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Abstract

Anomaly detection is quickly becoming a very significant tool for a variety of
applications such as intrusion detection, fraud detection, fault detection, system health
monitoring, and event detection in loT devices. An application that lacks a strong
implementation for anomaly detection is user trait modeling for user authentication purposes.
User trait models expose up-to-date representation of the user so that changes in their interests,
their learning progress or interactions with the system are noticed and interpreted. The reason
behind the lack of adoption in user trait modeling arises from the need of a continuous flow of
high-volume data, that is not available in most cases, to achieve high-accuracy detection. This
research provides new insight into anomaly detection techniques through Big Data utilization.
Three classification approaches are presented for anomaly detection techniques that are aligned
with Big Data characteristics: volume, variety and velocity. The classification is supported by
applications of machine learning techniques, such as K-means, Hidden Markov Model,
Gaussian Distribution and Auto-encoder neural network, with an aim to recommend best
techniques to model user behaviour in an adaptive environment. An ingenious implementation
of machine learning techniques has been presented that automatically and accurately builds a
unique pattern of the users’ behaviour. With Big Data characteristics, anomaly detection
techniques have become more suitable tools for user trait modeling. A solution model is
designed and implemented based on anomaly detection outcomes utilizing user traits for an
existing user authentication framework. User traits will be modeled by creating a security user
profile for each individual user. This profile is structured and developed to be a seed for a
strong real-time user authentication method. The implementation comprises four main steps:
prediction of rare user actions, filter security potential actions, build/update user profile, and
generate a real-time (i.e., just in time) set of challenging questions. Real-world scenarios have
been given showing the benefits of these challenging questions in building secure knowledge-

based user authentication systems.
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Chapter 1

1 Introduction

In preventing and detecting unauthorized use of computer systems, user
authentication is the first line-of-defense against cyber-attacks. RFC 2828 defines user
authentication as the process of verifying an identity claimed by or for a system entity [1].
An authentication process consists of two steps: (1) presenting an identifier to the security
system, and (2) presenting or generating authentication information that corroborates the
binding between the user and the identifier. There are many user authentication methods
that are implemented and used to provide secure user authentication. These methods can
be classified under three main authentication categories. (i) “Something-you-know”,
examples include a password, a PIN number (ii) “Something-you-have”, examples include
cryptographic key generators and smart cards. (iii) “Something-you-are”, examples include
the recognition of users’ fingerprint, iris, and face, known to be static biometric measures.

Each of these methods has its own security advantages and pitfalls.

Ouda, [1] has developed a new framework to describe the rise of new generation
user authentication systems. The framework is recommending the leverages of Big Data
analytics and relying on a “something you do”-based verification process. Figure 1.1 shows
the main component of this framework. The framework provided three main components
that indicate the perspectives for the researchers to approach the development of strong
user authentication systems. These components are: (1) Data Security-based Analytics
(DSA) that describe ways to leverage Big Data analytics to have valuable insight of the
users’ data with the appropriate depth needed to deliver up-to-date representation of the
user behaviour, (2) Big Data-driven Authentication tools (BDA), to analyze the captured
user behaviour and focus on the sudden changes of the user’s actions, along with the real-
time uniquely identifiable information to build accurate patterns of the users’ actions in the
form of user security profile, and (3) Just-in-time human dynamics based authentication
engine (JitHDA) that utilizes these profiles to generate a real-time (i.e., just in time) set of
challenging questions. These questions should cover the unique actions that explicitly

represent an instantaneous specific user’s behaviour.



This thesis proposes a novel implementation model for Ouda’s authentication
framework. This model utilizes the Machine Learning-based Anomaly Detection technique
to develop the security potential user profiles by which a structural database of challenging
questions is constructed.

The following sections discuss the motivation for this work and thesis objectives.
The methodology and the thesis contributions are addressed. Lastly, this chapter explains

the thesis outline.

DYNAMICS BIG DATA- @
I'NSIGHT DRIVEN
—> AUTHENTICATION »
METRICS AS A SERVICE
(BDA, JitHDA)

Figure 1.1: The main components of Ouda’s user authentication framework [1]

1.1 Research Motivation

People spend a significant amount of time, in their daily routine, interacting with
social network applications such as Twitter and Facebook. Every time people use credit
cards, their purchase data is not only being tracked but also the products that are being sold
to which group of customers are stored. People and companies are using cloud-based email
services such as those services provided by Yahoo and Google. This is because they offer
compelling functionalities and assign huge amounts of user repositories. These email
providers are using algorithms to scan the email content for keywords aiming to offer some



advertisements toward user interests. For instance, a user may start getting links for hotel

reservations just after receiving a confirmation email about an airline booking.

Having said the above, we believe that many aspects of users’ traits would be
digitally captured in real-time or accumulated for future data analysis. This has turned our
attention to the fact that, with proper analysis of this data an accurate detection of people’s
behaviours can be made and hence their identification factors can be verified, especially
when the results of this analysis are fed into user authentication methods. However, the
continuous flow of high-volume data requires sophisticated data analysis techniques to be
able to examine huge amounts of behavioural evidence so that user traits can be modeled.
In addition, these techniques should have the ability to distinguish between normal and

abnormal actions of users, so that security potential data can be captured.

In this regard, we are in the favor of enhancing the anomaly detection techniques
to be utilized for users’ trait analysis in an attempt that the detected information will

fulfill the needs for the user’s identity verification.

1.2 Research Objectives

The main goal of this research is to build a users’ behaviour analyzer engine to
automatically and accurately detect a range of abnormal actions among high-volume, fast,
and mutable streams of users’ data. The result of these detections should be enough to
structure and develop security user profiles. These profiles provide an image of sensitive
information about the users by which a strong real-time user authentication model can be
designed. In other word, the main goal of this research is to design and implement accurate
and complete models for the DSA, BDA, and JitHDA components within Ouda’s
authentication framework described above. It worth mentioning that, this work has been

build based on the assumption that, all data source is free from any fraud transactions.
The following are the research objectives that support the above goal.

1. Investigate anomaly detection techniques and recent innovative research done in this

area. Also, study Big Data characteristics especially for anomaly detection techniques



and then chose the most effective characteristics to build a novel study for anomaly

detection in Big Data applications.

2. Based on the previous objective (Study for anomaly detection techniques in Big Data),
develop an anomaly detection model that is suitable for Ouda’s user authentication

framework with choosing the best evaluation method.

3. Create a prototype for user authentication systems using anomaly detection outcomes

by generating a sample of user profiles.

1.3 Research Methodology

This section describes the methodologies that are applied in this research for each
objective to design and implement the anomaly detection for user the authentication

framework as follows:

Objective one is a novel study for anomaly detection techniques based on Big Data

which can be completed by the following tasks:

Explore all anomaly detection techniques including the recent research that is

related to Big Data applications.

- Study the Big Data characteristics, sources, features, and applications and choose

the most common V’s related to anomaly detection problems.

- Extract three factors in anomaly detection techniques through the recent research

that match or are related to the chosen Big Data characteristics.

- Identify and classify the collected anomaly detection techniques based on the

factors — Big Data characteristics combination from the previous task.

- Create two comparative studies for the most common techniques in supervised and
unsupervised learning for the recent research papers with specific factors for all

chosen papers and some conditions to choose the papers.



Obijective two is designing an anomaly detection model which can be completed by the

following tasks:

- Choose the most commonly used unsupervised techniques based on Big Data
anomaly detection classification and the comparison study provided.

- Apply most of the popular binary evaluation methods to choose the suitable one for
our research case and develop two sequential accuracy algorithms to make sure the

existing evaluation methods calculate the sequential accuracy.

- Apply the chosen unsupervised techniques from task one in this objective and tune

them with several parameters on nine different experiments.

- Assume different models that are combined from the chosen techniques to get more

analyzation and accuracy.
- Obtain the best model with the best accuracy for every experiment.

Objective Three is developing a user authentication prototype which can be completed

by the following tasks:

- Choose and analyze the experiment results that are suitable for user profile

generation using a specific criterion.

- Design and create user profiles for a sample of anomalous cases from the suitably
chosen anomaly detection results for profile features that are compatible with the

Ouda’s user authentication framework.

- Provide a scenario for creating challenging questions based on the user profiles for

user authentication recommending specific rules to match the high level of security.

- Validate the final challenging questions in the user authentication framework with

strong examples from the user profiles.



1.4 Research Contribution

This thesis focuses on designing and implementing an anomaly detection technique
suite for Ouda’s user authentication framework. Initially, it offers a study on Big Data for
anomaly detection techniques which has three classifications. These classifications are
completed based on three Big Data characteristics that are related to the three factors in
anomaly detection techniques; Volume with data features, Variety with the natural types
of data, and Velocity with computational complexity. Each one of the classifications
describe the common machine learning (ML) techniques that are used in recent research.
These classifications helped me to choose the best model fit with the best problem. Two
comparison studies (supervised and unsupervised techniques) over a number of recent
research papers are presented for the chosen ML models with specific comparison factors

and some research paper standards.

This thesis also proposes an anomaly detection (AD) model that contains a
combination of several techniques that are suitable for Big Data applications. The AD
models are combined with several machine learning techniques; K-means, Hidden Markov
Model (HMM), Auto-Encoder NN, and Gaussian Distribution. In total, the applied models
and techniques are seven; the four basic techniques and three combined as follows: 1) K-
means with Auto-encoder NN, 2) HMM with Auto-encoder NN, and 3) K-means, HMM
and Auto-encoder NN. These models are applied on nine different experiments and give
good detection results. The experiments are applied to a variety of fields such as financial
payment systems, insurance systems (health, auto, home), computer server monitoring
systems, and network transmission systems. Figure 1.2 shows the nine experiments related
to the fields and sizes. Most of the common evaluation methods are applied in this thesis.
Confusion matrix, true positive rate (TPR), and true negative rate (TNR) are chosen for

comparing the results because they match the research needs.
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Figure 1.2: Nine Experiments, Fields and Sizes

Finally, this thesis proposes a scenario of generating security questions based on a
desired anomaly detection model and user profiles. This scenario provides strong examples
of challenging questions from a sample of user profiles that are created after anomaly

detection analyzation has been done on Big Data.

The research contributions of this thesis have been published in several conference
proceedings in the areas of information security and data analytics. Therefore, these

contributions have been peer-reviewed by experts in the field.

1.5 Research Outline

The thesis structure is ordered as follows. Chapter 2 provides a literature review of
anomaly detection techniques and background on the user authentication system as well as
theoretical information of the most commonly used anomaly detection techniques. In
Chapter 3 we present and discuss anomaly detection techniques in Big Data applications
by providing three classifications for the commonly used anomaly detection techniques.
An anomaly detection model is discussed in high detection accuracy as well as how this
final model is combined and chosen with result discussions in Chapter 4. Chapter 5
discusses a scenario on how a challenging question would be created using anomaly
detection results including how user profile generation is achieved. Chapter 6 concludes

with the thesis and addresses the future work recommendations and directions.



Chapter 2

2  Literature Review and Background

This chapter presents a literature review of the current anomaly detection
techniques on Big Data and the known classifications. It also presents an in-depth concept
of anomaly detection and its mechanism in some applications as well as commonly used
anomaly detection techniques. Finally, it overviews user authentication techniques in

general and explains more details in the related knowledge-based applications.

2.1 Literature Review

The term “anomaly” is defined as something that deviates from what is standard,
normal, or expected. In data science, a data anomaly is not far from this definition.
However, the deviation from the standard or expected data might be due to errors in the
data or due to correct data that is triggered by uncommon, but accurate actions. In both
cases, the detection of these deviations is desirable whether to correct the errors (if any),
or to gain better insight on data. Many anomaly detection techniques exist in academic
literature, and share the same purpose, that is to differentiate between what is normal and

abnormal.

There are three broad categories of anomaly detection that are classified based on
the type of the datasets they are working on, i.e., whether the data is labeled or not.
Supervised anomaly detection techniques detect anomalous data based on the available
labeled data for both anomalous and normal labels. Unsupervised techniques detect
anomalous data based on unlabeled data. Semi-supervised anomaly detection techniques

assume that the labels exist only for normal data, while the anomalous data is detected [2].

Under these three categories, anomaly detection techniques can be further divided
into six subcategories. Although there are many classifications in the literature, we will
address the most common approach among researchers. Figure 2.1 illustrates this
classification approach. Classification techniques build classifiers based on labeled training
sets to distinguish between normal and abnormal test data and are most likely used as a

specific type of the supervised techniques. Nearest neighbour techniques utilize the



similarity or distance between samples to detect the anomalous data. Clustering techniques
group the data to detect the individual or group anomalies among normal group data.
Spectral techniques embed the data into a smaller subspace to find the differences between
normal and abnormal data. These three groups are mainly used to further classify both the
semi-supervised techniques. Moreover, statistical and informational theories would be
used to classify the unsupervised techniques. Statistical techniques assume high probability
for normal data and low probability for anomalous data. Information theory techniques
detect anomalous data through the irregular information content in the dataset. The reason
behind this classification is highlighted by the following scenarios. Each scenario describes

the applicable types and examples that would be used.
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Figure 2.1: Anomaly Detection Categories

There are many popular classifiers that have been used in anomaly detection such as
neural networks, support vector machine, Bayesian networks and rule [2] - [6]. In the
nearest neighbour category, there are two types of techniques, namely, k™ nearest
neighbour and density nearest neighbour. The former computes the anomaly score using
the similarity between a data sample and its k™ nearest neighbour. However, the later
computes anomaly score using the relative density of each data sample. Similarly,

clustering techniques have three types based on three assumptions:

1) Anomalies do not belong to any cluster but normal data belongs to a cluster.
2) The closest data to a cluster centroid is normal data whereas the far data are anomalies.

3) The large clusters contain normal data yet anomalies exist in small clusters.
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Statistical techniques can be divided into parametric and non-parametric types. The
normal data is produced using a parametric distribution in parametric type such as Gaussian
Model, Regression Model, and Mixture of Parametric Distributions. But a non-parametric
type does not consider any parametric distribution such as histogram model and kernel
function. Information theoretic techniques use several measures to analyze the information
content using Kolomogorov complexity, entropy, and relative entropy. The spectral
techniques use dimensional reduction techniques by employing Principal Component
Analysis (PCA) and Compact Matrix Decomposition. Figure 2.2 summarizes the above

scenarios including the examples and types of anomaly detection techniques.
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*Neural network
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Figure 2.2: Anomaly Detection Techniques Types and Examples

Our aim in this work is to shed light on Big Data-enabled anomaly detection
techniques. Researchers define Big Data as datasets that possess the characteristics of the
3Vs (Volume, Variety, and Velocity). Volume refers to the scale of the data. Variety refers
to the heterogonous data presentations such as unstructured, semi-structured, and
structured data. Velocity refers to the pace at which data is generated. When data becomes
Big Data, the above classifications of anomaly detection needs to be reinvestigated (in a

later chapter).

Chandola, et al. [2] discussed the anomaly detection techniques with several
aspects. However, the authors do not include the characteristics of Big Data in their survey.
Moreover, Rana, et al. [6] give guidelines for Big Data but it is specific to a data stream
type. Other recent surveys study the characteristics of anomaly detection against some
specific datasets. For instance, Wu [7] focuses on time series datasets which can ignore
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other types of datasets. Also, Patil and Biswas [8] have an anomaly detection survey with
only video datasets. While some surveys concentrate on some types of data, other research
papers have an emphasis on a specific anomaly detection application. For example, Anand,
et al. [9] Al-Musawi, et al. [10] have anomaly detection surveys on Border Gateway
Protocol and online social networks respectively. Kaur and Singh [11], Fanaee-T and Gama
[12], have anomaly detection surveys which include general information for most

techniques without a real implementation.

This literature review includes many anomaly detection techniques that need to be
explained. The next section will give the important background information for anomaly

detection mechanisms and the techniques that will be used in this research.

2.2 Anomaly Detection Techniques

Generally, anomaly detection works with both supervised (detection of anomalous
data based on the labeled data for both anomalous and normal labels) and unsupervised
(detection of anomalous data based on unlabeled data) machine learning techniques.
Furthermore, the reasons to prefer an unsupervised machine learning technique in anomaly
detection systems, even if there is a labelled 0 for normal and 1 for anomaly data are:

- Asmall number of positive (anomalous) data

- Alarge number of negative (normal) data.

- The existence of many different types of anomalies, which makes it hard for an
algorithm to learn, especially if positive data is small.

- And, in this work, the user authentication application requires to deal with unlabeled
data (the labels will be used only for the evaluation part).

An anomaly detection approach is when an unlabeled training set is used to build a
model P(x); where p is the type of model (probability, clustering, or hierarchy), and x is
some data attributes (A.K.A. data features, or just features) of the unlabeled training set.
Therefore, an anomaly detection model of x has been built, then new instances (a test set)
should be analyzed. If p of x-test is less than some specific criteria such as the threshold

probability value, then the model will flag it as an anomaly, as shown in Figure 2.3. The
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model mechanism will be more transparent by explaining some existing anomaly detection

applications.

Unlabeled Training Data

' Threshold Value

Anomaly Flag

T g P(X) Model gVt

Figure 2.3: Anomaly Detection Diagram

The next section will explain in detail some examples of anomaly detection
applications. Moreover, if a platform has many users, and each of these users takes different
activities, the platform such as a website can compute different data features of users’

activities.

Using these features, the model can be built to produce some results like, “what is
the probability of different users behaving different ways?” and “what is the probability of
features of a user’s behaviour?” At this point, the user’s activity features are known from
the model results that is already built. An example of that could be “how often a particular

user logs in or does transactions?”’

Finally, the model can identify the strange user behaviour on the platform by
checking the results under a threshold value. It can also create users’ profiles for more
analysers or request further verification from those users to guard the platform against
strange or fraudulent behaviour. This system is used by many online platforms to detect
not only stolen or fraudulent behaviour but also the abnormal behaviours for any further

purposes.

Another anomaly detection application can be applied in the manufacturing process

where unusual products could be found getting more reviews. These reviews can be used
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to enhance future manufacturing. A third example of anomaly detection application is in
monitoring computer systems in a data center that utilizes online and offline machine
learning techniques to detect abnormal computer behaviours such as different amounts of
memory use, different numbers of disc accesses, and different CPU loads. The machine
learning techniques used in these applications are very widely different. However, there
are several popular unsupervised machine learning techniques what will be explained in

the next section and used in this research.

The purpose of this work is to build and create a unique knowledge-based
authentication system that relies only on the abnormal actions of users to be the base of the
challenging questions. This system utilizes the anomaly detection technique such that the
answers of the challenging questions are known only by the legitimate user and easy to

remember.

Anomaly detection techniques have been successfully used in Big Data
applications, user profile-based systems, and unsupervised-based techniques. Recent
research has increased in Big Data applications for anomaly detection system such as [13]
—[17]. In [13], Gupta, et al. developed an advanced system with a highly accessible feature
that is suitable for Hadoop clusters monitoring in real-time. In paper [14], Abu Sulayman
and Ouda stated a unique vision for Big Data applications in anomaly detection techniques.
This unique insight has a practical application using two machine learning techniques and
three new classifications. Mehnaz and Bertino in this paper [15] suggested the anomaly
detection approach which established strong user profiles by analyzing the timestamp data
of users’ files and the temporal characteristics using a multilevel temporal data structure.
Henriques et al, presented machine learning techniques which have self-learning user
profiles in IDS systems [16]. Research [17] proposed a technique that detected the trends
of abnormal behaviour then alerts the administrator and the user in real-time. Three kinds
of techniques; regression, unsupervised classification, and simple statistical techniques
were tested. Sometimes, it is vital to have an anomaly detection system that is suitable in a

specific Database.
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Other recent research has explored user profile generation for anomaly detection in
specific databases [18] — [22]. A database proposal is designed for anomaly detection to
develop the accuracy of database anomaly detection and to generate the users' profiles
accurately in [18]. A technique is proposed to find the anomalous data in database using a
classification machine learning technique by Ramachandran et al. in [19]. Pannell and
Ashman proposed an IDS system for a host-based behaviour that utilized user profiles in
anomaly detection to characterize every behaviour by combining the results of multiple
features to develop detection performance [20]. A software prototype is improved by
Corney et al., which recognized anomalous data based on behaviour patterns, then alarms
administrators when such data are recognized [21]. The research paper [22] introduced a
novel user profiling mechanism which covered all accessible resources and relevant
characteristics upon on the cybersecurity perspective. The proposed technique contained
seven profiling principles to collect user information and more than 270 characteristics to
generate the user security profile. Many machine learning techniques are suitable for user
profile AD systems, although, clustering-based techniques, HMM’s, and Auto-encoder

neural networks are more commonly used in recent AD research.

K-means clustering based technique has been increased in recent research in AD
systems. Jeyauthmigha and Suganthe designed a network anomaly detection frame with
three clustering techniques in two stages: training and detection. The stages used three
algorithms computed one after another. One of the algorithms is K-means clustering [23].
Ahmed proposed a hybrid technique for the anomaly detection framework. The hybrid
technique has two algorithms: one is clustering the input network traffic dataset to create a

collective anomaly, and one is re-clustering [24].

lyer, et al. [25] presented fraud detection using a Hidden Markov Model, which is
trained with the normal user behaviour and tested for both normal and fraud user behaviour.
Also, they compared HMM with other methods to prove that HMM is the more preferred
method. Zhu, et al. introduced a framework for anomaly detection using the Hidden
Markov Model and Support Vector Machine to detect the abnormal events. They deployed
the method on an IDS system to evaluate results [26]. Rahmani and Almasganj utilized
auto-encoder and HMM to detect three different types of visual features inside a lip-reading



15

task [27]. Wang, et al. described the entire process of fraud detection using the Hidden
Markov model and K-means algorithm. The model is trained using the normal user
behaviour account to detect not accepted behaviour by considering the high probability as
fraudulent [28].

Our approach compares three machine learning techniques; K-means clustering-
based technique, HMM maodel, and Auto-encoder neural networks to detect anomalies in
high accuracy as part of a user authentication framework. These three techniques have the
different internal structure to discover the anomalous data. The understanding of internal
structure improves the implementation results. Though, the internal structure of these
techniques is explained briefly in the following subsections to simplify the resulting

discussion.

2.2.1 Extra-Tree Classifier

Extra Tree (extremely randomized trees) classifiers are an ensemble learning
method fundamentally based on decision trees. It randomizes certain decisions and subsets
of data to minimize over-learning from the data. It builds multiple trees and splits nodes
using random subsets of features. More variation in the ensemble will introduce how we
can build trees [29]. Each decision base will be built with the following standards:

e All the data available in the training set is used to build each stump.

e Any node is performed using the best split which is determined by searching in a
subset of randomly selected features. The split of each selected feature is chosen
at random.

e The maximum depth of the decision base is one.

2.2.2 K-means Clustering

K-means clustering is one of the unsupervised anomaly detection techniques that
proves its” high accuracy results in this domain. The main idea of the K-means clustering
technique is to initialize several centroids Ks (as shown in Figure 2.4) based on randomly
generated points within the data domain. Then, it will calculate the distance between every
instance and the nearest centroid to this instance. After that, a step will occur to update the
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centroid’s positions based on the distance calculation. At the end, every data sample n

should belong to the nearest cluster.
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Figure 2.4: K-means Clusters

Clustering is a process of classifying data observations into different classes. Each
cluster has a centroid. The observations in one cluster have great similarity, but
observations between different clusters have less similarity. Suppose X =
{x1,X;,X3,**,X,} IS a dataset in a given space. The data observation is classified by n
numbers of clusters where C (1 < C < n) clusters based on their similarity. The cluster

centroids are:

ny
1
C, = _Z x® 2.1
ny i=1

The objective function of clusters is:

c n

. 2
min Z Z|X1@ - C;

r=1j=1

(2.2)

Where i = 1,2,3,::-,n ; n, is the number of data observations in cluster r;
represents that data observation (Xi) belongs to cluster r ; r = 1,2,---,C; C(1<C<
n) represents the number of cluster centroids; and n is the total number of data observations
in the dataset [30], [31]. Finally, the algorithm can be summarized in five steps:

1) Cluster centroids initialization.
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2) Assign data observations to clusters

3) Calculate the similarity between observations and centroid.
4) Update the cluster centroids positions

5) Repeat steps 2, 3, and 4 until no movement for centroids.

2.2.3 Hidden Markov Model

The Hidden Markov Model (HMM) has two hierarchy levels, which makes a
multiple embedded stochastic process. HMMs can be used to analyze much more
complicated stochastic processes as compared to a traditional Markov model. HMMs
contain a set of transition probability matrices related to a finite set of states. The state
outcome or instance is produced using an accompanying probability distribution. It is only
the outcome and not the state that is visible to an external observer. HMMs have many
typical applications in various areas such as speech recognition, bioinformatics, and
genomics. Three main components can characterize an HMM as the following list and

Figure 2.5 explain:

- Xs the number of states in the model.

- Y is the number of distinct observation symbols per state. The observation symbols
correspond to the physical output of the system being modeled.

- The green and black lines in Figure 7 present the state transition and the output

probabilities matrix, respectively.

Figure 2.5: HMM Diagram
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The HMM is a doubly stochastic model, expanded from the basic Markov model.
A Markov chain contains a set of states, S = {s4, s, S3, ....,S;-}. The process starts in one
of these states and moves successively from one state to another. The probability of moving
from one state to another does not depend on which states the chain was in before the

current state.

HMM is an underlying stochastic process that is not observable but can only be
observed through another set of stochastic processes that produce the sequence of observed
symbols. An HMM is notated asA = (A, B, ), where, A is the state transition probability
matrix, B is the observation symbol probability matrix, and = is initial state probability

vector.

There are three key problems for HMM when given the observation sequence 0 =
{01, 02, 03, e OT} and the HMM )\ = (A, B,T[ )

. How to work out the probability Pr(O|A).
. How to choose a state sequence I = {ij,iy,i3,*,1,}
. How to adjust the model A = (A, B, ) parameters to maximize Pr(O|A) .

HMM is a powerful model for anomaly detection. We can use HMM to build a
model of normal behaviour where the HMM’s states represent some unobservable
conditions of the system [32]. The HMM based anomaly detection method takes the
following steps:

1) Train HMM based on normal observations.

2) Calculate the system state of the normal behaviour.
3) Calculate the system state of the new data behaviour.
4) Detect anomalies.

2.2.4 Neural Network - Auto-Encoder

Artificial neural network (ANN) is one of the most common network architectures.
Basically, a simple artificial neural network only includes one or two hidden layers in
addition to the input layer and output layer, from which is also a processing component

similar to the hidden layers as shown in Figure 2.6. Furthermore, the input layer receives
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the dataset. Then, the hidden layer can be one or more layers based on the problem
complexity and the neural network type. Finally, the output layer will generate the result
of this technique. The number of neurons for each layer depends on the data size and
network type. All the neurons - except the output one - are connected to the neurons in the
next layer with weights values. A neural network has several techniques that are frequently
used in anomaly detection classifications due to their capability to classify the classes of
datasets and their high accuracy in noisy data. These techniques are applicable to one class
and multiclass problems. Feed forward neural, Auto-encoder neural, Recurrent neural, and
Convolutional neural networks are the most popular neural networks that are used for

anomaly detection techniques.

Input Layer
Hidden Layer
xl
' Hy Output Layer
X, H,

Figure 2.6: Simple Artificial Neural Network

Auto-encoders are a form of neural networks that attempt to learn an approximation
of the identity function and reproduce the input to the output format. Accordingly, auto-
encoders do not require any label or output to be trained or learn how to reconstruct the
input. A simple auto-encoder can be formed from an input layer, one hidden layer and an
output layer. The hidden layer usually has a smaller dimension than the input layer in order
to learn the latent space representation of the input. The output layer usually has the same
dimensions of the input layer since it is trying to predict it. Figure 2.7 shows a basic

diagrammatic representation of an auto-encoder.



20

Input Layer Output Layer

Figure 2.7: Auto-Encoder neural network Model

An auto-encoder includes two parts: encoder and decoder. The encoder aims to
compress input data into a low-dimensional representation, and the decoder reconstructs
input data based on the low-dimension representation generated by the encoder.
Furthermore, an auto-encoder can encode a representation of an input layer into a hidden

layer and then decode it into an output layer [33].

The auto-encoder based anomaly detection method takes the following steps:

1) Encoding the input data.

2) Reconstruct the data through the decoding.

3) Calculate the reconstruction error.

4) Use a threshold value for the reconstruction error to assign anomalies data.

2.2.5 Gaussian Distribution Model

To perform anomaly detection through Gaussian distribution, there is a need for
data distribution. Given a training set {x@,---,x(™3} - where x® € R™ the Gaussian
distribution should be estimated for each of the features. For each featurei = 1,---,n, the
parameters ; and o that fit the data in the i-th dimension should be found for each

example.

The Gaussian distribution is given by equation 3:
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Where [ is the mean and a2 controls the variance. Gaussian parameters which are
(u; o) of the i-th feature will be estimated using equation 4 for the mean and equation 5

for the variance.
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The first function is to take the input data and output an n-dimension vector mu that
holds the mean of all the n features and another n-dimension that holds the variances of all

the features. After calculating the parameters, we need to select a threshold.

One way to determine which examples are anomalies is to select a threshold based
on an F1 score on a cross validation set. The F1 score is computed using precision (prec)

and recall (rec) using equation 6, 7, and 8:

F; = (2-prec-rec)/(prec + rec) (2.6)
prec = tp/(tp + fp) (2.7)
rec = tp/(tp + fn) (2.8)

Where tp is the number of true positives, fp is the number of false positives, and

fn is the number of false negatives.

2.3 User Authentication

Recently, user authentication has become the most popular topic in information
security research environments. The definition of user authentication is stated as the

process of verifying an identity claimed by a user for a system entity. An authentication
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challenge is a method used to distinguish between true or false authentication requests.
User authentication has a variety of techniques that can identify the valid users in protected
resources as it is shown in Figure 2.8. User authentication can be broadly classified into
four groups based on something the user “is”, “knows”, “has”, and “does”. Usually, body
parts are used in “something the user is” which are called biometric technology such as a
fingerprint. Mostly, “Something the user has” uses a physical (non—body parts) thing to
authenticate the user, for example, cards, keys, and so on. “Something the user knows”
uses the user’s knowledge such as an ID number, or Password. “Something the user does”
IS a new user authentication process that has been researched in recent years. This uses the

user’s activities such as Knowledge-based authentication (KBA) [34].

User Authentication Techniques
Something : ] Something
you are Something you know Something you have you do
Part of the Knowledge Owning Activities
user
Biometric ID I Password I PIN Cards I Keys Typing

Figure 2.8: User Authentication Techniques

KBA is an authentication system in which the user should answer a set of
challenging questions (or at least one) to be authorized. Generally, the challenging
guestions have two major categories; static and dynamic [35]. The static questions are the
most commonly used, but it is considered weak authentication. One common application
for a static security questions is “Fallback Authentication” that is a backup for
authentication techniques in the lost cases. Moreover, fallback authentication is usually
used when people lose their authentication access due to changes or forgetting the
authentication requirements such as forgetting a password or username. Fallback
authentication identifies the user through personal information and allows the authenticated

user to re-access their resources [36]. However, this static question is a vulnerable way to
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ask in Fallback Authentication because the answers can be found easily in many sources,

especially in social media [37].

The second type of challenging questions have more invulnerability than the first
type due to the dynamic way of asking the questions. These dynamic questions are
generated using credit or a public user’s information, which makes it sometimes easy to
find, especially in social media apps [35]. The stronger way to produce a secure dynamic

question achieves a more secure system against any fraudulent or abnormal activities [39].

As a result, unique dynamic security questions should be investigated with several
features; a set of challenging questions based on abnormal user activities using short term
history and is not repeated. This new way of asking the dynamic security questions can be
generated based on studying the abnormal activities of the user behaviour utilizing anomaly

detection.
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Chapter 3

3  Big Data Anomaly Detection Classification

The literature review in chapter 2 shows that the most common classifications in
anomaly detection techniques have a lack of Big Data insights. Our main contribution in
this chapter is to shed light on Big Data anomaly detection techniques. In this chapter, three
classifications of anomaly detection techniques in Big Data will be provided based on the
Big Data definition in chapter 2. Three specific factors in anomaly detection techniques
will be considered for the classifications with the related three big data characteristics. The

factors combine with the characteristics as shown in Table 3.1.

Table 3.1: Anomaly Detection Factors with Big Data Characteristics

Anomaly Detection | Time The Nature of the | The Data Features
Factors Complexity | Data
Big Data Characteristics | Velocity Variety Volume

3.1 Velocity - Time Complexity Classification

Anomaly detection can act as two major categories based on computational
complexity, because the velocity of big data will affect the algorithm’s time, including all
the previous categories as shown in Figure 3.1. Linear computational complexity is a lower
time complexity for the techniques. On the other hand, quadratic computational complexity
is a higher time complexity. In addition, new types of applications for anomaly detection

have been recently raised.

Big Data Anomaly Detection Techniques

Linear Quadratic

Supervised Unsupervised Supervised Unsupervised

Classification Clustering Statistical Information Spectral Classification N_earest
Theory neighbour

Clusetring Statistical Spectral

Heuristic Eingle parametri | BasicNearest L Pairuise |_ kernal
Decision Tree - &= parsr Standard PCA SVMs " distances " PCA
techniques distributions neighbour techniques techniques

Linear time K-means complex
SVMs distributions

Neural Network| LOF Techniqueswith

Figure 3.1: Velocity - Time Complexity Classification
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Each category in time complexity uses both techniques; supervised and
unsupervised. In the linear time, the linear SVM and decision tree under the classification
techniques are examples of linear supervised techniques. The unsupervised techniques for
linear time include clustering, statistical, information theory, and spectral. On the contrary,
quadratic supervised techniques have SVM and neural network classifiers. Similar to linear
unsupervised techniques, quadratic unsupervised techniques have four types; nearest

neighbour, clustering, statistical, and spectral.

3.2 Variety - Data Nature Classification

There are several types of data that can affect the classification of anomaly detection
techniques as shown in Figure 3.2. In general, the data has three types based on the data
structure. 1) Structured data is organized information that can be easily stored, entered, and
analyzed, 2) Semi-structured data is semi-organized information that has some sort of
properties, and 3) Unstructured data is not organized information such as free documents

or files. Under these three data types, the Big Data sources are listed with many examples.

Big Data Sources and Types
I

| | | |
Structured Semi-Structured Unstructu red|

1 | | | |
—| Time Series | [=]  Emails Website Mobile Data Media Social Media Text
= Numeric | == Zipped Files You Tube I Text Messagel Videos | Facebook I Word files
=1 Currency | = XML ; : - Spread
Amazon Location I Audio I Twitter Sheets
=1  Codes =t  JSON Digital Photo Linked in

Figure 3.2: Big Data Sources and Types

Anomaly detection can be grouped into four categories based on the nature of the
data because the variety of Big Data will affect the algorithm type, which is shown in the
previous figure. These four categories are the most popular data sources which are time
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series, text, social media, and media. Every data source has some commonly used anomaly

detection technique as shown in Figure 3.3.

‘ Variety - Data Nature Classification ‘

Figure 3.3: Variety — Data Nature Classification

Time series, under the structured data as explained before in figure 4, includes five
popular anomaly detection techniques; statistical, clustering, nearest neighbour,
classification, and deviation. For every type, there are several examples. Unstructured data
has many important sources; however, the major source is chosen. Text source is one of
the major unstructured data sources that has many relations for other sources such as
mobile data and websites. The text data have statistical, classification, and clustering
anomaly detection techniques. Also, social media is an unstructured data source that has
several anomaly detection techniques based on behavioural and structural approaches.
Likewise, media sources are an important unstructured data source which will be divided
into image and video data. Image data varies with four anomaly detection techniques;
classification, clustering, statistical, and nearest neighbour. Video data includes nearest

neighbour, clustering, and some classification techniques such as SVM and neural network.

3.3 Volume - Data Feature Classification

The anomaly detection techniques can be broken into two major categories based
on feature types, because the volume of Big Data will affect the anomaly detection
techniques; univariant and multivariant techniques as shown in Figure 3.4. Under each

feature type, there are two data types; discrete and continuous.
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Big Data Anomaly Detection Classification Based on Feature Types

Univariat Multivariat
A I 1 | A I 1 |
Discrete Continuous Discrete Continuous
] ]
R - Statistical e . Statistical
Classification Techniques Techniques Classification Techniques Techniques
1 1
A ! | A ! |
: Categorical |_| Nearest Neighbour : Categorical || Nearest Neighbour
Binary (One Class) Multi-Class) Techniques Binary (One Class) (Multi-Class) Techniques
= SVM = Neural Networks = SVM = Neural Networks
Neural - Bayesian Networks | Neural - Bayesian Networks
Networks 4 Networks Y
== Rule = Rule == Rule = Rule

Figure 3.4: Volume - Data Feature Classification

The classification techniques under the discrete type will be divided into one class
and multi-class for both feature types. On the other hand, the continuous data will have
statistical and nearest neighbour techniques for both feature types.

3.4 Comparison Study

A comparative study of support vector machines and neural network techniques
will be presented. We will compare between the techniques based on selected factors which
will allow researchers to drive critical thinking ideas such as choosing a suitable model for
certain problems and conditions. The criteria of choosing the research papers depend on
two shared factors: the approach type (SVM or NN) and anomaly detection problem. The
result of this study is expressed in Table 3.2 for SVM and neural network respectively.
Only Neural Network will be implemented in this thesis because it will be suitable for our
application. However, SVM has been researched in term of helping researchers choosing

the best model regarding their problems. Where AUC represents Area Under Curve.
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Kernel

Problem

Problem

Type Domain Accuracy NN Type Domain Accuracy
Gaussian Feed
kermel | Call | 0983 (AUC) | Forward | (EECREE o)
[13] Y [47]
Linear - 0.982 Cyber-
kernel | Wi 802111 . csificatio | RNN [48] | Physical N/A

Networks
[39] n) Systems
Linear Wireless
kernel Sensor (()dthelction) ?LE]CNN Video Data N/A
[41] Networks
Gaussian .
kernels IIDedtroIeum N/A Fe(;zdForw [()jrlve_r];_ . 0.81(overall)
[42] ndustry ard [50] Identification
Gaussian | o1 pam - | 0.96 Electro- 0.99
kernels MLP [51] . A
[43] and Levee (F1-score) cardiogram (classification)
Gaussian

. 0.8773 Local ISP .

l[fdrf?el Geological (AUC) MLP [52] Network 0.96(detection)
Gaussian | ¢ g 0.9995 Planting 0.846
kernels . ANN [53] -
[45] Computing | (overall) Calendar (prediction)
Gaussian

Radar Web 0.97
Ifjg?els Imagery 0.97(overall) | RNN [54] Applications | (detection rate)

A comparative study of K-means Clustering, HMM, Auto-Encoder Neural

Network, and Gaussian Distribution will be presented. We will compare between the

techniques based on selected factors which will allow researchers to drive critical thinking

ideas such as choosing a suitable model for certain problems and conditions. The criteria

of choosing the research papers depend on two shared factors: the approach type (K-means,

HMM, NN, or GD) and anomaly detection problem. The result of this study expressed in

Table 3.3 for K-means, HMM, Auto-Encoder, and Gaussian Distribution respectively. DA

is the detection accuracy. All the models will be implemented for a comparison task.
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Table 3.3: K-means, HMM, Auto-encoder, and Gaussian Distribution Comparison

Table

K-means Clustering HMM

Problem Cluster o : States o

Field Number DA/% | Problem Field Number DA/%

Network

attack[55] 50 96 Health care [63] 107 95

'[\é%t]""ork attack | 93.9 | Home activity[64] | 10 87

Network attack computer systems

57] 8 98 [65] 3 91.578

Network attack computer system

[58] 60 81 [66] 2 90

Network

attack[59] 100 80.119 | Network [67] 2 92.25

Network attack computer network

[60] 5 92 [68] 20 86

Cloud

Computing [61] 26 96.44 | System Calls [69] | 6 81.7

Smart Grid [62] | 3 01 [07%%”'“"9 Radio |, 80

Auto-Encoder Gaussian Distribution

Problem Field | Encoder Type | DA/% PFOb'em Gaussian DA/%
Field Type

Web School Electricity | Combined-

Attacks[71] Stacked 88.34 Consumption [79] | regression 89

System . Dictionary

Logs[72] Convolutional | 94 Learning [80] background | 94

c[:%r]muter vision Deep 97 Network [81] Graphical 86
Hyperspectral .

netw_ork_ Variational 95 image I\/_Iulﬂ . 91

monitoring [74] . dimensional
processing[82]

Credit Card . . Combined-

Transactions gggs;p/f d- 96.85 gﬁs i-;g r[bslg]e Deep 99.75

[75] g Learning

Video and | sparsity and .

localisation [76] | reconstruction 82 Bankruptcy [84] multivariate | 89

infrared

spectroscopy Stacked 95 Network attack Mixture 99.39

[77] [85]

Negative Health hyperspectral i

Events [78] LSTM 87 imaging [86] SMV-SCM 193
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3.5 Summary

The three classifications that are provided in this chapter cover anomaly detection
techniques in Big Data applications. These classifications inspired us to build an anomaly
detection system using combination models of the machine learning techniques that are in
the classifications. The next chapter will explain in detail the proposed anomaly detection

system.
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Chapter 4

4  Proposed Anomaly Detection System

This chapter proposes an anomaly detection system in novel combination models
containing machine learning techniques. The combination models rely on several
unsupervised techniques for the same reasons that are mentioned in Chapter 2. Figure 4.1
lists all machine learning techniques that are used and their purposes. Parameter tuning
step will be explained in every model. In addition, this chapter will explain the common
evolution methods as well as the proposed sequential evaluation algorithm to evaluate the
model in a very accurate way. This chapter will also provide a detailed discussion and
comparison between all the models and present evaluation methods including the final and
best results. Finally, a chapter summary will recap the most important outcomes in this
chapter to utilize these outcomes in the next authentication step.

=] K-means for Clustering

mad  HMM Model for Sequencial Detection

sl Auto-encoder Neural Network for Reproducing Data

mad Extra tree Classifier for Feature Importance

sl Gaussian Distribussion for Probabilty Results

=l Principal Component Analysiz for Data Reduction

Figure 4.1: Used Machine Learning Techniques and their purposes
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4.1 General Architecture

Anomaly detection systems, in general, have three known steps: first, to choose and
prepare the most inductive features for anomalous observations. Secondly, fitting the
technique parameters to learn the normal behaviour. Lastly, to feed the new examples to
the technique for the detection process. Overall, the proposed anomaly detection system

architecture can be divided into five parts in Figure 4.2.

Big Data Pre- I]YI achme Fitting Feed New
: . earning :
Collection Processing Model Parameters Observations

Figure 4.2: Anomaly Detection Proposed Architecture

In this research, we assumed that the data is collected from different Big Data
sources. Prior to anomaly detection processing, there is a preprocessing step if the data
needs to be preprocessed. Normalization is one of the data preparing steps that makes the
data values in one scale to have more accurate results. There are several methods to
normalize the data. However, mean normalization is an efficient method to normalize the
attribute values through the following equation:

x==F (4.1)

S

Where x is the input data attributes, p is the mean value, and s is the standard
deviation value. The second preparing step is categorizing which attributes need to be
categorized before the processing step because it contains text information, or if it is
difficult to analyze. For example: if a gender attribute has two values in a dataset; Male

‘M’ and Female ‘F’. We categorized it as 1 for male and 2 for female.

Due to the massive amount of data, anomalous patterns will not be clear with a lot
of normal patterns. As a result, dimensional reduction is one of the vital preparing methods
which can be done using many techniques. The Principle Component Analysis (PCA)
technique is a prevalent method for this preparing step (dimensional reduction). This

aggregates the data attributes into smaller attributes. Moreover, it assumes that the data is
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a matrix m-by-n dimension. Each row in the matrix determines feature values for a user in
a time stamp. Formally, PCA is a projection method that maps a given set of data points
onto principal components [3]. The first step is to convert the datasets into a matrix and
find the relationships among the features by calculating equation 4.2.

c=X'*X (4.2)

Where X is the input data and C is called a covariance matrix. Then, we will find
the eigen values and eigen vectors of the covariance matrix sigma and sort them
decreasingly which is also called an eigen decomposition. The eigen values (W) is the
variance in the dataset and eigen vectors (Lambda) is the corresponding direction of the
variance. After that, we will select a number of W corresponding to Lambda which is 2 in
our problem. The data features will be reduced based on this number. The last step is to
calculate the reduced data by multiplying the Lambda with only two vectors with datasets.

We have this shown in equation 4.3.
Reduced Data =X =W (4.3)

Lastly, the data will be split into train, cross-validation, and test sets, as shown in
Table 4.1. The training dataset will only have 60% normal observations and no abnormal
observations to learn the technique different than the normal patterns. The cross-validation
and test datasets will have 20% of the normal observations, and the abnormal observations

will be split equally between them to feed the new abnormal observations and evaluate the

detection.
Table 4.1: Data Splitting in Anomaly Detection System
Datasets Normal Observations Abnormal Observations
Train set 60% 0%
Cross validation set 20% 50%
Test set 20% 50%
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Then, a training anomaly detection system using several machine learning models
will be used as unsupervised techniques to assign the anomalous data. After that, an

evaluation method will be used to calculate the model’s accuracy.

4.2 Anomaly Detection - Machine Learning Models

An anomaly detection problem is a binary classification problem in terms of
machine learning problems. So, the final results will be varied between Os and 1s. To obtain
the best result, a comparison will be provided in the discussion section between the three
machine learning models. The understanding of model usage is crucial to enhance the

discussion. The model’s usage is explained in the next subsections.

4.2.1 K-means Clustering, HMM, and Auto-encoder Models

This model utilizes K-means clustering to assume that the big data has several
clusters and assigns random centroids positions for every cluster based on observations
concentration. This model can work with one cluster or more. In the case of one cluster,
the technique will assign one centroid for the whole data then several steps can be taken.
For example, the threshold distance value from the centroid will be flagged as an anomaly.
In the case of two clusters, it can be done in numerous ways; it could be one cluster for the
normal data and the other cluster for the abnormal data or it could be two clusters for
normal and threshold distance values from the centroids will be flagged as an anomaly. In
three or more cluster cases, the data will have more than two clusters which means a
threshold value should be considered or one cluster will be for anomalies and the others
will be normal instances. Figure 4.3 shows the general workflow of this model where Big
Data is fed to a K-means clustering technique. Then, the final binary production will be

generated directly from K-means or through threshold values.

In HMM model, we will use the Hidden Markov Model for predicting the
anomalous data in sequential form as shown in Figure 4.3. Two states will be utilized to
assign one for normal observations and the other for abnormal observations. HMM needs
a probability matrix that will be assumed based on the data distribution. The output or final

predictions will contain 0’s for normal and 1’s for abnormal observations.
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The Auto-encoder model has at least three layers (input, hidden, and output) of
neural networks to reproduce the input data and learn the normal behaviour. The number
of neurons in every layer will be tuned related to the input observation number. Then a
threshold value will be user based on the reconstruction error. If the data exceeds this
threshold value it will be flagged as an anomaly otherwise it will be normal as shown in

Figure 4.3.

?

Input Big Data j Input Big Data

Input Big Data

Auto-encoder Neural
Network

\/

[K-means Clustering] { HMM J

\

Threshold Value

Final Predictions

Final Predictions

o ®

Figure 4.3: K-means Clustering, HMM, and Auto-encoder Models

Final Predictions

4.2.2 Auto-Encoder-K-means and Auto-Encoder-HMM Models

In the Auto-Encoder with K-means model, a series combination between K-means
and auto-encoder will be used as shown in Figure 4.4. The auto-encoder will be trained on
the normal observations. Then K-means will work with the threshold of the previous
section. Moreover, K-means will cluster the reconstructed data which is the output from
the auto-encoder. The clusters will be two or one for the anomaly and normal for the rest

of the clusters.

Auto-Encoder with HMM model uses the same combination of the previous one by
replacing K-means with HMM. As mentioned in the prior section, HMM will use the

reconstructed data that was produced by the auto-encoder to predict the anomalous
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observations. This method will increase the HMM accuracy as it will be discussed later.
HMM will use two states one for anomaly and one for normal data. Figure 4.4 shows the

entire Auto-encoder and HMM model.

Input Big Data Input Big Data
\J /
e ~
Auto-encoder Neural Auto-encoder Neural
Network Network
. S

Y /

C‘
A
e ~
Hi
A

K-means Clustering MM

. J

/

. . Final Predictions
Final Predictions

Figure 4.4: Auto-Encoder-K-means and Auto-Encoder-HMM Models

4.2.3 Combination Model (Auto-encoder, K-means, and HMM)

In this model, we will utilize all the previous techniques; auto-encoder, HMM, and
K-means, in one combination. Figure 4.5 shows the diagram of this model. Auto-encoder
will reproduce the data and send it to the HMM. HMM will predict the anomalous data
using the reproduced data from the auto-encoder. The purpose of K-means clustering in
this model is to calculate the probability matrices that HMM needs based on the data
distribution. So, HMM will receive two inputs; one from auto-encoder, which is the
reproduced data, and the other from K-means clustering, which is the probability values.

K-means will also use the reproduced data from the auto-encoder.
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Figure 4.5: Auto-Encoder, K-means, and HMM Model

4.2.4 Gaussian Distribution Model

This model totally relies on the populistic Gaussian distribution. The model will be
trained and learns the probability values of the normal observations. Then the model will
be fed with new data which has anomalous data to detect them through a threshold
probability value. Cross validation will be used after the model is built. The test set will be

used as a final feeding step.
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Figure 4.6: Gaussian Distribution Model

4.3 Programming, Libraries and Evaluation Methods

In this section, all the models will be trained and built using the training dataset.
These models will be tuned using the cross validation set. Finally, the model will be tested

using the test set. The splitting percentage is mentioned in Table 4.1.

4.3.1 Program Libraries

We used Python language to create our model and experiment with our datasets.

The libraries and metrics described in Table 4.2 will be used relating to a specific model.

Table 4.2: Used Python Libraries and Description

Python Library Name Usage Description
e Pandas preprocessing pandas offer data structures
and operations for

manipulating numerical tables
and time series. It is free
software released under the
three-clause BSD license.

e numpy preprocessing NumPy is adding support for
large, multi-dimensional
arrays and matrices, along with
a large collection of high-level
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mathematical functions to
operate on these arrays.

Sklearn-learn:
o Metrics:
= roc_auc_score
= balanced_accuracy_score
= mean_squared_error
= accuracy_score,
= f1 score,
= precision_score,
= recall_score,
= classification_report,
= confusion_matrix ,
o model_selection:
= train_test_split,
o  ‘preprocessing:
= Scale StandardScaler,
= decomposition: PCA,
=  ‘math: sqrt,
o Datasets:
= load_digits,
= ‘matplotlib.pyplot’,
= and ‘time’.

Evaluation

sklearn.ensemble,
ExtraTreesClassifier

Feature
Importance

‘sklearn.cluster’ KMeans

K-means: model

Scikit-learn is a free software
machine learning library for
the  Python  programming
language. It features various
classification, regression and
clustering algorithms. It also
includes matrices and
preprocessing operations for
dataset

‘hmmlearn’ hmm

Hmm model

Simple algorithms and models
to learn Hidden Markov
Models in Python. It follows
scikit-learn API as close as
possible, but adapted to
sequence data. It built on
scikit-learn, NumPy, SciPy,
and matplotlib. It is Open
source, commercially usable
with BSD license.

Tensorflow
scipy
stats,
seaborn,
pickle,
pylab
rcParams,
keras.models
o Model,

O O O O O O

Auto-encoder
model

TensorFlow is a free and open-
source software library for
dataflow and differentiable
programming across a range of
tasks. It is a symbolic math
library, and is also used for
machine learning applications
such as neural networks.
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o load_model
o keras.layers
o Input,
e Dense
o keras.callbacks
o ModelCheckpoint,
o TensorBoard
o Keras import regularizers,

4.3.2 Common Evaluation Methods

Binary classification has many evaluation methods. One of the popular methods is
a confusion matrix to calculate the classification accuracy. The accuracy equation of the
confusion matrix as equation 4.4 explains requires a calculation for many variables. These
variables are True-positive, True-negative, False-positive, and False-negative. True-
positive is the number of observations that are actually normal instances, and the technique
predicts it as normal instances (i.e. the number of items correctly labeled as belonging to
the positive class). True-negative is the number of observations that are the actual abnormal
instances and the technique predicts it as abnormal instances. False-positive is the number
of observations that are the actual is abnormal instances, but the technique predicts it as
normal instances (i.e. the sum of true positives and false positives, which are items
incorrectly labeled as belonging to the class). False-negative is the number of observations
that are the actually normal instances, but the technique predicts it as abnormal instances.
All of these variables are summarized in Table 4.3.

TP+TN

Accuraccy = —
y TP+TN+FP+FN

(4.4)

Table 4.3: Confusion Matrix Table

Actual Values

Positive Negative
Predicted Positive True-Positive (TP) False-Positive (FP)
Values Negative False-Negative (FN) True-Negative (TN)

From the confusion matrix, more variables can be calculated to give more accurate

insights, especially with unbalanced data such as in our case. Precision or positive
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predictive value, in binary classification, is the fraction of true positive observations among
the total number of positive observations; true and false as shown in equation 4.5.

TP
TP+FP

Precision = (4.5)

Equation 4.6 shows that the recall, true-positive rate, or sensitivity is the number of
true positive observations divided by the total number of true positive and false negative
observations combined. Both precision and recall give more understanding and measure of
relevance.

TP
TP+FN

Recall = (4.6)

F1-score is an accuracy measure that considers both precision and recall getting the
accurate results in term of unbalanced data in machine leaning models. That means F1
score is the harmonic average that varies from 1 to 0. Therefore, an F1 score of 1 is
considered a perfect model, while an F1 score of O is a total failure. In more detail, if a
model has a good F1 score that means it has low false positive and negative observations.
So, the model is correctly identifying real anomalies and there are no false alarms for this
model. Equation 4.7 explains how an F1 score is the multiplication of precision by recall

divided by the summation of them and the result will be multiplied by 2.

Precision ‘recall
Fi=2" precision+recall (4.7)
Receiver operating characteristic curve (ROC) demonstrates the binary
classification model’s accuracy and ability in graphical plots. The ROC curve is plotted
using the true positive rate (TPR) against the false positive rate (FPR) at various threshold

values.

Also, we will use the misclassification error which calculates the error in a

percentage format. Equation 4.8 shows the relation for this error.

Missclassification Error =1 — ( sum(original classes) ) (4.8)

sum(predicted classes)
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Where the original classes are the classes that are given in the test dataset and the
predicted classes are the classes that are presented by the technique. Then, the error will be
converted to percentage format. Additionally, root mean square error will be determined
for each technique with equation 4.9.

RMSE = ,/mean((Orignal values — Predicted values)?2) (4.9)

Where the original values are the values that are given in the test dataset and the
predicted values are the values that are given by the technique. True-Positive Rate (TPR)
and True-Negative Rate (TNR) are calculated from the confusion matrix using equations
4.10 and 4.11.

TPR = tp/(tp + fn) (4.10)
TNR = tn/(tn + fp) (4.11)

We need to develop three sequential accuracy algorithms for true positive rate, true
negative rate and the accuracy to make sure that the pervious evaluation methods are not
only calculating the predicted observation numbers but also matching the instances

between the original and the predicted values.

4.3.3 Sequential Accuracy Algorithm (SAA)

The following algorithms are written in seeking efficiency and certainty. The first
one will compute the overall accuracy based on a sequential tracking for every user

between anomaly and abnormal cases.
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Algorithm 1: All data sequential accuracy

INPUT: binary prediction for “Class” feature
OUTPUT: percentage accuracy for the whole data predictions
1 Begin

2 Read the input data from the model output(predictions)
3 Read the original labels from data(y_actual)

4 Create “C” Data frame

5 If predictions equal to y_acual then

6 Add 1 to “C”

7 Else

8 Add 0 to “C”

9 End if

10 Count I number in “C”

11  Divide the number of one’s by the data length
12 Multiply the result by 100

13 Show the output accuracy

14 End

The second algorithm will compute the accuracy for only the normal instances

based on sequential tracking for every user in the related target normal cases.

Algorithm 2:  Normal data sequential accuracy

INPUT: binary predictions for only normal observations in the “Class” feature
OUTPUT: percentage accuracy for the normal data predictions

1 Begin

2 Read the input data from the model output(predictions)

3 Read the original labels from data(y_actual)

4 Extract only the zeros on y actual and the related predictions to “s”
5 Create “C” Data frame

6 If predictions in “s” equal to y_acual “s” then:

7 Add 1 to “C”

8 Else

9 Add 0 to “C”

10 Endif

11 Count 1 number in “C”

12 Divide the number of one’s by the data length

13 Multiply the result by 100

14 Show the output accuracy

15End

The third algorithm will compute the accuracy for only the abnormal instances based

on sequential tracking for every user in the related target abnormal cases.
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Algorithm 3: Abnormal data sequential accuracy

INPUT: binary predictions for only abnormal observations in the “Class” feature
OUTPUT: percentage accuracy for the abnormal data predictions

1 Begin

Read the input data from the model output(predictions)

3 Read the original labels from data(y_actual)

4 Extract only the ones on y_actual and the related predictions to “s”
5 Create “C” Data frame

6 If predictions in “s” equal to y_acual in “s” then:

y

8

9

N

Add 1 to “C”
Else

Add 0 to “C”
10 Endif
11  Count I number in “C”
12  Divide the number of one’s by the data length
13 Multiply the result by 100
14 Show the output accuracy
15End

All three previous algorithms were applied to ensure that the known evaluation
metrics are calculating the exact user accuracy based on the target feature. The first
algorithm matched the same results of the accuracy based on the confusion matrix library
in Python. The second algorithm matched the same result that the true positive rate
generated out of the accuracy metrics in Python. The third algorithm gave the same result

compared to true negative rate out of the accuracy metrics.

4.3.4 Parameters Tuning

This section explains the parameters that we tried to tune in all the techniques. Some
parameters have fixed values. But other parameters have a wide range to tune. In this case
the parameter will be tuned on the wide range in general over a fixed value and then will
be focused on the higher small ranges. In Table 4.4 the tuning parameters are described
through the input type and Python indication name for every model separately. The

definition of every parameter is provided from the Python website.
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Table 4.4: Tuning Parameters in Python

K-means Tuning Parameters Python Indication Parameter Input Type
Number of Clusters “n_clusters” Integer
Random State “RandomState” Integer
Algorithm “algorithm” String
Tolerance “tol” Float
Initialization Method “init_” String
Maximum of Iteration “max_iter” Integer
Initialization Number “n_init” Integer
Number of Jobs “n_jobs” Integer
HMM Tuning Parameters Python Indication Parameter Input Type
Number of Components “n_components” Integer
Covariance Type “covariance_type” String
Covariance Minimum “min_covar” Float
Algorithm “algorithm” String
Random State “random_state” Integer
Number of Iterations “n_iter” Integer
Tolerance “tol” Float
Auto-Encoder Tuning Python Indication Parameter Input Type
parameters

Activation function “activation” String
Hidden layers and neurons Programmer assign “hidden_dim”,” | Integer
number encoding_dim”

Number epoch Programmer assign “nb_epoch” Integer
Batch size Programmer assign “batch_size” Integer
Learning rate Programmer assign “learning_rate” | Float
Threshold Programmer assign “threshold” Integer

K-means is a clustering technique that has several parameters under its library in
Python. Number of clusters (n_clusters) is the number of clusters to form as well as the
number of centroids to generate. Random State (random_state) determines random number
generation for centroid initialization. ‘None’ is the default Python value for random state.
Algorithm (algorithm) is the K-means algorithm to use such as “auto”, “full” or “elkan”.
The classical expectation—maximization (EM)-style algorithm is “full”. The “elkan”

variation is more efficient by using the triangle inequality, but currently does not support
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sparse data. “auto” chooses “elkan” for dense data and “full” for sparse data. Python K-
means default algorithm is “auto”. Tolerance (tol) is relative tolerance with regards to
inertia to declare convergence. Python tolerance default is le-4. Initialization method
(init) is the initialization methods such as {‘K-means++’, ‘random’ or ‘ndarray’}, the

Python default is ‘K-means++’.

- ‘K-means++’ : selects initial cluster centers for k-mean clustering in a smart way

to speed up convergence. See section Notes in k_init for more details.

- ‘random’: choose k observations (rows) at random from data for the initial

centroids.

- If ‘ndarray’ is passed, it should be of shape (n_clusters, n_features) and gives the

initial centers.

Maximum of Iteration (max_iter) is the maximum number of iterations of the K-
means algorithm for a single run. The Python default is 300 iterations. Initialization
Number (n_init) is the number of times the K-means algorithm will be run with different
centroid seeds. The final results will be the best output number of initialization consecutive
runs in terms of inertia. The Python default is 10 times. Number of jobs (n_jobs) is the
number of jobs to use for the computation. This works by computing each of the
initialization number runs in parallel. None means 1 unless in a joblib.parallel backend
context. -1 means using all processors. See Glossary for more details. ‘None’ is the default

Python value for number of jobs.

HMM model has several types and under every type there are several parameters.
GaussianHMM is the chosen model in our simulation. GaussianHMM is a Hidden Markov
Model with Gaussian emissions. The number of components iterations (n_components) is
a number of states. Covariance type (covariance_type) is a string describing the type of

covariance parameters to use. It must be one of the following:

“spherical” — each state uses a single variance value that applies to all features.
“diag” — each state uses a diagonal covariance matrix.
“full” — each state uses a full (i.e. unrestricted) covariance matrix.
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“tied” — all states use the same full covariance matrix. Defaults to “diag”.

Covariance minimum (min_covar) is a floor on the diagonal of the covariance
matrix to prevent overfitting. The Python defaults in this parameter is 1le-3. Algorithm
(algorithm) is a decoder algorithm. It must be one of the following algorithms “viterbi”” or
map”. Python algorithms defaults in this parameter is “viterbi”. Random State
(random_state) is a random number generator instance. Number of iterations (n_iter) is a
maximum number of iterations to perform. Tolerance (tol) is a convergence threshold. EM
will stop if the gain in log-likelihood is below this tolerance value. “hmm.GMMHMM” is
a Hidden Markov Model with Gaussian mixture emissions. “hmm.MultinomialHMM” is a

Hidden Markov Model with multinomial (discrete) emissions.

The parameters of Auto-encoder Neural Network are many. However, some of
these parameters have been tuned and explained based on its effects. Activation function
(activation) is an activation function to use. The activation functions are: “Softmax” is
Softmax activation function. “elu” is Exponential linear unit. “selu” is Scaled Exponential
Linear Unit (SELU). “softplus” is Softplus activation function. “softsign” is Softsign
activation function x / (abs(x) + 1). “relu” is Rectified Linear Unit. max(x, 0). “tanh” is
Hyperbolic tangent activation function. “sigmoid” is Sigmoid activation function.
“hard_sigmoid” is Hard sigmoid activation function. “exponential” is Exponential (base ¢)
activation function. “linear” is applied (a(x) = x). Python default activation function is
linear. Hidden layers are the number of neurons in every specified hidden layer such as
(hidden_dim1 = 5). Number epoch is the number of iterations that the auto-encoder will
run. Batch size is the number of examples from the training dataset used in the estimate of
the error gradient. Learning rate is a float number that is related to the algorithm
convergence step. Threshold is a value that will divide the dataset into different groups

usually based on error.

4.4 Anomaly Detection Results

These results are divided based on the three models that were described in the

previous section. The best results are presented in tables that are chosen out of many tuning
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results regarding some parameters. The evaluation methods that we focus on are only the

true positive rate and true negative rate because of three reasons:
a) Imbalanced data between normal and abnormal observation numbers.

b) Our proposed user authentication system requires high accuracy in the abnormal

detection accuracy to use the results correctly in the next step.

c) These methods will give us an indication for the abnormal and normal detection

accuracies separately.

4.4.1 Experiment 1 - Credit Card Dataset

Experiment one was implemented on a credit card dataset. The dataset contains
transactions made by credit cards in September 2013 by European cardholders. Some Big
Data characteristics are applied to this dataset such as samples volume with respect to the
time and features variety. The original dataset presents transactions that occurred in two
days in 284807 observations with 31 variables. The dataset is divided into three sets; train,

cross-validation, and test sets.

Furthermore, the features of this data are time, amount of money, class, and set of
unknown features. V1 to V28 features are the principal components obtained with PCA,
but unfortunately, due to confidentiality issues, the original features’ names and more
background information about these features are unknown. All the features used as a
numerical input (independent) variables are the time, amount, and V1 until V28. Some of
the input features that are not normalized have been normalized. Class feature is only used
for the evaluation part because it has data labels. Table 3.1 describes some of the dataset

characteristics.

Table 4.5: Dataset 1 Description

Dataset name

Credit card dataset

Dataset features number 30
Dataset observation number 287456
Dataset Date 2013
Dataset place Europe

Normal - Anomalous percentage

99.83-0.17%
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To visualize the dataset, the histogram function in Python was applied on the
dataset, four features is shown in Figure 4.7 as sample:
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Figure 4.7: Features Histogram for Dataset 1

The dataset was already prepared and ready to use i.e. there are no NAN values, all
features are numbers. Only some feature engineering is used to replace some features. For
example, taking a log of one feature or multiplying it by a number to have a data close to
a Gaussian distribution. Finally, feature importance was applied for applying PCA
dimensional reduction. The features ware sorted in term of importance to the target using
extra tree classifiers as shown in Figure 4.8. Additionally, a comparison is provided
between data features in Appendix E.
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Figure 4.8: Feature Importance for Dataset 1

Default proposed models ware applied between four assumptions for comparison
between normalization and dimensional reduction. Table 4.6 shows the results with the
four assumptions for Dataset 1. In the K-means model, the best result for TPR of 71% was
by applying the normalization and dimensional reduction assumption. However, the best
TNR of 53% was in assumption one. The TNR in the fourth assumption which gave the

highest TPR was not that far from the best one. So, the fourth assumption was chosen to
be applied for tuning parameters.

In the HMM model, Table 4.6 shows that the best result for TPR of 91% was with

the first two assumptions with the best TNR of 84%. So, the first assumption was applied
for tuning parameters.
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In the Auto-Encoder model, the best result for TPR was with assumptions one and
three by 100%. However, the best TNR of 98% was in assumptions two and four. The TNR
in assumptions one and three gave the highest TNR has 0% and a very low TPR which is
not acceptable. So, the second assumption was applied for tuning parameters because it has
the highest TNR and acceptable TPR.

In the Gaussian Distribution model, the best result for TPR of 81% was with
assumptions two and four. However, the best TNR of 99.7% was in assumption three. The
TPR in the third assumption which gave the highest TNR was not very low which is not
acceptable. So, the fourth assumption was applied for tuning parameters. Finally, for more
results such as F1 score and RMSE, refer to Appendix A, Appendix B, Appendix C,
Appendix D.

Table 4.6: Results for Dataset 1 based on Four Assumptions

Models | Accuracy | TPR | TNR
Assumption 1: without normalization or dimensional reduction
K-means 0.5329 0.3293 0.5338
HMM 0.8431 0.9106 0.8428
Auto-encoder 0.0043 1 0
Gaussian 0.9889 0.2764 0.992
Assumption 2: with normalization only
K-means 0.5256 0.2805 0.5266
HMM 0.8432 0.9106 0.8429
Auto-encoder 0.9816 0.6504 0.9831
Gaussian 0.9921 0.813 0.9929
Assumption 3: with dimensional reduction only
K-means 0.5329 0.3293 0.533792
HMM 0.7751 0.8374 0.774792
Auto-encoder 0.0043 1 0
Gaussian 0.9946 0.2073 0.997995
Assumption 4: with Both normalization and dimensional reduction
K-means 0.4745 0.7195 0.4734
HMM 0.1568 0.0894 0.1571
Auto-encoder 0.9831 0.0285 0.9873
Gaussian 0.9923 0.813 0.993

Some results have an outstanding accuracy in the normal instances and unfortunate

abnormal detection accuracy such as 14 and 91 in random states. Another group of results
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have the opposite; unfortunate normal accuracy and excellent abnormal detection accuracy,
for instance, 90 random states. Some results have an acceptable normal accuracy and
outstanding abnormal accuracy like 42 random state. Table 4.7 summarizes all K-means
results. Finally, for more results such as F1 score and RMSE, refer to Appendix M.

Table 4.7: K-means Results for Dataset 1

Tuning Parameters Evaluations

Max Iter | Random Accuracy TPR TNR
State

1 0 0.5026 0.2642 0.5037

10 0 0.5256 0.2805 0.5266

1 42 0.4637 0.882114 0.461917

10 42 0.4744 0.7195 0.4734

1 1 0.5512 0.4756 0.5515

10 1 0.4744 0.7195 0.4734

1 2 0.2495 0.5285 0.2483

10 2 0.5256 0.2805 0.5266

1 3 0.5361 0.4919 0.5363

10 3 0.5256 0.2805 0.5266

1 4 0.5552 0.4837 0.5555

10 4 0.6102 0.4065 0.6111

1 5 0.6623 0.674797 0.662241

10 5 0.5256 0.2805 0.5266

1 13 0.779 0.695122 0.779364

10 13 0.4744 0.7195 0.4734

1 14 0.9905 0 0.994777

10 14 0.5254 0.2886 0.5264

1 90 0.0118 0.910569 0.007879

10 90 0.5256 0.2805 0.5266

1 91 0.9829 0.073171 0.986846

10 91 0.4744 0.7195 0.4734

1 200 0.3517 0.939024 0.349155

10 200 0.4744 0.7195 0.4734

1 250 0.951 0.260163 0.95396

10 250 0.47443 0.71951 0.47337

Best Result 0.990492 0.939024 0.994777

The tuned parameters are initialization methods, initialization number, maximum
number iteration, K-means algorithm, and random state. Every parameter has a range of
variations, as shown in Table 4.8.



Table 4.8: Parameters Ranges

initialization method K-means++ | Random | ndarray
maximum number iteration | 1—100

K-means algorithm Auto | Full | elkan
random state 0- 500
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The results in this model show better detections than K-means results in terms of

accuracy. It has higher accuracy for both normal and abnormal detection. The highest result

for both normal and abnormal detection has a “spherical” covariance type. The other results

ware varied with “diag” and “full” covariance type and gave a satisfactory accuracy level

for both, as shown in Table 4.9. Finally, for more results such as F1 score and RMSE in

this part, refer to Appendix N.

Table 4.9: HMM Results for Dataset 1

Tuning Parameters Evaluations

Covariance N iter algorithm | Tol | Accuracy TPR TNR
type

Spherical 5k viterbi 0.1 0.93 0.89 0.93
Diag 5k viterbi 0.1 0.84 0.91 0.84
Tied 5k viterbi 0.1 0.52 0.23 0.52
Full viterbi 0.68 0.89 0.68
Spherical viterbi 0.70 0.90 0.90
Diag viterbi 0.16 0.09 0.16
Tied viterbi 0.48 0.77 0.48
Spherical 5k map 0.1 0.90 0.90 0.90
Diag 5k map 0.1 0.16 0.09 0.16
Tied 5k map 0.1 0.52 0.23 0.52
Full map 0.32 0.11 0.32
Spherical map 0.10 0.10 0.10
Diag map 0.48 0.77 0.48
Tied map 0.52 0.23 0.52
Spherical 5k viterbi 0.07 0.11 0.07
Spherical 5 viterbi 0.1 0.22 0.07 0.22

The auto-encoder results were tuned using the following parameters: number of

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1,

hidden dimension for layer 2, activation function, learning rate, and threshold. The best

results were obtained with varying the threshold values, as shown in Table 4.10. The

highest abnormal detection accuracy has one threshold value, but the normal detection
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accuracy has the lowest value. The threshold value of 2 has outstanding accuracy in both
abnormal and normal accuracies. The other values have excellent accuracy for normal
detection but an acceptable accuracy for abnormal detection. Overall, auto-encoder was
better than both previous models, as shown in Table 4.10. This model has the best result,
which was 0.88 abnormal detection accuracy and 0.95 normal detection accuracy of 2
threshold. Finally, for more results such as F1 score and RMSE in this part, refer to

Appendix O.

Table 4.10: Auto-Encoder Model Results

Tuning Parameters | Evaluations |
Encoding | Hidden Hidden | Activation | Threshold | TPR | TNR
_dim ~diml ~dim2

18 10 6 tanh 4 0.752 | 0.982
18 10 6 tanh 4 0.699 | 0.983
32 16 8 tanh 4 0.695 | 0.984
10 5 2 tanh 4 0.781 | 0.981
5 2 1 tanh 4 0.805 | 0.979
5 3 1 tanh 4 0.752 | 0.979
50 20 10 tanh 4 0.691 | 0.985
5 2 1 sigmoid 4 0.768 | 0.977
5 2 1 hard_ 4 0.760 | 0.977

sigmoid

5 2 1 exponential | 4 0.760 | 0.977
5 2 1 linear 4 0.756 | 0.981
5 2 1 tanh 3 0.825 | 0.972
5 2 1 tanh 2 0.878 | 0.954
5 2 1 tanh 1 0.923 | 0.836
5 2 1 tanh 5 0.655 | 0.984
5 2 1 linear 4 0.756 | 0.981
5 2 1 tanh 4 0.650 | 0.983
5 2 1 tanh 4 0.659 | 0.983
5 2 1 tanh 4 0.667 | 0.983

The results of the rest of the models are shown in Table 4.11. Auto-Encoder with
K-means model did not give more accuracy from the auto-encoder model. However, there
was good enhancement comparing with the K-means results, especially TPR, which is
important in this research. Auto-Encoder with HMM model does not gave better results
because the HMM results are already working well in term of TNR and TPR. The

combination model between the three model (K-means, HMM, and Auto-Encoder) gave
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better results compared to K-means and Auto-Encoder results. Comparing these results
with HMM results indicates that there was little improvement between both TNR and TPR.
Finally, Gaussian Distribution model reached the highest TNR with an acceptable TPR

which shows that the Gaussian distribution model has a high ability to classify normal

instances.

Table 4.11: Results of Four Models

Evaluations

K-means with Auto-encoder Model Results

Accuracy Precision Recall Fl-score RMSE | TPR TNR

0.5284 0.4971 0.3321 0.3468 0.6868 | 0.1341 0.5301

0.4716 0.503 0.6739 0.3266 0.7269 | 0.878 0.4698

HMM with Auto-encoder Model Results

Accuracy Precision Recall F1- RMSE | TPR TNR
score

0.4914 0.4995 0.4694 | 0.3328 0.7132 0.4472 0.4916

K-means, HMM, and Auto-encoder Model Results

Accuracy Precision Recall F1- RMSE | TPR TNR
score

0.5084 0.5023 0.6317 |0.3429 |0.7011 0.7561 0.5074

0.9794 0.4994 0.4979 |0.4973 |0.1434 0.0122 0.9836

0.4697 0.5031 0.6791 |0.3258 |0.7282 0.8902 0.4679

0.9304 0.5262 0.9125 |0.5318 | 0.2637 0.894309 0.93060

5
0.8981 0.5183 0.9023 | 0.5087 |0.3192 0.906504 0.89808
8

Gaussian Distribution Model Results

Accuracy Precision Recall | F1- RMSE | TPR TNR
score

9921 0.6654 0.903 0.7336 | 0.0887 0.813 0.9929

In conclusion for experiment one, the best results for each model is represented in
Figure 4.9. Gaussian distribution model achieved the highest TNR value among all models.
But the full combined model of HMM, auto-encoder and K-means model reached the
highest TPR value. So, the full combined model was considered as the best result in this

experiment.
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Figure 4.9: The Best Results in Experiment 1

4.4.2 Experiment 2 - Synthetic Dataset from a Financial Payment
System

Experiment two was implemented on a synthetic dataset from a financial payment
system. This dataset was generated using the BankSim payments simulator. BankSim is an
agent-based simulator of bank payments based on a sample of aggregated transactional
data provided by a bank in Spain. The main purpose of BankSim is the generation of
synthetic data that can be used for fraud detection research. Statistical and Social Network
Analysis (SNA) of relations between merchants and customers were used to develop and
calibrate the model. The ultimate goal for BankSim is to be usable to model relevant
scenarios that combine normal payments and injected known fraud signatures. The datasets
generated by BankSim contain no personal information or disclosure of legal and private
customer transactions. Therefore, it can be shared by academia, and others, to develop and
research fraud detection methods. Synthetic data has the added benefit of being easier to
acquire, faster and at less cost, for experimentation even for those that have access to their
own data. BankSim generates data that approximates the relevant aspects of the real data.
It has 180 steps (approximately six months) from BankSim with an average of three cards
per step and performs about two fraudulent transactions per day. In total, it contains 594643
records, where 587443 are normal payments and 7200 are fraudulent transactions. It also
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contains nine features which are time (step), Customer ID, Age, Gender, Zip Code,

Merchant, Zip merchant, Category, Amount and Fraud. Table 4.12 describes some of the

dataset characteristics.

Table 4.12: Dataset 2 Description

Dataset name

Synthetic dataset from a financial payment system

Dataset features number

10

Dataset observation number 594643
DatasetDate @ | --——--
Dataset place Spain

Normal - Anomalous percentage

98.79 - 1.21%

To visualize the dataset, the histogram function in Python was applied on the

dataset as shown in Figure 24:
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Figure 4.10: Features Histogram for Dataset 2
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The dataset has some features that only have one value. For example, ‘Zip
merchant’ has only one zip value ‘28007’ which will not affect the final predictions. These
types of features were removed from the data before applying any model. There are several
features that include letters that need to be categorized. For instance, ‘gender’ feature has
two letter values; M for male and F for Female. The categorized process indicates the M
as 1 and Fas 2 in the dataset. There are no NAN values as all features are numbers. Finally,
Feature importance was applied for applying PCA dimensional reduction. The features
were sorted in terms of importance to the target using extra tree classifiers as shown in

Figure 4.8. Additionally, a comparison was provided between data features in Appendix F.
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Figure 4.11: Feature Importance for Dataset 2

Default proposed models were applied between four assumptions for comparison
between normalization and dimensional reduction. Table 4.6 shows the results with the
four assumptions for Dataset 2. In the K-means model, the best result for TPR and TNR
occurred by applying the fourth assumption of 74% and 57% respectively. So, it was

chosen as the best assumption to be applied for tuning parameters.

In the HMM model, Table 4.6 shows that the best result for TPR of 100% was with
the second assumption and has an acceptable TNR of 85%. The highest TNR was using
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the third assumption of 88% with an acceptable TPR of 89%. So, the second assumption

was chosen to be applied for tuning parameters because the TPR is much higher.

In the Auto-Encoder model, the best result for TPR of 100% was with the first and
third assumptions. However, the best TNR of 99% was in the assumption of two and four.
The TNR in the assumptions of one and three gives the highest TPR and has a very low
TPR close to 0% which is not acceptable. So, the fourth assumption was chosen to be

applied for tuning parameters because it has the highest TNR and acceptable TPR.

In the Gaussian Distribution model, the highest result for TPR and TNR was with
assumption one of 58% and 99% respectively. So, the first assumption was chosen to be

applied for tuning parameters. Finally, for more results such as F1 score and RMSE in this

part refer to Appendix A, Appendix B, Appendix C, Appendix D.

Table 4.13: Results for Dataset 2 based on Four Assumptions

Models | Accuracy | TPR | TNR
Assumption 1: without normalization or dimensional reduction
K-means 0.491382372 0.456944444 0.49243759
HMM 0.136783688 0 0.1409749
Auto-encoder 0.029730198 1 0
Gaussian 0.986208491 0.588055556 0.998408362
Assumption 2: with normalization only
K-means 0.114015311 0.326111111 0.107516448
HMM 0.863216312 1 0.8590251
Auto-encoder 0.976215841 0.203611111 0.999889351
Gaussian 0.984276028 0.485833333 0.999548894
Assumption 3: with dimensional reduction only
K-means 0.50835336 0.543055556 0.507290044
HMM 0.883441105 0.896388889 0.88304437
Auto-encoder 0.029738457 1 8.51E-06
Gaussian 0.984977991 0.520833333 0.999199925
Assumption 4: with Both normalization and dimensional reduction
K-means 0.584470926 0.741944444 0.579645754
HMM 0.549992155 0.920277778 0.538646171
Auto-encoder 0.977677576 0.258333333 0.999719123
Gaussian 0.971830637 0.052777778 0.999991489
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The best results have an outstanding accuracy in normal instances by 90% and good
abnormal detection accuracy by 81% such as 3 and 200 in random states with 1 maximum
iteration. Another group of results have less accuracy for normal and abnormal detection
accuracy, for instance, 2, 4, 5, and 14 random states. Table 4.7 summarized all K-means
results. Finally, for more results such as F1 score and RMSE in this part, refer to Appendix
P.

Table 4.14: K-means Results for Dataset 2

Tuning Parameters Evaluations
Max Iter | Random Accuracy TPR TNR

State
1 0 0.324315173 0.201666667 0.328073266
10 0 0.411457688 0.251666667 0.416353871
1 42 0.317039533 0.614166667 0.307935211
10 42 0.413737003 0.255833333 0.418575356
1 1 0.426595314 0.370277778 0.428320949
10 1 0.416313621 0.258333333 0.421154321
1 2 0.570654642 0.664444444 0.567780814
10 2 0.583339527 0.741388889 0.57849671
1 3 0.900742429 0.811666667 0.903471814
10 3 0.579408534 0.739444444 0.574504847
1 4 0.563940573 0.652222222 0.56123552
10 4 0.58383503 0.741944444 0.578990374
1 5 0.688353195 0.783055556 0.685451404
10 5 0.588790064 0.749166667 0.583875937
1 13 0.098720776 0.189444444 0.095940897
10 13 0.419534392 0.260277778 0.4244142
1 14 0.508923189 0.716388889 0.502566198
10 14 0.581118021 0.740833333 0.576224157
1 90 0.447299094 0.411944444 0.448382402
10 90 0.418502094 0.259444444 0.423375805
1 91 0.48708801 0.271944444 0.493680259
10 91 0.418378218 0.259722222 0.423239622
1 200 0.901229674 0.809166667 0.904050592
10 200 0.411589822 0.251666667 0.416490054
1 250 0.346687147 0.410277778 0.344738656
10 250 0.413282792 0.255 0.418132761

The results in this model show better detections than K-means results in term of
accuracy. It has higher accuracy for both normal and abnormal detection. The highest result

for both normal and abnormal detection has a “diag” covariance type by 85% and 100%
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respectively. The other results were varied with “spherical”, “tied” and “full” covariance

type and some of them gave a satisfactory accuracy level for both, as shown in Table 4.9.

Finally, for more results such as F1 score and RMSE in this part, refer to Appendix Q.

Table 4.15: HMM Results for Dataset 2

Tuning Parameters Evaluations

Covariance | N iter | algorithm | Tol | Accuracy TPR TNR

type

Spherical 5k viterbi 0.1 | 0.888544789 | 0.791944444 | 0.891504737
Diag 5k viterbi 0.1 |0.863216312 |1 0.8590251
Tied 5k viterbi 0.1 | 0.115006318 | 0.34 0.108112249
Full viterbi 0.863216312 | 1 0.8590251
Spherical viterbi 0.888544789 | 0.791944444 | 0.891504737
Diag viterbi 0.863216312 | 1 0.8590251
Tied viterbi 0.136783688 | 0 0.1409749
Spherical 5k map 0.1 | 0.884993682 | 0.66 0.891887751
Diag 5k map 0.1 | 0.888544789 | 0.791944444 | 0.891504737
Tied 5k map 0.1 | 0.136783688 | O 0.1409749
Full map 0.115006318 | 0.34 0.108112249
Spherical map 0.539941696 | 0.298611111 | 0.547336346
Diag map 0.111455211 | 0.208055556 | 0.108495263
Tied map 0.459727969 | 0.690277778 | 0.452663654
Spherical 5k viterbi 0.115006318 | 0.34 0.108112249
Spherical 5 viterbi 0.1 | 0.136783688 | O 0.1409749

The auto-encoder results were tuned using the following parameters: number of

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1,

hidden dimension for layer 2, activation function, learning rate, and threshold. The best

results were obtained by varying the threshold values, as shown in Table 4.10. The highest

abnormal detection accuracy has two threshold values, but the normal detection accuracy

has the lowest value, but it is an acceptable accuracy. Some other values have excellent

accuracy for normal detection but an acceptable accuracy for abnormal detection. Overall,

the auto-encoder has less accuracies in this Dataset from both previous models, as shown

in Table 4.10. Finally, for more results such as F1 score and RMSE in this part refer to

Appendix R.




Table 4.16: Auto-Encoder Model Results for Dataset 2
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Tuning Parameters Evaluations
Encoding | Hidden | Hidden | Activation | Threshold | TPR TNR
dim diml dim2
18 10 6 tanh 4 0.3227778 | 0.9753424
18 10 6 tanh 4 0.3227778 | 0.9753424
32 16 8 tanh 4 0.3227778 | 0.9753424
10 5 2 tanh 4 0.3227778 | 0.9753424
5 2 1 tanh 4 0.3227778 | 0.9753424
5 3 1 tanh 4 0.3227778 | 0.9753424
50 20 10 tanh 4 0.335 0.9753424
5 2 1 sigmoid 4 0.335 0.9744997
5 2 1 hard_ 4 0.335 0.9744997
sigmoid
5 2 1 exponentia | 4 0 1
I
5 2 1 linear 4 0.4766667 | 0.9449566
5 2 1 tanh 3 0.5805556 | 0.9371601
5 2 1 tanh 2 0.6986111 | 0.9281039
5 2 1 tanh 1 0.3863889 | 0.9596898
5 2 1 tanh 5 0 1
5 2 1 linear 4 0 1
5 2 1 tanh 4 0.3863889 | 0.9596898
5 2 1 tanh 4 0.3863889 | 0.9596898
5 2 1 tanh 4 0.3863889 | 0.9596898

The results of the rest of the models are shown in Table 4.11. Auto-Encoder with

K-means model did not give more accuracy from the K-means model. However, there was

good enhancement compared with the Auto-encoder results, especially TPR which is

important in this research. The Auto-Encoder with HMM model gave much better results

from Auto-Encoder results in term of TPR. The combination model between the three

model (K-means, HMM, and Auto-Encoder) gave better results compared with Auto-

Encoder results. Comparing these results with HMM and K-means results did not give a

better result from the previous model. Finally, the Gaussian Distribution model reached the

highest TNR with a non-acceptable TPR which shows that the Gaussian distribution model

has a high ability to classify normal instances.



Table 4.17: Results of Four Models for Dataset 2
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Evaluations

K-means with Auto-encoder Model Results

Accura | Precision Recall F1-score | RMSE TPR TNR

cy

0.59696 | 0.52748720 | 0.732931 0.42685 | 0.63485619 | 0.8775 | 0.588361
6 4

0.58921 | 0.52702032 | 0.730016 0.42283 | 0.64092804 | 0.87972 | 0.580309
5 2 6

0.58754 | 0.52722214 | 0.731984 0.42224 | 0.64222811 | 0.88555 | 0.578411
5 5 6

0.57303 | 0.52638416 | 0.726387 0.41466 | 0.65343339 | 0.88944 | 0.563329
7 4 3

0.59517 | 0.52769252 | 0.734973 0.42622 | 0.6362595 0.88361 | 0.586335
5 7

HMM with Auto-encoder Model Results

Accuracy | Precision | Recall Fl-score | RMSE TPR TNR

0.481101 | 0.521607 | 0.685883 0.36514 | 0.720346 0.90361 | 0.46815446
7 1 6

0.3023974 | 0.515119 | 0.604968 0.25695 | 0.835226 0.92666 | 0.28326907
6 6 2

0.706027 | 0.485184 | 0.399104 0.42087 | 0.542193 0.07277 | 0.72542961
7 7 5

0.7092717 | 0.485091 | 0.399295 0.42177 | 0.5391922 | 0.06972 | 0.72886823
8 4

0.7014262 | 0.484796 | 0.395387 0.41891 | 0.5464190 | 0.07 0.72077386
7

0.7007325 | 0.484768 | 0.39502 0.41866 | 0.5470534 | 0.07 0.72005889
0 53 9

K-means, HMM, and Auto-encoder Model Results

Accura | Precisio | Recall F1-score RMSE TPR TNR

cy n

0.60572 | 0.47777 | 0.3212949 | 0.3785606 | 0.627917 | 0.0188888 0.6237

6 16 34 3 00

0.52539 | 0.49901 | 0.4914742 | 0.3591980 | 0.688913 | 0.8316666 0.5160

8 6 1 14

Gaussian Distribution Model Results

Accura | Precision Recal | F1-score RMSE TPR TNR

cy I

0.971 0.9855 8.511 0516 (5).170352 0.0238888 1

In conclusion of experiment two, the best results for each model are represented in

Figure 4.12. The Gaussian distribution model achieved the highest TNR value among all
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models with very low TPR which is not acceptable. But HMM model reached the highest

TPR value. Therefore, the HMM model was considered the best result in this experiment.

Best Results in Experiment 2

1.2
1

0.8

0.6

0.4

0.2 I
0

K-means Auto-encoder K-means with HMM with Auto-encoder, Gaussian
auto-encoder auto-encoder HMM and K- Distribution
means

ETPR ETNR

Figure 4.12: The Best Results in Experiment 2

4.4.3 Experiment 3 - German Credit Risk Dataset

Experiment three was implemented on a German Credit Risk dataset. This dataset
contains data used to evaluate credit applications in Germany. It has 1000 entries with 24
numeric attributes (21 categorical, 3 real-valued). Each entry represents a person who takes
a credit from a bank, and each person is classified as good or bad credit risks according to
the set of attributes. There are no missing values. Seventy percent of the entries belong to
a “Good” classification, while 30% are “Bad”. Among the 24 attributes, 11 of them are
bank account information such as saving amount, and credit history, while another 13 are
personal information like age or whether they are a foreign worker or not. Table 3.1
describes some of the dataset characteristics. The attribute’s description for this dataset as

follows:

Attribute 1: Status of existing checking account
1: ..< 0DM, 2:0<=..< 200DM
3: ...>=200 DM /salary assignments for at least 1 year, 4 : no checking account

Attribute 2: Duration in month
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Attribute 3: Credit history
0 : no credits taken/all credits paid back duly
1 : all credits at this bank paid back duly
2 : existing credits paid back duly till now, 3 : delay in paying off in the past
4 : critical account/other credits existing (not at this bank)
Attribute 5: Credit amount
Attribute 6: Savings account/bonds
1: ..< 100DM, 2: 100<=..< 500 DM, 3: 500 <=...<1000 DM,
4. ..>=1000 DM, 5: unknown/ no savings account
Attribute 7: (qualitative) Present employment since
1:unemployed,2: ..<1lyear,3:1 <=..<4years,
4:4 <=..<Tyears5: . >=7 years
Attribute 9: Personal status and sex
1 :male :divorced/separated, 2 : female : divorced/separated/married
3:male :single, 4 : male :married/widowed, 5 : female : single
Attribute 11: Present residence since
Attribute 12: (qualitative) Property
1 :real estate, 2 : if not A121 : building society savings agreement/ life insurance,
3 :if not A121/A122 : car or other, not in attribute 6, 4 : unknown / no property
Attribute 13: Age in years
Attribute 14: Other installment plans
1 : bank, 2 : store, 3 : none
Attribute 16: Number of existing credits at this bank
Attribute 18: Number of people being liable to provide maintenance for
Attribute 19: Telephone
1 :none, 2 : yes, registered under the customer’s name
Attribute 20: foreign worker
1:yes,2:no
Attribute 4 _A40: Purpose
1 : car (new)
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0 : car (used), furniture/equipment, radio/television, domestic appliances, repairs,
education, (vacation - does not exist?), retraining, business, others
Attribute 4 A41: Purpose
1 : car (used)
0 : car (new), furniture/equipment, radio/television, domestic appliances, repairs,
education, (vacation - does not exist?), retraining, business, others
Attribute 10_A101: Other debtors / guarantors
1 :none, 0 : co-applicant, 0 : guarantor
Attribute 10_A102: Other debtors / guarantors
0 : none, 1 : co-applicant, 0 : guarantor
Attribute 15 A151: Housing
1 :rent, 0 :own, O : for free
Attribute 15_A152: Housing
0 :rent, 1 :own, O : for free
Attribute 17_A171: Job
1 : unemployed/ unskilled - non-resident
0 : unskilled — resident, skilled employee / official, management/ self-employed/
highly qualified employee/ officer
Attribute 17_A171: Job
1 :unskilled - resident
0 : unemployed/ unskilled - non-resident, skilled employee / official, management/
self-employed/ highly qualified employee/ officer
Attribute 17_A171: Job
1 : skilled employee / official
0 : unemployed/ unskilled - non-resident, unskilled - resident, management/ self-
employed/ highly qualified employee/ officer

Table 4.18: Dataset 3 Description

Dataset name German Credit Risk dataset
Dataset features number 24
Dataset observation number 1000

Dataset Date | —=mm-
Dataset place Germany
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| Normal - Anomalous percentage

| 70 - 30%

To visualize the dataset, the histogram function in Python was applied on the

dataset as shown in Figure 4.10:

ATTL ATT10_A101 ATT10_A102 ATT11 ATT12
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Figure 4.13: Features Histogram for Dataset 3

The Dataset has some features that need to be grouped. For example, the age feature

has a range from 0 to 100. The new age feature is grouped into ten groups. The first group

is indicated by 1 and gets the range from 0 to 10 and so on. Some features are extracted

from the original features and delete the old ones. There are no NAN values as all features

are numbers. Finally, Feature importance is applied for applying PCA dimensional
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reduction. The features are sorted in term of importance to the target using extra tree
classifiers as shown in Figure 4.8. Additionally, a comparison is provided between data

features in Appendix F.
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Figure 4.14: Feature Importance for Dataset 3

The default proposed models were applied between four assumptions for
comparison between normalization and dimensional reduction. Table 4.6 shows the results
with the four assumptions for Dataset 3. In the K-means model, the best result for TNR of
80% was by applying the first and third assumptions. But the second and the fourth
assumptions gave the best TPR with a close result to the highest TNR, especially the fourth
assumption. So, the fourth assumption was chosen as the best assumption to be applied for

tuning parameters.



69

In the HMM model, Table 4.19 shows that the best result for TPR was with the
fourth assumption of 38% and has an acceptable TNR of 70%. The highest TNR was by
using the first assumption of 83% with very low TPR of 21%. So, the fourth assumption

was chosen to be applied for tuning parameters because the TPR is highest.

In the Auto-Encoder model, the best result for TPR was with first assumption of
100%. In contrast, the best TNR of 100% was in assumption two. The TNR in the first
assumption gave the highest TPR has 0% but has TNR which is not acceptable. The TPR
in assumption two which gave the highest TNR has 0% TPR which is not acceptable. So,
the fourth assumption was chosen to be applied for tuning parameters because it has the
high TNR and is not O for TPR.

In the Gaussian Distribution model, the highest result for TPR was with assumption
two but it is very low with a high TNR. However, the highest TNR was with assumptions
three and four. So, the second assumption was chosen to be applied for tuning parameters.
Finally, for more results such as F1 score and RMSE in this part refer to Appendix A,

Appendix B, Appendix C, Appendix D.

Table 4.19: Results for Dataset 3 based on Four Assumptions

Models | Accuracy | TPR | TNR
Assumption 1: without normalization or dimensional reduction
K-means 0.236585366 0.14 0.8
HMM 0.307317073 0.217142857 0.833333333
Auto-encoder 0.853658537 1 0
Gaussian 0.197560976 0.068571429 0.95
Assumption 2: with normalization only
K-means 0.3 0.242857143 0.633333333
HMM 0.341463415 0.257142857 0.833333333
Auto-encoder 0.146341463 0 1
Gaussian 0.2 0.071428571 0.95
Assumption 3: with Dimensional reduction only
K-means 0.236585366 0.14 0.8
HMM 0.353658537 0.291428571 0.716666667
Auto-encoder 0.83902439 0.982857143 0
Gaussian 0.146341463 0 1
Assumption 4: with Both normalization and Dimensional reduction
K-means 0.302439024 0.242857143 0.65




HMM 0.426829268 0.38 0.7
Auto-encoder 0.173170732 0.034285714 0.983333333
Gaussian 0.148780488 0.002857143 1
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Some results have an outstanding accuracy in the normal instances and unfortunate

abnormal detection accuracy such as 0, 3 and 5 in random states. Another group of results

are the opposite; unfortunate normal accuracy and excellent abnormal detection accuracy,

for instance, 14, 42, 90, and 200 random states. Table 4.20 summarized all K-means results.

Finally, for more results such as F1 score and RMSE in this part refer to Appendix S.

Table 4.20: K-means Results for Dataset 3

Tuning Parameters Evaluations
Max Iter | Random Accuracy TPR TNR

State
1 0 0.3 0.242857143 0.633333333
10 0 0.302439024 0.242857143 0.65
1 42 0.731707317 0.817142857 0.233333333
10 42 0.697560976 0.757142857 0.35
1 1 0.73902439 0.831428571 0.2
10 1 0.292682927 0.234285714 0.633333333
1 2 0.692682927 0.751428571 0.35
10 2 0.3 0.242857143 0.633333333
1 3 0.295121951 0.234285714 0.65
10 3 0.292682927 0.234285714 0.633333333
1 4 0.175609756 0.045714286 0.933333333
10 4 0.7 0.757142857 0.366666667
1 5 0.256097561 0.168571429 0.766666667
10 5 0.3 0.242857143 0.633333333
1 13 0.785365854 0.891428571 0.166666667
10 13 0.302439024 0.242857143 0.65
1 14 0.717073171 0.785714286 0.316666667
10 14 0.707317073 0.765714286 0.366666667
1 90 0.707317073 0.765714286 0.366666667
10 90 0.702439024 0.768571429 0.316666667
1 91 0.714634146 0.78 0.333333333
10 91 0.3 0.242857143 0.633333333
1 200 0.695121951 0.777142857 0.216666667
10 200 0.7 0.757142857 0.366666667
1 250 0.690243902 0.751428571 0.333333333
10 250 0.3 0.242857143 0.633333333
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The results in this model showed better detections than K-means results in term of
accuracy. It has higher accuracy for both normal and abnormal detection. The most
acceptable result for both normal and abnormal detection has a “spherical” covariance type
of 55% and 46% respectively. There were some results with an outstanding accuracy in the
normal instances and unfortunate abnormal detection accuracy such as ‘diag’ with ‘viterbi’
in covariance type and algorithm respectively. Another group of results were the opposite;
unfortunate normal accuracy and excellent abnormal detection accuracy, for instance,
‘spherical” with ‘viterbi’ in covariance type and algorithm respectively. The other results
were varied with “diag”, “tied” and “full” covariance type and some of them gave a
satisfactory accuracy level for both, as shown in Table 4.21. Finally, for more results such

as F1 score and RMSE in this part, refer to Appendix T.

Table 4.21: HMM Results for Dataset 3

Tuning Parameters Evaluations

Covariance | N algorithm | Tol | Accuracy TPR TNR

type iter

Spherical 5k viterbi 0.1 | 0.837142857 | 0.837142857 | 0.233333333
Diag 5k viterbi 0.1 [0.22 0.22 0.733333333
Tied 5k viterbi 0.1 | 0.771428571 | 0.771428571 | 0.316666667
Full viterbi 0.342857143 | 0.342857143 | 0.566666667
Spherical viterbi 0.551428571 | 0.551428571 | 0.466666667
Diag viterbi 0.714285714 | 0.714285714 | 0.283333333
Tied viterbi 0.768571429 | 0.768571429 | 0.333333333
Spherical 5k map 0.1 | 0.654285714 | 0.654285714 | 0.433333333
Diag 5k map 0.1 | 0.845714286 | 0.845714286 | 0.233333333
Tied 5k map 0.1 | 0.788571429 | 0.788571429 | 0.266666667
Full map 0.771428571 | 0.771428571 | 0.316666667
Spherical map 0.657142857 | 0.657142857 | 0.433333333
Diag map 0.551428571 | 0.551428571 | 0.466666667
Tied map 0.702857143 | 0.702857143 | 0.283333333
Spherical 5k viterbi 0.231428571 | 0.231428571 | 0.666666667
Spherical 5 viterbi 0.1 | 0.345714286 | 0.345714286 | 0.566666667

The auto-encoder results are tuned using the following parameters: number of
epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1,
hidden dimension for layer 2, activation function, learning rate, and threshold. The best

results are obtained with varying the threshold values, as shown in Table 4.22. The highest
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abnormal detection accuracy has four threshold value with ‘tanh’ activation function of
66%, but the normal detection accuracy has very low value. Most of the other values have
excellent accuracy for normal detection but unacceptable accuracy for abnormal detection.
Finally, for more results such as F1 score and RMSE in this part refer to Appendix U.



Table 4.22: Auto-Encoder Model Results for Dataset 3
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Tuning Parameters Evaluations

Encoding | Hidden | Hidden | Activation | threshold | TPR TNR

_dim ~diml | dim2

18 10 6 tanh 4 0.06 0.93333

18 10 6 tanh 4 0.048571429 | 0.98333

32 16 8 tanh 4 0.065714286 | 0.93333

10 5 2 tanh 4 0.062857143 | 0.93333

5 2 1 tanh 4 0.034285714 | 0.96667

5 3 1 tanh 4 0.077142857 | 0.91667

50 20 10 tanh 4 0.057142857 | 0.95

5 2 1 sigmoid 4 0.028571429 |1

5 2 1 hard_ 4 0.065714286 | 0.93333
sigmoid

5 2 1 exponential | 4 0.065714286 | 0.93333

5 2 1 linear 4 0.054285714 | 0.96667

5 2 1 tanh 3 0.057142857 | 0.96667

5 2 1 tanh 2 0.057142857 | 0.96667

5 2 1 tanh 1 0.085714286 | 0.9

5 2 1 tanh 5 0.097142857 | 0.9

5 2 1 linear 4 0.22 0.78333

5 2 1 tanh 4 0.668571429 | 0.28333

5 2 1 tanh 4 0.031428571 | 0.9833

5 2 1 tanh 4 0.071428571 | 0.95

The results of the rest of the models were shown in Table 4.23. Auto-Encoder with

K-means model gave more accuracy than the K-means and Auto-encoder model, especially

TPR and TNR together which is important. The results in K-means and Auto-Encoder

models separately were high for only one of the accuracies; TNR or TPR. However, in this

model both TNR and TPR are increased in efficient values. Similarly, Auto-Encoder with

HMM model gave much better results from Auto-Encoder and HMM models in terms of

both accuracies together. The combination model between the three model (K-means,

HMM, and Auto-Encoder) gave approximately the same results compared with the

previous two models. Comparing these results with HMM, Auto-Encoder, and K-means

results gave better results. Finally, the Gaussian Distribution model gave a high TPR with

a non-acceptable TNR which shows that the Gaussian distribution model has high ability

to classify the abnormal instances in this dataset.
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Evaluations

K-means with Auto-encoder Model Results

Accura | Precision Recall F1-score | RMSE TPR TNR

Cy

0.45365 | 0.46569468 | 0.4314285 | 0.383855 | 0.43142857 | 0.739149 | 0.462857
8537 3 71 732 1 148 143
0.45121 | 0.46496747 | 0.43 0.382244 | 0.43 0.740797 | 0.46
9512 812 197

0.44634 | 0.46350626 | 0.4271428 | 0.379015 | 0.42714285 | 0.744082 | 0.454285
1463 1 57 847 7 345 714
0.49512 | 0.50202337 | 0.5040476 | 0.427401 | 0.50404761 | 0.710547 | 0.491428
1951 6 19 345 9 71 571
0.50975 | 0.50630637 | 0.5126190 | 0.437439 | 0.51261904 | 0.700174 | 0.508571
6098 1 48 843 8 194 429
HMM with Auto-encoder Model Results

Accuracy | Precision | Recall Fl-score | RMSE | TPR TNR
0.8536585 | 0.426829 | 0.5 0.460526 | 0.5 0.38254 |1

37 268 316 6028

0.4853658 | 0.413048 | 0.3326190 | 0.353800 | 0.33261 | 0.71738 | 0.548571429
54 856 48 187 9048 0057

0.5317073 | 0.590995 | 0.6773809 | 0.493944 | 0.67738 | 0.68431 | 0.471428571
17 701 52 303 0952 9138

0.8536585 | 0.426829 | 0.5 0.460526 | 0.5 0.38254 |1

37 268 316 6028

0.4365853 | 0.495106 | 0.4904761 | 0.392023 | 0.49047 | 0.75060 | 0.414285714
66 315 9 315 619 9508

0.8536585 | 0.426829 | 0.5 0.460526 | 0.5 0.38254 |1

37 268 316 6028

K-means, HMM, and Auto-encoder Model Results

Accura | Precisio | Recall F1- RMSE | TPR TNR
cy n score

0.51951 | 0.48333 | 0.46666666 | 0.41267 | 0.46666 | 0.693172276 0.5171
2195 6904 7 5892 6667 42857
Gaussian Distribution Model Results

Accura | Precision Recall | F1- RMSE | TPR TNR
cy score

0.14878 | 0.57334963 | 0.50142 | 0.13078 | 0.50142 | 0.922615582 0.0028
0488 3 8571 0773 8571 57143

In conclusion of experiment three, the best results for each model was represented

in Figure 4.15. The Gaussian distribution model achieved the highest TPR value among all

models with very low TNR which is not acceptable. But HMM with auto-encoder model
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reached the highest TNR value. So, HMM with auto-encoder model was considered the

best result in this experiment.

Best Results in Expermints 3
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Figure 4.15: The Best Results in Experiment 3

4.4.4 Experiment 4 - Server Computers Dataset

Experiment four was implemented on server computers dataset. This Dataset has
only two features. The features measure the through-put (mb/s) and latency (ms) of
response of each server. While your servers were operating, you collected m = 307
examples of how they were behaving. Table 4.24 describes some of the dataset

characteristics.

Table 4.24: Dataset 4 Description

Dataset name Server computers dataset
Dataset features number 2
Dataset observation number 307

Dataset Date | emeee-
Datasetplace =~ | -
Normal - Anomalous percentage 97.07 - 2.93%

To visualize the dataset, the histogram function in Python was applied on the
dataset as shown in Figure 4.16:
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Figure 4.16: Features Histogram for Dataset 4

The Dataset is ready. There are no NAN values, all features are numbers. Finally,
Feature importance was applied for applying PCA dimensional reduction. The features
were sorted in terms of importance to the target using extra tree classifiers as shown in
Figure 4.17.
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Figure 4.17: Feature Importance for Dataset 4

Default proposed models were applied between four assumptions for comparison
between normalization and dimensional reduction. Table 4.25 shows the results with the
four assumptions for Dataset 4. In the K-means model, the best result for TPR was achieved
by applying the second assumption of 66% and has the highest TNR by approximately
50%. So, it was chosen as the best assumption to be applied for tuning parameters.

In the HMM model, Table 4.25 shows that the best result for TPR was with the
second assumption of 77% and has a high TNR of 99%. The highest TNR was using the
fourth assumption of 100% with an acceptable TPR of 66%. So, the first assumption was

chosen to be applied for tuning parameters because the TPR is the highest.

In the Auto-Encoder model, the best result for TPR was with the first assumption
of 100%. In contrast, the best TNR was in assumption fourth of 100%. The TNR in the
first assumption gave the highest TPR but has 0% TNR which is not acceptable. The TPR
in assumption four which gave the highest TNR has 66% TPR which is low. So, the second
assumption was chosen to be applied for tuning parameters because it has the high TNR
and high TPR. In the Gaussian Distribution model, the highest result for TNR was with



78

assumption one but it has very low TPR. Finally, for more results such as F1 score and
RMSE in this part refer to Appendix A, Appendix B, Appendix C, Appendix D.

Table 4.25: Results for Dataset 4 based on Four Assumptions

Models | Accuracy | TPR | TNR
Assumption 1: without normalization or dimensional reduction
K-means 0.488599349 0.555555556 0.486577181
HMM 0.990228013 0.777777778 0.996644295
Auto-encoder 0.029315961 1 0
Gaussian 0.977198697 0.222222222 1
Assumption 2: with normalization only
K-means 0.5016 0.666666667 0.496644295
HMM 0.0098 0.222222222 0.003355705
Auto-encoder 0.9902 0.777777778 0.996644295
Gaussian 0.9772 0.222222222 1
Assumption 3: with Dimensional reduction only
K-means 0.397394137 0.555555556 0.39261745
HMM 0.013029316 0.333333333 0.003355705
Auto-encoder 0.96742671 0.666666667 0.976510067
Gaussian 0.973941368 0.111111111 1
Assumption 4: with Both normalization and Dimensional reduction
K-means 0.364820847 0.555555556 0.359060403
HMM 0.990228013 0.666666667 1
Auto-encoder 0.990228013 0.666666667 1
Gaussian 0.970684039 0 1

Some results have the highest accuracy in the normal instances and abnormal

detection accuracy such as 2 and 5 in random states with one maximum iteration. Another

group of results has less accuracies but is still acceptable, for instance, 1, 42 and 91 random

states. Table 4.26 summarizes all K-means results. Finally, for more results such as F1

score and RMSE in this part refer to Appendix V.



Table 4.26: K-means Results for Dataset 4
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Tuning Parameters Evaluations
Max Iter | Random Accuracy TPR TNR

State
1 0 0.5114 0.666666667 0.506711409
10 0 0.5016 0.666666667 0.496644295
1 42 0.4137 0.777777778 0.402684564
10 42 0.43 0.666666667 0.422818792
1 1 0.3322 0.444444444 0.32885906
10 1 0.4984 0.333333333 0.503355705
1 2 0.5505 0.666666667 0.546979866
10 2 0.5016 0.666666667 0.496644295
1 3 0.4495 0.333333333 0.453020134
10 3 0.4984 0.333333333 0.503355705
1 4 0.4886 0.333333333 0.493288591
10 4 0.4984 0.333333333 0.503355705
1 5 0.6352 0.555555556 0.637583893
10 5 0.5016 0.666666667 0.496644295
1 13 0.6189 0.333333333 0.627516779
10 13 0.5016 0.666666667 0.496644295
1 14 0.4267 0.444444444 0.426174497
10 14 0.4984 0.333333333 0.503355705
1 90 0.4365 0.444444444 0.436241611
10 90 0.4984 0.333333333 0.503355705
1 91 0.43 0.666666667 0.422818792
10 91 0.43 0.666666667 0.422818792
1 200 0.5147 0.444444444 0.516778523
10 200 0.57 0.333333333 0.577181208
1 250 0.645 0.222222222 0.657718121
10 250 0.5016 0.666666667 0.496644295

The results in this model showed better detections than K-means results in term of

accuracy. It has higher accuracy for both normal and abnormal detection. The most

acceptable result for both normal and abnormal detection has a “diag” and “viterbi”

covariance type and algorithm of 100% and 77% respectively. There were some results

with less accuracy in the normal instances and abnormal detection accuracy such as ‘full’

and ‘map’ in covariance type and algorithm respectively. The other results were varied

with “spherical”, “tied” and “full” covariance type and some of them gave a satisfactory

accuracy level for both, as shown in Table 4.27. Finally, for more results such as F1 score

and RMSE in this part refer to Appendix W.
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Tuning Parameters Evaluations

Covariance | N algorithm | Tol | Accuracy TPR TNR

type iter

Spherical 5k | viterbi 0.1 | 0.006514658 0.222222222 | 0

Diag 5k | viterbi 0.1 | 0.993485342 0.777777778 | 1

Tied 5k | viterbi 0.1 | 0.570032573 0.333333333 | 0.577181208
Full viterbi 0.993485342 0.777777778 | 1

Spherical viterbi 0.009771987 0.222222222 | 0.003355705
Diag viterbi 0.990228013 0.777777778 | 0.996644295
Tied viterbi 0.570032573 0.333333333 | 0.577181208
Spherical 5k map 0.1 | 0.993485342 0.777777778 | 1

Diag 5k | map 0.1 | 0.006514658 0.222222222 | 0

Tied 5k map 0.1 | 0.993485342 0.777777778 | 1

Full map 0.557003257 0.333333333 | 0.563758389
Spherical map 0.993485342 0.777777778 | 1

Diag map 0.990228013 0.777777778 | 0.996644295
Tied map 0.009771987 0.222222222 | 0.003355705
Spherical 5k | viterbi 0.442996743 0.666666667 | 0.436241611
Spherical 5 viterbi 0.1 | 0.006514658 0.222222222 | 0

The auto-encoder results were tuned using the following parameters: number of
epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1,
hidden dimension for layer 2, activation function, learning rate, and threshold. The best
results were obtained by varying the threshold values, as shown in Table 4.28. The highest
abnormal detection accuracy has a threshold value of 4, ‘tanh’ activation function, and the
layers sequence is (10 — 5 — 2) by approximately 77%, and the normal detection accuracy
has a high value of 100%. Most of the other values have excellent accuracy for normal
detection but acceptable accuracy for abnormal detection. Finally, for more results such as
F1 score and RMSE in this part refer to Appendix A, Appendix B, Appendix C, Appendix
D. Finally, for more results such as F1 score and RMSE in this part refer to Appendix X.
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Tuning Parameters Evaluations
Encoding | Hidden | Hidden | activation [threshold | TPR TNR
dim diml dim2

18 10 6 tanh 4 0.7777778 0.9966443

18 10 6 tanh 4 0.44444444 |1

32 16 8 tanh 4 077777778 |1

10 5 2 tanh 4 077777778 |1

5 2 1 tanh 4 0.77777778 | 0.99328859
1

5 3 1 tanh 4 0.77777778 | 0.99664429
5

50 20 10 tanh 4 0.55555556 |1

5 2 1 sigmoid 4 0.44444444 | 1

5 2 1 hard_ 4 0.77777778 | 0.99664429

sigmoid 5

5 2 1 exponential | 4 0.77777778 | 0.99664429
5

5 2 1 linear 4 0.77777778 | 0.99664429
5

5 2 1 tanh 3 0.77777778 | 0.99664429
5

5 2 1 tanh 2 0.77777778 | 0.99664429
5

5 2 1 tanh 1 0.33333333 | 0.99664429
5

5 2 1 tanh 5 0.77777778 | 0.99328859
1

5 2 1 linear 4 0.77777778 | 0.97651006
7

5 2 1 tanh 4 0.77777778 | 0.86577181
2

5 2 1 tanh 4 0.77777778 | 0.99664429
5

5 2 1 tanh 4 0.33333333 | 0.99664429
5

The results of the rest of the models were shown in Table 4.29. Auto-Encoder with

K-means model did not give more accuracy from the K-means and Auto-encoder model

but still achieves an acceptable range of accuracy. Auto-Encoder with HMM model did not

give much better results from Auto-Encoder and HMM models in terms of both accuracies
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but still gives acceptable results. The combination model between the three model (K-
means, HMM, and Auto-Encoder) gave approximately the same results compared with the
previous two models. Comparing these results with HMM, Auto-Encoder, and K-means
results did not have better results than the previous model. Finally, the Gaussian
Distribution model gave an outstanding TNR with a non-acceptable TPR which shows that
the Gaussian distribution model has a high ability to classify the normal instances in this

dataset.

Table 4.29: Results of Four Models for Dataset 4

Evaluations
K-means with Auto-encoder Model Results
Accura | Precision Recall Fl-score | RMSE TPR TNR
cy
0.4267 | 0.4987 0.4892 03213 | 07571591 255655555 8'24228187
0.7286594 | 0.444444 | 0.4697986
0.4691 | 0.4951 0.4571 0.3394 79 444 £g
HMM with Auto-encoder Model Results
Accuracy | Precisio | Recall Fl-score | RMSE | TPR TNR
n
0.4918566 | 0.502590 | 0.5227442 | 0.3560133
78 234 1 39 0.7128 | 0.5556 | 0.4899
0.4169381 | 0.504483 | 0.5380313 | 0.3198296
11 516 5 88 0.7636 | 0.6667 | 0.4094
K-means, HMM, and Auto-encoder Model Results
Accura | Precisi | Recall F1- RMSE TPR TNR
cy on score
0.672880 | 0.555555556 0.54697
0.5472 | 0.5059 | 0.5513 0.3841
918 9866
Gaussian Distribution Model Results
Accura | Precision Recall F1- RMSE TPR TNR
cy score
0.97719 | 0.98852459 | 0.61111 | 0.67601 | 0.151001 | 0.222222222 1
8697 1111 387 003

In conclusion of experiment four, the best results for each model was presented in
Figure 4.18. Gaussian distribution, HMM and Auto-encoder models achieved the highest
TPR value among the other models. But HMM and auto-encoder models reached the
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highest TNR value. So, HMM or auto-encoder model was considered as the best result in

this experiment.

Best Results in Experiment 4
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Figure 4.18: The Best Results in Experiment 4

4.4.5 Experiment 5 - High Dimensional Server Computers Dataset

Experiment five was implemented on a high dimensional server computers dataset.
In this dataset, each example is described by 11 features, capturing many more properties
of the computer servers. The features measure the through-put (mb/s) and latency (ms) of
response of each server. While computers servers were operating, its collected m = 307
examples of how they were behaving. Table 4.30 describes some of the dataset

characteristics.

Table 4.30: Dataset 5 Description

Dataset name high dimensional server computers dataset
Dataset features number 11

Dataset observation number 1000

DatasetDate | —-e-e

Datasetplace | -

Normal - Anomalous percentage 90.0 - 10.0%

To visualize the dataset, the histogram function in Python was applied on the
dataset as shown in Figure 4.19:
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Figure 4.19: Features Histogram for Dataset 5

The Dataset is ready. There are no NAN values, all features are numbers. Finally,
Feature importance was applied for applying PCA dimensional reduction. The features
were sorted in term of importance to the target using extra tree classifier as shown in Figure

4.20. Additionally, a comparison was provided between data features in Appendix H.
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Figure 4.20: Feature Importance for Dataset 5

Default proposed models were applied between four assumptions for comparison
between normalization and dimensional reduction. Table 4.31 shows the results with the
four assumptions for Dataset 5. In the K-means model, the best result for TPR and TNR
was by applying the second assumption among the four assumptions of 60% and 58%

respectively. So, it was chosen as the best assumption to be applied for tuning parameters.

In the HMM model, Table 4.31 shows that the best result for TPR was 60% with
the fourth assumption and has a highest TNR of 56%. So, the first assumption was chosen
to be applied for tuning parameters because it has the highest values between all

assumptions.

In the Auto-Encoder model, the best result for TPR was 100% with the third
assumption. In contrast, the best TNR of 100% was in the first and second assumptions.
The TNR in assumption three which gave the highest TPR has approximately 0% TNR
which is not acceptable. The TPR in assumption one and two which gave the highest TNR
has 0% TPR which is not acceptable. The fourth assumption has 40% TPR and 94% TNR

which were a much better balance between the four assumptions. So, the fourth assumption
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was chosen to be applied for tuning parameters because it has the suitable TNR and TPR.
In the Gaussian Distribution model, the first assumption was chosen because it has the
highest TPR and TNR results among all assumptions. Finally, for more results such as F1
score and RMSE in this part refer to Appendix A, Appendix B, Appendix C, Appendix D.

Table 4.31: Results for Dataset 5 based on Four Assumptions

Models | Accuracy | TPR | TNR
Assumption 1: without normalization or dimensional reduction

K-means 0.52 0.2 0.555555556
HMM 0.54 0.4 0.555555556
Auto-encoder 0.1 0 1

Gaussian 0.92 0.2 1

Assumption 2: with normalization only

K-means 0.59 0.6 0.588888889
HMM 0.51 0.5 0.511111111
Auto-encoder 0.9 0 1

Gaussian 0.9 0 1

Assumption 3: with Dimensional reduction only
K-means 0.56 0.6 0.555555556
HMM 0.48 0.5 0.477777778
Auto-encoder 0.13 1 0.033333333
Gaussian 0.9 0 1
Assumption 4: with Both normalization and Dimensional reduction

K-means 0.58 0.5 0.588888889
HMM 0.57 0.6 0.566666667
Auto-encoder 0.91 0.4 0.966666667
Gaussian 0.9 0 1

Some results have an outstanding accuracy in the normal instances and abnormal
detection accuracy such as 1 in random states with ten maximum iteration. Another group
of results has less accuracies but is still acceptable, for instance, 42 and 250 random states.
Table 4.32 summarizes all K-means results. Finally, for more results such as F1 score and
RMSE in this part refer to Appendix Y.
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Table 4.32: K-means Results for Dataset 5

Tuning Parameters Evaluations

Max Iter Random State | Accuracy TPR TNR

1 0 0.42 0.3 0.433333333
10 0 0.57 0.6 0.566666667
1 42 0.43 0.7 0.4

10 42 0.54 0.6 0.533333333
1 1 0.45 0.6 0.433333333
10 1 0.6 0.8 0.577777778
1 2 0.38 0.6 0.355555556
10 2 0.41 0.3 0.422222222
1 3 0.36 0.5 0.344444444
10 3 0.55 0.7 0.533333333
1 4 0.61 0.4 0.633333333
10 4 0.58 0.6 0577777778
1 5 0.56 0.4 0.577777778
10 5 0.46 0.4 0.466666667
1 13 0.54 0.4 0.555555556
10 13 0.45 0.4 0.455555556
1 14 0.43 0.4 0.433333333
10 14 0.54 0.6 0.533333333
1 90 0.53 0.8 0.5

10 90 0.57 0.7 0.555555556
1 91 0.47 0.8 0.433333333
10 91 0.6 0.7 0.588888889
1 200 0.63 0.4 0.655555556
10 200 0.59 0.7 0577777778
1 250 0.44 0.7 0.411111111
10 250 0.56 0.7 0.544444444

The results in this model showed better detections than K-means results in term of
accuracy. It has higher accuracy for both normal and abnormal detection. The highest result
for both normal and abnormal detection has a “spherical” covariance type of 60% and 61%
respectively. There were some results with less accuracy in the normal instances and
abnormal detection accuracy such as ‘tied” with ‘map’ in covariance type and algorithm
respectively. The other results were varied with “diag”, “tied” and “full” covariance type
and some of them gave a satisfactory accuracy level for both, as shown in Table 4.33.

Finally, for more results such as F1 score and RMSE in this part refer to Appendix Z.
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Table 4.33: HMM Results for Dataset 5

Tuning Parameters Evaluations

Covariance | N algorithm | Tol | Accuracy TPR TNR

type iter

Spherical 5k | viterbi 0.1 |0.59 0.6 0.588888889
Diag 5k | viterbi 0.1 |0.57 0.6 0.566666667
Tied 5k | viterbi 0.1 |0.56 0.6 0.555555556
Full 5k | map 0.1 |0.56 0.6 0.555555556
Spherical viterbi 0.61 0.6 0.611111111
Diag viterbi 0.57 0.6 0.566666667
Tied viterbi 0.53 0.5 0.533333333
Full 5k | viterbi 0.1 |0.53 0.5 0.533333333
Spherical 5k | map 01 |0.6 0.6 0.6

Diag 5k | map 0.1 |0.56 0.6 0.555555556
Tied 5k | map 0.1 |0.57 0.6 0.566666667
Full 5k | map 0.1 |0.56 0.6 0.555555556
Spherical map 0.61 0.6 0.611111111
Diag map 0.56 0.6 0.555555556
Tied map 0.54 0.5 0.544444444
Full map 0.54 0.5 0.544444444
Spherical 5k | viterbi 0.61 0.6 0.611111111
Spherical 5 viterbi 0.1 ]0.59 0.6 0.588888889

The auto-encoder results were tuned using the following parameters: number of
epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1,
hidden dimension for layer 2, activation function, learning rate, and threshold. The best
results were obtained by varying the threshold values, as shown in Table 4.34. The highest
abnormal detection accuracy has four threshold values with ‘tanh’ activation function of
approximately 80%, and the normal detection accuracy has a value 55%. Most of the other
values have excellent accuracy for normal detection but unacceptable accuracy for
abnormal detection. Finally, for more results such as F1 score and RMSE in this part refer
to Appendix AA.



Table 4.34: Auto-Encoder Model Results for Dataset 5
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Tuning Parameters Evaluations

Encoding | Hidden | Hidden | activation threshold | TPR TNR

_dim ~diml _dim2

18 10 6 tanh 4 0.2 1

18 10 6 tanh 4 0.1 1

32 16 8 tanh 4 0.2 1

10 5 2 tanh 4 0.4 0.966666667
5 2 1 tanh 4 0.4 0.955555556
5 3 1 tanh 4 0.4 0.966666667
50 20 10 tanh 4 0.2 1

5 2 1 sigmoid 4 0.2 1

5 2 1 hard_sigmoid | 4 0.3 0.988888889
5 2 1 exponential 4 0.4 0.955555556
5 2 1 linear 4 0.4 0.933333333
5 2 1 tanh 3 0.4 0.933333333
5 2 1 tanh 2 1 0

5 2 1 tanh 1 0.5 0.955555556
5 2 1 tanh 5 0.5 0.888888889
5 2 1 linear 4 0.5 0.855555556
5 2 1 tanh 4 0.8 0.555555556
5 2 1 tanh 4 0.4 0.966666667
5 2 1 tanh 4 0.4 0.955555556

The results of the rest of the models were shown in Table 4.35. Auto-Encoder with

K-means model did not give more accuracy compared to the K-means and Auto-encoder

model but still has an acceptable range of accuracy. Auto-Encoder with HMM model gave

a small increase in results compared to the Auto-Encoder model. The combination model

between the three model (K-means, HMM, and Auto-Encoder) gave approximately the

same results compared with the previous two models. Comparing these results with HMM,

Auto-Encoder, and K-means results did not have better results than the previous model.

Finally, the Gaussian Distribution model gave an outstanding TNR with a non-acceptable

TPR which shows that the Gaussian distribution model has a high ability to classify the

normal instances in this dataset.




Table 4.35: Results of Four Models for Dataset 5
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Evaluations

K-means with Auto-encoder Model Results

Accurac | Precisio | Recall F1-score RMSE TPR TNR

y n

0.47 0.51010 | 0.52777 | 0.396011396 | 0.728010989 | 0.6 0.455555
101 7778 556

0.47 0.51010 | 0.52777 | 0.396011396 | 0.728010989 | 0.6 0.455555
101 7778 556

HMM with Auto-encoder Model Results

Accurac | Precisio | Recall F1-score RMSE TPR TNR

y n

0.52 (7)65932605 0.6 0.438990182 0.6928 0.7 05

0.56 0.52818 | 0.57777 | 0.454365079
0354 2778 0.6633 0.6 0.5556

0.70073 | 0.48476 | 0.39502 | 0.418660852 | 0.39502945 0.54705 | 0.07

2519 7631 945 3453

K-means, HMM, and Auto-encoder Model Results

Accurac | Precisio | Recall F1-score RMSE TPR TNR

y n

0.55 0.54201 | 0.61666 | 0.4590696 0.670820393 | 0.7 0.533333
6807 6667 333

Gaussian Distribution Model Results

Accurac | Precisio | Recall F1-score RMSE TPR TNR

y n

0.92 0.95918 | 0.6 0.645390071 | 0.282842712 | 0.2 1
3673

In conclusion of experiment five, the best results for each model was represented

in Figure 4.21. The Gaussian distribution model achieved the highest TNR value among

the other models with very low TPR. However, the K-means model reached the highest

TPR value with acceptable TNR. So, the K-means model was considered as the best result

in this experiment.
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Figure 4.21: The Best Results in Experiment 5

4.4.6 Experiment 6 - Transmission History Dataset

Experiment six was implemented on a transmission history dataset (conn250K).
There are 256670 records total, each of which is with 4 fields that will be described. “record
ID” - the unique identifier for each connection record. “duration_" - This feature denotes
the number of seconds (rounded) of the connection. For example, a connection for 0.17s
or 0.3s would be indicated with a “0” in this field. “src_bytes” - This field represents the
number of data bytes transferred from the source to the destination (i.e., the amount of out-
going bytes from the host). “dst_bytes” - This feature represents the number of data bytes
transferred from the destination to the source (i.e., the amount of bytes received by the
host). Table 4.36 describes some of the dataset characteristics.

Table 4.36: Dataset 6 Description

Dataset name

Transmission History Dataset dataset

Dataset features number

4

Dataset observation number

256670

Dataset Date

Dataset place

Normal - Anomalous percentage

99.62 - 0.38%
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To visualize the dataset, the histogram function in Python was applied on the
dataset as shown in Figure 4.22:
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Figure 4.22: Features Histogram for Dataset 6

The Dataset is ready. There are no NAN values, all features are numbers. Finally,

Feature importance was applied for applying PCA dimensional reduction. The features

were sorted in term of importance to the target using extra tree classifiers as shown in

Figure 4.23. Additionally, a comparison is provided between data features in Appendix I.
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Figure 4.23: Feature Importance for Dataset 6

Default proposed models were applied between four assumptions for comparison
between normalization and dimensional reduction. Table 4.37 shows the results with the
four assumptions for Dataset 6. In the K-means model, the best result for TNR of 99% was
by applying the fourth assumption among the four assumptions. However, the TPR for the
fourth assumption is not acceptable. The highest TPR of 52% was with assumption three
and a TNR of 50%. So, the third assumption was chosen as the best assumption to be

applied for tuning parameters.

In the HMM model, Table 4.37 shows that the first assumption got the highest
values in TNR and TPR among all assumptions. So, the first assumption was chosen to be
applied for tuning parameters.

In the Auto-Encoder model, the best result for TPR and TNR was by applying the
fourth assumption which yielded 100% and 99% respectively. So, the fourth assumption
was chosen to be applied for tuning parameters because it has the highest TNR and TPR
values. In the Gaussian Distribution model, the second assumption was chosen because it

has the highest TPR and TNR results among all assumptions. Finally, for more results such
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as F1 score and RMSE in this part refer to Appendix A, Appendix B, Appendix C,

Appendix D.

Table 4.37: Results for Dataset 6 based on Four Assumptions

Models | Accuracy | TPR | TNR
Assumption 1: without normalization or dimensional reduction
K-means 0.498664015 0.474025974 0.498902064
HMM 0.986205182 1 0.986071899
Auto-encoder 0.009569378 1 0
Gaussian 0.998197974 1 0.998180563
Assumption 2: with normalization only
K-means 0.498726154 0.474025974 0.498964803
HMM 0.980736966 1 0.98055085
Auto-encoder 0.995898838 1 0.995859213
Gaussian 0.998322252 1 0.998306042
Assumption 3: with Dimensional Reduction only
K-means 0.501149568 0.525974026 0.500909718
HMM 0.498726154 0.474025974 0.498964803
Auto-encoder 0.009755794 1 0.000188218
Gaussian 0.990430622 0 1
Assumption 4: with Both normalization and Dimensional Reduction
K-means 0.988317902 0 0.997866867
HMM 0.979121357 1 0.978919631
Auto-encoder 0.996644504 1 0.996612084
Gaussian 0.998011558 0.993506494 0.998055085

Most results have an outstanding accuracy around 97% in the normal instances and

0% for abnormal detection accuracy such as 0, 1, and 42 in random states. Two results have

100% abnormal accuracy but close to 0% normal accuracy with 250 random states. Overall,

K-means model did not work well in this dataset. Table 4.38 summarized all K-means

results. Finally, for more results such as F1 score and RMSE in this part refer to Appendix

BB.



Table 4.38: K-means Results for Dataset 6

95

Tuning Parameters Evaluations
Max Iter | Random Accuracy TPR TNR
State

1 0 0.988317902 0 0.997866867
10 0 0.988317902 0 0.997866867
1 42 0.988255763 0 0.997804128
10 42 0.988317902 0 0.997866867
1 1 0.988317902 0 0.997866867
10 1 0.988317902 0 0.997866867
1 2 0.988690735 0 0.998243303
10 2 0.988317902 0 0.997866867
1 3 0.988317902 0 0.997866867
10 3 0.988317902 0 0.997866867
1 4 0.988317902 0 0.997866867
10 4 0.988317902 0 0.997866867
1 5 0.988317902 0 0.997866867
10 5 0.988317902 0 0.997866867
1 13 0.988317902 0 0.997866867
10 13 0.988317902 0 0.997866867
1 14 0.988317902 0 0.997866867
10 14 0.446405269 0 0.450718364
1 90 0.988317902 0 0.997866867
10 90 0.988317902 0 0.997866867
1 91 0.988317902 0 0.997866867
10 91 0.988317902 0 0.997866867
1 200 0.988317902 0 0.997866867
10 200 0.988317902 0 0.997866867
1 250 0.012241347 1 0.002697785
10 250 0.011682098 1 0.002133133

The results in this model show better detections than K-means results in term of

accuracy. It has higher accuracy for both normal and abnormal detection together. The

highest result for both normal and abnormal detection has a “diag” covariance type of 98%

and 100% respectively. There are some results with less accuracy than the normal accuracy

such as ‘spherical’ with ‘viterbi’ in covariance type and algorithm respectively. The other

results are varied with “diag”, “tied” and “full” covariance type and some of them give a

satisfactory accuracy level for both, as shown in Table 4.39. Finally, for more results such

as F1 score and RMSE in this part refer to Appendix CC.
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Tuning Parameters Evaluations
Covariance | N algorithm | Tol | Accuracy TPR TNR
type iter
Spherical 5k | viterbi 0.1 |0.402100292 |1 0.396323483
Diag 5k | viterbi 0.1 |0.986267321 |1 0.986134638
Tied 5k | viterbi 0.1 |0.50369726 | 0.68181818 | 0.501976285
2
Full 5k | map 0.1 |0.98632946 |1 0.986197378
Spherical viterbi 0.40166532 |1 0.395884309
Diag viterbi 0.986267321 |1 0.986134638
Tied viterbi 0.49630274 | 0.31818182 | 0.498023715
Full 5k | viterbi 0.1 |0.98632946 |1 0.986197378
Spherical 5k | map 0.1 |0.402100292 |1 0.396323483
Diag 5k | map 0.1 |0.986267321 |1 0.986134638
Tied 5k | map 0.1 |0.503759398 | 0.68181818 | 0.502039024
Full 5k | map 0.1 |0.98632946 |1 0.986197378
Spherical map 0.401603182 |1 0.39582157
Diag map 0.986267321 |1 0.986134638
Tied map 0.496240602 | 0.31818181 | 0.497960976
8
Full map 0.98632946 |1 0.986197378
Spherical 5k | viterbi 0.40166532 |1 0.395884309
Spherical 5 viterbi 0.1 |0.44478966 | 0.99350649 | 0.439488048

The auto-encoder results were tuned using the following parameters: number of

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1,

hidden dimension for layer 2, activation function, learning rate, and threshold. The best

results were obtained by varying the threshold values, as shown in Table 4.40. Most of the

results gave the highest normal and abnormal detection accuracies by 99% and 100%. Only
two results have 0% abnormal accuracy and 100% normal detection but unacceptable

accuracy for abnormal detection. Finally, for more results such as F1 score and RMSE in

this part refer to Appendix DD.
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Table 4.40: Auto-Encoder Model Results for Dataset 6

Tuning Parameters Evaluations
Encoding | Hidden Hidden activation (threshold | TPR | TNR
_dim ~diml ~dim2
18 10 6 tanh 4 1 0.996235648
18 10 6 tanh 4 1 0.996235648
32 16 8 tanh 4 1 0.996235648
10 5 2 tanh 4 1 0.996235648
5 2 1 tanh 4 1 0.996235648
5 3 1 tanh 4 1 0.996235648
50 20 10 tanh 4 1 0.996235648
5 2 1 sigmoid 4 1 0.996235648
5 2 1 hard_ 4 1 0.996235648
sigmoid
5 2 1 exponential | 4 1 0.996047431
5 2 1 linear 4 1 0.994039777
5 2 1 tanh 3 1 0.993851559
5 2 1 tanh 2 1 0.993851559
5 2 1 tanh 1 0 1
5 2 1 tanh 5 1 0.995921952
5 2 1 linear 4 1 0.995545517
5 2 1 tanh 4 1 0.993475124
5 2 1 tanh 4 1 0.996612084
5 2 1 tanh 4 0 1

The results of the rest models were shown in Table 4.41. Auto-Encoder with K-
means model gave more accuracy than the K-means but the results of Auto-Encoder was
better. Auto-Encoder with HMM model gave the same accuracy level because the results
of the two models separately were very high. The combination model between the three
model (K-means, HMM, and Auto-Encoder) gave approximately the same results
compared with the previous two models. Comparing these results with HMM, Auto-
Encoder, and K-means results did not have better results than the previous model. Finally,
the Gaussian Distribution model gave an outstanding TNR and TPR which shows that the
Gaussian distribution model has a high ability to classify the normal and abnormal

instances in this dataset.



Table 4.41: Results of Four Models for Dataset 6

98

Evaluations
K-means with Auto-encoder Model Results
Accura | Precision Recall F1-score | RMSE TPR TNR
Cy
0.58056 | 0.51102934 | 0.785039 | 0.387382 | 0.64763957 | 0.993506 | 0.5765731
2978 3 839 042 7 494 85
0.59007 | 0.51128150 | 0.789839 | 0.391701 | 0.64025759 | 0.993506 | 0.5861722
0217 2 388 119 1 494 82
0.44945 | 0.48969858 | 0.230111 | 0.310179 | 0.74199051 | 0.006493 | 0.4537298
0071 3 676 725 8 506 45
0.44851 | 0.48955507 | 0.226425 | 0.309639 | 0.74261834 |0 0.4528514
7989 3 748 226 8 96
0.59236 | 0.51146857 | 0.794215 | 0.392870 | 0.63845958 |1 0.5884308
9353 3 446 733 9 93
HMM with Auto-encoder Model Results
Accuracy | Precisio | Recall Fl-score | RMSE | TPR TNR
n

0.9627788 | 0.601831 | 0.977994 | 0.659486 | 0.192927 | 0.993506 | 0.962481962
48 591 228 271 842 494
0.9812962 | 0.668842 | 0.987342 | 0.747293 | 0.136761 | 0.993506 | 0.981178242
16 203 368 483 779 494
0.9745230 | 0.636088 | 0.983923 | 0.707173 | 0.159614 | 0.993506 | 0.97433967
85 803 082 01 897 494
0.9616603 | 0.599870 | 0.980644 | 0.656617 | 0.195805 0.961289918
49 298 959 96 135
0.9725346 | 0.629194 | 0.986134 | 0.698303 | 0.165726 0.972269277
42 631 638 177 756
K-means, HMM, and Auto-encoder Model Results
Accura | Precisi | Recall F1- RMSE TPR TNR
cy on score
0.9636 | 0.6041 | 0.9816 0.6629 | 0.1908 1 0.9632
Gaussian Distribution Model Results
Accura | Precision Reca | F1- RMSE TPR TNR
cy Il score

0.995 0.044591 | 0.993506494 0.99805
0.998 0.9157 3 0.9522 952 5085

In conclusion of experiment five, the best results for each model was presented in
Figure 4.24. Most of the models in this data got the highest TPR with 100%. But Auto-

encoder model reached the highest TPR value with high TNR. So, Auto-encoder model

was considered as the best result in this experiment.
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Figure 4.24: The Best Results in Experiment 6

4.4.7 Experiment 7 - Porto Seguro’s Safe Driver Prediction Dataset

Experiment seven was implemented on a Porto Seguro’s Safe Driver Prediction
dataset. There are 595212 observations in total and each observation is described by 59
features. Table 4.42 describes some of the dataset characteristics which is provided by
Porto Seguro. Porto Seguro is one of the Brazil’s largest auto and homeowner insurance
companies. Inaccuracies in car insurance company’s claim predictions raise the cost of
insurance for good drivers and reduce the price for bad ones. Features that belong to similar
groupings are tagged as such in the feature names (e.g., ind, reg, car, calc). In addition,
feature names include the postfix bin to indicate binary features and cat to indicate
categorical features. Features without these designations are either continuous or ordinal.
Values of -1 indicate that the feature was missing from the observation. The target columns

signify whether or not a claim was filed for that policy holder.

Table 4.42: Dataset 7 Description

Dataset name Porto Seguro’s Safe Driver Prediction dataset
Dataset features number 59

Dataset observation number 595212

DatasetDate | —-----

Dataset place Brazil

Normal - Anomalous percentage 96.36 - 3.64%
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To visualize the dataset, the histogram function in Python was applied on the
dataset, four features is shown in Figure 4.25 as sample:
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Figure 4.25: Features Histogram for Dataset 7

The Dataset is ready. There are no NAN values, all features are numbers. Finally,

Feature importance was applied for applying PCA dimensional reduction. The features

were sorted in term of importance to the target using extra tree classifiers as shown in

Figure 4.26. Additionally, a comparison was provided between data features in Appendix

J.
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Figure 4.26: Feature Importance for Dataset 7

Default proposed models were applied between four assumptions for comparison
between normalization and dimensional reduction. Table 4.43 shows the results with the
four assumptions for Dataset 7. In the K-means model, the best result for TNR of 70% was
achieved by applying the fourth assumption among the four assumptions. However, the
TPR for the fourth assumption was very low. The highest TPR of 58% was with assumption
two with very low TNR. The third assumption has a suitable TPR and TNR of 50% for
both accuracies. So, the third assumption was chosen as the best assumption to be applied

for tuning parameters.
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In the HMM model, Table 4.43 shows that the first assumption got the highest TPR
value among all assumptions but has a very low TNR. However, the best TNR value was
with the fourth assumption with low TPR. So, the fourth assumption was chosen to be

applied for tuning parameters.

In the Auto-Encoder model, the best result for TPR of 100% was achieved by
applying the first and third assumptions but the TNR was 0% in these assumptions. The
best result for TNR of 99% was with applying the second and fourth assumptions. But the
TPR was very low in these assumptions. So, the fourth assumption was chosen to be
applied for tuning parameters because it has the highest TNR and has better TPR compared
to the second assumption. In the Gaussian Distribution model, the fourth assumption was
chosen because it has the most suitable results for TPR and TNR whereas the other
assumptions have 0% for one of the rates. Finally, for more results such as F1 score and

RMSE in this part refer to Appendix A, Appendix B, Appendix C, Appendix D.

Table 4.43: Results for Dataset 7 based on Four Assumptions

Models | Accuracy | TPR | TNR
Assumption 1: without normalization or dimensional reduction

K-means 0.500171245 0.505393196 0.499677431
HMM 0.101297481 0.975938047 0.018586972
Auto-encoder 0.08639517 1 0

Gaussian 0.91360483 0 1

Assumption 2: with normalization only
K-means 0.313291013 0.582465198 0.287836518
HMM 0.852792889 0.118189361 0.922260776
Auto-encoder 0.911454309 0.003872038 0.997279955
Gaussian 0.08639517 1 0
Assumption 3: with Dimensional reduction only

K-means 0.500824366 0.504747857 0.500453341
HMM 0.183200452 0.812943671 0.123648696
Auto-encoder 0.08639517 1 0

Gaussian 0.91360483 0 1

Assumption 4: with Both normalization and Dimensional reduction

K-means 0.682782296 0.424080391 0.707246478
HMM 0.865743801 0.101687102 0.937996931
Auto-encoder 0.908085161 0.012077072 0.992816292
Gaussian 0.894353689 0.035401494 0.975580625
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The best result for TNR has an outstanding accuracy around 81% in the normal
instances and 29% for abnormal detection accuracy with 4 in random states and 1 iteration.
The result for ten iterations with 4 random state gave 71% for TNR and 40% for abnormal
accuracy. The highest result in the abnormal accuracy was 65% with 23% for the normal
accuracy with 14 random state. Table 4.44 summarizes all K-means results. Finally, for

more results such as F1 score and RMSE in this part refer Appendix EE.

Table 4.44: K-means Results for Dataset 7

Tuning Parameters Evaluations
Max Iter | Random Accuracy TPR TNR

State
1 0 0.382466089 0.496174057 0.371713279
10 0 0.335823689 0.547524661 0.315804157
1 42 0.420418794 0.443440583 0.418241735
10 42 0.311076774 0.584401217 0.285229809
1 1 0.484719357 0.385636582 0.494089134
10 1 0.65041298 0.469622937 0.667509416
1 2 0.539016017 0.357979165 0.556135793
10 2 0.326106522 0.564580068 0.303555238
1 3 0.396165702 0.478104545 0.388417143
10 3 0.332223559 0.554807781 0.31117485
1 4 0.766270281 0.294551489 0.810878435
10 4 0.697732396 0.40278418 0.725624215
1 5 0.341423007 0.571402231 0.31967499
10 5 0.330965106 0.556467226 0.309640466
1 13 0.312040525 0.601456624 0.284671851
10 13 0.33175363 0.554992164 0.310643046
1 14 0.274294908 0.658615285 0.237951597
10 14 0.309619199 0.586798193 0.283407728
1 90 0.378324346 0.518207799 0.365096248
10 90 0.322761268 0.56670047 0.299693123
1 91 0.438172535 0.42666175 0.439261055
10 91 0.33792642 0.546326173 0.318219068
1 200 0.56252041 0.55277957 0.563441554
10 200 0.662933788 0.453120679 0.682774794
1 250 0.337647649 0.54807781 0.317748291
10 250 0.334541342 0.550843551 0.314086693

The results in this model showed better detections than K-means results in term of
higher accuracy. It has higher accuracy for both normal and abnormal detection but not

together. The highest result for normal detection of 96% has a “spherical” covariance type
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with close to 0% in the abnormal accuracy. The highest result for abnormal detection of
95% has a “spherical” covariance type with close to 0% in the normal accuracy. There were
“tied” results with less accuracy in the normal accuracy with 30% for abnormal accuracy.
The other results were varied with “diag”, “tied” and “full” covariance type and some of
them gave a satisfactory accuracy level for both, as shown in Table 4.45. Finally, for more

results such as F1 score and RMSE in this part refer to Appendix FF.

Table 4.45: HMM Results for Dataset 7

Tuning Parameters Evaluations

Covariance | N algorithm | Tol | Accuracy TPR TNR

type iter

Spherical 5k | viterbi 0.1 | 0.107494166 | 0.956301281 | 0.027226601
Diag 5k | viterbi 0.1 | 0.147207111 | 0.881810639 | 0.077739224
Spherical viterbi 0.887145463 | 0.060569743 | 0.965310713
Diag viterbi 0.852792889 | 0.118189361 | 0.922260776
Tied viterbi 0.769448272 | 0.258504656 | 0.817765727
Spherical 5k | map 0.1 | 0.107494166 | 0.956301281 | 0.027226601
Diag 5k | map 0.1 | 0.852792889 | 0.118189361 | 0.922260776
Tied 5k | map 0.1 | 0.743403079 | 0.308380197 | 0.78454108
Spherical map 0.112464258 | 0.94025998 | 0.034183638
Diag map 0.852792889 | 0.118189361 | 0.922260776
Tied map 0.778719405 | 0.231953536 | 0.830424397
Spherical 5k | viterbi 0.107494166 | 0.956301281 | 0.027226601
Spherical 5 viterbi 0.1 | 0.834163009 | 0.174702683 | 0.896524969

The auto-encoder results were tuned using the following parameters: number of
epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1,
hidden dimension for layer 2, activation function, learning rate, and threshold. The best
results were obtained by varying the threshold values, as shown in Table 4.46. Most of the
results gave the highest normal detection accuracies of 99%. But the abnormal detection
accuracy was very low. Only one result has 63% abnormal accuracy and 45% for normal
detection. Overall, Auto-Encoder did not detect well in this dataset. Finally, for more

results such as F1 score and RMSE in this part refer to Appendix GG.



Table 4.46: Auto-Encoder Model Results for Dataset 7

105

Tuning Parameters Evaluations
Encoding | Hidden | Hidden | activation |[threshold | TPR TNR
_dim ~diml | dim2
18 10 6 tanh 4 0.012353646 | 0.992380388
18 10 6 tanh 4 0.01594911 | 0.99013112
32 16 8 tanh 4 0.014105283 | 0.991386525
10 5 2 tanh 4 0.019636766 | 0.987332613
5 2 1 tanh 4 0.02055868 | 0.986417213
5 3 1 tanh 4 0.020927445 | 0.986966453
50 20 10 tanh 4 0.010325436 | 0.993539894
5 2 1 sigmoid 4 0.011339541 | 0.99319117
5 2 1 hard_ 4 0.020835254 | 0.98647824
sigmoid
5 2 1 exponential | 4 0.02120402 | 0.986356186
5 2 1 linear 4 0.021572785 | 0.986146952
5 2 1 tanh 3 0.024154144 | 0.984760776
5 2 1 tanh 2 0.024154144 | 0.984760776
5 2 1 tanh 1 0.019728957 | 0.986652601
5 2 1 tanh 5 0.031068498 | 0.978483749
5 2 1 linear 4 0.078915829 | 0.954430534
5 2 1 tanh 4 0.631787591 | 0.451196122
5 2 1 tanh 4 0.012538029 | 0.993208607
5 2 1 tanh 4 0.019728957 | 0.986696192

The results of the rest of the models were shown in Table 4.47. Auto-Encoder with
K-means model gave more suitable accuracy than Auto-encoder but the results of K-means
was better. Auto-Encoder with HMM model did not give better accuracy level than auto-
encoder or HMM. The combination model between the three model (K-means, HMM, and
Auto-Encoder) gave approximately the same results compare with the previous two
models. Comparing these results with HMM, Auto-Encoder, and K-means results did not
give better results than the previous model. Finally, the Gaussian Distribution model gave
an outstanding TPR which shows that the Gaussian distribution model has a high ability to

classify the normal instances in this dataset.
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Evaluations
K-means with Auto-encoder Model Results
Accura | Precision Recall F1-score | RMSE TPR TNR
Cy
0.41743 | 0.51469906 | 0.5440240 | 0.361078 | 0.76326144 | 0.697059 | 0.39098
196 7 38 294 9 095 898
0.41742 | 0.51468356 | 0.5439779 | 0.361066 | 0.76326666 | 0.696966 | 0.39098
3995 1 42 243 7 903 898
0.58245 | 0.48529634 | 0.4559566 | 0.419271 | 0.64617603 | 0.303033 | 0.60888
6532 73 086 5 097 0248
0.58450 | 0.48530037 | 0.4560752 | 0.420035 | 0.64459017 | 0.300820 | 0.61133
3509 6 68 829 3 503 0032
0.41540 | 0.51469908 | 0.5439185 | 0.359858 | 0.76458558 | 0.699271 | 0.38856
8878 19 519 9 688 5351
HMM with Auto-encoder Model Results
Accuracy | Precisio | Recall Fl-score | RMSE | TPR TNR

n
0.7499502 | 0.494001 | 0.4881483 | 0.480344 | 0.500049 | 0.17166 | 0.80463628
19 307 24 563 778 0367 1
0.7509936 | 0.494158 | 0.4885106 | 0.480765 | 0.499005 | 0.17119 | 0.80582194
2 862 76 832 391 941 2
0.7565770 | 0.494378 | 0.4892291 | 0.482276 | 0.493379 | 0.16603 | 0.81242153
09 249 15 829 156 6692 7
0.2529728 | 0.508293 | 0.5164982 | 0.244043 | 0.864307 | 0.83506 | 0.19792683
95 275 21 885 298 9604 8
0.2461390 | 0.507914 | 0.5152623 | 0.238386 | 0.868251 | 0.84060 | 0.18992363
19 54 59 519 681 1088
K-means, HMM, and Auto-encoder Model Results
Accura | Precision | Recall F1-score | RMSE TPR TNR
cy
0.35810 | 0.5169909 | 0.54611 | 0.32404
9454 61 5809 9093 0.8012 0.7734 0.3188
Gaussian Distribution Model Results
Accura | Precision Recall | F1-score | RMSE | TPR TNR
Cy
0.8944 | 0.5175 0.5055 | 0.4994 2.73825503 0.035401494 2'97558062

In conclusion of experiment seven, the best results for each model was represented

in Figure 4.27. The Gaussian distribution model got the highest TNR of 97% with very low

TPR. But the most balanced accuracy for both TPR and TNR was using K-means with
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Auto-encoder model. So, K-means with Auto-encoder model was considered as the best

result in this experiment.

Best Results in Experiment 7
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Figure 4.27: The Best Results in Experiment 7

4.4.8 Experiment 8 — Santander Customer Transaction Dataset

Experiment eight was implemented on a Santander Customer Transaction dataset.
There are 200000 observations and each observation is described with 202 features. Table
4.48 describes some of the dataset characteristics which are provided by Santander Bank.
An anonymized dataset containing numeric feature variables, the binary target column, and

a string “ID_code” column is provided. The task is to predict the value of target column.

Table 4.48: Dataset 9 Description

Dataset hame Santander Customer Transaction dataset
Dataset features number 202

Dataset observation number 200K

Dataset Date | --—---

Dataset place Spain

Normal - Anomalous percentage 89.95 - 10.05%

To visualize the dataset, the histogram function in Python was applied on the
dataset, four features was shown in Figure 4.28 as sample:
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Figure 4.28: Features Histogram for Dataset 8

The Dataset is ready. Only one of the columns (ID_code) was described by letters.
The letters are changed into suitable numbers. There are no NAN values and all other
features are numbers. Finally, Feature importance was applied for applying PCA
dimensional reduction. The features were sorted in term of importance to the target using
extra tree classifiers, twenty features are shown in Figure 4.29 as sample. Additionally, a

comparison was provided between data features in Appendix K.
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Figure 4.29: Feature Importance for Dataset 8

Default proposed models were applied between four assumptions for comparison
between normalization and dimensional reduction. Table 4.49 shows the results with the
four assumptions for Dataset 8. In the K-means model, the best result for TNR and TPR
was achieved by applying the first and the third assumptions among the four assumptions.
So, the first assumption was chosen as the best assumption to be applied for tuning

parameters.
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In the HMM model, Table 4.49 shows that the second assumption got the highest
values in TNR and TPR among all assumptions of 51% and 54% respectively. So, the

second assumption was chosen to be applied for tuning parameters.

In the Auto-Encoder model, all of the assumptions got the highest TPR except the
second assumption which got the highest TNR. So, the fourth assumption was chosen to
be applied for tuning parameters because it applies two preprocessing methods and there
was no comparison in the results. In the Gaussian Distribution model, the fourth
assumption was chosen to be applied for tuning parameters because it was applying two
preprocessing methods and all the results are same. Finally, for more results such as F1

score and RMSE in this part refer to Appendix A, Appendix B, Appendix C, Appendix D.

Table 4.49: Results for Dataset 8 based on Four Assumptions

Models | Accuracy | TPR | TNR
Assumption 1: without normalization or dimensional reduction
K-means 0.505159791 0.509702458 0.503891051
HMM 0.494709857 0.490596079 0.49585881
Auto-encoder 0.218318886 1 0
Gaussian 0.218318886 1 0
Assumption 2: with normalization only
K-means 0.499923961 0.487610708 0.503362979
HMM 0.514545178 0.545924968 0.505780989
Auto-encoder 0.781681114 0 1
Gaussian 0.218318886 1 0
Assumption 3: with dimensional reduction only
K-means 0.505203241 0.509702458 0.503946637
HMM 0.49460123 0.490596079 0.495719844
Auto-encoder 0.218318886 1 0
Gaussian 0.218318886 1 0
Assumption 4: with both normalization and dimensional reduction
K-means 0.490951357 0.471589213 0.496359088
HMM 0.505377045 0.509005871 0.504363535
Auto-encoder 0.218318886 1 0
Gaussian 0.218318886 1 0

The best result for normal detection accuracy was 60% with low abnormal detection
accuracy in 1 random state with one iteration. However, ten iterations in 1 random state

gives the highest abnormal detection accuracy of 64% with acceptable normal accuracy
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around 50%. Overall, the K-means model result has a moderate accuracy in this dataset.

Table 4.50 summarized all K-means results. Finally, for more results such as F1 score and
RMSE in this part refer to Appendix HH.

Table 4.50: K-means Results for Dataset 8

Tuning Parameters Evaluations
Max Iter | Random Accuracy TPR TNR

State
1 0 0.515196941 0.481938501 0.524485825
10 0 0.498229377 0.50771221 0.495580878
1 42 0.479632406 0.433674993 0.492468038
10 42 0.500814704 0.533883969 0.491578655
1 1 0.552955745 0.350781172 0.609421901
10 1 0.526993852 0.649616877 0.49274597
1 2 0.500271568 0.458354065 0.511978877
10 2 0.491516218 0.45815504 0.500833797
1 3 0.484303374 0.484923873 0.484130072
10 3 0.47661257 0.374763658 0.505058366
1 4 0.50087988 0.421235944 0.523123958
10 4 0.502922071 0.517165887 0.498943858
1 5 0.478111625 0.588018708 0.447415231
10 5 0.505007713 0.54144691 0.494830461
1 13 0.459927437 0.597571898 0.421484158
10 13 0.518412305 0.562444024 0.506114508
1 14 0.447913272 0.556473281 0.417593107
10 14 0.502031328 0.526321027 0.49524736
1 90 0.518325404 0.457259429 0.535380767
10 90 0.503704186 0.512488805 0.501250695
1 91 0.420843381 0.510299532 0.39585881
10 91 0.481761498 0.437456463 0.494135631
1 200 0.544548002 0.522041994 0.550833797
10 200 0.484064394 0.450890636 0.493329628
1 250 0.533620109 0.405512986 0.569399666
10 250 0.490538574 0.451189173 0.501528627

The results in this model showed better detections than K-means results in term of

accuracy. It has higher accuracy for both normal and abnormal detection. The highest result

for normal detection accuracy of 93% has a “diag” covariance type with very low abnormal

accuracy. The highest result for both abnormal detection accuracy of 71% has a “full”

covariance type with good abnormal accuracy of 50%. The other results were varied with

“spherical” and “tied” covariance type and some of them gave a satisfactory accuracy level
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for both, as shown in Table 4.51. Finally, for more results such as F1 score and RMSE in

this part refer to Appendix II.

Table 4.51: HMM Results for Dataset 8

Tuning Parameters Evaluations

Covariance | N algorithm | Tol | Accuracy TPR TNR

type iter

Spherical 5k | viterbi 0.1 | 0.507679941 0.451786247 | 0.523290717
Diag 5k | viterbi 0.1 | 0.751895544 0.114339735 | 0.929961089
Tied 5k | viterbi 0.1 | 0.531708271 0.623743656 | 0.506003335
Full 5k map 0.1 | 0.525103739 0.634291969 | 0.494608116
Spherical viterbi 0.495491972 0.451587223 | 0.507754308
Diag viterbi 0.499076669 0.484724848 | 0.503085047
Tied viterbi 0.494840209 0.485819485 | 0.497359644
Full 5k | viterbi 0.1 | 0.475548024 0.382625137 | 0.501500834
Spherical 5k map 0.1 | 0.489191597 0.482237039 | 0.491133963
Diag 5k map 0.1 | 0.430902257 0.208080406 | 0.493135075
Tied 5k map 0.1 | 0.51387169 0.518360036 | 0.512618121
Full 5k map 0.1 | 0.492233157 0.493879988 | 0.491773207
Spherical map 0.499141845 0.490297542 | 0.501612007
Diag map 0.469986313 0.352273858 | 0.502862702
Tied map 0.490821004 0.465717982 | 0.497832129
Full map 0.550131439 0.712011145 | 0.5049194
Spherical 5k viterbi 0.495491972 0.451587223 | 0.507754308
Spherical 5 viterbi 0.1 | 0.49588303 0.491989253 | 0.496970539

The auto-encoder results were tuned using the following parameters: number of
epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1,
hidden dimension for layer 2, activation function, learning rate, and threshold. The best
results were obtained by varying the threshold values, as shown in Table 4.52. The highest
normal and abnormal detection accuracies of 55 and 63% were obtained with one threshold
value. Most of the other results have 0% abnormal accuracy and 100% normal detection.

Finally, for more results such as F1 score and RMSE in this part refer to Appendix JJ.
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Table 4.52: Auto-Encoder Model Results for Dataset 8

Tuning Parameters Evaluations
Encoding | Hidden | Hidden | activation |threshold | TPR TNR
_dim ~diml | dim2
18 10 6 tanh 4 0 1
18 10 6 tanh 4 0 1
32 16 8 tanh 4 0 1
10 5 2 tanh 4 0 1
5 2 1 tanh 4 0 1
5 3 1 tanh 4 0 1
50 20 10 tanh 4 0 1
5 2 1 sigmoid 4 0 1
5 2 1 hard_ 4 0 1
sigmoid
5 2 1 exponential | 4 0 1
5 2 1 linear 4 0 1
5 2 1 tanh 3 0 1
5 2 1 tanh 2 0 1
5 2 1 tanh 4 0 1
5 2 1 tanh 5 0 1
5 2 1 linear 4 9.95E-05 1
5 2 1 tanh 1 0.62971439 | 0.55603112
9 8
5 2 1 tanh 4 0 1
5 2 1 tanh 4 0 1

The results of the rest of the models were shown in Table 5.1. Auto-Encoder with
K-means model gave more accuracy than the K-means and Auto-Encoder. Auto-Encoder
with HMM model gave more accuracy level than auto-encoder and HMM. The
combination model between the three model (K-means, HMM, and Auto-Encoder) gave
approximately the same results compared with the previous two models. Comparing these
results with HMM, Auto-Encoder, and K-means results did not have better results than the
previous model. Finally, the Gaussian Distribution model gave an outstanding TPR which
shows that the Gaussian distribution model has a high ability to classify the abnormal

instances in this dataset.
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Evaluations

K-means with Auto-encoder Model Results

Accura | Precision Recall Fl-score | RMSE TPR TNR
Cy

0.57886 | 0.586002557 | 0.625910 | 0.545982 | 0.64895176 | 0.7094238 | 0.54239
1612 6 268 1 23 7376
0.58898 | 0.587092314 | 0.627581 | 0.552634 | 0.64110416 | 0.6960891 | 0.55907
5444 004 617 9 63 2844
0.58112 | 0.586352127 | 0.626459 | 0.547534 | 0.64720861 | 0.7069360 | 0.54598
1008 308 249 5 14 2602
0.58176 | 0.585912907 | 0.625829 | 0.547721 | 0.64671193 | 0.7040501 | 0.54760
3671 969 944 7 54 9783
0.58934 | 0.586107776 | 0.626125 | 0.552358 | 0.64082302 | 0.6914120 | 0.56083
5847 718 554 8 81 9355
HMM with Auto-encoder Model Results

Accuracy | Precision | Recall Fl-score | RMSE | TPR TNR
0.34147295 | 0.376349 | 0.321984 | 0.309248 | 0.81149 | 0.287391 | 0.35657708
2 681 431 355 6795 78 2
0.63167499 | 0.621152 | 0.677227 | 0.595067 | 0.60689 | 0.758085 | 0.59637030
5 625 844 235 7854 382 7
0.62763415 | 0.620444 | 0.676328 | 0.592247 | 0.61021 | 0.762762 | 0.58989466
2 28 565 983 787 464 7
0.33902539 | 0.373952 | 0.318554 | 0.306740 | 0.81300 | 0.282217 | 0.35489160
7 612 371 951 3446 136 6
0.63036346 | 0.623301 | 0.680512 | 0.595297 | 0.60797 | 0.769529 | 0.59149527
7 1 291 369 7412 306 5

K-means, HMM, and Auto-encoder Model Results

Accura | Precisio | Recall F1-score | RMSE TPR TNR

cy n

0.51337 | 0.517555 | 0.525712 | 0.473790

2005 587 175 768 0.6976 0.5476 0.5038
Gaussian Distribution Model Results

Accura | Precision Reca | F1-score | RMSE TPR TNR

cy 1

0.2183 | 0.1092 0.5 0.1792 0.884127318 | 1 0

In conclusion of experiment eight, the best results for each model was represented

in Figure 4.30. The Gaussian distribution model got the highest TPR with unacceptable
TNR. But the highest TNR and acceptable TPR was with HMM with Auto-encoder model.

So, HMM with Auto-encoder model was considered as the best result in this experiment.
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Figure 4.30: The Best Results in Experiment 8

4.4.9 Experiment 9 - Prudential Life Insurance Assessment Dataset

Experiment nine was implemented on a Prudential Life Insurance Assessment
dataset. There are 59381 observations, each of which is described by 128 features. Table
4.55 describes some of the dataset characteristics which are provided by Prudential, one of
the largest issuers of life insurance in the USA. In a one-click shopping world with
everything on-demand, the old method of life insurance applications is antiquated.
Customers provide extensive information to identify risk classification and eligibility,
including scheduling medical exams, a process that takes an average of 30 days. The result
is that people are turned off. That’s why only 40% of U.S. households own individual life
insurance. Prudential wants to make it quicker and less labor intensive for new and existing
customers to get a quote while maintaining privacy boundaries. By developing a predictive
model that accurately classifies risk using a more automated approach, you can greatly
impact public perception of the industry. The results will help Prudential better understand
the predictive power of the data points in the existing assessment, enabling us to
significantly streamline the process. This dataset provided over a hundred variables
describing attributes of life insurance applicants. The task is to predict the "Response”
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variable for each ID in the test set. "Response” is an ordinal measure of risk that has 8

levels. Table 4.54 shows a features discretion in dataset 9.

Table 4.54: Data Features Description for Dataset 9

Variable Description

ID A unique identifier associated with an application.

Product_Info_1-7 A set of normalized variables relating to the product
applied for

Ins_Age Normalized age of applicant

Ht Normalized height of applicant

Wit Normalized weight of applicant

BMI Normalized BMI of applicant

Employment_Info_1-6 | A set of normalized variables relating to the employment
history of the applicant.

Insuredinfo_1-6 A set of normalized variables providing information about
the applicant.

Insurance_History 1-9 | A set of normalized variables relating to the insurance
history of the applicant.

Family_Hist_1-5 A set of normalized variables relating to the family
history of the applicant.

Medical History 1-41 | A set of normalized variables relating to the medical
history of the applicant.

Medical_Keyword_1-48 | A set of dummy variables relating to the presence
of/absence of a medical keyword being associated with
the application.

Response This is the target variable, an ordinal variable relating to
the final decision associated with an application

The following variables are all categorical (nominal): Product Info_ 1,
Product_Info 2, Product_Info_3, Product_Info 5, Product _Info 6, Product Info 7,

Employment_Info_2, Employment_Info_3, Employment_Info 5, Insuredinfo_1,
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Insuredinfo_2,  Insuredinfo_3, Insuredinfo_4, Insuredinfo 5, Insuredinfo_6,
Insuredinfo_7, Insurance_History 1, Insurance_History 2, Insurance_ History 3,
Insurance_History 4, Insurance_History 7, Insurance_History 8, Insurance_History 9,
Family_Hist_1, Medical_History 2, Medical_History 3, Medical_History 4,
Medical_History 5, Medical_History 6, Medical History 7, Medical_History 8,
Medical_History 9, Medical History 11, Medical History 12, Medical History 13,
Medical_History 14, Medical_History 16, Medical History 17, Medical_History 18,
Medical_History 19, Medical_History 20, Medical History 21, Medical History 22,
Medical_History 23, Medical History 25, Medical History 26, Medical History 27,
Medical_History 28, Medical History 29, Medical History 30, Medical History 31,
Medical_History 33, Medical_History 34, Medical History 35, Medical History 36,
Medical_History 37, Medical_History 38, Medical History 39, Medical_History 40,
Medical_History 41

The following variables are continuous: Product_Info_4, Ins_Age, Ht, Wt, BMI,
Employment_Info_1, Employment_Info_4, Employment_Info_6, Insurance_ History 5,

Family Hist_2, Family_Hist_3, Family_Hist_4, Family Hist 5

The following variables are discrete: Medical_History 1, Medical_History 10,
Medical_History 15, Medical_History 24, Medical_History 32 Medical Keyword 1-48

are dummy variables.

Table 4.55: Dataset 9 Description

Dataset name Prudential Life Insurance Assessment dataset
Dataset features number 128

Dataset observation number 59381

DatasetDate | =

Dataset place USA

Normal - Anomalous percentage 74.4 - 25.6%

To visualize the dataset, the histogram function in Python was applied on the
dataset, four features are shown in Figure 4.31 as sample:
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Figure 4.31: Features Histogram for Dataset 9

Some of the features have letter or word representations such as Product_Info_2.
These features were replaced with a proper numeric feature. Other features have NAN
values. These values were filled with the median values. “Response” was changed with
two risk levels to present a binary classification. All other features are numbers and full
with values. Finally, Feature importance was applied for applying PCA dimensional
reduction. The features were sorted in term of importance to the target using extra tree
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classifiers, twenty features are shown in Figure 4.32 as sample. Additionally, a comparison

was provided between data features in Appendix L.
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Figure 4.32: Feature Importance for Dataset 9

Default proposed models were applied between four assumptions for comparison
between normalization and dimensional reduction. Table 4.56 shows the results with the
four assumptions for Dataset 9. In the K-means model, the best result for TNR of 58% was
by applying the second assumption among the four assumptions. However, the TPR for the
second assumption was 43%. The highest TPR of 56% was with assumption four and a
TNR of 41%. The first and third assumptions have balanced accuracies of 50% for both
TNR and TPR. So, the third assumption was chosen as the best assumption to be applied
for tuning parameters.
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In the HMM model, Table 4.56 shows that the third assumption got the highest
value in TPR of 71% among all assumptions of 54% TNR. Assumption four got the highest
TNR of 58% and 64% TPR. So, the fourth assumption was chosen to be applied for tuning

parameters.

In the Auto-Encoder model, the more suitable result for TPR and TNR was by
applying the fourth assumption of 0.1% and 98% respectively. All other results have a 0%
in either TNR or TPR. So, the fourth assumption was applied for tuning parameters because
it has the highest TNR and TPR values. In the Gaussian Distribution model, the fourth
assumption was chosen because it has the highest TPR and TNR results among all
assumptions of 100% and 78% respectively. Finally, for more results such as F1 score and
RMSE in this part refer to Appendix A, Appendix B, Appendix C, Appendix D.

Table 4.56: Results for Dataset 9 based on Four Assumptions

Models | Accuracy | TPR | TNR
Assumption 1: without normalization or dimensional reduction
K-means 0.503711365 0.504078947 0.503395201
HMM 0.382453152 0.533157895 0.252829335
Auto-encoder 0.462399611 1 0
Gaussian 0.462399611 1 0
Assumption 2: with normalization only
K-means 0.516853249 0.436052632 0.58635129
HMM 0.483572645 0.570921053 0.408442734
Auto-encoder 0.546665855 0.029078947 0.991851517
Gaussian 0.62204916 0.778947368 0.487098234
Assumption 3: with Dimensional Reduction only
K-means 0.503711365 0.504078947 0.503395201
HMM 0.626733999 0.718026316 0.548211861
Auto-encoder 0.462338769 0.999868421 0
Gaussian 0.462399611 1 0
Assumption 4: with Both normalization and Dimensional Reduction
K-means 0.483146751 0.563947368 0.41364871
HMM 0.607690436 0.640394737 0.579560887
Auto-encoder 0.556400584 0.061052632 0.982458126
Gaussian 0.886164517 1 0.788252603

The best result for TPR has outstanding accuracy around 97% in 14 random states
with very low TNR. The highest TNR was 64% with an acceptable TPR of 53% in 90
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random states. The other results have less accuracy. Table 4.57 summarized all K-means

results. Finally, for more results such as F1 score and RMSE in this part refer to Appendix

KK.

Table 4.57: K-means Results for Dataset 9

Tuning Parameters Evaluations
Max Iter | Random Accuracy TPR TNR

State
1 0 0.415551229 0.563157895 0.288592123
10 0 0.516853249 0.436052632 0.58635129
1 42 0.508335361 0.442368421 0.565074694
10 42 0.516853249 0.436052632 0.58635129
1 1 0.489596009 0.471447368 0.505205976
10 1 0.483146751 0.563947368 0.41364871
1 2 0.5183743 0.716052632 0.348347669
10 2 0.483146751 0.563947368 0.41364871
1 3 0.462703821 0.911578947 0.076618379
10 3 0.511742516 0.574605263 0.457673155
1 4 0.501825262 0.724736842 0.310095066
10 4 0.483146751 0.563947368 0.41364871
1 5 0.521720613 0.511842105 0.530217293
10 5 0.483146751 0.563947368 0.41364871
1 13 0.484424434 0.390657895 0.565074694
10 13 0.516853249 0.436052632 0.58635129
1 14 0.459905086 0.965526316 0.025011317
10 14 0.483876856 0.566315789 0.41296967
1 90 0.592966659 0.533289474 0.644296062
10 90 0.483146751 0.563947368 0.41364871
1 91 0.489717693 0.497105263 0.483363513
10 91 0.516853249 0.436052632 0.58635129
1 200 0.537722073 0.513947368 0.558171118
10 200 0.483146751 0.563947368 0.41364871
1 250 0.566439523 0.569473684 0.563829787
10 250 0.516853249 0.436052632 0.58635129

The results in this model showed better detections than K-means results in terms of

accuracy. It has higher accuracy for both normal and abnormal detection. The highest result

for both normal and abnormal detection of 74 and 99% respectively has a “full” covariance

type. There were some results with less accuracy such as ‘spherical’ with ‘viterbi’ in

covariance type and algorithm respectively. The other results were varied with “tied” and

“diag” covariance type and some of them gave a satisfactory accuracy level for both, as
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shown in Table 4.58. Finally, for more results such as F1 score and RMSE in this part refer

to Appendix LL.

Table 4.58: HMM Results for Dataset 9

Tuning Parameters Evaluations

Covariance | N algorithm | Tol | Accuracy TPR TNR

type iter

Spherical 5k | viterbi 0.1 |0.626673156 | 0.697894737 | 0.565414215
Diag 5k | viterbi 0.1 |0.392309564 | 0.359605263 | 0.420439113
Tied 5k | viterbi 0.1 |0.518191774 | 0.440131579 | 0.58533273
Full 5k | viterbi 0.1 |0.859272329 | 0.999868421 | 0.738343142
Spherical viterbi 0.626733999 | 0.698157895 | 0.565301041
Diag viterbi 0.607690436 | 0.640394737 | 0.579560887
Tied viterbi 0.481808226 | 0.559868421 | 0.41466727
Full 5k | viterbi 0.1 |0.859272329 | 0.999868421 | 0.738343142
Spherical 5k | map 0.1 |0.373326844 | 0.302105263 | 0.434585785
Diag 5k | map 0.1 |0.392309564 | 0.359605263 | 0.420439113
Tied 5k | map 0.1 |0.481808226 | 0.559868421 | 0.41466727
Full 5k | map 0.1 |0.859272329 | 0.999868421 | 0.738343142
Spherical map 0.373266001 | 0.301842105 | 0.434698959
Diag map 0.607690436 | 0.640394737 | 0.579560887
Tied map 0.481808226 | 0.559868421 | 0.41466727
Full map 0.859272329 | 0.999868421 | 0.738343142
Spherical 5k | viterbi 0.626673156 | 0.697894737 | 0.565414215
Spherical 5 viterbi 0.1 |0.373144317 | 0.298421053 | 0.43741512

The auto-encoder results wee tuned using the following parameters: number of

epochs, batch size, input dimension, encoding dimension, hidden dimension for layer 1,

hidden dimension for layer 2, activation function, learning rate, and threshold. The best

results were obtained by varying the threshold values, as shown in Table 4.59. Most of the

results gave the highest normal detection accuracy of 99 or 98% with close to 0% abnormal

detection accuracy. Only two results have more abnormal accuracy of 30 and 60% with 87

and 65% normal detection. These results have two and one threshold values respectively.

Finally, for more results such as F1 score and RMSE in this part refer to Appendix MM.
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Tuning Parameters Evaluations
Encoding | Hidden Hidden activation [thresho | TPR TNR
_dim _diml _dim2 Id
18 10 6 tanh 4 0.0513157 | 0.9844952
89 47
18 10 6 tanh 4 0.0486842 | 0.9857401
11 54
32 16 8 tanh 4 0.0490789 | 0.9855138
47 07
10 5 2 tanh 4 0.0560526 | 0.9837030
32 33
5 2 1 tanh 4 0.06 0.9822317
79
5 3 1 tanh 4 0.0586842 | 0.9830239
11 93
50 20 10 tanh 4 0.0407894 | 0.9889090
74 09
5 2 1 sigmoid 4 0.0389473 | 0.9906066
68 09
5 2 1 hard_ 4 0.0575 0.9824581
sigmoid 26
5 2 1 exponential | 4 0.0588157 | 0.9822317
89 79
5 2 1 linear 4 0.0598684 | 0.9809868
21 72
5 2 1 tanh 3 0.06 0.9812132
19
5 2 1 tanh 4 0.06 0.9812132
19
5 2 1 tanh 4 0.0555263 | 0.9830239
16 93
5 2 1 tanh 5 0.1313157 | 0.9519013
89 13
5 2 1 linear 2 0.2971052 | 0.8696242
63 64
5 2 1 tanh 1 0.5972368 | 0.6541421
42 46
5 2 1 tanh 4 0.0255263 | 0.9918515
16 17
5 2 1 tanh 4 0.0560526 | 0.9826844
32 73

The results of the rest of the models re shown in Table 4.60. Auto-Encoder with K-

means model did not give more accuracy than the K-means or Auto-Encoder. Auto-
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Encoder with HMM model did not give more accuracy level because the results of the two
models separately were very high. The combination model between the three model (K-
means, HMM, and Auto-Encoder) gave better results compared with auto-encoder and K-
means models. Comparing these results with HMM results did not have better results.
Finally, the Gaussian Distribution model gave an outstanding TNR and TPR of 79% and
100% respectively which shows that the Gaussian distribution model has high ability to

classify the normal and abnormal instances in this dataset.

Table 4.60: Results of Four Models for Dataset 9

Evaluations

K-means with Auto-encoder Model Results

Accuracy | Precision Recall F1-score | RMSE TPR TNR

0.525582 | 0.52117368 | 0.5209555 | 0.52072 | 0.688779 | 0.459473 | 0.582437

527 81 3639 698 684 479

0.474417 | 0.47882632 | 0.4790444 | 0.47407 | 0.724970 | 0.540526 | 0.417562

473 19 7355 708 316 521

0.465413 | 0.46883651 | 0.4689668 | 0.46533 | 0.731154 | 0.516184 | 0.421749

397 1 37 7373 295 211 462

0.473168 | 0.47735 0.4775484 | 0.47290 | 0.725831 | 0.535789 | 0.419307

654 26 5853 486 474 379

0.481990 | 0.48725897 | 0.4874652 | 0.48131 | 0.719728 | 0.560263 | 0.414667

752 4 14 3289 593 158 27

HMM with Auto-encoder Model Results

Accuracy | Precision Recall F1-score | RMSE TPR TNR

0.537628 | 0.26881426 | 0.5 0.34964 | 0.679979 | O 1

521 1 7859 028

0.380787 | 0.38218108 | 0.3817267 | 0.38062 | 0.786900 | 0.394210 | 0.369242

248 41 3818 725 526 956

0.380787 | 0.38240154 | 0.3820398 | 0.38069 | 0.786900 | 0.398684 | 0.365395

248 1 53 6474 725 211 496

0.462399 | 0.23119980 | 0.5 0.31619 | 0.733212 |1 0

611 5 2378 377

0.379654 | 0.38083287 | 0.3803043 | 0.37940 | 0.787620 | 0.388947 | 0.371661

417 9 77 7266 202 368 385

K-means, HMM, and Auto-encoder Model Results

Accuracy | Precision | Recall F1-score RMSE TPR TNR

0.623387 | 0.622735 | 0.6132025 | 0.6105509

686 817 39 06 0.6137 0.4778 0.7486

Gaussian Distribution Model Results

Accuracy | Precision Recall F1-score RMSE TPR TNR
0.337395 |1 0.788252

0.8862 0.9012 0.8941 | 0.886 144 603
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In conclusion of experiment nine, the best results for each model was represented
in Figure 4.33. The Gaussian distribution model got the highest TPR with acceptable TNR.
But the highest TNR and unacceptable TPR was with HMM with Auto-encoder model. So,
the Gaussian distribution model was considered as the best result in this experiment.

Best Results in Experiment 9
1.2
1

0.8

0 II II II II II II

K-means Auto-encoder K-meanswith HMM with  Auto-encoder,  Gaussian
auto-encoder auto-encoder HMM and K-  Distribution
means

0.

[9)]

0

>

0.

N

ETPR ETNR

Figure 4.33: The Best Results in Experiment 9

4.4.10 Results Summary and Experiments Conclusion

The total number of instances overall the nine experiments was around 2 million
exactly 1995669 observations. Table 4.61 summarizes the best model for the nine
experiments. As it is shown in the experiment results, if a model is considered as the best
model it does not mean the other models have bad results. In other words, most of the
models, especially the combined models, detect the anomalies. However, some cases have
poorly detection for specific experiments. The variety of best models gives an indication
for a variety of applications, dimensions, and data types. Some models are only appropriate

for some types of problems and can handle a limited data dimension.
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Auto-
K-means |[HMM |encoder,
with with HMM
K- Auto- auto- auto- and K- Gaussian
means HMM encoder pncoder |encoder |means Distribution
Experiment 1 \
Experiment 2 \
Experiment 3 \
Experiment 4 \
Experiment5 |
Experiment 6 \
Experiment 7 \
Experiment 8 v
Experiment 9 \

As shown in Figure 4.34, experiment 6 achieved the highest TPR and TNR. Most

of the results in the experiments have good results. In total, six cases have the highest

results which are three TPR and three TNR in experiments 2, 3, 4, 6, and 9. The lowest two

cases of one TNR and one TPR were in experiment 3 and 7 respectively. The other results

are achieved after the tuning process and the best model is chosen.
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Figure 4.34: TNR and TPR for the highest result in every Experiment.
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Chapter 5

5 User Authentication

This chapter will explain the new authentication method of “something you do” as
a background for this chapter. It also proposes the user profile that will be generated using
the results from the previous experiment in chapter 4. This chapter will also provide new
mechanisms of producing the challenging questions based on the generated user profiles.
Finally, it will explain a strong example for the authentication process through these

questions.

5.1 “Something you do”-Based Authentication

In today’s world, security questions have become more popular in user
authentication research fields. User authentication is a process of ensuring confidentiality
of data that is claimed by a user for a system entity [87]. The challenge of the authentication
process is to distinguish between legal or illegal authentication requests. In other words,
the usage of a user authentication technique is to ensure that only the permitted user can
access the data from the identification node [88]. Interestingly, various private and
sensitive data is usually stored on the user’s account or system. Furthermore, if the account
is unlocked, it is easy for attackers to steal the user's sensitive information, such as identity,
photos and credit card information. Most user authentication methods are developed based
on challenge and response questions to protect the user against any attack [89]. User
authentication has a variety of methods that can identify the valid users in protected
resources which can be classified broadly into four groups based on something the user
“is”, “knows”, “has”, and “does”. “Something the user does” is one of the new user
authentication process’s that has been researched in recent years. This employs the user’s

activities such as Knowledge-based authentication (KBA) [34].

KBA is an authentication system in which the user should answer a set of security
questions (or at least one) to be authorized. Generally, the security questions have two
major categories; static and dynamic [35]. The static questions are the most commonly
used, but it is considered a weak authentication method for three reasons [90]:

A. Security questions’ context does not apply for the user currently.
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B. Users usually forget the answer content or formatting when they are selected at
setup.

C. The correct answers are very guessable because they are common knowledge or
researchable because they are found online or by asking.

One common application for static security questions is “Fallback Authentication”
that is a backup for authentication techniques in the lost cases. Moreover, fallback
authentication is usually used when people lose their authentication access due to changes
or forgetting the authentication requirements such as forgetting a password or username
[90]. Fallback authentication identifies the user through personal information and allows
the authenticated user to re-access their resources [36]. However, static questions are a
vulnerable way to ask in Fallback Authentication because the answers to these questions
can be easily reachable with a quick Google search. Also, as more personal information is
available in public records, it is becoming easier for attackers to retrieve this information
through observational attacks, from social network apps, such as Facebook, Twitter,

Instagram or even more professional websites like LinkedIn [37].

The second type of challenging questions more invulnerability than the first type
due to the dynamic way of asking the questions. These Dynamic security questions are
taking the lead in question generation based on user behaviour other ideas [35]. There are
different ways to create these dynamic questions such as user Internet activities, a story

creator, and autobiographical authentication [92].

The stronger way to produce a secure dynamic question achieves a more secure
system against any fraudulent or abnormal activities through dynamic information. With
the existence of dynamic information, the system may ask for a different set of questions
to provide unique security questions [93]. Figure 5.1 summarizes the security questions

types and some examples.
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Figure 5.1: Security Questions Types and Examples

As a result, unique dynamic security questions should be investigated with several
features:

A. A set of challenging questions without using highly guessable answers
B. Abnormal user activities

C. Using short term history or up-to-date

D. unrepeated questions

This new way of asking the dynamic security questions can be generated based on

studying the abnormal activities of the user behaviour utilizing anomaly detection.

5.2 User Profile

The primary user profile’s purpose is to use it as a Database for generating dynamic
security questions. The proposed user profiles will be created based on anomaly detection

results in chapter 4. When the data has been flagged as an anomaly, the data information
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will be collected from the features such as location, time, amount, and so on and then will
be used for user profile generation [94]. The user profile specification contains several
features as shown in Table 5.1; the prime user identification, action description (credit card
transaction for example), timestamp, expected user behaviour, briefly explains the
anomalous user behaviour. Table 5.1 also shows the data type corresponding to the feature

name.

Table 5.1: User Profile Specification Features

Feature | User Identification | Time Action | Observation | Expected
name Behaviour
Data Numbers and Numbers | String String String
Type characters

The user identification could be the account number, user ID number, or any unique
number that can identify the user from the data. The action description is a general feature
type such as a credit card transaction, cash payment, or online purchase. The timestamp is
a significant feature because it specifies the action time. It could be in many formats like
minutes, seconds, or days depending on the data description. An example of the expected
user behaviour could be any normal or regular activities regarding the user history such as
a car with gas on a weekly basis, daily supermarket purchases with a small amount range,
or a morning coffee purchase. Lastly, the anomalous user behaviour should be something
that deviates from the expected behaviour such as gas filling on a daily basis, daily
supermarket purchase with a huge amount, or an evening coffee purchase. These features
are collected, presented, and analyzed to help the next user authentication step which will

utilize these profiles efficiently to create the dynamic security questions.

Moreover, it only contains a feature that describes abnormal user behaviour and
what is the expected user behaviour. In the next few tables, user profile samples are
provided with the related experiment from chapter 4. For example, Table 5.2 shows a
sample of the user profile detail from experiment 1. The user identification is 439, the
timestamp is 6986 seconds, the anomalous user behaviour was a very early morning time
around 1:56:43 am, and the expected time based on the user history is during the day time

from 8 am to 9 pm.
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User Profile for Sample of Anomalous Data

User Time Observation Expected Behaviour
Identification Stamp
(sec)

ID-231 406 0 amount More than 0

ID-439 6986 not expected time during the day time

ID-349 9064 huge amount normal range

ID-204 53937 far store branch from | the usual store is the nearest
user home for this user

ID-007 56887 a new cvv code for the | the usual cvv code number
same usual card

ID-127 57007 low amount real amount

ID-114 62330 first time purchase no purchase from this
from this category category

ID-534 62467 many items from the one is the usual of this product
same product

ID-108 76867 different membership | last time was the first level
level from last time

ID-093 84204 different home address | the old home address

Table 5.3 shows a sample of the user profile detail from experiment 2. For example, the

user identification is 'C1350963410', the timestamp is 61 steps, the anomalous user

behaviour was buying a children’s toy for first time, and the expected purchase based on

the user history is buying adult things.

Table 5.3: User Profiles Sample from Experiment 2

User Profile for Sample of Anomalous Data

user time stamp action observation expected
Identification | (steps) behaviour
'C204205576" | 0 bank not expected during the day
payment time time
'C1273692645' | 1 bank huge amount normal range for
payment for this product | this product is
lower
'C225675370" | 153 bank first time no purchases from
payment purchases from | this category
this category
'C2044438336" | 87 bank unexpected a usually a female
payment male purchase | purchase
'C1350963410" | 61 bank different age older customers
payment for this product | buy this product
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Table 5.4 shows a sample of the user profile detail from experiment 3. For example,
the user identification is 2, the timestamp is 36 months, the anomalous user behaviour was
working in the retirement age, and the expected status based on the user’s history is
retirement by this age.

Table 5.4: User Profiles Sample from Experiment 3

User Profile for Sample of Anomalous Data
user Id | time action | observation expected behaviour
(months)
ID-4 12 credit unexpected increasing in | during this time there is no
history | saving account increasing in saving money
ID-28 |1 credit huge amount in checking | normal range for checking
history | account increased by one | account in one month is
month small amount
ID-32 |2 credit | young user age for the this age is usually unskilled
history | employment status
employment

Table 5.5 shows a sample of the user profile detail from experiment 6. For instance,
the user identification is 55, the timestamp or record time is 0.3 seconds, the anomalous
user behaviour was the record time (0.3) is very low regarding the number of bytes which
is 54540, and the expected bytes range based on the record history for low record time was
from 6 to 410 bytes.

Table 5.5: User Profiles Sample from Experiment 6

User Profile for Sample of Anomalous Data

user time action | observation expected behaviour
Identification | (seconds)
ID- 55 0.3 Record | The record time is | The normal record time

very low regarding | much more for this number
the number of bytes | of bytes

ID- 1389 0.17 Record | the number of data | The normal number of
bytes transferred bytes are much lower
from the

destination to the
source is very high
ID - 65927 9 Record | the number of data | The normal range in the
bytes transferred number of bytes does not
from the source to | include high numbers.
the destination is
very high
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Table 5.6 shows a sample of the user profile detail from experiment 7. For example,
the user identification is 563, the timestamp is 9 days, the anomalous user behaviour was
an unexpected speed with 104 km/h, and the expected speed average based on the user
history is 62.5 km/h.

Table 5.6: User Profiles Sample from Experiment 7

User Profile for Sample of Anomalous Data

user time | action observation expected behaviour
Identification | stamp
(days)
ID -84 9 Car The driving region | The normal driving region
driving of this user is for this user in the user
different city
ID - 563 9 Car The speed of this The normal speed range

driving user is very high for this user is low
out of the normal

range
ID - 2204 4 Car An accident report | This user has a free
driving for this user with accident history
the car

Table 5.7 shows a sample of the user profile detail from experiment 9. For example,
the user identification is 46185, there is no timestamp provided in this dataset, the
anomalous user behaviour was a heart attack with an operation in recent medical history,
and the expected health based on the user history is that the user has a free operation history

and good health.

Table 5.7: User Profiles Sample from Experiment 9

User Profile for Sample of Anomalous Data
user time | action observation expected behaviour
Identification | stamp
ID - 49 NAN | Health | The heightis The age of this user has no
record | increased for this height expected increasing
user
ID —1023 NAN | Health | The weight of this | The normal weight of this
record user decreased user much less than the last
sharply. observed one
ID - 46185 NAN | Health | Operation happened | This user has good health
record | with this user last without any operation
month
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5.3 Creating an Individual User Profiles

Nowadays, the available user information is increasing rapidly which make it
difficult for systems to quickly and automatically detect the abnormal users’ actions. Users
have a wide range of behaviours especially with different action types, and these users have
a range of interests and patterns [106]. Building a user profile based on the system
requirements is a solution that organizes massive user information and extracts the most
important features. The definition of user profile stated as a description the user behaviors
usually using user information such as user ID, time, action type, behaviour description,
and so on [107] and [108]. The user profile approaches are employed with a specific
structure that relates to system objectives to provide readable personalized results for each
user. For example, if the system requires anomalous user information, then the user profile
is built based on the anomalous users’ actions. Also, one of the important user profile
features is a dynamic updating feature which considers the changes of the users' actions

over time [107].

In this thesis, user profiles are built based on the proposed anomaly detection
system that provide the required results for the anomalous actions. We used a machine
learning technique to detect the anomalous user’s actions and then build a user database

that will be fed automatically from the user and the machine learning.

A comparative study of user profiles will be presented before the user behavior
modeling is explained. We will compare between the user profiles based on selected factors
which will allow researchers to drive critical thinking ideas such as choosing a suitable
profile structure for certain problems and conditions. The criteria of choosing the research
papers depends on two shared factors: the user profile approach and anomaly detection
problem. The result of this study is expressed in Table 5.8. Where BIDS is Behavior
Intrusion Detection System, DBMS is database management system, MSSQL is Microsoft
SQL Server, UEBA is User and Entity Behavior Analytics, and VolP is Voice over IP

communication.
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Problem Field ilel?r?br:rs Profile Type| AD Technique Profiler Tool
normal Behavior Detector
Network [107] 5 activity | K-means clustering
profile
Securing Databases 5 Ad R’_ol_e Support vector DBMS
[108] ministere machine
d Relational
Time- AD technique
Network [109] 3 Variant  |Needleman-Wunsch
Normal
cellular mobile normal Rough Set
networks [110] 4 profile Rough Set
Hadoop File System Behavior- Eagle
[111] 5 based K-means clustering
profiles
User MSSQL
Network [112] 4 behavior Apriori-k
profile
User log [113] 5 actLiJ\??tries BIDS detector BIDS
Network [114] 8 i%hpar\ggﬁ I K-means clustering|
Insider Threat [115] 3 beﬂi?/rior Neural networks UEBA
Voice over IP 3 Deep Packet| Support vector VoIP
communication [116] Inspection machine

The user behaviour modeling is represented in three main parts as shown in Figure

5.2. Every part will be explained in the next subsections. The anomaly detection part

produces the binary results for user behaviour. A database for every user is created based

on the AD results. The total database for every user builds a user profile. Finally, a

questionnaire will provide dynamic security questions based on the user profiles for user

authentication purposes.
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Figure 5.2:User Behaviour Modeling Diagram.

The anomaly detection model contains important steps to proceed for the user
profile generation as shown in Figure 5.3. Firstly, the model is collecting Big Data based
on user information that can represent a user's activity with unique identification. The Big
Data is analyzed based on users before feature selection is applied. Feature selection is
applied based on the user analysis to choose the most important feature that is related to
the anomalous action not related to the user’s personal information such as user ID. The
preprocessing step contains any data preparation such as normalization and data splitting.
Finally, the processing of anomaly detection technique to predict the binary results will be

the input data to build the profiles.
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Figure 5.3: Anomaly Detection Model.

The database for every user is generated based on the anomaly detection results that
are contained in a classification of normal and abnormal actions. In this research, the
database is created only for the abnormal actions using the user profile structure that is
proposed per user. The normal actions are also taken in consideration to calculate the

normal or average values for any action type or features as shown in Figure 5.4.

User Profiles Generation
AD Actions User
Database Structure

Challenge for Authentication

I— AD Techniques

Figure 5.4: User Behavuior Modeling Diagram.

This process of creating the database is done automatically using the algorithm that

is shown in the following description. Initially, the input data used the binary predictions
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from anomaly detection techniques. Then the algorithm calculates the normal user pattern
based on the normal actions. After that, the algorithm takes the abnormal instances with
the related features. One of the features has the most effect that flagged this instance as an
anomaly. This feature is determined and compared with the normal value. Finally, the user
profile is built using the user ID, Action type, Time, unexpected observation, and the
expected behavior. The user ID, Action type, and Time is written to the database from the
original data. The unexpected observation is written using the most effect feature that is
calculated in the algorithm. The expected behavior is written to the database using the
normal values per feature that are computed previously. All these collected features in the
database described the abnormal classified instances per user. The user profile is readable

and ready for security question generation.
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Algorithm 4: User Profile Creation

INPUT: binary predictions from anomaly detection technique
OUTPUT: User profile for abnormal observations
1 Begin

2 Read the input data from the model output (predictions)

3 Calculate the normal user pattern for every attribute from the normal instances
4 Separate the abnormal instances with the related attributes

5 Calculate the attribute that cause the abnormal instances

5 Build the user profile structure

6 Write the user information into the user profile structure form the original data

7 Write the abnormal observation into the user profile for every abnormal instance
8 Write the related expected user behavior to the abnormal observation
9 Repeat these steps for all users
10 End

The selected features for training the anomaly detection are the time step, Merchant,
Category, Amount. The Zip Code and Zip merchant are not selected because they are the
same for all users. The user representation features; Customer ID, Age, Gender, are not
selected but it will be used in the user profile generation such as Customer ID. All the
features are normalized and prepared through the preprocessing step to be ready for the
AD technique. The final AD results contain a prediction of anomalous data per user. The
algorithm detects the anomalies for every user. The total number of users are 4112 users.
For example, the user with ID ‘C1093826151° has 18 anomalous instances out of 167
instances. As a result, the normal instances for this user is 159 instances. Every abnormal
instance will be described in the user profile with several features. The 159 normal

instances will be studied to provide the related normal pattern for the user.

The user profiles are generated based on the user analysis using the anomaly detection
techniques. The total number of user profiles that are generated in this dataset is 4112 which
are the number of users. As a sample of a database that creates the user profiles, the
anomalous user profile is presented in Ofor the user with ID ‘C1093826151°. The database
is readable and ready for generating the dynamic security question with the features that
are specified in section D. The user profile for this user contains 18 rows which are the
number of anomalous instances for this user with 5 columns that describe the abnormal

action and the user information.
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User ID Action Time Unexpected | Expected
Observation | Behavior
'C1093826151" | Transportation 2018-06-18 | Time 2018-03-27
'C1093826151' | Bars and 2018-06-24 | Category Transportation
Restaurants
'C1093826151' | Transportation 2018-05-27 | Time 2018-03-27
'C1093826151' | Transportation 2018-06-11 | Time 2018-03-27
'C1093826151' | Transportation 2018-03-29 | Time 2018-03-27
'C1093826151' | Transportation 2018-06-03 | Time 2018-03-27
'C1093826151' | Transportation 2018-05-29 | Time 2018-03-27
'C1093826151' | Transportation 2018-05-15 | Time 2018-03-27
'‘C1093826151' | Transportation 2018-06-13 | Time 2018-03-27
'‘C1093826151' | Transportation 2018-06-02 | Time 2018-03-27
'‘C1093826151' | Transportation 2018-06-28 | Time 2018-03-27
'C1093826151' | Sports and Toys | 2018-06-19 | Merchant '‘M348934600
'C1093826151" | Transportation 2018-05-20 | Amount 28.8007
'C1093826151" | Transportation 2018-04-29 | Amount 28.8007
'C1093826151"' | Transportation 2018-04-22 | Time 2018-03-27
'C1093826151' | Transportation 2018-03-30 | Time 2018-03-27
'C1093826151' | Transportation 2018-04-23 | Time 2018-03-27
'C1093826151' | Transportation 2018-05-26 | Time 2018-03-27
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5.4 Challenging Questions

The proposed user authentication system is based on a “knowledge-based
authentication” technique that uses a uniquely dynamic way to ask security questions.
These security questions should have essential features to achieve a final robust
authentication system. These features contain a set of challenging questions using short
term personal history that are based on anomalous cases and not repeated. These questions
are based on the anomalous data to allow only the user who can provide the answers for
them. Short-term history is employed because it is imperative to keep the answers easy to
remember only for the user and difficult to know for anyone else. However, if it is a long-
term user history, it will be complicated for the user to remember the answers, particularly
for dynamic and not static questions. Unrepeated questions are critical nowadays because
hackers can find out answers. In other words, if hackers discover an answer, it will be

dangerous to repeat the question.

The scenario of user authentication starts from the user profile information. The
questions will be asked as a set of dynamic questions based on the information provided in
the user profile database. It is supposed that only the user knows the answers to these

questions because it is an abnormal observation and recent user history.

For example from experiment 1, if the time stamp was at a not expected time such
as in ‘6986’ sec which is around 1:56:43 am in the morning, we should ask the user about
the time first “What was the time of your credit card transaction?”” and then follow it by a
set of questions about the location, amount and so on. The benefit of asking a set of
questions is to add more security about the abnormal cases that nobody else would be
expected to know. In other words, the user is the only person who knows all the information
about the abnormal observation. Another sample is the money amount that user “349”
showed was $1809.68 which is over this normal user range (100 - 500). The appropriate
question will be “what was the amount of money in your recent transaction?” Lastly, the
“007” user used a new CVV code 256” which is not the same usual CVV code ‘181’ in
the system. The following security question will be “What was your CVV code number for
last credit card transaction?” The novelty of this approach is that instead of asking

questions about the normal activities of the user (that can be figured out easily), we ask
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questions about the recent abnormal actions of the user (that is hard to be guessed by
others). It is worth mentioning that, each question is asked only once, and the questions

set should be randomly chosen from a pool of candidate questions.

An example from experiment 2, if the product was bought from the user only once
which is an unexpected product category from the history such as in 'es_otherservices' by
the user 'C225675370', we should ask the user about the category first. “What was the type
of the product in your last transaction?” and then follow it by a set of questions about the
location, amount and so on. The benefit of asking a set of questions is to ensure that the
user is answering and not someone else. If all the information for the abnormal case was
provided correctly that means the user is correctly authenticated because the only person
who knows all the information about the abnormal observation is the user. Another sample
is the type of product 'es_sportsandtoys' was bought by user '‘C2044438336"' which is for
his age range (50 — 60 years). It also shows based on his history that was once during 180-

timestamps. The appropriate question will be “what did you buy in your last transaction?”

An example from experiment 3, the user with ‘ID - 28” has a sharp increase in his
checking account over 200 DM (Deutsche Mark; Germany currency) for one month and
the normal checking range based on this user history is under 200 DM for one month. We
should ask the user about the amount of money in the checking account first, “How much
money do you have in your checking account?”” and then follow it by a set of questions
about the time of that increasing, account number and so on. Another sample is the
employment status changed for user ‘ID - 32’ in one month which is not normal for this
young age range (20 - 30) to have skilled employment based on the history. The appropriate

question will be “What is you employment status now?”’

An example from experiment 6, the user ‘ID - 55’ has a very short time recording
of 0.3 which is not normal for this number of bytes ‘54540°. We should ask the user about
the category first “How long was your last recording time?”” and then follow it by a set of
questions about the 1D, destination name and so on. Another sample is that the user with

‘ID - 65927 has an out of normal range in the number of bytes of ‘54540’ and the normal
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bytes range is 6 - 410 bytes. The appropriate question will be “How long was your last

recording time?”

An example from experiment 7, User with ID ‘563 was driving with a speed of
104 km/h 9 days prior which is an abnormal speed range for this user (the normal range
based on the user history is 40 — 85 and the average is 62.5). We should ask the user about
the speed first “What was your speed while driving 9 ago?” and then follow it by a set of
questions about the location, time and so on. Another sample is an accident is reported 4
days prior for user ‘ID - 2204’ which has a clean history of accidents. The appropriate

question will be “where and when did your accident happened?”

An example from experiment 9, the medical record for user with ‘ID - 1023” highly
decreased in weight to 35 kg but before that it was 55 kg. We should ask the user about the
weight first “What was your last weight?” and then follow it by a set of questions about
the time, reason and so on. Another sample is for a heart operation for user ‘ID - 46185’
who, based on the medical records had no operation before. The appropriate question will

be “what type and where did your operation occur?”
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Chapter 6
6 Conclusion and Future Works

6.1 Conclusion

The research in user profile for Big Data-based applications has been increasing
especially those utilizing anomaly detection techniques such as outlier detection, fault
detection, computer system monitoring, and event detection in 10T devices. User trait
modeling application lacks a robust implementation for anomaly detection. User trait
models represent the user behaviour so that user variations in the system are noticed and
interpreted. The reason of adoption in user trait modeling increases out of needing a
continuous flow of high-volume data, that is not always available, to achieve high-accuracy
detection. An existing user authentication framework provides an ambition for user trait

modeling.

The main goal of this research is to present a solution model that designs and
implements an anomaly detection technique suite for the user authentication framework.
The solution model is designed from an investigation on Big Data for anomaly detection
techniques.  The investigation recommends three new classifications which are
accomplished by combining three chosen Big Data V’s with three anomaly detection

factors that are related to the V’s as follows:

1) Velocity with computational complexity classification includes the two types of
algorithm time complexity; linear and quadratic and two types of data labels (supervised
and unsupervised) for each time complexity type.

2) Variety with the natural types of data classification focuses on the data types such as

time series, text, and media with providing a Big Data types and sources.

3) Volume with data features classification considers two major feature types which are

univariate and multivariate.

Every classification defines the common machine learning (ML) techniques that

are used in recent research. These classifications drew the outlines to choose the best model
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fit with the best problem. The last part of this investigation was two comparison studies
related to the data labels; supervised and unsupervised techniques, over a number of recent
research papers which are compared after choosing the common ML models with defined

comparison factors and several research paper conditions.

The main part of the solution model is provided with an anomaly detection model
that contains a combination of several techniques that are suitable for the existing user
authentication framework. The anomaly detection models are combined with several
machine learning techniques; K-means, HMM, Auto-Encoder NN, and Gaussian
distribution. In total, the applied models and techniques are seven; the four basic techniques

without any combinations and three combined are as follows:

1) K-means is combined with Auto-encoder neural network which use the auto encoder for
learning user behaviour and use K-means to differentiate between the normal and abnormal

instances.

2) HMM is combined with Auto-encoder neural network that utilize auto-encoder to

reproduce the data to learn the user pattern and utilize the HMM for detection purposes.

3) K-means is combined with HMM and Auto-encoder neural network to use the same
purposes for HMM and auto-encoder. However, the K-means in this case is used to
calculate the data probability parameters for HMM detection process.

Nine different experiments are applied to the proposed models and give a good
detection result for each experiment. The applied experiments have a variety of fields such
as financial payment systems, insurance systems (health, auto, and home), computer
servers monitoring systems, and network transmission systems. The evaluation methods
are chosen by applying most of them in this thesis such as confusion matrices, true positive
rates (TPR), and true negative rates (TNR). Also, two algorithms are developed to ensure

that the chosen evaluation methods match the needs of the user authentication framework.

From the results of the desired anomaly detection models, user profiles are
generated as part of the solution model for the suitable experiments. The features of the

user profiles were the same for all users in all used experiments in this part. A total of six
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user profiles per experiment are designed and applied as databases for challenging
questions. The final part of the solution model is providing a scenario of generating
challenging questions based on the proposed user profiles. This scenario provides strong
examples of challenging questions from the user profile samples that are created after

anomaly detection analyzation has been done on Big Data.

6.2 Future Works

One of the future works is that implementing more combinations of models can be
useful with increasing the data dimensions. Secondly, provide an algorithm to create the
user profile database from the anomaly detection results. Also, implementing an algorithm
to create the security questions automatically from the user profile database. As a result of
this thesis, measuring human dynamics for next generation authentication and FictiZon

collects a lot of real-time information about their subscribers are very important future works.

Furthermore, development of a novel Big Data-driven authentication as a service
model and development of an integration framework to facilitate the collaboration and
interoperability of multiple Big Data-driven authentication service providers are future
works in this research. These two important future works can be done with these tasks: 1)
design and develop SaaS-based authentication model (AUTHaaS), 2) a new integration
framework will be designed and developed (IAUTH) in order to facilitate the collaboration and

interoperability among multiple AUTHaaS providers.

This thesis is part of a research that providing new use cases for businesses seeking
strong authentication and high market reputation. It also will help businesses to give their
clients the sense of real security and to gain their admirations as a reward for protecting their
assets.
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Appendix A: All the results for all data in assumption 1 (without normalization or dimensional reduction)

Appendices

Credit Card Dataset

Models Accuracy Precision Recall Fl-score | ROCauc | RMSE TPR TNR FPR FNR
score

K-means 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707

HMM 0.8431 0.512 0.8767 0.4811 0.8767 0.3961 0.9106 0.8428 0.1572 0.0894

Auto- 0.0043 0.0022 0.5 0.0043 0.5 0.9978 1 0 1 0

encoder

Gaussian 0.9889 0.5633 0.6342 0.5855 0.6342 0.1054 0.2764 0.992 0.008 0.7236

Synthetic Dataset

K-means 0.4914 0.4971 0.4747 0.3517 0.4747 0.7132 0.4569 0.4924 0.5076 0.5431

HMM 0.1368 0.4107 0.0705 0.1203 0.0705 0.9291 0 0.141 0.859 1

Auto- 0.0297 0.0149 0.5 0.0289 0.5 0.985 1 0 1 0

encoder

Gaussian 0.9862 0.9532 0.7932 0.855 0.7932 0.1174 0.5881 0.9984 0.0016 0.4119

Germen Dataset

K-means 0.2366 0.4704 0.47 0.2366 0.47 0.8737 0.14 0.8 0.2 0.86

HMM 0.3073 0.519 0.5252 0.3045 0.5252 0.8323 0.2171 0.8333 0.1667 0.7829

Auto- 0.8537 0.4268 0.5 0.4605 0.5 0.3825 1 0 1 0

encoder

Gaussian 0.1976 0.5189 0.5093 0.1923 0.5093 0.8958 0.0686 0.95 0.05 0.9314

small server computer Dataset

K-means 0.4886 0.5024 0.5211 0.3543 0.5211 0.7151 0.5556 0.4866 0.5134 0.4444

HMM 0.9902 0.9342 0.8872 0.9093 0.8872 0.0989 0.7778 0.9966 0.0034 0.2222




Auto- 0.0293 0.0147 0.5 0.0285 0.5 0.9852 1 0 1 0
encoder

Gaussian 0.9772 0.9885 0.6111 0.676 0.6111 0.151 0.2222 1 0 0.7778
High dimensional server computer Dataset

K-means 0.52 0.4548 0.3778 0.3763 0.3778 0.6928 0.2 0.5556 0.4444 0.8
HMM 0.54 0.4919 0.4778 0.4165 0.4778 0.6782 0.4 0.5556 0.4444 0.6
Auto- 0.1 0.05 0.5 0.0909 0.5 0.9487 0 1 0

encoder

Gaussian 0.92 0.9592 0.6 0.6454 0.6 0.2828 0.2 1 0 0.8
eecs498 Dataset

K-means 0.4987 0.4995 0.4865 0.3406 0.4865 0.7081 0.474 0.4989 0.5011 0.526
HMM 0.9862 0.7048 0.993 0.7871 0.993 0.1175 1 0.9861 0.0139 0
Auto- 0.0096 0.0048 0.5 0.0095 0.5 0.9952 1 0 1 0
encoder

Gaussian 0.9982 0.9208 0.9991 0.9565 0.9991 0.0425 1 0.9982 0.0018 0
Porto Seguro’s Safe Driver Prediction Dataset

K-means 0.5002 0.5008 0.5025 0.3975 0.5025 0.707 0.5054 0.4997 0.5003 0.4946
HMM 0.1013 0.4884 0.4973 0.0972 0.4973 0.948 0.9759 0.0186 0.9814 0.0241
Auto- 0.0864 0.0432 0.5 0.0795 0.5 0.9558 1 0 1 0
encoder

Gaussian 0.9136 0.4568 0.5 0.4774 0.5 0.2939 0 1 0 1
santander-customer-transaction Dataset

K-means 0.5052 0.5046 0.5068 0.4622 0.5068 0.7034 0.5097 0.5039 0.4961 0.4903
HMM 0.4947 0.4954 0.4932 0.4516 0.4932 0.7108 0.4906 0.4959 0.5041 0.5094
Auto- 0.2183 0.1092 0.5 0.1792 0.5 0.8841 1 0 1 0
encoder

Gaussian 0.21832 0.10916 0.5 0.1792 0.5 0.88413 1 0 1 0




Prudential Life Insurance Assessment dataset

K-means 0.5037 0.5037 0.5037 0.503 0.5037 0.7045 0.5041 0.5034 0.4966 0.4959

HMM 0.3825 0.3833 0.393 0.3748 0.393 0.7858 0.5332 0.2528 0.7472 0.4668

Auto- 0.4624 0.2312 0.5 0.3162 0.5 0.7332 1 0 1 0

encoder

Gaussian 0.4624 0.2312 0.5 0.3162 0.5 0.7332 1 0 1 0
Appendix B: All the results for all data in assumption 2 (with normalization only)

Credit Card Dataset

Models Accuracy Precision Recall Fl-score | ROC auc score | RMSE | TPR TNR FPR FNR

K-means 0.5256 0.4983 0.4036 0.3468 0.4036 0.6888 | 0.2805 | 0.5266 0.4734 0.7195

HMM 0.8432 0.512 0.8767 0.4811 0.8767 0.396 0.9106 | 0.8429 0.1571 0.0894

Auto-encoder | 0.9816 0.5705 0.8167 0.6122 0.8167 0.1355 | 0.6504 | 0.9831 0.0169 0.3496

Gaussian 0.9921 0.6654 0.903 0.7336 0.903 0.0887 | 0.813 0.9929 0.0071 0.187

Synthetic Dataset

K-means 0.114 0.425 0.2168 0.106 0.2168 0.9413 |0.3261 | 0.1075 0.8925 0.6739

HMM 0.8632 0.5893 0.9295 0.6136 0.9295 0.3698 |1 0.859 0.141 0

Auto-encoder | 0.9762 0.9794 0.6018 0.6626 0.6018 0.1542 | 0.2036 | 0.9999 0.0001 0.7964

Gaussian 0.9843 0.9775 0.7427 0.8197 0.7427 0.1254 | 0.4858 | 0.9995 0.0005 0.5142

Dataset

K-means 0.3 0.4599 0.4381 0.2907 0.4381 0.8367 |0.2429 | 0.6333 0.3667 0.7571

HMM 0.3415 0.5306 0.5452 0.3351 0.5452 0.8115 | 0.2571 | 0.8333 0.1667 0.7429

Auto-encoder | 0.1463 0.0732 0.5 0.1277 0.5 09239 |0 1 0 1

Gaussian 0.2 0.521 0.5107 0.1951 0.5107 0.8944 | 0.0714 |0.95 0.05 0.9286

small server computer Dataset

K-means 0.5016 0.5093 0.5817 0.366 0.5817 0.706 0.6667 | 0.4966 0.5034 0.3333




HMM 0.0098 0.0658 0.1128 0.0098 0.1128 0.9951 | 0.2222 |0.0034 0.9966 0.7778
Auto-encoder | 0.9902 0.9342 0.8872 0.9093 0.8872 0.0989 | 0.7778 | 0.9966 0.0034 0.2222
Gaussian 0.9772 0.9885 0.6111 0.676 0.6111 0.151 0.2222 |1 0 0.7778
High dimensional server computer Dataset

K-means 0.59 0.5347 0.5944 0.4738 0.5944 0.6403 | 0.6 0.5889 0.4111 0.4
HMM 0.51 0.502 0.50556 0.41099 0.50556 0.7 0.5 0.51111 0.48889 0.5
Auto-encoder | 0.9 0.45 0.5 0.4737 0.5 03162 |0 1 0 1
Gaussian 0.9 0.45 0.5 0.4737 0.5 03162 |0 1 0 1
eecs498 Dataset

K-means 0.4987 0.4995 0.4865 0.3406 0.4865 0.708 0.474 0.499 0.501 0.526
HMM 0.9807 0.6659 0.9903 0.7443 0.9903 0.1388 |1 0.9806 0.0194 0
Auto-encoder | 0.9959 0.85 0.9979 0.9107 0.9979 0.064 1 0.9959 0.0041 0
Gaussian 0.9983 0.9254 0.9992 0.9593 0.9992 0.041 1 0.9983 0.0017 0
Porto Seguro’s Safe Driver Prediction Dataset

K-means 0.3133 0.4756 0.4352 0.2808 0.4352 0.8287 | 0.5825 | 0.2878 0.7122 0.4175
HMM 0.8528 0.5214 0.5202 0.5207 0.5202 0.3837 | 0.1182 | 0.9223 0.0777 0.8818
Auto-encoder | 0.9115 0.5162 0.5006 0.4806 0.5006 0.2976 | 0.0039 | 0.9973 0.0027 0.9961
Gaussian 0.0864 0.0432 0.5 0.0795 0.5 0.9558 |1 0 1 0
santander-customer-transaction Dataset

K-means 0.4999 0.4969 0.4955 0.455 0.4955 0.7072 | 0.4876 | 0.5034 0.4966 0.5124
HMM 0.5145 0.5176 0.5259 0.4745 0.5259 0.6967 | 0.5459 | 0.5058 0.4942 0.4541
Auto-encoder | 0.7817 0.3908 0.5 0.4387 0.5 04672 |0 1 0 1
Gaussian 0.2183 0.1092 0.5 0.1792 0.5 08841 |1 0 1 0
Prudential Life Insurance Assessment dataset

K-means 0.5169 0.5114 0.5112 0.5105 0.5112 0.6951 | 0.4361 | 0.5864 0.4136 0.5639
HMM 0.4836 0.4895 0.4897 0.4826 0.4897 0.7186 | 0.5709 | 0.4084 0.5916 0.4291




Auto-encoder | 0.5467 0.6486 0.5105 0.3789 0.5105 0.6733 |0.0291 | 0.9919 0.0081 0.9709
Gaussian 0.622 0.6428 0.633 0.6184 0.633 0.6148 | 0.7789 | 0.4871 0.5129 0.2211
Appendix C: All the results for all data in assumption 3 (with dimensional reduction only)
Credit Card Dataset
Models Accuracy Precision Recall Fl-score | ROC auc score | RMSE | TPR TNR FPR FNR
K-means 0.5329 0.4988 0.4315 | 0.3504 | 0.4315 0.6834 |0.3293 | 0.533792 0.4662 | 0.6707
HMM 0.7751 0.5075 0.8061 | 0.4519 |0.8061 0.4743 | 0.8374 | 0.774792 0.2252 | 0.1626
Auto-encoder 0.0043 0.0022 0.5 0.0043 | 0.5 0.9978 1 0 1 0
Gaussian 0.9946 0.6528 0.6027 | 0.6227 | 0.6027 0.0736 | 0.2073 | 0.997995 0.002 0.7927
Synthetic Dataset
K-means 0.5084 0.5029 0.5252 | 0.3643 | 0.5252 0.7012 | 0.5431 | 0.50729 0.4927 | 0.4569
HMM 0.8834 0.5933 0.8897 | 0.625 0.8897 0.3414 | 0.8964 | 0.883044 0.117 0.1036
Auto-encoder 0.0297 0.5149 0.5 0.0289 |05 0.985 1 8.51E-06 1 0
Gaussian 0.985 0.9689 0.76 0.8328 | 0.76 0.1226 | 0.5208 | 0.9992 0.0008 | 0.4792
Dataset
K-means 0.2366 0.4704 0.47 0.2366 | 0.47 0.8737 |0.14 0.8 0.2 0.86
HMM 0.3537 0.5025 0.504 0.34 0.504 0.804 0.2914 | 0.716667 0.2833 | 0.7086
Auto-encoder 0.839 0.4257 0.4914 | 0.4562 |0.4914 0.4012 |0.9829 |0 1 0.0171
Gaussian 0.1463 0.0732 0.5 0.1277 |05 09239 |0 1 0 1
small server computer Dataset
K-means 0.3974 0.4969 0.4741 | 0.3049 |0.4741 0.7763 | 0.5556 | 0.392617 0.6074 | 0.4444
HMM 0.013 0.0764 0.1683 | 0.013 0.1683 0.9935 |0.3333 | 0.003356 0.9966 | 0.6667
Auto-encoder 0.9674 0.7257 0.8216 | 0.7643 | 0.8216 0.1805 | 0.6667 | 0.97651 0.0235 | 0.3333
Gaussian 0.9739 0.9869 0.5556 | 0.5934 | 0.5556 0.1614 |0.1111 |1 0 0.8889

High dimensional server computer Dataset




K-means 0.56 0.5282 0.5778 | 0.4544 | 0.5778 0.6633 | 0.6 0.555556 0.4444 |04
HMM 0.48 0.496 0.4889 | 0.3922 0.4889 0.7211 |05 0.477778 05222 |05
Auto-encoder 0.13 0.5515 0.5167 0.1257 0.5167 0.9327 1 0.033333 0.9667 |0
Gaussian 0.9 0.45 0.5 0.4737 0.5 03162 |0 1 0 1
eecs498 Dataset

K-means 0.5011 0.5005 0.5134 |0.3426 | 0.5134 0.7063 | 0.526 0.50091 0.4991 | 0.474
HMM 0.4987 0.4995 0.4865 | 0.3406 | 0.4865 0.708 0.474 0.498965 0.501 0.526
Auto-encoder 0.0098 0.5048 0.5001 | 0.0097 0.5001 0.9951 1 0.000188 09998 |0
Gaussian 0.9904 0.4952 0.5 0.4976 |05 0.0978 |0 1 0 1
Porto Seguro’s Safe Driver Prediction Dataset

K-means 0.5008 0.5008 0.5026 | 0.3978 | 0.5026 0.7065 | 0.5047 0.500453 0.4995 | 0.4953
HMM 0.1832 0.4777 0.4683 | 0.1817 0.4683 0.9038 | 0.8129 | 0.123649 0.8764 | 0.1871
Auto-encoder 0.0864 0.0432 0.5 0.0795 |05 0.9558 1 0 1 0
Gaussian 0.9136 0.4568 0.5 0.4774 |05 0.2939 |0 1 0 1
santander-customer-transaction Dataset

K-means 0.5052 0.5047 0.5068 | 0.4622 0.5068 0.7034 | 0.5097 0.503947 0.4961 | 0.4903
HMM 0.4946 0.4953 0.4932 0.4515 | 0.4932 0.7109 | 0.4906 | 0.49572 0.5043 | 0.5094
Auto-encoder 0.2183 0.1092 0.5 0.1792 0.5 0.8841 1 0 1 0
Gaussian 0.2183 0.1092 0.5 0.1792 0.5 0.8841 1 0 1 0
Prudential Life Insurance Assessment dataset

K-means 0.5037 0.5037 0.5037 0.503 0.5037 0.7045 | 0.5041 | 0.503395 0.4966 | 0.4959
HMM 0.6267 0.6354 0.6331 | 0.6262 0.6331 0.611 0.718 0.548212 0.4518 | 0.282
Auto-encoder 0.4623 0.2312 0.4999 | 0.3162 0.4999 0.7333 [ 0.9999 |0 1 0.0001
Gaussian 0.4624 0.2312 0.5 0.3162 0.5 0.7332 1 0 1 0




Appendix D: All the results for all data in assumption 4 (with both normalization dimensional reduction only)

Credit Card Dataset

Models Accuracy Precision Recall Fl-score | ROC auc RMSE TPR TNR FPR FNR
score

K-means 0.4745 0.5017 0.5965 0.3269 0.5965 0.7249 0.7195 0.4734 0.526581 0.2805

HMM 0.1568 0.488 0.1233 0.1358 0.1233 0.9182 0.0894 0.1571 0.842886 0.9106

Auto- 0.9831 0.5027 0.5079 0.5029 0.5079 0.1299 0.0285 0.9873 0.01275 0.9715

encoder

RNN

Gaussian 0.9923 0.6674 0.903 0.7356 0.903 0.088 0.813 0.993 0.006964 0.187

Synthetic Dataset

K-means 0.5845 0.5189 0.6608 0.4131 0.6608 0.6446 0.7419 0.5796 0.420354 0.2581

HMM 0.55 0.5265 0.7295 0.4037 0.7295 0.6708 0.9203 0.5386 0.461354 0.0797

Auto- 0.9777 0.9718 0.629 0.6981 0.629 0.1494 0.2583 0.9997 0.000281 0.7417

encoder

Gaussian 0.9718 0.9833 0.5264 0.543 0.5264 0.1678 0.0528 1 8.51E-06 0.9472

Germen Dataset

K-means 0.3024 0.4651 0.4464 0.2935 0.4464 0.8352 0.2429 0.65 0.35 0.7571

HMM 0.4268 0.5215 0.54 0.3971 0.54 0.7571 0.38 0.7 0.3 0.62

Auto- 0.1732 0.5358 0.5088 0.1622 0.5088 0.9093 0.0343 0.9833 0.016667 0.9657

encoder

Gaussian 0.1488 0.5733 0.5014 0.1308 0.5014 0.9226 0.0029 1 0 0.9971

small server computer Dataset

K-means 0.3648 0.4947 0.4573 0.286 0.4573 0.797 0.5556 0.3591 0.64094 0.4444

HMM 0.9902 0.995 0.8333 0.8975 0.8333 0.0989 0.6667 1 0 0.3333

Auto- 0.9902 0.995 0.8333 0.8975 0.8333 0.0989 0.6667 1 0 0.3333

encoder




Gaussian 0.9707 0.4853 0.5 0.4926 0.5 0.1712 0 1 0 1

High dimensional server computer Dataset

K-means 0.58 0.5164 0.5444 0.4543 0.5444 0.6481 0.5 0.5889 0.411111 0.5
HMM 0.57 0.5303 0.5833 0.4608 0.5833 0.6557 0.6 0.5667 0.433333 0.4
Auto- 0.91 0.7535 0.6833 0.7107 0.6833 0.3 0.4 0.9667 0.033333 0.6
encoder

Gaussian 0.9 0.45 0.5 0.4737 0.5 0.3162 0 1 0 1
eecs498 Dataset

K-means 0.9883 0.4952 0.4989 0.4971 0.4989 0.1081 0 0.9979 0.002133 1
HMM 0.9791 0.6571 0.9895 0.7338 0.9895 0.1445 1 0.9789 0.02108 0
Auto- 0.9966 0.8702 0.9983 0.9246 0.9983 0.0579 1 0.9966 0.003388 0
encoder

Gaussian 0.998 0.9157 0.9958 0.9522 0.9958 0.0446 0.9935 0.9981 0.001945 0.0065
Porto Seguro’s Safe Driver Prediction Dataset

K-means 0.6828 0.5245 0.5657 0.4953 0.5657 0.5632 0.4241 0.7072 0.292754 0.5759
HMM 0.8657 0.5256 0.5198 0.5215 0.5198 0.3664 0.1017 0.938 0.062003 0.8983
Auto- 0.9081 0.5256 0.5024 0.487 0.5024 0.3032 0.0121 0.9928 0.007184 0.9879
encoder

Gaussian 0.8944 0.5175 0.5055 0.4994 0.5055 0.325 0.0354 0.9756 0.024419 0.9646
santander-customer-transaction Dataset

K-means 0.491 0.4891 0.484 0.4459 0.484 0.7135 0.4716 0.4964 0.503641 0.5284
HMM 0.5054 0.5046 0.5067 0.4623 0.5067 0.7033 0.509 0.5044 0.495636 0.491
Auto- 0.2183 0.1092 0.5 0.1792 0.5 0.8841 1 0 1 0
encoder

Gaussian 0.2183 0.1092 0.5 0.1792 0.5 0.8841 1 0 1 0
Prudential Life Insurance Assessment dataset

K-means 0.4831 0.4886 0.4888 0.4824 0.4888 0.7189 0.5639 0.4136 0.586351 0.4361




HMM 0.6077 0.6096 0.61 0.6076 0.61 0.6263 0.6404 0.5796 0.420439 0.3596
Auto- 0.5564 0.6492 0.5218 0.4086 0.5218 0.666 0.0611 0.9825 0.017542 0.9389
encoder
Gaussian 0.8862 0.9012 0.8941 0.886 0.8941 0.3374 1 0.7883 0.211747 0
Appendix E: PCA comparison based on features for experiment 1.
Dataset 1
Models Accuracy Precision Recall F1-score ROCauc | RMSE TPR TNR FPR FNR
score
PCA=1 | 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
PCA=2 | 0.5749 0.5038 0.7197 0.373 0.7197 0.652 0.8659 0.5736 0.4264 0.1341
PCA=3 | 0.4004 0.4959 0.2719 0.2868 0.2719 0.7743 0.1423 0.4016 0.5984 0.8577
PCA=4 | 0.4099 0.4963 0.2908 0.2917 0.2908 0.7682 0.1707 0.4109 0.5891 0.8293
PCA=5 |0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293
PCA=6 | 053291 0.49882 0.43153 0.35038 0.43153 0.68344 0.32927 0.53379 0.46621 0.67073
PCA=7 |0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
PCA=8 | 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
PCA=9 | 04671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293
PCA =10 | 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293
PCA=11|0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293
PCA =12 | 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
PCA =13 | 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
PCA=14 | 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293
PCA =15 | 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
PCA =16 | 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
PCA=17 | 04671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293
PCA =18 | 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
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Score

PCA=19 | 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293
PCA=20 | 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293
PCA =21 | 0.4998 0.4992 0.4975 0.3961 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054
PCA =22 | 0.5005 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948
PCA =23 | 0.5005 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948
PCA=24 |05 0.4992 0.4975 0.3963 0.4975 0.7071 0.4945 0.5006 0.4994 0.5055
PCA =25 | 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4948 0.5 0.5 0.5052
PCA =26 | 0.4994 0.4992 0.4974 0.3959 0.4974 0.7075 0.4951 0.4998 0.5002 0.5049
PCA =27 | 0.7399 0.4979 0.406 0.4264 0.406 0.51 0.0691 0.7428 0.2572 0.9309
PCA =28 | 0.7399 0.4979 0.406 0.4264 0.406 0.51 0.0691 0.7428 0.2572 0.9309
PCA =29 | 0.2601 0.5021 0.594 0.2099 0.594 0.8602 0.9309 0.2572 0.7428 0.0691
Appendix F: PCA comparison based on features for experiment 2.
dataset 2
Models Accuracy Precision Recall Fl-score | ROC auc RMSE TPR TNR FPR FNR
score
PCA=1 |0.9083 0.6025 0.8417 0.642 0.8417 0.3028 0.7708 0.9125 0.0875 0.2292
PCA=2 |0.4185 0.4814 0.3414 0.3057 0.3414 0.7626 0.2594 0.4233 0.5767 0.7406
PCA=3 |0.4133 0.4807 0.3366 0.3028 0.3366 0.766 0.255 0.4181 0.5819 0.745
PCA=4 |0.4295 0.4824 0.3496 0.3116 0.3496 0.7553 0.2647 0.4345 0.5655 0.7353
PCA=5 |0.1012 0.4096 0.1805 0.0946 0.1805 0.948 0.2647 0.0962 0.9038 0.7353
PCA=6 |0.1011 0.4123 0.1944 0.0948 0.1944 0.9481 0.2936 0.0952 0.9048 0.7064
Appendix G: PCA comparison based on features for experiment 3.
dataset 3
Models Accuracy Precision Recall F1-score ROCauc | RMSE TPR TNR FPR FNR
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PCA=1 |0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
PCA=2 |0.5749 0.5038 0.7197 0.373 0.7197 0.652 0.8659 0.5736 0.4264 0.1341
PCA=3 | 0.4004 0.4959 0.2719 0.2868 0.2719 0.7743 0.1423 0.4016 0.5984 0.8577
PCA=4 |0.4099 0.4963 0.2908 0.2917 0.2908 0.7682 0.1707 0.4109 0.5891 0.8293
PCA=5 |0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293
PCA=6 |0.53291 0.49882 0.43153 0.35038 0.43153 0.68344 0.32927 0.53379 0.46621 0.67073
PCA=7 |0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
PCA=8 |0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
PCA=9 |0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293
PCA =10 | 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293
PCA=11 | 0.4671 0.5012 0.5685 0.323 0.5685 0.73 0.6707 0.4662 0.5338 0.3293
PCA =12 | 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
PCA =13 | 0.5329 0.4988 0.4315 0.3504 0.4315 0.6834 0.3293 0.5338 0.4662 0.6707
Appendix H: PCA comparison based on features for experiment 4.
dataset 4
Models Accuracy Precision Recall F1-score ROC auc RMSE TPR TNR FPR FNR
score

PCA=1 |0.44 0.4559 0.3778 0.3455 0.3778 0.7483 0.3 0.4556 0.5444 0.7
PCA=2 |0.56 0.5282 0.5778 0.4544 0.5778 0.6633 0.6 0.5556 0.4444 0.4
PCA=3 |0.54 0.524 0.5667 0.4415 0.5667 0.6782 0.6 0.5333 0.4667 0.4
PCA=4 |0.55 0.5101 0.5278 0.4357 0.5278 0.6708 0.5 0.5556 0.4444 0.5
PCA=5 ]0.49 0.482 0.45 0.3869 0.45 0.7141 0.4 0.5 0.5 0.6
PCA=6 |0.45 0.4739 0.4278 0.3628 0.4278 0.7416 0.4 0.4556 0.5444 0.6
PCA=7 |0.45 0.4739 0.4278 0.3628 0.4278 0.7416 0.4 0.4556 0.5444 0.6
PCA=8 |0.55 0.5261 0.5722 0.4479 0.5722 0.6708 0.6 0.5444 0.4556 0.4
PCA=9 |0.55 0.52609 0.57222 0.44792 0.57222 0.67082 0.6 0.54444 0.45556 0.4
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PCA=10 | 0.52 0.52 0.5556 0.4286 0.5556 0.6928 0.6 0.5111 0.4889 0.4
PCA=11 | 0.45 0.4739 0.4278 0.3628 0.4278 0.7416 0.4 0.4556 0.5444 0.6
Appendix I: PCA comparison based on features for experiment 6.
dataset 6
Models Accuracy Precision Recall Fl-score | ROC auc RMSE TPR TNR FPR FNR
score
PCA=1 0.5011 0.5005 0.5134 0.3426 0.5134 0.7063 0.526 0.5009 0.4991 0.474
PCA=2 0.5013 0.5005 0.5135 0.3427 0.5135 0.7062 0.526 0.501 0.499 0.474
PCA=3 0.4987 0.4995 0.4865 0.3406 0.4865 0.708 0.474 0.499 0.501 0.526
PCA=4 0.4975 0.4995 0.4859 0.3401 0.4859 0.7089 0.474 0.4977 0.5023 0.526
Appendix J: PCA comparison based on features for experiment 7.
dataset 7
Models Accuracy Precision Recall Fl-score | ROC auc RMSE TPR TNR FPR FNR
score
PCA=1 |0.5008 0.5008 0.5026 0.3978 0.5026 0.7065 0.5047 0.5005 0.4995 0.4953
PCA=2 |0.499 0.4992 0.4974 0.3959 0.4974 0.7075 0.4951 0.4998 0.5002 0.5049
PCA=3 |0.4994 0.4992 0.4974 0.3959 0.4974 0.7075 0.4951 0.4998 0.5002 0.5049
PCA=4 | 0.5003 0.4993 0.4976 0.3964 0.4976 0.7069 0.4944 0.5008 0.4992 0.5056
PCA=5 | 0.4995 0.4992 0.4974 0.396 0.4974 0.7074 0.4948 0.5 0.5 0.5052
PCA=6 | 0.4998 0.4992 0.4975 0.3961 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054
PCA=7 | 0.5005 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948
PCA=8 | 0.5005 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948
PCA=9 |05 0.4992 0.4975 0.3963 0.4975 0.7071 0.4945 0.5006 0.4994 0.5055
PCA=10 | 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4948 0.5 0.5 0.5052
PCA=11 | 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4948 0.5 0.5 0.5052
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PCA =12 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948
PCA =13 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948
PCA=14 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.4999 0.5001 0.4948
PCA=15 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.4999 0.5001 0.4948
PCA=16 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5052 0.5 0.5 0.4948
PCA=17 |05 0.5008 0.5025 0.3974 0.5025 0.7071 0.5055 0.4995 0.5005 0.4945
PCA =18 | 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054
PCA=19 | 0.5001 0.5008 0.5025 0.3974 0.5025 0.7071 0.5055 0.4995 0.5005 0.4945
PCA=20 | 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4948 0.5001 0.4999 0.5052
PCA=21 | 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054
PCA =22 | 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054
PCA =23 | 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054
PCA=24 | 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053
PCA=25 | 0.5001 0.5008 0.5025 0.3974 0.5025 0.707 0.5054 0.4996 0.5004 0.4946
PCA=26 | 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054
PCA =27 | 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053
PCA =28 | 0.5002 0.5008 0.5026 0.3975 0.5026 0.707 0.5054 0.4997 0.5003 0.4946
PCA =29 | 0.5001 0.5008 0.5025 0.3975 0.5025 0.707 0.5054 0.4996 0.5004 0.4946
PCA =30 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5053 0.4999 0.5001 0.4947
PCA =31 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5053 0.4999 0.5001 0.4947
PCA =32 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5053 0.4999 0.5001 0.4947
PCA =33 | 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054
PCA =34 | 0.4999 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5004 0.4996 0.5054
PCA=35 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5053 0.4999 0.5001 0.4947
PCA =36 | 0.4998 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054
PCA =37 | 0.5002 0.5008 0.5025 0.3975 0.5025 0.707 0.5054 0.4997 0.5003 0.4946
PCA =38 | 0.4998 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054




14

PCA =39 | 0.4998 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054
PCA =40 | 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053
PCA =41 | 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053
PCA =42 | 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053
PCA =43 | 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053
PCA =44 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947
PCA =45 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947
PCA =46 | 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053
PCA =47 | 0.4998 0.4992 0.4975 0.3962 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054
PCA =48 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947
PCA =49 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947
PCA =50 | 0.4996 0.4992 0.4974 0.396 0.4974 0.7074 0.4947 0.5001 0.4999 0.5053
PCA =51 | 0.4998 0.4992 0.4975 0.3961 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054
PCA =52 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7068 0.5053 0.4999 0.5001 0.4947
PCA =53 | 0.5003 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947
PCA =54 | 0.5003 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947
PCA =55 | 0.5004 0.5008 0.5026 0.3976 0.5026 0.7069 0.5053 0.4999 0.5001 0.4947
PCA =56 | 0.4998 0.4992 0.4975 0.3961 0.4975 0.7072 0.4946 0.5003 0.4997 0.5054
PCA =57 | 0.5002 0.5008 0.5025 0.3975 0.5025 0.707 0.5054 0.4997 0.5003 0.4946
PCA =58 | 0.5002 0.5008 0.5025 0.3975 0.5025 0.707 0.5054 0.4997 0.5003 0.4946
Appendix K: PCA comparison based on features for experiment 8.
dataset 8
Models Accuracy Precision Recall Fl-score | ROCauc | RMSE TPR TNR FPR FNR
score

PCA =25 |0.4904 0.4861 0.4796 0.4438 0.4796 0.7139 0.4604 0.4987 0.5013 0.5396
PCA=50 |0.491 0.4891 0.484 0.4459 0.484 0.7135 0.4716 0.4964 0.5036 0.5284
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PCA=75 |0.4989 0.499 0.4985 0.4558 0.4985 0.7079 0.4978 0.4992 0.5008 0.5022
PCA= 0.5062 0.5149 0.5218 0.4685 0.5218 0.7027 0.5495 0.4941 0.5059 0.4505
100
PCA = 0.4943 0.4918 0.4881 0.4492 0.4881 0.7112 0.4771 0.4991 0.5009 0.5229
125
PCA = 0.494 0.4878 0.4822 0.4466 0.4822 0.7113 0.4612 0.5031 0.4969 0.5388
150
PCA = 0.503 0.5036 0.5053 0.4605 0.5053 0.705 0.5092 0.5013 0.4987 0.4908
175
PCA= 0.494 0.49 0.4853 0.4479 0.4853 0.7113 0.4699 0.5007 0.4993 0.5301
200

Appendix L: PCA comparison based on features for experiment 9.
dataset 9
Models Accuracy Precision Recall Fl-score | ROC auc RMSE TPR TNR FPR FNR

score

PCA=25 | 05171 0.5117 0.5115 0.5108 0.5115 0.6949 0.4366 0.5864 0.4136 0.5634
PCA=50 |0.517 0.5116 0.5114 0.5108 0.5114 0.695 0.4366 0.5862 0.4138 0.5634
PCA=75 |0.517 0.5115 0.5113 0.5107 0.5113 0.695 0.4364 0.5862 0.4138 0.5636
PCA = 0.4831 0.4886 0.4888 0.4824 0.4888 0.7189 0.5639 0.4136 0.5864 0.4361
100
PCA = 0.5169 0.5114 0.5112 0.5105 0.5112 0.6951 0.4361 0.5864 0.4136 0.5639
125

Appendix M: All results in K-means Model for Experiment 1.

creditcard dataset

two clusters method

tunimg parameters

evaluations
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initializat (n_ |ma algorit |rando accura precisi |recall [f1- roc rmse |saa tpr tnr fpr fnr
ion ini [x hm m nY bn score |auc

t |iter state score
K- 5 (1 auto 0 0.502 | 0.498 | 0.383 | 0.336 | 0.383 | 0.705 | 50.26 | 0.2642 | 0.5037 | 0.496 | 0.735
means++ 6 9 5 9 2 4 3 8
K- 5 |10 |auto 0 0.525 | 0.498 | 0.403 | 0.346 | 0.403 | 0.688 | 52.55 | 0.2805 | 0.5266 | 0.473 | 0.719
means++ 6 3 6 8 6 8 7 4 5
K- 5 (1 auto 42 0.463 | 0.503 | 0.672 | 0.322 | 0.672 | 0.732 | 46.37 | 0.8821 | 0.4619 | 0.538 | 0.117
means++ 7 8 3 14 17 1 9
K- 5 |10 |auto 42 0.474 | 0.501 | 0.596 |0.326 | 0.596 | 0.725 | 47.44 | 0.7195 | 0.4734 | 0.526 | 0.280
means++ 4 7 4 8 4 3 6 5
K- 5 (1 auto 1 0.551 | 0.500 | 0.513 [ 0.359 | 0.513 | 0.669 | 55.11 | 0.4756 | 0.5515 | 0.448 | 0.524
means++ 2 2 6 5 6 9 7 5 4
K- 5 |10 |auto 1 0.474 | 0.501 | 0.596 |0.326 | 0.596 | 0.725 | 47.44 | 0.7195 | 0.4734 | 0.526 | 0.280
means++ 4 7 4 8 4 3 6 5
K- 5|1 auto 2 0.249 | 0.497 | 0.388 | 0.201 | 0.388 | 0.866 | 24.94 | 0.5285 | 0.2483 | 0.751 | 0.471
means++ 5 4 4 6 4 3 7 7 5
K- 5 |10 |auto 2 0.525 | 0.498 | 0.403 | 0.346 | 0.403 | 0.688 | 52.55 | 0.2805 | 0.5266 | 0.473 | 0.719
means++ 6 3 6 8 6 8 7 4 5
K- 5 1|1 auto 3 0.536 | 0.500 | 0.514 | 0.353 | 0.514 | 0.681 | 53.60 | 0.4919 | 0.5363 | 0.463 | 0.508
means++ 1 2 1 1 1 1 8 7 1
K- 5 |10 |auto 3 0.525 | 0.498 | 0.403 | 0.346 | 0.403 | 0.688 | 52.55 | 0.2805 | 0.5266 | 0.473 | 0.719
means++ 6 3 6 8 6 8 7 4 5
K- 5 (1 auto 4 0.555 | 0.500 | 0.519 |0.361 | 0.519 | 0.666 | 55.52 | 0.4837 | 0.5555 | 0.444 | 0.516
means++ 2 3 6 3 6 9 4 5 3
K- 5 |10 |auto 4 0.610 | 0.500 | 0.508 | 0.383 | 0.508 | 0.624 | 61.02 | 0.4065 | 0.6111 | 0.388 | 0.593
means++ 2 2 8 1 8 3 9 5
K- 5 (1 auto 5 0.662 | 0.503 | 0.668 | 0.406 | 0.668 | 0.581 | 66.22 | 0.6747 | 0.6622 | 0.337 | 0.325
means++ 3 2 5 5 5 1 9 97 41 8 2




17

K- 10 | auto 5 0.525 | 0.498 | 0.403 | 0.346 | 0.403 | 0.688 | 52.55 | 0.2805 | 0.5266 | 0.473 | 0.719

means++ 6 3 6 8 6 8 7 4 5

K- 1 auto 13 0.779 | 0.505 | 0.737 | 0.450 | 0.737 | 0.470 | 779 |0.6951 | 0.7793 | 0.220 | 0.304

means++ 9 2 9 2 1 22 64 6 9

K- 10 | auto 13 0.474 | 0.501 | 0.596 | 0.326 | 0.596 | 0.725 | 47.44 | 0.7195 | 0.4734 | 0.526 | 0.280

means++ 4 7 4 8 4 3 6 5

K- 1 auto 14 0.990 | 0.497 | 0.497 | 0.497 | 0.497 | 0.097 | 99.04 |0 0.9947 | 0.005 |1

means++ 5 8 4 6 4 5 9 77 2

K- 10 | auto 14 0.525 | 0.498 | 0.407 | 0.346 | 0.407 | 0.688 | 52.54 | 0.2886 | 0.5264 | 0.473 | 0.711

means++ 4 4 5 8 5 9 2 6 4

K- 1 auto 90 0.011 | 0.478 | 0.459 | 0.011 | 0.459 | 0.994 | 1.176 | 0.9105 | 0.0078 | 0.992 | 0.089

means++ 8 6 2 8 2 1 7 69 79 1 4

K- 10 | auto 90 0.525 | 0.498 | 0.403 | 0.346 | 0.403 | 0.688 | 52.55 | 0.2805 | 0.5266 | 0.473 | 0.719

means++ 6 3 6 8 6 8 6 4 5

K- 1 auto 91 0.982 | 0.509 |0.53 |0.513 |0.53 |0.130 |98.29 | 0.0731 | 0.9868 | 0.013 | 0.926

means++ 9 7 5 7 1 71 46 2 8

K- 10 | auto 91 0.474 | 0.501 | 0.596 |0.326 | 0.596 | 0.725 | 47.44 | 0.7195 | 0.4734 | 0.526 | 0.280

means++ 4 7 4 8 4 3 6 5

K- 1 auto 200 0.351 | 0.502 | 0.644 | 0.264 | 0.644 | 0.805 | 35.17 | 0.9390 | 0.3491 | 0.650 | 0.061

means++ 7 7 1 9 1 2 24 55 8

K- 10 | auto 200 0.474 | 0.501 | 0.596 | 0.326 | 0.596 | 0.725 | 47.44 | 0.7195 | 0.4734 | 0.526 | 0.280

means++ 4 7 4 8 4 3 6 5

K- 1 auto 250 0.951 | 0.510 | 0.607 | 0.509 | 0.607 | 0.221 | 95.09 | 0.2601 | 0.9539 | 0.046 | 0.739

means++ 3 1 3 1 4 7 63 6 8

K- 10 | auto 250 0.474 | 0.501 | 0.596 | 0.326 | 0.596 | 0.724 | 47.44 | 0.7195 | 0.4733 | 0.526 | 0.280

means++ 43 66 44 85 44 96 26 1 7 63 49

random 1 auto 5 0.324 | 0.502 | 0.646 | 0.249 | 0.646 | 0.821 | 32.48 | 0.9715 | 0.3221 | 0.677 | 0.028
9 9 8 7 8 7 5 9 5

random 10 | full 5 0.474 | 0.501 | 0.596 | 0.326 | 0.596 | 0.725 | 47.44 | 0.7195 | 0.4734 | 0.526 | 0.280
4 7 4 8 4 3 6 5
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random |5 |10 | elkan 0.249 | 0.497 | 0.388 | 0.201 | 0.388 | 0.866 |24.94 | 0.5285 | 0.2483 | 0.751 | 0.471
5 4 4 6 4 3 7 7 5
random |1 |1 |auto 0.525 | 0.498 | 0.403 | 0.346 | 0.403 | 0.688 |52.55 | 0.2805 | 0.5266 | 0.473 | 0.719
0 6 3 6 8 6 8 7 4 5
random |5 | 10 | auto 0.536 | 0.500 | 0.514 |0.353 | 0.514 | 0.681 |53.60 | 0.4919 | 0.5363 | 0.463 | 0.508
1 2 1 1 1 1 8 7 1
Appendix N: All results in HMM Model for Experiment 1.
creditcard dataset
two states method
Tuning Parameters Evaluations
covariance | min_co | n_it | algorit | tol Accur | Precis | Rec | F1- | ROC RMS | TPR | TNR | FP | FNR
_type var er hm acy ion all scor | auc E R
e score
spherical 0.0001 |500 |viterbi |0.1 |0.9268 | 0.5247 | 0.90 | 0.52 | 0.906624 | 0.270 | 0.886 | 0.927 | 0.0 | 0.113
0 9 1 66 82 594 38 18 07 73 |82
diag 0.0001 | 500 | viterbi |0.1 |0.8432 |0.512 |0.87 |0.48 | 0.876753 | 0.395 | 0.910 | 0.842 | 0.1 | 0.089
0 7 1 7 9 57 938 6 4
tied 0.0001 |500 |viterbi |0.1 |0.5166 |0.4978 | 0.37 | 0.34 | 0.374756 | 0.695 | 0.232 | 0.517 | 0.4 | 0.768
0 5 2 6 3 8 8 3
full 0.0001 | defu | viterbi | defu | 0.6836 | 0.5056 | 0.78 | 0.41 | 0.786468 | 0.562 | 0.890 | 0.682 | 0.3 | 0.109
Its Its 6 7 7 5 24 693 2 8
spherical 0.0001 | defu | viterbi | defu | 0.8963 | 0.5178 | 0.89 | 0.50 | 0.897343 | 0.322 | 0.898 | 0.896 | 0.1 | 0.101
Its Its 7 7 1 37 312 6
diag 0.0001 | defu | viterbi | defu | 0.1569 | 0.488 |0.12 | 0.13 | 0.123290 | 0.918 | 0.089 | 0.157 | 0.8 | 0.910
Its Its 3 6 3 2 43 1 4 6
tied 0.0001 | defu | viterbi | defu | 0.4834 | 0.5022 | 0.62 | 0.33 | 0.625243 | 0.718 | 0.768 | 0.482 | 0.5 | 0.231
Its Its 5 1 4 7 29 2 2 7
spherical 0.0001 | 500 | map 0.1 |0.8963 | 0.5178 | 0.89 | 0.50 |0.897343 | 0.322 | 0.898 | 0.896 | 0.1 |0.101
0 7 7 1 3 6
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diag 0.0001 | 500 |map 0.1 |0.1569 | 0.488 |0.12 |0.13 | 0.123290 | 0.918 | 0.089 | 0.157 | 0.8 | 0.910
0 3 6 3 2 1 4 6
tied 0.0001 | 500 | map 0.1 |0.5166 | 0.4978 | 0.37 |0.34 | 0.374765 | 0.695 | 0.232 | 0.517 | 0.4 | 0.768
0 5 2 4 3 8 8 3
full 0.0001 | defu | map defu | 0.3164 | 0.4944 | 0.21 | 0.24 | 0.213531 | 0.826 | 0.11 |0.317 | 0.6 | 0.890
Its Its 4 1 3 8 3 8 2
spherical 0.0001 | defu | map defu | 0.1037 | 0.4822 | 0.10 | 0.09 | 0.102656 | 0.946 | 0.102 | 0.103 | 0.9 | 0.898
Its Its 3 4 9 7 7 4
diag 0.0001 | defu | map defu | 0.4834 | 0.5021 | 0.62 | 0.33 | 0.625234 | 0.718 | 0.768 | 0.482 | 0.5 | 0.231
Its Its 1 5 52 14 571 74 3 18 18 |71
tied 0.0001 | defu | map defu | 0.5166 | 0.4978 | 0.37 | 0.34 | 0.374765 | 0.695 | 0.232 | 0.517 | 0.4 | 0.768
Its Its 5 2 4 3 8 8 3
spherical 0.0001 | 500 |viterbi |defu |0.0731 | 0.4752 | 0.09 | 0.06 | 0.093375 | 0.962 | 0.113 | 0.072 | 0.9 | 0.886
0 Its 1 9 34 83 406 75 8 93 27 |18
spherical 0.0001 |5 viterbi | 0.1 |0.2175 | 0.4912 | 0.14 | 0.17 | 0.145628 | 0.884 | 0.073 | 0.218 | 0.7 | 0.926
6 9 2 6 1 8 8
Appendix O: All results in Auto-Encoder Model for Experiment 1.
Threshold Method
Tuning Parameters Evaluations
nb_ | batc | inpu | encodi | hidde | hidde | activa | learni | Thr | Acc [Pre |Re |[F1|R |[R |TP |[TN |FP |F
epo |hsi |tdi [ng di |n_di |n.di |[tion ng_ra |esho |ura |cisi |cal |- O M R R R |N
ch ze m m ml m2 te Id cy on || sc |C |SE R
or |au
e |c
sC
or
e
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10 128 | 30 18 10 6 tanh | 1.00E- 098 {057 |08]06|08|01(075/0.98|0.0 0.2
07 13 |69 |67 |23 |67 |36 | 203 | 225 |17 |48

1 |7 |1 |9 |3 6 7
50 128 | 30 18 10 6 tanh | 1.00E- 098 |057 |08 |06 |08 010690980003
07 22 |65 |41 |22 |41 |33 |918 343 |16 |00
3 3 |4 |7 4 6 |8
10 128 | 30 32 16 8 tanh | 1.00E- 098 |057 |08 |06 |08 01069098 0.0 0.3
07 25 |74 |39 |23 |39 |32 |[512 375 |16 |04
4 |1 |4 [3 |2 2 19
10 128 | 30 10 5 2 tanh | 1.00E- 097 |057 |08 |06 |08 01078098 |0.00.2
07 99 |42 |80 |20 [80 |41 |048 | 077 |19 |19
6 |3 |6 |7 |8 8 2 |5
10 128 | 30 5 2 1 tanh | 1.00E- 097 {056 [0.8 0.6 0801080 0.97|{00|0.1
07 79 |96 |91 |13 |91 |48 |487 | 863 |21 |95
8 |7 |8 |7 |8 3 4 11
10 128 | 30 5 3 1 tanh | 1.00E- 097 {056 |08 060801 (075/0.97|0.0 0.2
07 81 |69 |65 |08 |65 |47 | 203 [912 |20 |48

6 |8 |6 |8 |3 5 9
10 128 | 30 50 20 10 tanh | 1.00E- 098 {058 08|06 (0801069 0.98|00|0.3
07 33 |04 |37 |27 |37 |29 |105 [455 |15 |08
8 |2 |8 |2 |7 9 4 19
10 12 30 50 20 10 tanh | 1.00E- 098 {058 08|06 |08 01069 098|00|0.3
07 39 |36 |40 |31 |40 |26 |512 |515 |14 |04
1 |5 |1 |9 |2 7 8 |9
10 12 30 5 2 1 tanh | 1.00E- 097 |057 |08 06|08 |01|0.78|097|0.00.2
07 91 |2 84 |17 |84 |44 | 861 [ 988 |20 |11
2 |2 |2 |7 |8 1 1 |4
10 |[256 |30 5 2 1 tanh | 1.00E- 097 |056 |08 06|08 |01 |0.77|097 0.0 0.2
07 74 |65 |77 |08 |77 |50 |642 |828 |21 |23
4 |5 |4 |3 |3 1 /7 |6
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10 128 | 30 sigmo | 1.00E- 097 {056 08060801076 0.97|0.0 0.2
id 07 57 |16 |72 |00 |72 |56 |829 [655 |23 |31

4 |7 |4 3 8 4 |7
10 128 | 30 hard_ | 1.00E- 097 |056 |08 |06 |08 01076097 0.0 0.2
sigmo | 07 57 |12 |68 68 |55 | 016 | 664 |23 |39

id 4 4 |8 |3 6 4 |8
10 128 | 30 expon | 1.00E- 097 |056 |08 06|08 |01 |0.76|097 0.0 0.2
ential | 07 57 |12 |68 68 |55 [ 016 | 664 |23 |39

4 4 |8 |3 6 4 |8
10 128 | 30 linear | 1.00E- 097 |057 |08 |06|08|01|075/098|0.00.2
07 95 |13 |68 |15 |68 |43 |609 |051 |19 |43

3 |6 |3 8 5 5 19
10 128 | 30 tanh | 1.00E- 097 {055 |08|05(0801(082,0.97|00 0.1
07 13 |61 |98 92 |98 |69 | 520 |196 |28 |74

6 |1 |6 |3 |3 8 8
10 128 | 30 tanh | 1.00E- 095|053 (0905090208709 (0001
07 36 |78 |16 |58 |16 |15 | 804 [396 |46 |22

2 3 19

10 128 | 30 tanh | 1.00E- 083 {051 |08|04/0804(092,083|0.1|0.0
07 65 |17 |79 |78 |79 |04 | 276 [608 |63 |77

4 |5 |4 |4 |4 9 |2
10 128 | 30 tanh | 1.00E- 098 {057 |08]06 (0801065098 |00 0.3
07 25 |41 |19 |17 |19 |32 |447 | 390 |16 |45

2 |4 12 |3 |2 9 1 |5
10 128 | 30 linear | 1.00E- 098 |057 |08 |06|08|01|0.75/098|0.00.2
06 02 |34 |68 |18 |68 |40 |609 | 116 |18 |43

6 |7 |6 |7 |8 5 8 |9
10 128 | 30 tanh | 1.00E- 098 |057 |08 |06 |08 |01|065|098|0.0|0.3
08 17 |07 |16 |12 |16 |35 | 040 | 311 |16 |49

8 |5 |8 |3 |7 7 9 |6
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10 128 | 30 5 2 1 tanh | 1.00E- | 4 098 |057 |08 (06|08 |0.1|065|098|0.00.3
09 17 |15 |20 |13 |20 |35 |853 |313 |16 |41
8 |9 |8 |1 |7 5 9 |5
10 128 | 30 5 2 1 tanh | 1.00E- | 4 098 {057 |08]0.6|08|0.1|0.66 0988|0003
06 19 |29 |25 |16 |25 |34 | 666 |329 |16 |33
4 |7 3 7 |3
Appendix P: All results in K-means Model for Experiment 2.
two clusters method
Tuning Parameters Evaluations
initializat | n_in | max_it | algorit | RandomS | Accura | Precisi | Reca | F1I- |RO |RMS | TPR | TNR | FPR | FNR
ion it er hm tate cy on I scor | C E
e auc
scor
e
K- 5 1 auto 0 0.3243 | 0.4699 |0.26 |[0.25 |0.26 |0.822 |0.20 | 0.32 | 0.67 |0.79
means++ 49 13 49 17 81 19 83
K- 5 10 auto 0 0.4115 |0.4804 |0.33 [0.30 |0.33 |0.767 | 0.25 | 0.41 | 0.58 |0.74
means++ 4 17 4 2 17 64 36 83
K- 5 1 auto 42 0.317 |0.4947 | 046 |[0.25 |0.46 |0.826 |0.61 |0.30 |0.69 |0.38
means++ 11 87 11 4 42 79 21 58
K- 5 10 auto 42 0.4137 |0.4808 | 0.33 |0.30 | 0.33 |0.765|0.25 [0.41 |0.58 |0.74
means++ 72 3 72 7 58 86 14 42
K- 5 1 auto 1 0.4266 |0.4882 |0.39 |[0.31 |0.39 |0.757 | 0.37 | 0.42 |0.57 |0.62
means++ 93 44 93 2 03 83 17 97
K- 5 10 auto 1 0.4163 |0.4811 | 0.33 [0.30 | 0.33 |0.764 | 0.25 | 0.42 |0.57 |0.74
means++ 97 45 97 83 12 88 17
K- 5 1 auto 2 0.5707 |0.5136 | 0.61 |[0.40 |0.61 |0.655|0.66 |0.56 |0.43 |0.33
means++ 61 19 61 2 44 78 22 56
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K- 10 auto 2 0.5833 [0.5188 [0.65 |0.41 |0.65 |0.645|0.74 | 0.57 |0.42 |0.25
means++ 99 25 99 5 14 85 15 86
K- 1 auto 3 0.9007 |[0.5993 [0.85 |0.63 |0.85 |0.315(/0.81 |0.90 |0.09 |0.18
means++ 76 68 76 1 17 35 65 83
K- 10 auto 3 0.5794 |0.5184 [0.65 |0.41 |0.65 |0.648 | 0.73 | 0.57 |0.42 |0.26
means++ 7 04 7 5 94 45 55 06
K- 1 auto 4 0.5639 |0.5125 [0.60 |[0.39 |0.60 |0.660 |0.65 |0.56 |0.43 |0.34
means++ 67 79 67 3 22 12 88 78
K- 10 auto 4 0.5838 |[0.5189 |[0.66 |0.41 |0.66 |0.645|0.74 | 057 |0.42 |0.25
means++ 05 28 05 1 19 9 1 81
K- 1 auto 5 0.6884 |0.5306 |0.73 |0.47 |0.73 [ 0558 |0.78 | 0.68 |[0.31 |0.21
means++ 43 01 43 3 31 55 45 69
K- 10 auto 5 0.5888 |[0.5196 |0.66 |0.41 |0.66 |0.641|0.74 | 058 |0.41 |0.25
means++ 65 57 65 3 92 39 61 08
K- 1 auto 13 0.0987 |0.4004 |0.14 |0.09 |0.14 |[0.949 | 0.18 | 0.09 [0.90 |0.81
means++ 27 18 27 4 94 59 41 06
K- 10 auto 13 0.4195 |0.4815 | 0.34 |0.30 |0.34 [0.761|0.26 | 0.42 | 057 |0.73
means++ 23 63 23 9 03 44 56 97
K- 1 auto 14 0.5089 |0.5126 |0.60 |0.37 |0.60 |0.700 | 0.71 | 0.50 |0.49 |0.28
means++ 95 25 95 8 64 26 74 36
K- 10 auto 14 0.5811 |[0.5186 |[0.65 |0.41 |0.65 |0.647 |0.74 | 057 |0.42 |0.25
means++ 85 13 85 2 08 62 38 92
K- 1 auto 90 0.4473 [0.4919 [0.43 |0.32 | 043 |0.743|0.41 | 0.44 | 055 |0.58
means++ 02 7 02 4 19 84 16 81
K- 10 auto 90 0.4185 [0.4814 [0.34 |0.30 |0.34 |0.762 |0.25 | 0.42 | 057 |0.74
means++ 14 57 14 6 94 34 66 06
K- 1 auto 91 0.4871 |0.4865 [0.38 |0.34 |0.38 | 0.716 | 0.27 | 0.49 |0.50 |0.72
means++ 28 09 28 2 19 37 63 81
K- 10 auto 91 0.4184 |0.4814 | 0.34 |0.30 | 0.34 [0.762|0.25 | 042 | 057 |0.74
means++ 15 56 15 6 97 32 68 03
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K- 5 1 auto 200 0.9012 |0.5995 | 0.85 [0.63 |0.85 |0.314 |0.80 | 0.90 |0.09 |0.19
means++ 66 71 66 3 92 41 59 08
K- 5 10 auto 200 0.4116 |0.4804 |0.33 [0.30 |0.33 |0.767 | 0.25 | 0.41 | 058 |0.74
means++ 41 17 41 1 17 65 35 83
K- 5 1 auto 250 0.3467 |0.4845 | 0.37 |0.27 |0.37 |0.808 | 0.41 |0.34 |0.65 |0.58
means++ 75 1 75 3 03 47 53 97
K- 5 10 auto 250 0.4133 | 0.4807 | 0.33 [0.30 | 0.33 |0.766 | 0.25 | 0.41 |0.58 |0.74
means++ 66 28 66 5 81 19
random 5 1 Full 5 0.4195 |0.4815 | 0.34 [0.30 |0.34 |0.761 | 0.26 |0.42 |0.57 |0.73
23 63 23 9 03 44 56 97
random 5 10 elkan 5 0.5089 |0.5126 | 0.60 |0.37 |0.60 |0.700 | 0.71 | 0.50 |0.49 |0.28
95 25 95 8 64 26 74 36
random 10 10 auto 5 0.5811 |0.5186 |0.65 |[0.41 |0.65 |0.647 |0.74 | 057 |0.42 |0.25
85 13 85 2 08 62 38 92
Appendix Q: All results in HMM Model for Experiment 2.
two states method
Tuning Parameters Evaluations
covariance | min_co | n_it | algorit | tol Random | Accur | Precis | Rec |F1- |[ROC |RM | TP | TN |FP | FN
_type var er | hm State acy ion all | sco |auc SE R |R R |R
re |score
spherical 0.0001 | 500 | viterbi | 0.1 defaults | 0.8885 | 0.587 |0.84 | 0.6 | 0.8417 [0.33 | 0.7 | 0.89 | 0.1 | 0.20
0 8 2 18 | 246 38 92 |15 |1 |81
diag 0.0001 | 500 | viterbi | 0.1 defaults | 0.8632 | 0.589 |[0.93 | 0.6 | 0.9295 [ 0.36 |1 085 (0.1|0
0 3 14 | 126 98 9 4
tied 0.0001 | 500 | viterbi | 0.1 defaults | 0.115 |0.427 |0.22 | 0.1 |0.2240 {094 | 0.3 | 0.10 | 0.8 | 0.6
0 4 07 | 561 07 4 81 |9
full 0.0001 | 500 | viterbi | defa | defaults |0.8632 | 0.589 |0.93 | 0.6 |0.9295 | 0.36 |1 085 (0.1|0
0 ults 3 14 126 98 9 4
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spherical 0.0001 viterbi | defa | defaults | 0.8885 | 0.587 |0.84 | 0.6 |0.8417 | 0.33 | 0.7 [0.89 | 0.1 | 0.20

ults 8 2 18 | 246 38 92 |15 |1 |81

diag 0.0001 viterbi | defa | defaults |0.8632 | 0.589 |0.93 | 0.6 |0.9295 | 0.36 |1 0850110
ults 3 14 126 98 9 4

full 0.0001 viterbi | defa | defaults | 0.1368 | 0.410 | 0.07 | 0.1 |0.0704 |0.92 |0 014 108 |1
ults 7 2 874 91 1 6

tied 0.0001 viterbi | defa | defaults |0.885 |0.573 |0.77 | 0.5 | 0.7759 | 0.33 | 0.6 | 0.89 |0.1|0.3
ults 6 96 | 439 91 6 19 |1

spherical 0.0001 | 500 | map 0.1 |defaults |0.8885 |0.587 |0.84 |0.6 |0.8417 | 0.33 | 0.7 | 0.89 | 0.1|0.20

0 8 2 18 | 246 38 92 |15 |1 |81

diag 0.0001 | 500 | map 0.1 | defaults |0.1368 | 0.410 |0.07 | 0.1 |0.0704 | 092 |0 014 108 |1
0 7 2 874 91 1 6

tied 0.0001 | 500 | map 0.1 | defaults |0.115 |0.427 |0.22 | 0.1 |0.2240 {094 | 0.3 |0.10 | 0.8 | 0.6
0 4 07 | 561 07 4 81 |9

full 0.0001 | 500 | map 0.1 |defaults |0.5399 | 0.491 |0.42 |0.3 |0.4229 | 0.67 |0.2 | 054 | 0.4 |0.70

0 3 67 | 737 83 99 |73 |5 |14

spherical 0.0001 map deful | defaults |0.1115|0.412 |0.15|0.1 |0.1582 |0.94 | 0.2 | 0.10 [ 0.8 | 0.79

ts 2 8 03 | 754 26 08 |8 |9 |19

diag 0.0001 map deful | defaults | 0.4597 | 0.508 |0.57 | 0.3 | 0.5714 | 0.73 | 0.6 | 0.45 | 0.5|0.30

ts 3 1 45 | 707 5 9 27 |5 |97
tied 0.0001 map deful | defaults |0.115 |0.427 |0.22 | 0.1 | 0.2240 | 0.94 | 0.3 | 0.10 | 0.8
ts 4 07 | 561 07 4 81 |9

full 0.0001 map deful | defaults |0.1368 | 0.410 |0.07 | 0.1 | 0.0704 | 092 |0 014 108 |1
ts 7 2 874 91 1 6

spherical 0.0001 | 500 | viterbi | deful | defaults |0.1115|0.412 |0.15 0.1 | 0.1582 [ 0.94 | 0.2 | 0.10 | 0.8 | 0.79

0 ts 2 8 03 | 754 26 08 [8 |9 |19

spherical 0.0001 |5 viterbi | 0.1 defaults | 0.8885 | 0.587 |0.84 | 0.6 | 0.8415 | 0.33 | 0.7 |0.89 | 0.1 |0.20

8 2 18 | 857 39 92 |15 |1 |83

spherical 0.0001 |5 viterbi | 0.1 |42 0.5385 | 0.488 | 0.39 | 0.3 | 0.3985 | 0.67 | 0.2 |0.54 | 0.4 |0.75

2 9 64 | 421 93 5 74 |5 |03




Appendix R: All results in Auto-Encoder Model for Experiment 2,
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Threshold Method

Tuning Parameters Evaluations

nb [bat | In | Enco | Hid | Hid | activati | Lear | Thres | Accu | Preci | Rec |F1- |[RO |[RM | TP | TN |FP |FN

_ ch_|pu |ding |den |den |on ning | hold |racy |sion |all |[sco |C SE |R R R R

ep |size |t _dim | _di | _di _rate re |auc

oc _di ml | m2 sco

h m re

10 | 128 |6 18 10 |6 tanh 1.00 |5 0.955 /1 0.632 |06 (0.6 (0.6 0.2 |03 [09 [0.0 |06
E-07 9 7 491 | 403 | 491 | 099 | 228 | 753 | 247 | 772

10 (128 |6 |32 16 |8 tanh 1.00 |5 0.955 1 0.632 |06 (0.6 (0.6 |02 |03 [09 [0.0 |06
E-07 9 7 491 | 403 | 491 | 099 | 228 | 753 | 247 | 772

10 | 128 |6 10 5 2 tanh 1.00 |5 0.955 /1 0.632 |06 (0.6 (0.6 0.2 |03 [09 [0.0 |06
E-07 9 7 491 | 403 | 491 | 099 | 228 | 753 | 247 | 772

10 (128 |6 |5 2 1 tanh 1.00 |5 0.955 1 0.632 |06 (0.6 (0.6 0.2 |03 [09 [0.0 |06
E-07 9 7 491 | 403 | 491 | 099 | 228 | 753 | 247 | 772

10 (128 |6 |5 3 1 tanh 1.00 |5 0.955 1 0.632 |06 (0.6 (0.6 |02 |03 [09 [0.0 |06
E-07 9 7 491 | 403 | 491 | 099 | 228 | 753 | 247 | 772

10 | 128 |6 |50 20 |10 |tanh 1.00 |5 0.955 /1 0.632 |06 (0.6 (0.6 0.2 |03 [09 [0.0 |06
E-07 9 7 491 | 403 | 491 | 099 | 228 | 753 | 247 | 772

10 (128 |6 |5 2 1 sigmoid | 1.00 |5 0.955 | 0.633 |06 |06 |06 |02 [03 |09 |00 |06
E-07 5 3 547 | 431 | 547 |11 |35 | 745|255 |6

10 |128 |6 |5 2 1 hard_si | 1.00 |5 0.955 /1 0.633 |06 (0.6 0.6 0.2 |03 [09 [0.0 |0.6

gmoid | E-07 5 3 547 | 431 | 547 |11 |35 |745 255 |6
10 |128 |6 |5 2 1 expone | 1.00 |5 0.955 1 0.633 |06 (0.6 0.6 |0.2 |03 [09 [0.0 |06
ntial E-07 5 3 547 | 431 | 547 |11 |35 |745 255 |6

10 (128 |6 |5 2 1 linear 1.00 |5 0.970 {0485 |05 |04 |05 |01 |O 1 0 1
E-07 3 1 925 724

10 |128 |6 |5 2 1 tanh 1.00 |3 0.931 /059 | 0.7 (0.6 |07 |02 |04 (09 |00 |05
E-07 5 108 | 275 | 108 | 626 | 767 |45 |55 |233
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10 |128 |6 |5 1 tanh 1.00 0.926 | 0.603 |0.7 |0.6 |0.7 |02 |05 |09 [0.0 |04
E-07 6 5 589 | 405 [ 589 | 71 | 806 | 372 | 628 | 194

10 |128 |6 |5 1 tanh 1.00 0.921 | 0.609 |08 |06 0.8 |02 |06 [09 [0.0 |03
E-07 3 8 134 | 518 | 134 | 806 | 986 | 281 | 719 | 014

10 |128 |6 |5 1 tanh 1.00 0.942 |1 0.603 |0.6 (0.6 0.6 |0.2 |03 [09 [0.0 |06
E-07 6 9 73 281 |73 | 395 [ 864 | 597 | 403 | 136

10 |128 |6 |5 1 linear 1.00 0.970 {0485 |05 |04 |05 |01 |O 1 0 1
E-08 3 1 925 724

10 |128 |6 |5 1 linear 1.00 0.970 | 0485 |05 |04 (05 |01 |O 1 0 1
E-06 3 1 925 724

10 |128 |6 |5 1 tanh 1.00 0.942 /0603 |06 (0.6 0.6 0.2 |03 [09 [0.0 |06
E-08 6 9 73 1281 |73 | 395 [ 864 | 597 | 403 | 136

10 |128 |6 |5 1 tanh 1.00 0.942 1 0603 |06 (0.6 (0.6 0.2 |03 [09 [0.0 |06
E-09 6 9 73 281 |73 | 395 [ 864 | 597 | 403 | 136

10 |128 |6 |5 1 tanh 1.00 0.942 | 0.603 |06 (0.6 0.6 0.2 |03 [09 [0.0 |06
E-06 6 9 73 281 |73 | 395 [ 864 | 597 | 403 | 136

50 [128 |6 |5 1 tanh 1.00 0.942 1 0.603 |06 (0.6 (0.6 0.2 |03 [09 [0.0 |06
E-07 6 9 73 281 |73 | 395 [ 864 | 597 | 403 | 136

10 |25 |6 |5 1 tanh 1.00 0.942 | 0.603 |06 (0.6 0.6 0.2 |03 [09 [0.0 [0.6
E-07 6 9 73 281 |73 | 395 [ 864 | 597 | 403 | 136

Appendix S: All results in K-means Model for Experiment 3.

two clusters method

Tuning Parameters Evaluations

initializa | n_i | max_i | algorit | RandomS | Accur | Precisi | Recal | F1- ROC |[RM | TPR | TNR | FPR | FN

tion nit | ter hm tate acy on I score |auc | SE R

score
K- 5 1 auto 0 0.3 0.4599 | 0.438 | 0.290 | 0.438 | 0.83 | 0.24 | 0.633 | 0.366 | 0.75
means++ 1 7 1 67 29 3 7 71




28

K- 10 auto 0 0.3024 | 0.4651 | 0.446 | 0.293 | 0.446 | 0.83 | 0.24 | 065 |0.35 |0.75
means++ 4 5 4 52 29 71
K- 1 auto 42 0.7317 | 0.5205 | 0.525 | 0.520 | 0.525 | 0.51 | 0.81 | 0.233 | 0.766 | 0.18
means++ 2 8 2 8 71 3 7 29
K- 10 auto 42 0.6976 | 0.5349 | 0.553 | 0.531 |[0.553 | 054 |0.75 |035 |0.65 |0.24
means++ 6 7 6 99 71 29
K- 1 auto 1 0.739 |0.5137 | 0.515 | 0.514 | 0.515 | 0.51 | 0.83 | 0.2 0.8 0.16
means++ 7 7 09 14 86
K- 10 auto 1 0.2927 | 0.4563 | 0.433 | 0.284 | 0.433 | 0.84 | 0.23 | 0.633 | 0.366 | 0.76
means++ 8 4 8 1 43 3 7 57
K- 1 auto 2 0.6927 | 0.5327 | 0.550 | 0.528 | 0.550 | 0.55 | 0.75 | 0.35 |0.65 |0.24
means++ 7 4 7 44 14 86
K- 10 auto 2 0.3 0.4599 | 0.438 | 0.290 | 0.438 | 0.83 | 0.24 | 0.633 | 0.366 | 0.75
means++ 1 7 1 67 29 3 7 71
K- 1 auto 3 0.2951 | 0.4616 | 0.442 | 0.287 | 0.442 | 0.83 | 0.23 | 065 |0.35 |0.76
means++ 1 3 1 96 43 57
K- 10 auto 3 0.2927 | 0.4563 | 0.433 | 0.284 | 0.433 | 0.84 | 0.23 | 0.633 | 0.366 | 0.76
means++ 8 4 8 1 43 3 7 57
K- 1 auto 4 0.1756 | 0.4718 | 0.489 | 0.167 | 0.489 | 0.90 | 0.04 | 0.933 | 0.066 | 0.95
means++ 5 7 5 8 57 3 7 43
K- 10 auto 4 0.7 0.5401 | 0.561 | 0.537 | 0.561 | 0.54 | 0.75 | 0.366 | 0.633 | 0.24
means++ 9 6 9 77 71 7 3 29
K- 1 auto 5 0.2561 | 0.4724 | 0.467 | 0.255 | 0.467 | 0.86 | 0.16 | 0.766 | 0.233 | 0.83
means++ 6 3 6 25 86 7 3 14
K- 10 auto 5 0.3 0.4599 | 0.438 | 0.290 | 0.438 | 0.83 | 0.24 | 0.633 | 0.366 | 0.75
means++ 1 7 1 67 29 3 7 71
K- 1 auto 13 0.7854 | 0.5351 | 0.529 | 0.530 | 0.529 | 0.46 | 0.89 | 0.166 | 0.833 | 0.10
means++ 8 33 14 7 3 86
K- 10 auto 13 0.3024 | 0.4651 | 0.446 | 0.293 | 0.446 | 0.83 | 0.24 | 065 |0.35 |0.75
means++ 4 5 4 52 29 71




29

K- 5 1 auto 14 0.7171 | 0.5362 | 0.551 | 0.536 | 0.551 | 0.53 | 0.78 | 0.316 | 0.683 | 0.21
means++ 2 3 2 19 57 7 3 43
K- 5 10 auto 14 0.7073 | 0.5437 | 0.566 | 0.542 | 0.566 | 0.54 | 0.76 | 0.366 | 0.633 | 0.23
means++ 2 7 2 1 57 7 3 43
K- 5 1 auto 90 0.7073 | 0.5437 | 0.566 | 0.542 | 0.566 | 0.54 | 0.76 | 0.366 | 0.633 | 0.23
means++ 2 7 2 1 57 7 3 43
K- 5 10 auto 90 0.7024 | 0.5289 | 0.542 | 0.526 | 0.542 | 0.54 | 0.76 | 0.316 | 0.683 | 0.23
means++ 6 3 6 55 86 7 3 14
K- 5 1 auto 91 0.7146 | 0.5392 | 0.556 | 0.539 | 0.556 | 0.53 | 0.78 | 0.333 | 0.666 | 0.22
means++ 3 67 15 67 42 33 67
K- 5 10 auto 91 0.3 0.4599 | 0.438 | 0.290 | 0.438 | 0.83 | 0.24 | 0.633 | 0.366 | 0.75
means++ 1 7 1 67 29 3 I 71
K- 5 1 auto 92 0.6951 | 0.4978 | 0.496 | 0.492 | 0.496 | 0.55 | 0.77 | 0.216 | 0.783 | 0.22
means++ 9 7 9 22 71 7 3 29
K- 5 10 auto 92 0.7 0.5401 | 0.561 | 0.537 | 0.561 | 0.54 | 0.75 | 0.366 | 0.633 | 0.24
means++ 9 6 9 77 71 7 3 29
K- 5 1 auto 200 0.6902 | 0.5275 | 0.542 | 0.522 | 0.542 | 0.55 | 0.75 | 0.333 | 0.666 | 0.24
means++ 4 5 4 66 14 3 7 86
K- 5 10 auto 200 0.3 0.4599 | 0.438 | 0.290 | 0.438 | 0.83 | 0.24 | 0.633 | 0.366 | 0.75
means++ 1 7 1 67 29 3 7 71
K- 5 1 auto 250 0.2634 | 0.4877 | 0.485 | 0.262 | 0.485 | 0.85 | 0.17 | 0.8 0.2 0.82
means++ 7 8 7 82 14 86
K- 5 10 auto 250 0.7073 | 0.5437 | 0.566 | 0.542 | 0.566 | 0.54 | 0.76 | 0.366 | 0.633 | 0.23
means++ 2 7 2 1 57 7 3 43
random 5 1 Full 5 0.7073 | 0.5437 | 0.566 | 0.542 | 0.566 | 0.54 | 0.76 | 0.366 | 0.633 | 0.23
2 7 2 1 57 7 3 43
random 5 10 elkan 5 0.7024 | 0.5289 | 0.542 | 0.526 | 0.542 | 0.54 | 0.76 | 0.316 | 0.683 | 0.23
6 3 6 55 86 7 3 14
random 10 10 auto 5 0.7146 | 0.5392 | 0.556 | 0.539 | 0.556 | 0.53 | 0.78 | 0.333 | 0.666 | 0.22
3 67 15 67 42 33 67




Appendix T: All results in HMM Model for Experiment 3.
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two states method
Tuning Parameters Evaluations
covariance | min_co | n_ite | algorit | tol Random | Accur | Precis | Rec |F1- |[ROC |RM |TP | TN |FP |FN
_type var r hm State acy ion all | sco |auc SE |R R R |R
re |score
spherical 0.0001 | 5000 | viterbi | 0.1 | defaults |0.7488 | 0.530 | 0.53 | 0.5 | 0.5352 | 0.50 [ 0.8 | 0.23 | 0.7 | 0.16
7 5 32 | 381 12 37 133 |7 |29
diag 0.0001 | 5000 | viterbi | 0.1 | defaults |0.2951 | 0.483 |0.47 [ 0.2 | 0.4766 | 0.83 | 0.2 |0.73 | 0.2 | 0.78
4 7 91 | 667 96 2 33 |7
tied 0.0001 | 5000 | viterbi | 0.1 | defaults |0.7049 | 0.53 0.54 | 0.5 | 0.5440 | 054 | 0.7 | 0.31 | 0.6 |0.22
4 28 | 476 33 71 |67 |8 |86
full 0.0001 | defa |viterbi | 0.1 |defaults |0.3756 | 0.475 |0.45 0.3 |0.4547 | 0.79 | 0.3 | 0.56 | 0.4 | 0.65
ults 4 5 47 619 02 43 |67 |3 |71
spherical 0.0001 | defa | viterbi |defa | defaults |0.539 |0.504 |0.50|0.4 |0.5090 |0.67 |05 |0.46 |0.5|0.44
ults ults 6 9 5 476 9 51 |67 |3 |86
diag 0.0001 | defa | viterbi | defa | defaults |0.6512 | 0.499 |0.49 | 0.4 |0.4988 | 0.59 | 0.7 | 0.28 | 0.7 | 0.28
ults ults 3 9 85 | 095 06 14 |33 |2 |57
tied 0.0001 | defa | viterbi | defa | defaults |0.7049 | 0.534 |0.55|0.5 |0.5509 |0.54 |0.7 | 0.33 |0.6 |0.23
ults ults 3 1 32 | 524 33 69 |33 |7 |14
full 0.0001 | defa | viterbi | defa | defaults |0.622 |0.523 |0.54 | 0.4 [ 05438 |0.61 0.6 |0.43 |0.5|0.34
ults ults 8 4 99 | 095 49 54 |33 |7 |57
spherical 0.0001 | 5000 | map 0.1 |defaults |0.7561 | 0.535 |0.54 | 0.5 {0.5395 | 0.49 | 0.8 |0.23 | 0.7 | 0.15
7 37 | 238 39 46 |33 |7 |43
diag 0.0001 | 5000 | map 0.1 | defaults |0.7122 | 0.520 | 0.52 | 0.5 | 0.5276 | 0.53 | 0.7 | 0.26 | 0.7 | 0.21
1 8 19 119 65 89 |67 |3 |14
tied 0.0001 | 5000 | map 0.1 | defaults |0.7049 | 0.53 0.54 | 0.5 [ 0.5440 | 054 | 0.7 | 0.31 | 0.6 | 0.22
4 28 | 476 33 71 |67 |8 |86
full 0.0001 | defa | map 0.1 |defaults |0.6244 | 0.524 |0.54 | 0.5 [ 05452 |0.61 |0.6 |0.43 |0.5|0.34
ults 6 5 01 |381 29 57 133 |7 |29
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spherical 0.0001 | defa | map defa | defaults |0.539 |0.504 |0.50|0.4 | 05090 |0.67 |05 [0.46 |05 |0.44
ults ults 6 9 5 476 9 51 |67 |3 |86
diag 0.0001 |defa | map defa | defaults |0.6415 | 0.495 |0.49 | 0.4 |0.4930 | 0.59 | 0.7 |0.28 | 0.7 | 0.29
ults ults 9 3 79 952 88 |03 |33 |2 |71
tied 0.0001 |defa | map defa | defaults |0.2951 | 0.465 |0.44 | 0.2 |0.4490 | 0.83 | 0.2 | 0.66 | 0.3 | 0.76
ults ults 7 9 88 | 476 96 |31 |67 |3 |86
full 0.0001 | defa | map defa | defaults |0.378 |0.476 |0.45|0.3 |0.4561 | 0.78 | 0.3 | 0.56 | 0.4 | 0.65
ults ults 2 6 49 |905 86 |46 |67 |3 |43
spherical 0.0001 | 5000 | viterbi | defa | defaults |0.7634 | 0.535 |0.53 | 0.5 |0.5369 |0.48 [ 0.8 |0.21 | 0.7 | 0.14
ults 5 7 36 | 048 64 |57 |67 |8 |29
spherical 0.0001 |5 viterbi | 0.1 | defaults |0.5244 | 0.507 |0.51 | 0.4 |0.5142 |0.68 |05 |05 |0.5|0.47
2 4 45 | 857 96 29 14
spherical 0.0001 |5 viterbi | 0.1 |42 0.4756 | 0.492 | 0.48 | 0.4 |0.4857 [0.72 |04 |05 |05 |0.52
8 6 12 1143 41 71 86
Appendix U: All results in Auto-Encoder Model for Experiment 3.
Threshold Method
Tuning Parameters Evaluations
nb_ | batc |inpu | encodi | hidde | hidde | activa | learni | Thre | Acc |Pre |Re |F1 /R |R |TP | T |FP |FN
epoc |h si |t di |ng di |n_di n_di | tion ng_ra | shol | urac | cisio | cal |- O | M |R [N |R |R
h ze m m ml m2 te d y n I sco| C | SE R
re |au
C
sco
re
10 128 |24 18 10 6 tanh 1.00E- | 4 0.18 {049 |04 /01]04/09|00({09|0.0]0.9
07 78 27 |96 |81 |96 |01 |6 |33 |66 |4
7 |18 |7 |2 3 |7
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50 128 | 24 18 10 6 tanh 1.00E- 0.18 {054 |05]01(05(09|00]09/|00]0.9
07 54 75 16 |76 |16 |02 |48 |83 |16 |51

7 6 |6 |3 |7 |4

10 128 | 24 32 16 8 tanh 1.00E- 019 {049 |04 101/04|08 0009|0009
07 27 9 99 |87 |99 |98 |65 |33 |66 |34

5 |4 |5 |5 |7 |3 |7 |3

10 128 | 24 10 5 2 tanh 1.00E- 019 {049 |04 101/04|08 0009|0009
07 02 6 98 |84 |98 |99 |62 |33 |66 |37

1 |6 |1 |9 |9 [3 |7 |1

10 128 | 24 5 2 1 tanh 1.00E- 0.17 {050 |05|01(05(09|00|09|00 /09
07 07 18 |00 |60 (00 [10 |34 |66 |33 |65

5 |2 |5 |6 [3 |7 |38 |7

10 128 | 24 5 3 1 tanh 1.00E- 0.2 (049 |04/01/04/08|00]09/|00]0.9
07 46 96 |96 |96 |94 |77 |16 |83 |22

9 [3 |9 |4 1 |7 |3 1|9

10 128 | 24 50 20 10 tanh 1.00E- 0.18 {050 |05(01(05(09|00/]09/|00]0.9
07 78 8 |03 |81 |03 |01 (57 |5 |5 |42

6 |1 |6 |2 1 9

10 12 24 50 20 10 tanh 1.00E- 0.17 {057 |05(01 (0509|001 |O |09
07 07 5 14 |58 |14 |10 |28 71

3 |2 |3 |6 |6 4

10 12 24 5 2 1 tanh 1.00E- 0.19 {049 |04 /010408 |00]09/|00]0.9
07 27 9 99 |87 |99 |98 |65 |33 |66 |34

5 |4 |5 |5 |7 |3 |7 |3

10 256 | 24 5 2 1 tanh 1.00E- 019 {049 |04 101/04|08|0.0(09|00/ 09
07 27 9 99 |87 |99 |98 |65 |33 |66 |34

5 |4 |5 |5 |7 |3 |7 |3

10 128 | 24 5 2 1 sigmo | 1.00E- 0.18 {052 |05|01(05({09|0.0(09|00 /09
id 07 78 69 10 {80 |10 |01 |54 |66 |33 |45

5 |4 |5 |2 |3 |7 |38 |7
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10 128 | 24 hard_s | 1.00E- 0.19 {052 |05]01/05(08|00]09/|00]0.9
igmoi | 07 02 93 11 |83 |11 |99 |57 |66 |33 |42

d 9 12 |19 |9 1 |7 |13 |9

10 128 | 24 expon | 1.00E- 019 {052 |[05/01(05|08|0.0(09|00/ 09
ential | 07 02 93 11 |83 |11 |99 |57 |66 |33 |42

9 12 |19 |9 1 |7 |3 |9

10 128 | 24 linear | 1.00E- 020 {048 |04 102/04|08|00(09|01 09
07 49 89 92 |02 |92 |91 |85 14

9 |1 |9 |7 7 3

10 128 | 24 tanh 1.00E- 021 {049 |04 102/04|08|00(09|01 09
07 46 8 98 |12 |98 |86 |97 02

6 |8 |6 |2 1 9

10 128 | 24 tanh 1.00E- 0.30 {050 |05(02(05(08|02]0.7/|02]0.7

07 24 12 01 |98 |01 |35 |2 |83 |16
7|7 |7 |2 3 |7

10 128 | 24 tanh 1.00E- 061 {048 |04 040406 |06|02]|0.7]0.3
07 22 63 76 |61 |76 |22 |68 |83 |16 |31

3 7 6 |3 |7 |4
10 128 | 24 tanh 1.00E- 0.17 {053 |05(01(05(09|00]09/|0010.9
07 07 25 |07 |59 |07 |10 (31 |83 |16 |68

4 12 |4 |6 |4 |3 |7 |6
10 128 | 24 linear | 1.00E- 02 |052|05/01/05(08|00]09/|00]0.9
06 1 10 |95 |10 |94 |71 |5 |5 |28

7 |1 |7 |4 |4 6
10 128 | 24 tanh 1.00E- 02 |05 (05/01(05|{08|0.0(09|00/ 09
08 7 03 |95 |03 |94 (74 |33 |66 |25

8 |7 |8 |4 |3 |3 |7 |7
10 128 | 24 tanh 1.00E- 0.19 {047 |04 101/04|08|00(09|01 09
09 27 45 |85 |88 |85 |98 |71 28

7 |6 |7 |5 |4 6




34

10 128 | 24 5 2 1 tanh 1.00E- | 4 02 |050|05/01(05|/08|00(|09/|00/ 09

06 7 03 |95 |03 |94 |74 |33 |66 |25

8 |7 |8 |4 |3 |3 |7 |7
Appendix V: All results in K-means Model for Experiment 4.
two clusters method
Tuning Parameters Evaluations
initializat | n_in | max_it | algorit | RandomS | Accura | Precisi | Reca | F1I- |RO |RMS | TPR | TNR | FPR | FNR
ion it er hm tate cy on I scor | C E
e auc
scor
e

K- 5 1 auto 0 0.5114 |0.5099 | 0.58 |[0.37 |0.58 |0.699 | 0.66 |0.50 |0.49 |0.33
means++ 67 11 67 67 67 33 33
K- 5 10 auto 0 0.5016 |0.5093 | 0.58 |[0.36 | 0.58 |0.706 | 0.66 |0.49 |0.50 |0.33
means++ 17 6 17 67 66 34 33
K- 5 1 auto 42 0.4137 | 0.5107 | 0.59 |[0.32 |0.59 |0.765|0.77 | 0.40 |0.59 |0.22
means++ 02 18 02 7 78 27 73 22
K- 5 10 auto 42 0.43 0.5052 | 054 [0.32 | 054 |0.755|0.66 |0.42 |0.57 |0.33
means++ 47 72 47 67 28 72 33
K- 5 1 auto 1 0.3322 |0.4855 | 0.38 |0.26 |0.38 |0.817 | 0.44 |0.32 |0.67 | 0.55
means++ 67 32 67 2 44 89 11 56
K- 5 10 auto 1 0.4984 |0.4907 | 041 [0.34 | 041 |0.708 | 0.33 |0.50 |0.49 |0.66
means++ 83 91 83 3 33 34 66 67
K- 5 1 auto 2 0.5505 |0.5122 | 0.60 [0.39 |0.60 |0.670 | 0.66 |0.54 |0.45 |0.33
means++ 68 13 68 5 67 7 3 33
K- 5 10 auto 2 0.5016 |0.5093 | 0.58 |[0.36 | 0.58 |0.706 | 0.66 |0.49 |0.50 |0.33
means++ 17 6 17 67 66 34 33
K- 5 1 auto 3 0.4495 |0.4878 |0.39 [0.32 |0.39 |0.741/0.33 |0.45 | 0.54 | 0.66
means++ 32 47 32 9 33 3 7 67




35

K- 10 auto 3 0.4984 |0.4907 |[0.41 |0.34 |0.41 |[0.708 | 0.33 | 0.50 |[0.49 | 0.66
means++ 83 91 83 3 33 34 66 67
K- 1 auto 4 0.4886 |0.4901 | 0.41 (034 /041 [0.715|0.33 | 0.49 | 050 |0.66
means++ 33 43 33 1 33 33 67 67
K- 10 auto 4 0.4984 |0.4907 |0.41 |0.34 |0.41 [0.708 | 0.33 | 0.50 | 0.49 | 0.66
means++ 83 91 83 3 33 34 66 67
K- 1 auto 5 0.6352 |[0.5118 [0.59 |0.42 | 059 |0.604|055 |0.63 |0.36 |0.44
means++ 66 72 66 56 76 24 44
K- 10 auto 5 0.5016 |0.5093 | 058 |0.36 |0.58 [0.706 | 0.66 | 0.49 | 0.50 |0.33
means++ 17 6 17 67 66 34 33
K- 1 auto 13 0.6189 |0.4976 | 0.48 |0.40 |0.48 |[0.617|0.33 | 0.62 | 0.37 | 0.66
means++ 04 52 04 3 33 75 25 67
K- 10 auto 13 0.5016 |[0.5093 [0.58 |0.36 |0.58 |[0.706 | 0.66 | 0.49 |0.50 |0.33
means++ 17 6 17 67 66 34 33
K- 1 auto 14 0.4267 |0.4925 | 0.43 |0.31 |0.43 |0.757 (044 | 042 |057 |055
means++ 53 71 53 2 44 62 38 56
K- 10 auto 14 0.4984 |0.4907 |[0.41 |0.34 |0.41 |[0.708 | 0.33 | 0.50 |[0.49 | 0.66
means++ 83 91 83 3 33 34 66 67
K- 1 auto 90 0.4365 |0.4931 | 0.44 |0.32 |0.44 [0.750|0.44 | 043 | 056 |0.55
means++ 03 23 03 7 44 62 38 56
K- 10 auto 90 0.4984 |0.4907 |0.41 |0.34 |0.41 [0.708 | 0.33 | 0.50 | 0.49 | 0.66
means++ 83 91 83 3 33 34 66 67
K- 1 auto 91 0.43 0.5052 | 0.54 032 [054 |0.755|0.66 |0.42 |0.57 |0.33
means++ 47 72 47 67 28 72 33
K- 10 auto 91 0.43 0.5052 (054 |0.32 | 054 |0.755|0.66 |0.42 |0.57 |0.33
means++ 47 72 47 67 28 72 33
K- 1 auto 92 0.5147 |0.4978 | 0.48 |0.36 |0.48 [ 0.696|0.44 | 051 |0.48 |0.55
means++ 06 25 06 7 44 68 32 56
K- 10 auto 92 0.57 0.4948 | 0.45 | 0.38 [ 0.45 |0.655|0.33 | 0.57 |0.42 | 0.66
means++ 53 31 53 7 33 72 28 67
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K- 5 1 auto 200 0.645 |0.4924 |0.44 |[0.40 | 044 | 0595 (0.22 |0.65 |0.34 |0.77
means++ 89 9 22 77 23 78
K- 5 10 auto 200 0.5016 |0.5093 | 0.58 |[0.36 | 0.58 |0.706 | 0.66 |0.49 |0.50 |0.33
means++ 17 6 17 67 66 34 33
K- 5 1 auto 250 0.5049 |0.4972 | 0.47 |0.35 |0.47 |0.703 | 0.44 | 0.50 |0.49 | 0.55
means++ 56 76 56 6 44 67 33 56
K- 5 10 auto 250 0.5016 |0.5093 | 0.58 |[0.36 | 0.58 |0.706 | 0.66 |0.49 |0.50 |0.33
means++ 17 6 17 67 66 34 33
random 5 1 Full 5 0.5505 |0.5122 | 0.60 |[0.39 |0.60 |0.670 |0.66 |0.54 |0.45 |0.33
68 13 68 5 67 7 3 33
random 5 10 elkan 5 0.5016 |0.5093 | 0.58 |0.36 | 0.58 |0.706 | 0.66 |0.49 |0.50 |0.33
17 6 17 67 66 34 33
random 10 10 auto 5 0.4495 |0.4878 | 0.39 [0.32 |0.39 |0.741 | 0.33 | 0.45 |0.54 | 0.66
32 47 32 9 33 3 7 67
Appendix W: All results in HMM Model for Experiment 4.
two states method
Tuning Parameters Evaluations
covariance | min_co | n_ite | algorit | tol Random | Accur | Precis | Rec | F1- |[ROC |RM |TP | TN |FP |FN
_type var r hm State acy ion all | sco |auc SE |R |R R |R
re |score
spherical 0.0001 | 5000 | viterbi | 0.1 | defaults |0.0065 | 0.003 |0.11 | 0.0 | 0.1111 | 099 [0.2 | O 1 1077
3 1 06 | 111 67 22 78
diag 0.0001 | 5000 | viterbi | 0.1 | defaults |0.9935|0.996 |0.88 |0.9 [0.8888 | 0.08 [0.7 |1 0 |0.22
7 9 36 | 889 07 78 22
tied 0.0001 | 5000 | viterbi | 0.1 | defaults |0.57 0.494 |0.45|0.3 |0.4552 | 0.65 | 0.3 |0.57 | 0.4 |0.66
8 5 83 | 573 57 33 |72 |2 |67
full 0.0001 | 5000 | viterbi | 0.1 | defaults |0.9935|0.996 |0.88 | 0.9 [0.8888 | 0.08 [0.7 |1 0 |0.22
7 9 36 | 889 07 78 22
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spherical 0.0001 | defa | viterbi | defa | defaults |0.0098 | 0.065 |0.11|0.0 |0.1127 {099 |0.2 |0.00 |1 |0.77
ults ults 8 3 1 89 51 22 |34 78

diag 0.0001 | defa | viterbi | defa | defaults |0.9902 | 0.934 |0.88 |0.9 |0.8872 | 0.09 0.7 |0.99 |0 |0.22
ults ults 2 7 09 |11 89 78 |66 22

tied 0.0001 |defa | viterbi | defa | defaults | 0.57 0.494 |0.45|0.3 |0.4552 | 0.65 |03 |0.57 | 0.4 |0.66
ults ults 8 5 83 |573 57 33 |72 |2 |67

full 0.0001 |defa | viterbi | defa | defaults |0.9935 |0.996 |0.88 | 0.9 |0.8888 | 0.08 [0.7 |1 0 ]0.22
ults ults 7 9 36 |889 07 78 22

spherical 0.0001 | 5000 | map 0.1 | defaults |0.0065 |0.003 |0.11 | 0.0 |0.1111 | 0.99 |02 |0 1 1077
3 1 06 |111 67 22 78

diag 0.0001 | 5000 | map 0.1 | defaults |0.9935|0.996 |0.88 | 0.9 |0.8888 |0.08 |0.7 |1 0 |0.22
7 9 36 889 07 78 22

tied 0.0001 | 5000 | map 0.1 | defaults |0.557 |0.494 |0.44 |0.3 |0.4485 |0.66 | 0.3 | 0.56 | 0.4 | 0.66
9 77 1459 56 33 |38 |4 |67

full 0.0001 | 5000 | map 0.1 | defaults |0.9935|0.996 |0.88 | 0.9 |0.8888 |0.08 |0.7 |1 0 |0.22
7 9 36 889 07 78 22

spherical 0.0001 | defa | map defa | defaults |0.9902 | 0.934 |0.88 | 0.9 {0.8872 |0.09 |0.7 |099 |0 |0.22
ults ults 2 7 09 |11 89 78 |66 22

diag 0.0001 |defa | map defa | defaults |0.0098 | 0.065 |0.11 | 0.0 |0.1127 | 0.99 | 0.2 |0.00 |1 |0.77
ults ults 8 3 1 89 51 22 | 34 78

tied 0.0001 |defa | map defa | defaults |0.443 |0.506 |0.55 |0.3 |0.5514 |0.74 | 0.6 |0.43 | 0.5 |0.33
ults ults 1 34 | 541 63 67 |62 |6 |33

full 0.0001 | defa | map defa | defaults | 0.0065 |0.003 |0.11 | 0.0 {0.1111 {099 | 0.2 | O 1 |0.77
ults ults 3 1 06 |111 67 22 78

spherical 0.0001 | 5000 | viterbi | defa | defaults | 0.0065 | 0.003 |0.11 | 0.0 |0.1111 | 0.99 |02 |0 1 1077
ults 3 1 06 | 111 67 22 78

spherical 0.0001 |5 viterbi | 0.1 defaults | 0.9349 | 0.636 |0.85 | 0.6 |0.8586 | 0.25 [0.7 | 0.93 [ 0.0 | 0.22
5 9 89 |875 52 78 |96 |6 |22

spherical 0.0001 |5 viterbi | 0.1 |42 0.0651 | 0.363 | 0.14 | 0.0 | 0.1413 [0.96 | 0.2 |0.06 | 0.9 | 0.77
5 1 63 | 125 69 22 |04 |4 |78
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spherical 0.0001 | 5000 | map 0.1 1400 0.0065 | 0.003 |0.11 | 0.0 | 0.1111 [ 0.99 |0.2 1 1077
3 1 06 | 111 67 22 78
Appendix X: All results in Auto-Encoder Model for Experiment 4.
Threshold Method
Tuning Parameters Evaluations
nb_ | batc | inpu | encod | hidde | hidde |activ | learni | Thr | Acc |Pre |Re |F1-|RO|/R |TP |TN |FP |FN
epo | h.si [tdi |ing di |[ndi |n.di |ation |[ng ra [esho |ura |cisi |call |sco |C MSIR 'R |[R |R
ch |ze m m ml m2 te Id cy |on re |auc |E
sco
re
10 [128 |2 18 10 6 tanh | 1.00E |4 099 {09308 (09 |08 |00 |07 |09 |00 |02
-07 02 |42 |872|093 872|989 | 778 | 966 | 034 | 222
50 |128 |2 18 10 6 tanh | 1.00E |4 098 1099 |07 |08 |07 |01 |04 |1 0 0.5
-07 37 |17 | 222|035 | 222|276 | 444 556
10 [128 |2 32 16 8 tanh | 1.00E |4 099 1099 |08 (09 |08 |00 |07 |1 0 0.2
-07 35 |67 |889 358 889|807 |778 222
10 [128 |2 10 5 2 tanh | 1.00E |4 099 {099 |08 [09 |08 |00 |07 |1 0 0.2
-07 35 |67 |889|358) 889|807 778 222
10 (128 |2 5 2 1 tanh | 1.00E |4 098 {08808 (08 |08 |01 |07 |09 |00 |02
-07 7 55 | 855|855 |855|141 | 778|933 | 067 | 222
10 [128 |2 5 3 1 tanh | 1.00E |4 099 {09308 (09 |08 |00 |07 |09 |00 |02
-07 02 |42 |872|093 872|989 | 778 | 966 | 034 | 222
10 [128 |2 50 20 10 tanh | 1.00E |4 098 {099 |0.7 |08 |0.7 |01 |05 |1 0 0.4
-07 7 34 | 778|538 | 778 | 141 | 556 444
10 |12 2 50 20 10 tanh | 1.00E |4 098 1099 |07 |08 |07 |01 |04 |1 0 0.5
-07 37 |17 | 222|035 222|276 | 444 556
10 |12 2 5 2 1 tanh | 1.00E |4 099 {09308 (09 |08 |00 |07 |09 |00 |02
-07 023 | 416 | 872|092 | 872|988 | 777 | 966 | 033 | 222
1 5 1 5 8 4 6 2
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10 | 256 tanh | 1.00E 099 |093/08 (09 |08 |00 |07 |09 |00 |0.2
-07 02 |42 872|093 872|989 | 778 | 966 | 034 | 222
10 | 128 sigmo | 1.00E 099 109308 |09 08 |00 |07 |09 |00 0.2
id -07 02 42 872|093 872|989 | 778 | 966 | 034 | 222
10 | 128 hard_ | 1.00E 099 109308 |09 08 |00 |07 |09 |00 0.2
sigmo | -07 02 |42 |872|093 872|989 | 778 | 966 | 034 | 222

id
10 | 128 expon | 1.00E 099109308 |09 08 |00 |07 |09 |00 0.2
ential | -07 02 |42 [872|093 872|989 | 778 | 966 | 034 | 222
10 |128 linear | 1.00E 097 {086 |06 (0.7 |06 |01 |03 |09 |00 |06
-07 72 |51 |65 [249 65 |51 | 333|966 | 034 667
10 |128 tanh | 1.00E 098 {088 |08 (08 |08 |01 |07 |09 |00 |0.2
-07 7 55 | 855 (855|855 |141 | 778 | 933 | 067 | 222
10 | 128 tanh | 1.00E 097107408 |07 |08 |01 |07 |09 |00 0.2
-07 07 |66 | 771|967 | 771|712 | 778 | 765 | 235 | 222
10 |128 tanh | 1.00E 0.86 {057 |08 (05 |08 |03 |07 |08 |01 |0.2
-07 32 |06 |218|874 218|699 | 778 | 658 | 342 | 222
10 | 128 tanh | 1.00E 099 1093 /08 |09 08 |00 |07 |09 |00 0.2
-07 02 |42 [ 872|093 872|989 | 778 | 966 | 034 | 222
10 |128 linear | 1.00E 097 {086 |06 (0.7 |06 |01 |03 |09 |00 |06
-06 72 |51 |65 [249 |65 |51 | 333|966 034|667
10 |128 tanh | 1.00E 099 109308 (09 |08 |00 |07 |09 |00 |0.2
-08 02 |42 872|093 872|989 | 778 | 966 | 034 | 222
10 | 128 tanh | 1.00E 099 1093|0809 08 |00 |07 |09 |00 0.2
-09 02 |42 [872|093 872|989 | 778 | 966 | 034 | 222
10 |128 tanh | 1.00E 099 1093 /08 (09 |08 |00 |07 |09 |00 |0.2
-06 02 42 [872]093 872|989 | 778 | 966 | 034 | 222

Appendix Y: All results in K-means Model for Experiment 5.

| creditcard dataset
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two clusters method

Tuning Parameters Evaluations

initializat | n_in | max_i | algorit | RandomS | Accur | Precisi | Recal | F1- ROC |[RM | TP |TNR |FPR |FN

ion it ter hm tate acy on I score | auc SE R R
score

K- 5 1 auto 0 0.42 0.4517 | 0.366 | 0.333 | 0.366 [ 0.76 | 0.3 |0.433 | 0.566 | 0.7

means++ 7 6 7 16 3 7

K- 5 10 auto 0 0.57 0.5303 [ 0.583 | 0.460 | 0.583 |0.65 | 0.6 |0.566 |0.433 |0.4

means++ 3 8 3 57 7 3

K- 5 1 auto 42 0.43 0.5189 | 055 |0.377 |055 [0.75 |0.7 |04 0.6 0.3

means++ 7 5

K- 5 10 auto 42 0.54 0.524 | 0.566 |0.441 |0.566 | 0.67 |0.6 |0.533 |0.466 |0.4

means++ 7 5 7 82 3 7

K- 5 1 auto 1 0.45 0.5061 |0.516 |0.382 | 0.516 |0.74 | 0.6 | 0.433 [ 0.566 |0.4

means++ 7 8 7 16 3 7

K- 5 10 auto 1 0.6 0.5684 | 0.688 | 0.504 | 0.688 |0.63 | 0.8 |0.577 |0.422 | 0.2

means++ 9 9 25 8 2

K- 5 1 auto 2 0.38 0.4913 [ 0.477 |0.335 | 0.477 |0.78 | 0.6 |0.355 [0.644 |0.4

means++ 2 78 05 78 74 56 44

K- 5 10 auto 2 0.41 0.4495 |0.361 |0.327 | 0.361 | 0.76 | 0.3 |0.422 | 0.577 | 0.7

means++ 1 6 1 81 2 8

K- 5 1 auto 3 0.36 0.4696 | 0.422 |0.313 | 0.422 | 0.8 0.5 | 0.344 | 0.655 | 0.5

means++ 2 6 2 4 6

K- 5 10 auto 3 0.55 0.542 |0.616 |0.459 | 0.616 | 0.67 | 0.7 | 0.533 |[0.466 |0.3

means++ 7 1 7 08 3 7

K- 5 1 auto 4 0.61 0.5064 | 0.516 | 0.457 | 0.516 | 0.62 | 0.4 |0.633 |0.366 | 0.6

means++ 7 7 7 45 3 7

K- 5 10 auto 4 0.58 0.5325 | 0.588 | 0.467 |0.588 | 0.64 | 0.6 |0.577 |0.422 (0.4

means++ 9 3 9 81 8 2
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K- 1 auto 5 0.56 0.4959 |0.488 | 0.428 | 0.488 | 0.66 | 0.4 |0.577 |0.422 | 0.6
means++ 9 3 9 33 8 2

K- 10 auto 5 0.46 0.476 |0.433 | 0.368 | 0.433 | 0.73 | 0.4 | 0.466 | 0.533 | 0.6
means++ 3 9 3 48 7 3

K- 1 auto 13 0.54 0.4919 | 0.477 | 0.416 | 0.477 | 0.67 | 0.4 | 0555 |0.444 | 0.6
means++ 8 5 8 82 6 4

K- 10 auto 13 0.45 0.4739 | 0.427 | 0.362 | 0.427 | 0.74 | 0.4 |0.455 |0.544 | 0.6
means++ 8 8 8 16 6 4

K- 1 auto 14 0.43 0.4697 | 0.416 | 0.350 | 0.416 | 0.75 | 0.4 |0.433 | 0.566 | 0.6
means++ 7 4 7 5 3 7

K- 10 auto 14 0.54 0.524 |0.566 | 0.441 | 0.566 | 0.67 | 0.6 | 0.533 | 0.466 | 0.4
means++ 7 5 7 82 3 7

K- 1 auto 90 0.53 0.5542 | 0.65 |0.455 |[0.65 |0.68 |0.8 |05 0.5 0.2
means++ 5 56

K- 10 auto 90 0.57 0.5462 | 0.627 | 0.472 | 0.627 | 0.65 | 0.7 | 0555 |0.444 | 0.3
means++ 8 5 8 57 6 4

K- 1 auto 91 0.47 0.5434 | 0.616 | 0.413 | 0.616 | 0.72 | 0.8 | 0.433 | 0.566 | 0.2
means++ 7 7 7 8 3 7

K- 10 auto 91 0.6 0.5528 | 0.644 | 0.492 | 0.644 | 0.63 | 0.7 | 0588 |0.411 | 0.3
means++ 4 6 4 25 9 1

K- 1 auto 92 0.63 0.511 |0.527 | 0.469 | 0.527 | 0.60 | 0.4 |0.655 |0.344 | 0.6
means++ 8 5 8 83 6 4

K- 10 auto 92 0.59 0.5505 | 0.638 | 0.485 | 0.638 | 0.64 | 0.7 |0.577 |0.422 | 0.3
means++ 9 9 9 03 8 2

K- 1 auto 200 0.44 0.5208 | 0.555 | 0.384 | 0.555 | 0.74 | 0.7 |0.411 |0.588 | 0.3
means++ 6 6 6 83 1 9

K- 10 auto 200 0.56 0.5441 | 0.622 | 0.465 | 0.622 | 0.66 | 0.7 | 0.544 | 0.455 | 0.3
means++ 2 8 2 33 4 6

K- 1 auto 250 0.45 0.5227 | 0.561 |0.391 |0.561 |0.74 |0.7 | 0.422 | 0577 | 0.3
means++ 1 5 1 16 2 8




42

K- 5 10 auto 250 0.44 0.4878 | 0.466 | 0.366 | 0.466 |0.74 | 0.5 |0.433 |0.566 | 0.5
means++ 7 8 7 83 3 7
random 5 1 Full 5 0.56 0.4959 |0.488 |0.428 | 0.488 | 0.66 | 0.4 |0.577 [0.422 | 0.6
9 3 9 33 8 2
random 5 10 elkan 5 0.46 0.476 |0.433 |0.368 | 0.433 |0.73 | 0.4 |0.466 |0.533 | 0.6
3 9 3 48 7 3
random 10 10 auto 5 0.54 0.4919 | 0.477 |0.416 | 0.477 |0.67 | 0.4 |0.555 [0.444 | 0.6
8 5 8 82 6 4
Appendix Z: All results in HMM Model for Experiment 5.
two states method
Tuning Parameters Evaluations
covariance | min_c | n_it | algori | tol Random | Accur | Precis | Rec | F1- | ROC RM | TP | TNR | FP | FN
_type ovar er thm State acy ion all | scor | auc SE R R |R
e score
spherical 0.0001 | 5000 | viterbi | 0.1 | defaults | 0.59 0.534 | 0.59 | 0.47 | 0.59444 064 |0.6 | 058 |04 |04
7 4 4 44 03 89 1
diag 0.0001 | 5000 | viterbi | 0.1 | defaults |0.57 0.530 | 0.58 | 0.46 | 0.58333 |0.65 | 0.6 | 056 [0.4 |04
3 33 |08 |3333 574 667 |33
tied 0.0001 | 5000 | viterbi | 0.1 | defaults | 0.56 0.528 | 0.57 | 0.45 | 0.57777 | 0.66 | 0.6 | 055 |04 |04
2 8 4 78 33 56 4
full 0.0001 | defa | viterbi | 0.1 | defaults | 0.56 0.528 | 0.57 | 0.45 | 0.57777 | 066 | 0.6 | 055 |04 |04
ults 2 8 4 78 33 56 4
spherical 0.0001 | defa | viterbi | defa | defaults | 0.61 0.539 |0.60 | 0.48 | 0.60555 |[0.62 |06 061 |03 |04
ults ults 3 6 7 56 45 11 9
diag 0.0001 | defa | viterbi | defa | defaults | 0.57 0.530 |0.58 | 0.46 | 0.58333 | 0.65 | 0.6 | 056 |04 |04
ults ults 3 3 1 33 57 67 3
tied 0.0001 | defa | viterbi | defa | defaults | 0.53 0.506 |0.51 |0.42 | 0.51666 | 0.68 |0.5|053 |04 |05
ults ults 7 3 67 56 33 7
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full 0.0001 | defa | viterbi | defa | defaults | 0.53 0.506 |0.51 |0.42 | 0.51666 | 0.68 |0.5|053 [0.4 |05
ults ults 7 3 67 56 33 7
spherical 0.0001 | 5000 | map 0.1 defaults | 0.6 0.536 (0.6 |0.48 0.6 0.63 [ 0.6 | 0.6 04 |04
9 25
diag 0.0001 | 5000 | map 0.1 defaults | 0.56 0.528 | 0.57 | 0.45 | 057777 | 066 | 0.6 | 055 |04 |04
2 8 4 78 33 56 4
tied 0.0001 | 5000 | map 0.1 defaults | 0.57 0.530 [0.58 | 0.46 | 0.58333 |0.65 | 0.6 | 056 |0.4 |0.4
3 3 1 33 57 67 3
full 0.0001 | defa | map 0.1 defaults | 0.56 0.528 | 0.57 | 0.45 | 057777 | 066 | 0.6 | 055 |04 |0.4
ults 2 8 4 78 33 56 4
spherical 0.0001 | defa | map defa | defaults | 0.61 0.539 |0.60 | 0.48 | 0.60555 | 0.62 | 0.6 | 0.61 |0.3 |04
ults ults 3 6 7 56 45 11 9
diag 0.0001 | defa | map defa | defaults | 0.56 0.528 | 0.57 | 0.45 | 0.57777 066 | 0.6 | 055 |04 |04
ults ults 2 8 4 78 33 56 4
tied 0.0001 | defa | map defa | defaults | 0.54 0.508 [ 0.52 | 0.43 | 052222 | 067 |05|054 |04 |05
ults ults 1 2 22 82 44 6
full 0.0001 | defa | map defa | defaults | 0.54 0.508 [ 0.52 | 0.43 | 052222 | 0.67 |05|054 |04 |05
ults ults 1 2 22 82 44 6
spherical 0.0001 | 5000 | viterbi | defa | defaults | 0.61 0.539 | 0.60 | 0.48 | 0.60555 | 0.62 | 0.6 |0.61 |03 |0.4
ults 3 6 7 56 45 11 9
spherical 0.0001 |5 viterbi | 0.1 defaults | 0.59 0.534 | 0.59 | 0.47 | 059444 | 064 | 0.6 058 |04 |04
7 4 4 44 03 89 1
spherical 0.0001 |5 viterbi | 0.1 42 0.4 0463 (04 |033 |04 0.77 |04 |04 0.6 | 0.6
1 2 46
Appendix AA: All results in Auto-Encoder Model for Experiment 5.
Threshold Method
Tuning Parameters | Evaluations
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nb_ | batc |inpu |encodi | hidde | hidde |activa |learni | Thre |Acc |Prec|Re |[F1 |[R |R |T |T |FP |F
epoc | hsiz|tdi |ng_di |n_dim|n_dim|tion ng_rat | shol |urac |isio |cal |- O M |P [N [R |N
h e m m 1 2 e d y n I sco|C |SE |[R |R R
re [au
C
sco
re
10 128 |11 18 10 6 tanh 1.00E- | 4 092 {095 |06 |06 |06(02]0. 112 |0 |O.
07 92 45 82 |2 8
4 8
50 128 |11 18 10 6 tanh 1.00E- | 4 091 {095 |05|05(05(03 (0. 11 |0 |O.
07 45 5 |67 |5 1 9
1
10 128 |11 32 16 8 tanh 1.00E- | 4 092 {095 |06 |06 |06(02]0. 112 |0 |O.
07 92 45 82 |2 8
4 8
10 128 |11 10 5 2 tanh 1.00E- | 4 091 |{0.75 |06 |07 0603 |0. 109000
07 35 83 |10 |83 4 |66 [33 |6
3 |7 |3 7 |3
10 128 |11 5 2 1 tanh 1.00E- | 4 09 |071 /06 |06|06[03|0. /09 0.0]O0.
07 74 77 |94 |77 |16 |4 |55 |44 |6
8 |7 |8 |2 6 |4
10 128 |11 5 3 1 tanh 1.00E- | 4 091 |{0.75 |06 |0.7 06|03 |0. 10900 ]|O.
07 35 83 |10 |83 4 |66 [33 |6
3 |7 13 7 |3
10 128 |11 50 20 10 tanh 1.00E- | 4 092 |09 |06 |06|06(02]0. 112 |0 |O.
07 92 45 82 |2 8
4 8
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10 12 11 50 20 10 tanh 1.00E- 092 |095 (06 |06 |06 |02 |0 |1 0 0.
07 92 45 82 |2 8
4 8
10 12 11 5 2 1 tanh 1.00E- 092 {083 |06 |06 |06 |02 |0. [09]00]0.
07 85 44 |92 |44 |82 |3 |88 |11 |7
4 8 |4 8 9 1
10 256 |11 5 2 1 tanh 1.00E- 09 |0.71 (06|06 |06|03|0. [09]00]0.
07 74 77 |94 |77 |16 |4 |55 |44 |6
8 7 |8 2 6 |4
10 128 |11 5 2 1 sigmo | 1.00E- 0.88 | 0.66 |06 |0.6 |0.6 |03 |0. |09 0.0 0.
id 07 67 66 |66 |66 |46 |4 |33 |66 |6
7 7 7 4 3 |7
10 128 |11 5 2 1 hard_s | 1.00E- 0.88 |0.66 |06 |0.6 |0.6 |03 |0. |09 ]0.0]0O0.
igmoi | 07 67 66 |66 |66 |46 |4 |33 |66 |6
d 7 7 7 4 3 |7
10 128 |11 5 2 1 expon | 1.00E- 01 |005(05]|00(05(09 |1 |0 1 0
ential | 07 90 48
9 7
10 128 11 5 2 1 linear | 1.00E- 091 |0.75]0.7]0707(03 (0. {09]0.0]0.
07 03 27 |38 |27 5 |55 |44 |5
8 3 |8 6 |4
10 128 |11 5 2 1 tanh 1.00E- 0.85 | 0.63 |06 |06 |06 |03 |0. |08]01]0.
07 73 94 |57 |94 |87 |5 |88 |11 |5
4 1 4 3 9 1
10 128 |11 5 2 1 tanh 1.00E- 0.82 |0.60 06 |06 |06 |04 |0. |08 ]0.1]0.
07 84 77 |26 |77 |24 |5 |55 |44 |5
8 2 |8 3 6 |4
10 128 |11 5 2 1 tanh 1.00E- 0.58 | 0.56 |06 |04 |06 |06 |0. |05]04 0.
07 41 77 |9 77 |48 |8 |55 |44 |2
8 8 1 6 |4
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10 128 |11 5 2 1 tanh 1.00E- | 5 091 |{0.75 |06 |0.7 |06 |03 |0. |09(00]|0
07 35 83 |10 |83 4 |66 |33
3 |7 |3 7 |3
10 128 |11 5 2 1 tanh 1.00E- | 4 09 |071 /06 |06|06[03|0. /09 00]0.
06 74 77 |94 |77 |16 |4 |55 |44 |6
8 |7 |8 |2 6 |4
10 128 |11 5 2 1 tanh 1.00E- | 4 09 |071/06|06|06[03|0. /09 0.0]0.
08 74 77 |94 |77 |16 |4 |55 |44 |6
8 |7 |8 |2 6 |4
10 128 |11 5 2 1 tanh 1.00E- | 4 092 {083 |06 |06 |06[02|0. /09 0.0]0.
09 85 44 |92 |44 |82 |3 |88 |11 |7
4 |18 |4 |8 9 |1
10 128 |11 5 2 1 linear | 1.00E- | 4 09 |071 /06 |06|06[03|0. /09 0.0]O0.
06 28 33 |60 |33 |16 |3 |66 |33 |7
3 |13 |3 |2 7 |3
Appendix BB: All results in K-means Model for Experiment 6.
two clusters method
Tuning Parameters Evaluations
initializat | n_in | max_i | algorit | RandomS | Accur | Precisi | Recal | F1- ROC |RMS | TP | TNR |FPR | FN
ion it ter hm tate acy on I score | auc E R R
score
K- 5 1 auto 0 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 | 0O 0.997 | 0.002 |1
means++ 9 1 9 1 9 1
K- 5 10 auto 0 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 | O 0.997 | 0.002 |1
means++ 9 1 9 1 9 1
K- 5 1 auto 42 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 | O 0.997 | 0.002 |1
means++ 9 9 4 8 2
K- 5 10 auto 42 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 | O 0.997 | 0.002 |1
means++ 9 1 9 1 9 1
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K- 1 auto 1 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1

K- 10 auto 1 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1

K- 1 auto 2 0.9886 | 0.4952 | 0.499 | 0.497 | 0.499 | 0.106 0.998 | 0.001
means++ 9 1 12 16 12 35 24 76

K- 10 auto 2 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1

K- 1 auto 3 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1

K- 10 auto 3 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1

K- 1 auto 4 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1

K- 10 auto 4 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1

K- 1 auto 5 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1

K- 10 auto 5 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1

K- 1 auto 13 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1

K- 10 auto 13 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1

K- 1 auto 14 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1

K- 10 auto 14 0.4464 | 0.4895 | 0.225 | 0.308 | 0.225 | 0.744 0.450 | 0.549
means++ 4 6 4 7 3

K- 1 auto 90 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
means++ 9 1 9 1 9 1
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K- 10 auto 90 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002

means++ 9 1 9 1 9 1

K- 1 auto 91 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002

means++ 9 1 9 1 9 1

K- 10 auto 91 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002

means++ 9 1 9 1 9 1

K- 1 auto 92 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002

means++ 9 1 9 1 9 1

K- 10 auto 92 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002

means++ 9 1 9 1 9 1

K- 1 auto 200 0.0122 | 0.5048 | 0.501 | 0.012 | 0.501 | 0.993 0.002 | 0.997

means++ 3 2 3 9 7 3

K- 10 auto 200 0.0117 | 0.5048 | 0.501 | 0.011 | 0.501 | 0.994 0.002 | 0.997

means++ 1 6 1 1 1 9

K- 1 auto 250 0.9896 | 0.4952 | 0.499 | 0.497 | 0.499 | 0.101 0.999 | 0.000

means++ 6 4 6 9 2 8

K- 10 auto 250 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002

means++ 9 1 9 1 9 1

random 1 auto 5 0.4197 |0.4889 | 0.211 | 0.295 | 0.211 | 0.761 0.423 | 0.576
9 6 9 8 7 3

random 10 Full 5 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
9 9 4 8 2

random 10 elkan 5 0.9883 | 0.4952 | 0.498 | 0.497 | 0.498 | 0.108 0.997 | 0.002
9 9 4 8 2

random 1 auto 5 0.4696 | 0.5089 | 0.732 | 0.334 | 0.732 | 0.728 0.464 | 0.535
2 6 2 3 5 5

random 10 auto 5 0.9895 | 0.4952 | 0.499 | 0.497 | 0.499 | 0.102 0.999 | 0.000
5 4 5 5 1 9
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two states method
Tuning Parameters Evaluations
covariance | min_co | n_ite | algorit | tol Random | Accur | Precis | Rec |F1- |[ROC |RM |TP | TN |FP |FN
_type var r hm State acy ion all | sco |auc SE |R R R |R
re |score
spherical 0.0001 | 5000 | viterbi | 0.1 | defaults |0.4021 | 0.507 |0.69 | 0.2 | 0.6981 | 0.77 |1 039 |06 |0
9 8 99 | 617 32 63
diag 0.0001 | 5000 | viterbi | 0.1 | defaults |0.9863 |0.705 |0.99 | 0.7 | 0.9930 | 0.11 |1 098 |00 |0
3 3 88 | 673 72 61 |1
tied 0.0001 | 5000 | viterbi | 0.1 | defaults |0.5037 | 0.503 | 0.59 | 0.3 | 0.5918 | 0.70 | 0.6 | 0.50 | 0.5 ]0.31
5 2 46 | 972 45 82 |2 82
full 0.0001 |defa |viterbi | 0.1 | defaults |0.9863 |0.705 |0.99 | 0.7 | 0.9930 | 0.11 |1 098 {00 |0
ults 9 3 88 | 987 69 62 |1
spherical 0.0001 | defa | viterbi | defa | defaults |0.4017 [ 0.507 |0.69 | 0.2 | 0.6979 [0.77 |1 039 {06 |0
ults ults 9 8 99 422 35 59
diag 0.0001 | defa | viterbi | defa | defaults |0.9863 | 0.705 |0.99 | 0.7 {0.9930 | 0.11 |1 098 {0.0 |0
ults ults 3 3 88 |673 72 61 |1
tied 0.0001 | defa | viterbi | defa | defaults |0.4963 |0.496 |0.40 | 0.3 |0.4081 | 0.70 [ 0.3 | 0.49 | 0.5 |0.68
ults ults 5 8 37 028 97 18 |8 18
full 0.0001 | defa | viterbi | defa | defaults |0.9863 | 0.705 |0.99 | 0.7 {0.9930 | 0.11 |1 098 {0.0 |0
ults ults 9 3 88 |987 69 62 |1
spherical 0.0001 | 5000 | map 0.1 | defaults |0.4021 | 0.507 |0.69 | 0.2 |0.6981 | 0.77 |1 039 |06 |0
9 8 99 | 617 32 63
diag 0.0001 | 5000 | map 0.1 | defaults |0.9863 |0.705 |0.99 | 0.7 |0.9930 | 0.11 |1 098 |00 |0
3 3 88 | 673 72 61 |1
tied 0.0001 | 5000 | map 0.1 | defaults |0.5038 | 0.503 | 0.59 | 0.3 {0.5919 | 0.70 | 0.6 | 0.50 | 0.5]0.31
5 2 46 | 286 44 82 |2 82
full 0.0001 | defa | map 0.1 | defaults |0.9863 |0.705 |0.99 | 0.7 |0.9930 | 0.11 |1 098 |00 |0
ults 9 3 88 |987 69 62 |1
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spherical 0.0001 | defa | map defa | defaults | 0.4016 | 0.507 |0.69 | 0.2 | 0.6979 | 0.77 |1 039 |06 |0
ults ults 9 8 99 |108 36 58
diag 0.0001 | defa | map defa | defaults |0.9863 | 0.705 |0.99 | 0.7 {0.9930 | 0.11 |1 098 {0.0 |0
ults ults 3 3 88 | 673 72 61 |1
tied 0.0001 | defa | map defa | defaults | 0.4962 | 0.496 | 0.40 | 0.3 |0.4080 | 0.70 | 0.3 | 0.49 | 0.5 0.68
ults ults 5 8 37 | 714 98 18 |8 18
full 0.0001 | defa | map defa | defaults |0.9863 | 0.705 |0.99 | 0.7 | 0.9930 | 0.11 |1 098 |00 |0
ults ults 9 3 88 | 987 69 62 |1
spherical 0.0001 | 5000 | viterbi | defa | defaults |0.4017 | 0.507 |0.69 | 0.2 | 0.6979 | 0.77 |1 039 {06 |0
ults 9 8 99 422 35 59
spherical 0.0001 |5 viterbi | 0.1 | defaults |0.4448 | 0.508 |0.71|0.3 |0.7164 | 0.74 | 0.9 | 0.43 | 0.5 |0.00
3 6 22 1973 51 94 |95 |6 |65
spherical 0.0001 |5 viterbi | 0.1 |42 0.5554 | 0.491 | 0.28 | 0.3 |0.2835 [ 0.66 | 0.0 |0.56 | 0.4 | 0.99
7 4 57 1968 68 |06 |07 |4 |35
Appendix DD: All results in Auto-Encoder Model for Experiment 6.
Threshold Method
Tuning Parameters Evaluations
nb_ | batc |inpu |encodi | hidde | hidde |activa |learni | Thre |Acc |Prec|Re |[F1 |[R |R |T |T |FP |F
epoc | h siz |t di |[ng_di |n_dim|n_dim | tion ng_rat | shol | urac |isio |cal |- O M |PIN |[R |N
h e m m 1 2 e d y n I sco|C |SE |[R |R R
re |au
C
SCo
re
10 128 |4 18 10 6 tanh 1.00E- | 4 099 {085 (0909|0900 |1 |(09(00]0
07 63 98 |98 |17 (98 |61 96 |03
1 |5 |1 |1 2 |8
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50 128 18 10 6 tanh 1.00E- 099 [ 085 (0909|0900 09100
07 63 98 98 |17 |98 |61 96 | 03

1 |5 |1 |1 2 |8
10 128 32 16 8 tanh 1.00E- 099 1085 |09|09]09 0.0 0.9 0.0
07 63 98 98 |17 |98 |61 96 | 03

1 |5 |1 |1 2 |8
10 128 10 5 2 tanh 1.00E- 099 1085 090909 0.0 0.9 0.0
07 63 98 98 |17 |98 |61 96 | 03

1 |5 |1 |1 2 |8
10 128 5 2 1 tanh 1.00E- 099 1085 (0909|0900 0.9 (0.0
07 63 98 98 |17 |98 |61 96 |03

1 |5 |1 |1 2 |8
10 128 5 3 1 tanh 1.00E- 099 {085 (0909|0900 09100
07 63 98 98 |17 |98 |61 96 | 03

1 |5 |1 |1 2 |8
10 128 50 20 10 tanh 1.00E- 099 {085 (0909|0900 09100
07 63 98 98 |17 |98 |61 96 | 03

1 |5 |1 |1 2 |8
10 12 50 20 10 tanh 1.00E- 099 {085 (0909|0900 09100
07 63 98 98 |17 |98 |61 96 | 03

1 |5 |1 |1 2 |8
10 12 5 2 1 tanh 1.00E- 099 {085 (0909|0900 09100
07 63 98 98 |17 |98 |61 96 | 03

1 |5 |1 |1 2 |8
10 256 5 2 1 tanh 1.00E- 099 1085 090909 0.0 0.9 0.0
07 61 48 98 |14 |98 |62 9 | 04

1 6
10 128 5 2 1 sigmo | 1.00E- 099 1080 090809 0.0 0.9 0.0
id 07 41 92 97 |80 |97 |76 94 | 06
6 8
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10 128 hard_s | 1.00E- 099 [ 080 |09 ]08|09 /|00 09100
igmoi | 07 39 56 96 |77 |96 |78 93 | 06
d 9 [8 |9 9 |1
10 128 expon | 1.00E- 099 1080 (090809 0.0 0.9 0.0
ential | 07 39 56 9 |77 |96 |78 93 | 06
9 |18 |9 9 |1
10 128 linear | 1.00E- 099 1049 [05|04 05|00 1 |0
07 04 52 97 97
6 8
10 128 tanh 1.00E- 099 1085 (0909|0900 0.9 (0.0
07 6 16 98 |11 |98 |63 95 | 04
8 6 9 |1
10 128 tanh 1.00E- 099 {084 0909|0900 09100
07 56 22 97 |05 |97 |66 95 | 04
8 |2 |8 |4 5 |5
10 128 tanh 1.00E- 099 |[0.79 |09 08|09 |00 0910
07 35 84 96 |72 |96 |80 93
7 |11 |7 |4 5
10 128 tanh 1.00E- 099 [ 087 |09]09]09 |00 09100
07 66 02 98 |24 |98 |57 96 | 03
3 |6 |3 |9 6 |4
10 128 linear | 1.00E- 099 {049 {0504 (05|00 1 |0
06 04 52 97 97
6 8
10 128 tanh 1.00E- 099 1085 090909 0.0 0.9 0.0
08 63 98 98 |17 |98 |61 96 | 03
1 |5 |1 |1 2 |8
10 128 tanh 1.00E- 099 1085 090909 0.0 0.9 0.0
09 63 98 98 |17 |98 |61 96 | 03
1 |5 |1 |1 2 |8
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10 128 |4 5 2 1 tanh 1.00E- | 4 099 |08 |09/09|09|00 |1 |09]00]|0
06 63 98 98 |17 |98 |61 96 | 03
1 5 1 1 2 8
Appendix EE: All results in K-means Model for Experiment 7.
two clusters method
Tuning Parameters Evaluations
initializa | n_i | max_i | algorit | RandomS | Accur | Precisi | Reca | F1- | ROC |RMS | TPR | TNR |FPR | FNR
tion nit | ter hm tate acy on I scor | auc E
e score
K- 5 1 auto 0 0.3825 | 0.4779 | 0.433 [ 0.32 | 0.433 | 0.785 | 0.496 | 0.371 | 0.628 | 0.503
means++ 9 28 9 8 2 7 3 8
K- 5 10 auto 0 0.3358 | 0.4755 | 0.431 [ 0.29 | 0.431 | 0.815 | 0.547 | 0.315 | 0.684 | 0.452
means++ 7 48 7 5 8 2 5
K- 5 1 auto 42 0.4204 | 0.4777 | 0.430 [ 0.34 | 0.430 | 0.761 | 0.443 | 0.418 | 0.581 | 0.556
means++ 8 27 8 3 4 2 8 6
K- 5 10 auto 42 0.3111 | 0.4753 | 0.434 | 0.27 |0.434 | 0.83 |0.584 | 0.285 | 0.714 | 0.415
means++ 8 93 8 4 2 8 6
K- 5 1 auto 1 0.4847 |0.481 |0.439 | 0.37 |0.439 | 0.717 | 0.385 | 0.494 | 0.505 | 0.614
means++ 9 56 9 8 6 1 9 4
K- 5 10 auto 1 0.6504 | 0.524 |0.568 | 0.48 | 0.568 | 0.591 | 0.469 | 0.667 | 0.332 | 0.530
means++ 6 28 6 3 6 5 5 4
K- 5 1 auto 2 0.539 |0.4862 | 0.457 [ 0.40 | 0.457 | 0.679 | 0.358 | 0.556 | 0.443 | 0.642
means++ 1 31 1 1 9
K- 5 10 auto 2 0.3261 | 0.4759 | 0.434 | 0.28 | 0.434 | 0.820 | 0.564 | 0.303 | 0.696 | 0.435
means++ 1 9 1 9 6 6 4 4
K- 5 1 auto 3 0.3962 | 0.478 |0.433 [ 0.33 |0.433 | 0.777 | 0.478 | 0.388 | 0.611 | 0.521
means++ 3 03 3 1 1 4 6 9
K- 5 10 auto 3 0.3322 | 0.4758 | 0.433 | 0.29 | 0.433 | 0.817 | 0.554 | 0.311 | 0.688 | 0.445
means++ 27 2 8 2 8 2
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K- 1 auto 4 0.7663 | 0.5262 | 0.552 | 0.52 | 0.552 | 0.483 | 0.294 | 0.810 | 0.189 | 0.705
means++ 7 13 7 5 6 9 1 4

K- 10 auto 4 0.6977 | 0.5248 | 0.564 | 0.50 | 0.564 | 0.549 | 0.402 | 0.725 | 0.274 | 0.597
means++ 2 08 2 8 8 6 4 2

K- 1 auto 5 0.3414 | 0.4805 | 0.445 | 0.30 | 0.445 | 0.811 | 0.571 | 0.319 | 0.680 | 0.428
means++ 5 02 5 5 4 7 3 6

K- 10 auto 5 0.331 |0.4758 | 0.433 | 0.29 | 0.433 | 0.817 | 0.556 | 0.309 | 0.690 | 0.443
means++ 1 19 1 9 5 6 4 5

K- 1 auto 13 0.312 |0.4784 | 0.443 | 0.28 | 0.443 | 0.829 | 0.601 | 0.284 | 0.715 | 0.398
means++ 1 09 1 4 5 7 3 5

K- 10 auto 13 0.3318 | 0.4757 | 0.432 | 0.29 | 0.432 | 0.817 | 0.555 | 0.310 | 0.689 | 0.445
means++ 8 24 8 5 6 4

K- 1 auto 14 0.2743 | 0.478 | 0.448 | 0.25 | 0.448 | 0.851 | 0.658 | 0.238 | 0.762 | 0.341
means++ 3 51 3 9 6 4

K- 10 auto 14 0.3096 | 0.4754 | 0.435 | 0.27 | 0.435 | 0.830 | 0.586 | 0.283 | 0.716 | 0.413
means++ 1 83 1 9 8 4 6 2

K- 1 auto 90 0.3783 | 0.4804 | 0.441 | 0.32 | 0.441 | 0.788 | 0.518 | 0.365 | 0.634 | 0.481
means++ 7 18 7 5 2 1 9 8

K- 10 auto 90 0.3228 | 0.4754 | 0.433 | 0.28 | 0.433 | 0.822 | 0.566 | 0.299 | 0.700 | 0.433
means++ 2 67 2 9 7 7 3 3

K- 1 auto 91 0.4382 | 0.4786 | 0.433 | 0.35 | 0.433 | 0.749 | 0.426 | 0.439 | 0.560 | 0.573
means++ 21 6 7 3 7 3

K- 10 auto 91 0.3379 | 0.4758 | 0.432 | 0.29 | 0.432 | 0.813 | 0.546 | 0.318 | 0.681 | 0.453
means++ 3 62 3 7 3 2 8 7

K- 1 auto 92 0.5625 | 0.5185 | 0.558 | 0.44 | 0.558 | 0.661 | 0.552 | 0.563 | 0.436 | 0.447
means++ 2 6 11 05 11 42 78 44 56 22

K- 10 auto 92 0.6629 | 0.5243 | 0.567 | 0.48 | 0.567 | 0.580 | 0.453 | 0.682 | 0.317 | 0.546
means++ 9 79 9 6 1 8 2 9

K- 1 auto 200 0.3376 | 0.476 |0.432 | 0.29 | 0.432 | 0.813 | 0.548 | 0.317 | 0.682 | 0.451
means++ 9 61 9 9 1 7 3 9
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K- 5 10 auto 200 0.3345 | 0.4757 | 0.432 | 0.29 | 0.432 | 0.815 | 0.550 | 0.314 | 0.685 | 0.449

means++ 5 41 5 8 8 1 9 2

K- 5 1 auto 250 0.9055 | 0.5207 | 0.502 | 0.48 | 0.502 | 0.307 | 0.015 | 0.989 | 0.010 | 0.984

means++ 8 94 8 3 9 7 3 1

K- 5 10 auto 250 0.3152 | 0.4754 | 0.434 | 0.28 | 0.434 | 0.827 | 0.578 | 0.290 | 0.709 | 0.421

means++ 2 19 2 5 1 4 6 9

random |5 1 auto 90 0.2121 | 0.474 | 0.453 | 0.20 | 0.453 | 0.887 | 0.745 | 0.161 | 0.838 | 0.254
5 66 5 6 3 7 3 7

random |5 10 Full 5 0.2121 | 0.474 | 0.453 | 0.20 | 0.453 | 0.887 | 0.745 | 0.161 | 0.838 | 0.254
5 66 5 6 3 7 3 7

random |5 10 elkan |5 0.9055 | 0.5207 | 0.502 | 0.48 | 0.502 | 0.307 | 0.015 | 0.989 | 0.010 | 0.984
8 94 8 3 9 7 3 1

random |20 |1 auto 5 0.2121 | 0.474 | 0.453 | 0.20 | 0.453 | 0.887 | 0.745 | 0.161 | 0.838 | 0.254
5 66 5 6 3 7 3 7

Appendix FF: All results in HMM Model for Experiment 7.

two states method

Tuning Parameters Evaluations

covariance | min_co | n_ite | algorit | tol Random | Accur | Precis | Rec | F1- |[ROC |RM |TP | TN |FP |FN

_type var r hm State acy ion all | sco |auc SE |R |R R |R

re |score

spherical 0.0001 | 5000 | viterbi | 0.1 | defaults |0.1075|0.476 |0.49 | 0.1 | 0.4917 | 094 |09 |0.02 |0.9 | 0.04
6 2 05 |639 47 56 |72 |7 |37

diag 0.0001 | 5000 | viterbi | 0.1 | defaults |0.1472 |0.478 |0.48 [0.1 |0.4797 |0.92 | 0.8 |0.07 |09 |0.11
6 47 | 749 35 82 |77 |2 |82

tied 0.0001 | 5000 | viterbi | 0.1 defaults

full 0.0001 | defa | viterbi | 0.1 defaults

ults
spherical 0.0001 | defa | viterbi | defa | defaults |0.8871|0.528 |0.51 | 0.5 |0.5129 | 0.33 | 0.0 | 0.96 | 0.0 | 0.93
ults ults 7 3 12 | 402 59 61 |53 |3 |9%4
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diag 0.0001 |defa | viterbi | defa | defaults |0.8528 |0.521 |0.52 | 0.5 |0.5202 |0.38 [0.1 | 0.92 | 0.0 | 0.88
ults ults 4 21 | 251 37 18 |23 |8 |18
tied 0.0001 | defa | viterbi | defa | defaults |0.7694 | 0.519 |0.53 | 0.5 |[0.5381 |0.48 [0.2 |0.81 | 0.1 |0.74
ults ults 7 8 14 | 352 02 59 |78 |8 |15
full 0.0001 | defa | viterbi | defa | defaults
ults ults
spherical 0.0001 | 5000 | map 0.1 | defaults |0.1075|0.476 |0.49 | 0.1 | 0.4917 {094 |09 |0.02 |0.9 | 0.04
6 2 05 |639 47 56 |72 |7 |37
diag 0.0001 | 5000 | map 0.1 | defaults |0.8528 | 0.521 |0.52 | 0.5 |0.5202 |0.38 | 0.1 |0.92 | 0.0 | 0.88
4 21 | 251 37 18 |23 |8 |18
tied 0.0001 | 5000 | map 0.1 | defaults |0.7434 |0.521 |0.54 |05 |0.5464 |0.50 | 0.3 |0.78 | 0.2 | 0.69
1 6 1 606 66 |08 |45 |2 |16
full 0.0001 | defa | map 0.1 defaults
ults
spherical 0.0001 | defa | map defa | defaults |0.1125|0.471 |0.48 | 0.1 [ 0.4872 | 0.94 | 0.9 |0.03 |0.9 | 0.05
ults ults 2 7 1 218 21 4 42 7 97
diag 0.0001 | defa | map defa | defaults |0.8528 | 0.521 |0.52 | 0.5 |0.5202 | 0.38 | 0.1 |0.92 | 0.0 | 0.88
ults ults 4 21 | 251 37 18 |23 |8 |18
tied 0.0001 |defa | map defa | defaults |0.7787 | 0.517 |0.53 |0.5 |0.5311 |0.47 [0.2 |0.83 |0.1 |0.76
ults ults 1 1 13 |89 04 32 |04 |7 |8
full 0.0001 | defa | map defa | defaults
ults ults
spherical 0.0001 | 5000 | viterbi | defa | defaults |0.1075 |0.476 |0.49 0.1 |0.4917 |094 |09 |0.02 |09 |0
ults 6 2 05 |639 47 56 |72 |7
spherical 0.0001 |5 viterbi | 0.1 | defaults |0.8342 |0.528 |0.53 | 0.5 |0.5356 | 0.40 |0.1 | 0.89 |0.1|0.82
8 6 31 138 72 75 |65 53
spherical 0.0001 |5 viterbi | 0.1 |42 0.1642 | 0.471 | 0.46 | 0.1 |0.4647 [0.91 | 0.8 |0.10 |{0.9 |0.17
5 64 | 316 42 28 |14 19




Appendix GG: All results in Auto-Encoder Model for Experiment 7.
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Threshold Method
Tuning Parameters Evaluations
nb_ | batc |inpu | encodi | hidde | hidde | activa | learni | Thre | Acc |Pre |Re |F1 /R |R |TP | T |FP |FN
epoc | h_si |[tdi |ng di |n_di n_di | tion ng_ra | shol | urac | cisio |cal | - O M |R |[N |R |R
h ze m m ml m2 te d y n I sco| C | SE R
re | au
C
sco
re
10 128 | 58 18 10 6 tanh 1.00E- | 4 090 {052 |05]04(05(03|0.0]09/|001]0.9
07 77 35 |02 |87 |02 |03 |12 |92 |07 |87
4 |1 |4 |18 |4 |4 |6 |6
50 128 | 58 18 10 6 tanh 1.00E- | 4 090 {052 |05(04(05(03|0.0]09/|00]0.9
07 6 33 |03 |89 |03 |06 |15 |90 (09 |84
5 6 |9 |1 |9 |1
10 128 | 58 32 16 8 tanh 1.00E- | 4 090 {052 |05(04(05(03|0.0]09/|00]09
07 7 41 |02 |88 |02 |05 |14 |91 (08 |85
7 |3 |7 1 |4 |6 |9
10 128 | 58 10 5 2 tanh 1.00E- | 4 090 {052 |05]04(05(03|0.0]09/|00]0.9
07 37 1 03 |91 |03 |10 |19 87 |12 |80
5 |7 |5 |3 |6 |3 |7 |4
10 128 | 58 5 2 1 tanh 1.00E- | 4 090 {051 |05(04(05(03|00]09/|00]0.9
07 3 97 |03 |92 |03 |11 |20 |8 |13 |79
5 |1 |5 |5 |6 |4 |6 |4
10 128 | 58 5 3 1 tanh 1.00E- | 4 090 {052 |05]04(05(03|0.0]09/|00/09
07 35 3 03 |92 |03 |10 |20 |87 |13 |79
9 |7 |9 |6 |9 1
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10 128 | 58 50 20 10 tanh 1.00E- 090 {052 |05(04(05(03|00]09/|00]0.9
07 86 26 |01 |8 |01 {02 [10 |93 |06 |89

9 |6 |9 |3 |3 |5 [5 |7
10 12 58 50 20 10 tanh 1.00E- 090 {052 |[05/04/05|03|00(09|00/ 09
07 84 5 02 |86 |02 |02 |11 (93 |06 |88

3 |4 |3 |7 [3 |2 |8 |7
10 12 58 5 2 1 tanh 1.00E- 090 {052 |05/04/05|03|00(09|00/ 09
07 31 07 03 |92 |03 |11 |20 (8 |13 |79

7 |4 |7 14 |8 |5 |5 |2
10 256 | 58 5 2 1 tanh 1.00E- 090 {052 |05/04/05|03|00(|09|00/ 09
07 3 12 03 |92 |03 |11 |21 8 |13 |78

8 |7 |8 |5 |2 |4 |6 |8
10 128 | 58 5 2 1 sigmo | 1.00E- 090 {052 |05(04/05(03|00/]09/|0.0]0.9
id 07 28 13 |03 {92 |03 |11 |21 |86 |13 |78

9 19 |9 |7 6 |1 |9 |4
10 128 | 58 5 2 1 hard_s | 1.00E- 090 {052 |05]04/05(03|00]09/|00/0.9
igmoi | 07 18 23 |04 |94 |04 |13 (24 |84 |15 |75

d 5 |5 |5 |4 |2 |8 |2 |8
10 128 | 58 5 2 1 expon | 1.00E- 090 {052 |05]04(05(03|00]09/|00]0.9
ential | 07 18 23 |04 |94 |04 |13 (24 |84 |15 |75

5 |5 |5 |4 |2 |8 |2 |8
10 128 | 58 5 2 1 linear | 1.00E- 090 {051 |05(04/05(03|00]09/|00/0.9
07 31 8 |03 |91 |03 |11 (19 |86 |13 |80

2 |5 |2 |3 |7 |7 |3 |3
10 128 | 58 5 2 1 tanh 1.00E- 089 {051 05/04/05(03|00(09|00/ 09
07 66 73 |04 |97 |04 |21 (31 |78 |21 |68

8 |4 |8 |5 1 |5 |5 |9
10 128 | 58 5 2 1 tanh 1.00E- 087 052 |05|05(05({03|0.0(09|00/ 09
07 88 85 16 |18 |16 |48 |78 |54 |45 |21

7 11 |7 |2 9 |4 |6 |1
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10 128 | 58 5 2 1 tanh 1.00E- |1 0.46 {051 |05(03|05(07|06|04|05/|0.3
07 68 33 |41 |88 |41 |30 |31 |51 (48 |68
5 |6 |5 |2 |8 |2 |8 |2
10 128 | 58 5 2 1 tanh 1.00E- | 5 090 {053 |05/04(05(03|0.0]09/|001]0.9
07 85 13 |02 |87 (02 |02 |12 |93 |06 |87
9 |6 |9 |5 |5 |2 [8 |5
10 128 | 58 5 2 1 linear | 1.00E- | 4 090 {051 |05/04(05(03|0.0/09/|0.01]0.9
06 32 8 |03 |91 |03 |11 |19 |86 |13 |80
2 |5 |2 |2 |7 |7 [3 |3
10 128 | 58 5 2 1 tanh 1.00E- | 4 090 {052 |05]04(05(03|0.0]09/|00]09
08 29 1 03 |92 |03 |11 |21 (8 |13 |78
8 |6 |8 |5 |2 |3 |7 |8
10 128 | 58 5 2 1 tanh 1.00E- | 4 090 {052 |05]04(05(03|00]09/|00]0.9
09 29 1 03 |92 |03 |11 |21 (8 |13 |78
8 |6 |8 |5 |2 |3 |7 |8
10 128 | 58 5 2 1 tanh 1.00E- | 4 090 {052 |05]04(05(03|00]09/|00]09
06 3 11 |03 |92 (03 |11 |21 |86 |13 |78
8 |6 |8 |4 |1 |4 |6 |9
Appendix HH: All results in K-means Model for Experiment 8.
two clusters method
Tuning Parameters Evaluations
initializat | n_in | max_it | algorit | RandomS | Accura | Precisi | Reca | F1- |RO |RMS | TPR | TNR | FPR | FNR
ion it er hm tate cy on I scor | C E
e auc
scor
e
K- 5 1 auto 0 0.5152 | 0.5022 | 0.50 |[0.46 |0.50 |0.696 |0.48 |0.52 |0.47 | 051
means++ 32 56 32 3 19 45 55 81
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K- 10 auto 0 0.4982 |0.5011 [0.50 |0.45 | 050 |[0.708 | 0.50 | 0.49 |[0.50 |0.49
means++ 16 67 16 4 77 56 44 23
K- 1 auto 42 0.4796 |0.4748 | 0.46 |0.43 |0.46 [0.721|0.43 |0.49 | 050 |0.56
means++ 31 18 31 4 37 25 75 63
K- 10 auto 42 0.5008 |0.5087 [0.51 |0.46 |051 |[0.706 |0.53 | 0.49 |0.50 |0.46
means++ 27 23 27 5 39 16 84 61
K- 1 auto 1 0.553 0.4856 |0.48 | 0.46 |0.48 |0.668 |0.35 |0.60 |0.39 | 0.64
means++ 01 79 01 6 08 94 06 92
K- 10 auto 1 0.527 0.5489 | 0.57 049 |0.57 |0.687|0.64 |049 |0.50 |0.35
means++ 12 72 12 8 96 27 73 04
K- 1 auto 2 0.5003 [0.4899 |[0.48 |0.45 /048 |0.706 |0.45 | 051 |0.48 |0.54
means++ 52 08 52 9 84 2 8 16
K- 10 auto 2 0.4915 | 0.486 0.47 | 044 | 047 |0.713/0.45 | 050 [0.49 |0.54
means++ 95 43 95 1 82 08 92 18
K- 1 auto 3 0.4843 |0.4894 |(0.48 |0.44 |0.48 |[0.718 |0.48 | 0.48 |[0.51 |0.51
means++ 45 29 45 1 49 41 59 51
K- 10 auto 3 0.4766 |0.4588 |0.43 |0.41 |0.43 |[0.723 |0.37 | 0.50 |[0.49 |0.62
means++ 99 98 99 5 48 51 49 52
K- 1 auto 4 0.5009 |0.4809 |0.47 |0.44 |0.47 |0.706 | 0.42 | 0.52 |0.47 |0.57
means++ 22 51 22 5 12 31 69 88
K- 10 auto 4 0.5029 |0.5055 [0.50 |0.46 | 050 |0.705|0.51 |0.49 |0.50 |0.48
means++ 81 16 81 72 89 11 28
K- 1 auto 5 0.4781 |0.5123 | 051 |045 | 051 [0.722 058 |0.44 | 055 | 041
means++ 77 12 77 4 8 74 26 2

K- 10 auto 5 0.505 0.5124 | 051 046 |051 |0.703 054 | 049 | 050 |0.45
means++ 81 65 81 6 14 48 52 86
K- 1 auto 13 0.4599 |0.5067 |0.50 |0.43 | 050 |[0.734 059 |0.42 |057 |0.40
means++ 95 77 95 9 76 15 85 24
K- 10 auto 13 0.5184 |0.5234 [ 0.53 |0.47 | 053 [0.694 056 | 050 [0.49 |0.43
means++ 43 97 43 24 61 39 76
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K- 5 1 auto 14 0.4479 |0.4909 | 0.48 |0.42 |0.48 [0.743|055 | 041 | 058 |0.44
means++ 7 37 7 65 76 24 35
K- 5 10 auto 14 0.502 0.5074 | 0.51 | 046 |[0.51 |0.705|0.52 |0.49 |0.50 |0.47
means++ 08 22 08 7 63 52 48 37
K- 5 1 auto 90 0.5183 [0.4975 [0.49 |0.46 |0.49 |0.694 |0.45 | 053 |0.46 |0.54
means++ 63 39 63 73 54 46 27
K- 5 10 auto 90 0.5037 |[0.5047 |0.50 |0.46 | 050 |0.704 | 051 | 050 |0.49 |0.48
means++ 69 15 69 5 25 13 87 75
K- 5 1 auto 91 0.4208 | 0.467 0.45 | 0.39 [0.45 |0.761|051 |0.39 |0.60 |0.48
means++ 31 72 31 03 59 41 97
K- 5 10 auto 91 0.4818 |0.4766 |0.46 |0.43 |0.46 |[0.719 |0.43 | 0.49 |0.50 |0.56
means++ 58 39 58 9 75 41 59 25
K- 5 1 auto 92 0.5445 |0.525 053 [0.49 | 053 |0.674 052 055 [0.44 |0.47
means++ 64 38 64 9 2 08 92 8
K- 5 10 auto 92 0.4841 | 0.481 0.47 1043 |0.47 |0.718 |0.45 | 0.49 | 050 | 0.54
means++ 21 77 21 3 09 33 67 91
K- 5 1 auto 200 0.5336 |[0.4912 [0.48 |0.46 |0.48 |0.682|0.40 | 0.56 |0.43 |0.59
means++ 75 57 75 9 55 94 06 45
K- 5 10 auto 200 0.4905 |0.4839 |0.47 |0.44 |0.47 |0.713|0.45 | 050 |0.49 |0.54
means++ 64 25 64 8 12 15 85 88
K- 5 1 auto 250 0.5212 |[0.5144 [ 052 |0.47 |052 |[0.691|052 |052 |0.47 |0.47
means++ 11 6 11 9 07 14 86 93
K- 5 10 auto 250 0.5083 |0.5111 (051 |0.46 |051 [0.701 053 | 050 [0.49 |0.46
means++ 62 75 62 2 03 21 79 97
random 5 1 Full 5 0.5037 |[0.5047 |0.50 |0.46 | 050 |0.704 | 051 | 050 |0.49 |0.48
69 15 69 5 25 13 87 75
random 5 10 elkan 5 0.4208 | 0.467 0.45 |0.39 [0.45 |0.761]0.51 | 0.39 |0.60 |0.48
31 72 31 03 59 41 97
random 10 10 auto 5 0.4818 |0.4766 |0.46 |0.43 |0.46 |0.719 |0.43 | 0.49 |0.50 |0.56
58 39 58 9 75 41 59 25




Appendix I1: All results in HMM Model for Experiment 8.
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two states method
Tunimg Parameters Evaluations
covariance | min_co | n_ite | algorit | tol Random | Accur | Precis | Rec |F1- |[ROC |RM |TP | TN |FP |FN
_type var r hm State acy ion all | sco |auc SE |R R R |R
re |score
spherical 0.0001 | 5000 | viterbi | 0.1 | defaults |0.5077 | 0.491 |0.48 | 0.4 |0.4875 |0.70 |04 | 052 | 0.4 |0.54
5 8 55 |385 17 52 |33 |8 |82
diag 0.0001 | 5000 | viterbi | 0.1 | defaults |0.7519 | 0.551 |0.52 |0.5 |0.5221 | 0.49 [ 0.1 |0.93 | 0.0 |0.88
5 2 11 | 504 81 14 7 |57
tied 0.0001 | 5000 | viterbi | 0.1 | defaults |0.5317 | 0.544 |0.56 | 0.4 |0.5648 | 0.68 | 0.6 | 0.50 | 0.4 | 0.37
4 5 98 | 735 43 24 |6 9 |63
full 0.0001 | defa |viterbi | 0.1 |defaults |0.5251 |0.544 |0.56 0.4 | 0.5644 | 0.68 [ 0.6 | 0.49 | 0.5]0.36
ults 2 4 94 |5 91 34 |46 |1 |57
spherical 0.0001 | defa | viterbi | defa | defaults |0.4955 |0.486 |0.48 |0.4 | 0.479 [0.71 |04 [0.50 (0.4 |0.54
ults ults 1 46 | 708 03 52 |78 |9 |84
diag 0.0001 | defa | viterbi | defa | defaults |0.4991 | 0.495 |0.49 |0.4 |0.4939 | 0.70 |04 | 050 |05 |051
ults ults 8 4 54 |049 78 85 |31 53
tied 0.0001 | defa | viterbi |defa | defaults |0.4948 | 0.494 |0.49 |04 |0.4915 0.71 |04 |0.49 |05 051
ults ults 3 2 51 | 896 07 86 |74 42
full 0.0001 | defa | viterbi | defa | defaults | 0.4755 |0.460 |0.44 | 0.4 |0.4420 | 0.72 | 0.3 |0.50 | 0.5 ]0.61
ults ults 3 2 2 63 42 83 |15 74
spherical 0.0001 | 5000 | map 0.1 |defaults |0.4892 |0.490 |0.48 |04 |0.4866 |0.71 |04 |0.49 |05 051
9 7 46 | 855 47 82 |11 |1 |78
diag 0.0001 | 5000 | map 0.1 | defaults |0.4309 | 0.396 |0.35|0.3 {0.3506 |0.75 | 0.2 | 0.49 | 0.50.79
6 1 56 | 077 44 08 |31 |1 |19
tied 0.0001 | 5000 | map 0.1 | defaults |0.5139 | 0.510 |0.51 |04 |0.5154 | 0.69 |05 | 051 |04 |0.48
6 5 7 891 72 18 |26 |9 |16
full 0.0001 | defa | map 0.1 | defaults |0.4922 | 0.495 |0.49 |0.4 |0.4928 | 0.71 | 0.4 | 0.49 |0.5]0.50
ults 1 3 5 266 26 94 |18 |1 |61
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spherical 0.0001 | defa | map defa | defaults |0.4991 | 0.497 |0.49 | 0.4 |0.4959 | 0.70 | 0.4 | 0.50 | 0.5 ]0.50
ults ults 2 6 55 | 548 77 9 16 97
diag 0.0001 | defa | map defa | defaults | 0.47 0.450 |0.42 |04 |0.4275 |0.72 |03 |0.50 |0.5|0.64
ults ults 3 8 11 683 8 52 |29 77
tied 0.0001 | defa | map defa | defaults | 0.4908 | 0.487 |0.48 | 0.4 |0.4817 |0.71 |04 |0.49 | 0.5 053
ults ults 6 2 45 | 751 36 |66 |78 43
full 0.0001 | defa | map defa | defaults | 0.5501 | 0.574 | 0.60 | 0.5 | 0.6084 | 0.67 | 0.7 | 0.50 | 0.5 |0.28
ults ults 6 8 23 | 653 07 12 149 8
spherical 0.0001 | 5000 | viterbi | defa | defaults | 0.4955 |0.486 |0.48 | 0.4 [0.4796 |0.71 |0.4 | 050 | 0.4 | 0.54
ults 1 46 | 708 03 |52 |78 |9 |84
spherical 0.0001 |5 viterbi | 0.1 | defaults |0.4959 | 0.496 |0.49 | 0.4 |0.4944 | 0.71 |{0.4 | 0.49 | 0.5 |0.50
2 4 53 799 92 |7 8
spherical 0.0001 |5 viterbi | 0.1 |42 0.4964 | 0.492 | 0.48 | 0.4 |0.4894 | 0.70 | 0.4 |0.50 | 0.5 | 0.52
8 9 51 |425 97 77 |17 28
Appendix JJ: All results in Auto-Encoder Model for Experiment 8.
Threshold Method
Tuning Parameters Evaluations
nb_ | batc |inpu | encodi | hidde | hidde | activa | learni | Thre | Acc |Pre |Re |F1 /R |R |TP |T |F |FN
epoc |h si |t di |ng di |n_di n_di | tion ng_ra | shol | urac | cisio | cal |- O M |R N [P [R
h ze m m m1 m2 te d y n I sco| C | SE R |R
re | au
C
Sco
re
10 128 | 201 |18 10 6 tanh 1.00E- | 4 0.78 {039 |05]04(05(04 |0 1 10 |1
07 17 |08 38 67
7 2
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50 128 | 201 |18 10 6 tanh 1.00E- 0.78 {039 |05|04 05|04
07 17 08 38 67

7 2
10 128 | 201 |32 16 8 tanh 1.00E- 0.78 1039 |05|04 05|04
07 17 08 38 67

7 2
10 128 | 201 |10 5 2 tanh 1.00E- 0.78 1039 |05/04 05|04
07 17 08 38 67

7 2
10 128 | 201 |5 2 1 tanh 1.00E- 0.78 1039 |05/04 (05|04
07 17 08 38 67

7 2
10 128 | 201 |5 3 1 tanh 1.00E- 0.78 {039 |05]04 05|04
07 17 08 38 67

7 2
10 128 | 201 |50 20 10 tanh 1.00E- 0.78 {039 |05]04 05|04
07 17 08 38 67

7 2
10 12 201 |50 20 10 tanh 1.00E- 0.78 {039 |05|04 05|04
07 17 08 38 67

7 2
10 12 201 |5 2 1 tanh 1.00E- 0.78 {039 |05|04 05|04
07 17 08 38 67

7 2
10 256 | 201 |5 2 1 tanh 1.00E- 0.78 1039 |05|04 05|04
07 17 08 38 67

7 2
10 128 | 201 |5 2 1 sigmo | 1.00E- 0.78 1039 |05/04 05|04
id 07 17 08 38 67

7 2
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10 128 | 201 hard_s | 1.00E- 0.78 {039 |[05/04 (05|04 |0 1 /0 |1
igmoi | 07 17 08 38 67
d 7 2

10 128 | 201 expon | 1.00E- 0.78 |039 ({0504 (05|04 |0 1 /0 |1
ential | 07 17 08 38 67
7 2

10 128 | 201 linear | 1.00E- 0.78 {039 |[05/04 (05|04 |0 1 /0 |1
07 17 08 38 67
7 2

10 128 | 201 tanh 1.00E- 0.78 {039 {0504 (05|04 |0 1 /0 |1
07 17 08 38 67
7 2

10 128 | 201 tanh 1.00E- 0.78 {089 |05/04 (05|04 |99 |1 |0 |09

07 17 08 38 67 | E- 99

8 2 05 9

10 128 | 201 tanh 1.00E- 0.57 | 056 |[05|/05(05|06|062|0. |0. |03

07 21 35 92 130 |92 |54 |971 |55 |44 |70

9 7 9 1 4 6 |4 |3

10 128 | 201 tanh 1.00E- 0.78 |039 |[05/04 (05|04 |0 1 /0 |1
07 17 08 38 67
7 2

10 128 | 201 linear | 1.00E- 0.78 |039 {05/04 (05|04 |0 1 /0 |1
06 17 08 38 67
7 2

10 128 | 201 tanh 1.00E- 0.78 |039 {05/04 (05|04 |0 1 /0 |1
08 17 08 38 67
7 2

10 128 | 201 tanh 1.00E- 0.78 {039 {05/04 (05|04 |0 1 /0 |1
09 17 08 38 67
7 2
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10 128 | 201 |5 2 1 tanh 1.00E- | 4 0.78 {039 |05/04 (05|04 |0 1 |0 |1
06 17 08 38 67
7 2
Appendix KK: All results in K-means Model for Experiment 9.
two clusters method
Tuning Parameters Evaluations
initializat | n_in | max_it | algorit | RandomS | Accura | Precisi | Reca | F1I- |RO |RMS | TPR | TNR | FPR | FNR
ion it er hm tate cy on I scor | C E
e auc
scor
e
K- 5 1 auto 0 0.4156 |0.4197 (042 |0.40 | 042 |0.764 | 056 |0.28 |0.71 |0.43
means++ 59 9 59 5 32 86 14 68
K- 5 10 auto 0 0.5169 |0.5114 | 051 |[051 | 051 |0.695|0.43 |0.58 |0.41 | 0.56
means++ 12 05 12 1 61 64 36 39
K- 5 1 auto 42 0.5083 | 0.5038 | 0.50 [0.50 |0.50 |0.701|0.44 |0.56 |0.43 |0.55
means++ 37 34 37 2 24 51 49 76
K- 5 10 auto 42 0.5169 |0.5114 | 051 |051 | 051 |0.695|0.43 [0.58 |0.41 |0.56
means++ 12 05 12 1 61 64 36 39
K- 5 1 auto 1 0.4896 |0.4884 |0.48 |[0.48 |0.48 |0.714 | 0.47 | 050 |0.49 |0.52
means++ 83 81 83 4 14 52 48 86
K- 5 10 auto 1 0.4831 |0.4886 |0.48 |[0.48 |0.48 |0.718 | 056 |0.41 |0.58 |0.43
means++ 88 24 88 9 39 36 64 61
K- 5 1 auto 2 0.5184 |0.5369 | 0.53 |0.50 |0.53 |0.694|0.71 |0.34 |0.65 |0.28
means++ 22 82 22 61 83 17 39
K- 5 10 auto 2 0.4831 |0.4886 |0.48 |[0.48 |0.48 |0.718 | 056 |0.41 |0.58 |0.43
means++ 88 24 88 9 39 36 64 61
K- 5 1 auto 3 0.4627 |0.4805 |0.49 |0.37 | 049 |0.733 /091 |0.07 |0.92 |0.08
means++ 41 18 41 16 66 34 84
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K- 10 auto 3 0.5117 | 05163 (051 | 051 | 051 [0.698 | 0.57 |0.45 |[0.54 |0.42
means++ 61 16 61 8 46 77 23 54
K- 1 auto 4 0.5018 |0.5209 | 051 |0.48 | 051 [0.705|0.72 | 0.31 | 0.68 |0.27
means++ 74 73 74 8 47 01 99 53
K- 10 auto 4 0.4831 |0.4886 |0.48 |0.48 |0.48 |[0.718 | 056 |0.41 |[0.58 |0.43
means++ 88 24 88 9 39 36 64 61
K- 1 auto 5 0.5217 |[0.5209 (052 |052 | 052 [0.691 (051 |053 |0.46 |0.48
means++ 1 06 1 6 18 02 98 82
K- 10 auto 5 0.4831 |0.4886 |0.48 |0.48 |0.48 |[0.718 | 0.56 |0.41 |0.58 |0.43
means++ 88 24 88 9 39 36 64 61
K- 1 auto 13 0.4844 |0.4773 |0.47 |0.47 |0.47 |0.718 0.39 |0.56 |0.43 |0.60
means++ 79 65 79 07 51 49 93
K- 10 auto 13 0.5169 |[0.5114 (051 |051 |051 [0.695|0.43 | 058 |0.41 |0.56
means++ 12 05 12 1 61 64 36 39
K- 1 auto 14 0.4599 |0.4588 |0.49 |0.33 |0.49 |[0.734 |0.96 |0.02 |[0.97 |0.03
means++ 53 53 53 9 55 5 5 45
K- 10 auto 14 0.4839 [0.4894 |(0.48 |0.48 |0.48 |[0.718 | 056 |0.41 |[0.58 |0.43
means++ 96 31 96 4 63 3 7 37
K- 1 auto 90 0.593 0.5897 | 0.58 |0.58 |[0.58 |0.638|0.53 |0.64 |0.35 |0.46
means++ 88 89 88 33 43 57 67
K- 10 auto 90 0.4831 |0.4886 |0.48 |0.48 |0.48 |[0.718 | 056 |0.41 |[0.58 |0.43
means++ 88 24 88 9 39 36 64 61
K- 1 auto 91 0.4897 |0.4903 |[0.49 |0.48 | 049 |0.714 |0.49 |0.48 |0.51 |0.50
means++ 02 93 02 3 71 34 66 29
K- 10 auto 91 0.5169 |0.5114 (051 |051 |051 [0.695|0.43 | 058 |[0.41 |0.56
means++ 12 05 12 1 61 64 36 39
K- 1 auto 92 0.5377 |[0.5359 [0.53 |053 |053 [0.679 051 |055 [0.44 |0.48
means++ 61 59 61 9 39 82 18 61
K- 10 auto 92 0.4831 |0.4886 |0.48 |0.48 |0.48 |[0.718 | 0.56 |0.41 [0.58 |0.43
means++ 88 24 88 9 39 36 64 61
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K- 5 1 auto 200 0.5664 | 0.5663 | 0.56 |0.56 |0.56 |0.658 | 0.56 |0.56 |0.43 |0.43
means++ 67 58 67 5 95 38 62 05
K- 5 10 auto 200 0.5169 |0.5114 | 051 |[0.51 |0.51 |0.695|0.43 |0.58 |0.41 |0.56
means++ 12 05 12 1 61 64 36 39
K- 5 1 auto 250 0.5431 |0.5342 | 053 [0.52 |0.53 |0.676|0.36 |0.69 |0.30 | 0.63
means++ 04 23 04 2 88 12 8
K- 5 10 auto 250 0.4831 |0.4886 |0.48 |[0.48 | 048 |0.718 | 0.56 |0.41 |0.58 |0.43
means++ 88 24 88 9 39 36 64 61
random 5 1 Full 5 0.5083 | 0.5038 | 0.50 [0.50 |0.50 |0.701|0.44 |0.56 |0.43 | 0.55
37 34 37 2 24 51 49 76
random 5 10 elkan 5 0.5169 |0.5114 | 051 |[0.51 |0.51 |0.695|0.43 | 058 |0.41 | 0.56
12 05 12 1 61 64 36 39
random 10 10 auto 5 0.4896 |0.4884 |0.48 |[048 (048 |0.714 /047 | 050 |0.49 |0.52
83 81 83 4 14 52 48 86
Appendix LL: All results in HMM Model for Experiment 9.
two states method
Tuning Parameters Evaluations
covariance | min_co | n_ite | algorit | tol Random | Accur | Precis | Rec | F1- |[ROC |RM |TP | TN |FP |FN
_type var r hm State acy ion all | sco |auc SE |R |R R |R
re |score
spherical 0.0001 | 5000 | viterbi | 0.1 | defaults |0.6267 | 0.632 |0.63 | 0.6 |0.6316 |0.61 | 0.6 | 0.56 | 0.4 | 0.30
6 2 27 | 545 1 98 |54 3 21
diag 0.0001 | 5000 | viterbi | 0.1 | defaults |0.3923 [ 0.390 |0.39 | 0.3 | 0.3900 [ 0.77 [0.3 [0.42 |05 |0.64
4 9 222 95 6 04 |8 |04
tied 0.0001 | 5000 | viterbi | 0.1 | defaults |0.5182 | 0.512 |0.51 | 0.5 |0.5127 | 0.69 |04 | 0.58 | 0.4 |0.55
9 3 12 | 322 41 4 53 |1 |99
full 0.0001 | 5000 | viterbi [ 0.1 | defaults |0.8593 [0.883 |0.86 | 0.8 |0.8691 [0.37 |1 0.73 | 0.2 | 0.00
3 9 59 |058 51 83 |6 |01
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spherical 0.0001 | defa | viterbi | defa |defaults |0.6267 | 0.632 |0.63 | 0.6 |0.6317 |0.61 |0.6 | 0.56 | 0.4 |0.30
ults ults 7 2 27 | 295 1 98 |53 |3 |18

diag 0.0001 | defa | viterbi | defa | defaults |0.6077 | 0.609 |0.61 | 0.6 |0.6099 | 0.62 | 0.6 |0.57 | 0.4 |0.35
ults ults 6 08 | 778 63 |4 9% |2 |96

tied 0.0001 | defa | viterbi | defa | defaults |0.4818 |0.487 |0.48 |0.4 |0.4872 |0.71 | 0.5 | 0.41 | 0.5 |0.44
ults ults 1 7 81 |678 9 |6 47 19 |01

full 0.0001 | defa | viterbi | defa | defaults |0.8593 |0.883 |0.86 | 0.8 | 0.8691 | 0.37 |1 0.73 | 0.2 | 0.00
ults ults 3 9 59 | 058 51 83 |6 |01

spherical 0.0001 | 5000 | map 0.1 | defaults |0.3733 |0.367 |0.36 | 0.3 |0.3683 | 0.79 | 0.3 | 0.43 | 0.5 |0.69
4 8 68 | 455 16 |02 |46 |7 |79

diag 0.0001 | 5000 | map 0.1 | defaults |0.3923 |0.390 |0.39 | 0.3 | 0.3900 | 0.77 | 0.3 |0.42 |05 | 0.64
4 9 222 95 |6 04 |8 |04

tied 0.0001 | 5000 | map 0.1 | defaults |0.4818 | 0.487 |0.48 | 0.4 |0.4872 |0.71 |05 |0.41 |05 |0.44
1 7 81 | 678 9 |6 47 |9 |01

full 0.0001 | 5000 | map 0.1 | defaults |0.8593 | 0.883 |0.86 | 0.8 [0.8691 | 0.37 |1 0.73 | 0.2 | 0.00
3 9 59 | 058 51 83 |6 |01

spherical 0.0001 | defa | map defa | defaults |0.3733 |0.367 |0.36 | 0.3 | 0.3682 | 0.79 | 0.3 | 0.43 | 0.5 ]0.69
ults ults 3 8 68 | 705 17 |02 |47 |7 |82

diag 0.0001 | defa | map defa | defaults |0.6077 | 0.609 |0.61 | 0.6 |0.6099 | 0.62 | 0.6 |0.57 | 0.4 |0.35
ults ults 6 08 | 778 63 |4 9% |2 |96

tied 0.0001 | defa | map defa | defaults |0.4818 | 0.487 |0.48 | 0.4 |0.4872 |0.71 |05 | 0.41 |05 |0.44
ults ults 1 7 81 |678 9 |6 47 19 |01

full 0.0001 | defa | map defa | defaults |0.8593 | 0.883 |0.86 | 0.8 | 0.8691 | 0.37 |1 0.73 | 0.2 | 0.00
ults ults 3 9 59 | 058 51 83 |6 |01

spherical 0.0001 | 5000 | viterbi | defa | defaults |0.6267 | 0.632 |0.63 | 0.6 |0.6316 | 0.61 | 0.6 | 0.56 | 0.4 | 0.30
ults 6 2 27 | 545 1 98 |54 |3 |21

spherical 0.0001 |5 viterbi | 0.1 defaults | 0.3731 | 0.366 |0.36 | 0.3 | 0.3679 | 0.79 [ 0.2 | 0.43 | 0.5|0.70
8 8 67 |181 17 |98 |74 |6 |16

spherical 0.0001 |5 viterbi | 0.1 |42 0.6269 | 0.633 | 0.63 | 0.6 |0.6320 [ 0.61 | 0.7 |0.56 | 0.4 |0.29
2 2 27 | 819 09 [02 |26 |4 |84




Appendix MM: All results in Auto-Encoder Model for Experiment 9.
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Threshold Method
Tuning Parameters Evaluations
nb_ | batc |inpu | encodi | hidde | hidde | activa | learni | Thre | Acc |Pre |Re |F1 |R |R |TP | T |FP |FN
epoc | h_si |[tdi |ng di |n_di n_di | tion ng_ra | shol | urac | cisio |cal | - O M |R |[N |R |R
h ze m m ml m2 te d y n I sco| C | SE R
re | au
C
sco
re
10 128 | 128 |18 10 6 tanh 1.00E- | 4 055 [064 |05]03|05(06|0.0]09/|00]09
07 3 34 |17 |99 |17 |68 |51 |84 |15 |48
9 |5 |9 |6 |3 |5 |5 |7
50 128 | 128 |18 10 6 tanh 1.00E- | 4 055 [064 |05]03|05(06|0.0]09/|00]09
07 24 62 17 |97 |17 |69 |48 |85 |14 |51
2 |3 |2 7 |7 |3 |3
10 128 | 128 |32 16 8 tanh 1.00E- | 4 055|064 |05]03 05|06 |0.0]09/|00]09
07 25 55 |17 |97 |17 |68 |49 |85 |14 |50
3 |6 |3 |19 |1 |5 |5 |9
10 128 | 128 |10 5 2 tanh 1.00E- | 4 055|064 |05]04 05|06 |0.0]09/|00]09
07 48 76 |19 |04 |19 |67 |56 |83 |16 |43
9 9 |3 |1 |7 |3 |9
10 128 | 128 |5 2 1 tanh 1.00E- | 4 055|064 |05]04 05|06 |00]09/|00]09
07 58 62 |21 |07 |21 |66 |6 |82 |17 |4
1 |5 |1 |5 2 |8
10 128 | 128 |5 3 1 tanh 1.00E- | 4 055|064 |05]04 05|06 |0.0]09/|00]09
07 56 83 |20 |06 |20 |66 |58 |83 |17 |41
9 |4 |9 |6 |7 3
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10 128 | 128 |50 20 10 tanh 1.00E- 0.55 |0.65 050305 |06|00]09/|00]0.9
07 05 25 14 |90 |14 |70 |40 |88 |11 |59
8 |1 |8 |4 |8 |9 |1 |2
10 12 128 | 50 20 10 tanh 1.00E- 0.55 | 0.66 |05|03|05|06|0.0|09|00/ 09
07 06 31 14 |88 |14 |70 |38 |90 |09 |61
8 |7 |8 |4 |9 |6 |4 |1
10 12 128 |5 2 1 tanh 1.00E- 055 064 |[05/04/05|06|0.0(09|00/ 09
07 48 3 2 |05 (2 |67 |57 |82 |17 |42
1 3 [5 |5 |5 |5
10 256 | 128 |5 2 1 tanh 1.00E- 055 064 |[05/04/05|06|00|09|00/ 09
07 52 41 20 |06 |20 |66 |58 |82 |17 |41
5 |3 |5 |9 [8 |2 |8 |2
10 128 | 128 |5 2 1 sigmo | 1.00E- 0.55 |063 {0504 05|06 |0.0]09/|00]0.9
id 07 51 92 20 |07 |20 |67 |59 |81 [19 |40
4 4 9 1
10 128 | 128 |5 2 1 hard_s | 1.00E- 0.55 |064 {0504 /05|06|00]09/|00]0.9
igmoi | 07 52 07 20 |07 |20 |66 |6 |81 |18 |4

d 6 |2 |6 |9 2 |8
10 128 | 128 |5 2 1 expon | 1.00E- 0.55 |064 |05]04 05|06 |00]09/|00]0.9
ential | 07 52 07 20 |07 |20 |66 |6 |81 |18 |4

6 |2 |6 |9 2 |8
10 128 | 128 |5 2 1 linear | 1.00E- 0.55 |064 |05]04 05|06 |00]09/|00]0.9
07 41 26 19 |03 |19 |67 |55 |83 |17 |44
3 |3 |38 |7 5 5
10 128 | 128 |5 2 1 tanh 1.00E- 0.57 {063 |05|04/05|06|01|09|00/ 08
07 25 08 |41 |63 |41 |53 |31 |51 (48 |68
6 |3 |6 |9 |3 |9 |1 |7
10 128 | 128 |5 2 1 tanh 1.00E- 0.60 {062 |05|05(05|06 (0208|0107
07 49 6 83 |56 |83 |28 |97 |69 |30 |02
4 |16 |4 |6 1 |6 |4 |9
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10 128 | 128 tanh 1.00E- 062 |062 |06 |06 |06 |06 05|06|03]|04
07 78 57 25 |25 |25 |10 |97 |54 |45 |02

7 |7 |7 |1 2 |1 |9 |8
10 128 | 128 tanh 1.00E- 054 {063 |05|03(05|06|0.0(09|00/ 09
07 S) 57 08 |75 |08 |74 |25 |91 (08 |74

7 |1 |7 |5 |5 |9 |1 |5
10 128 | 128 linear | 1.00E- 055 064 |[05/04/05|06|0.0(09|00/ 09
06 42 17 19 |03 |19 |67 |56 |82 |17 |43

4 |7 |4 |7 1 |7 |3 |9
10 128 | 128 tanh 1.00E- 055 064 |[05/04/05|06|00|09|00/ 09
08 54 46 20 |06 |20 |66 |59 |82 |17 |40

7 |6 |7 |8 1 |12 |8 |9
10 128 | 128 tanh 1.00E- 0.55 |064 {0504 05|06 |00]09/|00]0.9
09 48 45 2 |04 |2 |67 |57 |82 |17 |42

9 2 2 |8 |2 |8
10 128 | 128 tanh 1.00E- 0.55 |064 {0504 /05|06|00]09/|00]0.9
06 54 46 20 |06 |20 |66 |59 |82 |17 |40

7 |6 |7 |8 1 |2 |18 |9
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