 5-1).  

 

Figure 5-1- Comparison between uniaxial compressive loading and six component 

loading. Peak stresses occurred at 48% gait cycle for both loading scenarios. There 

was a 15% difference between load scenarios where the six component loading 

scenario was greatest. 
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When all six components were simulated, the superimposed shear forces created an 

asymmetrical stress and deflection response. The greatest stress and maximum deflection 

were located at the anterolateral portion of the package (Figure 5-2). The maximum 

deflection, under simulated gait, was 0.22 mm (Figure 5-3).  

 

Figure 5-2-Stress Plot of Maximum Six Component Loading: a) anterior, b) 

isometric, c) medial, d) lateral 

 

Figure 5-3- Vertical Displacement Plot of Maximum Six Component Loading: a) 

superior, b) isometric, c) anterior, d) medial, e) lateral 
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Under the loading scenario where only the vertical force was considered, the maximum 

deflection was 0.23 mm in the anterior aspect of the package (Figure 5-4 and Figure 5-5). 

Due to the symmetry of the package and the location of where the load was applied, the 

peak stresses were located in the anteromedial and anterolateral regions of the package.  

 

Figure 5-4- Stress Plot of Maximum Vertical Load: a) anterior, b) lateral, c) 

posterior, d) isometric 

 

Figure 5-5- Vertical Displacement Plot of Maximum Vertical Fz: a) superior, b) 

isometric, c) anterior, d) lateral 
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5.3.2 Effect of Polyethylene Insert Thickness 

There was little difference in the stresses and displacements between the models with 9 

mm and 11 mm PE thicknesses. In the simulations with only a vertical load applied, the 

maximum stress was 733 MPa, and the shear displacements of the top plate’s bottom 

surface did not exceed 10 µm. The largest magnitudes in displacements and stresses were 

located in the anterior portion of the package.  

The mechanical behaviour in the gait cycle simulations were very similar (Figure 5-6). 

The largest stress and displacements were located in the anterolateral region of the 

package. The peak stress was 851 MPa. The percent difference between the peak stress in 

the 9 mm and 11 mm bearing simulations was 0.02%. The shear displacement, along the 

mediolateral axis, ranged from 3 to 5 µm directed in the lateral direction where the 

largest displacement was in the posterior section of the top plate. Along the 

anteroposterior axis, the shear displacements were greatest in the lateral part of the top 

plate (about 6 µm) and decreased towards the medial direction to a minimum of about 2 

µm.  
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Figure 5-6- Comparison of the maximum von Mises stresses calculated in six 

component loading between a 9 mm and 11 mm PE bearing. 

5.4 Discussion 

In this chapter, the package design was not sensitive to the effects of changing the PE 

bearing thickness– there was little difference in the stress and deflection response 

between the 9 mm and 11 mm thick PE bearings. When considering all force and moment 

components in gait, the calculated stresses were greater throughout the stance phase 

compared to when the vertical component was considered. The effects of the shear forces 

and moments appear to have a significant effect on the stresses in the package design. 

The stress distribution and displacements in this chapter are different in the 

computational model presented in Chapter 2. In Chapter 2, the load was applied to a 

reference point offset from the sagittal plane to achieve a medial bias and positioned 

more posteriorly than the one used in this chapter. Additionally, the forces were derived 
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from the tibial forces presented by Bergmann et al (Bergmann et al., 2014). The 

computational models simulate the loading scenario used by Bergmann et al. since the 

design of this package would require the use of a PS or CS TKR system, and the in vivo 

measurements gathered by Bergmann et al. serves as a more accurate representation of 

the forces transmitted in the knee.  

The TKR components were excluded from the simulations in order to simplify the 

analyses. The main objective of this study was to quantify the mechanical behaviour of 

the package design under physiological loading. Therefore, the consideration of the 

contact mechanics of the articulating surfaces, and stresses in the interlocking mechanism 

were omitted due to the increased complexity these factors would introduce. Future work 

can investigate how the presence of the package may affect the interfacing TKR 

components. 

When comparing the effect of PE insert thickness on the mechanical behaviour of the 

package, there was no difference observed. The stresses and displacements of the 

computational model are not sensitive to a 2 mm difference in thickness. The use of a 

thicker PE insert, thicker than the ones used in these analyses, may not reproduce the 

same trend. It can be hypothesized that a thicker PE insert will magnify the effects of the 

shear forces due to the increased moment arm. However, because the computational 

model simulates a linear-elastic model, peak stresses in thicker PE bearings are 

proportional to the change in the PE bearing thickness. Considering the thickness of the 

current package design, the use of a PE insert thicker than 11 mm is highly unlikely 

because of the amount of the proximal tibia required to be resected. 

Although the vertical component in gait has the largest contribution to the resultant force, 

the exclusion of the shear forces and moments may not be advisable. The asymmetrical 

load distribution, due to the shear forces and moments associated with gait, resulted in 

localized increases in stress and displacements. Dismissing all the load components, aside 

from the vertical component, can produce results that may not be representative of what 

would occur in reality. 
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Future iterations should increase the stiffness of the anterior region of the package. Based 

on the location of the coordinate system used in (Bergmann et al., 2014), the magnitude 

of the load transmitted through the anterior region of the package was greater than 

expected in the design process using the loads from ISO 14243. The increased load 

thereby increases the stresses and the likelihood of premature failure.      

5.5 Conclusion 

In this chapter, the sensitivity of the mechanical response of the package was determined 

between computational models that compared the effect of different PE insert thicknesses 

and quantified the differences in the stresses and displacements between a simplified 

simulation where only the vertical component of gait was considered versus a simulation 

with all six load components in gait were considered. The increase in PE insert thickness 

did not change the mechanical behaviour of the package. However, this cannot be said 

when comparing the two loading scenarios. Applying only the vertical force to the 

package did not result in an accurate approximation of the physiological loading in gait 

despite the vertical component having the largest magnitude relative to the other 

components. 

 

  



114 

 

 

 

5.6 References 

Abdel, M.P., Haas, S.B., 2014. The unstable knee: Wobble and Buckle. Bone Jt. J. 96B, 

112–114. https://doi.org/10.1302/0301-620X.96B11.34325 

AZoMaterials, n.d. Properties: Titanium Alloys - Ti6Al4V Grade 5 [WWW Document]. 

URL https://www.azom.com/properties.aspx?ArticleID=1547 (accessed 11.4.19). 

Bergmann, G., Bender, A., Graichen, F., Dymke, J., Rohlmann, A., Trepczynski, A., 

Heller, M.O., Kutzner, I., 2014. Standardized Loads Acting in Knee Implants. PLoS 

One 9, 86035. https://doi.org/10.1371/journal.pone.0086035 

Kutzner, I., Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., Halder, A., Beier, A., 

Bergmann, G., 2010. Loading of the knee joint during activities of daily living 

measured in vivo in five subjects. https://doi.org/10.1016/j.jbiomech.2010.03.046 

Renishaw plc, 2017. Ti6Al4V ELI-0406 powder for additive manufacturing [WWW 

Document]. URL https://resources.renishaw.com/en/details/data-sheet-ti6al4v-eli-

0406-powder-for-additive-manufacturing--94700 

 

 

 



115 

 

 

 

Chapter 6  

6 General Discussion and Conclusion 

Overview: This chapter summarizes the conclusions made to address the research 

objectives presented in Chapter 1. The strengths and limitations of the current thesis 

work are discussed. Future directions in the improvement and development of an energy 

harvesting load sensor for the use of measuring tibiofemoral forces are outlined. Lastly, 

the significance of the current work is highlighted. 

6.1 Summary  

This present work presents a novel method in measuring in vivo tibial forces by using a 

3D printed package designed to house load sensing and energy harvesting elements in 

between the PE insert and tibial tray. This eliminates the need to alter existing TKR 

components. Instead, the package can be designed to be compatible with commercially 

available TKR components. The stacked beam structure of the elastic bodies placed along 

the periphery of the package has shown to provide the deflection response required for 

the TEGs to operate from gait loading.  

In Chapter 2, the iterative design process of a package was outlined. The parameters of 

the stacked beam structures were tuned to provide the desired force-displacement 

relationship when subjected to loads associated with the gait cycle. The design of the 

package was also designed to resist shear forces that could damage the embedded TEGs. 

The package design was also tuned to minimize the stresses when the maximum vertical 

load in gait was applied. 

In Chapter 3, it was noted that the package prototype was more compliant than what was 

expected based on computational models. However, experiments demonstrated that the 

package prototype was capable of deflecting accordingly to the cyclic 

abduction/adduction applied to the package. In other words, the package, in conjunction 

with embedded load sensors, is capable of measuring coronal imbalances. Interpositional 
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load sensing devices, such as this package design, can measure the compartmental loads 

transmitted through a TKR.  

Chapter 4 outlines the fatigue performance of the current prototype. Unfortunately, 

despite the capabilities of manufacturing complex geometries from SLM, the package 

prototype did not have the durability to prove that it can withstand years of use. The 

internal porosity and the defect sensitivity of SLM Ti6Al4V are notable reasons for the 

prototype’s poor fatigue strength. However, the fatigue strength of SLM Ti6Al4V can be 

improved to address the inherent obstacles with SLM Ti6Al4V. HIP has been shown to 

improve the microstructure and density and machining the surfaces of parts can eliminate 

surface defects. 

In Chapter 5, from the computational models, the package is not sensitive to the PE insert 

thickness. So, this package design can most likely be used with varying PE insert 

thicknesses to ensure joint line restoration and equalized extension and flexion gaps. It 

was also deduced that applying a cyclic sinusoidal vertical load is not an accurate 

representation of a loading scenario where all six load components are considered. The 

package sustained higher stresses when all components of loading were considered in the 

analyses. 

6.2 Strengths and Limitations 

Additive manufacturing was used to create a prototype with a complex geometry. Despite 

the ability to manufacture parts that are not feasible with subtractive manufacturing 

techniques, there were some limitations associated with AM Ti6Al4V. Manufacturing 

errors were present in the prototypes such as distorted beams and shifts in print layers. 

AM Ti6Al4V is also notorious for its internal porosity, unfused material, and poor defect 

sensitivity. This may explain the large stiffness discrepancy between the computational 

and experimental models and low fatigue life. 

The prototypes were subjected to vertical loading. It is expected that the other forces and 

moments in gait will have an effect on the mechanical behaviour and stress of the 
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prototype. To address this shortcoming, computational models were developed to 

determine how a six-component loading differs from a loading scenario where only the 

vertical force was considered. Also, the vertical load is the largest force component in 

gait. With this in mind, the TEGs were designed to operate primarily from the vertical 

deflection resulting from vertical loading. 

Gait was the only ADL that was considered in the initial package design. Although other 

ADL considered, the loads applied to the package correspond to ISO 14243. ISO 14243 

is an established standard that is used for the durability testing of knee prostheses.  

The triboelectric effect is an energy harvesting mechanism that has not been harnessed 

for measuring the tibiofemoral forces in knee implants. The TEGs can be used to 

generate usable electricity and measuring forces. However, there are limitations to this 

concept. The durability of the TEGs still needs to be investigated. The use of TEGs 

requires motion to operate optimally, but TKR designs have been developed to eliminate 

motion. Motion between components and within components can accelerate wear and 

lead to implant failure. TEGs may have a nonlinear relationship between the applied 

force and the measured voltage. The TEG’s reliance on the frequency of the contact and 

separation can mean the TEGs are not usable for measuring static loads. Despite the 

drawbacks of using TEGs in knee implants, there are some aspects that are beneficial. 

The use of TEGs can be a solution for powering other load sensors which has been the 

main obstacle behind the development of instrumented implants. If a self-contained, self-

powering load sensing device can be successfully developed, the measurement of 

tibiofemoral loads will no longer be limited to a laboratory setting. 

6.3 Future Directions 

The package was designed to be integrated with the TEGs. With the complete 

triboelectric energy harvester assembly, the energy harvester’s ability to generate usable 

electricity, accurately measure loads, and transmit load data wirelessly still needs to be 

investigated. 
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The package can undergo further iterations. The overall thickness of the package can be 

reduced so that more bone can be preserved in TKR. Other elastic body geometries may 

yield the desired design responses while decreasing the thickness of the package. Despite 

the elastic body geometry used, the package requires sealing with perhaps a hyperelastic 

biocompatible material to isolate the TEGs and the electronics from foreign biological 

substances. 

The fatigue performance of the package was identified to be problematic. Parameters, 

related to AM Ti6Al4V, such as laser power, scanning strategy, alloy, heat treatment, and 

surface finish can be optimized to maximize the fatigue strength of the package. 

6.4 Significance 

This current thesis work presents a novel concept of leveraging the triboelectric effect for 

measuring tibiofemoral forces. The design process of creating an interpositional, 

compliant component can be translated to other energy harvesting components and TKR 

systems. Through experimental testing, the mechanical behaviour and fatigue life of AM 

Ti6Al4V are better understood in applications that require large deflections. The use of 

energy harvesting devices may serve as another approach in better understanding in vivo 

knee mechanics. Such devices can be beneficial in monitoring patient activities 

postoperatively, the refinement of surgical procedures and the improvement of current 

implant designs. 
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Appendices  

Appendix A- Analytical Model Calculations 

 

 

 

E= 130,000 MPa

F-tot= 2600 N

delta= 0.1 mm

Perimeter 235 mm

s= 0 mm

w= 2 mm

b=

L I (based on V equation) F/beam F_total (8 beam config) 1 2 3 4 5 6 7 8 9 10 11 12

1 7.0922E-05 55.31915 442.55 0.094766 0.075216 0.065707 0.059699 0.05542 0.052152 0.04954 0.047383 0.045559 0.043987 0.042611 0.041393

2 0.001134752 66.38298 531.06 0.238796 0.189533 0.165572 0.150432 0.139649 0.131415 0.124833 0.119398 0.114801 0.110839 0.107373 0.104304

3 0.005744681 77.44681 619.57 0.41003 0.325441 0.284299 0.258303 0.239787 0.225648 0.214346 0.205015 0.197122 0.190319 0.184368 0.179097

4 0.018156028 88.51064 708.09 0.601729 0.477592 0.417215 0.379065 0.351893 0.331144 0.314558 0.300864 0.289281 0.279298 0.270564 0.262829

5 0.044326241 99.57447 796.60 0.810241 0.643088 0.56179 0.51042 0.473832 0.445893 0.42356 0.40512 0.389523 0.37608 0.36432 0.353905

6 0.091914894 110.6383 885.11 1.033211 0.82006 0.716389 0.650882 0.604225 0.568598 0.540119 0.516606 0.496716 0.479574 0.464577 0.451296

7 0.170283688 121.7021 973.62 1.26897 1.007182 0.879855 0.799401 0.742098 0.698341 0.663364 0.634485 0.610057 0.589004 0.570585 0.554274

8 0.290496454 132.766 1062.13 1.516261 1.203457 1.051317 0.955185 0.886715 0.834431 0.792638 0.758131 0.728942 0.703786 0.681778 0.662288

9 0.465319149 143.8298 1150.64 1.774097 1.408102 1.23009 1.117611 1.037498 0.976323 0.927423 0.887049 0.852897 0.823463 0.797713 0.774908

10 0.709219858 154.8936 1239.15 2.041679 1.620481 1.415621 1.286177 1.193981 1.123579 1.067304 1.020839 0.981537 0.947663 0.918029 0.891785

11 1.038368794 165.9574 1327.66 2.318343 1.84007 1.607449 1.460464 1.355775 1.275833 1.211932 1.159171 1.114543 1.076079 1.04243 1.012629

12 1.470638298 177.0213 1416.17 2.603529 2.066422 1.805186 1.64012 1.522553 1.432777 1.361015 1.301764 1.251646 1.208451 1.170662 1.137196

13 2.025602837 188.0851 1504.68 2.896756 2.299156 2.008498 1.824842 1.694033 1.594146 1.514302 1.448378 1.392615 1.344555 1.30251 1.265275

14 2.724539007 199.1489 1593.19 3.197605 2.53794 2.217095 2.014365 1.869971 1.75971 1.671573 1.598802 1.537248 1.484197 1.437785 1.396682

15 3.590425532 210.2128 1681.70 3.505708 2.782482 2.430722 2.208458 2.05015 1.929265 1.832637 1.752854 1.685369 1.627205 1.576322 1.531259

16 4.647943262 221.2766 1770.21 3.820739 3.032522 2.649152 2.406915 2.234382 2.102634 1.997322 1.910369 1.83682 1.77343 1.717973 1.668861

17 5.923475177 232.3404 1858.72 4.142405 3.287829 2.872184 2.609552 2.422493 2.279654 2.165475 2.071203 1.991461 1.922734 1.862609 1.809362

18 7.445106383 243.4043 1947.23 4.470445 3.548194 3.099633 2.816204 2.614332 2.46018 2.33696 2.235222 2.149166 2.074997 2.01011 1.952647

19 9.242624113 254.4681 2035.74 4.804618 3.813428 3.331336 3.02672 2.809758 2.644083 2.511652 2.402309 2.309819 2.230106 2.160369 2.09861

20 11.34751773 265.5319 2124.26 5.144708 4.083357 3.567141 3.240963 3.008643 2.831242 2.689437 2.572354 2.473317 2.387962 2.313289 2.247158

21 13.79297872 276.5957 2212.77 5.490515 4.357825 3.806911 3.458808 3.210873 3.021547 2.870211 2.745258 2.639564 2.548471 2.468779 2.398203

22 16.61390071 287.6596 2301.28 5.841857 4.636685 4.050518 3.68014 3.416339 3.214898 3.053877 2.920929 2.808472 2.71155 2.626758 2.551666

23 19.84687943 298.7234 2389.79 6.198565 4.919804 4.297845 3.904851 3.624943 3.411202 3.240349 3.099282 2.979959 2.877119 2.787149 2.707473

24 23.53021277 309.7872 2478.30 6.560481 5.207057 4.548784 4.132844 3.836593 3.610372 3.429544 3.280241 3.15395 3.045106 2.949883 2.865554

25 27.70390071 320.8511 2566.81 6.92746 5.498329 4.803233 4.364027 4.051203 3.812328 3.621385 3.46373 3.330376 3.215442 3.114893 3.025847

26 32.40964539 331.9149 2655.32 7.299367 5.793511 5.061098 4.598313 4.268695 4.016996 3.815802 3.649683 3.509169 3.388066 3.282119 3.188292

27 37.69085106 342.9787 2743.83 7.676072 6.092503 5.322291 4.835623 4.488994 4.224305 4.012728 3.838036 3.690271 3.562917 3.451502 3.352833

28 43.59262411 354.0426 2832.34 8.057459 6.395209 5.58673 5.075881 4.71203 4.43419 4.212101 4.028729 3.873622 3.739941 3.62299 3.519419

29 50.16177305 365.1064 2920.85 8.443413 6.701541 5.854336 5.319017 4.937738 4.646589 4.413861 4.221707 4.05917 3.919085 3.796533 3.688

30 57.44680851 376.1702 3009.36 8.83383 7.011416 6.125036 5.564964 5.166055 4.861444 4.617955 4.416915 4.246863 4.100301 3.972082 3.858531
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M SigmaB b=

1 2 3 4 5 6 7 8 9 10 11 12

5.531915 3695.887 2933.427 2562.585 2328.263 2161.368 2033.925 1932.054 1847.943 1776.797 1715.479 1661.834 1614.327

22.12766 2328.263 1847.943 1614.327 1466.714 1361.576 1281.292 1217.118 1164.131 1119.312 1080.684 1046.89 1016.962

49.78723 1776.797 1410.245 1231.962 1119.312 1039.077 977.8091 928.8348 888.3985 854.1949 824.7161 798.9267 776.0876

88.51064 1466.714 1164.131 1016.962 923.9717 857.7393 807.1636 766.7362 733.3568 705.1224 680.7882 659.4994 640.6462

138.2979 1263.975 1003.218 876.3916 796.2547 739.1773 695.5925 660.7532 631.9877 607.656 586.6854 568.3394 552.0921

199.1489 1119.312 888.3985 776.0876 705.1224 654.5776 615.9811 585.1292 559.656 538.1091 519.5386 503.2923 488.9045

271.0638 1009.997 801.6349 700.2926 636.2581 590.6497 555.8226 527.9838 504.9984 485.5558 468.7989 454.1393 441.1567

354.0426 923.9717 733.3568 640.6462 582.0657 540.3419 508.4812 483.0135 461.9858 444.1993 428.8697 415.4586 403.5818

448.0851 854.1949 677.9749 592.2657 538.1091 499.5362 470.0816 446.5372 427.0975 410.6541 396.4822 384.0839 373.104

553.1915 796.2547 631.9877 552.0921 501.609 465.6525 438.1958 416.2485 398.1273 382.7993 369.5887 358.0314 347.7963

669.3617 747.2344 593.0803 518.1034 470.7282 436.9853 411.2189 390.6227 373.6172 359.2328 346.8355 335.9897 326.3847

796.5957 705.1224 559.656 488.9045 444.1993 412.3581 388.0438 368.6083 352.5612 338.9875 327.2888 317.0543 307.9906

934.8936 668.482 530.5746 463.4996 421.1173 390.9307 367.8798 349.4543 334.241 321.3726 310.2819 300.5792 291.9864

1084.255 636.2581 504.9984 441.1567 400.8175 372.086 350.1463 332.609 318.129 305.881 295.3248 286.0898 277.9113

1244.681 607.656 482.2969 421.3252 382.7993 355.3594 334.406 317.657 303.828 292.1305 282.0489 273.2291 265.4182

1416.17 582.0657 461.9858 403.5818 366.6784 340.3941 320.3231 304.2795 291.0328 279.828 270.171 261.7225 254.2406

1598.723 559.0097 443.6863 387.5957 352.1541 326.9109 307.6349 292.2268 279.5049 268.7438 259.4693 251.3555 244.17

1792.34 538.1091 427.0975 373.104 338.9875 314.6881 296.1328 281.3008 269.0545 258.6959 249.7681 241.9577 235.0408

1997.021 519.0584 411.977 359.895 326.9863 303.5472 285.6489 271.3419 259.5292 249.5373 240.9256 233.3917 226.7197

2212.766 501.609 398.1273 347.7963 315.9939 293.3427 276.0461 262.2201 250.8045 241.1485 232.8263 225.5456 219.0979

2439.574 485.5558 385.3859 336.6656 305.881 283.9547 267.2116 253.8281 242.7779 233.4309 225.375 218.3274 212.086

2677.447 470.7282 373.6172 326.3847 296.5402 275.2835 259.0517 246.0769 235.3641 226.3025 218.4927 211.6602 205.6095

2926.383 456.9831 362.7077 316.8544 287.8813 267.2453 251.4875 238.8915 228.4915 219.6945 212.1127 205.4798 199.6057

3186.383 444.1993 352.5612 307.9906 279.828 259.7693 244.4523 232.2087 222.0996 213.5487 206.179 199.7317 194.0219

3457.447 432.2735 343.0957 299.7217 272.3153 252.7951 237.8893 225.9744 216.1368 207.8154 200.6436 194.3693 188.8129

3739.574 421.1173 334.241 291.9864 265.2873 246.2709 231.7498 220.1424 210.5587 202.4521 195.4653 189.353 183.9399

4032.766 410.6541 325.9364 284.7316 258.6959 240.152 225.9916 214.6727 205.327 197.4219 190.6087 184.6483 179.3697

4337.021 400.8175 318.129 277.9113 252.4992 234.3995 220.5783 209.5305 200.4087 192.6929 186.043 180.2253 175.0732

4652.34 391.5495 310.773 271.4852 246.6607 228.9795 215.478 204.6856 195.7747 188.2374 181.7412 176.058 171.025

4978.723 382.7993 303.828 265.4182 241.1485 223.8624 210.6626 200.1114 191.3997 184.0307 177.6797 172.1235 167.203
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Sigma_shear

1 2 3 4 5 6 7 8 9 10 11 12

116.7485 73.54697 56.12684 46.33169 39.92744 35.35769 31.90456 29.18713 26.98297 25.15271 23.60422 22.27395

92.66337 58.37427 44.5479 36.77348 31.69043 28.06342 25.32267 23.16584 21.4164 19.96372 18.73468 17.67885

80.94891 50.99462 38.91618 32.1246 27.68414 24.51566 22.12139 20.23723 18.70895 17.43991 16.36625 15.4439

73.54697 46.33169 35.35769 29.18713 25.15271 22.27395 20.09861 18.38674 16.99821 15.84521 14.86973 14.03171

68.27496 43.01053 32.82318 27.09493 23.34971 20.67731 18.6579 17.06874 15.77974 14.70939 13.80383 13.02589

64.2492 40.47446 30.88779 25.49731 21.97292 19.45809 17.55776 16.0623 14.8493 13.84207 12.9899 12.25783

61.03123 38.44726 29.34075 24.22026 20.87239 18.48352 16.67836 15.25781 14.10556 13.14878 12.33929 11.64389

58.37427 36.77348 28.06342 23.16584 19.96372 17.67885 15.95228 14.59357 13.49149 12.57635 11.80211 11.13698

56.12684 35.35769 26.98297 22.27395 19.19511 16.99821 15.33811 14.03171 12.97206 12.09216 11.34773 10.7082

54.18987 34.13748 26.05177 21.50526 18.53267 16.41159 14.80878 13.54747 12.52439 11.67485 10.95611 10.33865

52.49532 33.06998 25.23712 20.83278 17.95315 15.89839 14.3457 13.12383 12.13274 11.30977 10.6135 10.01536

50.99462 32.1246 24.51566 20.23723 17.43991 15.4439 13.9356 12.74865 11.7859 10.98646 10.31009 9.729045

49.65203 31.27882 23.87021 19.70442 16.98075 15.03729 13.5687 12.41301 11.4756 10.69721 10.03865 9.472897

48.44052 30.51561 23.28777 19.22363 16.56642 14.67038 13.23762 12.11013 11.19559 10.43619 9.793704 9.241758

47.33921 29.82183 22.75832 18.78658 16.18978 14.33684 12.93666 11.8348 10.94106 10.19892 9.571042 9.031645

46.33169 29.18713 22.27395 18.38674 15.84521 14.03171 12.66133 11.58292 10.7082 9.981859 9.367341 8.839424

45.4048 28.60323 21.82835 18.01891 15.52822 13.751 12.40804 11.3512 10.49398 9.782168 9.179944 8.662588

44.5479 28.06342 21.4164 17.67885 15.23517 13.49149 12.17387 11.13698 10.29593 9.597555 9.006696 8.499103

43.75223 27.56218 21.03388 17.36309 14.96305 13.25051 11.95643 10.93806 10.11204 9.426133 8.845827 8.347301

43.01053 27.09493 20.67731 17.06874 14.70939 13.02589 11.75374 10.75263 9.940612 9.266337 8.695869 8.205794

42.31669 26.65784 20.34374 16.79339 14.4721 12.81575 11.56413 10.57917 9.780251 9.116854 8.555588 8.073419

41.66556 26.24766 20.03071 16.53499 14.24942 12.61856 11.38619 10.41639 9.629762 8.976573 8.423943 7.949193

41.05274 25.86161 19.7361 16.29179 14.03984 12.43296 11.21872 10.26319 9.488127 8.844545 8.300044 7.832276

40.47446 25.49731 19.45809 16.0623 13.84207 12.25783 11.06069 10.11861 9.354474 8.719957 8.183126 7.721948

39.92744 25.15271 19.19511 15.84521 13.65499 12.09216 10.91121 9.981859 9.228046 8.602106 8.07253 7.617584

39.40884 24.82601 18.94579 15.63941 13.47763 11.9351 10.76949 9.85221 9.108188 8.490377 7.96768 7.518644

38.91618 24.51566 18.70895 15.4439 13.30915 11.7859 10.63485 9.729045 8.994324 8.384236 7.868073 7.424651

38.44726 24.22026 18.48352 15.25781 13.14878 11.64389 10.50671 9.611816 8.885948 8.283212 7.773268 7.335188

38.00016 23.9386 18.26857 15.08037 12.99587 11.50848 10.38453 9.50004 8.782613 8.186887 7.682873 7.249888

37.57316 23.66961 18.06329 14.91092 12.84984 11.37916 10.26784 9.393289 8.683924 8.094891 7.596541 7.168421
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Bending and Shear Stresses

1 2 3 4 5 6 7 8 9 10 11 12

3812.635 3006.974 2618.712 2374.594 2201.295 2069.283 1963.959 1877.13 1803.78 1740.631 1685.439 1636.601

2420.926 1906.318 1658.875 1503.487 1393.267 1309.356 1242.441 1187.297 1140.728 1100.648 1065.625 1034.641

1857.746 1461.239 1270.878 1151.437 1066.761 1002.325 950.9562 908.6357 872.9039 842.156 815.2929 791.5315

1540.261 1210.463 1052.32 953.1588 882.892 829.4376 786.8348 751.7436 722.1206 696.6334 674.3692 654.6779

1332.25 1046.229 909.2148 823.3496 762.5271 716.2698 679.4111 649.0565 623.4358 601.3948 582.1432 565.118

1183.561 928.873 806.9754 730.6197 676.5505 635.4392 602.687 575.7183 552.9584 533.3807 516.2822 501.1624

1071.028 840.0822 729.6334 660.4783 611.522 574.3061 544.6622 520.2562 499.6613 481.9477 466.4786 452.8006

982.3459 770.1303 668.7096 605.2315 560.3056 526.1601 498.9658 476.5794 457.6907 441.446 427.2607 414.7188

910.3218 713.3326 619.2486 560.383 518.7313 487.0798 461.8753 441.1292 423.6261 408.5743 395.4316 383.8122

850.4445 666.1252 578.1439 523.1143 484.1852 454.6074 431.0572 411.6748 395.3237 381.2635 368.9875 358.1349

799.7297 626.1503 543.3405 491.561 454.9385 427.1173 404.9684 386.741 371.3656 358.1453 346.6032 336.4

756.117 591.7806 513.4202 464.4365 429.798 403.4877 382.5439 365.3098 350.7734 338.2753 327.3644 317.7196

718.1341 561.8534 487.3698 440.8217 407.9114 382.9171 363.023 346.654 332.8482 320.9791 310.6178 301.4593

684.6986 535.514 464.4445 420.0411 388.6524 364.8167 345.8466 330.2392 317.0766 305.761 295.8835 287.1531

654.9952 512.1187 444.0835 401.5859 371.5492 348.7428 330.5937 315.6628 303.0716 292.2479 282.8001 274.4499

628.3974 491.173 425.8558 385.0651 356.2393 334.3548 316.9408 302.6158 290.5362 280.1528 271.0899 263.08

604.4145 472.2896 409.4241 370.173 342.4391 321.3859 304.6348 290.8561 279.2378 269.2515 260.5355 252.8326

582.657 455.1609 394.5204 356.6663 329.9233 309.6243 293.4747 280.1915 268.9918 259.3657 250.9644 243.5399

562.8107 439.5391 380.9289 344.3494 318.5103 298.8994 283.2984 270.4673 259.6493 250.3517 242.2375 235.067

544.6195 425.2223 368.4736 333.0626 308.0521 289.072 273.9738 261.5571 251.0891 242.0926 234.2415 227.3037

527.8725 412.0437 357.0093 322.6744 298.4268 280.0274 265.3923 253.3571 243.2111 234.4919 226.883 220.1594

512.3937 399.8649 346.4154 313.0752 289.5329 271.6703 257.4631 245.7805 235.9323 227.4692 220.0842 213.5587

498.0358 388.5693 336.5905 304.1731 281.2852 263.9204 250.1103 238.7547 229.1827 220.9573 213.7799 207.438

484.6737 378.0585 327.4486 295.8903 273.6114 256.7101 243.2694 232.2182 222.9032 214.899 207.9148 201.7438

472.201 368.2484 318.9168 288.1605 266.4501 249.9815 236.8856 226.1186 217.0435 209.2457 202.4419 196.4304

460.5261 359.067 310.9322 280.9267 259.7485 243.6849 230.9119 220.4109 211.5603 203.9557 197.3207 191.4586

449.5703 350.452 303.4406 274.1398 253.4611 237.7775 225.3075 215.0561 206.4162 198.993 192.5163 186.7943

439.2647 342.3493 296.3948 267.757 247.5483 232.2222 220.0372 210.0205 201.5789 194.3262 187.9986 182.4083

429.5496 334.7116 289.7538 261.7411 241.9754 226.9865 215.0701 205.2748 197.02 189.9281 183.7409 178.2749

420.3725 327.4976 283.4815 256.0594 236.7122 222.0417 210.3792 200.7929 192.7146 185.7746 179.7201 174.3714



123 

 

 

 

Appendix B- Simplified Design Iterations using OFAT 

 

 

Factors min inc max

h 0.5 0.5 2

L 10 2 26

r 0.25 0.25 0.5

Responses Target Value

sigma_vm [Mpa] 550

d [mm] 0.2
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Factors Repsonses

Test Run h L r sigma_vm d Notes

1 1 6 0.25 1113 0.1948

2 1 8 0.25 1774 0.4918

3 1 10 0.25 2200 1.001 beams come into contact; 

4 1 12 0.25

5 1 14 0.25

6 1 16 0.25

7 1 18 0.25

8 1 20 0.25

9 1 22 0.25

10 1 24 0.25

11 1 26 0.25

12 1.5 6 0.25 632.4 0.079

13 1.5 8 0.25 984.4 0.1867

14 1.5 10 0.25 1414 0.38

15 1.5 12 0.25 1896 0.6879

16 1.5 14 0.25

17 1.5 16 0.25

18 1.5 18 0.25

19 1.5 20 0.25

20 1.5 22 0.25

21 1.5 24 0.25 1.02E+06 60.25

beams come into contact; 

nonlinear problem

22 1.5 26 0.25 7.72E+05 283

beams come into contact; 

nonlinear problem

23 2 6 0.25 4.00E+02 0.04426

probed stresses at bends 

because of stress 

singuarity

24 2 8 0.25 6.08E+02 0.09934

probed stresses at bends 

because of stress 

singuarity

25 2 10 0.25 815 0.196

26 2 12 0.25 594 0.165

27 2 14 0.25 27060 0.3095

beams come into contact; 

nonlinear problem

28 2 16 0.25 347200 0.3115

beams come into contact; 

nonlinear problem

29 2 18 0.25

30 2 20 0.25
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31 2 22 0.25

32 2 24 0.25

33 2 26 0.25

34 1 6 0.5 839.2 0.1744

35 1 8 0.5 1358 0.4497

36 1 10 0.5 1999 0.97

37 1 12 0.5 1591 1.004

contact; mesh adaptation 

failed at 2nd iteration

38 1 14 0.5 3.13E+06 41.69

beams come into contact; 

nonlinear problem

39 1 16 0.5

40 1 18 0.5

41 1 20 0.5

42 1 22 0.5

43 1 24 0.5

44 1 26 0.5

45 1.5 6 0.5 388.9 0.07167

Stress singularity at fillet 

locations; probed 

stresses

46 1.5 8 0.5 631.9 0.1722

Stress singularity at fillet 

locations; probed 

stresses

47 1.5 10 0.5 1919 0.3547

stress singularity at fillet 

locations

48 1.5 12 0.5 1300 0.6478

stress singularity at fillet 

locations; probed stress 

result

49 1.5 14 0.5

50 1.5 16 0.5

51 1.5 18 0.5

52 1.5 20 0.5

53 1.5 22 0.5

54 1.5 24 0.5

55 1.5 26 0.5

56 2 6 0.5

not possible with this h 

and H value

57 2 8 0.5

58 2 10 0.5

59 2 12 0.5

60 2 14 0.5

61 2 16 0.5

62 2 18 0.5

63 2 20 0.5

64 2 22 0.5

65 2 24 0.5

66 2 26 0.5
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Whittled Results

Factors Repsonses

Test Run h L r sigma_vm d Notes

1 1 6 0.25 1113 0.1948

2 1 8 0.25 1774 0.4918

3 1 10 0.25 2200 1.001 beams come into contact; nonlinear problem; probed stresses at bends because of stress singuarity

4 1.5 6 0.25 632.4 0.079

5 1.5 8 0.25 984.4 0.1867

6 1.5 10 0.25 1414 0.38

7 1.5 12 0.25 1896 0.6879

8 2 6 0.25 400 0.04426 probed stresses at bends because of stress singuarity

9 2 8 0.25 608.1 0.09934 probed stresses at bends because of stress singuarity

10 2 10 0.25 815 0.196

11 2 12 0.25 594 0.165

12 1 6 0.5 839.2 0.1744

13 1 8 0.5 1358 0.4497

14 1 10 0.5 1999 0.97

15 1.5 6 0.5 388.9 0.07167

16 1.5 8 0.5 631.9 0.1722

17 1.5 10 0.5 1919 0.3547

18 1.5 12 0.5 1300 0.6478

Adjusting L (H=6mm)

Factors Repsonses

Test Run h_s h_l L r_s r_l sigma_vm F_R

1 0.5 4 8 0.25 0.75 1128 1200

2 0.75 3.5 8 0.5 0.75 956.2 1293

3 0.75 3.5 8.25 0.5 0.75 741 1205

3 0.75 3.5 8.5 0.5 0.75 733.7 1116

4 0.75 3.5 8.75 0.5 0.75 695.7 1035
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Appendix C: Axial Loading of Rectangular Models 

Methods 

Computational Model 

Rectangular models with S-shaped beams were created using CAD software 

(Solidworks). S-shaped beams, positioned along the edges of the model, provide 

deflection in the entire model through bending. Three configurations with identical beam 

geometries were tested. However, the three models differ in thickness and in the number 

of beams along the periphery. Two of the configurations consist of having the S-beams 

located along two opposing sides, but the thickness of the beams vary where one 

configuration had a beam thickness of 2 mm and the other configuration had a beam 

thickness of 3mm. These parts will be referred to as D2 and D3, respectively. The third 

configuration has the same beam geometry as D3, but the beams are located on all four 

sides of the part. This configuration will be referred to as Q3 hereinafter. The three 

rectangular models are presented in the table below. 
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Rectangular models with S-beam design. 

These models were used to develop computational models that calculated the stiffness of 

the parts during axial compression. Solidworks Simulation was used to perform static 

analyses on the parts. A fixed restraint was applied to one of the corners on the bottom 
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surface of the part and a roller/slider was applied to the bottom surface. A normal force 

applied to the top surface of the part. The default tetrahedral element mesh with a size of 

1.6 mm was used. Local mesh refinement was achieved by using the h-adaptive mesh 

refinement where target accuracy was set to 99% and was set to run five iterations. The 

models accounted for large displacements so that changes in the stiffness would be 

updated as the model deformed during the analyses. Because the stiffness varies between 

the different configurations, the maximum applied loads were 600 N, 1200 N and 2400 N 

for the thin beam, thick beam and eight beam configurations, respectively. These loads 

correspond to the load that resulted in von Mises stresses equal to the yield strength of 

Ti6Al4V.  

 

Locations of boundary conditions and load application: (a) a fixed restraint was 

defined to a corner on the bottom surface of the part, (b) a roller/slider was defined 

to the bottom surface and (c) the compressive load was applied to the top surface of 

the rectangular models. 

Experimental Model 

Experimental testing was performed on 3D printed versions of the CAD generated parts. 

The 3D printing parameters were identical to what was used on the package prototype 

(Table 3 1). These 3D printed parts were compressed using a TTD Series mechanical 

testing machine (Adelaide Testing Machine (ATM), Inc., Toronto, ON). Compression 

plates were secured to the machine’s fixture adapters. The part being tested was placed in 

the centre of the bottom compression plate. Once in position, by manually controlling the 

position of the crosshead using the dial responsible for actuation, the crosshead was 

lowered at a loading rate of 6 mm/min until contact was achieved. The initial force and 

crosshead position were recorded. Again, by manually controlling the crosshead position, 



130 

 

 

 

the force and position were recorded in approximately 100 N increments. As in the 

computational models, the maximum applied loads were 600 N, 1200 N and 2400 N for 

the thin beam, thick beam and eight beam configurations, respectively. The experimental 

stiffness of the three configurations, calculated from the measured loads and crosshead 

displacements, were compared to the computational models’ stiffness. 

Results 

Axial Loading of Rectangular Models 

The stiffness in the 3D printed rectangular models and their respective computational 

models had a similar trend as what was observed with the prototype. The results are 

summarized in the table below. D2, D3 and Q3 had stiffness values 61%, 59% and 67% 

less than what was calculated in the computational models, respectively. 

 

Tabulated stiffness from computational and experimental models. The 

manufactured parts have shown to be more compliant than what was determined in 

the computational models. 

Discussion 

In addition, 3D printed rectangular models were subjected to axial loading. The axial 

compression testing of additional rectangular models yielded similar results as the 

prototype— the stiffness of the as-built rectangular parts were about 60% less than the 

computational model’s stiffness. Overall, from the axial testing performed on these 3D 
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printed specimens, the compliance of as-built 3D printed parts were consistently lower 

than what was expected based on the computational models. 

  



132 

 

 

 

Appendix D: Stiffness Calculation of Single Silicone Spacer 

w = 15 mm, L = 6 mm, h = 18 mm 

A = 15 x 18 = 270 mm2 

Shore A Hardness = 25 

E = 0.949 N/mm2 

ksilicone = EA/L = (0.949)(270)/6 = 42.7 N/mm 

Appendix E: AP Translation and IE Rotation Testing 

Methods 

The addition of an internal-external (IE) rotation of ±10º, and an anteroposterior (AP) 

translation of ±5 mm were tested in separate subsequent loading scenarios.    

Results 

The Flexiforce sensors measured changes in the load distribution when a cyclic AP 

translation was applied. Loads reached their highest magnitude as the tibia translated 

anteriorly with respect to the femur. As the tibia translated posteriorly, the measured 

compartment loads decreased. During IE rotation testing, the measured medial 

compartmental load had a larger range than the lateral compartment. The medial condyle 

was more mobile along the AP axis; the joint seemed to exhibit a lateral pivot. 
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Flexiforce measurements during anteroposterior translation. 
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Flexiforce measurements during cyclic internal/external rotation. 
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Appendix F: Copyright Approval 
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Appendix G- Mechanical Testing Machine Technical Data Sheets 

Instron 8874 Mechanical Testing Machine 
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Adapted from: https://www.instron.us/-/media/literature-library/products/2012/10/8874-

servohydraulic-fatigue-testing-system.pdf?la=en 
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Instron Load Cells 
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(Adapted from: https://www.instron.us/-/media/literature-

library/products/2005/06/dynacell-fatigue-rated-load-cells.pdf?la=en-

us&hash=35B791E3BD0C0B1AA5142F5E4408B4066304A5C6) 
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8800 MiniTower Control Electronics  
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(Adapted from: https://www.instron.us/-/media/literature-library/products/2012/10/8800-

minitower-control-electronics.pdf?la=en-US) 
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AMTI VIVO Joint Simulator 
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(Adapted from: https://www.amti.jp/AMTI-VIVO-Brochure-Rev2-HiRes.pdf) 
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AMTI Boston 
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(Adapted from: https://www.yumpu.com/en/document/read/42207110/amti-boston) 
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