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Abstract 

Peatlands are important wetland systems, but dominant macroarthropod groups endemic to 

peatlands and the environmental factors that affect them are poorly represented in the 

literature. I examined the richness, abundance, and community composition of soil and 

surface dwelling macroarthropods using emergence traps, peat sorting, and pitfall traps in 

two Ontario fens differing in water table, nutrient level, and vegetation. I found 218 

arthropod morphospecies, with each site having a similar richness of emergent arthropods, 

but patterns of community composition differed between the two sites. The Carex (sedge) 

dominated site had twice as many emergent individuals, and total abundances declined 

dramatically over the growing season, whereas the Sphagnum (moss) dominated site had 

consistent arthropod abundances. Seasonal change in soil moisture was a significant correlate 

of arthropod abundance. Since Canadian peatlands face increasing climate warming, this 

study provides baseline information on the resident macroarthropod communities in different 

peatland types.  
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Summary for Lay Audience 

Soil organisms are hyperdiverse, have high biomass, and play important roles in both below-

ground and above-ground food webs as both predators and as food source for other 

organisms. Yet despite soil arthropods having important ecological roles, they are not well 

understood because they are difficult to directly observe. Many soil-dwelling species only 

live in soil for part of their life cycle, emerging when they reach maturity. Along with 

predatory macroarthropods (mostly spiders) on the soil surface, these emergent 

macroarthropods (mainly the Nematocera or lower flies) connect the below-ground system to 

the above-ground food web. Peatlands are important wetland systems, but dominant 

macroarthropod groups endemic to peatlands lack records in the literature. I examined the 

diversity of soil and soil-surface dwelling macroarthropods in two adjacent peatlands that 

differ in water table, nutrient level, and vegetation. I collected these macroarthropods using 

insect emergence traps, peat sorting, and pitfall traps. Altogether I found 218 morphospecies 

(groups differentiated based on morphological traits), with each site having the same 

richness, but twice as many emergent individuals in the Carex (sedge) dominated site 

compared to a Sphagnum (moss) dominated site. At the Carex site, emergent arthropod 

abundances declined dramatically over the season, while the Sphagnum site had a much more 

stable emergent community, with no significant changes in abundance. The abundances of 

the surface ground-dwelling community were very similar between the two fens, but there 

was little overlap in the species present at each site. Seasonal changes in soil moisture were 

an important correlate for the overall abundance of emergent insects collected. Northern 

peatland ecosystems are expected to undergo significant changes in vegetation and soil 

moisture under ongoing climate warming with unknown consequences for peatland 

biodiversity. This study provides baseline information for the emergent insects and their 

ground-dwelling predators that are important components of peatland biodiversity. 

 



 

iv 

 

Co-Authorship Statement 

This manuscript was envisioned by Dr. Zoë Lindo and Grace Carscallen, Carscallen collected 

and analyzed the data; a subset of this data will be submitted for publication to a scientific 

journal in the future by Carscallen and Lindo. 

 



 

v 

 

Acknowledgments 

It is a challenge to properly describe what an incredible opportunity and experience this has 

been for me. Projects which feature insect and spider biodiversity are rare, and I am very 

grateful to my supervisor Zoë Lindo for giving me this opportunity, as well as working with 

me to improve myself as a scientist, providing invaluable help, reassurance, and 

encouragement. Thank you, Brian Branfireun and the many members of the Lindo and 

Branfireun lab for eager support in the field and lab. Additional thanks are due to Caitlyn 

Lyons for conducting all vegetation sampling and identifications, Mari Könönen for 

providing annual site precipitation data, as well as Jim McLaughlin and Maara Packalen from 

OMNRF-OFRI for facilitating field work. Particular thanks are due to Jen Blythe and 

Madelaine Anderson for their humor and knowledge as scientists, to Carlos Barreto and Will 

Laur for warmly sharing my fondness of arthropods, and to Caitlyn Lyons and Matt Meehan 

who were there every step of the way. 

Thank you, Jaime Pinzón of the Northern Forestry Research Centre, for answering many 

questions over email and teaching me nearly everything I know about spider identification. 

Thank you to many friends, new and old, for answering my messages, suggesting 

identification resources, and offering highly productive conversations over beers.  

Thank you to my family, especially my parents, John and Janet Carscallen for tracking my 

progress from Alberta, and to my partner Michael Ross for following me to London on this 

journey. I am enormously grateful to you all.  

 



 

vi 

 

Table of Contents 

Abstract ............................................................................................................................... ii  

Summary for Lay Audience ............................................................................................... iii 

Co-Authorship Statement................................................................................................... iv  

Acknowledgments............................................................................................................... v 

Table of Contents ............................................................................................................... vi  

List of Tables ................................................................................................................... viii 

List of Figures .................................................................................................................... ix 

List of Appendices ............................................................................................................. xi  

Chapter 1 ............................................................................................................................. 1  

1 Introduction .................................................................................................................... 1  

1.1 Arthropods of Boreal Peatlands .............................................................................. 1 

1.2 Ecology of Peatland Arthropods ............................................................................. 3 

1.2.1 Diptera Taxonomy, Life History, and Ecology .......................................... 4 

1.2.2 Araneae Taxonomy, Life History, and Ecology ......................................... 5 

1.3 Objectives ............................................................................................................... 7  

Chapter 2 ............................................................................................................................. 9  

2 Methods .......................................................................................................................... 9  

2.1 Study Area .............................................................................................................. 9  

2.2 Sample Design and Field Collection....................................................................... 9 

2.3 Sample Processing ................................................................................................ 12 

2.4 Statistical Analyses ............................................................................................... 14 

Chapter 3 ........................................................................................................................... 17  

3 Results .......................................................................................................................... 17 

3.1 Emergent Arthropods ............................................................................................ 17 



 

vii 

 

3.2 Peat-dwelling Arthropods ..................................................................................... 28 

3.3 Surface-dwelling Arthropods ................................................................................ 28 

3.4 Environmental Variables ...................................................................................... 37 

Chapter 4 ........................................................................................................................... 41  

4 Discussion .................................................................................................................... 41  

4.1 Diversity of boreal peatland arthropods ................................................................ 41 

4.2 Dominant arthropod taxa in boreal peatlands ....................................................... 42 

4.2.1 Diptera....................................................................................................... 42 

4.2.2 Araneae and Carabidae ............................................................................. 44 

4.3 Other peatland arthropod taxa ............................................................................... 45 

4.4 Differences between Sphagnum and Carex-dominated peatland arthropods ....... 46 

4.5 Seasonal trends in peatland arthropods ................................................................. 48 

4.6 Environmental factors affecting peatland arthropod diversity .............................. 49 

4.7 Caveats, challenges and limitations ...................................................................... 52 

4.8 Conclusions and significance ................................................................................ 55 

References ......................................................................................................................... 57  

Appendices ........................................................................................................................ 72  

Curriculum Vitae .............................................................................................................. 85  



 

viii 

 

List of Tables 

Table 3.1 Diversity indices for the emergence trap arthropods collected from a Carex and 

Sphagnum fen in central Ontario over the 2018 growing season. Indices were calculated in 

the vegan package of R, and values are means  standard error; different letters denote 

statistically different groups based on a RM-ANOVA and Tukey’s post hoc test run in 

Statistica. ................................................................................................................................. 22  

Table 3.2 Diversity indices (Shannon’s, Simpson’s and Pielou’s) calculated using the vegan 

package in R for of arthropods collected by pitfall traps from a Carex and Sphagnum fen in 

central Ontario over the 2018 growing season. Values are means, errors are standard error; 

different letters denote statistically different groups based on a RM-ANOVA and Tukey’s 

post hoc test............................................................................................................................. 32  

Table 3.3 Daily minimum and average temperatures measured in the field at a Carex and 

Sphagnum fen in central Ontario over the 2018 growing season, by HOBO dataloggers 

placed 1 m north of emergence traps. Gravimetric moisture and pH were measured in the lab 

using two peat samples that were collected from inside the emergence trap quadrats and were 

used to quantify peat dwelling arthropods. Values are means (± standard error). Different 

letters denote statistically different groups based on a RM-ANOVA and Tukey’s post hoc 

test. .......................................................................................................................................... 39  

 

 



 

ix 

 

List of Figures 

Figure 2.1 The sampling scheme for emergence traps (randomly selected quadrats are shown 

as squares; light gray for June, dark gray for July, and black for August) and the pitfall traps 

(black circles, not to scale; locations constant throughout the study) within the 25 m × 25 m 

site at each peatland. Each small square represents 1 m × 1 m. Pitfall traps were at least 8 m 

apart......................................................................................................................................... 11  

Figure 3.1 Sample-based rarefaction of cumulative species richness of holometabolous adult 

insects in two fen habitats collected with emergence traps: (a) Rarefaction curve using data 

from the Carex fen; (b) Rarefaction curve using data from the Sphagnum fen; (c) Rarefaction 

curve of data from both fens together. .................................................................................... 19 

Figure 3.2 (a) Standardized species richness, and (b) total abundance of holometabolous adult 

insects collected using emergence traps at two fens that differ in dominant vegetation near 

White River, Ontario. Values are means and error bars are standard error, values with 

different letters denote statistically different groups based on a RM-ANOVA and Tukey’s 

post hoc test............................................................................................................................. 21  

Figure 3.3 (a) Total abundance of individuals belonging to the Chironomidae, and (b) total 

abundance of individuals belonging to the Ceratopogonidae collected using emergence traps 

at two fens that differ in dominant vegetation near White River, Ontario. ............................ 24 

Figure 3.4 The community composition of adult holometabolous insects collected in 

emergence traps visualized by non-metric multidimensional scaling ordination using a Bray-

Curtis dissimilarity matrix. Data points represent separate samples across the three sampling 

periods (squares = June, triangles = July, circles = August) and fen types (shaded = Carex, 

open = Sphagnum). ................................................................................................................. 25 

Figure 3.5 The community composition of seven selected adult holometabolous insects 

collected in emergence traps visualized by principal components analysis of species with 

standardized abundances of >20 shown as arrows (see Appendix A for full species codes). 

Data points represent separate samples across the three sampling periods (squares = June, 

triangles = July, circles = August) and fen types (shaded = Carex, open = Sphagnum). ....... 27 



 

x 

 

Figure 3.6 Sample-based rarefaction of cumulative species richness for surface-dwelling 

arthropods in two fen habitats collected with pitfall traps: (a). Rarefaction curve using data 

from the Carex fen; (b). Rarefaction curve using data from the Sphagnum fen; (c). 

Rarefaction curve of data from both fens together. ................................................................ 29  

Figure 3.7 Surface-dwelling arthropod communities examined using pitfall traps at two fens 

that differ in dominant vegetation near White River, Ontario: (a) overall average species 

richness, (b) overall average abundance, (c) average non-spider arthropod abundance and (d) 

average Araneae (spider) abundance. ..................................................................................... 31  

Figure 3.8 The community composition of surface-dwelling arthropods collected in pitfall 

traps visualized by non-metric multidimensional scaling ordination using a Bray-Curtis 

dissimilarity matrix. Data points represent separate samples across the three sampling periods 

(squares = June, triangles = July, circles = August) and fen types (shaded = Carex, open = 

Sphagnum). ............................................................................................................................. 34 

Figure 3.9 Principal components analysis biplot of the most abundant surface-dwelling 

arthropods (abundances of >10 indiv. total) collected in pitfall traps (shown as arrows; see 

Appendix A for further species information). Data points represent separate samples across 

the three sampling periods (squares = June, triangles = July, circles = August) and two fen 

types (shaded = Carex, open = Sphagnum). ........................................................................... 36 

Figure 3.10 (a) Daily maximum temperature measured in the field at the Carex and 

Sphagnum fens by HOBO dataloggers placed 1 m north of emergence traps, and (b) 

volumetric peat moisture in the field within the emergence trap quadrats. Different letters 

denote statistically different groups based on a RM-ANOVA and Tukey’s post hoc test. .... 38 

  



 

xi 

 

List of Appendices 

Appendix A: List of morphotypes identified to family level where possible, and the number 

of individuals collected using emergence traps from a Carex-dominated fen and a Sphagnum-

dominated fen near White River, Ontario in 2018. Species followed by an asterisk (*) were 

used in the Principal Component Analysis (PCA). ................................................................. 72  

Appendix B: List of morphotypes identified to family level where possible, and the number 

of individuals collected from peat samples taken from a Carex-dominated fen and a 

Sphagnum-dominated fen near White River, Ontario in 2018. .............................................. 76 

Appendix C: List of morphotypes identified to family or genus level where possible, and the 

number of individuals collected using pitfall traps at a Carex-dominated fen and a 

Sphagnum-dominated fen near White River, Ontario in 2018. Species followed by an asterisk 

(*) were used in Principal Components Analysis (PCA), and individuals which could not be 

morphotyped to species were excluded from analyses (**). .................................................. 78  

Appendix D: Plant species and their relative abundance collected using point intercept 

measures at the locations of emergence trap plots from a Carex-dominated fen and a 

Sphagnum-dominated fen near White River, Ontario in 2018. .............................................. 80 

Appendix E: Plant species richness, Shannon’s and Simpson’s diversity indices, and Leaf 

Area Index (LAI) for vegetation surveys performed using point intercept measures at the 

locations of emergence trap plots from a Carex-dominated fen and a Sphagnum-dominated 

fen near White River, Ontario over the 2018 growing season. ............................................... 82 

Appendix F: Characteristics used for identification purposes for the main target arthropod 

taxa and morphospecies collected from a Carex-dominated fen and a Sphagnum-dominated 

fen near White River, Ontario in 2018. The letters p.o. denote a personal observation. ........ 83 

 

  



1 

 

Chapter 1  

1 Introduction 

1.1 Arthropods of Boreal Peatlands 

Peatlands are wetlands that contain a minimum 40 cm of partially decomposed organic 

matter (peat) (National Wetlands Working Group 1997) and are important ecosystems for 

global carbon storage (Gorham 1991; Frolking and Roulet 2007). In Canada, peatlands 

cover 13% of the land area and most peatlands occur in the Boreal zone (Tarnocai et al. 

2011). Within the Boreal zone, peatlands form a gradient of habitat types from low-

nutrient, ombrotrophic bogs that are dominated by Sphagnum spp. mosses to 

minerotrophic fens that range in nutrient status (low, intermediate, and high nutrient) and 

can be dominated by Sphagnum spp. mosses, or Carex spp. sedges and other vascular 

plants (Rydin and Jeglum 2013). Bogs are generally lower in pH and nutrient levels, and 

are hydrologically supplied by precipitation, while fens are higher in pH and nutrients 

and are hydrologically supplied by groundwater (Rydin and Jeglum 2013). Because 

peatlands are unique in their vegetation, hydrology and soil chemical properties, 

peatlands have unique arthropod communities (Spitzer and Danks 2006), yet are 

relatively understudied ecosystems in Canada (Spitzer and Danks 2006; but see 

Finnamore and Marshall 1994; Grégoire Taillefer and Wheeler, 2012, 2018) compared to 

other systems such as forests, grasslands, and other wetland types. That said, some 

previous studies indicate that >2000 arthropod species may inhabit or use peatlands as 

habitat (Finnamore 1994). These peatland arthropods can have many ecological roles, 

particularly macroarthropods, such as providing important food resources for higher 

trophic level organisms (Cristol et al. 2008), stabilizing predators (Paetzold and Tockner 

2005), and as pollinators (Savage et al. 2019). 

The majority of broad-scale peatland arthropod studies are of arthropod diversity 

assessed using non-target trapping and sampling methods such as aerial malaise traps 

(Finnamore 1994; Deans 2005; Grégoire Taillefer and Wheeler 2012), pan traps (Blades 
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and Marshall 1994; Finnamore 1994; Grégoire Taillefer and Wheeler 2012, 2018) and/or 

sweep netting (Grégoire Taillefer and Wheeler 2012, 2018, 2019). However, these 

trapping methods can over-estimate arthropod diversity in peatlands by trapping members 

of the aerial community which complete most of their development in surrounding 

habitats, or even attract arthropods from adjacent habitats. In this context, larvae are 

much less mobile than adults, and therefore newly emerged adults may be more 

informative for peatland studies because they can be directly associated with the habitat 

in which they are found using emergence traps (Rosenberg et al. 1988). Similarly, pitfall 

traps that collect surface-dwelling (i.e., often non-flying) invertebrates would also 

represent resident peatland invertebrates as the presumed catchment area of collection is 

typically on the scale of meters (1-20 meters) (Zhao et al. 2013).  

While several key studies of peatland arthropod diversity have been performed in Canada 

that compare the fauna of multiple peatland sites (see Blades and Marshall 1994; 

Aitchison-Benell 1994; Dondale and Redner 1994), studies where vegetation cover and 

soil moisture are quantified and analyzed alongside arthropod sampling are still lacking 

(but see Grégoire Taillefer and Wheeler 2012; 2018). The nature of peatlands with varied 

microtopography (a type of habitat heterogeneity) allows them to provide specific 

resources for the arthropods that live there. Hummocks (raised areas) can provide warm 

and dry habitats for overwintering arthropods (Främbs 1994), while within the moss layer 

moisture can remain constant and temperatures may fluctuate by only 5°C, creating a 

consistent refuge from other, more severe, environmental fluctuations (Gerson 1969). 

Moist hollows (low-lying depressions) provide food resources of abundant smaller 

arthropods in summer (Främbs 1994). Plants often structure arthropod habitats, and the 

plant community can impact arthropod communities. For instance, the spider community 

under the bark in the Boreal forest in Alberta differed between deciduous and coniferous 

trees (Pinzón and Spence 2010), while the surface-dwelling spider communities in 

German forests varied by dominant tree species (Ziesche and Roth 2008). Similarly, the 

abundance of emergent flies decreased over the course of plant succession of fallow 

farmlands, likely due to more dense and dry plant litter from a dominant grass species in 

later successional stages (Frouz 1999). So, excluding more specialized relationships, such 

as those between host plants and plant parasites, peatland plant communities likely 
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influence peatland arthropods through overall habitat structure. Evidence for this is 

limited, yet Wrubleski (1987) found that the highest abundances of macroarthropods in 

both bogs and marshes were associated with areas of greater submerged vegetation 

(likely providing habitat for larvae), but at the same time, shade can also alter the 

emergence of some arthropods (Lammers 1977), such as that cast by vascular plants. 

Therefore, water table, alongside plant density and community composition are thought 

to be important factors affecting arthropod diversity and abundance in peatlands.  

 

1.2 Ecology of Peatland Arthropods 

Among the macroarthropods (i.e., insects and spiders), community composition within 

terrestrial habitats, including peatlands, is linked to food availability, temperature 

(Robinson et al. 2018), soil moisture (Ziesche and Roth 2008), and plant community 

composition, often with arthropod species composition related to specific vegetation 

types (Blades and Marshall 1994; Spitzer and Danks 2006; Glime 2017). For instance, in 

a study of peatlands in Belarus, Sushko (2017) found that insect species diversity 

increased with increasing cover of dwarf shrubs and decreasing cover of herbs. Previous 

studies in Canadian (Alberta) peatlands also suggest that peatlands with a higher variation 

in plant architecture have greater insect species richness (Finnamore 1994). So, while 

many peatlands are observed to have high local arthropod (alpha) diversity (Finnamore 

1994), they also show high compositional variability among different peatland types (beta 

diversity) (Blades and Marshall 1994), and therefore are posited to contribute to high 

regional (gamma) diversity.  

The larvae of many holometabolous insect groups (i.e., that undergo complete 

metamorphosis) are found within soils. For instance, Behan-Pelletier and Bissett (1992) 

report that larvae of Diptera (flies) may constitute up to 33% of all arthropod species 

found in soil. Several orders of holometabolous insects are abundant and diverse in 

Boreal peatlands, including Hymenoptera (ants, wasps, bees) (Finnamore 1994), 

Coleoptera (beetles) (Runtz and Peck 1994) and Diptera (Blades and Marshall 1994; 
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Grégoire Taillefer and Wheeler 2012); the nematocerous flies (which include mosquitos 

and black flies) are often the most abundant peatland macroarthropods (Wrubleski 1987). 

At the soil surface, spiders (Order Araneae) are some of the most prevalent peatland 

arthropod predators (Dondale and Redner 1994; Finnamore 1994). Araneae and Diptera 

are shown to have matching seasonal trends in abundance (Hodkinson et al. 2001) and 

form a large portion of the animal biomass in peatlands as well as many other terrestrial 

ecosystems (Hölldobler and Wilson 1990; Bar-On et al. 2018). Both Araneae and Diptera 

are extremely important food sources for birds (Hussell 1972; Cristol et al. 2008) and 

because of this ubiquity and high abundance, Diptera and Araneae play a vital role in 

food webs (Wiggins et al. 1991), and this suggests that peatland arthropods in general 

play an important role in terrestrial food webs. 

 

1.2.1 Diptera Taxonomy, Life History, and Ecology 

The Diptera are an order of holometabolous insects, and therefore undergo a life cycle 

which includes an egg, larval, pupal, and adult stage, and are more evolutionarily derived 

relative to the non-holometabolous insects (Grimaldi and Engel 2005). The Diptera are 

divided into two groups, the monophyletic (i.e., including all descendants of a common 

ancestor) and more derived Suborder Brachycera, and the less derived nematocerous 

flies. The nematocerous flies that include the most basal Diptera taxa are often 

functionally grouped together, but are not considered a true suborder because they are not 

monophyletic (Grimaldi and Engel 2005). The Suborder Brachycera represents ~120 

families in the literature, and is a very large and diverse group with respect to 

morphology and life history (Yeates 2002). While specific brachyceran taxa are often less 

abundant in biodiversity studies (Ryan and Hilchie 1981), their taxonomy is better 

understood than that of the nematocerous flies (Grimaldi and Engel 2005).  

Adult Diptera are mostly non-feeding or are fluid feeders (i.e., needing to dissolve solid 

food with saliva before they can consume it) (Grimaldi and Engel 2005; Marshall 2012). 

Besides plant community impacting litter decomposition (Palozzi and Lindo 2017) thus 

influencing the food resources for detritivorous or root-feeding Dipteran larvae 
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(McAlpine et al. 1981), some flies are nectar feeders as adults and influenced by herb 

diversity, likely related to floral food resources (Scherber et al. 2014). Due at least in part 

to their holometabolous lifestyle and their varied diets, Grimaldi and Engel (2005) call 

the Diptera ‘the most ecologically diverse insect group’. This applies spatially as well, as 

they are present in many ‘harsh’ habitats globally including both the Arctic (Danks and 

Oliver 1972) and the Antarctic (Allegrucci et al. 2006). Different substrates (litter, rocks, 

or submerged riparian vegetation) have been shown to influence Diptera community 

composition in Brazil (Figueiró et al. 2012), with large latitudinal effects (likely due to 

temperature) (Patitucci et al. 2011), as well as soil moisture (De Bruyn et al. 2001). 

In Canadian peatlands, vegetation also has been shown to influence Diptera community 

composition (Grégoire Taillefer and Wheeler 2012). The Sphagnum mosses present in 

peatlands modify their environments extensively by releasing acidic compounds 

(National Wetlands Working Group 1997), potentially limiting which organisms can 

survive there (Glime 2017), and yet many Diptera species are found in peat (Ryan and 

Hilchie 1981) and peatlands (Blades and Marshall 1994) composed of Sphagnum mosses. 

In relation to these wetland habitats, many Diptera species also maintain the ancestral 

characteristic of a simple larval form which is adapted to aquatic habitats (Chapman et al. 

2006; Marshall 2012), and often respire through their cuticle (Int Panis et al. 1995; 

Urbanek et al. 2011). Some are capable of surviving in even ephemerally moist 

environments because they can enter desiccation-resistant diapause in response to drying 

(Danks 1971). Diptera adults are fast flyers, capable of taking advantage of otherwise 

ephemeral food and habitat resources for their offspring, further allowing them to live 

otherwise difficult to exploit resources such as fresh dung (Parker 1970). At the 

ecoregion scale peatland Diptera communities also appear to be structured by highly 

stochastic processes such as dispersal (Grégoire Taillefer and Wheeler 2019). 

 

1.2.2 Araneae Taxonomy, Life History, and Ecology 

The Order Araneae (i.e., the spiders) undergo a life cycle that includes multiple 

developmental stages within three phases: egg, juvenile spiderlings (including subadults 
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that are morphologically similar to adults but without functional genitalia), and adults 

(Ubick et al. 2017). Worldwide, spider species richness includes over 45,000 described 

species in 114 families, according to the World Spider Catalog (2015). In Canada, it is 

estimated that there are around 1500 species in 45 families (Bennett et al. 2019), although 

new Canadian species are still being added with broader spider taxonomy based on 

morphology being supported and supplemented by recent developments in DNA work 

(Bennett et al. 2019). Compared to dipteran diversity, spider diversity in Canada is quite 

well known (Coddington and Levi 1991), making them a reliable taxon for biodiversity 

studies.  

Spiders are effective predators in many habitats, and nearly all spiders are opportunistic 

and solitary predators, found in all terrestrial ecosystems except the Antarctic (Ubick et 

al. 2017). Many spiders are ground-dwelling and have been shown to impact the 

abundances of their prey, such as of emergent aquatic insects around riparian areas 

(Paetzold and Tockner 2005). Spiders are prevalent in forests and their biodiversity has 

been well studied (Pinzón and Spence 2008, 2010; Ziesche and Roth 2008) where 

community composition is shown to be habitat specific (Bergeron et al. 2013). Peatland 

spider communities are also known to be different from forest communities (Rėlys and 

Dapkus 2000), although the factors that affect peatland spider communities are less well 

known than for forest communities. In forest systems, plant species richness is positively 

correlated with spider species richness (Buddle et al. 2000), and spider communities are 

more varied when conditions favour higher variability of microhabitats, such as after fire 

(Buddle et al. 2000). As well, having varied local habitats can allow for habitat 

segregation such that spider species with similar hunting methods may coexist by 

occupying different niches (Greenstone 1980) thereby increasing spider species richness.  

Because peatlands often occur in isolated patches (Tarnocai et al. 2011), this may inhibit 

dispersal of spider groups that are less mobile between peatlands. At the same time, 

peatlands can be ‘island-like’ refuges for the specific species that occupy them (Poulin et 

al. 2004). Some spiders, such as Pirata piraticus are sensitive to low humidity and rely 

on a moist humid habitat (Maelfait et al. 1995) such as that which is found in peatlands, 

and peatlands with high water tables can even be habitat to spiders that hunt on the 
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surface of open water such as Dolomedes sp. (Dondale and Redner 1994), this is however 

not common among spiders in general. In more open habitats, the highly mobile hunting 

spiders (including wolf spiders, Family Lycosidae) are abundant (Coyle 1981), which 

may also facilitate lycosid dispersal into peatlands (Glime and Lissner 2017). Indeed, 

wolf spiders are present in all Canadian ecoregions (Bennett et al. 2019) and are often a 

dominant spider group in peatlands (Dondale and Redner 1994; Koponen 1994). Other 

life history factors may contribute to this such as the maternal care lycosid females 

provide by carrying their juveniles on their backs, enabling this otherwise vulnerable 

stage better survival under wetter environments (as postulated by Platen 2003), whereas 

other groups of spiders may be more vulnerable to the frequent flooding events that occur 

in some peatlands (Glime and Lissner 2017). Despite the challenges associated with 

living in peatlands, there also can be benefits for peatland spider communities, such as 

during the winter when spiders can remain mobile despite freezing temperatures by living 

within the moss layer (Maelfait et al. 1995). Because of their high specificity to these 

habitats, spiders can be used as indicators for peatland sites (Scott et al. 2006).  

 

1.3 Objectives 

Many Canadian peatland arthropod studies are now more than twenty years old (but see 

the work of Grégoire Taillefer and Wheeler 2012; 2013; 2018; 2019; Deans et al. 2005; 

Hammond et al. 2018b), and of these recent studies, only the work of Deans et al. (2005) 

and Grégoire Taillefer and Wheeler (2013) provide abundance data for the nematocerous 

flies (Order Diptera); a dominant taxonomic group. The Boreal zone (forest and 

peatlands) is predicted to undergo substantial climate warming (IPCC 2013). Therefore, 

regarding Boreal peatland-endemic arthropods (such as surface-dwelling spiders and 

emergent flies), it is critical to update the scientific records on their biodiversity and 

seasonal changes in their abundances, and the overall goal of my thesis is to serve as an 

important baseline metric for future monitoring efforts.  
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Here I characterize the diversity of the peat-dwelling (mostly larvae), emergent (mostly 

Diptera), and surface-dwelling (mostly Araneae) arthropods at two Boreal peatland sites 

that differ in vegetation, hydrology and nutrient status; a Sphagnum moss-dominated fen 

and a Carex sedge-dominated fen. At both these sites, my objectives were to:  

1) describe patterns in morphospecies richness, total abundance, and overall 

community composition across one growing season using three different trapping 

methods, and  

2) link emergent arthropod morphospecies and community composition to peat soil 

and vegetation properties to help explain variation in arthropod diversity among 

different peatland types.  

As this is an observational study that is mostly descriptive, I use univariate and 

multivariate statistics to quantify patterns, rather than test specific hypotheses about these 

communities. That said, I predict that seasonality will affect the emergent arthropods due 

to fluctuations in moisture levels and changes in plant biomass related to increased shade 

on emergent insects, but also that seasonal effects will be related to daily temperature 

conditions that are important for development and activity. For the ground dwelling-

arthropods, I predict that the dominant groups will be arachnid predators whose 

abundances will positively correlate with those of their prey (i.e., other arthropods), and 

which will vary seasonally and between the two fen habitats. I predict that abundances 

will be highest at the Sphagnum fen because of the greater availability of dry hummock 

habitat. As the two fen sites differ substantially in the number of plant species and 

corresponding habitat heterogeneity, I predict that the sites will differ in richness due to 

the greater environmental heterogeneity (more plant species and more varied 

microhabitat) to be found at the Sphagnum fen (Palozzi and Lindo 2017), which will 

provide more niches. I also predict that a higher water table (i.e., at or near surface level), 

as is seasonally observed at the Carex site, will be correlated with higher abundances of 

emergent arthropods. 
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Chapter 2  

2 Methods 

2.1 Study Area 

The study area is near White River, Ontario, Canada, in two Boreal peatlands located at 

48°21'N, 85°21'W and 48°21'N, 85°20'W. Both sites are considered fen habitat (i.e., 

hydrologically supplied by groundwater with greater nutrients and higher pH than bog 

habitats), but these two sites differ in nutrient status, water table, and dominant 

vegetation. One fen is 4.5 ha in size, is nutrient poor, has a water table approximately 10-

15 cm below the peat surface, and is semi-forested with a dominant ground cover of 

Sphagnum mosses (henceforth the Sphagnum fen). The other fen, located 2 km west of 

the Sphagnum fen, is approximately 10 ha in size, has slightly more nutrient availability 

(considered an intermediate nutrient fen) and a water table 0-5 cm below the peat surface, 

and is dominated by Carex sedges (henceforth the Carex fen). Both sites are used as 

long-term environmental monitoring sites by the Ontario Ministry of Natural Resources 

and Forestry (OMNRF). Further information on the two sites, such as climate, full 

vegetation descriptions, and geology is available in McLaughlin and Webster (2010), and 

Palozzi and Lindo (2017). 

 

2.2 Sample Design and Field Collection 

All data and samples were collected during three sampling periods (June, July, and 

August) during the growing season of 2018. Each sampling period lasted five days and 

samples were collected from emergence traps, pitfall traps, and peat samples daily. All 

sampling was performed within an undisturbed 25 m × 25 m site at each fen location. 

Emergent peat arthropods were collected using tent-like emergence traps (BioQuip®) 

that were 110 cm × 110 cm × 110 cm in size and open at the base. One trap per fen was 

placed at a different, randomly selected plot each day within each 25 m × 25 m site (Fig. 
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2.1). Plots were not resampled, and plots with pitfall traps in them were also excluded. 

Any open water or trees were avoided, such that trap edges were fully flush with the 

ground on all sides. Temperature on the peat surface was measured during emergence 

trap deployment using Hobo® data loggers placed 1 m north of each plot. Data loggers 

measured temperature and relative humidity every 10 min for the full 24 hours of 

emergence trap sampling. Arthropods were collected from the emergence traps daily 

using a vacuum aspirator and placed into a jar containing the killing agent ammonium 

carbonate (5 trapping days × 3 sampling periods × 2 sites = 30 emergence samples total). 

Arthropods were kept at 4°C for up to 8 hours after sampling, until they were transferred 

into 75% ethanol for longer-term storage and processing. 

Peat-dwelling arthropods were sampled by excavating 10  10 cm × 5-10 cm deep peat 

cores using a peat saw. Two peat cores were collected from each emergence trap plot 

after the emergence trap was sampled (5 plots × 2 cores × 3 sampling periods × 2 sites = 

60 peat samples). Peat samples were kept at 4°C until processed for arthropods in the lab 

two to three weeks after sampling. 

Surface-dwelling arthropods were collected in the field using pitfall traps (11 cm in 

diameter × 13 cm deep) that were partially covered with a plastic roof to prevent rain and 

debris from collecting in the trap. Attempts were made to ensure traps were flush with the 

peat surface; however, due to the higher water table at the Carex fen, some traps were 

approximately 1 cm above the peat. Six pitfall traps were deployed per site, one along 

each border of the 25 m × 25 m grid and two at central locations within the grid, such that 

all traps were at least 8 m apart (Fig. 2.1). Pitfall traps contained approximately 100 ml 

soapy water (approximately 2.5 mL of soap per litre of water) which acted as the 

collection liquid and killing agent. Surface-dwelling arthropods were collected from 

pitfall traps daily (5 trapping days × 6 pitfalls × 2 sites × 3 sampling periods = 180 pitfall 

samples). Arthropods were strained from the soapy water using cheesecloth, stored in 

Ziploc bags in a cooler in the field, and kept at 4°C until they were enumerated and 

transferred into 75% ethanol for longer-term storage and processing.  
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Figure 2.1 The sampling scheme for emergence traps (randomly selected quadrats are 

shown as squares; light gray for June, dark gray for July, and black for August) and the 

pitfall traps (black circles, not to scale; locations constant throughout the study) within 

the 25 m × 25 m site at each peatland. Each small square represents 1 m × 1 m. Pitfall 

traps were at least 8 m apart. 
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In addition to arthropod samples, peat moisture content, leaf area index (LAI), plant 

species richness, and relative plant species abundance were measured at each peat-

emergence trap plot in the field to determine whether these environmental variables 

explain arthropod richness and abundance. Peat moisture was an average of six 

measurements as a volumetric water content percentage (m3 H2O / m3 soil) using a WET 

Sensor and an HH2 Moisture Meter (Delta-T Devices Ltd) immediately after the 

emergence trap was sampled. Leaf area index (LAI) was measured using an AccuPAR 

PAR/LAI Ceptometer Model LP-80 (METER Group Inc.), which calculates the 

difference between above and below-canopy photosynthetically active radiation. LAI 

effectively estimates the amount of light obstructed by the plant canopy and is used as an 

estimate of above-ground plant biomass. Due to the greater variation in canopy cover at 

the Sphagnum fen, LAI was recorded as the average of ten measurements, while LAI was 

recorded as the average of five measurements at the Carex fen. Plant richness and relative 

plant species abundance were measured using the point intercept method (Bråthen and 

Hagberg 2004) for 100 intersecting points within 1 m × 1 m at the centre of each plot. At 

each point intercept the nearest plant was identified using Newmaster et al. (1997). 

 

2.3 Sample Processing 

For each sampling type a target group of individuals was selected, and other individuals 

found in those traps were considered bycatch and were not included in further analyses. 

For instance, in emergence traps the target group was holometabolous adult insects that 

could reasonably inhabit and emerge from either the peat or vegetation as larvae. For 

example, Simuliidae (i.e., black flies) were excluded from the analyses of emergent 

arthropods as they inhabit lotic habitats (i.e., running water) as larvae (McAlpine et al. 

1981), and therefore were likely only caught accidentally in emergence traps at a time 

when their densities were high.  

For pitfall traps the target groups were surface-dwelling arthropods, which included 

spiders and some Orthoptera (i.e., grasshoppers), Hymenoptera (i.e., ants), and 
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Coleoptera (beetles primarily in the family Staphylinidae). Organisms not considered 

surface-dwelling arthropods (such as Hemiptera (true bugs) that live on foliage) or that 

are not targeted invertebrates using pitfall traps (such as Diptera), as well as non-adult 

specimens were considered ‘bycatch’ and excluded from these totals, and not analyzed 

further. In the peat sampling, the target taxonomic groups were any holometabolous 

larvae. For all trapping methods, any extensively damaged, broken, or partial specimens 

that could not be sufficiently morphotyped were similarly excluded from analyses but are 

included in the relevant appendices. 

The nematocerous flies (Order Diptera) collected in the emergence traps and peat 

samples, and spiders and insects collected in the pitfall traps were identified to a 

minimum of family level and assigned to a morphotype representing species level. Other 

groups were identified to order or suborder level, but all intact individuals of the study 

were assigned a morphotype representing species level (hereafter referred to as 

‘morphospecies’, even though some individuals were identified to species). Several 

groups (e.g., Ceratopogonidae (biting midges) and Sciaridae (fungus gnats)) are known to 

display strong sexual dimorphism and could not be confidently grouped into species; for 

this reason males and females were considered separate morphospecies. Emergent 

nematocerous flies were identified to family and, where possible, genus level using 

McAlpine et al. (1981) and species using Langton and Pinder 2007, with diagrams in 

Marshall (2012) and Jewiss-Gaines (2018) used as further reference. Similarly, peat 

arthropods, primarily larvae from the Order Diptera, were identified to family using 

McAlpine et al. (1981) with diagrams from Marshall (2016) used as further reference. 

Chironomid larvae were further identified to genus using Oliver and Roussel (1983), with 

diagrams in Epler (2001) used as further reference. Finally, surface-dwelling Araneae 

were identified to genus using Ubick et al. (2017), and to species using Dondale and 

Redner (1990), with the diagrams in Paquin and Dupérre (2003) used as a further 

reference, while any surface-dwelling insects (including ants) were identified using 

Marshall (2006), with staphylinid beetles identified to subfamily using Brunke et al. 

(2011). Voucher arthropods will be deposited at the Zoological Collections at Western 

University as either slide mounted or ethanol-preserved specimens.  
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Total abundance and species richness for emergent arthropods were standardized based 

on sampling area and time (abundance: # individuals / m2 / day; richness: # species / m2 / 

day). Peat-dwelling arthropods, hand-picked from approx. 230 ml subsample of peat were 

standardized based on a per 10 g dry weight (abundance: # individuals / 10 g peat; 

richness: # species / 10 g peat) after the sorted peat subsample was subsequently dried at 

60°C to obtain the dry weight value. Total abundance and species richness for surface-

dwelling arthropods were standardized by trapping time (abundance: # individuals / day; 

richness: # species / day). 

The remainder of each peat sample was used to calculate gravimetric moisture content 

and measure pH. Soil moisture was calculated on approx. 4 cm × 4 cm × 5 cm peat 

subsample using the following equation:  

Moisture content (ratio) = ((wet weight - dry weight60C) / dry weight60C) × 100. 

pH was measured from approx. 4 cm × 4 cm × 5 cm peat in distilled H2O at a ratio of 5.5 

ml to 0.5 g dry weight equivalent peat. Water was squeezed from the peat sample and the 

pH of this liquid was measured using a calibrated glass pH probe. Plant species richness 

was standardized to species per m2 and LAI is expressed as leaf area per m2 of terrain 

surface. 

 

2.4 Statistical Analyses 

Low abundances and high number of morphospecies singletons (taxa represented by a 

single specimen) prevented a comprehensive analysis of the peat-dwelling arthropods; 

data are thus summarized and presented descriptively. For the emergence and pitfall trap 

data, I performed sample-based rarefaction (species accumulation) curves based on 1000 

permutations of randomized resampling without replacement using the vegan package in 

R (R Development Core Team, version 3.5.1). Rarefaction curves were used to assess 

cumulative (total) species richness collected with respect to sampling effort and were 

performed for each site separately as well as both fen sites together. To compare total 
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richness values with the potential number of species occurring, I calculated four richness 

estimators (Chao, Jackknife 1, Jackknife 2, and Bootstrap) to calculate the estimated 

species richness based on all emergence trap and pitfall trap arthropods sampled across 

both fens and separately for each fen site. Estimators were calculated using the vegan 

package in R (R Development Core Team, version 3.5.1). In addition to measures of 

species richness and total species abundance, three diversity indices were calculated for 

each emergent trap and pitfall sample: Shannon’s diversity (H’), the inverse of Simpson’s 

diversity (1/D), and Pielou’s evenness (J) using the following equations in R (R 

Development Core Team, version 3.5.1): 

H’ = -Σ(pi) × (ln (pi)) 

1/D = 1/ Σ(pi
2) 

J = H’/ln(S)  

where pi is the proportional abundance of the ith species.  

I used the following statistical methods to help quantify overarching patterns of arthropod 

communities at my two peatland sites over the growing season. Average species richness, 

total abundance, and the three diversity indices for the emergent and surface-dwelling 

arthropods were examined separately using one-way repeated measures ANOVA (RM-

ANOVA) to compare between the two peatland sites and across the three sample periods 

using the statistical package Statistica v7 (StatSoft Inc., 2004). Because some pitfall 

trapping days yielded zero abundance, the diversity index analyses were based on four 

replicates for pitfall traps. Tukey’s post hoc tests were used to determine differences 

between the sites and sampling times. I also ran a Pearson correlation on the abundance 

of emergent arthropods and spiders across all sampling times, again in Statistica v7 

(StatSoft Inc., 2004).  

To examine and compare the overall community composition for both emergence and 

pitfall trap collection methods between sites and across the growing season, I used Bray-

Curtis dissimilarity on the abundances for each morphospecies, and visualize this using 

non-metric multidimensional scaling ordination biplots (NMDS) with 95% confidence 
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interval ovals for both sites and seasons using the vegan package in R. I tested the 

significance of site and seasonal effects using a permutational ANOVA (PERM-

ANOVA) with 999 permutations in the vegan package in R. To further visualize the 

emergent and ground-dwelling arthropod communities, I performed two principal 

components analysis (PCA) using the dominant arthropod groups from each trapping 

method. For the emergence traps this was seven species that had standardized abundances 

of >20 individuals and for the pitfall traps, this was six species where I collected >10 

individuals in total.  

To attempt to understand factors affecting the species composition of my peatland 

arthropods, I extracted PC axis scores from my PCA and used them as response variables 

in a main effect ANOVA to determine whether fen site and/or month were related to 

dominant species composition. Additionally, I used the first two PC axis scores in 

separate backward stepwise multiple regressions with the following environmental 

variables included in the initial model: minimum air temperature, maximum air 

temperature, soil pH, field soil moisture content, and plant LAI to help find variables that 

could explain arthropod composition. 

Further to this, I used Bray-Curtis similarity matrices of my emergent arthropods and the 

plant data (individual plant species abundances collected at each emergence trap site) (see 

Appendix D), and a Euclidean distance similarity matrix of the environmental variables 

(minimum air temperature, maximum air temperature, soil pH, field soil moisture 

content, and plant LAI) created using Euclidean distance, in Mantel and partial Mantel 

tests separately for each fen site. Mantel tests examine whether variation in two similarity 

matrices are correlated, whereas the partial Mantel test examines whether variation in two 

similarity matrices are correlated while accounting for variation in a third matrix. 

Functionally, the Mantel tests ask: ‘does arthropod species composition change when 

there is a corresponding change in plant community composition?’, and ‘does arthropod 

species composition change with a corresponding change in soil variables?’. Finally, I 

used Pearson’s correlation coefficients to explain results of significant Mantel tests.  
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Chapter 3  

3 Results 

I collected 1814 macroarthropod individuals using the different trapping methods of this 

study across a total of 218 morphospecies (hereafter referred to as morphospecies); 87 

species were identified belonging to 20 families across all target taxa. These numbers do 

not include the non-target individuals (i.e., non-macroarthropods or accidental captures 

for the trapping method) and partial specimens that were unidentifiable, which were also 

collected during sampling. Emergence traps yielded the highest number of species and 

total number of individuals (1562), with overall richness and abundance decreasing over 

the sampling period for all sampling methods. A total of 160 species were collected from 

emergence traps (Appendix A), 27 species in the peat samples (Appendix B), and 31 

species from pitfall traps (Appendix C). Diptera were the dominant arthropod group in 

the emergence trap and peat samples, whereas Araneae was the dominant order in the 

pitfall traps. 

 

3.1 Emergent Arthropods 

A total of 1562 holometabolous adult insects across 160 species were collected using the 

emergence traps. Although total observed species richness was the same at both the 

Sphagnum and Carex fen sites (99 species), the two sites shared only 37 species in 

common. However, more than twice the number of individuals were collected at the 

Carex site (N=1077) compared to the Sphagnum site (N=485). The total estimated 

species richness across both sites was between 198-321 species, and richness estimators 

were similar for each site individually (estimated richness values Sphagnum: 124-240 

species; Carex: 124-244 species). The sample-based accumulation and rarefaction curves 

produced for each site (Fig. 3.1 a, b) as well as both sites together (Fig. 3.1 c) show 

similar trends where the cumulative species richness does not approach an asymptote at 
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the maximum sampling effort, suggesting more sampling would reveal considerably 

more species.   
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Figure 3.1 Sample-based rarefaction of cumulative species richness of holometabolous 

adult insects in two fen habitats collected with emergence traps: (a) Rarefaction curve 

using data from the Carex fen; (b) Rarefaction curve using data from the Sphagnum fen; 

(c) Rarefaction curve of data from both fens together. 
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The mean standardized richness (# species / m2 / day) was similar at the two fens 

(F1,8=0.30, p=0.599) and across the three sampling times (F2,16=2.22, p=0.141), although 

the Carex site had higher standardized richness values in June compared to the Sphagnum 

site, and both sites had slightly lower species emergence in August sampling, but there 

was no significant fen-by-month interaction (Fig. 3.2 a). The mean standardized 

abundance of total arthropods collected (# individuals / m2 / day) was significantly 

greater in the Carex fen compared to the Sphagnum fen (F1,8 =13.92, p=0.006) in June 

and July when abundances were greatest at both sites, but total abundance did not differ 

between the two sites in August leading to a significant fen-by-month interaction (Month: 

F2,16=14.60, p<0.001, Interaction: F2,16=7.01, p=0.007) (Fig. 3.2 b).  

Shannon’s diversity was significantly higher at the Sphagnum fen (F1,8=13.69, p=0.006) 

(Table 3.1), but was not significantly different between the months (F2,16=0.78, p=0.480) 

or for the interaction between month and fen. Simpson’s diversity showed the same 

pattern being significantly higher at the Sphagnum fen (F1,8=10.04, p=0.013), with no 

differences in Simpson’s diversity between sampling months, nor was there a significant 

interaction between fen and month (Table 3.1). However, Simpson’s diversity was 

highest at the Sphagnum site in July and August, and lower at the Carex site in June and 

July. Pielou’s evenness values were significantly greater in the Sphagnum fen 

(F1,8=10.67, p=0.011) and significantly higher in August at both sites (F2,16=9.96, 

p=0.002), but there was no statistically significant fen-by-month interaction (Table 3.1). 
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Figure 3.2 (a) Standardized species richness, and (b) total abundance of holometabolous 

adult insects collected using emergence traps at two fens that differ in dominant 

vegetation near White River, Ontario. Values are means and error bars are standard error, 

values with different letters denote statistically different groups based on a RM-ANOVA 

and Tukey’s post hoc test. 
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Table 3.1 Diversity indices for the emergence trap arthropods collected from a Carex and 

Sphagnum fen in central Ontario over the 2018 growing season. Indices were calculated 

in the vegan package of R, and values are means  standard error; different letters denote 

statistically different groups based on a RM-ANOVA and Tukey’s post hoc test run in 

Statistica. 

Month Site  
Shannon's 

Diversity 

Simpson's 

Diversity 

Pielou’s 

Evenness 

June  Carex fen  1.48 ± 0.1ab 2.59 ± 0.3 0.55 ±0.0b 

 
Sphagnum fen 1.65 ± 0.3ab 3.99 ± 1.0 0.70 ± 0.1ab 

July  Carex fen  1.26 ± 0.2b 2.18 ± 0.5 0.49 ± 0.1b 

 
Sphagnum fen 2.04 ± 0.4a 6.41 ± 2.1 0.76 ± 0.1ab 

August Carex fen  1.84 ± 0.2ab 5.52 ± 1.1 0.90 ± 0.0a 

 
Sphagnum fen 2.09 ± 0.1a 6.81 ± 0.6 0.90 ± 0.0a 
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The two most abundant families collected from the emergence traps were Chironomidae 

(Carex fen: 68%, Sphagnum fen: 51% of individuals respectively) and the 

Ceratopogonidae (Carex fen: 12%, Sphagnum fen: 10% of individuals respectively). Not 

surprisingly, trends in Chironomidae abundance closely match trends for overall 

emergent arthropod abundances. Peak abundances of both families occurred in June; for 

the Carex fen 53% of Chironomidae emerged in June, whereas in the Sphagnum fen 49% 

of Chironomidae emerged in June. The mean standardized abundance of chironomids 

collected (# individuals / m2 / day) was significantly greater in the Carex fen compared to 

the Sphagnum fen (F1,8 =16.24, p=0.004) in June and July when abundances were greatest 

at both sites, but abundances did not differ between the two sites in August leading to a 

significant fen-by-month interaction (Month: F2,16=11.99, p<0.001, Interaction: 

F2,16=5.58, p=0.015) (Fig. 3.3 a). The ceratopogonids displayed a different pattern of 

seasonality from the chironomids: 93% and 83% of individuals emerged in June in the 

Carex and Sphagnum fens, respectively, with only the Carex fen June abundance 

differing from the other mean abundances. This trend drove significant differences 

among the two fens (F1,8 =8.49, p=0.019) across sampling times (Month: F2,16=26.49, 

p<0.001) as well as a strong fen-by-month interaction (F2,16=7.27, p=0.006) (Fig. 3.3 b). 

The overall community composition of the emergence trap insects was significantly 

different across the three sampling times (F2,27=5.06, p=0.001). Fens were also 

significantly different from one another in terms of species composition (F1,28=2.67, 

p=0.015), but the composition of the two fens was more similar in June and became 

increasingly dissimilar in July and August leading to a significant fen-by-month 

interaction based on PERMANOVA (F2,24=2.36, p=0.007) (Fig. 3.4). 
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Figure 3.3 (a) Total abundance of individuals belonging to the Chironomidae, and (b) 

total abundance of individuals belonging to the Ceratopogonidae collected using 

emergence traps at two fens that differ in dominant vegetation near White River, Ontario.  

Values are means and error bars are standard error, values with different letters denote 

statistically different groups based on a RM-ANOVA and Tukey’s post hoc test. 
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Figure 3.4 The community composition of adult holometabolous insects collected in 

emergence traps visualized by non-metric multidimensional scaling ordination using a 

Bray-Curtis dissimilarity matrix. Data points represent separate samples across the three 

sampling periods (squares = June, triangles = July, circles = August) and fen types 

(shaded = Carex, open = Sphagnum). 

Data points that are plotted closer together represent communities that are more 

compositionally similar than data points that are plotted further apart. Ellipses denote 

95% confidence intervals. 
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Looking closer at the most abundant species (the seven species with abundances that 

were greater than 20 individuals) in the emergence trap samples, the Principal 

Components Analysis (PCA) also suggests that community composition was significantly 

structured by variation in sampling month and fen type. The PC axis 1 explained 42% of 

the variation in species composition, and was significantly related to both month 

(F2,27=10.74, p<0.001) and fen type (F1,28=7.25, p=0.012). The second PC axis explained 

an additional 23% of the variation in species composition and was also significantly 

related to month (F2,27=13.94, p<0.001) (Fig. 3.5). Species found along the positive side 

of axis 1 were mostly collected in June at the Carex site, whereas species plotted on the 

positive of axis 2 were collected in July from both sites, and species plotted with negative 

values along either axis 1 and/or axis 2 were species collected from both sites in June or 

August (Fig. 3.5). Species associated with the positive side of PC axis 1 were four 

species, two chironomids and two ceratopogonids that were highly abundant in the Carex 

fen in June. The regression of PC axis 1 scores with environmental variables was 

significant (adjusted R2=0.700, F2,27=34.89, p<0.001) and retained minimum air 

temperature and field peat moisture content as significant explanatory variables and 

suggest that cool, wet conditions are associated with abundances of these four species as 

field moisture content was greatest in the Carex fen in June and minimum daily 

temperatures were still low at both sites during this time. None of the environmental 

variables were retained in the multiple regression for PC axis 2 scores. 
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Figure 3.5 The community composition of seven selected adult holometabolous insects 

collected in emergence traps visualized by principal components analysis of species with 

standardized abundances of >20 shown as arrows (see Appendix A for full species 

codes). Data points represent separate samples across the three sampling periods (squares 

= June, triangles = July, circles = August) and fen types (shaded = Carex, open = 

Sphagnum). 
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3.2 Peat-dwelling Arthropods 

A total of 66 holometabolous larvae were extracted from the peat samples (approx. 128 

individuals per 10 g dry weight (dw) peat), belonging to the orders Diptera, Coleoptera, 

Lepidoptera (moths and butterflies), and Trichoptera (the caddisflies) (see Appendix B). 

Overall abundances were low, and the majority of the individuals were found in the 

Carex fen (N=57; 86%); only nine individuals were observed from samples collected 

from the Sphagnum fen, and all of these were singletons (i.e., only a single individual of a 

species observed). A total of 27 different morphs were found, 19 of them being dipterans, 

and many were singletons. The majority of individuals collected in both fen habitats were 

dipterans (88%) with these mostly belonging to Chironomidae (only found as larvae at 

the Carex fen) and Ceratopogonidae. The highest abundance at both sites was observed in 

July, which corresponded to the highest species richness at the Sphagnum fen, but higher 

species richness was observed in June in the Carex fen (Appendix B).  

 

3.3 Surface-dwelling Arthropods 

A total of 186 surface-dwelling macroarthropods were collected over the three sampling 

periods using pitfall traps. A similar number of individuals were collected from each site 

(Sphagnum = 103; Carex = 83). Thirty-one morphospecies were observed in total across 

both sites and all sampling times, and total richness was nearly twice as high in the 

Sphagnum fen (26 species) than the Carex fen (13 species). Richness estimators for 

pitfall traps suggest a total of 37-61 species across these two fen types. That said, most of 

the potential richness is coming from the richness estimated at the Sphagnum fen, where 

estimated richness values at the Sphagnum site are 31-46 species in contrast to only 15-29 

species estimated at the Carex site. Like the accumulation and rarefaction curves from the 

emergence trap data, ground-dwelling sampling of macroarthropods did not approach an 

asymptotic trend given the sampling effort suggesting more sampling would reveal 

considerably more species (Fig. 3.6).  
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Figure 3.6 Sample-based rarefaction of cumulative species richness for surface-dwelling 

arthropods in two fen habitats collected with pitfall traps: (a). Rarefaction curve using 

data from the Carex fen; (b). Rarefaction curve using data from the Sphagnum fen; (c). 

Rarefaction curve of data from both fens together. 
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Standardized richness (# species / trapping day) was not significantly different between 

the Carex and Sphagnum fen sites (F1,8=2.22, p=0.174), but species richness significantly 

decreased over the course of the growing season (F2,16=15.89, p<0.001), with June having 

greater species richness than traps set in August across both sites (Fig. 3.7 a). The 

seasonal trend in species richness was mirrored in the standardized arthropod abundance 

data, where both fen sites showed highest abundances collected in June, and declining 

over the growing season (F2,16=17.85, p<0.001), but there was no difference in abundance 

based on fen type (Fig. 3.7 b).  

Shannon’s diversity was not significantly different between the Carex and Sphagnum 

sites, but both sites showed decreasing diversity over the sampling period (F2,12=6.84, 

p=0.010). Simpson’s diversity followed a similar trend, with diversity decreasing over 

the sampling period at both sites (F2,12=4.54, p=0.034). Pielou’s evenness (J) index was 

high (near 1.0) and not significantly different between sites or among different sampling 

times (Table 3.2). 

Of the collected arthropods 107 individuals belonged to the Order Araneae, with an 

average of three individuals per day being collected in the Sphagnum fen and four 

individuals per day in the Carex fen. Overall abundance data was thus largely driven by 

the abundances of spiders (Order Araneae) as they were the dominant Order at both fens 

(79% Carex; 40% Sphagnum). However, there were greater abundances of non-spider 

arthropods at the Sphagnum fen (F2,16=9.80, p=0.014) (Fig. 3.7 c) including greater 

abundances of ants (Family Formicidae) and beetles (mostly Family Staphylinidae) 

(F2,16=11.18, p=0.010). Correspondingly, there was a significantly consistent higher 

abundance of spiders at the Carex fen (Fen: F2,16=13.30, p=0.007) (Fig 3.7 d), and spider 

abundance significantly declined over the growing season at both sites (F2,16=16.49, 

p<0.001); ergo the non-Araneae groups show a different seasonal trend compared to the 

Araneae.  
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Figure 3.7 Surface-dwelling arthropod communities examined using pitfall traps at two 

fens that differ in dominant vegetation near White River, Ontario: (a) overall average 

species richness, (b) overall average abundance, (c) average non-spider arthropod 

abundance and (d) average Araneae (spider) abundance.  

Values are means with standard error as bars. Different letters denote statistically 

different groups based on a repeated measures ANOVA and Tukey’s post hoc test. 
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Table 3.2 Diversity indices (Shannon’s, Simpson’s and Pielou’s) calculated using the 

vegan package in R for of arthropods collected by pitfall traps from a Carex and 

Sphagnum fen in central Ontario over the 2018 growing season. Values are means, errors 

are standard error; different letters denote statistically different groups based on a RM-

ANOVA and Tukey’s post hoc test. 

Month Site 

Shannon's 

Diversity 

Simpson's 

Diversity 

Pielou’s 

Evenness 

June  Carex fen  1.22 ± 0.1a 3.08 ± 0.3ab 0.89 ± 0.04 

 
Sphagnum fen 1.73 ± 0.2ab 5.18 ± 0.9a 0.92 ± 0.03 

July  Carex fen  0.98 ± 0.2ab 2.55 ± 0.4b 0.93 ± 0.03 

 
Sphagnum fen 1.23 ± 0.3ab 3.86 ± 1.2ab 0.96 ± 0.02 

August Carex fen  0.57 ± 0.2b 1.77 ± 0.3b 0.93 ± 0.04 

 
Sphagnum fen 0.73 ± 0.2ab 2.11 ± 0.3b 0.92 ± 0.03 
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The most common spider at both sites, Pardosa moesta Banks, 1892 (48 individuals), 

was only collected in June at the Sphagnum fen site (Appendix C) but was collected at all 

three sampling times in the Carex fen, albeit with greatest abundance also during June 

sampling. The second most abundant group (41 individuals) was the Family Formicidae 

(Order: Hymenoptera), with an average of two individuals collected per day at the 

Sphagnum fen and one individual per day at the Carex fen. Beetles (Order: Coleoptera) 

were only collected at the Sphagnum fen, mostly belonging to the subfamily Pselaphinae 

(Order: Coleoptera, Family: Staphylinidae) (18 individuals) which were collected at a 

rate of approximately one individual per day. The remaining orders of arthropods 

collected included: Opiliones (Class: Araneae); Orthoptera, other Coleoptera, and other 

Hymenoptera (Class: Ectognatha), although Diptera, Acari, and Collembola were also 

collected as bycatch. Spider abundances were correlated with emergent arthropod 

abundances (r2=0.297, p=0.002). 

The community composition of the pitfall arthropods as examined using PERMANOVA 

and visualized using NMDS ordination was significantly different across the three 

sampling times (F2,26=2.88, p=0.002), as well as the two fens being significantly different 

from one another (F1,27=5.40, p<0.001). At the Carex fen, there was a clear season shift 

in community composition, likely driven by declining abundances of spiders, whereas the 

Sphagnum fen also had a seasonal pattern, but likely driven by changes in the abundance 

of ants and beetles, such that the PERMANOVA also reported a significant fen  month 

interaction (F1,23=1.72, p=0.045) (Fig. 3.8).  
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Figure 3.8 The community composition of surface-dwelling arthropods collected in 

pitfall traps visualized by non-metric multidimensional scaling ordination using a Bray-

Curtis dissimilarity matrix. Data points represent separate samples across the three 

sampling periods (squares = June, triangles = July, circles = August) and fen types 

(shaded = Carex, open = Sphagnum).  

Data points that are plotted closer together represent communities that are more 

compositionally similar than data points that are plotted further apart. Ellipses denote 

95% confidence intervals. 
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For the principal components analysis of the six most abundant species collected in pitfall 

traps, the first PC axis (PC1) explained 32% of the variation in species composition and 

was significantly related to both sampling month (F2,28=3.56, p=0.044) and fen type 

(F1,27=16.78, p<0.001) (Fig. 3.9). This was mostly driven by species on the positive side 

of PC axis 1 (P. moesta and Arctosa raptor) that were most abundant at the Carex fen in 

June, whereas ant species on the negative side of PC axis 1 were most abundant in the 

Sphagnum fen. The second PC axis explained an additional 19% of the variation in 

species composition, but the axis scores were not significantly related to any known 

variable (i.e., fen site or sampling month) (Fig. 3.9). 
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Figure 3.9 Principal components analysis biplot of the most abundant surface-dwelling 

arthropods (abundances of >10 indiv. total) collected in pitfall traps (shown as arrows; 

see Appendix A for further species information). Data points represent separate samples 

across the three sampling periods (squares = June, triangles = July, circles = August) and 

two fen types (shaded = Carex, open = Sphagnum). 

  



37 

 

3.4 Environmental Variables 

Several abiotic variables were measured at the two peatland sites that may be important 

factors in the activity, and therefore sampling of macroarthropods. Not surprisingly, the 

temperature (minimum, maximum, and mean temperature) changed significantly over the 

sampling seasons (min: F2,16=22.74, p<0.001; max: F2,16=6.26, p<0.001; mean: 

F2,16=8.55, p=0.003), with the minimum temperatures being lowest (Table 3.3) and 

maximum temperatures highest (Fig. 3.10 a) in June at both sites. The Sphagnum and 

Carex sites did not significantly differ in the temperatures recorded, although the Carex 

site recorded greater maximum daily temperatures in June and July compared to the 

Sphagnum site (Fig. 3.10 a). 

Volumetric peat moisture content as measured in the field was significantly higher in the 

Carex fen (F1,8=86.82, p<0.001). This was especially true at the beginning of the 

sampling season when moisture content was twice as high in the Carex site in June, 

compared to the other two sampling times (month: F2,16=5.70, p=0.014), whereas the 

Sphagnum fen site had consistent moisture content (~ 20%) over the sampling seasons 

leading to a significant interaction between fen type and sampling period (F2,16=4.31, 

p=0.032) (Fig. 3.10 b). Gravimetric moisture as measured directly on collected peat 

samples in the laboratory followed a similar trend of being highest in June (F2,16=3.75, 

p=0.046), but moisture content was not significantly different between the two peatland 

sites. In contrast, the pH of the peat samples did not vary over the sampling season but 

did significantly differ between the two fen sites (F1,8=421.2, p<0.001) (Table 3.3).  
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Figure 3.10 (a) Daily maximum temperature measured in the field at the Carex and 

Sphagnum fens by HOBO dataloggers placed 1 m north of emergence traps, and (b) 

volumetric peat moisture in the field within the emergence trap quadrats. Different letters 

denote statistically different groups based on a RM-ANOVA and Tukey’s post hoc test. 
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Table 3.3 Daily minimum and average temperatures measured in the field at a Carex and 

Sphagnum fen in central Ontario over the 2018 growing season, by HOBO dataloggers 

placed 1 m north of emergence traps. Gravimetric moisture and pH were measured in the 

lab using two peat samples that were collected from inside the emergence trap quadrats 

and were used to quantify peat dwelling arthropods. Values are means (± standard error). 

Different letters denote statistically different groups based on a RM-ANOVA and 

Tukey’s post hoc test. 

Month Site  

Minimum 

Daily 

Temperature 

(°C) 

Average 

Daily 

Temperature 

(°C) 

Gravimetric 

moisture 

content (%) 

pH 

June  Carex fen 2.44 ± 1.1bc 17.06 ± 0.7ab 872. 18 ± 19.4 5.63 ± 0.1a 

 

Sphagnum 

fen 
1.20 ± 0.6c 14.98 ± 1.3b 811.12 ± 84.6 4.11 ± 0.1b 

July  Carex fen 8.39 ± 2.5abc 18.83 ± 0.8ab 640.39 ± 27.0 5.62 ± 0.1a 

 

Sphagnum 

fen 
8.75 ± 2.6ab 17.90 ± 1.6a 695.47 ± 70.7 4.11 ± 0.0b 

August Carex fen 11.95 ± 1.7ab 17.41 ± 0.7ab 653.08 ± 25.4  5.55 ± 0.1a 

  
Sphagnum 

fen 
11.31 ± 1.9ab 17.66 ± 0.9a 655.26 ± 143.4 4.21 ± 0.1b 
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Plant species richness and diversity was always significantly greater at the Sphagnum fen 

compared to the Carex fen across the growing season (see Appendix E), but LAI did not 

differ between sites or over the growing season. For the Mantel tests from the Carex fen 

environmental variables correlated with plant community (Carex: rm=0.391, p=0.006, 

Sphagnum: rm=0.391, p=0.005), and arthropod species composition was not statistically 

significantly correlated with environmental variables, but perhaps was biologically 

(rm=0.190, p=0.063) which was also perhaps reflected in the partial mantel which 

correlated arthropod species and environmental variables while controlling for plant 

species (rm= 0.174, p=0.080). Mantel and partial Mantel tests from the Carex fen also 

likely reflect significant correlations with temperature variables (maximum temperature 

and total abundance: r2=0.299, p=0.035; maximum temperature and chironomid 

abundance: r2=0.275, p=0.044; minimum temperature and arthropod abundance: 

r2=0.359, p=0.018) and field moisture (moisture and ceratopogonid abundance: r2= 0.606, 

p<0.001). Minimum temperature was also correlated with the abundance of chironomids, 

ceratopogonids, and total emergent arthropods.  
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Chapter 4  

4 Discussion 

4.1 Diversity of boreal peatland arthropods 

Previous studies of individual boreal peatlands have shown that arthropods are highly 

diverse with Finnamore (1994) finding >2000 species at a single location. My study of 

two peatland sites found an order of magnitude lower species richness at either single 

site, but this is likely due to other studies using non-discriminant trapping methods such 

as aerial malaise traps which capture aerial arthropods or pan traps that attract arthropods 

from surrounding areas, and these arthropods may complete the majority of their 

development in other habitats and not within the peatland itself. The trapping methods I 

used (emergence traps, pitfall traps, and peat sampling) ensure that nearly all individuals 

and species I found inhabited the peatland sites. 

That said, at both sites and for both the emergence and pitfall traps the true diversity (i.e., 

richness) was likely higher than my observed richness as indicated by both the richness 

estimators and the species accumulation-rarefaction curves, which did not display an 

asymptotic pattern. Richness estimators calculate or estimate ‘true’ species richness using 

a metric that takes into account the number of rare species encountered to estimate the 

number of unseen or undetected rare species in a sampling scheme (Smith and van Belle 

1984). At both my peatland sites, a high number of singletons (i.e., morphospecies where 

only one individual was collected) were observed in both emergence and pitfall sampling 

methods. In my peat samples nearly all morphospecies were singletons to the extent that 

this data (containing zero abundance for most species) could not be quantitatively 

analyzed. Taken together, these results indicate that more species are left to be discovered 

at each of these peatland sites. 

Undetected species were particularly likely at the Sphagnum fen where, for the 

emergence traps, the total number of individuals collected was less than half of that 

collected at the Carex fen. Buddle et al. (2005) suggest that when estimating species 
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richness using rarefaction curves, the true measure of ‘sampling effort’ is the number of 

individuals collected as opposed to the number of samples because richness and 

abundance are often strongly positively correlated. Sphagnum-dominated peatlands are 

predominantly studied in the literature versus Carex-dominated peatlands for arthropod 

surveys (but see data from the Crief fen near Hamilton, Ontario in Blades and Marshall 

1994, and Dondale and Redner 1994). The high observed species richness of some 

previous surveys (Blades and Marshall 1994; Dondale and Redner 1994; Grégoire 

Taillefer and Wheeler 2012; 2013; 2018; 2019; Rosenberg et al. 1988) may be due to 

high sampling effort in these greater diversity Sphagnum sites, and/or adjacency to 

forested habitat and areas with a greater diversity of plant architecture, as was the case for 

the Carex dominated flats of the Wagner Bog just west of Edmonton, Alberta (Finnamore 

1994). Similarly, in the two previous studies at the Crief fen (Blades and Marshall 1994; 

Dondale and Redner 1994) both observed similar arthropod species richness values in 

this sedge-dominated fen compared to an undisturbed Sphagnum-dominated site in the 

same region (the Oliver bog approx. 21 km distance from the Crief fen). However, for 

both sites it was postulated that some of the observed species came from the adjacent 

forests or intermixed trees (Finnamore 1994; Dondale and Redner 1994).  

 

4.2 Dominant arthropod taxa in boreal peatlands 

4.2.1 Diptera 

Diptera dominated samples collected from emergent traps as well as from peat at both 

peatland sites. As with overall species richness estimates, true richness of the Diptera 

groups Chironomidae and Ceratopogonidae may be underestimated at both sites. In 

addition to the reasons outlined above for total richness, my estimates are likely low for 

these groups because species are more cryptic and harder to identify than some other 

groups (like the spiders). Rosenberg et al. (1988) collected arthropods using emergence 

traps from similar peatlands in Northern Ontario from 1984-1986 and found 84 species of 

chironomids compared to my morphospecies richness of 14. This was likely influenced 
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by their higher sampling effort, a larger area was sampled (three different peatlands each 

with 15 traps) and the study was performed for a longer duration (from May to 

September), and for one of the peatlands sampling was conducted for a subsequent two 

summers. As well, Giberson et al. (2001) only found 24 species of Chironomidae and 12 

species of Ceratopogonidae in coastal marsh pools on Prince Edward Island. Although 

marsh pools have different vegetation and typically higher water table, six of the seven 

families found in that study were also found in my study (Chironomidae, 

Ceratopogonidae, Tipulidae, Cecidomyiidae, and Sciaridae) suggesting wetland Dipteran 

composition is similar at least at the Family level.  

Many Diptera are known wetland specialists (Marshall 1994), being aquatic (Teskey 

1981) or semi-aquatic (Downes and Wirth 1981). High dipteran species richness is often 

associated with wetter habitats and open water. For instance, at three sites in the Boreal 

forest in Northern Quebec, Tremblay et al. (1998) found 60 species of insects, including 

41 species of Chironomidae in lakes and flooded reservoir sites. Rosenberg et al. (1984) 

found 100 species of along the marsh-bordering shoreline of a Manitoba lake (Southern 

Indian Lake) at similar latitude to my study sites. That said, I found similar alpha-

diversity of Ceratopogonidae and greater alpha-diversity of Chironomidae at my 

Sphagnum-dominated site which had a lower water table and less standing water 

compared to my Carex fen site. Diptera can also be abundant in more terrestrial systems, 

especially forests. In three different forest habitats in northern Alberta, Ryan and Hilchie 

(1981) found that most soil arthropods collected with emergence traps were dipterans. 

The dominant groups collected in these forest sites, however, were different from what I 

observed at my peatland sites, as the two most abundant groups were usually 

Cecidomyiidae, Mycetophilidae, or Bibionidae. Chironomidae and Ceratopogonidae were 

both observed in these forest collections but never exceeded 8% of individuals collected 

from any given trap (Ryan and Hilchie 1981). Tremblay et al. (1998) found that the total 

abundance of emergent arthropod individuals was not related to whether traps were in 

forest or peatland sites, but rather varied by site, suggesting that small-scale location may 

have a greater effect on abundance than habitat type. However, Ryan and Hilchie (1981) 

found total abundance of soil-dwelling arthropods was between three and ten times 

greater at a fen site compared to a forest site in northern Alberta largely due to an 
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overwhelming abundance of Diptera larvae, suggesting that fens hold greater abundance 

of Diptera than forests. In support of this, Høye and Forechhamer (2008) found that fens 

in the high arctic of Greenland had the second highest abundances of Chironomidae 

compared to other more terrestrial sites, only being outperformed by a pond site. 

4.2.2 Araneae and Carabidae 

Spiders were the dominant ground-dwelling arthropod taxonomic group collected in the 

pitfall traps, and Pardosa moesta (Family Lycosidae), known to be a wide-spread boreal 

spider (Buddle et al. 2000, Pinzón et al. 2012), was the most abundant species from the 

Carex fen and the fourth most abundant from the Sphagnum fen. Many active hunting 

spiders like the lycosids are known to rely on speed (Bear and Hasson 1997) and visual 

cues to hunt (Persons and Uetz 1998), and the placement of my pitfall traps near or 

alongside the peatland boardwalks may have facilitated spider movement and increased 

the predominance of this group in my samples. For instance, Arctosa raptor (Kulczyński 

1885) was often observed along boardwalks during my sampling (pers. obs.). 

Surprisingly, and contrary to several other Canadian peatland studies (Dondale and 

Redner 1994; Koponen 1994), I found no members of the spider family Linyphiidae in 

my pitfall traps. Potentially this could have been because trap lips were often 1-2 cm 

above the ground surface due to the high water table, which may have excluded small 

linyphiid spiders. Another explanation is that the diameter of my traps may have been too 

large to effectively capture this group. For instance, Work et al. (2002) showed that 

larger traps (15-20 cm dia.) generally caught more species than smaller traps (4.5-11 cm 

dia.), but more linyphiids were caught in the smaller traps (4.5 cm) and were least often 

captured in larger (11 cm) traps.  

Similarly, I found lower than expected species richness and abundances of beetles in my 

ground-dwelling arthropod community. In the boreal zone, particularly in boreal forests, 

carabid beetles (Family Carabidae) alongside spiders are the dominant groups collected 

in pitfall traps. In a Boreal forest in Finland, Niemelä et al. (1996) found 51 carabid 

species, 212 spider species, and 23 ant species across a successional gradient of forests. 

Carabid beetles and spiders are so ubiquitous in boreal systems that they are often used as 



45 

 

bioindicators of disturbance including in studies of forest harvest (Pinzón et al. 2012) and 

fire recovery (Buddle et al. 2000). However, carabids can also be absent from peatland 

studies, potentially because of their activity peaking in early spring or because of 

microhabitat homogeneity (Främbs 1994), such as that of the Carex fen, suggesting that 

carabids may not be good indicator species in peatlands systems.  

 

4.3 Other peatland arthropod taxa 

Hymenoptera (ants, wasps, bees) and Lepidoptera (moths, butterflies) are less well 

studied in boreal peatlands than other taxonomic groups such as Diptera. Yet, in 

Finnamore’s 1994 study, he found that the number of species of Hymenoptera in 

peatlands could be astronomically high (>2000). In my study, the emergence traps 

revealed 52 morphospecies that mostly existed as singletons, which could be related to 

my use of emergence traps but provides support for potentially high Hymenoptera 

diversity residing in peatlands. The singleton Hymenoptera from the Sphagnum fen and 

the Carex fen each composed approximately 10% of all species collected during the 

study, and the Hymenoptera as a group made up 68% of all species collected, but still 

relative to other peatland studies, my observed richness values for Hymenoptera are low. 

For instance, in a study of Quebec peatlands, Koponen (1994) found 169 species, but this 

was across multiple peatland sites. Similarly, Dondale and Redner (1994) found 198 

Hymenoptera species from peatlands in Quebec and Ontario, but they also sampled many 

more peatland sites compared to the two peatlands surveyed here. Hymenoptera are also 

species-rich in neighbouring forest locations surrounding boreal peatlands. For example, 

in forests near Algonquin Park in central Ontario Smith et al. (2012) found 110 

morphospecies of Hymenoptera within a single family (the family Braconidae). Likely 

most of my Hymenoptera are parasitoids, parasitizing other prominent groups like 

Diptera or Araneae, or being plants parasites, with many of these being host specialists 

(Finnamore 1994). Contrary to this however, Lozan et al. (2012) observed that many of 

the Hymenoptera which they reared from peatland lepidopteran larvae hosts were host 

generalists. 
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As in my study, Ryan and Hilchie (1981) showed a low proportion of their overall trap 

catch to be Lepidoptera in a survey of forest arthropods using emergence traps, despite 

the emphasis that this group often receives as peatland specialists in studies in Europe, 

particularly for conservation purposes as this group contains species that require the exact 

climate and food plants present in peatlands (Spitzer and Danks 2006). However, 

generalist species can occupy this habitat too; in a Czech bog 487 species of Lepidoptera 

were collected with light traps, 11 of which are found exclusively in bogs and 23 of 

which are characteristic of bogs (Spitzer et al. 1999). For leaf-rolling moth larvae, bog 

exclusive and bog characteristic species were found nearer to the center of the peatland 

habitat and away from trees and edges (Spitzer et al. 2003). 

Although emergent traps and pitfall traps are specifically designed to capture and collect 

the arthropod communities that emerge as adults from soil-dwelling larvae and the 

ground surface-dwelling macro-arthropods, respectively, many other taxonomic groups 

were collected as ‘bycatch’ using these sampling methods. Notable in this group are 

Family Cicadellidae (leaf hoppers) in the emergent traps which reflect accidental trapping 

of hemimetabolous insects that often hopped into the trap while it was being erected 

(Ryan and Hilchie 1981), as well as smaller arthropods such as mites and Collembola in 

the pitfall traps.  

 

4.4 Differences between Sphagnum and Carex-

dominated peatland arthropods 

Although only two peatland sites were surveyed for this study, I found generally low 

overlap of species composition between the two sites (i.e., high beta-diversity) which 

differed in above-ground vegetation as well as water table and soil nutrient status. The 

pitfall trap data showed very different communities between the two fens; however, the 

overall trap catch contained many singletons that may overestimate the beta-diversity 

between these two sites. More arthropod species were collected in pitfall traps at the 

Sphagnum fen overall, which makes sense considering the higher habitat heterogeneity 
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available at the Sphagnum fen (Niemelä et al. 1996). However, on a monthly basis 

richness was the same at both the Carex and Sphagnum fens, possibly representing 

differences in the active periods of Sphagnum fen organisms (Hallander 1967), especially 

considering my small number of traps.  

Whereas my overall pitfall trap catch was dominated by spiders, in the Sphagnum fen I 

found higher numbers of ants (family Formicidae) and Pselaphinae beetles (family 

Staphylinidae) causing overall arthropod abundances to be higher. A difference in the 

occurrence and abundance of these two taxonomic groups is likely related to differences 

in water table and soil moisture. Ant reproduction is reliant on thermoregulation 

(Hölldobler and Wilson 1990) and the availability of dry hummock habitat at the 

Sphagnum fen may be important for peatland ants. In a study similar to this one, higher 

ant abundances were found in a more sheltered peatland than an open one (Lesica and 

Kannowski 1998). Sphagnum bog inhabiting pselaphine beetles (Family Staphylinidae) 

have a significant preference for high humidity conditions (95%) (Reichle 1966) and are 

predators of other smaller arthropods such as Collembola (Schomann et al. 2008). The 

fact that they were found exclusively at the Sphagnum fen matches previous studies that 

found them in forested (Hammond et al. 2018b) and bog-like environments (Reichle 

1966), suggesting that perhaps that they are less resistant to flooding events, or their 

preferred food source was less available at the Carex fen.  

I found the Carex fen had higher abundances of holometabolous larvae in the peat 

sampling, and overall higher abundances of holometabolous insect adults in the 

emergence traps at the Carex fen, whereas only seven larvae were collected in total from 

the Sphagnum fen peat samples. Differences in larval numbers in peat soils between the 

two sites is likely related the Sphagnum fen’s lower water table. Peat samples were taken 

from the top 5-10 cm of peat at both sites, which could be up to 10 cm above the water 

table at the Sphagnum site but at the same level as the water table at the Carex site. For 

moisture-dependent dipteran larvae (without the moisture retaining protection of a 

cocoon or sediment, chironomid larvae cannot survive longer than 2 hours in dry 

conditions (Suemoto et al. 2004)), the surface peat at the Sphagnum site was potentially 

too dry, and lower peat profiles may have been the optimal habitat in the peat strata 
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(Jackson and Mclachlan 1991). It is possible that many groups and individuals were 

present (but not sampled) in deeper peat soil layers, which would explain the abundances 

collected by the emergence traps in the Sphagnum fen. Finally, the beta-diversity (i.e., 

dissimilarity between Carex and Sphagnum sites) of the emergent arthropods increased 

over the growing season alongside the greater seasonal abundance shifts observed at the 

Carex fen compared to the Sphagnum fen site. Specifically, lower overall abundances in 

August at both sites led to Sphagnum and Carex fen community composition being 

highly dissimilar in overall community composition with non-overlapping occurrences in 

some of the less common species (e.g., Pseudorthocladius cf. curtistylus, 

Ceratopogonidae nr Dasyhelea sp. 1 and 2) thereby increasing the beta-diversity between 

the two sites. 

 

4.5 Seasonal trends in peatland arthropods 

Seasonal patterns in overall richness and abundance differed between the two peatland 

sites with the highest average sampling richness in the emergence traps occurring in June 

at the Carex fen, with little changes in average sampling richness in the Sphagnum fen 

over the growing season. Similarly, although both sites demonstrated decreasing average 

sampling abundances over the summer, the Sphagnum fen showed a non-significant 

decline over the season, whereas the Carex fen showed a much more dramatic change in 

abundances. This difference was driven by reductions in the abundances of some of the 

prominent nematoceran (family Chironomidae and Ceratopogonidae) morphospecies that 

had high average sampling abundance in the Carex site in June; abundances of these 

groups were much more similar in the later growing season months. Rosenberg et al. 

(1998) over three years of collection similarly found that mean weekly emerging 

Chironomidae populations had their highest abundances in late May to early June, then 

decreasing toward zero between mid-August and mid-September. Judd (1953) found 87% 

of >15,000 emergent arthropods in a marsh habitat near Hamilton, Ontario were 

dipterans, and that 92.5% of these belonged to the Chironomidae. In that study, Judd 

(1953) also found that Chironomidae were highly variable in terms of seasonal species 
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richness (0-80 species) and abundances (0-409 individuals) and in contrast to the early 

season peaks in Rosenberg et al. (1998), Judd (1953) found certain species had their peak 

emergence later in the growing season, which may reflect the new presence of 

Chironomidae sp. 5 from the Sphagnum fen in August.  

Pitfall traps work by capturing arthropods that are running across the surface of the 

substrate, so the abundance of organisms in pitfall traps indicate periods when these 

organisms are active as well as abundance. For lycosid spiders, there are different peaks 

in activity during the season (Buddle 2000; Edgar 1971). Adult lycosids can be more 

active than juveniles and as they can live for multiple years their periods of high activity 

can vary by life stage and sex (Edgar 1971). For P. moesta in central Alberta the peak 

periods of activity are mid-May and early June (Buddle 2000), which fits well with my 

results of highest abundances of overall pitfall trap catch during my June sampling 

period.  

Other surface-dwelling arthropod groups are also most active and found in highest 

abundance early in the season, including carabid beetles in forests in central Alberta 

(Niemelä et al. 1993) and staphylinid beetles in cereal fields in Czechia (Honěk 1988). 

Conditions affecting food resources can greatly impact predatory ground dwellers such as 

spiders, which is potentially reflected by the correlation of spider abundances with that of 

the emergent insects in this study. However, ants (22% of my pitfall catch) can be less 

reactive to season and abundance of food resources (Hölldobler and Wilson 1990) likely 

because of their colonial nature. Ant activity tends to correlate more with temperature, 

with peak activities around 20°C but foraging still able to occur at as low as 6°C as 

shown in a Finnish forest (Rosengren et al. 1979).  

 

4.6 Environmental factors affecting peatland arthropod 

diversity 

Differences in arthropod communities between the two peatland sites as well as changes 

in community composition over the growing season may be related to differences and 
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shifts in environmental conditions. Specifically, moisture and temperature were variables 

that I related to my dominant emergent arthropod species; however, these variables 

cannot be disentangled from inherent seasonal patterns related to life history and 

autecological traits of the fauna. At both sites, the highest abundances of holometabolous 

larvae were found in peat samples which had moisture content between 600-800% 

gravimetric moisture. The distribution of larvae within peat and other soils is non-

uniform. For example, Ryan and Hilchie (1981) extracted thousands of dipteran larvae 

individuals from peat via funnel extractions, but 30% of samples contained no 

individuals. This clumped distribution of larvae, that I also observed, may be related to 

optimal moisture conditions (Frouz 1999; Jackson and Mclaughlin 1991), or concentrated 

pockets of nutrients (Frouz 1999; Seastedt and Crossley Jr. 1980) that may dictate 

localized egg laying events (Reichle 1966). I observed higher larval abundances and the 

greatest number of emergent arthropods in the Carex fen in June when this site is often 

fully saturated, and the water table is at the soil surface (pers. comm. OMNRF), but the 

Carex fen experienced a dramatic decrease in soil moisture from June to July of 2018. 

For instance, I observed that during the first two days of sampling in June the water table 

was at or above ground level, but by the end of the sampling week (day 4-5) the water 

table was below ground level. The remaining summer was particularly dry with 

precipitation events only occurring for a total of 39 days and 232.9 mm at the Carex fen 

and 45 days and 193.7 mm at the Sphagnum fen, the lowest precipitation at either fen 

during June-August since 2016 (pers. comm. OMNRF). This particular site has 

historically shown extreme variations in water table; in 2005 the water table levels never 

exceeded ground level, whereas in 2004 they were at or above ground level throughout 

most of the growing season (McLaughlin and Webster 2010). This is in contrast to the 

Sphagnum fen, which showed no significant decrease in moisture levels and a lack of 

observable changes in water table during the study.  

Temperature is also an important factor dictating arthropod diversity and distribution in 

the boreal zone (Hammond et al. 2018a; Loboda and Buddle 2018). Daily minimum 

temperatures were lowest earlier in the season (i.e., June) when nighttime temperatures 

sometimes dipped below freezing, compared August which had the warmest minimum 

temperatures. Additionally, daily maximum temperatures were higher in June and July 
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than in August, leaving average daily temperature similar throughout the season. 

Temperature affects the physiological functioning and activity of emergent arthropods, 

since arthropods are ectotherms and there are high and low threshold temperatures that 

limit their ability to move (Sinclair et al. 2016). In arctic chironomids, higher minimum 

and mean temperatures allow these insects to be active and were thus found to be the 

main predictors of abundance (Hodkinson et al. 1996), as minimum temperature was in 

with emergent arthropods my study. However, it is possible that minimum temperature 

simply correlated with other seasonal factors such as changes in light (photoperiod). 

Soil moisture and air temperature are not independent factors, and both are linked to 

general seasonal trends that are hard to disentangle from phenological trends in arthropod 

life histories. Insect development overall is altered by the temperature, with insects 

needing to spend a certain amount of time between their upper and lower temperature 

threshold, measured in degree-days (Wilson and Barnett 1983), with development time 

often taking longer at lower temperatures (Tobin et al. 2001). Similarly, Robinson et al. 

(2018) found that terrestrial invertebrate abundances significantly increase with warmer 

temperature, and Saska et al. (2013) found that pitfall trap-caught carabid abundances 

doubled with every 8°C increase in maximum temperature or 14°C increase in minimum 

temperature. Høye and Forchhammer (2008) performed a large-scale study of the 

phenology of high arctic species which dealt with many taxa collected in this study (e.g., 

Lycosidae, Chironomidae, Sciaridae) and other groups known from my peatland sites 

(i.e., Acari and Collembola). They showed that timing of snowmelt was important and 

may be more important than temperature for arthropod phenology (Høye and 

Forchhammer 2008), and that each taxon likely has an optimal period of activity during 

the year that, at least in high Arctic species, is strongly modified by timing of snowmelt 

(Høye and Forchhammer 2008).  

Soil moisture was the variable that differed considerably between my two sites, and is 

known to significantly influence arthropod communities (Ziesche and Roth 2008). I 

found that moisture levels closely mirrored the abundance of some groups such as the 

ceratopogonids, and moisture was identified as a significant correlate in my backwards 

stepwise multiple regression, linking the emergent arthropod community with this 
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environmental factor. The most abundant morphospecies in this group (Cecidomyiidae nr 

Cecidomyiinae sp. 1) was separated out in my PCA, and reached peak abundances in July 

rather than June, potentially being dependent on factors such as the phenology of a host 

plant, separating them from the other abundant Diptera. Some of the Hymenoptera that I 

collected also likely have a similar life history (gall wasps) as plant parasites (Finnamore 

1994), however due to low abundances of most morphospecies and taxonomic 

impediments with this group it is challenging to draw further conclusions. The Sphagnum 

fen, unlike the Carex fen, also has many trees, such as tamarack (Larix larcinia) and 

black spruce (Picea mariana), which provide both direct shade over the understory 

vegetation, and a windbreak. Additionally, the presence of Sphagnum mosses could 

provide stability of environmental conditions by retaining soil moisture during dry 

conditions and provide a consistent humidity (Gerson 1969) and soil temperature 

(Longton 1979). Peatlands that are not sheltered and lack trees (such as is the case at the 

Carex fen) are more inclined to greater fluctuations in environmental conditions such as 

temperature (Spitzer and Danks 2006), although significant differences in my measures 

of temperature were more related to season than site. 

Similarly, differences in the microtopography of the two sites may also play a role in 

patterns of peatland arthropod diversity with greater environmental heterogeneity created 

by the Sphagnum fen’s more varied microtopography creating a series of stable but 

unique niches in the dryer hummock tops and the more moist hollows, despite 

fluctuations in the water table (Spitzer and Danks 2006). The meso and microclimates at 

this level are found to be constant in bog systems, and the high diversity of plant habitats 

as well for plant parasitoids provides additional niches (Spitzer and Danks 2006).  

 

4.7 Caveats, challenges and limitations 

This study is not an exhaustive survey of boreal peatland arthropods; rather it forms a 

basis for further study by demonstrating that Diptera and Araneae are the dominant 

taxonomic groups in emergence and pitfall traps respectively, and potentially reflect the 
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true peatland arthropod inhabitants. Although I used parametric statistics to compare 

similar sampling schemes at my two peatland sites, I cannot draw inference of differences 

between other Sphagnum and Carex dominated peatlands. Differences in dominant 

vegetation alongside known differences in water table and nutrient status between these 

two sites did not hold much explanatory power in explaining why these two sites had 

generally different arthropod composition, suggesting that additional environmental 

factors need to be considered in future work. 

Several taxonomic groups were not fully explored due to taxonomic challenges, 

particularly the dominant nematocerous flies, which include the families Chironomidae 

and Ceratopogonidae. Both groups are highly diverse with 263 species of 

Ceratopogonidae, and 798 species of Chironomidae described from Canada (Savage et al. 

2019). Taxonomic challenges beyond the high diversity include the necessity of 

observing (and therefore slide mounting) genitalia (McAlpine 1981; Brown et al. 2009), 

while for emergent adult Ceratopogonidae, as well as the Sciaridae (129 species 

described from Canada) (Savage et al. 2019), there is high sexual high dimorphism, as 

well as a lack of distinguishing features for males as opposed to females for 

ceratopogonids. Due to the inability to correlate male and female morphs, I chose to list 

the two sexes separately, but acknowledge that the members of two sexual 

morphospecies could belong to the same species.  

Female chironomids are an extremely challenging group to identify since they often do 

not key out in family level keys, often cannot be identified to species (Rosenberg et al. 

1988), and often only the adult males of a species are described (Ren et al. 2014) or 

included in species level keys (Langton and Pinder 2007). Even when females are 

described, they still may not be identifiable based on morphology, and even molecular 

studies face challenges in identifying females to a specific species with barcoding 

techniques because their sequences do not match known species of chironomids based on 

male morphotypes (Ekrem et al. 2010). I collected over 700 female chironomid 

individuals, with just under one third of the most prominent morph being males, a sex 

ratio imbalance which has been seen in other chironomid studies (Ekrem et al. 2010, 

Lindeberg 1971). It is known however that some species of chironomids can be 
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parthenogenetic, but as Ekrem et al. (2010) acknowledge, these groups may only be 

facultative parthenogenetic. The most studied parthenogenic species of Chironomidae 

discussed in the literature are members of tribe Tanytarsini within the subfamily 

Chironominae (Lindeberg, 1971; Langton 1998), but Rosenberg et al. (1988) posit that 

several species which they collected are also likely parthenogenic.  

Larvae in particular are difficult to identify to species, or even genus or higher level 

taxonomic categories. There are few good keys for Diptera larvae (see McAlpine et al. 

1981), but many of the described larval forms are not the ones I found. The high number 

of singletons in much of my sampling, especially in the peat sampling, suggests that a 

greater sampling effort is required to reveal the true diversity at each peatland site, in 

particular for the dominant Diptera groups. Specifically, in order to better sample 

nematoceran larvae I would recommend sampling a larger volume of peat and/or 

performing a wet extraction, such as with a water bath (McElligott and Lewis 1994), or 

using an O’Connor funnel (Ryan and Hilchie 1981; O’Connor 1962), in order to more 

effectively characterize the diversity of this community. This would be especially 

important in the Sphagnum site where low abundances and high singletons of chironomid 

and ceratopogonid larvae are likely found deeper in the peat profile. 

By comparison, in sampling of ground-dwelling spiders, although I obtained low 

abundance and biomass, I was able to identify many taxa to the genus or even species 

level. However, to obtain more quantifiable biomass estimates would require more 

extensive and continuous sampling over the growing season. As previously mentioned, 

spiders are often used as bioindicators of disturbance in boreal forest systems, whether 

peatland spiders can be used in a similar manner, for instance as indicators of food 

resources, climate changes, or other disturbances is unknown. Several spider groups have 

been estimated to be specialists of Canadian peatlands (Spitzer and Danks 2006; Dondale 

and Redner 1994).  
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4.8 Conclusions and significance 

Boreal systems, and particularly boreal peatlands, are vulnerable to shifting climate under 

climate warming scenarios (IPCC 2014). Changes in vegetation and soil moisture 

alongside warming and shifts in precipitation are predicted that could have cascading 

effects on peatland arthropod diversity. For instance, changes in tree species distribution 

in the Boreal have occurred and are forecasted to continue occurring due to climate 

warming (NRCan 2019), specifically increasing deciduous cover. In peatlands, warming 

scenarios have shown that Sphagnum moss cover will likely decrease whereas vascular 

plant cover (including sedges and ericaceous shrubs) will likely increase (Buttler et al. 

2015; Dieleman et al. 2015; Fenner et al. 2007; Jassey et al. 2013). Higher latitudes (such 

as the location of my study sites) are forecast to get increased precipitation and heat 

waves are expected to be more frequent, as average global temperatures are expected to 

increase by up to 4°C (IPCC 2014). Soil moisture levels are key to larval development of 

the groups which dominate peatlands (Frouz 1999) as well as being linked to temperature 

(Frouz 1999) and vegetation communities (De Bruyn et al. 2001). 

In this study, I demonstrate that the ‘true’ peatland arthropods are predominantly 

members of the order Diptera, many of which live in the peat, and the order Araneae, 

which hunt on its surface. Both these groups therefore play an important role in above-

ground (terrestrial) food webs and energy, nutrient, and other elemental transfer (e.g., 

Hg) to other organisms. This study provides some information about soil-dwelling larvae 

in peatlands, which are generally poorly known (McAlpine et al. 1981; Wrubleski 1987), 

and the emergent arthropods that are important food resources for above-ground animals. 

For example, shorebirds (Holmes and Pitelka 1968, Skagen 1997, Pedro and Ramos 

2009) and songbirds (Orians 1966, Busby and Sealy 1978) feed on chironomids, with 

chironomids making up more than half of prey consumed by yellow warblers along a 

Manitoban ridge (Busby and Sealy 1978). Both wider scale climate factors (i.e., general 

increases in temperature) and increases in the number of degree days have been shown to 

determine the timing and abundance of emergence of chironomids in the high Arctic 

(Hodkinson et al. 1996). Specifically, the average and minimum daily temperatures were 

found to be the most influential factors in determining emergence timing and abundance 
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in a high Arctic tundra heath with warmer years altering the seasonal patterns of 

emergence (Hodkinson et al. 1996), suggesting that under climate change the emergence 

patterns of dominant peatland arthropods will be affected. This could lead to ecological 

mismatches, where organism activity and availability of key resources are misaligned 

under changes to climate (Høye and Forchhammer 2008; Senner et al. 2017). As for the 

ground-dwelling spider communities, there may be compounding factors affecting their 

abundance and diversity under climate change. They are prone to changes in 

environmental conditions themselves, while also potentially relying on the insects, 

including emergent insects, as a food source. For instance, Høye et al. (2009) found that 

snowmelt timing significantly affected spider size, where earlier snowmelt may have 

allowed spiders more time to develop and grow. This effect was seen differentially 

between the two sexes (Høye and Hammel 2010), and they suggested that changes in 

climate could especially affect spiders at high altitudes. In wetlands in China, wolf 

spiders in the genus Pardosa have been shown to feed on insects in the family 

Chironomidae (Zhong et al. 2019). This suggests that any potential shifts in emergent 

arthropods might cascade. 

There are over 113 million ha of peatlands in Canada (Tarnocai et al. 2011). It is essential 

to gain baseline knowledge of peatland species diversity, and particularly the organisms 

that are specific to the peat environment. Species diversity is known to underpin the 

maintenance of ecological functioning (the biodiversity-ecosystem function relationship), 

which is especially important in the face of environmental fluctuations (Loreau 2000). 

Biodiversity is declining globally (Baronosky et al. 2011; Hallmann et al. 2017), and 

mostly at small scales due to anthropogenic causes such as climate warming (Thomas et 

al. 2004), but also habitat loss and fragmentation (Sala et al. 2000). Therefore, for 

peatlands, ecosystems that are prone to both climate change and habitat loss, knowledge 

of arthropod diversity is of critical importance. 
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Appendices 

Appendix A: List of morphotypes identified to family level where possible, and the 

number of individuals collected using emergence traps from a Carex-dominated fen and a 

Sphagnum-dominated fen near White River, Ontario in 2018. Species followed by an 

asterisk (*) were used in the Principal Component Analysis (PCA). 

      Carex Fen Sphagnum Fen 

Taxon Species June July August June July August 

Class Insecta       

Order Diptera       

Nematocerous Flies       

 Family Cecidomyiidae       

  Cecidomyiidae sp. 1 0 0 0 0 1 0 
  Cecidomyiidae sp. 2 0 0 0 0 1 0 
  Cecidomyiidae sp. 3 0 1 0 0 1 2 

  Cecidomyiidae nr 
Cecidomyiinae sp. 4* 

1 8 2 2 14 1 

  Cecidomyiidae sp. 5 0 2 0 0 1 6 
  Cecidomyiidae sp. 6 0 0 1 0 0 0 
  Cecidomyiidae sp. 7 0 0 0 0 1 0 
  Cecidomyiidae sp. 8 0 0 0 0 1 1 
  Cecidomyiidae sp. 9 0 0 0 0 1 0 
  Cecidomyiidae sp. 10 0 4 0 0 0 0 
  Cecidomyiidae sp. 11 0 1 1 0 0 0 
  Cecidomyiidae sp. 12 0 0 0 0 0 1 
  Cecidomyiidae sp. 13 0 1 0 0 0 0 
  Cecidomyiidae sp. 14 0 0 0 0 1 0 
  Cecidomyiidae sp. 15 0 1 0 0 0 0 
 Family Ceratopogonidae       

  Forcipomyia sp. 1 
(female) 

3 2 0 1 3 2 

  Palpomyia sp. 1 
(female) 

13 0 0 4 0 0 

  
Ceratopogonidae nr. 
Dasyhelea sp. 1 * 
(female) 

51 5 1 3 2 0 

  
Ceratopogonidae nr. 
Dasyhelea sp. 2* 
(male) 

52 0 0 12 1 0 
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Ceratopogonidae nr. 
Dasyhelea sp. 3 
(female) 

0 0 0 20 0 0 

  Ceratopogonidae sp. 1 
(male) 

0 1 0 0 0 0 

  Ceratopogonidae sp. 2 
male 

1 0 0 0 0 0 

 Family Chironomidae       

  
Micropsectra sp. 1 
(male) 

1 0 0 5 0 0 

  Procladius sp. 1 (male) 0 0 0 0 1 0 

  Pseudorthocladius cf 
curtistylus * 

350 321 20 104 82 16 

  Rheotanytarsus sp. 1 
(male) 

0 0 0 0 0 4 

  Tanypodinae nr 
Zavrelimyia sp. 1* 

37 0 0 1 0 0 

  Chironomidae sp. 1 1 0 0 0 0 1 

  
Chironomidae sp. 2 
(male) 

0 0 0 2 0 0 

  
Chironomidae sp. 3 
(male) 

1 0 0 1 0 0 

  Chironomidae sp. 4 
(female) 

0 0 0 8 0 0 

  Chironomidae sp. 5 
(female) 

0 0 0 0 0 18 

  
Chironomidae sp. 6 
(female) 

0 3 0 0 0 1 

  
Chironomidae sp. 7 
(female) 

0 0 0 0 1 0 

  
Chironomidae sp. 8 
(female) 

0 0 0 0 0 2 

  
Chironomidae sp. 9 
(female) 

0 1 0 0 0 0 

 Family Mycetophilidae       

  Mycetophilidae sp. 1 1 0 3 0 0 1 
 Family Sciaridae       

  Chaetosciara sp. 1* 
(female) 

3 1 13 6 0 19 

  Sciaridae sp. 1 (male) 0 4 0 0 0 0 
  Sciaridae sp. 2 (male) 0 0 1 0 0 0 

  Sciaridae sp. 1 
(female) 

0 1 0 0 0 3 

 Family Tipulidae       

  Tipulidae sp. 1 0 1 0 0 0 0 
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  Tipulidae sp. 2 0 0 0 0 0 1 
  Tipulidae sp. 3 0 0 0 0 1 0 
  Tipulidae sp. 4 0 0 1 0 0 0 
  Tipulidae sp. 5 0 4 7 0 0 0 
  Tipulidae sp. 6 0 1 0 0 0 0 
  Tipulidae sp. 7 0 1 0 0 0 0 
 Family Unknown       

  Nematocera sp. 1  0 1 0 0 1 0 
  Nematocera sp. 2 0 0 0 0 1 0 
  Nematocera sp. 3 0 4 0 0 0 0 
  Nematocera sp. 4 0 0 0 0 0 1 
  Nematocera sp. 5 0 0 0 2 0 0 

Suborder Brachycera       

  
Brachycera (remaining 
35 morphs) 

30 20 4 8 22 4 

 Family Phoridae       

  Phoridae sp. 1* 4 3 8 7 1 12 
Order Lepidoptera        

 Family Unknown       

  (11 morphs) 2 11 0 2 4 0 
Order Trichoptera       

 Family Unknown       

  (2 morphs) 0 2 0 0 0 0 
Order Hymenoptera       

 Family Unknown       
   (52 morphs) 19 22 14 14 27 16 

Order Coleoptera        
 Family Unknown       

    (6 morphs) 3 0 1 2 0 0 
    Bycatch** 

Order Diptera       

 Family Culicidae  0 1 0 0 3 0 
 Family Simuliidae  7 0 0 59 3 1 
 Partial Nematocera 92 16 0 44 4 2 
 Partial Cecidomyiidae  0 0 0 1 3 2 
 Partial Chironomidae 13 3 3 0 1 0 
 Partial Brachycera 0 0 0 1 0 1 
 Partial Diptera 1 0 0 2 1 0 

Order Psocoptera  0 0 0 0 2 1 
Order Hemiptera 4 24 19 1 13 7 
Order Ephemeroptera 0 0 0 1 0 0 
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Order Hymenoptera       

 Family Vespidae 0 0 0 1 0 0 
 Family Formicidae 0 1 0 0 0 0 

Order Lepidoptera 0 0 1 1 0 0 
Partial Insect 5 1 1 0 2 0 
Order Collembola 0 0 1 0 0 1 
Class Arachnida       

 Order Araneae 9 6 10 5 5 4 
 Order Opiliones 0 0 0 0 1 0 

Subclass Acari 2 0 1 1 2 0 
Class Gastropoda 0 0 1 0 0 0 

**Bycatch are organisms considered aberrant or accidental to the trapping method. For 

emergence traps this included non-holometabolous adult insects, eusocial insects 

(Vespidae, Formicidae), aquatic insects (i.e., live in open water as larvae e.g., Culicidae, 

Simuliidae), and non-insect arthropods or other groups. 

  



76 

 

Appendix B: List of morphotypes identified to family level where possible, and the 

number of individuals collected from peat samples taken from a Carex-dominated fen 

and a Sphagnum-dominated fen near White River, Ontario in 2018. 

      Carex Fen Sphagnum Fen 

Taxon 
Species June July August June July 

Aug
ust 

Order Diptera       
Nematocerous Flies       

 Family Ceratopogonidae       

  Ceratopogonidae sp. 1 3 5 5 1 1 0 

  Ceratopogonidae sp. 2 1 0 0 0 0 0 

  Ceratopogonidae sp. 3 0 1 0 0 0 0 

 Family Chironomidae       
  Apsectrotanypus sp.  1 1 1 0 0 0 

  Corynoneura sp.  1 0 2 0 0 0 

  Pseudorthocladius sp. 2 4 6 0 0 0 

  

Chironomidae early 
instars 0 5 5 0 0 0 

 Family Tipulidae       

  Tipulidae sp. 1 2 0 0 0 0 0 

  Tipulidae sp. 2 1 0 0 0 0 0 

  Tipulidae sp. 3 1 0 0 0 0 0 

  Tipulidae sp. 4 1 0 0 0 0 0 

 Family Unknown       

  Nematocera sp. 1 0 1 0 0 0 0 

  Nematocera sp. 2 1 0 0 0 0 0 

  Nematocera sp. 3 0 0 0 0 1 0 

  Nematocera sp. 4 0 1 0 0 0 0 
Suborder Brachycera       

  Brachycera sp. 1 0 1 0 0 0 0 

  Brachycera sp. 2 0 1 0 0 0 0 

  Brachycera sp. 3 0 0 0 0 1 0 

  Brachycera sp. 4 0 0 1 0 0 0 
Order Coleoptera       

  Coleoptera sp. 1 1 0 0 0 0 0 

  Coleoptera sp. 2 0 0 0 1 0 0 

  Coleoptera sp. 3 0 1 0 0 0 0 

  Coleoptera sp. 4 0 0 0 0 1 0 
Order Lepidoptera        

  Lepidoptera sp. 1 0 0 0 0 0 1 
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  Lepidoptera sp. 2 0 0 0 0 0 1 
Order Unknown       

  

Holometabolous larva 
sp. 1 1 0 0 0 0 0 

    
Holometabolous larva 
sp. 2 0 0 0 1 0 0 

**Bycatch were mostly collected as singletons and included Enchytraeidae, Cladocera, 

Tardigrada, Collembola, Acari, Araneae, Formicidae, and Hemiptera. 
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Appendix C: List of morphotypes identified to family or genus level where possible, and 

the number of individuals collected using pitfall traps at a Carex-dominated fen and a 

Sphagnum-dominated fen near White River, Ontario in 2018. Species followed by an 

asterisk (*) were used in Principal Components Analysis (PCA), and individuals which 

could not be morphotyped to species were excluded from analyses (**). 

   Carex Fen Sphagnum Fen 

Taxon Species June July August June July August 

Order Opiliones 0 0 0 0 1 0 
Order Araneae       

 Family Lycosidae        
  Alopecosa aculeata  0 0 0 4 0 0 
  Arctosa raptor* 12 0 0 2 0 0 
  Pardosa fuscula 2 0 0 0 0 0 
  Pardosa hyperborea 0 0 0 7 1 0 
  Pardosa moesta* 22 13 4 9 0 0 
  Pardosa uintana  1 0 0 0 0 0 
  Lycosidae sp. 1 (female) 0 0 0 0 1 0 
  Lycosidae sp. 2 (female) 0 0 0 2 0 0 
  Lycosidae juveniles** 1 0 0 6 4 3 
  Lycosidae subadults (female)** 1 1 1 0 0 0 
  Lycosidae subadults (male)** 0 0 0 0 0 1 
  Partial specimen** 0 3 0 1 0 0 
 Family Pisauridae       
  Dolomedes striatus 3 0 0 0 0 0 
 Family Salticidae       
  Salticidae sp. 1 0 0 0 1 0 0 
  Salticidae sp. 2 0 1 0 0 0 0 
 Family Thomisidae       
  Xysticus sp. 1 0 0 0 1 0 0 
 Family Gnaphosidae       
  Gnaphosidae sp. 1 0 0 0 2 0 0 
  Gnaphosa sp. 2  0 0 0 0 1 0 
 Family Philodromidae       
  Philodromidae sp. 1 1 0 0 0 0 0 
 Family Unknown       
  Araneae sp. 1* 1 2 3 1 3 2 
  Other Families (3 morphs) 0 1 0 1 3 0 

Order Orthoptera       
 Family Acrididae 0 0 1 0 2 1 
 Family Gryllidae 0 0 0 0 1 0 
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 Family Tettigoniidae 0 0 0 0 1 0 
Order Coleopera       

 Family Staphylinidae       
Subfamily Paederinae 0 0 0 0 0 1 
Subfamily Pselaphinae* 0 0 0 8 3 7 
Suborder Curculionoidea  0 0 0 1 0 0 

 Family Chrysomelidae  0 0 0 1 0 0 
 Family Lycidae 0 0 0 2 0 0 

Order Hymenoptera       
 Family Formicidae       
  Formicidae sp. 1* 4 3 0 6 4 8 
  Formicidae sp. 2* 1 3 0 8 4 0 
 Family Unknown        
  Hymenoptera sp. 1 0 2 3 0 1 2 
         

  Bycatch 

Class Gastropoda 2 0 0 1 2 4 
Subclass Acari 1 3 2 0 7 2 
Order Collembola 0 17 7 5 4 18 
Class Ectognatha (Partial specimens) 1 0 0 2 3 0 
Order Hemiptera (3 morphs) 1 1 0 1 3 0 
Order Hymenoptera (5 morphs) 3 1 2 2 5 2 
Order Diptera       

  Partial specimens 5 0 0 1 0 2 
  Nematocerous flies 0 4 0 3 4 3 
  Family Chironomidae  0 0 0 7 5 6 
  Family Mycetophilidae 0 0 0 1 0 0 
  Family Simuliidae 4 0 0 3 0 0 
  Family Sciaridae 0 2 0 0 0 0 
  Family Culicidae 0 2 0 0 0 0 
  Family Cecidomyiidae 0 0 0 0 0 2 
  Suborder Brachycera 3 2 5 4 1 0 

Order Siphonaptera 0 0 0 0 0 1 
Order Coleoptera (unknown larva) 0 1 0 0 0 0 

 

  



80 

 

Appendix D: Plant species and their relative abundance collected using point intercept 

measures at the locations of emergence trap plots from a Carex-dominated fen and a 

Sphagnum-dominated fen near White River, Ontario in 2018. 

    Carex Fen Sphagnum Fen 

Latin binomial 
Common 
name 

June July August June July August 

Trees        
Larix laricina tamarack 0 0 0 0 4 0 
Picea mariana black spruce 0 0 0 2 2 1 
Alnus incana speckled alder 0 0 0 0 1 0 
Shrubs  

      
Andromeda 
polifolia 

bog-rosemary 17 19 8 8 17 21 

Chamaedaphne 
calyculata 

leatherleaf 15 64 40 108 75 103 

Gaultheria 
hispidula 

creeping 
snowberry 

1 0 0 59 47 33 

Kalmia polifolia bog laurel 0 0 0 26 12 37 
Myrica gale bog-myrtle 22 42 41 0 0 2 
Rhododendron 
groenlandicum 

Labrador tea 0 0 0 44 67 46 

Salix pedicellaris bog willow 9 2 5 0 0 0 
Vaccinium 
angustifolium 

lowbush 
blueberry 

0 0 0 56 58 58 

Vaccinium 
myrtilloides 

common 
blueberry 

0 0 0 0 1 2 

Vaccinium 
oxycoccos 

bog cranberry 0 10 0 25 59 78 

Herbs  
      

Drosera 
rotundifolia 

round-leaved 
sundew 

0 0 0 1 7 2 

Geocaulon 
lividum 

northern 
comandra 

0 0 0 9 15 1 

Maianthemum 
trifolium 

three-leaf false 
lily of the 
valley 

0 0 0 46 43 22 

Comarum 
palustre 

marsh 
cinquefoil 

0 3 1 0 0 0 

Triadenum 
fraseri  

Fraser's marsh 
St. Johnswort 

2 2 6 0 0 0 

Viola palustris marsh violet 12 12 9 0 0 0 
Fragaria 
virginiana 

wild 
strawberry 

1 2 0 0 0 0 
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Lycopodium 
annotinum 

stiff clubmoss 0 0 0 36 45 8 

Sedges        

Calamagrostis 
canadensis 

Canada 
bluejoint grass 

7 4 4 0 0 0 

Carex disperma soft leaf 0 0 0 20 54 0 
Carex 
lasiocarpa/Carex 
oligosperma 

woolly fruit 
sedge/ few 
seed sedge 

223 184 159 0 0 0 

Carex pauciflora 
few-flowered 
sedge 

0 0 0 0 1 1 

Carex stricta tussock sedge 20 45 49 0 0 0 
Mosses        

Pleurozium 
schreberi 

red-stemmed 
feathermoss 

0 0 0 102 22 30 

Bryophyta sp. 1  terrestrial moss 0 0 0 3 0 0 
Sphagnum 
angustifolium 

fine bog moss 148 99 159 187 107 209 

Sphagnum 
fuscum 

rusty bog moss 0 0 0 70 235 40 

Sphagnum 
girgensohnii 

Girgensohn’s 
bog moss 

0 0 0 6 37 21 

Sphagnum 
magellanicum 

magellanic bog 
moss 

0 0 0 52 22 176 

Bare Soil/ 
Woody Debris/ 
Dead Vegetation  

non-detects 23 12 19 136 89 44 

 

  



82 

 

Appendix E: Plant species richness, Shannon’s and Simpson’s diversity indices, and 

Leaf Area Index (LAI) for vegetation surveys performed using point intercept measures 

at the locations of emergence trap plots from a Carex-dominated fen and a Sphagnum-

dominated fen near White River, Ontario over the 2018 growing season.  

Month Site  
Standardized 

Richness 
(sp/m2) 

Shannon's 
Diversity 

Simpson's 
Diversity 

LAI 

June  Carex fen  8.00 ± 0.3b 1.44 ± 0.1b 3.00 ± 0.2cd 0.57 ± 0.2 

 Sphagnum fen 14.00 ± 0.4a 2.32 ± 0.0a 8.16 ± 0.4ab 0.59 ± 0.1 
July  Carex fen  7.40 ± 0.7b 1.64 ± 0.1b 4.33 ± 0.6bcd 0.86 ± 0.1 

 Sphagnum fen 13.20 ± 0.2a 2.22 ± 0.0a 6.86 ± 0.5abc 0.66 ± 0.2 
August Carex fen  7.40 ± 0.7b 1.59 ± 0.1b 3.90 ± 0.5cd 0.97 ± 0.1 

  Sphagnum fen 12.80 ± 0.6a 2.17 ± 0.1a 6.50 ± 0.8abc 0.56 ± 0.2 

Diversity indices were calculated using the vegan package in R on standardized plant 

species abundances. Values are means, errors are standard error; different letters denote 

significantly groups based on a RM-ANOVA and Tukey’s post hoc test run in Statistica. 
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Appendix F: Characteristics used for identification purposes for the main target 

arthropod taxa and morphospecies collected from a Carex-dominated fen and a 

Sphagnum-dominated fen near White River, Ontario in 2018. The letters p.o. denote a 

personal observation.  

Taxon  Characteristics  Reference 
Literature  

Hymenoptera 
and Diptera 

Winged adults: wing shape; wing venation; wing setae 
placement and density. 

Marshall 2006; 
McAlpine et al. 1981 

 
Antennal length and morphology.  Marshall 2006; 

McAlpine et al. 1981  
Body length (used in combination with other traits) p.o. 

 
 

Colour (used in combination with other traits) p.o. 
 

Nematocerous 
Flies  

Antennae with four or more antennal flagellomeres and 
no stylus or arista; palps three to five segments long. 

McAlpine et al. 1981 

Family 
Cecidomyiidae  

Wing venation; tarsomere morphology; ocelli; antennal 
morphology. 

McAlpine et al. 1981 

Family 
Ceratopogonidae  

Adults: wing venation; anterior thoracic spiracle; 
postnotal groove; mouthparts (females); antennal 
morphology (males) p.o.  
Larvae: complete and sclerotized head capsule; smooth 
bodied with terminal abdominal setae; apneustic 
respiratory system. 

McAlpine et al. 1981 

Family 
Chironomidae  

Adults: wing venation; anterior thoracic spiracle; 
mouthparts; genitalia. Larvae: complete and sclerotized 
head capsule; one or two unjointed parapods and some 
anal setae; apneustic respiratory system. 

Langton and Pinder 
2007; McAlpine et 
al. 1981; Oliver and 
Roussel 1983 

Family 
Mycetophilidae  

Wing venation; tibial spurs p.o.; costa p.o. McAlpine et al. 1981 

Family Sciaridae Wing venation; strongly sclerotized wing veins p.o.; 
ocelli present; mesothoracic pleural sclerites. 

McAlpine et al. 1981 

Family 
Tipulidae 

Adults: wing venation; dorsal thorax v suture.  
Larvae: head capsule reduced to rods; metapneustic 
respiratory system. 

McAlpine et al. 1981 

Suborder 
Brachycera 

Antennal flagellum in a single segment often with arista 
or stylus; palp with two segments or less. 

McAlpine et al. 1981 

Family Phoridae  Wing venation; humpbacked appearance of thorax; 
large triangular palps p.o. 

McAlpine et al. 1981 

Order Araneae  All groups collected had eight eyes and lacked a 
cribellum. 

Ubick et al. 2017 

Family 
Lycosidae 

Three rows of eyes; genitalia. Ubick et al. 2017; 
Dondale and Redner 
1990 
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Family 
Pisauridae 

Eye arrangement; genitalia. Ubick et al. 2017; 
Dondale and Redner 
1990 

Family 
Salticidae 

Eye arrangement; legs prograde. Ubick et al. 2017 

Family 
Thomisidae 

Eye arrangement; chelicerae lack teeth; anterior legs 
larger. 

Ubick et al. 2017 

Family 
Gnaphosidae 

Eye arrangement; chelicerae and tarsal claws with teeth; 
fewer and longer anterior lateral spinnerets; genitalia. 

Ubick et al. 2017 

Family 
Philodromidae 

Eye arrangement; legs prograde; long and narrow 
carapace. 

Ubick et al. 2017 
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