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Abstract 

Anomaly detection is quickly becoming a very significant tool for a variety of 

applications such as intrusion detection, fraud detection, fault detection, system health 

monitoring, and event detection in IoT devices. An application that lacks a strong 

implementation for anomaly detection is user trait modeling for user authentication purposes. 

User trait models expose up-to-date representation of the user so that changes in their interests, 

their learning progress or interactions with the system are noticed and interpreted.  The reason 

behind the lack of adoption in user trait modeling arises from the need of a continuous flow of 

high-volume data, that is not available in most cases, to achieve high-accuracy detection. This 

research provides new insight into anomaly detection techniques through Big Data utilization. 

Three classification approaches are presented for anomaly detection techniques that are aligned 

with Big Data characteristics: volume, variety and velocity. The classification is supported by 

applications of machine learning techniques, such as K-means, Hidden Markov Model, 

Gaussian Distribution and Auto-encoder neural network, with an aim to recommend best 

techniques to model user behaviour in an adaptive environment. An ingenious implementation 

of machine learning techniques has been presented that automatically and accurately builds a 

unique pattern of the users’ behaviour. With Big Data characteristics, anomaly detection 

techniques have become more suitable tools for user trait modeling. A solution model is 

designed and implemented based on anomaly detection outcomes utilizing user traits for an 

existing user authentication framework. User traits will be modeled by creating a security user 

profile for each individual user. This profile is structured and developed to be a seed for a 

strong real-time user authentication method. The implementation comprises four main steps: 

prediction of rare user actions, filter security potential actions, build/update user profile, and 

generate a real-time (i.e., just in time) set of challenging questions. Real-world scenarios have 

been given showing the benefits of these challenging questions in building secure knowledge-

based user authentication systems. 

Keywords 

User trait Modeling, Big Data, Anomaly Detection, K-means, Gaussian Distribution, Neural 

Network, User Authentication  
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Chapter 1  

1 Introduction 

In preventing and detecting unauthorized use of computer systems, user 

authentication is the first line-of-defense against cyber-attacks. RFC 2828 defines user 

authentication as the process of verifying an identity claimed by or for a system entity [1]. 

An authentication process consists of two steps: (1) presenting an identifier to the security 

system, and (2) presenting or generating authentication information that corroborates the 

binding between the user and the identifier. There are many user authentication methods 

that are implemented and used to provide secure user authentication. These methods can 

be classified under three main authentication categories. (i) “Something-you-know”, 

examples include a password, a PIN number (ii) “Something-you-have”, examples include 

cryptographic key generators and smart cards. (iii) “Something-you-are”, examples include 

the recognition of users’ fingerprint, iris, and face, known to be static biometric measures. 

Each of these methods has its own security advantages and pitfalls. 

Ouda, [1] has developed a new framework to describe the rise of new generation 

user authentication systems. The framework is recommending the leverages of Big Data 

analytics and relying on a “something you do”-based verification process. Figure 1.1 shows 

the main component of this framework. The framework provided three main components 

that indicate the perspectives for the researchers to approach the development of strong 

user authentication systems. These components are: (1) Data Security-based Analytics 

(DSA) that describe ways to leverage Big Data analytics to have valuable insight of the 

users’ data with the appropriate depth needed to deliver up-to-date representation of the 

user behaviour, (2) Big Data-driven Authentication tools (BDA), to analyze the captured 

user behaviour and focus on the sudden changes of the user’s actions, along with the real-

time uniquely identifiable information to build accurate patterns of the users’ actions in the 

form of user security profile, and (3) Just-in-time human dynamics based authentication 

engine (JitHDA) that utilizes these profiles to generate a real-time (i.e., just in time) set of 

challenging questions. These questions should cover the unique actions that explicitly 

represent an instantaneous specific user’s behaviour. 
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This thesis proposes a novel implementation model for Ouda’s authentication 

framework. This model utilizes the Machine Learning-based Anomaly Detection technique 

to develop the security potential user profiles by which a structural database of challenging 

questions is constructed.  

The following sections discuss the motivation for this work and thesis objectives. 

The methodology and the thesis contributions are addressed. Lastly, this chapter explains 

the thesis outline.  

 

1.1 Research Motivation 

People spend a significant amount of time, in their daily routine, interacting with 

social network applications such as Twitter and Facebook. Every time people use credit 

cards, their purchase data is not only being tracked but also the products that are being sold 

to which group of customers are stored. People and companies are using cloud-based email 

services such as those services provided by Yahoo and Google. This is because they offer 

compelling functionalities and assign huge amounts of user repositories. These email 

providers are using algorithms to scan the email content for keywords aiming to offer some 

 

Figure 1.1:  The main components of Ouda’s user authentication framework [1] 
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advertisements toward user interests. For instance, a user may start getting links for hotel 

reservations just after receiving a confirmation email about an airline booking. 

Having said the above, we believe that many aspects of users’ traits would be 

digitally captured in real-time or accumulated for future data analysis. This has turned our 

attention to the fact that, with proper analysis of this data an accurate detection of people’s 

behaviours can be made and hence their identification factors can be verified, especially 

when the results of this analysis are fed into user authentication methods. However, the 

continuous flow of high-volume data requires sophisticated data analysis techniques to be 

able to examine huge amounts of behavioural evidence so that user traits can be modeled. 

In addition, these techniques should have the ability to distinguish between normal and 

abnormal actions of users, so that security potential data can be captured.  

In this regard, we are in the favor of enhancing the anomaly detection techniques 

to be utilized for users’ trait analysis in an attempt that the detected information will 

fulfill the needs for the user’s identity verification. 

1.2 Research Objectives 

The main goal of this research is to build a users’ behaviour analyzer engine to 

automatically and accurately detect a range of abnormal actions among high-volume, fast, 

and mutable streams of users’ data. The result of these detections should be enough to 

structure and develop security user profiles. These profiles provide an image of sensitive 

information about the users by which a strong real-time user authentication model can be 

designed. In other word, the main goal of this research is to design and implement accurate 

and complete models for the DSA, BDA, and JitHDA components within Ouda’s 

authentication framework described above. It worth mentioning that, this work has been 

build based on the assumption that, all data source is free from any fraud transactions. 

The following are the research objectives that support the above goal. 

1. Investigate anomaly detection techniques and recent innovative research done in this 

area. Also, study Big Data characteristics especially for anomaly detection techniques 
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and then chose the most effective characteristics to build a novel study for anomaly 

detection in Big Data applications. 

2. Based on the previous objective (Study for anomaly detection techniques in Big Data), 

develop an anomaly detection model that is suitable for Ouda’s user authentication 

framework with choosing the best evaluation method. 

3. Create a prototype for user authentication systems using anomaly detection outcomes 

by generating a sample of user profiles. 

1.3 Research Methodology 

This section describes the methodologies that are applied in this research for each 

objective to design and implement the anomaly detection for user the authentication 

framework as follows: 

Objective one is a novel study for anomaly detection techniques based on Big Data 

which can be completed by the following tasks: 

- Explore all anomaly detection techniques including the recent research that is 

related to Big Data applications. 

- Study the Big Data characteristics, sources, features, and applications and choose 

the most common V’s related to anomaly detection problems. 

- Extract three factors in anomaly detection techniques through the recent research 

that match or are related to the chosen Big Data characteristics. 

- Identify and classify the collected anomaly detection techniques based on the 

factors – Big Data characteristics combination from the previous task. 

- Create two comparative studies for the most common techniques in supervised and 

unsupervised learning for the recent research papers with specific factors for all 

chosen papers and some conditions to choose the papers. 
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Objective two is designing an anomaly detection model which can be completed by the 

following tasks: 

- Choose the most commonly used unsupervised techniques based on Big Data 

anomaly detection classification and the comparison study provided. 

- Apply most of the popular binary evaluation methods to choose the suitable one for 

our research case and develop two sequential accuracy algorithms to make sure the 

existing evaluation methods calculate the sequential accuracy. 

- Apply the chosen unsupervised techniques from task one in this objective and tune 

them with several parameters on nine different experiments. 

- Assume different models that are combined from the chosen techniques to get more 

analyzation and accuracy. 

- Obtain the best model with the best accuracy for every experiment.  

Objective Three is developing a user authentication prototype which can be completed 

by the following tasks: 

- Choose and analyze the experiment results that are suitable for user profile 

generation using a specific criterion. 

- Design and create user profiles for a sample of anomalous cases from the suitably 

chosen anomaly detection results for profile features that are compatible with the 

Ouda’s user authentication framework. 

- Provide a scenario for creating challenging questions based on the user profiles for 

user authentication recommending specific rules to match the high level of security. 

- Validate the final challenging questions in the user authentication framework with 

strong examples from the user profiles. 
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1.4 Research Contribution 

This thesis focuses on designing and implementing an anomaly detection technique 

suite for Ouda’s user authentication framework. Initially, it offers a study on Big Data for 

anomaly detection techniques which has three classifications. These classifications are 

completed based on three Big Data characteristics that are related to the three factors in 

anomaly detection techniques; Volume with data features, Variety with the natural types 

of data, and Velocity with computational complexity. Each one of the classifications 

describe the common machine learning (ML) techniques that are used in recent research. 

These classifications helped me to choose the best model fit with the best problem. Two 

comparison studies (supervised and unsupervised techniques) over a number of recent 

research papers are presented for the chosen ML models with specific comparison factors 

and some research paper standards. 

This thesis also proposes an anomaly detection (AD) model that contains a 

combination of several techniques that are suitable for Big Data applications. The AD 

models are combined with several machine learning techniques; K-means, Hidden Markov 

Model (HMM), Auto-Encoder NN, and Gaussian Distribution. In total, the applied models 

and techniques are seven; the four basic techniques and three combined as follows: 1) K-

means with Auto-encoder NN, 2) HMM with Auto-encoder NN, and 3) K-means, HMM 

and Auto-encoder NN. These models are applied on nine different experiments and give 

good detection results. The experiments are applied to a variety of fields such as financial 

payment systems, insurance systems (health, auto, home), computer server monitoring 

systems, and network transmission systems. Figure 1.2 shows the nine experiments related 

to the fields and sizes. Most of the common evaluation methods are applied in this thesis. 

Confusion matrix, true positive rate (TPR), and true negative rate (TNR) are chosen for 

comparing the results because they match the research needs. 
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Figure 1.2: Nine Experiments, Fields and Sizes 

Finally, this thesis proposes a scenario of generating security questions based on a 

desired anomaly detection model and user profiles. This scenario provides strong examples 

of challenging questions from a sample of user profiles that are created after anomaly 

detection analyzation has been done on Big Data. 

The research contributions of this thesis have been published in several conference 

proceedings in the areas of information security and data analytics. Therefore, these 

contributions have been peer-reviewed by experts in the field. 

1.5 Research Outline 

The thesis structure is ordered as follows. Chapter 2 provides a literature review of 

anomaly detection techniques and background on the user authentication system as well as 

theoretical information of the most commonly used anomaly detection techniques. In 

Chapter 3 we present and discuss anomaly detection techniques in Big Data applications 

by providing three classifications for the commonly used anomaly detection techniques. 

An anomaly detection model is discussed in high detection accuracy as well as how this 

final model is combined and chosen with result discussions in Chapter 4. Chapter 5 

discusses a scenario on how a challenging question would be created using anomaly 

detection results including how user profile generation is achieved. Chapter 6 concludes 

with the thesis and addresses the future work recommendations and directions. 
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Chapter 2  

2 Literature Review and Background 

This chapter presents a literature review of the current anomaly detection 

techniques on Big Data and the known classifications. It also presents an in-depth concept 

of anomaly detection and its mechanism in some applications as well as commonly used 

anomaly detection techniques. Finally, it overviews user authentication techniques in 

general and explains more details in the related knowledge-based applications. 

2.1 Literature Review 

The term “anomaly” is defined as something that deviates from what is standard, 

normal, or expected. In data science, a data anomaly is not far from this definition. 

However, the deviation from the standard or expected data might be due to errors in the 

data or due to correct data that is triggered by uncommon, but accurate actions. In both 

cases, the detection of these deviations is desirable whether to correct the errors (if any), 

or to gain better insight on data. Many anomaly detection techniques exist in academic 

literature, and share the same purpose, that is to differentiate between what is normal and 

abnormal. 

There are three broad categories of anomaly detection that are classified based on 

the type of the datasets they are working on, i.e., whether the data is labeled or not. 

Supervised anomaly detection techniques detect anomalous data based on the available 

labeled data for both anomalous and normal labels. Unsupervised techniques detect 

anomalous data based on unlabeled data. Semi-supervised anomaly detection techniques 

assume that the labels exist only for normal data, while the anomalous data is detected [2]. 

Under these three categories, anomaly detection techniques can be further divided 

into six subcategories. Although there are many classifications in the literature, we will 

address the most common approach among researchers. Figure 2.1 illustrates this 

classification approach. Classification techniques build classifiers based on labeled training 

sets to distinguish between normal and abnormal test data and are most likely used as a 

specific type of the supervised techniques. Nearest neighbour techniques utilize the 
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similarity or distance between samples to detect the anomalous data. Clustering techniques 

group the data to detect the individual or group anomalies among normal group data. 

Spectral techniques embed the data into a smaller subspace to find the differences between 

normal and abnormal data. These three groups are mainly used to further classify both the 

semi-supervised techniques. Moreover, statistical and informational theories would be 

used to classify the unsupervised techniques. Statistical techniques assume high probability 

for normal data and low probability for anomalous data. Information theory techniques 

detect anomalous data through the irregular information content in the dataset. The reason 

behind this classification is highlighted by the following scenarios. Each scenario describes 

the applicable types and examples that would be used. 

 

Figure 2.1: Anomaly Detection Categories 

There are many popular classifiers that have been used in anomaly detection such as 

neural networks, support vector machine, Bayesian networks and rule [2] - [6]. In the 

nearest neighbour category, there are two types of techniques, namely, kth nearest 

neighbour and density nearest neighbour. The former computes the anomaly score using 

the similarity between a data sample and its kth nearest neighbour. However, the later 

computes anomaly score using the relative density of each data sample. Similarly, 

clustering techniques have three types based on three assumptions: 

1) Anomalies do not belong to any cluster but normal data belongs to a cluster. 

2) The closest data to a cluster centroid is normal data whereas the far data are anomalies. 

3) The large clusters contain normal data yet anomalies exist in small clusters. 
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Statistical techniques can be divided into parametric and non-parametric types. The 

normal data is produced using a parametric distribution in parametric type such as Gaussian 

Model, Regression Model, and Mixture of Parametric Distributions. But a non-parametric 

type does not consider any parametric distribution such as histogram model and kernel 

function. Information theoretic techniques use several measures to analyze the information 

content using Kolomogorov complexity, entropy, and relative entropy. The spectral 

techniques use dimensional reduction techniques by employing Principal Component 

Analysis (PCA) and Compact Matrix Decomposition. Figure 2.2 summarizes the above 

scenarios including the examples and types of anomaly detection techniques. 

 

Figure 2.2: Anomaly Detection Techniques Types and Examples 

Our aim in this work is to shed light on Big Data-enabled anomaly detection 

techniques. Researchers define Big Data as datasets that possess the characteristics of the 

3Vs (Volume, Variety, and Velocity). Volume refers to the scale of the data. Variety refers 

to the heterogonous data presentations such as unstructured, semi-structured, and 

structured data. Velocity refers to the pace at which data is generated. When data becomes 

Big Data, the above classifications of anomaly detection needs to be reinvestigated (in a 

later chapter). 

Chandola, et al. [2] discussed the anomaly detection techniques with several 

aspects. However, the authors do not include the characteristics of Big Data in their survey. 

Moreover, Rana, et al. [6] give guidelines for Big Data but it is specific to a data stream 

type. Other recent surveys study the characteristics of anomaly detection against some 

specific datasets. For instance, Wu [7] focuses on time series datasets which can ignore 
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other types of datasets. Also, Patil and Biswas [8] have an anomaly detection survey with 

only video datasets. While some surveys concentrate on some types of data, other research 

papers have an emphasis on a specific anomaly detection application. For example, Anand, 

et al. [9] Al-Musawi, et al. [10] have anomaly detection surveys on Border Gateway 

Protocol and online social networks respectively. Kaur and Singh [11], Fanaee-T and Gama 

[12], have anomaly detection surveys which include general information for most 

techniques without a real implementation.  

This literature review includes many anomaly detection techniques that need to be 

explained. The next section will give the important background information for anomaly 

detection mechanisms and the techniques that will be used in this research. 

2.2 Anomaly Detection Techniques 

Generally, anomaly detection works with both supervised (detection of anomalous 

data based on the labeled data for both anomalous and normal labels) and unsupervised 

(detection of anomalous data based on unlabeled data) machine learning techniques. 

Furthermore, the reasons to prefer an unsupervised machine learning technique in anomaly 

detection systems, even if there is a labelled 0 for normal and 1 for anomaly data are: 

- A small number of positive (anomalous) data  

- A large number of negative (normal) data. 

- The existence of many different types of anomalies, which makes it hard for an 
algorithm to learn, especially if positive data is small. 

- And, in this work, the user authentication application requires to deal with unlabeled 
data (the labels will be used only for the evaluation part). 

An anomaly detection approach is when an unlabeled training set is used to build a 

model P(x); where p is the type of model (probability, clustering, or hierarchy), and x is 

some data attributes (A.K.A. data features, or just features) of the unlabeled training set. 

Therefore, an anomaly detection model of x has been built, then new instances (a test set) 

should be analyzed. If p of x-test is less than some specific criteria such as the threshold 

probability value, then the model will flag it as an anomaly, as shown in Figure 2.3. The 
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model mechanism will be more transparent by explaining some existing anomaly detection 

applications. 

Figure 2.3: Anomaly Detection Diagram 

The next section will explain in detail some examples of anomaly detection 

applications. Moreover, if a platform has many users, and each of these users takes different 

activities, the platform such as a website can compute different data features of users’ 

activities. 

Using these features, the model can be built to produce some results like, “what is 

the probability of different users behaving different ways?” and “what is the probability of 

features of a user’s behaviour?” At this point, the user’s activity features are known from 

the model results that is already built. An example of that could be “how often a particular 

user logs in or does transactions?” 

Finally, the model can identify the strange user behaviour on the platform by 

checking the results under a threshold value. It can also create users’ profiles for more 

analysers or request further verification from those users to guard the platform against 

strange or fraudulent behaviour. This system is used by many online platforms to detect 

not only stolen or fraudulent behaviour but also the abnormal behaviours for any further 

purposes. 

Another anomaly detection application can be applied in the manufacturing process 

where unusual products could be found getting more reviews. These reviews can be used 



13 

 

to enhance future manufacturing. A third example of anomaly detection application is in 

monitoring computer systems in a data center that utilizes online and offline machine 

learning techniques to detect abnormal computer behaviours such as different amounts of 

memory use, different numbers of disc accesses, and different CPU loads. The machine 

learning techniques used in these applications are very widely different. However, there 

are several popular unsupervised machine learning techniques what will be explained in 

the next section and used in this research.  

The purpose of this work is to build and create a unique knowledge-based 

authentication system that relies only on the abnormal actions of users to be the base of the 

challenging questions. This system utilizes the anomaly detection technique such that the 

answers of the challenging questions are known only by the legitimate user and easy to 

remember. 

Anomaly detection techniques have been successfully used in Big Data 

applications, user profile-based systems, and unsupervised-based techniques. Recent 

research has increased in Big Data applications for anomaly detection system such as [13] 

– [17]. In [13], Gupta, et al. developed an advanced system with a highly accessible feature 

that is suitable for Hadoop clusters monitoring in real-time. In paper [14], Abu Sulayman 

and Ouda stated a unique vision for Big Data applications in anomaly detection techniques. 

This unique insight has a practical application using two machine learning techniques and 

three new classifications.  Mehnaz and Bertino in this paper [15] suggested the anomaly 

detection approach which established strong user profiles by analyzing the timestamp data 

of users’ files and the temporal characteristics using a multilevel temporal data structure. 

Henriques et al, presented machine learning techniques which have self-learning user 

profiles in IDS systems [16]. Research [17] proposed a technique that detected the trends 

of abnormal behaviour then alerts the administrator and the user in real-time. Three kinds 

of techniques; regression, unsupervised classification, and simple statistical techniques 

were tested. Sometimes, it is vital to have an anomaly detection system that is suitable in a 

specific Database. 



14 

 

Other recent research has explored user profile generation for anomaly detection in 

specific databases [18] – [22].  A database proposal is designed for anomaly detection to 

develop the accuracy of database anomaly detection and to generate the users' profiles 

accurately in [18]. A technique is proposed to find the anomalous data in database using a 

classification machine learning technique by Ramachandran et al. in [19]. Pannell and 

Ashman proposed an IDS system for a host-based behaviour that utilized user profiles in 

anomaly detection to characterize every behaviour by combining the results of multiple 

features to develop detection performance [20]. A software prototype is improved by 

Corney et al., which recognized anomalous data based on behaviour patterns, then alarms 

administrators when such data are recognized [21]. The research paper [22] introduced a 

novel user profiling mechanism which covered all accessible resources and relevant 

characteristics upon on the cybersecurity perspective. The proposed technique contained 

seven profiling principles to collect user information and more than 270 characteristics to 

generate the user security profile. Many machine learning techniques are suitable for user 

profile AD systems, although, clustering-based techniques, HMM’s, and Auto-encoder 

neural networks are more commonly used in recent AD research. 

K-means clustering based technique has been increased in recent research in AD 

systems. Jeyauthmigha and Suganthe designed a network anomaly detection frame with 

three clustering techniques in two stages: training and detection. The stages used three 

algorithms computed one after another. One of the algorithms is K-means clustering [23]. 

Ahmed proposed a hybrid technique for the anomaly detection framework. The hybrid 

technique has two algorithms: one is clustering the input network traffic dataset to create a 

collective anomaly, and one is re-clustering [24].   

Iyer, et al. [25] presented fraud detection using a Hidden Markov Model, which is 

trained with the normal user behaviour and tested for both normal and fraud user behaviour. 

Also, they compared HMM with other methods to prove that HMM is the more preferred 

method. Zhu, et al. introduced a framework for anomaly detection using the Hidden 

Markov Model and Support Vector Machine to detect the abnormal events. They deployed 

the method on an IDS system to evaluate results [26]. Rahmani and Almasganj utilized 

auto-encoder and HMM to detect three different types of visual features inside a lip-reading 
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task [27]. Wang, et al. described the entire process of fraud detection using the Hidden 

Markov model and K-means algorithm. The model is trained using the normal user 

behaviour account to detect not accepted behaviour by considering the high probability as 

fraudulent [28]. 

Our approach compares three machine learning techniques; K-means clustering-

based technique, HMM model, and Auto-encoder neural networks to detect anomalies in 

high accuracy as part of a user authentication framework. These three techniques have the 

different internal structure to discover the anomalous data. The understanding of internal 

structure improves the implementation results. Though, the internal structure of these 

techniques is explained briefly in the following subsections to simplify the resulting 

discussion. 

2.2.1 Extra-Tree Classifier 

Extra Tree (extremely randomized trees) classifiers are an ensemble learning 

method fundamentally based on decision trees. It randomizes certain decisions and subsets 

of data to minimize over-learning from the data. It builds multiple trees and splits nodes 

using random subsets of features. More variation in the ensemble will introduce how we 

can build trees [29]. Each decision base will be built with the following standards:  

• All the data available in the training set is used to build each stump.  

• Any node is performed using the best split which is determined by searching in a 

subset of randomly selected features. The split of each selected feature is chosen 

at random.  

• The maximum depth of the decision base is one. 

2.2.2 K-means Clustering 

K-means clustering is one of the unsupervised anomaly detection techniques that 

proves its’ high accuracy results in this domain. The main idea of the K-means clustering 

technique is to initialize several centroids Ks (as shown in Figure 2.4) based on randomly 

generated points within the data domain. Then, it will calculate the distance between every 

instance and the nearest centroid to this instance. After that, a step will occur to update the 
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centroid’s positions based on the distance calculation. At the end, every data sample n 

should belong to the nearest cluster. 

 

Figure 2.4: K-means Clusters 

Clustering is a process of classifying data observations into different classes. Each 

cluster has a centroid. The observations in one cluster have great similarity, but 

observations between different clusters have less similarity. Suppose X  =

 {x1, x2, x3, ⋯ , x𝑛}  is a dataset in a given space. The data observation is classified by n 

numbers of clusters where C (1 < C < n) clusters based on their similarity. The cluster 

centroids are: 

𝑪𝒓 =
𝟏

𝒏𝒓
∑ 𝑿𝒊

(𝒓)

𝒏𝒓

𝒊=𝟏

                              (2. 1) 

The objective function of clusters is:  

𝒎𝒊𝒏 ∑ ∑|𝑿𝒋
(𝒊)

− 𝑪𝒊|
𝟐

     

𝒏𝒊

𝒋=𝟏

𝑪

𝒓=𝟏

            (2. 2) 

Where i =  1,2,3, ⋯ , n ; 𝑛𝑟 is the number of data observations in cluster r;   

represents that data observation (Xi) belongs to cluster r ; r =  1,2, ⋯ , C ; C (1 < C <

n) represents the number of cluster centroids; and n is the total number of data observations 

in the dataset [30], [31]. Finally, the algorithm can be summarized in five steps: 

1) Cluster centroids initialization. 
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2) Assign data observations to clusters 

3) Calculate the similarity between observations and centroid. 

4) Update the cluster centroids positions 

5) Repeat steps 2, 3, and 4 until no movement for centroids. 

2.2.3 Hidden Markov Model 

The Hidden Markov Model (HMM) has two hierarchy levels, which makes a 

multiple embedded stochastic process. HMMs can be used to analyze much more 

complicated stochastic processes as compared to a traditional Markov model. HMMs 

contain a set of transition probability matrices related to a finite set of states. The state 

outcome or instance is produced using an accompanying probability distribution. It is only 

the outcome and not the state that is visible to an external observer. HMMs have many 

typical applications in various areas such as speech recognition, bioinformatics, and 

genomics. Three main components can characterize an HMM as the following list and 

Figure 2.5 explain: 

- X is the number of states in the model.  

- Y is the number of distinct observation symbols per state. The observation symbols 

correspond to the physical output of the system being modeled. 

- The green and black lines in Figure 7 present the state transition and the output 

probabilities matrix, respectively. 

Figure 2.5: HMM Diagram 
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The HMM is a doubly stochastic model, expanded from the basic Markov model. 

A Markov chain contains a set of states, S =  {s1, s2, s3, … . , s𝑟}. The process starts in one 

of these states and moves successively from one state to another. The probability of moving 

from one state to another does not depend on which states the chain was in before the 

current state. 

HMM is an underlying stochastic process that is not observable but can only be 

observed through another set of stochastic processes that produce the sequence of observed 

symbols. An HMM is notated as λ =  (A, B, π ), where, A is the state transition probability 

matrix, B is the observation symbol probability matrix, and π is initial state probability 

vector. 

There are three key problems for HMM when given the observation sequence O =

 {O1, O2, O3, … . O𝑇} and the HMM λ =  (A, B, π ): 

• How to work out the probability Pr(O|λ ). 

• How to choose a state sequence I =  {i1, i2, i3, ⋯ , i𝑟}   

• How to adjust the model λ =  (A, B, π ) parameters to maximize Pr(O|λ ) . 

HMM is a powerful model for anomaly detection. We can use HMM to build a 

model of normal behaviour where the HMM’s states represent some unobservable 

conditions of the system [32]. The HMM based anomaly detection method takes the 

following steps:  

1) Train HMM based on normal observations. 

2) Calculate the system state of the normal behaviour. 

3) Calculate the system state of the new data behaviour. 

4) Detect anomalies. 

2.2.4 Neural Network - Auto-Encoder 

Artificial neural network (ANN) is one of the most common network architectures. 

Basically, a simple artificial neural network only includes one or two hidden layers in 

addition to the input layer and output layer, from which is also a processing component 

similar to the hidden layers as shown in Figure 2.6. Furthermore, the input layer receives 
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the dataset. Then, the hidden layer can be one or more layers based on the problem 

complexity and the neural network type. Finally, the output layer will generate the result 

of this technique. The number of neurons for each layer depends on the data size and 

network type. All the neurons - except the output one - are connected to the neurons in the 

next layer with weights values. A neural network has several techniques that are frequently 

used in anomaly detection classifications due to their capability to classify the classes of 

datasets and their high accuracy in noisy data. These techniques are applicable to one class 

and multiclass problems. Feed forward neural, Auto-encoder neural, Recurrent neural, and 

Convolutional neural networks are the most popular neural networks that are used for 

anomaly detection techniques. 

 

Figure 2.6: Simple Artificial Neural Network 

Auto-encoders are a form of neural networks that attempt to learn an approximation 

of the identity function and reproduce the input to the output format. Accordingly, auto-

encoders do not require any label or output to be trained or learn how to reconstruct the 

input. A simple auto-encoder can be formed from an input layer, one hidden layer and an 

output layer. The hidden layer usually has a smaller dimension than the input layer in order 

to learn the latent space representation of the input. The output layer usually has the same 

dimensions of the input layer since it is trying to predict it. Figure 2.7 shows a basic 

diagrammatic representation of an auto-encoder.  
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Figure 2.7: Auto-Encoder neural network Model 

An auto-encoder includes two parts: encoder and decoder. The encoder aims to 

compress input data into a low-dimensional representation, and the decoder reconstructs 

input data based on the low-dimension representation generated by the encoder. 

Furthermore, an auto-encoder can encode a representation of an input layer into a hidden 

layer and then decode it into an output layer [33].  

The auto-encoder based anomaly detection method takes the following steps: 

1) Encoding the input data. 

2) Reconstruct the data through the decoding. 

3) Calculate the reconstruction error. 

4) Use a threshold value for the reconstruction error to assign anomalies data. 

2.2.5 Gaussian Distribution Model 

To perform anomaly detection through Gaussian distribution, there is a need for 

data distribution. Given a training set {x(i), ⋯ , x(m)} ; where 𝑥(𝑖) ∈ 𝑅𝑛 the Gaussian 

distribution should be estimated for each of the features. For each feature i =  1, ⋯ , n , the 

parameters µ𝑖 and 𝜎𝑖
2 that fit the data in the i-th dimension should be found for each 

example. 

The Gaussian distribution is given by equation 3: 
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𝝆(𝒙; 𝝁, 𝝈𝟐) =
𝟏

√𝟐𝝅𝝈𝟐
𝒆

−
(𝒙−𝝁)𝟐

𝟐𝝈𝟐             (2.3) 

Where µ is the mean and 𝜎2 controls the variance. Gaussian parameters which are 

(µ𝑖 𝜎𝑖
2) of the i-th feature will be estimated using equation 4 for the mean and equation 5 

for the variance.  
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The first function is to take the input data and output an n-dimension vector mu that 

holds the mean of all the n features and another n-dimension that holds the variances of all 

the features. After calculating the parameters, we need to select a threshold. 

One way to determine which examples are anomalies is to select a threshold based 

on an F1 score on a cross validation set. The F1 score is computed using precision (prec) 

and recall (rec) using equation 6, 7, and 8: 

𝑭𝟏 = (𝟐 ∙ 𝒑𝒓𝒆𝒄 ∙ 𝒓𝒆𝒄) (𝒑𝒓𝒆𝒄 + 𝒓𝒆𝒄)⁄               (2.6) 

𝒑𝒓𝒆𝒄 = 𝐭𝐩 (𝐭𝐩 + 𝐟𝐩)⁄                                          (2.7) 

𝒓𝒆𝒄 = 𝐭𝐩 (𝐭𝐩 + 𝐟𝐧)⁄                                             (2.8) 

Where 𝑡𝑝 is the number of true positives, 𝑓𝑝 is the number of false positives, and 

𝑓𝑛 is the number of false negatives. 

2.3 User Authentication 

Recently, user authentication has become the most popular topic in information 

security research environments. The definition of user authentication is stated as the 

process of verifying an identity claimed by a user for a system entity. An authentication 
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challenge is a method used to distinguish between true or false authentication requests. 

User authentication has a variety of techniques that can identify the valid users in protected 

resources as it is shown in Figure 2.8. User authentication can be broadly classified into 

four groups based on something the user “is”, “knows”, “has”, and “does”. Usually, body 

parts are used in “something the user is” which are called biometric technology such as a 

fingerprint. Mostly, “Something the user has” uses a physical (non–body parts) thing to 

authenticate the user, for example, cards, keys, and so on. “Something the user knows” 

uses the user’s knowledge such as an ID number, or Password. “Something the user does” 

is a new user authentication process that has been researched in recent years. This uses the 

user’s activities such as Knowledge-based authentication (KBA) [34]. 

 

 

Figure 2.8: User Authentication Techniques 

KBA is an authentication system in which the user should answer a set of 

challenging questions (or at least one) to be authorized. Generally, the challenging 

questions have two major categories; static and dynamic [35]. The static questions are the 

most commonly used, but it is considered weak authentication. One common application 

for a static security questions is “Fallback Authentication” that is a backup for 

authentication techniques in the lost cases. Moreover, fallback authentication is usually 

used when people lose their authentication access due to changes or forgetting the 

authentication requirements such as forgetting a password or username. Fallback 

authentication identifies the user through personal information and allows the authenticated 

user to re-access their resources [36]. However, this static question is a vulnerable way to 
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ask in Fallback Authentication because the answers can be found easily in many sources, 

especially in social media [37]. 

The second type of challenging questions have more invulnerability than the first 

type due to the dynamic way of asking the questions. These dynamic questions are 

generated using credit or a public user’s information, which makes it sometimes easy to 

find, especially in social media apps [35]. The stronger way to produce a secure dynamic 

question achieves a more secure system against any fraudulent or abnormal activities [39]. 

As a result, unique dynamic security questions should be investigated with several 

features; a set of challenging questions based on abnormal user activities using short term 

history and is not repeated. This new way of asking the dynamic security questions can be 

generated based on studying the abnormal activities of the user behaviour utilizing anomaly 

detection. 
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Chapter 3  

3 Big Data Anomaly Detection Classification 

The literature review in chapter 2 shows that the most common classifications in 

anomaly detection techniques have a lack of Big Data insights. Our main contribution in 

this chapter is to shed light on Big Data anomaly detection techniques. In this chapter, three 

classifications of anomaly detection techniques in Big Data will be provided based on the 

Big Data definition in chapter 2. Three specific factors in anomaly detection techniques 

will be considered for the classifications with the related three big data characteristics. The 

factors combine with the characteristics as shown in Table 3.1. 

Table 3.1: Anomaly Detection Factors with Big Data Characteristics 

Anomaly Detection 

Factors 

Time 

Complexity 

The Nature of the 

Data 

The Data Features 

Big Data Characteristics Velocity Variety Volume 

3.1 Velocity - Time Complexity Classification 

Anomaly detection can act as two major categories based on computational 

complexity, because the velocity of big data will affect the algorithm’s time, including all 

the previous categories as shown in Figure 3.1. Linear computational complexity is a lower 

time complexity for the techniques. On the other hand, quadratic computational complexity 

is a higher time complexity. In addition, new types of applications for anomaly detection 

have been recently raised. 

 

Figure 3.1: Velocity - Time Complexity Classification 
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Each category in time complexity uses both techniques; supervised and 

unsupervised. In the linear time, the linear SVM and decision tree under the classification 

techniques are examples of linear supervised techniques. The unsupervised techniques for 

linear time include clustering, statistical, information theory, and spectral. On the contrary, 

quadratic supervised techniques have SVM and neural network classifiers. Similar to linear 

unsupervised techniques, quadratic unsupervised techniques have four types; nearest 

neighbour, clustering, statistical, and spectral. 

3.2 Variety - Data Nature Classification 

There are several types of data that can affect the classification of anomaly detection 

techniques as shown in Figure 3.2. In general, the data has three types based on the data 

structure. 1) Structured data is organized information that can be easily stored, entered, and 

analyzed, 2) Semi-structured data is semi-organized information that has some sort of 

properties, and 3) Unstructured data is not organized information such as free documents 

or files. Under these three data types, the Big Data sources are listed with many examples. 

 

Figure 3.2: Big Data Sources and Types 

Anomaly detection can be grouped into four categories based on the nature of the 

data because the variety of Big Data will affect the algorithm type, which is shown in the 

previous figure. These four categories are the most popular data sources which are time 
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series, text, social media, and media. Every data source has some commonly used anomaly 

detection technique as shown in Figure 3.3. 

 

Figure 3.3: Variety – Data Nature Classification 

Time series, under the structured data as explained before in figure 4, includes five 

popular anomaly detection techniques; statistical, clustering, nearest neighbour, 

classification, and deviation. For every type, there are several examples. Unstructured data 

has many important sources; however, the major source is chosen. Text source is one of 

the major unstructured data sources that has many relations for other sources such as 

mobile data and websites. The text data have statistical, classification, and clustering 

anomaly detection techniques. Also, social media is an unstructured data source that has 

several anomaly detection techniques based on behavioural and structural approaches. 

Likewise, media sources are an important unstructured data source which will be divided 

into image and video data. Image data varies with four anomaly detection techniques; 

classification, clustering, statistical, and nearest neighbour. Video data includes nearest 

neighbour, clustering, and some classification techniques such as SVM and neural network. 

3.3 Volume - Data Feature Classification 

The anomaly detection techniques can be broken into two major categories based 

on feature types, because the volume of Big Data will affect the anomaly detection 

techniques; univariant and multivariant techniques as shown in Figure 3.4. Under each 

feature type, there are two data types; discrete and continuous. 
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Figure 3.4: Volume - Data Feature Classification 

The classification techniques under the discrete type will be divided into one class 

and multi-class for both feature types. On the other hand, the continuous data will have 

statistical and nearest neighbour techniques for both feature types. 

3.4 Comparison Study 

A comparative study of support vector machines and neural network techniques 

will be presented. We will compare between the techniques based on selected factors which 

will allow researchers to drive critical thinking ideas such as choosing a suitable model for 

certain problems and conditions. The criteria of choosing the research papers depend on 

two shared factors: the approach type (SVM or NN) and anomaly detection problem. The 

result of this study is expressed in Table 3.2 for SVM and neural network respectively. 

Only Neural Network will be implemented in this thesis because it will be suitable for our 

application. However, SVM has been researched in term of helping researchers choosing 

the best model regarding their problems. Where AUC represents Area Under Curve. 
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Table 3.2: SVM and Neural Network Comparison Table 

Kernel 

Type 

Problem 

Domain 
Accuracy NN Type 

Problem 

Domain 
Accuracy 

Gaussian 

kernel 

[13] 

Real-World 

System Call 
0.953 (AUC) 

Feed 

Forward 

[47] 

Benchmark 

Network 

0.958 

(detection) 

Linear 

kernel 

[39] 

Wifi 802.11 

Networks 

0.982 

(classificatio

n) 

RNN [48] 

Cyber-

Physical 

Systems 

N/A 

Linear 

kernel 

[41] 

Wireless 

Sensor 

Networks 

0.971 

(detection) 

3D CNN 

[49] 
Video Data  N/A 

Gaussian 

kernels 

[42] 

Petroleum 

Industry 
N/A 

FeedForw

ard [50] 

Driver 

Identification 
0.81(overall) 

Gaussian 

kernels 

[43]  

Earth Dam 

and Levee 

0.96 

 (F1-score) 
MLP [51] 

Electro-

cardiogram 

0.99 

(classification) 

Gaussian 

kernel 

[44]  

Geological 
0.8773 

(AUC) 
MLP [52] 

Local ISP 

Network 
0.96(detection) 

Gaussian 

kernels 

[45] 

Soft 

Computing  

0.9995 

(overall) 
ANN [53] 

Planting 

Calendar 

0.846 

(prediction) 

Gaussian 

kernels 

[46] 

Radar 

Imagery 
0.97(overall) RNN [54]  

Web 

Applications 

0.97 

(detection rate) 

A comparative study of K-means Clustering, HMM, Auto-Encoder Neural 

Network, and Gaussian Distribution will be presented. We will compare between the 

techniques based on selected factors which will allow researchers to drive critical thinking 

ideas such as choosing a suitable model for certain problems and conditions. The criteria 

of choosing the research papers depend on two shared factors: the approach type (K-means, 

HMM, NN, or GD) and anomaly detection problem. The result of this study expressed in 

Table 3.3 for K-means, HMM, Auto-Encoder, and Gaussian Distribution respectively. DA 

is the detection accuracy. All the models will be implemented for a comparison task. 
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Table 3.3: K-means, HMM, Auto-encoder, and Gaussian Distribution Comparison 

Table 

K-means Clustering HMM 

Problem 

Field 

Cluster 

Number 
DA/% Problem Field 

States 

Number 
DA/% 

Network 

attack[55] 
50 96 Health care [63] 107 95 

Network attack 

[56] 
2 93.9 Home activity[64] 10 87 

Network attack 

[57] 
8 98 

computer systems 

[65] 
3 91.578 

Network attack 

[58] 
60 81 

computer system 

[66] 
2 90 

Network 

attack[59] 
100 80.119 Network [67] 2 92.25 

Network attack 

[60] 
5 92 

computer network 

[68] 
20 86 

Cloud 

Computing [61] 
26 96.44 System Calls [69] 6 81.7 

Smart Grid [62] 3 91 
Cognitive Radio 

[70] 
4 80 

Auto-Encoder Gaussian Distribution 

Problem Field Encoder Type DA/% 
Problem 

Field 

Gaussian 

Type 
DA/% 

Web 

Attacks[71] 
Stacked 88.34 

School Electricity 

Consumption [79] 

Combined-

regression 
89 

System 

Logs[72] 
Convolutional 94 

Dictionary 

Learning [80] 
background 94 

computer vision 

[73] 
Deep 97 Network [81] Graphical 86 

network 

monitoring [74] 
Variational 95 

Hyperspectral 

image 

processing[82] 

Multi-

dimensional 
91 

Credit Card 

Transactions 

[75] 

Combined-

OCSVM 
96.85 

Gas Turbine 

Engine [83] 

Combined-

Deep 

Learning 

99.75 

Video and 

localisation [76] 

sparsity and 

reconstruction 
82 Bankruptcy [84] multivariate 89 

infrared 

spectroscopy 

[77] 

Stacked 95 
Network attack 

[85] 
Mixture 99.39 

Negative Health 

Events [78] 
LSTM 87 

hyperspectral 

imaging  [86] 
SMV-SCM 93 
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3.5 Summary 

The three classifications that are provided in this chapter cover anomaly detection 

techniques in Big Data applications. These classifications inspired us to build an anomaly 

detection system using combination models of the machine learning techniques that are in 

the classifications. The next chapter will explain in detail the proposed anomaly detection 

system. 
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Chapter 4  

4 Proposed Anomaly Detection System 

This chapter proposes an anomaly detection system in novel combination models 

containing machine learning techniques. The combination models rely on several 

unsupervised techniques for the same reasons that are mentioned in Chapter 2. Figure 4.1 

lists all machine learning techniques that are used and their purposes. Parameter tuning 

step will be explained in every model. In addition, this chapter will explain the common 

evolution methods as well as the proposed sequential evaluation algorithm to evaluate the 

model in a very accurate way. This chapter will also provide a detailed discussion and 

comparison between all the models and present evaluation methods including the final and 

best results. Finally, a chapter summary will recap the most important outcomes in this 

chapter to utilize these outcomes in the next authentication step. 

 

Figure 4.1: Used Machine Learning Techniques and their purposes 

K-means for Clustering

HMM Model for Sequencial Detection

Auto-encoder Neural Network for Reproducing Data

Extra tree Classifier for Feature Importance

Gaussian Distribussion for Probabilty Results

Principal Component Analysiz for Data Reduction
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4.1 General Architecture 

Anomaly detection systems, in general, have three known steps: first, to choose and 

prepare the most inductive features for anomalous observations. Secondly, fitting the 

technique parameters to learn the normal behaviour. Lastly, to feed the new examples to 

the technique for the detection process. Overall, the proposed anomaly detection system 

architecture can be divided into five parts in Figure 4.2. 

 

Figure 4.2: Anomaly Detection Proposed Architecture 

In this research, we assumed that the data is collected from different Big Data 

sources. Prior to anomaly detection processing, there is a preprocessing step if the data 

needs to be preprocessed. Normalization is one of the data preparing steps that makes the 

data values in one scale to have more accurate results. There are several methods to 

normalize the data. However, mean normalization is an efficient method to normalize the 

attribute values through the following equation: 

 𝑿 =  
𝒙−𝝁

𝒔
              (4. 1)            

Where x is the input data attributes, μ is the mean value, and s is the standard 

deviation value. The second preparing step is categorizing which attributes need to be 

categorized before the processing step because it contains text information, or if it is 

difficult to analyze. For example: if a gender attribute has two values in a dataset; Male 

‘M’ and Female ‘F’. We categorized it as 1 for male and 2 for female. 

Due to the massive amount of data, anomalous patterns will not be clear with a lot 

of normal patterns. As a result, dimensional reduction is one of the vital preparing methods 

which can be done using many techniques. The Principle Component Analysis (PCA) 

technique is a prevalent method for this preparing step (dimensional reduction). This 

aggregates the data attributes into smaller attributes. Moreover, it assumes that the data is 
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a matrix m-by-n dimension. Each row in the matrix determines feature values for a user in 

a time stamp. Formally, PCA is a projection method that maps a given set of data points 

onto principal components [3]. The first step is to convert the datasets into a matrix and 

find the relationships among the features by calculating equation 4.2. 

𝒄 = 𝑿′ ∗ 𝑿         (4. 2)       

Where X is the input data and C is called a covariance matrix. Then, we will find 

the eigen values and eigen vectors of the covariance matrix sigma and sort them 

decreasingly which is also called an eigen decomposition. The eigen values (W) is the 

variance in the dataset and eigen vectors (Lambda) is the corresponding direction of the 

variance. After that, we will select a number of W corresponding to Lambda which is 2 in 

our problem. The data features will be reduced based on this number. The last step is to 

calculate the reduced data by multiplying the Lambda with only two vectors with datasets.  

We have this shown in equation 4.3. 

𝑹𝒆𝒅𝒖𝒄𝒆𝒅 𝑫𝒂𝒕𝒂 = 𝑿 ∗ 𝑾        (4. 3)         

Lastly, the data will be split into train, cross-validation, and test sets, as shown in 

Table 4.1. The training dataset will only have 60% normal observations and no abnormal 

observations to learn the technique different than the normal patterns. The cross-validation 

and test datasets will have 20% of the normal observations, and the abnormal observations 

will be split equally between them to feed the new abnormal observations and evaluate the 

detection. 

Table 4.1: Data Splitting in Anomaly Detection System 

Datasets Normal Observations Abnormal Observations 

Train set 60% 0% 

Cross validation set 20% 50% 

Test set 20% 50% 
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Then, a training anomaly detection system using several machine learning models 

will be used as unsupervised techniques to assign the anomalous data. After that, an 

evaluation method will be used to calculate the model’s accuracy. 

4.2 Anomaly Detection - Machine Learning Models 

An anomaly detection problem is a binary classification problem in terms of 

machine learning problems. So, the final results will be varied between 0s and 1s. To obtain 

the best result, a comparison will be provided in the discussion section between the three 

machine learning models. The understanding of model usage is crucial to enhance the 

discussion. The model’s usage is explained in the next subsections. 

4.2.1 K-means Clustering, HMM, and Auto-encoder Models 

This model utilizes K-means clustering to assume that the big data has several 

clusters and assigns random centroids positions for every cluster based on observations 

concentration. This model can work with one cluster or more. In the case of one cluster, 

the technique will assign one centroid for the whole data then several steps can be taken. 

For example, the threshold distance value from the centroid will be flagged as an anomaly. 

In the case of two clusters, it can be done in numerous ways; it could be one cluster for the 

normal data and the other cluster for the abnormal data or it could be two clusters for 

normal and threshold distance values from the centroids will be flagged as an anomaly. In 

three or more cluster cases, the data will have more than two clusters which means a 

threshold value should be considered or one cluster will be for anomalies and the others 

will be normal instances. Figure 4.3 shows the general workflow of this model where Big 

Data is fed to a K-means clustering technique. Then, the final binary production will be 

generated directly from K-means or through threshold values. 

In HMM model, we will use the Hidden Markov Model for predicting the 

anomalous data in sequential form as shown in Figure 4.3. Two states will be utilized to 

assign one for normal observations and the other for abnormal observations. HMM needs 

a probability matrix that will be assumed based on the data distribution. The output or final 

predictions will contain 0’s for normal and 1’s for abnormal observations. 
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The Auto-encoder model has at least three layers (input, hidden, and output) of 

neural networks to reproduce the input data and learn the normal behaviour. The number 

of neurons in every layer will be tuned related to the input observation number. Then a 

threshold value will be user based on the reconstruction error. If the data exceeds this 

threshold value it will be flagged as an anomaly otherwise it will be normal as shown in 

Figure 4.3.  

   

Figure 4.3: K-means Clustering, HMM, and Auto-encoder Models 

4.2.2 Auto-Encoder-K-means and Auto-Encoder-HMM Models 

In the Auto-Encoder with K-means model, a series combination between K-means 

and auto-encoder will be used as shown in Figure 4.4. The auto-encoder will be trained on 

the normal observations. Then K-means will work with the threshold of the previous 

section. Moreover, K-means will cluster the reconstructed data which is the output from 

the auto-encoder. The clusters will be two or one for the anomaly and normal for the rest 

of the clusters. 

Auto-Encoder with HMM model uses the same combination of the previous one by 

replacing K-means with HMM. As mentioned in the prior section, HMM will use the 

reconstructed data that was produced by the auto-encoder to predict the anomalous 
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observations. This method will increase the HMM accuracy as it will be discussed later. 

HMM will use two states one for anomaly and one for normal data. Figure 4.4 shows the 

entire Auto-encoder and HMM model. 

 

Figure 4.4: Auto-Encoder-K-means and Auto-Encoder-HMM Models 

4.2.3 Combination Model (Auto-encoder, K-means, and HMM)  

In this model, we will utilize all the previous techniques; auto-encoder, HMM, and 

K-means, in one combination. Figure 4.5 shows the diagram of this model. Auto-encoder 

will reproduce the data and send it to the HMM. HMM will predict the anomalous data 

using the reproduced data from the auto-encoder. The purpose of K-means clustering in 

this model is to calculate the probability matrices that HMM needs based on the data 

distribution. So, HMM will receive two inputs; one from auto-encoder, which is the 

reproduced data, and the other from K-means clustering, which is the probability values. 

K-means will also use the reproduced data from the auto-encoder. 
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Figure 4.5: Auto-Encoder, K-means, and HMM Model 

4.2.4 Gaussian Distribution Model 

This model totally relies on the populistic Gaussian distribution. The model will be 

trained and learns the probability values of the normal observations. Then the model will 

be fed with new data which has anomalous data to detect them through a threshold 

probability value. Cross validation will be used after the model is built. The test set will be 

used as a final feeding step. 
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Figure 4.6: Gaussian Distribution Model 

4.3 Programming, Libraries and Evaluation Methods 

In this section, all the models will be trained and built using the training dataset. 

These models will be tuned using the cross validation set. Finally, the model will be tested 

using the test set. The splitting percentage is mentioned in Table 4.1.  

4.3.1 Program Libraries 

We used Python language to create our model and experiment with our datasets. 

The libraries and metrics described in Table 4.2 will be used relating to a specific model.  

Table 4.2: Used Python Libraries and Description 

Python Library Name Usage  Description 

• Pandas preprocessing pandas offer data structures 

and operations for 

manipulating numerical tables 

and time series. It is free 

software released under the 

three-clause BSD license. 

• numpy preprocessing NumPy is adding support for 

large, multi-dimensional 

arrays and matrices, along with 

a large collection of high-level 
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mathematical functions to 

operate on these arrays. 

• Sklearn-learn: 

o Metrics:  

▪ roc_auc_score  

▪ balanced_accuracy_score  

▪ mean_squared_error  

▪ accuracy_score,  

▪ f1_score,  

▪ precision_score,  

▪ recall_score,  

▪ classification_report,  

▪ confusion_matrix ,  

o model_selection:  

▪ train_test_split, 

o  ‘preprocessing: 

▪  Scale StandardScaler, 

▪  decomposition: PCA,  

▪ ‘math: sqrt , 

o  Datasets: 

▪ load_digits, 

▪  ‘matplotlib.pyplot’, 

▪  and ‘time’. 

Evaluation Scikit-learn is a free software 

machine learning library for 

the Python programming 

language. It features various 

classification, regression and 

clustering algorithms. It also 

includes matrices and 

preprocessing operations for 

dataset 

• sklearn.ensemble, 

ExtraTreesClassifier 

Feature 

Importance 

•  ‘sklearn.cluster’ KMeans K-means: model 

•  ‘hmmlearn’ hmm Hmm model Simple algorithms and models 

to learn Hidden Markov 

Models in Python. It follows 

scikit-learn API as close as 

possible, but adapted to 
sequence data. It built on 

scikit-learn, NumPy, SciPy, 

and matplotlib. It is Open 

source, commercially usable 

with BSD license. 

• Tensorflow 

o scipy  

o stats,  

o seaborn,  

o pickle,  

o pylab  

o rcParams,   

• keras.models  

o Model, 

Auto-encoder 

model 

TensorFlow is a free and open-

source software library for 

dataflow and differentiable 

programming across a range of 

tasks. It is a symbolic math 

library, and is also used for 

machine learning applications 

such as neural networks. 
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o  load_model  

o keras.layers  

o  Input,  

• Dense  

o keras.callbacks  

o ModelCheckpoint, 

o TensorBoard  

o Keras import regularizers, 
 

4.3.2 Common Evaluation Methods 

Binary classification has many evaluation methods. One of the popular methods is 

a confusion matrix to calculate the classification accuracy. The accuracy equation of the 

confusion matrix as equation 4.4 explains requires a calculation for many variables. These 

variables are True-positive, True-negative, False-positive, and False-negative. True-

positive is the number of observations that are actually normal instances, and the technique 

predicts it as normal instances (i.e. the number of items correctly labeled as belonging to 

the positive class). True-negative is the number of observations that are the actual abnormal 

instances and the technique predicts it as abnormal instances. False-positive is the number 

of observations that are the actual is abnormal instances, but the technique predicts it as 

normal instances (i.e. the sum of true positives and false positives, which are items 

incorrectly labeled as belonging to the class). False-negative is the number of observations 

that are the actually normal instances, but the technique predicts it as abnormal instances. 

All of these variables are summarized in Table 4.3. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒄𝒚 =  
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
                   (4. 4)       

Table 4.3: Confusion Matrix Table 

  Actual Values 

Positive Negative 

Predicted 

Values 

Positive True-Positive (TP) False-Positive (FP) 

Negative False-Negative (FN) True-Negative (TN) 

From the confusion matrix, more variables can be calculated to give more accurate 

insights, especially with unbalanced data such as in our case. Precision or positive 
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predictive value, in binary classification, is the fraction of true positive observations among 

the total number of positive observations; true and false as shown in equation 4.5. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷+𝑭𝑷
                (4. 5)            

Equation 4.6 shows that the recall, true-positive rate, or sensitivity is the number of 

true positive observations divided by the total number of true positive and false negative 

observations combined. Both precision and recall give more understanding and measure of 

relevance. 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷

𝑻𝑷+𝑭𝑵
                  (4. 6)                 

F1-score is an accuracy measure that considers both precision and recall getting the 

accurate results in term of unbalanced data in machine leaning models. That means F1 

score is the harmonic average that varies from 1 to 0. Therefore, an F1 score of 1 is 

considered a perfect model, while an F1 score of 0 is a total failure. In more detail, if a 

model has a good F1 score that means it has low false positive and negative observations. 

So, the model is correctly identifying real anomalies and there are no false alarms for this 

model. Equation 4.7 explains how an F1 score is the multiplication of precision by recall 

divided by the summation of them and the result will be multiplied by 2. 

𝑭𝟏 =  𝟐 ∙  
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∙𝒓𝒆𝒄𝒂𝒍𝒍

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝒓𝒆𝒄𝒂𝒍𝒍
                (4. 7)                       

Receiver operating characteristic curve (ROC) demonstrates the binary 

classification model’s accuracy and ability in graphical plots. The ROC curve is plotted 

using the true positive rate (TPR) against the false positive rate (FPR) at various threshold 

values. 

Also, we will use the misclassification error which calculates the error in a 

percentage format. Equation 4.8 shows the relation for this error. 

𝑴𝒊𝒔𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 = 𝟏 − (
𝒔𝒖𝒎(𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒄𝒍𝒂𝒔𝒔𝒆𝒔)

𝒔𝒖𝒎(𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒄𝒍𝒂𝒔𝒔𝒆𝒔)
)         (4. 8)      
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Where the original classes are the classes that are given in the test dataset and the 

predicted classes are the classes that are presented by the technique. Then, the error will be 

converted to percentage format. Additionally, root mean square error will be determined 

for each technique with equation 4.9. 

𝐑𝐌𝐒𝐄 =  √𝐦𝐞𝐚𝐧((𝐎𝐫𝐢𝐠𝐧𝐚𝐥 𝐯𝐚𝐥𝐮𝐞𝐬 − 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐯𝐚𝐥𝐮𝐞𝐬)𝟐)           (4. 9)           

Where the original values are the values that are given in the test dataset and the 

predicted values are the values that are given by the technique. True-Positive Rate (TPR) 

and True-Negative Rate (TNR) are calculated from the confusion matrix using equations 

4.10 and 4.11. 

𝑻𝑷𝑹 = 𝐭𝐩 (𝐭𝐩 + 𝐟𝐧)⁄                                  (4.10)  

𝑻𝑵𝑹 = 𝐭𝐧 (𝐭𝐧 + 𝐟𝐩)⁄                                 (4.11)  

We need to develop three sequential accuracy algorithms for true positive rate, true 

negative rate and the accuracy to make sure that the pervious evaluation methods are not 

only calculating the predicted observation numbers but also matching the instances 

between the original and the predicted values. 

4.3.3 Sequential Accuracy Algorithm (SAA) 

The following algorithms are written in seeking efficiency and certainty. The first 

one will compute the overall accuracy based on a sequential tracking for every user 

between anomaly and abnormal cases. 
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Algorithm 1:  All data sequential accuracy  

INPUT:   binary prediction for “Class” feature 

OUTPUT:  percentage accuracy for the whole data predictions 

1 Begin 

2  Read the input data from the model output(predictions) 

3  Read the original labels from data(y_actual) 

4  Create “C” Data frame 

5  If predictions equal to y_acual then 

6      Add 1 to “C” 

7  Else 

8         Add 0 to “C”  

9  End if 

10  Count 1 number in “C” 

11  Divide the number of one’s by the data length 

12  Multiply the result by 100 

13  Show the output accuracy 

14 End 

The second algorithm will compute the accuracy for only the normal instances 

based on sequential tracking for every user in the related target normal cases. 

 

Algorithm 2:  Normal data sequential accuracy  

INPUT:   binary predictions for only normal observations in the “Class” feature 

OUTPUT:  percentage accuracy for the normal data predictions 

1 Begin 

2  Read the input data from the model output(predictions) 

3  Read the original labels from data(y_actual) 

4  Extract only the zeros on y_actual and the related predictions to “s” 

5  Create “C” Data frame 

6  If predictions in “s” equal to y_acual “s” then: 

7       Add 1 to “C” 

8  Else 

9         Add 0 to “C”  

10  End if 

11  Count 1 number in “C” 

12  Divide the number of one’s by the data length 

13  Multiply the result by 100 

14  Show the output accuracy 

15 End 

  The third algorithm will compute the accuracy for only the abnormal instances based 

on sequential tracking for every user in the related target abnormal cases. 
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Algorithm 3:  Abnormal data sequential accuracy  

INPUT:   binary predictions for only abnormal observations in the “Class” feature 

OUTPUT:  percentage accuracy for the abnormal data predictions 

1 Begin 

2  Read the input data from the model output(predictions) 

3  Read the original labels from data(y_actual) 

4  Extract only the ones on y_actual and the related predictions to “s” 

5  Create “C” Data frame 

6  If predictions in “s” equal to y_acual in “s” then: 

7        Add 1 to “C” 

8  Else 

9         Add 0 to “C”  

10  End if 

11  Count 1 number in “C” 

12  Divide the number of one’s by the data length 

13  Multiply the result by 100 

14  Show the output accuracy 

15 End 

  All three previous algorithms were applied to ensure that the known evaluation 

metrics are calculating the exact user accuracy based on the target feature. The first 

algorithm matched the same results of the accuracy based on the confusion matrix library 

in Python. The second algorithm matched the same result that the true positive rate 

generated out of the accuracy metrics in Python. The third algorithm gave the same result 

compared to true negative rate out of the accuracy metrics. 

4.3.4 Parameters Tuning 

This section explains the parameters that we tried to tune in all the techniques. Some 

parameters have fixed values. But other parameters have a wide range to tune. In this case 

the parameter will be tuned on the wide range in general over a fixed value and then will 

be focused on the higher small ranges. In Table 4.4 the tuning parameters are described 

through the input type and Python indication name for every model separately. The 

definition of every parameter is provided from the Python website.  
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Table 4.4: Tuning Parameters in Python 

K-means Tuning Parameters Python Indication Parameter Input Type 

Number of Clusters “n_clusters” Integer 

Random State “RandomState” Integer 

Algorithm “algorithm” String 

Tolerance “tol” Float 

Initialization Method “init_” String 

 Maximum of Iteration “max_iter” Integer 

 Initialization Number “n_init” Integer 

 Number of Jobs “n_jobs” Integer 

HMM Tuning Parameters Python Indication Parameter Input Type 

Number of Components “n_components” Integer 

 Covariance Type “covariance_type” String 

Covariance Minimum “min_covar” Float 

Algorithm  “algorithm” String 

Random State “random_state” Integer 

Number of Iterations “n_iter” Integer 

 Tolerance “tol” Float 

Auto-Encoder Tuning 

parameters 

Python Indication Parameter Input Type 

Activation function “activation” String 

Hidden layers and neurons 

number 

Programmer assign “hidden_dim”,” 

encoding_dim” 

Integer 

Number epoch  Programmer assign “nb_epoch” Integer 

Batch size  Programmer assign “batch_size”  Integer 

Learning rate Programmer assign “learning_rate” Float 

Threshold Programmer assign “threshold” Integer 

K-means is a clustering technique that has several parameters under its library in 

Python. Number of clusters (n_clusters) is the number of clusters to form as well as the 

number of centroids to generate. Random State (random_state) determines random number 

generation for centroid initialization. ‘None’ is the default Python value for random state. 

Algorithm (algorithm) is the K-means algorithm to use such as “auto”, “full” or “elkan”. 

The classical expectation–maximization (EM)-style algorithm is “full”. The “elkan” 

variation is more efficient by using the triangle inequality, but currently does not support 
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sparse data. “auto” chooses “elkan” for dense data and “full” for sparse data. Python K-

means default algorithm is “auto”. Tolerance (tol) is relative tolerance with regards to 

inertia to declare convergence. Python tolerance default is 1e-4. Initialization method 

(init_) is the initialization methods such as {‘K-means++’, ‘random’ or ‘ndarray’}, the 

Python default is ‘K-means++’. 

- ‘K-means++’ : selects initial cluster centers for k-mean clustering in a smart way 

to speed up convergence. See section Notes in k_init for more details. 

- ‘random’: choose k observations (rows) at random from data for the initial 

centroids.  

- If ‘ndarray’ is passed, it should be of shape (n_clusters, n_features) and gives the 

initial centers. 

Maximum of Iteration (max_iter) is the maximum number of iterations of the K-

means algorithm for a single run. The Python default is 300 iterations. Initialization 

Number (n_init) is the number of times the K-means algorithm will be run with different 

centroid seeds. The final results will be the best output number of initialization consecutive 

runs in terms of inertia. The Python default is 10 times. Number of jobs (n_jobs) is the 

number of jobs to use for the computation. This works by computing each of the 

initialization number runs in parallel. None means 1 unless in a joblib.parallel_backend 

context. -1 means using all processors. See Glossary for more details. ‘None’ is the default 

Python value for number of jobs.  

HMM model has several types and under every type there are several parameters. 

GaussianHMM is the chosen model in our simulation. GaussianHMM is a Hidden Markov 

Model with Gaussian emissions. The number of components iterations (n_components) is 

a number of states. Covariance type (covariance_type) is a string describing the type of 

covariance parameters to use. It must be one of the following: 

“spherical” — each state uses a single variance value that applies to all features. 

“diag” — each state uses a diagonal covariance matrix.  

“full” — each state uses a full (i.e. unrestricted) covariance matrix.  
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“tied” — all states use the same full covariance matrix. Defaults to “diag”. 

Covariance minimum (min_covar) is a floor on the diagonal of the covariance 

matrix to prevent overfitting. The Python defaults in this parameter is 1e-3. Algorithm 

(algorithm) is a decoder algorithm. It must be one of the following algorithms “viterbi” or 

map”. Python algorithms defaults in this parameter is “viterbi”. Random State 

(random_state) is a random number generator instance. Number of iterations (n_iter) is a 

maximum number of iterations to perform. Tolerance (tol) is a convergence threshold. EM 

will stop if the gain in log-likelihood is below this tolerance value. “hmm.GMMHMM” is 

a Hidden Markov Model with Gaussian mixture emissions. “hmm.MultinomialHMM” is a 

Hidden Markov Model with multinomial (discrete) emissions. 

The parameters of Auto-encoder Neural Network are many. However, some of 

these parameters have been tuned and explained based on its effects. Activation function 

(activation) is an activation function to use. The activation functions are: “Softmax” is 

Softmax activation function. “elu” is Exponential linear unit. “selu” is Scaled Exponential 

Linear Unit (SELU). “softplus” is Softplus activation function. “softsign” is Softsign 

activation function x / (abs(x) + 1). “relu” is Rectified Linear Unit. max(x, 0). “tanh” is 

Hyperbolic tangent activation function. “sigmoid” is Sigmoid activation function. 

“hard_sigmoid” is Hard sigmoid activation function. “exponential” is Exponential (base e) 

activation function. “linear” is applied (a(x) = x). Python default activation function is 

linear. Hidden layers are the number of neurons in every specified hidden layer such as 

(hidden_dim1 = 5). Number epoch is the number of iterations that the auto-encoder will 

run. Batch size is the number of examples from the training dataset used in the estimate of 

the error gradient. Learning rate is a float number that is related to the algorithm 

convergence step. Threshold is a value that will divide the dataset into different groups 

usually based on error. 

4.4 Anomaly Detection Results 

These results are divided based on the three models that were described in the 

previous section. The best results are presented in tables that are chosen out of many tuning 
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results regarding some parameters. The evaluation methods that we focus on are only the 

true positive rate and true negative rate because of three reasons:  

a) Imbalanced data between normal and abnormal observation numbers. 

b) Our proposed user authentication system requires high accuracy in the abnormal 

detection accuracy to use the results correctly in the next step. 

c) These methods will give us an indication for the abnormal and normal detection 

accuracies separately. 

4.4.1 Experiment 1 - Credit Card Dataset 

Experiment one was implemented on a credit card dataset. The dataset contains 

transactions made by credit cards in September 2013 by European cardholders. Some Big 

Data characteristics are applied to this dataset such as samples volume with respect to the 

time and features variety. The original dataset presents transactions that occurred in two 

days in 284807 observations with 31 variables. The dataset is divided into three sets; train, 

cross-validation, and test sets. 

Furthermore, the features of this data are time, amount of money, class, and set of 

unknown features. V1 to V28 features are the principal components obtained with PCA, 

but unfortunately, due to confidentiality issues, the original features’ names and more 

background information about these features are unknown. All the features used as a 

numerical input (independent) variables are the time, amount, and V1 until V28. Some of 

the input features that are not normalized have been normalized. Class feature is only used 

for the evaluation part because it has data labels. Table 3.1 describes some of the dataset 

characteristics. 

Table 4.5: Dataset 1 Description 

Dataset name Credit card dataset 

Dataset features number 30 

Dataset observation number 287456 

Dataset Date 2013 

Dataset place Europe 

Normal - Anomalous percentage 99.83 - 0.17%  
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To visualize the dataset, the histogram function in Python was applied on the 

dataset, four features is shown in Figure 4.7 as sample:    

 

Figure 4.7: Features Histogram for Dataset 1  

The dataset was already prepared and ready to use i.e. there are no NAN values, all 

features are numbers. Only some feature engineering is used to replace some features. For 

example, taking a log of one feature or multiplying it by a number to have a data close to 

a Gaussian distribution. Finally, feature importance was applied for applying PCA 

dimensional reduction. The features ware sorted in term of importance to the target using 

extra tree classifiers as shown in Figure 4.8. Additionally, a comparison is provided 

between data features in Appendix E. 
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Figure 4.8: Feature Importance for Dataset 1 

Default proposed models ware applied between four assumptions for comparison 

between normalization and dimensional reduction. Table 4.6 shows the results with the 

four assumptions for Dataset 1. In the K-means model, the best result for TPR of 71% was 

by applying the normalization and dimensional reduction assumption. However, the best 

TNR of 53% was in assumption one. The TNR in the fourth assumption which gave the 

highest TPR was not that far from the best one. So, the fourth assumption was chosen to 

be applied for tuning parameters. 

In the HMM model, Table 4.6 shows that the best result for TPR of 91% was with 

the first two assumptions with the best TNR of 84%. So, the first assumption was applied 

for tuning parameters. 
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In the Auto-Encoder model, the best result for TPR was with assumptions one and 

three by 100%. However, the best TNR of 98% was in assumptions two and four. The TNR 

in assumptions one and three gave the highest TNR has 0% and a very low TPR which is 

not acceptable. So, the second assumption was applied for tuning parameters because it has 

the highest TNR and acceptable TPR. 

In the Gaussian Distribution model, the best result for TPR of 81% was with 

assumptions two and four. However, the best TNR of 99.7% was in assumption three. The 

TPR in the third assumption which gave the highest TNR was not very low which is not 

acceptable. So, the fourth assumption was applied for tuning parameters. Finally, for more 

results such as F1 score and RMSE, refer to Appendix A, Appendix B, Appendix C, 

Appendix D. 

Table 4.6: Results for Dataset 1 based on Four Assumptions 

Models Accuracy TPR TNR 

Assumption 1: without normalization or dimensional reduction 

K-means 0.5329 0.3293 0.5338 

HMM 0.8431 0.9106 0.8428 

Auto-encoder 0.0043 1 0 

Gaussian 0.9889 0.2764 0.992 

Assumption 2: with normalization only 

K-means 0.5256 0.2805 0.5266 

HMM 0.8432 0.9106 0.8429 

Auto-encoder 0.9816 0.6504 0.9831 

Gaussian 0.9921 0.813 0.9929 

Assumption 3: with dimensional reduction only 

K-means 0.5329 0.3293 0.533792 

HMM 0.7751 0.8374 0.774792 

Auto-encoder 0.0043 1 0 

Gaussian 0.9946 0.2073 0.997995 

Assumption 4: with Both normalization and dimensional reduction 

K-means 0.4745 0.7195 0.4734 

HMM 0.1568 0.0894 0.1571 

Auto-encoder 0.9831 0.0285 0.9873 

Gaussian 0.9923 0.813 0.993 

Some results have an outstanding accuracy in the normal instances and unfortunate 

abnormal detection accuracy such as 14 and 91 in random states. Another group of results 
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have the opposite; unfortunate normal accuracy and excellent abnormal detection accuracy, 

for instance, 90 random states. Some results have an acceptable normal accuracy and 

outstanding abnormal accuracy like 42 random state. Table 4.7 summarizes all K-means 

results. Finally, for more results such as F1 score and RMSE, refer to Appendix M. 

Table 4.7: K-means Results for Dataset 1 

Tuning Parameters Evaluations 

Max Iter Random 

State 

Accuracy TPR TNR 

1 0 0.5026 0.2642 0.5037 

10 0 0.5256 0.2805 0.5266 

1 42 0.4637 0.882114 0.461917 

10 42 0.4744 0.7195 0.4734 

1 1 0.5512 0.4756 0.5515 

10 1 0.4744 0.7195 0.4734 

1 2 0.2495 0.5285 0.2483 

10 2 0.5256 0.2805 0.5266 

1 3 0.5361 0.4919 0.5363 

10 3 0.5256 0.2805 0.5266 

1 4 0.5552 0.4837 0.5555 

10 4 0.6102 0.4065 0.6111 

1 5 0.6623 0.674797 0.662241 

10 5 0.5256 0.2805 0.5266 

1 13 0.779 0.695122 0.779364 

10 13 0.4744 0.7195 0.4734 

1 14 0.9905 0 0.994777 

10 14 0.5254 0.2886 0.5264 

1 90 0.0118 0.910569 0.007879 

10 90 0.5256 0.2805 0.5266 

1 91 0.9829 0.073171 0.986846 

10 91 0.4744 0.7195 0.4734 

1 200 0.3517 0.939024 0.349155 

10 200 0.4744 0.7195 0.4734 

1 250 0.951 0.260163 0.95396 

10 250 0.47443 0.71951 0.47337 

Best Result 0.990492 0.939024 0.994777 

The tuned parameters are initialization methods, initialization number, maximum 

number iteration, K-means algorithm, and random state. Every parameter has a range of 

variations, as shown in Table 4.8.  
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Table 4.8: Parameters Ranges 

initialization method K-means++ Random ndarray 

maximum number iteration 1 – 100 

K-means algorithm Auto Full elkan 

random state 0- 500 

The results in this model show better detections than K-means results in terms of 

accuracy. It has higher accuracy for both normal and abnormal detection. The highest result 

for both normal and abnormal detection has a “spherical” covariance type. The other results 

ware varied with “diag” and “full” covariance type and gave a satisfactory accuracy level 

for both, as shown in Table 4.9. Finally, for more results such as F1 score and RMSE in 

this part, refer to Appendix N. 

Table 4.9: HMM Results for Dataset 1 

Tuning Parameters Evaluations 

Covariance 

type  

N iter algorithm Tol Accuracy TPR TNR 

Spherical 5k viterbi 0.1 0.93 0.89 0.93 

Diag 5k viterbi 0.1 0.84 0.91 0.84 

Tied 5k viterbi 0.1 0.52 0.23 0.52 

Full 
 

viterbi 
 

0.68 0.89 0.68 

Spherical 
 

viterbi 
 

0.70 0.90 0.90 

Diag 
 

viterbi 
 

0.16 0.09 0.16 

Tied 
 

viterbi 
 

0.48 0.77 0.48 

Spherical 5k map 0.1 0.90 0.90 0.90 

Diag 5k map 0.1 0.16 0.09 0.16 

Tied 5k map 0.1 0.52 0.23 0.52 

Full 
 

map 
 

0.32 0.11 0.32 

Spherical 
 

map 
 

0.10 0.10 0.10 

Diag 
 

map 
 

0.48 0.77 0.48 

Tied 
 

map 
 

0.52 0.23 0.52 

Spherical 5k viterbi 
 

0.07 0.11 0.07 

Spherical 5 viterbi 0.1 0.22 0.07 0.22 

The auto-encoder results were tuned using the following parameters: number of 

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1, 

hidden dimension for layer 2, activation function, learning rate, and threshold. The best 

results were obtained with varying the threshold values, as shown in Table 4.10. The 

highest abnormal detection accuracy has one threshold value, but the normal detection 
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accuracy has the lowest value. The threshold value of 2 has outstanding accuracy in both 

abnormal and normal accuracies. The other values have excellent accuracy for normal 

detection but an acceptable accuracy for abnormal detection. Overall, auto-encoder was 

better than both previous models, as shown in Table 4.10. This model has the best result, 

which was 0.88 abnormal detection accuracy and 0.95 normal detection accuracy of 2 

threshold. Finally, for more results such as F1 score and RMSE in this part, refer to 

Appendix O. 

Table 4.10: Auto-Encoder Model Results 

Tuning Parameters Evaluations 

Encoding 

_dim 

Hidden 

_dim1 

Hidden 

_dim2 

Activation Threshold TPR TNR 

18 10 6 tanh 4 0.752 0.982 

18 10 6 tanh 4 0.699 0.983 

32 16 8 tanh 4 0.695 0.984 

10 5 2 tanh 4 0.781 0.981 

5 2 1 tanh 4 0.805 0.979 

5 3 1 tanh 4 0.752 0.979 

50 20 10 tanh 4 0.691 0.985 

5 2 1 sigmoid 4 0.768 0.977 

5 2 1 hard_ 

sigmoid 

4 0.760 0.977 

5 2 1 exponential 4 0.760 0.977 

5 2 1 linear 4 0.756 0.981 

5 2 1 tanh 3 0.825 0.972 

5 2 1 tanh 2 0.878 0.954 

5 2 1 tanh 1 0.923 0.836 

5 2 1 tanh 5 0.655 0.984 

5 2 1 linear 4 0.756 0.981 

5 2 1 tanh 4 0.650 0.983 

5 2 1 tanh 4 0.659 0.983 

5 2 1 tanh 4 0.667 0.983 

The results of the rest of the models are shown in Table 4.11. Auto-Encoder with 

K-means model did not give more accuracy from the auto-encoder model. However, there 

was good enhancement comparing with the K-means results, especially TPR, which is 

important in this research. Auto-Encoder with HMM model does not gave better results 

because the HMM results are already working well in term of TNR and TPR. The 

combination model between the three model (K-means, HMM, and Auto-Encoder) gave 
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better results compared to K-means and Auto-Encoder results. Comparing these results 

with HMM results indicates that there was little improvement between both TNR and TPR. 

Finally, Gaussian Distribution model reached the highest TNR with an acceptable TPR 

which shows that the Gaussian distribution model has a high ability to classify normal 

instances.  

Table 4.11: Results of Four Models 

Evaluations 

K-means with Auto-encoder Model Results 

Accuracy Precision  Recall F1-score RMSE TPR TNR 

0.5284 0.4971 0.3321 0.3468 0.6868 0.1341 0.5301 

0.4716 0.503 0.6739 0.3266 0.7269 0.878 0.4698 

HMM with Auto-encoder Model Results 

Accuracy Precision  Recall F1-

score 

RMSE TPR TNR 

0.4914 0.4995 0.4694 0.3328 0.7132 0.4472 0.4916 

K-means, HMM, and Auto-encoder Model Results 

Accuracy Precision  Recall F1-

score 

RMSE TPR TNR 

0.5084 0.5023 0.6317 0.3429 0.7011 0.7561 0.5074 

0.9794 0.4994 0.4979 0.4973 0.1434 0.0122 0.9836 

0.4697 0.5031 0.6791 0.3258 0.7282 0.8902 0.4679 

0.9304 0.5262 0.9125 0.5318 0.2637 0.894309 0.93060

5 

0.8981 0.5183 0.9023 0.5087 0.3192 0.906504 0.89808

8 

Gaussian Distribution Model Results 

Accuracy Precision  Recall F1-

score 

RMSE TPR TNR 

.9921 0.6654 0.903 0.7336 0.0887 0.813 0.9929 

In conclusion for experiment one, the best results for each model is represented in 

Figure 4.9. Gaussian distribution model achieved the highest TNR value among all models. 

But the full combined model of HMM, auto-encoder and K-means model reached the 

highest TPR value. So, the full combined model was considered as the best result in this 

experiment.  
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Figure 4.9: The Best Results in Experiment 1  

4.4.2 Experiment 2 - Synthetic Dataset from a Financial Payment 
System  

Experiment two was implemented on a synthetic dataset from a financial payment 

system. This dataset was generated using the BankSim payments simulator. BankSim is an 

agent-based simulator of bank payments based on a sample of aggregated transactional 

data provided by a bank in Spain. The main purpose of BankSim is the generation of 

synthetic data that can be used for fraud detection research. Statistical and Social Network 

Analysis (SNA) of relations between merchants and customers were used to develop and 

calibrate the model. The ultimate goal for BankSim is to be usable to model relevant 

scenarios that combine normal payments and injected known fraud signatures. The datasets 

generated by BankSim contain no personal information or disclosure of legal and private 

customer transactions. Therefore, it can be shared by academia, and others, to develop and 

research fraud detection methods. Synthetic data has the added benefit of being easier to 

acquire, faster and at less cost, for experimentation even for those that have access to their 

own data. BankSim generates data that approximates the relevant aspects of the real data. 

It has 180 steps (approximately six months) from BankSim with an average of three cards 

per step and performs about two fraudulent transactions per day. In total, it contains 594643 

records, where 587443 are normal payments and 7200 are fraudulent transactions. It also 
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contains nine features which are time (step), Customer ID, Age, Gender, Zip Code, 

Merchant, Zip merchant, Category, Amount and Fraud. Table 4.12 describes some of the 

dataset characteristics. 

Table 4.12: Dataset 2 Description 

Dataset name Synthetic dataset from a financial payment system 

Dataset features number 10 

Dataset observation number 594643 

Dataset Date ------ 

Dataset place Spain 

Normal - Anomalous percentage 98.79 - 1.21% 

To visualize the dataset, the histogram function in Python was applied on the 

dataset as shown in Figure 24: 

 

Figure 4.10: Features Histogram for Dataset 2  
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The dataset has some features that only have one value. For example, ‘Zip 

merchant’ has only one zip value ‘28007’ which will not affect the final predictions. These 

types of features were removed from the data before applying any model. There are several 

features that include letters that need to be categorized. For instance, ‘gender’ feature has 

two letter values; M for male and F for Female. The categorized process indicates the M 

as 1 and F as 2 in the dataset. There are no NAN values as all features are numbers. Finally, 

Feature importance was applied for applying PCA dimensional reduction. The features 

were sorted in terms of importance to the target using extra tree classifiers as shown in 

Figure 4.8. Additionally, a comparison was provided between data features in Appendix F. 

 

Figure 4.11: Feature Importance for Dataset 2 

Default proposed models were applied between four assumptions for comparison 

between normalization and dimensional reduction. Table 4.6 shows the results with the 

four assumptions for Dataset 2. In the K-means model, the best result for TPR and TNR 

occurred by applying the fourth assumption of 74% and 57% respectively. So, it was 

chosen as the best assumption to be applied for tuning parameters. 

In the HMM model, Table 4.6 shows that the best result for TPR of 100% was with 

the second assumption and has an acceptable TNR of 85%. The highest TNR was using 
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the third assumption of 88% with an acceptable TPR of 89%. So, the second assumption 

was chosen to be applied for tuning parameters because the TPR is much higher. 

In the Auto-Encoder model, the best result for TPR of 100% was with the first and 

third assumptions. However, the best TNR of 99% was in the assumption of two and four. 

The TNR in the assumptions of one and three gives the highest TPR and has a very low 

TPR close to 0% which is not acceptable. So, the fourth assumption was chosen to be 

applied for tuning parameters because it has the highest TNR and acceptable TPR. 

In the Gaussian Distribution model, the highest result for TPR and TNR was with 

assumption one of 58% and 99% respectively. So, the first assumption was chosen to be 

applied for tuning parameters. Finally, for more results such as F1 score and RMSE in this 

part refer to Appendix A, Appendix B, Appendix C, Appendix D. 

Table 4.13: Results for Dataset 2 based on Four Assumptions 

Models Accuracy TPR TNR 

Assumption 1: without normalization or dimensional reduction 

K-means 0.491382372 0.456944444 0.49243759 

HMM 0.136783688 0 0.1409749 

Auto-encoder 0.029730198 1 0 

Gaussian 0.986208491 0.588055556 0.998408362 

Assumption 2: with normalization only 

K-means 0.114015311 0.326111111 0.107516448 

HMM 0.863216312 1 0.8590251 

Auto-encoder 0.976215841 0.203611111 0.999889351 

Gaussian 0.984276028 0.485833333 0.999548894 

Assumption 3: with dimensional reduction only 

K-means 0.50835336 0.543055556 0.507290044 

HMM 0.883441105 0.896388889 0.88304437 

Auto-encoder 0.029738457 1 8.51E-06 

Gaussian 0.984977991 0.520833333 0.999199925 

Assumption 4: with Both normalization and dimensional reduction 

K-means 0.584470926 0.741944444 0.579645754 

HMM 0.549992155 0.920277778 0.538646171 

Auto-encoder 0.977677576 0.258333333 0.999719123 

Gaussian 0.971830637 0.052777778 0.999991489 
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The best results have an outstanding accuracy in normal instances by 90% and good 

abnormal detection accuracy by 81% such as 3 and 200 in random states with 1 maximum 

iteration. Another group of results have less accuracy for normal and abnormal detection 

accuracy, for instance, 2, 4, 5, and 14 random states. Table 4.7 summarized all K-means 

results. Finally, for more results such as F1 score and RMSE in this part, refer to Appendix 

P. 

Table 4.14: K-means Results for Dataset 2 

Tuning Parameters Evaluations 

Max Iter Random 

State 

Accuracy TPR TNR 

1 0 0.324315173 0.201666667 0.328073266 

10 0 0.411457688 0.251666667 0.416353871 

1 42 0.317039533 0.614166667 0.307935211 

10 42 0.413737003 0.255833333 0.418575356 

1 1 0.426595314 0.370277778 0.428320949 

10 1 0.416313621 0.258333333 0.421154321 

1 2 0.570654642 0.664444444 0.567780814 

10 2 0.583339527 0.741388889 0.57849671 

1 3 0.900742429 0.811666667 0.903471814 

10 3 0.579408534 0.739444444 0.574504847 

1 4 0.563940573 0.652222222 0.56123552 

10 4 0.58383503 0.741944444 0.578990374 

1 5 0.688353195 0.783055556 0.685451404 

10 5 0.588790064 0.749166667 0.583875937 

1 13 0.098720776 0.189444444 0.095940897 

10 13 0.419534392 0.260277778 0.4244142 

1 14 0.508923189 0.716388889 0.502566198 

10 14 0.581118021 0.740833333 0.576224157 

1 90 0.447299094 0.411944444 0.448382402 

10 90 0.418502094 0.259444444 0.423375805 

1 91 0.48708801 0.271944444 0.493680259 

10 91 0.418378218 0.259722222 0.423239622 

1 200 0.901229674 0.809166667 0.904050592 

10 200 0.411589822 0.251666667 0.416490054 

1 250 0.346687147 0.410277778 0.344738656 

10 250 0.413282792 0.255 0.418132761 

The results in this model show better detections than K-means results in term of 

accuracy. It has higher accuracy for both normal and abnormal detection. The highest result 

for both normal and abnormal detection has a “diag” covariance type by 85% and 100% 
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respectively. The other results were varied with “spherical”, “tied” and “full” covariance 

type and some of them gave a satisfactory accuracy level for both, as shown in Table 4.9. 

Finally, for more results such as F1 score and RMSE in this part, refer to Appendix Q. 

Table 4.15: HMM Results for Dataset 2 

Tuning Parameters Evaluations 

Covariance 

type  

N iter algorithm Tol Accuracy TPR TNR 

Spherical 5k viterbi 0.1 0.888544789 0.791944444 0.891504737 

Diag 5k viterbi 0.1 0.863216312 1 0.8590251 

Tied 5k viterbi 0.1 0.115006318 0.34 0.108112249 

Full 
 

viterbi 
 

0.863216312 1 0.8590251 

Spherical 
 

viterbi 
 

0.888544789 0.791944444 0.891504737 

Diag 
 

viterbi 
 

0.863216312 1 0.8590251 

Tied 
 

viterbi 
 

0.136783688 0 0.1409749 

Spherical 5k map 0.1 0.884993682 0.66 0.891887751 

Diag 5k map 0.1 0.888544789 0.791944444 0.891504737 

Tied 5k map 0.1 0.136783688 0 0.1409749 

Full 
 

map 
 

0.115006318 0.34 0.108112249 

Spherical 
 

map 
 

0.539941696 0.298611111 0.547336346 

Diag 
 

map 
 

0.111455211 0.208055556 0.108495263 

Tied 
 

map 
 

0.459727969 0.690277778 0.452663654 

Spherical 5k viterbi 
 

0.115006318 0.34 0.108112249 

Spherical 5 viterbi 0.1 0.136783688 0 0.1409749 

The auto-encoder results were tuned using the following parameters: number of 

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1, 

hidden dimension for layer 2, activation function, learning rate, and threshold. The best 

results were obtained by varying the threshold values, as shown in Table 4.10. The highest 

abnormal detection accuracy has two threshold values, but the normal detection accuracy 

has the lowest value, but it is an acceptable accuracy. Some other values have excellent 

accuracy for normal detection but an acceptable accuracy for abnormal detection. Overall, 

the auto-encoder has less accuracies in this Dataset from both previous models, as shown 

in Table 4.10. Finally, for more results such as F1 score and RMSE in this part refer to 

Appendix R. 
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Table 4.16: Auto-Encoder Model Results for Dataset 2 

Tuning Parameters Evaluations 

Encoding 

_dim 

Hidden 

_dim1 

Hidden 

_dim2 

Activation Threshold TPR TNR 

18 10 6 tanh 4 0.3227778 0.9753424 

18 10 6 tanh 4 0.3227778 0.9753424 

32 16 8 tanh 4 0.3227778 0.9753424 

10 5 2 tanh 4 0.3227778 0.9753424 

5 2 1 tanh 4 0.3227778 0.9753424 

5 3 1 tanh 4 0.3227778 0.9753424 

50 20 10 tanh 4 0.335 0.9753424 

5 2 1 sigmoid 4 0.335 0.9744997 

5 2 1 hard_ 

sigmoid 

4 0.335 0.9744997 

5 2 1 exponentia

l 

4 0 1 

5 2 1 linear 4 0.4766667 0.9449566 

5 2 1 tanh 3 0.5805556 0.9371601 

5 2 1 tanh 2 0.6986111 0.9281039 

5 2 1 tanh 1 0.3863889 0.9596898 

5 2 1 tanh 5 0 1 

5 2 1 linear 4 0 1 

5 2 1 tanh 4 0.3863889 0.9596898 

5 2 1 tanh 4 0.3863889 0.9596898 

5 2 1 tanh 4 0.3863889 0.9596898 

The results of the rest of the models are shown in Table 4.11. Auto-Encoder with 

K-means model did not give more accuracy from the K-means model. However, there was 

good enhancement compared with the Auto-encoder results, especially TPR which is 

important in this research. The Auto-Encoder with HMM model gave much better results 

from Auto-Encoder results in term of TPR. The combination model between the three 

model (K-means, HMM, and Auto-Encoder) gave better results compared with Auto-

Encoder results. Comparing these results with HMM and K-means results did not give a 

better result from the previous model. Finally, the Gaussian Distribution model reached the 

highest TNR with a non-acceptable TPR which shows that the Gaussian distribution model 

has a high ability to classify normal instances. 
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Table 4.17: Results of Four Models for Dataset 2 

Evaluations 

K-means with Auto-encoder Model Results 

Accura

cy 

Precision  Recall F1-score RMSE TPR TNR 

0.59696 0.52748720 0.732931 0.42685

6 

0.63485619 0.8775 0.588361

4 

0.58921 0.52702032 0.730016 0.42283

5 

0.64092804 0.87972

2 

0.580309

6 

0.58754 0.52722214 0.731984 0.42224

5 

0.64222811 0.88555

5 

0.578411

6 

0.57303 0.52638416 0.726387 0.41466

7 

0.65343339 0.88944

4 

0.563329

3 

0.59517 0.52769252 0.734973 0.42622

5 

0.6362595 0.88361 0.586335

7 

HMM with Auto-encoder Model Results 

Accuracy Precision  Recall F1-score RMSE TPR TNR 

0.481101 0.521607 0.685883 0.36514

7 

0.720346 0.90361

1 

0.46815446

6 

0.3023974 0.515119 0.604968 0.25695

6 

0.835226 0.92666

6 

0.28326907

2 

0.706027 0.485184 0.399104 0.42087

7 

0.542193 0.07277

7 

0.72542961

5 

0.7092717 0.485091 0.399295 0.42177

8 

0.5391922 0.06972 0.72886823

4 

0.7014262 0.484796 0.395387 0.41891

7 

0.5464190 0.07 0.72077386 

0.7007325 0.484768 0.39502 0.41866

0 

0.5470534

53 

0.07 0.72005889

9 

K-means, HMM, and Auto-encoder Model Results 

Accura

cy 

Precisio

n  

Recall F1-score RMSE TPR TNR 

0.60572 0.47777

6 

0.3212949

16 

0.3785606

34 

0.627917

3 

0.0188888 0.6237

00 

0.52539

8 

0.49901

6 

0.4914742 0.3591980 0.688913

1 

0.8316666 0.5160

14 

Gaussian Distribution Model Results 

Accura

cy 

Precision  Recal

l 

F1-score RMSE TPR TNR 

0.971 0.9855 
0.511

9 
0.516 

0.170352

5 

0.0238888 1 

In conclusion of experiment two, the best results for each model are represented in 

Figure 4.12. The Gaussian distribution model achieved the highest TNR value among all 
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models with very low TPR which is not acceptable. But HMM model reached the highest 

TPR value. Therefore, the HMM model was considered the best result in this experiment.  

 

Figure 4.12: The Best Results in Experiment 2 

4.4.3 Experiment 3 - German Credit Risk Dataset 

Experiment three was implemented on a German Credit Risk dataset. This dataset 

contains data used to evaluate credit applications in Germany. It has 1000 entries with 24 

numeric attributes (21 categorical, 3 real-valued).  Each entry represents a person who takes 

a credit from a bank, and each person is classified as good or bad credit risks according to 

the set of attributes. There are no missing values. Seventy percent of the entries belong to 

a “Good” classification, while 30% are “Bad”. Among the 24 attributes, 11 of them are 

bank account information such as saving amount, and credit history, while another 13 are 

personal information like age or whether they are a foreign worker or not. Table 3.1 

describes some of the dataset characteristics. The attribute’s description for this dataset as 

follows: 

 

Attribute 1: Status of existing checking account 

               1 :      ... <    0 DM,  2 : 0 <= ... <  200 DM 

    3 :    ... >= 200 DM /salary assignments for at least 1 year,  4 : no checking account 

Attribute 2: Duration in month 
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Attribute 3: Credit history 

 0 : no credits taken/all credits paid back duly 

1 : all credits at this bank paid back duly 

 2 : existing credits paid back duly till now, 3 : delay in paying off in the past 

4 : critical account/other credits existing (not at this bank) 

Attribute 5: Credit amount 

Attribute 6: Savings account/bonds 

 1 :          ... <  100 DM, 2 :   100 <= ... <  500 DM, 3 :   500 <= ... < 1000 DM,  

 4 :          .. >= 1000 DM, 5 :   unknown/ no savings account 

Attribute 7:  (qualitative) Present employment since 

 1 : unemployed, 2 :       ... < 1 year, 3 : 1  <= ... < 4 years,   

 4 : 4  <= ... < 7 years, 5 :       .. >= 7 years 

Attribute 9: Personal status and sex 

 1 : male   : divorced/separated, 2 : female : divorced/separated/married 

            3 : male   : single, 4 : male   : married/widowed, 5 : female : single 

Attribute 11: Present residence since 

Attribute 12: (qualitative) Property 

 1 : real estate, 2 : if not A121 : building society savings agreement/ life insurance, 

3 : if not A121/A122 : car or other, not in attribute 6, 4 : unknown / no property 

Attribute 13: Age in years 

Attribute 14: Other installment plans  

1 : bank, 2 : store, 3 : none 

Attribute 16: Number of existing credits at this bank 

Attribute 18: Number of people being liable to provide maintenance for 

Attribute 19: Telephone 

 1 : none, 2 : yes, registered under the customer’s name 

Attribute 20: foreign worker 

1 : yes, 2 : no 

Attribute 4_A40:  Purpose 

 1 : car (new) 
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 0 : car (used), furniture/equipment, radio/television, domestic appliances, repairs, 

education, (vacation - does not exist?), retraining, business, others 

Attribute 4_A41:  Purpose 

 1 : car (used) 

 0 : car (new), furniture/equipment, radio/television, domestic appliances, repairs, 

education, (vacation - does not exist?), retraining, business, others 

Attribute 10_A101: Other debtors / guarantors 

 1 : none, 0 : co-applicant, 0 : guarantor 

Attribute 10_A102: Other debtors / guarantors 

 0 : none, 1 : co-applicant, 0 : guarantor 

Attribute 15_A151: Housing 

1 : rent, 0 : own, 0 : for free 

Attribute 15_A152: Housing 

 0 : rent, 1 : own, 0 : for free 

Attribute 17_A171: Job 

 1 : unemployed/ unskilled  - non-resident 

0 : unskilled – resident, skilled employee / official, management/ self-employed/ 

highly qualified employee/ officer 

Attribute 17_A171: Job 

 1 : unskilled - resident 

 0 : unemployed/ unskilled  - non-resident, skilled employee / official, management/ 

self-employed/ highly qualified employee/ officer 

Attribute 17_A171: Job 

 1 : skilled employee / official 

 0 : unemployed/ unskilled  - non-resident, unskilled - resident, management/ self-

employed/ highly qualified employee/ officer 

Table 4.18: Dataset 3 Description 

Dataset name German Credit Risk dataset 

Dataset features number 24 

Dataset observation number 1000 

Dataset Date ------ 

Dataset place Germany 
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Normal - Anomalous percentage 70 - 30% 

To visualize the dataset, the histogram function in Python was applied on the 

dataset as shown in Figure 4.10: 

 

Figure 4.13: Features Histogram for Dataset 3 

The Dataset has some features that need to be grouped. For example, the age feature 

has a range from 0 to 100. The new age feature is grouped into ten groups. The first group 

is indicated by 1 and gets the range from 0 to 10 and so on. Some features are extracted 

from the original features and delete the old ones. There are no NAN values as all features 

are numbers. Finally, Feature importance is applied for applying PCA dimensional 
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reduction. The features are sorted in term of importance to the target using extra tree 

classifiers as shown in Figure 4.8. Additionally, a comparison is provided between data 

features in Appendix F. 

 

Figure 4.14: Feature Importance for Dataset 3 

The default proposed models were applied between four assumptions for 

comparison between normalization and dimensional reduction. Table 4.6 shows the results 

with the four assumptions for Dataset 3. In the K-means model, the best result for TNR of 

80% was by applying the first and third assumptions. But the second and the fourth 

assumptions gave the best TPR with a close result to the highest TNR, especially the fourth 

assumption. So, the fourth assumption was chosen as the best assumption to be applied for 

tuning parameters. 
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In the HMM model, Table 4.19 shows that the best result for TPR was with the 

fourth assumption of 38% and has an acceptable TNR of 70%. The highest TNR was by 

using the first assumption of 83% with very low TPR of 21%. So, the fourth assumption 

was chosen to be applied for tuning parameters because the TPR is highest. 

In the Auto-Encoder model, the best result for TPR was with first assumption of 

100%. In contrast, the best TNR of 100% was in assumption two. The TNR in the first 

assumption gave the highest TPR has 0% but has TNR which is not acceptable. The TPR 

in assumption two which gave the highest TNR has 0% TPR which is not acceptable. So, 

the fourth assumption was chosen to be applied for tuning parameters because it has the 

high TNR and is not 0 for TPR. 

In the Gaussian Distribution model, the highest result for TPR was with assumption 

two but it is very low with a high TNR. However, the highest TNR was with assumptions 

three and four. So, the second assumption was chosen to be applied for tuning parameters. 

Finally, for more results such as F1 score and RMSE in this part refer to Appendix A, 

Appendix B, Appendix C, Appendix D. 

Table 4.19: Results for Dataset 3 based on Four Assumptions 

Models Accuracy TPR TNR 

Assumption 1: without normalization or dimensional reduction 

K-means 0.236585366 0.14 0.8 

HMM 0.307317073 0.217142857 0.833333333 

Auto-encoder 0.853658537 1 0 

Gaussian 0.197560976 0.068571429 0.95 

Assumption 2: with normalization only 

K-means 0.3 0.242857143 0.633333333 

HMM 0.341463415 0.257142857 0.833333333 

Auto-encoder 0.146341463 0 1 

Gaussian 0.2 0.071428571 0.95 

Assumption 3: with Dimensional reduction only 

K-means 0.236585366 0.14 0.8 

HMM 0.353658537 0.291428571 0.716666667 

Auto-encoder 0.83902439 0.982857143 0 

Gaussian 0.146341463 0 1 

Assumption 4: with Both normalization and Dimensional reduction 

K-means 0.302439024 0.242857143 0.65 
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HMM 0.426829268 0.38 0.7 

Auto-encoder 0.173170732 0.034285714 0.983333333 

Gaussian 0.148780488 0.002857143 1 

Some results have an outstanding accuracy in the normal instances and unfortunate 

abnormal detection accuracy such as 0, 3 and 5 in random states. Another group of results 

are the opposite; unfortunate normal accuracy and excellent abnormal detection accuracy, 

for instance, 14, 42, 90, and 200 random states. Table 4.20 summarized all K-means results. 

Finally, for more results such as F1 score and RMSE in this part refer to Appendix S. 

Table 4.20: K-means Results for Dataset 3 

Tuning Parameters Evaluations 

Max Iter Random 

State 

Accuracy TPR TNR 

1 0 0.3 0.242857143 0.633333333 

10 0 0.302439024 0.242857143 0.65 

1 42 0.731707317 0.817142857 0.233333333 

10 42 0.697560976 0.757142857 0.35 

1 1 0.73902439 0.831428571 0.2 

10 1 0.292682927 0.234285714 0.633333333 

1 2 0.692682927 0.751428571 0.35 

10 2 0.3 0.242857143 0.633333333 

1 3 0.295121951 0.234285714 0.65 

10 3 0.292682927 0.234285714 0.633333333 

1 4 0.175609756 0.045714286 0.933333333 

10 4 0.7 0.757142857 0.366666667 

1 5 0.256097561 0.168571429 0.766666667 

10 5 0.3 0.242857143 0.633333333 

1 13 0.785365854 0.891428571 0.166666667 

10 13 0.302439024 0.242857143 0.65 

1 14 0.717073171 0.785714286 0.316666667 

10 14 0.707317073 0.765714286 0.366666667 

1 90 0.707317073 0.765714286 0.366666667 

10 90 0.702439024 0.768571429 0.316666667 

1 91 0.714634146 0.78 0.333333333 

10 91 0.3 0.242857143 0.633333333 

1 200 0.695121951 0.777142857 0.216666667 

10 200 0.7 0.757142857 0.366666667 

1 250 0.690243902 0.751428571 0.333333333 

10 250 0.3 0.242857143 0.633333333 
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The results in this model showed better detections than K-means results in term of 

accuracy. It has higher accuracy for both normal and abnormal detection. The most 

acceptable result for both normal and abnormal detection has a “spherical” covariance type 

of 55% and 46% respectively. There were some results with an outstanding accuracy in the 

normal instances and unfortunate abnormal detection accuracy such as ‘diag’ with ‘viterbi’ 

in covariance type and algorithm respectively. Another group of results were the opposite; 

unfortunate normal accuracy and excellent abnormal detection accuracy, for instance, 

‘spherical’ with ‘viterbi’ in covariance type and algorithm respectively. The other results 

were varied with “diag”, “tied” and “full” covariance type and some of them gave a 

satisfactory accuracy level for both, as shown in Table 4.21. Finally, for more results such 

as F1 score and RMSE in this part, refer to Appendix T. 

Table 4.21: HMM Results for Dataset 3 

Tuning Parameters Evaluations 

Covariance 

type  

N 

iter 

algorithm Tol Accuracy TPR TNR 

Spherical 5k viterbi 0.1 0.837142857 0.837142857 0.233333333 

Diag 5k viterbi 0.1 0.22 0.22 0.733333333 

Tied 5k viterbi 0.1 0.771428571 0.771428571 0.316666667 

Full 
 

viterbi 
 

0.342857143 0.342857143 0.566666667 

Spherical 
 

viterbi 
 

0.551428571 0.551428571 0.466666667 

Diag 
 

viterbi 
 

0.714285714 0.714285714 0.283333333 

Tied 
 

viterbi 
 

0.768571429 0.768571429 0.333333333 

Spherical 5k map 0.1 0.654285714 0.654285714 0.433333333 

Diag 5k map 0.1 0.845714286 0.845714286 0.233333333 

Tied 5k map 0.1 0.788571429 0.788571429 0.266666667 

Full 
 

map 
 

0.771428571 0.771428571 0.316666667 

Spherical 
 

map 
 

0.657142857 0.657142857 0.433333333 

Diag 
 

map 
 

0.551428571 0.551428571 0.466666667 

Tied 
 

map 
 

0.702857143 0.702857143 0.283333333 

Spherical 5k viterbi 
 

0.231428571 0.231428571 0.666666667 

Spherical 5 viterbi 0.1 0.345714286 0.345714286 0.566666667 

The auto-encoder results are tuned using the following parameters: number of 

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1, 

hidden dimension for layer 2, activation function, learning rate, and threshold. The best 

results are obtained with varying the threshold values, as shown in Table 4.22. The highest 
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abnormal detection accuracy has four threshold value with ‘tanh’ activation function of 

66%, but the normal detection accuracy has very low value. Most of the other values have 

excellent accuracy for normal detection but unacceptable accuracy for abnormal detection. 

Finally, for more results such as F1 score and RMSE in this part refer to Appendix U. 
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Table 4.22: Auto-Encoder Model Results for Dataset 3 

Tuning Parameters Evaluations 

Encoding 

_dim 

Hidden 

_dim1 

Hidden 

_dim2 

Activation threshold TPR TNR 

18 10 6 tanh 4 0.06 0.93333 

18 10 6 tanh 4 0.048571429 0.98333 

32 16 8 tanh 4 0.065714286 0.93333 

10 5 2 tanh 4 0.062857143 0.93333 

5 2 1 tanh 4 0.034285714 0.96667 

5 3 1 tanh 4 0.077142857 0.91667 

50 20 10 tanh 4 0.057142857 0.95 

5 2 1 sigmoid 4 0.028571429 1 

5 2 1 hard_ 

sigmoid 

4 0.065714286 0.93333 

5 2 1 exponential 4 0.065714286 0.93333 

5 2 1 linear 4 0.054285714 0.96667 

5 2 1 tanh 3 0.057142857 0.96667 

5 2 1 tanh 2 0.057142857 0.96667 

5 2 1 tanh 1 0.085714286 0.9 

5 2 1 tanh 5 0.097142857 0.9 

5 2 1 linear 4 0.22 0.78333 

5 2 1 tanh 4 0.668571429 0.28333 

5 2 1 tanh 4 0.031428571 0.9833 

5 2 1 tanh 4 0.071428571 0.95 

The results of the rest of the models were shown in Table 4.23. Auto-Encoder with 

K-means model gave more accuracy than the K-means and Auto-encoder model, especially 

TPR and TNR together which is important. The results in K-means and Auto-Encoder 

models separately were high for only one of the accuracies; TNR or TPR. However, in this 

model both TNR and TPR are increased in efficient values. Similarly, Auto-Encoder with 

HMM model gave much better results from Auto-Encoder and HMM models in terms of 

both accuracies together. The combination model between the three model (K-means, 

HMM, and Auto-Encoder) gave approximately the same results compared with the 

previous two models. Comparing these results with HMM, Auto-Encoder, and K-means 

results gave better results. Finally, the Gaussian Distribution model gave a high TPR with 

a non-acceptable TNR which shows that the Gaussian distribution model has high ability 

to classify the abnormal instances in this dataset. 
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Table 4.23: Results of Four Models for Dataset 3 

Evaluations 

K-means with Auto-encoder Model Results 

Accura

cy 

Precision  Recall F1-score RMSE TPR TNR 

0.45365

8537 

0.46569468

3 

0.4314285

71 

0.383855

732 

0.43142857

1 

0.739149

148 

0.462857

143 

0.45121

9512 

0.46496747 0.43 0.382244

812 

0.43 0.740797

197 

0.46 

0.44634

1463 

0.46350626

1 

0.4271428

57 

0.379015

847 

0.42714285

7 

0.744082

345 

0.454285

714 

0.49512

1951 

0.50202337

6 

0.5040476

19 

0.427401

345 

0.50404761

9 

0.710547

71 

0.491428

571 

0.50975

6098 

0.50630637

1 

0.5126190

48 

0.437439

843 

0.51261904

8 

0.700174

194 

0.508571

429 

HMM with Auto-encoder Model Results 

Accuracy Precision  Recall F1-score RMSE TPR TNR 

0.8536585

37 

0.426829

268 

0.5 0.460526

316 

0.5 0.38254

6028 

1 

0.4853658

54 

0.413048

856 

0.3326190

48 

0.353800

187 

0.33261

9048 

0.71738

0057 

0.548571429 

0.5317073

17 

0.590995

701 

0.6773809

52 

0.493944

303 

0.67738

0952 

0.68431

9138 

0.471428571 

0.8536585

37 

0.426829

268 

0.5 0.460526

316 

0.5 0.38254

6028 

1 

0.4365853

66 

0.495106

315 

0.4904761

9 

0.392023

315 

0.49047

619 

0.75060

9508 

0.414285714 

0.8536585

37 

0.426829

268 

0.5 0.460526

316 

0.5 0.38254

6028 

1 

K-means, HMM, and Auto-encoder Model Results 

Accura

cy 

Precisio

n  

Recall F1-

score 

RMSE TPR TNR 

0.51951

2195 

0.48333

6904 

0.46666666

7 

0.41267

5892 

0.46666

6667 

0.693172276 0.5171

42857 

Gaussian Distribution Model Results 

Accura

cy 

Precision  Recall F1-

score 

RMSE TPR TNR 

0.14878

0488 

0.57334963

3 

0.50142

8571 

0.13078

0773 

0.50142

8571 

0.922615582 0.0028

57143 

In conclusion of experiment three, the best results for each model was represented 

in Figure 4.15. The Gaussian distribution model achieved the highest TPR value among all 

models with very low TNR which is not acceptable. But HMM with auto-encoder model 
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reached the highest TNR value. So, HMM with auto-encoder model was considered the 

best result in this experiment.  

 

Figure 4.15: The Best Results in Experiment 3 

4.4.4 Experiment 4 - Server Computers Dataset 

Experiment four was implemented on server computers dataset. This Dataset has 

only two features. The features measure the through-put (mb/s) and latency (ms) of 

response of each server. While your servers were operating, you collected m = 307 

examples of how they were behaving. Table 4.24 describes some of the dataset 

characteristics. 

Table 4.24: Dataset 4 Description 

Dataset name Server computers dataset 

Dataset features number 2 

Dataset observation number 307 

Dataset Date ------ 

Dataset place ------ 

Normal - Anomalous percentage 97.07 - 2.93% 

To visualize the dataset, the histogram function in Python was applied on the 

dataset as shown in Figure 4.16: 
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Figure 4.16: Features Histogram for Dataset 4 

The Dataset is ready. There are no NAN values, all features are numbers. Finally, 

Feature importance was applied for applying PCA dimensional reduction. The features 

were sorted in terms of importance to the target using extra tree classifiers as shown in 

Figure 4.17. 
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Figure 4.17: Feature Importance for Dataset 4 

Default proposed models were applied between four assumptions for comparison 

between normalization and dimensional reduction. Table 4.25 shows the results with the 

four assumptions for Dataset 4. In the K-means model, the best result for TPR was achieved 

by applying the second assumption of 66% and has the highest TNR by approximately 

50%. So, it was chosen as the best assumption to be applied for tuning parameters. 

In the HMM model, Table 4.25 shows that the best result for TPR was with the 

second assumption of 77% and has a high TNR of 99%. The highest TNR was using the 

fourth assumption of 100% with an acceptable TPR of 66%. So, the first assumption was 

chosen to be applied for tuning parameters because the TPR is the highest. 

In the Auto-Encoder model, the best result for TPR was with the first assumption 

of 100%. In contrast, the best TNR was in assumption fourth of 100%. The TNR in the 

first assumption gave the highest TPR but has 0% TNR which is not acceptable. The TPR 

in assumption four which gave the highest TNR has 66% TPR which is low. So, the second 

assumption was chosen to be applied for tuning parameters because it has the high TNR 

and high TPR. In the Gaussian Distribution model, the highest result for TNR was with 
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assumption one but it has very low TPR. Finally, for more results such as F1 score and 

RMSE in this part refer to Appendix A, Appendix B, Appendix C, Appendix D. 

Table 4.25: Results for Dataset 4 based on Four Assumptions 

Models Accuracy TPR TNR 

Assumption 1: without normalization or dimensional reduction 

K-means 0.488599349 0.555555556 0.486577181 

HMM 0.990228013 0.777777778 0.996644295 

Auto-encoder 0.029315961 1 0 

Gaussian 0.977198697 0.222222222 1 

Assumption 2: with normalization only 

K-means 0.5016 0.666666667 0.496644295 

HMM 0.0098 0.222222222 0.003355705 

Auto-encoder 0.9902 0.777777778 0.996644295 

Gaussian 0.9772 0.222222222 1 

Assumption 3: with Dimensional reduction only 

K-means 0.397394137 0.555555556 0.39261745 

HMM 0.013029316 0.333333333 0.003355705 

Auto-encoder 0.96742671 0.666666667 0.976510067 

Gaussian 0.973941368 0.111111111 1 

Assumption 4: with Both normalization and Dimensional reduction 

K-means 0.364820847 0.555555556 0.359060403 

HMM 0.990228013 0.666666667 1 

Auto-encoder 0.990228013 0.666666667 1 

Gaussian 0.970684039 0 1 

Some results have the highest accuracy in the normal instances and abnormal 

detection accuracy such as 2 and 5 in random states with one maximum iteration. Another 

group of results has less accuracies but is still acceptable, for instance, 1, 42 and 91 random 

states. Table 4.26 summarizes all K-means results. Finally, for more results such as F1 

score and RMSE in this part refer to Appendix V. 
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Table 4.26: K-means Results for Dataset 4 

Tuning Parameters Evaluations 

Max Iter Random 

State 

Accuracy TPR TNR 

1 0 0.5114 0.666666667 0.506711409 

10 0 0.5016 0.666666667 0.496644295 

1 42 0.4137 0.777777778 0.402684564 

10 42 0.43 0.666666667 0.422818792 

1 1 0.3322 0.444444444 0.32885906 

10 1 0.4984 0.333333333 0.503355705 

1 2 0.5505 0.666666667 0.546979866 

10 2 0.5016 0.666666667 0.496644295 

1 3 0.4495 0.333333333 0.453020134 

10 3 0.4984 0.333333333 0.503355705 

1 4 0.4886 0.333333333 0.493288591 

10 4 0.4984 0.333333333 0.503355705 

1 5 0.6352 0.555555556 0.637583893 

10 5 0.5016 0.666666667 0.496644295 

1 13 0.6189 0.333333333 0.627516779 

10 13 0.5016 0.666666667 0.496644295 

1 14 0.4267 0.444444444 0.426174497 

10 14 0.4984 0.333333333 0.503355705 

1 90 0.4365 0.444444444 0.436241611 

10 90 0.4984 0.333333333 0.503355705 

1 91 0.43 0.666666667 0.422818792 

10 91 0.43 0.666666667 0.422818792 

1 200 0.5147 0.444444444 0.516778523 

10 200 0.57 0.333333333 0.577181208 

1 250 0.645 0.222222222 0.657718121 

10 250 0.5016 0.666666667 0.496644295 

The results in this model showed better detections than K-means results in term of 

accuracy. It has higher accuracy for both normal and abnormal detection. The most 

acceptable result for both normal and abnormal detection has a “diag” and “viterbi” 

covariance type and algorithm of 100% and 77% respectively. There were some results 

with less accuracy in the normal instances and abnormal detection accuracy such as ‘full’ 

and ‘map’ in covariance type and algorithm respectively. The other results were varied 

with “spherical”, “tied” and “full” covariance type and some of them gave a satisfactory 

accuracy level for both, as shown in Table 4.27. Finally, for more results such as F1 score 

and RMSE in this part refer to Appendix W. 
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Table 4.27: HMM Results for Dataset 4 

Tuning Parameters Evaluations 

Covariance 

type  

N  

iter 

algorithm Tol Accuracy TPR TNR 

Spherical 5k viterbi 0.1 0.006514658 0.222222222 0 

Diag 5k viterbi 0.1 0.993485342 0.777777778 1 

Tied 5k viterbi 0.1 0.570032573 0.333333333 0.577181208 

Full 
 

viterbi 
 

0.993485342 0.777777778 1 

Spherical 
 

viterbi 
 

0.009771987 0.222222222 0.003355705 

Diag 
 

viterbi 
 

0.990228013 0.777777778 0.996644295 

Tied 
 

viterbi 
 

0.570032573 0.333333333 0.577181208 

Spherical 5k map 0.1 0.993485342 0.777777778 1 

Diag 5k map 0.1 0.006514658 0.222222222 0 

Tied 5k map 0.1 0.993485342 0.777777778 1 

Full 
 

map 
 

0.557003257 0.333333333 0.563758389 

Spherical 
 

map 
 

0.993485342 0.777777778 1 

Diag 
 

map 
 

0.990228013 0.777777778 0.996644295 

Tied 
 

map 
 

0.009771987 0.222222222 0.003355705 

Spherical 5k viterbi 
 

0.442996743 0.666666667 0.436241611 

Spherical 5 viterbi 0.1 0.006514658 0.222222222 0 

The auto-encoder results were tuned using the following parameters: number of 

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1, 

hidden dimension for layer 2, activation function, learning rate, and threshold. The best 

results were obtained by varying the threshold values, as shown in Table 4.28. The highest 

abnormal detection accuracy has a threshold value of 4, ‘tanh’ activation function, and the 

layers sequence is (10 – 5 – 2) by approximately 77%, and the normal detection accuracy 

has a high value of 100%. Most of the other values have excellent accuracy for normal 

detection but acceptable accuracy for abnormal detection. Finally, for more results such as 

F1 score and RMSE in this part refer to Appendix A, Appendix B, Appendix C, Appendix 

D. Finally, for more results such as F1 score and RMSE in this part refer to Appendix X. 
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Table 4.28: Auto-Encoder Model Results for Dataset 4 

Tuning Parameters Evaluations 

Encoding 

_dim 

Hidden 

_dim1 

Hidden 

_dim2 

activation threshold TPR TNR 

18 10 6 tanh 4 0.7777778 0.9966443 

18 10 6 tanh 4 0.44444444 1 

32 16 8 tanh 4 0.77777778 1 

10 5 2 tanh 4 0.77777778 1 

5 2 1 tanh 4 0.77777778 0.99328859

1 

5 3 1 tanh 4 0.77777778 0.99664429

5 

50 20 10 tanh 4 0.55555556 1 

5 2 1 sigmoid 4 0.44444444 1 

5 2 1 hard_ 

sigmoid 

4 0.77777778 0.99664429

5 

5 2 1 exponential 4 0.77777778 0.99664429

5 

5 2 1 linear 4 0.77777778 0.99664429

5 

5 2 1 tanh 3 0.77777778 0.99664429

5 

5 2 1 tanh 2 0.77777778 0.99664429

5 

5 2 1 tanh 1 0.33333333 0.99664429

5 

5 2 1 tanh 5 0.77777778 0.99328859

1 

5 2 1 linear 4 0.77777778 0.97651006

7 

5 2 1 tanh 4 0.77777778 0.86577181

2 

5 2 1 tanh 4 0.77777778 0.99664429

5 

5 2 1 tanh 4 0.33333333 0.99664429

5 

The results of the rest of the models were shown in Table 4.29. Auto-Encoder with 

K-means model did not give more accuracy from the K-means and Auto-encoder model 

but still achieves an acceptable range of accuracy. Auto-Encoder with HMM model did not 

give much better results from Auto-Encoder and HMM models in terms of both accuracies 
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but still gives acceptable results. The combination model between the three model (K-

means, HMM, and Auto-Encoder) gave approximately the same results compared with the 

previous two models. Comparing these results with HMM, Auto-Encoder, and K-means 

results did not have better results than the previous model. Finally, the Gaussian 

Distribution model gave an outstanding TNR with a non-acceptable TPR which shows that 

the Gaussian distribution model has a high ability to classify the normal instances in this 

dataset. 

Table 4.29: Results of Four Models for Dataset 4 

Evaluations 

K-means with Auto-encoder Model Results 

Accura

cy 

Precision  Recall F1-score RMSE TPR TNR 

0.4267 0.4987 0.4892 0.3213 
0.7571591 0.555555

556 

0.4228187

92 

0.4691 0.4951 0.4571 0.3394 
0.7286594

72 

0.444444

444 

0.4697986

58 

HMM with Auto-encoder Model Results 

Accuracy Precisio

n  

Recall F1-score RMSE TPR TNR 

0.4918566

78 

0.502590

234 

0.5227442

21 

0.3560133

39 
0.7128 0.5556 0.4899 

0.4169381

11 

0.504483

516 

0.5380313

2 

0.3198296

88 
0.7636 0.6667 0.4094 

K-means, HMM, and Auto-encoder Model Results 

Accura

cy 

Precisi

on  

Recall F1-

score 

RMSE TPR TNR 

0.5472 0.5059 0.5513 0.3841 
0.672880

918 

0.555555556 0.54697

9866 

Gaussian Distribution Model Results 

Accura

cy 

Precision  Recall F1-

score 

RMSE TPR TNR 

0.97719

8697 

0.98852459 0.61111

1111 

0.67601

387 

0.151001

003 

0.222222222 1 

In conclusion of experiment four, the best results for each model was presented in 

Figure 4.18. Gaussian distribution, HMM and Auto-encoder models achieved the highest 

TPR value among the other models. But HMM and auto-encoder models reached the 
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highest TNR value. So, HMM or auto-encoder model was considered as the best result in 

this experiment.  

 

Figure 4.18: The Best Results in Experiment 4 

4.4.5 Experiment 5 - High Dimensional Server Computers Dataset 

Experiment five was implemented on a high dimensional server computers dataset. 

In this dataset, each example is described by 11 features, capturing many more properties 

of the computer servers. The features measure the through-put (mb/s) and latency (ms) of 

response of each server. While computers servers were operating, its collected m = 307 

examples of how they were behaving. Table 4.30 describes some of the dataset 

characteristics. 

Table 4.30: Dataset 5 Description 

Dataset name high dimensional server computers dataset 

Dataset features number 11 

Dataset observation number 1000 

Dataset Date ------ 

Dataset place ------ 

Normal - Anomalous percentage 90.0 - 10.0% 

To visualize the dataset, the histogram function in Python was applied on the 

dataset as shown in Figure 4.19: 
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Figure 4.19: Features Histogram for Dataset 5 

The Dataset is ready. There are no NAN values, all features are numbers. Finally, 

Feature importance was applied for applying PCA dimensional reduction. The features 

were sorted in term of importance to the target using extra tree classifier as shown in Figure 

4.20. Additionally, a comparison was provided between data features in Appendix H. 
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Figure 4.20: Feature Importance for Dataset 5 

Default proposed models were applied between four assumptions for comparison 

between normalization and dimensional reduction. Table 4.31 shows the results with the 

four assumptions for Dataset 5. In the K-means model, the best result for TPR and TNR 

was by applying the second assumption among the four assumptions of 60% and 58% 

respectively. So, it was chosen as the best assumption to be applied for tuning parameters. 

In the HMM model, Table 4.31 shows that the best result for TPR was 60% with 

the fourth assumption and has a highest TNR of 56%. So, the first assumption was chosen 

to be applied for tuning parameters because it has the highest values between all 

assumptions. 

In the Auto-Encoder model, the best result for TPR was 100% with the third 

assumption.  In contrast, the best TNR of 100% was in the first and second assumptions. 

The TNR in assumption three which gave the highest TPR has approximately 0% TNR 

which is not acceptable. The TPR in assumption one and two which gave the highest TNR 

has 0% TPR which is not acceptable. The fourth assumption has 40% TPR and 94% TNR 

which were a much better balance between the four assumptions. So, the fourth assumption 
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was chosen to be applied for tuning parameters because it has the suitable TNR and TPR. 

In the Gaussian Distribution model, the first assumption was chosen because it has the 

highest TPR and TNR results among all assumptions. Finally, for more results such as F1 

score and RMSE in this part refer to Appendix A, Appendix B, Appendix C, Appendix D. 

Table 4.31: Results for Dataset 5 based on Four Assumptions 

Models Accuracy TPR TNR 

Assumption 1: without normalization or dimensional reduction 

K-means 0.52 0.2 0.555555556 

HMM 0.54 0.4 0.555555556 

Auto-encoder 0.1 0 1 

Gaussian 0.92 0.2 1 

Assumption 2: with normalization only 

K-means 0.59 0.6 0.588888889 

HMM 0.51 0.5 0.511111111 

Auto-encoder 0.9 0 1 

Gaussian 0.9 0 1 

Assumption 3: with Dimensional reduction only 

K-means 0.56 0.6 0.555555556 

HMM 0.48 0.5 0.477777778 

Auto-encoder 0.13 1 0.033333333 

Gaussian 0.9 0 1 

Assumption 4: with Both normalization and Dimensional reduction 

K-means 0.58 0.5 0.588888889 

HMM 0.57 0.6 0.566666667 

Auto-encoder 0.91 0.4 0.966666667 

Gaussian 0.9 0 1 

Some results have an outstanding accuracy in the normal instances and abnormal 

detection accuracy such as 1 in random states with ten maximum iteration. Another group 

of results has less accuracies but is still acceptable, for instance, 42 and 250 random states. 

Table 4.32 summarizes all K-means results. Finally, for more results such as F1 score and 

RMSE in this part refer to Appendix Y. 
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Table 4.32: K-means Results for Dataset 5 

Tuning Parameters Evaluations 

Max Iter Random State Accuracy TPR TNR 

1 0 0.42 0.3 0.433333333 

10 0 0.57 0.6 0.566666667 

1 42 0.43 0.7 0.4 

10 42 0.54 0.6 0.533333333 

1 1 0.45 0.6 0.433333333 

10 1 0.6 0.8 0.577777778 

1 2 0.38 0.6 0.355555556 

10 2 0.41 0.3 0.422222222 

1 3 0.36 0.5 0.344444444 

10 3 0.55 0.7 0.533333333 

1 4 0.61 0.4 0.633333333 

10 4 0.58 0.6 0.577777778 

1 5 0.56 0.4 0.577777778 

10 5 0.46 0.4 0.466666667 

1 13 0.54 0.4 0.555555556 

10 13 0.45 0.4 0.455555556 

1 14 0.43 0.4 0.433333333 

10 14 0.54 0.6 0.533333333 

1 90 0.53 0.8 0.5 

10 90 0.57 0.7 0.555555556 

1 91 0.47 0.8 0.433333333 

10 91 0.6 0.7 0.588888889 

1 200 0.63 0.4 0.655555556 

10 200 0.59 0.7 0.577777778 

1 250 0.44 0.7 0.411111111 

10 250 0.56 0.7 0.544444444 

The results in this model showed better detections than K-means results in term of 

accuracy. It has higher accuracy for both normal and abnormal detection. The highest result 

for both normal and abnormal detection has a “spherical” covariance type of 60% and 61% 

respectively. There were some results with less accuracy in the normal instances and 

abnormal detection accuracy such as ‘tied’ with ‘map’ in covariance type and algorithm 

respectively. The other results were varied with “diag”, “tied” and “full” covariance type 

and some of them gave a satisfactory accuracy level for both, as shown in Table 4.33. 

Finally, for more results such as F1 score and RMSE in this part refer to Appendix Z. 
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Table 4.33: HMM Results for Dataset 5 

Tuning Parameters Evaluations 

Covariance 

type  

N 

iter 

algorithm Tol Accuracy TPR TNR 

Spherical 5k viterbi 0.1 0.59 0.6 0.588888889 

Diag 5k viterbi 0.1 0.57 0.6 0.566666667 

Tied 5k viterbi 0.1 0.56 0.6 0.555555556 

Full 5k map 0.1 0.56 0.6 0.555555556 

Spherical 
 

viterbi 
 

0.61 0.6 0.611111111 

Diag 
 

viterbi 
 

0.57 0.6 0.566666667 

Tied 
 

viterbi 
 

0.53 0.5 0.533333333 

Full 5k viterbi 0.1 0.53 0.5 0.533333333 

Spherical 5k map 0.1 0.6 0.6 0.6 

Diag 5k map 0.1 0.56 0.6 0.555555556 

Tied 5k map 0.1 0.57 0.6 0.566666667 

Full 5k map 0.1 0.56 0.6 0.555555556 

Spherical 
 

map 
 

0.61 0.6 0.611111111 

Diag 
 

map 
 

0.56 0.6 0.555555556 

Tied 
 

map 
 

0.54 0.5 0.544444444 

Full  map  0.54 0.5 0.544444444 

Spherical 5k viterbi 
 

0.61 0.6 0.611111111 

Spherical 5 viterbi 0.1 0.59 0.6 0.588888889 

The auto-encoder results were tuned using the following parameters: number of 

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1, 

hidden dimension for layer 2, activation function, learning rate, and threshold. The best 

results were obtained by varying the threshold values, as shown in Table 4.34. The highest 

abnormal detection accuracy has four threshold values with ‘tanh’ activation function of 

approximately 80%, and the normal detection accuracy has a value 55%. Most of the other 

values have excellent accuracy for normal detection but unacceptable accuracy for 

abnormal detection. Finally, for more results such as F1 score and RMSE in this part refer 

to Appendix AA. 
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Table 4.34: Auto-Encoder Model Results for Dataset 5 

Tuning Parameters Evaluations 

Encoding 

_dim 

Hidden 

_dim1 

Hidden 

_dim2 

activation threshold TPR TNR 

18 10 6 tanh 4 0.2 1 

18 10 6 tanh 4 0.1 1 

32 16 8 tanh 4 0.2 1 

10 5 2 tanh 4 0.4 0.966666667 

5 2 1 tanh 4 0.4 0.955555556 

5 3 1 tanh 4 0.4 0.966666667 

50 20 10 tanh 4 0.2 1 

5 2 1 sigmoid 4 0.2 1 

5 2 1 hard_sigmoid 4 0.3 0.988888889 

5 2 1 exponential 4 0.4 0.955555556 

5 2 1 linear 4 0.4 0.933333333 

5 2 1 tanh 3 0.4 0.933333333 

5 2 1 tanh 2 1 0 

5 2 1 tanh 1 0.5 0.955555556 

5 2 1 tanh 5 0.5 0.888888889 

5 2 1 linear 4 0.5 0.855555556 

5 2 1 tanh 4 0.8 0.555555556 

5 2 1 tanh 4 0.4 0.966666667 

5 2 1 tanh 4 0.4 0.955555556 

The results of the rest of the models were shown in Table 4.35. Auto-Encoder with 

K-means model did not give more accuracy compared to the K-means and Auto-encoder 

model but still has an acceptable range of accuracy. Auto-Encoder with HMM model gave 

a small increase in results compared to the Auto-Encoder model. The combination model 

between the three model (K-means, HMM, and Auto-Encoder) gave approximately the 

same results compared with the previous two models. Comparing these results with HMM, 

Auto-Encoder, and K-means results did not have better results than the previous model. 

Finally, the Gaussian Distribution model gave an outstanding TNR with a non-acceptable 

TPR which shows that the Gaussian distribution model has a high ability to classify the 

normal instances in this dataset. 
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Table 4.35: Results of Four Models for Dataset 5 

Evaluations 

K-means with Auto-encoder Model Results 

Accurac

y 

Precisio

n  

Recall F1-score RMSE TPR TNR 

0.47 0.51010

101 

0.52777

7778 

0.396011396 0.728010989 0.6 0.455555

556 

0.47 0.51010

101 

0.52777

7778 

0.396011396 0.728010989 0.6 0.455555

556 

HMM with Auto-encoder Model Results 

Accurac

y 

Precisio

n  

Recall F1-score RMSE TPR TNR 

0.52 0.53605

7692 

0.6 0.438990182 
0.6928 0.7 0.5 

0.56 0.52818

0354 

0.57777

7778 

0.454365079 
0.6633 0.6 0.5556 

0.70073

2519 

0.48476

7631 

0.39502

945 

0.418660852 0.39502945 0.54705

3453 

0.07 

K-means, HMM, and Auto-encoder Model Results 

Accurac

y 

Precisio

n  

Recall F1-score RMSE TPR TNR 

0.55 0.54201

6807 

0.61666

6667 

0.4590696 0.670820393 0.7 0.533333

333 

Gaussian Distribution Model Results 

Accurac

y 

Precisio

n  

Recall F1-score RMSE TPR TNR 

0.92 0.95918

3673 

0.6 0.645390071 0.282842712 0.2 1 

In conclusion of experiment five, the best results for each model was represented 

in Figure 4.21. The Gaussian distribution model achieved the highest TNR value among 

the other models with very low TPR.  However, the K-means model reached the highest 

TPR value with acceptable TNR. So, the K-means model was considered as the best result 

in this experiment.  
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Figure 4.21: The Best Results in Experiment 5 

4.4.6 Experiment 6 - Transmission History Dataset 

Experiment six was implemented on a transmission history dataset (conn250K). 

There are 256670 records total, each of which is with 4 fields that will be described. “record 

ID” - the unique identifier for each connection record. “duration_” - This feature denotes 

the number of seconds (rounded) of the connection. For example, a connection for 0.17s 

or 0.3s would be indicated with a “0” in this field. “src_bytes” - This field represents the 

number of data bytes transferred from the source to the destination (i.e., the amount of out-

going bytes from the host). “dst_bytes” - This feature represents the number of data bytes 

transferred from the destination to the source (i.e., the amount of bytes received by the 

host). Table 4.36 describes some of the dataset characteristics. 

Table 4.36: Dataset 6 Description 

Dataset name Transmission History Dataset dataset 

Dataset features number 4 

Dataset observation number 256670 

Dataset Date ------ 

Dataset place ------ 

Normal - Anomalous percentage 99.62 - 0.38% 
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To visualize the dataset, the histogram function in Python was applied on the 

dataset as shown in Figure 4.22: 

 

Figure 4.22: Features Histogram for Dataset 6 

The Dataset is ready. There are no NAN values, all features are numbers. Finally, 

Feature importance was applied for applying PCA dimensional reduction. The features 

were sorted in term of importance to the target using extra tree classifiers as shown in 

Figure 4.23. Additionally, a comparison is provided between data features in Appendix I. 
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Figure 4.23: Feature Importance for Dataset 6 

Default proposed models were applied between four assumptions for comparison 

between normalization and dimensional reduction. Table 4.37 shows the results with the 

four assumptions for Dataset 6. In the K-means model, the best result for TNR of 99% was 

by applying the fourth assumption among the four assumptions. However, the TPR for the 

fourth assumption is not acceptable. The highest TPR of 52% was with assumption three 

and a TNR of 50%. So, the third assumption was chosen as the best assumption to be 

applied for tuning parameters. 

In the HMM model, Table 4.37 shows that the first assumption got the highest 

values in TNR and TPR among all assumptions. So, the first assumption was chosen to be 

applied for tuning parameters. 

In the Auto-Encoder model, the best result for TPR and TNR was by applying the 

fourth assumption which yielded 100% and 99% respectively. So, the fourth assumption 

was chosen to be applied for tuning parameters because it has the highest TNR and TPR 

values. In the Gaussian Distribution model, the second assumption was chosen because it 

has the highest TPR and TNR results among all assumptions. Finally, for more results such 
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as F1 score and RMSE in this part refer to Appendix A, Appendix B, Appendix C, 

Appendix D. 

Table 4.37: Results for Dataset 6 based on Four Assumptions 

Models Accuracy TPR TNR 

Assumption 1: without normalization or dimensional reduction 

K-means 0.498664015 0.474025974 0.498902064 

HMM 0.986205182 1 0.986071899 

Auto-encoder 0.009569378 1 0 

Gaussian 0.998197974 1 0.998180563 

Assumption 2: with normalization only 

K-means 0.498726154 0.474025974 0.498964803 

HMM 0.980736966 1 0.98055085 

Auto-encoder 0.995898838 1 0.995859213 

Gaussian 0.998322252 1 0.998306042 

Assumption 3: with Dimensional Reduction only 

K-means 0.501149568 0.525974026 0.500909718 

HMM 0.498726154 0.474025974 0.498964803 

Auto-encoder 0.009755794 1 0.000188218 

Gaussian 0.990430622 0 1 

Assumption 4: with Both normalization and Dimensional Reduction 

K-means 0.988317902 0 0.997866867 

HMM 0.979121357 1 0.978919631 

Auto-encoder 0.996644504 1 0.996612084 

Gaussian 0.998011558 0.993506494 0.998055085 

Most results have an outstanding accuracy around 97% in the normal instances and 

0% for abnormal detection accuracy such as 0, 1, and 42 in random states. Two results have 

100% abnormal accuracy but close to 0% normal accuracy with 250 random states. Overall, 

K-means model did not work well in this dataset. Table 4.38 summarized all K-means 

results. Finally, for more results such as F1 score and RMSE in this part refer to Appendix 

BB. 
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Table 4.38: K-means Results for Dataset 6 

Tuning Parameters Evaluations 

Max Iter Random 

State 

Accuracy TPR TNR 

1 0 0.988317902 0 0.997866867 

10 0 0.988317902 0 0.997866867 

1 42 0.988255763 0 0.997804128 

10 42 0.988317902 0 0.997866867 

1 1 0.988317902 0 0.997866867 

10 1 0.988317902 0 0.997866867 

1 2 0.988690735 0 0.998243303 

10 2 0.988317902 0 0.997866867 

1 3 0.988317902 0 0.997866867 

10 3 0.988317902 0 0.997866867 

1 4 0.988317902 0 0.997866867 

10 4 0.988317902 0 0.997866867 

1 5 0.988317902 0 0.997866867 

10 5 0.988317902 0 0.997866867 

1 13 0.988317902 0 0.997866867 

10 13 0.988317902 0 0.997866867 

1 14 0.988317902 0 0.997866867 

10 14 0.446405269 0 0.450718364 

1 90 0.988317902 0 0.997866867 

10 90 0.988317902 0 0.997866867 

1 91 0.988317902 0 0.997866867 

10 91 0.988317902 0 0.997866867 

1 200 0.988317902 0 0.997866867 

10 200 0.988317902 0 0.997866867 

1 250 0.012241347 1 0.002697785 

10 250 0.011682098 1 0.002133133 

The results in this model show better detections than K-means results in term of 

accuracy. It has higher accuracy for both normal and abnormal detection together. The 

highest result for both normal and abnormal detection has a “diag” covariance type of 98% 

and 100% respectively. There are some results with less accuracy than the normal accuracy 

such as ‘spherical’ with ‘viterbi’ in covariance type and algorithm respectively. The other 

results are varied with “diag”, “tied” and “full” covariance type and some of them give a 

satisfactory accuracy level for both, as shown in Table 4.39. Finally, for more results such 

as F1 score and RMSE in this part refer to Appendix CC. 
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Table 4.39: HMM Results for Dataset 6 

The auto-encoder results were tuned using the following parameters: number of 

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1, 

hidden dimension for layer 2, activation function, learning rate, and threshold. The best 

results were obtained by varying the threshold values, as shown in Table 4.40. Most of the 

results gave the highest normal and abnormal detection accuracies by 99% and 100%. Only 

two results have 0% abnormal accuracy and 100% normal detection but unacceptable 

accuracy for abnormal detection. Finally, for more results such as F1 score and RMSE in 

this part refer to Appendix DD. 

  

Tuning Parameters Evaluations 

Covariance 

type  

N 

iter 

algorithm Tol Accuracy TPR TNR 

Spherical 5k viterbi 0.1 0.402100292 1 0.396323483 

Diag 5k viterbi 0.1 0.986267321 1 0.986134638 

Tied 5k viterbi 0.1 0.50369726 0.68181818

2 

0.501976285 

Full 5k map 0.1 0.98632946 1 0.986197378 

Spherical 
 

viterbi 
 

0.40166532 1 0.395884309 

Diag 
 

viterbi 
 

0.986267321 1 0.986134638 

Tied 
 

viterbi 
 

0.49630274 0.31818182 0.498023715 

Full 5k viterbi 0.1 0.98632946 1 0.986197378 

Spherical 5k map 0.1 0.402100292 1 0.396323483 

Diag 5k map 0.1 0.986267321 1 0.986134638 

Tied 5k map 0.1 0.503759398 0.68181818 0.502039024 

Full 5k map 0.1 0.98632946 1 0.986197378 

Spherical 
 

map 
 

0.401603182 1 0.39582157 

Diag 
 

map 
 

0.986267321 1 0.986134638 

Tied 
 

map 
 

0.496240602 0.31818181

8 

0.497960976 

Full  map  0.98632946 1 0.986197378 

Spherical 5k viterbi 
 

0.40166532 1 0.395884309 

Spherical 5 viterbi 0.1 0.44478966 0.99350649 0.439488048 
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Table 4.40: Auto-Encoder Model Results for Dataset 6 

Tuning Parameters Evaluations 

Encoding 

_dim 

Hidden 

_dim1 

Hidden 

_dim2 

activation threshold TPR TNR 

18 10 6 tanh 4 1 0.996235648 

18 10 6 tanh 4 1 0.996235648 

32 16 8 tanh 4 1 0.996235648 

10 5 2 tanh 4 1 0.996235648 

5 2 1 tanh 4 1 0.996235648 

5 3 1 tanh 4 1 0.996235648 

50 20 10 tanh 4 1 0.996235648 

5 2 1 sigmoid 4 1 0.996235648 

5 2 1 hard_ 

sigmoid 

4 1 0.996235648 

5 2 1 exponential 4 1 0.996047431 

5 2 1 linear 4 1 0.994039777 

5 2 1 tanh 3 1 0.993851559 

5 2 1 tanh 2 1 0.993851559 

5 2 1 tanh 1 0 1 

5 2 1 tanh 5 1 0.995921952 

5 2 1 linear 4 1 0.995545517 

5 2 1 tanh 4 1 0.993475124 

5 2 1 tanh 4 1 0.996612084 

5 2 1 tanh 4 0 1 

The results of the rest models were shown in Table 4.41. Auto-Encoder with K-

means model gave more accuracy than the K-means but the results of Auto-Encoder was 

better. Auto-Encoder with HMM model gave the same accuracy level because the results 

of the two models separately were very high. The combination model between the three 

model (K-means, HMM, and Auto-Encoder) gave approximately the same results 

compared with the previous two models. Comparing these results with HMM, Auto-

Encoder, and K-means results did not have better results than the previous model. Finally, 

the Gaussian Distribution model gave an outstanding TNR and TPR which shows that the 

Gaussian distribution model has a high ability to classify the normal and abnormal 

instances in this dataset. 
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Table 4.41: Results of Four Models for Dataset 6 

Evaluations 

K-means with Auto-encoder Model Results 

Accura

cy 

Precision  Recall F1-score RMSE TPR TNR 

0.58056

2978 

0.51102934

3 

0.785039

839 

0.387382

042 

0.64763957

7 

0.993506

494 

0.5765731

85 

0.59007

0217 

0.51128150

2 

0.789839

388 

0.391701

119 

0.64025759

1 

0.993506

494 

0.5861722

82 

0.44945

0071 

0.48969858

3 

0.230111

676 

0.310179

725 

0.74199051

8 

0.006493

506 

0.4537298

45 

0.44851

7989 

0.48955507

3 

0.226425

748 

0.309639

226 

0.74261834

8 

0 0.4528514

96 

0.59236

9353 

0.51146857

3 

0.794215

446 

0.392870

733 

0.63845958

9 

1 0.5884308

93 

HMM with Auto-encoder Model Results 

Accuracy Precisio

n  

Recall F1-score RMSE TPR TNR 

0.9627788

48 

0.601831

591 

0.977994

228 

0.659486

271 

0.192927

842 

0.993506

494 

0.962481962 

0.9812962

16 

0.668842

203 

0.987342

368 

0.747293

483 

0.136761

779 

0.993506

494 

0.981178242 

0.9745230

85 

0.636088

803 

0.983923

082 

0.707173

01 

0.159614

897 

0.993506

494 

0.97433967 

0.9616603

49 

0.599870

298 

0.980644

959 

0.656617

96 

0.195805

135 

1 0.961289918 

0.9725346

42 

0.629194

631 

0.986134

638 

0.698303

177 

0.165726

756 

1 0.972269277 

K-means, HMM, and Auto-encoder Model Results 

Accura

cy 

Precisi

on  

Recall F1-

score 

RMSE TPR TNR 

0.9636 0.6041 0.9816 0.6629 0.1908 1 0.9632 

Gaussian Distribution Model Results 

Accura

cy 

Precision  Reca

ll 

F1-

score 

RMSE TPR TNR 

0.998 0.9157 
0.995

8 
0.9522 

0.044591

952 

0.993506494 0.99805

5085 

In conclusion of experiment five, the best results for each model was presented in 

Figure 4.24. Most of the models in this data got the highest TPR with 100%. But Auto-

encoder model reached the highest TPR value with high TNR. So, Auto-encoder model 

was considered as the best result in this experiment.  
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Figure 4.24: The Best Results in Experiment 6 

4.4.7 Experiment 7 - Porto Seguro’s Safe Driver Prediction Dataset 

Experiment seven was implemented on a Porto Seguro’s Safe Driver Prediction 

dataset. There are 595212 observations in total and each observation is described by 59 

features. Table 4.42 describes some of the dataset characteristics which is provided by 

Porto Seguro. Porto Seguro is one of the Brazil’s largest auto and homeowner insurance 

companies. Inaccuracies in car insurance company’s claim predictions raise the cost of 

insurance for good drivers and reduce the price for bad ones. Features that belong to similar 

groupings are tagged as such in the feature names (e.g., ind, reg, car, calc). In addition, 

feature names include the postfix bin to indicate binary features and cat to indicate 

categorical features. Features without these designations are either continuous or ordinal. 

Values of -1 indicate that the feature was missing from the observation. The target columns 

signify whether or not a claim was filed for that policy holder. 

Table 4.42: Dataset 7 Description 

Dataset name Porto Seguro’s Safe Driver Prediction dataset 

Dataset features number 59 

Dataset observation number 595212 

Dataset Date ------ 

Dataset place Brazil 

Normal - Anomalous percentage 96.36 - 3.64% 

0

0.2

0.4

0.6

0.8

1

1.2

K-means HMM Auto-encoder K-means with
auto-encoder

HMM with
auto-encoder

Auto-encoder,
HMM and K-

means

Gaussian
Distribution

Best Results in Experiment 6

TPR TNR
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To visualize the dataset, the histogram function in Python was applied on the 

dataset, four features is shown in Figure 4.25 as sample: 

  

Figure 4.25: Features Histogram for Dataset 7 

The Dataset is ready. There are no NAN values, all features are numbers. Finally, 

Feature importance was applied for applying PCA dimensional reduction. The features 

were sorted in term of importance to the target using extra tree classifiers as shown in 

Figure 4.26. Additionally, a comparison was provided between data features in Appendix 

J. 
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Figure 4.26: Feature Importance for Dataset 7 

Default proposed models were applied between four assumptions for comparison 

between normalization and dimensional reduction. Table 4.43 shows the results with the 

four assumptions for Dataset 7. In the K-means model, the best result for TNR of 70% was 

achieved by applying the fourth assumption among the four assumptions. However, the 

TPR for the fourth assumption was very low. The highest TPR of 58% was with assumption 

two with very low TNR. The third assumption has a suitable TPR and TNR of 50% for 

both accuracies. So, the third assumption was chosen as the best assumption to be applied 

for tuning parameters. 
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In the HMM model, Table 4.43 shows that the first assumption got the highest TPR 

value among all assumptions but has a very low TNR. However, the best TNR value was 

with the fourth assumption with low TPR. So, the fourth assumption was chosen to be 

applied for tuning parameters. 

In the Auto-Encoder model, the best result for TPR of 100% was achieved by 

applying the first and third assumptions but the TNR was 0% in these assumptions. The 

best result for TNR of 99% was with applying the second and fourth assumptions. But the 

TPR was very low in these assumptions. So, the fourth assumption was chosen to be 

applied for tuning parameters because it has the highest TNR and has better TPR compared 

to the second assumption. In the Gaussian Distribution model, the fourth assumption was 

chosen because it has the most suitable results for TPR and TNR whereas the other 

assumptions have 0% for one of the rates. Finally, for more results such as F1 score and 

RMSE in this part refer to Appendix A, Appendix B, Appendix C, Appendix D. 

Table 4.43: Results for Dataset 7 based on Four Assumptions 

Models Accuracy TPR TNR 

Assumption 1: without normalization or dimensional reduction 

K-means 0.500171245 0.505393196 0.499677431 

HMM 0.101297481 0.975938047 0.018586972 

Auto-encoder 0.08639517 1 0 

Gaussian 0.91360483 0 1 

Assumption 2: with normalization only 

K-means 0.313291013 0.582465198 0.287836518 

HMM 0.852792889 0.118189361 0.922260776 

Auto-encoder 0.911454309 0.003872038 0.997279955 

Gaussian 0.08639517 1 0 

Assumption 3: with Dimensional reduction only 

K-means 0.500824366 0.504747857 0.500453341 

HMM 0.183200452 0.812943671 0.123648696 

Auto-encoder 0.08639517 1 0 

Gaussian 0.91360483 0 1 

Assumption 4: with Both normalization and Dimensional reduction 

K-means 0.682782296 0.424080391 0.707246478 

HMM 0.865743801 0.101687102 0.937996931 

Auto-encoder 0.908085161 0.012077072 0.992816292 

Gaussian 0.894353689 0.035401494 0.975580625 
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The best result for TNR has an outstanding accuracy around 81% in the normal 

instances and 29% for abnormal detection accuracy with 4 in random states and 1 iteration. 

The result for ten iterations with 4 random state gave 71% for TNR and 40% for abnormal 

accuracy. The highest result in the abnormal accuracy was 65% with 23% for the normal 

accuracy with 14 random state. Table 4.44 summarizes all K-means results. Finally, for 

more results such as F1 score and RMSE in this part refer Appendix EE. 

Table 4.44: K-means Results for Dataset 7 

Tuning Parameters Evaluations 

Max Iter Random 

State 

Accuracy TPR TNR 

1 0 0.382466089 0.496174057 0.371713279 

10 0 0.335823689 0.547524661 0.315804157 

1 42 0.420418794 0.443440583 0.418241735 

10 42 0.311076774 0.584401217 0.285229809 

1 1 0.484719357 0.385636582 0.494089134 

10 1 0.65041298 0.469622937 0.667509416 

1 2 0.539016017 0.357979165 0.556135793 

10 2 0.326106522 0.564580068 0.303555238 

1 3 0.396165702 0.478104545 0.388417143 

10 3 0.332223559 0.554807781 0.31117485 

1 4 0.766270281 0.294551489 0.810878435 

10 4 0.697732396 0.40278418 0.725624215 

1 5 0.341423007 0.571402231 0.31967499 

10 5 0.330965106 0.556467226 0.309640466 

1 13 0.312040525 0.601456624 0.284671851 

10 13 0.33175363 0.554992164 0.310643046 

1 14 0.274294908 0.658615285 0.237951597 

10 14 0.309619199 0.586798193 0.283407728 

1 90 0.378324346 0.518207799 0.365096248 

10 90 0.322761268 0.56670047 0.299693123 

1 91 0.438172535 0.42666175 0.439261055 

10 91 0.33792642 0.546326173 0.318219068 

1 200 0.56252041 0.55277957 0.563441554 

10 200 0.662933788 0.453120679 0.682774794 

1 250 0.337647649 0.54807781 0.317748291 

10 250 0.334541342 0.550843551 0.314086693 

The results in this model showed better detections than K-means results in term of 

higher accuracy. It has higher accuracy for both normal and abnormal detection but not 

together. The highest result for normal detection of 96% has a “spherical” covariance type 
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with close to 0% in the abnormal accuracy. The highest result for abnormal detection of 

95% has a “spherical” covariance type with close to 0% in the normal accuracy. There were 

“tied” results with less accuracy in the normal accuracy with 30% for abnormal accuracy. 

The other results were varied with “diag”, “tied” and “full” covariance type and some of 

them gave a satisfactory accuracy level for both, as shown in Table 4.45. Finally, for more 

results such as F1 score and RMSE in this part refer to Appendix FF. 

Table 4.45: HMM Results for Dataset 7 

Tuning Parameters Evaluations 

Covariance 

type  

N 

iter 

algorithm Tol Accuracy TPR TNR 

Spherical 5k viterbi 0.1 0.107494166 0.956301281 0.027226601 

Diag 5k viterbi 0.1 0.147207111 0.881810639 0.077739224 

Spherical 
 

viterbi 
 

0.887145463 0.060569743 0.965310713 

Diag 
 

viterbi 
 

0.852792889 0.118189361 0.922260776 

Tied 
 

viterbi 
 

0.769448272 0.258504656 0.817765727 

Spherical 5k map 0.1 0.107494166 0.956301281 0.027226601 

Diag 5k map 0.1 0.852792889 0.118189361 0.922260776 

Tied 5k map 0.1 0.743403079 0.308380197 0.78454108 

Spherical 
 

map 
 

0.112464258 0.94025998 0.034183638 

Diag 
 

map 
 

0.852792889 0.118189361 0.922260776 

Tied 
 

map 
 

0.778719405 0.231953536 0.830424397 

Spherical 5k viterbi 
 

0.107494166 0.956301281 0.027226601 

Spherical 5 viterbi 0.1 0.834163009 0.174702683 0.896524969 

 

The auto-encoder results were tuned using the following parameters: number of 

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1, 

hidden dimension for layer 2, activation function, learning rate, and threshold. The best 

results were obtained by varying the threshold values, as shown in Table 4.46. Most of the 

results gave the highest normal detection accuracies of 99%. But the abnormal detection 

accuracy was very low. Only one result has 63% abnormal accuracy and 45% for normal 

detection. Overall, Auto-Encoder did not detect well in this dataset. Finally, for more 

results such as F1 score and RMSE in this part refer to Appendix GG. 
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Table 4.46: Auto-Encoder Model Results for Dataset 7 

Tuning Parameters Evaluations 

Encoding 

_dim 

Hidden 

_dim1 

Hidden 

_dim2 

activation threshold TPR TNR 

18 10 6 tanh 4 0.012353646 0.992380388 

18 10 6 tanh 4 0.01594911 0.99013112 

32 16 8 tanh 4 0.014105283 0.991386525 

10 5 2 tanh 4 0.019636766 0.987332613 

5 2 1 tanh 4 0.02055868 0.986417213 

5 3 1 tanh 4 0.020927445 0.986966453 

50 20 10 tanh 4 0.010325436 0.993539894 

5 2 1 sigmoid 4 0.011339541 0.99319117 

5 2 1 hard_ 

sigmoid 

4 0.020835254 0.98647824 

5 2 1 exponential 4 0.02120402 0.986356186 

5 2 1 linear 4 0.021572785 0.986146952 

5 2 1 tanh 3 0.024154144 0.984760776 

5 2 1 tanh 2 0.024154144 0.984760776 

5 2 1 tanh 1 0.019728957 0.986652601 

5 2 1 tanh 5 0.031068498 0.978483749 

5 2 1 linear 4 0.078915829 0.954430534 

5 2 1 tanh 4 0.631787591 0.451196122 

5 2 1 tanh 4 0.012538029 0.993208607 

5 2 1 tanh 4 0.019728957 0.986696192 

 

The results of the rest of the models were shown in Table 4.47. Auto-Encoder with 

K-means model gave more suitable accuracy than Auto-encoder but the results of K-means 

was better. Auto-Encoder with HMM model did not give better accuracy level than auto-

encoder or HMM. The combination model between the three model (K-means, HMM, and 

Auto-Encoder) gave approximately the same results compare with the previous two 

models. Comparing these results with HMM, Auto-Encoder, and K-means results did not 

give better results than the previous model. Finally, the Gaussian Distribution model gave 

an outstanding TPR which shows that the Gaussian distribution model has a high ability to 

classify the normal instances in this dataset.  
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Table 4.47: Results of Four Models for Dataset 7 

Evaluations 

K-means with Auto-encoder Model Results 

Accura

cy 

Precision  Recall F1-score RMSE TPR TNR 

0.41743

196 

0.51469906

7 

0.5440240

38 

0.361078

294 

0.76326144

9 

0.697059

095 

0.39098

898 

0.41742

3995 

0.51468356

1 

0.5439779

42 

0.361066

243 

0.76326666

7 

0.696966

903 

0.39098

898 

0.58245

6532 

0.48529634 0.4559566

73 

0.419271

086 

0.64617603

5 

0.303033

097 

0.60888

0248 

0.58450

3509 

0.48530037

6 

0.4560752

68 

0.420035

829 

0.64459017

3 

0.300820

503 

0.61133

0032 

0.41540

8878 

0.51469908 0.5439185

19 

0.359858

519 

0.76458558

9 

0.699271

688 

0.38856

5351 

HMM with Auto-encoder Model Results 

Accuracy Precisio

n  

Recall F1-score RMSE TPR TNR 

0.7499502

19 

0.494001

307 

0.4881483

24 

0.480344

563 

0.500049

778 

0.17166

0367 

0.80463628

1 

0.7509936

2 

0.494158

862 

0.4885106

76 

0.480765

832 

0.499005

391 

0.17119

941 

0.80582194

2 

0.7565770

09 

0.494378

249 

0.4892291

15 

0.482276

829 

0.493379

156 

0.16603

6692 

0.81242153

7 

0.2529728

95 

0.508293

275 

0.5164982

21 

0.244043

885 

0.864307

298 

0.83506

9604 

0.19792683

8 

0.2461390

19 

0.507914

54 

0.5152623

59 

0.238386

519 

0.868251

681 

0.84060

1088 

0.18992363 

K-means, HMM, and Auto-encoder Model Results 

Accura

cy 

Precision  Recall F1-score RMSE TPR TNR 

0.35810

9454 

0.5169909

61 

0.54611

5809 

0.32404

9093 
0.8012 0.7734 0.3188 

Gaussian Distribution Model Results 

Accura

cy 

Precision  Recall F1-score RMSE TPR TNR 

0.8944 0.5175 0.5055 0.4994 
0.32503

2785 

0.035401494 0.97558062

5 

In conclusion of experiment seven, the best results for each model was represented 

in Figure 4.27. The Gaussian distribution model got the highest TNR of 97% with very low 

TPR. But the most balanced accuracy for both TPR and TNR was using K-means with 
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Auto-encoder model. So, K-means with Auto-encoder model was considered as the best 

result in this experiment.  

 

Figure 4.27: The Best Results in Experiment 7 

4.4.8 Experiment 8 – Santander Customer Transaction Dataset 

Experiment eight was implemented on a Santander Customer Transaction dataset. 

There are 200000 observations and each observation is described with 202 features. Table 

4.48 describes some of the dataset characteristics which are provided by Santander Bank. 

An anonymized dataset containing numeric feature variables, the binary target column, and 

a string “ID_code” column is provided. The task is to predict the value of target column. 

Table 4.48: Dataset 9 Description 

Dataset name Santander Customer Transaction dataset 

Dataset features number 202 

Dataset observation number 200K 

Dataset Date ------ 

Dataset place Spain 

Normal - Anomalous percentage 89.95 - 10.05% 

To visualize the dataset, the histogram function in Python was applied on the 

dataset, four features was shown in Figure 4.28 as sample: 
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Figure 4.28: Features Histogram for Dataset 8 

The Dataset is ready. Only one of the columns (ID_code) was described by letters. 

The letters are changed into suitable numbers. There are no NAN values and all other 

features are numbers. Finally, Feature importance was applied for applying PCA 

dimensional reduction. The features were sorted in term of importance to the target using 

extra tree classifiers, twenty features are shown in Figure 4.29 as sample. Additionally, a 

comparison was provided between data features in Appendix K. 
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Figure 4.29: Feature Importance for Dataset 8 

Default proposed models were applied between four assumptions for comparison 

between normalization and dimensional reduction. Table 4.49 shows the results with the 

four assumptions for Dataset 8. In the K-means model, the best result for TNR and TPR 

was achieved by applying the first and the third assumptions among the four assumptions. 

So, the first assumption was chosen as the best assumption to be applied for tuning 

parameters. 
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In the HMM model, Table 4.49 shows that the second assumption got the highest 

values in TNR and TPR among all assumptions of 51% and 54% respectively. So, the 

second assumption was chosen to be applied for tuning parameters. 

In the Auto-Encoder model, all of the assumptions got the highest TPR except the 

second assumption which got the highest TNR. So, the fourth assumption was chosen to 

be applied for tuning parameters because it applies two preprocessing methods and there 

was no comparison in the results. In the Gaussian Distribution model, the fourth 

assumption was chosen to be applied for tuning parameters because it was applying two 

preprocessing methods and all the results are same. Finally, for more results such as F1 

score and RMSE in this part refer to Appendix A, Appendix B, Appendix C, Appendix D. 

Table 4.49: Results for Dataset 8 based on Four Assumptions 

Models Accuracy TPR TNR 

Assumption 1: without normalization or dimensional reduction 

K-means 0.505159791 0.509702458 0.503891051 

HMM 0.494709857 0.490596079 0.49585881 

Auto-encoder 0.218318886 1 0 

Gaussian 0.218318886 1 0 

Assumption 2: with normalization only 

K-means 0.499923961 0.487610708 0.503362979 

HMM 0.514545178 0.545924968 0.505780989 

Auto-encoder 0.781681114 0 1 

Gaussian 0.218318886 1 0 

Assumption 3: with dimensional reduction only 

K-means 0.505203241 0.509702458 0.503946637 

HMM 0.49460123 0.490596079 0.495719844 

Auto-encoder 0.218318886 1 0 

Gaussian 0.218318886 1 0 

Assumption 4: with both normalization and dimensional reduction 

K-means 0.490951357 0.471589213 0.496359088 

HMM 0.505377045 0.509005871 0.504363535 

Auto-encoder 0.218318886 1 0 

Gaussian 0.218318886 1 0 

The best result for normal detection accuracy was 60% with low abnormal detection 

accuracy in 1 random state with one iteration. However, ten iterations in 1 random state 

gives the highest abnormal detection accuracy of 64% with acceptable normal accuracy 
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around 50%. Overall, the K-means model result has a moderate accuracy in this dataset. 

Table 4.50 summarized all K-means results. Finally, for more results such as F1 score and 

RMSE in this part refer to Appendix HH. 

Table 4.50: K-means Results for Dataset 8 

Tuning Parameters Evaluations 

Max Iter Random 

State 

Accuracy TPR TNR 

1 0 0.515196941 0.481938501 0.524485825 

10 0 0.498229377 0.50771221 0.495580878 

1 42 0.479632406 0.433674993 0.492468038 

10 42 0.500814704 0.533883969 0.491578655 

1 1 0.552955745 0.350781172 0.609421901 

10 1 0.526993852 0.649616877 0.49274597 

1 2 0.500271568 0.458354065 0.511978877 

10 2 0.491516218 0.45815504 0.500833797 

1 3 0.484303374 0.484923873 0.484130072 

10 3 0.47661257 0.374763658 0.505058366 

1 4 0.50087988 0.421235944 0.523123958 

10 4 0.502922071 0.517165887 0.498943858 

1 5 0.478111625 0.588018708 0.447415231 

10 5 0.505007713 0.54144691 0.494830461 

1 13 0.459927437 0.597571898 0.421484158 

10 13 0.518412305 0.562444024 0.506114508 

1 14 0.447913272 0.556473281 0.417593107 

10 14 0.502031328 0.526321027 0.49524736 

1 90 0.518325404 0.457259429 0.535380767 

10 90 0.503704186 0.512488805 0.501250695 

1 91 0.420843381 0.510299532 0.39585881 

10 91 0.481761498 0.437456463 0.494135631 

1 200 0.544548002 0.522041994 0.550833797 

10 200 0.484064394 0.450890636 0.493329628 

1 250 0.533620109 0.405512986 0.569399666 

10 250 0.490538574 0.451189173 0.501528627 

The results in this model showed better detections than K-means results in term of 

accuracy. It has higher accuracy for both normal and abnormal detection. The highest result 

for normal detection accuracy of 93% has a “diag” covariance type with very low abnormal 

accuracy. The highest result for both abnormal detection accuracy of 71% has a “full” 

covariance type with good abnormal accuracy of 50%. The other results were varied with 

“spherical” and “tied” covariance type and some of them gave a satisfactory accuracy level 
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for both, as shown in Table 4.51. Finally, for more results such as F1 score and RMSE in 

this part refer to Appendix II. 

Table 4.51: HMM Results for Dataset 8 

The auto-encoder results were tuned using the following parameters: number of 

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1, 

hidden dimension for layer 2, activation function, learning rate, and threshold. The best 

results were obtained by varying the threshold values, as shown in Table 4.52. The highest 

normal and abnormal detection accuracies of 55 and 63% were obtained with one threshold 

value. Most of the other results have 0% abnormal accuracy and 100% normal detection. 

Finally, for more results such as F1 score and RMSE in this part refer to Appendix JJ. 

  

Tuning Parameters Evaluations 

Covariance 

type  

N 

iter 

algorithm Tol Accuracy TPR TNR 

Spherical 5k viterbi 0.1 0.507679941 0.451786247 0.523290717 

Diag 5k viterbi 0.1 0.751895544 0.114339735 0.929961089 

Tied 5k viterbi 0.1 0.531708271 0.623743656 0.506003335 

Full 5k map 0.1 0.525103739 0.634291969 0.494608116 

Spherical 
 

viterbi 
 

0.495491972 0.451587223 0.507754308 

Diag 
 

viterbi 
 

0.499076669 0.484724848 0.503085047 

Tied 
 

viterbi 
 

0.494840209 0.485819485 0.497359644 

Full 5k viterbi 0.1 0.475548024 0.382625137 0.501500834 

Spherical 5k map 0.1 0.489191597 0.482237039 0.491133963 

Diag 5k map 0.1 0.430902257 0.208080406 0.493135075 

Tied 5k map 0.1 0.51387169 0.518360036 0.512618121 

Full 5k map 0.1 0.492233157 0.493879988 0.491773207 

Spherical 
 

map 
 

0.499141845 0.490297542 0.501612007 

Diag 
 

map 
 

0.469986313 0.352273858 0.502862702 

Tied 
 

map 
 

0.490821004 0.465717982 0.497832129 

Full  map  0.550131439 0.712011145 0.5049194 

Spherical 5k viterbi 
 

0.495491972 0.451587223 0.507754308 

Spherical 5 viterbi 0.1 0.49588303 0.491989253 0.496970539 
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Table 4.52: Auto-Encoder Model Results for Dataset 8 

Tuning Parameters Evaluations 

Encoding 

_dim 

Hidden 

_dim1 

Hidden 

_dim2 

activation threshold TPR TNR 

18 10 6 tanh 4 0 1 

18 10 6 tanh 4 0 1 

32 16 8 tanh 4 0 1 

10 5 2 tanh 4 0 1 

5 2 1 tanh 4 0 1 

5 3 1 tanh 4 0 1 

50 20 10 tanh 4 0 1 

5 2 1 sigmoid 4 0 1 

5 2 1 hard_ 

sigmoid 

4 0 1 

5 2 1 exponential 4 0 1 

5 2 1 linear 4 0 1 

5 2 1 tanh 3 0 1 

5 2 1 tanh 2 0 1 

5 2 1 tanh 4 0 1 

5 2 1 tanh 5 0 1 

5 2 1 linear 4 9.95E-05 1 

5 2 1 tanh 1 0.62971439

9 

0.55603112

8 

5 2 1 tanh 4 0 1 

5 2 1 tanh 4 0 1 

 

The results of the rest of the models were shown in Table 5.1. Auto-Encoder with 

K-means model gave more accuracy than the K-means and Auto-Encoder. Auto-Encoder 

with HMM model gave more accuracy level than auto-encoder and HMM. The 

combination model between the three model (K-means, HMM, and Auto-Encoder) gave 

approximately the same results compared with the previous two models. Comparing these 

results with HMM, Auto-Encoder, and K-means results did not have better results than the 

previous model. Finally, the Gaussian Distribution model gave an outstanding TPR which 

shows that the Gaussian distribution model has a high ability to classify the abnormal 

instances in this dataset. 
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Table 4.53: Results of Four Models for Dataset 8 

Evaluations 

K-means with Auto-encoder Model Results 

Accura

cy 

Precision  Recall F1-score RMSE TPR TNR 

0.57886

1612 

0.586002557 0.625910

6 

0.545982

268 

0.64895176

1 

0.7094238

23 

0.54239

7376 

0.58898

5444 

0.587092314 0.627581

004 

0.552634

617 

0.64110416

9 

0.6960891

63 

0.55907

2844 

0.58112

1008 

0.586352127 0.626459

308 

0.547534

249 

0.64720861

5 

0.7069360

14 

0.54598

2602 

0.58176

3671 

0.585912907 0.625829

969 

0.547721

944 

0.64671193

7 

0.7040501

54 

0.54760

9783 

0.58934

5847 

0.586107776 0.626125

718 

0.552358

554 

0.64082302

8 

0.6914120

81 

0.56083

9355 

HMM with Auto-encoder Model Results 

Accuracy Precision  Recall F1-score RMSE TPR TNR 

0.34147295

2 

0.376349

681 

0.321984

431 

0.309248

355 

0.81149

6795 

0.287391

78 

0.35657708

2 

0.63167499

5 

0.621152

625 

0.677227

844 

0.595067

235 

0.60689

7854 

0.758085

382 

0.59637030

7 

0.62763415

2 

0.620444

28 

0.676328

565 

0.592247

983 

0.61021

787 

0.762762

464 

0.58989466

7 

0.33902539

7 

0.373952

612 

0.318554

371 

0.306740

951 

0.81300

3446 

0.282217

136 

0.35489160

6 

0.63036346

7 

0.623301

1 

0.680512

291 

0.595297

369 

0.60797

7412 

0.769529

306 

0.59149527

5 

K-means, HMM, and Auto-encoder Model Results 

Accura

cy 

Precisio

n  

Recall F1-score RMSE TPR TNR 

0.51337

2005 

0.517555

587 

0.525712

175 

0.473790

768 
0.6976 0.5476 0.5038 

Gaussian Distribution Model Results 

Accura

cy 

Precision  Reca

ll 

F1-score RMSE TPR TNR 

0.2183 0.1092 0.5 0.1792 0.884127318 1 0 

In conclusion of experiment eight, the best results for each model was represented 

in Figure 4.30. The Gaussian distribution model got the highest TPR with unacceptable 

TNR. But the highest TNR and acceptable TPR was with HMM with Auto-encoder model. 

So, HMM with Auto-encoder model was considered as the best result in this experiment.  
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Figure 4.30: The Best Results in Experiment 8 

4.4.9 Experiment 9 - Prudential Life Insurance Assessment Dataset 

Experiment nine was implemented on a Prudential Life Insurance Assessment 

dataset. There are 59381 observations, each of which is described by 128 features. Table 

4.55 describes some of the dataset characteristics which are provided by Prudential, one of 

the largest issuers of life insurance in the USA. In a one-click shopping world with 

everything on-demand, the old method of life insurance applications is antiquated. 

Customers provide extensive information to identify risk classification and eligibility, 

including scheduling medical exams, a process that takes an average of 30 days. The result 

is that people are turned off. That’s why only 40% of U.S. households own individual life 

insurance. Prudential wants to make it quicker and less labor intensive for new and existing 

customers to get a quote while maintaining privacy boundaries. By developing a predictive 

model that accurately classifies risk using a more automated approach, you can greatly 

impact public perception of the industry. The results will help Prudential better understand 

the predictive power of the data points in the existing assessment, enabling us to 

significantly streamline the process. This dataset provided over a hundred variables 

describing attributes of life insurance applicants. The task is to predict the "Response" 
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variable for each ID in the test set. "Response" is an ordinal measure of risk that has 8 

levels. Table 4.54 shows a features discretion in dataset 9. 

Table 4.54: Data Features Description for Dataset 9 

Variable Description 

ID A unique identifier associated with an application. 

Product_Info_1-7 A set of normalized variables relating to the product 

applied for 

Ins_Age Normalized age of applicant 

Ht Normalized height of applicant 

Wt Normalized weight of applicant 

BMI Normalized BMI of applicant 

Employment_Info_1-6 A set of normalized variables relating to the employment 

history of the applicant. 

InsuredInfo_1-6 A set of normalized variables providing information about 

the applicant. 

Insurance_History_1-9 A set of normalized variables relating to the insurance 

history of the applicant. 

Family_Hist_1-5 A set of normalized variables relating to the family 

history of the applicant. 

Medical_History_1-41 A set of normalized variables relating to the medical 

history of the applicant. 

Medical_Keyword_1-48 A set of dummy variables relating to the presence 

of/absence of a medical keyword being associated with 

the application. 

Response This is the target variable, an ordinal variable relating to 

the final decision associated with an application 

The following variables are all categorical (nominal): Product_Info_1, 

Product_Info_2, Product_Info_3, Product_Info_5, Product_Info_6, Product_Info_7, 

Employment_Info_2, Employment_Info_3, Employment_Info_5, InsuredInfo_1, 
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InsuredInfo_2, InsuredInfo_3, InsuredInfo_4, InsuredInfo_5, InsuredInfo_6, 

InsuredInfo_7, Insurance_History_1, Insurance_History_2, Insurance_History_3, 

Insurance_History_4, Insurance_History_7, Insurance_History_8, Insurance_History_9, 

Family_Hist_1, Medical_History_2, Medical_History_3, Medical_History_4, 

Medical_History_5, Medical_History_6, Medical_History_7, Medical_History_8, 

Medical_History_9, Medical_History_11, Medical_History_12, Medical_History_13, 

Medical_History_14, Medical_History_16, Medical_History_17, Medical_History_18, 

Medical_History_19, Medical_History_20, Medical_History_21, Medical_History_22, 

Medical_History_23, Medical_History_25, Medical_History_26, Medical_History_27, 

Medical_History_28, Medical_History_29, Medical_History_30, Medical_History_31, 

Medical_History_33, Medical_History_34, Medical_History_35, Medical_History_36, 

Medical_History_37, Medical_History_38, Medical_History_39, Medical_History_40, 

Medical_History_41 

The following variables are continuous: Product_Info_4, Ins_Age, Ht, Wt, BMI, 

Employment_Info_1, Employment_Info_4, Employment_Info_6, Insurance_History_5, 

Family_Hist_2, Family_Hist_3, Family_Hist_4, Family_Hist_5 

The following variables are discrete: Medical_History_1, Medical_History_10, 

Medical_History_15, Medical_History_24, Medical_History_32 Medical_Keyword_1-48 

are dummy variables. 

Table 4.55: Dataset 9 Description 

Dataset name Prudential Life Insurance Assessment dataset 

Dataset features number 128 

Dataset observation number 59381 

Dataset Date ------ 

Dataset place USA 

Normal - Anomalous percentage 74.4 - 25.6% 

To visualize the dataset, the histogram function in Python was applied on the 

dataset, four features are shown in Figure 4.31 as sample: 
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Figure 4.31: Features Histogram for Dataset 9 

Some of the features have letter or word representations such as Product_Info_2. 

These features were replaced with a proper numeric feature. Other features have NAN 

values. These values were filled with the median values. “Response” was changed with 

two risk levels to present a binary classification. All other features are numbers and full 

with values. Finally, Feature importance was applied for applying PCA dimensional 

reduction. The features were sorted in term of importance to the target using extra tree 
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classifiers, twenty features are shown in Figure 4.32 as sample. Additionally, a comparison 

was provided between data features in Appendix L. 

 

Figure 4.32: Feature Importance for Dataset 9 

Default proposed models were applied between four assumptions for comparison 

between normalization and dimensional reduction. Table 4.56 shows the results with the 

four assumptions for Dataset 9. In the K-means model, the best result for TNR of 58% was 

by applying the second assumption among the four assumptions. However, the TPR for the 

second assumption was 43%. The highest TPR of 56% was with assumption four and a 

TNR of 41%. The first and third assumptions have balanced accuracies of 50% for both 

TNR and TPR. So, the third assumption was chosen as the best assumption to be applied 

for tuning parameters. 
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In the HMM model, Table 4.56 shows that the third assumption got the highest 

value in TPR of 71% among all assumptions of 54% TNR. Assumption four got the highest 

TNR of 58% and 64% TPR. So, the fourth assumption was chosen to be applied for tuning 

parameters. 

In the Auto-Encoder model, the more suitable result for TPR and TNR was by 

applying the fourth assumption of 0.1% and 98% respectively. All other results have a 0% 

in either TNR or TPR. So, the fourth assumption was applied for tuning parameters because 

it has the highest TNR and TPR values. In the Gaussian Distribution model, the fourth 

assumption was chosen because it has the highest TPR and TNR results among all 

assumptions of 100% and 78% respectively. Finally, for more results such as F1 score and 

RMSE in this part refer to Appendix A, Appendix B, Appendix C, Appendix D. 

Table 4.56: Results for Dataset 9 based on Four Assumptions 

Models Accuracy TPR TNR 

Assumption 1: without normalization or dimensional reduction 

K-means 0.503711365 0.504078947 0.503395201 

HMM 0.382453152 0.533157895 0.252829335 

Auto-encoder 0.462399611 1 0 

Gaussian 0.462399611 1 0 

Assumption 2: with normalization only 

K-means 0.516853249 0.436052632 0.58635129 

HMM 0.483572645 0.570921053 0.408442734 

Auto-encoder 0.546665855 0.029078947 0.991851517 

Gaussian 0.62204916 0.778947368 0.487098234 

Assumption 3: with Dimensional Reduction only 

K-means 0.503711365 0.504078947 0.503395201 

HMM 0.626733999 0.718026316 0.548211861 

Auto-encoder 0.462338769 0.999868421 0 

Gaussian 0.462399611 1 0 

Assumption 4: with Both normalization and Dimensional Reduction 

K-means 0.483146751 0.563947368 0.41364871 

HMM 0.607690436 0.640394737 0.579560887 

Auto-encoder 0.556400584 0.061052632 0.982458126 

Gaussian 0.886164517 1 0.788252603 

The best result for TPR has outstanding accuracy around 97% in 14 random states 

with very low TNR. The highest TNR was 64% with an acceptable TPR of 53% in 90 
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random states. The other results have less accuracy. Table 4.57 summarized all K-means 

results. Finally, for more results such as F1 score and RMSE in this part refer to Appendix 

KK. 

Table 4.57: K-means Results for Dataset 9 

Tuning Parameters Evaluations 

Max Iter Random 

State 

Accuracy TPR TNR 

1 0 0.415551229 0.563157895 0.288592123 

10 0 0.516853249 0.436052632 0.58635129 

1 42 0.508335361 0.442368421 0.565074694 

10 42 0.516853249 0.436052632 0.58635129 

1 1 0.489596009 0.471447368 0.505205976 

10 1 0.483146751 0.563947368 0.41364871 

1 2 0.5183743 0.716052632 0.348347669 

10 2 0.483146751 0.563947368 0.41364871 

1 3 0.462703821 0.911578947 0.076618379 

10 3 0.511742516 0.574605263 0.457673155 

1 4 0.501825262 0.724736842 0.310095066 

10 4 0.483146751 0.563947368 0.41364871 

1 5 0.521720613 0.511842105 0.530217293 

10 5 0.483146751 0.563947368 0.41364871 

1 13 0.484424434 0.390657895 0.565074694 

10 13 0.516853249 0.436052632 0.58635129 

1 14 0.459905086 0.965526316 0.025011317 

10 14 0.483876856 0.566315789 0.41296967 

1 90 0.592966659 0.533289474 0.644296062 

10 90 0.483146751 0.563947368 0.41364871 

1 91 0.489717693 0.497105263 0.483363513 

10 91 0.516853249 0.436052632 0.58635129 

1 200 0.537722073 0.513947368 0.558171118 

10 200 0.483146751 0.563947368 0.41364871 

1 250 0.566439523 0.569473684 0.563829787 

10 250 0.516853249 0.436052632 0.58635129 

The results in this model showed better detections than K-means results in terms of 

accuracy. It has higher accuracy for both normal and abnormal detection. The highest result 

for both normal and abnormal detection of 74 and 99% respectively has a “full” covariance 

type. There were some results with less accuracy such as ‘spherical’ with ‘viterbi’ in 

covariance type and algorithm respectively. The other results were varied with “tied” and 

“diag” covariance type and some of them gave a satisfactory accuracy level for both, as 
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shown in Table 4.58. Finally, for more results such as F1 score and RMSE in this part refer 

to Appendix LL. 

Table 4.58: HMM Results for Dataset 9 

The auto-encoder results wee tuned using the following parameters: number of 

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1, 

hidden dimension for layer 2, activation function, learning rate, and threshold. The best 

results were obtained by varying the threshold values, as shown in Table 4.59. Most of the 

results gave the highest normal detection accuracy of 99 or 98% with close to 0% abnormal 

detection accuracy. Only two results have more abnormal accuracy of 30 and 60% with 87 

and 65% normal detection. These results have two and one threshold values respectively. 

Finally, for more results such as F1 score and RMSE in this part refer to Appendix MM. 

  

Tuning Parameters Evaluations 

Covariance 

type  

N  

iter 

algorithm Tol Accuracy TPR TNR 

Spherical 5k viterbi 0.1 0.626673156 0.697894737 0.565414215 

Diag 5k viterbi 0.1 0.392309564 0.359605263 0.420439113 

Tied 5k viterbi 0.1 0.518191774 0.440131579 0.58533273 

Full 5k viterbi 0.1 0.859272329 0.999868421 0.738343142 

Spherical 
 

viterbi 
 

0.626733999 0.698157895 0.565301041 

Diag 
 

viterbi 
 

0.607690436 0.640394737 0.579560887 

Tied 
 

viterbi 
 

0.481808226 0.559868421 0.41466727 

Full 5k viterbi 0.1 0.859272329 0.999868421 0.738343142 

Spherical 5k map 0.1 0.373326844 0.302105263 0.434585785 

Diag 5k map 0.1 0.392309564 0.359605263 0.420439113 

Tied 5k map 0.1 0.481808226 0.559868421 0.41466727 

Full 5k map 0.1 0.859272329 0.999868421 0.738343142 

Spherical 
 

map 
 

0.373266001 0.301842105 0.434698959 

Diag 
 

map 
 

0.607690436 0.640394737 0.579560887 

Tied 
 

map 
 

0.481808226 0.559868421 0.41466727 

Full  map  0.859272329 0.999868421 0.738343142 

Spherical 5k viterbi 
 

0.626673156 0.697894737 0.565414215 

Spherical 5 viterbi 0.1 0.373144317 0.298421053 0.43741512 
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Table 4.59: Auto-Encoder Model Results for Dataset 9 

Tuning Parameters Evaluations 

Encoding 

_dim 

Hidden 

_dim1 

Hidden 

_dim2 

activation thresho

ld 

TPR TNR 

18 10 6 tanh 4 0.0513157

89 

0.9844952

47 

18 10 6 tanh 4 0.0486842

11 

0.9857401

54 

32 16 8 tanh 4 0.0490789

47 

0.9855138

07 

10 5 2 tanh 4 0.0560526

32 

0.9837030

33 

5 2 1 tanh 4 0.06 0.9822317

79 

5 3 1 tanh 4 0.0586842

11 

0.9830239

93 

50 20 10 tanh 4 0.0407894

74 

0.9889090

09 

5 2 1 sigmoid 4 0.0389473

68 

0.9906066

09 

5 2 1 hard_ 

sigmoid 

4 0.0575 0.9824581

26 

5 2 1 exponential 4 0.0588157

89 

0.9822317

79 

5 2 1 linear 4 0.0598684

21 

0.9809868

72 

5 2 1 tanh 3 0.06 0.9812132

19 

5 2 1 tanh 4 0.06 0.9812132

19 

5 2 1 tanh 4 0.0555263

16 

0.9830239

93 

5 2 1 tanh 5 0.1313157

89 

0.9519013

13 

5 2 1 linear 2 0.2971052

63 

0.8696242

64 

5 2 1 tanh 1 0.5972368

42 

0.6541421

46 

5 2 1 tanh 4 0.0255263

16 

0.9918515

17 

5 2 1 tanh 4 0.0560526

32 

0.9826844

73 

The results of the rest of the models re shown in Table 4.60. Auto-Encoder with K-

means model did not give more accuracy than the K-means or Auto-Encoder. Auto-
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Encoder with HMM model did not give more accuracy level because the results of the two 

models separately were very high. The combination model between the three model (K-

means, HMM, and Auto-Encoder) gave better results compared with auto-encoder and K-

means models. Comparing these results with HMM results did not have better results. 

Finally, the Gaussian Distribution model gave an outstanding TNR and TPR of 79% and 

100% respectively which shows that the Gaussian distribution model has high ability to 

classify the normal and abnormal instances in this dataset. 

Table 4.60: Results of Four Models for Dataset 9 

Evaluations 

K-means with Auto-encoder Model Results 

Accuracy Precision  Recall F1-score RMSE TPR TNR 

0.525582

527 

0.52117368 0.5209555

81 

0.52072

3639 

0.688779

698 

0.459473

684 

0.582437

479 

0.474417

473 

0.47882632 0.4790444

19 

0.47407

7355 

0.724970

708 

0.540526

316 

0.417562

521 

0.465413

397 

0.46883651

1 

0.4689668

37 

0.46533

7373 

0.731154

295 

0.516184

211 

0.421749

462 

0.473168

654 

0.47735 0.4775484

26 

0.47290

5853 

0.725831

486 

0.535789

474 

0.419307

379 

0.481990

752 

0.48725897

4 

0.4874652

14 

0.48131

3289 

0.719728

593 

0.560263

158 

0.414667

27 

HMM with Auto-encoder Model Results 

Accuracy Precision  Recall F1-score RMSE TPR TNR 

0.537628

521 

0.26881426

1 

0.5 0.34964

7859 

0.679979

028 

0 1 

0.380787

248 

0.38218108 0.3817267

41 

0.38062

3818 

0.786900

725 

0.394210

526 

0.369242

956 

0.380787

248 

0.38240154

1 

0.3820398

53 

0.38069

6474 

0.786900

725 

0.398684

211 

0.365395

496 

0.462399

611 

0.23119980

5 

0.5 0.31619

2378 

0.733212

377 

1 0 

0.379654

417 

0.38083287

9 

0.3803043

77 

0.37940

7266 

0.787620

202 

0.388947

368 

0.371661

385 

K-means, HMM, and Auto-encoder Model Results 

Accuracy Precision  Recall F1-score RMSE TPR TNR 

0.623387

686 

0.622735

817 

0.6132025

39 

0.6105509

06 
0.6137 0.4778 0.7486 

Gaussian Distribution Model Results 

Accuracy Precision  Recall F1-score RMSE TPR TNR 

0.8862 0.9012 0.8941 0.886 
0.337395

144 

1 0.788252

603 
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In conclusion of experiment nine, the best results for each model was represented 

in Figure 4.33. The Gaussian distribution model got the highest TPR with acceptable TNR. 

But the highest TNR and unacceptable TPR was with HMM with Auto-encoder model. So, 

the Gaussian distribution model was considered as the best result in this experiment.  

 

Figure 4.33: The Best Results in Experiment 9 

4.4.10 Results Summary and Experiments Conclusion 

The total number of instances overall the nine experiments was around 2 million 

exactly 1995669 observations. Table 4.61 summarizes the best model for the nine 

experiments. As it is shown in the experiment results, if a model is considered as the best 

model it does not mean the other models have bad results. In other words, most of the 

models, especially the combined models, detect the anomalies. However, some cases have 

poorly detection for specific experiments. The variety of best models gives an indication 

for a variety of applications, dimensions, and data types. Some models are only appropriate 

for some types of problems and can handle a limited data dimension. 
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Table 4.61: Best Model per Experiment 

 

K-

means HMM 

Auto-

encoder 

K-means 

with 

auto-

encoder 

HMM 

with 

auto-

encoder 

Auto-

encoder, 

HMM 

and K-

means 

Gaussian 

Distribution 

Experiment 1      √  

Experiment 2  √      

Experiment 3     √   

Experiment 4   √     

Experiment 5 √       

Experiment 6   √     

Experiment 7    √    

Experiment 8     √   

Experiment 9       √ 

As shown in Figure 4.34, experiment 6 achieved the highest TPR and TNR. Most 

of the results in the experiments have good results. In total, six cases have the highest 

results which are three TPR and three TNR in experiments 2, 3, 4, 6, and 9. The lowest two 

cases of one TNR and one TPR were in experiment 3 and 7 respectively. The other results 

are achieved after the tuning process and the best model is chosen. 

 

Figure 4.34: TNR and TPR for the highest result in every Experiment. 
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Chapter 5  

5 User Authentication 

This chapter will explain the new authentication method of “something you do” as 

a background for this chapter. It also proposes the user profile that will be generated using 

the results from the previous experiment in chapter 4. This chapter will also provide new 

mechanisms of producing the challenging questions based on the generated user profiles. 

Finally, it will explain a strong example for the authentication process through these 

questions. 

5.1 “Something you do”-Based Authentication 

In today’s world, security questions have become more popular in user 

authentication research fields. User authentication is a process of ensuring confidentiality 

of data that is claimed by a user for a system entity [87]. The challenge of the authentication 

process is to distinguish between legal or illegal authentication requests. In other words, 

the usage of a user authentication technique is to ensure that only the permitted user can 

access the data from the identification node [88]. Interestingly, various private and 

sensitive data is usually stored on the user’s account or system. Furthermore, if the account 

is unlocked, it is easy for attackers to steal the user's sensitive information, such as identity, 

photos and credit card information. Most user authentication methods are developed based 

on challenge and response questions to protect the user against any attack [89]. User 

authentication has a variety of methods that can identify the valid users in protected 

resources which can be classified broadly into four groups based on something the user 

“is”, “knows”, “has”, and “does”. “Something the user does” is one of the new user 

authentication process’s that has been researched in recent years. This employs the user’s 

activities such as Knowledge-based authentication (KBA) [34].  

KBA is an authentication system in which the user should answer a set of security 

questions (or at least one) to be authorized. Generally, the security questions have two 

major categories; static and dynamic [35]. The static questions are the most commonly 

used, but it is considered a weak authentication method for three reasons [90]: 

A. Security questions’ context does not apply for the user currently. 
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B. Users usually forget the answer content or formatting when they are selected at 
setup. 

C. The correct answers are very guessable because they are common knowledge or 
researchable because they are found online or by asking. 

One common application for static security questions is “Fallback Authentication” 

that is a backup for authentication techniques in the lost cases. Moreover, fallback 

authentication is usually used when people lose their authentication access due to changes 

or forgetting the authentication requirements such as forgetting a password or username 

[90]. Fallback authentication identifies the user through personal information and allows 

the authenticated user to re-access their resources [36]. However, static questions are a 

vulnerable way to ask in Fallback Authentication because the answers to these questions 

can be easily reachable with a quick Google search. Also, as more personal information is 

available in public records, it is becoming easier for attackers to retrieve this information 

through observational attacks, from social network apps, such as Facebook, Twitter, 

Instagram or even more professional websites like LinkedIn [37]. 

The second type of challenging questions more invulnerability than the first type 

due to the dynamic way of asking the questions. These Dynamic security questions are 

taking the lead in question generation based on user behaviour other ideas [35]. There are 

different ways to create these dynamic questions such as user Internet activities, a story 

creator, and autobiographical authentication [92].  

The stronger way to produce a secure dynamic question achieves a more secure 

system against any fraudulent or abnormal activities through dynamic information. With 

the existence of dynamic information, the system may ask for a different set of questions 

to provide unique security questions [93]. Figure 5.1 summarizes the security questions 

types and some examples. 
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Figure 5.1: Security Questions Types and Examples 

As a result, unique dynamic security questions should be investigated with several 

features: 

A. A set of challenging questions without using highly guessable answers 

B. Abnormal user activities 

C. Using short term history or up-to-date 

D. unrepeated questions  

This new way of asking the dynamic security questions can be generated based on 

studying the abnormal activities of the user behaviour utilizing anomaly detection. 

5.2 User Profile 

The primary user profile’s purpose is to use it as a Database for generating dynamic 

security questions. The proposed user profiles will be created based on anomaly detection 

results in chapter 4. When the data has been flagged as an anomaly, the data information 
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will be collected from the features such as location, time, amount, and so on and then will 

be used for user profile generation [94]. The user profile specification contains several 

features as shown in Table 5.1; the prime user identification, action description (credit card 

transaction for example), timestamp, expected user behaviour, briefly explains the 

anomalous user behaviour. Table 5.1 also shows the data type corresponding to the feature 

name. 

Table 5.1: User Profile Specification Features 

Feature 

name 

User Identification Time Action Observation Expected 

Behaviour  

Data 

Type 

Numbers and 

characters 

Numbers String String String 

The user identification could be the account number, user ID number, or any unique 

number that can identify the user from the data. The action description is a general feature 

type such as a credit card transaction, cash payment, or online purchase. The timestamp is 

a significant feature because it specifies the action time. It could be in many formats like 

minutes, seconds, or days depending on the data description. An example of the expected 

user behaviour could be any normal or regular activities regarding the user history such as 

a car with gas on a weekly basis, daily supermarket purchases with a small amount range, 

or a morning coffee purchase. Lastly, the anomalous user behaviour should be something 

that deviates from the expected behaviour such as gas filling on a daily basis, daily 

supermarket purchase with a huge amount, or an evening coffee purchase. These features 

are collected, presented, and analyzed to help the next user authentication step which will 

utilize these profiles efficiently to create the dynamic security questions. 

Moreover, it only contains a feature that describes abnormal user behaviour and 

what is the expected user behaviour. In the next few tables, user profile samples are 

provided with the related experiment from chapter 4. For example, Table 5.2 shows a 

sample of the user profile detail from experiment 1. The user identification is 439, the 

timestamp is 6986 seconds, the anomalous user behaviour was a very early morning time 

around 1:56:43 am, and the expected time based on the user history is during the day time 

from 8 am to 9 pm.  
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Table 5.2: User Profiles Sample from Experiment 1 

User Profile for Sample of Anomalous Data 

User 

Identification 

Time 

Stamp 

(sec) 

Observation Expected Behaviour  

ID-231 406 0 amount  More than 0 

ID-439 6986 not expected time during the day time 

ID-349 9064 huge amount normal range 

ID-204 53937 far store branch from 

user home 

the usual store is the nearest 

for this user 

ID-007 56887 a new cvv code for the 

same usual card 

the usual cvv code number 

ID-127 57007 low amount real amount 

ID-114 62330 first time purchase 

from this category 

no purchase from this 

category 

ID-534 62467 many items from the 

same product 

one is the usual of this product 

ID-108 76867 different membership 

level from last time 

last time was the first level 

ID-093 84204 different home address the old home address 

Table 5.3 shows a sample of the user profile detail from experiment 2. For example, the 

user identification is 'C1350963410', the timestamp is 61 steps, the anomalous user 

behaviour was buying a children’s toy for first time, and the expected purchase based on 

the user history is buying adult things. 

Table 5.3: User Profiles Sample from Experiment 2 

User Profile for Sample of Anomalous Data 

user 

Identification 

time stamp 

(steps) 

action observation expected 

behaviour  

'C204205576' 0 bank 

payment 

not expected 

time 

during the day 

time 

'C1273692645' 1 bank 

payment 

huge amount 

for this product 

normal range for 

this product is 

lower 

'C225675370' 153 bank 

payment 

first time 

purchases from 

this category 

no purchases from 

this category 

'C2044438336' 87 bank 

payment 

unexpected a 

male purchase 

usually a female 

purchase 

'C1350963410' 61 bank 

payment 

different age 

for this product 

older customers 

buy this product 
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Table 5.4 shows a sample of the user profile detail from experiment 3. For example, 

the user identification is 2, the timestamp is 36 months, the anomalous user behaviour was 

working in the retirement age, and the expected status based on the user’s history is 

retirement by this age. 

Table 5.4: User Profiles Sample from Experiment 3 

User Profile for Sample of Anomalous Data 

user Id time 

(months) 

action observation expected behaviour  

ID- 4 12 credit 

history 

unexpected increasing in 

saving account 

during this time there is no 

increasing in saving money 

ID-28 1 credit 

history 

huge amount in checking 

account increased by one 

month 

normal range for checking 

account in one month is 

small amount 

ID- 32 2 credit 

history 

young user age for the 

employment status 

this age is usually unskilled 

employment 

Table 5.5 shows a sample of the user profile detail from experiment 6. For instance, 

the user identification is 55, the timestamp or record time is 0.3 seconds, the anomalous 

user behaviour was the record time (0.3) is very low regarding the number of bytes which 

is 54540, and the expected bytes range based on the record history for low record time was 

from 6 to 410 bytes. 

Table 5.5: User Profiles Sample from Experiment 6 

User Profile for Sample of Anomalous Data 

user 

Identification 

time 

(seconds) 

action observation expected behaviour  

ID- 55 0.3 Record The record time is 

very low regarding 

the number of bytes 

The normal record time 

much more for this number 

of bytes 

ID- 1389 

 

0.17 Record the number of data 

bytes transferred 

from the 

destination to the 

source is very high 

The normal number of 

bytes are much lower 

ID - 65927 9 Record the number of data 

bytes transferred 

from the source to 

the destination is 

very high 

The normal range in the 

number of bytes does not 

include high numbers. 
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Table 5.6 shows a sample of the user profile detail from experiment 7. For example, 

the user identification is 563, the timestamp is 9 days, the anomalous user behaviour was 

an unexpected speed with 104 km/h, and the expected speed average based on the user 

history is 62.5 km/h. 

Table 5.6: User Profiles Sample from Experiment 7 

User Profile for Sample of Anomalous Data 

user 

Identification 

time 

stamp 

(days) 

action observation expected behaviour  

ID - 84 9 Car 

driving 

The driving region 

of this user is 

different 

The normal driving region 

for this user in the user 

city 

ID - 563 9 Car 

driving 

The speed of this 

user is very high 

out of the normal 

range 

The normal speed range 

for this user is low 

ID - 2204 4 Car 

driving 

An accident report 

for this user with 

the car 

This user has a free 

accident history 

Table 5.7 shows a sample of the user profile detail from experiment 9. For example, 

the user identification is 46185, there is no timestamp provided in this dataset, the 

anomalous user behaviour was a heart attack with an operation in recent medical history, 

and the expected health based on the user history is that the user has a free operation history 

and good health. 

Table 5.7: User Profiles Sample from Experiment 9 

User Profile for Sample of Anomalous Data 

user 

Identification 

time 

stamp 

action observation expected behaviour  

ID - 49 NAN Health 

record 

The height is 

increased for this 

user 

The age of this user has no 

height expected increasing 

ID – 1023 NAN Health 

record 

The weight of this 

user decreased 

sharply. 

The normal weight of this 

user much less than the last 

observed one 

ID - 46185 NAN Health 

record 

Operation happened 

with this user last 

month 

This user has good health 

without any operation 
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5.3 Creating an Individual User Profiles 

Nowadays, the available user information is increasing rapidly which make it 

difficult for systems to quickly and automatically detect the abnormal users’ actions. Users 

have a wide range of behaviours especially with different action types, and these users have 

a range of interests and patterns [106]. Building a user profile based on the system 

requirements is a solution that organizes massive user information and extracts the most 

important features. The definition of user profile stated as a description the user behaviors 

usually using user information such as user ID, time, action type, behaviour description, 

and so on [107] and [108]. The user profile approaches are employed with a specific 

structure that relates to system objectives to provide readable personalized results for each 

user. For example, if the system requires anomalous user information, then the user profile 

is built based on the anomalous users’ actions. Also, one of the important user profile 

features is a dynamic updating feature which considers the changes of the users' actions 

over time [107]. 

In this thesis, user profiles are built based on the proposed anomaly detection 

system that provide the required results for the anomalous actions. We used a machine 

learning technique to detect the anomalous user’s actions and then build a user database 

that will be fed automatically from the user and the machine learning. 

A comparative study of user profiles will be presented before the user behavior 

modeling is explained. We will compare between the user profiles based on selected factors 

which will allow researchers to drive critical thinking ideas such as choosing a suitable 

profile structure for certain problems and conditions. The criteria of choosing the research 

papers depends on two shared factors: the user profile approach and anomaly detection 

problem. The result of this study is expressed in Table 5.8. Where BIDS is Behavior 

Intrusion Detection System, DBMS is database management system, MSSQL is Microsoft 

SQL Server, UEBA is User and Entity Behavior Analytics, and VoIP is Voice over IP 

communication. 
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Table 5.8: User Profiles Comparison Table 

Problem Field 
Features 

Number 
Profile Type AD Technique Profiler Tool 

Network [107] 5 

normal 

activity 

profile 

K-means clustering 

Behavior Detector 

Securing Databases 

[108] 
6 

Role 

Administere

d Relational 

Support vector 

machine 

DBMS 

Network  [109] 3 

Time-

Variant 

Normal 

Needleman-Wunsch 

AD technique 

cellular mobile 

networks [110] 
4 

normal 

profile 
Rough Set 

Rough Set 

Hadoop File System 

[111] 
5 

Behavior-

based 

profiles 

K-means clustering 

Eagle 

Network [112] 4 

User 

behavior 

profile 

Apriori-k 

MSSQL 

User log [113] 5 
User 

activities 
BIDS detector 

BIDS 

Network [114] 8 
Behavioral 

approach 
K-means clustering 

------- 

Insider Threat [115] 3 
user 

behavior 
Neural networks 

UEBA 

Voice over IP 

communication [116] 
3 

Deep Packet 

Inspection 

Support vector 

machine 

VoIP 

The user behaviour modeling is represented in three main parts as shown in Figure 

5.2. Every part will be explained in the next subsections. The anomaly detection part 

produces the binary results for user behaviour. A database for every user is created based 

on the AD results. The total database for every user builds a user profile. Finally, a 

questionnaire will provide dynamic security questions based on the user profiles for user 

authentication purposes.  
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Figure 5.2:User Behaviour Modeling Diagram. 

The anomaly detection model contains important steps to proceed for the user 

profile generation as shown in Figure 5.3. Firstly, the model is collecting Big Data based 

on user information that can represent a user's activity with unique identification. The Big 

Data is analyzed based on users before feature selection is applied. Feature selection is 

applied based on the user analysis to choose the most important feature that is related to 

the anomalous action not related to the user’s personal information such as user ID. The 

preprocessing step contains any data preparation such as normalization and data splitting. 

Finally, the processing of anomaly detection technique to predict the binary results will be 

the input data to build the profiles. 
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Figure 5.3: Anomaly Detection Model. 

The database for every user is generated based on the anomaly detection results that 

are contained in a classification of normal and abnormal actions. In this research, the 

database is created only for the abnormal actions using the user profile structure that is 

proposed per user. The normal actions are also taken in consideration to calculate the 

normal or average values for any action type or features as shown in Figure 5.4.  

 

Figure 5.4: User Behavuior Modeling Diagram. 

 This process of creating the database is done automatically using the algorithm that 

is shown in the following description. Initially, the input data used the binary predictions 

Big Data

Users Analysis

Feature Selection

Preprocessing

AD Technique
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from anomaly detection techniques. Then the algorithm calculates the normal user pattern 

based on the normal actions. After that, the algorithm takes the abnormal instances with 

the related features. One of the features has the most effect that flagged this instance as an 

anomaly. This feature is determined and compared with the normal value. Finally, the user 

profile is built using the user ID, Action type, Time, unexpected observation, and the 

expected behavior. The user ID, Action type, and Time is written to the database from the 

original data. The unexpected observation is written using the most effect feature that is 

calculated in the algorithm. The expected behavior is written to the database using the 

normal values per feature that are computed previously. All these collected features in the 

database described the abnormal classified instances per user. The user profile is readable 

and ready for security question generation. 
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Algorithm 4:  User Profile Creation  

INPUT:   binary predictions from anomaly detection technique 

OUTPUT:  User profile for abnormal observations 

1 Begin 

2  Read the input data from the model output (predictions) 

3  Calculate the normal user pattern for every attribute from the normal instances 

4  Separate the abnormal instances with the related attributes 

5  Calculate the attribute that cause the abnormal instances 

5  Build the user profile structure 

6  Write the user information into the user profile structure form the original data  

7       Write the abnormal observation into the user profile for every abnormal instance 

8  Write the related expected user behavior to the abnormal observation 

9        Repeat these steps for all users 

10 End 

The selected features for training the anomaly detection are the time step, Merchant, 

Category, Amount. The Zip Code and Zip merchant are not selected because they are the 

same for all users. The user representation features; Customer ID, Age, Gender, are not 

selected but it will be used in the user profile generation such as Customer ID. All the 

features are normalized and prepared through the preprocessing step to be ready for the 

AD technique. The final AD results contain a prediction of anomalous data per user. The 

algorithm detects the anomalies for every user. The total number of users are 4112 users. 

For example, the user with ID ‘C1093826151’ has 18 anomalous instances out of 167 

instances. As a result, the normal instances for this user is 159 instances. Every abnormal 

instance will be described in the user profile with several features. The 159 normal 

instances will be studied to provide the related normal pattern for the user.  

The user profiles are generated based on the user analysis using the anomaly detection 

techniques. The total number of user profiles that are generated in this dataset is 4112 which 

are the number of users. As a sample of a database that creates the user profiles, the 

anomalous user profile is presented in 0for the user with ID ‘C1093826151’. The database 

is readable and ready for generating the dynamic security question with the features that 

are specified in section D. The user profile for this user contains 18 rows which are the 

number of anomalous instances for this user with 5 columns that describe the abnormal 

action and the user information.  
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Table 5.9: a Sample of User Profile 

User ID Action Time Unexpected
Observation 

Expected 
Behavior 

'C1093826151' Transportation 2018-06-18 Time 2018-03-27 

'C1093826151' Bars and 
Restaurants 

2018-06-24 Category Transportation 

'C1093826151' Transportation 2018-05-27 Time 2018-03-27 

'C1093826151' Transportation 2018-06-11 Time 2018-03-27 

'C1093826151' Transportation 2018-03-29 Time 2018-03-27 

'C1093826151' Transportation 2018-06-03 Time 2018-03-27 

'C1093826151' Transportation 2018-05-29 Time 2018-03-27 

'C1093826151' Transportation 2018-05-15 Time 2018-03-27 

'C1093826151' Transportation 2018-06-13 Time 2018-03-27 

'C1093826151' Transportation 2018-06-02 Time 2018-03-27 

'C1093826151' Transportation 2018-06-28 Time 2018-03-27 

'C1093826151' Sports and Toys 2018-06-19 Merchant 'M348934600' 

'C1093826151' Transportation 2018-05-20 Amount 28.8007 

'C1093826151' Transportation 2018-04-29 Amount 28.8007 

'C1093826151' Transportation 2018-04-22 Time 2018-03-27 

'C1093826151' Transportation 2018-03-30 Time 2018-03-27 

'C1093826151' Transportation 2018-04-23 Time 2018-03-27 

'C1093826151' Transportation 2018-05-26 Time 2018-03-27 
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5.4 Challenging Questions 

The proposed user authentication system is based on a “knowledge-based 

authentication” technique that uses a uniquely dynamic way to ask security questions. 

These security questions should have essential features to achieve a final robust 

authentication system. These features contain a set of challenging questions using short 

term personal history that are based on anomalous cases and not repeated. These questions 

are based on the anomalous data to allow only the user who can provide the answers for 

them. Short-term history is employed because it is imperative to keep the answers easy to 

remember only for the user and difficult to know for anyone else. However, if it is a long-

term user history, it will be complicated for the user to remember the answers, particularly 

for dynamic and not static questions. Unrepeated questions are critical nowadays because 

hackers can find out answers. In other words, if hackers discover an answer, it will be 

dangerous to repeat the question. 

The scenario of user authentication starts from the user profile information. The 

questions will be asked as a set of dynamic questions based on the information provided in 

the user profile database. It is supposed that only the user knows the answers to these 

questions because it is an abnormal observation and recent user history. 

For example from experiment 1, if the time stamp was at a not expected time such 

as in ‘6986’ sec which is around 1:56:43 am in the morning, we should ask the user about 

the time first “What was the time of your credit card transaction?” and then follow it by a 

set of questions about the location, amount and so on. The benefit of asking a set of 

questions is to add more security about the abnormal cases that nobody else would be 

expected to know. In other words, the user is the only person who knows all the information 

about the abnormal observation. Another sample is the money amount that user “349” 

showed was $1809.68 which is over this normal user range (100 - 500). The appropriate 

question will be “what was the amount of money in your recent transaction?” Lastly, the 

“007” user used a new CVV code ‘256’ which is not the same usual CVV code ‘181’ in 

the system. The following security question will be “What was your CVV code number for 

last credit card transaction?” The novelty of this approach is that instead of asking 

questions about the normal activities of the user (that can be figured out easily), we ask 
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questions about the recent abnormal actions of the user (that is hard to be guessed by 

others).  It is worth mentioning that, each question is asked only once, and the questions 

set should be randomly chosen from a pool of candidate questions. 

An example from experiment 2, if the product was bought from the user only once 

which is an unexpected product category from the history such as in 'es_otherservices' by 

the user 'C225675370', we should ask the user about the category first. “What was the type 

of the product in your last transaction?” and then follow it by a set of questions about the 

location, amount and so on. The benefit of asking a set of questions is to ensure that the 

user is answering and not someone else. If all the information for the abnormal case was 

provided correctly that means the user is correctly authenticated because the only person 

who knows all the information about the abnormal observation is the user. Another sample 

is the type of product 'es_sportsandtoys' was bought by user 'C2044438336' which is for 

his age range (50 – 60 years). It also shows based on his history that was once during 180-

timestamps. The appropriate question will be “what did you buy in your last transaction?” 

An example from experiment 3, the user with ‘ID - 28’ has a sharp increase in his 

checking account over 200 DM (Deutsche Mark; Germany currency) for one month and 

the normal checking range based on this user history is under 200 DM for one month. We 

should ask the user about the amount of money in the checking account first, “How much 

money do you have in your checking account?” and then follow it by a set of questions 

about the time of that increasing, account number and so on. Another sample is the 

employment status changed for user ‘ID - 32’ in one month which is not normal for this 

young age range (20 - 30) to have skilled employment based on the history. The appropriate 

question will be “What is you employment status now?” 

An example from experiment 6, the user ‘ID - 55’ has a very short time recording 

of 0.3 which is not normal for this number of bytes ‘54540’. We should ask the user about 

the category first “How long was your last recording time?” and then follow it by a set of 

questions about the ID, destination name and so on. Another sample is that the user with 

‘ID - 65927’ has an out of normal range in the number of bytes of ‘54540’ and the normal 
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bytes range is 6 - 410 bytes. The appropriate question will be “How long was your last 

recording time?” 

An example from experiment 7, User with ID ‘563’ was driving with a speed of 

104 km/h 9 days prior which is an abnormal speed range for this user (the normal range 

based on the user history is 40 – 85 and the average is 62.5). We should ask the user about 

the speed first “What was your speed while driving 9 ago?” and then follow it by a set of 

questions about the location, time and so on. Another sample is an accident is reported 4 

days prior for user ‘ID - 2204’ which has a clean history of accidents. The appropriate 

question will be “where and when did your accident happened?” 

An example from experiment 9, the medical record for user with ‘ID - 1023’ highly 

decreased in weight to 35 kg but before that it was 55 kg. We should ask the user about the 

weight first “What was your last weight?” and then follow it by a set of questions about 

the time, reason and so on. Another sample is for a heart operation for user ‘ID - 46185’ 

who, based on the medical records had no operation before. The appropriate question will 

be “what type and where did your operation occur?” 
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Chapter 6  

6 Conclusion and Future Works 

6.1 Conclusion 

The research in user profile for Big Data-based applications has been increasing 

especially those utilizing anomaly detection techniques such as outlier detection, fault 

detection, computer system monitoring, and event detection in IoT devices. User trait 

modeling application lacks a robust implementation for anomaly detection. User trait 

models represent the user behaviour so that user variations in the system are noticed and 

interpreted. The reason of adoption in user trait modeling increases out of needing a 

continuous flow of high-volume data, that is not always available, to achieve high-accuracy 

detection. An existing user authentication framework provides an ambition for user trait 

modeling. 

The main goal of this research is to present a solution model that designs and 

implements an anomaly detection technique suite for the user authentication framework. 

The solution model is designed from an investigation on Big Data for anomaly detection 

techniques.  The investigation recommends three new classifications which are 

accomplished by combining three chosen Big Data V’s with three anomaly detection 

factors that are related to the V’s as follows:  

1) Velocity with computational complexity classification includes the two types of 

algorithm time complexity; linear and quadratic and two types of data labels (supervised 

and unsupervised) for each time complexity type. 

2) Variety with the natural types of data classification focuses on the data types such as 

time series, text, and media with providing a Big Data types and sources. 

3) Volume with data features classification considers two major feature types which are 

univariate and multivariate. 

Every classification defines the common machine learning (ML) techniques that 

are used in recent research. These classifications drew the outlines to choose the best model 
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fit with the best problem. The last part of this investigation was two comparison studies 

related to the data labels; supervised and unsupervised techniques, over a number of recent 

research papers which are compared after choosing the common ML models with defined 

comparison factors and several research paper conditions. 

The main part of the solution model is provided with an anomaly detection model 

that contains a combination of several techniques that are suitable for the existing user 

authentication framework. The anomaly detection models are combined with several 

machine learning techniques; K-means, HMM, Auto-Encoder NN, and Gaussian 

distribution. In total, the applied models and techniques are seven; the four basic techniques 

without any combinations and three combined are as follows:  

1) K-means is combined with Auto-encoder neural network which use the auto encoder for 

learning user behaviour and use K-means to differentiate between the normal and abnormal 

instances.  

2) HMM is combined with Auto-encoder neural network that utilize auto-encoder to 

reproduce the data to learn the user pattern and utilize the HMM for detection purposes.  

3) K-means is combined with HMM and Auto-encoder neural network to use the same 

purposes for HMM and auto-encoder. However, the K-means in this case is used to 

calculate the data probability parameters for HMM detection process. 

Nine different experiments are applied to the proposed models and give a good 

detection result for each experiment. The applied experiments have a variety of fields such 

as financial payment systems, insurance systems (health, auto, and home), computer 

servers monitoring systems, and network transmission systems. The evaluation methods 

are chosen by applying most of them in this thesis such as confusion matrices, true positive 

rates (TPR), and true negative rates (TNR). Also, two algorithms are developed to ensure 

that the chosen evaluation methods match the needs of the user authentication framework. 

From the results of the desired anomaly detection models, user profiles are 

generated as part of the solution model for the suitable experiments. The features of the 

user profiles were the same for all users in all used experiments in this part. A total of six 
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user profiles per experiment are designed and applied as databases for challenging 

questions. The final part of the solution model is providing a scenario of generating 

challenging questions based on the proposed user profiles. This scenario provides strong 

examples of challenging questions from the user profile samples that are created after 

anomaly detection analyzation has been done on Big Data. 

6.2 Future Works 

One of the future works is that implementing more combinations of models can be 

useful with increasing the data dimensions. Secondly, provide an algorithm to create the 

user profile database from the anomaly detection results. Also, implementing an algorithm 

to create the security questions automatically from the user profile database. As a result of 

this thesis, measuring human dynamics for next generation authentication and FictiZon 

collects a lot of real-time information about their subscribers are very important future works. 

Furthermore, development of a novel Big Data-driven authentication as a service 

model and development of an integration framework to facilitate the collaboration and 

interoperability of multiple Big Data-driven authentication service providers are future 

works in this research. These two important future works can be done with these tasks: 1) 

design and develop SaaS-based authentication model (AUTHaaS), 2) a new integration 

framework will be designed and developed (iAUTH) in order to facilitate the collaboration and 

interoperability among multiple AUTHaaS providers. 

This thesis is part of a research that providing new use cases for businesses seeking 

strong authentication and high market reputation. It also will help businesses to give their 

clients the sense of real security and to gain their admirations as a reward for protecting their 

assets. 
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Appendices 

Appendix A: All the results for all data in assumption 1 (without normalization or dimensional reduction) 

Credit Card Dataset 

Models Accuracy Precision  Recall F1-score ROC auc 

score 

RMSE TPR TNR FPR FNR 

K-means 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

HMM 0.8431 0.512 0.8767 0.4811 0.8767 0.3961 0.9106 0.8428 0.1572 0.0894 

Auto-

encoder 

0.0043 0.0022 0.5 0.0043 0.5 0.9978 1 0 1 0 

Gaussian 0.9889 0.5633 0.6342 0.5855 0.6342 0.1054 0.2764 0.992 0.008 0.7236 

Synthetic Dataset 

K-means 0.4914 0.4971 0.4747 0.3517 0.4747 0.7132 0.4569 0.4924 0.5076 0.5431 

HMM 0.1368 0.4107 0.0705 0.1203 0.0705 0.9291 0 0.141 0.859 1 

Auto-

encoder 

0.0297 0.0149 0.5 0.0289 0.5 0.985 1 0 1 0 

Gaussian 0.9862 0.9532 0.7932 0.855 0.7932 0.1174 0.5881 0.9984 0.0016 0.4119 

Germen Dataset 

K-means 0.2366 0.4704 0.47 0.2366 0.47 0.8737 0.14 0.8 0.2 0.86 

HMM 0.3073 0.519 0.5252 0.3045 0.5252 0.8323 0.2171 0.8333 0.1667 0.7829 

Auto-

encoder 

0.8537 0.4268 0.5 0.4605 0.5 0.3825 1 0 1 0 

Gaussian 0.1976 0.5189 0.5093 0.1923 0.5093 0.8958 0.0686 0.95 0.05 0.9314 

small server computer Dataset 

K-means 0.4886 0.5024 0.5211 0.3543 0.5211 0.7151 0.5556 0.4866 0.5134 0.4444 

HMM 0.9902 0.9342 0.8872 0.9093 0.8872 0.0989 0.7778 0.9966 0.0034 0.2222 



2 

 

Auto-

encoder 

0.0293 0.0147 0.5 0.0285 0.5 0.9852 1 0 1 0 

Gaussian 0.9772 0.9885 0.6111 0.676 0.6111 0.151 0.2222 1 0 0.7778 

High dimensional server computer Dataset 

K-means 0.52 0.4548 0.3778 0.3763 0.3778 0.6928 0.2 0.5556 0.4444 0.8 

HMM 0.54 0.4919 0.4778 0.4165 0.4778 0.6782 0.4 0.5556 0.4444 0.6 

Auto-

encoder 

0.1 0.05 0.5 0.0909 0.5 0.9487 0 1 0 
 

Gaussian 0.92 0.9592 0.6 0.6454 0.6 0.2828 0.2 1 0 0.8 

eecs498 Dataset 

K-means 0.4987 0.4995 0.4865 0.3406 0.4865 0.7081 0.474 0.4989 0.5011 0.526 

HMM 0.9862 0.7048 0.993 0.7871 0.993 0.1175 1 0.9861 0.0139 0 

Auto-

encoder 

0.0096 0.0048 0.5 0.0095 0.5 0.9952 1 0 1 0 

Gaussian 0.9982 0.9208 0.9991 0.9565 0.9991 0.0425 1 0.9982 0.0018 0 

Porto Seguro’s Safe Driver Prediction Dataset 

K-means 0.5002 0.5008 0.5025 0.3975 0.5025 0.707 0.5054 0.4997 0.5003 0.4946 

HMM 0.1013 0.4884 0.4973 0.0972 0.4973 0.948 0.9759 0.0186 0.9814 0.0241 

Auto-

encoder 

0.0864 0.0432 0.5 0.0795 0.5 0.9558 1 0 1 0 

Gaussian 0.9136 0.4568 0.5 0.4774 0.5 0.2939 0 1 0 1 

santander-customer-transaction Dataset 

K-means 0.5052 0.5046 0.5068 0.4622 0.5068 0.7034 0.5097 0.5039 0.4961 0.4903 

HMM 0.4947 0.4954 0.4932 0.4516 0.4932 0.7108 0.4906 0.4959 0.5041 0.5094 

Auto-

encoder 

0.2183 0.1092 0.5 0.1792 0.5 0.8841 1 0 1 0 

Gaussian 0.21832 0.10916 0.5 0.1792 0.5 0.88413 1 0 1 0 
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Prudential Life Insurance Assessment dataset 

K-means 0.5037 0.5037 0.5037 0.503 0.5037 0.7045 0.5041 0.5034 0.4966 0.4959 

HMM 0.3825 0.3833 0.393 0.3748 0.393 0.7858 0.5332 0.2528 0.7472 0.4668 

Auto-

encoder 

0.4624 0.2312 0.5 0.3162 0.5 0.7332 1 0 1 0 

Gaussian 0.4624 0.2312 0.5 0.3162 0.5 0.7332 1 0 1 0 

Appendix B: All the results for all data in assumption 2 (with normalization only) 

Credit Card Dataset 

Models Accuracy Precision  Recall F1-score ROC auc score RMSE TPR TNR FPR FNR 

K-means 0.5256 0.4983 0.4036 0.3468 0.4036 0.6888 0.2805 0.5266 0.4734 0.7195 

HMM 0.8432 0.512 0.8767 0.4811 0.8767 0.396 0.9106 0.8429 0.1571 0.0894 

Auto-encoder 0.9816 0.5705 0.8167 0.6122 0.8167 0.1355 0.6504 0.9831 0.0169 0.3496 

Gaussian 0.9921 0.6654 0.903 0.7336 0.903 0.0887 0.813 0.9929 0.0071 0.187 

Synthetic Dataset 

K-means 0.114 0.425 0.2168 0.106 0.2168 0.9413 0.3261 0.1075 0.8925 0.6739 

HMM 0.8632 0.5893 0.9295 0.6136 0.9295 0.3698 1 0.859 0.141 0 

Auto-encoder 0.9762 0.9794 0.6018 0.6626 0.6018 0.1542 0.2036 0.9999 0.0001 0.7964 

Gaussian 0.9843 0.9775 0.7427 0.8197 0.7427 0.1254 0.4858 0.9995 0.0005 0.5142 

Dataset 

K-means 0.3 0.4599 0.4381 0.2907 0.4381 0.8367 0.2429 0.6333 0.3667 0.7571 

HMM 0.3415 0.5306 0.5452 0.3351 0.5452 0.8115 0.2571 0.8333 0.1667 0.7429 

Auto-encoder 0.1463 0.0732 0.5 0.1277 0.5 0.9239 0 1 0 1 

Gaussian 0.2 0.521 0.5107 0.1951 0.5107 0.8944 0.0714 0.95 0.05 0.9286 

small server computer Dataset 

K-means 0.5016 0.5093 0.5817 0.366 0.5817 0.706 0.6667 0.4966 0.5034 0.3333 
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HMM 0.0098 0.0658 0.1128 0.0098 0.1128 0.9951 0.2222 0.0034 0.9966 0.7778 

Auto-encoder 0.9902 0.9342 0.8872 0.9093 0.8872 0.0989 0.7778 0.9966 0.0034 0.2222 

Gaussian 0.9772 0.9885 0.6111 0.676 0.6111 0.151 0.2222 1 0 0.7778 

High dimensional server computer Dataset 

K-means 0.59 0.5347 0.5944 0.4738 0.5944 0.6403 0.6 0.5889 0.4111 0.4 

HMM 0.51 0.502 0.50556 0.41099 0.50556 0.7 0.5 0.51111 0.48889 0.5 

Auto-encoder 0.9 0.45 0.5 0.4737 0.5 0.3162 0 1 0 1 

Gaussian 0.9 0.45 0.5 0.4737 0.5 0.3162 0 1 0 1 

eecs498 Dataset 

K-means 0.4987 0.4995 0.4865 0.3406 0.4865 0.708 0.474 0.499 0.501 0.526 

HMM 0.9807 0.6659 0.9903 0.7443 0.9903 0.1388 1 0.9806 0.0194 0 

Auto-encoder 0.9959 0.85 0.9979 0.9107 0.9979 0.064 1 0.9959 0.0041 0 

Gaussian 0.9983 0.9254 0.9992 0.9593 0.9992 0.041 1 0.9983 0.0017 0 

Porto Seguro’s Safe Driver Prediction Dataset 

K-means 0.3133 0.4756 0.4352 0.2808 0.4352 0.8287 0.5825 0.2878 0.7122 0.4175 

HMM 0.8528 0.5214 0.5202 0.5207 0.5202 0.3837 0.1182 0.9223 0.0777 0.8818 

Auto-encoder 0.9115 0.5162 0.5006 0.4806 0.5006 0.2976 0.0039 0.9973 0.0027 0.9961 

Gaussian 0.0864 0.0432 0.5 0.0795 0.5 0.9558 1 0 1 0 

santander-customer-transaction Dataset 

K-means 0.4999 0.4969 0.4955 0.455 0.4955 0.7072 0.4876 0.5034 0.4966 0.5124 

HMM 0.5145 0.5176 0.5259 0.4745 0.5259 0.6967 0.5459 0.5058 0.4942 0.4541 

Auto-encoder 0.7817 0.3908 0.5 0.4387 0.5 0.4672 0 1 0 1 

Gaussian 0.2183 0.1092 0.5 0.1792 0.5 0.8841 1 0 1 0 

Prudential Life Insurance Assessment dataset 

K-means 0.5169 0.5114 0.5112 0.5105 0.5112 0.6951 0.4361 0.5864 0.4136 0.5639 

HMM 0.4836 0.4895 0.4897 0.4826 0.4897 0.7186 0.5709 0.4084 0.5916 0.4291 
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Auto-encoder 0.5467 0.6486 0.5105 0.3789 0.5105 0.6733 0.0291 0.9919 0.0081 0.9709 

Gaussian 0.622 0.6428 0.633 0.6184 0.633 0.6148 0.7789 0.4871 0.5129 0.2211 

Appendix C: All the results for all data in assumption 3 (with dimensional reduction only) 

Credit Card Dataset 

Models Accuracy Precision  Recall F1-score ROC auc score RMSE TPR TNR FPR FNR 

K-means 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.533792 0.4662 0.6707 

HMM 0.7751 0.5075 0.8061 0.4519 0.8061 0.4743 0.8374 0.774792 0.2252 0.1626 

Auto-encoder 0.0043 0.0022 0.5 0.0043 0.5 0.9978 1 0 1 0 

Gaussian 0.9946 0.6528 0.6027 0.6227 0.6027 0.0736 0.2073 0.997995 0.002 0.7927 

Synthetic Dataset 

K-means 0.5084 0.5029 0.5252 0.3643 0.5252 0.7012 0.5431 0.50729 0.4927 0.4569 

HMM 0.8834 0.5933 0.8897 0.625 0.8897 0.3414 0.8964 0.883044 0.117 0.1036 

Auto-encoder 0.0297 0.5149 0.5 0.0289 0.5 0.985 1 8.51E-06 1 0 

Gaussian 0.985 0.9689 0.76 0.8328 0.76 0.1226 0.5208 0.9992 0.0008 0.4792 

Dataset 

K-means 0.2366 0.4704 0.47 0.2366 0.47 0.8737 0.14 0.8 0.2 0.86 

HMM 0.3537 0.5025 0.504 0.34 0.504 0.804 0.2914 0.716667 0.2833 0.7086 

Auto-encoder 0.839 0.4257 0.4914 0.4562 0.4914 0.4012 0.9829 0 1 0.0171 

Gaussian 0.1463 0.0732 0.5 0.1277 0.5 0.9239 0 1 0 1 

small server computer Dataset 

K-means 0.3974 0.4969 0.4741 0.3049 0.4741 0.7763 0.5556 0.392617 0.6074 0.4444 

HMM 0.013 0.0764 0.1683 0.013 0.1683 0.9935 0.3333 0.003356 0.9966 0.6667 

Auto-encoder 0.9674 0.7257 0.8216 0.7643 0.8216 0.1805 0.6667 0.97651 0.0235 0.3333 

Gaussian 0.9739 0.9869 0.5556 0.5934 0.5556 0.1614 0.1111 1 0 0.8889 

High dimensional server computer Dataset 
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K-means 0.56 0.5282 0.5778 0.4544 0.5778 0.6633 0.6 0.555556 0.4444 0.4 

HMM 0.48 0.496 0.4889 0.3922 0.4889 0.7211 0.5 0.477778 0.5222 0.5 

Auto-encoder 0.13 0.5515 0.5167 0.1257 0.5167 0.9327 1 0.033333 0.9667 0 

Gaussian 0.9 0.45 0.5 0.4737 0.5 0.3162 0 1 0 1 

eecs498 Dataset 

K-means 0.5011 0.5005 0.5134 0.3426 0.5134 0.7063 0.526 0.50091 0.4991 0.474 

HMM 0.4987 0.4995 0.4865 0.3406 0.4865 0.708 0.474 0.498965 0.501 0.526 

Auto-encoder 0.0098 0.5048 0.5001 0.0097 0.5001 0.9951 1 0.000188 0.9998 0 

Gaussian 0.9904 0.4952 0.5 0.4976 0.5 0.0978 0 1 0 1 

Porto Seguro’s Safe Driver Prediction Dataset 

K-means 0.5008 0.5008 0.5026 0.3978 0.5026 0.7065 0.5047 0.500453 0.4995 0.4953 

HMM 0.1832 0.4777 0.4683 0.1817 0.4683 0.9038 0.8129 0.123649 0.8764 0.1871 

Auto-encoder 0.0864 0.0432 0.5 0.0795 0.5 0.9558 1 0 1 0 

Gaussian 0.9136 0.4568 0.5 0.4774 0.5 0.2939 0 1 0 1 

santander-customer-transaction Dataset 

K-means 0.5052 0.5047 0.5068 0.4622 0.5068 0.7034 0.5097 0.503947 0.4961 0.4903 

HMM 0.4946 0.4953 0.4932 0.4515 0.4932 0.7109 0.4906 0.49572 0.5043 0.5094 

Auto-encoder 0.2183 0.1092 0.5 0.1792 0.5 0.8841 1 0 1 0 

Gaussian 0.2183 0.1092 0.5 0.1792 0.5 0.8841 1 0 1 0 

Prudential Life Insurance Assessment dataset 

K-means 0.5037 0.5037 0.5037 0.503 0.5037 0.7045 0.5041 0.503395 0.4966 0.4959 

HMM 0.6267 0.6354 0.6331 0.6262 0.6331 0.611 0.718 0.548212 0.4518 0.282 

Auto-encoder 0.4623 0.2312 0.4999 0.3162 0.4999 0.7333 0.9999 0 1 0.0001 

Gaussian 0.4624 0.2312 0.5 0.3162 0.5 0.7332 1 0 1 0 



7 

 

Appendix D: All the results for all data in assumption 4 (with both normalization dimensional reduction only) 

Credit Card Dataset 

Models Accuracy Precision  Recall F1-score ROC auc 

score 

RMSE TPR TNR FPR FNR 

K-means 0.4745 0.5017 0.5965 0.3269 0.5965 0.7249 0.7195 0.4734 0.526581 0.2805 

HMM 0.1568 0.488 0.1233 0.1358 0.1233 0.9182 0.0894 0.1571 0.842886 0.9106 

Auto-

encoder 

0.9831 0.5027 0.5079 0.5029 0.5079 0.1299 0.0285 0.9873 0.01275 0.9715 

RNN 
          

Gaussian 0.9923 0.6674 0.903 0.7356 0.903 0.088 0.813 0.993 0.006964 0.187 

Synthetic Dataset 

K-means 0.5845 0.5189 0.6608 0.4131 0.6608 0.6446 0.7419 0.5796 0.420354 0.2581 

HMM 0.55 0.5265 0.7295 0.4037 0.7295 0.6708 0.9203 0.5386 0.461354 0.0797 

Auto-

encoder 

0.9777 0.9718 0.629 0.6981 0.629 0.1494 0.2583 0.9997 0.000281 0.7417 

Gaussian 0.9718 0.9833 0.5264 0.543 0.5264 0.1678 0.0528 1 8.51E-06 0.9472 

Germen Dataset 

K-means 0.3024 0.4651 0.4464 0.2935 0.4464 0.8352 0.2429 0.65 0.35 0.7571 

HMM 0.4268 0.5215 0.54 0.3971 0.54 0.7571 0.38 0.7 0.3 0.62 

Auto-

encoder 

0.1732 0.5358 0.5088 0.1622 0.5088 0.9093 0.0343 0.9833 0.016667 0.9657 

Gaussian 0.1488 0.5733 0.5014 0.1308 0.5014 0.9226 0.0029 1 0 0.9971 

small server computer Dataset 

K-means 0.3648 0.4947 0.4573 0.286 0.4573 0.797 0.5556 0.3591 0.64094 0.4444 

HMM 0.9902 0.995 0.8333 0.8975 0.8333 0.0989 0.6667 1 0 0.3333 

Auto-

encoder 

0.9902 0.995 0.8333 0.8975 0.8333 0.0989 0.6667 1 0 0.3333 
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Gaussian 0.9707 0.4853 0.5 0.4926 0.5 0.1712 0 1 0 1 

High dimensional server computer Dataset 

K-means 0.58 0.5164 0.5444 0.4543 0.5444 0.6481 0.5 0.5889 0.411111 0.5 

HMM 0.57 0.5303 0.5833 0.4608 0.5833 0.6557 0.6 0.5667 0.433333 0.4 

Auto-

encoder 

0.91 0.7535 0.6833 0.7107 0.6833 0.3 0.4 0.9667 0.033333 0.6 

Gaussian 0.9 0.45 0.5 0.4737 0.5 0.3162 0 1 0 1 

eecs498 Dataset 

K-means 0.9883 0.4952 0.4989 0.4971 0.4989 0.1081 0 0.9979 0.002133 1 

HMM 0.9791 0.6571 0.9895 0.7338 0.9895 0.1445 1 0.9789 0.02108 0 

Auto-

encoder 

0.9966 0.8702 0.9983 0.9246 0.9983 0.0579 1 0.9966 0.003388 0 

Gaussian 0.998 0.9157 0.9958 0.9522 0.9958 0.0446 0.9935 0.9981 0.001945 0.0065 

Porto Seguro’s Safe Driver Prediction Dataset 

K-means 0.6828 0.5245 0.5657 0.4953 0.5657 0.5632 0.4241 0.7072 0.292754 0.5759 

HMM 0.8657 0.5256 0.5198 0.5215 0.5198 0.3664 0.1017 0.938 0.062003 0.8983 

Auto-

encoder 

0.9081 0.5256 0.5024 0.487 0.5024 0.3032 0.0121 0.9928 0.007184 0.9879 

Gaussian 0.8944 0.5175 0.5055 0.4994 0.5055 0.325 0.0354 0.9756 0.024419 0.9646 

santander-customer-transaction Dataset 

K-means 0.491 0.4891 0.484 0.4459 0.484 0.7135 0.4716 0.4964 0.503641 0.5284 

HMM 0.5054 0.5046 0.5067 0.4623 0.5067 0.7033 0.509 0.5044 0.495636 0.491 

Auto-

encoder 

0.2183 0.1092 0.5 0.1792 0.5 0.8841 1 0 1 0 

Gaussian 0.2183 0.1092 0.5 0.1792 0.5 0.8841 1 0 1 0 

Prudential Life Insurance Assessment dataset 

K-means 0.4831 0.4886 0.4888 0.4824 0.4888 0.7189 0.5639 0.4136 0.586351 0.4361 
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HMM 0.6077 0.6096 0.61 0.6076 0.61 0.6263 0.6404 0.5796 0.420439 0.3596 

Auto-

encoder 

0.5564 0.6492 0.5218 0.4086 0.5218 0.666 0.0611 0.9825 0.017542 0.9389 

Gaussian 0.8862 0.9012 0.8941 0.886 0.8941 0.3374 1 0.7883 0.211747 0 

Appendix E: PCA comparison based on features for experiment 1. 

Dataset 1 

Models Accuracy Precision  Recall F1-score ROC auc 

score 

RMSE TPR TNR FPR FNR 

PCA = 1 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

PCA = 2 0.5749 0.5038 0.7197 0.373 0.7197 0.652 0.8659 0.5736 0.4264 0.1341 

PCA = 3 0.4004 0.4959 0.2719 0.2868 0.2719 0.7743 0.1423 0.4016 0.5984 0.8577 

PCA = 4 0.4099 0.4963 0.2908 0.2917 0.2908 0.7682 0.1707 0.4109 0.5891 0.8293 

PCA = 5 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293 

PCA = 6 0.53291 0.49882 0.43153 0.35038 0.43153 0.68344 0.32927 0.53379 0.46621 0.67073 

PCA = 7 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

PCA = 8 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

PCA = 9 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293 

PCA = 10 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293 

PCA = 11 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293 

PCA = 12 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

PCA = 13 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

PCA = 14 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293 

PCA = 15 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

PCA = 16 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

PCA = 17 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293 

PCA = 18 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 
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PCA = 19 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293 

PCA = 20 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293 

PCA = 21 0.4998 0.4992 0.4975 0.3961 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054 

PCA = 22 0.5005 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948 

PCA = 23 0.5005 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948 

PCA = 24 0.5 0.4992 0.4975 0.3963 0.4975 0.7071 0.4945 0.5006 0.4994 0.5055 

PCA = 25 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4948 0.5 0.5 0.5052 

PCA = 26 0.4994 0.4992 0.4974 0.3959 0.4974 0.7075 0.4951 0.4998 0.5002 0.5049 

PCA = 27 0.7399 0.4979 0.406 0.4264 0.406 0.51 0.0691 0.7428 0.2572 0.9309 

PCA = 28 0.7399 0.4979 0.406 0.4264 0.406 0.51 0.0691 0.7428 0.2572 0.9309 

PCA = 29 0.2601 0.5021 0.594 0.2099 0.594 0.8602 0.9309 0.2572 0.7428 0.0691 

Appendix F: PCA comparison based on features for experiment 2. 

dataset 2 

Models Accuracy Precision  Recall F1-score ROC auc 

score 

RMSE TPR TNR FPR FNR 

PCA = 1 0.9083 0.6025 0.8417 0.642 0.8417 0.3028 0.7708 0.9125 0.0875 0.2292 

PCA = 2 0.4185 0.4814 0.3414 0.3057 0.3414 0.7626 0.2594 0.4233 0.5767 0.7406 

PCA = 3 0.4133 0.4807 0.3366 0.3028 0.3366 0.766 0.255 0.4181 0.5819 0.745 

PCA = 4 0.4295 0.4824 0.3496 0.3116 0.3496 0.7553 0.2647 0.4345 0.5655 0.7353 

PCA = 5 0.1012 0.4096 0.1805 0.0946 0.1805 0.948 0.2647 0.0962 0.9038 0.7353 

PCA = 6 0.1011 0.4123 0.1944 0.0948 0.1944 0.9481 0.2936 0.0952 0.9048 0.7064 

Appendix G: PCA comparison based on features for experiment 3. 

dataset 3 

Models Accuracy Precision  Recall F1-score ROC auc 

score 

RMSE TPR TNR FPR FNR 
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PCA = 1 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

PCA = 2 0.5749 0.5038 0.7197 0.373 0.7197 0.652 0.8659 0.5736 0.4264 0.1341 

PCA = 3 0.4004 0.4959 0.2719 0.2868 0.2719 0.7743 0.1423 0.4016 0.5984 0.8577 

PCA = 4 0.4099 0.4963 0.2908 0.2917 0.2908 0.7682 0.1707 0.4109 0.5891 0.8293 

PCA = 5 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293 

PCA = 6 0.53291 0.49882 0.43153 0.35038 0.43153 0.68344 0.32927 0.53379 0.46621 0.67073 

PCA = 7 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

PCA = 8 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

PCA = 9 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293 

PCA = 10 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293 

PCA = 11 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293 

PCA = 12 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

PCA = 13 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707 

Appendix H: PCA comparison based on features for experiment 4. 

dataset 4 

Models Accuracy Precision  Recall F1-score ROC auc 

score 

RMSE TPR TNR FPR FNR 

PCA = 1 0.44 0.4559 0.3778 0.3455 0.3778 0.7483 0.3 0.4556 0.5444 0.7 

PCA = 2 0.56 0.5282 0.5778 0.4544 0.5778 0.6633 0.6 0.5556 0.4444 0.4 

PCA = 3 0.54 0.524 0.5667 0.4415 0.5667 0.6782 0.6 0.5333 0.4667 0.4 

PCA = 4 0.55 0.5101 0.5278 0.4357 0.5278 0.6708 0.5 0.5556 0.4444 0.5 

PCA = 5 0.49 0.482 0.45 0.3869 0.45 0.7141 0.4 0.5 0.5 0.6 

PCA = 6 0.45 0.4739 0.4278 0.3628 0.4278 0.7416 0.4 0.4556 0.5444 0.6 

PCA = 7 0.45 0.4739 0.4278 0.3628 0.4278 0.7416 0.4 0.4556 0.5444 0.6 

PCA = 8 0.55 0.5261 0.5722 0.4479 0.5722 0.6708 0.6 0.5444 0.4556 0.4 

PCA = 9 0.55 0.52609 0.57222 0.44792 0.57222 0.67082 0.6 0.54444 0.45556 0.4 
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PCA = 10 0.52 0.52 0.5556 0.4286 0.5556 0.6928 0.6 0.5111 0.4889 0.4 

PCA = 11 0.45 0.4739 0.4278 0.3628 0.4278 0.7416 0.4 0.4556 0.5444 0.6 

Appendix I: PCA comparison based on features for experiment 6. 

dataset 6 

Models Accuracy Precision  Recall F1-score ROC auc 

score 

RMSE TPR TNR FPR FNR 

PCA = 1 0.5011 0.5005 0.5134 0.3426 0.5134 0.7063 0.526 0.5009 0.4991 0.474 

PCA = 2 0.5013 0.5005 0.5135 0.3427 0.5135 0.7062 0.526 0.501 0.499 0.474 

PCA = 3 0.4987 0.4995 0.4865 0.3406 0.4865 0.708 0.474 0.499 0.501 0.526 

PCA = 4 0.4975 0.4995 0.4859 0.3401 0.4859 0.7089 0.474 0.4977 0.5023 0.526 

Appendix J: PCA comparison based on features for experiment 7. 

dataset 7 

Models Accuracy Precision  Recall F1-score ROC auc 

score 

RMSE TPR TNR FPR FNR 

PCA = 1 0.5008 0.5008 0.5026 0.3978 0.5026 0.7065 0.5047 0.5005 0.4995 0.4953 

PCA = 2 0.4994 0.4992 0.4974 0.3959 0.4974 0.7075 0.4951 0.4998 0.5002 0.5049 

PCA = 3 0.4994 0.4992 0.4974 0.3959 0.4974 0.7075 0.4951 0.4998 0.5002 0.5049 

PCA = 4 0.5003 0.4993 0.4976 0.3964 0.4976 0.7069 0.4944 0.5008 0.4992 0.5056 

PCA = 5 0.4995 0.4992 0.4974 0.396 0.4974 0.7074 0.4948 0.5 0.5 0.5052 

PCA = 6 0.4998 0.4992 0.4975 0.3961 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054 

PCA = 7 0.5005 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948 

PCA = 8 0.5005 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948 

PCA = 9 0.5 0.4992 0.4975 0.3963 0.4975 0.7071 0.4945 0.5006 0.4994 0.5055 

PCA = 10 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4948 0.5 0.5 0.5052 

PCA = 11 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4948 0.5 0.5 0.5052 
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PCA = 12 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948 

PCA = 13 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948 

PCA = 14 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.4999 0.5001 0.4948 

PCA = 15 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.4999 0.5001 0.4948 

PCA = 16 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948 

PCA = 17 0.5 0.5008 0.5025 0.3974 0.5025 0.7071 0.5055 0.4995 0.5005 0.4945 

PCA = 18 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054 

PCA = 19 0.5001 0.5008 0.5025 0.3974 0.5025 0.7071 0.5055 0.4995 0.5005 0.4945 

PCA = 20 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4948 0.5001 0.4999 0.5052 

PCA = 21 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054 

PCA = 22 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054 

PCA = 23 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054 

PCA = 24 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053 

PCA = 25 0.5001 0.5008 0.5025 0.3974 0.5025 0.707 0.5054 0.4996 0.5004 0.4946 

PCA = 26 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054 

PCA = 27 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053 

PCA = 28 0.5002 0.5008 0.5026 0.3975 0.5026 0.707 0.5054 0.4997 0.5003 0.4946 

PCA = 29 0.5001 0.5008 0.5025 0.3975 0.5025 0.707 0.5054 0.4996 0.5004 0.4946 

PCA = 30 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5053 0.4999 0.5001 0.4947 

PCA = 31 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5053 0.4999 0.5001 0.4947 

PCA = 32 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5053 0.4999 0.5001 0.4947 

PCA = 33 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054 

PCA = 34 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054 

PCA = 35 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5053 0.4999 0.5001 0.4947 

PCA = 36 0.4998 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054 

PCA = 37 0.5002 0.5008 0.5025 0.3975 0.5025 0.707 0.5054 0.4997 0.5003 0.4946 

PCA = 38 0.4998 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054 
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PCA = 39 0.4998 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054 

PCA = 40 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053 

PCA = 41 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053 

PCA = 42 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053 

PCA = 43 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053 

PCA = 44 0.5004 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947 

PCA = 45 0.5004 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947 

PCA = 46 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053 

PCA = 47 0.4998 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054 

PCA = 48 0.5004 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947 

PCA = 49 0.5004 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947 

PCA = 50 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053 

PCA = 51 0.4998 0.4992 0.4975 0.3961 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054 

PCA = 52 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5053 0.4999 0.5001 0.4947 

PCA = 53 0.5003 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947 

PCA = 54 0.5003 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947 

PCA = 55 0.5004 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947 

PCA = 56 0.4998 0.4992 0.4975 0.3961 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054 

PCA = 57 0.5002 0.5008 0.5025 0.3975 0.5025 0.707 0.5054 0.4997 0.5003 0.4946 

PCA = 58 0.5002 0.5008 0.5025 0.3975 0.5025 0.707 0.5054 0.4997 0.5003 0.4946 

Appendix K: PCA comparison based on features for experiment 8. 

dataset 8 

Models Accuracy Precision  Recall F1-score ROC auc 

score 

RMSE TPR TNR FPR FNR 

PCA = 25 0.4904 0.4861 0.4796 0.4438 0.4796 0.7139 0.4604 0.4987 0.5013 0.5396 

PCA = 50 0.491 0.4891 0.484 0.4459 0.484 0.7135 0.4716 0.4964 0.5036 0.5284 
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PCA = 75 0.4989 0.499 0.4985 0.4558 0.4985 0.7079 0.4978 0.4992 0.5008 0.5022 

PCA = 

100 

0.5062 0.5149 0.5218 0.4685 0.5218 0.7027 0.5495 0.4941 0.5059 0.4505 

PCA = 

125 

0.4943 0.4918 0.4881 0.4492 0.4881 0.7112 0.4771 0.4991 0.5009 0.5229 

PCA = 

150 

0.494 0.4878 0.4822 0.4466 0.4822 0.7113 0.4612 0.5031 0.4969 0.5388 

PCA = 

175 

0.503 0.5036 0.5053 0.4605 0.5053 0.705 0.5092 0.5013 0.4987 0.4908 

PCA = 

200 

0.494 0.49 0.4853 0.4479 0.4853 0.7113 0.4699 0.5007 0.4993 0.5301 

Appendix L: PCA comparison based on features for experiment 9. 

dataset 9 

Models Accuracy Precision  Recall F1-score ROC auc 

score 

RMSE TPR TNR FPR FNR 

PCA = 25 0.5171 0.5117 0.5115 0.5108 0.5115 0.6949 0.4366 0.5864 0.4136 0.5634 

PCA = 50 0.517 0.5116 0.5114 0.5108 0.5114 0.695 0.4366 0.5862 0.4138 0.5634 

PCA = 75 0.517 0.5115 0.5113 0.5107 0.5113 0.695 0.4364 0.5862 0.4138 0.5636 

PCA = 

100 

0.4831 0.4886 0.4888 0.4824 0.4888 0.7189 0.5639 0.4136 0.5864 0.4361 

PCA = 

125 

0.5169 0.5114 0.5112 0.5105 0.5112 0.6951 0.4361 0.5864 0.4136 0.5639 

Appendix M: All results in K-means Model for Experiment 1. 

creditcard dataset 

two clusters method 

tunimg parameters evaluations 
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Appendix N: All results in HMM Model for Experiment 1. 
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Appendix O: All results in Auto-Encoder Model for Experiment 1. 
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Appendix P: All results in K-means Model for Experiment 2. 
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Appendix Q: All results in HMM Model for Experiment 2. 
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Appendix R: All results in Auto-Encoder Model for Experiment 2. 
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Appendix S: All results in K-means Model for Experiment 3. 
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Appendix T: All results in HMM Model for Experiment 3. 
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Appendix U: All results in Auto-Encoder Model for Experiment 3. 
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Appendix V: All results in K-means Model for Experiment 4. 
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Appendix W: All results in HMM Model for Experiment 4. 
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Appendix X: All results in Auto-Encoder Model for Experiment 4. 
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Appendix Y: All results in K-means Model for Experiment 5. 
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Appendix Z: All results in HMM Model for Experiment 5. 
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Appendix AA: All results in Auto-Encoder Model for Experiment 5. 
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Appendix BB: All results in K-means Model for Experiment 6. 
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Appendix CC: All results in HMM Model for Experiment 6. 
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Appendix DD: All results in Auto-Encoder Model for Experiment 6. 
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Appendix EE: All results in K-means Model for Experiment 7. 
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Appendix FF: All results in HMM Model for Experiment 7. 
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Appendix GG: All results in Auto-Encoder Model for Experiment 7. 
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Appendix HH: All results in K-means Model for Experiment 8. 
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Appendix II: All results in HMM Model for Experiment 8. 
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Appendix JJ: All results in Auto-Encoder Model for Experiment 8. 
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Appendix KK: All results in K-means Model for Experiment 9. 
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Appendix LL: All results in HMM Model for Experiment 9. 
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Appendix MM: All results in Auto-Encoder Model for Experiment 9. 
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