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i 

 

Abstract 

 

Gas flares have been distinguished as a potential major source of hydrocarbon emissions from 

refineries and chemical plants. Flaring is the burning of waste gasses through a flare stack or 

other combustion device. By generating atmospheric turbulence in wind tunnel, an in-depth 

study has been conducted to capture the mechanics involving the reactive jet and stack-wake 

regions, which resembles the real world scenario of gas flaring, but at a reduced scale. In this 

study, a methodology has been described to generate atmospheric turbulence by passive grid 

to obtain the ideal turbulence intensities (Iu) and length scales (Lx) for model flare stacks. 

The entire flame is depicted by capturing flame images using multiple cameras. How the 

upstream turbulent flow interacts with non-premixed reactive jets at low velocity ratios is 

examined. The size of the recirculation zone decreases with an enhanced turbulent cross-wind. 

In addition to that, a comprehensive study of discrete flame packets are carried out using 

instantaneous images. The colour of the flame is closely analyzed in order to distinguish the 

mixing phenomena of crossflow fluid and jet fluid in the near field. Moreover, an empirical 

equation is proposed for predicting flame length in the presence of cross-wind. The changes in 

flame length, discrete flame packets, and colour are monitored for the different upstream 

turbulent cross-winds. It is observed in the current study that cross-wind turbulence affects the 

flame lengths, wake recirculation zone, vertical and lateral spread of the flame. 

Keywords: Atmospheric turbulence; flame length; flame spread; discrete flame packets 
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Summary for Lay Audience 

 

Gas flaring from industrial establishments and production sites are a common real world 

phenomenon. In 2012, researchers report tracking flares using an instrument aboard a NASA 

weather satellite that takes images of Earth in infrared and visible light which indicated that 

the total flared gas volume was approximately 143 billion cubic meters (BCM), corresponding 

to 3.5% of global production. Flared gas contributes significantly to global warming since the 

burned product CO2 is directly responsible for enhancing greenhouse effects. Johnson and 

Kostiuk(2002) reported that some of the flared gas remain unburned due to the presence of 

strong cross-wind. The unburned fuel (specifically methane) is twenty times more harmful in 

causing greenhouse effects. 

In the current study, atmospheric turbulence is generated in reduced scale in the wind tunnel. 

Gas flaring phenomena is observed for different turbulence conditions. Multiple cameras are 

used for flame visualization. An empirical equation is provided to predict flame length for 

methane rich fuel. The changes in flame length, discrete flame packets, dispersion or spread of 

visible flame, and the colour of flames are monitored for the different upstream turbulent 

conditions. The current study shows that crossflow turbulence affects the above mentioned 

properties. The current study suggests that tracking unburned fuel will assist to identify 

turbulence effects on flaring phenomena more clearly. 
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Chapter 1  

1 Introduction 

 

1.1 Background 

 

The jet injected in a cross stream is a classical three-dimensional flow which is significant 

in a wide range of engineering practice. The jet in crossflow (JICF) or transverse jet is 

utilized in dilution or primary air jet injection in gas turbine combustors, to accomplish 

mixture ratio and NOx control as well as turbine hot section cooling; in film cooling of 

turbine blades; in primary fuel injection in high speed air breathing engines; and in thrust 

vector control for missiles and other high speed vehicles (Karagozian, 2014). In addition 

to mechanical engines, JICF studies are important for environmental cases, such as the 

effluent from a chimney into the environment and dispersion of particles. In the above-

mentioned applications, a gaseous jet is injected into relatively quiescent surroundings or 

large scale cross flows. 

Flaring of gas from industrial establishments in low jet to cross flow velocity ratios (r) is a 

continual real world happening (fig. 1.1). In 2012, researchers reported tracking flares 

using satellite images of Earth in the infrared and visible light range. These images 

indicated that the total flared gas volume was approximately 143 (13.6) billion cubic meters 

(BCM), corresponding to 3.5% of global production (Nature, 2016).  Ninety percent of the 

flared gas volume was found in upstream production areas, 8% at downstream refineries 

and 2% at liquefied natural gas (LNG) terminals (Christopher et al., 2016). Those flared 

gases contribute to global warming as the burned product, CO2, a greenhouse gas.  

In most of the research cases, the jet in cross flow has been investigated for a round 

axisymmetric jet with mean velocity, Uj, injected perpendicularly into a steady crossflow 

with velocity, U∞ ((Keffer and Baines, 1963), (Fric and Roshko, 1994), (Kelso et al. 

,1996)). Flow separation at leading edge, inclination of jet due to interaction with cross 
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stream, evolution of vorticity in the jet shear layer due to velocity-difference or density 

difference ((Z M Moussa, 1977), (J Andreopoulos, 1985), (Karagozian, 2010)) as well as 

pressure difference between the upstream and downstream region of circular jet stack (K 

Mahesh(2013)) are important characteristics that control the near field of the JICF.  

The Jet Flame in Cross Flow (JFICF) exhibits a similar phenoma as the cold jet in 

crossflow. In this case, the heat released by combustion influences the flow field. Most of 

the experimental research on JFICF has been conducted at high velocity ratios. However, 

Brzustowski(1976), Huang and Chang(1994b), Kostiuk et al.(2000) focused on the study 

of flames at low velocity ratios. Smooth crossflows (i.e., low turbulence) is considered 

during experiments conducted in wind tunnels. 

 

 

 

 

 

Figure 1.1: Large amount of gas is burned by gas flares [Shutterstock]. 
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1.2 Jet in Cross Flow  

 

Inherently, the jet in cross flow involves the perpendicular injection of jet fluid with a 

characteristic velocity, Uj, into a cross-flow, which has a velocity, U∞.  The jet is injected 

through a uniform cross-sectional nozzle elevated above from the floor or flush to a wall 

(fig. 1.2). As the jet fluid trajectory bends into the cross-flow direction, the characteristics 

of the interaction in terms of vorticity dynamics, shear layer stability, jet fluid penetration, 

and scaler mixing are highly dependent upon several flow parameters (Getsinger, 2012). 

The dominating flow parameters are velocity ratio (r), density ratio (s) and momentum flux 

ratio (J) defined as: 

 𝑟 =
𝑈𝑗

𝑈∞

 1.1 

 𝑠 =
𝜌𝑗

𝜌∞

 1.2 

 𝐽 =
𝜌𝑗 𝑈𝑗

2

𝜌∞ 𝑈∞
2

 1.3 

 

 

Figure 1.2: Schematic of traverse jet and relevent vortical structures 

(Modified from Fric and Roshko(1994)). 
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1.2.1 Cross-flow shear layer characteristics 

 

Cross-flow shear layer instabilities are broadly assumed as a reason for the Kelvin-

Helmholtz(KH) instability (Kelso et al., 1996 ; Fric and Roshko, 1994). KH instability 

appears because of velocity difference or density difference of two fluids as they interact 

with each other. Experimental observations (2 < r < 10) by Fric & Roshko (1994) 

distinguished four distinct structures in the floor flushed transverse jet: the jet shear-layer 

vortices, the system of horseshoe vortices, counter-rotating vortex pair, and the wake 

vortices. In contrast, experiments with a thin slit in cross-flow (Blanchard et al., 1999) 

assert that the nearfield instabilities of JICF is not a result of the Kelvin-Helmholtz 

instability. In addition to that, Camussi et al.(2002), after conducting a water tunnel 

experiment at low velocity ratio (1.5< r <4.5), also suggest that shear layer instabilities of 

JICF are different than the Kelvin-Helmholtz instability and more likely a result of waving 

or flapping of the jet flow. Both Camussi et al.(2002) and Blanchard et al. (1999) conducted 

their study at a low Reynolds numbers. This might be reason that the results of Kelso et 

al.(1996) and Fric and Roshko(1994) is more widely accepted.  

Figure 1.3 represents the evolution of a vortex loop for the cold jet at low velocity ratio. 

The water tunnel flow visualization study of Lim et al.(2001) shed some light on the ‘lateral 

roller’ vortices on both the windward and leeward sides of the jet. In detail, Yuan et 

al.(1999) identified some near field structures which are the result of the Kelvin-Helmholtz 

instability and lead to ‘lateral roller’ that extend upward and downstream. Perturbations 

from the lateral rollers cause ‘vertical streaks’ or ‘packet’ type structures that are convected 

downstream. Lim et al.(2001) term these as loop type structures (fig. 1.3(a,b)) and add that 

at low velocity ratios(typically 1 < r), those loop structure have been found to form only 

on the windward side (fig. 1.3c) of the jet. The orientation of their vortex loops suggests 

that ‘jet structures’ have transformed into ‘wake structures’. Moreover, this model suggests 

that the large-scale structures of JICF consist essentially of loop vortices, that are not 

caused by the folding of the vortex rings which is unlike the observation given by Kelso et 

al.(1996). At low velocity ratio (r < 1), the regular structures are broken up by the action 
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of the upstream shear layer and evolve as chaotic flow structures (Huang and Chang 

(1994)).    

 

1.3 Reacting jet in cross flow 

Reacting or combusting jets inaugurate some interesting phenomena, which alter the flow 

field notably. Since solution gas flares operate by introducing a jet of fuel to an oxidizing 

environment (i.e., cross flowing air), combustion occurs only after the fuel has mixed by 

molecular diffusion with a stoichiometric amount of oxygen in the air (Majeski 2000). 

Reacting jets can be classified into two broad regimes: premixed diffusion flames and non-

premixed diffusion flames. A single gas or a composition of gaseous fuels, mixed with 

oxygen before being exposed to a combusting environment, are called premixed diffusion 

flames (such as Bunsen flames). On the contrary, fuels that do not come in close contact 

with oxygen before being exposed to the combusting environment are termed as non-

 

Figure 1.3: Details sketch of Lim et al.(2001) model. a) Evolution of vortex loops, b) 

section of the depicted jet, c) Wake structure of the nozzle at velocity ratio 1 (T H New 

(1998)). 

Side arm

Upstream vortex loop
Leeside vortex loop

Crossflow

Crossflow

(b)

(a)
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premixed diffusion flames. Most of the gas flaring phenomena in the real world are of the 

non-premixed class. This thesis will be constrained to discussions of non-premixed 

diffusion flames. 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the momentum flux ratio (J), the jet flame in cross flow can be classified as either 

a lifted diffusion flame or a non-lifted diffusion flame(fig. 1.4). Lifted flames appear when 

the momentum flux ratio is very high. It is noticed that lifted diffusion flames may occur 

when the flame is ignited below some critical cross flow velocity (U∞) and then raising the 

jet velocity (Uj) gradually. On the other hand, when the upstream velocity is higher than a 

certain value, lifted flames never happen (fig. 1.4). Non-lifted flames are classified into 

sub-classes (Huang and Chang (1994b)) and denoted as down-washed, flashing, 

developing, dual, flickering and pre-blow-off (fig. 1.5). When the jet-to-wind momentum 

ratio is very small, and the flammable region is located around the down-washed  

 

Figure 1.4 :  Typical sketches of flames 

(a) liftable flame, (b) never-lift flame 

(Huang and Chung (1994b)). 
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recirculation area in the near wake of the tube. The jet body is flushed by the cross stream 

and curved downward to form a recirculation area due to the down-wash effect around the 

burner tip area. For a larger velocity ratio, a time-varying intermittent blue flame 

downstream of the stack is termed as a flashing flame and in developing flames, this 

intermittency stabilizes so that a constant axisymmetric flame extends from the wake-

stabilized portion, which is shrinking with increased r. Then for a larger jet momentum 

increases, the flames start shortening and the dual-flame patterns appears. The flame 

 

Figure 1.5: The six different flame modes 

observed by Huang and Chang (1994b): a) 

down-washed, b) flashing, c) developing, d) dual, 

e) flickering, and   f) pre-blowoff Hatch marks 

indicate yellow flame and non-hatch marks 

indicated blue. 

 

 

(a)

(b)

(c)

(d)

(e)

(f)
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regains its elongation after it reaches the shortest length at which the dual-flame pattern is 

most obviously observed. In flickering flames, the downstream part of the flame begins to 

flicker and its cross-stream dimension grows. In the end, the small blue flame in the 

recirculation area disappears and the flame length does not appreciably increase with jet 

velocity. Just before blow-off, the blue zone anchors to the lee side of the bent jet body 

above the tip of the burner instead of staying in the wake of the burner. No trace of flame 

in the recirculation area behind the burner is found (fig. 1.5e). Huang and Chang(1994) 

modes are descriptive, detailed and well-founded for propane rich fuels. However, the 

demarcation of the modes is not well defined. Later, Huang and Wang (1999) redefined 

them in terms of the relative jet and cross flow momenta. Their five modes and range of 

applicability are: down-wash (J < 0.1)) cross-flow dominated (0.1 < J < 1.6), transitional 

(1.6 < J < 3.0), jet-dominated (3.0 < J < 10), and strong jet (J > 10). The later classification 

is lucid compared to the earlier descriptive classification. 

Flame classifications by Gollahalli and Nanjundappa (1995) are relatively simple. They 

classified the flames into two broad types: type-Ⅰ and type-ⅠⅠ. Type-Ⅰ flames exist entirely 

in the downwash zone and type-ⅠⅠ flames have two parts, one stays behind the stack and 

other part exists as an axisymmetric flame. The allocation for these parts depends upon the 

velocity ratio. Majeski (2000) extended the idea and classified a third type of flame, Type 

III, which could be identified by the extinction of the wake-trapped part of the flame. 

The present investigation is focused on flares having velocity ratios between 0.2 < r < 4. It 

may seem more logical to accept the statistical classification of flame given by Huang and 

Wang (1999) for the flame description of the current study. Although Huang and Wang’s 

experiments were performed in a small wind tunnel, flame imaging done by Majeski(2000) 

assists in the comparison of the current result with previous results. 
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1.3.1 Flame trajectory  

 

Previous experimental studies have defined jet trajectories using the local velocity maxima 

(Kamotani & Greber, 1972) or the local concentration maxima (Smith & Mungal, 1998). 

This study defines the trajectory from the time-averaged mean flame image. Details are 

discussed in chapter 3.  Trajectories are the physical path of the flame and are an important 

design parameter when considering the jet fuel concentration (Smith & Mungal,1998).  

 

Scaling parameters are those parameters which helps to collapse the trajectory path (while 

normalized) for different crossflow and jet velocity. Empirical equations for the jet in cross 

flow trajectories were first given by Pratte and Baines (1967) for the non-reactive jet in 

crossflow. Trajectory results collapsed at rd(velocity ratio times diameter) scaling in their 

study. The velocity ratios were in the range of 5 to 35. Meanwhile, a previous study of jet 

trajectories by Keffer and Baines (1963) also collapse with Jd(momentum ratio times 

diameter) scaling when momentum ratio, J ≥ 6. More recent studies carried by Su and 

Mungal (2004), Mupiddi and Mahesh (2005), New et al. (2006) also show that rd scaling 

providess a better collapse of crossflow trajectories. These studies are based on cold jets. 

 

Flame trajectories given by Holdman (1976) provide a better indications that there are no 

significant difference in reactive jet trajectories and non-reactive jet trajectories at high 

velocity ratios. Later Muniz and Mungal (2001) found that that heat release altered the 

velocity field, but the overall jet trajectory remained quite similar to the nonreactive analog 

at high momentum ratio. At low velocity ratios, the buoyancy effect induced by the flame 

causes the flame trajectories to deviate from the established empirical equations. A list of 

empirical equations for jet in crossflow is given in table 1.1. 
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Table 1.1: List of the empirical equation for the trajectory: 

 

 

1.3.2 Flame length (LF) 

 

Prediction of the size and shape of the flame in a cross-wind is an important parameter for 

engineers to design flare stacks. In 1928, Burke and Schumann were the first to report 

quantitative measurements on diffusion flames in a quiescent environment. Later, 

Gollahalli et al. (1975), Huang and Chang (1994b) Huang and Wang (1999) performed 

their experiments to measure flame length using visible flames or the Schlieren technique 

for long exposure photographs. Kalghatgi (1983) used a similar approach in his 

measurements but instead of using long exposure images, he recorded a video (seemingly 

30fps, shutter speed 1/60s). Kostiuk et al.(2000) provided the concept of determining the 

flame length statistically by the probability of flame occurrence, which accounts for the 

relatively large fluctuation of flame size and shape (fig. 1.6). Kostiuk et al.(2000) defined 

the flame length as the linear distance between the flame tip and the centerline of the stack 

Author Empirical equations Ratios Constant value 

Pratte and 

Baines (1967) 

𝑦

𝑑𝑟
= 𝐴 (

𝑥

𝑑𝑟
)

𝐵

 
r = 5-35 A = 2.05 

B = 0.28 

Smith and 

Mungal(1998) 

𝑦

𝑑𝑟
= 𝐴 (

𝑥

𝑑𝑟
)

𝐵

 
r = 5- 25 A = 1.5 

B = 0.27 

J R Holdman 

(1976) 

𝑦

𝑑√𝐽
= 𝐴 (

𝑥

𝑑√𝐽
)

𝐵

𝐽𝐶  𝑠𝐷 
J = 5 - 60 A = 0.76, B = 

0.27, 

C = 0.155, D = 

0.15 
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exit at the 10th percentile contour. Later, Majeski(2000) proposed a compressive model to 

predict flame length at low velocity ratios for propane rich fuels.  

 

 

 

 

 

 

 

 

 

 

 

More recent experimental studies (Wang et al., 2015; Shang et al., 2017; Tao et al., 2018; 

Xin et al., 2018) suggest considering all the images to process for predicting flame length. 

Wang et al. (2015) used the Otsu (1979) technique for image binarization (a process of 

converting a pixel image to a binary image to extract desired feature) which does not seem 

like a good solution at all. The technique is used for conventional real world image 

processing. Details are discussed in chapter 2 and Appendix A.  In this study, the concept 

of Majeski (2000) is taken and extended to filter the noise and automate post-processing 

for all sequential images by developing a code specifically to get binarized images and 

overall to measure the flame length (LF). 

 

 

Figure 1.6:  A mean propane flame image created by averaging 

200 instantaneous images where the jet exit velocity is 1 m/s and 

the transverse air velocity is 2 m/s. (Kostiuk et al., 2000). 
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1.4 Flaring efficiency (ƞ) 

Flaring efficiency or carbon conversion efficiency is an important feature for large scale 

gas flaring exposed to an open environment. Eqn. 1.4 represents the global combustion 

reaction. For complete combustion, the carbon molecule in hydrocarbon (CxHy) is 

completely converted to CO2. Eqn. 1.5 represents the definition of flaring efficiency. 

 𝐶𝑥𝐻𝑦 + 𝑎𝑂2 = 𝑏𝐶𝑂2 + 𝑑𝐻2𝑂 + 𝑒𝐶𝑂 + 𝑓𝐶𝐻4 + ∑ 𝑔𝑚,𝑛𝐶𝑥𝐻𝑦

𝑚,𝑛

 1.4 

 ƞ =  
mass accumulation rate of carbon in the form of 𝐶𝑂2 produced by the flame

mass flow rate of carbon entering the flame in the form of hydrocarbon fuel
 1.5 

 

 

Johnson and Kostiuk(2002) explained 

the wind tunnel methodology and 

determine the flaring efficiency. 

Figure 1.7 represents the crossflow 

velocity effect on flaring efficiency(ƞ) 

for a wide range of crossflow 

velocities (2m/s – 14m/s) and a single 

jet velocity (3m/s). From the figure, it 

is clear that conversion inefficiency 

increases with the increase of mean 

crossflow velocity. In addition to that, 

the turbulent cross-wind increases the 

carbon conversion inefficiency more 

than laminar cross-wind. The increase 

of carbon conversion inefficiency 

raises the possibility to form carbon 

mono-oxide, the existence of methane or unburned hydrocarbon. Interestingly, flaring 

 

Figure 1.7: Effect of added ambient 

turbulence in the cross-wind on the 

inefficiency of a natural gas flare(Johnson 

and Kostiuk, 2002). 
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inefficiency increased when the crossflow is turbulent instead of laminar. However, 

Johnson and Kostiuk(2002) provide no details of the turbulence condition, so the 

experiment is difficult to interpret. The effects of turbulence are one of the prime issues 

examined in this thesis. 

 

1.5 Current study 

To generate turbulence at the wind tunnel, roughness block, barriers, spires, and grid are 

generally used. In the current study, a grid is used to generate atmospheric turbulence 

because it is comparatively easy to control turbulence parameters using grids. Two 

parameters are important to discuss turbulent flow: turbulence intensity (Iu) and integral 

length scale (Lx).  

Turbulence intensity is defined as the ratio of the standard deviation of the velocity 

fluctuations (u') to mean velocity (�̅�) (eqn. 1.6). 

 𝐼𝑢 =  
√u′2̅̅ ̅̅̅̅ ̅̅

�̅�
 1.6 

Integral length scale, Lx can be estimated from the autocorrelation coefficient ρ(τ) = Ruu(τ)/ 

(𝑢𝑟𝑚𝑠
′ ) 2 , where, 

 Ruu(τ) = u'(t) u'(t+ τ) dτ 1.7 

In equation 1.7, Ruu(τ) represents the autocorrelation function, and τ is the time lag. In this 

case Lx = UTx where Tx is the integral time scale, obtained from the area under the ρ(τ) 

curve.   

 𝐿𝑥 =  �̅� ∫
𝑅𝑢𝑢(𝜏)

𝜎𝑢
2

𝑑𝜏
∞

0

 1.8 
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In addition to statistical analysis, the integral length scale has a significant physical 

meaning. It is assumed that turbulent flow has been carried by numerous numbers of eddies 

having different size. The integral length scale represents the physical size of the eddy that 

contains a significant amount of energy. In the next section physical characteristics of grid 

turbulence, corresponding energy spectra are described in detail. 

 

1.5.1 Grid turbulence 

Grids are of 2 kinds: active grid and passive grid (fig. 1.8). Iu and Lx are controlled by 

changing of stepper motor rpm and winglet angle for active grid. Passive grid is 

comparatively simple to operate. By changing the bar thickness (b), bar to bar distance (M) 

and relative position of the grid to test section. Because of geometric complexity and 

expanse passive grid is the ultimate choice over the active grid for wind tunnel experiments. 

The flow downstream undergoes a series of transitions & develops a wake region behind 

the bars. Rapidly evolving vortices are shedding downstream which eventually form a fully 

developed turbulence field (Vita et al., 2018). The effect of the grid on the flow field may 

be separated into two parts: manipulation effect and wake effect (Roach, 1987). The 

manipulation effect consist of processes whereby the spectrum of turbulence is altered, 

reducing or increasing the scale of the upstream turbulent eddies according to the 

 

Figure 1.8: Physical representation of active (Wiley, 2019) and passive grid. 
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dimensions, relative to the grid. The wake contributes to transport of turbulent energy in 

the downstream flow, this is at a high relative frequency and so decreases the scale of 

upstream turbulent eddies. Both of the effects act in a complex manner to produce 

homogeneous flow. 

The generated turbulence kinetic energy is found to decay rapidly with increasing 

downstream distance from the grid. It is found that the level of turbulence kinetic energy 

generated is directly proportional to pressure drop (Roach, 1987) due to the drag. The drag 

force causes mean velocity gradients downstream of the grid. Laneville (1973) and Vickery 

(1966) suggest keeping the coefficient of drag, CD less than 2(where, CD = 
𝑏/𝑀(2−𝑏/𝑀)

(1−𝑏/𝑀)4
). 

The higher CD results in higher initial turbulence production and, therefore, higher 

dissipation of turbulence downstream of a grid (Sarkar and Savory, 2019).  

The co-efficient of drag depends upon the bar to mesh size ratios of the grid (as indicated 

earlier (Hinze, 1959)). The rigidity ratio (b/M) is suggested to be set 0.125 to 0.29 (Vita et 

al., 2018; Vickery, 1966) and the thickness ratio (t/b) is suggested to be set to about 0.2. 

The ratio b/M can be chosen based on the definition of grid drag (Laneville, 1973).  

Experimental studies have been conducted to determine the relationship of turbulence 

intensity, length scale with grid geometry. Nakamura and Ohya(1983), Roach(1987), 

Tornado et al.(2015), Vita et al.(2018), Sarkar and Savory(2019) established the geometric 

parameters to quantify Iu and Lx. The equations differ from one another as grid turbulence 

is not independent of wind tunnel configuration. Nakamura and Ohya(1983) conducted an 

experiment in a uniform cross sectional tunnel configuration. Whereas, Roach(1987) and 

Vita et al.(2018) did their experiments in a slightly converging cross-sectional tunnel. 

Large wind tunnels always have background turbulence, which would affect the results. 

The literature tends to lack the information regarding the background turbulence from the 

above-mentioned authors. The cross-sectional thickness of the grid might play a role in 

determining the mathematical relations which is also absent in many studies. The empirical 

relations are described in Table 1.2 : 
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Table 1.2: Empirical relations for grid turbulence parameters 

Author name  Intensity Length scale Constant value 

Vickery(1966) 
Iu = A (

𝑥

𝑏
)

−
5

7
 Lx =𝐶 (

𝑥

𝑀
)

0.84

 
A= 1.12, C = 

0.075 

Roach(1987) 
Iu =A (

𝑥

𝑏
)

−
5

7
 Lx/b =𝐶 (

𝑥

𝑏
)

1

2
 

A = 1.13, b = 

0.89,  

C = 0.2 

Sarkar and Savory 

(2019) 

Iu =A (
𝑥

𝑏
)

−0.72

(
𝑥

𝑀
)

−0.07

  
-- A = 1.49 

 

Sarkar and Savory(2019) introduce both M and b to quantify turbulence intensity, which 

is different from other mentioned authors and seemingly more accurate as intensity should 

not be only a function of bar thickness (b).  

 

 

 

 

 

 

 

 



17 

 

1.5.2 Energy spectrum 

 

 

 

 

 

 

 

 

 

 

A turbulent flow contains energy across a wide range of wave numbers (κ =2f/Umean, 

where f is the frequency). Fig. 1.9 represents the energy spectrum of turbulent crossflow. 

The wave number (κ) is inversely proportional to the eddy diameter (Davidson, 2014). Fig. 

1.9 indicates that the energy of eddies varies with the eddy size. Larger eddies contain more 

energy and smaller eddies contain less turbulent energy. The energy spectrum can be 

divided into three different region.  

I. Large energy containing eddies: Large eddies carry most of the energy. These eddies 

interact with the mean flow and extract energy from the mean flow. The energy 

extracted by the largest eddies is transferred to slightly smaller scales. 

II. Inertial subrange: The eddies in this region represent the mid-region. The turbulence 

also tends to be isotropic in this region. Energy is coming from the lower part of the 

energy containing range to the upper part of the viscous dissipation range.  

log E(κ) 

Viscous 

dissipation range 

log κ 

Figure 1.9: Energy spectrum of turbulence for cross-wind (Hjertager, 2014). 
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III. Viscous dissipation range: The energy transfer from turbulent kinetic energy to thermal 

energy. The scales of the eddies in this range are described by the Kolmogorov scales. 

 

The Von Karman equation (eqn. 1.9) provides an empirical form of energy spectra over 

the complete frequency range applicable for grid turbulence of the atmospheric boundary 

layer (ESDU 85020) as well.  The normal form of the Von Karman spectral equations is :  

 
𝑓𝑆𝑢𝑢(𝑓)

𝜎𝑢
2

=  
4 𝑓𝐿𝑥/𝑢𝑚𝑒𝑎𝑛  

(1 + 70.8 (𝑓𝐿𝑥/𝑢𝑚𝑒𝑎𝑛) 2)5/6
 1.9 

where, σu and Suu(f) are the standard deviation and power spectral density of the crossflow 

velocity fluctuations, respectively. In the current study, the axis of the spectra is normalized 

using the mean velocity (umean or U∞) and the internal diameter of the flare stack (d), rather 

than σu and Lx. So that the effects of turbulent intensity is included in the plot along with 

the size of the energy containing eddies relative to the flare stack diameter. A comparison 

of real world atmospheric boundary layer turbulent spectra along with wind tunnel spectra 

are discussed in detail in chapter 2.  

 

 

 

 

 

 

 

 



19 

 

1.6 Objectives and approach 

The purpose of this investigation is to systematically study the turbulence effects on gas 

flares. The hypothesis motivating this work is that turbulence may affect the efficiency, 

based on a single, uncontrolled study of Johnson and Kostiuk (2002). Real world 

turbulence in a reduced scale will be developed in a wind tunnel to assess this hypothesis. 

Sequential colour images of flares, taken for different turbulence conditions, allow us to 

achieve insight into wind turbulence effects on gas flares. The analysis will be performed 

on a wide range of velocity ratios (0.2 < r < 4) which will make a comparative relation 

between reactive and non-reactive jets in crossflow. Additionally, some experiments are 

conducted at very low turbulence intensity (Iu < 1%) to compare smooth flow to turbulent 

flow. A direct comparison will be made for nearly laminar (smooth) to a highly turbulent 

condition, which will acknowledge the necessity to conduct flaring experiments for 

turbulence background. Flame length and flame trajectory are measured for this wide range 

of momentum ratios under different turbulence condition. Ultimately, the goal is that these 

findings will help to reduce emissions from flare stacks.  

 

A square mesh bi-planer grid is used to generate turbulence. High frequency velocity data 

quantify turbulence parameters using hot wire anemometry and Cobra probes. Colour 

cameras are used to map the flare geometry. Chapter 2 deals with the experimental set-up 

and methodology. The scaling of the model and wind simulation will be described along 

with details of the method of analysis. Chapter 3 will discuss the analysis of the flame 

length and flame trajectory results. Chapter 4 will discuss the effect of turbulence on 

flames. Conclusions and recommendations are discussed in Chapter 5. Image processing 

techniques and uncertainty analysis are discussed in Appendix A and B, respectively. 
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Chapter 2  

2 Methodology and Analysis Procedure 

In this chapter, the experimental set up is explained in section 2.1. Details pertaining to the 

measurement devices, and the physical set-up are described in detail in this section. 

Characteristics of flow measurement and image acquisition parameters are described in 

section 2.2. The wind tunnel flow field is discussed in section 2.3. 

 

2.1 Closed loop wind tunnel details and flare geometry 

The experiments were performed in the closed-loop Boundary Layer Wind Tunnel II at the 

University of Western Ontario (Fig. 2.1). There are two test sections: one on the high speed 

side and the other on the low speed side of the wind tunnel. The current study was 

performed in the low speed side where the maximum speed is 11 m/s. However, during the 

experiments, the maximum cross-wind speed was kept at or below 10 m/s. The tunnel is 

run by a 289 hp motor placed at the downwind side of the high speed test section.  

 

Figure 2.1: Top view of the Closed Loop Wind Tunnel. 

The pressure on the low speed side is slightly higher than the atmospheric pressure when 

the wind tunnel is running. The total length of the low speed side is 52m. At the inlet of 

low speed side, there is a perforated screen. The screen is placed to control the turbulence 
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entering the test section. A stack was placed 26m downstream of the screen. At this 

position, the test section is 3.6m high. A contraction section was added into the existing 

section to improve the inlet flow quality (fig. 2.1). The width of the test section is 3.65m, 

narrower than the usual 4.88m because of the presence of the contraction. The 2 part hinged 

door (fig. 2.1) is opened after every 4 sets of experiments to blow out the exhaust products 

of combustion. Measurements of hydrocarbon and combustion products are taken before 

starting new set of experiments.   

 

 

Figure 2.2.  (a) A physical representation of the measurement devices and their 

positions, and a schematic of the experimental setup from the (b) top, and (c) side. 

Figure 2.2a provides a photograph of the experimental setup, showing the relative location 

of the burner stack, Pitot-static tube, Cobra probe, the cameras. The overview of the 

experimental setup (as schematic) is provided in figure 2.2(b,c). In addition to basic 

definitions, the coordinate system and the geometry are provided. Details will be discussed 

in the following section.  
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Based on crossflow characteristics, the experiments were labelled as cases: A, B, and C. 

Where, case A represents nearly laminar (smooth) flow (Iu < 1%), case B is moderate 

turbulence level (Iu = 3.72%, Lx = 0.32m) and case C represents high turbulence level (Iu 

= 5.78%, Lx = 0.23m).  

 

2.2 Apparatus and test parameters 

 

2.2.1 Velocity measuring apparatus 

A Pitot-static tube was used to measure and control the wind tunnel velocity. It was placed 

at several positions both upstream and downstream of the stack.  

The Cobra probe is a dynamic multi-hole pressure probe for measuring mean and 

fluctuating 3-component velocities and static pressures. The Cobra probe can take time-

varying velocity samples at up to 1250Hz rate.  The Cobra Probe is robust and withstands 

moderate knocks and contaminated flows. It comes fully calibrated and does not need 

recalibrating other than occasional checking of the voltage-to-pressure scaling (static 

calibration) to ensure it is functioning accurately. Further details can be found in TFI 

catalogue (2019).  

Hot wire anemometers use a fine wire (on the order of micrometers) electrically heated to 

some temperature above the ambient. Air flowing past the wire cools the wire. The rate of 

cooling is proportional to the wind velocity, which is the basis for this commonly used 

device. 

One of the advantages of using the hot wire probe is that it can measure velocity fluctuation 

at much high frequencies than the Cobra probes. Additionally, velocities lower than 2 m/s 

could be accurately measured using hot wire anemometer. However, Cobra probes provide 

all three velocity components, which is much more difficult to do with hot wires (only 

single wires were used in the current study). 
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2.2.2 Gas composition and flow controller 

The fuel mixture to be tested is a six-component mixture of methane, ethane, propane, 

butane, nitrogen, and carbon dioxide representative of sample composition data from the 

upstream oil and gas industry (Conrad and Johnson, 2019). The flare gas compositions are 

derived from median Alberta Energy Regulator data (2016). The fuel flow rate was 

controlled by Bronkhorst mass flow controllers. The gases are kept in cylinder separately 

outside the wind tunnel and the mass flow controller is used to maintain the proper gas 

composition ratio. Details of the gas flow system are shown in fig. 2.3.  

 

 

 

 

 

 

 

 

 

 

 

 

The gas supply system is designed and built by Mr. Darcy Corbin, research engineer of 

FlareNET strategic network.  Based on the nozzle diameter, the fuel flow rate was set such 

that the required jet velocity can be achieved. The temperature in the wind tunnel is 
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Figure 2.3: A schematic representation of flare gas supply system. 
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considered to control the gas mixture flow rate. The flare gas composition is given below 

in table 2.1.  

Table 2.1: Flare Gas Composition 

Species Volume Fraction (%) 

Methane, CH4 86.03 

Ethane, C2H6 6.81 

Propane, C3H8 2.35 

Butane, C4H10 1.99 

Nitrogen, N2 1.61 

Carbon Dioxide, CO2 1.21 

 

2.2.3 Burner Details  

The flare tips are designed based on the dimensions of a 1” NPS SCH 401 pipe with an 

outside diameter (OD) of 1.173” (29.78 mm), a wall thickness of 0.124” (3.149 mm), and 

an inside diameter (ID) of 1.049” (26.64 mm).  These dimensions yield an ID/OD ratio of 

0.8947 which will be held constant across the other burner sizes.  The 2” and 3” NPS SCH 

40 pipes in which the other burner sizes were manufactured with inside diameters as shown 

in Table 2.2 and have outside diameters machined to match the required ratio.  

 

 

                                                 

1
 NPS SCH 40 represents Nominal Pipe Size Schedule standard. Numeric value 40 indicates the wall 

thickness of the pipe based on standard. 
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Table 2.2: Flare stack diameters 

Nominal Diameter (in) Flare ID (in (mm)) Flare OD (in (mm))  

1 1.049 (26.64) 1.173 (29.78) 

2 2.067 (52.50) 2.310 (58.68) 

3 3.068 (77.93) 3.429 (87.10) 

 

2.2.4 Passive Grid 

 

Three parameters are important to design a grid to generate the desired turbulence: the 

width of the bar (b), the mesh size (M), i.e., the distance between centerline distance of the 

bar, and the downstream distance (X) from the grid to where the measurements are taken. 

Vickery (1966) provides an indication for the optimal mesh size of M = L/8, to get 

homogenous turbulence at the experimental section (where L is the length of the test 

section). The ratio b/M can be chosen based on the definition of grid drag (Laneville, 1973) 

which is discussed in section 1.1.4. Based on the physics of grid turbulence, the bar size 

was 0.1016m (4 inch) and mesh size was 0.508m (20 inches). It was a bi-planer square grid 

(fig. 2.4). 

The grid was positioned in two different position upstream of the flare (19.2M and 40M, 

where, M bar to bar distance). The grid is made of wood. To provide sufficient stiffness 4 

L-shaped metal plates were screwed vertically and 1 metal plate was screwed at top 

horizontally. The grid covered the entire wind tunnel cross-section. 
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Figure 2.4: A Schematic drawing of the turbulence generating grid  

(dimensions in inch). 

 

2.2.5 Camera sensor characteristics 

 

To visualize the flame, multiple high frame rate cameras were used. Since it was not 

possible to capture the whole flame with high resolution using one camera, multiple 

cameras were required. In total, three cameras were placed side by side to map the whole 

flame. An additional camera was placed at the top to capture the near field from the top 

(simultaneously with side images) to depict the flow topologies under different conditions 

(presented in table 2.3). The camera specifications are described in table 2.4. Area covered 



27 

 

by a single camera increases with distance from camera and test section. Fig. 2.5 represents 

frame area for single camera vs distance from camera to experimental section. 

Table 2.3: Physical configuration of the camera 

Camera model  Basler Aca 1920  

(Sensor: Sony IMX 174)  

 

No of cameras 4  Three cameras for capturing whole flame length 

from side and one for capturing flame from the 

top 

Lenses 
17 mm  To use to capture full flame length from side 

28 mm To capture image from top 

Distance from 

flame  

1.8m (approx. from side 

and from top) 

Field of View: 1.2m2 (horizontal = 1.271m, 

                      vertical= 0.8m) 

Table 2.4: Specification of the camera sensor 

 

 

 

 

 

 

 

 

Camera name  

(Sensor name) Basler acA 1920 

( Sony IMX 174) 

Resolution (pixels) 1920*1200 

Pixel size(µm) 5.86 

Frame rate (images/sec) 155 

Saturation capacity (e-) 32513 

Dynamic Range(Decibel) 12.18 

Signal to noise ratio(SNR) 7.5 

Colour RGB 

Quantum efficiency 76% 
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Figure 2.5: Representation of Frame area vs distance from camera. 

 

 

2.2.6 Image acquisition technique  

 

The imagary is captured using commercial software (Norpix 3.7) and LabVIEW 19.1. A 

developed visual interface (VI) of LabVIEW is attached with a brief explanation in 

Appendix A. No hardware triggering device is used to take the images. Rather, software 

triggering is used to take the images simultaneously. Approximate time lag between the  

1st camera image and the 2nd camera image is 4ms (millisecond), 1st to 3rd is 9 ms and 

1st to the the camera is 7ms.The general image acquisition parameters are kept the same 

for all four cameras. The focal length of the lenses are 17mm. Further details are provided 

in Table 2.5. 
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Table 2.5: Image acquisition parameters 

Camera attributes Values 

Exposure 0.0005 sec 

Frame rate 50fps(Commercial software) 

30fps (LabVIEW VI) 

Image type Tagged Image Format (.tif) 

Compression Uncompressed 

Bit depth 8 

Colour channel  RGB 

Image acquisition duration 60-75 sec 

 

2.2.7 Image processing technique 
 

Image processing is a major part of this work. The images in the current study can be 

viewed as 3D matrix where Red, Green, and Blue represents the three-dimensions 

simultaneously. Each dimension is a 2D matrix having 1920*1080 values for a single 

image. There are several issues in image processing which needs to be addressed. First, the 

goal was to map the entire flame, while images are taken from the side using three separate 

cameras. A 10% to 15% overlap between the cameras is used to identify the entire flame. 

Details of how the overlap is considered are provided in Appendix A.   

A second issue is image binarization. To get the flame length and flame centerline 

trajectory, it is essential to binarize the sequential images. After the boom of the digital fast 

image acquisition technique after 2000, most of the authors in the field of jet in cross flow 

used Otsu’s method (1979) to binarize the sequential image. Otsu’s method is applicable 

for real world day to day imaging and it give excellent result when binarizing wide range 

of image data. However, the build-in command for Otsu’s method can’t help to depict the 

true scenario. A modified algorithm is added at appendix-A.  
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2.3 Flow field and jet details  

 

2.3.1 Velocity and momentum ratios 

The test was conducted using 1-inch nozzle at 5 different cross flow velocity: 2, 4, 6, 8, 9.5 

m/s and 4 jet velocities 2, 4, 6, 8 m/s. So, the total combination was 20 for each case. The 

total test case was 20*3 = 60. The velocity ratio (Uj/U∞) range was 0.2 to 4. The density of 

the fuel mixture is 0.79 kg/m3. The Reynolds number range is 3340 to 16000 for the 

crossflow and 3800 to 15200 for the jet based on diameter of the stack. Momentum ratios 

are listed in table 2.6 for different velocity condition.  

Table 2.6: Momentum ratio of flows 

Momentum ratio 

 

Uj(m/s) 

2 4 6 8 

U∞(m/s) 

2 0.66 2.63 5.91 10.51 

4 0.16 0.66 1.48 2.63 

6 0.07 0.29 0.66 1.17 

8 0.04 0.16 0.37 0.66 

9.5 0.03 0.11 0.24 0.42 

The velocity condition was applied for all three turbulence cases mentioned in section 2.1. 

Some experiments were also carried out for a 2-inch diameter nozzle and 3-inch diameter 

flare stack to observe flame length which is discussed in the results section. 

 

2.3.2 Wall boundary layers and flow uniformity 

Measurements has been taken to determine the vertical and lateral velocity uniformity. Fig. 

2.6 illustrates the mean streamwise velocity (U/U∞) profile above the wind tunnel floor at 

different flow conditions. The crossflow velocity reaches free stream velocity or within 
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95% of free stream velocity at 60cm height from the ground. The burner exit is kept 1.2m 

height from the wind tunnel floor. So, there is no effect of the boundary layer acting on the 

flame, although there will be effects on the lower portion of the stack (as there would be in 

full-scale). 

 

 

Figure 2.6: Variation of velocity at different height (fan speed 6V). 

 

Fig. 2.7 shows mean streamwise velocity in lateral direction. The figure indicates a uniform 

crossflow velocity in lateral direction for case A, case B, and case C. Velocity 

measurements are taken at 1.2 m height, and from center plane to 1.3 m on both side. 

Crossflow velocities at different position deviate 5% to 10% from the mean freestream 

velocity. The deviation of velocity from free-stream velocity is comparatively higher near 

the wind tunnel wall and uniform at the center plane of wind tunnel.  
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Figure 2.7: Velocity variation from the center plane in lateral direction (wind tunnel 

fan speed at 6V). 

 

2.3.3 Grid turbulence data 

The results presented in this section consider the following topics of investigation: the 

relation of (i) turbulence intensity and (ii) length scale with increasing downstream distance 

from the passive grid. The current experimental results are also compared with previously 

published results.  

In fig. 2.8, the Iu is plotted against x/M, showing its decay as a function of downstream 

distance. In this case, the experimental results behave consistently with previously 

published results at x/M = 10, 19.2. However, turbulence intensity value at 40M 

downstream is little higher than the empirical relations. This indicates that decay of 

turbulence is slower in experimental cases.  
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Figure 2.8: Comparison of turbulence intensity vs downstream distance (x/M). 

 

In fig 2.9, integral length scales are plotted against x/M. In the plot, the integral length 

scales are non-dimensionalized by the bar width (b) of the grid. The length scale (Lx) 

increases with increasing downstream distance. The current experimental results indicate 

that length scale falls in between the previously published result (Torrano et al., 2015) and 

empirical relation (Roach, 1987) 
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Figure 2.9: Relation between non-dimensional length scale vs downstream  

distance (x/M). 

 

2.3.4 Energy spectra 

 

Time series of velocity were obtained during the experiments using a hot-wire anemometer 

and Cobra probes. Hot wire anemometry is superior for high frequency measurements and 

the hotwire used in the experiments can take up to 10000 samples/second. The velocity 

time histories were converted to frequency (f) domain using FFT (Fast Fourier Transform). 

Suu(f) represents turbulent kinetic energy distribution in the frequency domain. For a wide 

range of frequency, a wide range of energy is obtained. This energy band is called an energy 

spectrum for turbulent flow. The energy spectrum was obtained using this technique during 

the experiments. However, to get the full scale energy spectrum (from ESDU, 85020), a 

normally used forms of the von Karman spectral equation is:  
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𝑓 𝑆𝑢𝑢

𝜎𝑢
2

=  
4𝑓𝑢

(1 + 70.8𝑓𝑢
2)

5
6

 2.1 

where, fu = f.Lx/U, Lx is the integral length scale of the flow (section 1.1.4), σu is the  

standard deviation of fluctuating velocity, U∞ denotes mean wind speed. The inner 

diameter (d) of the 1 inch burner stack is used to normalized the experimental spectra. To 

obtain the range of possible full scale scenario, streamwise turbulence intensity was set to 

15% to 20% (figure 1, ESDU 85020) and the integral length scales were set as 35m to 

120m (figure 3a, ESDU 85020). Mean wind speed was set in the range of 6m/s to 20 m/s 

(based on flare stack design) for two extreme conditions (Bellasio (2012)).  

 

Figure 2.10: A graphical representation of real world turbulence to BLWT 

simulation in the form of dimensionless Power Spectral Density (PSD) vs 

dimensionless frequency. (Full scale Data is based on ESDU 85020). 
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Fig. 2.10 represents a comparison of these full scale scenarios to the experimental 

conditions of the wind tunnel where the dimensionless power spectral density (PSD) is 

plotted against dimensionless frequency. In the figure, the power spectral density is 

normalized using the local mean velocity, U∞, so that differences in turbulence intensities 

are included in the plots, while stack diameter (d) is used to normalize the wave number 

(U∞/f). Atmospheric scale turbulence has a large range of length scales and contains 

relatively a high level of energy. Meanwhile, the current wind tunnel induced turbulence 

has less energy at the large scales (low f) and, therefore, a lower overall energy level. In 

addition, the wind tunnel energy levels fall off rapidly for non-dimensional scales smaller 

than the jet diameter (fd/U∞ ~ 1).  

Iu < 1% represents a (approximately laminar) smooth flow case in this study. In a large 

boundary layer wind tunnel, turbulence intensity < 0.1% is very hard to obtain, but the 

spectrum indicates significantly reduced energy levels at all scales compared to the 

anticipated full scale values.  
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Chapter 3  

 

3 Effect of flame length in crossflow 

 

The classification of flames is provided, based on Huang and Chang (1999) in section 3.1 

for methane rich fuel. An empirical relation for flame length is given based on 

Majeski(2000)’s model of natural gas, in section 3.2. The response of flame length to 

turbulent cross-wind is observed under the same section. A brief explanation of trajectory 

scaling is described in section 3.3. Section 3.4 provides a summary of the results presented 

in the chapter. 

 

 

3.1 Classification of flames 

To describe the flame from the instantaneous images, the whole set of flare experiments 

are divided into 3 main flow fields based on the momentum flux ratio. 

1. Crossflow-dominated flame:  J ≤ 0.66 

2. Transitional flame:  0.66 < J < 2.63 

3. Jet-dominated flame: J ≥ 2.63 

Huang and Wang (1999) additionally classified downwash flame. Downwash flame is 

discussed under crossflow-dominated flames. The Huang and Chang (1994), Huang and 

Wang (1999), Majeski et al.(2004) classifications distinguish the flame into different 

momentum ratios, as they use propane rich fuel. The general classification is briefly 

described in this section which assist to explain later parts of this chapter. In this section, 

the classification is based on smooth upstream flow (Iu < 1%). 
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3.1.1 Crossflow-dominated flames: 

Figure 3.1 shows the instantaneous images of flame from camera 1 at very low momentum 

flux ratio J = 0.07 (U∞ = 6 m/s, Uj = 2m/s). The X and Y-axis is non-dimensionalized by 

the burner inside diameter d = 26.64 mm. The stack effects the jet flame because of strong 

negative pressure on the leeward side. As the cross flow velocity is high compared to the 

jet velocity, the suction (-Pwake) generated on the leeward side is high and draws gaseous  

 

 

Figure 3.1: Instantaneous images of crossflow-dominated flame (U∞ = 6 m/s, Uj = 2m/s ,  

J = 0.07). 
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fuel in the downwash area. The difference in pressure between the free stream and the wake 

region behind the wall increases proportionally to the square of U∞, but will also exhibit 

some Reynolds number dependence. Thus, the jet fuel emerging from the burner begins to 

show up on the leeward side of the stack. This is influenced by the crossflow, which bends 

the jet towards the right at a large angle. A wavy structure appears on the leeward side of 

the burner stack near the exit. This wavy structure evolves, grows, develops subsequently 

into small ‘blobs’ further downstream. 

 

 

 

 

 

  

 

 

 

 

 

 

Momentum ratio less than 0.66 is termed as crossflow-dominated flame as the jet 

momentum is not large enough to sustain the impingement of the transverse stream. Fig. 

3.2 represents instantaneous images attached for momentum ratio 0.04 and 0.16. As the 

momentum ratio is increased the recirculation zone decreases. A reduction of discrete 

flame packets and a decrease of downwash length is visible.  

Figure 3.2: Instantaneous image of crossflow-dominated flame. Image on the right side 

indicates the corresponding field of view from top. 
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3.1.2 Transitional Flame 

 

In the transitional flame, the downwash area reduces dramatically which is shown in fig. 

3.3 for J = 0.66. A larger portion of gaseous fuel propagates downstream than the 

crossflow-dominated flame. A shear layer generates as a result of two fluid streams meet 

at an interface with a velocity difference. The shear layer seems to evolve from the side 

and spreads on lateral direction (fig. 3.3). A relatively small orange flame appears at the 

leeward side of the stack. Flame evolves from the burner stack showing a necking effect 

on the leeward side. The necking point seems like a source for the flow field. Necking 

effect is considered an essential feature for transitional flame (Huang and Wang, 2002). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Instantaneous images of transitional flame (U∞ =2m/s, Uj = 2m/s, J=0.66). 
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Comparing to crossflow-dominated flame, in transitional flame, the vortices in the shear 

layer still roll forward and are stretched in the x-direction. The shear layer vortices appear 

in a random fashion, stretching the flame in Z-direction enables air to fuel better mixing of 

fuel with air. 

 

3.1.3 Jet-dominated flame 

Figure 3.4 provides a depiction of jet-dominated flame. The initial deflection angle and the 

down-wash area for jet-dominated flame are comparatively small. At momentum ratio, J = 

2.63, the mixing layer evolves from the windward side of the stack and trace of flame 

appears at leeward side of the stack (fig. 3.4). It is evident from the top image that vortices 

evolve from side is superimposed by crossflow and jet-flow Shear layer random nature 

suggest a strong turbulent mixing of the fuel and air. From the side image, there is no 

evidence of bending or necking effect like crossflow-dominated and transitional flame.   
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Figure 3.4: Instantaneous images of jet-dominated flame 

(U∞ = 4m/s, Uj = 2m/s, J=2.63) 
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The outer flame boundary (up to x/d < 15 in jet-dominated flame is more connected, wider 

but not symmetric in nature. However, the flame stabilizes in between the shear layer 

boundary. It is possible that heated unburned fuel exists in between the shear layer and 

starts burning in the orange radiated flame.   

 

 

Figure 3.5: Instantaneous image of jet-dominated flame at  

different momentum ratios. 

 

The existence and size of the initial blue zone and the size is apparently a function of the 

intensity of fuel to air mixing process (Gollahalli el al.,1975). For jet-dominated flame, the 

mixing is higher than transitional or crossflow-dominated flame. The apparent reason is 

that the jet momentum is comparatively higher and therefore able to penetrate the 

crossflow. Additionally, the jet momentum can overcome the negative pressure impact 

behind the stack. The vertical and lateral spread of mixing layer expands with the increase 
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of momentum ratio (i.e. increase of jet velocity) which is visible from instantaneous images 

respectively from side and top cameras (fig. 3.5). 

 

3.2 Flame Length 

 

Flame length is defined as the linear distance between the flame tip and the centerline of 

the stack exit at the 10% occurrence of flame from average image (fig. 3.6). Image 

binarization for individual cameras and incorporation of 3 sets of images for a single set of 

experiments is explained in Appendix A.  

 

Majeski et al. (2004) gave an empirical model to determine the flame length for propane 

rich fuel over the range 5.9 * 10-3 < J < 4.6. Majeski’s model assumed that for any given 

set of fuel jet and crossflow properties the flame surface shape is geometrically similar. 

Additionally, the size of the flame was set by the time required for the stoichiometric 

amount of oxygen (O2) to diffuse into and react with the fuel jet. On this point, the model 

can be extended to provide an empirical relation for predicting visible flame length (LF) 

for methane flame as it exhibits similar physical phenomena as propane flame. For the 

 

Figure 3.6: Mean full flame at J = 0.66 . 
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current study, the momentum ratio ranges from 3*10-2 to 10.51 and the diameter varies 

from 26.64 mm to 79 mm.  

To accept Majeski’s flame length model, the following equation for flame length must be 

compared with experimental data: 

 
𝐿𝐹

𝐶𝑓
1 2⁄

∗ 𝑈∞

= 𝐾𝑓(𝜌𝑗𝑈𝑗)
1

2⁄  
𝑑

𝑈∞
+  𝐾𝑈  

 
3.1 

   where, 

   LF = visible mean flame length;  m, 

   Cf = concentration of fuel on jet = 0.978   

Kf = flame constant, which is a combination of stoichiometric 

constant, geometric constant and the rate of oxygen arrival at the 

flame surface; m*s1/2 /kg1/2 , 

Ku = constant of proportionality, which appears from the second 

assumption of Majeski’s model; sec,   

 

Kf and Ku are model coefficients that are important for determining the flame length 

empirically. The value changes with the change of fuel type. In order to determine model 

coefficients, equation eqn. 3.1 can be considered as follows: 

 𝑌𝐹 =  𝐾𝑓 ∗ 𝑋𝐹 + 𝐾𝑢  3.2 

where, XF, YF are Cartesian variables. Kf is the slope and Ku is the Y-intercept in fig. 3.7. 

The data collapse into two different region, providing support for the modeling 

assumptions of geometrically similar flame shape and diffusion-limited combustion for 

methane flame.  
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The plotted data renders a slope change at XF = 7.7*10-3. The slope change point is 

considered as discontinuity point. After that discontinuity point, LF increases with 

increasing U∞(eqn. 3.4) and before that discontinuity point, LF shortens with increasing 

U∞(eqn. 3.3). The best fit lines with the intersection were found by minimizing the root 

mean square(RMS) error with respect to normalized flame length. This procedure is quite 

consistent with Majeski’s(2004) approach. For Methane rich flame, the resulting functions 

are: 

 
𝐿𝐹

𝐶𝑓
1 2⁄

∗ 𝑈∞

= 62.427 ∗ (𝜌𝑗𝑈𝑗)
1

2⁄
 

𝑑

𝑈∞
− 0.129 3.3 

 

 

Figure 3.7: Flame length data plotted with respect to the variables described eqn. 3.2. 
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𝐿𝐹

𝐶𝑓
1 2⁄

∗ 𝑈∞

= 26.920 ∗ (𝜌𝑗𝑈𝑗)
1

2⁄
 

𝑑

𝑈∞
+ 0.187 3.4 

 

The lines for propane flame (Majeski el al., 2004) agreed with the data within an RMS 

error of 15% whereas, the RMS error of the current study is less than 11%.  The uncertainty 

of the current analysis is discussed later on Appendix B.  

The model equation is plotted with the actual data in dimensional form to understand in a 

better way.  Flame length(LF) vs crossflow velocity(U∞) is plotted in fig. 3.8. The general 

trend is that flame length is increasing with crossflow velocity for jet-dominated flame and 

transitional flames. But the flame length decreases with increasing crossflow velocity for 

strong crossflow-dominated flames. The empirical relations for both regimes offers a good 

 

Figure 3.8: The jet exit velocity (Uj) scaling data for combusting gas compared with the 

empirical equation. Solid line represents eqn. 3.3 and dotted line represents eqn. 3.4. 

 



47 

 

agreement with experimental data for a wide range of jet velocities(fig. 3.8) and for 

different diameters (fig. 3.9). The overall RMS error for fig. 3.8 and fig. 3.9 are 23% and 

21% respectively.  

The model equation predict flame length well for low to moderate jet velocity (Uj < 6 m/s) 

and for different stack diameter with good agreement. However, at high jet velocity (Uj ≥ 

6), the empirical equation underpredicts the flame length(LF) at high crossflow velocity(fig. 

3.8). Moreover, instead of being getting decreased at high crossflow velocity, the flame 

length follows the increasing trend.  

Majeski el al.(2004) estimate a 13% error for different diameter burner (21% in the present 

case). Majeski et al. (2004) used a 33 mm inner diameter flare stack was used as max 

diameter for the propane flame length modeling. Meanwhile, for the current experiment, 

 

Figure 3.9: The stack diameter (d) scaling data for combusting gas compared with the 

empirical equation. Solid line represents eqn. 3.3 and dotted line represents eqn. 3.4. 
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77 mm inner diameter burner is used as max diameter burner to predict flame length for 

industrial case.  

 

3.2.1 Effect of turbulent cross-wind on flame length 

 

The flame length responds to turbulent crossflow. However, the changes are not quite 

significant. For transitional and jet-dominated flames, the flame length for smooth 

crossflow (Iu<1%) is higher than turbulent crossflow (fig. 3.10). The decrease in flame 

length due to higher turbulent crossflow is generally within 8-10% within the smooth flow 

flame length. The trend is generally consistent for different flow conditions. The decrease 

in flame length for turbulent cross-wind is likely for the spread of flames in the lateral and 

vertical direction. The mean spread of the flames will be discussed in the next chapter. 

 

 

Figure 3.10: Dimensionless flame length vs cross flow velocity at jet velocity 

6m/s(left) and 8m/s(right). (Burner diameter: 2.664cm). 
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The trend of shorter flame length at high turbulent cases altered when crossflow momentum 

is very strong. At higher turbulence case (Iu≈3.7 and Iu ≈ 5.7) the flame length is slightly 

higher than the smooth flow case (Iu < 1%). Figure 3.11 illustrates the effect at jet velocity 

2 m/s and 4 m/s. At high crossflow velocity (8 m/s and 9.5 m/s) the flame length for smooth 

flow is shorter than turbulent flow (fig. 3.11, Uj = 2 m/s). A strong recirculation zone (for 

smooth flow condition) may play an important mechanism for this effect. 

 

 

 

 

 

 

 

 

Figure 3.11: Dimensionless flame length vs cross flow velocity at jet velocity 2m/s(left) and 

4m/s(right). (Burner diameter: 2.664cm). 
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3.3 Flame Trajectory 

 

Smith and Mungal(1998) define trajectory as the maximum concentration line. Katamoni 

and Greber (1972) define the jet trajectory using the velocity maxima. Mupiddi and 

Mahesh (2005) define jet the trajectory based on the mean streamline. Ryan et al. (2014) 

define jet trajectory from flame luminosity. In this study, flame trajectory are defined from 

mean flame images. Midpoint of 10 % contour along vertical direction is defined as flame 

trajectory. Flame trajectory can also be defined as jet centerline in this study. 

 

Figure 3.12 represents a comparison of flame trajectory at different scaling method. The 

flame jet trajectory is normalized by velocity ratio(r) times diameter (left), and momentum 

ratio (J) times diameter (right). Three different velocity pairs are considered and the 

crossflow is smooth (Iu < 1%). It is observed that trajectories collapsed comparatively 

better while ‘Jd’ scaling is used. Trajectories do not collapse well with ‘rd’ scaling, which 

is previously observed for cold flow trajectories (Pratte and Baines, 1963; Smith and 

Mungal, 1998). 

 

Figure 3.12: Comparison of jet trajectory in different scaling method (U∞ = 2m/s). 
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3.4 Summary 

The main focus of this chapter is to develop co-efficient of Majeski’s model and verify the 

empirical relations to experimental results of flame length. The response of flame length 

to turbulent crossflow is observed. The image analysis procedure and uncertainty analysis 

are included in the Appendix A and Appendix B. The main findings of this chapter are: 

 Classification of the flame is given based on Huang and Chang (1994) and Huang and 

Wang (1999) and Majeski et al. (2004). However, the previous model is based on 

propane rich fuel. The physical phenomenon of the deflected flame happens on 

different momentum ratios for methane-rich flame for the current study. Empirical 

equations are provided based on experimental values of flame length. 

 

 The overall RMS error of the empirical and experimental values is less than 23%. The 

current experiments have been conducted for a wide range of momentum flux ratios, 

higher jet velocity, and larger stack diameter compare to previous model. These are the 

reasons for higher RMS error. 

 

 The empirical equation slightly underpredicts the flame length at low jet velocity and 

overpredicts at high jet velocity. The flame length cannot be predicted accurately when 

there is strong downwash flame. As a result of strong downwash, the flame does not 

look like a cylinder which is a violation of the first assumption of the existing model. 

Those reasons may result in lower accuracy for the current empirical equation for 

methane flame. 

 

 Flame length reduces (8-10%) as a result of enhanced turbulent crossflow (fig. 3.10). 

However, at very strong crossflow (when the downwash region is very large) the flame 

length is shorter for smooth flow condition (fig. 3.11). 

 

 Flame trajectories collapse to a single path when normalized by momentum flux ratio 

(fig. 3.12). 
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Chapter 4  

4 Effect of crossflow turbulence on flames  

In this chapter, the results of the effects of the turbulent crossflow are presented. There are 

3 experimental cases discussed, namely, case A (Iu < 1%), case B (Iu ≈ 3.7%, Lx = 0.23m) 

and case C (Iu ≈ 5.7%, Lx = 0.32m) in chapter 2. In chapter 3, effect of turbulence on flame 

length were discussed. In this chapter, the effect of turbulence cross-wind will be discussed 

based on instantaneous and mean flame images. In section 4.1 an analysis of wake 

recirculation zone is carried on with the help of mean images. In addition, the spread of the 

flame both in the vertical and lateral directions due to crossflow are discussed under section 

4.2. A comprehensive study of the discrete ‘blobs’ will be carried out using instantaneous 

images in section 4.3. In section 4.4 the colour of the flame is analyzed in order to 

distinguish the mixing phenomena of crossflow fluid and jet fluid in the near field. Image 

segmentation is employed to understand this more clearly.  

 

4.1 Wake recirculation zone  

The recirculation zone on the leeward side of the stack is a basic characteristic of crossflow-

dominated and transitional flames (Section 3.1). In this section, mean flame images are 

utilized to distinguish different crossflow conditions. The methodology to obtain a mean 

flame image from instantaneous images is described in Appendix A.  

Fig. 4.1 depicts the mean images of a crossflow-dominated flame (U∞ = 4m/s, Uj = 2m/s) 

for different turbulence conditions. The size of the flame is non-dimensionalized by the 

size of the inner diameter of the stack. The size of the recirculation zone (marked on the 

figure) is smaller for a larger level of crossflow turbulence. These phenomena can be 

clearly visualized in an integrated mean flame image, such as that in fig. 4.2.  The figure 

indicates that recirculation zone is largest for smooth flow case. This suggests that the 

recirculation zone draws more fuel in this flow condition (case A, Iu < 1%). The result is 

consistent for the other crossflow-dominated flame. Fig. 4.3 represents integrated mean 

flame images from side cameras with U∞ = 6m/s, Uj = 4m/s.  
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While no pressure measurement have been taken on the leeward side during this study, it 

may be worthwhile to assume that the pressure is comparatively lower on the leeward side 

for reduced turbulence intensity. Smooth crossflow is vulnerable to adverse pressure 

gradient on the rear of the cylinder (no jet flow), and separation occurs earlier than turbulent 

X/d 

Y/d 

Y/d 

Y/d 

Iu < 1% 

U∞ = 4m/s 

Uj = 2m/s 

Iu ≈ 3.7 % 

U∞ = 4m/s 

Uj = 2m/s 

Iu ≈ 5.7 % 

U∞ = 4m/s 

Uj = 2m/s 

Figure 4.1 : Mean flame for three turbulent condition. 
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condition (White, 2004). As a result, the pressure on the leeward side vertical wall of the 

stack is comparatively higher in turbulent crossflow. The suction of fuel in the leeward side 

recirculation zone is thus comparatively less for enhanced turbulence crossflow. 

 

 

Figure 4.3: Integrated mean flame image for different turbulent conditions  

(U∞ = 6m/s, Uj = 4m/s). 

 

Iu <1%

Iu ≈ 3.7%

Iu ≈ 5.7%

 

Figure 4.2: Integrated mean flame image for different turbulent conditions  

(U∞ = 4m/s, Uj = 2m/s). 
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Iu ≈ 3.7%

Iu ≈ 5.7%
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4.2 The spread of the flame 

Figure 4.4 shows dimensionless spread of the flame in the vertical direction (ΔY/d) versus 

dimensionless downstream distance (X/d), obtained from photographs depicted in figure 

4.1. Figure 4.4 contains an initial spreading region(X/d<4) due to the presence of a strong 

recirculation zone followed by a minima between X/d = 4 to 10, depending on the 

turbulence level. The mean flame continues to spread up to X/d = 30 and stabilizes up to 

X/d< 40. The expansion zone (10<X/d<40) indicates air-fuel mixing and combustion of 

pyrolyzed components of fuel (Gollahalli et al., 1975). A decrease in flame spread in size 

indicates a reduction in the rate of combustion after X/d >40.  

In fig. 4.4, the vertical spread of flame (10 < X/d < 40) happens slightly faster in the 

turbulent case. This indicates an enhanced rate of combustion of pyrolyzed components of 

fuel in that region for case B and case C. Following the rapid spread zone, the visible flame 

for enhanced turbulence shows an earlier extinction when compared to the smooth flow 

condition (case A, Iu <1%). This result is consistent at U∞ = 6m/s, Uj = 4m/s (fig. 4.5a). 

Both fig. 4.4 and fig. 4.5 represent crossflow-dominated flames. In addition, the vertical 

spread of jet-dominated flame also shows a similar kind of trend (fig. 4.5(b,c)).  

 

 

 

Figure 4.4: Mean spread of the flame for different turbulence conditions. 
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Fig. 4.6a provides the shape of the mean flame (outline of 10% contour) captured from the 

top camera for three different turbulent cases. Fig 4.6b represents the width of the 

dispersion in the lateral direction. No significant effect of flame spread in the lateral 
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Figure 4.5: Vertical spread of the flame for different velocity magnitudes. 
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direction is visible in the near field (X/d<10). The flame spreads rapidly after that X/d>10. 

The spread is faster for enhanced crossflow turbulence.  

 

The result are consistent at U∞ = 6m/s, Uj = 4m/s, which is represented in fig. 4.7a. Due to 

the nature of grid turbulence, a strong lateral (Iw) turbulence is induced, which is intended 

to increase of mean flame spread in the Z-axis in the far field.  

Both fig. 4.6b and fig. 4.7a depict crossflow-dominated flames. However, for stronger jet 

momentum, there is no significant variation of the lateral dispersion for enhanced crossflow 

turbulence (fig. 4.7b,c). Thus it appears that the strong jet momentum may overwhelm the 

differences of the crossflow turbulence properties. 

  

 

  

 

 

Figure 4.6: (a) Outline of 10% contour of mean flame for different turbulent conditions 

(image captured from top camera); (b) Lateral dispersion of the mean flame 

 (U∞ = 4m/s, Uj = 2m/s). 
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Figure 4.7: Lateral spread of flames for different velocity magnitudes. 
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4.3 Analysis of the discrete flame packets 

Discrete flame packets are an essential feature of crossflow-dominated flames. In fig. 4.8a, 

it is seen that as the crossflow velocity increases the upper flame surface wrinkles and later 

generates discrete flames packets. It is observed that the location where the flame starts to 

fragment is closer to the stack for large values of U∞ (fig 3.2). Kostiuk el at.(2000) reported 

that discrete flame packets are responsible for reducing carbon combustion efficiency. In 

this section, it will be verified that if enhanced crossflow turbulence has an effect on the 

discrete flame packets.  

The image processing steps to get mean flame packet numbers are explained in Appendix 

A.3. Fig. 4.9 provides a comparison of discrete flame packet numbers for different 

 

Figure 4.8: Analysis of discrete flame packets (U∞ = 4m/s, Uj = 2m/s). 
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turbulence conditions. At U∞ = 4m/s, there is an increased number of average flame packets 

for enhanced turbulence (case B, case C). However, the result is not consistent with other 

crossflow velocities (6m/s, 8m/s). It would be worthwhile to assume that stack wake shear 

layer vortices are mainly responsible for generating discrete flame packets (Majeski, 2000). 

From the current cases, it appears that turbulence has no significant effect on the number 

of discrete flame packets (blobs). 

It has been observed (not shown here) that detached flame packets also appear for jet-

dominated flames. Such flames are detached from the main body on the tip side. Flame 

packets for different crossflow turbulence conditions do not vary consistently. However, 

turbulence does not appear to have a significant effect on discrete flame packets on jet-

dominated flames as well.  

 

 

 

Figure 4.9: Relation between discrete blob no. to crossflow velocity at Uj = 2m/s. 
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4.4 Flame colour analysis 

There is an intense mixing of the jet fluid and ambient air in the near field of the stack. 

This phenomenon results in blue flames which correspond to a premixed combustion 

behavior (Gollahalli et al., 1975). The yellow or orange flames are due to incandescence 

of very fine soot particles that are produced in the flame. In this study, the segmentation of 

images based on colour is explained in the Appendix A. Fig. 4.10 presents an instantaneous 

image captured from the top camera. The corresponding flow conditions are mentioned in 

the figure. The blue portions of the flame are observed to be narrower in the near field 

(0<X/d<5) for enhanced turbulent crossflow. Laminar crossflow is vulnerable to adverse 

pressure gradient on the rear of the cylinder (no jet flow), and separation occurs earlier than 

turbulent condition (White, 2004). This phenomenon may similar to narrower flame in the 

near field due to induced turbulence (Fig. 4.10). However, the flame overcomes the 

narrowing effect downstream (X/d>5). Additionally, the lateral width of flame in 

downstream (X/d>15) is slightly higher than the smooth flow condition. This may occur 

as a result of lateral turbulence effect (IW) of crossflow. The flame colour for both cases 

appears similar.  

 

 

Figure 4.10: Analysis of instantaneous images at Uj = 2m/s and U∞ = 2m/s  

for two turbulence conditions. 
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Fig. 4.11 depicts instantaneous images captured from the top camera at high jet velocity 

(Uj = 4m/s). The flame exhibits similar phenomena for enhanced turbulence as mentioned 

for figure 4.10. Additionally, the lateral width of the flame is increased due to enhanced 

crossflow turbulence.  

 

Fig. 4.12a provides a depiction of a segmented image for a side camera (cam 1). Two 

turbulence conditions (Iu< 1% and Iu ≈ 5.7%) are placed side by side for comparison. From 

the instantaneous images, it is clear that the recirculation zone for enhanced crossflow 

turbulence is higher than smooth flow. This is discussed in detail in section 4.1. In addition, 

the colour of the shear layer appears more extended at U∞ = 4m/s in fig. 4.12a. However, 

the results are not consistent at U∞ = 6m/s (fig. 4.12b). Gollahalli et al.(1975) mentioned 

blue flame as an indication of mixing of air to fuel. As a result, it’s hard to assume enhanced 

crossflow turbulence is beneficial for the air to fuel mixture.   

 

 

Figure 4.11: Analysis of instantaneous images at U∞ = 2m/s and Uj = 4m/s 

 for two turbulence conditions (images captured from top camera). 
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Fig. 4.13a presents orange to blue flame ratio at different crossflow velocity when the jet 

velocity is 2m/s. The ratio is obtained from segmented image pixel information. It is 

observed from the figure that there is no consistent variation of orange to blue flame for 

different turbulence conditions. At U∞ = 8m/s, the difference of colour ratio for two 

turbulence conditions is higher. This is because of the strong recirculation zone for smooth 

flow condition (where, soot radiating orange flame appears on recirculation zone). When 

the jet velocity is 4m/s (fig. 4.13b), the ratio of orange to blue flame is higher in smooth 

flow case. This phenomena indirectly suggests that for a strong jet velocity, enhanced 

 

Figure 4.12: Analysis of instantaneous images at Uj = 2m/s for two turbulence 

 conditions when (a) U∞ = 4m/s, (b) U∞ = 6m/s (images captured from camera 1). 
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crossflow turbulence does a better job for air-to-fuel mixing in the near field. However, 

there is no overall trend to conclude that enhanced crossflow turbulence is beneficial for 

the air-to-fuel mixture. 

 

 

Figure 4.13: Average ratios of orange to blue flames from segmented images at 

different crossflow velocities for jet velocities (Uj) of (a) 2 m/s and (b) 4 m/s. 
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4.5 Summary 

The effect of turbulence crossflow on jet flame has been analyzed by instantaneous and 

mean flame images. Full flame is captured using 3 cameras from the side, top camera 

captures the flame up to 20 diameters (d ≈ 1inch) downstream. Recirculation zone shape, 

flame dispersion on the vertical and lateral direction are explained based on the mean flame 

image produced from instantaneous sequential images. Instantaneous images are used to 

describe discrete flame packet analysis and image segmentation for the different colour 

channels. Image processing methodologies are explained in appendix A. The brief 

observation of flame response due to turbulence crossflow is discussed as follows: 

 There is a strong recirculation zone formed on the leeward side of the stack in 

crossflow-dominated flame. For enhanced crossflow turbulence (Iu ≈ 3.7 %, 5.7%), 

recirculation zone is smaller comparing to smooth flow (Iu < 1%). This is indirectly a 

clear indication of comparatively higher pressure on the leeward sidewall for enhanced 

turbulent crossflow. 

   

 Vertical dispersion or spread of the flame is slightly higher for enhanced crossflow 

turbulence. However, the spread is not quite significant to mark for all velocity ratios. 

 

 

 Compared to vertical spread for enhanced turbulence crossflow, flame spreads more on 

lateral direction due to induced turbulence. Lateral dispersion is significant for 

crossflow-dominated flame. However, for a strong jet momentum ratio, lateral 

dispersion is not remarkably varied for turbulent crossflow.  

 

 There is no consistent variation of discrete flame packets for turbulent crossflow.  

 

 

 Instantaneous flame analysis from segmented image suggests the lateral width of the 

flame is higher in the near field for smooth flow. There is no consistent variation of 

shear layer blue flame region for the enhanced turbulent condition.  



66 

 

Chapter 5  

 

5 Conclusion and recommendations 

 

5.1 Conclusion 

A previous study from Johnson and Kostiuk (2002) suggested flaring efficiency (or carbon 

conversion efficiency) reduces in turbulent cross-winds.  Johnson et al.(2001) identified 

that the probable fuel stripping zone is located in the lower portion (near recirculation zone) 

of crossflow-dominated flames. From their work, it is also evident that unburned fuel exists 

in between the discrete flame packets (Johnson and Kostiuk, 2002). The main focus of this 

study is to observe the difference in the visible flame appearance in turbulent cross-winds 

in order to connect to the previous findings. Turbulent crossflows are generated using 

passive grids. An empirical equation for methane flame length is provided. Trajectory 

scaling for flame has been checked at different velocity ratios (4 ≥ r ≥ 2). Visual flame 

dispersion in the vertical and the lateral directions has been checked for different crossflow 

conditions.  

Carbon conversion inefficiency is higher in the presence of increased crossflow velocity 

(fig. 1.7). In the presence of strong crossflow, flames appear as crossflow-dominated, 

which is the regime of interest. In the current study both crossflow-dominated flames and 

jet-dominated flames are analyzed for different turbulent conditions. Based on the 

observations in chapter 3 and chapter 4, the following conclusions can be made: 
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 Flame length can be estimated with good agreement from empirical equations for 

different flow rates and stack different diameters. The empirical equation will give an 

estimation of the flame length of natural gas for the site engineers (eqn. 3.3 & eqn. 3.4). 

The empirical relation is less predictable from the experimental results when a larger 

recirculation zone appears (fig. 3.8).  

 

 The flame lengths are reduced by 8-10% as an effect of turbulent cross-wind (fig. 3.10). 

The reduction in flame lengths due to enhanced turbulent cross-wind are observed for 

both crossflow-dominated and jet-dominated flames. However, when strong downwash 

flame (larger recirculation zone) appear (fig. 3.11), the flame length for smooth 

crossflow is smaller than turbulent crossflow.    

 

 The flame recirculation zone behind the stack (on the leeward side) is reduced as a 

result of strong turbulent cross-winds (fig. 4.1, fig. 4.2, and fig. 4.3). These results occur 

consistently for crossflow-dominated flames at different velocity ratios. 

 

 From the mean flame images, it is observed that lateral (Z-direction) spread of flames 

for turbulent cross-winds are higher compare to smooth cross-winds (fig. 4.6 and fig. 

4.7). This trend is consistent both for crossflow-dominated flames and jet-dominated 

flames. The flame spread is greater in the vertical direction (Y-direction) due to 

enhanced crossflow turbulence (fig. 4.4 and fig. 4.5) for both crossflow-dominated 

flames and jet-dominated flames. 
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 Johnson and Kostiuk(2002) observed unburned fuel in between the discrete flame 

packets using Mie scattering technique. It can be assumed that increased numbers of 

packets is an indirect indication of reduced carbon conversion efficiency. In this study, 

it is observed that the discrete flame packets do not change significantly for different 

turbulent cross-wind conditions (fig. 4.9). This observation is consistent both for 

crossflow-dominated flame and jet-dominated flames. 

 

 Mean flame colour ratio (orange to blue) suggests a lack of consistent variation of the 

observed flame colour in the near field for different turbulence conditions. The colour 

of the flames indirectly indicates a better mixing and less soot formation in fig. 4.13b 

at Uj = 4m/s for enhanced turbulence (Iu ≈ 5.7%). However, there is no remarkable 

variation in the ratio of flame colour in fig. 4.13a at Uj = 2m/s for Iu ≈ 5.7%. 

Overall, both the flame length and the downwash region decrease as an effect of enhanced 

turbulent cross-wind (fig. 4.3) for crossflow-dominated flame. Although the fuel flow rate 

is the same, it is reasonable to consider the two following possibilities: 

 

I. The flaring gas burns within the smaller area to enhance cross-wind turbulence. It may 

be assumed that for enhanced cross-wind turbulence, good mixing happens in the near 

field. As a result, the fuel may burn more quickly in the far field. However, there is no 

consistent evidence from the instantaneous flame images that enhanced turbulence 

enhances mixing.  
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II. In this study, instantaneous images captured the visible flame. It is assumed that there 

is unburned fuel that exists in between the blue colour mixing layer in the near field, 

which burns downstream. It is a possibility that a part of the unburnt fuel is stripped 

out before participating in the burning process. This effect cannot be verified in this 

study because we only captured the visible flame. Further work is needed to resolve 

the issue. 

 

 

5.2 Recommendations 

In order to resolve the mechanisms associated with reduced carbon conversion efficiencies 

in a turbulent crossflow, it is strongly suggested to track the unburned fuel path in the near 

field for both smooth and turbulent flow conditions. Mie scattering or Schlieren imaging 

are suggested to conduct to check if there is any fuel stripping happening for enhanced 

cross-wind turbulence. In this study, the mixing phenomena are explained indirectly by 

changing the flame colour. An experiment with PIV(particle image velocimetry) would be 

beneficial to describe the mixing phenomena.  
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Appendix A:  

A.1 Image analysis technique 

This appendix explains the methodology of determining the flame length. The image 

processing technique is discussed with brief explanations. Distinguished figures are 

provided with explanations to make it clear to the reader. Images of the flame are collected 

with colour Basler Ac A 1920 cameras as depicted (fig. 2.1) in chapter 2 images. The sensor 

is CMOS- Sony IMX- 174.  

A LabVIEW code is developed to acquire images(fig A.1). The LabVIEW code is simply 

explained as the consumer-producer loop structure. Where the images are captured in the 

 

Figure A. 1: Part of image acquisition Labview code(where the symbol represents usual 

LabVIEW symbol meaning). 
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consumer loop and send through a wire to producer loop. The consumer loop saves the 

images in order to the Solid State Disc(SSD) of the laboratory computer. The computer 

SSD can save the data up to 2.7GB/s which is quite enough to save images without 

dropping the frame rates significantly.    

The frame rate, exposure time, gain and other image acquisition quantities are kept constant 

during taking the whole sets of experiments for all 4 cameras. 17 mm lens is used to 3 side 

cameras and 28mm lens is used to top cameras. 

With the help of commercial software and LabVIEW, image acquisition is completed. 

MATLAB is used to analyze the acquired images. 

A.2 Segmenting the flame from background   

Images of the flame are collected with 3 channel (RGB) colour camera. The output signal 

of the cameras is saved as 8bit .TIF(Tagged Image Format) file. TIF is an image format 

file for high-quality graphics without compressing the images like .JPEG file. The resulting 

.TIF files are simply a list of light intensities, ranging from 0 to 255 for each channel. The 

single image is then converted to grayscale images which have light intensity 0 to 255 as 

well. Later, the histogram of a grayscale image is generated(no of pixels vs pixel intensity 

plot). The derivative of the histogram plot gives an indication to choose cut off pixel value 

to separate the background from the flame (fig A.2). 

The procedure is executed to every 100ms sequential images and keep the flame location 

record in an array. Later, get the averaged image based on probability of visible flame 

occurrence on as 100%, 50%, and 10% contour.  
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Figure A. 2: Procedure to get mean flame images for individual camera. 
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A.3 Image the mean flame images   

The location of the burner stack for each set of experiments is kept in record. The overlap 

region in X-direction between camera 1- camera 2 and camera 2-camera 3 is recorded. The 

relative vertical position(Y-direction) of the side cameras changes their position during the 

experiments and location is tracked. Based on the record, all three mean images from side 

cameras are combined to one single image programmatically. Statistically, the combined 

image represents the mean flame for a particular experimental condition.   

 

 

 

Figure A. 3: Mean image of full flame 
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A.4 Discrete blob analysis 

Instantaneous images from different cameras have been combined to represent a full flame 

image(fig. A. 4a). The combined images are binarized as an initial step to count discrete 

flame packets. Image binarization is executed as discussed in section A.1(fig. A. 4b). 

Discrete flame packets are also defined as a discrete blob in previous analysis. The size 

and shape of the discrete flame packets are wide in range. In this study, the flame packets 

are defined from 10 diameter circle sizes to the smallest possible visible flames. The 

discrete flame packets are labeled with different colours to visualized clearly. This 

 

Figure A. 4: Procedure to identify discrete flame packets (U∞ = 4m/s, Uj = 2m/s). 
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procedure is executed for all the sequential images. The total no. of flame packets are 

divided by total no. of images to get average flame packets. 

The time lag between 1st camera image and 2nd camera image is 4ms (millisecond), 1st to 

3rd is 9 ms and 1st to the top camera is 7ms. This is one of the limitations of discrete flame 

analysis for combined image. 

A.5 Colour channel analysis 

8bit RGB image has been taken during the experiment. 3 colour channels are present in the 

individual image. However, segmenting the image based on 3 colour channels may provide 

a false representation about the true colour of the flame. Fig. A.5 provides a depiction of  

 

Figure A. 5: Segmenting images based on colour channels. 
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image segmentation to red, green and blue channel. For the current research, it is important 

to distinguish blue channels in the image. In fig. A.5, the intensity of the blue pixel on far 

field (marked white circle) is clearly higher than the intensity of the blue field in the near 

field. However, there is no trace of blue-coloured flame present on the far field. Before 

segmenting the image based on colours, these issues need to be considered. 

To solve this issue, a conventional machine learning algorithm is used to segment the 

images. The flame image is segmented into 3 classes: background, blue flame, and 

orangish-yellow flame. 5 images are trained to manually for each turbulent condition for 

 

Figure A. 6: Steps to prepare training set. 
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each camera. Training data for each class are refined using Principal Component 

Analysis(PCA) method. The training set is tested to check the segmented image and to 

keep the error less than 5%. The procedure is explained in the following figure. 

 

Once the training set is formed, entire set images for that particular flow condition can be 

segmented into three distinct regions: background, blue and orange/yellow flame (fig. A.7). 

Diagquardratic classifier function is used as classifies with minimal error.  

 

 

 

 

 

 

 

Figure A. 7: Segmenting images from raw RGB image. 
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Appendix B.  

B.1  Uncertainties in the measurements of crossflow velocity 

In order to estimate the uncertainties associated with the velocity measurements, the 

performance of the cobra probe and pitot tube data are used. Performance of the cobra 

probe data is compared with pitot tube data taken during the experiments for a wide range 

of velocities. The data has been taken at the same time. The cobra probe and pitot tube are 

placed closer and it is made sure that the equipment does not distract each other flow field. 

Cobra probe readings were sampled at 1250Hz for approximately 60s for 5 different wind 

tunnel speeds. During the measurements, the cobra probes were set aligned with the flow 

by visual inspection. From the cobra probe readings and comparing with the pitot tube 

readings the bias limit, the precision limit and total uncertainties in the velocity 

measurements by the cobra probe was calculated for each of the 5 discussed test case (table 

B.1). The number of samples for each of the test cases being larger than 30, in the 

calculation of precision limits for the cobra probe the value of ‘t’ was considered to be 1.96 

(Wheeler and Ganji, 1996).  
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Pitot tube 

reading 

(m/s) 

Cobra 

probe 

reading 

(m/s) 

standard 

deviation 

of cobra 

probe data, 

S 

Uncertainity 

of each 

sample, 

wv = (B^2 + 

(tS)^2)^0.5 

Uncertainity of mean 

sample, 

wv(mean) = (B^2 + 

(tS/(n)^0.5)^2)^0.5 

Error(%) 

2.303 2.2 0.06 0.15 0.10 4.68 

4.09 4.11 0.07 0.15 0.02 0.49 

6.175 6.12 0.08 0.17 0.06 0.90 

8.27 8.07 0.11 0.29 0.20 2.48 

10.53 10.07 0.13 0.52 0.46 4.57 

 

Total error is the summation of bias error(B) and precision error(P). The precision error is 

random in individual measurements and depends on sample size. Meanwhile, experimental 

equipment is the source of bias error. Bias error is constant under similar similar flow 

conditions. It can’t be eliminated but it can be estimated (Wheeler and Ganji, 1996). For 

the current crossflow velocity uncertainty, the precision error is less than 0.5% and the 

maximum overall error is lower than 5%.  
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B.2 Uncertainties in the measurements of mean image analysis 

To get the mean flame image acquisition uncertainty 6 sets of images are considered. Each 

time approximately 500 images are captured to get a mean flame image for each set. 5 sets 

of images are captured during August ’19 and the sixth set is captured during September 

’19 (fig B.1). The total area of the flame is calculated in terms of pixel number. The 

uncertainty analysis is carried over for 3 different flow conditions (table B.2). All of the 

flow condition is for smooth flow (Iu<1%). 

 

 

 

 

 

Figure B. 1: Uncertainty analysis for mean flame (U∞ = 6m/s, Uj = 8m/s). 
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Sep ‘19 

acquisiti

on pix 

reading 

(no. of 

pix) 

Aug ‘19 

acquisitio

n pix 

reading 

(no. of 

pix, mean 

value) 

standard 

deviation 

of Aug 

‘19 

acquisitio

n data, S 

Uncertainity 

of each 

sample, 

wv = (B^2 + 

(tS)^2)^0.5 

Uncertainity of 

mean sample, 

wv = (B^2 + 

(tS/(n)^0.5)^2)

^0.5 

Error(%) 

U∞ = 

8m/s 

Uj = 

6m/s 

546886 535120 317 11798.86 18788.27 3.51 

U∞ = 

6m/s 

Uj = 

8m/s 

503574 494080 1298 10154.77 15781.87 3.19 

U∞ = 

10m/s 

Uj = 

6m/s 

571620 570159 353 1759.20 2627.60 0.46 

 

Table B.2 represents error analysis for mean flame images at 3 different velocity pair. It is 

seen that the maximum error is 3.51%. This error includes bias error(experiments between 

August ’19 and September ‘19) and precision error. Precision error is less than 0.5%.   
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